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Abstract 

 

Large mechanical structures, for example aircraft and motor vehicles, usually 

consist of a number of subassemblies. This necessitates the use of joints, which 

locate the subassemblies and transfer loads between them. While necessary, joints 

introduce discontinuities into the structure that act as stress raisers and regions of 

possible failure initiation. Consequently, joint design is crucial for achieving 

satisfactory structural strength. 

 Joining composite structures is all the more challenging compared to metallic 

structures. This is due to the brittle nature of many composite materials, which 

permits only modest plastic deformation and limits the corresponding mitigation of 

stress concentrations prior to fracture.  This is particularly problematic for bolted 

composite structures. In order to fully exploit the potential of composites, it is thus 

necessary to develop more efficient means of joining them. 

 In recent years, several investigators have shown experimentally that a 

combination of bonding and bolting can, sometimes, produce a joint that is stronger 

than either of these joints by itself. This could potentially result in a more efficient 

joint and is therefore of particular interest for composite structures. These 

investigators found that load sharing between the adhesive and bolt is important for 

achieving the benefits of “hybridization”. However, they had only limited 

understanding of the most effective way to achieve load sharing. Furthermore, they 

made no attempt to predict the strength of hybrid joints by means of mathematical 

modelling. 

 In response to these shortcomings in the literature, this thesis follows a two-

pronged approach. First, in Chapters 3-4, load sharing in hybrid bonded-bolted 

joints is addressed. An efficient numerical model is developed in Chapter 3 for this 

end. This model is validated experimentally, after which it is used in a global 

sensitivity analysis in Chapter 4 to determine the most important factors influencing 

load sharing. Of the various parameters considered, it is found that the adhesive 

yield strength, overlap length and adhesive hardening modulus have the greatest 

effects, by a considerable margin. 
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 Next, in Chapters 5-10, strength is addressed. For this purpose, an original 

mathematical model of a hybrid bonded-bolted joint is developed from first 

principles. This model distills the physical problem to the essentials, yet accounts 

for many complex effects found in real joints. Through comparison with the 

experimental results presented in Chapter 10, the model is shown to be capable of 

providing a basic prediction of bonded-, bolted-, and hybrid-bonded-bolted joint 

strength. Agreement to within 8% of the experiment is demonstrated. The model is 

subsequently used to elucidate key behaviours of hybrid bonded-bolted joints in 

Chapter 11. 

 Based on the findings of this thesis, increased confidence has been 

established in the feasibility of the hybrid bonding-bolting concept. Furthermore, 

the developed analysis methodology has demonstrated significant promise for use 

as part of a design tool.
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Abrégé 

 

Des grandes structures mécaniques, par exemple celles des avions ou des véhicules 

automobiles, se composent généralement d'un certain nombre de sous-ensembles. 

Ces sous-ensembles doivent être reliés entre eux par des joints, dont le but 

principal est de localiser les composants et transférer des charges structurales entre 

eux. Bien que nécessaire, les joints introduisent des discontinuités dans la structure 

qui agissent comme des concentrations de contrainte et sont les emplacements ou 

des fissures s’amorcent. La conception et l'analyse des joints sont donc de la plus 

haute importance pour la réalisation d’une résistance structurale acceptable.  

 L’assemblage de structures composites est d'autant plus difficile par rapport 

à celui de structures métalliques. Cela est dû à la nature fragile de beaucoup de 

matériaux composites, ce qui ne permet qu’une légère redistribution de la 

charge/réduction limitée des concentrations de contrainte par des déformations 

plastiques avant la fissuration. Afin d'exploiter pleinement le potentiel des 

composites, il est donc nécessaire de trouver des moyens efficaces pour les 

assembler.  

 Au cours des dernières années, plusieurs chercheurs ont montré lors d’essais 

expérimentaux qu'il existe des situations dans lesquelles une combinaison de 

collage et boulonnage mène à un joint plus résistant. Cela pourrait aboutir à une 

connexion plus efficace et est donc d'un intérêt particulier pour les structures 

composites. Ces chercheurs ont découvert que la répartition de charge entre 

l'adhésif et le boulon est importante pour réaliser les avantages d’hybridation. 

Cependant, ils avaient seulement une compréhension limitée de la meilleure façon 

de réaliser cette répartition de charge. En outre, ils n’ont fait aucune tentative pour 

prédire la résistance de ces joints au moyen de modèles mathématiques.   

 En réponse à ces lacunes dans la littérature, cette thèse fait suite à une 

approche à deux volets. Dans Chapitres 3-4, un modèle numérique efficace est 

développé pour prédire la répartition de charge dans les joints hybrides. Ce modèle 

est validé expérimentalement, après quoi il est utilisé dans une analyse de 
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sensibilité globale pour déterminer les facteurs les plus importants qui influent sur 

la répartition de charge. 

 Dans la deuxième partie de la thèse, Chapitres 5-10, la résistance est 

adressée. A cette fin, un modèle mathématique original d’un joint hybride collé-

boulonné est développé à partir de zéro. Ce modèle représente le problème du joint 

hybride à l'essentiel, tout en représentant la plupart des effets complexes trouvés 

dans des joints réels. Le modèle est indiqué comme étant en mesure de fournir une 

prévision de base de la résistance. Il est ensuite utilisé pour élucider les 

comportements clés de ces joints dans Chapitre 11. 

 Sur la base des conclusions de cette thèse, un bon degré de confiance a été 

établi dans la faisabilité même de la notion de collage-boulonnage hybride. De plus, 

la méthodologie d'analyse surdéveloppée a démontré un fort potentiel pour 

utilisation dans le cadre d'un outil de conception.
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Preface 

 

The idea for this thesis germinated in 2011, when Professor Lessard (supervisor) 

was appointed principal investigator of a CRIAQ research project entitled “COMP 

506: Design and analysis of hybrid (bonded and bolted) joints for aerospace 

structures.” Soon after, I was admitted to McGill to pursue a doctoral degree in the 

Structures and Composite Materials Laboratory, and it was decided that I would 

participate in this project. The actual work would commence upon my arrival in 

Montreal in August 2012. 

 COMP 506 is a collaborative research effort between various Canadian 

research institutes, universities and industry, aimed at investigating the merits of 

combining bonding and bolting for joining composite aerospace structures. Another 

goal of the project is to develop an analysis methodology that can be used to 

optimize hybrid bonded-bolted joint design, and to incorporate this into a specialist 

software package. The project partners include Bombardier, L3-Com, Delastek, 

National Research Council of Canada, Carleton University, École Polytechnique de 

Montréal and, of course, McGill University, where the work presented in this thesis 

was undertaken. 

 The main research tasks are divided among the three partner universities, 

with McGill tasked primarily with modelling hybrid-bonded bolted joints and 

developing an analysis methodology. Carleton is focused on experimental research, 

while École Polytechnique is responsible for design optimization. Invariably, there 

has been and continues to be some overlap of this division of labor. Nevertheless, 

mostly as originally intended, this thesis is primarily on modelling of hybrid bonded-

bolted joints. The models developed and described herein strive to address a range 

of complex effects while maintaining good computational efficiency; this was done 

expressly in order that they might be useful for the optimization portion of the 

project.  Furthermore, in order to facilitate its inclusion in the desired specialist 

software, the strength model presented in Chapters 5-9 was implemented as a fully 

standalone MATLAB code. 
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 It is my hope that this thesis has made at least some small contribution 

towards improving understanding of hybrid bonded-bolted joints. If even a single 

reader should find the work to be of interest, then the endeavour will have been 

well worth it. 

 

Kobyé Bodjona 

 

Montreal, July 2016 
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Chapter 1: Introduction 

 

Large aerospace structures are increasingly made of composite materials. These 

materials typically consist of two phases: matrix and reinforcement. The matrix is a 

binding phase that serves primarily to align, protect, and support the 

reinforcement. The reinforcement provides most of the material’s stiffness and 

strength in the direction in which it is aligned. When the matrix is a polymer and 

the reinforcement consists of fibres, the material is referred to as a fibre reinforced 

polymer (FRP). When multiple sheets or plies of this material are stacked in a 

layerwise fashion, the combination is known as a laminated composite (see Figure 

1.1). In aerospace structures, the fibres are typically semi-continuous carbon 

filaments, arranged in bundles or tows in either a unidirectional or woven pattern. 

 

 

Figure 1.1: Composition of a laminated composite 

 

Laminated composites offer excellent performance in terms of stiffness- and 

strength-to-weight ratio, corrosion resistance and fatigue resistance. In the late 

1970s and early 1980s, “laminates” were first introduced in secondary civil aircraft 

structures such as flaps, nacelles and spoilers. In 1984, the first CFRP primary 

aircraft structure was put into service in the Boeing 737 horizontal tailplane [1]. 

Subsequently, in the 1990s and early 2000s composites spread to many other 

primary structures such as center wingboxes and pressure bulkheads. Today, they 
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are found in almost all major primary aircraft structures. Figure 1.2 shows an 

overview of their use in a contemporary passenger aircraft. 

 

 

Figure 1.2: Use of composites in the Boeing 787 [2] 

 

Besides the aerospace industry, composite materials are also growing in popularity 

in the marine, automotive and renewable energy industries. As a case in point, it is 

predicted that wind turbine manufacturers’ use of carbon fibre will exceed that of 

aerospace manufacturers within the next ten years [3]. 

 Nevertheless, composites are not without their problems. Because the fibres 

provide most of their strength, laminated composites are weak when loaded 

transversely to the plies.  This places them at risk of a transverse failure mode 

known as delamination. Furthermore, the large aspect ratios of fibres used in high-

performance composites means that they are prone to microbuckling and that the 

materials are generally poor in compression. Yet another issue is that they are 

problematic to join. This last issue constitutes the overarching theme of this thesis. 

 

1.1 Issues in the Joining of Composite Structures 

 

Most large, complex structures are assemblies. As an example, an exploded view of 

the Bombardier Global Express 6000 airframe is shown in Figure 1.3. Importantly, 

assemblies require joints to locate their various subassemblies and transfer loads 
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between them. Although there are many different kinds of joints, three principal 

classes can be identified; these are shown schematically in Figure 1.4. 

 

 

Figure 1.3: Bombardier Global Express assembly [4] 

 

Figure 1.4: Principal classes of joints (a) mechanical fastening (b) chemical adhesion (c) 

welding [5] 
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Joints are an important consideration in the design of structures because they 

introduce geometric and material discontinuities that act as stress raisers. They are 

thus high-risk regions for the initiation of material failures. Some example sources 

of stress concentration in joints are depicted in Figure 1.5. 

 

 

Figure 1.5: Example sources of stress concentration in joints 

 

For the joining of thermoset composite structures in particular, only two of the 

principal classes of joints shown in Figure 1.4 are applicable1, namely: 

 

 Mechanical fastening (bolting, riveting…) 

 Adhesive bonding 

 

Regarding the former, it is well-known that mechanically fastened joints are 

typically more efficient in metallic structures than those in composite structures. 

This is shown for bolted joints in Figure 1.6 [6]. The reason is that metal alloys are, 

generally speaking, significantly more ductile than FRP composites. Thus, the 

inevitable stress concentrations that occur at bolt holes can be substantially 

relieved through gross plastic yielding of the metal in the vicinity of the holes. By 

contrast, in composite structures there is only limited stress relief through plastic 

yielding. Fracture therefore typically occurs at a lower load and at a lower ratio of 

joint-strength-to-adherend-strength (also known as the joining efficiency). 

                                       

1 Welding is in fact applicable to thermoplastic composite structures; however, neither welding nor 

thermoplastics are further addressed in this thesis. 
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Figure 1.6: Strengths of bolted joints in brittle, ductile and composite materials [6] 

 

This decreased joining efficiency results in the need for more bolt rows, thickened 

adherends, inserts and similar features, resulting in relatively heavy joints. 

Ultimately, this limits the overall weight saving that is achievable by using 

composite instead of metal alloy. There is consequently a growing realization that 

the full potential of composites will not be realized as long as fasteners are required 

in composite structures [7]. 

 Contrary to bolting, bonding of composite structures and of metallic 

structures is fundamentally quite similar. Given two joints—one with composite 

adherends and one with metallic adherends, but otherwise with the same bonding 

system and dimensions—if the adherend in-plane and bending stiffnesses are 

similar then so are the stresses and strains set up in the adhesive. Consequently, 

similar cohesive strengths are achieved.2[8] 

 

                                       

2 For both composite and metallic adherends, careful surface preparation is tantamount for achieving 

optimal bond strength and the coveted cohesive (intra-bondline) failure mode shown in Figure 1.7-c. A 

recent FAA best practices workshop on bonded joints revealed that OEMs consider consistent surface 

preparation to be the most important issue in manufacturing high quality bonded joints [8]. 
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Figure 1.7: Possible failure modes in a composite-to-composite bonded joint 

 

 A caveat to the similarity of bonding composites and metals is adherend 

failure. In many bonded joints, the bondline is so strong that the failure must run 

outside the bondline and into the adherends. Metallic adherends will typically yield 

prior to fracture, while composites will undergo brittle fracture. In addition, the two 

adherend materials react quite differently to out-of-plane loading. Such loading 

occurs, for example, in the single-lap joint depicted in Figure 1.7; the eccentricity of 

the load path and lack of midplane symmetry of this joint result in a significant 

bending moment (called secondary bending) in the overlap region (see Figure 1.8). 

 

 

Figure 1.8: Secondary bending in a single-lap joint (a) undeformed configuration (b) 

deformed configuration showing bending of overlap [9] 

 

 Secondary bending creates peel stresses in both the adhesive and 

adherends. These are greatest near the overlap edges. Since composite laminates 
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are weak in the transverse direction, interlaminar failure may ensue in these 

regions. This results in the fibre-tear adherend failure mode shown in Figure 1.7-d.  

Bonded composite joints should thus be designed to minimize secondary bending 

wherever possible. In thick composite structures, this can potentially be achieved 

by replacing single-lap joints with stepped-lap or splice joints. Importantly, if 

transverse failures are suppressed or minimized, bonded composite joints can 

achieve similar joining efficiencies to bonded metallic joints, both of which are 

greater than what can be achieved using bolts [10]. There thus appears to be 

significant scope to replace bolted joints in new structures with more efficient 

bonded joints, which could help to move towards the goal of realizing the full 

potential of composite structures.  

 Nevertheless, a major issue is that bonded joints cannot currently be 

certified in primary aircraft structures. The U.S. Federal Aviation Administration 

(FAA) regulations for design and construction of transport aircraft (14 CFR 25.601) 

state that:  

 

“The airplane may not have design features or details that experience has shown to 

be hazardous or unreliable.” [11] 

 

Unfortunately, bonded joints in both composite and metallic structures are highly 

sensitive to processing conditions and are prone to hard-to-detect defects known as 

kissing bonds [12, 13]. Making matters worse, bonded joint failure is not 

progressive but is typically sudden and catastrophic. Consequently, at the present 

time, bonded joints are practically impossible to certify as a standalone joining 

mechanism in primary aircraft structures. 

 A potential solution to this conundrum is to somehow impart the adhesive 

joint with a damage tolerance mechanism. The question of exactly how this might 

be achieved is a trending topic of research. Preliminary suggestions include the use 

of corrugated bonding surfaces to potentially arrest cracks [14], stitching of the 

composites [15] or the use of mechanical fasteners in conjunction with adhesive. 

The latter approach is hereafter called hybrid bonding-fastening, encompassing 

both hybrid bonding-bolting and hybrid bonding-pinning. The particular focus of the 
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present thesis, in the scope of the overarching research program, shall be on the 

hybrid bonding-bolting technique. 

 

1.2 The Case for Hybrid Bonding-Bolting 

 

Hybrid bonding-bolting is an alternative joining technique that consists of 

simultaneous bonding and bolting of the components to be joined (hereafter called 

the adherends). An example of a hybrid bonded-bolted (HBB) joint is shown in 

Figure 1.9. In the previous section, this technique was presented as a potential 

means of imparting an adhesive joint with a certain level of damage tolerance. 

There is no doubt that when used in a HBB joint, the bolts are able to provide the 

joint with residual strength following failure of the adhesive. This fact has long been 

understood and was comprehensively shown by Hart-Smith in the 1980s [16]. 

 

 

Figure 1.9: Hybrid bonded-bolted joint 

 

 Hart-Smith was also among the first to argue that the addition of bolts to a 

bonded joint does not necessarily provide any additional benefits beyond fail safety. 

He showed that the dissimilarity in stiffness between the adhesive load path and 

the bolt load path causes the adhesive to carry almost the entire load. The bolts 

thus effectively remain inactive unless the adhesive fails. The implication of this 

appears to be that there is no particular difficulty in designing a HBB joint. It is 

merely a question of designing a bonded joint to withstand a given target load, in 

addition to a bolted joint that provides an acceptable level of residual strength in 

case of adhesive damage. In other words, the bolts “guarantee” the minimum joint 
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strength to be expected3. This leads to two important observations regarding the 

use of hybrid bonding-bolting as a damage tolerance mechanism: 

 

1) HBB joints can potentially enable weight savings if the target strength and 

the minimum acceptable residual strength of the joint are different. For 

example, if the target joint strength is 15 kN but, in the case of initial failure 

it is acceptable to have only 10 kN residual strength. In this case, a bolted 

joint may be designed that can carry 10 kN. If the addition of adhesive is 

able to increase the joint’s strength to 15 kN, then this “hybrid” may be a 

lighter joint than a bolted joint designed to carry the entire 15 kN. 

 

2) If the target joint strength and the minimum permissible residual joint 

strength are equal then, of course, it is obvious that there is no potential to 

save any weight on the structure. In this case, the hybrid joint can never be 

more efficient than the bolted joint since it will be at least as heavy as the 

bolted joint with the same minimum strength. Meanwhile, the primary reason 

for using bonding is to save weight! In this case, other damage tolerance 

features that are much lighter than bolts would present a much better 

option. Probably the most promising approach in this case is the use of pins, 

as in a hybrid bonded-pinned joint (see Chapter 2). 

 

The use of HBB joints may thus potentially be justified in the case of (1). 

Nevertheless, it is still necessary to be able to increase the joint strength from the 

acceptable residual strength to the target strength by adding adhesive to a bolted 

joint. It is far from evident that this is achievable. Perhaps the overlap length may 

need to be extended, increasing the weight of the joint. Alternatively, it may be 

possible to take advantage of an active hybrid bonded-bolted joint. Such joints are 

the main topic of this thesis. 

                                       

3 The practice of adding mechanical fasteners to bonded joints purely as a fail-safety device was 

widely employed in the Fokker 100 aircraft, as well as in several other aircraft programs. These 

fasteners came to be affectionately known as “chicken rivets”. 
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1.3 Active Hybrid Bonded-Bolted Joints 

 

In recent years, a number of investigators have challenged Hart-Smith’s original 

assertion that the bolts in a hybrid joint are inactive and do not contribute unless 

the joint experiences damage [17-19]. These investigators showed that, for 

judiciously designed hybrid bonded-bolted joints, the load is able to be shared 

between both the adhesive and bolts, with the latter actively partaking in structural 

load transfer. HBB joints that exhibit this behaviour are hereafter referred to as 

active. 

 Active HBB joints can potentially increase a joint’s strength beyond that of 

both the underlying bonded joint and bolted joint. This is important, because it 

could enable the necessary strength improvement discussed in section 1.2. There 

are many open questions regarding active hybrid bonded-bolted joints, some of 

which shall be addressed in this thesis.  To better understand the current state-of-

the-art and determine what these open questions are, an in-depth literature review 

should first be carried out. This is presented in the next chapter.
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Chapter 2: Literature Review & Objectives 

 

In order to join thermoset composite structures (the most widespread type of 

composite used in the aerospace industry), there are currently two established 

overarching techniques: 

 

 Adhesive bonding 

 Mechanical fastening  

 

These are illustrated in Figure 2.1. The research that has been carried out regarding 

their application in composite structures has previously been extensively reviewed 

by a number of authors [9, 20-24]. 

 

 

Figure 2.1: Established joining techniques 

 

An alternative technique, namely hybrid bonding-fastening (HBF), has also started 

to generate interest due to its potential advantages over the established 

techniques. In HBF, adhesive bonding and mechanical fastening are used 
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simultaneously to connect the components of interest (adherends). HBF joints can 

be divided into two main categories: (a) those that use bolts/rivets, hereafter called 

hybrid bonded-bolted (HBB) joints and (b) those that use pins, hereafter called 

hybrid bonded-pinned (HBP) joints. An example of each is shown in Figure 2.2. This 

thesis focuses on HBB joints in particular, and thus HBP joints are purposely 

ignored from this point onwards. Nevertheless, the interested reader is referred to 

the author’s review on HBF joints in the Journal of Reinforced Plastic and Polymers, 

which includes a detailed review of HBP joints [25]. 

 

 

 

Figure 2.2: Main categories of HBF joints 

 

2.1 Shims & Sealants 

 

Many bolted joints in existing composite structures are technically HBB joints since 

they contain a layer of liquid shim to fill gaps caused by manufacturing 

tolerances/errors. A sealant is also sometimes used to prevent fretting and 

fluid/particulate ingress and egress to the structure. Most bolted joint analyses, 

however, ignore this shim/sealant layer. Several authors have shown 

experimentally that this leads to overprediction of joint stiffness [26-28]. 

Furthermore, moderate decreases in joint strength have been reported as the 

shim/sealant layer thickness becomes excessive [27, 28]. This can be ascribed to 

the increased load eccentricity and bolt tilting caused by the adherend offset due to 
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the adhesive layer. Since most shims/sealants have very low elastic properties, 

they do not themselves transmit significant structural loads and hence do not 

directly modify the joint stiffness and adherend stresses. 

 Crucially, when stronger, stiffer structural adhesives are used, or when the 

composite adherends are co-cured, the adhesive layer does transmit significant 

loads and the joint stiffness and adherend stresses are directly modified. HBB joints 

of this kind have shown promise for improving joint strength [19], fatigue life [29] 

and energy absorption [30] compared to bonding or fastening separately. 

Consequently, they constitute the main focus of this review. 

 

2.2 Design & Manufacture 

 

In the design of a HBB connection, multiple types of joint (single-lap, double-lap, 

stepped-lap, scarf, butt ...), adherend material (composite, metal ...), adhesive 

material (polyurethane, epoxy, ...), fastener head (protruding, countersunk, ...), 

fastener pattern (single-row/column, multi-row/column, ...), loading (uniaxial 

tension, in-plane shear, peel, ...) and spew fillet geometry (flush, triangular, ...) 

may be considered. Some of these options are shown in Figure 2.3. 

 The HBB joints that have been studied in the literature to date are almost 

exclusively lap joints loaded in uniaxial tension. Single-lap joints are the most 

frequently studied joint type, likely due to their specification in the popular ASTM 

D1002 and ASTM D3165 standards [31, 32]. Most of the remaining studies concern 

double-lap joints. A solitary reference was found [16] in which stepped-lap and 

scarf joints were investigated. 

 The use of protruding head bolts is ubiquitous in the HBB literature. 

Countersunk bolts have been considered by relatively few authors [26, 33]. While 

the latter provide aerodynamic and aesthetic benefits, they also reduce bolted joint 

bearing strength [6, 34]. In addition, riveting has also been investigated in a 

number of works [35-39]. Despite its ability to reduce manufacturing times and 

eliminate bolt-hole clearance [40], the riveting process can potentially damage 

composite adherends [38, 39]. 
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Figure 2.3: Various joint design options 

 

 Conveniently, the most commonly studied fastener configuration is single-

row, single-column bolting. This configuration eliminates many complex effects and 

interactions, enabling researchers to distinguish the fundamental mechanisms 

influencing the joint behaviour. Unfortunately, it is not representative of most 

practical joint designs, which tend to be multi-row and multi-column [41]. To date, 

few studies exist on the latter. 

 Similarly to bonding and bolting separately, HBB joints can be used to join 

composite-to-composite, composite-to-metal or metal-to-metal. The composite 

adherends used by investigators are mostly continuous fibre laminates with quasi-

isotropic layups [26, 42] or cross-ply layups [43, 44]. Carbon fibre reinforced 

polymer (CFRP) is the preferred material and is generally used in the form of pre-

impregnated tape or pre-impregnated fabric. The popularity of quasi-isotropic CFRP 

laminates is surely influenced by their widespread use in the aerospace industry. In 



2. Literature Review & Objectives 

15 

 

addition, glass fibre reinforced polymer (GFRP)—in the form of fabrics [29, 38], 

randomly oriented continuous strand mats [45] and filament wound shells [46]—

has also been considered by several investigators. Studies on composite-to-metal 

and metal-to-metal HBB joints have investigated steel [47, 48], titanium [16] and 

aluminum [39, 42, 49] adherends. 

 Bolt holes are drilled through the overlap region either prior to or after 

bonding. Arguments can be made for either approach, and in practice both are used 

with similar frequency. However, if drilling is performed prior to bonding, then it is 

necessary to insert a pin through the holes during cure to ensure hole alignment. 

One suggested use for HBB joints, other than to improve the joint mechanical 

performance, is to affix bonded structures as they cure and thus enable subsequent 

manufacturing operations to be performed sooner [19, 49]. 

 As an alternative to drilling, Matsuzaki et al. [29] examined the possibility of 

diverting the composite fibres around the bolts in order to avoid fibre terminations 

and drilling-related damage. While no static strength improvement was observed 

using this technique versus a drilled joint, it was suggested that fatigue life may 

have benefited. 

 Advanced joint design features such as externally tapered adherends, 

complex adhesive fillet geometries [18, 19] and complex bolting patterns [35, 36, 

44, 50] have been taken into account in relatively few studies. 

 

2.3 Elastic & Inelastic Behaviour 

 

In a HBB joint, the underlying bonded joint and bolted joint ideally act as parallel 

load paths. However bonded joints are generally significantly stiffer than bolted 

joints of similar dimensions [16, 18]. This is a consequence of both material and 

geometry, since the adhesive material is intrinsically less stiff than that of the bolt 

[30]. During elastic loading of a typical HBB joint, this stiffness discrepancy causes 

the adhesive to transfer most of the load by itself [16, 18, 19, 30]. The relevant 

region of the load-displacement curve is shown between the origin and point A in 
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Figure 2.4. In this region, the HBB joint has essentially the same stiffness as the 

underlying bonded joint [18, 29, 51]. 

 At higher loads, nonlinear adhesive behaviour (due to e.g. hyperelasticity or 

plasticity) reduces the bonded joint stiffness [17, 52]. The bolt will at this stage 

begin to assume an increasing share of the load [18, 53] and the HBB joint stiffness 

will begin to exceed that of both underlying joints [18, 19]. In the case of a neat fit 

hole, this stiffening effect occurs as soon as nonlinear adhesive effects manifest 

(point A in Figure 2.4). In the case of a clearance fit hole, it only occurs once the 

adhesive has sufficiently deformed to overcome bolt-hole clearance (point B in 

Figure 2.4) or if sufficient bolt-clamp up is applied to allow load to be transferred to 

the bolt through bolthead friction. 

 

Figure 2.4: Typical load-displacement behaviour of a HBB joint 

 

Should gross failure of the adhesive layer occur at any stage during loading—an 

abrupt event for monotonically loaded HBB joints [49]—then the joint load will drop 

to the level that the bolted joint by itself would have sustained at the given 

displacement (the gross failure event is represented by points C and D in Figure 2.4 

for a neat fit and clearance fit hole, respectively). Subsequently, the HBB joint 

behaves similarly to a bolted joint [18, 29, 54]. 
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 It should be noted that many HBB joints (a) use adhesives that do not 

exhibit significant material nonlinearity or (b) use adhesives that have low strain to 

failure (i.e., are brittle) or (c) have very thin bondlines (e.g. co-cured joints). In 

such cases, the HBB joint response will be quasi-linear up to adhesive failure, akin 

to the underlying bonded joint. The stiffening effect due to the bolts is not observed 

in such joints [29]. 

 

2.4 Load Sharing 

 

Load sharing refers to the proportion of externally applied load transferred by the 

bolts versus that transferred by the adhesive [18, 51]. In a HBB joint, load may be 

transferred by the bolts by means of (a) contact between the hole bearing surface 

and the bolt shank and (b) friction between the adherend outer surface and the 

bolthead/washer. Bodjona and Lessard [51] found that the former mechanism is 

best suited to transferring significant loads in HBB joints. The latter is less 

dependable since it relies on bolt clamp-up, which is known to reduce as a 

consequence of joint deformation [55, 56] and temporally due to viscoelastic creep 

of the composite [57, 58]. In addition, creep of the adhesive under clamp-up is also 

likely to be important, although this has not as yet been investigated.  

 Hart-Smith [16] showed that, for a bonded lap joint of practical proportions 

loaded in uniaxial tension, the bolts remain almost devoid of load (i.e., there is little 

or no load sharing) until failure of the adhesive. The bolts’ sole contribution was 

found to be as a redundant load path (fail-safe mechanism). Consequently, it was 

concluded that HBB joining would not typically improve the static strength of 

bonded joints. This conclusion was based on a joint design with long overlap length, 

thin bondlines and a strong adhesive with a high Young's modulus. While these can 

be considered hallmarks of a well-designed traditional bonded joint, they are not 

conducive to load sharing. 

 Several decades later, Kelly [19] showed experimentally that load sharing is 

the essential mechanism by which the stiffness of a HBB joint can be improved 

beyond those of the underlying joints, and by which crack initiation can be delayed.  
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Several researchers have since tried to induce significant load sharing (defined as 

≥10% in [51]) by means of purposeful joint design [18, 51, 59]. Graham et al. [30] 

protested that such an approach equates to suboptimal joint design in order to get 

load sharing to work. However, the possibility should be considered that a poorly 

designed joint, as judged against existing bonded joint and bolted joint design 

practices, could in fact prove to be a performant HBB design. Such a situation can 

only conceivably arise in the event of significant load sharing. 

 

2.4.1 Experimental Measurements 

 

The most compelling evidence that significant load sharing can be achieved has 

been provided by experiments. Specially instrumented bolts have been used by a 

number of investigators to directly measure the bolt shear load in single-lap HBB 

joints loaded in uniaxial tension. Bolt loads of 32% (out of an applied 8 kN load) 

and 36% (out of an applied 10 kN load) have been reported [18, 59]. Both of these 

studies used a single bolt, short overlaps, relatively thick bondlines and low yield-

strength, ductile adhesives. 

 In contrast, a similar study of a double-row single-lap joint with a long 

overlap [52] reported load sharing of less than 5%, even at 14 kN of applied load. 

The same adhesive and bondline thickness as in [18] were used. Direct comparison 

of these two studies suggests the importance of geometric parameters and or the 

adherend material in load sharing. 

 

2.4.2 Design Parameter Influence 

 

Load sharing is a nonlinear function of the joint design parameters. A number of 

investigators have used modelling approaches [18, 52] to determine the effects of 

various parameters. No experimental parametric studies have been performed, 

likely due to the significant cost and time involved in coupon manufacture, in 
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addition to the difficulty of the load sharing measurement. Furthermore, only 

single-lap joints have been considered. 

 

2.4.2.1 Effect of Materials 

An overview of the effect of increasing several material parameters on load sharing 

is given in Table 2.1. A general consensus exists on these basic effects. It is 

remarked that these are qualitative in nature; there is no quantitative indication of 

which factor is most important. In other words, effect size has not as yet been 

addressed in the literature. 

 

Table 2.1: The effect of increasing several material parameters on load sharing 

Parameter Effect on load sharing Reference 

Adhesive Young’s modulus Decrease [18, 60] 

Adhesive tangent modulus Decrease [18] 

 

2.4.2.2 Effect of Geometrical Parameters 

An overview of the effect of increasing several geometric parameters on load 

sharing is given in Table 2.2. Once again, effect size has not as yet been addressed. 

 

Table 2.2: The effect of increasing several geometrical parameters on load sharing 

Parameter Effect on load sharing Reference 

Adherend thickness Increase [18, 60] 

Overlap length Decrease [18, 60] 

Width Decrease* [18, 60] 

Bondline thickness Increase [18, 60] 

Bolt-hole clearance Decrease [18] 

*Fixed overall load 
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2.5 Quasi-Static Strength 

 

A major touted advantage of HBB joints is that they can potentially improve joint 

monotonic strength beyond those of the underlying bonded joint and fastened joint 

separately. Since reported loading rates in the HBB literature range from 0.36-1.27 

mm/min, this section addresses quasi-static strength in particular. Future 

investigations concerning dynamic strength would be most valuable additions to the 

literature, since rate effects are known to greatly influence adhesive behaviour 

[61]. Approximately half of investigations regarding HBB quasi-static strength 

report substantial improvements, with the remainder reporting no improvements. 

An overview of the reported strength improvements is given in Table 2.3. 

 

Table 2.3: Reported quasi-static strength improvements in the HBB literature 

 

       Strength 

improvement 

Refer-

ence 

Joint type Adherend 

type 

Composite type Adhesive Adhesive 

thickness 

(mm) 

Overlap 

length 

(mm) 

Vs 

Bonded 

Vs 

Bolted 

[62] Double

-lap 

Composite-

aluminum 

Boron FRP pre-

preg, UD laminate, 

angle-ply layup 

Hysol Shell 

951 epoxy 

0.25 19.1 41%
a
 325% 

[45] Single-

lap 

Composite-

composite 

GFRP SRIM 

laminate 

Unspecified 

polyurethane 

0.76 25.4 82% 33% 

[19] Single 

-lap 

Composite-

composite 

CFRP pre-preg 

UD laminate, 

quasi-isotropic 

layup 

Pliogrip 

7400/7410 

polyurethane 

0.5 25 25% 34% 

[42] Double

-lap 

Composite-

aluminum 

CFRP pre-preg 

UD laminate, 

quasi-isotropic 

layup 

Hysol 

EA9394S 

epoxy 

Undefined 25.4 186% 19% 

[17] Double

-lap 

Composite-

aluminum 

CFRP prepreg UD 

laminate, quasi-

isotropic layup 

3M 2216 

epoxy 

0.5 60 132% 54% 

[50] Double

-lap 

Aluminum-

aluminum 

N/A Montagefix-PU 

polyurethane 

0.1 40 11% 130% 

a 
Bonded joint overlap was 25.4 mm versus 19.1 mm for the HBB/bolted joints, hence this value is conservative 

 



2. Literature Review & Objectives 

21 

 

2.5.1 Design Parameter Influence 

 

Studies that achieved significant static strength improvements almost exclusively 

used low stiffness, high ductility adhesives and relatively thick bondlines (all used 

secondary bonding), as shown in Table 2.3. The exception is a study by Sadowski 

et al. [50] who reported an improvement despite using a thin bondline (it should be 

noted that in this study rivets were used which eliminated any bolt-hole clearance). 

Studies that used stiff, strong adhesives such as FM300-2K epoxy [33, 35, 36], 

FM73 epoxy [48] and Hysol EA 9317 epoxy [43, 44] in conjunction with thin 

bondlines invariably failed to improve the joint strength beyond that of the 

strongest constituent joint. 

 Note that the studies in Table 2.3 all used relatively short overlap lengths. It 

is expected that longer overlap lengths would yield less substantial improvements. 

In [18] it was furthermore found that when the laminate thickness was doubled, 

the strength improvement increased. This is likely due to two mechanisms (a) 

deformation of the adhesive becomes energetically more efficient for thicker 

adherends, resulting in greater adhesive deformation (b) the bolted connection is 

stiffer when the laminates are thicker [63, 64]. Both of these effects result in 

greater load sharing, likely explaining the improved joint strength. 

 

2.5.2 Failure Modes 

 

Failure mode depends on the HBB joint design. However, almost always, the first 

failure is in the adhesive. At a critical load level, the adhesive fractures, with the 

crack starting at the overlap edges and growing towards the center of the overlap 

region [19, 65, 66]. The fracture of the adhesive causes an increase in the joint 

compliance and transfers load to the bolts. If the underlying bolted joint strength is 

inferior to the bonded joint strength, the adhesive failure causes the entire joint to 

fail, since the bolted joint cannot sustain the load transferred to it. However, if the 

underlying bolted joint strength is greater than the bonded joint strength, then 

following adhesive failure, the joint will continue to support load akin to a bolted 
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joint [29, 49, 65]. Failure of the composite adherend occurs by normal composite 

bolted joint failure modes and may be by delamination, net section, bearing, shear-

out or cleavage [62]. An example of a failed HBB joint is shown in Figure 2.5; the 

failure modes of adhesive disbonding/delamination and hole bearing failure are 

clearly visible. 

 

 

Figure 2.5: Failure of a CFRP-aluminum HBB joint [42], reproduced with permission from 

Elsevier 

 

2.6 Fatigue Strength 

 

Experimental testing by various investigators [19, 26, 29, 45, 55, 65-68] has 

revealed that the fatigue strength of HBB joints generally surpasses that of the 

underlying joints separately. 

 Fu and Mallick [45], in a study using SRIM composite adherends, found that 

fibre tear (an SRIM specific type of failure) initiated in the adherends at the overlap 

edges and grew inwards toward the hole. The fatigue strength of the HBB joint 

exceeded that of simply bolted and bonded joints by an order of magnitude. Final 

failure was a combination of cleavage, delamination and partial adhesive 

disbonding. 

 For more standard composite materials, however, fatigue damage typically 

initiates in the adhesive at the overlap edges [19, 65, 66]. This has been verified by 

means of backface strain measurements [19, 66]. When the adhesive is stiff and 

brittle such that there is little load sharing, the two joining mechanisms act 

independently. In this case, the fatigue life is approximately equal to the sum of the 
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lives of the underlying joints separately [19]. Initially, the fatigue life of the 

adhesive is exhausted, followed by a transition period during which a bondline crack 

grows rapidly and load is transferred to the bolt. Subsequently, the bolted joint 

fatigue life is exhausted prior to final joint failure, with failure modes that are 

similar to those observed during quasi-static testing [19, 29]. Importantly, damage 

initiation in the adhesive is not delayed in this case versus a bonded joint [19, 66]. 

 When a more ductile adhesive is used and there is load sharing, however, it 

was shown using the backface strain technique that crack initiation is significantly 

delayed [19]. In addition, a period of stable crack propagation is observed prior to 

gross bondline failure [19, 66]. Thus, the fatigue strength can be increased to a 

level that is greater than the sum of the lives of the underlying joints [19]. 

 

 

Figure 2.6: Evidence of adherend crack arrest underneath the washer in a HBB joint [45], 

reproduced with permission from Elsevier 

 

 An additional mechanism that may contribute to improved fatigue life in HBB 

joints is clamp-up due to bolt torque tightening. Clamp-up causes compressive 

stresses in the adherends and adhesive underneath the bolthead/washer [65, 67], 

which hinders crack opening and thereby slows or arrests crack propagation [45, 

65]. Adherend crack arrest underneath the washer in the SRIM joint study 

described earlier is clearly seen in Figure 2.6 [45]. As expected, greater clamp-up 

forces result in greater fatigue life for both HBB and bolted joints [65, 67]. The 

improvement is more profound at low amplitude cyclic loading, which is likely due 
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to bolt tension relaxation (caused by Poisson's effect) and thus loss of clamp-up at 

higher applied in-plane loads [55]. This explains why the crack arrest in Figure 2.6 

was not observed during quasi-static loading [45]. Overall, the research suggests 

that (a) HBB load sharing can delay fatigue crack initiation (b) once a crack has 

formed, bolt clamp-up can slow its propagation, leading to improved HBB fatigue 

performance and (c) bolt tension relaxation reduces clamp-up and the associated 

benefit. 

 

2.7 Energy Absorption 

 

There are only a few studies that refer to the important subject of energy 

absorption of HBB joints. Sadowski et al. [50] found experimentally that the 

absorbed energy during quasi-static loading of a HBB joint is approximately equal 

to the energy of the two mechanisms separately. Di Franco et al. [37] found the 

energy absorbed during quasi-static loading of a different HBB configuration to be 

better than a bonded joint but no better or even slightly worse than that of a simply 

riveted joint. It seems logical that the failure mode is highly influential on energy 

absorption, with failure modes that involve extensive damage (e.g. progressive hole 

bearing damage or multiple delaminations) being able to absorb the most energy. 

This would imply that HBB joints do not necessarily absorb more energy than bolted 

joints, although they should generally absorb more energy than bonded joints. This 

hypothesis needs to be further tested. Experimental investigations of energy 

absorption during dynamic loading of HBB joints are sorely lacking in the literature, 

especially since this is the loading scenario for which energy absorption is of the 

greatest interest (e.g., impact). 
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2.8 Modelling Approaches 

 

In order to facilitate the design of HBB joints and to improve our understanding of 

the fundamental mechanisms governing their behaviour, several researchers have 

developed mathematical models to predict the structural response and failure of 

these joints. 

 Closed-form analytical models [17, 52, 69] can provide a basic 

representation of the stresses and strains in the adhesive of double-lap/stepped-lap 

and single-lap HBB joints. These models are based on the classical 2D bonded joint 

models of Volkersen [70] and Goland and Reissner [71], respectively. In 

Volkersen’s model, the adhesive transverse shear strain 𝛾𝑥𝑧 is defined purely in 

terms of the longitudinal adherend displacements: 

 

𝛾𝑥𝑧 =
1

𝑡𝑎
(𝑢𝑥

(1)
− 𝑢𝑥

(2)
) (2.1) 

 

where 𝑡𝑎 is the adhesive thickness and 𝑢𝑥
(𝑖)

 is the longitudinal displacement of the 

ith adherend. To take into account the effects of out-of-plane loading, Goland and 

Reissner extended Volkersen’s model with the following expression for the out-of-

plane normal strain or “peel” strain 𝜀𝑧𝑧: 

 

𝜀𝑧𝑧 =
1

𝑡𝑎
(𝑢𝑧

(1) − 𝑢𝑧
(2)) (2.2) 

 

where 𝑢𝑧
(𝑖)

 is the out-of-plane displacement of the ith adherend. The analytical HBB 

models extend the above models by including the effect of the bolts, which are 

discretely modelled as either springs or beams. The resulting system of differential 

equations can be solved exactly for a linear elastic problem. When adhesive 

plasticity is taken into account, an iterative solution must be used. These models 

are extremely efficient to solve and are thus ideally suited for design trade-off 

studies. However, bolt tilting, bolt-hole contact and in-plane stress variations and 

concentrations cannot be intrinsically predicted. 
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 Numerical models of HBB joints are generally capable of the above. 3D finite 

element models have taken into account wide range of complex effects such as 

clearance, friction, bolt tilting and laminate coupling effects [18, 19, 68]. However, 

these models are highly time consuming to construct and solve and as such are of 

limited use for sizing studies and optimization. A compromise appears to be 3D 

numerical models that use simplified structural elements such as shells and beams, 

combined with Volkersen's shear lag model for the adhesive. These models, such as 

the one by Barut and Madenci [72], can account for most complex effects and a 

pseudo-3D stress field, while being easy to construct and achieving acceptable 

computation times. However, Barut and Madenci’s model does not account for a 

nonlinear constitutive response of the adhesive, which is a key behaviour 

influencing the joint response. Key behaviour that should be taken into account in 

any HBB joint model includes nonlinear adhesive behaviour and the effect of bolt-

hole clearance, which have been shown to have an important effect on the joint 

response.  

 To date few studies have attempted to predict the strength of HBB joints 

[17]. It is acknowledged that this is a very complex analysis indeed, and strength 

prediction may initially be limited to failure modes that are relatively easy to 

predict. Furthermore, modelling of thermal effects and dynamic effects has also not 

been attempted. Fatigue has been studied only qualitatively [69]. 

 

2.9 Gaps in the Literature & Thesis Objectives 

 

Based on the presented review of the literature, a number of important 

shortcomings in the knowledge of HBB joints have been identified. These include: 

 

 A lack of understanding of how strongly different design parameters affect 

load sharing in composite HBB joints 

 

 A lack of a suitable model to efficiently predict composite HBB joint 

mechanics and strength 
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 A lack of experimental data on energy absorption in composite HBB joints 

 

The thesis objectives shall aim to address these shortcomings. They are formally 

stated as follows: 

 

2.9.1. Objective 1: Determine the effect size of different design parameters on 

load sharing in composite HBB joints 

 

2.9.2. Objective 2: Develop an analysis methodology to predict HBB joint 

mechanics and strength in a simple but representative manner 

 

2.9.3. Objective 3: Experimentally investigate the energy absorption of a 

composite HBB joint compared to its constituents separately 

 

2.10 Structure of the Thesis 

 

This thesis begins with an investigation of load sharing in Chapters 3-4. This 

includes the development of an efficient numerical model in Chapter 3 for predicting 

load sharing in HBB joints. This model is validated experimentally, after which it is 

used in a global sensitivity analysis in Chapter 4 to determine the most important 

factors influencing load sharing. 

 Subsequently, strength is addressed in Chapters 5-10. An original 

mathematical model of a HBB joint is developed in Chapter 5 for this purpose. This 

model distills the physical problem to the essentials, yet accounts for many complex 

effects found in real joints. Its predictions are compared with new experimental 

results in Chapter 10. The model is subsequently used to elucidate key behaviours 

of hybrid bonded-bolted joints in Chapter 11.  

 Energy absorption is also considered in the experiment of Chapter 10. 

 Note that Chapters 6-8 are almost entirely dedicated to the problem of 

achieving a robust numerical solution of the model formulated in Chapter 5. This is 

necessary since this thesis represents the first time that the meshless Galerkin 
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method is applied to the analysis of joints. The reader who is primarily interested in 

HBB joints and not so much in the intricacies of the numerical analysis is advised to 

simply skip these chapters. This will not hamper comprehension of the results 

presented in Chapters 9-12.
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Chapter 3: Load Sharing Model 

 

As discussed in Chapter 2, a number of experimental studies have demonstrated 

that HBB joints can potentially achieve greater static strength [18, 19, 29, 42, 45] 

and a longer fatigue life [19, 29, 45] than the underlying bonded and bolted joints 

separately. A recurring conclusion in the literature is that the most significant 

“across-the-board” improvements (compared to both constituent joints) are 

achieved when there is substantial load sharing between the adhesive and bolts 

[18, 19, 52]. 

 In practice, however, few HBB joint designs experience load sharing. Since it 

is quite challenging to achieve load sharing and it is not obvious whether this 

phenomenon occurs for a particular HBB joint design, it is of interest to be able to 

predict it and—more fundamentally—understand the mechanisms causing it. In this 

chapter, a suitable model is developed for this purpose. 

 The configuration considered for this model consists of a single-lap, single-

bolt joint, since this is the preeminent test configuration in both civilian and military 

bolted composite joint standards [41, 73, 74]. These joints exhibit a range of 

complex effects such as secondary bending and bolt rotation, while being simple 

enough to allow the results to be readily understood, compared and interpreted. 

 

3.1 Objectives 

 

The objective of this chapter is to develop an efficient model of a HBB joint that 

takes into account all of the major factors potentially affecting load sharing 

(including clearance, bolt clamp-up and nonlinear adhesive behaviour—factors 

which have to date been largely ignored). This model should be validated through 

comparison with experimental measurements. 
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3.2 Problem Description 

 

The physical problem considered is a uniaxial tensile test of a single-lap hybrid 

bonded-bolted composite joint. The studied configuration is adapted from the ASTM 

D5961 standard [73] and consists of two composite adherends that partially 

overlap and are joined in the overlap region by means of adhesive and one or more 

bolts. A doubler, having the same material and layup as the laminate, is bonded to 

the grip end of each adherend to minimize the eccentricity that would otherwise 

result when installed in a testing machine. Only the single-bolt case is considered, 

for the reasons outlined in the chapter introduction. A schematic of this 

configuration is shown in Figure 3.1. The parameters that define the joint geometry 

are the adherend length 𝐿, adherend width 𝑊, adherend thickness 𝑡, adhesive 

thickness 𝑡𝑎, adherend gripped length 𝐿𝑔, adherend free length 𝐿𝑓, overlap length 

𝐿𝑎, edge distance 𝐸, hole diameter 𝐷 and bolt head diameter 𝐷ℎ. 

 

 

 

Figure 3.1: Single-bolt, single-lap joint geometry 

 

The adhesive is assumed to exhibit an elastoplastic response, which is characteristic 

of virtually all aerospace adhesives. It is noted that some of the stiffer aerospace 

adhesives have only very limited ductility, but are nevertheless known to exhibit 

permanent plastic deformation prior to fracture. Viscous effects are ignored for 
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simplicity, although it is acknowledged that these may actually be important for 

many polymeric adhesives such as acrylics, urethanes and epoxies. 

 

3.3 Finite Element Model 

 

In order to simultaneously account, in a detailed manner, for the complex 

geometry, nonlinear behaviour and contact that exist in a single-lap bonded-bolted 

joint, a numerical solution technique is required. A well suited technique for taking 

into account all of these phenomena is the displacement-based finite element 

method. It was thus decided to develop a suitable model in the commercial finite 

element software ABAQUS, in order to leverage both the efficient contact 

algorithms of the software and the ability to implement user defined subroutines. 

 To achieve the desired computational efficiency, an equivalent single layer 

(ESL) approach was used in a similar vein to the Global Bolted Joint Method of Gray 

et al. [75]. In this FE model, the authors used shells/beams to efficiently model the 

laminates/bolts, respectively. In the current work, the model of Gray et al. is 

extended to take into account bolt head clamp-up and bonding. As shall be 

described, the new method, which is named the Global Hybrid Joint Method 

(GHJM), contains a single layer of quadratic solid elements to simulate the 

adhesive. 

 

3.3.1 Element Choice & Mesh 

 

The GHJM consists of four main components: (1) the top laminate (2) the bottom 

laminate (3) the bolt and (4) the adhesive. The laminates are modelled as Reissner-

Mindlin shells, the bolt as a Timoshenko beam and the adhesive as a continuum 

solid, respectively. The corresponding elements are designated S8R, B32 and 

C3D20R in ABAQUS. Quadratic element shape functions are used, allowing a single 

element to be meshed through the adhesive thickness and giving a fast solution 

convergence rate. To simplify the analysis, the grip regions are not considered; 



3. Load Sharing Model 

32 

 

Saint Venant's principle is invoked to justify their omission.  A typical GHJM mesh is 

shown in Figure 3.2. 

 

 

 

Figure 3.2: Finite element mesh and boundary conditions 

 

To limit the required number of elements, biased meshing is used for the laminates 

and adhesive, with an increased mesh density in regions that experience significant 

stress and displacement gradients. This includes the vicinity of the hole and the 

overlap edges. An extensive convergence study was performed and showed that a 

single layer of quadratic solid elements through the adhesive thickness typically 

provides converged results for both bolt load and displacement. Less than 0.5% 

change was observed in these solutions as a result of switching from 1 to 3 

elements through the thickness, for both 0.1 mm and 1 mm thick bondlines (it is 

important to note that this did not hold true when linear elements were used). 

Close agreement was furthermore verified with Goland and Reissner’s analytical 

bonded joint model [71] for both shear and peel stresses in the midplane of the 

bondline, including when plasticity was taken into account. Bois et al. [17], who 

also used a single layer of quadratic elements to mesh the adhesive and compared 

it with their analytical solution, obtained a similarly good agreement for the plastic 

strains. In the GHJM, only a single layer of quadratic solid C3D20R elements is 

therefore meshed through the adhesive thickness, simultaneously limiting the 

analysis cost and enabling good element aspect ratios to be achieved when thin 

bondlines are modelled. 
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 By comparison, the bolt mesh is simple, consisting of only four elements. The 

latter are demarcated by a “bolthead” master node at either bolt extremity, a 

“clamp-up” node at the bolt center and a “shank” master node at each laminate 

midplane. Unlike in the Gray et al. model [75], the full length of the bolt is 

modelled in order to properly account for axial bolt deformation and clamp-up. 

 

 

 

 

Figure 3.3: Bolt model 

 

Analytical rigid surfaces, tied to the respective master nodes, are used to detect 

and transmit contact forces into the beam. This furthermore allows clearance to be 

accurately modelled. Cylindrical surfaces are used at each laminate midplane to 

represent the bolt shank while the boltheads are modelled as discs. The use of rigid 

contact surfaces for the bolt is a suitable representation, as previous studies have 

shown little effect of bolt surface elasticity on contact stress distribution [76]. The 

complete bolt model is depicted in Figure 3.3. 

 

3.3.2 Multi-Point Constraints 

 

Similarly to Gray et al.'s model [75], the shell reference surfaces must be located at 

the laminate midplanes in order to accurately capture bolt bending and flexibility.  

This causes an issue with regard to the adhesive-laminate interface as their nodes 

are consequently offset by half a laminate thickness (see Figure 3-4). In a realistic 
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depiction of a bonded joint, the adhesive surface nodes should behave as though on 

the hypothetical shell surface. This can be described using Reissner-Mindlin plate 

kinematics as: 

 

𝑈𝛼
(𝑡𝑎)(𝑥, 𝑦, 𝑧) = 𝑢𝛼

(𝑡𝑙)(𝑥, 𝑦) + 𝜃𝛼
(𝑡𝑙)(𝑥, 𝑦)

𝑡(𝑡𝑙)

2
|𝛼 = 𝑥, 𝑦 (3.1) 

𝑈𝑧
(𝑡𝑎)(𝑥, 𝑦, 𝑧) = 𝑢𝑧

(𝑡𝑙)(𝑥, 𝑦) (3.2) 

𝑈𝛼
(𝑏𝑎)(𝑥, 𝑦, 𝑧) = 𝑢𝛼

(𝑏𝑙)(𝑥, 𝑦) − 𝜃𝛼
(𝑏𝑙)(𝑥, 𝑦)

𝑡(𝑏𝑙)

2
|𝛼 = 𝑥, 𝑦 (3.3) 

𝑈𝑧
(𝑏𝑙)(𝑥, 𝑦, 𝑧) = 𝑢𝑧

(𝑏𝑙)(𝑥, 𝑦) (3.4) 

 

Here 𝑈𝛼, 𝑈𝑧 are the adhesive surface displacement components, 𝑢𝛼, 𝑢𝑧 are the 

laminate midplane displacement components, 𝜃𝛼 are the laminate midplane rotation 

components and 𝑡 is the laminate thickness. The superscript in brackets defines the 

adhesive surface or laminate in question – 𝑡𝑎, 𝑏𝑎 referring to the top and bottom 

adhesive surfaces, respectively while 𝑡𝑙, 𝑏𝑙 refer to the top and bottom laminates. In 

the GHJM, the relationships in Eqns. (3.1-3.4) are enforced in the joint overlap 

region by means of the *MPC ABAQUS user subroutine. A suitable FORTRAN code 

must be written for this purpose, which is compiled by the software at runtime. The 

developed code was extensively tested on a number of two and three element 

cases to ensure correct implementation and functionality. The shell nodes are 

designated as master nodes while the corresponding adhesive surface nodes are 

the slave nodes. Evidently, the 𝑥 − 𝑦 plane discretization of the adhesive and shells 

must match in the overlap region. The constraints in Eqns. (3.1-3.4) are valid for 

linear as well as nonlinear elastic analysis. 
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Figure 3.4: User defined MPCs 

3.3.3 Contact 

 

Contact is defined between the “shank” analytical surfaces and respective hole 

edges using a surface-to-surface finite sliding contact formulation. The analytical 

rigid surface is designated as the master surface while the hole perimeter nodes are 

designated as the slave surface. A Coulomb friction model is used for tangential 

contact, while in the normal direction the penalty method is used for contact 

constraint enforcement. 

 The same approach is used to model bolt head contact. Use of the shell 

contact offset option in ABAQUS instructs the software to use the hypothetical shell 

surface during contact detection instead of the shell midplane. 

 

3.3.4 Boundary Conditions & Loading 

 

The applied boundary conditions are chosen so as to be representative of a uniaxial 

test of a joint clamped in a tensile testing machine. On the left boundary, both 

translations 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 and rotations 𝜃𝑥, 𝜃𝑦 = 0. On the right boundary, in order to 

simulate a clamped load, the nodes are tied to the motion of a control point using a 

*COUPLING constraint. To simulate clamping, 𝑢𝑦, 𝑢𝑧, 𝜃𝑥, 𝜃𝑦 = 0 is applied to this 

control point. If the desired simulation is a test in displacement control, then 𝑢𝑥 is 

also prescribed at the control point. If the desired simulation is a test in force 
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control, then 𝑢𝑥 is not prescribed and the desired force 𝐹𝑥 is applied instead. These 

boundary conditions are shown in Figure 3.2. Furthermore, a bolt clamp-up load 

may easily be applied to the bolt model described previously. This is achieved using 

the bolt load option in ABAQUS, which automatically adjusts the bolt length to 

achieve the desired preload. 

 

3.3.5 Material model 

 

The laminates are not considered to suffer damage and are thus modelled as linear 

elastic anisotropic plates following classical lamination theory (CLT). The relevant 

properties are automatically calculated by ABAQUS, which requires only the 

anisotropic elastic material constants, ply thickness and layup as inputs. A number 

of authors, however, have established that nonlinear adhesive behaviour is 

important in load sharing [17, 18]. This must be taken into account by using an 

appropriate material model for the adhesive. The use of solid elements for the 

adhesive renders the GHJM compatible with a wide range of material models. 

 

 

 

Figure 3.5: Linear Drucker-Prager plasticity 

 

As mentioned in section 3.2, the adhesive is assumed to exhibit elastoplastic 

behaviour. Generally, this involves sensitivity to both the deviatoric and hydrostatic 
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components of the stress tensor4. The simplest elastoplastic material model that 

exhibits both of these sensitivities is the Drucker-Prager plasticity model; this 

theory has previously been successfully used to model a range of stiff and flexible 

adhesives [18, 19, 61, 77]. In particular, the linear version of the model is used, in 

which the yield surface is a cone in Haigh-Westergaard stress space. This surface is 

defined by Eqn. (3.5): 

 

𝐹 = 𝑞 − 𝑝tan⁡(𝛽) − 𝑑 = 0 (3.5) 

 

where 𝑞 is the equivalent von Mises stress, 

 

𝑞 = √
3

2
𝑺: 𝑺 (3.6) 

 

𝑝 is the usual hydrostatic pressure and S the deviatoric stress tensor. The friction 

angle β is the slope of the yield surface in the 𝑝 − 𝑞 plane, as shown in Figure 3.5. 

Finally, the adhesion strength of the adhesive, 𝑑, is related to the adhesive tensile 

yield strength 𝜎𝑦𝑡 as follows: 

 

𝑑 = [1 +
tan⁡(𝛽)

3
] 𝜎𝑦𝑡 (3.7) 

 

In the elastic regime of the adhesive, Hookean behaviour is assumed and is fully 

defined by Young's modulus 𝐸𝑎 and Poisson's ratio 𝜈𝑎. Strain hardening is taken into 

account by means of an isotropic associative flow rule. In ABAQUS, this involves the 

specification of a tensile strain hardening curve. As 𝛽 → 0, the model becomes 

equivalent to Von Mises plasticity. 

 

                                       

4 By contrast, metals are usually only assumed to exhibit sensitivity to the deviatoric components of 

the stress tensor. 
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3.4 Experimental Validation 

 

The accuracy of the mathematical model for predicting the load sharing and 

deformation behaviour of a HBB joint was verified by means of an experiment. This 

firstly involved the selection of a set of design parameters that would allow 

significant bolt load transfer to occur (based on model predictions). Specialized 

tooling was used to manufacture the corresponding joint. An instrumented bolt was 

subsequently designed, manufactured and calibrated in order to allow the bolt 

shear load to be measured. Finally, the instrumented bolt was installed in the joint 

and a uniaxial tensile test was performed. The bolt shear load measurements, 

together with the MTS displacement and load cell data, constitute the validation 

data. 

 

3.4.1 Joint Design & Manufacture 

 

The validation joint geometry was adapted from the ASTM D5961 standard and was 

designed to promote load sharing. The final (measured) joint dimensions are given 

in Table 3.1. 

 

Table 3.1: Validation joint dimensions 

𝑳𝒂 (mm) 𝑳𝒇 (mm) 𝑳𝒈 (mm) 𝑫 (mm) 𝑾 (mm) 𝒕𝒂 (mm) 𝒕 (mm) 𝑫𝒉 (mm) 

32.0 77.0 30.0 8.002 28.0 0.51 4.39 11.9 

 

Table 3.2: Cytec 5320 CFRP tape properties 

𝑬𝟏𝟏 (GPa) 𝑬𝟐𝟐 = 𝑬𝟑𝟑 (GPa) 𝑮𝟏𝟐 = 𝑮𝟏𝟑  (GPa) 𝑮𝟐𝟑 (GPa) 𝝂𝟏𝟐 𝝂𝟏𝟑 𝝂𝟐𝟑 

141 9.70 5.10 3.40 0.33 0.33 0.44 

 

The adherends and doublers were made from Cytec 5320 CFRP pre-preg tape, 

whose properties are given in Table 3.2 as provided by the manufacturer. The 
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following manufacturing process was used:  

 

1) A flat plate was made with a stacking sequence of [45/0/-45/90]4s. Debulking 

was performed every 4 plies during the layup process, followed by a vacuum 

cure using the manufacturer recommended cure cycle. 

 

2) A diamond-tipped saw was used to cut the adherends and doublers from the 

plate. 

 

3) The various components were assembled and bonded inside a custom-built 

mold (see Figure 3.6). This permitted precise control of the adherend 

alignment. Spacers were used to control the bondline thickness, spew fillet 

geometry and joint overlap length. 

 

 

Figure 3.6: Joint assembled inside the mold 

 

To maximize the likelihood of observing significant load sharing, a ductile and 

low-yielding epoxy paste adhesive was chosen to bond the components, in 

the form of Hysol EA9361. The two adhesive parts were mixed using a Thinky 

ARE-310 centrifugal mixer to ensure uniform mixing and deareation. The 

adhesive was left to cure for 1 week at room temperature, as specified by 

the manufacturer. 
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4) The joint and spacers were removed from the mold. Excess adhesive that 

had spilled from the joint sides was removed using a hack saw and the sides 

were sanded to the final dimension. Note that the use of rectangular spacers 

resulted in a flush bondline along the overlap edges. 

 

5) A hole was drilled at the center of the joint overlap using a CNC drill. A 

composite specific drill bit (Sandvik-Coromant Corodrill 854) was used to 

ensure a tight diametric tolerance and to minimize the delamination and fibre 

pullout damage often encountered when drilling composites. No such damage 

was visually evident following the drilling. Using a go/no-go gauge, the 

diametric tolerance of the hole was found to be within 8mm +25.4/-0 μm. 

This was the highest level of measurement accuracy that was readily 

available. However, since a high precision CNC drill and collet were used, it 

can be assumed that the actual achieved clearance was close to the lower 

bound of the manufacturer specified tolerance of +16/-0 μm. 

 

3.4.2 Instrumented Bolt Design & Calibration 

 

A basic schematic of the instrumented bolt design is shown in Figure 3.7. Effectively 

an M8 stud, the bolt was machined from a tight-tolerance, precision ground rod of 

easy-to-machine 416 stainless steel. A close diametric tolerance of 8 mm +0/-4 μm 

was consequently achieved (a diameter of 7.999 mm was measured using a 

micrometer). The screw threads were turned on a lathe while diametrically opposed 

strain gauge slots were precision cut into the bolt shank using a CNC milling 

machine. Within each slot, a pair of shear strain gauges (Micro-Measurements EA-

13-062TV-350) was bonded to the bolt surface. Figure 3.7 shows the first pair of 

strain gauges (SG1 / SG2) on one side of the bolt; the other pair (SG3 / SG4) was 

located in the opposing slot. Extremely small gauge wires (38 AGW) were soldered 

to the gauges and routed out of the joint through the wiring channels shown and 

slots cut into the top washer. Outside the joint, the wires were soldered to a printed 

circuit board (PCB) on which they were connected in a full Wheatstone bridge 
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configuration. An electromagnetically shielded cable was used to connect the PCB to 

the data acquisition setup. 

 

 

Figure 3.7: Instrumented bolt assembly section view from side 

 

The adopted stud design enabled the bolt’s through-thickness location within the 

joint to be adjusted such that the strain gauge shear plane could be precisely 

aligned with the adhesive midplane. A hex slot, machined into one end of the bolt, 

furthermore allowed the bolt to be rotationally located using an Allen key. This 

allowed the strain gauge slots to be precisely oriented at a right angle to the 

loading direction. 

 Despite these considerations, it was a practical impossibility for the bolt to be 

installed completely accurately. To gauge the effect of this installation error, and to 

determine the relationship between the Wheatstone bridge output (in mV/V) and 

the applied bolt shear load (in N), five separate calibration runs of the instrumented 

bolt were performed inside a bolted joint. Barring the absence of the adhesive 

layer, this calibration joint was identical to the bonded-bolted joint specimen. A thin 

layer of silicon was used to simulate the bondline. Since little to no torque was 

applied to the nuts, the silicon itself did not transfer any significant load through 

friction. The calibration setup is shown in Figure 3.8. For each calibration run, a 

linear relationship was determined between the potential difference measured by 
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the Wheatstone bridge and the known bolt shear load. An average relationship was 

calculated and it was found that the maximum error predicted for any calibration 

run using this averaged relationship was 8%. This lends a good degree of 

confidence that the measurement precision of the instrumented bolt, taking into 

account the installation error, was within 10% for the tested 0-5 kN range. 

 

 

 

Figure 3.8: Instrumented bolt installed in the bolted calibration joint 

 

Note that all calibration tests were performed in the elastic regime of the adherends 

and bolt to avoid damage to the bolt, adherends and instrumentation. This was 

verified by the fact that when the load was removed at the end of each run, the 

bolt shear load measurements invariably returned to zero. 
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3.4.3 Adhesive Characterization 

 

The EA9361 tensile stress-strain curve was obtained experimentally following the 

ASTM D638 standard [78]. This characterization work was mostly performed by 

Gyu-Hyeong Lim, a master’s student, as described in his thesis [79]. The obtained 

curve is shown in Figure 3.9. A 5 kN electromechanical MTS tensile testing machine 

was used to load the specimen at a rate of 0.006 mm/s, while digital image 

correlation (DIC) was used to record the relatively large strains observed. These 

exceeded the measurement range of typical strain gauges and extensometers. Due 

to time and cost constraints, the pressure sensitivity of the adhesive was not 

characterized. In the GHJM, it was therefore simply assumed that the adhesive is 

pressure insensitive, i.e., 𝛽 = 0. 

 

 

Figure 3.9: EA9361 stress-strain curve [79] 

 

3.4.4 Validation Experiment 

 

The final validation experiment using the bonded/bolted joint specimen was 

performed on a 100 kN hydraulic MTS tensile testing machine. The instrumented 

bolt was installed in exactly the same manner as in the calibration joint, without 
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any torque applied to the nut beyond light finger tightening. The specimen was 

hence loaded to 10 kN at a displacement rate of 0.006 mm/s. During the test, 

displacement, the total applied load and the instrumented bolt shear signal were 

recorded. 

 

3.4.5 3D FEM 

 

As an additional verification, a detailed 3D FEM of the validation problem was 

created in ABAQUS. This high fidelity model was intended to serve as a benchmark 

numerical solution by relaxing the simplifying assumptions of the GHJM regarding 

the problem kinematics and geometry. The geometry of the problem, given in the 

preceding sections, was accurately modelled. The grip regions omitted in the GHJM 

were taken into account, including the doublers and adhesive layers used to bond 

the doublers. The strain gauge slot cut-outs in the bolt were also modelled (see 

Figure 3.10). 

  Solid continuum elements were used to discretize the substrates, bolt and 

adhesive (in particular, hexahedral C3D8R elements were used) with very fine 

meshes used for all of the components. Six element layers were meshed through 

the adhesive thickness while eight layers were meshed through the substrate 

thickness, i.e., each substrate element was assigned four plies through-the-

thickness. 



3. Load Sharing Model 

45 

 

 

 

Figure 3.10: Detailed bolt mesh used in 

the 3D FEM 

 

 

 

 

 

Figure 3.11: 3D FEM boundary conditions 

 

The previously described isotropic Drucker-Prager material model was assigned to 

elements in the adhesive regions, while the substrate and bolt elements were 

assigned anisotropic and isotropic elastic material models, respectively. Composite 

solid sections were used for substrate elements while solid sections were used for 

the bolt and adhesive. Boundary conditions representative of clamping, shown in 

Figure 3.11, were applied to the grip region surface nodes. 

 As in the GHJM, contact was modelled between the bolt and substrates using 

a surface-to-surface contact algorithm with finite sliding. Both contact between the 

boltheads/substrates and shank/hole bearings was defined. It should be noted that 

in the 3D FEM the shank/hole bearing contact was defined over an area (the 

bearing surfaces) rather than along an edge (the plate hole edges) as done in the 

GHJM. Finally, the 𝑈𝑥 degrees of freedom of the surface nodes in the right grip 

region were tied to the motion of a control point, to which the simulated machine 

displacement was applied. 

 A GHJM instance was realized for the same validation joint material and 

geometric parameters. As a measure of the difference in detail and complexity 

between the two models, the number of elements in the 3D FEM was 143,232 (all 

solids) versus 10,022 in the GHJM (of which 7,500 shells, 2,500 solids and 4 

beams). Note that the solution accuracy of both meshes was verified by a mesh 

convergence study, finding the strain energy of each model to be converged to 

within 0.5% between successive mesh refinements. 
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3.4.6 Results Comparison 

  

The bolt load transfer predicted by the GHJM and 3D FEM for the validation joint is 

plotted and compared with the instrumented bolt data in Figure 3.12. It can be 

seen that the GHJM and 3D FEM provide very similar predictions, to within 100 N 

across the entire range tested. Both models also correspond reasonably well with 

the experimental measurements, with a maximum absolute discrepancy of 300 N at 

the top of the measurement range. A likely reason for some of the observed 

discrepancy with the experiment is that neither the GHJM or 3D FEM modelled the 

presence of a washer, which results in a longer bolt shank length and is likely to 

somewhat reduced the bolted joint stiffness. Furthermore, the omission of potential 

hyperelastic and/or viscoplastic behaviour of the adhesive would cause some 

effect5. Overall, however, it is considered that there is satisfactory agreement with 

the experiment. 

 

 

Figure 3.12: Load sharing validation 

 

 

                                       

5 Evidence of at least mildly viscoplastic behaviour of EA9361 was experimentally obtained by Lim 

[79]. 
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[79] 

Both finite element models predict an initial lack of bolt load transfer, which is 

similar to the experimental data. This is due to initially existing bolt-hole clearance. 

Once the adhesive has sufficiently deformed such that this clearance is taken up, 

bolt load transfer starts to develop. The rate of bolt load transfer increases rapidly 

following yielding of the adhesive, after which it steadies and tends to a constant 

value. As seen in Figure 3.12, the bolt load reaches 3.6 kN, representing a 

condition of 36% load sharing. This confirms that the experiment is in the 

significant load sharing regime. 

 Out of interest, repeated loading was also investigated experimentally. After 

the first joint loading, when the joint was unloaded, a residual bolt shear load 

remained, as predicted by plasticity theory. However, over time this load was found 

to relax almost completely, indicating perhaps some form of creep or hyperelastic 

behaviour of the adhesive that allowed a significant amount of the residual strain to 

be recovered. This could further explain some of the observed discrepancies with 

the model predictions. When the joint was subsequently reloaded, the measured 

load sharing was very similar to the first experimental run, albeit slightly higher at 

40%. This is shown in Figure 3.13. The slight increase in load sharing can be 

explained by the elimination of clearance in the first run. 

 

Figure 3.13: Measured load sharing when joint was unloaded and reloaded 
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3.4.7 Computational Efficiency Comparison 

 

The GHJM took 242 seconds to solve with the same in-plane mesh density as the 

solid element model. The latter took 5436 seconds (a significant portion of the 

computation time spent making very small solution increments during contact 

detection). This represents a computational saving of > 95%, rendering the model 

suitable for use in a detailed sensitivity analysis. 

 

3.5 Conclusions 

 

An efficient model (GHJM) was developed in this chapter for predicting load sharing 

in single-bolt, single-lap bonded-bolted composite joints. This model takes into 

account clearance, contact, material nonlinearity and bolt clamp-up. An experiment 

was devised to validate the model, necessitating the design and manufacture of 

both a HBB joint that would experience load sharing and an instrumented bolt 

capable of measuring the bolt load. Significant load sharing was observed, with the 

bolt carrying up to 40% of the overall applied load. The model predictions were 

found to agree reasonably well with these measurements and a detailed 3D FEM.  

Observed differences are likely explained by the omission of washers in the model 

and complex adhesive behaviour such as viscoplasticity and/or hyperelasticity. The 

validated model is considered to be applicable for use in the global sensitivity 

analysis to be presented in Chapter 4. 
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Chapter 4: Load Sharing Global Sensitivity Analysis 

 

In this chapter, the model developed in Chapter 3 is used in a global sensitivity 

analysis in order to determine the relative importance of different design 

parameters in load sharing in HBB joints. Furthermore, insights are obtained into 

the fundamental mechanisms that enable load sharing to take place. 

 

4.1 Background 

 

A number of researchers have previously investigated load sharing by means of 

modelling. Kelly [18, 19] used detailed 3D finite element models (FEM) to study the 

influence of various design parameters on load sharing in single-lap HBB joints. By 

varying one parameter at a time, he was able to determine the effects of the 

adhesive material, adhesive thickness (positive effect), 𝐸/𝐷 ratio (negative effect) 

and laminate thickness (positive effect). However, bolt-hole clearance and clamp-

up were not considered and this qualitative analysis did not provide any indication 

of the relative importance of or interaction between design parameters. Paroissien 

[60] similarly varied one input at a time in his analytical model. The effect of each 

was described as either “weak” or “strong”. The simplicity of the particular model 

used, however, meant that many possibly pertinent design parameters and joint 

behaviours were ignored. Both of these studies can be classified in the local 

sensitivity analysis (gradient-based) bracket. 

 Ideally, a global sensitivity analysis (GSA) should be performed, allowing the 

entire volume of the design space to be explored. This type of analysis provides 

both a quantitative assessment of the importance of the various design parameters 

(factors) and takes into account the effect of interactions between them. Such an 

analysis is presented in this chapter. 
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4.2 Problem Description 

 

The joint configuration considered in the GSA is identical to the one described in 

Chapter 3. A schematic of this configuration is shown in Figure 4.1. The parameters 

that define the joint geometry are the substrate length 𝐿, substrate width 𝑊, 

substrate thickness 𝑡, adhesive thickness 𝑡𝑎, substrate free length 𝐿𝑓, overlap length 

𝐿𝑎, edge distance 𝐸, hole diameter 𝐷 and bolt head diameter 𝐷ℎ. 

 

 

 

 

Figure 4.1: Single-bolt, single-lap joint geometry 

 

The composite and bolt materials are kept constant throughout the GSA. The 

former is Cycom 5320 carbon fibre unidirectional pre-preg, whose properties were 

previously defined in Table 3.1, while the bolt is considered to be made of steel 

(𝐸 = 205 GPa, 𝜈 = 0.3). Note that only a single quasi-isotropic layup of [+45/-

45/0/90]4S is considered for both substrates in order to render the sensitivity 

analysis tractable. To account for the effect of different laminate stiffnesses, the ply 

thickness is allowed to vary to simulate a range of laminate thicknesses. 

 As per the model in Chapter 3, the adhesive is assumed to exhibit rate-

independent elastoplastic behaviour. This is modelled in the form of Hookean 
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elasticity combined with linear Drucker-Prager plasticity. Linear isotropic hardening 

is assumed. This formulation represents a fairly broad and general description of 

elastoplastic aerospace adhesives. Based on this formulation, the adhesive 

behaviour is fully defined by 5 parameters, namely Young’s modulus 𝐸𝑎, Poisson’s 

ratio 𝜈𝑎, tangent modulus 𝐻, friction angle 𝛽 and the initial yield stress 𝜎𝒚𝒕. 

 

4.3 Model Description 

 

An efficient computational model of a single-bolt, single-lap hybrid bonded-bolted 

composite joint, called the Global Hybrid Joint Method (GHJM), was developed in 

Chapter 3. This model, which is applicable to the problem described in section 4.2, 

follows an equivalent single layer (ESL) approach, with the laminates modelled as 

shells, the bolt as a beam and the adhesive as an isotropic continuum solid. The 

model is solved using the displacement-based finite element method in ABAQUS, 

subject to the boundary conditions shown in Figure 4.1. It was shown in Chapter 3 

that the model predictions compare satisfactorily with both a detailed 3D finite 

element model and experimental measurements, while providing computational 

savings of > 95% compared to the former. 

 

4.4 Global Sensitivity Analysis 

 

A global sensitivity analysis (GSA) was performed of the GHJM in order to 

quantitatively assess the importance of the various model input factors in load 

sharing. A variance-based GSA method was chosen for this purpose, as these 

permit consideration of general nonlinear, non-monotic models without making 

underlying assumptions about their response characteristics. Consider that the 

GHJM can be simply represented, without further consideration of its inner 

workings, as: 
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𝑌 = 𝑓(𝑿) (4.1) 

 

Here 𝑌 is the model output of interest (i.e., load sharing), 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛) is a 

vector of 𝑛 input factors (i.e., a given joint design) and 𝑓 is a function representing 

the inner workings of the model. The variance of the model output can be 

partitioned into variance due to individual factors (𝑉𝑖) and interactions within sets of 

factors (𝑉𝑖𝑗, … ,⁡𝑉𝑖𝑗…𝑛) as follows (notation from Saltelli et al. [80]): 

 

var(𝑌) =∑𝑉𝑖 +∑𝑉𝑖𝑗

𝑛

𝑖<𝑗

𝑛

𝑖=1

+ 𝑉12…𝑛 (4.2) 

 

where: 

 

𝑉𝑖 = var𝑋𝑖[𝐸(𝑌|𝑋𝑖)]  

𝑉𝑖𝑗 = var𝑋𝑖𝑗[𝐸(𝑌|𝑋𝑖, 𝑋𝑗)]  

var = variance 

var𝑋𝑖 = variance taken over all possible values of 𝑋𝑖 

𝐸(𝑌|𝑋𝑖) = = expected value of Y given a fixed value of 𝑋𝑖  

𝐸(𝑌|𝑋𝑖 , 𝑋𝑗) = = expected value of Y given fixed values of 𝑋𝑖, 𝑋𝑗 

 

The extension of the above definition of 𝑉𝑖𝑗 to higher order interactions (𝑉𝑖𝑗𝑘, …,𝑉𝑖𝑗...𝑛) 

is self-evident. Based on this decomposition of variance, two measures of 

sensitivity or importance can be calculated for each factor: 

 

 A main effect index 𝑆𝑖. This is the proportion of the main effect variance 𝑉𝑖 

(i.e., the variance due to the factor 𝑋𝑖 by itself) to the total output variance, 

as given by Eqn. (4.3): 

 

𝑆𝑖 =
𝑉𝑖

var(𝑌)
 (4.3) 
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 A total effect index 𝑆𝑇𝑖. This is the proportion of the main effect variance 𝑉𝑖 as 

well as variance due to interactions involving 𝑋𝑖 to the total output variance, 

as given by Eqn. (4.4): 

 

𝑆𝑇𝑖 =
𝑉𝑖 + 𝑉𝑖𝑗 +…+ 𝑉𝑖𝑗…𝑛

var(𝑌)
 (4.4) 

 

Among variance-based GSA methods, the Sobol method [81] and Extended Fourier 

Amplitude Test (EFAST [82]) are the most useful since they permit both the main 

effects and total effects to be calculated.  In this work, the EFAST was preferred 

over the Sobol method due to its lower computational cost and superior 

convergence rate. A brief summary of the EFAST method is given as follows. The 𝑛-

dimensional input space is first mapped onto the unit hypercube 𝐾𝑛 = (𝑿|0 ≤ 𝑋𝑖 ≤

1; 𝑖 = 1,… , 𝑛). The following steps are hence taken: 

 

1) Each input factor is intelligently assigned two frequencies; a main effect 

frequency 𝜔𝑖 and a second, complementary frequency 𝜔𝑖
′. 

 

2) For each factor, the input space is uniformly sampled along a search curve, 

along which the factor in question 𝑋𝑖 oscillates at the main effect frequency 

𝜔𝑖 and the remaining factors oscillate at their complementary frequencies 𝜔𝑖
′. 

The search curve proposed by Saltelli et al. [82] was used in this work, as 

defined by Eqn. (4.5): 

 

𝑋𝑖 =
1

2
+
1

𝜋
arcsin⁡(sin(𝜔𝑖𝑠) + 𝜑𝑖) (4.5) 

 

 where −𝜋 ≤ 𝑠 ≤ 𝜋 and 𝜑𝑖 is a random phase shift chosen in [0,2 π) 

 

3) The overall output variance is calculated. 
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4) The output variance spectrum is decomposed by frequency. By evaluating 

the output variance spectrum at each factor’s main effect frequency 𝜔𝑖 and 

its higher harmonics 𝑝𝜔𝑖, the output variance attributable to each factor by 

itself can be calculated. This allows for calculation of a main effect sensitivity 

index. 

 By evaluating the output spectrum at the complementary frequencies 

of the remaining factors 𝜔𝑖
′ and their higher harmonics 𝑝𝜔𝑖

′, a residual 

variance can be calculated 

𝐷 − Σ𝐷(−𝑖)  

where 𝐷 is the total output variance and 𝐷(−𝑖) is the partial variance due to all 

factors but 𝑋𝑖. This allows for the calculation of a total effect sensitivity index 

(first order + interaction effects). 

 

5) Steps 2-4 are repeated for each separate factor. 

 

A key consideration in the EFAST method is the proper selection of the sampling 

frequencies. Note that the computational cost of this method is  

 

𝐶 = 𝑛𝑁𝑟(2𝑀𝜔𝑚𝑎𝑥 + 1) (4.6) 

 

Here the maximum frequency 𝜔𝑚𝑎𝑥 is equal to the main effect frequency 𝜔𝑖, while 

𝑁𝑟 is the number of reseeds of the search curve. 𝑁𝑟 was chosen as 𝑁𝑟 = 1 based 

upon the recommendations of Saltelli for the number of GHJM input factors (12). It 

is clear that a low main effect frequency is desirable to limit computational cost. 

Nevertheless, a sufficient spread in frequencies must simultaneously be achieved to 

avoid interference between the main effect frequency and complementary 

frequencies. This is achieved through an interference factor, 𝑀, which should 

normally be 𝑀 = 4. 

 As recommended by Saltelli [82], the complementary frequencies were 

chosen to be different to achieve a better scanning of the input space. However, to 
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ensure that they are all unique requires a large main effect frequency 𝜔𝑚𝑎𝑥, which 

strongly impacts computational cost. Therefore each complementary frequency was 

repeated twice, as a good compromise between optimal scanning and 

computational efficiency (note that each complementary frequency could have been 

repeated up to 12 times, with 1 repetition being the ideal target). Based on the 

number of input factors (12), the number of reseeds of the search curve (1) and 

the main effects frequency (a value of 𝜔𝑚𝑎𝑥 = 48 was used based on repeating each 

frequency only twice), the computational effort for the analysis was limited to 4620 

model evaluations6.  

 The EFAST method as described was programmed in MATLAB. Its correct 

implementation was verified by running the code for two classical analytical SA test 

cases: the Sobol g-function and the Ishigami function. The obtained results were 

compared with the reference results in [82] and were found to match closely. This 

provides a high degree of confidence that the method was correctly implemented. 

For further details on the selection of the factor frequencies and Fourier 

decomposition, the reader is referred to Saltelli et al. [82]. 

 

4.4.1 Design Space Justification 

 

The input space from which the GSA designs were sampled is presented in Table 

4.1. The choice of the geometric parameter ranges is justified as follows. From 

bolted joint design, it is well known that 𝐸/𝐷 and 𝑊/𝐷 should be greater than 3 and 

5, respectively, in order to avoid shear-out and net-section failure of the substrates 

[83]. Ply thicknesses were selected so as to provide a broad range of substrate 

thicknesses. The minimum adhesive thickness was chosen as 0.1 mm as this is a 

recommended minimum for optimizing bond strength [84]. Meanwhile, the 

maximum thickness was taken an order of magnitude higher as it was hypothesized 

                                       

6 The average wall-clock time taken per GHJM evaluation in the GSA was 3 minutes 49 seconds. The 

total wall-clock time was thus 12 days 5 hours 48 minutes 59 seconds. These computations were 

performed on four Intel i7-2600 CPUs @ 3.40 GHz running in parallel. Note that all three load levels 

were considered in different load steps of a particular GHJM evaluation. 
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that this could promote load transfer. The chosen clamp-up load ranges from finger 

tight to the maximum recommended by McCarthy et al. [85] for composite 

substrates. Finally, bolt-hole clearances were chosen to mimic typical tolerances 

achieved in the aerospace industry [86, 87]. 

 

Table 4.1: Input Space for Sensitivity Analysis 

Geometric Parameter Unit Minimum Maximum 

Width ratio (𝑊/𝐷) - 5 10 

Edge distance ratio (𝐸/𝐷) - 3 6 

Bolthead diameter ratio (𝐷ℎ/𝐷) - 1.1 2.5 

Ply thickness (𝑡𝑝𝑙𝑦) mm 0.1 0.25 

Adhesive thickness (𝑡𝑎) mm 0.1 1 

Clamp-up load (𝐹𝑐𝑙) kN 0.2 8 

Bolt-hole clearance (𝛿) mm 0 0.15 

Adhesive Parameter Unit Minimum Maximum 

Young’s modulus (𝐸𝑎) MPa 500 5000 

Poisson’s ratio (𝜈𝑎) - 0.2 0.45 

Hardening slope (𝐻) MPa 0 30 

Yield stress (𝜎𝒚𝒕) MPa 6 60 

Angle of friction (𝛽) Deg 0 70 

 

 With regards to adhesive parameters, the maximum Young's modulus was 

selected to be representative of a stiff structural adhesive while the lower bound 

was set at a sensible 500 MPa [88]. The adhesive tensile yield strength covers an 

order of magnitude, from 6-60 MPa, broadly representative of current structural 

adhesives, while the yield surface friction angle spans the entire physically feasible 

range. Note that the bolt diameter was kept constant at 𝐷 = 6 mm. Consequently, 

the substrate free length 𝐿𝒇 was also a constant 24 mm, based on ASTM D5961 

which specifies a free length of 4𝐷 for bolted joint tests [14]. The coefficient of 

friction was also kept constant at a value of 0.2. 
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4.5 Convergence study 

 

As a consequence of the use of the *MPC subroutine in ABAQUS (see Chapter 3), 

adaptive re-meshing was not a feasible option for GHJM solution accuracy control. 

Instead, a single, fine element size was used in all of the meshes in the sample. It 

was empirically determined that this would lead to globally reliable solutions. From 

the complete sample, 10% was uniformly, randomly sampled without replacement. 

These models were run with both the chosen 0.6 mm element size and a 33% finer 

mesh (i.e., an element size of 0.4 mm). Convergence of the solutions was verified 

by calculating the change in total bolt shear load. 

 

 

Figure 4.2: GHJM solution convergence for the GSA sample 

 

The obtained results are shown in the histogram in Fig. 4.2. All of the sampled runs 

showed an absolute convergence error of less than 5% with a maximum of 4.7%. 

Without further statistical analysis, it is concluded from these results that a 0.6 mm 

element size is a suitable choice and leads to globally reliable results of the GHJM in 

the GSA design space. 
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4.6 Results & Discussion 

 

The GSA was performed at three different edge load levels: low (200 kN/m), 

medium (450 kN/m) and high (650 kN/m). The choice of these edge load levels is 

motivated in Appendix A. The raw data at the high load level is plotted in Figure 

4.3. 
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Figure 4.3: Scatterplots of model output versus the different design parameters at the high 

load level 
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Figure 4.3: Scatterplots of model output versus the different design parameters at the high 

load level (continued) 
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The sampling periodicities of the different factors can be clearly distinguished in the 

raw data. While care should be taken to not overinterpret Figure 4.3, it appears 

safe to conclude that 𝜎𝑦𝑡 has a strong effect on load sharing, with not a single 

design achieving substantial load sharing (≥ 10%) when 𝜎𝑦𝑡 > 30 MPa. No further 

conclusions are drawn at this stage regarding the effects of the various 

parameters—the processed GSA results are relied upon to objectively interpret this 

data. 

 From the raw results files, the separate components of bolt load transfer 

(bearing and bolthead) were also extracted. Individual consideration of these 

components, in addition to the overall bolt load, led to some useful insights that are 

shown in Table 4.2. 

 

Table 4.2: Load sharing breakdown of raw data 

Total No. of Designs = 4620 
High Load 

Level 

Medium 

Load Level 

Low Load 

Level 

No. of designs with load sharing ≥ 

10% 
894 289 59 

- Among these, designs with 

bearing load transfer 
894 289 43 

- Among these, average 

contribution of bearing load 

transfer to overall bolt load 

94.5% 87.4% 52.0% 

 

As can be seen from this breakdown, at the high load level, 894 of the 4620 

designs (19% of the design space) experienced substantial load sharing. At the 

medium load level this fell to 6% and at the low load level to 1%.  At the high load 

level, 100% of designs that experienced significant load sharing also experienced 

bearing load transfer. This component of bolt load transfer was responsible for on 

average 94.5% of the total bolt load. At the medium load level, the same 

observation was valid, with the average bearing load transfer contribution falling to 

87.4%. Very few designs were able to achieve substantial load sharing at the low 

load level. It can be concluded from these results that at medium and high load 

levels, bearing load transfer is by far the most important component of bolt load 
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transfer and is effectively a prerequisite for achieving substantial load sharing. At 

low load levels, it is almost impossible to achieve substantial load sharing in the 

design space studied. 

 The processed GSA results are presented in Figures 4.4-a,b. These bar 

charts, respectively, compare the main and total effect indices calculated for the 

different factors. 

 

 

 

Figure 4.4: Bolt load transfer rate sensitivity indices 
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It is clear from Figure 4.4 that the adhesive yield strength 𝜎𝑦𝑡 is indeed the most 

important design parameter influencing load sharing, at all three edge load levels 

considered. Its importance increases with increasing load level. At the medium load 

level, not considering interactions, it is 8.5 times as important as any other 

parameter (based on the main effect indices). Considering interactions, it is 2.4 

times as important as any other parameter (based on the total effect indices). The 

following explanation is proposed for why this parameter is so important and the 

mechanism by which it works. Load prefers to travel through the stiffer load path, 

which in the elastic regime of a HBB joint is easily the bonded joint. However, as 

the adhesive yields, it stiffness decreases locally by typically an order of magnitude 

or more. If plasticity is able to spread through the entire bondline, from the overlap 

edges all the way to the hole, and assuming adequate ductility of the adhesive such 

that failure does not occur before this happens, then: 

 

 The bondline stiffness as a whole drastically reduces and the bondline 

compliance drastically increases. The increased compliance allows bolt-hole 

clearance to be overcome and bearing contact to be established. 

 

 The decrease in the bondline stiffness means that the bolt becomes 

comparatively stiffer. As long as bearing contact has been established, this 

causes the bolt to take up a much larger proportion of any additional load 

than it would if the adhesive were linearly elastic. 

 

To demonstrate the two points just above, an example of a bonded joint with a hole 

is considered. The geometric parameters from Chapter 3 are assumed, as well as 

an idealized bilinear behaviour for the adhesive (𝐸𝑎 = 600 MPa, 𝜈𝑎 = 0.42, 𝜎𝑦𝑡 = 10 

MPa, 𝐻 = 34.5 MPa, 𝛽 = 0). During tensile loading of this joint, the relative 

displacement between the holes in the top and bottom substrates or hole closure 

allows the substrates to “grip” a hypothetical bolt (not modelled). This is shown 

schematically in Figure 4.5. Once the hole closure equals the initial bolt-hole 

clearance, hole bearing contact hypothetically starts to develop. It was previously 

shown that this is the bolt load transfer component that is capable of transferring 
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large amounts of load. Hole closure is plotted in Figure 4.5 assuming both a 10 MPa 

and 15 MPa adhesive yield strength. It can be seen that in either case the GHJM 

initially predicts an identical, slow rate of hole closure. At this stage of loading, 

there may well be yielding of the adhesive near the overlap edges, away from the 

hole. However, it is only once the adhesive has plasticized all the way through to 

the hole edge that the hole closure rate increases significantly (in the present 

example by a factor of 37). This faster closing of the hole allows bolt-hole clearance 

to be overcome, bearing contact to be established and significant load to be 

transferred to the bolt through bearing contact. 

 

 

Figure 4.5: Hole closure versus applied load for different adhesive yield strengths 

 

For the same example, the maximum principal plastic strain along the adhesive 

centerline is plotted in Figure 4.6 (in the adhesive midplane) at loads of 3 kN and 

4.7 kN. At the 3 kN load, when the hole closure rate is low (as evident from Figure 

4.5) there is no adhesive plasticity near the hole (only near the overlap edges). The 

closure rate starts to increase drastically at the 4.7 kN mark. Figure 4.6 reveals 
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that this corresponds to the first instance of plasticity at the hole edge, i.e., once 

the adhesive has yielded all the way through to the hole. 

 

 

 

Figure 4.6: Maximum principal plastic strain along the adhesive centerline 

 

The effect of lower adhesive yield strength is thus to facilitate plasticisation of the 

overlap, bringing forward the point at which the bonded joint stiffness is drastically 

reduced and the hole closure rate is increased. Note that at high joint loads, a 

larger subset of the design space experiences sufficiently high adhesive stresses for 

overlap plasticisation to occur. This explains the increased importance of this 

parameter at higher loads. 

 After 𝜎𝑦𝑡, the next most important parameters are 𝐸/𝐷 and 𝐻. Their 

respective main and total effect indices are very similar across the various load 

levels, although 𝐸/𝐷 is slightly more important at low load levels while 𝐻 is slightly 

more important at high load levels. At the medium load level, their total effect 

indices are 0.31 and 0.37, respectively, compared to 0.89 for the adhesive yield 

strength, but well above the next most important parameter (𝑡𝑎 at 0.06). Both of 

these parameters work strongly by interaction, as evidenced by their substantially 

larger total effect indices compared to their main effect indices. The mechanism by 
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which they contribute to load sharing is intimately tied to the plastic flow 

mechanism described previously. A smaller 𝐸/𝐷 ratio leads to higher adhesive 

stresses, which in turn leads to earlier onset of yield and plasticisation of the 

overlap. A smaller 𝐻 increases the plastic flow rate of the adhesive once it has 

yielded, leading to faster hole closure and a lower bondline stiffness once the 

overlap has fully plasticised. 

 All other parameters in the design space are, by comparison, relatively 

unimportant in achieving substantial load sharing. At the medium load level and 

considering the total effect indices, they are at best 5 times less important than 𝐸/𝐷 

and 15 times less important than 𝜎𝑦𝑡. It is therefore inefficient to focus primarily on 

optimizing these variables when designing a joint for substantial load sharing. 

 Perhaps the most counterintuitive finding from the GSA is the relative lack of 

importance of bolt-hole clearance. This variable ranks fifth in importance, after 

adhesive thickness, and considering main effect indices is 8 times less important 

than the adhesive hardening slope 𝐻 at the medium load level. The reason for this 

becomes clear when a local sensitivity analysis is performed. The same example 

joint as earlier is considered for this purpose, this time including a bolt and a 

variety of bolt-hole clearances and hardening slopes. Figure 4.7, which plots the 

results of this analysis, shows that when 𝐻 = 0.1 MPa the bolt load transfer rate is 

almost entirely insensitive to clearance. This can be simply explained as follows. If 

the adhesive behaviour is elastic-perfectly plastic (𝐻 = 0.1 MPa in Figure 4.7), then 

once the overlap has fully plasticised, the adhesive cannot support any additional 

load. It will thus deform an infinite amount for each additional increment of load. 

Consequently, the adhesive can theoretically overcome any clearance and bolt load 

transfer becomes completely insensitive to clearance. Interestingly, even when the 

adhesive has considerable strain hardening, such as 𝐻 = 35 MPa, bolt load transfer 

is still relatively insensitive to bolt-hole clearance. This is shown by the dashed line 

in Figure 4.7, which demonstrates that for the given example, a huge increase of 

50 μm in bolt-hole clearance results in a relative drop of only 30% in the predicted 

bolt load transfer rate, from 37% to 28%. 
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Figure 4.7: Effect of hardening slope and clearance on bolt load transfer 

 

 The above observations are consistent at the medium and high load levels. 

At the low edge load level, while 𝜎𝑦𝑡 and 𝐸/𝐷 remain the most important 

parameters, their relative importance is significantly reduced. Bolthead diameter 

and clamp-up load in particular become relatively more important. This is because 

complete yielding of the overlap, and thus bolt-shank-to-hole-bearing load transfer, 

cannot occur for most designs at this load level. Consequently, at low load the 

bolthead load transfer component becomes relatively more important. However, as 

has been shown before, only limited load is able to be transferred to the bolt in this 

manner, which is exacerbated by the stiffness mismatch that exists when the 

adhesive has not yielded. Furthermore, very few designs are able to achieve 

substantial load sharing at low load levels. 

 

4.7 Implications for HBB joint design 

 

The primary mechanism by which substantial load sharing can be achieved in HBB 

composite joints was shown in section 4.6 to be plastic flow of the adhesive. This is 

governed by the 𝜎𝑌𝑇, 𝐸/𝐷 and 𝐻 parameters, which are consequently the most 
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important factors in load sharing. This finding is important in a number of ways. 

Primarily, it implies that if a HBB joint is designed in the traditional way, using a 

stiff, strong and brittle adhesive, then regardless of how well geometric parameters 

such as bolt-hole clearance and adhesive thickness are chosen and controlled, no 

substantial load sharing can be achieved. If it is indeed desired to have substantial 

load sharing, then an unconventional approach must be taken. The adhesive must 

be allowed to incur large strains; this is only possible if it has a low resistance to 

deformation. In elastoplastic adhesives of the type considered in the present GSA, 

it was found that this can be achieved most effectively through yielding the 

material. In addition, the adhesive must of course be sufficiently ductile such that it 

is able to incur these large strains without failing. The experimental studies in the 

literature that report significant overall strength improvements of HBB joints all 

verifiably used  adhesives where this is the case. There are understandably 

concerns regarding this approach. Load rate and temperature both have a strong 

influence on the behaviour of adhesives and could drastically change their load 

sharing suitability. Furthermore, permanent deformation of the adhesive is a source 

of concern. Further research is required to better understand these possible issues7. 

 Of the top five most important parameters, the two parameters that were 

found to be least important were adhesive thickness and bolt-hole clearance. The 

adhesive thickness finding was explained by the fact that when a perfectly 

elastoplastic thin bondline yields, it can theoretically flow with similar ease to a 

thick bondline (since neither have any resistance to additional load). However, if 

the adhesive is thin then the shear strain must be much greater to generate the 

same relative displacement of the substrates as a thicker bondline. Also, if the 

hardening slope is substantial, then this will severely inhibit the deformation of a 

thin bondline and thus bolt load transfer. Here it is useful to revisit the example 

                                       

7 Other, non-traditional (in aerospace) types of adhesives, e.g. elastomers, are able to incur 

very large strains without permanent plastic deformation and therefore also seem like 

promising candidate materials. The anticipated problem with these adhesives is that their 

stiffness may be too low to transfer any substantial load, while they will also need to be 

qualified for aerospace use, which may be cost-prohibitive. 
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joint of section 4.6. This time, the adhesive thickness is varied and the effect on 

plastic strain at the overlap edge and bolt load transfer is considered as shown in 

Figure 4.8. 

 

 

 

Figure 4.8: Effect of bondline thickness on bolt load transfer and adhesive strain 

 

It can be seen that at adhesive thicknesses below 0.4 mm, the adhesive strain 

increases rapidly with diminishing adhesive thickness. Meanwhile, load sharing 

decreases rapidly. Above adhesive thicknesses of 0.4 mm, both of these response 

variables become far less sensitive to adhesive thickness. Interestingly, this value 

seems to hold for the entire design space, as can be observed from the raw data 

plot in Figure 4.3. Below 𝑡𝑎 = 0.4 mm, the maximum load transfer decreases 

strongly with adhesive thickness. Above 0.4 mm, there appears to be no such 

trend. The implication for active HBB joint design appears to be that the adhesive 

thickness should be at least 0.4 mm. Simultaneously, it should be kept in mind that 

there is a well-known relationship between bondline thickness and bond strength 

[20]. This precludes the use of bondlines that are very much thicker than 0.4 mm. 

 Like adhesive thickness, bolt-hole clearance was also not found to be a 

“make-or-break parameter” and had a relatively low importance compared to the 

top three factors. However, one point not considered in the sensitivity analysis was 
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that, much like a thin bondline, the amount of plastic flow required to overcome 

larger clearances also entails increasingly high levels of strain in the adhesive, 

which may be sufficient to engender adhesive failure. This is demonstrated in 

Figure 4.9 for a joint with the example parameters of section 4.5, in which the 

maximum principal plastic strain at the overlap edge is plotted versus bolt load 

transfer and clearance. 

 

 

 

Figure 4.9: Effect of clearance on bolt load transfer and adhesive strain 

 

It can be seen that a 50 μm increase in the bolt-hole clearance leads to a 30% 

relative decrease in load sharing and a 30% relative increase in the adhesive strain, 

compared to a 0 μm clearance. It should therefore be kept in mind that, unless the 

adhesive has a very high strain to failure, it is desirable to have small bolt-hole 

clearances in order to limit the strain in the adhesive prior to bolt-hole contact and 

avoid premature adhesive failure. This simultaneously maximizes bolt load transfer. 

 Summarily: when designing bonded-bolted joints for load-sharing, the 

bondline thickness should be at least 0.4 mm, while bolt-hole clearance should be 

minimized in order to ensure low adhesive strains. The adhesive should be as 

ductile as possible to ensure that the adhesive does not fail prematurely. 
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4.8 Conclusions 

 

A detailed global sensitivity analysis of load sharing in HBB joints containing an 

elastoplastic adhesive was conducted. From this analysis, it was determined that: 

 

 For substantial load sharing (≥ 10%) to occur, the adhesive overlap must 

fully plasticise. For designs in which this did not occur (𝜎𝑦𝑡 > 30 MPa) no 

substantial load sharing was observed at the medium and high load levels. 

 

 More designs are able to achieve overlap plasticisation at higher loads. 

Consequently, more designs experience substantial load sharing at higher 

load levels (1%, 6% and 19% of the design space at the low, medium and 

high load levels, respectively). At low load levels, it is extremely difficult to 

achieve load sharing and the adhesive will transfer most of the load. 

 

 The most important factors influencing load sharing are categorically 𝜎𝑦𝑡, 𝐸/𝐷 

and 𝐻 (total effect index = 0.89, 0.37, 0.31, respectively, at the medium 

load level). This is due to their role in plasticisation of the overlap and plastic 

flow of the adhesive, which is the dominant mechanism by which substantial 

load sharing can occur. 

 

 Despite being less important in load sharing, adhesive thickness and bolt-

hole clearance have a major influence on the maximum plastic strain that is 

developed in the adhesive at the overlap edges and should thus be carefully 

controlled. 

 

 The remaining joint design parameters are relatively unimportant in load 

sharing.
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Chapter 5: Mathematical Model of the Hybrid 

Bonded-Bolted Joint Problem 

 

In the previous two chapters, the problem of load sharing was addressed. The 

GHJM model that was developed, however, is not ideally suited for use in a HBB 

joint strength analysis. The reasons for this are: 

 

 The adhesive stresses and strains at the bondline edge interfaces do not 

converge as the finite element discretization is refined, i.e., they are singular. 

This is a well-known feature of finite element models of bonded joints that 

model the adhesive as a continuum solid [89, 90]. This complicates the goal 

of achieving a simple, robust (mesh-insensitive) adhesive failure prediction. 

 

 While GHJM model generation has been automated using MATLAB, ABAQUS 

CAE is nevertheless required to write and solve the ABAQUS input deck and 

thus an ABAQUS license is necessary. Meanwhile, a standalone joint analysis 

tool is desired by the project partners. 

 

In response to these issues, in the next few chapters a new mathematical model of 

the HBB joint problem is developed. This model is implemented as a fully 

standalone computer code in MATLAB. The relevant mathematical framework is 

formulated from first principles and combines the preeminent analytical bonded 

joint model [71] with the power of the meshless Galerkin method. This approach 

successfully eliminates bondline singularities. Although the model is able to predict 

load sharing, its principal aim is to predict stresses and strains and to achieve a 

basic strength prediction. 

 The developed model incorporates a new adhesive kinematic model and 

takes into account nonlinear constitutive behaviour of the adhesive. Bolt clamping 

and bolt-hole clearance are also considered. Finally, by simply altering the 

boundary conditions, both single-lap and double-lap joints are able to be analyzed. 
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5.1 Single-Lap Joint 

 

Problem Description 

 

The problem of interest is the quasi-static stress analysis of a composite single-lap 

hybrid bonded-bolted joint. This type of joint consists of two composite substrates 

that partially overlap and are joined in the overlap region using both adhesive and 

one or more bolts (see Figure 5.1). Alternatively, one of the substrates may be 

metallic, since composite-to-metal joints are also important in composite 

structures. 

 

 

 

Figure 5.1: Single-lap HBB joint 

 

Model Description 

 

To obtain an efficient mathematical model of the aforementioned problem, the 

various components of the joint are represented using simple “single layer” and 

“single line” structural entities (see Figure 5.2). In particular, the substrates are 

represented as shear deformable plates while the bolt is represented as a shear 

deformable beam. The adhesive is modelled using an original shear lag theory, as 

shall be described in section 5.1.3. Small strains and frictionless contact are 

assumed throughout the formulation. 
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Figure 5.2: Model representation of the problem 

 

 

 

 

Figure 5.3: Domain boundaries and areas 
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A number of distinct boundaries exist along which Neumann and Dirichlet boundary 

conditions may be applied. These are shown in Figure 5.2 for the case of uniaxial 

tension of a finite width joint. For other load cases, additional boundaries may be 

necessary. A more general definition of the model boundaries and areas for each 

adherend is thus given in Figure 5.3. Provision is made for the case of a joint with 

multiple bolts through inclusion of the 𝑗 subscript in the bolt boundaries, areas and 

domains (𝑗 being the bolt identifier). 

 

5.1.1 Equilibrium Equations 

 

In accordance with established continuum mechanics theory, the equilibrium 

equations are assumed to hold pointwise everywhere in the problem domain 

Ω = Ω(1) ∪ Ω(2) ∪ Ω(𝑎) ∪ (⋃ Ω(𝐵𝑗)
𝑁𝐵
𝑗=1 ): 

 

𝜌⁡𝐮̈ + 𝛁 ∙ 𝛔 − 𝜌⁡𝐛 = 𝟎           (Balance of linear momentum/Cauchy’s first law) (5.1) 

𝝈 = 𝝈𝑇              (Balance of angular momentum/Cauchy’s second law) (5.2) 

 

where 𝜌 is the mass density, 𝐮̈ is the point acceleration, 𝛁 is the Del operator, 𝝈 is 

the Cauchy stress tensor and 𝐛 is the body force density. Assuming quasi-static 

loading and negligible impact of body forces, Eqn. (5.1) reduces to: 

 

𝛁 ∙ 𝝈 = 𝟎 (5.3) 

 

5.1.2 Plate Equations 

 

The adherends Ω(𝑖)⁡|⁡𝑖 ∈ {1,2} are modelled as Mindlin-Reissner (MR) plates. The 

choice of MR theory is due to it taking into account transverse shear deformation, 

which is important in thick composite plates. 
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5.1.2.1 Kinematic Equations 

 

According to MR theory, the displacement field of the ith plate is considered to be a 

linear combination of the plate midplane translations 𝑢𝑥
(𝑖)
, 𝑢𝑦
(𝑖)
, 𝑢𝑧
(𝑖)

 and plate midplane 

rotations 𝜃𝑥
(𝑖)
, 𝜃𝑦
(𝑖)

 as follows: 

 

𝑈𝑥
(𝑖)
(𝑥, 𝑦, 𝑧) = 𝑢𝑥

(𝑖)
(𝑥, 𝑦) − (𝑧 − 𝑧𝑖)𝜃𝑥

(𝑖)
(𝑥, 𝑦) 

𝑈𝑦
(𝑖)
(𝑥, 𝑦, 𝑧) = 𝑢𝑦

(𝑖)
(𝑥, 𝑦) − (𝑧 − 𝑧𝑖)𝜃𝑦

(𝑖)
(𝑥, 𝑦) 

𝑈𝑧
(𝑖)
(𝑥, 𝑦, 𝑧) = 𝑢𝑧

(𝑖)(𝑥, 𝑦) 

(5.4-a,b,c) 

 

where 𝑧𝑖 is the plate midplane 𝑧-coordinate. 

 

5.1.2.2 Strain-Displacement Equations 

 

The MR strain-displacement relations in the plate midplane are: 

 

𝜀𝑥
(𝑖)
= 𝑢𝑥,𝑥

(𝑖)
 ,    𝜀𝑦

(𝑖)
= 𝑢𝑦,𝑦

(𝑖)
 ,    𝛾𝑥𝑦

(𝑖)
= 𝑢𝑦,𝑥

(𝑖)
+ 𝑢𝑥,𝑦

(𝑖)
  

𝛾𝑥𝑧
(𝑖)
= 𝑢𝑧,𝑥

(𝑖)
− 𝜃𝑥

(𝑖)
 ,    𝛾𝑦𝑧

(𝑖)
= 𝑢𝑧,𝑦

(𝑖)
− 𝜃𝑦

(𝑖)
 

(5.5-a,b,c,d,e) 

 

where , 𝑗 denotes the partial derivative with respect to variable 𝑗. In addition, the 

plate curvature vector 𝜿(𝑖) = {𝜅𝑥
(𝑖)
, 𝜅𝑦
(𝑖)
, 𝜅𝑥𝑦
(𝑖)
}
𝑇
 consists of the following components: 

 

𝜅𝑥
(𝑖)
= −𝜃𝑥,𝑥

(𝑖)
 ,    𝜅𝑦

(𝑖)
= −𝜃𝑦,𝑦

(𝑖)
 ,    𝜅𝑥𝑦

(𝑖)
= −𝜃𝑦,𝑥

(𝑖)
−𝜃𝑥,𝑦

(𝑖)
 (5.6-a,b,c) 

 

The strains at a general point in the plate domain (which need not be located on 

the midplane) can hence be defined in terms of the previously defined identities as 

follows: 
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𝜖𝑥
(𝑖)
= 𝜀𝑥

(𝑖)
+ (𝑧 − 𝑧𝑖)𝜅𝑥

(𝑖)
,    𝜖𝑦

(𝑖)
= 𝜀𝑦

(𝑖)
+ (𝑧 − 𝑧𝑖)𝜅𝑦

(𝑖)
      

𝛤𝑥𝑦
(𝑖)
= 𝛾𝑥𝑦

(𝑖)
+ (𝑧 − 𝑧𝑖)𝜅𝑥𝑦

(𝑖)
 ,    𝛤𝑥𝑧

(𝑖)
= 𝛾𝑥𝑧

(𝑖)
 ,    𝛤𝑦𝑧

(𝑖)
= 𝛾𝑦𝑧

(𝑖)
 

(5.7-a,b,c,d,e) 

 

5.1.2.3 Constitutive Equations 

 

Yang, Norris and Stavsky [91] extended classical lamination theory (CLT) to MR 

plates. In accordance with this theory, the constitutive behaviour between the 

strains/curvatures and stress resultants/moments for an anisotropic laminated 

composite plate is: 

 

{
𝐍
𝐌
𝐐
}

(𝑖)

= [
𝐀 𝐁 𝟎
𝐁 𝐃 𝟎
𝟎 𝟎 𝐆

]

(𝑖)

{

𝛆
𝜿
𝛄
}

(𝑖)

 (5.8) 

 

where 𝐍𝑇 = {𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦} are the plate in-plane stress resultants, 𝐌𝑇 = {𝑀𝑥,𝑀𝑦,𝑀𝑧} are 

the plate bending moments and 𝐐𝑇 = {𝑄𝑥𝑧, 𝑄𝑦𝑧} are the plate transverse shear stress 

resultants. The vectors 𝛆𝑇 = {𝜀𝑥 , 𝜀𝑦, 𝜀𝑥𝑦} and 𝛄𝑇 = {𝛾𝑥𝑧, 𝛾𝑦𝑧} are collections of the in-

plane strains and transverse shear strains, respectively. 𝜿 is the previously defined 

curvature. The 𝐀, 𝐁, and 𝐃 matrices are the in-plane, coupling and bending stiffness 

matrices from CLT, respectively, while the 𝐆 matrix is the transverse shear stiffness 

matrix. The calculation of these matrices is detailed in e.g. [8].  Meanwhile, for an 

isotropic metallic plate the constitutive equation is: 

 

{
𝐍
𝐌
𝐐
}

(𝑖)

= [
𝐀 𝟎 𝟎
𝟎 𝐃 𝟎
𝟎 𝟎 𝐆

]

(𝑖)

{

𝛆
𝜿
𝛄
}

(𝑖)

 (5.9) 

 

where the components of the⁡𝐀 matrix are: 

 

A𝛼𝛽 = ∫𝐶𝛼𝛽

ℎ

−ℎ

𝑑𝑧⁡|⁡𝛼, 𝛽 ∈ {1,2,3} (5.10) 
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The components of the bending matrix 𝐃 are: 

 

D𝛼𝛽 = ∫𝐶𝛼𝛽𝑧
2

ℎ

−ℎ

𝑑𝑧⁡|⁡𝛼, 𝛽 ∈ {1,2,3} (5.11) 

 

And the transverse shear stiffnesses 𝐆 matrix can be calculated as: 

 

G𝛼𝛽 =
5

6
∫𝐶(𝛼+3)(𝛽+4)

ℎ

−ℎ

𝑑𝑧⁡|⁡𝛼, 𝛽 ∈ {1,2} (5.12) 

 

𝐶𝛼𝛽 are the components of the elasticity tensor (following Voigt notation). It is 

remarked that for isotropic plates, there is no coupling between extension and 

bending, i.e., 𝐁 is a null matrix. This is generally not the case for a composite 

laminate. 

 

5.1.3 Adhesive Equations 

 

The adhesive Ω(𝑎) is modelled using shear lag theory, first proposed by Volkersen 

[70] and later adapted to single-lap joints by Goland and Reissner [71]. The vast 

majority of bonded joint analytical models in the literature are based on this theory.  

An original extension of this classical model is presented in this section that enables 

it to be used in a nonlinear elastic analysis. 

 

5.1.3.1 Strain-Displacement Equations 

 

In accordance with Goland and Reissner’s shear lag theory, the out-of-plane 

adhesive strains are defined in terms of the plate displacements as: 
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𝛾𝑗𝑧
(𝑎)

=
1

𝑡𝑎
(𝑈𝑗

(1)
|𝑧=𝑧1−ℎ(1) − 𝑈𝑗

(2)
|𝑧=𝑧2+ℎ(2))⁡|⁡𝑗 ∈

{𝑥, 𝑦} 

𝜀𝑧𝑧
(𝑎)

=
1

𝑡𝑎
(𝑈𝑧

(1)
− 𝑈𝑧

(2)
) 

(5.13-a,b) 

 

where 𝑡𝑎 is the adhesive thickness and ℎ(𝑖) is half the ith plate thickness. There is no 

dependence on the thickness coordinate in these equations. However, these three 

out-of-plane strain components transform inconsistently (they constitute an 

incomplete strain tensor) and are thus incompatible with the mathematical theory 

of plasticity. In this work, it is proposed to define the missing in-plane strain 

components in terms of the plate strains as follows: 

 

γ𝑥𝑦
(𝑎)

=
1

2
(𝛤𝑥𝑦

(1)
|𝑧=𝑧1−ℎ(1) + 𝛤𝑥𝑦

(2)
|𝑧=𝑧2+ℎ(2)) 

ε𝑗𝑗
(𝑎)

=
1

2
(𝜖𝑗𝑗

(1)
|𝑧=𝑧1−ℎ(1) + 𝜖𝑗𝑗

(2)
|𝑧=𝑧2+ℎ(2))⁡|⁡𝑗 ∈

{𝑥, 𝑦} 

(5.14-a,b) 

 

As in the original shear lag theory, there is again no dependence of these strain 

components on the adhesive thickness coordinate. This is not strictly accurate; 

however, the assumption’s suitability is demonstrated in the following. To aid the 

discussion, the ε𝑥𝑥 strain field at a point in the adhesive is illustrated in Figure 5.4. 

 

 

 

 

Figure 5.4: Normal strain component distribution through the adhesive thickness 
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Two key observations can be made: 

 

1) The in-plane strains at the adhesive-adherend interfaces must be compatible 

and are generally different at the upper and lower interfaces 

 

2) If the bondline is quite thin then the distribution of ε𝑥𝑥 will be quasi-linear 

through-thickness 

 

These observations are also valid for the 𝜀𝑦𝑦 and 𝛾𝑥𝑦 in-plane strains. The reader 

may have remarked that the proposed strain identities in Eqns. (5.14-a,b) 

correspond to the average strains based on a linear through-thickness variation. 

Importantly, this assumption provides a close approximation to the adhesive 

deformation energy in the in-plane modes. This is demonstrated by considering the 

γ𝑥𝑦
(𝑎)

 strain component. With the average strain assumption, the section strain 

energy density (through-thickness integral of the strain energy density) for the γ𝑥𝑦
(𝑎)

 

component is: 

 

𝜌𝑎𝑣𝑒𝑟𝑎𝑔𝑒
(𝑥𝑦)

= 𝐶66𝑡 (
1

3
𝛾𝑥𝑦1
2 +

1

3
𝛾𝑥𝑦1𝛾𝑥𝑦2 +

1

3
𝛾𝑥𝑦2
2 ) (5.15) 

 

where 𝛾𝑥𝑦1 and 𝛾𝑥𝑦2 are shorthand for γ𝑥𝑦
(𝑎)

 at the upper and lower interfaces, 

respectively. With the linear strain energy assumption, the section strain energy 

density is: 

 

𝜌𝑙𝑖𝑛𝑒𝑎𝑟
(𝑥𝑦)

= 𝐶66𝑡 (
1

4
𝛾𝑥𝑦1
2 +

1

2
𝛾𝑥𝑦1𝛾𝑥𝑦2 +

1

4
𝛾𝑥𝑦2
2 ) (5.16) 

 

These two functions are plotted in Figure 5.5. The 𝑥-axis shows the ratio 
𝛾𝑥𝑦1

𝛾𝑥𝑦2
 while 

the y-axis shows the section strain energy density. It is evident from inspection of 

Eqns. (5.15) and (5.16) that the ratio of these two equations is independent of 𝐶66𝑡, 

thus the plot functions have been normalized by this expression. 
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Figure 5.5: Comparison of strain energy densities for average and linear assumptions 

 

It is observed that the average through-thickness strain assumption results in very 

similar strain energy to the exact strain energy based on a linear strain variation. 

This is important since an energy method shall be used to solve the model 

developed in this chapter. The energies are virtually identical when neither strain 

exceeds 0.05 strain. Strains in the adherends will generally not exceed this level 

prior to failure, thus the assumptions of Eqn. (5.14) should generally expect to yield 

good results. Following solution of the model, it should of course be kept in mind 

that the obtained adhesive in-plane strain components are through-the-thickness 

averages while the out-of-plane strains correspond to those of the classical Goland 

and Reissner model. 

 

5.1.3.2 Constitutive Equations 

 

The adhesive is assumed to behave in an elastoplastic manner. In accordance with 

the mathematical theory of rate-independent small strain plasticity, the adhesive 

stress tensor is thus related to the adhesive strain tensor as follows: 
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𝝈(𝑎) = 𝑪(𝑎) ∶ 𝜺𝑒
(𝑎)

= 𝑪(𝑎): (𝜺(𝑎) − 𝜺𝑝
(𝑎)
) (5.17) 

  

where 𝑪(𝑎) is the isotropic elasticity tensor: 

 

𝑪(𝑎) ⁡=

[
 
 
 
 
 
2𝜇 + 𝜆 𝜆 𝜆 0 0 0
𝜆 2𝜇 + 𝜆 𝜆 0 0 0
𝜆 𝜆 2𝜇 + 𝜆 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇]

 
 
 
 
 
(𝒂)

 

 

The subscripts 𝑒 and 𝑝 denote “elastic” and “plastic, respectively. Also 𝜇 =

𝐸𝜈/[(1 + 𝜈)(1 − 2𝜈)⁡] and 𝜆 = 𝐸/[2(1 + 𝜈)] are the Lamé parameters, where 𝐸 is 

Young’s modulus and 𝜈 is Poisson’s ratio. The particular yield criterion and evolution 

equations employed in the current work are those of J2-plasticity with associative 

linear isotropic hardening. The former is the well-known von Mises yield criterion, 

which is defined in stress space as: 

 

𝑓(𝝈(𝑎), 𝛼) = √
3

2
𝒔(𝑎): 𝒔(𝑎) − (𝜎𝑦 +𝐻𝛼) ≤ 0 (5.18) 

 

where 𝒔(𝑎) is the deviatoric component of the stress tensor, 𝛼  is an internal 

hardening variable, 𝜎𝑦 is the tensile yield strength and 𝐻 is the hardening modulus 

of the adhesive. The J2 theory is completed by definition of the following evolution 

equations: 

 

𝑵̅ =
𝒔(𝑎)

‖𝒔(𝑎)‖
    ,    𝛾 = 𝑵̅:𝜺̇(𝑎)

1+
𝜎𝑦+𝐻𝛼

3𝜇

    ,  𝛼̇ = 𝛾√𝟐

𝟑
     ,    𝜺̇𝑝

(𝑎)
= 𝛾𝑵̅ (5.19-a,b,c,d) 

  

Note that 𝑵̅ defines the direction of the plastic flow. The parameter 𝛾 is the plastic 

multiplier (absolute value of the plastic flow rate) and, following the mathematical 

theory of plasticity, is required to obey the following complementarity conditions: 
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𝛾 ≥ 0    ,    𝑓(𝝈(𝑎), 𝛼) ≤ 0    ,    𝛾𝑓(𝝈(𝑎), 𝛼) = 0 (5.20-a,b,c) 

 

Finally, the persistency condition is also required to hold on the yield surface: 

 

𝛾𝑓̇(𝝈(𝑎), 𝛼) = 0⁡|⁡𝑓(𝝈(𝑎), 𝛼) = 0 (5.21) 

 

Eqn. (5.21) basically states that for plastic flow to occur (i.e., 𝜺̇𝑝
(𝑎)

≠ 𝟎) at a point on 

the yield surface at a particular point in time, the yield condition must persist 

instantaneously in time (i.e., 𝑓̇(𝝈(𝑎), 𝛼) = 0). 

 

5.1.4 Bolt Equations 

 

In order to take into account both shear deformation and bending, the bolt Ω(𝑏) is 

modelled as a Timoshenko beam. 

 

5.1.4.1 Kinematic Equations 

 

The following equations describe the kinematics of a Timoshenko beam: 

 

𝑈𝑥
(𝑏)(𝑥, 𝑦, 𝑧) = 𝑢𝑥

(𝑏)(𝑧) ,    𝑈𝑦
(𝑏)(𝑥, 𝑦, 𝑧) = 𝑢𝑦

(𝑏)(𝑧) 

𝑈𝑧
(𝑏)
(𝑥, 𝑦, 𝑧) = 𝑢𝑧

(𝑏)(𝑧) ⁡− (𝑥 − 𝑥0)𝜃𝑥
(𝑏)(𝑧) − (𝑦 − 𝑦0)𝜃𝑦

(𝑏)(𝑧) 
(5.22-a,b,c) 

 

Similarly to plate kinematics, 𝑢𝑥
(𝑏), 𝑢𝑦

(𝑏), 𝑢𝑧
(𝑏)

 are the bolt neutral axis displacements 

and 𝜃𝑥
(𝑏)
, 𝜃𝑦
(𝑏)

 are the neutral axis rotations. The ordered pair (𝑥0, 𝑦0) defines the bolt 

neutral axis location. 
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5.1.4.2 Strain-Displacement Equations 

 

The strains and curvatures along the bolt neutral axis can be obtained from the 

displacements as follows: 

 

𝜀𝑧𝑧
(𝑏)
= 𝑢𝑧,𝑧

(𝑏)
 ,    𝛾𝑥𝑧

(𝑏)
= 𝑢𝑧,𝑥

(𝑏)
− 𝜃𝑥

(𝑏)
 ,    𝛾𝑦𝑧

(𝑏)
= 𝑢𝑧,𝑦

(𝑏)
− 𝜃𝑦

(𝑏)
 

𝜅𝑥
(𝑏)
= −𝜃𝑥,𝑧

(𝑏)
 ,    𝜅𝑦

(𝑏)
= −𝜃𝑦,𝑧

(𝑏)
 

(5.23-a,b,c,d,e) 

 

As was the case with the plate equations, the strain field at a generic point in the 

bolt (which need not be on the neutral axis) can hence be described in terms of the 

above identities as: 

 

𝜖𝑧
(𝑏)
= 𝜀𝑧

(𝑏)
+ (𝑥 − 𝑥0)𝜅𝑥

(𝑏) + (𝑦 − 𝑦0)𝜅𝑦
(𝑏)

 

𝛤𝑥𝑧
(𝑏)

= 𝛾𝑥𝑧
(𝑏)

 ,    𝛤𝑦𝑧
(𝑏)
= 𝛾𝑦𝑧

(𝑏)
 

(5.24-a,b,c,) 

 

5.1.4.3 Constitutive Equations & Clamp-Up 

 

An isotropic elastic constitutive relation is appropriate for metallic bolts. For a 

Timoshenko beam, this is simply: 

 

{
 
 

 
 
𝑁𝑧
𝑀𝑥
𝑀𝑦
𝑄𝑥𝑧
𝑄𝑦𝑧}

 
 

 
 
(𝑏)

=

[
 
 
 
 
𝐸𝐴 0 0 0 0
0 𝐸𝐼 0 0 0
0 0 𝐸𝐼 0 0
0 0 0 𝑘𝜇𝐴 0
0 0 0 0 𝑘𝜇𝐴]

 
 
 
 

(𝑏)

{
 
 

 
 
𝜀𝑧𝑧
𝜅𝑥
𝜅𝑦
𝛾𝑥𝑧
⁡𝛾𝑦𝑧}

 
 

 
 
(𝑏)

+

{
 
 

 
 
𝑁𝑧0
0
0
0
0 }
 
 

 
 
(𝑏)

 (5.25) 

 

where 𝐴 is the bolt’s cross-sectional area, 𝐼 is the second moment of area and 

𝑘 = 6(1 + 𝜈)/(7 + 6𝜈) is the shear correction factor. 𝑁𝑧 is the bolt axial stress 

resultant, 𝑀𝑥 and 𝑀𝑦 are the bolt section moments and 𝑄𝑥𝑧 and 𝑄𝑦𝑧 are the bolt 

transverse shear stress resultants. The unfamiliar term on the right hand side of 
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Eqn. (5.25) is remarked. This represents the initial axial force 𝑁𝑧0 in the bolt due to 

clamp-up loading. 

 

5.1.5 Bolthead-Adherend Interaction 

 

The interaction between the boltheads and adherends is complex but shall be 

distilled here to the essentials. First, it is assumed that the bolthead protrudes from 

the joint and is not countersunk. Subsequently, two separate situations are 

considered: 

1) The clamp-up load is high; the bolthead is thick; there are no washers 

2) The clamp-up load is not necessarily high; the bolthead is not necessarily 

thick; there may be washers 

 

In the first case, the bolthead is effectively rigid and sits flush on the adherend. It 

can hence be assumed that there is perfect contact between the bolthead and the 

adherend. This means that the bolthead and adherend plane underneath the 

bolthead are parallel planar surfaces, as shown in Figure 5.6-a. Mathematically, this 

can be expressed as: 

 

𝑈𝑧
(1)(𝑥, 𝑦, 𝑧1 + ℎ) = (𝑢𝑧

(𝐵𝑗) − 𝑟𝑥𝜃𝑥
(𝐵𝑗) − 𝑟𝑦𝜃𝑦

(𝐵𝑗)) |𝑧=𝑧1+ℎ(1) ⁡⁡|⁡⁡(𝑥, 𝑦) ∈ Ω𝐻𝑗
(1)

 

𝑈𝑧
(2)(𝑥, 𝑦, 𝑧2 − ℎ) = (𝑢𝑧

(𝐵𝑗) − 𝑟𝑥𝜃𝑥
(𝐵𝑗) − 𝑟𝑦𝜃𝑦

(𝐵𝑗)) |𝑧=𝑧2−ℎ(2) ⁡⁡|⁡⁡(𝑥, 𝑦) ∈ Ω𝐻𝑗
(2)

 

(5.26-a,b) 

 

where 𝒓(𝑥, 𝑦) = {𝑟𝑥, 𝑟𝑦}
𝑇
 is the Euclidean vector from the hole center to the point 

under consideration. It is remarked that this equation represents a constraint on 

the displacement solution. 

 In the second case, it is again assumed that the adherend region underneath 

the bolthead remains plane; however, the requirement that it and the bolthead 

must remain parallel is relaxed. In other words, an allowance is made for a relative 

rotation angle between the two planes. This rotation angle depends on the effective 

bolthead stiffness 𝑘𝜃, which is hypothesized to be a function of the adherend 
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(thickness, stiffness) and bolthead (size, shape) and washer (presence, size, type). 

To describe this mathematically several new variables are introduced: 𝜃𝑥
𝐻𝑗
(𝑖)

, 𝜃𝑦
𝐻𝑗
(𝑖)

 and 

𝑢𝑧
𝐻𝑗
(𝑖)

 represent the rotations and average 𝑧-displacement of the plane adherend 

region, respectively (see Figure 5.6-c). Following the convention maintained thus 

far, 𝑖 = 1 denotes the upper adherend and 𝑖 = 2 denotes the lower adherend while 𝑗 

identifies the bolt in question. It can hence be stated: 

 

𝑢𝑧
𝐻𝑗
(𝑖)

= 𝑢𝑧
𝐵𝑗
(𝑖)

 

𝐹𝑥 = 𝑘𝜃 (𝜃𝑥
𝐻𝑗
(𝑖)

− 𝜃𝑥
𝐵𝑗
(𝑖)

)   ,   𝐹𝑦 = 𝑘𝜃 (𝜃𝑦
𝐻𝑗
(𝑖)

− 𝜃𝑦
𝐵𝑗
(𝑖)

)⁡⁡|⁡⁡𝑖 ∈ {1,2} 

(5.27-a,b,c) 

 

 

 

 

Figure 5.6: Different bolthead-adherend interactions and mathematical representation 

 

where 𝐵𝑗
(1)

 and 𝐵𝑗
(2)

 denote the points of the jth bolt on the top and bottom 

adherend outer surfaces, respectively. Eqns. (5.27-b,c) state there is a restoring 

force opposing the relative rotation between the boltheads and adherends that is 

dependent on the effective bolthead stiffness 𝑘𝜃. This can be interpreted as a spring 

that acts between the 𝜃𝑥
𝐻𝑗
(𝑖)

 and 𝜃𝑥
𝐵𝑗
(𝑖)

 degrees of freedom, shown in Figure 5.6-c. 

Interestingly, in the limit as the spring stiffness tends to infinity, the conditions of 
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Eqns. 5.26-a,b are recovered since the spring will effectively resist any relative 

rotation between the bolthead and adherend. Thus the proposed spring model can 

account for both types of bolthead conditions. The only remaining challenge is to 

determine the value of 𝑘𝜃 for a given bolthead condition. This can be achieved by 

means of physical testing or detailed 3D finite element analysis. It is noted that 

such testing need only be performed once for a particular combination of bolt, 

washer and laminate. Furthermore, it is not required at all when the case of high 

bolt clamp-up, thick bolthead and no washers is considered. 

 

5.1.6 Bolt Shank-Substrate Contact 

 

Unilateral contact is considered between the bolt surface and the ith substrate jth 

hole edge in the adherend midplane (𝑥 − 𝑦 plane). This can be formally stated as: 

 

𝑔𝑛
(𝑖)
= 𝑔(𝑖) − 𝐧 ∙ {[𝑢𝑥

(𝑖)
, 𝑢𝑦
(𝑖)
]
𝑇
− [𝑢𝑥

(𝑏)
, 𝑢𝑦
(𝑏)
]
𝑇
|𝑧=𝑧𝑖} (5.28) 

𝑔𝑛
(𝑖)
≥ 0    ,  𝑃𝑐

(𝑖)
≥ 0    ,    𝑔𝑛

(𝑖)
𝑃𝑐
(𝑖)
= 0 (5.29-a,b,c) 

 

∀⁡𝐱 ∈ 𝜕𝐻𝑗Ω
(𝑖) 

 

In Eqns. 5.28-5.29, 𝑔𝑛
(𝑖)

 is the current gap in the normal direction 𝐧 to the bolt 

surface,⁡𝑔(𝑖) is the initial gap and 𝑃𝑐
(𝑖)

 is the contact pressure. A schematic of the 

contact problem is shown in Figure 5.7. In keeping with Timoshenko beam theory, 

the transverse displacements in the bolt are assumed to be constant throughout its 

cross-section. This is equivalent to assuming a rigid bolt surface. Previous studies in 

the literature have shown that this simplification does not have a significant effect 

on the stresses in the plate [76].  
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Figure 5.7: Variables involved in contact analysis. Representative hole boundary point 𝒙 

indicated by square 

 

The active contact region (the region in which 𝑔𝑛
(𝑖)
= 0) is not known a priori and 

must be determined as part of the solution. 

 

5.1.7 Boundary Conditions 

 

The proposed model may be arbitrarily loaded with line loads, pressure loads and 

body forces. The traditional load case of interest, however, is uniaxial 

tension/compression with both longitudinal joint edges clamped except for free 

sliding on the right hand boundary. To simulate this type of loading condition, the 

following boundary conditions are applied: 

 

𝑢𝑥
(1)
= 0, 𝑢𝑦

(1)
= 0, 𝑢𝑧

(1)
= 0, 𝜃𝑥

(1)
= 0, 𝜃𝑦

(1)
= 0 on 𝜕𝐿Ω

(1) 

𝑢𝑦
(2)
= 0, 𝑢𝑧

(2)
= 0, 𝜃𝑥

(2)
= 0, 𝜃𝑦

(2)
= 0 on 𝜕𝑅Ω

(2) 

 

(5.30-a,b) 

𝑛𝑥𝜎𝑥𝑥
(2)
= 𝑡𝑥̅ on 𝜕𝑅Ω

(2) (5.31) 

 

In addition, it is desired that all points on the right boundary move together in the 

𝑥-direction, as though the boundary were constrained by a rigid clamping device: 
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𝑢𝑥
(2)
= constant on⁡𝜕𝑅Ω

(2) (5.32) 

 

5.1.8 Failure Criteria 

 

In this section, a simple approach is proposed for assessing joint failure. This 

consists of separately checking for in-plane failure of the adherends and ductile 

failure of the adhesive. If either of these conditions is met, then the joint is 

assumed to have failed. 

 

5.1.8.1 Adhesive Failure 

 

Since the adhesives of interest in HBB joint design typically exhibit significant 

ductility, a variation of the maximum strain failure criterion represents a rational 

choice for predicting adhesive failure. In this work, the criterion suggested by Hoyt 

et al. [92] is used: 

 

𝜀𝑢𝑙𝑡
𝜀𝑒𝑞𝑣

= 1 (5.33) 

 

where 𝜀𝑒𝑞𝑣 is the equivalent Von Mises strain, defined as follows: 

 

 

𝜀𝑒𝑞𝑣 = √
3(𝜀𝑥𝑥

2 + 𝜀𝑦𝑦
2 + 𝜀𝑧𝑧

2 )

2
+
3(𝛾𝑥𝑦

2 + 𝛾𝑦𝑧
2 + 𝛾𝑥𝑧

2 )

4
 (5.34) 

 

This criterion takes into account the effects of both the shear and peel strains on 

the adhesive failure. 
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5.1.8.2 Adherend Failure 

 

Failure of the composite adherends is rather more involved. Firstly, in reality there 

is through-thickness contact between the bolt and adherends. This has so far been 

neglected. While the through-thickness stress resultants will be well approximated 

in the model (since they are averages), the stress distribution through-thickness 

near the hole boundary will not be. Some plies will react a disproportionate amount 

of contact load, which will lead to a through-thickness stress concentration. In order 

to determine the amplitude of this stress concentration such that the in-plane 

stress results can be corrected, the method of Ramkumar and Saether [93] is used. 

This method is briefly described in Appendix B. 

 Once the corrected ply loads have been calculated, the failure in each ply is 

evaluated along a concentric path around the hole, as shown in Figure 5.9. This 

method was also proposed by Ramkumar and Saether [93] and is similar to the 

method of Chang et al. [94]. The failure criterion employed in this thesis is the 

Yamada-Sun criterion [95], given in Eqn. 5.35: 

 

(
𝜎𝑥
𝑋
)
2

+ (
𝜎𝑥𝑦

𝑆𝑐
)
2

≥ 1 (5.35) 

 

In Eqn. 5.35, 𝑋 is the longitudinal ply strength and 𝑆𝑐 is the ply shear strength. 𝑎0 is 

the characteristic curve radius and 𝜃 is the radial location measured clockwise from 

the positive 𝑥-axis (see Figure 5.8). It is noted that 𝑎0 is an empirical parameter 

which needs to be determined by testing both a notched and an unnotched 

laminate specimen, combined with an in-plane analysis from which the parameter 

can be fitted. 
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Figure 5.8: Characteristic distance where Yamada-Sun criterion is applied. Figure adapted 

from Ramkumar et al. [93] 

 

Finally, depending on the angle at which the failure is found to occur, the failure 

mode can be determined. According to Chang et al. [94], failure near an angle 

𝜃 ≈ 0° corresponds to a bearing failure mode, failure near an angle 𝜃 ≈ 45° 

corresponds to a shearout or cleavage mode while failure near an angle 𝜃 ≈ 90° 

corresponds to a net-section mode. This is summarized in Eqns. (5.36-a,b,c). 

 

−15° ≤ 𝜃 ≤ 15° bearing mode 

30° ≤ 𝜃 ≤ 60° shearout or cleavage mode 

75° ≤ 𝜃 ≤ 90° net-section mode 

(5.36-a,b,c) 

 

These three failure modes are demonstrated in Figure 5.9. 

 

 

Figure 5.9: Bolted joint in-plane failure modes [22] 
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Note that Kradinov et al. and Ramkumar and Saether [93] both performed a 

progressive failure analysis based on the above method, degrading the ply stiffness 

and solving their respective bolted joint models incrementally. However, this is 

likely to introduce gross inaccuracy into the present model, since unlike in a bolted 

joint, in a HBB joint composite failure causes complex bolt load redistribution, 

damage to the adhesive, etc. In other words, it shall not be pretended that a simple 

method based on equivalent single layers can accurately capture the complicated 

progressive failure process of a HBB joint. The present analysis is thus only 

indicative of the onset of adherend nonlinearity due to damage. It is noted that this 

approach is expected to be conservative. 
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5.2 Double-Lap Joint 

 

Problem Description 

 

 

 

 

Figure 5.10: Double-lap HBB joint 

 

Double-lap bonded-bolted joints are conceptually similar to single-lap joints. In a 

double-lap joint, an inner adherend is “sandwiched” by two outer adherends, as 

shown in Figure 5.10. This results in two overlap regions, hence the “double-lap” 

descriptor. As in the single-lap joint, the outer adherends are connected to the 

inner adherend using adhesive and one or more bolts. As for the single-lap joint, 

the objective is to determine the displacements and stresses of this type of joint 

when subjected to quasi-static external loads. 

 

Model description 

 

Only the special case where the outer adherends are identical shall be considered. 

Assuming that the inner adherend is symmetric about its midplane and that the 

external loading is in the 𝑥 − 𝑦 plane (as is usually the case), then symmetry 

conditions apply. The double-lap joint can hence be idealized as shown in Figure 

5.11. Consequently, the analysis is identical to the single-lap analysis subject to the 

additional Dirichlet boundary conditions stated in Figure 5.11. 
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Figure 5.11: Symmetry conditions used to simulate a double-lap joint 
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Chapter 6: Meshless Interpolation of Scattered 

Data 

 

The solution of the model described in Chapter 5 can potentially be achieved by a 

number of different numerical methods, including (but not limited to) the finite 

difference method (FDM), finite element method (FEM), spectral method and 

meshless method. Each of these methods has particular advantages and 

disadvantages. In the present work a type of meshless method known as the 

Galerkin Radial Point Interpolation Method (GRPIM) is used. This decision was 

motivated by the following considerations: 

 

 Ease of domain discretization: In the scope of this thesis, it was desired to 

use a method for which discretization of the spatial domain is simple and 

efficient. The FEM requires the problem domain to be discretized into both 

nodes and elements, which is a challenging and time consuming task. 

Furthermore, the element quality, determined by their shape, has an 

important effect on the solution accuracy and restricts automation of the 

discretization process. Similarly, the FDM typically requires a regular grid, 

hindering its use in the analysis of complex domains. In contrast, meshless 

methods only require discretization of the domain into nodes or particles, 

whose arrangement need in general not be structured, thus greatly 

simplifying computational implementation. 

 

 Completeness: Depending on the formulation used, meshless shape functions 

often possess 𝐶∞ continuity (compared to 𝐶0 or 𝐶1 continuity for typical finite 

elements).  This high degree of smoothness can lead to high convergence 

rates of the solution for certain types of problems in solid mechanics. 

 

 Analysis of fracture and extreme deformation: Meshless methods are ideally 

suited to fracture mechanics and nonlinear geometric deformation analyses, 
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since it is possible to treat moving discontinuities without a need to “remesh” 

and because the integration accuracy does not degrade (as typically occurs in 

FEM when elements become extremely deformed) [96]. The developed code 

can thus be readily adapted in future to incorporate such features. 

 

 Novelty: To the present date, there is no public account of the use of a 

meshless method in the analysis of structural joints. The extension of this 

technique to the analysis of joints is thus also a question of academic 

interest. Basic questions such as the existence of the RPIM interpolation are 

addressed in this chapter which have not been adequately answered to date. 

In addition, interpolation parameters specific to the HBB joint problem are 

identified in Chapter 7. 

 

Among possible meshless methods, the GRPIM in particular was chosen, based on 

prior studies which showed this method to exhibit excellent performance compared 

to other meshless methods such as Galerkin Moving Kriging (GMK) and Galerkin 

Point Interpolation (GPIM). 

 

6.1 Radial Point Interpolation 

 

The GRPIM uses radial point interpolating (RPI) functions to approximate the field 

functions based on discrete scattered data. For example, in a displacement-based 

continuum mechanics analysis the nodal displacement values constitute the 

scattered data used to construct the approximation. An overview of the RPI 

technique and its use in scattered data interpolation is presented in this section. In 

addition, the conditions guaranteeing existence of the interpolation are presented. 

Let a body of interest, occupying the domain Ω in 𝑛-dimensional real coordinate 

space ℝ𝑠 ∶ ⁡𝑠 ∈ ⁡ℕ ≤ 3, be discretized by an arbitrarily scattered set of nodes. A 2D 

example of such a discretization is shown in Figure 6.1. 
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Figure 6.1: Example 2D nodal discretization 

 

At each node, the field function values may be assumed to be known, although this 

not a strict requirement. Let 𝒙 be any point belonging to the domain Ω. A 

combination of radial basis functions 𝑅(𝒙, 𝒙𝑖) and monomial basis functions 𝑃𝑖(𝒙) may 

hence be used to construct an interpolating function 𝑢ℎ(𝒙) on the domain as follows: 

 

 

𝑢ℎ(𝐱) =∑𝑅

𝑛

𝑖=1

(𝐱, 𝐱𝑖)𝑎𝑖 +∑𝑃𝑖

𝑚

𝑖=1

(𝐱)𝑏𝑖 (6.1) 

 

 

where 𝒙𝑖 is the ith node, 𝑛 is the total number of nodes in the domain and 𝑚 is the 

number of monomials in the monomial basis. The choice of the monomial basis is 

arbitrary and can be determined to any desired polynomial degree 𝑑 using the 

multinomial expansion (𝑥 + 𝑦 +⋯)𝑑. This is demonstrated for 2D real coordinate 

space in Figure 6.2.  

 



6. Meshless Interpolation of Scattered Data 

98 

 

 

 

Figure 6.2: Multinomial expansion of 2D monomial basis 

 

In 1D, the following monomial bases are natural choices: 

 

Table 6.1: Typical 1D monomial bases 

Type Monomials 𝒎 𝒅 

Constant [1] 1 0 

Linear [1 𝑥] 2 1 

Quadratic [1 𝑥 𝑥2] 3 2 

 

The 2D bases of corresponding order are: 

 

Table 6.2: Typical 2D monomial bases 

Type Monomials 𝒎 𝒅 

Constant [1] 1 0 

Linear [1 𝑥 𝑦] 3 1 

Quadratic [1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2] 6 2 

 

Eqn. (6.1) can be equivalently expressed in matrix notation as: 

 

𝑢ℎ(𝒙) = 𝒓𝑇(𝒙)𝒂 + 𝒑𝑇(𝒙)𝒃 (6.2) 

 

In Eqn. (6.2), the radial basis function vector 𝒓 is simply: 

 

 

 

𝒓𝑇(𝒙) = [𝑅(𝒙, 𝒙1) 𝑅(𝒙, 𝒙2) ⋯ 𝑅(𝒙, 𝒙𝑛)] (6.3) 
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where the radial basis function 𝑅(𝒙, 𝒙𝑖): 𝑖 ∈ [1, 𝑛] can take a number of forms, as shall 

be discussed in section 6.1.2. Meanwhile, the monomial basis function vector 𝒑(𝒙) 

is: 

 

𝒑𝑇(𝒙) = [𝑃1(𝒙) 𝑃2(𝒙) ⋯ 𝑃𝑚(𝒙)] (6.4) 

 

where the 𝑃𝑖: 𝑖 ∈ [1,𝑚] are the monomials of the chosen monomial basis. To 

determine the coefficients 𝑎𝑖: 𝑖 ∈ ⁡ [1, 𝑛] and 𝑏𝑖: 𝑖 ∈ [1,𝑚] in Eqns. (6.1-6.2), 

interpolation of the function 𝑢ℎ(𝒙) at the nodes is enforced as follows: 

 

𝒓𝑇(𝒙𝑖)𝒂 + 𝒑
𝑇(𝒙𝑖)𝒃 = 𝒖𝑖: 𝑖 ∈ ⁡ [1, 𝑛] (6.5) 

 

Eqn. (6.5) results in a system of 𝑛 linear equations, which can also be written as: 

 

⁡𝑹𝒂 + 𝑷𝒃 = 𝒖 (6.6) 

 

where the 𝑹 matrix is called the correlation matrix and is of size⁡𝑛 × 𝑛: 

 

𝑹(𝒙) = [

𝑅(𝒙1, 𝒙1) 𝑅(𝒙1, 𝒙2) ⋯ 𝑅(𝒙1, 𝒙𝑛)

𝑅(𝒙2, 𝒙1) 𝑅(𝒙2, 𝒙2) ⋯ 𝑅(𝒙2, 𝒙𝑛)
⋮ ⋮ ⋱ ⋮

𝑅(𝒙𝑛, 𝒙1) 𝑅(𝒙𝑛, 𝒙2) ⋯ 𝑅(𝒙𝑛, 𝒙𝑛)

] (6.7) 

 

It is useful to state some properties of the radial basis function 𝑅(𝒙𝑖 , 𝒙𝑗). 
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Box 6.1: Radial basis (correlation) function properties 

 

Property 1 𝑅(𝒙𝑖, 𝒙𝑗): ℝ
𝑠 × ℝ𝑠 → ⁡ℝ 

Property 2 |𝑅(𝒙𝑖, 𝒙𝑗)| ≥ 0 

Property 3 Commutativity, i.e., 𝑅(𝒙𝑖, 𝒙𝑗) = 𝑅(𝒙𝑗, 𝒙𝑖) 

Property 4  Strict conditional positiveness of order 𝑚 on ℝ𝑠 

Property 5 𝑅(𝒙𝑖, 𝒙𝑗) = 𝑅(𝒙𝑖 − 𝒙𝑗) 

 

The size⁡𝑛 × 𝑚 monomial basis matrix 𝑷(𝒙) can be stated as: 

 

𝑷(𝒙) = [

𝑝1(𝒙1) 𝑝2(𝒙1) ⋯ 𝑝𝑚(𝒙1)
𝑝1(𝒙2) 𝑝2(𝒙2) ⋯ 𝑝𝑚(𝒙2)
⋮ ⋮ ⋱ ⋮

𝑝1(𝒙𝑛) 𝑝2(𝒙𝑛) ⋯ 𝑝𝑚(𝒙𝑛)

] (6.8) 

 

This matrix is generally non-square. In this thesis, only linear monomial bases are 

considered for reasons which shall be expanded upon later. 

 

Eqn. (6.6), however, clearly does not have a unique solution since there are fewer 

equations than unknown coefficients. To resolve this problem the constraint 

condition 𝑷𝑇(𝒙)𝒂 = 𝟎 is enforced, resulting in the following augmented system of 

equations: 

 

[
𝑹 𝑷
𝑷𝑇 𝟎

] [
𝒂
𝒃
] = 𝑮 [

𝒂
𝒃
] = [

𝒖
𝟎
] (6.9) 

 

The 𝑮 matrix of dimension (𝑛 + 𝑚) × (𝑛 +𝑚) is sometimes also called the moment 

matrix. To ensure well-posedness of the interpolation, it is desirable to understand 

for which conditions the 𝑮 matrix is invertible. To be able to prove these conditions, 

the following definitions are required, as given in [97]: 

 

Definition 1 A real symmetric 𝑛 × 𝑛 matrix 𝑅 is said to be conditionally positive 

semi-definite of order one if its associated quadratic form is non-negative: 
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∑∑𝑐𝑖𝑐𝑗

𝑚

𝑗=1

𝑛

𝑖=1

𝑅(𝒙𝑖, 𝒙𝑗) ≥ 0 (6.10) 

 

for any 𝒄 = [𝑐1, … , 𝑐𝑛]
𝑇 ∈ ℝ𝑛 satisfying: 

 

∑𝑐𝑖

𝑛

𝑖=1

= 0 (6.11) 

 

If 𝒄 ≠ 0 implies strict inequality in (6.10), then 𝑅 is called conditionally positive 

definite of order 𝑚. 

 

Definition 2 A real-valued even continuous function is said to be conditionally 

positive definite of order 𝑚 on ℝ𝑠 if: 

 

∑∑𝑐𝑖𝑐𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝑅(𝒙𝑖 − 𝒙𝑗) ≥ 0 (6.12) 

 

for 𝑛 points 𝑥1, … , 𝑥𝑛 ∈ ℝ
𝑠 and 𝒄 = [𝑐1, … , 𝑐𝑛]

𝑇 ∈ ℝ𝑛 satisfying: 

 

∑𝑐𝑖

𝑛

𝑖=1

𝑥𝑗
𝛼 (6.13) 

 

The function 𝑅 is said to be strictly positive definite of order 𝑚 on ℝ𝑠 if 𝑥1, … , 𝑥𝑛 ∈ ℝ
𝑠 

are distinct and  𝒄 ≠ 0 implies strict inequality in (6.13). 

 

Definition 3 The set of points 𝜒 = [⁡𝑥1, … , 𝑥𝑛] ⊂ ℝ
𝑠  is said to be 𝑚-unisolvent if the 

only polynomial of total degree⁡𝑚 interpolating zero data on 𝜒 is the zero 

polynomial. 
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Definition 3 leads to the following important theorem regarding existence of the 𝑮 

matrix inverse: 

 

Box 6.2: 𝑮 matrix invertibility theorem 

 

Theorem 1 If the real-valued even function 𝑅(𝒙𝑖, 𝒙𝑗)  is strictly 

conditionally positive definite of order 𝑚 on ℝ𝑠  and the points 

𝑥1, … , 𝑥𝑛 ∈ ℝ
𝑠 for an (𝑚 − 1)-unisolvent set, then the 𝑮 matrix is 

uniquely solvable. 

 

Proof: The following proof is derived from a similar proof in [97]. First, it is recalled 

that the 𝑮 matrix has the following structure: 

 

𝑮 [
𝒂
𝒃
] = [

𝑹 𝑷
𝑷𝑇 𝟎

] [
𝒂
𝒃
] = [

𝒖
𝟎
] (6.14) 

 

Next, assume that [𝒂, 𝒃]𝑇 is a solution of the homogenous linear system (𝒖 = 𝟎). The 

proof consists in showing that [𝒂, 𝒃]𝑇 = 𝟎 is the only possible solution. Pre-

multiplying the top row by 𝒂𝑇 gives: 

 

𝒂𝑇𝑹𝒂 + 𝒂𝑇𝑷𝒃 = 𝟎 (6.15) 

 

From the bottom row, it is known that 𝒂𝑇𝑷 = 𝟎 and thus: 

 

𝒂𝑇𝑹𝒂 = 𝟎 (6.16) 

 

Since the 𝑹 matrix is itself clearly conditionally positive definite by properties 4-5 

and definitions 1-2, then we get that 𝒂 = 𝟎. Unisolvency of the data points and the 

fact that 𝒂 = 𝟎 guarantee 𝒃 = 𝟎 from the top row. ∎8 

 

 

                                       

8 The tombstone or Halmos symbol ∎ denotes the end of a mathematical proof. 
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Box 6.3: Theorem 1 implication 

 

Theorem 1 Implication The implication of Theorem 1 is that the 𝑮 

matrix with a linear polynomial basis has an inverse in ℝ1 and ℝ2 if 

and only if: 

 

a) None of the nodes in the domain are coincident 

b) In 2D real coordinate space ℝ2, the set of points must contain at 

least 3 non-collinear points. This is necessary to guarantee 1-

unisolvency (since 3 collinear points are not 1-unisolvent, as a plane 

through three arbitrary heights at these 3 points is not uniquely 

determined [97]) 

 

The conditions specified in Box 6.3 are a useful clarification, since other 

mechanicians have previously (erroneously) claimed that for RPIM functions the 

interpolation always exists for any nodal distribution [98]. This has been disproven 

and the conditions for the existence of the interpolation have been clarified. 

 It is noted that unisolvency of set of data points by linear monomial 

interpolants is easily established. A similar statement for higher order monomial 

interpolants is not trivial or perhaps even possible and will not be attempted here. 

Such higher order bases will therefore be avoided in this thesis. It is also noted that 

the extension of point (2) in Box 6.3 to higher-dimensional real coordinate spaces is 

straightforward, but is not required for the purposes of this thesis. 

 A number of nodal configurations in ℝ2 were tested to demonstrate the 

existence conditions of the interpolation given in Box 6.3. The results are shown in 

Table 6.3. As can be seen, the existence conditions are confirmed by these 

numerical experiments. Note that a suitable RBF satisfying the properties of Box 

6.1 was used, as well as a linear monomial basis, i.e., [1 𝑥 𝑦]. Three nodes were 

used as a representative discretization.  
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Table 6.3: Interpolation existence verification 

Configuration Nodes Comment 

G matrix condition 

Expected Calculated 

A 

(0,0) 

(0,0) 

(0,0) All nodes coincident S Inf (S) 

B 

(1,0) 

(0,0) 

(0,0) Two nodes coincident S Inf (S) 

C 

(0,2) 

(1,2) 

(2,2) 

Nodes aligned on straight 

line (y=2) S Inf (S) 

D 

(0,0) 

(1,1) 

(2,2) 

Nodes aligned on straight 

line (y=x) S Inf (S) 

E 

(0,1) 

(1,0) 

(1,1) 

Nodes neither coincident 

nor fully collinear 

(structured, partially 

collinear) NS 1 (NS) 

F 

(0.8,0.7) 

(0.2,0.5) 

(0.4,0.6) Unstructured, random nodes NS 114 (NS) 

     S = Singular, NS = Non-Singular 

   

With an appropriate nodal distribution resulting in a well-posed 𝑮 matrix, the 

system of equations (6.9) can hence be solved to determine the unknown 

coefficients: 

 

[
𝒂
𝒃
] = 𝑮−1 [

𝒖
𝟎
] (6.17) 

 

Eqn. (6.17) can be equivalently expressed in matrix notation as: 

 

𝑢ℎ(𝒙) = 𝚽𝑇(𝒙)𝒖(𝒙) (6.18) 

 

where 𝚽𝑇(𝒙) = [𝒓𝑇(𝒙)𝒂 + 𝒑𝑇(𝒙)𝒃] is called the shape function vector. In continuum 

mechanics, the first and second derivative of the shape function are also frequently 

required. These derivatives can easily be determined as follows: 
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𝜕𝚽𝑇(𝒙)

𝜕𝑗
= [

𝜕𝒓𝑇(𝒙)

𝜕𝑗
𝒂 +

𝜕𝒑𝑇(𝒙)

𝜕𝑗
𝒃] (6.19) 

 

 

𝜕2𝚽𝑇(𝒙)

𝜕𝑗2
= [

𝜕2𝒓𝑇(𝒙)

𝜕𝑗2
𝒂 +

𝜕2𝒑𝑇(𝒙)

𝜕𝑗2
𝒃] 

 

(6.20) 

 

Figure 6.3: RPI shape function (linear polynomial basis, Multi-Quadratic RBF) 

 

As an example, a set of scattered nodes in the unit square is considered. The RPI 

shape function corresponding to the node located at (0.792, 0.699) is depicted in 

Figure 6.3. Node locations are shown in red. It is clearly visible that the shape 

function has a value of 1 at its corresponding node and a value of zero at all other 

nodes. This is called the interpolating property. In addition, the sum of all shape 

functions evaluated at a particular point in the domain equals 1, known as the 

partition of unity.   

 A summary of RPI shape function properties is provided in Box 6.4. The 

interpolating, compatibility and reproducibility properties follow directly from the 

theory presented in this section. Proof of the partition of unity property is given by 

Liu [99]. 
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Box 6.4: RPI Shape function properties 

 

RPI Shape Function Properties 

 

a) Partition of unity 

b) Kronecker-Delta (interpolating) property 

c) Continuity/compatibility 

d) Reproducibility: any polynomial with a degree less than or equal to 

that of the monomial basis can be exactly reproduced 

 

6.2 Moving Radial Point Interpolation 

 

The support domain is the set of nodes that is used to construct the radial point 

interpolation at a point 𝒙. When all of the nodes in the domain are used, as was 

assumed without loss of generality in section 6.1, this is called a global support 

domain and the shape function is called a global shape function. However, the 

construction of the 𝑹 and 𝑮 matrices using all of the nodes in the domain is 

extremely computationally expensive when the number of nodes is large, as is 

generally the case in a computational mechanics analysis. The inversion of the 𝑮 

matrix alone has a complexity of 𝑂(𝑛3). It is therefore often interesting to use a 

local support domain, i.e., only a subset Ω𝑠 ⊆ Ω when constructing the interpolation 

for 𝒙. The idea behind such a domain is that only the nodes near the point of 

inquiry directly affect its field function value. 

 Typically, the support domain is constructed by searching for all the nodes 

within a square or circular domain centered on 𝒙, as shown in Figure 6.4-a and 

Figure 6.4-b, respectively. 
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Figure 6.4: Typical support domains 

 

However, this approach works poorly when the nodal distributions are very 

irregular. It is also important that the local support domains overlap; otherwise it is 

possible to end up with a situation where there is no way for the nodes in one part 

of the domain to influence the nodes in another part, akin to having a discontinuity 

in the body. 

 A more sophisticated approach is used in this work. To ensure that the local 

support domains overlap and to achieve consistency in the construction of the local 

support domains irrespective of the irregularity of the nodal distribution, the 

Delaunay triangulation of the nodes to determine the natural neighbours of any 

given node. The Delaunay triangulation is the dual graph of the Voronoi diagram of 

a set of points or nodes, as shown in Figure 6.5. Every node has a Voronoi Polygon 

(VP) that encases it. Therefore, the support domain of a node consists of the union 

of its VP and the VPs of its natural neighbours. 

 The proposed approach is similar to Voronoi tessellation of the nodes to 

generate influence cells recently proposed by Belinha et al. [100]. However, since 

the Voronoi tessellation does not actually need to be calculated, the algorithm 

proposed in this thesis is arguably more efficient. The algorithm is stated as 

follows: 
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1) Calculate the Delaunay triangulation of the nodal discretization, subject to 

certain restrictions on the convex hull boundaries e.g. cut-outs. 

 

2) For each node, perform a search to find all Delaunay triangles that share this 

node. Once all triangles that share the node have been determined, form the 

set of unique nodes representing the vertices of these triangles minus the 

node itself. This set comprises the node’s natural neighbours. 

 

3) To find the support domain of the point ⁡𝒙, the closest node must first be 

found (a KD-tree is used for efficient implementation of this nearest 

neighbour search). This is theoretically equivalent to determining in which 

Voronoi Polygon the point lies. The support domain of the point ⁡𝒙 

corresponds to this node’s natural neighbours, determined in steps 1-2. 

 

Note that steps 1-2 need only be performed once for a given discretization. The 

proposed algorithm is simple yet sophisticated. Another advantage of this 

algorithm is that the Delaunay triangles are a natural choice for numerical 

integration of the field functions, as shall be discussed in section 7.4. 
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Figure 6.5:Delaunay triangulation algorithm for finding natural neighbours 

 

 Figure 6.5 shows the most important concepts of the algorithm. For the point 

⁡𝒙, the nearest neighbour node is shown in green. The support domain of the point 

⁡𝒙 consists of the Voronoi Polygons of this nearest neighbour and the nearest 

neighbour’s natural neighbours, shown in blue. It is important to note is that the 

natural neighbours do not necessarily correspond to the closest nodes. It can be 

see that if a circular support domain of radius slightly less than the distance to the 

rightmost natural neighbour was used, then this node would not be included in the 

support domain while many nodes to the left of ⁡𝒙 not that are not natural 

neighbours would be. 

 It is also of note that what are shown in Figure 6.5 can be considered the “1st 

degree natural neighbours.” The influence domain of each node can easily be 

extended to the nth order by the same algorithm, by considering the union of the 

natural neighbours and their neighbours, and their neighbours, and so on, n times. 

 Compared to the global RPI functions, the moving RPI shape functions of the 

moving RPIM have the properties summarized in Box 6.5. 
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Box 6.5: Moving RPI shape function properties 

 

Moving RPI Shape Function Properties 

 

a) Partition of unity 

b) Kronecker-Delta (interpolating) property 

c) Compact support 

d) Reproducibility: any polynomial with a degree less than or equal to 

that of the monomial basis can be exactly reproduced 

 

 

Figure 6.6: RPI moving shape function (linear polynomial basis, Multi-Quadratic RBF) 

 

Figure 6.6 demonstrates a number of these properties. The moving shape function 

corresponding to a particular node, again located at (0.792, 0.699), is shown. The 

domain nodes are plotted in green and the natural neighbours (i.e., the nodes in 

the local support domain) are plotted in red. It can be seen that the moving shape 

function value is 1 at the node location (interpolating property) and 0 at all other 

nodes in the local support domain (partition of unity property). Outside the local 

support domain, the function is zero (compact support property). Note that 

discontinuities in the shape function at the support domain boundaries are clearly 
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visible (lack of compatibility). This is because whenever nodes enter or leave the 

local support domain, the shape functions and their derivatives are discontinuous. 

This is in contrast to the smooth global shape function shown in Figure 6.3. 

Importantly, various investigators have found that this lack of compatibility is not 

prejudicial to convergence and does not considerably hamper the accuracy of the 

method [99, 100]. 

 

6.3 Choice of the Radial Basis Function 

 

The radial basis function or correlation function has an important effect on the 

performance and accuracy of the interpolation. One weakness of meshless methods 

is that the choice of the correlation function and its parameters can affect its 

convergence rate. That is to say; generally, with fine discretizations the solution 

converges, however, the convergence be much improved for even coarse 

discretizations if appropriate correlation functions and their parameters are 

selected. This selection has been found to be problem dependent, and it is thus 

important for this thesis that appropriate parameters be found for the hybrid 

bonded-bolted joint problem, characterized by the stress field for a plate with a 

hole. The first requirement for the correlation function is that for a fixed local 

support domain it must satisfy the properties set out in Box 6.1. The following are 

examples of functions that satisfy these properties and that have been used with 

success in the literature to date: 

 

Table 6.4: Summary of common radial basis functions 

Function name Reference Equation Parameter 

Gaussian [99, 100] 
𝑒
−𝛼(

𝑠
𝑑𝑠
)
2

 
𝛼 

Multi-quadratic (MQ) [99] [𝑠2 + (𝑑𝑠𝜉)
2]𝑞 𝜉,⁡𝑞 

Quartic Spline [101] 

{
1 − 6 (

𝑠

𝑑𝑠
)
2

+ 8(
𝑠

𝑑𝑠
)
3

− 3 (
𝑠

𝑑𝑠
)
4

⁡if⁡ |
𝑠

𝑑𝑠
| ≤ 1

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if |
𝑠

𝑑𝑠
| > 1

 

None 
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In these functions, 𝑠 is the normalized distance between a point 𝒙 and node 𝒙𝑖: 

 

𝑠 = |𝒙𝑖 − 𝒙| (6.21) 

 

Furthermore 𝑑𝑠  is the mean internodal spacing in the local support domain. A 

common definition for 𝑑𝑠 which is frequently used in the RPIM literature is given by 

Eqn. (6.22). However, a search of the literature was not able to determine how this 

expression was derived. It seems to have originally been proposed by Liu [99] and 

has since been repeated by various investigators in reference to the former without 

any critical assessment of its validity. 

 

𝑑𝑠 =
√𝐴𝑠

√𝑛𝑠 − 1
 

 

(6.22) 

 In this work, use of the following expression is suggested instead: 

 

𝑑𝑠 =
√𝐴𝑠

2√𝑛𝑠
 (6.23) 

 

Eqn. (6.23) has its roots in molecular physics, having been originally derived by 

Hertz [102] as the mean nearest neighbour distance of randomly scattered point 

particles in a plane. It is based on the probability of finding a nearest neighbour at 

a distance between 𝒙 and 𝒙 + 𝑑𝒙 from any given particle [103]. It is clearly 

preferable to use such a rigorously derived expression to Eqn. (6.22). The different 

correlation functions are plotted in Figure 6.7: 

 



6. Meshless Interpolation of Scattered Data 

113 

 

 

 

Figure 6.7: Comparison of radial basis functions (𝑑𝑠 = 1) 

 

As shown in Figure 6.7, the Gaussian and Quartic spline RBFs always have a value 

of 1 at a distance of 0 which decreases with increasing 𝑠. The Gaussian’s shape is 

dependent on the 𝛼 parameter; small 𝛼 values result in a “flatter” function meaning 

that the output is less sensitive to changes in 𝑠.  The Quartic spline’s shape does 

not depend on any parameter, which upon first consideration appears to be a 

desirable trait. In addition, this is the only of the considered functions which has 

intrinsic compact support since it is zero if | 𝑠
𝑑𝑠
| > 1. Finally, unlike the other two 

functions, the Multi-quadratic (MQ) function increases with distance ⁡𝑠. It is 

sensitive to both the 𝜉 and 𝑞 parameters; greater 𝜉 values increase the base value 

of the function at 𝑠 = 0 while 𝑞 again controls the flatness or sensitivity of the 

function, with greater 𝑞 values increasing the function sensitivity.  

 The optimal radial basis function (and corresponding parameters) for the 

hybrid bonded-bolted joint problem is determined in Chapter 7.
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Chapter 7: Galerkin Radial Point Interpolation 

Method 

 

The meshless interpolating functions introduced in Chapter 6 are used in this 

chapter to solve several relevant benchmark problems in continuum mechanics. 

One purpose of this chapter is to demonstrate the use of RPI functions in the 

solution of boundary value problems (BVPs). Another is to determine a suitable 

type of radial basis function (RBF) for the hybrid bonded-bolted joint problem and 

to optimize its parameters. To obtain a discrete set of system equations, the 

Galerkin method in the form of the principle of virtual work is used. This 

combination of the RPIM and PVW shall be called the Galerkin Radial Point 

Interpolation Method (GRPIM). 

 

7.1 Principle of Virtual Work 

 

The problems considered in this chapter are all 2D elastostatic problems in either 

plane stress or plane strain. From continuum mechanics, the 2D elastostatic 

problem without body forces can be stated in direct tensor form as: 

 

𝛁 ∙ 𝝈 = 𝟎                                                                   (Balance of linear momentum) (7.1) 

𝝈 = 𝝈T                                                      (Balance of angular momentum) (7.2) 

𝜺 = 1

2
[𝛁𝐮 + (𝛁𝐮)T]                                                            (Strain-displacement relation) (7.3) 

𝝈 = 𝑪: 𝜺                                                                                 (Constitutive relation) (7.4) 

𝐮 = 𝐮̃⁡on⁡Γ𝑢                                                                        (Dirichlet boundary condition) (7.5) 

𝝈 ∙ 𝐧 = 𝐭̃⁡on⁡Γ𝜎                                                                    (Neumann boundary condition) (7.6) 
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where 𝐮̃ and 𝐭̃ denote prescribed displacement and traction fields, respectively. The 

elasticity tensor 𝑪 depends on the simplifying assumption made. If plane stress is 

assumed, the elasticity tensor is: 

 

𝑪 =
𝐸

1−𝜈2
[
1 𝜈 0
𝜈 1 0
0 0 1−𝜈

] 

 

(7.7) 

If plane strain is assumed, then it is: 

 

𝑪 =
𝐸

(1+𝜈)(1−2𝜈)
[
1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0
0 0 1−2𝜈

] (7.8) 

 

To solve the system of partial differential equations given by Eqn. (7.1) 

numerically, the Galerkin method is used. Supposing that the solution 𝐮 is 

sufficiently smooth then Eqn. 7.1 may be multiplied by a test function 𝐰 and 

integrated over the problem domain as follows: 

 

∫[𝛁 ∙ 𝛔] ∙ 𝐰
𝑨

𝑑𝐴 = 0 
(7.9) 

 

𝐰  is arbitrary other than it must have square-integrable derivatives and be 

homogeneous on Γu. Using integration by parts and the divergence theorem, Eqn. 

(7.9) becomes: 

 

∫[𝛔: 𝛁𝐰]
𝑨

𝑑𝐴 −∫[𝛔 ∙ 𝐧] ∙ 𝐰
Γ

𝑑Γ = 0 
(7.10) 

 

Given the homogeneity requirement 𝐰 = 0⁡on Γu  and considering Eqn. (7.6), Eqn. 

(7.10) becomes: 

 

∫[𝛔: 𝛁𝐰]
𝑨

𝑑𝐴 −∫ 𝐭̃ ∙ 𝐰
Γ𝜎

𝑑Γ = 0 
(7.11) 
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If it is assumed that 𝐰 = 𝐮∗ (i.e., that 𝐰 is an independent deformation state with 

consistent strains 𝜺∗  that are work conjugate to 𝐭̃ and 𝝈, respectively), then the 

Galerkin weak form of Eqn. (7.12) specializes to the principle of virtual work. At this 

point, an interpretation may be made, leading to two distinct variational principles. 

Should equilibrated forces and stresses be assumed and it be considered that 𝐮∗ 

and 𝜺∗ are variations of the real displacements and strains, then we speak of the 

principle of virtual displacements. Should equilibrated displacements and strains be 

assumed and it be considered that 𝝈 and 𝐭̃ are variations of the real forces and 

stresses, then the variational principle is called the principle of virtual forces. In this 

work, the principle of virtual displacements is used, i.e.: 

 

𝐰 ≡ 𝐮∗ ≡ 𝛿𝐮    ,    𝛁𝐰 ≡ 𝜺∗ ≡ 𝛿𝜺 (7.12) 

 

Hence the following familiar weak form is obtained: 

 

δG = ∫[𝝈: 𝛿𝜺]
𝑨

𝑑𝐴 −∫ 𝐭̃ ∙ 𝛿𝐮
Γ𝜎

𝑑Γ = 0 
(7.13) 

 

7.2 GRPIM Solution of the 2D Elastostatic BVP 

 

To obtain an approximate solution, RPI functions are substituted in Eqn. (7.13).  In 

accordance with Chapter 6, these functions can be written in matrix notation as: 

 

𝑢𝑖(𝐱) = 𝚽(𝐱)
T𝐔𝑖⁡⁡|⁡⁡𝑖 ∈ {𝑥, 𝑦} (7.14) 

 

where 𝐔𝑖 is the solution vector (vector of nodal values) for the ith independent field 

variable. In the case of 2D elastostatics, this consists of 𝑥 and 𝑦 displacements only. 

Furthermore, the function derivatives are: 

 

𝑢𝑖,𝑗(𝐱) = 𝚽(𝐱),𝑥
T𝐔𝑖⁡⁡|⁡⁡𝑖 ∈ {𝑥, 𝑦} (7.15) 
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This leads to the following discrete expression for the displacement field: 

 

𝐮(𝐱) = [
𝚽 𝟎
𝟎 𝚽

]
T

𝐔 (7.16) 

 

where 𝐮 = {𝑢𝑥, 𝑢𝑦}
T
 and 𝐔 = {𝐔𝑥

𝑇 , 𝐔𝑦
𝑇}
T
. Based on the definition of Eqn. (7.3), the 

strains can be expressed as follows: 

 

𝜺 = 𝐁𝐔 (7.17) 

 

where the strain-displacement matrix 𝐁 is: 

 

𝐁 = [

𝚽,𝑥
T 𝟎

𝟎 𝚽,𝑦
T

𝚽,𝑦
T 𝚽,𝑥

T

] (7.18) 

 

The discrete approximations (7.16-7.17) are at this point substituted into the weak 

form (7.13). Given the linear elastic constitutive relation of Eqn. (7.4), this results 

in: 

 

δG = δ𝐔T∫[𝐁T𝐂𝐁]
𝑨

𝑑𝐴⁡𝐔 − δ𝐔T∫ 𝐭̃
Γ𝜎

𝑑Γ = 0 (7.19) 

 

or: 

δG = δ𝐔T𝐊⁡𝐔 − δ𝐔T𝐅 = 0 (7.20) 

 

where: 

 

𝐊 = ∫[𝐁T𝐂𝐁]
𝑨

𝑑𝐴 (7.21) 

 

𝐅 = ∫ 𝐭̃
Γ𝜎

𝑑Γ (7.22) 
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𝐊 is called the stiffness matrix while 𝐅 is called the force vector. Since the variation 

of the displacement in Eqn. (7.20) is assumed to be arbitrary: 

 

δ𝐔 ≠ 0 ⇒ (𝐊⁡𝐔 − 𝐅) = 𝟎 (7.23) 

 

Finally resulting in the following discrete system of equations: 

 

𝐊⁡𝐔 = 𝐅 (7.24) 

 

7.3 Dirichlet Boundary Conditions & Contact 

 

For the displacement based Galerkin method described in the preceding sections, it 

is easily shown that the Neumann boundary conditions given by Eqn. (7.6) are 

automatically satisfied. However, the Dirichlet boundary conditions of Eqn. (7.5) 

need to be imposed on the solution by modification of the 𝐊 and 𝐔 matrices in Eqn. 

(7.24). Consider that the ith equation of this system can be written as: 

 

∑ K𝑖𝑗U𝒋

ndof

𝑗=1

= F𝑖 (7.25) 

 

where ndof is the total number of degrees of freedom. Now consider the set of 

nonhomogeneous boundary conditions {U𝒌(𝐱𝒌) | 𝐱𝒌 ∈ Γ𝜎}. Any rows for which 𝑖 = 𝑘 

may be directly modified to impose these conditions as follows: 

 

K𝑘𝑗 = 𝛿𝑘𝑗 (7.26) 

 

F𝑘 = U𝒌 (7.27) 

 

where 𝛿𝑘𝑗 is the Kronecker delta. Furthermore, for all rows for which 𝑖 ≠ 𝑘, since the 

U𝒌 are known these terms can be moved to the RHS of Eqn. (7.25):  
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∑ K𝑖𝑗U𝒋

ndof

𝑗=1

−∑K𝑖𝑘U𝒌 = F𝑖 −∑K𝑖𝑘U𝒌 (7.28) 

 

The 𝐊 and 𝐅 matrices obtained after these operations are known as the modified 

stiffness matrix and modified force vector, respectively. 

 In addition to Dirichlet conditions, contact is also considered since the 

benchmark problem of section 7.5.3 includes this phenomenon. In that particular 

problem, frictionless unilateral contact is considered between a cylinder and a 

fixed/rigid horizontal surface as shown in Figure 7.1. The contact equations of the 

HBB joint model, given by Eqns. (5.28-5.29,) also hold. However, given the sign 

convention adopted in Figure 7.1 and the fact that the surface is rigid, they 

specialize to the following form: 

 

𝑔𝑛 = 𝑔 + 𝐧 ∙ {[𝑢𝑥, 𝑢𝑦]
𝑇
} (7.29) 

𝑔𝑛 ≥ 0    ,  𝑃𝑛 ≥ 0    ,    𝑔𝑛𝑃𝑛 = 0 (7.30-a,b,c) 

 

on Γ𝑐 

 

At this juncture, an active node shall be defined as any node on the contact 

boundary Γ𝑐 that is participating in contact, i.e., for which 𝑔𝑛
(𝑖)
= 0. If this is the case, 

then by Eqns. (7.29-7.30), the following constraints must hold: 

 

−𝑢𝑦
(𝑏) = 𝑔(𝑖)⁡on Γ𝑐 (7.31) 

 

In this special case, given the fixed rigid surface and since there is no coupling 

between internal degrees of freedom, i.e., since the constraint is a single freedom 

constraint, the contact condition simplifies to a Dirichlet condition. The only thing 

that remains is to determine the active contact region Γactive ⊂ Γ𝑐. Determining this 

region is part of the solution. Throughout this thesis, the contact region is 

determined using a simple active set algorithm, described in Box 7.1. 
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Box 7.1: Active set contact algorithm 

 

Active Set Algorithm 

 

1) Assume an initial set of active contact nodes and solve Eqn. 7.24 

subject to the relevant Dirichlet conditions 

 

2) Check if any inactive contact nodes violate Eqn. 7.30-a. If yes, add 

them to the active set 

 

3) Check if any active contact nodes violate Eqn. 7.30-b. If yes, 

remove them from the active set 

 

4) If the active set did not change in steps 2 and 3, go to step 5. If 

the active set did change, solve Eqn. 7.24 subject to the relevant 

Dirichlet conditions for the new active set and go to 2 

 

5) The solution has been obtained 
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Figure 7.1: Plane contact of a deformable body with rigid horizontal surface 

 

7.4 Computational Implementation Aspects 

 

In order to evaluate the stiffness matrix in Eqn. (7.21), a numerical integration 

needs to be performed over the problem domain. This is slightly different for 

meshless methods than for other numerical methods, since there is no obvious grid 

over which the integration should be performed. Two strategies are often adopted, 

which are shown in Figure 7.2. 
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Figure 7.2: Numerical integration approaches 

 

The background grid method consists of constructing a regular grid that 

encompasses the problem domain. The weights of any integration points that fall 

outside the domain boundaries, shown in red in Figure 7.2-a, are set to zero and 

thus not taken into account in the stiffness calculation. A disadvantage of this 

method is that in curved regions, a very fine grid becomes necessary to achieve 

acceptable results. The second method is to construct a Delaunay triangulation on 

the nodal discretization, as shown in Figure 7.2-b. This approach is able to achieve 

much better accuracy in curved regions and is relatively easy to automate. This is 

the method that is used throughout this thesis. It must be stressed, however, that 

the integration grid is quite independent of the interpolation. For example, one or 

more nodes may be added to the interior of any of the Delaunay triangles in Figure 

7.2-b without issue. 

 Once a Delaunay triangulation has been constructed,  the integration point 

locations and weights can easily be determined by mapping the distorted triangles 

to a right triangle, using standard Gaussian quadrature rules (see for example 
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Lehman and Hawley [62] for further details). Throughout this thesis, a 3 × 3 rule is 

used unless otherwise stated. 

 It is remarked that there has recently been significant progress in nodal 

integration for meshless methods [104]. This is one of the most promising avenues 

for the future of these methods. Such schemes were not investigated in the scope 

of this thesis, but offer interesting possibilities for future developments of the 

solution scheme developed herein. 

 

7.5 Suitable RBF Parameters for the HBB Joint Problem 

 

In this section, a number of benchmark problems are analyzed in order to assess 

the performance of the different radial basis functions considered in section 6.3 and 

to determine optimal function parameters for the HBB joint problem. 

 

7.5.1 Infinite Plate with a Hole 

 

The problem shown in Figure 7.3-a is the classical problem of an infinite elastic 

plate with a circular hole under remote uniaxial stress. Assuming plane strain, the 

analytical solution is given by Timoshenko [105] as: 

 

 

𝜎𝑥 = 𝜎∞ [1 −
𝑅2

𝑟2
(
3

2
cos 2𝜃 + cos 4𝜃) +

3

2

𝑅2

𝑟2
cos 4𝜃] (7.32) 

 

 

𝜎𝑦 = 𝜎∞ [−
𝑅2

𝑟2
(
1

2
cos 2𝜃 − cos 4𝜃) +

3

2

𝑅4

𝑟4
cos 4𝜃] (7.33) 

 

 

𝜏𝑥𝑦 = 𝜎∞ [−
𝑅2

𝑟2
(
1

2
sin2𝜃 + sin 4𝜃) +

3

2

𝑅4

𝑟4
sin4𝜃] (7.34) 
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Through the constitutive relations, the displacements can hence be obtained as: 

 

u𝑥 = 𝜎∞ [1 −
𝑅2

𝑟2
(
3

2
cos2𝜃 + cos4𝜃) +

3

2

𝑅2

𝑟2
cos4𝜃] (7.35) 

 

 

u𝑦 = 𝜎∞ [1 −
𝑅2

𝑟2
(
3

2
cos 2𝜃 + cos 4𝜃) +

3

2

𝑅2

𝑟2
cos 4𝜃] (7.36) 

 

This problem was chosen since the solution possesses the essential characteristics 

of the HBB joint problem, namely strong stress gradients and complex stress 

contours in the vicinity of the hole. To simulate the problem using the GRPIM, only 

a quarter plate was considered and symmetry boundary conditions were applied, as 

shown in Figure 7.3-b. The displacement components given by Eqns. (7.35-7.36) 

were applied as Dirichlet boundary conditions along the outer boundaries of the 

considered region. 

 

 

 

Figure 7.3: Infinite plate with a hole problem 

 

The numerical solution to this problem was obtained using each of the three 

different radial basis functions described previously. The discretization was kept 
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constant between different analyses and is shown in Figure 7.4-a,b. Both a regular 

discretization (shown in Figure 7.4-a) and an irregular discretization (shown in 

Figure 7.4-b) were considered. The irregular discretization was generated by 

randomly displacing the interior nodes of the regular discretization by anywhere 

between 0-0.5 times the internodal spacing for that node (defined by Eqn. (6.23)) 

following a Gaussian distribution. Once generated, the same irregular 

discretization—shown in Figure 7.4-b—was used in all the analyses. 

 

  

Figure 7.4: Nodal discretization of quarter plate. 19x19 mesh with (a) regular grid (b) 

irregular grid 

 

Two measures of the error between the numerical solution and the analytical 

solution were used to quantify the performance of the GRPIM for a given basis 

function and set of parameters. These are the 𝐿2-displacement norm: 

 

𝐸𝑑 = √
∑ (𝐮𝑖

exact − 𝐮𝑖
num)

𝑇
(𝐮𝑖

exact − 𝐮𝑖
num)

𝑛node
𝑖=1

∑ (𝐮𝑖
exact)

𝑇
(𝐮𝑖

exact)
𝑛node
𝑖=1

 (7.37) 

 

And the 𝐿2-energy norm: 

 

𝐸𝑒 = √
∫ (𝜺𝑖

exact − 𝜺𝑖
num)

𝑇
𝑪(𝜺𝑖

exact − 𝜺𝑖
num)

𝐴
𝑑𝐴

∫ (𝜺𝑖
exact)

𝑇
𝑪(𝜺𝑖

exact)
𝐴

𝑑𝐴
 (7.38) 
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To construct the RPI functions, a 2nd degree natural neighbour strategy was 

adopted with a linear polynomial basis. The choice of the linear polynomial basis 

was motivated in detail in Chapter 6. The 2nd degree natural neighbour strategy 

was adopted since computational cost increases with⁡𝑂(𝑛3). Higher degree natural 

neighbour strategies exponentially increase the computational cost with limited 

benefits in terms of accuracy. The 2nd degree natural neighbour strategy is 

maintained throughout the rest of the thesis. 

 The Gaussian RBF was investigated first. This RBF has only a single 

parameter, namely 𝛼. A wide range of values was considered for this parameter, 

ranging from 1𝑒 − 4 ≤ 𝛼 ≤ 1𝑒1. The results for both the regular and irregular 

discretizations are shown in Figures 7.5 and 7.6 for the displacement norm and 

energy norm, respectively. 

 

 

Figure 7.5: Displacement error norm for Gaussian-GRPIM. All axes use log scales 
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Figure 7.6: Energy error norm for Gaussian-GRPIM. All axes use log scales 

 

It can be seen that in each case, the error is minimized in the region around 

0.5e-2 ≤ 𝛼 ≤ 1e+0. However, the precise minima of the errors do not coincide 

precisely (they conflict). In order to determine an optimal value of 𝛼 that 

simultaneously optimizes performance of the Gaussian-GRPIM for regular and 

irregular grids for both displacement and energy error, a basic multi-objective 

optimization (MOO) was performed based on the classical weighted sum 

(scalarization) method [106]. In this approach, the multi-objective problem is 

reduced to a single-objective optimization by scalarizing the conflicting objectives. 

In other words, the optimization problem becomes: 

 

min
𝛼
∑𝜆𝑖𝐽𝑖̅

4

𝑖=1

(𝛼) (7.39) 

 

where 𝐽1 is 𝐸𝑑 for the regular grid, 𝐽2  is 𝐸𝑒 for the regular grid, 𝐽3 is 𝐸𝑑 for the 

irregular grid and 𝐽4 is 𝐸𝑒 for the irregular grid. A linear interpolation was 

constructed of the datasets shown in Figures 7.5-7.6 to represent 𝐽1-𝐽4. The overbar 

in the 𝐽𝑖̅ notation signifies that the particular objective function has been normalized 

by the dataset minimum. To obtain a set of non-inferior solutions, the weights 𝜆𝑖 
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may be varied arbitrarily as long as their sum equals one. However, with no 

preference being given to any objective in particular, the only case considered was 

where all objectives are weighted equally, i.e., 𝜆𝑖=0.25. The resulting function is 

shown in Figure 7.7. The minimum of this function occurs at 𝛼 = 1.09e-1, which is 

thus the simultaneously optimal value of 𝛼 for the Gaussian-GRPIM. 

 

 

Figure 7.7: Normalized weighted sum of error norms (displacement and energy for both 

regular and irregular grids) for Gaussian-GRPIM. All axes use log scale 

 

 Next, the Multi-Quadratic RBF was considered (this combination shall be 

called MQ-GRPIM for brevity). In this case, there were two parameters to be 

simultaneously optimized. Figures 7.8-7.9 show the various errors as a function of 

the parameters. It can be seen that in each case there is a relatively large region of 

the parameter space for which the error is low and does not vary much (see the 

annotation on the figure). There also appears to be a greater overlap of these 

regions for various types of error and levels of grid irregularity (less conflict 

between the various objectives than for the Gaussian-GRPIM). As for the one 

parameter Gaussian parameter MOO, linear interpolations of the error values were 

created to represent 𝐽1-𝐽4. These functions were hence normalized and weighted, 

then summed. The weighted total function, which in this case is a surface, was 

hence minimized in order to determine the optimal MQ parameters.  
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(a) Displacement norm (b) Energy norm 

 

Figure 7.8: Parameter optimization for MQ-GRPIM using a regular grid. All axes use log 

scale, minor contour intervals have a spacing of 0.25 decades 

  

(a) Displacement norm (b) Energy norm 

 

Figure 7.9: Parameter optimization for MQ-GRPIM using irregular grid. All axes use log 

scale, minor contour intervals have a spacing of 0.25 decades 
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Figure 7.10: Normalized weighted sum of error norms (displacement and energy for both 

regular and irregular grids) for MQ-GRPIM. All axes use log scale 

 

Figure 7.10 shows the normalized weighted sum of the error norms for the MQ-

GRPIM. A 13x13 log grid of the MQ parameter space was used to construct the 

contour plot. The optimal point was determined as 𝜉=1.8, 𝑞=0.6 (it is remarked 

that values of 1.5 ≤ 𝜉 ≤ 2.5 and 0.5 ≤ 𝑞 ≤ 0.9 are clearly also acceptable).  

 Finally, the quartic spline has no parameters and thus did not require any 

optimization. With the optimal parameters having been determined for each type of 

RBF, their performances were compared. The results are shown in Table 7.1. To 

benchmark the performance for an irregular grid while taking into account the 

effect of variability, 10 new irregular grids were generated and analyzed and the 

average error was calculated. The standard deviations are indicated in parentheses.  
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Table 7.1: Performance of different RBF with optimized parameters 

RBF Type 𝑬𝒅 (regular) 𝑬𝒆 (regular) 𝑬𝒅 (irregular) 𝑬𝒆 (irregular) 

Gaussian 1.37e-3 2.36e-2 2.13e-3  

(𝜎⁡= 7.72e-5) 

6.81e-2  

(𝜎⁡= 2.83e-4) 

Multi-quadratic 

(MQ) 

9.34e-4 1.91e-2 1.32e-3  

(𝜎 = 5.23e-5) 

4.41e-2  

(𝜎 = 8.84e-4) 

Quartic spline 

(QS) 

1.84e-2 9.20e-2 1.59e-2  

(𝜎 = 5.46e-4) 

1.27e-1  

(𝜎 = 1.92e-3) 

 

On all error metrics, the optimized NN-MQ-GRPIM is seen to significantly 

outperform the other RBFs. The quartic spline performs poorest. Based on this 

comparison, the MQ-GRPIM with the optimized values determined in this section is 

used exclusively throughout the remainder of the thesis. Plots of the MQ-GRPIM 

solution for the stress fields are shown next the analytical solution in Figure 7.12 

for the optimized MQ parameters. It is clear that there is very good agreement 

between the two solutions, as expected based on the error analysis. 

 Finally, the convergence properties of the optimized NN-MQ-GRPIM were 

studied. A number of successively refined discretizations were analyzed and the 

effect on the calculated stress concentration factor was considered. For the irregular 

grid, 10 random grids were analyzed for each different number of nodes and the 

results averaged. The results are plotted in Figure 7.11. It is seen that the 

optimized GRPIM converges to the theoretical value of 3 for both regular and 

irregular grids at a similar rate. This confirms the convergence property of the 

method, regardless of the lack of conformability. 
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Figure 7.11: Convergence of solution with refinement of discretization 
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                (a) GRPIM 𝜎𝑥𝑥              (b) Analytical 𝜎𝑥𝑥 

  

                 (c) GRPIM 𝜎𝑦𝑦                  (d) Analytical 𝜎𝑦𝑦 

  

                 (e) GRPIM 𝜎𝑥𝑦                  (f) Analytical 𝜎𝑥𝑦 

Figure 7.12: Stress contours predicted by NN2-MQ-GRPIM versus analytical solution. GRPIM 

analysis using regular discretization shown in Figure 7.4-a 
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7.5.2 Patch test 

 

The patch test is a popular tool used in the development of isoparametric finite 

elements and consists of reproducing a linear displacement field (i.e., a constant 

strain state). Since good finite elements have the reproducing property and are 

continuous within each integration subdomain (element), they normally pass the 

patch test to within machine precision. Even though the GRPIM also has the 

reproducing property, it is well known that it cannot generally pass the patch test 

since discontinuities occur in the displacement variables as nodes enter or leave a 

support domain and the integration mesh generally does not correspond to the local 

support domain. In this section, it is shown that the MQ-GRPIM with the parameters 

from section 7.5.1 is nevertheless able to achieve a good level of accuracy on the 

patch test (consistent with what has been achieved elsewhere in the literature). The 

tested patch consisted of a 5x5 grid of nodes, shown in Figure 7.13 below: 

 

 

 

 

 

            (a) Regular 5x5 grid       (b) Sample irregular 5x5 grid 

 

Figure 7.13: Grids used in the GRPIM patch test 

 

The following linear displacement field was applied to the boundary nodes: 

 

𝑢𝑥(𝑥, 𝑦) = 0.001
(𝑥 + 𝑦)

2
 (7.40-a) 
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𝑢𝑦(𝑥, 𝑦) = 0.001
(𝑦 + 𝑥)

2
 (7.40-b) 

 

The results shown in Table 7.2 were obtained. 

 

Table 7.2: GRPIM patch test results 

Grid Type 𝑬𝒅 𝑬𝒆 

Regular 1.73e-3 4.63e-3 

Irregular 4.44e-3 (𝜎= 1.17e-3) 1.18e-2 (𝜎= 3.05e-3) 

 

Comparing Table 7.2 to Table 7.1, it is evident that the errors for the patch test are 

similarly small or smaller than for the plate with a hole problem. The energy error 

norm for the regular grid patch test is only a fraction of a percent. As for the plate 

with a hole problem, the regular nodes produce better results than the irregular 

nodes for both error norms. Nevertheless, even for the highly irregular grids such 

as the one shown in Figure 9-b the error is still only around 1%. These figures are 

consistent with values reported in the literature [99, 100]. 

 An alternative and original integration scheme is proposed in the following for 

use with the MQ-GRPIM, which is able to exactly pass the patch test. A search of 

the literature did not find any mention of this scheme to date. In the proposed 

scheme, in order to ensure that there are no discontinuities within a given 

integration domain, the integration domain and local support domains are set to be 

identical. This is done by: 

 

1) Constructing a Voronoi tessellation of the domain (see Figure 6.5) 

 

2) Triangulating each Voronoi polygon 

 

3) Performing a Gauss integration over the resulting triangles 

 

This scheme ensures that the support domain is constant within each integration 

domain. Discontinuities only occur on the polygon edges, on which no integration 
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points are located. As long as a sufficient quadrature is used, the patch test can 

thus be passed exactly. For a 5x5 grid with extreme order quadrature (𝑁 = 15), the 

results presented in Table 7.3 were obtained: 

 

Table 7.3: GRPIM patch test results using alternative integration scheme 

Grid Type 𝑬𝒅 𝑬𝒆 

Regular 1.2385e-12 2.6942e-12 

 

 These results prove that the patch test can be passed exactly, even for the 

nonconforming GRPIM, through use of clever numerical integration. However, the 

complex integration scheme and order of quadrature required do not make this a 

viable option in practice. Given the acceptable accuracy determined using the 

traditional quadrature method, the latter will be used in the rest of this work. 

 Reference is made here to a recently proposed extension of the RPIM method 

which ensures the conformability of the shape functions. This method, known as the 

Linearly Conforming GRPIM (LC-GRPIM) can pass the patch test exactly even when 

the integration domain and local support domains are not equal [107, 108]. 

Compatibility of the shape functions is universally ensured by means of constraints 

applied to the variational formulation. However, while the theory is relatively 

straightforward, this method is highly complex in terms of computational 

implementation. Furthermore, the gains in accuracy are relatively limited given the 

high level of accuracy that can already be achieved using the nonconforming 

GRPIM. It is therefore not implemented in this thesis, although it could potentially 

be implemented in future versions of the author’s computer code. It is reiterated 

that the inability of the nonconforming GRPIM to exactly pass the patch test does 

not destroy its convergence properties, as was shown in the convergence study in 

Figure 7.11. Stated more precisely by Liu: passing the patch test is sufficient but 

not a necessary condition for convergence [109]. 
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7.5.3 Signorini-Hertz-Moreau problem 

 

Finally, the HBB joint problem involves contact. In order to ensure that the MQ-

GRPIM with the parameters of section 7.5.1 is able to achieve satisfactory 

performance for contact problems, the Signorini-Hertz-Moreau (HSM) problem was 

analyzed. This is a classical contact problem—one of few for which an analytical 

solution exists. In the HSM problem, a deformable, infinitely long cylinder 

undergoes unilateral, frictionless contact with a perfectly rigid plane. A point load 𝐹 

is applied to the top of the cylinder, as shown in Figure 7.14-a. 

 

 

 

Figure 7.14: Hertz-Signorini-Moreau problem 

 

The analytical solution to the HSM problem at a distance 𝑥 from the origin is given 

as follows in Kikuchi and Oden [110]: 

 

𝑙𝑐 = 2√
𝐹𝑅(1 − 𝜈2)

𝐸𝜋
 (7.41) 

 

 

𝑃𝑐 =
2𝐹√𝑙𝑐

2 − 𝑥2

𝜋𝑙𝑐
 

 

(7.42) 
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where  𝑙𝑐 is half the contact length (measured from the origin), 𝐹 is the applied 

force and 𝑃𝑐 is the contact pressure. The geometric and material parameters used 

were 𝑅 = 1, 𝐸 = 2e+8 and 𝜈 = 0.3. 

 For the MQ-GRPIM approximation to the analytical problem, a quarter of the 

cylinder was modelled, as shown in Figure 7.14-b. A symmetry condition was 

applied only to the left boundary and a displacement boundary condition was 

applied to the top boundary. This is akin to squeezing the cylinder between two 

rigid walls. The reaction force was hence obtained from the GRPIM solution. This 

force was applied in the analytical solution so that a direct comparison could be 

made between the two analyses. Three different displacements, corresponding to 

three different applied forces, were tested. The results are shown in Figure 7.15. 

 

 
 

Figure 7.15: Comparison of Hertz-Signorini-Moreau solution obtained using NN2-MQ-RPIM 

and analytical solution. 

 

Close agreement between the MQ-GRPIM with the optimized parameters and the 

analytical solution is evident. This supports the MQ-GRPIM’s suitability for use in 

contact analyses with the optimized parameters of section 7.5.1.
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Chapter 8: Meshless Solution of the Hybrid Bonded-

Bolted Joint Model 

 

The equations in Chapter 5 are called strong form equations. Considering the model 

formulation as a whole, they cannot be feasibly solved in an analytical form. 

Instead, in this chapter a numerical solution is obtained by casting the strong form 

equations into the weak form using the Principle of Virtual Displacements and 

substituting RPI functions for the displacement variables. The Newton-Raphson 

method is used to solve the resulting nonlinear system of equations. 

 

8.1 Solution of Nonlinear Systems of Equations 

 

Nonlinear systems of equations can be solved using a number of iterative 

techniques, of which the Newton-Raphson method is probably the most famous. A 

brief outline of this method is given in this section, based on the description in 

[111]. Consider a system of nonlinear equations with a potential solution vector 𝐱: 

 

𝐹(𝐱) = 0 (8.1) 

 

Furthermore, let 𝐱𝟎 denote the initial iterate, 𝐱𝐧 the nth iterate and 𝐱∗ the solution. 

Newton’s method states that for certain functions and if the initial iterate is close 

enough to the solution, an improved approximation is: 

 

𝐱𝐧+𝟏 = 𝐱𝐧 −
𝐹(𝐱𝐧)

𝐹′(𝐱𝐧)
 (8.2) 

 

This adjustment is repeated until a sufficiently accurate solution is obtained: 

 

‖𝐱𝐧+𝟏 − 𝐱𝐧‖ < 𝑒 (8.3) 
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where 𝑒 is an arbitrary convergence tolerance. A geometric illustration of the 

method is provided in Figure 8.1. The Newton-Raphson method is used in the 

solution presented in this chapter due to its simplicity and renowned quadratic 

convergence property. 

 

 

Figure 8.1: Geometric illustration of the Newton-Raphson method 

 

8.2 Temporal Discretization of the HBB Joint Model 

 

Due to the incremental nature of the adhesive elastoplastic constitutive equations, 

a time discretization of the model equations must be made. Specifically, a strain-

driven problem is considered such that strain is a function of time in the interval 

[0, 𝑇] =∪𝑛=0
𝑁 [𝑡𝑛, 𝑡𝑛+1]. It is remarked that for the static analysis considered, time is 

generic since the structural response is in fact time independent. 𝑡 thus merely 

denotes the load level. Following the principle of virtual work described in Chapter 

7, at time 𝑡𝑛 there is the equilibrium state: 

 

𝛿 𝐔T
𝑡𝑛 ( 𝐅int −

𝑡𝑛 𝐅ext
𝑡𝑛 ) = 0 (8.4) 

Since the variations 𝛿 𝐔T
𝑡𝑛  are arbitrary: 
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𝐅int −
𝑡𝑛 𝐅ext

𝑡𝑛 = 𝟎 (8.5) 

 

where 𝐅ext are the external forces and 𝐅int are the internal forces. Eqn. (8.5) is the 

basis for all nonlinear analysis in continuum mechanics. From this equilibrium state, 

a load increment may be applied which is assumed to be independent of the 

displacement: 

 

𝐅ext
𝑡𝑛+1 = 𝐅ext + Δ𝐅ext

𝑡𝑛  (8.6) 

 

And the displacement increases in response to this load increment as: 

 

𝐔
𝑡𝑛+1 = 𝐔 + Δ𝐔𝑡  (8.7) 

 

The objective is thus to calculate the displacement increment Δ𝐔 such that at time 

𝑡𝑛+1, Eqn. (8.5) is satisfied. To achieve this, a nonlinear solution technique, such as 

the Newton-Raphson technique described in section 8.1, must be used (since the 

internal force is a nonlinear function of the displacement). Correspondingly, a 

linearization of Eqn. (8.5) must be made. The linearized equations for the various 

HBB joint components are derived in the following sections, departing from their 

respective weak forms. 

 

8.3 Weak Form Equations 

 

Consider a HBB joint in a state of equilibrium. The internal virtual work due to the 

unrelated states (1) displacements 𝒖∗ with consistent strains 𝜺∗ and (2) internal 

stresses 𝝈 with tractions 𝑻 can be stated as follows for the various joint 

components. For the plates, the internal virtual work is: 

 

𝛿𝑊𝑖
(𝑖) = 2ℎ(𝑖) ∫ 𝜺∗(𝑖)

𝑇

A(𝑖)

𝝈(𝑖)𝑑𝐴⁡⁡⁡ ∶ ⁡⁡⁡⁡𝑖 ∈ {1,2} (8.8) 
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For the adhesive it is: 

 

𝛿𝑊𝑖
(𝑎) = 𝑡𝑎 ∫ 𝜺∗(𝑎)

𝑇

A(𝑎)

𝝈(𝑎)𝑑𝐴 (8.9) 

 

For the bolt it is: 

 

𝛿𝑊𝑖
(𝐵𝑗) = ∫ 𝜺∗(𝑏)

𝑇

𝑙
(𝐵𝑗)

𝝈(𝑏)𝑑𝑠⁡⁡⁡ ∶ ⁡⁡⁡⁡𝑗 ∈ [1, 𝑁𝐵] 

 

(8.10) 

And for the bolthead springs it is: 

 

𝛿𝑊𝑖
(𝑆𝑗
𝑖) = [𝛿∆𝜃𝑥

(𝑆𝑗
𝑖)
] 𝑘𝜃𝑥 [∆𝜃𝑥

(𝑆𝑗
𝑖)
] + [𝛿∆𝜃𝑦

(𝑆𝑗
𝑖)
] 𝑘𝜃𝑦 [∆𝜃𝑦

(𝑆𝑗
𝑖)
] ⁡⁡⁡ ∶ ⁡⁡⁡⁡𝑖 ∈ {1,2}⁡, 𝑗 ∈ [1, 𝑁𝐵] 

 

(8.11) 

where 𝑁𝐵 is the number of bolts. The relative bolthead rotations ∆𝜃𝑥
𝑆𝑗
𝑖

 and ∆𝜃𝑦
𝑆𝑗
𝑖

 are: 

 

∆𝜃𝑥
𝑆𝑗
𝑖

= 𝜃𝑥
𝐻𝑗
𝑖

− 𝜃𝑥
𝐵𝑗
𝑖

 (8.12) 

 

∆𝜃𝑦
𝑆𝑗
𝑖

= 𝜃𝑥
𝐻𝑗
𝑖

− 𝜃𝑥
𝐵𝑗
𝑖

 (8.13) 

 

Ignoring body forces, the external virtual work due to applied tractions 𝐓(𝑖) is: 

 

𝛿𝑊𝑒 = ∫𝐮∗(𝑖)
𝑇

Γ(𝑖)

𝐓(𝑖)𝑑Γ⁡⁡⁡ ∶ ⁡⁡⁡⁡𝑖 ∈ {1,2, 𝑎, 𝐵𝑗} 

 

(8.14) 

In Eqn. 8.14, Γ(𝑖) denotes the external boundaries of the model. Following the 

principle of virtual displacements, 𝐮∗ ≡ 𝛿𝐮 and 𝜺∗ ≡ 𝛿𝜺. 
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8.4 Discrete Weak Form 

 

Using the meshless shape functions described in the previous two chapters, an 

approximation of the displacement field can be constructed as follows for the ith 

plate or bolt: 

 

𝑢𝒙
(𝑖)
= 𝚽(𝑖)𝐔̅𝒙

(𝑖)
 (8.15) 

 

𝑢𝒚
(𝑖)
= 𝚽(𝑖)𝐔̅𝒚

(𝑖)
 (8.16) 

 

𝑢𝒛
(𝑖)
= 𝚽(𝑖)𝐔̅𝒛

(𝑖)
 (8.17) 

 

𝜃𝒙
(𝑖)
= 𝚽(𝑖)𝚯̅𝒙

(𝑖)
 (8.18) 

 

𝜃𝒚
(𝑖)
= 𝚽(𝑖)𝚯̅𝒚

(𝑖)
 (8.19) 

 

where 𝑖 ∈ {1,2, 𝐵𝑗}. 𝐔̅𝒙
(𝑖)

, 𝐔̅𝒚
(𝑖)

, … are the nodal solution vectors: 

 

𝐔̅𝒙
(𝑖)T

= {Ux1 Ux2 ⋯ U𝑥𝑁(𝑖)}  ,  𝐔̅𝒚
(𝑖)T

= {Uy1 Uy2 ⋯ U𝑦𝑁(𝑖)} 

𝐔̅𝒛
(𝑖)T

= {Uz1 Uz2 ⋯ U𝑧𝑁(𝑖)}  ,  𝚯̅𝒙
(𝑖)T

= {Θx1 Θx2 ⋯ Θ𝑥𝑁(𝑖)} 

                𝚯̅𝒚
(𝑖)T

= {Θy1 Θy2 ⋯ Θ𝑦𝑁(𝑖)}                                                     

(8.20) 

 

𝑁(𝑖) is the number of nodes and of course 𝚽(𝑖) are the meshless shape functions. 

These approximations shall be substituted into the weak forms (8.8-8.11) to obtain 

the discrete weak form equations.  

8.4.1 Plates Discrete Weak Form 

 

The internal virtual work expression for the ith plate can be expressed as: 
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𝛿𝑊𝑖
(𝑖)
= 2ℎ(𝑖) ∫𝛿𝜺̅(𝑖)

𝑇
𝑪̅(𝑖)𝜺̅(𝑖)

𝐴(𝑖)

𝑑𝐴 (8.21) 

 

where: 

 

𝜺̅(𝑖) = {

𝛆
𝛋
𝛄
}

(𝑖)

⁡⁡⁡⁡,⁡⁡⁡⁡ 𝑪̅(𝑖) = [
𝐀 𝐁 𝟎
𝐁 𝐃 𝟎
𝟎 𝟎 𝐆

]

(𝑖)

 (8.22) 

 

The strain vector can at this stage be discretely written in terms of the plate 

solution vector as: 

 

𝜺̅(𝑖) = 𝐁(𝑖)𝐔̅(𝑖) (8.23) 

 

where the strain-displacement matrix, in accordance with Eqn. 5.5, is: 

 

𝐁(𝑖) =

[
 
 
 
 
 
 
 
 
 
𝚽,𝑥
T 𝟎 𝟎 𝟎 𝟎

𝟎 𝚽,𝑦
T 𝟎 𝟎 𝟎

𝚽,𝑦
T 𝚽,𝑥

T 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 −𝚽,𝑥
T 𝟎

𝟎 𝟎 𝟎 𝟎 −𝚽,𝑦
T

𝟎 𝟎 𝟎 −𝚽,𝑦
T −𝚽,𝑥

T

𝟎 𝟎 𝚽,𝑥
T −𝚽T 𝟎

𝟎 𝟎 𝚽,𝑦
T 𝟎 −𝚽T

]
 
 
 
 
 
 
 
 
 
(𝑖)

: 𝑖 ∈ {1,2}   

 

And the plate solution vector is: 

 

𝐔̅(𝑖)T = {𝐔̅𝒙
(𝑖)
, 𝐔̅𝒚

(𝑖)
, 𝐔̅𝒛

(𝑖)
, 𝚯̅𝒙

(𝑖)
, 𝚯̅𝒚

(𝑖)
} ∶ 𝑖 ∈ {1,2, 𝑏} 

 

(8.24) 

Substituting 8.23 into 8.21 results in the following discrete internal work weak 

form: 
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𝛿𝑊(𝑖) = 𝛿𝐔̅(𝑖)T ∫𝐁(𝑖)
T
𝐂(𝑖)𝐁(𝑖)

𝑑𝑉

𝑑𝑉𝐔̅(𝑖) = 𝛿𝐔̅(𝑖)T𝐊(𝑖)𝐔̅(𝑖) (8.25) 

where the plate stiffness matrix 𝐊(𝑖) is defined as: 

 

𝐊(𝑖) = 2ℎ(𝑖) ∫𝐁(𝑖)
T
𝐂(𝑖)𝐁(𝑖)

𝐴(𝑖)

𝑑𝐴 (8.26) 

 

A uniformly distributed tensile load 𝑁𝑥 applied to the 𝜕𝑅Ω boundary results in the 

following external work for the lower plate: 

 

𝛿𝑊𝑒
(2)
= ∫ 𝑁𝑥

𝜕𝑅Ω

𝐇𝒙𝛿𝐔̅
(𝑖)𝑑Γ = 𝐏(2)𝛿𝐔̅(𝑖) (8.27) 

 

where 𝐇𝒙 relates 𝑢𝑥 to the plate solution vector and is: 

 

𝐇𝒙 = {𝚽
T, 𝟎, 𝟎, 𝟎, 𝟎} (8.28) 

 

and the lower plate force vector 𝐏(2) is: 

 

𝐏(2) = ∫ 𝑁𝑥
𝜕𝑅Ω

𝐇𝒙𝑑Γ (8.29) 

 

The overall discrete plate weak form is therefore: 

 

𝛿𝐺(𝑝) = 𝛿𝑊𝑖
(1)
+ 𝛿𝑊𝑖

(2)
+ 𝛿𝑊𝑒

(2)
 (8.30) 

 

8.4.2 Adhesive Discrete Weak Form 

 

The adhesive strains depend on the displacements of both the upper and lower 

plate (thereby structurally coupling these two components). Since there are no 
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external tractions applied to the adhesive directly, the discrete weak form 

expression is equal to the internal virtual work: 

 

𝛿𝐺(𝑎) = 𝑡𝑎 ∫𝛿𝜺(𝑎)
T

𝐴(𝑖)

𝝈(𝑎)𝑑𝐴 = 0 (8.31) 

 

The strain vector can again be written in terms of the plate nodal solution vectors 

as: 

 

𝜺(𝑎) = 𝐁(𝑎)𝐔̅ (8.32) 

where: 

 

𝐁(𝑎) =
1

2

[
 
 
 
 
 
 
 
 
𝚽,𝑥
T 𝟎 𝟎 ℎ1𝚽,𝑥

T 𝟎 𝚽,𝑥
T 𝟎 𝟎 −ℎ2𝚽,𝑥

T 𝟎

𝟎 𝚽,𝑦
T 𝟎 𝟎 ℎ1𝚽,𝑦

T 𝟎 𝚽,𝑦
T 𝟎 𝟎 −ℎ2𝚽,𝑦

T

𝟎 𝟎
2

𝑡𝑎
𝚽T 𝟎 𝟎 𝟎 𝟎 −

2

𝑡𝑎
𝚽T 𝟎 𝟎

𝚽,𝑦
T 𝚽,𝑥

T 𝟎 ℎ1𝚽,𝑦
T ℎ1𝚽,𝑥

T 𝚽,𝑦
T 𝚽,𝑥

T 𝟎 −ℎ2𝚽,𝑦
T −ℎ2𝚽,𝑥

T

2

𝑡𝑎
𝚽T 𝟎 𝟎 2ℎ1

𝑡𝑎
𝚽,𝑥
T 𝟎 −

2

𝑡𝑎
𝚽T 𝟎 𝟎 2ℎ2

𝑡𝑎
𝚽,𝑥
T 𝟎

𝟎
2

𝑡𝑎
𝚽T 𝟎 𝟎 2ℎ1

𝑡𝑎
𝚽,𝑦
T 𝟎 −

2

𝑡𝑎
𝚽T 𝟎 𝟎 2ℎ2

𝑡𝑎
𝚽,𝑦
T
]
 
 
 
 
 
 
 
 

 (8.33) 

 

Substituting 8.32 into 8.31, the adhesive discrete weak form expression is obtained 

as follows: 

 

𝛿𝐺(𝑎) = 𝛿𝐔̅T ∫𝐁(𝑎)
T

𝑑𝑉

𝝈(𝑎)𝑑𝑉 (8.34) 

 

Note that 𝐔̅ is an overall plate nodal solution vector that combines the individual 

upper and lower plate solution vectors: 

 

𝐔̅T = {𝐔̅(1)T, 𝐔̅(2)T} (8.35) 
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8.4.3 Bolts Discrete Weak Form 

 

Based on Eqns. (5.25) and (8.10), the weak form of the bolts can be written as: 

 

 

𝛿𝐺(𝐵𝑗) = ∫𝛿𝝐(𝐵𝑗)
𝑇
[𝐂(𝐵𝑗)𝝐(𝐵𝑗) + 𝐒𝟎

(𝐵𝑗)
]

𝑑𝑉

𝑑𝑉 

= ∫ 𝛿𝜺̅(𝐵𝑗)
𝑇
𝑪(𝐵𝑗)𝜺̅(𝐵𝑗)

𝑙
(𝐵𝑗)

𝑑𝐿 + 𝐴(𝐵𝑗)∫𝛿𝜺̅(𝐵𝑗)
𝑇
𝐒𝟎
(𝐵𝑗)𝑑𝑉

𝑉

 

(8.36) 

 

where 𝐴(𝐵𝑗) is the cross-sectional area of the jth bolt and 𝜺̅(𝐵𝑗) and 𝑪(𝐵𝑗) are:  

 

𝜺̅(𝐵𝑗) =

{
 
 

 
 
𝜀𝑧𝑧
𝜅𝑥
𝜅𝑦
𝛾𝑥𝑧
⁡𝛾𝑦𝑧}

 
 

 
 
(𝐵𝑗)

⁡⁡⁡⁡,⁡⁡⁡⁡𝐂(𝐵𝑗) =

[
 
 
 
 
𝐸𝐴 0 0 0 0
0 𝐸𝐼 0 0 0
0 0 𝐸𝐼 0 0
0 0 0 𝑘𝜇𝐴 0
0 0 0 0 𝑘𝜇𝐴]

 
 
 
 
(𝐵𝑗)

 (8.37) 

 

The strain, once again, can be written discretely in terms of the plate solution 

vector as: 

 

𝛆̅(𝐵𝑗) = 𝐁(𝐵𝑗)𝐔̅(𝐵𝑗) (8.38) 

 

where the bolt strain-displacement matrix is: 

 

𝐁(𝐵𝑗) =

[
 
 
 
 
 
𝚽,𝒛
T 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝚽,𝒛
T 𝟎

𝟎 𝟎 𝟎 𝟎 𝚽,𝒛
T

𝟎 𝚽,𝒛
T 𝟎 𝚽T 𝟎

𝟎 𝟎 𝚽,𝒛
T 𝟎 𝚽T]

 
 
 
 
 
(𝐵𝑗)

 (8.39) 

 

and the bolt solution vector is: 
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𝐔̅(𝐵𝑗)T = {𝐔̅𝒙
(𝐵𝑗), 𝐔̅𝒚

(𝐵𝑗), 𝐔̅𝒛
(𝐵𝑗), 𝚯̅𝒙

(𝐵𝑗), 𝚯̅𝒚
(𝐵𝑗)} ⁡⁡⁡ ∶ ⁡⁡⁡𝑗 ∈ [1, 𝑁𝐵] 

 

(8.40) 

Substituting (8.38) into (8.36) results in the following discrete weak form: 

 

𝛿𝐺(𝐵𝑗) = 𝛿𝐔̅(𝐵𝑗)T𝐊(𝐵𝑗)𝐔̅(𝐵𝑗) + 𝛿𝐔̅(𝐵𝑗)T𝐏(𝐵𝑗) (8.41) 

 

In Eqn. (8.41), the jth bolt stiffness matrix 𝐊(𝐵𝑗) is thus defined as: 

 

𝐊(𝐵𝑗) = ∫ 𝑩(𝐵𝑗)
T
𝐂(𝐵𝑗)𝑩(𝐵𝑗)

𝑙
(𝐵𝑗)

𝑑𝐿 (8.42) 

and the bolt clamp-up vector is: 

 

𝐏(𝐵𝑗) = 𝐴(𝐵𝑗) ∫ 𝑩(𝐵𝑗)
T
𝐒𝟎
(𝐵𝑗)

𝑙
(𝐵𝑗)

𝑑𝐿 (8.43) 

 

8.4.4 Bolthead Springs Discrete Weak Form 

 

The matrix relating the relative bolthead rotation to the nodal solution vectors of 

the bolt and the bolthead degrees of freedom can be stated as: 

 

𝐇𝑩𝒋 =

[
 
 
 
 
𝐇𝒙
𝟏 𝟎 −1 0 0 0

𝟎 𝐇𝒙
𝟐 0 −1 0 0

𝐇𝒙
𝟐 𝟎 0 0 −1 0

𝟎 𝐇𝒙
𝟐 0 0 0 −1]

 
 
 
 

 (8.44) 

 

where: 

 

𝐇𝒙
𝟏 = {𝚽T(𝑙(𝐵𝑗)), 𝟎, 𝟎, 𝟎, 𝟎}

(𝐵𝑗)
    ,    𝐇𝒙

𝟐 = {𝚽T(0), 𝟎, 𝟎, 𝟎, 𝟎}(𝐵𝑗) (8.45) 

 

𝐇𝒚
𝟏 = {𝟎,𝚽T(𝑙(𝐵𝑗)), 𝟎, 𝟎, 𝟎}

(𝐵𝑗)
    ,    𝐇𝒚

𝟐 = {𝟎,𝚽T(0), 𝟎, 𝟎, 𝟎}(𝐵𝑗) (8.46) 
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Consequently, the relative bolthead rotations at the top of the bolt and bottom of 

the jth bolt, respectively, can be expressed in discrete form as: 

 

∆𝜽(𝑆𝑗) = {∆𝜃𝑥
𝑆𝑗
1

∆𝜃𝑥
𝑆𝑗
2

∆𝜃𝑦
𝑆𝑗
1

∆𝜃𝑦
𝑆𝑗
2

}
T

= 𝐇𝑩𝒋𝐔(𝐵𝑗) (8.47) 

 

where 𝐔(𝐵𝑗) is a combined solution vector that collects the solution vectors for the 

jth bolt and associated bolthead spring degrees of freedom: 

 

𝐔(𝐵𝑗) = {𝐔̅(𝐵𝑗)T, 𝜃𝑥
𝐵𝑗
1

, 𝜃𝑥
𝐵𝑗
2

, 𝜃𝑦
𝐵𝑗
1

, 𝜃𝑦
𝐵𝑗
2

}
T

 (8.48) 

 

Substituting Eqn. (8.47) into the weak form (8.11), the final bolthead spring 

discrete weak form is obtained: 

 

𝛿𝑊𝑖
(𝑆𝑗
𝑖)
= 𝛿𝐔(𝐵𝑗)T𝒌𝜽𝐔

(𝐵𝑗) 

 
(8.49) 

where the spring stiffness matrix 𝒌𝜽 is defined as: 

 

𝒌𝜽 =

[
 
 
 
𝑘𝜃𝑥 0 0 0
0 𝑘𝜃𝑦 0 0

0 0 𝑘𝜃𝑥 0
0 0 0 𝑘𝜃𝑦]

 
 
 

 (8.50) 

 

8.5 Consistent Linearization of the Discrete Weak Form 

8.5.1 Linearization of the Adhesive Weak Form 

 

In order to iteratively solve the nonlinear weak form using the Newton-Raphson 

method, it must be linearized. The adhesive weak form will be linearized first, since 

this is the only joint component for which plasticity is considered and is in fact one 

the main sources of nonlinearity in the model. It is recalled that 𝝈(𝑎) is required to 

satisfy the local constitutive equations of associative J2 plasticity. Given a 
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displacement increment Δ𝐔̅ in some iteration 𝑘 of the Newton-Raphson algorithm, 

and the corresponding strain increment Δ𝜺(𝑎), the stress in the adhesive can be 

updated as described in Box 8.1. This is a local state updating algorithm called the 

return mapping algorithm which, for a given strain increment at a point, updates 

the plastic strain, stress and internal variables at that point in a manner that is 

consistent with Eqns. (5.17-5.19). 

 

Box 8.1: Return mapping algorithm for associative J2 plasticity [112] 

 

Return mapping algorithm for associative J2 plasticity 

 

1) Given the strain field at 𝐱 ∈ Ω: 𝜺𝑛+1 = 𝜺𝑛 + Δ𝜺𝑛 

 

2) Compute the elastic trial stress and test for plastic loading 

 

𝝈𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝐶: (𝜺𝑛+1 − 𝜺𝑛

𝑝
) 

 

𝑓𝑛+1
𝑡𝑟𝑖𝑎𝑙 = |𝝈𝑛+1

𝑡𝑟𝑖𝑎𝑙| − [𝜎𝑦 +𝐻𝛼𝑛] 

 

                        IF  𝑓𝑛+1
𝑡𝑟𝑖𝑎𝑙 ≤ 0 THEN 

                               Elastic step: (∙)𝑛+1 = (∙)𝑛+1
𝑡𝑟𝑖𝑎𝑙 and EXIT 

                        ELSE 

                               Plastic step: Proceed to step 3 

                        END 

 

3) Return mapping 

 

Δ𝛾 = (
𝑓𝑛+1
𝑡𝑟𝑖𝑎𝑙

3𝜇+𝐻
) > 0 

𝑵̅𝑛+1 =
𝒔𝑛+1
𝑡𝑟𝑖𝑎𝑙

‖𝒔𝑛+1
𝑡𝑟𝑖𝑎𝑙‖

 

𝜺𝑛+1
𝑝

= 𝜺𝑛
𝑝
+ Δ𝛾𝑵̅𝑛+1 
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𝛼𝑛+1 = 𝛼𝑛 +√
2

3
⁡Δ𝛾 

𝒆𝑛+1 = 𝜺𝑛+1 −
1

3
tr(𝜺𝑛+1) 

𝝈𝑛+1 = 𝜅(𝑡𝑟[𝜺𝑛+1])𝟏 + 2𝜇(𝒆𝑛+1 − Δ𝛾𝑵𝑛+1) 

 

Derivation of the equations in Box 8.1 can be found in e.g. [112, 113]. At this 

juncture and throughout the rest of this subsection, the superscript (𝑘) will be 

adopted to denote that a field variable belongs to the kth iteration of the Newton-

Raphson algorithm. To avoid confusion, the (𝑎) superscript is dropped and the 

reader is expected to remember that the various variables and matrices in this 

subsection refer to the adhesive. The linearization is performed about the current 

state, defined by 𝐔̅𝑛+1
(𝑘)

. First, the Jacobian of the adhesive weak form 𝛿𝐺 is obtained 

by the Chain rule as follows: 

 

𝐷𝛿𝐺(𝑘) =
𝜕𝛿𝐺(𝑘)

𝜕𝐔̅𝑛+1
(𝑘)

= 𝛿𝐔̅T∫ 𝐁T

𝑉

[
𝜕𝝈𝑛+1

(𝑘)

𝜕𝜺𝑛+1
(𝑘)

]
𝜕𝜺𝑛+1

(𝑘)

𝜕𝐔̅𝑛+1
(𝑘)

𝑑𝑉 

= 𝛿𝐔̅T∫ 𝐁T

𝑉

[
𝜕𝝈𝑛+1

(𝑘)

𝜺𝑛+1
(𝑘)

]𝐁𝑑𝑉 

 

(8.51) 

The matrix 𝐊𝐓𝑛+1
(𝑘)  can now be introduced: 

 

𝐊𝐓𝑛+1
(𝑘) = ∫ 𝐁(𝑎)

𝑇
[
𝜕𝝈𝑛+1

(𝑘)

𝜕𝜺𝑛+1
(𝑘)

]𝐁(𝑎)𝑑𝑉

𝑉

 (8.52) 

 

This is known as the adhesive tangent stiffness matrix. The missing item required 

to be able to calculate 𝐊𝐓𝑛+1
(𝑘)  is an explicit expression for the coefficient: 

 

𝐂𝑛+1
(𝑘)

= [
𝜕𝝈𝑛+1

(𝑘)

𝜕𝜺𝑛+1
(𝑘)

] (8.53) 
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𝐂𝑛+1
(𝑘)

 is also called the algorithmic tangent modulus, since it is the derivative of the 

algorithmic expression 𝝈𝑛+1
(𝑘)

. Recalling from Box 8.1 that the general update formula 

for the stress tensor for associative J2 plasticity is given by: 

 

𝝈𝑛+1
(𝑘)

= 𝜅 (𝑡𝑟 [𝜺𝑛+1
(𝑘)

])𝟏 + 2𝜇 (𝒆𝑛+1
(𝑘)

− Δ𝛾𝑵𝑛+1) (8.54) 

 

Differentiating this with respect to the strain tensor gives the expression for the 

algorithmic tangent modulus: 

 

𝑪𝑛+1
(𝑘)

= 𝜅𝟏⊗ 𝟏+ 2𝜇 [𝑰 − 𝟏⊗ 𝟏 −
𝑵𝑛+1⊗𝑵𝑛+1

1 +
𝐻
3𝜇

] (8.55) 

 

And 

 

 

𝐊𝐓𝑛+1
(𝑘) = ∫ 𝐁(𝑎)

𝑇
𝑪𝑛+1
(𝑘)

𝐁(𝑎)𝑑𝑉

𝑉

 (8.56) 

 

Substituting the Jacobian (Eqn. (8.51)) into a linear approximation of the weak 

form, the linearized discrete weak form of the adhesive in the kth iteration of a 

particular load increment in the Newton-Raphson algorithm is thus: 

 

𝛿𝑊𝑖
(𝑘) − 𝛿𝑊𝑒

(𝑘) + 𝛿𝐔̅T𝐊𝐓𝑛+1
(𝑘) Δ𝐔̅𝑛+1

(𝑘+1)
= 0 (8.57) 

 

8.5.2 Linearization of the Plate Weak Form 

 

Next, linearization of the weak form of the plates is considered. This linearization is 

trivial since the plate constitutive equations are linear elastic. Taking the Jacobian 
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of  𝛿𝐺(𝑖) in the kth iteration with respect to the displacement increment results in 

the following tangent modulus: 

 

𝐂𝑛+1
(𝑘)

= [
𝜕𝝈𝑛+1

(𝑘)

𝜕𝜺𝑛+1
(𝑘)

] = 𝐂(𝑖) (8.58) 

 

Therefore, the tangent modulus is simply the elastic modulus and the tangent 

stiffness matrix is equal to the elastic stiffness matrix defined in section 8.4.1. It is 

easily shown that the linearized weak form is thus: 

 

𝛿𝑊𝑖
(𝑖) − 𝛿𝑊𝑒

(𝑖) + 𝛿𝐔̅(𝑖)T𝐊(𝑖)Δ𝐔̅(𝑖)𝑛+1
(𝑘+1)

= 0 (8.59) 

 

8.5.3 Linearization of Bolts Weak Form 

 

As for the plates, the tangent modulus is simply the elastic modulus. The linearized 

weak form is simply: 

 

𝛿𝑊
𝑖

(𝐵𝑗) − 𝛿𝑊𝑒
(𝐵𝑗) + 𝛿𝐔̅(𝐵𝑗)T𝐊(𝐵𝑗)Δ𝐔̅(𝐵𝑗)𝑛+1

(𝑘+1)
= 0 

 

(8.60) 

8.5.4 Linearization of Bolthead Springs Weak Form 

 

In the case of a linear elastic spring such as for those used to model the bolthead-

adherend interaction, the tangent modulus is simply the spring stiffness matrix. The 

linearized weak form in this case becomes: 

 

𝛿𝑊
𝑖

(𝑆𝑗
𝑖)
− 𝛿𝑊𝑒

(𝑆𝑗
𝑖)
+ 𝛿𝐔(𝐵𝑗)T𝒌𝜽Δ𝐔

(𝐵𝑗)
𝑛+1

(𝑘+1)
= 𝟎 

 

(8.61) 
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8.5.5 Global Linearized Weak Form 

 

The global linearized weak form at time 𝑡𝑛+1 and in the kth iteration of this load 

increment is simply the sum of the individual linearized weak forms derived in the 

preceding sections. To combine all of the system equations in the same matrix, the 

various matrices must be assembled. The resulting global linearized weak form can 

be written as: 

 

∑[𝛿𝑊𝑖 − 𝛿𝑊𝑒]
(𝑖)(𝑘)

𝑖∈𝑠

− 𝛿𝐔𝑇

[
 
 
 
 𝐊

(1) + 𝐊(2) + 𝐊𝐓
(𝑎) 𝟎 ⋯ 𝟎

𝟎 𝐊(𝐵1) ⋯ 𝟎
⋮ ⋮ ⋱ 𝟎

𝟎 𝟎 𝟎 𝐊
(𝐵𝑁𝑏)]

 
 
 
 
(𝑘)

{
 
 

 
 
Δ𝐔𝑛+1

Δ𝐔𝑛+1
(𝐵𝑗)

⋮

Δ𝐔𝑛+1
(𝐵𝑁𝑏)

}
 
 

 
 

(𝑘+1)

= 0 

 

(8.62) 

or more succinctly: 

 

𝛿𝐔𝑇[𝐅int − 𝐅ext](𝑘) + 𝛿𝐔𝑇𝐊𝐓
(k)
Δ𝐔𝑛+1

(𝑘+1)
= 0 (8.63) 

 

where the global tangent stiffness matrix for the kth iteration 𝐊𝐓
(k)

 is: 

 

𝐊𝐓
(k)
=

[
 
 
 
 𝐊̅

(1) + 𝐊̅(2) + 𝐊𝐓
(𝑎) 𝟎 ⋯ 𝟎

𝟎 𝐊(𝐵1) ⋯ 𝟎
⋮ ⋮ ⋱ 𝟎

𝟎 𝟎 𝟎 𝐊
(𝐵𝑁𝑏)]

 
 
 
 
(𝑘)

 (8.64) 
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8.6 Constrained System Equations 

 

A number of kinematic constraints are incorporated in the model of Chapter 5, such 

as those given by Eqns. (5.13-5.14). These have so far not been considered. In 

order to impose these constraints on the model solution, the weak form of Eqn. 

(8.11) must be constrained. The (𝑘) subscripts are dropped for clarity since in the 

present section they do not change from those given in Eqn. (8.11). Firstly, note 

that since the RPI functions possess the Kronecker-Delta property, the discrete 

kinematic constraints can be directly written as: 

 

𝑪TΔ𝐔 − 𝑮𝒏 = 𝟎 (8.65) 

 

where 𝑮𝒏 will be referred to as the gap vector and 𝑪 is the constraint matrix. 

Introducing the vector of quantities known as the constraint forces or Lagrange 

multipliers Δ𝛌T: 

 

Δ𝛌T(𝑪TΔ𝐔− 𝑮𝒏) = 𝟎 (8.66) 

 

The Δ symbol signifies that this quantity is incremental, since multiple load steps 

may be implemented and we consider the solution over any particular load step. 

Following the method of Lagrange multipliers, as described in any textbook on 

mathematical optimization, the linearized weak form (which is the expression to be 

minimized) can be incorporated into the following functional: 

 

𝛿𝐔T(𝑲Δ𝐔 + Δ𝝀𝑪) + 𝛿𝛌T(𝑪Δ𝐔− 𝑮𝒏) = 𝟎 (8.67) 

 

This is also known as the Lagrangian or constrained weak form. Since both 𝛿𝐔 and 

𝛿𝜆 are arbitrary it follows that: 

 

[
𝑲 𝑪
𝑪T 𝟎

] [
Δ𝐔
Δ𝛌
] = [

𝐑
𝑮𝒏
] (8.68) 
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The system shown in Eqn. (8.68) is the final, constrained system equations that are 

required to solve the model for a particular load increment. The constraint matrix 

will now 𝑪 be defined. The bolt constraint matrix, which includes both the bolthead 

and contact constraints, can be written in discrete form as: 

 

𝐂̃T = [𝐂̃(ℎ1)T, 𝐂̃(ℎ2)T, 𝐂̃(𝑏ℎ1)T, 𝐂̃(𝑏ℎ2)T,]    , 𝐂̃(ℎ𝑖)T = [𝐂1
(ℎ𝑖)T, 𝐂2

(ℎ𝑖)T, ⋯ , 𝐂𝑛ℎ𝑖
(ℎ𝑖)T]    

, 

𝐂̃(𝑏ℎ𝑖)T = [𝐂1
(𝑏ℎ𝑖)T

, 𝐂2
(𝑏ℎ𝑖)T

, ⋯ , 𝐂𝑛𝑏ℎ𝑖
(𝑏ℎ𝑖)T

] 

(8.69-

a,b,c) 

 

where 𝑛𝑏ℎ1 and 𝑛𝑏ℎ2 are the number of nodes in the top and bottom substrate 

bolthead regions, respectively, and 𝑛ℎ1 and 𝑛ℎ2 are the number of active contact 

nodes on the upper and lower hole boundary, respectively. The bolthead constraints 

𝐂̃(𝑏ℎ𝑖)T are:  

 

𝐂𝑖
(𝑏ℎ1) = {𝟎𝟏×𝟐𝑵𝟏 , 𝚽(1)T(𝒙𝒊), 𝟎𝟏×𝟐𝑵𝟏 , 𝟎𝟏×𝟓𝑵𝟐 , 𝟎𝟏×𝟐𝑵𝑩, −𝚽(𝐵𝑗) (𝑙𝐵𝑗) , 𝟎𝟏×𝟐𝑵𝑩 , −𝒓𝒙

𝐵𝑗(𝒙𝒊), 0, −𝒓𝒚
𝐵𝑗(𝒙𝒊), 0} 

 

𝐂𝑖
(𝑏ℎ2) = {𝟎𝟏×𝟓𝑵𝟏 , 𝟎𝟏×𝟐𝑵𝟐 , 𝚽(2)T(𝒙𝒊), 𝟎𝟏×𝟐𝑵𝟐 , 𝟎𝟏×𝟐𝑵𝑩 , −𝚽(𝐵𝑗)(0), 𝟎𝟏×𝟐𝑵𝑩, 0, −𝒓𝒙

𝐵𝑗(𝒙𝒊), 0, −𝒓𝒚
𝐵𝑗(𝒙𝒊)} 

(8.70-a,b) 

 

The hole contact constraint forces are slightly more complex since the surface 

normal varies. The meshless discretization of just a particular hole edge is 

considered (see Figure 8.2). It is assumed that a given active contact set is known. 

Then, at each node in the active set, a normal vector 𝐧𝐢 = {𝑛𝑥, 𝑛𝑥} with respect to the 

initial configuration at is calculated (this normal remains constant during the 

analysis due to the small displacement assumption). 
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Figure 8.2: Bolt-hole contact boundary discretization 

 

The discrete contact equations for the active contact nodes can thus be expressed 

as: 

 

 

𝐂𝑖
(ℎ1) = [𝑛𝑥𝚽

(1)T(𝒙𝒊), 𝑛𝑦𝚽
(1)T(𝒙𝒊), 𝟎𝟏×𝟑𝑵𝟏 , 𝟎𝟏×𝟓𝑵𝟐 , 𝟎𝟏×𝑵𝑩 , −𝑛𝑥𝚽

(𝐵𝑗) (𝑙𝐵𝑗) , −𝑛𝑦𝚽
(𝐵𝑗) (𝑙𝐵𝑗) , 𝟎𝟏×𝟐𝑵𝑩 , 𝟎𝟏×𝟒] 

 

𝐂𝑖
(ℎ2) = [𝟎𝟏×𝟓𝑵𝟏 , 𝑛𝑥𝚽

(2)T(𝒙𝒊), 𝑛𝑦𝚽
(2)T(𝒙𝒊), 𝟎𝟏×𝟑𝑵𝟐 , 𝟎𝟏×𝑵𝑩 , −𝑛𝑥𝚽𝑥

(𝑏)(0), −𝑛𝑦𝚽
(𝐵𝑗)(0), 𝟎𝟏×𝟐𝑵𝑩 , 𝟎𝟏×𝟒] 

(8.71-

a,b) 

 

Finally, the contact constraints due to the clamping constraint may also be 

considered. This is simply: 

 

𝐂(𝑅𝐻𝑆)𝑇 = [𝐂1
(𝑅𝐻𝑆)T

, 𝐂2
(𝑅𝐻𝑆)T

, ⋯ , 𝐂𝑛ℎ𝑖
(𝑅𝐻𝑆)T

] (8.72) 

 

where: 

 

𝑪𝑖
(𝑅𝐻𝑆) = [𝟎𝟏×𝟓𝑵𝟏 , 𝚽(2)T(𝒙𝒊) − 𝚽

(2)T(0, 𝐿), 𝟎𝟏×𝟒𝑵𝟐 , 𝟎𝟓×𝑵𝑩 , 𝟎𝟏×𝟒] (8.73-a,b) 

 

The overall constraint matrix 𝑪 is therefore: 

 

𝑪 = [𝐂̃T, 𝐂(𝑅𝐻𝑆)T] (8.74) 
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Eqn. (8.68) furthermore requires definition of the gap vector 𝑮𝒏: 

 

𝑮𝒏 = {𝑮𝒏
(ℎ1) 𝑮𝒏

(ℎ2) 𝟎𝟏×(𝒏𝒃𝒉𝟏+𝒏𝒃𝒉𝟐) 𝟎𝟏×(𝒏𝒃𝒉𝟏)}
T

    ,    

𝑮𝒏
(ℎ𝑖) = [𝑔1

(ℎ𝑖) 𝑔2
(ℎ𝑖) ⋯ 𝑔𝑛ℎ𝑖

(ℎ𝑖)] 
(8.75-a,b) 

 

where 𝑔𝑛ℎ𝑖
(ℎ𝑖) is the normal gap for ith active contact node at the start of the load 

increment.  Finally, the corresponding Lagrange multiplier vector can be written as: 

 

 

𝚲𝑇 = [𝚲(ℎ1) 𝚲(ℎ2) 𝚲(𝑏ℎ1) 𝚲(𝑏ℎ2) 𝚲(𝑅𝐻𝑆)]    ,    

𝚲(ℎ𝑖) = [λ1
(ℎ𝑖) λ2

(ℎ𝑖) ⋯ λ𝑛ℎ𝑖
(ℎ𝑖)]    ,     

𝚲(𝑏ℎ𝑖) = [λ1
(𝑏ℎ𝑖) λ2

(𝑏ℎ𝑖) ⋯ λ𝑛𝑏ℎ𝑖
(𝑏ℎ𝑖)]     ,     

𝚲(𝑅𝐻𝑆) = [λ1
(𝑅𝐻𝑆)

λ2
(𝑅𝐻𝑆)

⋯ λ𝑛𝑅𝐻𝑆
(𝑅𝐻𝑆)

] 

(8.76-a,b,c,d) 

  

𝜆
𝑖

(𝑏ℎ𝑗)
 is the Lagrange Multiplier corresponding to the ith bolthead region node in the 

jth plate. Similarly, 𝜆
𝑖

(ℎ𝑗)
 is the Lagrange Multiplier corresponding to the ith active 

hole boundary node in the jth plate while 𝑛ℎ1 and 𝑛ℎ2 are the number of active 

nodes on the top and bottom substrate hole boundaries, respectively.  𝜆𝑖
(𝑅𝐻𝑆)

 are the 

Lagrange Multipliers corresponding to the ith clamped node on the right hand side 

clamped boundary. 

 Having imposed appropriate boundary conditions on the constrained tangent 

stiffness matrix, the model solution can subsequently be obtained. The overall 

solution algorithm is described in section 8.7. 

 

8.7 Solution algorithm 

 

At this stage, all of the steps have been covered to obtain a linearized system of 

equations that is consistent with the local stress updating algorithm and Newton-
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Raphson iterative solution method. The overall solution scheme for a given load 

increment is therefore presented in Box 8.2. 

 

Box 8.2: Global nonlinear solution algorithm 

 

Global Nonlinear Solution Algorithm 

 

1) Assume an initial set of active contact nodes 

 

2) Calculate the displacement and contact force increments based on 

the tangent stiffness for the current iteration and gap vector for the 

current increment  

 

3) Verify whether Eqn. (8.66) is satisfied to within a desired tolerance. 

If not, repeat step 2 until convergence 

 

4) Verify whether any of the active bolt-hole contact constraints 

violate the contact conditions (no penetration, no tensile contact 

forces). Update the active set if required and repeat steps 2-3 until 

the active set no longer changes 

 

5) Update the gap vector, displacement vector, contact force vector, 

internal variables and stresses 
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Chapter 9: Model Verification 

 

In order to verify that the proposed model solution works correctly and that the 

obtained predictions are in agreement with existing analyses for bonded joints and 

bolted joints separately, a number of reference solutions from the literature were 

analyzed. The results are compared in the following sections. 

 

9.1 Single-Lap Bonded Joint Stress Verification 

 

To verify the ability of the developed (meshless) model to predict the adhesive 

stresses in a linear elastic bonded joint, two models were considered. The first is 

the classical single-lap bonded joint model of Goland and Reissner [71]. The second 

is the detailed 3D FEM of Diaz et al. [114], which is considered to be a high fidelity 

solution to the bonded joint problem. In the meshless model, the bolt was omitted 

from the analysis in order to analyze just a bonded joint. The following two cases 

were compared: (a) isotropic aluminum adherends with linear elastic adhesive and 

(b) anisotropic CFRP adherends with linear elastic adhesive. The joint geometry, 

shown in Figure 9.1, was kept the same for both analyses and corresponds to the 

geometry defined by Diaz et al. [114]. Furthermore, as specified by Diaz et al., a 

4448 N tensile load was applied to the joint. 

 

 

 

 

Figure 9.1: Bonded joint dimensions 
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The material properties for the adhesive, aluminum and composite are given in 

Table 9.1. 

 

Table 9.1: Bonded joint material properties 

Adhesive Aluminum Composite 

𝐸 = 3⁡GPa 

𝜈 = 0.31 

𝐸 = 72 GPa 

𝜈 = 0.31 

𝐸𝑥 = 138 GPa 

𝐸𝑦 = 9.4 GPa 

𝐺𝑥𝑦 = 6.7 GPa 

𝐺𝑦𝑧 = 6.7 GPa 

𝜈𝑥𝑦 = 0.32 

𝜈𝑥𝑧 = 0.32 

Layup = [0/±45/02/±45/0]s 

 

The Goland and Reissner (GR) and Diaz et al. solutions without nonlinear geometric 

deformation are used in the model verification, since geometric nonlinearity is not 

currently accounted for in the meshless model. For GR, this meant setting the 

bending moment factor to 𝑘 = 1. All of the results are compared along the adhesive 

centerline, shown in Figure 9.2. 

 

 

 

 

Figure 9.2: Adhesive centerline 

 

Case A: The results for the adhesive shear stress and peel stress along the 

adhesive centerline are shown in Figures 9.3-9.4, respectively, for Case A. 
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Figure 9.3: Shear stress in adhesive of linear elastic bonded joint with isotropic adherends 

 

 

Figure 9.4: Peel stress in adhesive of linear elastic bonded joint with isotropic adherends 

 

The comparison between the different models reveals that there is excellent 

agreement between the present model and the detailed solid FEM. The errors in the 

peak stress between these models are 1.3% and 3.2%, respectively. Reasonable 

agreement is in turn observed between the present/Solid FEM and GR results, 

although some deviation is evident at the overall edges and characteristic trough in 
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the peel stress. The maximum error between the results is 10.7% and 14%. This 

can be explained by a number of reasons. Firstly, the GR model does not account 

for finite width, which the meshless model and solid FEM do. Also, the GR model 

does not account for transverse shear deformation of the adherends, which both 

the meshless model and solid FEM do. Finally, the most likely reason is that the GR 

model does not take into account the normal stress and strain components of the 

adhesive, while both of the other models consider these components.  

 

Case B: Figures 9.5 and 9.6 show the results for the anisotropic adherends. In this 

case, there are no GR results since this model (in its original form) cannot account 

for anisotropic adherends. Thus, only the meshless model and solid FEM are 

compared. As for the isotropic adherends, the model results agree closely.  

 

Figure 9.5: Shear stress in linear elastic bonded joint with anisotropic adherends 
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Figure 9.6: Peel stress in linear elastic bonded joint with anisotropic adherends 

 

No suitable materially-nonlinear only (MNO) analysis was found in the literature to 

compare the meshless model nonlinear adhesive capability with. The latter is 

instead validated in the HBB joint analysis in section 9.3. 

  

9.2 Bolted Joint Stress Verification 

 

For the bolted joint stress verification, the results of the meshless model were 

compared with the detailed in-plane finite element analysis of Ireman et al. [115], 

and the complex potential semi-analytical solution of Kradinov et al. [116] for the 

same problem. The relevant geometry is given in Figure 9.7 in accordance with 

[115], where 𝑊 = 24 mm and 𝐷 = 6 mm. Two types of laminate were studied by 

Ireman et al.: (a) a 0° dominated layup and (b) a 90° dominated layup.  
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Figure 9.7: Bolted joint dimensions [116] 

 

The material properties for these two laminates are provided in Table 9.2 below. 

Note that both Ireman et al. and Kradinov et al. used homogenized laminate 

properties, as specified in the table. Of course these are nevertheless anisotropic. 

Furthermore, a bolt-hole clearance of 𝛿 = 0.021 mm was applied to the hole 

diameter. The externally applied load was 5483 N as specified in [115]. 

 

Table 9.2: Homogenized laminate properties 

Laminate A Laminate B 

𝐸𝑥 = 99.2 GPa 

𝐸𝑦 = 35.5 GPa 

𝐺𝑥𝑦 = 8.5 GPa 

𝜈𝑥𝑧 = 0.24 

𝐸𝑥 = 35.5 GPa 

𝐸𝑦 = 99.2 GPa 

𝐺𝑥𝑦 = 8.5 GPa 

𝜈𝑥𝑧 = 0.08 

 

Bolted joints can be readily analyzed using the meshless model by setting a low 

adhesive thickness and specifying negligible adhesive properties. In the present 

case, the adhesive thickness was set to 0.1 mm and was assigned elastic properties 

of 𝐸 = 0.1 MPa, 𝜈 = 0.42. 



9. Model Verification 

166 

 

Laminate A: The results for laminate A are shown in Figures 9.8-9.9 for radial 

stress and hoop stress, respectively. (These are normalized average values 

calculated through the thickness of the laminate) The results are plotted along the 

hole boundary, according to the angle convention of Figure 9.7. 

 

Figure 9.8: Laminate A hole boundary normalized radial stress 

 

Figure 9.9: Laminate A hole boundary normalized hoop stress 

Comparison of the results shows excellent agreement between the results of the 

new analysis and those of the reference solutions for the radial stress. The hoop 
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stress also shows very good agreement, although there is some deviation in the 

results around the 90° location. It is notable that the results of Kradinov et al. and 

Ireman et al. between themselves show a noticeable disagreement at this radial 

location. In fact, the results of the Kradinov et al. are closer to the present analysis 

than those of Ireman et al. One reason that the present results are likely to deviate 

here somewhat is that in the new analysis, out-of-plane deformation of the 

laminate (due to shearing and bending) is considered, which is not considered in 

either of the others (which are purely in-plane). Overall, however, very good 

agreement can be concluded. 

 

Laminate B: The same normalized stresses are compared in Figures 9.10 and 9.11 

for laminate B. Interestingly, the radial stress distribution is quite different in this 

90°-dominated laminate, showing a dip at the 0° location which is flanked by peaks 

on either side at around ±45°. All three analyses predict this behaviour very closely 

and again show excellent agreement. 

 

 

Figure 9.10: Laminate B hole boundary radial stress 

 

The hoop stress results also show good agreement, again with some deviation 

around the 90° location. This is again attributed to the more complex deformation 
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of the laminate in the current model, including the out-of-plane components. 

Overall, however, good agreement can be concluded. 

 

 

Figure 9.11: Laminate B hole boundary hoop stress 

 

9.3 HBB Joint Load Sharing Validation 

 

An essential requirement of any HBB joint model is that it should be able to capture 

the relative stiffness of the underlying joints. To demonstrate the ability of the 

present model to do so, its predictions are compared with the GHJM load sharing 

model developed in Chapter 3. The relevant joint geometry and material 

parameters are given in Table 9.3.  A rigid bolthead and no washer are considered, 

such that a high bolthead stiffness of 𝑘𝜃 = 1e+9 N/rad is applicable in the meshless 

model. Both the case where the adhesive is elastic and the case where the adhesive 

is elastoplastic with bilinear stress-strain behaviour are considered. In all cases, the 

bolt is assumed to be steel (𝐸 = 205 GPa, 𝜈 = 0.33). 
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Table 9.3: HBB validation analysis parameters 

Adhesive Composite Geometry 

Elastic: 

𝐸 = 370.3 MPa 

𝜈 = 0.42 

Plastic: 

𝜎𝑦 = 9 MPa 

𝐻 = 30 MPa 

𝐸𝑥 = 141 GPa 

𝐸𝑦 = 9.7 GPa 

𝐺𝑥𝑦 = 5.4 GPa 

𝐺𝑦𝑧 = 3.2 GPa 

𝜈𝑥𝑦 = 0.33 

𝜈𝑥𝑧 = 0.44 

𝑡𝑝𝑙𝑦 = 0.137⁡mm 

layup = [45/0/-45/0]
4s

 

𝐿𝑎 = 28 mm 

𝐿𝑓 = 32 mm 

𝐷 = 8 mm 

𝐸 = 14 mm 

𝑊 = 28 mm 

𝑡𝑎 = 0.5 mm 

clearance = 2 μm 

 

 

 

 

Figure 9.12: Meshless model and GHJM load sharing prediction comparison 

 

Figure 9.12 demonstrates that there is close agreement between the predictions of 

the meshless model and the specialized load sharing model of Chapter 3 (GHJM) for 

both elastoplastic and elastic adhesive behaviour. This agreement is all the more 

remarkable given the significant simplification of the bolthead-laminate interaction 

in the meshless model. The results also clearly demonstrate, once again, perhaps 

the most important finding of Chapters 3-4. Even when a very low modulus 

adhesive is used, such as in the presented example, as long as the adhesive 
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remains elastic then the bolt carries only a limited proportion of the overall load. 

Gross yielding of the adhesive significantly lowers the bonded joint stiffness, which 

allows load to be transferred to the bolt at a much greater rate. 

 

9.4 Adhesive Stress & Strain Convergence 

 

One of the reasons for developing the model of Chapter 5 was to eliminate the 

adhesive stress and strain singularities that occur in detailed solid finite element 

adhesive representations. This was verified by analyzing case (a) of section 9.1 

with various nodal densities. The results of this study are shown in Figure 9.13. 

 

Figure 9.13: Discretization insensitivity of corner stress and strain in meshless model 

 

The locations which are most sensitive to singularities in FEM, namely the corners 

of the adhesive region, were considered9. It is clearly seen in Figure 9.13 that both 

the adhesive stress and strain at this location are highly insensitive to nodal 

density. The maximum difference due to increasing the mesh density by a factor 3 

is less than 1.8% for the stress and less than 1% for the strain. In other words, 

reliable, converged results are obtained for the adhesive stresses and strains for 

                                       

9 In particular, the corner located at (𝑥 = 𝐿𝑓 , 𝑦 = 0) was considered. 
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even coarse discretizations and there is no evidence of any stress- or strain 

singularity. This is desirable since it allows for meaningful comparisons between 

different designs without the analyst needing to worry about whether the 

differences are a result of the numerical discretizations. 

 

9.5 Conclusions 

 

It is concluded that the meshless model developed in this part of the thesis can 

achieve a good prediction of load sharing, with similar accuracy to the GHJM 

(subject of course to the assumptions implicit in the model). Furthermore, its 

predictions of stresses and strains in bonded and bolted joints separately are in 

excellent agreement with reference solutions from the literature. Finally, the 

absence of adhesive stress and strain singularities was demonstrated. A good level 

of confidence has therefore been established in the predictions obtained by this 

method. Validation of its basic strength prediction capability is performed in the 

next chapter. 
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Chapter 10: Experimental Complements 

 

In this chapter an experimental investigation of bonded, bolted and HBB joints is 

presented. One aim of this study is to assess the ability of the previously developed 

mathematical model to provide a basic prediction of the quasi-static stiffness and 

strength of the various joint types. In addition, the following hypothesis is tested: 

 

10.1 Hypothesis 

 

If the quasi-static performance (i.e., stiffness, strength and energy absorption) of a 

HBB joint relative to the underlying joints is related to the adhesive type/thickness, 

then varying the adhesive type/thickness will result in a change in the relative joint 

performance. 

 

10.2 Test Matrix 

 

To test the hypothesis, the test matrix presented in Table 10.1 was developed. 

Each cell corresponds to a particular configuration and contains the number of 

tested specimens in parentheses. For each joint type, the adhesive type/thickness 

was varied while the composite laminates and joint geometry were kept constant. 

 As shown, between 3 and 5 specimens were tested per configuration. 

Originally, it was intended to test 5 specimens per configuration. However, a 

manufacturing error (faulty layup) led to the scrapping of a number of specimens. 

Nevertheless, it is considered that even 3 repeats results in acceptable statistical 

precision.  
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Table 10.1: Test matrix 

                        Adhesive Type 

 

         Joint Type 

Cytec FM300-2M 

Film Adhesive 

0.25 mm nominal thickness 

Hysol EA9361 

Paste Adhesive 

0.5 mm nominal thickness 

Bonded  (5)  (3) 

Bolted  (4) 

Hybrid Bonded-Bolted  (4)  (3) 

 

10.3 Specimen Geometry & Manufacture 

 

The specimen geometry that was tested is shown in Figure 10.1. As illustrated, the 

grip ends of the adherends were fitted with tabs. 

 

 

 

Figure 10.1: Quasi-static strength specimen geometry(dimensions in mm) 
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Both the adherends and the tabs were made from a laminated composite plate with 

a layup of [45/0/-45/90]4s. This laminate was manufactured from Cycom 

T650/5320 unidirectional pre-impregnated CFRP tape. The manufacturer’s 

recommended out-of-autoclave cure process was used, resulting in a measured 

post-cure laminate thickness of 4.42 ± 0.07 mm.  A diamond-tipped saw was used 

to cut the adherends and tabs from the plate, following which the laminate quality 

was verified using microscopic void analysis of a number of samples obtained 

during the cutting process. Subsequently, the joints were manufactured. 

 To manufacture the bonded joints, the mold described in Chapter 3 was used 

(see Figure 3.6), allowing for precise control of the adherend alignment, overlap 

length and bondline thickness (for the paste adhesive). The latter two variables 

were controlled using a set of specially manufactured shims/spacers placed inside 

the mold. The bonding surfaces of the adherends and tabs were first de-greased 

with acetone and subsequently abraded using a sand blaster. Any dust generated 

was removed using compressed air. The adherends were hence bonded/assembled 

in the mold. Hysol EA9361, being a two-part paste adhesive, required mixing prior 

to application. This mixing was performed using a Thinky ARE-310 centrifugal mixer 

in order to achieve good uniformity and avoid entrapped air bubbles. The EA9361 

joints were cured at 80°C for 60 minutes, while the FM300-2M joints were cured at 

121°C for 90 minutes, following the manufacturers’ specifications. Excess adhesive 

that spilled from the joints during cure was carefully removed using a hack saw and 

sanded down with fine grit sandpaper to appear flush with the joint. The average 

EA9361 bondline thickness was measured post-cure to be 0.460 ± 0.028 mm. This 

value was obtained by measuring the adherend thickness in the overlap region prior 

to bonding, and then measuring the bonded sandwich post-cure. The adhesive 

thickness was taken to be the difference between these two measurements. The 

closeness of the measured value to the desired nominal adhesive thickness of 0.5 

mm and low scatter confirms the ability of the developed manufacturing system to 

produce controlled, consistent thickness bonds for the EA9361 adhesive. The 

FM300-2M bondline thickness was accurately controlled without the use of shims 

since this adhesive contains an embedded scrim cloth. It was thus simply assumed 

to be equal to the manufacturer’s stated nominal thickness of 0.25 mm. 
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Figure 10.2: Example bonded joint and hybrid joint specimens 

 

The HBB joints were created by first manufacturing the underlying bonded joint, 

followed by drilling an 8 mm hole at the center of the joint overlap using a CNC 

drill. The Corodrill 854 composite-specific drill bit from Chapter 3 was again used 

for optimal hole quality. The diametric tolerance of the hole was confirmed to be 

within 25.4 microns using a set of go/no-go gauges. The bolted joints were 

manufactured using the same process as the HBB joints, except that the overlap 

region was evidently not bonded. For both the bolted and hybrid joints, the bolts 

that were used were Misumi GDMSB8-13-F10-M8 steel bolts. DIN-125 flat washers 

were placed on either side of the joint between the bolthead and metric M8 heavy 

hex nut, as is visible in Figure 10.2. The nut was finger tightened prior to 

installation of the joint in the testing machine. 

 

10.4 Test Procedure 

 

The joints were tested under quasi-static tensile conditions at a displacement rate 

of 0.006 mm/s, consistent with the displacement rate at which the EA9361 

adhesive was characterized. A 100 kN MTS tensile testing machine was used for 

this purpose. The following test procedure was used: 
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Box 10.1: Test procedure 

 

Test Procedure 

 

1) Install joint in lower grip and align upper grip 

2) Zero load cell with top grip open 

3) Clamp specimen at a pressure of 1750 kPsi 

4) Adjust applied load to remove any tensile/compressive load 

imparted on the specimen due to clamping 

5) Zero the displacement readout 

6) Start test in displacement control 

7) Remove failed specimen 

 

During testing, the load and crosshead displacement were recorded. All tests were 

performed under RTD conditions. To minimize the effect of external influences, the 

tests for either type of adhesive were always performed within the same day. 

 

10.5 Results & Discussion 

10.5.1 Stiffness 

 

Figure 10.3 shows the load-displacement curves for the EA9361 bonded and hybrid 

joints and the bolted joints. It is evident that the stiffness of the bonded and hybrid 

joints is initially similar. At a load of around 5 kN, the stiffness of the bonded joint 

significantly decreases. This is explained by plasticity spreading throughout the 

bonded area. When this happens, the adhesive loses much of its resistance to 

additional deformation, resulting in the observed stiffness decrease. The HBB joint 

stiffness also decreases at the same load; however, it remains greater than those 

of both the bonded joint and the bolted joint. This is explained as follows. Once the 

adhesive has plasticized, the HBB joint compliance—like the bonded joint—starts to 

significantly increase. However, the bolt-hole clearance soon becomes taken up and 
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most of the additional load begins to be transferred through the bolt. The hybrid 

joint stiffness hence becomes equal to that of the bolted joint in addition to the 

residual bonded joint stiffness.  

 The bolted joint stiffness is initially lower than that of the unyielded bonded 

joint and is quasi-linear up to a load of around 16 kN. At this point, the composite 

begins to sustain damage and as this damage increases, the bolted joint stiffness 

gradually decreases with increasing load. 

 

 

Figure 10.3: EA9361 load-displacement curves 

 

The FM300-2M bonded and hybrid joints load-displacement curves are shown in 

Figure 10.4. Between 0 kN to 12 kN of applied load, the HBB joint and bonded joint 

exhibit identical stiffness—which is significantly greater than that of the bolted 

joint—and the load displacement curves are virtually linear. The distinct bilinear 

load-displacement behaviour of the EA9361 joints is not observed. At a load of 

around 12 kN, the adhesive fractures, leading to failure of the bonded joint and a 

discontinuous, drastic reduction in the load and stiffness of the HBB joint. The latter 

is able to continue sustaining load following the adhesive fracture with identical 

stiffness to the bolted joint. 

 The initial joint stiffness, calculated as the average slope of the load-

displacement curves between 0 and 5 kN, is compared in detail in Figure 10.5 for 
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the joints containing adhesive. It is clear that the choice of adhesive system 

(type/thickness) has an important effect on both the hybrid and bonded joint 

stiffness, with the FM300-2M joints being significantly stiffer than the EA9361 

joints. As remarked before, it is clear that for both types of adhesive the hybrid and 

bonded joints initially have very similar stiffness. This indicates that the adhesive is 

the dominant load transfer mechanism in this initial region. The HBB stiffness is in 

each case slightly lower than the bonded stiffness, which is explained by the 

smaller bonded region due to the hole in these joints, although the difference is not 

statistically significant. 

 

 

 

Figure 10.4: FM300-2M load-displacement curves 
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Figure 10.5: Comparison of joint stiffness in 0-5 kN range 

 

10.5.2 Strength 

 

The ultimate strengths of the various joint configurations are compared in Figure 

10.6. In addition, the 2% yield strengths for the HBB and bolted joints are also 

shown. The relevant numerical values are presented in Table 10.2. For both the 

EA9361 and FM300-2M joints, it is evident that the bonded joint was weakest. For 

EA9361, the HBB joint and bolted joints have statistically similar ultimate strengths. 

Meanwhile, for FM300-2M the HBB joint actually has a significantly lower ultimate 

strength than the bolted joint. The yield strengths also show an interesting trend. 

For the EA9361 joints, the 2% offset yield strength of the HBB joint (corresponding 

to onset of damage in the composite) is 18% greater than that of the bolted joint. 

In other words, the adhesive delays the onset of damage in the composite to a load 

level that is 18% greater than in a joint without adhesive. Meanwhile, when 

comparing the yield strength of the FM300-2M joints, it can be seen that the 

damage onset in the hybrid joint was not affected compared to that of the bolted 

joint. 
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Figure 10.6: Comparison of joint strengths 

 

Table 10.2: Joint ultimate strength data (N) 

  EA9361 FM300-2M 

  Bonded Bolted Hybrid Bonded Bolted Hybrid 

  12537 23234 23657 12731 23234 19328 

  13855 23136 24001 12465 23136 21120 

  12919 23754 24241 12523 23754 20916 

    24360  13151 24360 21612 

       12708     

Mean 13104 23621 23966 12716 23621 20744 

Std. Dev. 678 562 293 269 562 988 
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10.5.3 Failure Modes 

  

Depending on the adhesive system, the bonded joints either experienced brittle 

fracture or ductile fracture. The FM300-2M joint fracture was more brittle, while the 

EA9361 joints demonstrated a more ductile fracture. This is clear from Figures 

10.4-10.5; the displacement to failure for the EA9361 joints is approximately twice 

that of the FM300-2M joints. Furthermore, the load-displacement curves for the 

FM300-2M bonded joints show a sharp peak, while those for EA9361 have a slight 

rounding at the top. In both cases, however, the damage progression occurs very 

rapidly. The failure surfaces of the two types of bonded joint are shown in Figure 

10.7. As desired, all of the tested specimens failed cohesively (inside the bondline), 

demonstrating that a good bond with the adherends was achieved. The striations of 

the adhesive on the EA9361 failure surface provide further evidence of ductile 

failure. 

 

 

(a) EA9361 bonded joint 

  

(b) FM300-2M bonded joint 

 

Figure 10.7: Bonded joint failure surfaces 
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The bolted joint failure was a classical progressive net-section failure (Figure 10.8). 

As the joint loading was increased, the high hoop stresses at the hole boundary led 

to shear and tensile failures in critical plies along the net-section plane. This caused 

the joint to progressively lose stiffness. Although significant out-of-plane rotation of 

the overlap occurred during loading, delamination of the adherends was only 

observed to occur near the end of the test once the applied load had already 

peaked and thus would not have affected the ultimate joint strength. The finger 

tightening of the bolt is likely to have helped in suppressing this failure mode. 

 

  

                  (a) Plane View           (b) Side View 

 

Figure 10.8: Bolted joint failure mode 

 

The HBB joint failure mode was a combination of the bonded joint and bolted joint 

failure modes. In each case, the adhesive failed first. In the case of the FM300-2M 

hybrid joint, this was succeeded by near instantaneous separation of the entire 

bondline. It is hypothesized that this sudden, energetic and brittle event led to 

significant inertial forces being reacted by the bolt during the transition in load 

transfer mechanism. This is likely to have caused damage in the composite, and 

would explain why the FM300-2M hybrid joint ultimate strength was found to be 

12% weaker than the bolted joint. The final failure mode was again net-section 

failure of the composite adherend, as shown in Figure 10.9. 
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                  (a) Plane View           (b) Side View 

 

Figure 10.9: FM300-2M Hybrid joint failure mode 

 

The EA9361 hybrid joint failure was slightly different, which is likely tied to the 

ductile failure that was observed for the EA9361 bonded joint. During the hybrid 

tests, it was visually observed that a crack started in the adhesive at the overlap 

edge. This roughly coincided with the loss of linearity in the second linear region of 

the load-displacement curve. Thus, it is hypothesized that the more ductile nature 

of the EA9361 failure allowed load to be transferred more gradually to the bolt, with 

the adhesive continuing to transfer a small amount of load until final failure. 
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                  (a) Plane View           (b) Side View 

 

Figure 10.10: EA9361 Hybrid joint failure mode 

 

10.5.4 Energy Absorption 

 

One suggested advantage of HBB joints is that they may increase the amount of 

energy that the joint is able to dissipate during fracture, which could potentially be 

important for, for example, crashworthiness. The energy absorbed by the joint is 

the area underneath the load-displacement curves shown in Figures 10.3-10.4. 

Importantly, no studies on HBB composite joints have so far addressed this aspect 

of the technology. The results of this analysis considering quasi-static loading are 

shown in Figure 10.11 below. 

 Some important observations can be made from Figure 10.11.  First, the 

brittle (FM300-2M) bonded joint dissipates the least energy by a considerable 

margin. The ductile (EA9361) bonded joint dissipates 2.99 times as much energy as 

the brittle joint, despite the strengths of these joints being almost identical (see 

section 10.5.3).  The bolted and hybrid joints both dissipate substantially more 

energy during fracture than either of the bonded joints. 
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Figure 10.11: Comparison of energy absorption for different joint types 

 

 Examination of the bolted and hybrid joint fracture energies reveals a 

somewhat surprising result: the hybrid joint dissipates significantly less energy 

during fracture than the bolted joint for both EA9361 and FM300-2M adhesives. 

This is an important experimental observation, because it proves beyond a doubt 

that hybrid bonding-bolting is not necessarily the optimal solution with regards to 

energy absorption. While it is better than just bonding, it can be significantly worse 

than plain bolting. 

 A proposed explanation for this requires examination of Figures 10.3 and 

10.4. First, for the EA9361 hybrid joint, the adhesive failure is delayed to a much 

higher load than in the EA9361 bonded joint. In fact, adhesive failure occurs at a 

load slightly above the ultimate strength of the plain bolted joint. Thus, once the 

adhesive fractures, the underlying bolted joint cannot sustain the load that is 

suddenly transferred to it by itself and fractures catastrophically and suddenly. The 

gradual, progressive failure that is experienced by the bolted joint does not occur 

and thus less energy is dissipated.  

 For the FM300-2M hybrid joint, the mechanism is slightly different. In this 

joint, the adhesive fails at a load level that the bolted joint by itself is able to 

sustain. However, during the abrupt adhesive failure, it is hypothesized that 
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significant dynamic loads are exerted on the composite as the compliance of the 

joint suddenly drastically changes, leading to sudden, temporary acceleration of the 

components. This may lead to damage in the composite, leading to the reduced 

residual strength of these joints shown in Table 10.2. Thus, there is again reduced 

scope for progressive failure, leading to decreased energy absorption. 

 

10.6 Comparison with Mathematical Model 

 

An analysis was performed of the bonded, bolted and HBB experimental 

configurations for the EA9361 adhesive, since detailed material properties were 

available for this adhesive (these were obtained by a master’s student at McGill 

University in the scope of the overarching research project of this thesis [79]). A 

bilinear model was fit to the detailed tensile stress-strain data, as required by the J2 

material model in the meshless model. The detailed curve and bilinear fit are both 

plotted in Figure 10.12. The parameters of the bilinear fit are 𝐸 = 370.3 MPa, 𝐻 = 

30 MPa. It can be seen that this provides an excellent approximation of the true 

stress-strain curve. 

 

 

Figure 10.12: Fit of EA9361 adhesive true stress-strain curve. Experimental data from [79]. 
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The ultimate equivalent von Mises strain, 𝜀𝑢𝑙𝑡, for EA9361 adhesive was determined 

from thick adherend shear test (TAST) results that were independently carried out 

by colleagues at Carleton University and shared in the context of the overarching 

research project [117]. These results are shown in Figure 10.13 below. 

 

 

Figure 10.13: Experimental TAST measurements of EA9361 adhesive [117] 

 

Based on these independently measured results, 𝜀𝑢𝑙𝑡—the average 𝜀𝑒𝑞𝑣 at failure 

(calculated using Eqn. (5.34))—was determined as 0.725. Next, the characteristic 

distance of the composite adherend was obtained by means of an analysis of 

manufacturer supplied notched specimen data. Based on an in-plane analysis, the 

characteristic distance was determined as 1.40 mm for a hole diameter of 6.35 

mm. Since the bolt used in the experiment had an 8 mm diameter hole, this 

characteristic distance was linearly scaled as a first approximation, giving a 

characteristic distance of 1.76 mm. Finally, since a low clamp-up load was applied 

during the experiment, the bolthead spring constant 𝑘𝜃 had to be determined. This 

was done on the basis of the bolted joint experimental results, such that the correct 

slope was obtained for the bolted joint load-displacement curve relative to the slope 

of the bonded joint. This was determined as 𝑘𝜃 = 0.5e+3 N/rad, giving a ratio of 

adhesive-to-bolted-joint slopes of 1.36, compared to the experimental ratio of 1.41. 
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 The results of the analyses are shown in Figure 10.14-a. Sample 

experimental results are shown in Figure 10.14-b for comparison. The model and 

experimental curves are not directly compared on the same plot. This is because 

the experimental displacement is that of the crosshead and is therefore not directly 

comparable with the joint displacement predicted by the meshless model (since 

crosshead displacement includes machine displacement, grip displacement, etc.). 

The stiffness comparison is thus qualitative. Comparing the two curves, it can be 

seen that the meshless model correctly predicts that the bonded and HBB joints 

initially have identical stiffness. At around 5 kN, this stiffness reduces. This is also 

observed in the experiment. The bonded joint stiffness reduces to less than the 

bolted joint, while the HBB stiffness remains greater than both that of the 

underlying joints. 

 At a load of around 15 kN, the bolted joint curve gradient decreases. This 

indicates the onset of damage in the laminate. Progressive damage is not 

accounted for in the meshless model; however, the yield limit appears to be well 

approximated at around 15 kN. 

 The failure initiation loads for the various joint types are compared in Figure 

10.15. It can be seen that a very good prediction is achieved, in particular for the 

bonded and HBB joints. It is noted that the safety factor for the HBB joint laminates 

at adhesive failure was predicted as 1.31. Therefore, there was likely no in-plane 

damage in the composite adherend prior to adhesive rupture. This is important, 

because it suggests that the hybrid joint can be safely loaded to a higher level than 

the bolted joint without sustaining damage in the composite adherends. The bolted 

joint yield prediction with the experimental 2% offset yield strength also shows 

good agreement, especially considering the many simplifications in the analysis. 
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(a) Meshless model prediction 

 

        

 

(b) Experimental measurements 

 

Figure 10.14: Comparison between predicted and measured EA9361 joint behaviour 
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Figure 10.15: Comparison of predicted and experimental failure initiation loads 

 

10.7 Conclusions 

 

Based on the experiment presented in this chapter, the following conclusions can be 

drawn: 

 

1) The adhesive system (type/thickness) has a major effect on both the 

absolute and relative stiffness of bonded and hybrid joints. 

 

2) The adhesive system (type/thickness) has a major effect on the relative 

strength of bonded and hybrid joints. 

 

3) When a ductile, flexible adhesive system is used, load is shared between the 

adhesive and bolted joint. This can greatly delay adhesive failure compared 

to a bonded joint and also delay the onset of damage in the composite 

adherends compared to a bolted joint. This is not the case when a brittle, 

stiff adhesive system is used. 
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4) While the ultimate load was not improved compared to the bolted joint for 

either the FM300-2M or EA9361 hybrids in the present experiment, it is 

possible to extrapolate from the experimental results or use the hybrid joint 

model to predict that if an adhesive with a higher strain-to-failure than 

EA9361 (but with otherwise similar properties) and/or a thicker bondline 

were to be used, the hybrid joint strength would eventually surpass the 

bolted joint strength. 

 

5) The energy dissipated by a hybrid joint is not necessarily greater than that 

which would be dissipated by the underlying bolted joint by itself, and may in 

fact be significantly less. However, the dissipated energy would generally be 

expected to be greater than that of the underlying bonded joint by itself. 

 

The hypothesis that the adhesive system has an effect on the hybrid joint 

performance is clearly supported by the conclusions presented in this section. In 

addition, the comparison of the experimental results and model predictions 

demonstrates that, despite its simplicity, the meshless model is able to provide 

a good basic prediction of the response and strength of bonded and hybrid 

joints.
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Chapter 11: Illustrative Solutions 

 

11.1 Insights into the Plastic Deformation Process 

 

When bonded joints and HBB joints are loaded in uniaxial tension, they experience 

adhesive stress peaks near the overlap edges. At a critical load level, these high 

stresses cause the adhesive to locally yield (plasticize). As the load is further 

increased, the plasticity spreads through the overlap region (assuming sufficient 

adhesive ductility to allow this process to occur). An analysis was performed of both 

a bonded joint and a HBB joint loaded in uniaxial tension, to show how the plastic 

zone starts and develops during loading for both types of joint. The geometry and 

materials of the joints of Chapter 10 using EA9361 adhesive were used in the 

analysis. 

 As can be seen in Figure 11.1, in both cases the onset of plasticity occurs on 

the overlap edges. It occurs slightly earlier for the hybrid joint than for the bonded 

joint, which is logical since the average stress in the hybrid joint adhesive is slightly 

higher. This is because this joint has a smaller bonded area due to the hole cut-out 

in the overlap. As the load is increased, the plastic region grows from the edges 

inwards for both types of joint. Eventually, the entire bonded region becomes 

plastic. Whether the condition of full overlap plasticity can be attained depends 

critically on the ductility of the adhesive. For brittle adhesives, the adhesive will fail 

at very low strains and small yielded regions, such as those shown in Figures 11.1-

a,b. 
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(a) Bonded (load = 2.25 kN) (b) Hybrid (load = 2.25 kN) 

  

(c) Bonded (load = 3 kN) (d) Hybrid (load = 3 kN) 

  

(e) Bonded (load = 3.75 kN) (f) Hybrid (load = 3.75 kN) 

 

Figure 11.1: Evolution of plastic zone of adhesive during loading. Plastic regions in green. 
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It was previously shown in Chapter 4 that plasticity is very important in transferring 

load to the bolt. This is because when the overlap region has fully plasticized, as 

shown in Figures 11.1-e,f, the bonded joint stiffness reduces significantly.  This 

renders the bonded joint stiffness more similar to that of the bolted joint and allows 

load sharing to occur. As the joint continues to deform following plasticization of the 

overlap, the strains in the bonded joint increase rapidly until the critical equivalent 

failure strain is reached. However, in the hybrid joint, the bolt impedes the 

adhesive deformation and increases the load at which the critical failure strain is 

reached. Again, it must be kept in mind that this discussion assumes the use of a 

ductile adhesive. 

 

Figure 11.2: Strain components along adhesive centerline in bonded joint and hybrid joint, 

applied tensile load = 3 kN. Note that the curves for 𝛾13 (plastic) and 𝜀33 (plastic) nearly 

coincide. 
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Figures 11.2 and 11.3 show the effect of hybridizing a bonded joint on the adhesive 

strain (which is key in ductile adhesive failure), at a 3 kN load and a 7.5 kN load, 

respectively. As shown in Figure 11.2, at a load of 3 kN the peel and shear strains 

of the two joints are very similar. By considering the forces in the bolt, it is found 

that at this stage the bolt does not yet carry any load. The plastic strains, shown 

only for the hybrid joint, are clustered around the zero strain axis. Almost all of the 

developed strain is thus elastic.  

 

Figure 11.3: Strain components along adhesive centerline in bonded joint and hybrid joint, 

applied tensile load = 7.5 kN 

 

Next, the higher load of 7.5 kN is considered. The adhesive centerline strains are 

again shown in Figure 11.3. At this load level, the peel strains between the bonded 
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and hybrid joints are still almost identical. However, the shear strains are vastly 

different. The bolt, which now carries 29.2% of the overall applied load, has 

successfully reduced the hybrid joint compliance compared to the bonded joint, and 

limited the peak adhesive shear strain to 0.282 compared to 0.536 for the bonded 

joint. It is noted that all peel strains are relatively small and are clustered together 

near the zero strain axis, and may thus again be difficult to distinguish. 

 The analysis demonstrates that the addition of the bolt in the studied joint is 

useful in delaying adhesive failure to a much higher load, as was experimentally 

observed and described in Chapter 10. It is noteworthy that most of the strain is 

plastic, as expected (the elastic strains being essentially the same as they were at 

the onset of plasticity in Figure 11.2).  Several salient insights are gleaned from this 

illustrative solution: 

 

1) Plasticity starts on the overlap edges and grows inwards for both bonded and 

HBB lap joints in uniaxial tension. 

 

2) The shear strain is the dominant component of strain in both bonded and 

hybrid bonded-bolted lap joints in uniaxial tension. All other components of 

strain are typically much smaller. Plastic strains account for a large 

proportion of the total strain at high load levels. 

 

3) In a hybrid joint with a ductile adhesive and thick enough bondline (such that 

load sharing may occur) the bolt restricts the developed shear strains in the 

adhesive and thus helps to increase the load at which failure of the adhesive 

occurs. 

 

4) Addition of the bolt, without any clamp-up applied, has little effect on the 

developed peel strains compared to a purely bonded joint. 
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11.2 Effect of Overlap Length on Joint Strength 

 

The effect of varying the overlap length on the strength of HBB-, bonded-, and 

bolted joints was analyzed for the EA9361 joint configuration of Chapter 10.  The 

results of this study are shown in Figure 11.4: this figure plots both the adhesive 

and adherend failure loads for various overlap lengths. Adhesive yielding is not 

counted as failure (only adhesive crack initiation is considered to be failure). 

Evidently, the lower of either adhesive or adherend initiation corresponds to the 

actual initiation load of the joint. 

 

Figure 11.4: Damage initiation load versus overlap length 

 

 The analysis predicts that the bolted joint damage initiation load is relatively 

unaffected by the overlap length. There is actually a very slight decrease between 

the strengths at short overlap length and medium-long overlap length. The near 

constant initiation strength prediction is sensible; since the joint is a single-bolt 

joint, all of the load must be reacted at the bolt hole (whose size does not change). 
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The average bearing stress and bearing reaction load are thus constant between 

the different overlap lengths. In addition, since the joint width does not change, the 

average net-section stress is also constant. The difference is that the detailed 

adhesive stress field around the hole does change as more material is added behind 

the hole. The effect of this is to reduce the hoop stress concentration in the hole 

net-section plane and increase the size and magnitude of the compressive stress 

region behind the hole. This is clearly shown in Figures 11.5-11.6. 

 

Figure 11.5: N1 stress resultant (N/m) field in top laminate of bolted joint with 18 mm 

overlap length, 15 kN of applied load.  Red circle indicates failure initiation location, 

corresponding to a cleavage or shear-out failure mode 

 

Figure 11.6: N1 stress resultant (N/m) field in top laminate of bolted joint with 84 mm 

overlap length, 15 kN of applied load.  Red circle indicates failure initiation location, 

corresponding to a bearing failure mode 

 

Importantly, this is predicted to cause a change in the failure mode, from 

cleavage/shear-out (as seen in the experiment in Chapter 10) to a bearing failure 

at longer overlap lengths. 

 Next, considering the bonded joint, the adhesive is the weak link across the 

entire range of overlap lengths studied. Again, this is a plausible prediction, since in 



11. Illustrative Solutions 

199 

 

a bonded joint there are no major stress concentrations in the adherends and the 

studied adherends have a significant thickness of nearly 5 mm (the reader should 

of course keep in mind that, as mentioned previously, the analysis does not 

consider out-of-plane failure of the adherend). Considering the thickness of this 

laminate, this joint might in a real design situation be a potential candidate for a 

stepped-lap design, which could reduce the adhesive stress/strain concentrations 

and significantly increase the bonded joint strength, potentially to a level 

approaching the adherend strength. 

 Finally, the effect of overlap length on the HBB joint is considered. 

Interestingly, it is predicted that the HBB joint, for the joint configuration and 

adhesive thickness considered, will have damage initiation at a higher load than 

both the bonded joint and the bolted joint across the entire range of overlap 

lengths considered. The largest absolute strength advantage over both of the 

underlying joint simultaneously is observed at a relative short overlap length of 36 

mm (𝐸/𝐷 = 2.25). It is predicted that the hybrid joint will, for this overlap length, 

carry 26 kN of load at failure initiation, compared to only around 16 kN for the 

underlying joints separately. 

 

 

(a) Bolted joint (max. value = 3.52e+6) (b) Hybrid joint (max. value = 2.55e+6) 

 

Figure 11.7: N1 stress resultant in top laminate of bolted joint and HBB joint, 15 kN of 

applied load 

 

 The reason for this predicted strength improvement is elucidated in Figures 

11.7-11.8, using the joints with 18 mm overlap length as an example. In Figure 

11.7, the adherend stress resultants in the bolted joint and the HBB joint are 
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compared. As can be seen, the stress concentration in the HBB joint is significantly 

reduced, by -27.6% compared to the bolted joint. This is a result of the adhesive 

transferring about one-third of the overall load (5.76 kN), thus relieving the hole 

contact stresses considerably and improving the adherend strength of the HBB joint 

compared to the bolted joint. Meanwhile, Figure 11.8 compares the adhesive 

equivalent von Mises strains in the bonded joint and the HBB joint. This time, it is 

evident that the HBB joint develops significantly smaller strains compared to the 

bonded joint. This is the result of the bolt restricting excessive deformation of the 

adhesive, and explains the improved adhesive strength of the HBB compared to the 

bonded joint. 

 

 

(a) Bonded joint (max. value = 1.58) (b) Hybrid joint (max. value = 0.552) 

 

Figure 11.8: Equivalent von Mises strain in the adhesive of bonded joint and HBB joint, 15 

kN of applied load 

 

 Another important observation from Figure 11.6 is that as the overlap length 

increases, the benefit of hybridization on the adhesive failure initiation load 

diminishes. Indeed, at an overlap length of 112 mm, the adhesive failure initiation 

loads of the bonded joint and HBB joint are almost identical. The reason for this is 

hypothesized to be as follows, supported by the analysis. In single-lap bonded 
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joints with a long adhesive overlap, there is a significant strain gradient in the 

overlap, which increases with overlap length. In other words, significant strain 

develops on the overlap edges while there is much less strain at the center of the 

bonded region. Meanwhile, in the studied joint design, the bolt is located at the 

center of the overlap. It is recalled that the adhesive strain is directly related to the 

relative displacement of the adherends, and thus to achieve load transfer and the 

benefits of hybridization, there must be significant strain at the bolt location. 

However, when this occurs in a joint with a long overlap, the strain at the overlap 

edges has already become so high that it is approaching failure. Thus, only very 

limited load transfer can be achieved prior to adhesive failure. When the overlap 

length becomes long enough, the adhesive will actually fail before any load is 

transferred to the bolt at all.  

 The proposed hypothesis is illustrated with an example in Figure 11.9. 

Plotted is the normalized total adhesive shear strain along the adhesive centerline 

for a hybrid joint with 56 mm overlap and one with a 112 mm overlap. Both joints 

are loaded with the same average adhesive stress, i.e., 𝐹 𝐴𝑎⁄ = 8 MPa. It is clear 

that the strain distribution in the long overlap is less uniform than in the shorter 

overlap. In the 112 mm overlap, the strain at the overlap edges is 2.4 times 

greater than at the bolt. In the 56 mm overlap, this factor is only around 1.6. These 

figures strongly support the proposed explanation for why there is a diminished 

benefit to hybridizing for very long overlap lengths. Importantly, the observed 

behaviour also suggests that by placing bolts near the overlap edges where the 

strains are relatively high, instead of at the center where they are low, further 

improvements may be achieved in joints with long overlaps. The salient conclusions 

that can be drawn from the present illustrated solution are thus: 

 

1) Hybridization can, for joints with a flexible, ductile adhesive and relatively 

thick bondline, significantly delay quasi-static failure initiation across a range 

of overlap lengths. 

 

2) This beneficial effect is decreased at long overlap lengths, due to significant 

adhesive strain gradients that occur in joints with long overlaps. This causes 
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adhesive failure to occur before any substantial load can be transferred to a 

centrally located bolt. 

 

3) Placement of a bolt nearer the overlap edges rather than centrally, in joints 

with long overlaps, is likely to increase bolt load transfer and thereby further 

delay adhesive failure initiation. 

 

Figure 11.9: Effect of overlap length 𝐿𝑎 on the normalized strain distribution along the 

adhesive centerline 

 

11.3 Multi-Bolt Joints 

 

In this illustrative solution, the effect of adding two bolts into a moderately long 

overlap is compared with adding only a single, centrally located bolt. Considering 

the example of section 11.2, it is likely that more load will be transferred to the 

bolts using such an approach, and adhesive failure will be delayed. The same 

geometry, materials and loading as example 11.2 were analyzed for a 56 mm 

overlap. The two bolts were installed at 1/3 and 2/3 of the distance along the 

overlap centerline, respectively (𝐸/𝐷 = 2.33), while the 1-bolt joint had a centrally 

located bolt. The predicted load transferred by the bolts is shown in Figure 11.10. It 
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is clear that, as suspected, the 2-bolt joint experiences a far greater level of bolt 

load transfer than the 1-bolt joint. 

 

Figure 11.10: Bolt load in 1-bolt and 2-bolt hybrid joint 

 

Figure 11.11: Stress resultants along the hole boundaries of the top plate for 1-bolt and 2-

bolt hybrid joints at 25 kN of applied load 
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Figure 11.11 shows the laminate stress resultants along the hole boundaries of the 

top plate for both joints at 25 kN of applied load. It is clear that the radial stresses 

are highest in the 1-bolt joint, despite this joint experiencing a much lower overall 

bolt load. This is logical, since in the 2-bolt joint the load is reacted on two separate 

bolt holes, resulting in lower contact stresses. Note that in the 2-bolt joint, the left 

hole (hole 1) has significantly higher peak hoop stresses than the right hole (hole 

2). 

 

(a) 1-Bolt joint 

 

(b) 2-Bolt joint 

 

Figure 11.12: Adhesive equivalent von Mises strain in single-bolt and double-bolt hybrid 

joints at 25 kN of applied load 

 

The equivalent von Mises strains in the overlap region for both joints are also 

compared in Figure 11.12, at the same load of 25 kN. It is clear that the strains are 

higher in the 1-bolt joint, with a peak adhesive equivalent von Mises strain of 

around 0.55 versus around 0.4 for the 2-bolt joint. An additional interesting feature 

of the strain field in these two joints is that the 2-bolt joint has a large region of 
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relatively low strain between the bolts. In the 1-bolt joint, the entire overlap region 

is highly strained. Nevertheless, the 2-bolt joint has a higher bolt-load transfer than 

the 1-bolt joint. The low strain region could prove to be beneficial in joint design, 

conceivably improving the fatigue life and thus durability of the joint when 

subjected to cyclic loading. 

 The load-displacement behaviour of the two joints is compared in Figure 

11.13. It is evident that the 2-bolt joint is significantly stiffer than the 1-bolt joint. 

This also explains why this joint has a higher bolt load transfer. 

 

Figure 11.13: Comparison of single-bolt and double-bolt load displacement curves 

 

 Finally, the predicted strengths of the two joints are compared in Table 11.1. 

As anticipated, the strength of the 2-bolt joint at failure initiation is significantly 

greater. It is predicted that joint failure will occur at 41443 N instead of 32062 N 

for the single bolt joint, a 29% strength improvement. This strength surpasses even 

the strength of the HBB joint with a 112 mm overlap from section 11.2, while 

requiring only 56 mm of overlap. The adherend initiation load is lowered by only 

2%, being critical at hole 1. This load remains well above the adhesive initiation 

load. The similarity in the adherend initiation is explained by Figure 11.11; the hoop 

stress resultants of the laminates of both joints at hole 1 at a 45° angle are almost 
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identical, causing both to have the first damage initiation in a shear mode at a 

similar load level. 

 

Table 11.1: Comparison of failure initiation loads of 1-bolt and 2-bolt hybrid joints 

Joint Type Adherend Initiation 

(kN) 

Adhesive Initiation 

(kN) 

Overall Initiation 

Strength (kN) 

1-Bolt Hybrid 48298 32062 32062 

2-Bolt Hybrid 47440 (hole 1) 41443 41443 

 

11.4 Effect of Bolt-Hole Clearance 

 

To demonstrate the effect of bolt-hole clearance on an active HBB joint, three cases 

are considered. In each case, the joint geometry and materials correspond to those 

of the EA9361 HBB joint from Chapter 10. A 40 micron interference fit, 25.4 micron 

sliding fit (representative of high precision drilling) and 100 micron running fit 

(representative of sloppy drilling by aerospace industry standards) were analyzed. 

The predicted bolt load transfer for all three clearances is compared in Figure 

11.14. 

 This plot confirms that the bolt load transfer is slightly delayed by having a 

larger bolt-hole clearance compared to a smaller clearance. This is likely to 

decrease the joint strength somewhat; a strength analysis was thus also 

performed. From this analysis, it was found that the adhesive initiation loads are 

critical for both clearance fit joints, at 21.5 kN and 23.8 kN, respectively. The large 

clearance is thus predicted to reduce the joint strength by 10.6% compared to a 

more controlled clearance, which is a considerable impact. Nevertheless, even with 

a sloppy hole tolerance the hybrid is still significantly stronger than the underlying 

bonded joint (the latter has a strength of only 12.6 kN). 
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Figure 11.14: Effect of bolt-hole clearance on bolt load transfer. Note that a 40 micron 

interference corresponds to negative clearance of 20 microns. Similarly for other 

interference values 

 

 

 

Figure 11.15: Adherend N1 stress resultant field (N/m) due to 40 micron bolt-hole 

interference only (no external loading) 

 

Finally, the effect of interference is also considered. To this end, a bolt-hole 

interference of 0.5% (40 microns) was applied to the hole. The adherend N1 stress 

resultant is plotted in Figure 11.15. As can be seen, the interference creates an 

initial stress state in the composite adherend. The small amount of interference also 

creates stresses and strains in the adhesive, but not enough to cause plasticity. 

 Figure 11.14, which plots the bolt load transfer for the three cases, shows 
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that the joint with the interference fit actually experiences a similar level of bolt 

load at low loads to the low clearance hole. However, the interference results in a 

stiffer bolted joint, which is logical as it can effectively be considered that the 

laminate is “gripping” the bolt shank as a result of the interference. This leads to a 

higher level of bolt load transfer and lower adhesive strains. This effect is clearly 

visible in Figure 11.14 and is reflected in the higher slope of the interference joint 

to that of the clearance joints. 

 Based on another strength analysis, it was found that failure of the 

interference fit joint was predicted to take place due to adhesive crack initiation at 

a load of 26.8 kN, representing a 12.7% improvement compared to the high 

precision hole and a 24.9% improvement compared to the sloppy hole. Salient 

observations from this illustrative example are thus: 

 

1) As clearances increase, bolt load transfer is delayed. This leads to greater 

adhesive strains and can significantly reduce the joint strength. In a HBB 

joint clearances should thus be minimized. 

 

2) Bolt-hole interference causes the opposite effect and can improve the joint 

strength by reducing joint compliance and increasing joint stiffness, thus 

limiting the adhesive strain at a given load. 

 

3) Nevertheless, even with sloppy clearances, significant strength 

improvements compared to the underlying bonded joint can still be achieved. 

 

11.5 Effect of Bolt Clamp-Up 

 

The effect of bolt clamp-up on adhesive peel stress in a HBB joint is studied in this 

final illustrative solution. A 4 kN clamp-up load is applied to the bolt prior to the 

application of a tensile load to the joint. The peel stress field in the adhesive 

following bolt clamp-up is shown in Figure 11.16-a. As can be seen, in the region 

immediately underneath the bolthead, there is a negative peel state of 
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approximately 8 MPa. This stress rapidly increases at the bolthead edge and returns 

to approximately zero in the far-field (unclamped region away from the bolt). 

  

      

 (a) 0 kN applied tensile load          (b) 15 kN applied tensile load 

 

Figure 11.16: Peel stress (Pa) in adhesive of HBB joint, 4 kN clamp-up load 

 

Following the application of a 15 kN tensile load, the peel stress state shown in 

Figure 11.16-b is obtained. The usual peel stress peaks at the overlap edges are 

clearly visible. However, in the washer region a compressive stress state is 

maintained. 

 To contrast the clamp-up solution, an analysis without any clamp-up was 

also performed. The results, plotted in Figure 11.17, show that there is a 0 MPa 

peel stress prior to tensile loading. This is expected given the absence of clamp-up. 

Following the application of a 15 kN tensile load, the region near the center of the 

overlap experiences negligible adhesive peel stress, while significant peel stress 

concentrations once again occur along the overlap edges in the loading direction.  
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     (a) 0 kN applied tensile load             (b) 15 kN applied tensile load 

 

Figure 11.17: Peel stress (Pa) in adhesive of HBB joint, 0 kN clamp-up load 

 

Clamp-up is thus able to create a compressive stress state that persists during joint 

loading; the effect of this on joint fatigue may be significant, as was demonstrated 

experimentally by Fu et al. [45] and more recently by Chowdhury et al. [118]. The 

reason for this is that crack propagation is generally inhibited when the material is 

in a compressive state, since the crack cannot easily open. Although the 

compressive stress in the laminate cannot be accurately gauged from the current 

model (since the Mindlin-Reissner formulation does not account for transverse 

laminate extension), based on equilibrium consideration it is a given that there 

must also be compression in the composite laminate underneath the washer. Thus, 

the clamp-up compression could slow the propagation of laminate cracks and 

delaminations underneath the bolthead, where the laminate stresses are highest 

and failure is most likely.
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Chapter 12: Conclusions 

 

In the preceding chapters, a number of open questions have been considered. 

Insights into these questions have been considered in the thesis: 

 

1) In which circumstances is it useful to hybridize bonded and bolted joints? 

(Chapters 4 and Chapter 11) 

 

2) What are the most important factors contributing to load sharing in hybrid 

joints? (Chapter 4) 

 

3) How can hybrid bond joints be efficiently modelled and can a basic prediction 

of their static strength be obtained? (Chapters 3 and 5-10) 

 

4) How much energy do HBB joints absorb in comparison to their constituents 

as a function of the adhesive system? (Chapter 10) 

 

5) What are the effects of basic design choices (multi-bolt joints, clamp-up, 

bolt-hole clearance) on HBB joint response and/or strength? (Chapter 11) 

 

Referring back to the thesis objectives set out in sections 2.9.1-2.9.3, these have 

been suitably addressed by points 2-4 in the above list. 

 

12.1 Original Contributions 

 

Many original developments and ideas originated from trying to answer these 

questions, including: 
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 The first experimental HBB joint load sharing measurement of an “academic” 

hybrid joint (i.e., a hybrid joint with no spew fillet, corresponding to an 

important assumption of classical analytical bonded joint models) 

 

 A new finite element approach for predicting load sharing 

 

 The first quantitative global sensitivity analysis of load sharing in hybrid 

joints 

 

 An original extension of Goland and Reissner’s adhesive kinematic model, 

rendering it fully compatible with the mathematical theory of nonlinear 

elasticity 

 

 A new mathematical model of a HBB joint that simplifies the physics to the 

essentials, but nevertheless accounts for most of the major, complex 

behaviours of these joints 

 

 Solution of this mathematical model using the meshless Galerkin method 

(first known application of this method to the analysis of structural joints) 

 

 Identification of optimal meshless parameters for the HBB joint problem 

 

 Clarification of existence of the meshless interpolation 

 

 The first comprehensive review in the scientific literature of hybrid bonded-

fastened joints, bringing together two bodies of work that have much in 

common but whose proponents are largely ignorant of one another 

 

The original contributions of this thesis resulted in a number of publications in peer-

reviewed journals, as well as conference publications. These are listed below. 
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12.1.1 Journal papers 

 

Bodjona K, Lessard L. "Hybrid bonded-fastened joints and their application in 

composite structures: A general review." Journal of Reinforced Plastics and 

Composites 2016; 35(9): 764-781. 

 

Bodjona K, Lessard L. "Nonlinear static analysis of a composite bonded/bolted 

single-lap joint using the meshfree radial point interpolation method." Composite 

Structures 2015; 134: 1024-1035. 

 

Bodjona K, Lessard L. "Load sharing in single-lap bonded/bolted composite joints. 

Part II: Global sensitivity analysis." Composite Structures 2015; 129: 276-283. 

 

Bodjona K, Lim GH, Raju KP, Lessard L. "Load sharing in single-lap bonded/bolted 

composite joints. Part I: Model development and validation." Composite Structures 

2015; 129: 268-275. 

 

Bodjona K, Lessard L. "Strength and energy absorption of composite single-lap 

bonded/bolted joints." Journal of Reinforced Plastics and Composites 2016 

(Manuscript in preparation). 

 

Raju K, Bodjona K, Lim G, Lessard L. Improving load sharing in hybrid 

bonded/bolted composite joints using an interference-fit bolt.” Composite 

Structures 2016; 149: 329-338. 

 

12.1.2 Conference papers 

 

Bodjona K, Lessard L. "Quasi-static strength of hybrid bonded/bolted single-lap 

joints" ECCM 17th European Conference on Composite Materials, Munich, Germany, 

June 26-30, 2016. 
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Bodjona K, Lim GH, Raju KP, Lessard L. "Numerical and Experimental Investigation 

of Load Sharing in Composite Bonded-Bolted Joints" ICCM 20th International 

Conference on Composite Materials, Copenhagen, Denmark, July 19-24, 2015. 

 

Bodjona K, Lessard L. "Meshless Analysis of Stresses in a Single Lap Bonded-Bolted 

Composite Joint." ICCS 18th International Conference on Composite Structures, 

Lisbon, Portugal, June 15-18, 2015. 

 

12.2 Concluding remarks 

 

The work in this thesis can in some ways be considered a feasibility study of the 

fundamental viability of HBB joints. Based on the presented investigation and 

results, it is the author’s belief that this is a potentially viable technology. A number 

of final concluding remarks are listed below, based on the results of the preceding 

chapters: 

 

1) In order to achieve any sort of weight advantage by means of hybrid 

bonded-bolted joining of aerospace structures, it is imperative that the target 

strength and minimum acceptable residual strength following adhesive failure 

are different. (For aerospace structures these might, for example, correspond 

to ultimate load and limit load, respectively) The difference between these 

two loads is where an advantage may be gained, by relying on the bolted 

joint to provide the limit strength (certification requirement) and taking 

advantage of hybridization to attain the ultimate strength. 

 

2) Hybridization only leads to an improvement in the static strength over the 

underlying joints when there is load sharing between the adhesive and bolt. 

In the experiment of Chapter 10, significant load sharing was induced and 

improved the underlying bonded joint ultimate strength by 91% and the 

underlying bolted joint yield strength by 18%. In the absence of load 
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sharing, hybridization was actually found to lower the strength of the 

underlying joints. 

 

3) Load sharing is most effectively achieved by lowering the bonded joint 

stiffness, which for an elastoplastic adhesive is most effectively done by  

 Yielding the adhesive (by means of low yield strength, short overlap 

length) since the plastic tangent modulus is typically an order of 

magnitude (or more) lower than the Young’s modulus and  

 Increasing the adhesive thickness 

 

4) The reduction or potential elimination of bolt-hole clearance in a load sharing 

joint can significantly delay ductile adhesive failure and improve the joint 

strength. It does this by restricting the developed plastic strain in the 

adhesive and delaying its failure. Optimal hybrid joints will therefore have 

little to no clearance or potentially some interference. 

 

5) Contrary to expectation, hybrid bonded-bolted joints do not necessarily 

absorb more energy during fracture than their constituents separately. In the 

experiment of Chapter 10, it was shown that while more energy was 

absorbed during fracture compared to the underlying bonded joint, the 

underlying bolted joint by itself absorbed the most energy of all three joints. 

 

6) The relatively stiff initial response that is characteristic of both brittle and 

ductile adhesives should not necessarily be looked upon as problematic. This 

initial stiffness allows the adhesive to actually transmit notable structural 

load. It must however be complemented by a secondary, less stiff response 

in order to allow load to be transferred to the bolt. Although in this thesis this 

behaviour was due to plasticity, ideally an adhesive should be identified 

where this behaviour is due to other underlying behaviour that does not lead 

to permanent deformation. In other words, the ideal adhesive should possess 

reversible large strain behaviour, due to for example hyperelasticity. This is 
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the case for many elastomeric adhesives (the issue being to find an 

elastomer with sufficient initial stiffness!). 

 

7) Importantly, the mathematical model proposed in Chapter 5 of this thesis is 

fully compatible with theories of hyperelasticity and could thus be adapted 

with relative ease for use in future design studies and/or research with 

elastomeric adhesives. 

 

12.3 Future Outlook 

 

While the fundamental concept of hybrid bonding-bolting has been deemed to be 

viable, there are a few potential stumbling blocks that have not as yet been 

investigated and that could prove to be problematic in the further development of 

these joints. These include: 

 

 Rate effects 

 Temperature effects 

 Certification 

 Inspectability 

 Cost 

 Fatigue 

 

Further research into these issues is of great importance in order to advance the 

technology readiness level of HBB joining.
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Appendix A. Joint Edge Load Derivation 

 

The bolt is assumed to be made of S82 aerospace grade steel (𝜏𝑦 = 882 MPa). 

Since it is practically impossible to determine the failure loads of all of the 

laminates in the design space a priori, it is assumed that bolt yield is the limiting 

design case. It is hence required to calculate the greatest possible bolt shear load. 

This occurs for designs having the maximum 𝑊/𝐷 = 10 and minimum 𝐸/𝐷 = 3. 

Since in the worst case the adhesive will have yielded all the way the through, and 

given a minimum 𝜎𝑦𝑡 = 6 MPa for the adhesive, the least force 𝐹𝑎 that the adhesive 

by itself will sustain is: 

 

𝐹𝑎 = 6 × 10
6 (2

𝐸

𝐷
𝐷) (

𝑊

𝐷
𝐷) (A.1) 

 

The total applied load 𝐹𝑡 is: 

 

𝐹𝑡 = 𝑁1 (
𝑊

𝐷
∙𝐷) (A.2) 

 

Furthermore the maximum bolt load 𝐹𝑏 is: 

 

𝐹𝑏 = 𝜏𝑦
𝜋𝐷2

4
 (A.3) 

 

Finally, the static equilibrium of forces is invoked; 

 

𝐹𝑡 = 𝐹𝑎 + 𝐹𝑏 (A.4) 

 

The only unknown is 𝑁1, the edge load causing bolt failure. Solving Eqns. A.1-A.4 

simultaneously, it is found that the limit load 𝑁1 ≈ 650,000 N/m. Other loads are 
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also considered: a medium fatigue load that is 60% of this figure, i.e., 𝑁1 ≈ 

450,000 N/m (the reasoning for this is given in [119]) as well as a low fatigue load 

that is 40% of the limit load i.e. N1 ≈ 250,000 N).
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Appendix B. Method for Calculating Through-

Thickness Stress Concentration 

 

The method of Kradinov et al. [120], based on the original method by Ramkumar 

and Saether [93], consists of the following procedure: 

1) Determine the bolt load distribution based on an analysis such as the one 

proposed in Chapter 5, then isolate each bolt and model it as a beam on an 

elastic foundation (see Figure B.1) 

2) Calculate the beam deflection and spring forces. The obtained spring forces 

are considered as the corrected ply loads. The stress concentration factor for 

a particular ply is thus the ratio of its spring force uncorrected ply load 

(based on the in-plane contact stresses) 

3) Evaluate ply level failure along a concentric path that is a characteristic 

distance away from the hole edge  (based the corrected ply stresses) 

 

 

 

Figure B-1: Mathematical representation of through-thickness problem 
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The bolt load is easily extracted from the model described in Chapter 5 as the bolt 

shear stress resultant at the center of the bondline. Considering the beam on an 

elastic foundation analysis, the method for calculating the spring constants is as 

follows. The ply load resultant 𝑝𝑘,𝑖
(𝑙)

 for the kth ply of the ith laminate 𝑖 ∈ {1,2} due to 

just in-plane loading is calculated as: 

 

 

𝑝𝑘,𝑖
(𝑙)
= √(𝑝(𝑘,𝑖)𝑥

(𝑙)
)
2
+ (𝑝(𝑘,𝑖)𝑦

(𝑙)
)
2
 (B.1) 

 

where the ply load 𝑥 and 𝑦 components are: 

 

 

𝑝(𝑘,𝑖)𝑥
(𝑙)

= 𝑎𝑘,𝑙𝑡 ∫ 𝜎𝑟𝑟(𝑟 = 𝑎𝑘,𝑙

2𝜋

0

) cos 𝜃 𝑑𝜃 (B.2) 

 

and: 

𝑝(𝑘,𝑖)𝑦
(𝑙)

= 𝑎𝑘,𝑙𝑡 ∫ 𝜎𝑟𝑟(𝑟 = 𝑎𝑘,𝑙

2𝜋

0

) sin𝜃 𝑑𝜃 (B.3) 

 

The spring constants, applied to the center of each ply, should reflect the ply 

stiffnesses. They are thus approximated as the ratio of the maximum hole 

enlargement to the ply load 𝑝𝑘,𝑖
(𝑙)

. Note that the maximum hole enlargement is 

constant for all plies in the adherend. Thus: 

 

𝑘𝑘,𝑖
(𝑙)
=
𝑝𝑘,𝑖
(𝑙)

𝛾𝑘
(𝑙)
⁡⁡⁡⁡,⁡⁡⁡⁡𝑖 = [1, 𝑁𝑘] (B.4) 

 

The actual beam on elastic foundation model, shown in Figure B.1, is simply a 

model of a Timoshenko beam with translational springs at the ply center locations 

and rotational springs attached to its ends. The spring constant of the rotational 
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springs is equal to the bolthead spring constant 𝑘𝜃 used in the model of Chapter 5. 

At the interface, continuity of the beam is enforced. This model can easily be solved 

using a simple matrix method. The solution is described in detail by Kradinov et al. 

[120] and is therefore not further addressed in this thesis. 


