
c

0

THE DESIGN AND IMPLEMENTATION OF A STRUCTURED
BACKEND FOR THE MCCAT C COMPILER

by
Christopher M. Donawa

School of Computer Science
McGill University, Montreal

March 1994

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright © 1994 by Christopher M. Donawa

... DESIGN AND IMPLEMENTATION OF A
BACKEND FOR THE MCCAT C COMPILER

0

-

0

Abstract

The McCAT system contains a highly optimizing, parallelizing C compiler that has been
designed to support a high-level, structured intermediate representation, SIMPLE. Although
the high-level abstraction enables sophisticated analyses such as pointer analysis, it limits
the effective detection and exploitation of opportunities for fine-grained parallelism through
low-level transformations like register allocation and instruction scheduling.

This thesis presents LAST, a low-level intermediate representation that exposes im­
portant architectural details, yet retains enough abstraction to simplify retargeting of the
compiler.

LAST is structured, thus allowing easy access to information gathered by previous high­
level analyses at SIMPLE, and also provides an elegant and simple framework for developing
low-level analysis and transformation phases. To illustrate these features and their ef­
fectiveness, some example phases are presented, along with results from a small suite of
benchmarks.

0

Le systeme McCAT comprend un compilateur C qui optimise et parallelise, il est con~u
pour permettre !'utilisation de SIMPLE, une representation intermediaire structuree de haut
niveau. Bien que le niveau eleve d'abstraction permette des analyses sophistiquees, telle que
!'analyse des pointeurs, il restreint le depistage efficace et !'exploitation des possibilites du
parallelisme a travers des transformations de has niveau, telle que !'allocation des registres
et 1' ordonnancement des instructions.

Cette these presente LAST, une representation intermediaire de has niveau qui met en
evidence les details importants de !'architecture, tout en conservant !'abstraction necessaire
pour permettre !'utilisation du compilateur en vue de plusieurs processeurs cibles.

LAST est structure, permettant l'acces facile a !'information recoltee precedemment par
les analyses SIMPLE de haut niveau, et fournit egalement une structure simple et elegante
pour le developpement d'analyses de has niveau et de transformations. Les caracteristiques
et leur efficacite sont illustrees par des exemples (d'analyses et de transformations) ansi que
les resultats d 'une serie des tests de performance.

ii

c

c

Genealogy of McCAT

This chapter presents the genealogy of the McCAT C compiler, from its origins in Septem­
ber 1990 to the present day. It is meant as a testament to all those who have worked on the
project, an acknowledgment of their hard work to produce a system with which the author
is proud to be involved.

The genealogy time line is broken down into individual semesters, as the components
were roughly organized around the academic timetable.

September, 1990. The origins of McCAT started with a compiler course project imple­
mented by Erik Altman. Professor Gao taught the course. The project consisted of
implementing a list scheduler in a version of GNU's GCC C compiler, using the RTL

· intermediate representation.

January, 1991. In this winter term, two students joined Professor Laurie Hendren: Bhama
Sridharan and Maryam Emami. Bhama started on deciphering the GCC front-end as
part of her compiler course. It was during this course that the name McCAT(for the
McGill Compiler/ Architecture Test bed) was :first coined.

May, 1991. As part of a combined compiler and architecture project, Bhama implemented
McCAT's first version of loop unrolling. Working with her was another student,
Chandrika Mukerji, who extended Erik's work on scheduling to include the Shieh­
Papachristou algorithm. It was this work on scheduling that the author cloned to
implement McCAT's current list scheduler.

A special note of appreciation is due to Ravi Shankar, who was always present to
explain the many intricacies of C.

September, 1991. After a long cross-country trip, Chris Donawa arrived in Montreal,
and along with a few other students (including Justiani and Mizuho Iwaihara) took
the compiler course taught by Laurie. For the first time, the modified GCC front-end
being worked on by Bhama was used for the course, and the assignments and projects
were used as a testing ground for several ideas about SIMPLE. In particular, Mizuho's
final project contributed heavily to some aspects of the simplify algorithm.

ill

0

c

iv

During this time, Maryam started her work on the call-graph and points-to analysis,
while Bhama began development of the c-dump module.

January, 1992. After a very pleasant autumn, a frigid and severe winter gripped the city
of Montreal. During this polar period, both Justiani and Chris began laying the
.foundations of their respective theses: the array dependence analyzer for Justiani,
and the design and implementation of LAST for Chris. At the same time Ana Erosa,
the next McCAT member, arrived to begin studies at McGill.

By March, Maryam had finished the call-graph framework, and the first version of the
points-to analysis. Bhama finished implementing the SIMPLE intermediate represen­
tation.

May, 1992. After a late start, spring finally arrived in Montreal, and although the sum­
mer never really blossomed, the celebrations for the 350th anniversary of the city of
Montreal made up for any lack of sun. During the festivities, Justiani started her
implementation of the array dependence module, and Chris continued work on ex­
tending his course project to handle the entire SIMPLE C grammar, and generate code
for the DLX architecture. Chris also started organizing the McCAT development
environment.

The summer was also a flurry of activity for Bhama, as she wrote the McTAG module,
implemented both reaching definitions and live variable analysis for SIMPLE, and
graduated with a Masters degree.

September, 1992. After some construction delays, the ACAPS research group moved into
their new lab (formerly two adjacent student offices). Into this new setup arrived the
Rakesh Ghiya, who started work on extending Maryam's second version of points-to
analysis to handle function pointers. Justiani finished an initial version of her array
dependency analysis module.

For the second time, Laurie taught the compiler course with the McCAT com­
piler, and students projects developed into useful modules. Luis Lozano implemented
Briggs' extension of Chaitin's graph-coloring register allocator. Matilda Leung wrote
the initial version of the LAST interpreter, Sandro Mazzucato developed a SPARC
code generator and Claudia Pateras and Mary larocci extended Bhama's original
loop unroller. Clark Verbrugge began work on generalized constant propagation, and
Ana on the McCAT restructuring module.

January, 1993. This winter started later that the previous year, and was fortunately not
as bitter. Shielded from the milder-but-still-cold weather, V.C. Sreedhar finished the
unnest module, and cut the last chains to the old GCC framework that had up to

0

c

V

then been a heavy weight, by replacing the memory management routines. In addition,
Sreedhar implemented an initial version of the ALPHA intermediate representation.

Some of the more ambitions projects lingered on into this semester, as Clark, Luis
and Ana finished the work on their projects. Rakesh began his research into practical
heap analysis methods.

May, 1993. Montreal was treated to a splendid summer, with near perfect weather. Be­
sides the arrival of the sunshine, two talented undergraduate students on NSERC
summer scholarships arrived to work over the summer: Christopher Lapkowski and
Patrick Betremieux. Christopher wrote the McCAT XWindows interface and func­
tion inliner, and Patrick developed the source file linker and second version of the LAST

interpreter. Luis continued to fine-tune his register allocator, and Rakesh became a
second McCAT administrator to help with module integration.

In July Maryam, after working night and day, submitted her massive Masters thesis
on points-to analysis, which she had managed to cut down to 200 pages.

The end of the summer was marked by the beginning of a concerted effort to adopt
'serious' benchmarks for McCAT, made possible by the source linker.

September, 1993. The wonderful summer quickly gave way to a mediocre autumn, as
clouds and chilly temperatures arrived in the city. Chris finished his work on in­
tegrating the list schedulers in McCAT, and handed over his duties as McCAT
administrator to Rakesh and Patrick. In addition, a new position of benchmark ad­
ministrator was taken by Ana, to coordinate the McCAT benchmark suite.

The third compiler course using McCAT was started, with a focus on code improving
transformations.

The genealogy description ends here, hut is not the end of the story, as many talented
people continue to work on the compiler. The author looks forward to hearing the continuing
unfolding saga of an interesting and exciting project.

0

,-

0

Acknowledgments

What were the lessons I learned from so many years of intensive work on the
practical problem of setting type by computer? One of the most important
lessons, perhaps, is the fact that software is hard. From now on I shall have

significantly greater respect for every successful software tool that I encounter.
During the past decade I was surprised to learn that the writing of programs for
Tji;Xand Metafont proved to be much more difficult than all the other things I
had done (like proving theorems or writing books). The creation of good software
demands a significantly higher standard of accuracy than those other things do,
and it requires a longer attention span than other intellectual tasks.

-Donald Knuth, Keynote address to 11th World Computer Congress (IFIP
Congress 1989).

My guideline in the morass of estimating complexity is that compilers are three
times as bad as normal batch application programs

-Frederick P. Brooks, Jr., "The Mythical Man Month: Essays on Software En­
gineering".

The McCAT compiler is, to say the least, a complex software project, and its success is
a testament not only to the hard work of the students involved, but also to Laurie Hendren's
management skills. Laurie has provided a sharp focus to the project, and nurtured its growth
from a collection of course assignments to an exciting project with which I am proud to
have been involved. I am also deeply appreciative of her keen insight into problems and her
tremendously clarifying abstractions, which have made this thesis significantly less difficult
than it could easily have been.

I would also like to thank one of the 'originals', Bhama Sridharan, for the countless
times she has helped both me and everyone else in the lab with SIMPLE, and especially
for enlightening us on the many mysteries of the GCC front-end. Luis Lozano and San­
dro Muzzacato's excellent work on the register allocator and SPARC code generator was
also invaluable in helping me produce working programs, and Patrick Betremieux's LAST
interpreter was a tool from the gods.

vi

c

c

0

vii

I'm also very appreciative of: Kristfn Volundard6ttir, Jill Ferrier and Siobhan Phelan
for suffering me as a weekend roommate for several months; Helga Hermannsd6ttir & lan
McAdam for their friendship and for keeping me from going insane; Rakesh Ghiya for many
enlightening conversations; the incessant traveler, Ana Erosa, for enduring the constant
teasing from Rakesh, Luis and myself; and Cecile Moura, for showing me my limits and
what happens when they are exceeded.

I would also like to thank my eo-workers Pierre Paulin, Francis Langlois, Cliff Liem,
Trevor May and Shailesh Sutarwala at Bell-Northern Research for their patience and un­
derstanding while I was finishing this thesis, et merci a Isabelle Pot et Malte von Ri.iden
pour la traduction.

0

0

Contents

Abstract

Resume

Genealogy of McCAT

Acknowledgments

1 Introduction & Motivation
1.1 Thesis Contributions .
1.2 Organization of Thesis

2 Related Work
2.1 Motivation for Intermediate Representations .

2.2 Overview of different IRs
2.2.1 Tuples
2.2.2 Linear Forms . . .
2.2.3 Trees & DAGS ..
2.2.4 Representing Flow of Control
2.2.5 Comparison .

2.3 Specific Examples .
2.3.1 U -Code
2.3.2 RTL .
2.3.3 SUIF ..

3 Overview
3.1 An Overview of the McCAT C Compiler

3.1.1 Front-end Processing and Simplification Phases
3.1.2 The Blastify Phase . . .

3.1.3 Code Generation Phase
3.2 Overview of LAST

viii

1

ii

...
111

vi

1

2
3

4

4
5
5

6

7
9

9
10
10
11
11

13

13

15
16
16

17

c CONTENTS ix

3.2.1 Design Mandate for LAST . 19
3.2.2 Design Influences on LAST 20
3.2.3 Abstract Machine Model . . 21
3.2.4 Retargeting LAST: A Configurable IR 22
3.2.5 Overview of Transformations and Analyses on LAST . 25

3.3 Comparison of LAST with SIMPLE 25
3.3.1 Three-address Code ~ 26
3.3.2 Explicit Support of Load/Store Architectures 29
3.3.3 Unique Variable Nodes 32
3.3.4 Parent/Child Relationship 32

3.4 Optimizations Performed During Generation 33
3.4.1 Pre-calculation and Folding of Offsets 34
3.4.2 Loading of addresses outside of loops . 34
3.4.3 Multiplication by Integer Constants 35
3.4.4 Reducing Stack Space 35

3.5 Implementation Restrictions . 36

4 Detailed Description of LAST 37

c 4.1 Structural Nodes 37
4.1.1 Common Nodes . 37
4.1.2 Sequence Nodes . 38
4.1.3 Anchor Nodes .. 39

4.2 Architecture-exposing Nodes 39
4.2.1 Variables, Addresses, Constants and Labels 41
4.2.2 Load and Store Nodes 42
4.2.3 Function Declarations 44
4.2.4 Passing Parameters . 44
4.2.5 Delay Slots .. 46
4.2.6 Looping Nodes .. 46

4.3 Operator Nodes 46
4.3.1 Arithmetic Nodes . 47
4.3.2 Logical Nodes . . . 47
4.3.3 Conversion Nodes 48

4.4 Flow of Control Nodes . . 49
4.4.1 While and Do-While Statements 49
4.4.2 If Statements . . . 51
4.4.3 For Statements 52
4.4.4 Switch Statements 52

0
4.4.5 Return, Continue and Break Statements . 53

c CONTENTS X

4.4.6 Function Calls . ~ 53

5 Transforming LAST 56

5.1 Reducing the Number of Loads and Stores 57
5.1.1 Handling the Register-Memory Consistency Problem 57
5.1.2 Algorithm for Reducing Loads and Stores 59

5.2 Instruction Scheduling 66
5.2.1 Overview of Instruction Scheduling 66
5.2.2 List Schedulers in LAST 67
5.2.3 Implementation of Scheduling Framework 69

6 Analyzing LAST 71

6.1 Brief Review of Live Variable Analysis 71
6.2 Live Variable Analysis in LAST . 73

7 Retargeting McCAT 79

7.1 Architectural Classes . 79
7.2 Code-Generator Generator . 80

.-.
'-' 8 Results 85

8.1 Description of Benchmarks & Test Strategy 85
8.2 Benchmark Results 87

8.2.1 Dhrystone . 87
8.2.2 Hanoi 87
8.2.3 Intmm .. 89
8.2.4 Knight .. 89
8.2.5 Mersenne 89
8.2.6 Sorts ... 90
8.2.7 Tomcatv. 90
8.2.8 Whetstone 92

8.3 Observations & Impressions 92

9 Conclusions & Future Work 94
9.1 Conclusions . 94
9.2 Future Work .. 95

A SIMPLE Grammar 97

B LAST Grammar 100

0
c Detailed Results 104

c

c

0

CONTENTS

Glossary

Bibliography

Xl

106

107

List of Tables

4.1 Arithmetic nodes 47
4.2 Logical nodes 48
4.3 Conversion and register move nodes 48
8.1 Description of benchmarks 86
8.2 Latencies for DLX floating-point and load/store functional units 86
8.3 Explanation of abbreviations for results 87

C.1 Dhrystone results . 104
C.2 Hanoi results 104

~
C.3 Intmm results . . 104

'-' C.4 Knight results . . 105
C.5 Mersenne results 105
C.6 Sorts results . . . 105
C.7 Tomcatv results . 105
C.8 Whetstone results 105

0
xii

0

List of Figures

2.1 Three-address code example .
2.2 Two-address code example . .
2.3 Parse tree example
2.4 Hierarchy expressed in a parse tree
2.5 Tree and DAG IR example ..
3.1 Overview of McCAT
3.2 FIRST to SIMPLE conversion . . .
3.3 SIMPLE to LAST Transformation
3.4 Code for SIMPLE to LAST Transformation
3.5 Code templates used by BURG to simplify retargeting
3.6 Example of Pseudo assembly code
3. 7 Analyses and transformations performed on LAST
3.8 LAST representation of an array reference .
3.9 Example of a bit-field reference ..
3.10 Example of a type conversion ...
3.11 Example of register-use algorithm .
3.12 Optimization of array references
3.13 Storage optimization
3.14 Replacing multiply with shifts for a = 97 * b
4.1 The fields common to every LAST node ...
4.2 SEQ node .
4.3 How a SEQ accesses the flow information in an EXPR node
4.4 REG node
4.5 Example of load and store in LAST ...
4.6 Example of pointer dereference in LAST .
4.7 LOAD and STORE nodes
4.8 LAST function declaration
4.9 Passing parameters via the stack
4.10 while loop example
4.11 while and do while statements

Xlll

6

6
7
8
9

14
15
16
17
18
24
26
27

28
29
30
32
33
36
38
39

40
41
42
42
43
44

45
49
50

c

c

c

LIST OF FIGURES XIV

4.12 Pseudo and DLX assembly code illustrating labels in a while statement 50
4.13 do while loop example . 50
4.14 Pseudo and DLX code illustrating labels in a do while statement 51
4.15 If statement 52
4.16 For loop statement 53
4.17 Switch statement 54
4.18 Return node. . . . 54
4.19 LAST function call 55
5.1 Transformations performed on LAST . 56
5.2 Referencing a global variable across function boundaries 58
5.3 Pointer dereference example 59
5.4 Example C code showing the first definition of a variable in a conditional body 59

5.5 First reference of a variable in a conditional 60
5.6 Reducing the number of loads and stores of local variables 61
5. 7 Insertion of a dominating load for parameter variables
5.8 Sure and possibly points-to variables
5.9 Sure alias substitution of pointer dereference
5.10 Example of an invisible variable
5.11 Three array references in a basic block
5.12 Unscheduled and scheduled pseudo code .. .
5.13 Dependency Graph used for Scheduling Array References
5.14 Scheduling phases in the McCAT list scheduler

63
64
65
65
67
68
68
69

6.1 Live Variable analysis on LAST 71
6.2 Example of live variable analysis 72
6.3 Detail of live variable analysis algorithm at the statement level 73
6.4 Detail of live variable analysis algorithm for an if statement . . 74
6.5 Pseudo code for live variable analysis example 74
6.6 Three examples of live variable analysis algorithm for while statements . 76
6. 7 Structure of while loop containing a conditional return statement .
6.8 High-level algorithm for performing live variable analysis on LAST
7.1 Selection of Architectural Classes
7.2 Code Generation Phase
7.3 Sample McBURG specification
8.1 Dhrystone results
8.2 Hanoi results
8.3 Intmm results . .
8.4 Knight results . .
8.5 Mersenne results
8.6 Sorts results . . .

76
78
80
81

83

88
88
89
90
91

91

c

0 <

LIST OF FIGURES

8. 7 Tomcatv results . .
8.8 Whetstone results

XV

92
93

0

Chapter 1

Introduction & Motivation

Because performance of a computer will be significantly affected by the compiler,
understanding compiler technology today is critical to designing and efficiently

implementing an instruction set.-Hennessy and Patterson [HP90].

Compiler technology is of vital importance to modern processors. High-performance
processors are increasingly dependent on compilers to tweak, massage and contort input
programs to take advantage of characteristics specific to their architectures. Non-blocking
pipelined architectures, for example, such as the MIPS, SPARC, RS/6000, DEC Alpha
[DS90, OHM+9o, Dig92] and most other RISC (Reduced Instruction Set Computer [Pat85])
processors [HP90] expect the compiler to schedule instructions to maximize functional unit
utilization; load/store architectures expect frequently-used values to be cached in registers
[GH86]. These optimizations can be performed in hardware, but by shifting performance­
improving manipulations from run-time to compile-time, scarce hardware resources can
be devoted to other beneficial purposes, thus improving the overall performance of the
architecture [SLH90]. For example, with instruction scheduling, the buffer for out-of-order
execution architectures could be reduced and the saved hardware real-estate devoted to a
larger register set, or a larger on-chip cache. Also, the overall complexity of the chip can
be reduced, allowing for simpler, faster designs [DS90].

Needless to say, the increased responsibility of the compiler requires that architectural
features, such as pipelined functional units and branch-delay slots, be exposed to the com­
piler. Representing these features is the domain of the compiler's intermediate represen­
tation (IR).1 The IR is a useful mechanism to abstractly represent the hardware, while
representing some important characteristics (in terms of performance) of the underlying
target processor. The user's program, written in some high-level language such as C, C++
or FORTRAN, is translated into the IR. The IR then becomes an interface between the

1 Sometimes referred to as an intermediate language (IL) or intermediate code (I C).

1

0

c

0

CHAPTER 1. INTRODUCTION & MOTIVATION 2

code-generation phase of the compiler (where actual assembly code instructions are gen­
erated), and the analysis and transformation phases. Depending on the compiler, the IR
can be either very abstract (eg model a simple machine), very processor specific, or some­
thing in between. The more specific the IR, the greater the information available to expose
fine-grain parallelism to the analysis and transformation phases. However, the compiler
will be more difficult to retarget to a different architecture: the less abstract an IR is, the
harder the compiler is to retarget as more of the analysis and transformation phases rely
on processor-specific features.

This thesis presents an intermediate representation used in the McGill Compiler Archi­
tecture Testbed (McCAT) C compiler. This IR, called LAST(Low-level Abstract Syntax
Tree), forms part of the backend developed as the focus of this thesis. LAST strives to
reveal enough architectural details to the analysis and transformations phases, while re­

taining some abstraction to simplify retargeting of the compiler to a collection of RISC
architectures.

In addition, LAST is designed as part of a family of intermediate representations [HD E+92]
(Section 3.1), of which LAST forms the the lowest level. The other, higher IRs facilitate
high-level analyses and transformations, such as points-to analysis,2 array dependency anal­
ysis, loop transformations, and inlining. LAST is specially designed to utilize the data-flow
information generated from these previous analyses phases for low-level transformation ie
support a paradigm of pervasive flow~information.

1.1 Thesis Contributions

While several existing IRs can accomplish similar goals to LAST, an experimental approach
of making LAST a hierarchical, structured IR, rather than unstructured, was taken. That
is, instead of representing the flow-control of the program in terms of goto statements and
labels, LAST retains the notion of high-level control structures such as for and while loops,
and supports nesting of these structures. The phrase 'structured IR' is used in this thesis to
denote an intermediate representation which has the characteristic of representing nested
control structures (ie hierarchical structures), without the use of goto statements.

A structured IR was chosen for LAST in order to support structured analyses and trans­
formations, a central paradigm of the McCAT compiler. A structured IR is conceptually
cleaner to use, since the program is always represented at a high-level. A structured IR was
also chosen so as to simplify implementation of the pervasive flow-information paradigm.
By supporting high-level constructs such as while and for loops, it is very simple to relate
flow-analysis information generated at the other high-level IRs.

In addition to describing LAST, some example analyses and transformations are pre­
sented to illustrate the structured nature of the IR. And finally, the retargeting strategy of

2 Comparable to alias analysis [ASU88J in other compilers.

c

0

CHAPTER 1. INTRODUCTION & MOTIVATION 3

McCAT using LAST is presented.
Specifically, the contributions of this thesis are itemized below.

• The design and implementation of LAST, a low-level tree-based retargetable interme­
diate representation that, while suitable for transformations such as register allocation
and instruction scheduling, also retains the structured nature of programs, as well as
supports the pervasive nature of data flow information in the compiler.

• The design and integration of a highly retargetable code generator (using the code­
generator generator BURG[FHP92b]) for RISC machines.

• The implementation of various structured analyses on LAST, with a specific example
of live variable analysis presented.

• The implementation of various code-improving transformations on LAST, including
instruction scheduling and reducing the number of load and store instructions.

• Experimental results from a suite of benchmarks illustrating the benefits of various
analyses and transformations performed on LAST.

1.2 Organization of Thesis

The rest of this thesis details the contributions listed above. The following chapter, Chap­
ter 2, gives some background on intermediate representations, listing traditional, current
and LAST-related IRs. Next, Chapter 3, is an overview of the McCAT compiler. The
general framework of the compiler is presented, from the higher IRs to LAST to the code­
generation phase. Following the overview is Chapter 4, which presents the individual nodes
of LAST in detail, as well as the optimizations performed during the generation of LAST.
Chapter 5 and Chapter 6 illustrate the structured nature of LAST by presenting some anal­
yses and transformations, and highlight the simplicity and ease of using a structured IR
such as LAST. Next is Chapter 7, which describes the code generation strategy used, and
also how LAST simplifies retargeting of the compiler. Chapter 8 presents results of the
transformations performed on LAST, with aid of both the LAST analyses and pervasive flow
information gathered from previous analyses. Finally, Chapter 9 presents the conclusions
of this thesis.

0

c

0

Chapter 2

Related Work

2.1 Motivation for Intermediate Representations

As mentioned in the introduction, intermediate representations (IRs), are used to represent
the target architecture in an abstract form. In optimizing compilers the analysis and trans­
formation phases are run on the IR, after which the transformed IR is used to generate
assembly code for the target machine. However, intermediate representations are not an
essential part of compilers; compilers have the option of generating assembly code (and
sometimes machine code) directly, without the overhead of generating and manipulating an

IR (FL88].
Such 'one-pass' compilers are designed to quickly generate assembly /machine code, often

at the cost of the quality of the generated code, ie little effort is spent performing code­
improving transformations. However, the focus of high-performance compilers is obviously
to improve the speed of compiled programs, and intermediate representations are used so
the compiler has something to actually analyze and manipulate.

In addition to facilitating analyses and transformations, intermediate representations

also simplify software maintenance problems for compiler developers, since the complexity
of the analyses and transformation phases requires a large investment in design and devel­
opment of the compiler. Due to the nature of evolving architectures, compilers can expect
to be frequently re-targeted. Compiler developers naturally wish to minimize the loss of
their usually substantial code investment, and designing the compiler to use an abstract IR,
common to many back-ends, is one method of minimizing the work and effort required to
retarget a compiler. As Tannenbaum et al. note [TvSS82]:

[I}t is desirable to do as much optimization as possible on the intermediate code,
because that optimizer can be written once and for all and used without change
as a filter for subsequent front ends and back ends.

4

c CHAPTER 2. RELATED WORK 5

An intermediate representation allows one to replace the code-generation part of the back­
end when retargeting the compiler, and in some compilers, also the front-end [Sta92,
CHKW86], so that different languages can be compiled reusing most of the existing com­
piler.

Intermediate representations are designed to represent abstract machines, but there
remains the problem of how abstract a machine to model. An IR that closely models a
specific architecture will allow more efficient code to be generated, as intricate machine
details can be exposed to the analysis and transformation phases. However, the compiler
then becomes more difficult to retarget as these same phases might need to be rewritten
should the compiler be retargeted to a new, different target architecture.

On the other hand, if the IRis very abstract, then the compiler is more flexible, but
fewer machine details are revealed and the code-generation part of the back-end must be
quite sophisticated and optimize theIR itself in order to produce efficient code [CHKW86].
Such optimizing back-ends, called peep-hole optimizers, already exist for CISC (Complex
Instruction Set Computers) machines. Peep-hole optimizers combine adjacent instructions
to produce more complex but cheaper (in terms of execution time or resource utilization)
instructions. This is an important optimization for CISC machines, and several retargetable
peep-hole optimizers have already been developed [DF84, Kes84, BD88], but they are of
lesser help to compilers for RISC architectures.

RISC architectures require optimizations such as instruction scheduling and removal of
redundant loads, transformations which require extensive analyses over potentially large
blocks of code. Research into retargetable instruction schedulers is in progress [Con93,
CCDM93], but requires that the target machine be accurately modeled ie too abstract a
model defeats the purpose. A balance must therefore be struck between a very abstract
model and a too detailed a model in order to obtain a highly optimizing but retargetable
compiler.

2.2 Overview of different IRs

There are a variety of intermediate representation forms that can be used in a compiler,
but they fall into three main categories of tuples, linear forms, trees and directed acyclic
graphs (DAGS).

2.2.1 Tuples

Tuples are a simple, straight forward representation that can have a variety of forms [FL88].
A tuple will represent a destination variable, operator(s) and operand(s). The most common
form is known as 'three-address code', which means that each statement contains three
variables: one destination and two operands (plus a single operator). It is also known as a

0

CHAPTER 2. RELATED WORK 6

quadruple (three variables plus an operator). A multi-operand, complex instruction, might
be decomposed into the three-address statements as shown in Figure 2.1.

:::}

a = b + c * d -e

t1 = c * d
t2 = b + t1
a = t2 - e

Figure 2.1: Three-address code example

As mentioned, there are different variations, some allowing several operators and some
only two operands with no destination (a triple). A triple does not explicitly save interme­
diate values like quadruples, but instead refers to them by the number of the triple that
created it as in Figure 2.2.

:::}

a = b + c * d -e

(1): c * d
(2): b + (1)
(3): (2) - e
(4): a= (3)

Figure 2.2: Two-address code example

Triples are more concise than quadruples, but are position dependent and so can create
difficulties for transformations involving code motion.

Due to their potentially compact implementation, tuples were popular for compilers
facing strict memory limitations, and allowed compilers to save the intermediate repre­
sentations to files using this compact representation [Hor91]. Modern architectures allow
more liberal use of their resources, so there are few compelling reasons for plain tuples.
However, tuples, particularly three-address codes modified to hold flow-information, can be
quite useful for modeling RISC machines, which are typically three-address architectures-a
three-address IR can thus model a RISC architecture quite closely. However, three-address
code IRs introduce complications through the addition of temporaries when modeling CISC
architectures [BGM79], and so would be best suited for compilers that support RISC ma­
chines.

2.2.2 Linear Forms

There are two types of linear forms-prefix and postfix. They are two forms common in
mathematics, useful for expressing parenthesis-free arithmetic operations. In prefix form,
the operator precedes the operands, and in postfix form it succeeds them. Intermediate

CHAPTER 2. RELATED WORK 7

values are implicitly saved on a stack, and so linear representations are well suited for stack­
based architectures. The expression a = b + c * d -e is expressed in prefix as =a-+b*cde

and postfix as abcd*+e-=.

Ganapathi and Fischer suggested an interesting variant of a linear form suitable for opti­
mizing compilers-an attributed linear prefix form [GF84]. The prefix form allows analysis
of variable-operand instructions, while minimizing the parsing of the IR itself. The 'at­
tributed' part simply means associated flow information is stored with each linear prefix
statement. The main advantage is that the IR can be mapped to an assembly instruction
in one pass, whereas other IRs, such as trees, require multiple passes. However, this ad­
vantage is of less and less importance as other compiler phases, notably the analysis and
transformation phases, become relatively more expensive, and the code-generation phase
becomes relatively cheaper to run.

2.2.3 Trees & DAGS

The most general intermediate representations are based on parse trees [FL88]. A parse tree
represents arithmetic operations with operands as leaves, and operators as interior (parent)
nodes. Intermediate results would also correspond to parent nodes. Figure 2.3 illustrates a
parse tree for the expression a = b + c * d - e.

Figure 2.3: Parse tree example

Parse trees can directly represent hierarchy (eg nested structures such as nested for

loops), as well as complex, multi-operator statements; other representations 'flatten' out
the hierarchy and the complex instructions. For example, Figure 2.4 illustrates a parse

tree consisting of an if statement with a sub-tree of instructions representing the condition
expression, as well as a sub-tree for the body of the if statement. This body can contain
any series of valid statements, such as other if, while or for constructs. Preceding and
following the if statement are two arbitrary statements, stmtl and stmt2.

c

"",

CHAPTER 2. RELATED WORK 8

In a non-hierarchical representation (right side of Figure 2.4), the condition and body
statements are just part of a long list of instructions that also include stmtl and stmt2: all
sense of nesting or hierarchy has disappeared. Most low-level intermediate representations
take this approach. By transforming high-level constructs to assembly-level statements,
analyses and transformations are simplified since they need deal with only a subset of in­
structions. For example, all conditional constructs (for, while, if, do while and switch)
can be transformed to a series of test and branch instructions.

However, this simplification also has a disadvantage, in that high-level information is
lost, and must be regenerated. For example, to perform loop transformations (software
pipelining [HP90] is included in such a transformation), loops must first be identified, re­
quiring the calculation of dominators [ASU88, p. 602]. In some cases, the transformation
to a low-level IR loses too much information that cannot be recovered. A structured IR
retains all this information, and saves the cost of recalculation. In addition, dealing with
structured IRs is conceptionally clearer, as it is much closer to the original program.

Trees also have the option of being structured or not. A structured representation,
as explained before, does not represent goto statements. Since many source languages
(including C) support gotos, many IRs are unstructured, as automatic structuring programs
are complex, difficult to write (although possible, [EH94]), and can degrade performance of
the resulting program. Structured analysis is, however, an elegant approach, and is straight
forward to implement [ASU88].

Figure 2.4: Hierarchy expressed in a parse tree

DAGS, or directed acyclic graphs, are variants of parse trees, where common parent
and/or child nodes can be shared (Figure 2.5). DAGS can simplify some optimizations,
such as common sub-expression elimination [ASU88], but some useful tools, such as the
code-generator generator BURG[FHP92b], require trees and will not work with graphs.

The great power of parse-trees (and DAGS) is that all the information available at
the source-level language is available in the representation. Parse trees, therefore, are
an excellent IR when a compiler is performing source-to-source transformations. Parse
trees are also good for generating code for CISC architectures, since complex instructions
can (sometimes) map nicely onto subtrees in the parse tree [BGM79]. However, based
on previous experience in building an optimizing compiler utilizing a parse-tree as an IR,

c

0

CHAPTER 2. RELATED WORK 9

Figure 2.5: Tree and DAG IR example

the potential complexity of parse-trees, due to the hierarchy, can significantly complicate
analyses and transformations. Trees and DAGS have the option of being structured, ie

support flow-control without the use of goto statements and labels.

The McCAT compiler uses a simplified version of a parse-tree for one of its intermedi­

ate representations [Sri92, HDE+92], which provides the power of parse trees without the

complexity (see Section 3.1).

2.2.4 Representing Flow of Control

Once the program has been parsed and an IR generated, the program's flow of control must

be determined. In an unstructured IR, a control-flow graph (CFG) [ASU88] is generated

to capture the possibly arbitrary changes in control flow. TheIR on the right in Figure 2.4
shows two control-flow arcs from the test associated with an if statement. One goes to the
beginning of the body of the if statement, and the other to a label, indicating the end of
the body.

A structured IR, on the other hand, has flow-control represented explicitly, since each
change in control is well defined (ie no goto statements). For example a continue will
always transfer control to the inner-most enclosing loop.

The main advantage of a CFG is that it can handle goto statements. However, it must
be generated, and the abstraction of high-level structures (like while loops) is lost, as all
control structures are represented as low-level jumps to labels.

2.2.5 Comparison

Enumeration of the different types of IRs is, in some sense, superfluous, because the methods

of implementation overlap (eg many would be combinations of pointers to structures [G F84])

0 '

c

CHAPTER 2. RELATED WORK 10

so that there is sometimes very little that distinguishes the representations from one another.
In addition, there are, of course, modified versions of each category which only blur the
distinctions even more. The tuples, linear forms and trees/DAGS can all be converted into
one another, although it may take some work. For example, a pre-traversal over a parse
tree will generate a prefix linear IR, and a quadruple can be used to regenerate a tree. It
is often the resulting abstract machine being modeled which decides the IR; LAST takes a
three-address approach to model abstract RISC machines, in combination with a tree to
provide a structured IR.

2.3 Specific Examples

The following subsections briefly describe some contemporary intermediate representations:
U-code, RTL, and SUIF.

2.3.1 U-Code

U-code, or Universal PASCAL Code, is an extension of the PASCAL Code (P-code) inter­
mediate language developed by Wirth [Wir71, NAJ+81] for PASCAL. U-code was extended
to simplify global (intra-procedural) optimizing transformations for both PASCAL and
FORTRAN programs [PS79], and was used to develop a retargetable, machine-independent
global optimizer UOPT [Cho83]. The central idea of UOPT is to perform as many anal­
yses and transformations as possible on the machine-independent IR in order to reduce
re-implementation when retargeting the compiler to different architectures, an idea preva­
lent in many modern compilers.

U-code (and P-code) is an unstructured, three-address code IR that models an abstract
stack-based architecture called the P-machine. The machine is composed of three stacks:
one for runtime (to model parameter passing and memory allocation), one for address and
integer operations, and a third for set and real type operations [KKM80]. U -code is thus

quite retargetable, due to its highly abstract nature. It is not an effective representation
for CISC-based architectures (due to its three-address approach), as a large number of
extraneous temporaries are generated that take considerable effort to collapse [BGM79], an
operation needed for effective instruction set selection.

However, U-code can be quite effective for RISC architectures: it is currently used in
the MIPS compiler [Cho88, CHKW86], although by itself theIR is too abstract to generate
good assembly code. The code-generation modules are extremely sophisticated, and must
perform many complicated transformations, including instruction scheduling and dead code
elimination [CHKW86]. In addition, the MIPS U-code representation was modified to
represent some architecture specific features (eg function calls) [CHKW86]. The MIPS
version of U-code is used primarily to perform machine-independent optimizations such

c

0

CHAPTER 2. RELATED WORK 11

as copy propagation, function inlining, common sub-expression elimination and strength
reduction [ASU88].

2.3.2 RTL

RTL, or Register Transfer Language, is the intermediate representation used in the popular
GNU C compiler [Sta92, pp. 127-166], RTL is a variation of Jack Davidson's Register
Transfer Lists [DF86]. There are many flavors of RTL, but the GNU version is perhaps
the most widespread. The goal of RTL, like U-code, is to provide a machine-independent
medium on which to perform analyses and transformations, and also be easily retargetable.
However, RTL takes the opposite tack to U-code. Whereas U-code accomplishes portability
by modeling a single, very abstract machine, RTL is configured to provide very machine­
specific representations for different architectures. RTL provides actions that are at a
lower level than corresponding assembly level operations. For example, RTL uses separate
nodes to indicate register reads and register writes, whereas an assembly instruction will
read the operands and write a result as an atomic operation eg the assembly instruction
add r1, r2, r3 reads registers r2 and r3, and writes the result in r1. In addition, several
RTL nodes are used to represent architecture-specific details, such as the size of character
variables when performing a type-casting operation. Essentially, different sequences of RTL
nodes are generated for different classes of architectures.

While some ideas from RTL were used in the design of LAST(see Section 3), there are
two fundamental differences. First, LAST takes a higher-level approach, in that since its
target architecture is limited to RISC, there are certain basic architectural assumptions that
are made to simplify the design, whereas RTL must be flexible enough to handle a wider
variety of architectures, which translates to a lower-level (and more verbose) approach than
LAST. For example, LAST need not support CISC instruction sets, and so a simple, straight
forward representation of operators suffices. GNU's RTL however, must support complex1

instructions, which leads to a plethora of nodes flexible enough to handle the many possible
types of CISC instructions.

The second difference to LAST is the unstructured nature of RTL. For instance, the
operands to branch instructions are located by convention: they are the nodes immedi­
ately preceeding a conditional branch. This low-level, unstructured approach makes some
low-level transformations, such as instruction scheduling, conceptually easy, but high-level
analyses and transformations are more difficult.

2.3.3 SUIF

SUIF, or the Stanford University Intermediate Format [TWL +91], is a hierarchical inter­
mediate representation that was designed in order to marry high and low-level analyses and

1 And sometimes idiosyncratic!

c

0

CHAPTER 2. RELATED WORK 12

transformations. Although SUIF is a hierarchical representation, it is unstructured, that is,
SUIF supports arbitrary changes of flow control through goto statements. SUIF actually
is polymorphic-there is a low-SUIF and a high-SUIF. The creation of two different forms
was motivated by the two different types of parallelism available in programs: coarse- and
fine-grain parallelism. Parallelizing (coarse-grain) transformations require a high-level view
of the program, whereas scalar (fine-grain) optimizations prefer a low-level view. In many
compilers this leads to two incompatible IRs, and thus duplicated analyses and transfor­
mation phases, since analysis information from the high-level IR is often unavailable to the
low-level IR. This prompted the development of SUIF, which is a low-level IR with a su­
perset of nodes that represent high-level structures and objects such as for loops and array
references. The SUIF compiler first generates high-SUIF, performs coarse-grain transfor­
mations, and then transforms high-SUIF into low-SUIF, for scalar optimizations.

Low-SUIF represents the program in much the same way other unstructured IRs do:
as a long linked list of assembly-level instructions (in three-address form with associated
flow-information). However, for the parallelizing transformations, high-SUIF is used.

The main advantage of this multi-faceted approach is mainly in the software mainte­
nance aspect of building the compiler. The common IR allows transformations to be imple­
mented only once in the compiler (although they may be run several times after high-level
transformations), saving time and effort.

c

Chapter 3

Overview

3.1 An Overview of the McCAT C Compiler

This section gives an overview ofthe McCAT C compiler, including the component interme­

diate representations, of which LAST forms the lowest level IR. Me CAT is being developed

by the Advanced Compilers, Architectures and Parallel Systems (ACAPS) research group

at McGill as an optimizing and parallelizing C compiler, well suited to accurate points-to1

[Ema93, EGH94] and dependency analysis [Wol82]. McCAT accomplishes this by utiliz­

ing a family of intermediate representations, which support pervasive flow information, ie

flow information gathered from analysing one IR is available to lower-level intermediate

representations for their transformations (see Figure 3.1).
The compiler uses a modified GCC2 front-end for parsing the source files and generating

a high-level abstract syntax tree (AST) [ASU88, p. 49], dubbed FIRST. This intermediate

representation is then simplified into a similar AST called SIMPLE, upon which various

high-level analyses and transformations are performed (for example, points-to analysis and
loop unrolling).

SIMPLE is designed around the points-to analysis algorithm [HDE+92, EGH94], which
requires a high-level view of the program, ie abstractions such as arrays, structures and
pointer types are retained. This high-level information is required for alias analysis, but
is inappropriate for low-level analyses and optimizing transformations such as register al­
location or instruction scheduling: the architectural details required for these low-level

optimizations are hidden in SIMPLE. LAST is designed to expose these details, yet at the

same time retain some of the high-level features of SIMPLE such as abstract control flow

structures (eg a for statement) so as to maintain a structured representation.

The McCAT compiler can be described as having four phases, with various analyses

and transformations working on the two dominant IRs: SIMPLE and LAST. The first phase
1 Analogous to alias analysis in other compilers.
2 GNU's 1.37.1 version of GCC, to be specific.

13

c CHAPTER 3. OVERVIEW

c

0

• program structuring
• function inlining
• loop unrolling
• gen. const. propagation
• points-to analysis
• dependency analysis
• high-level loop &

parallelization
transformations

Figure 3.1: Overview of McCAT

14

0

c

CHAPTER 3. OVERVIEW 15

is the creation of FIRST and the second its transformation to SIMPLE. The third phase
transforms SIMPLE to LAST, and the fourth, final phase generates assembly code from
LAST. Figure 3.1 illustrates the overall process.

3.1.1 Front-end Processing and Simplification Phases

The McCAT compiler parses C source files and produces an AST.3 In McCAT, this AST is
called FIRST, and is the first phase of compilation. This IR is immediately transformed, or
simplijiedinto SIMPLE(the second phase), upon which the first set of analyses is performed.
As the name would suggest, the simplify stage takes C, in all its gory glory, and simpli­
fies it to a grammar corresponding to that in Appendix A. Typical simplifications include
compiling complex statements into a series of basic statements, simplifying all conditional
expressions in if and while statements to simple expressions with no side-effects, sim­
plifying procedure arguments to either constants or variable names, and moving variable
initializations from declarations to statements in the body of the appropriate procedure.
Figure 3.2 captures the transformation of a complex arithmetic operation to a series of
basic statements; the figure illustrates how a FIRST tree is transformed into a sequence of
two SIMPLE trees. High-level abstractions such as array and structure references remain,
but are simplified. Bhama Sridharan provides an excellent description of SIMPLE in her
masters thesis [Sri92].

a = b+c*d;

becomes:

tempi = c*d;
a = tempi+b;

=>

Figure 3.2: FIRST to SIMPLE conversion

3 McCAT also has the ability to parse multi-file programs and produce a combined AST.

0
CHAPTER 3. OVERVIEW 16

3.1.2 The Blastify Phase

The blastify phase generates LAST from SIMPLE. Whereas SIMPLE hides the memory hier­
archy, LAST exposes it by representing register loads and memory stores, as well as repre­
senting array and structure references as a series of arithmetic operations. In other words,
the LAST IR is very close to assembly language: in most cases there is a one-to-one cor­
respondence between LAST statements and assembly language instructions. At the same
time, however, high-level constructs such as while loops are still represented, in order to
maintain the structured representation and simplify access to flow-information stored in
SIMPLE(explained in Section 3.2.1). Figure 3.3 illustrates the translation of the SIMPLE

tree in Figure 3.2 to its LAST counterpart, and Figure 3.4 shows the C code (on the left
hand side) for SIMPLE, and the corresponding LAST pseudo assembly code (on the right
hand side). Essentially, variables c and dare loaded from memory into registers, multiplied,
and the result placed in a register temp1. The variable b is then loaded, added to temp1,
moved into a register and then stored in the memory location reserved for a.

Figure 3.3: SIMPLE to LAST Transformation

3.1.3 Code Generation Phase

The final and simplest of phases in Me CAT is code generation. Since the focus of research
for McCAT is on IR transformations, rather than generating object code, the compiler

0

c

CHAPTER 3. OVERVIEW

temp! = c * d;
a = temp! + b;

REG(d)(O) <-LOAD(Int)- MEM(d)
REG(c)(O) <-LOAD(Int)- MEM(c)
REG(templ) := REG(c) * REG(d)
REG(b)(O) <-LOAD(Int)- MEM(b)
REG(a) := REG(templ) + REG(b)
KEM(a)(O) <-STORE(Int)-< REG(a)

Figure 3.4: Code for SIMPLE to LAST Transformation

17

produces assembly code, and uses existing simulators/assemblers for running the input

programs.
The design philosophy of LAST is to push as much complexity into the IR, to use

transformations on LAST to perform optimizations such as instruction scheduling and to
make the code generation (the actual printing of assembly instruction to a file) as trivial as
possible. This is accomplished by a code-generator generator called BURG[FHP92b], which
allows simple templates of assembly code to be written for various LAST constructs. BURG
constructs a tree traversal routine that traverses LAST, and when it finds a group of LAST

nodes that match a particular pattern, the corresponding code template is printed. No
complicated analyses or transformations are performed within the code generator, and so
retargeting is greatly simplified as most the work consists of only rewriting simple templates
for each new machine targeted. Figure 3.5 gives an example of the overall strategy. Blastify

generates a LAST subtree corresponding to a division statement x = y I z, which the
BURG-generated code generator matches with one of its patterns. In the example there are
only two patterns to match: addition and division. Once the match is made, the appropriate
code template is used to generate assembly code. Templates for two machines (machine A
and machine B) are shown, with machine A's template being used (so div ra,rb,rc is
generated).

3.2 Overview of LAST

McCAT was constructed utilizing the GNU C compiler. The parsing phase was kept, but
its entire back-end, including the analysis, transformation and code generation phases, was
removed. The GCC back-end utilizes RTL [Sta92], but the code was judged too complicated
to modify. One major contributor to the GNU C and GNU C++ compilers considers the
"common back-end of these compilers very difficult to comprehend and/or modify" [Gui94].
As a result, SIMPLE was developed and serves its function well as a structured IR for high­
level analysis.

However, SIMPLE is too abstract a representation for low-level transformations such
as instruction scheduling and register allocation-high-level constructs such as arrays and

0 CHAPTER 3. OVERVIEW 18

0

Figure 3.5: Code templates used by BURG to simplify retargeting

c

c

CHAPTER 3. OVERVIEW 19

structures still exist. As a result, another low-level IR was required, and so the mandate
for LAST was born.

3.2.1 Design Mandate for LAST

Based on the desire to utilize high-level flow information (gathered at the SIMPLE level) to
aggressively exploit fine-grain parallelism in target machine architectures, the following six
criteria were developed to guide the design and implementation of LAST.

Support for structured analysis: A structured, compositional representation, where con­
trol flow is regular and explicit (ie no go to statements) simplifies analysis tremen­
dously, as control structures can be analyzed compositionally. For instance, if analyz­
ing a while loop, only the conditional expression and body of the loop under analysis
are inspected; surrounding control constructs are disregarded.

A compositional representation enables program analysis to be abstracted to a simple
model, and thus implemented in a straight forward fashion, and allows for the use
of automated tools. Also, by maintaining the program structure, it becomes easy to
find and transform groups of loop nests. Our register allocation algorithm, based on
hierarchical cyclic interval graphs [HGAM92], uses this compositional property.

The critic might point out that goto statements can and do appear in popular pro­
grams, particularly in interpreters and automatically-generated code. An unstruc­
tured program must therefore be converted into an equivalent structured program, an
achievable target [W075, Bak77, Amm92]. Currently, the McCAT compiler has a
restructuring module that converts all programs with goto statements into equivalent
structured programs [EH94].4

Support for pervasive analysis: LAST is only one in a family of intermediate repre­
sentations. Each IR has its own advantages. For example, SIMPLE, the high-level
representation, is suitable for points-to analysis. Such high-level information is cru­
cial to determining available fine-grain parallelism, and is needed at the lower-level
representation LAST. Therefore, propagation of information from the higher IRs to
LAST was an essential design criterion.

Support for load/store machines: Reduced instruction set computer (RISC) architec­
tures are perceived as having a significant performance advantage over complex in­
struction set computer (CISC) architectures [DS90, HP90]. One of the distinctive
features of a RISC architecture is that it is a load/store architecture, that is, all mem­
ory references are through explicit stores(loads) to(from) memory, and arithmetic
operations take only register operands.

4 With the exception of setjmp and longjmp, which are currently unsupported.

c

0

0

CHAPTER 3. OVERVIEW 20

Considering the gravitation of high-performance computer systems towards RISC ar­
chitectures, LAST was required to support them, and thus load/store architectures.

Expose opportunities for transformations: Obviously, since McCAT is an optimiz­
ing compiler, it should aggressively seek to improve the efficiency of generated code. As
a corollary, LAST should expose all opportunities for code and performance-improving
transformations, such as exposing the use of all registers to the register allocator, fill­
ing branch delay slots, removing induction variables (plus strength reduction), and
exposing a function's prologue and epilogue to the instruction scheduler. This means
that LAST must be able to represent individual assembly level instructions.

Support simplistic code generators: Since Me CAT is a research and pedagogical tool,
it has a mandate to investigate a wide variety of real and experimental architectures.
McCAT therefore needs to be highly retargetable, and so should require minimal
intelligence of its code generation module. That is, as much complexity as possible
should be embedded in the non-machine specific intermediate representation, and the
IR should be generic enough for load/store architectures so that the compiler is easily
retargeted between such machines.

Support for high-level tools: In order to maximize productivity on interesting research
ideas by minimizing time spent on laborious and repetitive tasks, as many facets of
the compiler as possible should be relegated to automated tools. For code generation,
McCAT employs the code-generator generator BuaG(see Section 7.2) to ease the task
of retargeting McCAT to different machines.

3.2.2 Design Influences on LAST

There were three main influences in the design of LAST. First, LAST's design was heav­
ily influenced by experience gained in analysing the compositional form of SIMPLE. This
structured form simplifies analysis by guaranteeing a strict flow of control, so that language
constructions can be analysed and transformed compositionally. In addition, the composi­
tional approach allows easy identification and transformation of loop nests, which is useful
for the McCAT cyclic interval graph register allocator [HGAM92] and the dependence
testing framework [JH94, Jus94].

The second influence was through the author's experience in an introductory compiler
course, which demonstrated the usefulness of the code-generator generator BURG, despite
its limitations [AH91]. One of these limitations is that BURG can traverse only binary trees,
even though some AST constructs are more naturally represented as n-ary trees, where n is
greater than two (such as for loops or if statements). However, it was later discovered that
this binary representation made for a fast traversal mechanism for other analysis phases,
due to the regular structure of the AST.

0 CHAPTER 3. OVERVIEW 21

The third influence was a paper by a compiler group from the University of lllinois. A
article by Johnson, McConnell and Lake from University of lllinois on RTL [JML91] proved
quite useful in identifying what information should be represented at the LAST level, such
as labels for branch chain elimination.

3.2.3 Abstract Machine Model

Selecting the appropriate abstract model for an intermediate representation is a major
design decision. As discussed previously, there is a choice, and in fact a tradeoff, between
retargetability and generating highly efficient code. As part of a high-performance compiler,
LAST must obviously generate high quality assembly code. To simplify retargetability, it
was decided to limit McCAT's architectural targets to RISC machines.5

RISC architectures have evolved, after extensive study [Pat85, HP90], from CISC ma­
chines which were developed in a more ad hoc approach [HP90]. That all the successful
modern high-performance workstations use RISC processors, such the MIPS, DEC Alpha,
RS/6000, PA-RISC and SPARC chips, is a testament to this research. So, while the com­
mercial market place may demand compiler support for CISC chips,6 for a research oriented,
high-performance compiler, limiting potential targets to RISC machines is a reasonable de­
cision.

This limited focus has simplified the design of LAST by allowing it to model an abstract
RISC machine with features that are expected to be on most, if not all, compiler targets for
McCAT. By exposing these features, machine-independent analyses and transformations
can be written and reused for all the targets. Since the features are general across the
targets, retargeting is dramatically simplified. Of course, an abstract model cannot capture
all the features found in each specific architecture, but in practice these additional features
have been relatively minor and easily accommodated within the LAST framework.

The abstract RISC architecture that LAST expects consists of four main characteristics,
as described below.

Load/Store architecture: All memory accesses are through explicit references to mem­
ory, rather than implicit references as in the Motorola 68000 or VAX architectures
[HP90].

In load/store architectures, loads and stores are considered expensive, 'to-be-avoided'
operations. On some architectures load latencies can take dozens of cycles, leaving the
processor under-utilized [CKP91]. As a result, the blastify translation (and subsequent
transformations) attempt to keep as many variables as possible in registers ie load and
store instructions are reduced where ever possible.

be precise, McCAT is oriented towards scalar, superscalar and multi-threaded RISC machines.
6 Such as the Intel 80x86 series [DS90].

c

c

CHAPTER 3. OVERVIEW 22

General purpose register set: Explicit manipulation of registers is represented at the
LAST level. It is assumed that the registers are relatively general purpose ie that the
integer register set can also hold addresses. It is also implicitly assumed that a RISC
architecture will have a large7 number of general purpose registers, although, strictly
speaking, this is more an issue for the register allocator than LAST. The assumption
is implicit since blastify tries to keep as many variables in registers as possible, and
so assumes that register pressure is not so severe as to cause the register allocator to
generate an excessive number of register spills and reloads.

Reduced instruction set: In keeping with the RISC strategy, LAST expects a relatively
simple instruction set. A complex high-level operation, such as an array reference, is
translated to a sequence of simpler low-level operations.

In addition, it is assumed that most instructions will have the same latency (eg one
clock cycle), so little effort need be expended on instruction set selection. For those
instructions that have longer latencies, a non-blocking pipelined architecture is as­
sumed.

Pipelined architecture: Long latency operations, such as a floating-point multiplication,
are assumed to be non-blocking, so delay slots can be filled by other instructions. In
addition, LAST sub-trees are designed to simplify rearrangement due to instruction

scheduling.

3.2.4 Retargeting LAST: A Configurable IR

Despite the architectural features that are common to RISC machines, there will always be
variations and different approaches to these RISC features. For example, the MIPS R2000
architecture requires the operands of an integer multiplication operation be contained in
floating point registers, whereas the SPARC architecture does not [DS90]. An integer
multiplication on the MIPS therefore requires a move of operands from integer registers to
floating point, and a move of the result from a floating point register to an integer one in
addition to the multiplication instruction, whereas the SPARC has no need of these register
moves. A generic approach hides the intricacies of a MIPS integer multiplication, whereas
a performance hungry approach exposes it.

Again, there is a tradeoff between ease of retargeting the compiler (and the not insub­
stantial reuse of code) and generating efficient code. LAST attempts to strike a balance
between the two extremes by supporting different configurations. LAST is configurable to
various architectures, similar to how GCC's RTL works [Sta92]. The configurations avail­
able are grouped in several classes, so that machines in similar classes will use identical
IR's, even if the actual assembly code produced is slightly different. With this approach,

compared to traditional CISC a.rchitectures with typically eight registers.

c

0

CHAPTER 3. OVERVIEW 23

the analysis and transformation phases need not be re-implemented. There is, however, a
penalty to be paid in terms of generating different forms of LAST for different architectures,
but the cost is minimized by supporting only classes of architectures rather than specific
machines. These classes can be thought of as refinements of various abstract RlSC machines
that provide greater description of a target architecture, while still maintaining a degree of
abstraction.

The following architecture classes are supported:

• Explicit(implicit) condition codes. Condition codes for various operations are (not)
held in registers.

• Multiplication/ division of integer values in integer (floating-point) registers. Some
architectures, such as MIPS, must move integer values into floating-point registers to
perform multiplication or division, and then must move them back to integer registers.
To gain maximum benefit from the register allocator and instruction scheduler, the
extra instructions required for the register moves are explicitly represented in the IR.
Conversely, if the architecture does not have this requirement, such as SPARC, then
these unnecessary moves are not generated during the blastify process.

• Register windows versus the traditional stack paradigm. Architectures with register
windows such as the SPARC require a different register allocation strategy than the
traditional stack-oriented architectures. Again, to maximize benefits from instruction
scheduling, the pushing and popping of arguments onto and off of the stack during
a procedure call must be exposed. The register windows paradigm can also be used
for architectures that do not have register windows, in order to easily support the
passing of parameters via registers, an elegant approach to minimizing procedure call
overhead [Cho88, Wal88].

• Architectural support for structure copies. Some architectures include instructions to
perform block copies of memory. In some machines the assembler will support such
instructions, even if the actual architecture does not. LAST considers the assembler
to be the target architecture, with the assumption that the assembler can generate
the equivalent instructions at least as efficiently as LAST. However, for architectures
(assemblers) that do not provide such a copy operation, it is important to expose the
multitude of operations required.

• Architectural support for exclusive or operators. For architectures that do not support
exclusive or operators, equivalent instructions using simpler operators are generated.

• Architectural support for negation. As with exclusive or operators, simpler instruc­
tions are generated in lieu of this support.

c CHAPTER 3. OVERVIEW 24

• Specific type conversion routines. Various architectures have their own approaches
for performing type conversions eg converting a variable of type integer to double.
Some architectures require integer doubles to be in floating point registers, others
allow them to remain in integer registers. In order to expose these instructions to the
instruction scheduler and register allocator, they are all generated, specific to each
architecture. For the SPARC and MIPS machines, the differences are trivial, but for
the RS/6000 it is more complex.

Currently the compiler generates assembly code for three architectures: SPARC, DLX
(a simplified version of MIPS' R2000 assembly code) and RS/6000, in addition to pseudo
assembly code, an easier-to-read approximation of RISC assembly code. It is used primarily
for pedagogical purposes, but also for the LAST interpreter to display the interpreted LAST

code. Figure 3.6 shows the corresponding pseudo assembly generated for a trivial C program.

void main(void){
int a;

}

a = 1;
foo(a);

void foo(int c){
int a,b;

}

a = c * 4;
b = a;

;===============================
Function body for "main"

;===============================

<<Save Registers>>
REG(a) := 1
Function Call to foo
delay slot: nop
Arguments:

Parameter: REG(a)

<<Restore Registers>>
end of sequence

;===============================
Function body for "foo"

;===============================

<<Save Registers>>
REG(c)(O) <-LOAD(Int)- MEM(c)
REG(a) := REG(c) << 2
REG(b) := REG(a)
<<Restore Registers>>
end of sequence

Figure 3.6: Example of Pseudo assembly code

The «Save Registers» and «Restore Registers» represent the saving and restor­
ing of registers for architectures without register windows, and are explained in Section 4.2.3.

c

c

CHAPTER 3. OVERVIEW 25

Otherwise the example is straight forward; the only difference is the optimization of replac­
ing a multiplication by 4 (a = c * 4) with a bitwise left shift of two bits (REG (a) : =

REG(c) « 2). Notice that in the body of foo, the value of c is loaded from memory (a
stack parameter passing paradigm is assumed) and placed in a register, denoted by MEM and
REG respectively. Once the value of c * 4 is saved in the register for a, it is not stored,
but simply copied to the register for b. The register holding this value is not stored, and is
thrown away since it is subsequently unused.8

3.2.5 Overview of Transformations and Analyses on LAST

Figure 3. 7 shows the analyses and transformations currently performed on LAST, starting
with SIMPLE (the shaded node). There are eight phases before assembly code is finally
emitted, starting with the register use phase. This is an analysis of SIMPLE, whose infor­
mation is used during the blastify process to determine what variables are in registers. It is
optional, and is used in conjunction with the naive spilling transformation only when the
compiler is being conservative with register-memory consistency. Register-memory consis­
tency is the problem of ensuring that when a value resides in both memory and a register,
that the values are both consistent.

The next phase is blastify itself, the generation of LAST from SIMPLE. During this pro­
cess, several code-improving transformations are performed as LAST is generated, including
alias substitution, multiplication replacement [Ber86] and folding of constant array indices.
Next, one of either the naive or improved spilling transformations is performed, which de­
termines what is optimistically kept in registers (given an infinite number ofregisters), and
what must be stored to memory. The naive algorithm loads (stores) globals and aliased
variables on every use (definition), and stores local variables at the end of basic blocks. The
improved spilling algorithm attempts to minimize reloads and unnecessary stores.

After spilling, the McCAT list scheduler is invoked, and instruction scheduling per­
formed. After scheduling, live variable analysis is performed, generating information for

the next phase, register allocation [LJ92]. After allocation, offsets for parameters and local
variables are calculated, in time for the eighth phase-assembly code generation. There is
also the optional phase of interpreting LAsT[Bet94], occurring after code generation.

3.3 Comparison of LAST with SIMPLE

Superficially, LAST is quite similar to SIMPLE; both LAST and SIMPLE express most C
statements in three-address form. However, LAST is otherwise significantly different from
SIMPLE.

8 In future generations of the compiler, a dead-code elimination phase will remove such useless instructions.

c CHAPTER 3. OVERVIEW

-
I
I

Blastify

alias
substitution,
multiplicatiOn
replacement,

load/store
reduction

Figure 3.7: Analyses and transformations performed on LAST

26

1. LAST statements, including complex statements such as array and structure references,
are represented in terms of three-address code ie address calculations are exposed.

2. LAST statements are modeled after a load/store architecture.

3. LAST nodes corresponding to variables are unshared ie have only one parent, whereas
in SIMPLE the same node is re-used to represent a specific variable.

4. LAST maintains a parent/child relationship with SIMPLE-it is not a replacement, but
rather an augmentation of SIMPLE.

3.3.1 Three-address Code

All expressions and variable references, including references to structures and arrays, are
represented in LAST in terms of three-address code. For example, the blastify transforma­
tion replaces a SIMPLE sub-tree representing an array with a series of LAST sub-trees that
represent the various array offset calculations required to access the array value.

Figure 3.8 gives an example of an array reference, including a load of the base address.9

Note that SIMPLE temporary variables, such as _t1, are analogous to registers and are
therefore never loaded, 10 and are always defined before being used.

The first subtree in the figure represents the load of the value of variable A from memory,
denoted MEM (A), into a symbolic register associated with A, denoted REG (A). This is the
notation used to differentiate the memory hierarchy.

The second subtree represents the addition of A + 3. The value is placed in _tl, a
temporary register-only variable. Next, the address of B is loaded into a register associated
with B. Variable _tl is then multiplied by the element size of the array, and the result

the purposes of the example, all the variables are assumed to reside in memory.
10Unless of course the register allocator selects them for spilling.

CHAPTER 3. OVERVIEW 27

stored in another temporary variable _temp, which is then added to the value of B. These
two operations constitute the calculation of the array reference. The :final subtree loads
the value found at the address that has been calculated placed in the register for variable
_temp.

--------------------------------------·

_tl =A+ 3;
_t2 = B[_tl]

Figure 3.8: LAST representation of an array reference

Structures, like arrays, are represented differently than in SIMPLE. Except for bit-fields,
structure :field references indicate a load or store to an offset from a base address. LAST

represents such a reference as a load or store, with the appropriate offset kept in the offset
field (accessed via the LS_QFFSET macro) of the load and store nodes (Section 4.2.2) ie
for each field reference, there is a corresponding load or store LAST node, plus the initial

CHAPTER 3. OVERVIEW 28

load of the base address.
Representing bit-field references, however, involves additional representation. Since the

target architecture is usually byte addressable, and no finer, accessing individual bits re­
quires bit masking. First the appropriate byte/halfwordfword is loaded into memory, and
then the bits of interest are isolated via a bit mask. If the left hand side of an assign­
ment is a bit field, then any unaffected bits must be saved, and also the right-hand side be
appropriately masked as well. Figure 3.9 gives an example bit-field reference. First, a is
assigned 1. In preparation for assignment to str. field, the bit is isolated by first shifting
the contents five bits left, and then masked. Meanwhile, the address of field, containing
the bit, is loaded into a register. This value is then bit masked to preserve the surrounding
bits, including the four bytes used to represent the x field. The result of the mask is or'ed
with the isolated bit held in the register REG(lst-sAddr2). This result is then stored back
to the structure in memory.

Note that bit-fields are assumed to reside in unsigned 32-bit (4 byte word) integers.

void main(void){
int a,b;
struct {

int x;
unsigned int field:1;
} str;

}

a = 1;
str.field = a;

REG(a) := 1
REG(lst-sAddrO)(O) <-LOAD(Addr)- ADDR(str)
REG(lst-sValueO)(O) <-LOAD(Int)- REG(lst-sAddrO)
REG(lst-sAddr2) := REG(a) << 5
REG(lst-sAddr2) := REG(lst-sAddr2) i Ox00010000
REG(lst-sAddr1) := REG(lst-sValueO) i Ox11101111
REG(lst-sAddr1) := REG(lst-sAddr2) I REG(lst-sAddr1)
REG(lst-sAddrO)(O) <-STORE(UI)-< REG(lst-sAddri)

Figure 3.9: Example of'a bit-field reference

In addition to structure references, the mechanics of type casting are explicitly repre­
sented. For instance, converting a character to an integer requires that the appropriate
eight bits are read and stored in an integer.

Usually architectures provide load and store commands that perform this implicit mask­
ing. However, one of the goals of the McCAT compiler is to keep as many values in registers
as possible, and so loads and stores should be avoided where ever possible. As a result,
instructions that perform the appropriate masking are generated and the result kept in a
register instead of utilizing the load/store commands. Figure 3.10 shows the conversion
of the character 'a' to an integer. The mask is loaded into a register and a bit-wise and
performed.11 The result is kept in a register. The astute reader may notice an apparent
discrepancy: the previous example (Figure 3.9) did not load its masks into a register. This
is actually an optimization. For each target architecture, LAST is aware of the range of

11 Although modelled in LAST as a load, because an integer constant is being used, the code generator
actually replaces the load with a cheaper instruction.

CHAPTER 3. OVERVIEW 29

integers that can be represented as an immediate constant. For those values that lie within
this range, such as -64 (Ox11101111) and 128 (Ox00010000), they can be represented as
immediate constants and thus appear as operands to simple integer arithmetic operations.
Larger constants, like 65535 (Oxffff), must be placed in a register.

void main(void){
char eh;
int i;

}

eh= 'a';
i = eh;

REG(ch) := 97
REG(AddrO) <-LOAD- Addr(OxOOOOtfff)
REG(CnvtTmpO) := REG(ch) t REG(AddrO)
REG(i) := REG(CnvtTmpO)

Figure 3.10: Example of a type conversion

3.3.2 Explicit Support of Load/Store Architectures

The second difference between LAST and SIMPLE is, as mentioned previously, that LAST
explicitly supports a load/store architecture, whereas SIMPLE has no provision to differ­
entiate between registers and main memory. The consequence of this approach is that all
operands, with the exception of load and store operators (Section 4.2.2), are registers or
constants and not memory variables. Two corollaries for LAST follow from this approach:
variables are explicitly loaded into registers, and are explicitly stored to memory. These
two corollaries are explained in the following sections.

Explicit Loads

In a load/store architecture, variables are explicitly loaded into registers. Subsequently, all
references to the variable will use that register. There are three situations that cause a
variable to be loaded into a register:

1. It is the first use of the variable ie there is no existing register holding the value of
the variable. This is calculated using a register use analysis (Figure 3. 7) as one phase
of the compiler. The phase consists of a forward traversal of LAST, and the first
time a variable is either used or defined, it is marked as being in a register for all
subsequent uses. The only exception is when the next use is in an outer block ie the
first use/ definition occurred inside a conditional body. In that case, all of these first
used variables that were defined must be stored to memory at the end of the block,
and reloaded at the next use. If variables are used in all arms of conditionals (cfboth
if and switch statements), the information is merged for each arm-Figure 3.11
demonstrates this algorithm.

0

CHAPTER 3. OVERVIEW 30

Inside the if body, variable a is already in a register and so is not loaded, since it
is defined in the first line of the program, whereas parm must be loaded. Variable
parm is again loaded when being assigned to b, as there is no guarantee that the if

statement then body is executed. As a result, parm must be stored at the end of the
conditional, otherwise the following load would overwrite the value in REG(parm)
with its old value.

;================================
Function body for "foo_lish"

;================================
<<Save Registers>>
REG(a) := 1

REG(should_incr)(O) <-LOAD(Int)- MEM(should_incr)
If Statement:

void Conditional: REG(should_incr)
foo_lish(int should_incr,

int parm){
int cond,a,b;

}

a= 1;
if(should_incr){

a = 2;
parm = parm + 1;

}

b = a+parm;

end of sequence
Branch delay slot: nop

Then Statements:
REG(a) := 2
REG(parm)(O) <-LOAD(Int)- MEM(parm)
REG(parm) := REG(parm) + 1
MEM(parm)(O) <-STORE(Int)-< REG(parm)
end of sequence

Else Statements:
end of sequence

end of If Statement

REG(parm)(O) <-LOAD(Int)- MEM(parm)
REG(b) := REG(a) + REG(parm)
<<Restore Registers>>
end of sequence

Figure 3.11: Example of register-use algorithm

2. The variable is an array or structure field. For array dereferences, the memory location
is usually computed at run-time, and so the easiest and safest approach is to load the

value from memory. Structures, including their fields, have their addresses calculated
at compile time, but since structure fields can be arrays, field dereferences are treated
conservatively and considered identical to array dereferences (future extensions to
LAST may wish to remove this restriction).

CHAPTER 3. OVERVIEW 31

3. The variable is a global variable. In the basic, conservative approach all uses of
a global are loaded, and all definitions are stored to ensure correctness. Such an
approach is necessary since there is no guarantee that the global is left unmodified by
a called procedure, and so memory consistency must be maintained. However, with
the accurate points-to analysis available in McCAT, this conservative approach can
optionally be replaced by another one: loading a global once at the beginning of a
basic block, and storing it only at the end (see Section 5.1).

Because of our analysis algorithms, local static variables are transformed into global
static variables with unique names that are used in one function only.12

4. The variable is pointed-to. A pointed-to variable is one whose address has been
taken at some point in the program, and whose memory location can therefore be
accessed via indirect references. Any pointed-to variable is loaded on use and stored
on definition. Again, with the points-to analysis available, the compiler can optionally
replace all definitely pointed-to variables, and thus reduce the loads and stores to one
per basic block. The below example demonstrates the substitution. On the left, the
variable *aptr is essentially replaced by the variable a, as on the right the register
REG(b) is assigned REG(a).

{

int a,b,*ptra;
ptra = ta;
a = 10;
b = *aptr;
}

REG(_aAddrO)(O) <-LDAD(Addr)- ADDR(a)
REG(ptra) := REG(_aAddrO)

=? REG(a) : = 10
REG(b) := REG(a)
MEM(b)(O) <-STORE(Int)-< REG(b)

Note that temporary variables generated in the simplify and blastify process are analo­
gous to registers and so are never loaded nor stored.13

Explicit Stores

Just as there are explicit loads, so too are there explicit stores. Stores are generated after
assignment statements under the following conditions:

1. If the variable is pointed-to.

2. The variable is a global variable (or a static local variable, as explained above).

3. The variable being written to is an array or structure. Although there will be some
cases where the same array reference is being read in the immediate future, LAST is
not the place to optimize this case. There should be a higher level transformation at

12The original name is given a unique suffix and prefix.
13 Unless specifically spilled by the register allocator.

c

CHAPTER 3. OVERVIEW 32

the SIMPLE level to replace the array reference with a scalar variable [CCK90]. For
example, Figure 3.12 shows three array references on the left, and a corresponding
transformation for them on the right. Note that once scalar variables (like t_l) are
introduced, LAST automatically keeps them in registers.

t_1 = X
a[i] = X a[i] = t 1

= a[i]
= t_1 .. = a[i]
= t_1

Figure 3.12: Optimization of array references

The array reference must be stored because, like the load, the memory location is
calculated at run time. So every array reference is either a load or store. Note that
the base address and all indexes will be in registers, and are treated like any other
variable regarding whether they should be loaded or stored.

It is easy to imagine a situation where loads outnumber the stores (eg a program with
many scalar variables). If this difference is too large, the register allocator will run out of
registers, as the current allocators attempt to keep as many values in registers as possible. It
is the task of the register allocator to decide which variables should be retained in registers
and which should be stored [Bri92, HGAM92]. A register allocator has been implemented
[LJ92], but further discussion is beyond the scope of this thesis.

3.3.3 Unique Variable Nodes

The third difference between SIMPLE and LAST is the nodes used to represent variables.
In the implementation of LAST, each leaf node parent is unique ie is allocated a different
memory location. SIMPLE, on the other hand, reuses nodes to maintain consistency and save
space. In LAST, this specific consistency is actually a characteristic to be avoided, otherwise
the implementation of chameleon registers becomes complex. The use of chameleon registers
is a technique to substitute register moves for register spills [HGAM92]: in this case a
variable may be allocated different registers at different points in the program.

To uniquely identify the register nodes, they have pointers to their corresponding SIMPLE
variable declaration nodes. See Section 4.2.1 and Figure 3.13.

3.3.4 Parent/Child Relationship

The fourth and final difference is the overall structure and relationship between LAST and
SIMPLE. The actual AST structure is different; the leaf nodes of LAST are actually SIMPLE

c

c

CHAPTER 3. OVERVIEW 33

nodes. Each leaf node parent has a pointer to a SIMPLE node such as a variable, parame­
ter or constant (in SIMPLE known as VAR_DECL, PARM_DECL or CONSTANT nodes),
see Figure 3.13. This approach is primarily a space-saving optimization, but is also use­
ful when storing information with variables (as in the stack reduction optimization-see

Section 3.4.4).
In addition, this parent-child relationship allows analyses at the LAST level to access

information created and stored at the SIMPLE level, in support of the persistence of flow
information.

~ LLEFT_~
CHILD LRIGHT CHILD

[~~s t
LLEFT_ LAIGHT_
CHILD CHILD

~
SI MP~~

TREE_INT _CST _LOW

\
99

a= a+ 99

Figure 3.13: Storage optimization

3.4 Optimizations Performed During Generation

Optimizations are performed not only by separate passes on the SIMPLE and LAST IRs,
but during the generation of LAST. There are various motivations for incorporating these
optimizations during the translation process, but the two main ones are: 1) some informa­

tion is lost during the transformation, especially regarding arrays and structures, and 2)
the transformation is trivial to implement, and so can easily be integrated in the generation

c CHAPTER 3. OVERVIEW 34

of LAST without significantly increasing its complexity.
Four such transformations are described below. The first is the pre-calculation and fold­

ing of offsets, the second the loading of addresses outside ofloops, the third the substitution
of integer multiply instructions by cheaper operations, and fourth the reduction of space
reserved for local variables.

The first three are classical, well-known optimizations; their motivation was not so much
to further increase McCAT's code quality, but to keep up with the 'minimum standard'
of code presented by other compilers such as GCC [Sta92] or lee [FH91]. The last was
motivated by the simplify algorithm, that can generate an inordinate number of temporary
variables.

3.4.1 Pre-calculation and Folding of Offsets

Regular fields14 in structures are accessed as an offset from a base address. In RISC ar­
chitectures, memory is usually addressed as a register plus some constant offset, in a form
similar to 12 (r4) ie access the twelfth byte from the address contained in register r4.

Rather than placing the offset of some field in a register and adding it to another one con­
taining the structure's base address, the indexed register mode is used for efficiency's sake.
An extra field (LS_QFFSET) in the LOAD and STORE nodes (see Figure 4.7) enables this
optimization.

In addition, array indices that are constants are folded into the address calculation.
For instance, given the array declaration int a [5] [10], the address calculation for the
dereference a[i] [3] is : &a + i X 10 X 4 + 3 X 4. The constants are folded together
to reduce the number of multiplication operations, producing &a + i x 40 + 12.

3.4.2 Loading of addresses outside of loops

As shown in the previous optimization, the address calculation for arrays includes adding
the array's base address to the offset. The base address is a constant value, and so is a
perfect candidate for code motion, and a potentially profitable one, considering that arrays
are frequently used inside of loops.

When the address of a variable is loaded in LAST, the load instruction is placed before
the outermost enclosing loop, unless of course the address is needed before the loop, where
it is just loaded before being needed. All subsequent references to the variable's address
refer to the loaded value.

14That is, any field other than a bit-field.

c

c

CHAPTER 3. OVERVIEW 35

3.4.3 Multiplication by Integer Constants

Even in a pipelined architecture, long latency operations such as multiplications can cause
problems since finding instructions to execute during the wait can be difficult, especially in
non-numerical programs with characteristically small basic block sizes[LW92]. For integer
multiplication, where one of the operands is a constant, the multiply operation can be
replaced by a series of shifts, additions and subtractions.

However, in performing this substitution, one must ensure that the resulting code is
no more expensive than the multiply it replaces. The blastify process generates the best
sequence of shifts I adds I subtracts it can find, using a version of Bernstein 's algorithm [BH93,
Ber86], and if the cost of these instructions is less than a multiply, the multiply is replaced.
Figure 3.14 shows a pseudo code sequence generated for the statement a = 97 * b. Code
for a conventional multiply is on the left hand, and a corresponding sequence using shifts
on the right. The code is for the DLX architecture, where an integer multiply operation
expects its operands to be in floating point registers.

Comparing the two methods, ignoring identical instructions, the arithmetic operation
itself is 10 cycles, the move-integer-to-float (MVI2F) and corresponding move of the result
back (MVF2I) operations constitute 3 cycles, plus one cycle for the initial load of the
constant, giving a total of 14 + 2 = 16 cycles.

Using Bernstein's algorithm, four simple arithmetic one cycle instructions plus a register
move are used to calculate the result. Total cycles are 5 + 2 = 7 cycles, thus saving 9 cycles.

There are two more advantages to using this transformation. Firstly, the naive method
uses a total of three integer registers and two floating point, whereas the second method uses
only four integer registers. The second advantage occurs when the integer constant is large.
Usually immediate constants are represented by no more than 16 bits ie their values range
from -32767 to 32768.15 This is because many RISC architectures have an instruction size
of 32 bits, so encoded immediate integer constants are necessarily much smaller than 232

bits. When an integer constant exceeds these values, a more expensive operation (typically
taking an extra machine cycle) is used to load the value into a 32 bit register and then
multiplied, adding the potentially high cost of a load and the extra use of a register. Since
the largest immediate constant used in a shift would be 31, the second method does not
suffer from this problem.

3.4.4 Reducing Stack Space

For every invocation of a function, stack space must be reserved for the local variables of
that function. Unfortunately, during the transformations to SIMPLE and LAST, a large
number of temporary variables can be generated-for some benchmarks they are in the
hundreds. Even though these variables may have short lifetimes and never be spilled to

SPARC architectures, constants are limited to 14 bits.

CHAPTER 3. OVERVIEW

REG(temp1) := COHST(97)
REG(b)(O) <-LOAD(Int)- MEM(b)
REG(temp2) <-MVI2F REG(temp1)
REG(temp3) <-MVI2F REG(b) =?
REG(temp4) := REG(temp2) * REG(temp3)
REG(b) <-MVF2I REG(temp4)
MEM(a)(O) <-STORE(Int)-< REG(a)

REG(b)(O) <-LOAD(Int)- MEM(b)
REG(temp1) := REG(b) << 1
REG(temp1) := REG(temp1) + REG(b)
REG(temp2) := REG(temp1) << 6
REG(temp2) := REG(temp2) + REG(b)
REG(a) := REG(temp2)
MEM(a)(O) <-STORE(Int)-< REG(a)

Figure 3.14: Replacing multiply with shifts for a = 97 * b

36

the stack, a naive compiler will allocate stack space for all of these variables, which can be
extremely wasteful, especially for recursive functions.

The solution taken was to mark all variables that are either loaded or stored to memory,
or had their address taken (in case they were referenced indirectly) ie any child node of
a MEM or ADDRESS node, determined during the blastify process. Then, when creating
offsets (see the create offset module in Figure 3.7), only those variables so marked are
allocated stack space.

3.5 Implementation Restrictions

The final section of this chapter briefly describes the limits of the implementation of LAST.

All facets of SIMPLE C are handled, except for

• Type conversions involving long long integers.

• Bit fields using any type other than unsigned integers.

• The interprocedural goto instruction longjmpO (and its companion setjmpO).

• Stack based memory allocation using alloca().

In addition, there are the following restrictions:

• Only 32 bit wide registers are supported. For type conversions, 32-bit float and integer
registers are assumed, with pairs of floating point registers giving 64-bit precision. A
specific precision is required for the various bit masks generated, although switching
to a 64-bit register architecture should be relatively painless. Currently, the majority
of commercial RISC architectures are 32 bits, with DEC's new Alpha chip being an
exception [Dig92J.

• Individual structures are limited in size. Since an offset to a register is used to access
structure fields, structures are limited to be only as large as the maximum value an
offset field can represent, which can range from 214 to 216bits.

c

0

Chapter 4

Detailed Description of LAST

The LAST intermediate representation is implemented as a doubly linked-list of (usually)
binary trees. There are many different LAST nodes, but they can be classified into four main
categories: structural nodes, architectural nodes, operator nodes and control-flow nodes.

In the illustrations of LAST nodes and trees that follow, a specific convention is followed.
The nodes are either shaded or unshaded, with shaded nodes representing SIMPLE nodes,
and unshaded being LAST nodes. Connecting the nodes are three types of arcs: solid, dashed
and dotted. Solid arcs represent the 'normal' links that connect nodes, and are labeled with
the C macro used to access the field (for the sake of brevity only the first instance of each
type of arc named). The dashed arcs are also labeled, and represent connections that are
invisible to the normal traversal, but are still accessible when specifically addressed. They
are used only to circumvent the binary restriction placed on LAST. The last arc type, the
dotted arc, represents arcs that are used only for implementation purposes, but are meant
to be ignored in the conceptual model of LAST. Figure 4.15 and Figure 4.16 illustrates these
two types of arcs.

4.1 Structural Nodes

The first category of nodes in LAST is structural nodes. These types of nodes provide
LAST trees with their tree-like structure (for analysis), and to aid manipulation of them
(for transformations). There are three sub-types of structural nodes: common, sequence
and anchor nodes.

4.1.1 Common Nodes

A common node is not really a node, but is part of all nodes. Every LAST node has a
common component, and illustrated in Figure 4.1.

There are several fields for this node, as described below.

37

c

c

CHAPTER 4. DETAILED DESCRIPTION OF LAST 38

r ' Node Name

LTREE_CODE

LTREE_UID

Special fields ..•

,; I \..oil
/ ' LLEFT_CHILD LRIGHT_CHILD

I \
Figure 4.1: The fields common to every LAST node

code: an eight-bit field that contains the node's name.

uid: an unsigned integer uniquely identifying each LAST node. Although of limited useful­
ness in various optimizations/analyses, the uid has proved very useful for debugging
purposes.

children (left and right): two pointers to two other LAST nodes, usually used to repre­
sent children. While not all nodes use both these fields, they simplify the traversal of
LAST.

There are also some 'special fields', which are reserved fields shared by different nodes
for space reasons.

4.1.2 Sequence Nodes

Sequence nodes are the glue of LAST, and hold all the trees together. Programs are rep­
resented as doubly linked-lists of sequence nodes (represented by SEQ) with various LAST
trees as children-SEQ nodes are parents of every LAST sub-tree (Figure 4.2). LAST trees
under a SEQ statement can be of any type, except another SEQ node, an arithmetic node
(except for MODIFY-explained in Section 4.3) or a EOSEQ node (Section 4.1.3).

For saving flow information generated by analyses run on the LAST IR, SEQ nodes
have a pointer, SEQ-FLOW, used to point to an arbitrary structure for containing flow
information (Figure 4.2).

SEQ nodes maintain a pointer back to the corresponding SIMPLE sub-tree that generated
the particular LAST sub-tree. This arc, called EXPR-STMT _pTR (see Figure 4.3), is used
to access the flow information deposited by various SIMPLE analyses, and is the mechanism
to support the pervasive flow information in McCAT. It points back to the root of a SIMPLE

expression tree, such as an assignment statement. In the case where an abstract data type,

c

CHAPTER 4. DETAILED DESCRIPTION OF LAST 39

SEQ_BODY ..
Figure 4.2: SEQ node

such as an array or structure, is referenced, then a series of LAST sub-trees are generated,
with all their EXPR_STMT_pTR arcs pointing to the same SIMPLE expression node (a
many-to-one relationship). There are also situations where LAST subtrees are generated
independently of the SIMPLE IR, especially during register allocation if spill and reload
code is generated. In such cases, the EXPR_STMT _pTR has no corresponding SIMPLE

expression tree to point to, and so is set to nulL

4.1.3 Anchor Nodes

These are special nodes that are used exclusively to support instruction scheduling. Their
function is to anchor a sequence of nodes, so the instruction scheduler is guaranteed to have
nodes that remain immobile, pointing to the beginning and end of basic blocks. There are
two such nodes, called begin body (BEGIN_BODY) and end-of-sequence (EOSEQ). Begin
body nodes are the child of the first sequence node in every body, (except for conditional
and delay slot bodies1), and EOSEQ nodes terminate SEQ lists.

EOSEQ nodes also serve a dual function in LAsT as a terminator of SEQ chains. The
code-generator generator used in McCAT, BURG, requires that terminal nodes be used for
trees it traverses, rather than simply having a null terminated list.

4.2 Architecture-exposing Nodes

The second category of LAST nodes is perhaps what most differentiates LAST from SIMPLE.

These nodes expose the underlying architecture and directly represent it: they differentiate
register and memory references, expose function prologue and epilogue, parameter pass­
ing, and explicitly represent delay slots. These nodes are designed to expose optimization
opportunities of the target architecture.

1Since the scheduler does not attempt to reorder instructions in either conditional or delay slot bodies,
the begin body node is unneeded in these bodies, and so is left out to save space.

c

CHAPTER 4. DETAILED DESCRIPTION OF LAST

EXPR_STMT _PTA

" ;
PREVIOUS_ t

, " "' "

SE0,...--,1 ,... --,
..~c r-· ' ~.....,'l!rttc ·.... sea
----1)1>101[SEQ f- CHAIN ~

I
SEQ_BODY

[,O;IFY<~
LLEFT_ LRIGHT_

~D CHI~~

LLEFT _ LRIGHT _
CHILD

Figure 4.3: How a SEQ accesses the flow information in an EXPR node

40

c

CHAPTER 4. DETAILED DESCRIPTION OF LAST 41

4.2.1 Variables, Addresses, Constants and Labels

Because variables can reside in both registers and memory, LAST has two different repre­
sentations for a variable: one for when it is in a register (REG), and one for when it is in
memory (MEM). There is also a representation of the address of a variable (ADDRESS),
and constant node (CONSTANT), and a label (LABEL), used for denoting the name of
functions.

These five nodes are all similar in that they are all parent nodes, and point to SIMPLE

nodes. This is a result of the storage optimization discussed previously, and shown in
Figure 3.13.

REG: The REG node corresponds to a register holding the value associated with the
SIMPLE variable it points to (written REG(a), where a is the SIMPLE variable-see
Figure 4.4). For example, if variable a is assigned the constant 1, then REG(a) would
be assigned the value 1. The REG node can access the memory location information
in the SIMPLE nodes in case the register allocator decides it must be spilled to memory.
There can be an infinite number of REG nodes; at register allocation time they will
be mapped to an appropriate real register.

a = 1; REG(a) = 1;

REG

LS_SIZE

REG_NUM

variable
pointer

_ r-SIMPLE_ V AR

~

Figure 4.4: REG node

MEM: The MEM node indicates the value contained in the actual memory variable. The
node is used only with LOAD or STORE operators. In Figure 4.5, the value of b is
loaded from memory and placed in a register associated with b. The register for a
(REG(a)) is assigned thevalue of b, and then stored to memory.

ADDRESS: The ADDRESS (ADDR in the figures) node indicates the address, not value,
of the associated SIMPLE variable. This node replaces the C address operator&:. In
addition, besides holding the contents of variables, a REG can also contain the address
of some memory location like a pointer variable, structure or array reference.

c

c

CHAPTER 4. DETAILED DESCRIPTION OF LAST

a = b;
REG(b)(O) <-LOAD(Int)- MEM(b)
REG(a) := REG(b)
MEM(a)(O) <-STORE(Int)- MEM(a)

Figure 4.5: Example of load and store in LAST

42

In Figure 4.6, the address of b is assigned to REG(ptrb) and REG(ptra). A new
register is created, called REG (iref -ptra), to hold the value of the dereferenced
variable *ptra (which is the value 10). The value in this register is then stored
at the memory location to which ptra points.

int b,*ptrb,*ptra;
ptrb = kb; =?
ptra = ptrb;
*ptra = 10;

REG(addr-b)(O) <-LOAD(Addr)- ADDR(b)
REG(ptrb) := REG(addr-b)
REG(ptra) := REG(ptrb)
REG(iref-ptra) := 10
REG(ptra)(O) <-STORE(Int)-< REG(iref-ptra)

Figure 4.6: Example of pointer dereference in LAST

CONSTANT: The CONSTANT node points to the corresponding SIMPLE CONSTANT
node, and is used for all constants (Figure 3.13).

LABEL: The final leaf parent is the LABEL node, which points to the variable declaration
node of a function.

4.2.2 Load and Store Nodes

As mentioned previously, LAST models a RISC machine, one of whose characteristics is
being a load/ store architecture. LAST therefore has nodes to explicitly represent both loads
and stores of variables. Loads and stores take two children: a 'source' child node and a
'destination' child node. There is also an LS_OFFSET field, which is used to take advantage
of the indexed register addressing mode usually used in RISC architectures (Figure 4. 7).

LAST abstracts whether a local or global variable is being loaded or stored. Determining
a global variable's address is more expensive than a local, but because calculating this

address varies widely between architectures, it is left up to the code generator to handle.

Load Nodes

Load nodes always have a REG node as their destination child, but can have one of the
following four types of nodes as their source (see Figure 4. 7).

0

CHAPTER 4. DETAILED DESCRIPTION OF LAST 43

1. REG(ptra): a register associated with variable 'ptra', holding the address of a memory
location. This node is most commonly used for accessing the contents of arrays,
structures and pointer variables. In Figure 4.6, the register REG(ptra) is used to hold
the address of variable b.

2. MEM(a): a memory location holding the value associated with 'a'.

3. ADDRESS(a): the address of the variable 'a'. MEM(a) is a value, ADDRESS(a) (or
ADDR(a)) is an address. Note that while it is represented in LAST as a load, the code
generator substitutes cheaper instructions.

4. CONST(99.0): the location of a non-integer constant (eg a real constant 99.0). CONST
can represent strings and reals as well as integers that are too large for the immediate
constant mode, ie larger than 216 for the DLX architecture.2 Note that when loading
such large integer constants, the code generator actually does not generate a load, but
detects this special case and substitutes cheaper instructions than a load.

Store Nodes

Store nodes are similar to load nodes, but with the children reversed. The source must
be a register, and the destination node must be either a MEM node, or a REG node (see
Figure 4. 7). The destination REG node will hold an address identical in function to the
corresponding source REG in the load instruction.

"a'

LOAD

LS_SIZE

LS_OFFSET

dest. source
pointer pointer

'a' 'ptra'

for SPARC.

•a• 99.0

I
STORE

LS_SIZE

LS OFFSET

dest. source

\. po~nter pointer
u

LS_JEST

SIMPLE_VAR
I

'a'

Figure 4.7: LOAD and STORE nodes

•a•

CHAPTER 4. DETAILED DESCRIPTION OF LAST 44

4.2.3 Function Declarations

Another set of nodes that help expose the architecture to the compiler are those dealing
with function declarations. Function declarations reuse most of the structure of SIMPLE

declarations; the function name and the parameters are unchanged. The only difference is
an extra pointer to a LAST version of the function body (see Figure 4.8).

The LAST function body is bracketed by two special nodes: SAVE...REGISTERS and
RESTORE-REGISTERS. SAVE-REGISTERS represents the function prologue code that
saves all registers used in the function body to the stack, and RESTORE-REGISTERS the
function epilogue that restores them. In addition, the RESTORE-REGISTERS is in effect
the target label of all return statements, and so at code generation time a label is also
emitted when this node is processed.

int foo(int x, int y){
body
l

Figure 4.8: LAST function declaration

Since load/store architectures tend to have many registers, the save and restore sections
are expensive (since many registers may have to be saved and restored around function
calls), and are an important part of function call optimization. During register allocation,
the register saves and stores are inserted for only the registers used in the function body (only
the register allocator knows exactly what registers are used). The SAVE-REGISTERS and
RESTORE-REGISTERS nodes are left untouched and used as a reference point for return

statements. Subsequent instruction scheduling optimizations can further improve program
performance by interleaving function body instructions with the save/restore instructions.

4.2.4 Passing Parameters

LAST explicitly represents the passing of parameters to a function. Implementing these
nodes compromises the retargetability mandate of LAST, but the benefits are significant

CHAPTER 4. DETAILED DESCRIPTION OF LAST

main(){

}

int a = 10;
printf("Y.d",a);

REG(a) := 10
REGLaAddrO) <-LOAD- Addr("%d")
REG(temp_O) := REG(_aAddrO)
Adjust stack pointer
Pass parameter REG(temp_O)
Pass parameter REG(a)
Function Call to printf
delay slot: nop
Arguments:

Parameter: REG(temp_O)
Parameter: REG(a)

Pop parameters

Figure 4.9: Passing parameters via the stack

45

enough to justify their existence. Parameter passing is such an expensive operation that
it has motivated the design of register windows specifically to cheaply pass parameters to
functions (eg SPARC [DS90]). If a more retargetable approach is taken by abstracting the
function call and passing of parameters to be one LAST node, then a significant optimization
opportunity is lost.

Two parameter passing methods are thus required: the traditional pass-by-stack method,
and via register windows. The solution. to supporting both parameter passing paradigms
was to create specific nodes for each method. For the former, the nodes ADJUST_SP,

PASS_FARM and POP_PARMS are used to represent adjusting the stack pointer, passing
parameters, and restoring the stack pointer respectively (Figure 4.9).

As a brief review of a register window architecture, such as the SPARC [DS90, pp. 307-
315], there is a circular buffer of registers used to pass parameters to functions. At any one
point, there is an active 'window', consisting typically of 24 registers: eight in, eight local,
and eight out registers. The in registers contain the parameters passed into the function
call, and the out registers the parameters to be passed to the next function call. When a call
is made, the active window is moved forward by 16 registers, so the out registers become
the in for the next function. For a fuller description, the reader is directed to Dewar and
Smosna [DS90, pp. 301-340] or Hennessy and Patterson [HP90, pp. 450-454].

Note that since functions with more parameters that out registers exist, architectures
with register windows must also sometimes pass parameters via the stack. To support
register windows, two additional nodes are used: REG_WIN_OUT and REG_WIN.JN.
REG_WIN_OUT moves a parameter into a specific out register before the function call,
and REG_WIN .JN is used inside the called procedure to retrieve the parameter from its in
register. If the register allocator is clever it can initially allocate REG_WJN_OUT registers
to prospective parameters. Otherwise some additional register moves to the out registers

c CHAPTER 4. DETAILED DESCRIPTION OF LAST 46

may be required.
Since register windows are supported in the intermediate representation, it is possible

use registers to pass parameters, even on machines without register windows: by simply
utilizing a convention for which registers to reserve for passing parameters, the cost of
function calls can be reduced significantly [Wal88, Cho88].

4.2.5 Delay Slots

Another set of nodes that help expose the target architecture are those dealing with delay
slots. Delay slots are not specific nodes, but rather a classification of nodes. They are
simply regular subtrees of LAST nodes that are isolated and identified as being part of a
delay slot.

There are two types of delay slots present in RISC machines: load delay slots and
branch delay slots [HP90, pp. 265-268,273-276]. On some architectures, load delay slots
are implicitly inserted by the hardware (eg SPARC [CKDK91, p. 294]), while in others
the compiler must explicitly handle them (eg MIPS [DS90, p. 296]). Branch delay slots,
on the other hand, are generally present in RISC architectures. For these reasons, LAST

models only branch delay slots, and lets the instruction scheduler add nops as appropriate
for load delays. If no instruction scheduling is performed, then a nop instruction is emitted
as appropriate at code generation time.

LAST also exposes the branch delay slots present after all conditional and unconditional
jumps, and are labeled in the diagrams by an oval. The oval represents a sequence of
instructions, terminated by an EOSEQ node, but are initially only one SEQ with a nop as
a child. The flexibility is there for delay slots greater than one cycle, as might be present
in super-pipelined architectures [JW89].

4.2.6 Looping Nodes

To implement a loop in assembly language, there is usually an unconditional branch to a test
condition ie a continue statement at the end of a loop. Since there will be a branch delay
slot associated with this unconditional branch, this implicit continue is explicitly repre­
sented, along with its branch delay slot. There are three such nodes: JUMP _OVER_ELSE,
JUMP _TO_ WHILE and LOOP _TO..FOR, for the unconditional branch in if, while and
for statements. There is no similar unconditional branch for do while loops.

4.3 Operator Nodes

Operator nodes are trivial nodes, and usually correspond directly with assembly instruc­
tions. The abstract RISC machine to which LAST is targeted is assumed to have an instruc­
tion to implement each of these operations, although if a particular machine does not, then

c

0

CHAPTER 4. DETAILED DESCRIPTION OF LAST 47

blastify can be altered to generate the equivalent behavior using other arithmetic nodes.
The operator nodes consist of arithmetic, logical and conversion operators, and take either
one or two arguments (children), which are either a REG node, or in some special cases a
CONSTANT node.

4.3.1 Arithmetic Nodes

Table 4.1lists the arithmetic nodes, with the MODIFY node being special because it can
also take any other single arithmetic or logical node as its child, except another MODIFY
node. The TRUTH_NOT operator, while supported in LAST, never appears in programs
since the GCC front-end removes it through boolean algebra.

I Name

MODIFY
PLUS
MINUS
DIVIDE
MOD
MULTIPLY
BIT ..AND
BIT.JOR
BIT.XOR
BIT_NOT
NEGATE
TRUTH_NOT
LSHIFT
RSHIFT

NOP

11 Equiv. I Description
C code

a b assign
a+b addition
a-b subtraction
a/b division
a%b modulus
a*b multiplication
a&b bit-wise and
alb bit-wise inclusive or
a· b ~wise exclusive or
- wise not a
-a negation

!

!a boo lean zero/ not zero 1

a<< b shift left
a>> b shift right

a + 0; I (: operation
wait 1 cycle)

Table 4.1: Arithmetic nodes

4.3.2 Logical Nodes

Table 4.2 lists all the logical operators, which are usually found in the conditional sub­
tree associated with flow-control nodes (described below). They can also be the child of a
MODIFY node.

c

0

CHAPTER 4. DETAILED DESCRIPTION OF LAST 48

N -~ 11 Equiv. Description I
11 C code

GE a>= b greater or equal to
GT a>b greater than

I EQ a b equals
LT a<b less than
LE a<= b less or equal to
NE a!=b not equal to

Table 4.2: Logical nodes

4.3.3 Conversion Nodes

Conversion nodes are used to implement type casting, and support architectural restrictions
such as certain arithmetic operations requiring float/integer only registers. Table 4.3 lists
these nodes. On some architectures, such as the RS/6000, the equivalent of some of these
nodes do not exist, and so the Blastify phase generates their equivalent using arithmetic
nodes.

I Name 11 Equivalent type cast I Description

FD2S (float)a = (double)b ~o single precision
FD2I (int)a = (double)b double to integer
FI2S (float)a (int)b integer to float I
FI2D (double)a = (int)b integer to double
FS2I (int)a = (float)b float to integer
FS2D (double)a (float)b float to double
FIXUD2S (unsigned short)a = (double) b double to unsigned short

MVI2F 11 I move from integer to float register
MVF21 I move from float to integer register

Table 4.3: Conversion and register move nodes

Appendix B contains a full description of the LAST grammar, and details the use of
operator nodes.

CHAPTER 4. DETAILED DESCRIPTION OF LAST 49

4.4 Flow of Control Nodes

The fourth and final class of nodes in LAST are the flow-of-control nodes, which represent
control-flow nodes like while, do while, if, for, switch, and function calls. Implementing
change of flow control implies the use of (un)conditional branches, so all of these nodes have
delay slots.

4.4.1 While and Do-While Statements

The while and do while statements are structured similarly to one another. Figure 4.11
illustrates both while and do while structures. All while statements have labels for the
beginning of the loop (LWHILE_STARTLBL for continue statements and loop iteration),
and the end (LWHILE..ENDLBL, for break and a failed condition).

In addition, there is the JUMP _TQ_WHILE node, which represents an unconditional
jump back to the LWHILE..STARTLBL label, to repeat the loop. In keeping with the
compositional approach it has its own branch delay slot for instruction scheduling (see
Figure 4.10 and Figure 4.12).

cond=10;
while(cond)
{

cond--;
}

Figure 4.10: while loop example

The do while statements are quite different, since they consist of only one conditional
branch, versus while's conditional and unconditional branch. The condition sub-tree is still
attached to the DO_STMT node to make analysis inexpensive, but it is really associated
with the conditional branch that is generated after the code for the loop body.

In addition, the DO..STMT also contains an extra jump label, DO_CONDJUMP. The
LWHILE_STARTLBL is used for jumping backwards to repeat the loop, but cannot be
used for the continue statement since the condition body is at the end of the loop; thus
DO_CONDJUMP contains the jump target for continue. LWHILE_ENDLBL works as
before as the break target.

Figure 4.14 provides an illustration of the three labels required for do while statements.
On the left is the pseudo code, and on the right the equivalent DLX code for the C code in
Figure 4.13.

The first label LWStart1 is the target for the bnez3 instruction, used when beginning

3 Branch if argument is not equal to zero.

CHAPTER 4. DETAILED DESCRIPTION OF LAST

'l1'
-..,

while (cond) {
body

/

LWHILE_
ENDLBL

'l2'
<!(

~· u· ~~
....... . ,...,..

... . "'
LWHILE_ LWHILE_ 00 CONDJt;'MP

STAATLBL ENDLBL -,

' I "'

s;;~
LWHILE_ LWHILE_ LWHILE_
COND DELAY BODY

~ &m ~

do{

SEQ_CHAIN

[eoteo)

body
}while(cond);

Figure 4.11: while and do while statements

REG(cond) := 10 addi r2,r0,#10 ; cond = 10;

While Statement: ; While Statement:

50

Conditional: REG(cond)
end of sequence
Branch delay slot: nop
While Body

LWStartO: continue label

REG(cond) := REG(cond) 1
Jump-to-while branch delay slot: nop
end of sequence

beqz r2,LWendO ; cond !=0
nop
;While Body
subi r2,r2,#1 cond--;
j LWStartO
nop

LWendO: break & end label

Figure 4.12: Pseudo and DLX assembly code illustrating labels in a while statement

cond=10;
do
{

cond--;
}while(cond);

Figure 4.13: do while loop example

c CHAPTER 4. DETAILED DESCRIPTION OF LAST 51

another loop iteration. The second label, LWStart2, is the target of any continue statement,
and the third label, LWend1, is the target for any break statement in the loop.

REG(cond) := 10

Do While Body
REG(cond) := REG(cond) - 1
end o:f sequence
Do While Statement:
Conditional: REG(cond)
end of sequence

Branch delay slot: nop

addi r2,r0,#10 ; cond = 10

;Do While Statement:
LWStart1:

; Do While Body
subi r2,r2,#1

LWStart2:
bnez r2,LWStart1
nop

LWendt:

cond--
continue label
cond != 0

.break~ end label

Figure 4.14: Pseudo and DLX code illustrating labels in a do while statement

4.4.2 If Statements

If statements in LAST are peculiarly constructed because the code-generator generator
BURG allows only binary tree representations. This constraint requires the use of the
IF -ELSE-HACK node, whose left child is the then body, and right the else body-see Fig­
ure 4.15. In the figure, the solid lines, as in the previous diagrams, represent arcs that are
normally visible to the compiler (and are labeled with the macros used to access them).
The dashed and dotted lines are used for special purposes: they represent the LAST AST
structure, where they are required to handle the binary tree requirements of BURG. How­
ever, the macros IF _ELSE_BODY and IF _THEN _BODY make this constraint transparent,
as they allow access to the then and else bodies from the parent if node. The dashed lines
are back edges that are used to access jump labels, which are stored in the if statement
node for easy modification by a branch chain elimination transformation. Like the while

statement, a conditional branch slot is associated with the if node. This slot is invisible
to BURG's traversal mechanism, since BuRG only recognizes nodes with an arity less than
three, but the slots are accessible when specifically addressed.

There is always a then body and else body, but either may contain only the EOSEQ node
ie be empty. When the else body does contain statements, then the JUMP _QVER-ELSE
node is inserted into the then body. This node represents an unconditional jump of the
code of the else body (as occurs in the assembly generated for an if statement). This node
has a delay slot, and an arc pointing back to the if node to enable access to the labels.

c CHAPTER 4. DETAILED DESCRIPTION OF LAST

--------------------1
I

:

I .. UF _HACK ..• • ••.•• •

I .:· ..
UF_COND .; IF ~ IF_ELSE_BODY

~ , .; / \ \ IF_THEN_l!ODY
-..........., UF_DELAY I I \

SLOT I I\

.; " IF ENOTHEN I ---c -1 I\
1 IF _ENDELSE \

I ' I \ \
I I PARENT_COND

I \

' PARENT_IF
~ "

.• ""t~IF-_ELS-'''-E-_HA-CK-....)

~ \, $-SEQ_CHAIN

"L2" '
\\' SEQ SEQ_CHAIN ~

I ..
'L1'

\SEQ_BODY
\

DELAY_SLOT
Generated only
if Else exists

52

0 Figure 4.15: If statement

4.4.3 For Statements

The for loops in LAST are a mix of if, while and do while statements; because of BURG's
constraints, the initialization, iteration condition and increment statement must be split up
into binary trees, as illustrated in Figure 4.16.

Like the while loop, there is an unconditional branch at the end of the body, as well as
a conditional branch. There is also a similarity with do while statements, as a third label
is needed to handle continue statements (DO_CONDJUMP).

4.4.4 Switch Statements

In LAST, switch statements are divided into two types of subtrees. The first correspond to
the labels of each case statement, and the second to the instructions to be performed should
its case label be chosen. LAST assumes that when implemented, there will always be a test
of the switch expression, and then a conditional jump to the appropriate case labeL The

implementation of the logic for determining the correct case label is not exposed at the
LAST leveL It is felt that there is little opportunity for instruction scheduling, and there are
several different approaches to generating the appropriate code, and should thus be handled
abstractly by the code generator. For example, if the case label density is sufficient, either
branch tables [Ber85, HM82, Sal81] can be generated, or a more space-efficient method, ie

CHAPTER 4. DETAILED DESCRIPTION OF LAST

. .
• LNFOR_STOP \ • • •.

LNFOR_BODY •• •

• . : LNFOR_ITER

FOR_C_N_B I
I !

Figure 4.16: For loop statement

53

a series of test-and-branch instructions. However, whatever the method, there will be at
least one conditional branch, with an associated branch delay slot. This slot is filled by the
instructions in the LSWITCH..D ELAY _SLOT.

Figure 4.17 illustrates a typical switch statement. Note that the condition expression

of the switch statement is kept in a register (labeled result in the figure). This register is
used in evaluating the expression when calculating to which case statement to jump.

4.4.5 Return, Continue and Break Statements

The return, continue and break statements are all handled similarly. They all have an
unconditional jump delay slot, and generate jump instructions to an appropriate label.
The return node is different in that it can also have a "body" of instructions. Figure 4.18
illustrates a return statement.

4.4.6 Function Calls

The function call node can have two types of right children: a register holding the address
of a jump target, or a LABEL node, indicating a jump target in the form of a label (see
Figure 4.19). In the first case, foo is called directly as foo(tmpO,tmpl), and so a LABEL

node would be used (with the label name foo). In the second case, foo is called via a
function pointer as fooptr(tmpO,tmpl), in which case a REG node is used to hold the
address of foo.

CHAPTER 4. DETAILED DESCRIPTION OF LAST

R
_. LSWITCH_DELAY __ ~

SLOT -~

LSWITCH
EXPR

LSW_
CASES

Figure 4.17: Switch statement

~
DELAY SLOT RETURN

- _BOO~ }

Figure 4.18: Return node

switch(a){
case l: case 2:

body;
case 4: case5:

body;
default:

body;
};

maybe
empty

.,
I • 'L3'

54

0

CHAPTER 4. DETAILED DESCRIPTION OF LAST

~- DELAY_SLOT

~TARGET
FN_ARGLIST

~
ARGUMENT

c;j "foo"

int foo (int x, int y)

foo (tmpO, tmp1)

fooptr = &foo();
fooptr(tmpO,tmp1)

Figure 4.19: LAST function call

55

The left child points to a list of arguments, which are kept as a chain of ARG nodes.
The left child of an ARG node is the function parameter. The leftmost ARG node contains
the last parameter (they are stored in reverse order). The list of ARG nodes is terminated
by a NOARG node. Since parameters are passed explicitly, one may question the utility
of associating them with the function call node. The ARG nodes are used for the analysis
phase in order to explicitly represent the dependency between parameter passing nodes
and the arguments. When using the stack passing paradigm, this relationship is irrelevant,
but if passing parameters in registers using a simple convention of reserving registers (on
machines without register windows) then it is important to indicate a particular mapping
of registers.

Chapter 5

Transforming LAST

Usually transformation phases follow analysis phases (otherwise there is no information
to guide the transformation). However, following the flow and phases in Figure 5.1, the
first transformation on LAsT(spilling) occurs before the first analysis phase (an analysis to
generate dependencies is performed at the same time as the transformation), so the example
LAST transformations are presented in this thesis first, with the example analysis on LAST
presented in the next chapter.

The ability to perform aggressive transformations is the ultimate objective of the Me­
CAT compiler. This chapter presents two example transformations performed on LAST(see
the unshaded nodes in Figure 5.1). Other transformations are performed on LAST, but the
two examples are enough to provide a basic understanding of how transformations work on
a structured IR such as LAST.

,.
Blastify

alias
substitution,
multipllcatlon
replacement.

load/store
reduction

Figure 5.1: Transformations performed on LAST

The first code-improving transformation example is the reduction of the number of loads
and stores, and the second is intrabasic block instruction scheduling.

56

c

CHAPTER 5. TRANSFORMING LAST 57

5.1 Reducing the Number of Loads and Stores

Removing superfluous instructions is generally beneficial,1 so there is an obvious improve­
ment in reducing the number of instructions executed.

However, load and store instructions manipulate a critical resource-the load/store
pipeline [SLH90]. The bandwidth available for input-output communication to/from the
central processing unit is a limited resource [GH86], and should therefore be minimized.
In addition, load instructions are long latency operations, and depending on the speed of
main memory and the effectiveness of any cache (if present), a load instruction can take
from between several to tens of cycles to complete [CKP91]. Thus reducing loads and stores
reduces the pressure on this precious resource.

The transformation is equivalent to keeping variables in registers for as long as possible.
In effect, the register set is treated like a small, visible (ie manipulable) cache [GH86], and
the transformation tries to keep everything in this 'cache'. If the register pressure is too
high and there are not enough registers to maintain all the variables in this cache, then
the register allocator applies the information from its analysis of the program to select the
most 'appropriate' value to remove from the cache (to be replaced by a new value). The
register allocator has a very sophisticated algorithm for determining the 'appropriate' values
to be kept in registers, and thus will utilize the registers more efficiently than an algorithm
in LAST that attempts to portion out the registers-unless of course a LAST algorithm as
complicated as a register allocator were to be implemented, which would make the allocator
obsolete.

5.1.1 Handling the Register-Memory Consistency Problem

A load/store architecture is motivated, in part, by current technological limitations [SC91]­
accessing on-chip data is much faster than off-chip. Therefore, loading data into registers
and manipulating them there results in faster access time, and thus faster program execu­
tion, but creates a consistency problem: the copy contained in a register can be altered and
thus differ from the original in memory. If the memory value is referenced instead of the
modified register value, the program will most likely produce incorrect results. The solution
is to store the changed value, and reload the updated variable on its next use; the challenge
is to reduce these updates.

There are four types of variable references that cause loads and stores in McCAT2 :

references to variables whose address is calculated at run time, references to global and
local static variables, references to pointed-to and dereferenced variables, (variables that

1 Ignoring the need in some architectures for 'filler' instructions. For example the Alpha architecture
needs basic blocks to be filled with a minimum number of instructions, even if they are redundant [Dig92].

21gnoring resource limitations, which can cause additional loads and spill ie register spills and reloads
caused by the register allocator.

c

CHAPTER 5. TRANSFORMING LAST 58

refer to the same memory location, also known as aliased variables), and references to
unaliased local and parameter variables whose first use or definition is inside a conditional
body.

These four situations cause a level of uncertainty for the compiler, and the compiler
must store and reload due to its overriding mandate to produce correct code, rather than
risk a memory-register consistency problem. The transformation presented in the following
section decreases this level of uncertainty, so that more variables can be kept in registers
over longer sequences of instructions. However, as a starting point, and for comparison,
McCAT can be conservative about memory-register consistency. When in its 'conservative
mode', McCAT stores and reloads when referencing the following four types of variables.

Run-time address calculated variables: Each reference to either a structure or array
causes a load on a use, and a store on a definition. The reason is that without
sophisticated analysis, the compiler cannot determine what memory location is being
referred to, and given this uncertainty the compiler must ensure correctness and thus
generate loads and stores. An array dependence tester exists for McCAT[Jus94], but
is unused for the naive approach. A more sophisticated approach could use the array
dependence tester to detect opportunities for scalar replacement [CCK90].

Global and local static variables: Global variables have global scope, and except where
the name is hidden by a local object (eg a local variable), can be referenced at any
point in the program in any procedure, as shown in the C code fragment in Figure 5.2.

int global_a=9;
void main(void){

global_a++;

}

foo();
printf("%d",global_a);

void foo(void){
global_a++;

}

Figure 5.2: Referencing a global variable across function boundaries

Globals therefore cannot be kept in registers across function calls without extensive
support from and coordination with the register allocator. The allocator would have
to allocate the same register to a global variable across all uses, and remember not to
include this register in the list of callee saved registers in a function's prologue and
epilogue. In McCAT, local static variables are treated identically to global variables
(which happen to be referenced in only one function).

Pointed-to and dereferenced variables: A pointed-to variable is one whose address has
been taken, and whose memory location may be modified or read via a dereferenced

c

CHAPTER 5. TRANSFORMING LAST 59

variable. For example, in the C code fragment in Figure 5.3, a is points-to by ptra,
and *ptr is the result of dereferencing ptra. Obviously *ptra and a refer to the
same memory location, and are considered to be aliased to one another. An unaliased
variable is one whose address has never been taken.

{

int a,*ptra;
ptra = aa;
*ptra = 10;
a = a + 1;

}

Figure 5.3: Pointer dereference example

Since this binding happens at run-time and is unknown without sophisticated points-to
analysis, the compiler loads/stores (as appropriate) each reference to either a pointed­
to or dereferenced variable.

Unaliased local and parameter variables: The only types of variables left are una­
liased local and parameter variables. Usually they are kept in registers and are never
loaded nor stored, except in one special case. That case is when the first use or defi­
nition of the variable is in a conditional body (see Figure 5.4). If so, then subsequent
uses (such as the printf in the example) cannot know for sure that the variable was
loaded or not, and so will reload the variable. Since all uses after the definition will
load the variable, all definitions must store the variable to maintain consistency.

void foo(int cond){
int a;

}

i£(cond) a = 10;

printf("hello ");
if(cond) printf("there Y.d" ,a);

Figure 5.4: Example C code showing the first definition of a variable in a conditional body

5.1.2 Algorithm for Reducing Loads and Stores

This section presents two algorithms for reducing the number of loads and stores in a pro­
gram. The first reduces them for references to unaliased local and parameter variables,
and the second for references to global and aliased variables. They are orthogonal, and

- CHAPTER 5. TRANSFORMING LAST

void foo(int cond){
int a,b;

}

if(cond) a = 10;
b = 100;
if(cond) a++;

Figure 5.5: First reference of a variable in a conditional

60

together deal with three of the four types of references that cause loads and stores in Me­
CAT. References to arrays and structures are still loaded/stored for each use/definition, as
a sophisticated high-level transformation (such as scalar replacement [CCK90]) is required,
and is beyond the scope of this thesis.

Reducing Local Loads

The first algorithm presented, reducing loads and stores for references to local and parameter
variables, is trivial to implement given the high-level information available from the SIMPLE

IR, but pays rich dividends in producing superior code. The transformation is based on a
simple observation about unaliased local variables:

Unaliased local variables are constrained to exist completely inside the function body in
which they are declared. Therefore, in a semantically correct program, for any particular

variable there must be a definition of that variable that dominates all uses and subsequent

definitions of it, in any execution of the program. Moreover, a variable used before being

defined has an unspecified value.

From this observation, one can safely assume that an unaliased variable always resides in
a register, and thus neither loads nor stores are generated for any such variable. An aliased
variable can be determined in one of two ways. When the McCAT points-to analysis
[Ema93, Ghi92, EGH94] is employed, aliased variables are clearly and easily identified.
Otherwise, a more conservative approach is used: any variable whose address is taken in
the program is considered to have an alias.

Figure 5.6 shows the pseudo code for the trivial C function in Figure 5.5. On the left
is the pseudo code for the naive approach, and on the right the approach guided by the
above observation. Notice that the variable a, first placed in a register in the initial if

statement, must be stored at the end of the then body block, and again reloaded in the
second if statement. The pseudo code on the right, however, has no loads or stores for a,
as a semantically correct program requires that either both if then bodies are entered, or
neither. In the case of a use occurring before a definition, the C language does not guarantee
it a specific value and so leaving a random value in the register is acceptable.

When considering parameter variables, the observation is simply extended-they are

CHAPTER 5. TRANSFORMING LAST

<<Save Registers>>
If Statement:
Conditional:
REG(cond)(O) <-LOAD(Int)- MEM(cond)
REG(cond)
end of sequence
Branch delay slot: nop

Then Statements:
REG(a) := 10
MEM(a)(O) <-STORE(Int)- REG(a)
end of sequence

Else Statements:
end of sequence
end of If Statement

REG(b) := 100

If Statement:
Conditional: REG(cond)
end of sequence
Branch delay slot: nop

Then Statements:
REG(a)(O) <-LOAD(Int)- MEM(a)
REG(a) := REG(a) + 1
MEM(a)(O) <-STORE(Int)- REG(a)
end of sequence

Else Statements:
end of sequence
end of If Statement
MEM(b)(O) <-STORE(Int)- REG(b)
<<Restore Registers>>

<<Save Registers>>
If Statement:
Conditional:
REG(cond)(O) <-LOAD(Int)- MEM(cond)
REG(cond)
end of sequence
Branch delay slot: nop

Then Statements:
REG(a) := 10
end of sequence

Else Statements:
end of sequence
end of If Statement

REG(b) : = 100

If Statement:
Conditional: REG(cond)
end of sequence
Branch delay slot: nop

Then Statements:
REG(a) := REG(a) + 1
end of sequence

Else Statements:
end of sequence
end of If Statement

<<Restore Registers>>

Figure 5.6: Reducing the number of loads and stores of local variables

61

- CHAPTER 5. TRANSFORMING LAST 62

similar to local variables in that they can only be referenced inside one function body.
However, they differ slightly in that they are first defined outside the function. The solution
used in McCAT is to insert a dominating load in the function body, so that all subsequent
uses can be guaranteed that the value is in a register. The algorithm is straight forward:
A function is scanned in a forward manner, and at the first use or definition, a load is
inserted. If the use/definition is in the outer most block of the function, the load precedes
it, otherwise the use/definition was inside one or more conditional bodies. In this case, the
load is inserted before the outermost conditional body. A conditional body is considered
to be any control structure, including loops. If the variable is already in a register (for
example, a parameter in an in register window), no load is needed.

A dominating load is inserted only for those parameters referenced in the function
body-if they are never used, no load is generated. If the parameter is used in only one
arm of a conditional body (eg the then part of an if statement), the dominating load is
still generated, even though the load may be unnecessary. However, should the parameter
be referenced subsequently, then the dominating load pays for itself by eliminating the need
of a load for the second use.

Figure 5. 7 illustrates this approach. On the left is a C function using the parameter twice,
both instances are nested inside a conditional body. The LOAD instruction (marked by
(*))is the inserted load that dominates both uses ofthe parameter (marked by (Y,)). This
transformation for local and parameter variables makes a significant difference in reducing
cycle time, as shown in Chapter 8, and in addition is extremely cheap to perform, adding
a small cost to the overall run time of the compiler, linear in the size of the program.

Reducing Global Loads and Sure Alias Substitution

The next transformation works on references to global and aliased variables. First, a de­
scription of dealing with global references is given, and then a description of the extension
to aliased variables.

In the previous section, the transformation was possible because of the limited scope of
the variables being referenced ie limited to one particular function body. However, references
to global and aliased variables can occur anywhere in the program, and thus nothing can
be determined a priori about the sequence of variable uses and definitions.

In addition, the McCAT register allocator is intra-procedural, so global variables cannot
be guaranteed to be mapped to the same register when referenced in different function
bodies, so keeping globals in registers across function calls is unsafe. As a result, McCAT
aspires only to keep globals in a register within a basic block-they are loaded on the first
use in a basic block, and stored at the end if they were defined.

CHAPTER 5. TRANSFORMING LAST

<<Save Registers>>
REG(param1)(0) <-LOAD(Int)- MEM(param1) (*)

void foo(int cond,
int param1,
int param2){

int a,b;

}

if(cond){
a = 10;

}

else {
a = param1;

}

while(cond){
cond = param1 -1;

}

If Statement:
Conditional:
REG(cond)(O) <-LOAD(Int)- MEM(cond)
REG(cond)
end of sequence
Branch delay slot: nop
Then Statements:

REG(a) := 10

Jump-Over-Else to LifendO:
nop
end of sequence

=> Else Statements:

REG(a) := REG(param1)
end of sequence
end of If Statement

While Statement:
Conditional: REG(cond)
end of sequence
Branch delay slot: nop

While Body
REG(cond) := REG(param1) - 1
Jump-to-while branch delay slot:
nop
end of sequence

<<Restore Registers>>

Figure 5.7: Insertion of a dominating load for parameter variables

(Y,)

(Y,)

63

-

0

CHAPTER 5. TRANSFORMING LAST 64

The algorithm is simply a forward traversal of each basic block, inserting a load imme­
diately before the first use,3 and when the end of the block is reached, all the globals that
were defined are stored.

Dealing with references to aliased variables is slightly more complex, but similar. After
running the points-to analysis, two types of aliased variables can be distinguished: definitely
points-to and possibly points-to. A definitely points-to variable is a variable that, at a
particular program point, the analysis can statically determine that it points to only one
variable. A possibly points-to variable, on the other hand, is a variable that the analysis
knows is a pointer, but can give only a conservative estimate of to what it points. In
Figure 5.8, for example, the code on the left illustrates a variable ptra that the points-to
analysis would catergorize as defintely pointing to a, at program point X. On the right,
at program point X, since ptrab is previously dynamically set, it is considered to possibly
point to either a or b.

{

int a=O,*ptra;
ptra = la; {:}
*ptra = *ptra + 10; I* X *I

}

int foo(int size)
{

int a=O,b=l,*ptrab;
if(size > 12)

ptrab = ta;
else

ptrab = tb;
*ptrab = *ptrab + 10; I* X *I

}

Figure 5.8: Sure and possibly points-to variables

If the referenced variable is possibly points-to, then each use requires a load, and each
definition a store. However, if the variable is definitely points-to then a two-phase transfor­
mation is used. In the first phase, the dereference operations are replaced by references to
the points-to variable, as shown in the C fragment in Figure 5.9 (the replaced dereference
operations are on the right).

Invisible variables, ie variables pointed to by parameters, are also handled in this fash­
ion. A variable is created at the LAST level to represent the points-to variable while in
a register, and this variable is substituted for the dereference operations. Figure 5.10
shows a C fragment on the left, and the corresponding generated pseudo assembly code
on the right. The parameter paramin function bar points to the variable locaLa, which
has scope only in function foo. Since locaLa is not visible in function foo, then param
points to an invisible variable. A register called -parm-param, using the naming convention
-parm-<ParameterName>, is created, and represents this invisible variable when it is held

3 Assuming no definitions of the variable preceded it in the basic block.

' 0

CHAPTER 5. TRANSFORMING LAST

{

int a=O,*ptra;
ptra = .ta;
a = 10;
*ptra = *ptra + 10;

}

{

int a,*ptra;
ptra = .ta;
a = 10;
a = a + 10;

}

Figure 5.9: Sure alias substitution of pointer dereference

:foo(void){
int local_a;

bar(.tlocal_a);
}

bar(int *param){
*par am = *param + 1;

}

;===
Function body :for "bar"

;===

<<Save Registers>>
REG(param)(O) <-LOAD(Addr)- MEM(param)
REG(-parm-param)(O) <-LOAD(Int)- REG(param)
REG(temp_1) := REG(-parm-param)
REG(-parm-param) := REG(temp_1) + 1
REG(param)(O) <-STORE(Int)- REG(-parm-param)
<<Restore Registers>>
end o:f sequence

Figure 5.10: Example of an invisible variable

in a register (ie it is equivalent to *para.m.).

65

Once alias substitutions have been made, then the second phase of the transformation
is applied: loads and stores are inserted in a similar manner as they were done for global
variables ie a load at the initial use, and a store at the end of the block if the variable was
defined. An important observation at this point is that since this transformation occurs only
in basic blocks, then the instructions occur in a strictly sequential order, and so a definitely
points-to variable will remain definitely points-to throughout the whole basic block.4

As a future extension, global definitely-aliased variables could be held in registers across
basic blocks that contain no function calls, or over function calls that are identified as free
of references to these variables. Such a call must also not have any calls within it that
reference these variables.

4 Although, through the magic of pointer arithmetic, a dereferenced variable cannot always be guaranteed
to definitely point to a variable. In this case however, as soon as the dereferenced variable no longer definitely
points to a specific variable, substitution from this point on will no longer be performed, and loads/stores
will be generated for each use/definition.

c

CHAPTER 5. TRANSFORMING LAST 66

5.2 Instruction Scheduling

This section presents an overview of basic-block instruction scheduling algorithms, an enu­
meration and brief introduction of the scheduling algorithms used on LAST and how the
scheduling framework was implemented in LAST.

5.2.1 Overview of Instruction Scheduling

The motivation behind a pipelined architecture is to have the CPU working 'all the time' ie
an instruction issuing every cycle [HP90]. This requires that the results of one instruction
be produced before being needed by a following instruction. For many integer arithmetic
operations the result takes only one cycle to compute and so is not a problem, but for
others it may take longer: load and multiply instructions, for example, can take several
cycles before their result is ready; branches make it difficult to determine what instruction
next to fetch, so it can be several cycles until the next one is issued [HP90, DS90].

These long latency operations can degrade the performance of a program in conventional
scalar architectures5 if results are not produced fast enough: instructions that use the result
will simply wait until it is ready. With instruction scheduling, programs can run upwards
of 25% faster [Tie89, GM86], that is, without scheduling, programs can run at least 20%
slower.

There are several kinds of instruction scheduling; only local, or intra-basic block, schedul­
ing is performed on LAST, as implementing a cross-basic block (global) scheduler [Fis81] is
beyond the scope of this thesis. There are various algorithms for scheduling at the basic­
block level, but they all take a similar approach [Kri90], and so it was possible to support
several list schedulers in the Me CAT compiler (currently five are supported).

Essentially, list schedulers take the instructions in a basic block, create a directed acyclic
graph (DAG) of the instructions, where a node represents an instruction, and an arc a
dependency between instructions. Then, using this DAG, the instructions are sorted into
various levels, where usually all the nodes on the same level can be issued simultaneously,
should the hardware support parallel execution on such a scale. A list of potential candidate
instructions is generated, from which instructions are selected and inserted in order.

For example, Figure 5.11 shows three array accesses in a single basic block. Figure 5.12
shows the DLX6 assembly code generated for this C fragment of code; on the left is the
unscheduled code, on the right the scheduled version. Looking at the unscheduled code, it
is noticeable that the load (14: lw) generates a nop instruction (15: nop) (here, a load

5 For simplicity of explanation, out-of-order issue and execution architectures are ignored. Due to resource
limitations, however, they too can benefit from scheduling. For a more thorough treatment, refer to Johnson's
text on superscalar design [Joh91J.

6 DLX is a fictional architecture based on the MIPS R2000 [HP90J. It is one of the target architectures,
and is used in this example for brevity.

-

c

CHAPTER 5. TRANSFORMING LAST 67

is assumed to take two cycles to complete), since the store instruction (16: sw) uses the
result. Note that the entire basic block takes 16 cycles to complete.

main(){
int i, A[4], 8[4], temp_O;

i = 2;
A[i] = 10;
temp_O = (i + 1);
B[i] = A[temp_O];

}

Figure 5.11: Three array references in a basic block

Figure 5.13 shows the dependency graph for the DLX assembly code. The instructions
have been arranged in levels, where each level indicates the machine cycle (marked on the
right) that the instruction starts execution; given enough resources on a parallel machine,
the code could complete in seven machine cycles. 7 Looking at the unscheduled code in
Figure 5.12, there is one opportunity for overlapping instructions-replacing the nop with
another instruction, and bring the cycle count down from 16 to 15 (for a scalar, pipelined
machine). There are several candidates for replacing the nop, and the various algorithms
use different heuristics to make a selection. For simplicity, instruction 10 has been chosen,
and the scheduled code on the right shows it replacing the nop instruction.

The next section lists the various scheduling algorithms supported in the McCAT com­
piler.

5.2.2 List Schedulers in LAST

As mentioned above, McCAT currently supports five list-schedulers. The contribution of
this thesis includes only the framework for instruction scheduling, hut the list scheduling
algorithms themselves are beyond the scope of this thesis. The scheduling algorithms were
therefore cloned from course projects by Erik Altman and Chandrika Mukerji (see the
McCAT genealogy section). The list scheduling algorithms used are listed below.

Shieh-Papachristou: This is the default instruction scheduler used, as a previous study
found it to be reasonably effective [Muk91]. It has a hierarchical list of 5 characteristics
to prioritize candidate instructions and handles floating point functional units, as well
as ALU forwarding [SP89].

Level Scheduling: This is the most basic algorithm, and simply calculates the critical
path of instructions in each basic block.

71gnoring start-up costs for the pipeline.

CHAPTER 5. TRANSFORMING LAST 68

1: addi r4,r0,#2 i = 2 1: addi r4,r0,#2
2: add r2,r30,#-84 r2 = tA 2: add r2,r30,#-84
3: slli r3,r4,#2 r3 = i * 4 3: slli r3,r4,#2
4: add r3,r3,r2 calculate t(A[i]) 4: add r3,r3,r2
6: addi r9,r0,#10 r9 = 10 (rO==O) 5: addi r9,r0,#10
6: sw O(r3),r9 store r9 in A[i] 6: sw O(r3),r9
7: addi r5,r4,#1 temp_O = i + 1 7: addi r5,r4,#1
8: add r6,r30,#-100 r6 = tB 8: add r6,r30,#-100
9: slli r10,r4,#2 r10 = i * 4 9: slli r10,r4,#2

10: add r10,r10,r6 calculate t(B[i]) 11: add r7,r30,#-84
11: add r7,r30,#-84 r7 = tA 12: slli r8,r5,#2
12: slli r8,r5,#2 r8 = temp_O * 4 13: add r8,r8,r7
13: add r8,r8,r7 calculate t(A[i]) 14: lw r8,0(r8)
14: lw r8,0(r8) load A[temp_O] to r8 10: add r10,r10,r6
15: nop wait for load 16: SW O(r10),r8
16: SW O(r10),r8 store r8 at B[i]

.~
Figure 5.12: Unscheduled and scheduled pseudo code,;

4

5

6

7

Figure 5.13: Dependency Graph used for Scheduling Array References

c

CHAPTER 5. TRANSFORMING LAST 69

Gibbons & Muchnich: This algorithm schedules instructions which have the greatest
number of children, inter-locks with at least one of them, and is on the longest exe­
cution path [GM86].

Bernstein fixed and variable weights: These are two algorithms based on Bernstein's
work [Ber88, BG89], the second being an extension of the first. The first algorithm
prioritises each instruction based on its weight, where an instruction's weight is the
amount of time it and its children will take ie the shortest critical path. Each instruc­
tion is assumed to take the same amount of time. The second algorithm tailors the
weights to the instructions.

5.2.3 Implementation of Scheduling Framework

As described in the previous sections, the preparatory work is the same for all the list
schedulers, and consists of breaking the program into basic blocks, building a dependency
DAG for each block, running the scheduling algorithm, and manipulating the basic block
list according to the scheduler.

The McCAT scheduler considers a basic block to he a sequence of LAST suhtrees delim­
ited by nodes that represent a change of flow control, such as if, while, do while, switch,
for, break, continue, return and function calls. There are several phases carried out in
instruction scheduling, as illustrated in Figure 5.14. The unshaded nodes represent those
phases implemented as part of this thesis.

The scheduling phases are expose loads, find basis blocks, calculate dag, schedule code
and manipulate LAST, and are described below.

Figure 5.14: Scheduling phases in the McCAT list scheduler

Expose Loads: This phase removes any loads or stores that were in conditional bodies of
control-nodes. LAST separates the nodes used for calculating the conditional expres­
sions of these statements to ease analysis. The expose loads phase moves them into
their basic block, exposing them to the instruction scheduler (the scheduler does not
attempt to schedule either conditional bodies or delay slots).

c

0

CHAPTER 5. TRANSFORMING LAST 70

For example, the statement "if(a == 0) printf(11boo 11
)" would have a LAST sub­

tree for the a == 0 expression, and a separate one for the printf statement. The
conditional expression might require a load of a for the evaluation, and it is this load
that is moved to be visible to the scheduler.

fu subsequent phases it is possible for the register allocator to again spill or load a
register in the conditional body, but it will be up to the allocator to insert a nop node,
if appropriate.

Find Basic Block: The second phases counts and identifies individual basic blocks in each
function being processed. Two arrays keep track of the beginning and end of each
basic block. These two arrays are used by the list scheduler to schedule each basic
block individually.

The nodes pointed to by these arrays must be anchor nodes or represent change of
control flow ie must be guaranteed to remain at the beginning and end of each basic
block, regardless of how the other nodes are scheduled. The BEGIN_BODY and
EOSEQ, and control flow nodes serve as these anchor nodes.

Calculate DAG: The next phase calculates all the data dependencies between the vari­
ables, using the variable names to avoid false dependencies. The phase consists of a
bottom-up traversal of each basic block, and creating dependency arcs between uses
and preceding definitions of registers, and is similar to live variable analysis (explained
in Chapter 6). The dependency graph (a directed acyclic graph, or DAG) is used to
schedule LAST nodes.

Schedule Code: This phase (indicated by the five nodes labeled "algorithm n") is where
one of the possible five scheduling algorithms is invoked to schedule the given basic
block, using the DAG just calculated. These algorithms schedule only arithmetic op­
erations, loads and stores-conditional branch delay slots are not handled. Scheduling
delay slots is based on control dependencies, whereas long latency operations depends
on data dependencies, and thus requires a different algorithm [HP90].

Manipulate LAST: After running the particular scheduling heuristic, a linked list repre­
senting the schedule of nodes is passed on. This schedule is used to reorganize the
sequence of LAST nodes that represent the basic block being scheduled. The doubly
linked nature of LAST greatly simplifies its manipulation at this point.

The effectiveness of instruction scheduling, and of the load/store reduction algorithms,
is presented in the results chapter (Chapter 8).

Chapter 6

Analyzing LAST

This chapter provides an example analysis to demonstrate how LAST can be analysed in a
structured and compositional manner. The analysis chosen is the traditional live variable
analysis, which occurs just before the register allocation phase (Figure 6.1); the information
generated by live variable analysis is crucial for the McCAT register allocator. First, a brief
review of the analysis is given, after which the algorithm for determining live ranges on the
LAST tree is presented. Finally, the third section provides an overview of the implementation
details.

live variable
analysis

Figure 6.1: Live Variable analysis on LAST

6.1 Brief Review of Live Variable Analysis

Live variable analysis is a traditional flow analysis required by non-trivial register allocators
such as those using the interference-graph coloring approach [CAC+81, Bri92, LJ92] or
McCAT's cyclic interval graph approach [HGAM92]. Live variable analysis indicates when

71

c

CHAPTER 6. ANALYZING LAST 72

a variable contains a value that will be used later on in the program ie that is alive­
any such variable is an excellent candidate for being kept in a register. If, at a particular
program point, a variable is never used again, or is redefined before being used, then it is
considered dead.

The fragment of C code in Figure 6.2 provides a simple example. The left hand column
is the C code, the middle column (inside the comments) is the line number, and the third
column (again, inside the comments) are the variables that are alive at the end of the
statement.

Variable a is defined1 at line 1, used in line 3, defined again in line 6 and used finally in
line 7. Notice that a is alive after the first and second statement but is dead in statements
four and five, as it is redefined in the sixth statement. Since band care used at the very end,
they are live through out the sequence of instructions. Variable a is redefined in statement
six, and is used in statement seven, and so is live for the duration. The register allocator
therefore knows that it is profitable to keep a in a register during statements 1, 2 and 3,
and also 6 and 7, but not for 4 and 5.

main(){
line# vars alive

a = 10; I* 1: {a} *I
b = 11; I* 2: {a} *I
c = a + b; I* 3: {b} *I
c = c + b; I* 4: {b,c} *I
d = b + 3; I* 6: {b,c} *I
a = c; I* 6: {a,b,d} *I
printf("Y.dY.dY.d",a,b,d); I• 7: {} •I

}

Figure 6.2: Example of live variable analysis

The traversal of individual statements is illustrated in Figure 6.3, which shows an as­
signment statement a = a + b bracketed by program points: program point B preceding it,
and A following. Since live variable analysis is a backward analysis, the traversal proceeds
first through program point A before reaching the assignment statement, with flow informa­
tion being stored at each statement. The flow information stored at the current statement
(a = a + b) is the information that was generated after analysing program point A ie in
a forward traversal of the program, the flow information associated with each statement
records the state of the program just after the statement is processed.

After storing the flow information generated from program point B, the statement
(a = a + b) is analysed. First, the left hand side is inspected. Variables on this side

the statement a = b + c we sa.y a is defined, a.nd b,c used [ASU88].

CHAPTER 6. ANALYZING LAST 73

of a modify statement are defined, and so from this point backwards, the variable is con­
sidered dead (a is marked dead). Next, the right hand side of the assignment operator
is processed. All variables on the right hand side will be used, so from this point these
variables will be alive (a and b are marked alive). Note that the variable a is considered
alive because although it is defined, the use of variable a precedes the definition. After the
operands are processed, the statements previous (in a forward sense) to this are inspected
(program point B) where the new, updated flow information will be stored before repeating
the analysis process again.

Figure 6.3: Detail of live variable analysis algorithm at the statement level

6.2 Live Variable Analysis in LAST

Since live variable analysis is relatively well-known, this section focuses on the different
conceptual approach taken in LAST, compared that of traditional analyses utilizing control
flow graphs. Specifically, in the analysis, the LAST traversal is aware of the structured
nature of the program, rather than the traditional method of following the flow of control
without recognizing the program's structure. The program is therefore treated as a series of
hierarchically related conditional and unconditional bodies, as is presented in the following
text.

For the purposes of elucidation, live variable analysis on some generic examples is pre­
sented, to provide an intuitive understanding of the traversal. Following the examples is an
abridged version of the algorithm.

The examples utilize two control structures: the if and while statements. In addition,
the three forms of 'constrained' goto statements (return, continue and break), which
have an important impact on the analysis, are included in the while loop examples. In

the diagrams, the letters "A" and "B" inside circles indicate program points, the rectangles
with rounded edges sequences of instructions, the ovallabeled "Merge" a merge operator,

;}}··~-

0

0

CHAPTER 6. ANALYZING LAST 74

and the solid arcs the direction of traversal of the analysis.

Figure 6.4: Detail of live variable analysis algorithm for an if statement

The first example is with an if statement, which illustrates the effect of a conditional
body on the flow of the analysis through the program. Figure 6.4 depicts two if statements:
on the left an if with both then and else bodies, and on the right an if with only a then
body. Dealing with the if statement on the left, the diagram is equivalent to the code in
Figure 6.5.

Since the analysis is backward, processing the if statement would start at its end
(program point A), and process the then and else bodies independently. The results of
these must be merged afterwards (merging using a union operator), and the result used

program point B
if(cond)

then body
else

else body
program point A

Figure 6.5: Pseudo code for live variable analysis example

·- CHAPTER 6. ANALYZING LAST 75

when processing the conditional body of the if statement. The resulting information is
then propagated to program point B.

For the second example, on the right, the traversal is similar, except that there is no
else body to process. Therefore, the live information from program point A is merged with
the information generated from processing the then body.

As is obvious, the traversal is straight forward, and essentially merges live variable
analysis flow information from conditional bodies with that from previous instructions, and
a single pass over the instructions is sufficient to gather the information. However, dealing
with loops is slightly more complicated, requiring a fixed-point iterative solution. As a
reminder, a fixed-point iterative solution means that the output data flow information of
the loop is fed back into the loop, and the process repeated until the output flow information
between two successive iterations is identical. 2

The number of iterations for structured programs is at most two per loop block (intu­
itively, one iteration to correctly initialize the input for the next iteration, a second iteration
to use the correct input). A while loop is used to demonstrate the processing of loops in
LAST. Dashed lines indicate the flow of analysis information during the fixed-point iteration.

Figure 6.6 shows three while loops, each one including one of the three constrained
gotos: return, break and continue. These are considered gotos because they change the
flow of control, but are limited in the location of their destination, ie any return statements
go to the end of a function body, continue to the beginning of the innermost surrounding
loop, and break to the end (plus to the end of switch statements).

These constrained goto statements are included because they can alter the control flow
of a program, and thus its flow information. As shown in the diagram, these statements are
handled by recording the associated flow information with each statement at each hierarchy,
and using this saved information to re-initialize the data flow input. The pseudo-code for
the algorithm provides an explanation of the mechanics of handling return, break and
continue statements.

The leftmost while loop in Figure 6.6 corresponds to a fragment of code such as in
Figure 6.7. The flow information enters from point A, and is used as input into the loop
body S3. The return statement, however, indicates the end of the function, and so its input
is null. The null flow information is used to process the conditional body S2 preceding
the return statement. At the top of the conditional, flow information from S3 and the
conditional return block are merged, and used as input for the next block of code, Sl, and
the while condition. After the conditional body is processed, the flow information is then
fed back into the bottom of the loop (S3) for the next iteration. When the flow information
has converged, it is propagated to program point B.

The middle diagram of the while loop is identical to that on the left, except that a break

2 Convergence is guaranteed. For the formal proof, refer to the dragon book [ASU88].

c

CHAPTER 6. ANALYZING LAST

,-----
I
1 while (

I
I
I

0
w , '

'

0
I

~ , '
' '

Figure 6.6: Three examples of live variable analysis algorithm for while statements

program point B
while(cond) {

S1

}

if(cond1){

}

S3

S2
return;

program point A

Figure 6.7: Structure of while loop containing a conditional return statement

76

c

CHAPTER 6. ANALYZING LAST 77

statement replaces the return. Now, instead of the return statements' flow information
being initialized from null, it's initialized from program point A, since a break will transfer
control to just after the loop. Similarly, the third while loop on the right utilizes a continue
statement, which is initialized from the flow output of each iteration.

Figure 6.8 presents an algorithm for generating and storing live variable information by
traversing a LAST tree. It is complete except for function calls, which are handled identically
to arithmetic operators, except that all registers holding parameters are marked Alive (this
case was left out for brevity).

The algorithm determines the lifetime of variables inside of registers. The recursive
function live_analysis takes four arguments: the node being analysed (node), the current
flow information (info), the flow information associated with a break statement (Breaklnfo),
and the flow information for a continue statement (Continuelnfo).

If an assignment statement is analysed, the flow information is first stored with the node,
and then variable being defined is marked as dead, and the right-hand side is analysed. This
side will be a basic operator, and ifthey correspond to registers (ie are not constants), then
the variables are marked as alive. Since load and store operators can take registers as
operands (see Figure 4.7), they are marked as alive if being read (for the store), or dead if
being redefined (for the load).

For control structures there are two groups: if or switch, and loops. For if and
switch statements, their bodies must be processed in parallel, and afterwards the informa­
tion merged. The condition expression is then analysed, and merged again with the flow
information (see Figure 6.4). Since break statements behave differently in switch state­
ments, the Breaklnfo is set to the state of liveness just following the switch statement (ie
assigned to info). As live_analysis is recursive, Breaklnfo is reset to its previous value
once the svi tch has been processed.

Loops are treated differently since their bodies are usually repeatedly entered, and the
flow information from the previous iteration affects the lifetime of a variable (if it lives across
iterations). Analysis of loop bodies is therefore performed twice: once to initialize the live
variable information, and a second time to use the correct values in the analysis. Note that
the Continuelnfo corresponds to the live information from the beginning of the loop, and
so the Continuelnfo is set to the merged information after the first iteration. Breaklnfo is
set to info, as in the switch statement.

The three controlled goto statements (continue, break and return) are handled next.
Since the analysis is intraprocedural, all variables are dead after a return statement. For
break statements, ~ow of control is to either the end of a loop, or the end of a svi tch
statement, so the Breaklnfo is returned. Similarly, for continue, Continuelnfo is returned.

Finally, since the analysis is a backwards one, live_analysis moves to examine the
previous LAST node.

c

CHAPTER 6. ANALYZING LAST 78

f* node is the current program node, info the live variable information passed from the previous
* statement. Breaklnfo contains flow information used to initialize the flow information when
* a break is encountered, and Continuelnfo for the continue statement. *I

Livelnfo live_analysis(AstNode node, Livelnfo info, Livelnfo Breaklnfo, Liveinfo Continueinfo)
{ node = GotoEndofSequence(node); I* go to end of list *I

}

switch (StatementType(node)) {
case assignment:

node.info = info; I* store flow information *I
info[left_child(node)) = Dead; I* kill the assigned variable *I
return live_analysis(right_child(node) ,info, Breakinfo, Continueinfo);

case load:
info[destination(node)) = Dead;
if (source(node) == REGISTER) info[source(node)) Alive; I* ~gnore constants *I
return info;

case store:
info[source(node)] = Alive;
if (destination(node) == REGISTER) info[destination(node)] = Alive;
return info;

case basic_operator: I* includes arithmetic, logical and conversion operators *I
if (left_child(node) == REGISTER info[left_child(node)] Alive;
if (right_child(node) == REGISTER info[right_child(node)] = Alive;
return info;

case control_structure:

}

if (structure == IF or SWITCH) {
if (structure SWITCH) Breakinfo = info; I* break reset for switch statement *I
foreach subbody in node

subbody.info = live_analysis(node.subbody, info, Breaklnfo, Continueinfo);
merged_body _info merge_all_subbodies(node);
condition_info = live_analysis(conditional(node), info, Breaklnfo, Continuelnfo);
merged_info = merge_info(merged_body _info, condition_info);

else {
merged_info info; I* initialize to info *I
do twice I* is a loop, so process twice *I
{ body_info live_analysis(body(node), merged_info, info, merged_info);

condition_info = live_analysis(conditional(node), merged_info, info, merged_info);
merged_info merge_info(body _info,condition_info);

}
}
I* the above calculated flow information through a control structure. This information
* must now be merged with information that did not flow through the control structure *I

return merge_info(info, merged_info);

case RETURN: return EMPTY; I* analysis zs intraprocedural, so everything is dead *I
case BREAK: return Breaklnfo;
case CONTINUE: return Continuelnfo;
}
return live_analysis(previous(node),info, Breakinfo, Continuelnfo); I* go backwards *I

Figure 6.8: High-level algorithm for performing live variable analysis on LAST

0

0

0

Chapter 7

Retargeting McCAT

As mentioned previously, there is a considerable software investment in an optimizing com­
piler, and retargeting is a natural way to amortize this investment. The objective, of
course, is to make retargeting the compiler cheaper than actually rewriting the analyses
and transformations that motivate the retargeting in the first place. This can be a chal­
lenging objective, as there is a trade-off between generating efficient code and simplifying
retargeting, and there is little point in retargeting an inefficient compiler.

The McCAT retargeting strategy is to restrict the types of machines targeted, and
within this set, abstract the architectural details that are common across all the machines.
These features are then explicitly represented in LAST where the various algorithms can
examine and manipulate them. Since an abstract machine is modeled, the algorithms can
be reused for all the new targets-they do not need to be rewritten. In addition, since
all the complexity is contained in LAST, the code generation phase is relatively easy to
write. The code generation phase is where LAST is mapped onto assembly instructions and
printed to a file, and consists mostly of traversing LAST, recognizing subtrees of nodes as a
particular operation, and printing the corresponding assembly instruction(s).

7.1 Architectural Classes

Even though LAST is restricted to RISC architectures, there are still sufficiently different
approaches to designing them which can result in sometimes radically different features.
Recognizing these features can often mean a significant difference in performance, and so
warrants different configurations of LAST. LAST therefore supports different classes of
architectures. They are described in Section 3.2.4, but as a brief reminder are: register
windows (or not), explicit (implicit) condition codes, multiplication/ division in floating
point registers (or not), and support for high-level operations such as structure copies,
exclusive or and negation operators.

79

c

CHAPTER 7. RETARGETING MCCAT 80

When compiling for a specific machine, the architectural classes are selected, and the
options toggled on or off (see Figure 7.1). Then, during the blastify phases where LAST is
generated from SIMPLE, the appropriate set of LAST nodes are created .

. c

Target selection

Code Generation

Figure 7.1: Selection of Architectural Classes

The analyses and transformations in LAST operate on all the different configurations­
they must, since the classes are orthogonal and so any combination is possible. For instance,
whether or not a machine supports exclusive or operations is orthogonal to the type of con­
dition codes supported. Therefore, the algorithms can be used on any architecture without
being rewritten. There is, however, the issue of specific architectural features that are found
on only certain RISC machines. These features can require sophisticated analyses to iden­
tify. The RS/6000 is an excellent example: it has a special multiply-accumulate instruction
that consumes only three machine cycles [OMMN90] that can significantly improve floating­
point performance of some programs. Since this hardware feature is currently found only
on RS/6000 architectures, an algorithm that exploits it is of limited usefulness, and should
be implemented as a separate phase. One has the option of placing the phase in either the
code generation module, or intermixed with other compiler phases-either are feasible ap­
proaches, b:ut it is conceptionally simpler to implement it as another transformation phase,
rather than being part of the code generation module.

7.2 Code-Generator Generator

The code generation phase is where the abstract meets the concrete: LAST subtrees are
mapped to appropriate assembly instructions. This module is meant to be completely

0

CHAPTER 7. RETARGETING MCCAT 81

rewritten when McCAT is retargeted, and so is designed to be as simple as possible. The
code generation phase actually consists of two phases: calculation of offsets, and generation
of assembly code (see Figure 7.2). The offsets module calculates the offsets for local and
parameter variables, and allocatesfdeallocates temporary storage for structures passed as
parameters. In addition, it detects variables marked as existing only in registers, and does
not allocate space for them (see Section 3.4.4 for a brief description of this optimization).

The code generation phase handles the mapping of LAST subtrees to assembly instruc­
tion(s). The actual instruction set used to specify the program varies from machine to
machine, and it is the job of the code generation phase to map LAST to the appropriate
assembly format. For example, there is only one representation in LAST for an addition in­
struction, but the machine could require the addition be specified as "add result, opl, op2",
"add opl, op2, result", "result add opl, op2", or some other variation. This encoding, and
other 'nitty-gritty' details are hidden in the code-generation module.

Figure 7.2: Code Generation Phase

Isolating the actual mapping of instructions simplifies retargeting by limiting the files
requiring modification, and by keeping the complexity in LAST, simplifies changing the
module.

To simplify the code generation phase, a code-generator generator is used. A code­
generator generator, as the name implies, takes the description of a target machine and
creates a code generator. Code-generator generators are useful and powerful tools used to
simplify the porting of compilers [AGT89, FHP92b, ESL89]. They provide a way of spec­
ifying a pattern to match, and associated 'actions' to perform (usually being the printing
of assembly code instructions to a :file). The generator then creates a program that auto­
matically will traverse the data structure provided as input, and perform the matching of
patterns specified.

McCAT utilizes the code-generator generator BURG[FHP92b] (and its more powerful
relative IBURG[FHP92a]) to automate the monotonous task of creating code generators for

c

c

c

CHAPTER 7. RETARGETING MCCAT 82

the various target arthitectures.
As high-level input, BURG takes IR tree patterns, associated 'actions' (code templates),

and a cost. This cost is calculated by the programmer depending on the relative 'expense'
of one instruction to another. BURG traverses theIR, looking for the largest pattern it can
match with the cheapest cost (called a cover), using dynamic programming (ASU88, CLR92].
When a pattern is matched, the associated action is performed ie the code template is
emitted. For example, BURG might be handed the pattern ASSIGN(REG,PLUS(REG,REG))

(corresponding to the LAST subtree generated for the C code x = y + z) and action add

REG1,REG2,REG3. When the pattern is matched, the string "add r1,r2,r3" is printed
(assuming the register allocator has allocated rl, r2 and r3 to x, y and z respectively).

The patterns matched are limited to individual subtrees (with SEQ nodes as the root),
but within these subtrees BuRG guarantees an optimal cover. This property is crucial for
CISC architectures, but under-utilized for RISC, and indeed a great portion of BuRG's
potential goes untapped. However, BURG allows the target machine to be specified in
concise, high-level templates, and provides the traversal mechanism for LAST, and it is
these features that make B u RG so usefuL

A 'user-friendly' interface was written for BURG, called McBURG[Don92], and is cur­
rently used for three target machines (DLX, SPARC and RS/6000) plus the pseudo as­
sembly. Figure 7.3 illustrates a fragment of the McBURG specification used for the add
instruction in DLX. There are three patterns specified: "REG", "PLUS(reg,reg)" and
"MODIFY(reg,reg)". The first pattern is for a leaf register (REG) node, and it simply
prints out the register. The function emit knows the correct format for the target archi­

tecture, and takes a pointer t to the REG node, where the register mapping has been
stored.

MODIFY(reg,reg) expects two reg subtrees (which reduce in this fragment to REG and
PLUS(reg,reg)) the left child being the assignment destination, and the right child being
the plus operator. The action saves a pointer to the destination, and then descends into the
operand. This rather inelegant arrangement is used since LAST uses an infix notation, rather
than a pre- or postfix notation ie in an assignment operation, the plus node is the right child
of an assignment node, and so the assignment destination is unavailable when processing
the plus node (there are no pointers back to parent nodes). Assembly instructions usually
use prefix notation, and so the use of modify kids is a way of converting the infix form of
LAST to the prefix form.

The next pattern, PLUS (reg, reg), expects a plus node with two register children.
First, it emits the string add, and then descends subtrees pointed to by three variables:
modifykids, kids [0] and kids [1]. The variable modifykids is a global variable and is
set by the MODIFY pattern,

The entire McBu RG specification for the various target machines consist of similar
patterns for all the possible subtree combinations in LAsT(which number under 100 for

c

CHAPTER 7. RETARGETING MCCAT

!***!
I* Since operators such as PLUS are children of MODIFY, I must remember

the destination for when I bump into the operator *I
!***!
stm: MODIFY(reg,reg) TOPDOWI;{

/•remember what I was looking at *I
modifykids= kids[O];
modifynts= nts[O];
I• go down right child •I
reduce(kids[l], nts[l]);

!***!
I* just print out the name of the register *I
!***!
reg: REG ;{

emit("%R", t);
}

!***!
I* print out code for add first, then the children (left then right) *I
!***!
reg: PLUS(reg,reg) TOPDOWI = (2);{

emit ("add ");

}

reduce(modifykids,modifynts); I* descend assignment dest. •I
emit(",");
reduce(kids[O], nts[O]); I* descend left child •I
emit(",");
reduce(kids[1], nts[l]); I* descend right child *I

Figure 7.3: Sample McBURG specification

83

c CHAPTER 7. RETARGETING MCCAT 84

DLX), a relatively easy task. However the proof, as they say, is in the pudding, and the
success of this retargetability strategy will be tested as McCAT is retargeted to more and
more RISC architectures, although the initial retargeting to the SPARC and RS/6000 is
very promising. A basic working version of Me CAT was targeted to each of these machines,
in both cases, in under one month by one person working part time, while learning both
the architecture and LAST. It is expected that once experienced in re- targeting LAST,

subsequent new RISC machines will be more easily accommodated.

Chapter 8

Results

8.1 Description of Benchmarks & Test Strategy

To illustrate the utility and effectiveness of the example transformations performed on
LAST, the results from a small collection of benchmarks is presented. These benchmarks
are described in Table 8.1, with the second column, # SIMPLE statements, indicating the
number of SIMPLE C statements in each program. Each benchmark has been stripped of
comments, and all blank lines removed.

The benchmarks were compiled for the DLX architecture [HP90], and their execution
simulated using the DLXSim simulator [HM90]. DLXSim can report individual. instruction
counts. However, for the purposes of these experiments we concentrate on the number of
loads, stores and total cycles consumed.

The DLX architecture, as mentioned before, is a RISC architecture based partly on the
MIPS R2000. The simulator configuration used is the default, with Table 8.2 listing the
various latencies for the floating-point and load/store functional units. All other operations
are single cycle. DLXSim does not simulate a cache.

Each benchmark was compiled six different ways, twice with DLXCC, and four times
with McCAT. DLXCC is a 1.37.1 version of GCC ported to DLX. The DLXCC-compiled
benchmarks were compiled with and without the -0 option. The latter is used as a base for
comparison-the results of all the other benchmarks are normalized to its results. While
the McCAT results are reasonable, in general they do not perform as well as the optimized
DLXCC versions. The reason is that DLXCC implements many other optimizations such
as constant sub-expression elimination, strength reduction, jump optimization (which is
needed, especially after a goto-filled program is restructured), dead-code elimination, and
scheduling of conditional branch delay slots. The only optimizations currently performed
by McCAT are the load/store reduction, register allocation and instruction scheduling.

The four variations for the McCAT compiled benchmarks use two of the load/store
available algorithms: improved (keep all local variables in registers) and extended (keep

85

CHAPTER 8. RESULTS 86

Benchmark #SIMPLE Description
statements

Dhrystone 440 The well known synthetic benchmark Dhrystone, inspired by
Whetstone. Attempts to characterize CPU and compiler
performance for a typical program. Outermost loop performs
only one iteration due to the slow simulation speed of the
simulator.

25 A recursive solution to the Towers of Hanoi problem.
Intmm 105 A 40 x 40 integer matrix multiply.
Knight 93 A recursive solution to the Knight's Tour problem: given an

8 by 8 chessboard, determine a series of moves so that a knight
starting at position 1,1 visits each square without repetition.

Mersenne 248 Computes the digits of M= 2P-l, where p is set to 89.
Sorts 226 Generates a random sequence of 100 integers and applies

both bubble- and quicksort algorithms.
Tomcatv 567 C version of the FORTRAN program Tomcatv. This

program is a highly vectorizable double precision floating ,- point mesh generating benchmark. The FORTRAN version is

'-' part of the SPEC benchmark suite.
Whetstone 1715 A synthetic benchmark, based on the frequency of

Algol statements in programs submitted to a university
batch operating system in the early 1970s.

Table 8.1: Description of benchmarks

Unit Latency
(cycles)

Add/Subtract 2
Divide 19
Multiply 5
Load 2
Store I

Table 8.2: Latendes for DLX floating-point and load/store functional units

CHAPTER 8. RESULTS 87

aliased and global variables in registers within basic blocks). The naive approach generates
inferior code, and for brevity is left out. For each load/store reduction transformation,
an unscheduled and scheduled (using the Shieh-Papachristou algorithm) is performed. Ta­
ble 8.3 lists the meanings of the abbreviations used in the following graphs.

Abbrev.
OptDLX%
Impr.%
ImprSch. %
Ext.%
ExtSch.%

Meaning
Percentage improvement for optimized DLXCC (dlxcc -0
%age improvement for McCAT using improved load/st
as above but with scheduling
%age improvement for McCAT using extended load/st
as above but with scheduling

Table 8.3: Explanation of abbreviations for results

Note that in the result figures, the vertical scale is typically from 0 to 1.0, with 1.0
representing 100%.

8.2 Benchmark Results

8.2.1 Dhrystone

Figure 8.1 shows the results for the dhrystone be"!lchmark. The results are quite good, and
McCAT actually performs better than the optimized version of DLXCC when using the
'improved' load/store algorithm. Obviously, loads and stores constitute a large proportion of
the execution time of the benchmark. Interestingly, the 'extended' algorithm performs worse
than either the DLXCC or 'improved' versions. The transformation was, in a sense, too
successful, since it found many global and aliased variables to keep in registers. However, the
register pressure was too great, causing the the register allocator to spill and reload variables
enough times to slow the overall execution of dhrystone. When the current register allocator
spills a variable, loads and stores are inserted for all uses of the variable within the function,
not just at the site of high register pressure. DLXCC has a more effective strategy.

8.2.2 Hanoi

Hanoi (Figure 8.2) is another benchmark where McCAT produced better code than DLXCC
(ie another program with a significant number of dynamic loads). There are very few global
or pointer dereferences, so the results are the same for the improved and extended versions.

CHAPTER 8. RESULTS 88

c
Figure 8.1: Dhrystone results

Figure 8.2: Hanoi results

CHAPTER 8. RESULTS 89

8.2.3 Intmm

While McCAT does not perform as well as DLXCC on the intmm benchmark (Figure 8.3),
the load/store transformations by themselves enable a speed-up of 30%. Scheduling can
reduce it by a further 5%, although McCAT will definitely benefit from the addition of
other traditional optimizations.

As in the dhrystone benchmark, high register pressure causes the extended version of
McCAT to perform worse than the unscheduled improved version.

Figure 8.3: Intmm results

8.2.4 Knight

In the knight benchmark (Figure 8.4), the improved load/store reduction algorithm out­
performs that of DLXCC, although the lack of other optimizations keeps the McCAT
version about 15% slower than the optimized DLXCC version. There are neither pointers
nor globals, so there is no difference between the improved and extended versions. Addi­
tionally, since knight's basic blocks are small, instruction scheduling makes only a minor
improvement to the program's running time.

8.2.5 Mersenne

Figure 8.5 presents the results for the mersenne benchmark. Like hanoi, there are few globals
and pointer dereferences, and like intmm, the McCAT versions are up to 30% faster than

c

CHAPTER 8. RESULTS 90

Figure 8.4: Knight results

the unoptimized version. Again, there is room for further significant improvements with
other optimizations, when compared with the optimized DLXCC results.

Additionally, there is a spectacular reduction in the number of loads for both DLXCC
and McCAT. The majority of the savings come from moving the loading of array base
addresses to the outside ofloops (see Section 3.4.2).

8.2.6 Sorts

The sorts benchmark (Figure 8.6) provides the first example of a significant gain from
the extended load/store reduction algorithm. The improved version allows only a 10%
improvement in performance, but the extended version is close to 30%. There is, again, an
illustration of the need for other optimizations when compared to the optimized DLXCC
result. The number ofloads in the optimized DLXCC version is quite low, not only because
of its own load/store reduction algorithm, but also the effect of other optimizations that
reduce the total number of instructions generated for the benchmark.

8.2. 7 Tomcatv

The results for the tomcatv benchmark highlight one area of needed improvement: register
allocation. This is the only benchmark where a scheduled version performs worse than
an unscheduled version (Figure 8.7). Tomcatv has very large basic blocks that, even in
unscheduled versions, place pressure on the register allocator. The Shieh-Papachristou

CHAPTER 8. RESULTS 91

Figure 8.5: Mersenne results c

Figure 8.6: Sorts results

0

c

CHAPTER 8. RESULTS 92

algorithm used in Me CAT stretches the lifetimes of variables enormously in this benchmark,
resulting in an avalanche of register spills and reloads. The McCAT extended version
reduces the number of loads and stores, and thus reduces the restrictions on the scheduler,
producing a highly parallel, but register intensive program.

Figure 8.7: Tomcatv results

8.2.8 Whetstone

Both the improved and extended load/store reduction algorithm substantially reduces run­
ning time in whetstone (Figure 8.8), by around 40%. DLXCC, again, produces a faster
program (over 20% faster), indicating the many further improvements possible in McCAT.
Scheduling slightly improves running time, but in conjunction with the extended load/ store
algorithm, increases the register pressure to a point where register spills and reloads increase
running time past that of the improved scheduled version.

8.3 Observations & Impressions

As much background reading as one may perform, research inherently requires a certain
leap of faith and of risk taking. Hindsight enables 20/20 vision, and in retrospect while
some design decisions may have been excellent choices, others might have been better. This
section lists some of the author's impressions on the development of LAST.

• As in many software projects, the amount of testing needed was underestimated. The
author initially tried to split his time about equally between development and testing,

-

c

CHAPTER 8. RESULTS 93

Figure 8.8: Whetstone results

but in the final stages, much more time was required for testing. Above everything
else, compilers must be correct, and due their complexity, benchmarks are the only
way to efficiently ensure correctness.

In addition, it became apparent that the worst person to create test cases for a com­
piler is a compiler-writer. Fortunately, amazing permutations of C code are not un­
common in publicly available C source code, and were invaluable for testing LAST.

• Limiting the abstract machine to RISC was an effective decision, and allowed LAST to
be quite low level while maintaining retargetability. Low~level optimizations, as well
as bug-fixes, were instantly available for all supported targets.

• The interpreter was extremely helpful in debugging LAST. It allows a direct, machine­
independent way of manipulating LAsT, along with some debugging capability. The
current version of the McCAT backend does not support debugging information,
and so complicated benchmarks that failed were very challenging to debug (before
the interpreter). In one case, the author spent six days on a benchmark, while the
interpreter was being developed. Within three hours of it being available, the problem
was located and solved.

• The current method of retargeting, while simple, requires a fair knowledge of LAST,
and represents a reasonable investment in time. An interface to the backend, and
of configuring LAST(perhaps similar to the machine description files used in GCC),
would be very useful.

c

0

Chapter 9

Conclusions & Future Work

9.1 Conclusions

This thesis has presented LAST, a low-level structured intermediate representation used
in the McCAT C compiler. LAST is designed to expose low-level architectural details to

various code-improving algorithms, while retaining a high degree of retargetability.
The structured approach simplifies the development of analysis and transformation

phases, as evidenced by the simple but powerful algorithms used for live variable analy­
sis, and the reduction of the number of loads and stores. The reduction algorithm alone
improves the performance of several benchmarks by up to 30%. In addition, the structured
nature of LAST easily supports pervasive flow information, enabling the points-to informa­
tion gathered and stored in the SIMPLE IR to be used in LAST to reduce loads and stores
associated with global and aliased variables. The pervasive flow information has enabled
an additional performance improvement in the tomcatv benchmark of 20%.

There is, however, an 'over-optimization' effect in some benchmarks, where too many
variables are held in registers, causing the register allocator to spill and reload the vari­
ables on every use. These register reloads retard overall performance considerably in some
benchmarks, and point to the need for additional information to locate and isolate regions
of high register pressure, so the allocator spills variables in these regions only, rather than
at every use and definition.

LAST also enables McCAT to be retargeted to other RISC machines without unduly
compromising the quality of code produced. This was a non-trivial goal-there is an in­
herent trade-off between high-performance and ease of retargeting. Abstraction minimizes
the changes required when retargeting the compiler, but gives the code-improving transfor­
mations less information to work with, often resulting in less efficient code. On the other
hand, the more specific the compiler, the more work is required to rewrite the analysis and
transformation phases when retargeting to a different machines. LAST attains both goals
by limiting McCAT's targets to RISC architectures, and abstracting features common to

94

c

0

CHAPTER 9. CONCLUSIONS & FUTURE WORK 95

them.
Since LAST is focused towards RISC machines and is configurable, it can represent low­

level architectural details such as branch delay slots and register windows, allowing powerful
low-level transformations (like register allocation and instruction scheduling) to be highly
effective. At the same time, since only the configuration of LAST changes from machine
to machine, all the analyses and transformations on LAST can be reused, and only the
McBURG specification file need be rewritten. Currently McCAT is being retargeted to the
SPARC, Alpha and RS/6000 architectures, and in all cases a basic, working version was
available within one month, including the time taken to learn SIMPLE, LAST and McBURG.

9.2 Future Work

The work done in this thesis has laid the foundation for the McCAT backend by providing
both an intermediate representation and a code generator. Additionally, it provides impor­
tant analyses and code-improving transformations. Based on this foundation, there remain
many important issues to address, the most important of which are discussed below.

• Accurate information needs to be generated for the register allocator. Initially, it
was assumed that the register allocator was sophisticated enough to handle the addi­
tional pressure placed by the 'extended' algorithm, but there are serious limitations,
especially when other life-extending transformations (eg instruction scheduling) are
used.

• Jump optimizations such as branch chain elimination need to be implemented. Mc­
CAT's program structurer can sometimes create structured programs that are not as
fast as their unstructured counterparts. While the penalty generally appears to be in
the region of 5% for programs requiring structuring, some benchmarks are penalized
even further [EH94J. Structuring will typically produce a cascade of test conditions,
using sequences of if, do while and break statements to replicate the flow control of
a goto. Branch chain elimination would bypass all the intermediate condition checks
by specifying the ultimate target label for a branch (such as for a break). The LAST

nodes used to represent a program would not change: the only apparent difference
would be at code generation time, when printing out the label for a break statement.
At first glance, this optimization seems to create an unstructured program out of a
structured one, but in fact does not. The change in control flow is not arbitrary, but
essentially follows the normal flow without performing the tests. In following the flow
of control of the cascading tests, there are no side effects ie values are only read, not
written, and so the succession of jumps can be safely shortened. If there were inter­
vening instructions between the conditions, then the branch chain elimination would
not be performed.

CHAPTER 9. CONCLUSIONS & FUTURE WORK 96

• Larger, longer running benchmarks should be used to test McCAT, in order to further
investigate the optimizations, and also to ensure the correctness of LAST generated
code.

• The scheduling algorithm should be extended, to include

1. Scheduling instructions inside conditional branch delay slots. This optimization
can improve a program's performance by an additional 10% [Tie89].

2. Minimizing register pressure by scheduling with knowledge of register usage. The
balanced scheduling algorithm, by Kerns and Eggers, [KE93] can be a candidate
algorithm for implementation.

3. Utilizing points-to information to reduce various data dependencies between
aliased variables while scheduling. Currently, a load or store of any aliased vari­
able will have a dependency edge to all other loads and stores of aliased variables.
The may points-to information (a list of variables that may be aliased to one an­
other) gives highly precise information [EGH94], so the number of dependencies
between loads and stores can be reduced significantly.

• Implementation of traditional optimizations, either at the LAST level, or at SIMPLE.

Of immediate benefit would be common sub-expression elimination and strength re­
duction, as evidenced by the generally superior performance of the optimized DLXCC
generated code.

c

Glossary

ACAPS: Advanced Compilers, Architectures MIPS: Company designing RISC architec-
and Parallel Systems, a research group
at McGill university.

AST: Abstract syntax tree.

CFG: Control flow graph.

CISC: Complex Instruction Set Computer.

DAG: Directed acyclic graph.

DLX: Fictious instruction set based on MIPS
R2000 architecture. Created as a peda-

tures and manufacturing UNIX-based
workstations. The MIPS series of ar­
chitectures includes the R2000 and R3000.

McCAT: McGill Compiler/ Architecture Test bed.
A system used for researching advanced
compiler and architecture concepts, de­
veloped by the A CAPS group. Included
in the the testbed is the McCAT C
compiler.

gogical tool in Hennessy and Patterson RISC: Reduced Instruction Set Computer.

[HP90]. RTL: Register Transfer Language (GNU).

FIRST: An abstract syntax tree generated
by GNU's GCC front-end, and used to
create SIMPLE.

A common acronym else, also used by
Davidson to mean Register Transfer Lists.

SEQ: Sequence node, a LAST structural node

GCC: The GNU C compiler, a highly portable, (Section 4.1).
publicly available C compiler.

GNU: Gnu's Not UNIX. An organization
associated with the Free Software Faun-
dation in Massachusetts, Boston, de­
voted to providing free software to the
programming community.

IR: Intermediate representation. Also known
as intermediate code (IC) and interme­
diate language (IL).

SIMPLE: Simple intermediate representa­

tion. A simplified abstract syntax tree
used as the high-level IR in the Me­
CAT C compiler.

SPARC: Scalable Processor ARChitecture.
The architectural specification of a RISC
chip used in modern Sun workstations.
SPARC architectures utilize register win­
dows.

LAST: Low level Abstract Syntax Tree, a Sun: A manufacturer of UNIX-based work-
low-level intermediate representation used stations.
in the McCAT compiler.

106

c

Appendix A

SIMPLE Grammar

The grammar for SIMPLE is presented below, as implemented in the McCAT C compiler.
For a more complete coverage of SIMPLE, the reader is directed to Bhama Sridharan's thesis
[Sri92].

all_stmts stmtlist stop_stmt
stmtlist

stmtlist stmtlist stmt
stmt

stmt compstmt
expr ';'
IF '(' condexpr ')' stmt
IF '(' condexpr ')' stmt ELSE stmt
WHILE'(' condexpr ')' stmt
DO stmt WHILE'(' condexpr ')'
FOR '('exprseq ';' condexprseq ';'exprseq ')' stmt
SWITCH'(' val ')' casestmts
(;'

compsmt '{' all_stmts '}'
'{' '}'

'{' decls all_stmts '}'

'{' decls '}'

I•• decls denotes all possible C declarations. The only difference is that••/
I•• the declarations are not allowed to have initializations in them. ••I

condexprseq : exprseq ' ' ' condexpr
condexpr

exprseq exprseq ',' expr
expr
condexpr '?'exprseq': 'exprseq

97

0

APPENDIX A. SIMPLE GRAMMAR

stop_stmt BREAK';'

casestmts

CORTINUE ' ; '
RETURJI ';'
RETURJI val '.' '
RETURN'(' val ')' ';'

'{' cases default'}'

'.' '
'{' '},

cases cases case
case

case CASE INT_CONST':' stmtlist stop_stmt

default: DEFAULT':' stmtlist stop_stmt

expr rhs
modify_expr

call_expr: ID '(' arglist ')'

arglist arglist ',' val
val

modify_expr varname '=' rhs

'*' ID '=' rhs

rhs binary_expr
unary_expr

unary_expr simp_expr

'*' ID
't' varname

lcall_expr
I unop val
I '('cast ')' varname

I•• cast here stands for all valid C typecasts **I

binary_expr : val binop val

unop '+'
,_,

98

c

APPENDIX A. SIMPLE GRAMMAR

binop re lop
,_, I '+' 'I'
'i' I 'I, '<<'

re lop : '<' '<=' I '>'

condexpr val
val relop val

simp_expr varname

val ID

INT_CONST
FLOAT_CONST
STRING_CONST

CONST

varname arrayref

arrayref :

reflist

compref
ID

ID reflist

'[' val '],

I

reflist ' [, val

idlist idlist ' ' ID
ID

compref ' (' '*' ID ') '
idlist

'*' I 'Y.,
'>>' '-,

'>=' (=='

'],

' ' idlist

99

(!='

c

Appendix B

LAST Grammar

This appendix gives the grammar for LAST.

function : save sequence restore EOSEQ

save : SEQ SAVE_REGISTERS
restore : SEQ RESTORE_REGISTERS

sequence : SEQ seq_body sequence
I I* empty *I

termsequence : SEQ BEGIN-BODY sequence EOSEQ

seq_body modify
load
store
fn_call
conversions
reg_moves
comparisons
control
structured_goto
REG_WIN_DUT REG
REG_WIN_IN REG
ADJUST_SP
PDP_PARMS
PASS_FARM REG

modify : MODIFY REG mod_src

mod_src REG
CONSTANT
fn_call

100

,-.,

·~"""'

"-'

APPENDIX B. LAST GRAMMAR

comparisons
arithmetic

arithmetic MULTIPLY REG REG
DIVIDE REG REG
PLUS REG regconst
PLUS CONSTANT REG
MINUS REG regconst
BIT_AID REG regconst
BIT_IOR REG regconst
BIT_XOR REG regconst
BIT_NOT REG
NEGATE REG
TRUTH_IDT REG
LSHIFT REG regconst
RSHIFT REG regconst

control: if
switch
for
do
while

if IF cond if_hack

if_hack IF_ELSE_HACK thenbody JUMP_DVER_ELSE delay_slot EOSEQ elsebody
IF_ELSE HACK thenbody

thenbody termsequence
elsebody termsequence

switch : cond delay_slot cases

cases SEQ CASE case_labels casebody cases

SEQ DEFAULT casebody EOSEQ

case_labels SEQ CONSTANT case_labels
EOSEQ

casebody : sequence structured_goto EDSEQ

do : DO termsequence cond delay_slot

while : WHILE cond delay_slot whilebody

whilebody: sequence JUMP_TD_WHILE delay_slot EDSEQ

for : FOR initlstop delay_slot incrementljump

101

c

c

APPENDIX B. LAST GRAMMAR

initNstop FOR_STUFF initialize stopNbody

stopNbody FOR_C_N_B stop forbody

incrementNjump : FOR_INC_N_JUMP increment jumpback

initialize : termsequence

stop : cond

increment : termsequence

jumpback : LOOP_TO_FOR delay_slot

forbody : termsequence

delay_slot : sequence EOSEQ

cond seqloads comparisons seqstores
seqloads modify seqstores

seqloads SEQ load seqloads
I• empty •I

seqstores SEQ store seqloads
I• empty •I

load : LOAD REG load_src

load_src REG
ADDRESS
CONSTANT
MEH

store STORE store_dest REG

store_dest REG

fn_call

HEM

FN_CALL args LABEL
FN_CALL args REG

args ARG REG args
ARG CONSTANT args
NOARG

reg_moves : HVI2F REG REG

102

c APPENDIX B. LAST GRAMMAR 103

MVI2F REG CONSTANT=O
MVF21 REG REG

conversions FD2S REG REG
FD21 REG REG
FI2S REG REG
FI2D REG REG
FS21 REG REG
FS2D REG REG
FIXUD2S REG REG

comparisons GE REG regconst
GT REG regconst
EQ REG regconst
LT REG regconst
LE REG regconst
NE REG regconst

structured_goto : BREAK
I CONTINUE
I RETURN sequence EOSEQ

c regconst REG
CONSTANT

0

c

Appendix C

Detailed Results

I V'...t.v') DLX Opt. % Impr. % lmpr. % Ext. % Ext. %
DLX Sched Sched

Cycles 571.49 430.49 75.33 419.00 73.32 405.00 70.87 493.00 86.27 455.00 79.62
Loads 131.00 81.50 62.21 68.50 52.29 72.50 55.34 86.50 66.03 90.00 68.70
Stores 92.00 77.00 83.70 68.00 73.91 72.00 78.26 75.00 81.52 78.50 85.33

Table C.1: Dhrystone results

Table C.2: Hanoi results

Table C.3: Intmm results

104

APPENDIX C. DETAILED RESULTS 105

(X 106
) DLX Opt. % Impr. % Impr. % Ext. % Ext. %

DLX Sched Sched

Cycles 88.57 50.60 57.13 64.57 72.90 62.75 70.85 64.57 72.90 62.75 70.85
Loads 23.42 3.60 15.37 3.18 13.57 3.18 13.57 3.18 13.57 3.18 13.57
Stores 5.76 2.81 48.79 2.53 43.91 2.53 43.91 2.53 43.91 2.53 43.91

Table C.4: Knight results

DLX

Cycles 181378
Loads 41262 1450
Stores 19726 9904

Table C.5: Mersenne results

% Impr. Ext.

c 34.65 273543 84.66 224798 73.00
23.47 38796 46.65 46.88 26534 31.90
47.43 7520 46.15 47.35 7523 46.17

Table C.6: Sorts results

DLX Opt. % Impr. % Impr.l % Ext. % Ext. %
I DLX Sched. Sched.

Cycles 65680 30677 46.71 66448 101.17 642ll91 97.76 48357 73.63 53633 81.66
Loads 10216 4692 45.93 5088 49.80 1 116.45 4899 47.95 9174 89.80
Stores 2189 2281 104.20 1968 89.90 1991 90.95 2020 92.28 2951 134.81

Table C. 7: Tomcatv results

(x10°) DLX Opt. % lmpr. % Impr. % Ext. % Ext. %
DLX Sched Sched

Cycles 15.16 5.72 37.77 9.45 62.37 8.61 56.78 9.61 63.40 9.18 60.58
Loads 4.24 0.67 15.72 1.17 26.34 1.13 26.61 1.08 2~ 1.23 29.10
Stores 2.09 0.34 16.10 0.34 16.13 0.35 16.67 0.52 2 0.60 28.74

Table C.8: Whetstone results

c

c

Bibliography

[AGT89] Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code gener­
ation using tree matching and dynamic programming. A CM Transactions on
Programming Languages and Systems, 11(4):491-516, October 1989.

[AH91]

[Amm92]

[ASU88]

[Bak77]

(BD88]

[Ber85]

[Ber86]

[Ber88]

[Bet94]

An drew W. Appel and David R. Hanson. Intermediate representation trees.
Unpublished report, October 1991.

Zahira Ammarguellat. A control-flow normalization algorithm and its com­
plexity. IEEE Transactions on Software Engineering, 18(3):237-250, March
1992.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers-Principles, Techniques,
and Tools. Addison-Wesley Publishing Company, corrected edition, 1988.

B. Baker. An algorithm for structuring fiowgraphs. Journal of the AGM,
24(1):98-120, 1977.

Manuel E. Benitez and Jack Davidson. A portable global optimizer and linker.
In Proceedings of the SIGPLAN '88 Conference on Programming Language De­
sign and Implementation, pages 329-338, Atlanta, Georgia, June 22-24, 1988.
ACM SIGPLAN. SIGPLAN Notices, 23(7), July 1988.

Robert 1. Bernstein. Producing good code for the case statement. Software -
Practice and Experience, 15(10):1021-1024, October 1985.

Robert Bernstein. Multiplication by integer constants. Software - Practice
and Experience, 16(7):641-652, July 1986.

D. Bernstein. An improved approximation algorithm for scheduling pipelined
machines. In Proceedings of the 1988 International Conference on Parallel

Processing, volume I, pages 430-433, St. Charles, Illinois, August 15-19, 1988.

Patrick Betremieux. An interpreter for LAST. McCAT Technical Memo 16,
McGill University, 1994.

107

c

c

BIBLIOGRAPHY 108

[BG89] David Bernstein and Izidor Gertner. Scheduling expressions on a pipelined pro­
cessor with a maximal delay of one cycle. AGM Transactions on Programming
Languages and Systems, 11(1):57-66, January 1989.

[BGM79] G. B. Bonkowski, W. M. Gentleman, and M. A. Malcolm. Parting the Zed
compiler. In Proceedings of the SIGPLAN '79 Symposium on Compiler Con­
struction, pages 92-97. ACM SIGPLAN, 1979.

[BH93]

[Bri92]

Preston Briggs and Tim Harvey. Multiplication by integer constants. Available
via ftp from cs.rice.edu:public/preston, October 1993.

Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice
University, Houston, Texas, April 1992.

[CAC+S1] G. J. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Mark­
stein. Register allocation via coloring. Computer Languages, 6:47-57, January
1981.

[CCDM93] Philippe Canalda, Lucile Cognard, Annie Despland, and Monique Mazaud.

[CCK90]

The Pagaode system user's guide and reference manual. Technical Report 1.1,
INRIA, Rocquencourt, France, April 1993.

David Callahan, Steve Carr, and Ken Kennedy. Improving register alloca­
tion for subscripted variables. In Proceedings of the SIGPLAN '90 Conference
on Programming Language Design and Implementation, pages 53-65, White
Plains, New York, June 20-22, 1990. ACM SIGPLAN. SIGPLAN Notices,
25(6), June 1990.

[CHKW86] F. Chow, M. Himelstein, E. Killian, and L. Weber. Engineering a RISC com­
piler system. In Digest of Papers, 31st IEEE Computer Society International
Conference, COMPCON Spring '86, pages 132-137, San Francisco, California,
March 3-6, 1986. IEEE Computer Society Press.

[Cho83] Frederick C. Chow. A Portable Machine-Independent Global Optimizer- De­
sign and Measurements. PhD thesis, Stanford University, Stanford, California,
December 1983. Also published as Technical Note 83-254.

[Cho88J Fred C. Chow. Minimizing register usage penalty at procedure calls. In Pro­
ceedings of the SIGPLAN '88 Conference on Programming Language Design
and Implementation, pages 85-94, Atlanta, Georgia, June 22-24, 1988. ACM
SIGPLAN. SIGPLAN Notices, 23(7), July 1988.

[CKDK91] Robert F. Cmelik, Shing I. Kong, David R. Ditzel, and Edmund J. Kelly.
An analysis of MIPS and SPARC instruction set utilization on the SPEC

c

0

BIBLIOGRAPHY 109

benchmarks. In Proceedings of the Fourth International Conference on Ar­
chitectural Support for Programming Languages and Operating Systems, pages
290-302, Santa Clara, California, April 8-11, 1991. ACM SIGARCH, SIG­
PLAN, SIGOPS, and the IEEE Computer Society. Computer Architecture

News, 19(2), April 1991; Operating Systems Review, 25, April 1991; SIGPLAN
Notices, 26(4), April1991.

[CKP91] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching.

[CLR92]

[Con93]

[DF84]

[DF86]

[Dig92]

[Don92]

[DS90]

In Proceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 40-52, Santa Clara,
California, April 8-11, 1991. ACM SIGARCH, SIGPLAN, SIGOPS, and the
IEEE Computer Society. Computer Architecture News, 19(2), April 1991; Op­

erating Systems Review, 25, April 1991; SIGPLAN Notices, 26(4), April 1991.

Thomas H. Corman, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press, McGraw-Hill Book Co., Cambridge, MA, 1992.

The COMPARE Consortium. Automatic generation of schedulers in the frame­
work of the Pagode system. Technical Report D3.3.2/1, INRIA, Rocquencourt,
France, May 1993.

Jack Davidson and C. Fraser. Automatic generation of peephole optimization.
In Proceedings of the SIGPLAN '84 Symposium on Compiler Construction,
pages 111-116, Montreal, Quebec, June 17-22, 1984. ACM SIGPLAN. BIG­
PLAN Notices, 19(6), June 1984.

Jack Davidson and C. Fraser. A retargetable instruction reorganizer. In Pro­
ceedings of the SIGPLAN '86 Symposium on Compiler Construction, pages
234-241, Palo Alto, California, June 25-27, 1986. ACM SIGPLAN. SIGPLAN
Notices, 21(7), July 1986.

Digital Equipment Corporation. Alpha Architecture Manual. Burlington, Ver­
mont, 1992.

Christopher M. Donawa. McBURG: a kinder, gentler interface for producing
BURG specifications. ACAPS Technical Note 39, School of Computer Science,
McGill University, Montreal, Quebec, November 1992.

Robert B. K. Dewar and Matthew Smosna. Microprocessors: A Programmer's
View. McGraw-Hill Publishing Co., New York, 1990.

c

0

BIBLIOGRAPHY 110

[EGH94]

[EH94]

[Ema93J

[ESL89J

[FH91]

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers. In Pro­
ceedings of the SIGPLAN '94 Symposium on Programming Language Design
and Implementation, pages 242-257, June 1994.

Ana Erosa and Laurie J. Hendren. Taming control flow: A structured approach
to eliminating goto statements. In Proceedings of IEEE 1994 International
Conference on Computer Languages, May 1994.

Maryam Emami. A practical interprocedural alias analysis for an optimiz­
ingfparallelizing C compiler. Master's thesis, McGill University, Montreal,
Quebec, September 1993.

Helmut Emmelmann, Friedrich-Wilhelm Schroer, and Rudolf Landwehr. BEG:
a generator for efficient back ends. In Proceedings of the SIGPLAN '89 Confer­
ence on Programming Language Design and Implementation, pages 227-237,
Portland, Oregon, June 21-23, 1989. ACM SIGPLAN. SIGPLAN Notices,
24(7), July 1989.

Christopher W. Fraser and David R. Hanson. A retargetable compiler for
ANSI C. Technical Report CS-TR-303-91, Department of Computer Science,
Princeton University, Princeton, NJ, February 1991.

[FHP92a] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineering
a simple, efficient code-generator generator. A CM Transactions on Program­
ming Languages and Systems, 1(3):213-226, September 1992.

[FHP92b] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG
fast optimal instruction selection and tree parsing. SIGPLAN Notices,

27(4):68-76, April1992.

[Fis81] J. A. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Transactions on Computers, 7(30):478-490, July 1981.

[FL88] Charles N. Fischer and Richard J. LeBlanc, Jr. Crafting A Compiler. Ben­
jamin/Cummings Publishing Co., Menlo Park, California, 1988.

[GF84] Mahadevan Ganapathi and Charles N. Fischer. Attributed linear intermedi-

[GH86]

ate representations for retargetable code generators. Software
Experience, 14(4):347-364, April 1984.

Practice and

James R. Goodman and Wei-Chung Hsu. On the use of registers vs. cache
to minimize memory traffic. In Proceedings of the 13th Annual International

c

0

BIBLIOGRAPHY 111

[Ghi92]

[GM86]

[Gui94]

[HDE+92]

Symposium on Computer Architecture, pages 375-383, Tokyo, Japan, June 2-5,
1986. IEEE Computer Society and ACM SIGARCH. Computer Architecture
News, 14(2), June 1986.

Rakesh Ghiya. Interprocedural analysis in the presence of function pointers.
ACAPS Technical Memo 62, School of Computer Science, McGill University,
Montreal, Quebec, March 1992.

P. B. Gibbons and S. S. Muchnick. Efficient instruction scheduling for a
pipelined architecture. In Proceedings of the SIGPLAN '86 Symposium on
Compiler Construction, pages 11-16, Palo Alto, California, June 25-27, 1986.
ACM SIGPLAN. SIGPLAN Notices, 21(7), July 1986.

Ronald F. Guilmette, March 1994. Personal communication.

Laurie J. Hendren, Chris Donawa, Maryam Emami, Guang R. Gao, Justiani,
and Bhama Sridharan. Designing the McCAT compiler based on a family
of structured intermediate representations. In Conference Record of the 5th
Workshop on Languages and Compilers for Parallel Computing, pages 261-
275, New Haven, Connecticut, August 3-5, 1992. Department of Computer
Science, Yale University. Also available as ACAPS Technical Memo 46, School
of Computer Science, McGill University, Montreal, Quebec.

[HGAM92] Laurie J. Hendren, Guang R. Gao, Erik R. Altman, and Chandrika Mukerji.

[HM82J

[HM90]

[Hor91]

[HP90]

[JH94]

A register allocation framework based on hierarchical cyclic interval graphs. In
U. Kastens and P. Pfahler, editors, Proceedings of the International Conference
on Compiler Construction, number 641 in Lecture Notes in Computer Science,
pages 176-191. Springer-Verlag, October 1992.

John L. Hennessy and Noah Mendelsohn. Compilation of the pascal case state-
ment. Software Practice and Experience, 12(9):879-882, September 1982.

Larry B. Hostetler and Brian Mirtich. DLXsim-a Simulator for DLX. Uni­
versity of California at Berkeley, December 1990.

Nigel Horspool. CS471. Course notes, February 1991.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti­
tative Approach. Morgan Kaufmann Publishers, Inc., 1990.

Justiani and Laurie J. Hendren. Supporting array dependence testing for an
optimizing/parallelizing C compiler. In Proceedings of the 1994 International
Conference on Compiler Construction, volume 7 49 of Lecture Notes in Com­
puter Science. Springer-Verlag, April 1994.

c

BIBLIOGRAPHY 112

[JML91)

[Joh91]

[Jus94)

[JW89)

[KE93)

Ralph E. Johnson, Carl McConnell, and J. Michael Lake. The RTL system: A
framework for code optimization. In Robert Giegerich and Susan L. Graham,
editors, Code Generation - Concepts, Tools, Techniques, Proceedings of the
Workshop on Code Generation, pages 255-274, Dagstuhl, Germany, May 1991.
Springer-Verlag.

Mike Johnson. Superscalar Microprocessor Design. Prentice Hall, Englewood
Cliffs, New Jersey 07632, 1991.

Justiani. An array dependence framework for the McCAT C compiler. Master's
thesis, McGill University, Montreal, Quebec, 1994. Expected December 1994.

Norman P. Jouppi and David W. Wall. Available instruction-level parallelism
for superscalar and superpipelined machines. In Proceedings of the Third Inter­
national Conference on Architectural Support for Programming Languages and
Operating Systems, pages 272-282, Boston, Massachusetts, April 3-6, 1989.
ACM SIGARCH, SIGPLAN, SIGOPS, and the IEEE Computer Society. Com­
puter Architecture News, 17(2), April 1989; Operating Systems Review, 23,
April1989; SIGPLAN Notices, 24, May 1989.

Daniel R. Kerns and Susan J. Eggers. Balanced scheduling: Instruction schedul­
ing when memory latency is uncertain. In Proceedings of the SIGPLAN '93
Conference on Programming Language Design and Implementation, pages 278-
289, Albuquerque, New Mexico, June 1993. ACM SIGPLAN. SIGPLAN No­
tices, 28(6), June 1993.

[Kes84] Robert R. Kessler. Peep- an architectural description driven peephole opti­
mizer. In Proceedings of the SIGPLAN '84 Symposium on Compiler Construc­
tion, pages 106-110, Montreal, Quebec, June 17-22, 1984. ACM SIGPLAN.
SIGPLAN Notices, 19(6), June 1984.

[KKM80] P. Kornerup, B. B. Kristensen, and 0. L. Madsen. Interpretation and code gen-

[Kri90)

[LJ92]

eration based on intermediate languages. Software Practice and Experience,
10(8):635-658, 1980.

S. M. Krishnamurthy. A brief survey of papers on scheduling for pipelined
processors. SIGPLAN Notices, 25(7):97-106, 1990.

Luis Lozano and Alberta Jimenez. A register allocator for McCAT. McCAT
Design Note 12, School of Computer Science, McGill University, Montreal,
Quebec, December 1992.

c BIBLIOGRAPHY 113

[LW92] Monica S. Lam and Robert P. Wilson. Limits of control flow on parallelism. In
Proceedings of the 19th Annual International Symposium an Computer Archi­
tecture, pages 46-57, Gold Coast, Australia, May 19-21, 1992. ACM SIGARCH
and IEEE Computer Society. Computer Architecture News, 20(2), May 1992.

[MLG92] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation
of a compiler algorithm for prefetching. pages 62-73, October 12-15, 1992.
Computer Architecture News, 20, October 1992; Operating Systems Review,
26, October 1992; SIGPLAN Notices, 27(9), September 1992.

[Muk91] Chandrika Mukerji. Instruction scheduling at the RTL level. ACAPS Technical
Note 28, School of Computer Science, McGill University, Montreal, Quebec,
1991.

[NAJ+81] K. V. Nori, U. Ammann, K. Jensen, H. H. Nageli, and Ch. Jacobi. Pascal P
implementation notes. In D. W. Barron, editor, Pascal- The Language and
its Implementation, pages 125-170. Wiley, Chichester, 1981.

[Nel79] Philip A. Nelson. A comparison of PASCAL intermediate languages. In Pro­
ceedings of the SIGPLAN '79 Symposium on Compiler Construction, pages
208-213. ACM SIGPLAN, 1979.

[OHM+9o] Kevin O'Brien, Bill Hay, Joanne Minish, Hartmann Schaffer, Bob Schloss,
Arvin Shepherd, and Mathew Zaleski. Advanced compiler technology for the
RISC System/6000 architecture. In Mamata Misra, editor, IBM RISC Sys­
tem/6000 Technology, pages 154-161. International Business Machines Corpo­
ration, first edition, 1990. Order No. SA23-2619.

[OMMN90] Brett Olsson, Robert Montoye, Peter Markstein, and MyHong NguyunPhu.
RISC System/6000 floating-point unit. In Mamata Misra, editor, IBM RISC

System/6000 Technology, pages 34-42. International Business Machines Cor­
poration, first edition, 1990. Order No. SA23-2619.

[Pat85] David A. Patterson. Reduced instruction set computers. Communications of
the AGM, 28(1):8-21, January 1985.

[PS79] Daniel R. Perkins and Richard L. Sites. Machine-independent PASCAL code
optimization. In Proceedings of the SIGPLAN Symposium on Compiler Con­
struction, pages 201-207, August 1979.

[Sa181] Arthur Sale. The implementation of case statements in Pascal. Software -
Practice and Experience, 11(9):929-942, September 1981.

c

0

BIBLIOGRAPHY 114

[SC91]

[SLH90]

[SP89]

[Sri92]

[Sta92]

[Tie89]

Harold S. Stone and John Cocke. Computer architecture in the 1990s. Com­
puter, 24(9):30-38, September 1991.

Michael D. Smith, Monica S. Lam, and Mark A. Horowitz. Boosting beyond
static scheduling in a superscalar processor. In Proceedings of the 17th Annual

International Symposium on Computer Architecture, pages 344-354, Seattle,
Washington, May 28-31, 1990. IEEE Computer Society and ACM SIGARCH.
Computer Architecture News, 18(2), June 1990.

Jong-Jiann Shieh and Christos A. Papachristou. On reordering instruction
streams for pipelined computers. In Proceedings of the 22th Annual Interna­
tional Workshop on Microprogramming and Microarchitecture, pages 199-206,
Dublin, Ireland, August 14-16, 1989. ACM SIGMICRO and IEEE-CS TC­
MICRO. SIGMICRO Newsletter, 20(3), September 1989.

Bhama Sridharan. An analysis framework for the McCAT compiler. Master's
thesis, McGill University, Montreal, Quebec, September 1992.

Richard M. Stallman. Using and Porting GNU CC. Cambridge, Massachusetts,
June 1992. Available via anonymous ftp from prep. ai.mit. edu.

M. D. Tiemann. The GNU instruction scheduler-cs343 course report. Tech­
nical report, Stanford University, 1989.

[TvSS82] A. S. Tannenbaum, H. van Staveren, and J. W. Stevenson. Using peephole opti­
mization on intermediate code. AGM Transactions on Programming Languages
and Systems, 4(1):21-36, 1982.

[TWL +91] S. Tjiang, M. Wolf, M. Lam, K. Pieper, and J. Hennessy. Integrating scalar
optimization and parallelization. In U. Banerjee, D. Gelernter, A. Nicolau,
and D. Padua, editors, Proceedings of the Fourth International Workshop on
Languages and Compilers for Parallel Computing, number 589 in Lecture Notes
in Computer Science, pages 137-151, Santa Clara, California, August 7-9, 1991.
The Intel Corporation, Springer-Verlag. Published in 1992.

[Wal88]

[Wir7l]

David W. Wall. Register windows vs. register allocation. In Proceedings of
the SIGPLAN '88 Conference on Programming Language Design and Imple­

mentation, pages 67-78, Atlanta, Georgia, June 22-24, 1988. ACM SIGPLAN.
SIGPLAN Notices, 23(7), July 1988.

N. Wirth. The design of a PASCAL compiler. Software- Practice and Expe­
rience, 1(4):309-334, October 1971.

0

c

0

BIBLIOGRAPHY 115

[WL91]

[W075]

[Wol82]

Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In
Proceedings of the SIGPLAN '91 Conference on Programming Language Design

and Implementation, pages 30-44, Toronto, Ontario, June 26-28, 1991. ACM
SIGPLAN. SIGPLAN Notices, 26(6), June 1991.

M. H. Williams and H.L. Ossher. Conversion of unstructured flow diagrams to
structured. Comput. J., 21(2):161-167, 1975.

Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD the­
sis, University of Illinois at Urbana-Champaign, October 1982. Rpt. No.
UIUCDCS-R-82-1105.

