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Abstract 

The McCAT system contains a highly optimizing, parallelizing C compiler that has been 
designed to support a high-level, structured intermediate representation, SIMPLE. Although 
the high-level abstraction enables sophisticated analyses such as pointer analysis, it limits 
the effective detection and exploitation of opportunities for fine-grained parallelism through 
low-level transformations like register allocation and instruction scheduling. 

This thesis presents LAST, a low-level intermediate representation that exposes im­
portant architectural details, yet retains enough abstraction to simplify retargeting of the 
compiler. 

LAST is structured, thus allowing easy access to information gathered by previous high­
level analyses at SIMPLE, and also provides an elegant and simple framework for developing 
low-level analysis and transformation phases. To illustrate these features and their ef­
fectiveness, some example phases are presented, along with results from a small suite of 
benchmarks. 
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Le systeme McCAT comprend un compilateur C qui optimise et parallelise, il est con~u 
pour permettre !'utilisation de SIMPLE, une representation intermediaire structuree de haut 
niveau. Bien que le niveau eleve d'abstraction permette des analyses sophistiquees, telle que 
!'analyse des pointeurs, il restreint le depistage efficace et !'exploitation des possibilites du 
parallelisme a travers des transformations de has niveau, telle que !'allocation des registres 
et 1' ordonnancement des instructions. 

Cette these presente LAST, une representation intermediaire de has niveau qui met en 
evidence les details importants de !'architecture, tout en conservant !'abstraction necessaire 
pour permettre !'utilisation du compilateur en vue de plusieurs processeurs cibles. 

LAST est structure, permettant l'acces facile a !'information recoltee precedemment par 
les analyses SIMPLE de haut niveau, et fournit egalement une structure simple et elegante 
pour le developpement d'analyses de has niveau et de transformations. Les caracteristiques 
et leur efficacite sont illustrees par des exemples ( d'analyses et de transformations) ansi que 
les resultats d 'une serie des tests de performance. 

ii 
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Genealogy of McCAT 

This chapter presents the genealogy of the McCAT C compiler, from its origins in Septem­
ber 1990 to the present day. It is meant as a testament to all those who have worked on the 
project, an acknowledgment of their hard work to produce a system with which the author 
is proud to be involved. 

The genealogy time line is broken down into individual semesters, as the components 
were roughly organized around the academic timetable. 

September, 1990. The origins of McCAT started with a compiler course project imple­
mented by Erik Altman. Professor Gao taught the course. The project consisted of 
implementing a list scheduler in a version of GNU's GCC C compiler, using the RTL 

· intermediate representation. 

January, 1991. In this winter term, two students joined Professor Laurie Hendren: Bhama 
Sridharan and Maryam Emami. Bhama started on deciphering the GCC front-end as 
part of her compiler course. It was during this course that the name McCAT(for the 
McGill Compiler/ Architecture Test bed) was :first coined. 

May, 1991. As part of a combined compiler and architecture project, Bhama implemented 
McCAT's first version of loop unrolling. Working with her was another student, 
Chandrika Mukerji, who extended Erik's work on scheduling to include the Shieh­
Papachristou algorithm. It was this work on scheduling that the author cloned to 
implement McCAT's current list scheduler. 

A special note of appreciation is due to Ravi Shankar, who was always present to 
explain the many intricacies of C. 

September, 1991. After a long cross-country trip, Chris Donawa arrived in Montreal, 
and along with a few other students (including Justiani and Mizuho Iwaihara) took 
the compiler course taught by Laurie. For the first time, the modified GCC front-end 
being worked on by Bhama was used for the course, and the assignments and projects 
were used as a testing ground for several ideas about SIMPLE. In particular, Mizuho's 
final project contributed heavily to some aspects of the simplify algorithm. 

ill 
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During this time, Maryam started her work on the call-graph and points-to analysis, 
while Bhama began development of the c-dump module. 

January, 1992. After a very pleasant autumn, a frigid and severe winter gripped the city 
of Montreal. During this polar period, both Justiani and Chris began laying the 
.foundations of their respective theses: the array dependence analyzer for Justiani, 
and the design and implementation of LAST for Chris. At the same time Ana Erosa, 
the next McCAT member, arrived to begin studies at McGill. 

By March, Maryam had finished the call-graph framework, and the first version of the 
points-to analysis. Bhama finished implementing the SIMPLE intermediate represen­
tation. 

May, 1992. After a late start, spring finally arrived in Montreal, and although the sum­
mer never really blossomed, the celebrations for the 350th anniversary of the city of 
Montreal made up for any lack of sun. During the festivities, Justiani started her 
implementation of the array dependence module, and Chris continued work on ex­
tending his course project to handle the entire SIMPLE C grammar, and generate code 
for the DLX architecture. Chris also started organizing the McCAT development 
environment. 

The summer was also a flurry of activity for Bhama, as she wrote the McTAG module, 
implemented both reaching definitions and live variable analysis for SIMPLE, and 
graduated with a Masters degree. 

September, 1992. After some construction delays, the ACAPS research group moved into 
their new lab (formerly two adjacent student offices). Into this new setup arrived the 
Rakesh Ghiya, who started work on extending Maryam's second version of points-to 
analysis to handle function pointers. Justiani finished an initial version of her array 
dependency analysis module. 

For the second time, Laurie taught the compiler course with the McCAT com­
piler, and students projects developed into useful modules. Luis Lozano implemented 
Briggs' extension of Chaitin's graph-coloring register allocator. Matilda Leung wrote 
the initial version of the LAST interpreter, Sandro Mazzucato developed a SPARC 
code generator and Claudia Pateras and Mary larocci extended Bhama's original 
loop unroller. Clark Verbrugge began work on generalized constant propagation, and 
Ana on the McCAT restructuring module. 

January, 1993. This winter started later that the previous year, and was fortunately not 
as bitter. Shielded from the milder-but-still-cold weather, V.C. Sreedhar finished the 
unnest module, and cut the last chains to the old GCC framework that had up to 
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then been a heavy weight, by replacing the memory management routines. In addition, 
Sreedhar implemented an initial version of the ALPHA intermediate representation. 

Some of the more ambitions projects lingered on into this semester, as Clark, Luis 
and Ana finished the work on their projects. Rakesh began his research into practical 
heap analysis methods. 

May, 1993. Montreal was treated to a splendid summer, with near perfect weather. Be­
sides the arrival of the sunshine, two talented undergraduate students on NSERC 
summer scholarships arrived to work over the summer: Christopher Lapkowski and 
Patrick Betremieux. Christopher wrote the McCAT XWindows interface and func­
tion inliner, and Patrick developed the source file linker and second version of the LAST 

interpreter. Luis continued to fine-tune his register allocator, and Rakesh became a 
second McCAT administrator to help with module integration. 

In July Maryam, after working night and day, submitted her massive Masters thesis 
on points-to analysis, which she had managed to cut down to 200 pages. 

The end of the summer was marked by the beginning of a concerted effort to adopt 
'serious' benchmarks for McCAT, made possible by the source linker. 

September, 1993. The wonderful summer quickly gave way to a mediocre autumn, as 
clouds and chilly temperatures arrived in the city. Chris finished his work on in­
tegrating the list schedulers in McCAT, and handed over his duties as McCAT 
administrator to Rakesh and Patrick. In addition, a new position of benchmark ad­
ministrator was taken by Ana, to coordinate the McCAT benchmark suite. 

The third compiler course using McCAT was started, with a focus on code improving 
transformations. 

The genealogy description ends here, hut is not the end of the story, as many talented 
people continue to work on the compiler. The author looks forward to hearing the continuing 
unfolding saga of an interesting and exciting project. 
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Chapter 1 

Introduction & Motivation 

Because performance of a computer will be significantly affected by the compiler, 
understanding compiler technology today is critical to designing and efficiently 

implementing an instruction set.-Hennessy and Patterson [HP90]. 

Compiler technology is of vital importance to modern processors. High-performance 
processors are increasingly dependent on compilers to tweak, massage and contort input 
programs to take advantage of characteristics specific to their architectures. Non-blocking 
pipelined architectures, for example, such as the MIPS, SPARC, RS/6000, DEC Alpha 
[DS90, OHM+9o, Dig92] and most other RISC (Reduced Instruction Set Computer [Pat85]) 
processors [HP90] expect the compiler to schedule instructions to maximize functional unit 
utilization; load/store architectures expect frequently-used values to be cached in registers 
[GH86]. These optimizations can be performed in hardware, but by shifting performance­
improving manipulations from run-time to compile-time, scarce hardware resources can 
be devoted to other beneficial purposes, thus improving the overall performance of the 
architecture [SLH90]. For example, with instruction scheduling, the buffer for out-of-order 
execution architectures could be reduced and the saved hardware real-estate devoted to a 
larger register set, or a larger on-chip cache. Also, the overall complexity of the chip can 
be reduced, allowing for simpler, faster designs [DS90]. 

Needless to say, the increased responsibility of the compiler requires that architectural 
features, such as pipelined functional units and branch-delay slots, be exposed to the com­
piler. Representing these features is the domain of the compiler's intermediate represen­
tation (IR).1 The IR is a useful mechanism to abstractly represent the hardware, while 
representing some important characteristics (in terms of performance) of the underlying 
target processor. The user's program, written in some high-level language such as C, C++ 
or FORTRAN, is translated into the IR. The IR then becomes an interface between the 

1 Sometimes referred to as an intermediate language (IL) or intermediate code (I C). 

1 
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CHAPTER 1. INTRODUCTION & MOTIVATION 2 

code-generation phase of the compiler (where actual assembly code instructions are gen­
erated), and the analysis and transformation phases. Depending on the compiler, the IR 
can be either very abstract ( eg model a simple machine), very processor specific, or some­
thing in between. The more specific the IR, the greater the information available to expose 
fine-grain parallelism to the analysis and transformation phases. However, the compiler 
will be more difficult to retarget to a different architecture: the less abstract an IR is, the 
harder the compiler is to retarget as more of the analysis and transformation phases rely 
on processor-specific features. 

This thesis presents an intermediate representation used in the McGill Compiler Archi­
tecture Testbed (McCAT) C compiler. This IR, called LAST(Low-level Abstract Syntax 
Tree), forms part of the backend developed as the focus of this thesis. LAST strives to 
reveal enough architectural details to the analysis and transformations phases, while re­

taining some abstraction to simplify retargeting of the compiler to a collection of RISC 
architectures. 

In addition, LAST is designed as part of a family of intermediate representations [HD E+92] 
(Section 3.1), of which LAST forms the the lowest level. The other, higher IRs facilitate 
high-level analyses and transformations, such as points-to analysis,2 array dependency anal­
ysis, loop transformations, and inlining. LAST is specially designed to utilize the data-flow 
information generated from these previous analyses phases for low-level transformation ie 
support a paradigm of pervasive flow~information. 

1.1 Thesis Contributions 

While several existing IRs can accomplish similar goals to LAST, an experimental approach 
of making LAST a hierarchical, structured IR, rather than unstructured, was taken. That 
is, instead of representing the flow-control of the program in terms of goto statements and 
labels, LAST retains the notion of high-level control structures such as for and while loops, 
and supports nesting of these structures. The phrase 'structured IR' is used in this thesis to 
denote an intermediate representation which has the characteristic of representing nested 
control structures ( ie hierarchical structures), without the use of goto statements. 

A structured IR was chosen for LAST in order to support structured analyses and trans­
formations, a central paradigm of the McCAT compiler. A structured IR is conceptually 
cleaner to use, since the program is always represented at a high-level. A structured IR was 
also chosen so as to simplify implementation of the pervasive flow-information paradigm. 
By supporting high-level constructs such as while and for loops, it is very simple to relate 
flow-analysis information generated at the other high-level IRs. 

In addition to describing LAST, some example analyses and transformations are pre­
sented to illustrate the structured nature of the IR. And finally, the retargeting strategy of 

2 Comparable to alias analysis [ASU88J in other compilers. 
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McCAT using LAST is presented. 
Specifically, the contributions of this thesis are itemized below. 

• The design and implementation of LAST, a low-level tree-based retargetable interme­
diate representation that, while suitable for transformations such as register allocation 
and instruction scheduling, also retains the structured nature of programs, as well as 
supports the pervasive nature of data flow information in the compiler. 

• The design and integration of a highly retargetable code generator (using the code­
generator generator BURG[FHP92b]) for RISC machines. 

• The implementation of various structured analyses on LAST, with a specific example 
of live variable analysis presented. 

• The implementation of various code-improving transformations on LAST, including 
instruction scheduling and reducing the number of load and store instructions. 

• Experimental results from a suite of benchmarks illustrating the benefits of various 
analyses and transformations performed on LAST. 

1.2 Organization of Thesis 

The rest of this thesis details the contributions listed above. The following chapter, Chap­
ter 2, gives some background on intermediate representations, listing traditional, current 
and LAST-related IRs. Next, Chapter 3, is an overview of the McCAT compiler. The 
general framework of the compiler is presented, from the higher IRs to LAST to the code­
generation phase. Following the overview is Chapter 4, which presents the individual nodes 
of LAST in detail, as well as the optimizations performed during the generation of LAST. 
Chapter 5 and Chapter 6 illustrate the structured nature of LAST by presenting some anal­
yses and transformations, and highlight the simplicity and ease of using a structured IR 
such as LAST. Next is Chapter 7, which describes the code generation strategy used, and 
also how LAST simplifies retargeting of the compiler. Chapter 8 presents results of the 
transformations performed on LAST, with aid of both the LAST analyses and pervasive flow 
information gathered from previous analyses. Finally, Chapter 9 presents the conclusions 
of this thesis. 
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Chapter 2 

Related Work 

2.1 Motivation for Intermediate Representations 

As mentioned in the introduction, intermediate representations (IRs ), are used to represent 
the target architecture in an abstract form. In optimizing compilers the analysis and trans­
formation phases are run on the IR, after which the transformed IR is used to generate 
assembly code for the target machine. However, intermediate representations are not an 
essential part of compilers; compilers have the option of generating assembly code (and 
sometimes machine code) directly, without the overhead of generating and manipulating an 

IR (FL88]. 
Such 'one-pass' compilers are designed to quickly generate assembly /machine code, often 

at the cost of the quality of the generated code, ie little effort is spent performing code­
improving transformations. However, the focus of high-performance compilers is obviously 
to improve the speed of compiled programs, and intermediate representations are used so 
the compiler has something to actually analyze and manipulate. 

In addition to facilitating analyses and transformations, intermediate representations 

also simplify software maintenance problems for compiler developers, since the complexity 
of the analyses and transformation phases requires a large investment in design and devel­
opment of the compiler. Due to the nature of evolving architectures, compilers can expect 
to be frequently re-targeted. Compiler developers naturally wish to minimize the loss of 
their usually substantial code investment, and designing the compiler to use an abstract IR, 
common to many back-ends, is one method of minimizing the work and effort required to 
retarget a compiler. As Tannenbaum et al. note [TvSS82]: 

[I}t is desirable to do as much optimization as possible on the intermediate code, 
because that optimizer can be written once and for all and used without change 
as a filter for subsequent front ends and back ends. 

4 
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An intermediate representation allows one to replace the code-generation part of the back­
end when retargeting the compiler, and in some compilers, also the front-end [Sta92, 
CHKW86], so that different languages can be compiled reusing most of the existing com­
piler. 

Intermediate representations are designed to represent abstract machines, but there 
remains the problem of how abstract a machine to model. An IR that closely models a 
specific architecture will allow more efficient code to be generated, as intricate machine 
details can be exposed to the analysis and transformation phases. However, the compiler 
then becomes more difficult to retarget as these same phases might need to be rewritten 
should the compiler be retargeted to a new, different target architecture. 

On the other hand, if the IRis very abstract, then the compiler is more flexible, but 
fewer machine details are revealed and the code-generation part of the back-end must be 
quite sophisticated and optimize theIR itself in order to produce efficient code [CHKW86]. 
Such optimizing back-ends, called peep-hole optimizers, already exist for CISC (Complex 
Instruction Set Computers) machines. Peep-hole optimizers combine adjacent instructions 
to produce more complex but cheaper (in terms of execution time or resource utilization) 
instructions. This is an important optimization for CISC machines, and several retargetable 
peep-hole optimizers have already been developed [DF84, Kes84, BD88], but they are of 
lesser help to compilers for RISC architectures. 

RISC architectures require optimizations such as instruction scheduling and removal of 
redundant loads, transformations which require extensive analyses over potentially large 
blocks of code. Research into retargetable instruction schedulers is in progress [Con93, 
CCDM93], but requires that the target machine be accurately modeled ie too abstract a 
model defeats the purpose. A balance must therefore be struck between a very abstract 
model and a too detailed a model in order to obtain a highly optimizing but retargetable 
compiler. 

2.2 Overview of different IRs 

There are a variety of intermediate representation forms that can be used in a compiler, 
but they fall into three main categories of tuples, linear forms, trees and directed acyclic 
graphs (DAGS). 

2.2.1 Tuples 

Tuples are a simple, straight forward representation that can have a variety of forms [FL88]. 
A tuple will represent a destination variable, operator( s) and operand( s ). The most common 
form is known as 'three-address code', which means that each statement contains three 
variables: one destination and two operands (plus a single operator). It is also known as a 
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quadruple (three variables plus an operator). A multi-operand, complex instruction, might 
be decomposed into the three-address statements as shown in Figure 2.1. 

:::} 

a = b + c * d -e 

t1 = c * d 
t2 = b + t1 
a = t2 - e 

Figure 2.1: Three-address code example 

As mentioned, there are different variations, some allowing several operators and some 
only two operands with no destination (a triple). A triple does not explicitly save interme­
diate values like quadruples, but instead refers to them by the number of the triple that 
created it as in Figure 2.2. 

:::} 

a = b + c * d -e 

(1): c * d 
(2): b + (1) 
(3): (2) - e 
(4): a= (3) 

Figure 2.2: Two-address code example 

Triples are more concise than quadruples, but are position dependent and so can create 
difficulties for transformations involving code motion. 

Due to their potentially compact implementation, tuples were popular for compilers 
facing strict memory limitations, and allowed compilers to save the intermediate repre­
sentations to files using this compact representation [Hor91]. Modern architectures allow 
more liberal use of their resources, so there are few compelling reasons for plain tuples. 
However, tuples, particularly three-address codes modified to hold flow-information, can be 
quite useful for modeling RISC machines, which are typically three-address architectures-a 
three-address IR can thus model a RISC architecture quite closely. However, three-address 
code IRs introduce complications through the addition of temporaries when modeling CISC 
architectures [BGM79], and so would be best suited for compilers that support RISC ma­
chines. 

2.2.2 Linear Forms 

There are two types of linear forms-prefix and postfix. They are two forms common in 
mathematics, useful for expressing parenthesis-free arithmetic operations. In prefix form, 
the operator precedes the operands, and in postfix form it succeeds them. Intermediate 
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values are implicitly saved on a stack, and so linear representations are well suited for stack­
based architectures. The expression a = b + c * d -e is expressed in prefix as =a-+b*cde 

and postfix as abcd*+e-=. 

Ganapathi and Fischer suggested an interesting variant of a linear form suitable for opti­
mizing compilers-an attributed linear prefix form [GF84]. The prefix form allows analysis 
of variable-operand instructions, while minimizing the parsing of the IR itself. The 'at­
tributed' part simply means associated flow information is stored with each linear prefix 
statement. The main advantage is that the IR can be mapped to an assembly instruction 
in one pass, whereas other IRs, such as trees, require multiple passes. However, this ad­
vantage is of less and less importance as other compiler phases, notably the analysis and 
transformation phases, become relatively more expensive, and the code-generation phase 
becomes relatively cheaper to run. 

2.2.3 Trees & DAGS 

The most general intermediate representations are based on parse trees [FL88]. A parse tree 
represents arithmetic operations with operands as leaves, and operators as interior (parent) 
nodes. Intermediate results would also correspond to parent nodes. Figure 2.3 illustrates a 
parse tree for the expression a = b + c * d - e. 

Figure 2.3: Parse tree example 

Parse trees can directly represent hierarchy ( eg nested structures such as nested for 

loops), as well as complex, multi-operator statements; other representations 'flatten' out 
the hierarchy and the complex instructions. For example, Figure 2.4 illustrates a parse 

tree consisting of an if statement with a sub-tree of instructions representing the condition 
expression, as well as a sub-tree for the body of the if statement. This body can contain 
any series of valid statements, such as other if, while or for constructs. Preceding and 
following the if statement are two arbitrary statements, stmtl and stmt2. 
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In a non-hierarchical representation (right side of Figure 2.4), the condition and body 
statements are just part of a long list of instructions that also include stmtl and stmt2: all 
sense of nesting or hierarchy has disappeared. Most low-level intermediate representations 
take this approach. By transforming high-level constructs to assembly-level statements, 
analyses and transformations are simplified since they need deal with only a subset of in­
structions. For example, all conditional constructs (for, while, if, do while and switch) 
can be transformed to a series of test and branch instructions. 

However, this simplification also has a disadvantage, in that high-level information is 
lost, and must be regenerated. For example, to perform loop transformations (software 
pipelining [HP90] is included in such a transformation), loops must first be identified, re­
quiring the calculation of dominators [ASU88, p. 602]. In some cases, the transformation 
to a low-level IR loses too much information that cannot be recovered. A structured IR 
retains all this information, and saves the cost of recalculation. In addition, dealing with 
structured IRs is conceptionally clearer, as it is much closer to the original program. 

Trees also have the option of being structured or not. A structured representation, 
as explained before, does not represent goto statements. Since many source languages 
(including C) support gotos, many IRs are unstructured, as automatic structuring programs 
are complex, difficult to write (although possible, [EH94]), and can degrade performance of 
the resulting program. Structured analysis is, however, an elegant approach, and is straight 
forward to implement [ASU88]. 

Figure 2.4: Hierarchy expressed in a parse tree 

DAGS, or directed acyclic graphs, are variants of parse trees, where common parent 
and/or child nodes can be shared (Figure 2.5). DAGS can simplify some optimizations, 
such as common sub-expression elimination [ASU88], but some useful tools, such as the 
code-generator generator BURG[FHP92b], require trees and will not work with graphs. 

The great power of parse-trees (and DAGS) is that all the information available at 
the source-level language is available in the representation. Parse trees, therefore, are 
an excellent IR when a compiler is performing source-to-source transformations. Parse 
trees are also good for generating code for CISC architectures, since complex instructions 
can (sometimes) map nicely onto subtrees in the parse tree [BGM79]. However, based 
on previous experience in building an optimizing compiler utilizing a parse-tree as an IR, 
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Figure 2.5: Tree and DAG IR example 

the potential complexity of parse-trees, due to the hierarchy, can significantly complicate 
analyses and transformations. Trees and DAGS have the option of being structured, ie 

support flow-control without the use of goto statements and labels. 

The McCAT compiler uses a simplified version of a parse-tree for one of its intermedi­

ate representations [Sri92, HDE+92], which provides the power of parse trees without the 

complexity (see Section 3.1). 

2.2.4 Representing Flow of Control 

Once the program has been parsed and an IR generated, the program's flow of control must 

be determined. In an unstructured IR, a control-flow graph (CFG) [ASU88] is generated 

to capture the possibly arbitrary changes in control flow. TheIR on the right in Figure 2.4 
shows two control-flow arcs from the test associated with an if statement. One goes to the 
beginning of the body of the if statement, and the other to a label, indicating the end of 
the body. 

A structured IR, on the other hand, has flow-control represented explicitly, since each 
change in control is well defined ( ie no goto statements). For example a continue will 
always transfer control to the inner-most enclosing loop. 

The main advantage of a CFG is that it can handle goto statements. However, it must 
be generated, and the abstraction of high-level structures (like while loops) is lost, as all 
control structures are represented as low-level jumps to labels. 

2.2.5 Comparison 

Enumeration of the different types of IRs is, in some sense, superfluous, because the methods 

of implementation overlap ( eg many would be combinations of pointers to structures [G F84]) 
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so that there is sometimes very little that distinguishes the representations from one another. 
In addition, there are, of course, modified versions of each category which only blur the 
distinctions even more. The tuples, linear forms and trees/DAGS can all be converted into 
one another, although it may take some work. For example, a pre-traversal over a parse 
tree will generate a prefix linear IR, and a quadruple can be used to regenerate a tree. It 
is often the resulting abstract machine being modeled which decides the IR; LAST takes a 
three-address approach to model abstract RISC machines, in combination with a tree to 
provide a structured IR. 

2.3 Specific Examples 

The following subsections briefly describe some contemporary intermediate representations: 
U-code, RTL, and SUIF. 

2.3.1 U-Code 

U-code, or Universal PASCAL Code, is an extension of the PASCAL Code (P-code) inter­
mediate language developed by Wirth [Wir71, NAJ+81] for PASCAL. U-code was extended 
to simplify global (intra-procedural) optimizing transformations for both PASCAL and 
FORTRAN programs [PS79], and was used to develop a retargetable, machine-independent 
global optimizer UOPT [Cho83]. The central idea of UOPT is to perform as many anal­
yses and transformations as possible on the machine-independent IR in order to reduce 
re-implementation when retargeting the compiler to different architectures, an idea preva­
lent in many modern compilers. 

U-code (and P-code) is an unstructured, three-address code IR that models an abstract 
stack-based architecture called the P-machine. The machine is composed of three stacks: 
one for runtime (to model parameter passing and memory allocation), one for address and 
integer operations, and a third for set and real type operations [KKM80]. U -code is thus 

quite retargetable, due to its highly abstract nature. It is not an effective representation 
for CISC-based architectures (due to its three-address approach), as a large number of 
extraneous temporaries are generated that take considerable effort to collapse [BGM79], an 
operation needed for effective instruction set selection. 

However, U-code can be quite effective for RISC architectures: it is currently used in 
the MIPS compiler [Cho88, CHKW86], although by itself theIR is too abstract to generate 
good assembly code. The code-generation modules are extremely sophisticated, and must 
perform many complicated transformations, including instruction scheduling and dead code 
elimination [CHKW86]. In addition, the MIPS U-code representation was modified to 
represent some architecture specific features ( eg function calls) [ CHKW86]. The MIPS 
version of U-code is used primarily to perform machine-independent optimizations such 



c 

0 

CHAPTER 2. RELATED WORK 11 

as copy propagation, function inlining, common sub-expression elimination and strength 
reduction [ASU88]. 

2.3.2 RTL 

RTL, or Register Transfer Language, is the intermediate representation used in the popular 
GNU C compiler [Sta92, pp. 127-166], RTL is a variation of Jack Davidson's Register 
Transfer Lists [DF86]. There are many flavors of RTL, but the GNU version is perhaps 
the most widespread. The goal of RTL, like U-code, is to provide a machine-independent 
medium on which to perform analyses and transformations, and also be easily retargetable. 
However, RTL takes the opposite tack to U-code. Whereas U-code accomplishes portability 
by modeling a single, very abstract machine, RTL is configured to provide very machine­
specific representations for different architectures. RTL provides actions that are at a 
lower level than corresponding assembly level operations. For example, RTL uses separate 
nodes to indicate register reads and register writes, whereas an assembly instruction will 
read the operands and write a result as an atomic operation eg the assembly instruction 
add r1, r2, r3 reads registers r2 and r3, and writes the result in r1. In addition, several 
RTL nodes are used to represent architecture-specific details, such as the size of character 
variables when performing a type-casting operation. Essentially, different sequences of RTL 
nodes are generated for different classes of architectures. 

While some ideas from RTL were used in the design of LAST(see Section 3), there are 
two fundamental differences. First, LAST takes a higher-level approach, in that since its 
target architecture is limited to RISC, there are certain basic architectural assumptions that 
are made to simplify the design, whereas RTL must be flexible enough to handle a wider 
variety of architectures, which translates to a lower-level (and more verbose) approach than 
LAST. For example, LAST need not support CISC instruction sets, and so a simple, straight 
forward representation of operators suffices. GNU's RTL however, must support complex1 

instructions, which leads to a plethora of nodes flexible enough to handle the many possible 
types of CISC instructions. 

The second difference to LAST is the unstructured nature of RTL. For instance, the 
operands to branch instructions are located by convention: they are the nodes immedi­
ately preceeding a conditional branch. This low-level, unstructured approach makes some 
low-level transformations, such as instruction scheduling, conceptually easy, but high-level 
analyses and transformations are more difficult. 

2.3.3 SUIF 

SUIF, or the Stanford University Intermediate Format [TWL +91], is a hierarchical inter­
mediate representation that was designed in order to marry high and low-level analyses and 

1 And sometimes idiosyncratic! 
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transformations. Although SUIF is a hierarchical representation, it is unstructured, that is, 
SUIF supports arbitrary changes of flow control through goto statements. SUIF actually 
is polymorphic-there is a low-SUIF and a high-SUIF. The creation of two different forms 
was motivated by the two different types of parallelism available in programs: coarse- and 
fine-grain parallelism. Parallelizing (coarse-grain) transformations require a high-level view 
of the program, whereas scalar (fine-grain) optimizations prefer a low-level view. In many 
compilers this leads to two incompatible IRs, and thus duplicated analyses and transfor­
mation phases, since analysis information from the high-level IR is often unavailable to the 
low-level IR. This prompted the development of SUIF, which is a low-level IR with a su­
perset of nodes that represent high-level structures and objects such as for loops and array 
references. The SUIF compiler first generates high-SUIF, performs coarse-grain transfor­
mations, and then transforms high-SUIF into low-SUIF, for scalar optimizations. 

Low-SUIF represents the program in much the same way other unstructured IRs do: 
as a long linked list of assembly-level instructions (in three-address form with associated 
flow-information). However, for the parallelizing transformations, high-SUIF is used. 

The main advantage of this multi-faceted approach is mainly in the software mainte­
nance aspect of building the compiler. The common IR allows transformations to be imple­
mented only once in the compiler (although they may be run several times after high-level 
transformations), saving time and effort. 
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Overview 

3.1 An Overview of the McCAT C Compiler 

This section gives an overview ofthe McCAT C compiler, including the component interme­

diate representations, of which LAST forms the lowest level IR. Me CAT is being developed 

by the Advanced Compilers, Architectures and Parallel Systems (ACAPS) research group 

at McGill as an optimizing and parallelizing C compiler, well suited to accurate points-to1 

[Ema93, EGH94] and dependency analysis [Wol82]. McCAT accomplishes this by utiliz­

ing a family of intermediate representations, which support pervasive flow information, ie 

flow information gathered from analysing one IR is available to lower-level intermediate 

representations for their transformations (see Figure 3.1). 
The compiler uses a modified GCC2 front-end for parsing the source files and generating 

a high-level abstract syntax tree (AST) [ASU88, p. 49], dubbed FIRST. This intermediate 

representation is then simplified into a similar AST called SIMPLE, upon which various 

high-level analyses and transformations are performed (for example, points-to analysis and 
loop unrolling). 

SIMPLE is designed around the points-to analysis algorithm [HDE+92, EGH94], which 
requires a high-level view of the program, ie abstractions such as arrays, structures and 
pointer types are retained. This high-level information is required for alias analysis, but 
is inappropriate for low-level analyses and optimizing transformations such as register al­
location or instruction scheduling: the architectural details required for these low-level 

optimizations are hidden in SIMPLE. LAST is designed to expose these details, yet at the 

same time retain some of the high-level features of SIMPLE such as abstract control flow 

structures ( eg a for statement) so as to maintain a structured representation. 

The McCAT compiler can be described as having four phases, with various analyses 

and transformations working on the two dominant IRs: SIMPLE and LAST. The first phase 
1 Analogous to alias analysis in other compilers. 
2 GNU's 1.37.1 version of GCC, to be specific. 
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• program structuring 
• function inlining 
• loop unrolling 
• gen. const. propagation 
• points-to analysis 
• dependency analysis 
• high-level loop & 

parallelization 
transformations 

Figure 3.1: Overview of McCAT 
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is the creation of FIRST and the second its transformation to SIMPLE. The third phase 
transforms SIMPLE to LAST, and the fourth, final phase generates assembly code from 
LAST. Figure 3.1 illustrates the overall process. 

3.1.1 Front-end Processing and Simplification Phases 

The McCAT compiler parses C source files and produces an AST.3 In McCAT, this AST is 
called FIRST, and is the first phase of compilation. This IR is immediately transformed, or 
simplijiedinto SIMPLE(the second phase), upon which the first set of analyses is performed. 
As the name would suggest, the simplify stage takes C, in all its gory glory, and simpli­
fies it to a grammar corresponding to that in Appendix A. Typical simplifications include 
compiling complex statements into a series of basic statements, simplifying all conditional 
expressions in if and while statements to simple expressions with no side-effects, sim­
plifying procedure arguments to either constants or variable names, and moving variable 
initializations from declarations to statements in the body of the appropriate procedure. 
Figure 3.2 captures the transformation of a complex arithmetic operation to a series of 
basic statements; the figure illustrates how a FIRST tree is transformed into a sequence of 
two SIMPLE trees. High-level abstractions such as array and structure references remain, 
but are simplified. Bhama Sridharan provides an excellent description of SIMPLE in her 
masters thesis [Sri92]. 

a = b+c*d; 

becomes: 

tempi = c*d; 
a = tempi+b; 

=> 

Figure 3.2: FIRST to SIMPLE conversion 

3 McCAT also has the ability to parse multi-file programs and produce a combined AST. 
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3.1.2 The Blastify Phase 

The blastify phase generates LAST from SIMPLE. Whereas SIMPLE hides the memory hier­
archy, LAST exposes it by representing register loads and memory stores, as well as repre­
senting array and structure references as a series of arithmetic operations. In other words, 
the LAST IR is very close to assembly language: in most cases there is a one-to-one cor­
respondence between LAST statements and assembly language instructions. At the same 
time, however, high-level constructs such as while loops are still represented, in order to 
maintain the structured representation and simplify access to flow-information stored in 
SIMPLE( explained in Section 3.2.1 ). Figure 3.3 illustrates the translation of the SIMPLE 

tree in Figure 3.2 to its LAST counterpart, and Figure 3.4 shows the C code (on the left 
hand side) for SIMPLE, and the corresponding LAST pseudo assembly code (on the right 
hand side). Essentially, variables c and dare loaded from memory into registers, multiplied, 
and the result placed in a register temp1. The variable b is then loaded, added to temp1, 
moved into a register and then stored in the memory location reserved for a. 

Figure 3.3: SIMPLE to LAST Transformation 

3.1.3 Code Generation Phase 

The final and simplest of phases in Me CAT is code generation. Since the focus of research 
for McCAT is on IR transformations, rather than generating object code, the compiler 
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temp! = c * d; 
a = temp! + b; 

REG(d)(O) <-LOAD(Int)- MEM(d) 
REG(c)(O) <-LOAD(Int)- MEM(c) 
REG(templ) := REG(c) * REG(d) 
REG(b)(O) <-LOAD(Int)- MEM(b) 
REG(a) := REG(templ) + REG(b) 
KEM(a)(O) <-STORE(Int)-< REG(a) 

Figure 3.4: Code for SIMPLE to LAST Transformation 
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produces assembly code, and uses existing simulators/assemblers for running the input 

programs. 
The design philosophy of LAST is to push as much complexity into the IR, to use 

transformations on LAST to perform optimizations such as instruction scheduling and to 
make the code generation (the actual printing of assembly instruction to a file) as trivial as 
possible. This is accomplished by a code-generator generator called BURG[FHP92b], which 
allows simple templates of assembly code to be written for various LAST constructs. BURG 
constructs a tree traversal routine that traverses LAST, and when it finds a group of LAST 

nodes that match a particular pattern, the corresponding code template is printed. No 
complicated analyses or transformations are performed within the code generator, and so 
retargeting is greatly simplified as most the work consists of only rewriting simple templates 
for each new machine targeted. Figure 3.5 gives an example of the overall strategy. Blastify 

generates a LAST subtree corresponding to a division statement x = y I z, which the 
BURG-generated code generator matches with one of its patterns. In the example there are 
only two patterns to match: addition and division. Once the match is made, the appropriate 
code template is used to generate assembly code. Templates for two machines (machine A 
and machine B) are shown, with machine A's template being used (so div ra,rb,rc is 
generated). 

3.2 Overview of LAST 

McCAT was constructed utilizing the GNU C compiler. The parsing phase was kept, but 
its entire back-end, including the analysis, transformation and code generation phases, was 
removed. The GCC back-end utilizes RTL [Sta92], but the code was judged too complicated 
to modify. One major contributor to the GNU C and GNU C++ compilers considers the 
"common back-end of these compilers very difficult to comprehend and/or modify" [Gui94]. 
As a result, SIMPLE was developed and serves its function well as a structured IR for high­
level analysis. 

However, SIMPLE is too abstract a representation for low-level transformations such 
as instruction scheduling and register allocation-high-level constructs such as arrays and 
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Figure 3.5: Code templates used by BURG to simplify retargeting 
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structures still exist. As a result, another low-level IR was required, and so the mandate 
for LAST was born. 

3.2.1 Design Mandate for LAST 

Based on the desire to utilize high-level flow information (gathered at the SIMPLE level) to 
aggressively exploit fine-grain parallelism in target machine architectures, the following six 
criteria were developed to guide the design and implementation of LAST. 

Support for structured analysis: A structured, compositional representation, where con­
trol flow is regular and explicit ( ie no go to statements) simplifies analysis tremen­
dously, as control structures can be analyzed compositionally. For instance, if analyz­
ing a while loop, only the conditional expression and body of the loop under analysis 
are inspected; surrounding control constructs are disregarded. 

A compositional representation enables program analysis to be abstracted to a simple 
model, and thus implemented in a straight forward fashion, and allows for the use 
of automated tools. Also, by maintaining the program structure, it becomes easy to 
find and transform groups of loop nests. Our register allocation algorithm, based on 
hierarchical cyclic interval graphs [HGAM92], uses this compositional property. 

The critic might point out that goto statements can and do appear in popular pro­
grams, particularly in interpreters and automatically-generated code. An unstruc­
tured program must therefore be converted into an equivalent structured program, an 
achievable target [W075, Bak77, Amm92]. Currently, the McCAT compiler has a 
restructuring module that converts all programs with goto statements into equivalent 
structured programs [EH94].4 

Support for pervasive analysis: LAST is only one in a family of intermediate repre­
sentations. Each IR has its own advantages. For example, SIMPLE, the high-level 
representation, is suitable for points-to analysis. Such high-level information is cru­
cial to determining available fine-grain parallelism, and is needed at the lower-level 
representation LAST. Therefore, propagation of information from the higher IRs to 
LAST was an essential design criterion. 

Support for load/store machines: Reduced instruction set computer (RISC) architec­
tures are perceived as having a significant performance advantage over complex in­
struction set computer (CISC) architectures [DS90, HP90]. One of the distinctive 
features of a RISC architecture is that it is a load/store architecture, that is, all mem­
ory references are through explicit stores(loads) to( from) memory, and arithmetic 
operations take only register operands. 

4 With the exception of setjmp and longjmp, which are currently unsupported. 
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Considering the gravitation of high-performance computer systems towards RISC ar­
chitectures, LAST was required to support them, and thus load/store architectures. 

Expose opportunities for transformations: Obviously, since McCAT is an optimiz­
ing compiler, it should aggressively seek to improve the efficiency of generated code. As 
a corollary, LAST should expose all opportunities for code and performance-improving 
transformations, such as exposing the use of all registers to the register allocator, fill­
ing branch delay slots, removing induction variables (plus strength reduction), and 
exposing a function's prologue and epilogue to the instruction scheduler. This means 
that LAST must be able to represent individual assembly level instructions. 

Support simplistic code generators: Since Me CAT is a research and pedagogical tool, 
it has a mandate to investigate a wide variety of real and experimental architectures. 
McCAT therefore needs to be highly retargetable, and so should require minimal 
intelligence of its code generation module. That is, as much complexity as possible 
should be embedded in the non-machine specific intermediate representation, and the 
IR should be generic enough for load/store architectures so that the compiler is easily 
retargeted between such machines. 

Support for high-level tools: In order to maximize productivity on interesting research 
ideas by minimizing time spent on laborious and repetitive tasks, as many facets of 
the compiler as possible should be relegated to automated tools. For code generation, 
McCAT employs the code-generator generator BuaG(see Section 7.2) to ease the task 
of retargeting McCAT to different machines. 

3.2.2 Design Influences on LAST 

There were three main influences in the design of LAST. First, LAST's design was heav­
ily influenced by experience gained in analysing the compositional form of SIMPLE. This 
structured form simplifies analysis by guaranteeing a strict flow of control, so that language 
constructions can be analysed and transformed compositionally. In addition, the composi­
tional approach allows easy identification and transformation of loop nests, which is useful 
for the McCAT cyclic interval graph register allocator [HGAM92] and the dependence 
testing framework [JH94, Jus94]. 

The second influence was through the author's experience in an introductory compiler 
course, which demonstrated the usefulness of the code-generator generator BURG, despite 
its limitations [AH91]. One of these limitations is that BURG can traverse only binary trees, 
even though some AST constructs are more naturally represented as n-ary trees, where n is 
greater than two (such as for loops or if statements). However, it was later discovered that 
this binary representation made for a fast traversal mechanism for other analysis phases, 
due to the regular structure of the AST. 
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The third influence was a paper by a compiler group from the University of lllinois. A 
article by Johnson, McConnell and Lake from University of lllinois on RTL [JML91] proved 
quite useful in identifying what information should be represented at the LAST level, such 
as labels for branch chain elimination. 

3.2.3 Abstract Machine Model 

Selecting the appropriate abstract model for an intermediate representation is a major 
design decision. As discussed previously, there is a choice, and in fact a tradeoff, between 
retargetability and generating highly efficient code. As part of a high-performance compiler, 
LAST must obviously generate high quality assembly code. To simplify retargetability, it 
was decided to limit McCAT's architectural targets to RISC machines.5 

RISC architectures have evolved, after extensive study [Pat85, HP90], from CISC ma­
chines which were developed in a more ad hoc approach [HP90]. That all the successful 
modern high-performance workstations use RISC processors, such the MIPS, DEC Alpha, 
RS/6000, PA-RISC and SPARC chips, is a testament to this research. So, while the com­
mercial market place may demand compiler support for CISC chips,6 for a research oriented, 
high-performance compiler, limiting potential targets to RISC machines is a reasonable de­
cision. 

This limited focus has simplified the design of LAST by allowing it to model an abstract 
RISC machine with features that are expected to be on most, if not all, compiler targets for 
McCAT. By exposing these features, machine-independent analyses and transformations 
can be written and reused for all the targets. Since the features are general across the 
targets, retargeting is dramatically simplified. Of course, an abstract model cannot capture 
all the features found in each specific architecture, but in practice these additional features 
have been relatively minor and easily accommodated within the LAST framework. 

The abstract RISC architecture that LAST expects consists of four main characteristics, 
as described below. 

Load/Store architecture: All memory accesses are through explicit references to mem­
ory, rather than implicit references as in the Motorola 68000 or VAX architectures 
[HP90]. 

In load/store architectures, loads and stores are considered expensive, 'to-be-avoided' 
operations. On some architectures load latencies can take dozens of cycles, leaving the 
processor under-utilized [CKP91]. As a result, the blastify translation (and subsequent 
transformations) attempt to keep as many variables as possible in registers ie load and 
store instructions are reduced where ever possible. 

be precise, McCAT is oriented towards scalar, superscalar and multi-threaded RISC machines. 
6 Such as the Intel 80x86 series [DS90]. 
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General purpose register set: Explicit manipulation of registers is represented at the 
LAST level. It is assumed that the registers are relatively general purpose ie that the 
integer register set can also hold addresses. It is also implicitly assumed that a RISC 
architecture will have a large7 number of general purpose registers, although, strictly 
speaking, this is more an issue for the register allocator than LAST. The assumption 
is implicit since blastify tries to keep as many variables in registers as possible, and 
so assumes that register pressure is not so severe as to cause the register allocator to 
generate an excessive number of register spills and reloads. 

Reduced instruction set: In keeping with the RISC strategy, LAST expects a relatively 
simple instruction set. A complex high-level operation, such as an array reference, is 
translated to a sequence of simpler low-level operations. 

In addition, it is assumed that most instructions will have the same latency ( eg one 
clock cycle), so little effort need be expended on instruction set selection. For those 
instructions that have longer latencies, a non-blocking pipelined architecture is as­
sumed. 

Pipelined architecture: Long latency operations, such as a floating-point multiplication, 
are assumed to be non-blocking, so delay slots can be filled by other instructions. In 
addition, LAST sub-trees are designed to simplify rearrangement due to instruction 

scheduling. 

3.2.4 Retargeting LAST: A Configurable IR 

Despite the architectural features that are common to RISC machines, there will always be 
variations and different approaches to these RISC features. For example, the MIPS R2000 
architecture requires the operands of an integer multiplication operation be contained in 
floating point registers, whereas the SPARC architecture does not [DS90]. An integer 
multiplication on the MIPS therefore requires a move of operands from integer registers to 
floating point, and a move of the result from a floating point register to an integer one in 
addition to the multiplication instruction, whereas the SPARC has no need of these register 
moves. A generic approach hides the intricacies of a MIPS integer multiplication, whereas 
a performance hungry approach exposes it. 

Again, there is a tradeoff between ease of retargeting the compiler (and the not insub­
stantial reuse of code) and generating efficient code. LAST attempts to strike a balance 
between the two extremes by supporting different configurations. LAST is configurable to 
various architectures, similar to how GCC's RTL works [Sta92]. The configurations avail­
able are grouped in several classes, so that machines in similar classes will use identical 
IR's, even if the actual assembly code produced is slightly different. With this approach, 

compared to traditional CISC a.rchitectures with typically eight registers. 
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the analysis and transformation phases need not be re-implemented. There is, however, a 
penalty to be paid in terms of generating different forms of LAST for different architectures, 
but the cost is minimized by supporting only classes of architectures rather than specific 
machines. These classes can be thought of as refinements of various abstract RlSC machines 
that provide greater description of a target architecture, while still maintaining a degree of 
abstraction. 

The following architecture classes are supported: 

• Explicit(implicit) condition codes. Condition codes for various operations are (not) 
held in registers. 

• Multiplication/ division of integer values in integer (floating-point) registers. Some 
architectures, such as MIPS, must move integer values into floating-point registers to 
perform multiplication or division, and then must move them back to integer registers. 
To gain maximum benefit from the register allocator and instruction scheduler, the 
extra instructions required for the register moves are explicitly represented in the IR. 
Conversely, if the architecture does not have this requirement, such as SPARC, then 
these unnecessary moves are not generated during the blastify process. 

• Register windows versus the traditional stack paradigm. Architectures with register 
windows such as the SPARC require a different register allocation strategy than the 
traditional stack-oriented architectures. Again, to maximize benefits from instruction 
scheduling, the pushing and popping of arguments onto and off of the stack during 
a procedure call must be exposed. The register windows paradigm can also be used 
for architectures that do not have register windows, in order to easily support the 
passing of parameters via registers, an elegant approach to minimizing procedure call 
overhead [Cho88, Wal88]. 

• Architectural support for structure copies. Some architectures include instructions to 
perform block copies of memory. In some machines the assembler will support such 
instructions, even if the actual architecture does not. LAST considers the assembler 
to be the target architecture, with the assumption that the assembler can generate 
the equivalent instructions at least as efficiently as LAST. However, for architectures 
(assemblers) that do not provide such a copy operation, it is important to expose the 
multitude of operations required. 

• Architectural support for exclusive or operators. For architectures that do not support 
exclusive or operators, equivalent instructions using simpler operators are generated. 

• Architectural support for negation. As with exclusive or operators, simpler instruc­
tions are generated in lieu of this support. 
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• Specific type conversion routines. Various architectures have their own approaches 
for performing type conversions eg converting a variable of type integer to double. 
Some architectures require integer doubles to be in floating point registers, others 
allow them to remain in integer registers. In order to expose these instructions to the 
instruction scheduler and register allocator, they are all generated, specific to each 
architecture. For the SPARC and MIPS machines, the differences are trivial, but for 
the RS/6000 it is more complex. 

Currently the compiler generates assembly code for three architectures: SPARC, DLX 
(a simplified version of MIPS' R2000 assembly code) and RS/6000, in addition to pseudo 
assembly code, an easier-to-read approximation of RISC assembly code. It is used primarily 
for pedagogical purposes, but also for the LAST interpreter to display the interpreted LAST 

code. Figure 3.6 shows the corresponding pseudo assembly generated for a trivial C program. 

void main(void){ 
int a; 

} 

a = 1; 
foo(a); 

void foo(int c){ 
int a,b; 

} 

a = c * 4; 
b = a; 

;=============================== 
Function body for "main" 

;=============================== 

<<Save Registers>> 
REG(a) := 1 
Function Call to foo 
delay slot: nop 
Arguments: 

Parameter: REG(a) 

<<Restore Registers>> 
end of sequence 

;=============================== 
Function body for "foo" 

;=============================== 

<<Save Registers>> 
REG(c)(O) <-LOAD(Int)- MEM(c) 
REG(a) := REG(c) << 2 
REG(b) := REG(a) 
<<Restore Registers>> 
end of sequence 

Figure 3.6: Example of Pseudo assembly code 

The «Save Registers» and «Restore Registers» represent the saving and restor­
ing of registers for architectures without register windows, and are explained in Section 4.2.3. 
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Otherwise the example is straight forward; the only difference is the optimization of replac­
ing a multiplication by 4 (a = c * 4) with a bitwise left shift of two bits (REG (a) : = 

REG(c) « 2). Notice that in the body of foo, the value of c is loaded from memory (a 
stack parameter passing paradigm is assumed) and placed in a register, denoted by MEM and 
REG respectively. Once the value of c * 4 is saved in the register for a, it is not stored, 
but simply copied to the register for b. The register holding this value is not stored, and is 
thrown away since it is subsequently unused.8 

3.2.5 Overview of Transformations and Analyses on LAST 

Figure 3. 7 shows the analyses and transformations currently performed on LAST, starting 
with SIMPLE (the shaded node). There are eight phases before assembly code is finally 
emitted, starting with the register use phase. This is an analysis of SIMPLE, whose infor­
mation is used during the blastify process to determine what variables are in registers. It is 
optional, and is used in conjunction with the naive spilling transformation only when the 
compiler is being conservative with register-memory consistency. Register-memory consis­
tency is the problem of ensuring that when a value resides in both memory and a register, 
that the values are both consistent. 

The next phase is blastify itself, the generation of LAST from SIMPLE. During this pro­
cess, several code-improving transformations are performed as LAST is generated, including 
alias substitution, multiplication replacement [Ber86] and folding of constant array indices. 
Next, one of either the naive or improved spilling transformations is performed, which de­
termines what is optimistically kept in registers (given an infinite number ofregisters), and 
what must be stored to memory. The naive algorithm loads (stores) globals and aliased 
variables on every use (definition), and stores local variables at the end of basic blocks. The 
improved spilling algorithm attempts to minimize reloads and unnecessary stores. 

After spilling, the McCAT list scheduler is invoked, and instruction scheduling per­
formed. After scheduling, live variable analysis is performed, generating information for 

the next phase, register allocation [LJ92]. After allocation, offsets for parameters and local 
variables are calculated, in time for the eighth phase-assembly code generation. There is 
also the optional phase of interpreting LAsT[Bet94], occurring after code generation. 

3.3 Comparison of LAST with SIMPLE 

Superficially, LAST is quite similar to SIMPLE; both LAST and SIMPLE express most C 
statements in three-address form. However, LAST is otherwise significantly different from 
SIMPLE. 

8 In future generations of the compiler, a dead-code elimination phase will remove such useless instructions. 
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Figure 3.7: Analyses and transformations performed on LAST 
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1. LAST statements, including complex statements such as array and structure references, 
are represented in terms of three-address code ie address calculations are exposed. 

2. LAST statements are modeled after a load/store architecture. 

3. LAST nodes corresponding to variables are unshared ie have only one parent, whereas 
in SIMPLE the same node is re-used to represent a specific variable. 

4. LAST maintains a parent/child relationship with SIMPLE-it is not a replacement, but 
rather an augmentation of SIMPLE. 

3.3.1 Three-address Code 

All expressions and variable references, including references to structures and arrays, are 
represented in LAST in terms of three-address code. For example, the blastify transforma­
tion replaces a SIMPLE sub-tree representing an array with a series of LAST sub-trees that 
represent the various array offset calculations required to access the array value. 

Figure 3.8 gives an example of an array reference, including a load of the base address.9 

Note that SIMPLE temporary variables, such as _t1, are analogous to registers and are 
therefore never loaded, 10 and are always defined before being used. 

The first subtree in the figure represents the load of the value of variable A from memory, 
denoted MEM (A), into a symbolic register associated with A, denoted REG (A). This is the 
notation used to differentiate the memory hierarchy. 

The second subtree represents the addition of A + 3. The value is placed in _tl, a 
temporary register-only variable. Next, the address of B is loaded into a register associated 
with B. Variable _tl is then multiplied by the element size of the array, and the result 

the purposes of the example, all the variables are assumed to reside in memory. 
10Unless of course the register allocator selects them for spilling. 
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stored in another temporary variable _temp, which is then added to the value of B. These 
two operations constitute the calculation of the array reference. The :final subtree loads 
the value found at the address that has been calculated placed in the register for variable 
_temp. 

--------------------------------------· 

_tl =A+ 3; 
_t2 = B[_tl] 

Figure 3.8: LAST representation of an array reference 

Structures, like arrays, are represented differently than in SIMPLE. Except for bit-fields, 
structure :field references indicate a load or store to an offset from a base address. LAST 

represents such a reference as a load or store, with the appropriate offset kept in the offset 
field ( accessed via the LS_QFFSET macro) of the load and store nodes (Section 4.2.2) ie 
for each field reference, there is a corresponding load or store LAST node, plus the initial 
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load of the base address. 
Representing bit-field references, however, involves additional representation. Since the 

target architecture is usually byte addressable, and no finer, accessing individual bits re­
quires bit masking. First the appropriate byte/halfwordfword is loaded into memory, and 
then the bits of interest are isolated via a bit mask. If the left hand side of an assign­
ment is a bit field, then any unaffected bits must be saved, and also the right-hand side be 
appropriately masked as well. Figure 3.9 gives an example bit-field reference. First, a is 
assigned 1. In preparation for assignment to str. field, the bit is isolated by first shifting 
the contents five bits left, and then masked. Meanwhile, the address of field, containing 
the bit, is loaded into a register. This value is then bit masked to preserve the surrounding 
bits, including the four bytes used to represent the x field. The result of the mask is or'ed 
with the isolated bit held in the register REG(lst-sAddr2). This result is then stored back 
to the structure in memory. 

Note that bit-fields are assumed to reside in unsigned 32-bit (4 byte word) integers. 

void main(void){ 
int a,b; 
struct { 

int x; 
unsigned int field:1; 
} str; 

} 

a = 1; 
str.field = a; 

REG(a) := 1 
REG(lst-sAddrO)(O) <-LOAD(Addr)- ADDR(str) 
REG(lst-sValueO)(O) <-LOAD(Int)- REG(lst-sAddrO) 
REG(lst-sAddr2) := REG(a) << 5 
REG(lst-sAddr2) := REG(lst-sAddr2) i Ox00010000 
REG(lst-sAddr1) := REG(lst-sValueO) i Ox11101111 
REG(lst-sAddr1) := REG(lst-sAddr2) I REG(lst-sAddr1) 
REG(lst-sAddrO)(O) <-STORE(UI)-< REG(lst-sAddri) 

Figure 3.9: Example of'a bit-field reference 

In addition to structure references, the mechanics of type casting are explicitly repre­
sented. For instance, converting a character to an integer requires that the appropriate 
eight bits are read and stored in an integer. 

Usually architectures provide load and store commands that perform this implicit mask­
ing. However, one of the goals of the McCAT compiler is to keep as many values in registers 
as possible, and so loads and stores should be avoided where ever possible. As a result, 
instructions that perform the appropriate masking are generated and the result kept in a 
register instead of utilizing the load/store commands. Figure 3.10 shows the conversion 
of the character 'a' to an integer. The mask is loaded into a register and a bit-wise and 
performed.11 The result is kept in a register. The astute reader may notice an apparent 
discrepancy: the previous example (Figure 3.9) did not load its masks into a register. This 
is actually an optimization. For each target architecture, LAST is aware of the range of 

11 Although modelled in LAST as a load, because an integer constant is being used, the code generator 
actually replaces the load with a cheaper instruction. 
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integers that can be represented as an immediate constant. For those values that lie within 
this range, such as -64 (Ox11101111) and 128 (Ox00010000), they can be represented as 
immediate constants and thus appear as operands to simple integer arithmetic operations. 
Larger constants, like 65535 (Oxffff), must be placed in a register. 

void main(void){ 
char eh; 
int i; 

} 

eh= 'a'; 
i = eh; 

REG(ch) := 97 
REG(AddrO) <-LOAD- Addr(OxOOOOtfff) 
REG(CnvtTmpO) := REG(ch) t REG(AddrO) 
REG(i) := REG(CnvtTmpO) 

Figure 3.10: Example of a type conversion 

3.3.2 Explicit Support of Load/Store Architectures 

The second difference between LAST and SIMPLE is, as mentioned previously, that LAST 
explicitly supports a load/store architecture, whereas SIMPLE has no provision to differ­
entiate between registers and main memory. The consequence of this approach is that all 
operands, with the exception of load and store operators (Section 4.2.2), are registers or 
constants and not memory variables. Two corollaries for LAST follow from this approach: 
variables are explicitly loaded into registers, and are explicitly stored to memory. These 
two corollaries are explained in the following sections. 

Explicit Loads 

In a load/store architecture, variables are explicitly loaded into registers. Subsequently, all 
references to the variable will use that register. There are three situations that cause a 
variable to be loaded into a register: 

1. It is the first use of the variable ie there is no existing register holding the value of 
the variable. This is calculated using a register use analysis (Figure 3. 7) as one phase 
of the compiler. The phase consists of a forward traversal of LAST, and the first 
time a variable is either used or defined, it is marked as being in a register for all 
subsequent uses. The only exception is when the next use is in an outer block ie the 
first use/ definition occurred inside a conditional body. In that case, all of these first 
used variables that were defined must be stored to memory at the end of the block, 
and reloaded at the next use. If variables are used in all arms of conditionals ( cfboth 
if and switch statements), the information is merged for each arm-Figure 3.11 
demonstrates this algorithm. 



0 

CHAPTER 3. OVERVIEW 30 

Inside the if body, variable a is already in a register and so is not loaded, since it 
is defined in the first line of the program, whereas parm must be loaded. Variable 
parm is again loaded when being assigned to b, as there is no guarantee that the if 

statement then body is executed. As a result, parm must be stored at the end of the 
conditional, otherwise the following load would overwrite the value in REG(parm) 
with its old value. 

;================================ 
Function body for "foo_lish" 

;================================ 
<<Save Registers>> 
REG(a) := 1 

REG(should_incr)(O) <-LOAD(Int)- MEM(should_incr) 
If Statement: 

void Conditional: REG(should_incr) 
foo_lish(int should_incr, 

int parm){ 
int cond,a,b; 

} 

a= 1; 
if(should_incr){ 

a = 2; 
parm = parm + 1; 

} 

b = a+parm; 

end of sequence 
Branch delay slot: nop 

Then Statements: 
REG(a) := 2 
REG(parm)(O) <-LOAD(Int)- MEM(parm) 
REG(parm) := REG(parm) + 1 
MEM(parm)(O) <-STORE(Int)-< REG(parm) 
end of sequence 

Else Statements: 
end of sequence 

end of If Statement 

REG(parm)(O) <-LOAD(Int)- MEM(parm) 
REG(b) := REG(a) + REG(parm) 
<<Restore Registers>> 
end of sequence 

Figure 3.11: Example of register-use algorithm 

2. The variable is an array or structure field. For array dereferences, the memory location 
is usually computed at run-time, and so the easiest and safest approach is to load the 

value from memory. Structures, including their fields, have their addresses calculated 
at compile time, but since structure fields can be arrays, field dereferences are treated 
conservatively and considered identical to array dereferences (future extensions to 
LAST may wish to remove this restriction). 



CHAPTER 3. OVERVIEW 31 

3. The variable is a global variable. In the basic, conservative approach all uses of 
a global are loaded, and all definitions are stored to ensure correctness. Such an 
approach is necessary since there is no guarantee that the global is left unmodified by 
a called procedure, and so memory consistency must be maintained. However, with 
the accurate points-to analysis available in McCAT, this conservative approach can 
optionally be replaced by another one: loading a global once at the beginning of a 
basic block, and storing it only at the end (see Section 5.1 ). 

Because of our analysis algorithms, local static variables are transformed into global 
static variables with unique names that are used in one function only.12 

4. The variable is pointed-to. A pointed-to variable is one whose address has been 
taken at some point in the program, and whose memory location can therefore be 
accessed via indirect references. Any pointed-to variable is loaded on use and stored 
on definition. Again, with the points-to analysis available, the compiler can optionally 
replace all definitely pointed-to variables, and thus reduce the loads and stores to one 
per basic block. The below example demonstrates the substitution. On the left, the 
variable *aptr is essentially replaced by the variable a, as on the right the register 
REG(b) is assigned REG(a). 

{ 

int a,b,*ptra; 
ptra = ta; 
a = 10; 
b = *aptr; 
} 

REG(_aAddrO)(O) <-LDAD(Addr)- ADDR(a) 
REG(ptra) := REG(_aAddrO) 

=? REG(a) : = 10 
REG(b) := REG(a) 
MEM(b)(O) <-STORE(Int)-< REG(b) 

Note that temporary variables generated in the simplify and blastify process are analo­
gous to registers and so are never loaded nor stored.13 

Explicit Stores 

Just as there are explicit loads, so too are there explicit stores. Stores are generated after 
assignment statements under the following conditions: 

1. If the variable is pointed-to. 

2. The variable is a global variable (or a static local variable, as explained above). 

3. The variable being written to is an array or structure. Although there will be some 
cases where the same array reference is being read in the immediate future, LAST is 
not the place to optimize this case. There should be a higher level transformation at 

12The original name is given a unique suffix and prefix. 
13 Unless specifically spilled by the register allocator. 
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the SIMPLE level to replace the array reference with a scalar variable [CCK90]. For 
example, Figure 3.12 shows three array references on the left, and a corresponding 
transformation for them on the right. Note that once scalar variables (like t_l) are 
introduced, LAST automatically keeps them in registers. 

t_1 = X 
a[i] = X a[i] = t 1 

= a[i] 
= t_1 .. = a[i] 
= t_1 

Figure 3.12: Optimization of array references 

The array reference must be stored because, like the load, the memory location is 
calculated at run time. So every array reference is either a load or store. Note that 
the base address and all indexes will be in registers, and are treated like any other 
variable regarding whether they should be loaded or stored. 

It is easy to imagine a situation where loads outnumber the stores ( eg a program with 
many scalar variables). If this difference is too large, the register allocator will run out of 
registers, as the current allocators attempt to keep as many values in registers as possible. It 
is the task of the register allocator to decide which variables should be retained in registers 
and which should be stored [Bri92, HGAM92]. A register allocator has been implemented 
[LJ92], but further discussion is beyond the scope of this thesis. 

3.3.3 Unique Variable Nodes 

The third difference between SIMPLE and LAST is the nodes used to represent variables. 
In the implementation of LAST, each leaf node parent is unique ie is allocated a different 
memory location. SIMPLE, on the other hand, reuses nodes to maintain consistency and save 
space. In LAST, this specific consistency is actually a characteristic to be avoided, otherwise 
the implementation of chameleon registers becomes complex. The use of chameleon registers 
is a technique to substitute register moves for register spills [HGAM92]: in this case a 
variable may be allocated different registers at different points in the program. 

To uniquely identify the register nodes, they have pointers to their corresponding SIMPLE 
variable declaration nodes. See Section 4.2.1 and Figure 3.13. 

3.3.4 Parent/Child Relationship 

The fourth and final difference is the overall structure and relationship between LAST and 
SIMPLE. The actual AST structure is different; the leaf nodes of LAST are actually SIMPLE 
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nodes. Each leaf node parent has a pointer to a SIMPLE node such as a variable, parame­
ter or constant (in SIMPLE known as VAR_DECL, PARM_DECL or CONSTANT nodes), 
see Figure 3.13. This approach is primarily a space-saving optimization, but is also use­
ful when storing information with variables (as in the stack reduction optimization-see 

Section 3.4.4). 
In addition, this parent-child relationship allows analyses at the LAST level to access 

information created and stored at the SIMPLE level, in support of the persistence of flow 
information. 

~ LLEFT_~ 
CHILD LRIGHT CHILD 

[ ~~s t 
LLEFT_ LAIGHT_ 
CHILD CHILD 

~ 
SI MP~~ 

TREE_INT _CST _LOW 

\ 
99 

a= a+ 99 

Figure 3.13: Storage optimization 

3.4 Optimizations Performed During Generation 

Optimizations are performed not only by separate passes on the SIMPLE and LAST IRs, 
but during the generation of LAST. There are various motivations for incorporating these 
optimizations during the translation process, but the two main ones are: 1) some informa­

tion is lost during the transformation, especially regarding arrays and structures, and 2) 
the transformation is trivial to implement, and so can easily be integrated in the generation 
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of LAST without significantly increasing its complexity. 
Four such transformations are described below. The first is the pre-calculation and fold­

ing of offsets, the second the loading of addresses outside ofloops, the third the substitution 
of integer multiply instructions by cheaper operations, and fourth the reduction of space 
reserved for local variables. 

The first three are classical, well-known optimizations; their motivation was not so much 
to further increase McCAT's code quality, but to keep up with the 'minimum standard' 
of code presented by other compilers such as GCC [Sta92] or lee [FH91]. The last was 
motivated by the simplify algorithm, that can generate an inordinate number of temporary 
variables. 

3.4.1 Pre-calculation and Folding of Offsets 

Regular fields14 in structures are accessed as an offset from a base address. In RISC ar­
chitectures, memory is usually addressed as a register plus some constant offset, in a form 
similar to 12 (r4) ie access the twelfth byte from the address contained in register r4. 

Rather than placing the offset of some field in a register and adding it to another one con­
taining the structure's base address, the indexed register mode is used for efficiency's sake. 
An extra field (LS_QFFSET) in the LOAD and STORE nodes (see Figure 4.7) enables this 
optimization. 

In addition, array indices that are constants are folded into the address calculation. 
For instance, given the array declaration int a [5] [10], the address calculation for the 
dereference a[i] [3] is : &a + i X 10 X 4 + 3 X 4. The constants are folded together 
to reduce the number of multiplication operations, producing &a + i x 40 + 12. 

3.4.2 Loading of addresses outside of loops 

As shown in the previous optimization, the address calculation for arrays includes adding 
the array's base address to the offset. The base address is a constant value, and so is a 
perfect candidate for code motion, and a potentially profitable one, considering that arrays 
are frequently used inside of loops. 

When the address of a variable is loaded in LAST, the load instruction is placed before 
the outermost enclosing loop, unless of course the address is needed before the loop, where 
it is just loaded before being needed. All subsequent references to the variable's address 
refer to the loaded value. 

14That is, any field other than a bit-field. 
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3.4.3 Multiplication by Integer Constants 

Even in a pipelined architecture, long latency operations such as multiplications can cause 
problems since finding instructions to execute during the wait can be difficult, especially in 
non-numerical programs with characteristically small basic block sizes[LW92]. For integer 
multiplication, where one of the operands is a constant, the multiply operation can be 
replaced by a series of shifts, additions and subtractions. 

However, in performing this substitution, one must ensure that the resulting code is 
no more expensive than the multiply it replaces. The blastify process generates the best 
sequence of shifts I adds I subtracts it can find, using a version of Bernstein 's algorithm [BH93, 
Ber86], and if the cost of these instructions is less than a multiply, the multiply is replaced. 
Figure 3.14 shows a pseudo code sequence generated for the statement a = 97 * b. Code 
for a conventional multiply is on the left hand, and a corresponding sequence using shifts 
on the right. The code is for the DLX architecture, where an integer multiply operation 
expects its operands to be in floating point registers. 

Comparing the two methods, ignoring identical instructions, the arithmetic operation 
itself is 10 cycles, the move-integer-to-float (MVI2F) and corresponding move of the result 
back (MVF2I) operations constitute 3 cycles, plus one cycle for the initial load of the 
constant, giving a total of 14 + 2 = 16 cycles. 

Using Bernstein's algorithm, four simple arithmetic one cycle instructions plus a register 
move are used to calculate the result. Total cycles are 5 + 2 = 7 cycles, thus saving 9 cycles. 

There are two more advantages to using this transformation. Firstly, the naive method 
uses a total of three integer registers and two floating point, whereas the second method uses 
only four integer registers. The second advantage occurs when the integer constant is large. 
Usually immediate constants are represented by no more than 16 bits ie their values range 
from -32767 to 32768.15 This is because many RISC architectures have an instruction size 
of 32 bits, so encoded immediate integer constants are necessarily much smaller than 232 

bits. When an integer constant exceeds these values, a more expensive operation (typically 
taking an extra machine cycle) is used to load the value into a 32 bit register and then 
multiplied, adding the potentially high cost of a load and the extra use of a register. Since 
the largest immediate constant used in a shift would be 31, the second method does not 
suffer from this problem. 

3.4.4 Reducing Stack Space 

For every invocation of a function, stack space must be reserved for the local variables of 
that function. Unfortunately, during the transformations to SIMPLE and LAST, a large 
number of temporary variables can be generated-for some benchmarks they are in the 
hundreds. Even though these variables may have short lifetimes and never be spilled to 

SPARC architectures, constants are limited to 14 bits. 



CHAPTER 3. OVERVIEW 

REG(temp1) := COHST(97) 
REG(b)(O) <-LOAD(Int)- MEM(b) 
REG(temp2) <-MVI2F REG(temp1) 
REG(temp3) <-MVI2F REG(b) =? 
REG(temp4) := REG(temp2) * REG(temp3) 
REG(b) <-MVF2I REG(temp4) 
MEM(a)(O) <-STORE(Int)-< REG(a) 

REG(b)(O) <-LOAD(Int)- MEM(b) 
REG(temp1) := REG(b) << 1 
REG(temp1) := REG(temp1) + REG(b) 
REG(temp2) := REG(temp1) << 6 
REG(temp2) := REG(temp2) + REG(b) 
REG(a) := REG(temp2) 
MEM(a)(O) <-STORE(Int)-< REG(a) 

Figure 3.14: Replacing multiply with shifts for a = 97 * b 
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the stack, a naive compiler will allocate stack space for all of these variables, which can be 
extremely wasteful, especially for recursive functions. 

The solution taken was to mark all variables that are either loaded or stored to memory, 
or had their address taken (in case they were referenced indirectly) ie any child node of 
a MEM or ADDRESS node, determined during the blastify process. Then, when creating 
offsets (see the create offset module in Figure 3.7), only those variables so marked are 
allocated stack space. 

3.5 Implementation Restrictions 

The final section of this chapter briefly describes the limits of the implementation of LAST. 

All facets of SIMPLE C are handled, except for 

• Type conversions involving long long integers. 

• Bit fields using any type other than unsigned integers. 

• The interprocedural goto instruction longjmpO (and its companion setjmpO ). 

• Stack based memory allocation using alloca(). 

In addition, there are the following restrictions: 

• Only 32 bit wide registers are supported. For type conversions, 32-bit float and integer 
registers are assumed, with pairs of floating point registers giving 64-bit precision. A 
specific precision is required for the various bit masks generated, although switching 
to a 64-bit register architecture should be relatively painless. Currently, the majority 
of commercial RISC architectures are 32 bits, with DEC's new Alpha chip being an 
exception [Dig92J. 

• Individual structures are limited in size. Since an offset to a register is used to access 
structure fields, structures are limited to be only as large as the maximum value an 
offset field can represent, which can range from 214 to 216bits. 
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Chapter 4 

Detailed Description of LAST 

The LAST intermediate representation is implemented as a doubly linked-list of (usually) 
binary trees. There are many different LAST nodes, but they can be classified into four main 
categories: structural nodes, architectural nodes, operator nodes and control-flow nodes. 

In the illustrations of LAST nodes and trees that follow, a specific convention is followed. 
The nodes are either shaded or unshaded, with shaded nodes representing SIMPLE nodes, 
and unshaded being LAST nodes. Connecting the nodes are three types of arcs: solid, dashed 
and dotted. Solid arcs represent the 'normal' links that connect nodes, and are labeled with 
the C macro used to access the field (for the sake of brevity only the first instance of each 
type of arc named). The dashed arcs are also labeled, and represent connections that are 
invisible to the normal traversal, but are still accessible when specifically addressed. They 
are used only to circumvent the binary restriction placed on LAST. The last arc type, the 
dotted arc, represents arcs that are used only for implementation purposes, but are meant 
to be ignored in the conceptual model of LAST. Figure 4.15 and Figure 4.16 illustrates these 
two types of arcs. 

4.1 Structural Nodes 

The first category of nodes in LAST is structural nodes. These types of nodes provide 
LAST trees with their tree-like structure (for analysis), and to aid manipulation of them 
(for transformations). There are three sub-types of structural nodes: common, sequence 
and anchor nodes. 

4.1.1 Common Nodes 

A common node is not really a node, but is part of all nodes. Every LAST node has a 
common component, and illustrated in Figure 4.1. 

There are several fields for this node, as described below. 

37 
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r ' Node Name 

LTREE_CODE 

LTREE_UID 

Special fields ..• 

,; I \..oil 
/ ' LLEFT_CHILD LRIGHT_CHILD 

I \ 
Figure 4.1: The fields common to every LAST node 

code: an eight-bit field that contains the node's name. 

uid: an unsigned integer uniquely identifying each LAST node. Although of limited useful­
ness in various optimizations/analyses, the uid has proved very useful for debugging 
purposes. 

children (left and right): two pointers to two other LAST nodes, usually used to repre­
sent children. While not all nodes use both these fields, they simplify the traversal of 
LAST. 

There are also some 'special fields', which are reserved fields shared by different nodes 
for space reasons. 

4.1.2 Sequence Nodes 

Sequence nodes are the glue of LAST, and hold all the trees together. Programs are rep­
resented as doubly linked-lists of sequence nodes (represented by SEQ) with various LAST 
trees as children-SEQ nodes are parents of every LAST sub-tree (Figure 4.2). LAST trees 
under a SEQ statement can be of any type, except another SEQ node, an arithmetic node 
(except for MODIFY-explained in Section 4.3) or a EOSEQ node (Section 4.1.3). 

For saving flow information generated by analyses run on the LAST IR, SEQ nodes 
have a pointer, SEQ-FLOW, used to point to an arbitrary structure for containing flow 
information (Figure 4.2). 

SEQ nodes maintain a pointer back to the corresponding SIMPLE sub-tree that generated 
the particular LAST sub-tree. This arc, called EXPR-STMT _pTR (see Figure 4.3), is used 
to access the flow information deposited by various SIMPLE analyses, and is the mechanism 
to support the pervasive flow information in McCAT. It points back to the root of a SIMPLE 

expression tree, such as an assignment statement. In the case where an abstract data type, 
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SEQ_BODY .. 
Figure 4.2: SEQ node 

such as an array or structure, is referenced, then a series of LAST sub-trees are generated, 
with all their EXPR_STMT_pTR arcs pointing to the same SIMPLE expression node (a 
many-to-one relationship). There are also situations where LAST subtrees are generated 
independently of the SIMPLE IR, especially during register allocation if spill and reload 
code is generated. In such cases, the EXPR_STMT _pTR has no corresponding SIMPLE 

expression tree to point to, and so is set to nulL 

4.1.3 Anchor Nodes 

These are special nodes that are used exclusively to support instruction scheduling. Their 
function is to anchor a sequence of nodes, so the instruction scheduler is guaranteed to have 
nodes that remain immobile, pointing to the beginning and end of basic blocks. There are 
two such nodes, called begin body (BEGIN_BODY) and end-of-sequence (EOSEQ). Begin 
body nodes are the child of the first sequence node in every body, (except for conditional 
and delay slot bodies1 ), and EOSEQ nodes terminate SEQ lists. 

EOSEQ nodes also serve a dual function in LAsT as a terminator of SEQ chains. The 
code-generator generator used in McCAT, BURG, requires that terminal nodes be used for 
trees it traverses, rather than simply having a null terminated list. 

4.2 Architecture-exposing Nodes 

The second category of LAST nodes is perhaps what most differentiates LAST from SIMPLE. 

These nodes expose the underlying architecture and directly represent it: they differentiate 
register and memory references, expose function prologue and epilogue, parameter pass­
ing, and explicitly represent delay slots. These nodes are designed to expose optimization 
opportunities of the target architecture. 

1Since the scheduler does not attempt to reorder instructions in either conditional or delay slot bodies, 
the begin body node is unneeded in these bodies, and so is left out to save space. 
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EXPR_STMT _PTA 

" ; 
PREVIOUS_ t 

, " "' " 

SE0,...--,1 ,... ........ --, 
..~c .... r-· ' ....... ~.....,'l!rttc ·.... sea 
----1)1>101[ SEQ f- CHAIN ~ 

I 
SEQ_BODY 

[ ,O;IFY<~ 
LLEFT_ LRIGHT_ 

~D CHI~~ 

LLEFT _ LRIGHT _ 
CHILD 

Figure 4.3: How a SEQ accesses the flow information in an EXPR node 
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4.2.1 Variables, Addresses, Constants and Labels 

Because variables can reside in both registers and memory, LAST has two different repre­
sentations for a variable: one for when it is in a register (REG), and one for when it is in 
memory (MEM). There is also a representation of the address of a variable (ADDRESS), 
and constant node (CONSTANT), and a label (LABEL), used for denoting the name of 
functions. 

These five nodes are all similar in that they are all parent nodes, and point to SIMPLE 

nodes. This is a result of the storage optimization discussed previously, and shown in 
Figure 3.13. 

REG: The REG node corresponds to a register holding the value associated with the 
SIMPLE variable it points to (written REG(a), where a is the SIMPLE variable-see 
Figure 4.4). For example, if variable a is assigned the constant 1, then REG(a) would 
be assigned the value 1. The REG node can access the memory location information 
in the SIMPLE nodes in case the register allocator decides it must be spilled to memory. 
There can be an infinite number of REG nodes; at register allocation time they will 
be mapped to an appropriate real register. 

a = 1; REG(a) = 1; 

REG 

LS_SIZE 

REG_NUM 

variable 
pointer 

_ r-SIMPLE_ V AR 

~ 

Figure 4.4: REG node 

MEM: The MEM node indicates the value contained in the actual memory variable. The 
node is used only with LOAD or STORE operators. In Figure 4.5, the value of b is 
loaded from memory and placed in a register associated with b. The register for a 
(REG( a)) is assigned thevalue of b, and then stored to memory. 

ADDRESS: The ADDRESS (ADDR in the figures) node indicates the address, not value, 
of the associated SIMPLE variable. This node replaces the C address operator&:. In 
addition, besides holding the contents of variables, a REG can also contain the address 
of some memory location like a pointer variable, structure or array reference. 
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a = b; 
REG(b)(O) <-LOAD(Int)- MEM(b) 
REG(a) := REG(b) 
MEM(a)(O) <-STORE(Int)- MEM(a) 

Figure 4.5: Example of load and store in LAST 
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In Figure 4.6, the address of b is assigned to REG(ptrb) and REG(ptra). A new 
register is created, called REG ( iref -ptra), to hold the value of the dereferenced 
variable *ptra (which is the value 10). The value in this register is then stored 
at the memory location to which ptra points. 

int b,*ptrb,*ptra; 
ptrb = kb; =? 
ptra = ptrb; 
*ptra = 10; 

REG(addr-b)(O) <-LOAD(Addr)- ADDR(b) 
REG(ptrb) := REG(addr-b) 
REG(ptra) := REG(ptrb) 
REG(iref-ptra) := 10 
REG(ptra)(O) <-STORE(Int)-< REG(iref-ptra) 

Figure 4.6: Example of pointer dereference in LAST 

CONSTANT: The CONSTANT node points to the corresponding SIMPLE CONSTANT 
node, and is used for all constants (Figure 3.13). 

LABEL: The final leaf parent is the LABEL node, which points to the variable declaration 
node of a function. 

4.2.2 Load and Store Nodes 

As mentioned previously, LAST models a RISC machine, one of whose characteristics is 
being a load/ store architecture. LAST therefore has nodes to explicitly represent both loads 
and stores of variables. Loads and stores take two children: a 'source' child node and a 
'destination' child node. There is also an LS_OFFSET field, which is used to take advantage 
of the indexed register addressing mode usually used in RISC architectures (Figure 4. 7). 

LAST abstracts whether a local or global variable is being loaded or stored. Determining 
a global variable's address is more expensive than a local, but because calculating this 

address varies widely between architectures, it is left up to the code generator to handle. 

Load Nodes 

Load nodes always have a REG node as their destination child, but can have one of the 
following four types of nodes as their source (see Figure 4. 7). 
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1. REG(ptra ): a register associated with variable 'ptra', holding the address of a memory 
location. This node is most commonly used for accessing the contents of arrays, 
structures and pointer variables. In Figure 4.6, the register REG(ptra) is used to hold 
the address of variable b. 

2. MEM(a): a memory location holding the value associated with 'a'. 

3. ADDRESS( a): the address of the variable 'a'. MEM(a) is a value, ADDRESS( a) (or 
ADDR(a)) is an address. Note that while it is represented in LAST as a load, the code 
generator substitutes cheaper instructions. 

4. CONST(99.0): the location of a non-integer constant ( eg a real constant 99.0). CONST 
can represent strings and reals as well as integers that are too large for the immediate 
constant mode, ie larger than 216 for the DLX architecture.2 Note that when loading 
such large integer constants, the code generator actually does not generate a load, but 
detects this special case and substitutes cheaper instructions than a load. 

Store Nodes 

Store nodes are similar to load nodes, but with the children reversed. The source must 
be a register, and the destination node must be either a MEM node, or a REG node (see 
Figure 4. 7). The destination REG node will hold an address identical in function to the 
corresponding source REG in the load instruction. 

"a' 

LOAD 

LS_SIZE 

LS_OFFSET 

dest. source 
pointer pointer 

'a' 'ptra' 

for SPARC. 

•a• 99.0 

I 
STORE 

LS_SIZE 

LS OFFSET 

dest. source 

\. po~nter pointer 
u 

LS_JEST 

SIMPLE_VAR 
I 

'a' 

Figure 4.7: LOAD and STORE nodes 

•a• 
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4.2.3 Function Declarations 

Another set of nodes that help expose the architecture to the compiler are those dealing 
with function declarations. Function declarations reuse most of the structure of SIMPLE 

declarations; the function name and the parameters are unchanged. The only difference is 
an extra pointer to a LAST version of the function body (see Figure 4.8). 

The LAST function body is bracketed by two special nodes: SAVE...REGISTERS and 
RESTORE-REGISTERS. SAVE-REGISTERS represents the function prologue code that 
saves all registers used in the function body to the stack, and RESTORE-REGISTERS the 
function epilogue that restores them. In addition, the RESTORE-REGISTERS is in effect 
the target label of all return statements, and so at code generation time a label is also 
emitted when this node is processed. 

int foo(int x, int y){ 
body 
l 

Figure 4.8: LAST function declaration 

Since load/store architectures tend to have many registers, the save and restore sections 
are expensive (since many registers may have to be saved and restored around function 
calls), and are an important part of function call optimization. During register allocation, 
the register saves and stores are inserted for only the registers used in the function body (only 
the register allocator knows exactly what registers are used). The SAVE-REGISTERS and 
RESTORE-REGISTERS nodes are left untouched and used as a reference point for return 

statements. Subsequent instruction scheduling optimizations can further improve program 
performance by interleaving function body instructions with the save/restore instructions. 

4.2.4 Passing Parameters 

LAST explicitly represents the passing of parameters to a function. Implementing these 
nodes compromises the retargetability mandate of LAST, but the benefits are significant 
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main(){ 

} 

int a = 10; 
printf("Y.d",a); 

REG(a) := 10 
REGLaAddrO) <-LOAD- Addr("%d") 
REG(temp_O) := REG(_aAddrO) 
Adjust stack pointer 
Pass parameter REG(temp_O) 
Pass parameter REG(a) 
Function Call to printf 
delay slot: nop 
Arguments: 

Parameter: REG(temp_O) 
Parameter: REG(a) 

Pop parameters 

Figure 4.9: Passing parameters via the stack 
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enough to justify their existence. Parameter passing is such an expensive operation that 
it has motivated the design of register windows specifically to cheaply pass parameters to 
functions ( eg SPARC [DS90]). If a more retargetable approach is taken by abstracting the 
function call and passing of parameters to be one LAST node, then a significant optimization 
opportunity is lost. 

Two parameter passing methods are thus required: the traditional pass-by-stack method, 
and via register windows. The solution. to supporting both parameter passing paradigms 
was to create specific nodes for each method. For the former, the nodes ADJUST_SP, 

PASS_FARM and POP_PARMS are used to represent adjusting the stack pointer, passing 
parameters, and restoring the stack pointer respectively (Figure 4.9). 

As a brief review of a register window architecture, such as the SPARC [DS90, pp. 307-
315], there is a circular buffer of registers used to pass parameters to functions. At any one 
point, there is an active 'window', consisting typically of 24 registers: eight in, eight local, 
and eight out registers. The in registers contain the parameters passed into the function 
call, and the out registers the parameters to be passed to the next function call. When a call 
is made, the active window is moved forward by 16 registers, so the out registers become 
the in for the next function. For a fuller description, the reader is directed to Dewar and 
Smosna [DS90, pp. 301-340] or Hennessy and Patterson [HP90, pp. 450-454]. 

Note that since functions with more parameters that out registers exist, architectures 
with register windows must also sometimes pass parameters via the stack. To support 
register windows, two additional nodes are used: REG_WIN_OUT and REG_WIN.JN. 
REG_WIN_OUT moves a parameter into a specific out register before the function call, 
and REG_WIN .JN is used inside the called procedure to retrieve the parameter from its in 
register. If the register allocator is clever it can initially allocate REG_WJN_OUT registers 
to prospective parameters. Otherwise some additional register moves to the out registers 
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may be required. 
Since register windows are supported in the intermediate representation, it is possible 

use registers to pass parameters, even on machines without register windows: by simply 
utilizing a convention for which registers to reserve for passing parameters, the cost of 
function calls can be reduced significantly [Wal88, Cho88]. 

4.2.5 Delay Slots 

Another set of nodes that help expose the target architecture are those dealing with delay 
slots. Delay slots are not specific nodes, but rather a classification of nodes. They are 
simply regular subtrees of LAST nodes that are isolated and identified as being part of a 
delay slot. 

There are two types of delay slots present in RISC machines: load delay slots and 
branch delay slots [HP90, pp. 265-268,273-276]. On some architectures, load delay slots 
are implicitly inserted by the hardware ( eg SPARC [CKDK91, p. 294]), while in others 
the compiler must explicitly handle them ( eg MIPS [DS90, p. 296]). Branch delay slots, 
on the other hand, are generally present in RISC architectures. For these reasons, LAST 

models only branch delay slots, and lets the instruction scheduler add nops as appropriate 
for load delays. If no instruction scheduling is performed, then a nop instruction is emitted 
as appropriate at code generation time. 

LAST also exposes the branch delay slots present after all conditional and unconditional 
jumps, and are labeled in the diagrams by an oval. The oval represents a sequence of 
instructions, terminated by an EOSEQ node, but are initially only one SEQ with a nop as 
a child. The flexibility is there for delay slots greater than one cycle, as might be present 
in super-pipelined architectures [JW89]. 

4.2.6 Looping Nodes 

To implement a loop in assembly language, there is usually an unconditional branch to a test 
condition ie a continue statement at the end of a loop. Since there will be a branch delay 
slot associated with this unconditional branch, this implicit continue is explicitly repre­
sented, along with its branch delay slot. There are three such nodes: JUMP _OVER_ELSE, 
JUMP _TO_ WHILE and LOOP _TO..FOR, for the unconditional branch in if, while and 
for statements. There is no similar unconditional branch for do while loops. 

4.3 Operator Nodes 

Operator nodes are trivial nodes, and usually correspond directly with assembly instruc­
tions. The abstract RISC machine to which LAST is targeted is assumed to have an instruc­
tion to implement each of these operations, although if a particular machine does not, then 
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blastify can be altered to generate the equivalent behavior using other arithmetic nodes. 
The operator nodes consist of arithmetic, logical and conversion operators, and take either 
one or two arguments (children), which are either a REG node, or in some special cases a 
CONSTANT node. 

4.3.1 Arithmetic Nodes 

Table 4.1lists the arithmetic nodes, with the MODIFY node being special because it can 
also take any other single arithmetic or logical node as its child, except another MODIFY 
node. The TRUTH_NOT operator, while supported in LAST, never appears in programs 
since the GCC front-end removes it through boolean algebra. 

I Name 

MODIFY 
PLUS 
MINUS 
DIVIDE 
MOD 
MULTIPLY 
BIT ..AND 
BIT.JOR 
BIT.XOR 
BIT_NOT 
NEGATE 
TRUTH_NOT 
LSHIFT 
RSHIFT 

NOP 

11 Equiv. I Description 
C code 

a b assign 
a+b addition 
a-b subtraction 
a/b division 
a%b modulus 
a*b multiplication 
a&b bit-wise and 
alb bit-wise inclusive or 
a· b ~wise exclusive or 
- wise not a 
-a negation 

! 

!a boo lean zero/ not zero 1 

a<< b shift left 
a>> b shift right 

a + 0; I (: operation 
wait 1 cycle) 

Table 4.1: Arithmetic nodes 

4.3.2 Logical Nodes 

Table 4.2 lists all the logical operators, which are usually found in the conditional sub­
tree associated with flow-control nodes (described below). They can also be the child of a 
MODIFY node. 
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N -~ 11 Equiv. Description I 
11 C code 

GE a>= b greater or equal to 
GT a>b greater than 

I EQ a b equals 
LT a<b less than 
LE a<= b less or equal to 
NE a!=b not equal to 

Table 4.2: Logical nodes 

4.3.3 Conversion Nodes 

Conversion nodes are used to implement type casting, and support architectural restrictions 
such as certain arithmetic operations requiring float/integer only registers. Table 4.3 lists 
these nodes. On some architectures, such as the RS/6000, the equivalent of some of these 
nodes do not exist, and so the Blastify phase generates their equivalent using arithmetic 
nodes. 

I Name 11 Equivalent type cast I Description 

FD2S (float)a = (double)b ~o single precision 
FD2I (int )a = (double )b double to integer 
FI2S (float )a (int)b integer to float I 
FI2D (double)a = (int)b integer to double 
FS2I (int)a = (float)b float to integer 
FS2D (double)a (float )b float to double 
FIXUD2S (unsigned short )a = (double) b double to unsigned short 

MVI2F 11 I move from integer to float register 
MVF21 I move from float to integer register 

Table 4.3: Conversion and register move nodes 

Appendix B contains a full description of the LAST grammar, and details the use of 
operator nodes. 
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4.4 Flow of Control Nodes 

The fourth and final class of nodes in LAST are the flow-of-control nodes, which represent 
control-flow nodes like while, do while, if, for, switch, and function calls. Implementing 
change of flow control implies the use of ( un )conditional branches, so all of these nodes have 
delay slots. 

4.4.1 While and Do-While Statements 

The while and do while statements are structured similarly to one another. Figure 4.11 
illustrates both while and do while structures. All while statements have labels for the 
beginning of the loop (LWHILE_STARTLBL for continue statements and loop iteration), 
and the end (LWHILE..ENDLBL, for break and a failed condition). 

In addition, there is the JUMP _TQ_WHILE node, which represents an unconditional 
jump back to the LWHILE..STARTLBL label, to repeat the loop. In keeping with the 
compositional approach it has its own branch delay slot for instruction scheduling (see 
Figure 4.10 and Figure 4.12). 

cond=10; 
while(cond) 
{ 

cond--; 
} 

Figure 4.10: while loop example 

The do while statements are quite different, since they consist of only one conditional 
branch, versus while's conditional and unconditional branch. The condition sub-tree is still 
attached to the DO_STMT node to make analysis inexpensive, but it is really associated 
with the conditional branch that is generated after the code for the loop body. 

In addition, the DO..STMT also contains an extra jump label, DO_CONDJUMP. The 
LWHILE_STARTLBL is used for jumping backwards to repeat the loop, but cannot be 
used for the continue statement since the condition body is at the end of the loop; thus 
DO_CONDJUMP contains the jump target for continue. LWHILE_ENDLBL works as 
before as the break target. 

Figure 4.14 provides an illustration of the three labels required for do while statements. 
On the left is the pseudo code, and on the right the equivalent DLX code for the C code in 
Figure 4.13. 

The first label LWStart1 is the target for the bnez3 instruction, used when beginning 

3 Branch if argument is not equal to zero. 
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'l1' 
-.., 

while (cond) { 
body 

/ 

LWHILE_ 
ENDLBL 

'l2' 
<!( 

~· u· ~~ 
....... . ,...,.. 

... . "' 
LWHILE_ LWHILE_ 00 CONDJt;'MP 

STAATLBL ENDLBL -, 

' I "' 

s;;~ 
LWHILE_ LWHILE_ LWHILE_ 
COND DELAY BODY 

~ &m ~ 

do{ 

SEQ_CHAIN 

[ eoteo) 

body 
}while(cond); 

Figure 4.11: while and do while statements 

REG(cond) := 10 addi r2,r0,#10 ; cond = 10; 

While Statement: ; While Statement: 
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Conditional: REG(cond) 
end of sequence 
Branch delay slot: nop 
While Body 

LWStartO: continue label 

REG(cond) := REG(cond) 1 
Jump-to-while branch delay slot: nop 
end of sequence 

beqz r2,LWendO ; cond !=0 
nop 
;While Body 
subi r2,r2,#1 cond--; 
j LWStartO 
nop 

LWendO: break & end label 

Figure 4.12: Pseudo and DLX assembly code illustrating labels in a while statement 

cond=10; 
do 
{ 

cond--; 
}while(cond); 

Figure 4.13: do while loop example 
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another loop iteration. The second label, LWStart2, is the target of any continue statement, 
and the third label, LWend1, is the target for any break statement in the loop. 

REG(cond) := 10 

Do While Body 
REG(cond) := REG(cond) - 1 
end o:f sequence 
Do While Statement: 
Conditional: REG(cond) 
end of sequence 

Branch delay slot: nop 

addi r2,r0,#10 ; cond = 10 

;Do While Statement: 
LWStart1: 

; Do While Body 
subi r2,r2,#1 

LWStart2: 
bnez r2,LWStart1 
nop 

LWendt: 

cond--
continue label 
cond != 0 

.break~ end label 

Figure 4.14: Pseudo and DLX code illustrating labels in a do while statement 

4.4.2 If Statements 

If statements in LAST are peculiarly constructed because the code-generator generator 
BURG allows only binary tree representations. This constraint requires the use of the 
IF -ELSE-HACK node, whose left child is the then body, and right the else body-see Fig­
ure 4.15. In the figure, the solid lines, as in the previous diagrams, represent arcs that are 
normally visible to the compiler (and are labeled with the macros used to access them). 
The dashed and dotted lines are used for special purposes: they represent the LAST AST 
structure, where they are required to handle the binary tree requirements of BURG. How­
ever, the macros IF _ELSE_BODY and IF _THEN _BODY make this constraint transparent, 
as they allow access to the then and else bodies from the parent if node. The dashed lines 
are back edges that are used to access jump labels, which are stored in the if statement 
node for easy modification by a branch chain elimination transformation. Like the while 

statement, a conditional branch slot is associated with the if node. This slot is invisible 
to BURG's traversal mechanism, since BuRG only recognizes nodes with an arity less than 
three, but the slots are accessible when specifically addressed. 

There is always a then body and else body, but either may contain only the EOSEQ node 
ie be empty. When the else body does contain statements, then the JUMP _QVER-ELSE 
node is inserted into the then body. This node represents an unconditional jump of the 
code of the else body (as occurs in the assembly generated for an if statement). This node 
has a delay slot, and an arc pointing back to the if node to enable access to the labels. 
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0 Figure 4.15: If statement 

4.4.3 For Statements 

The for loops in LAST are a mix of if, while and do while statements; because of BURG's 
constraints, the initialization, iteration condition and increment statement must be split up 
into binary trees, as illustrated in Figure 4.16. 

Like the while loop, there is an unconditional branch at the end of the body, as well as 
a conditional branch. There is also a similarity with do while statements, as a third label 
is needed to handle continue statements (DO_CONDJUMP). 

4.4.4 Switch Statements 

In LAST, switch statements are divided into two types of subtrees. The first correspond to 
the labels of each case statement, and the second to the instructions to be performed should 
its case label be chosen. LAST assumes that when implemented, there will always be a test 
of the switch expression, and then a conditional jump to the appropriate case labeL The 

implementation of the logic for determining the correct case label is not exposed at the 
LAST leveL It is felt that there is little opportunity for instruction scheduling, and there are 
several different approaches to generating the appropriate code, and should thus be handled 
abstractly by the code generator. For example, if the case label density is sufficient, either 
branch tables [Ber85, HM82, Sal81] can be generated, or a more space-efficient method, ie 
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• LNFOR_STOP \ • • •. 

LNFOR_BODY •• • 

• . : LNFOR_ITER 

FOR_C_N_B I 
I ! 

Figure 4.16: For loop statement 
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a series of test-and-branch instructions. However, whatever the method, there will be at 
least one conditional branch, with an associated branch delay slot. This slot is filled by the 
instructions in the LSWITCH..D ELAY _SLOT. 

Figure 4.17 illustrates a typical switch statement. Note that the condition expression 

of the switch statement is kept in a register (labeled result in the figure). This register is 
used in evaluating the expression when calculating to which case statement to jump. 

4.4.5 Return, Continue and Break Statements 

The return, continue and break statements are all handled similarly. They all have an 
unconditional jump delay slot, and generate jump instructions to an appropriate label. 
The return node is different in that it can also have a "body" of instructions. Figure 4.18 
illustrates a return statement. 

4.4.6 Function Calls 

The function call node can have two types of right children: a register holding the address 
of a jump target, or a LABEL node, indicating a jump target in the form of a label (see 
Figure 4.19). In the first case, foo is called directly as foo(tmpO,tmpl), and so a LABEL 

node would be used (with the label name foo ). In the second case, foo is called via a 
function pointer as fooptr(tmpO,tmpl), in which case a REG node is used to hold the 
address of foo. 
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Figure 4.17: Switch statement 
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Figure 4.18: Return node 

switch( a){ 
case l: case 2: 

body; 
case 4: case5: 

body; 
default: 

body; 
}; 

maybe 
empty 

., 
I • 'L3' 
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~- DELAY_SLOT 

~TARGET 
FN_ARGLIST 

~ 
ARGUMENT 

c;j "foo" 

int foo (int x, int y) 

foo (tmpO, tmp1) 

fooptr = &foo(); 
fooptr(tmpO,tmp1) 

Figure 4.19: LAST function call 
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The left child points to a list of arguments, which are kept as a chain of ARG nodes. 
The left child of an ARG node is the function parameter. The leftmost ARG node contains 
the last parameter (they are stored in reverse order). The list of ARG nodes is terminated 
by a NOARG node. Since parameters are passed explicitly, one may question the utility 
of associating them with the function call node. The ARG nodes are used for the analysis 
phase in order to explicitly represent the dependency between parameter passing nodes 
and the arguments. When using the stack passing paradigm, this relationship is irrelevant, 
but if passing parameters in registers using a simple convention of reserving registers (on 
machines without register windows) then it is important to indicate a particular mapping 
of registers. 



Chapter 5 

Transforming LAST 

Usually transformation phases follow analysis phases (otherwise there is no information 
to guide the transformation). However, following the flow and phases in Figure 5.1, the 
first transformation on LAsT( spilling) occurs before the first analysis phase (an analysis to 
generate dependencies is performed at the same time as the transformation), so the example 
LAST transformations are presented in this thesis first, with the example analysis on LAST 
presented in the next chapter. 

The ability to perform aggressive transformations is the ultimate objective of the Me­
CAT compiler. This chapter presents two example transformations performed on LAST(see 
the unshaded nodes in Figure 5.1). Other transformations are performed on LAST, but the 
two examples are enough to provide a basic understanding of how transformations work on 
a structured IR such as LAST. 

,. 
Blastify 

alias 
substitution, 
multipllcatlon 
replacement. 

load/store 
reduction 

Figure 5.1: Transformations performed on LAST 

The first code-improving transformation example is the reduction of the number of loads 
and stores, and the second is intrabasic block instruction scheduling. 
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5.1 Reducing the Number of Loads and Stores 

Removing superfluous instructions is generally beneficial,1 so there is an obvious improve­
ment in reducing the number of instructions executed. 

However, load and store instructions manipulate a critical resource-the load/store 
pipeline [SLH90]. The bandwidth available for input-output communication to/from the 
central processing unit is a limited resource [GH86], and should therefore be minimized. 
In addition, load instructions are long latency operations, and depending on the speed of 
main memory and the effectiveness of any cache (if present), a load instruction can take 
from between several to tens of cycles to complete [CKP91]. Thus reducing loads and stores 
reduces the pressure on this precious resource. 

The transformation is equivalent to keeping variables in registers for as long as possible. 
In effect, the register set is treated like a small, visible (ie manipulable) cache [GH86], and 
the transformation tries to keep everything in this 'cache'. If the register pressure is too 
high and there are not enough registers to maintain all the variables in this cache, then 
the register allocator applies the information from its analysis of the program to select the 
most 'appropriate' value to remove from the cache (to be replaced by a new value). The 
register allocator has a very sophisticated algorithm for determining the 'appropriate' values 
to be kept in registers, and thus will utilize the registers more efficiently than an algorithm 
in LAST that attempts to portion out the registers-unless of course a LAST algorithm as 
complicated as a register allocator were to be implemented, which would make the allocator 
obsolete. 

5.1.1 Handling the Register-Memory Consistency Problem 

A load/store architecture is motivated, in part, by current technological limitations [SC91]­
accessing on-chip data is much faster than off-chip. Therefore, loading data into registers 
and manipulating them there results in faster access time, and thus faster program execu­
tion, but creates a consistency problem: the copy contained in a register can be altered and 
thus differ from the original in memory. If the memory value is referenced instead of the 
modified register value, the program will most likely produce incorrect results. The solution 
is to store the changed value, and reload the updated variable on its next use; the challenge 
is to reduce these updates. 

There are four types of variable references that cause loads and stores in McCAT2 : 

references to variables whose address is calculated at run time, references to global and 
local static variables, references to pointed-to and dereferenced variables, (variables that 

1 Ignoring the need in some architectures for 'filler' instructions. For example the Alpha architecture 
needs basic blocks to be filled with a minimum number of instructions, even if they are redundant [Dig92]. 

21gnoring resource limitations, which can cause additional loads and spill ie register spills and reloads 
caused by the register allocator. 
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refer to the same memory location, also known as aliased variables), and references to 
unaliased local and parameter variables whose first use or definition is inside a conditional 
body. 

These four situations cause a level of uncertainty for the compiler, and the compiler 
must store and reload due to its overriding mandate to produce correct code, rather than 
risk a memory-register consistency problem. The transformation presented in the following 
section decreases this level of uncertainty, so that more variables can be kept in registers 
over longer sequences of instructions. However, as a starting point, and for comparison, 
McCAT can be conservative about memory-register consistency. When in its 'conservative 
mode', McCAT stores and reloads when referencing the following four types of variables. 

Run-time address calculated variables: Each reference to either a structure or array 
causes a load on a use, and a store on a definition. The reason is that without 
sophisticated analysis, the compiler cannot determine what memory location is being 
referred to, and given this uncertainty the compiler must ensure correctness and thus 
generate loads and stores. An array dependence tester exists for McCAT[Jus94], but 
is unused for the naive approach. A more sophisticated approach could use the array 
dependence tester to detect opportunities for scalar replacement [CCK90]. 

Global and local static variables: Global variables have global scope, and except where 
the name is hidden by a local object ( eg a local variable), can be referenced at any 
point in the program in any procedure, as shown in the C code fragment in Figure 5.2. 

int global_a=9; 
void main(void){ 

global_a++; 

} 

foo(); 
printf("%d",global_a); 

void foo(void){ 
global_a++; 

} 

Figure 5.2: Referencing a global variable across function boundaries 

Globals therefore cannot be kept in registers across function calls without extensive 
support from and coordination with the register allocator. The allocator would have 
to allocate the same register to a global variable across all uses, and remember not to 
include this register in the list of callee saved registers in a function's prologue and 
epilogue. In McCAT, local static variables are treated identically to global variables 
(which happen to be referenced in only one function). 

Pointed-to and dereferenced variables: A pointed-to variable is one whose address has 
been taken, and whose memory location may be modified or read via a dereferenced 
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variable. For example, in the C code fragment in Figure 5.3, a is points-to by ptra, 
and *ptr is the result of dereferencing ptra. Obviously *ptra and a refer to the 
same memory location, and are considered to be aliased to one another. An unaliased 
variable is one whose address has never been taken. 

{ 

int a,*ptra; 
ptra = aa; 
*ptra = 10; 
a = a + 1; 

} 

Figure 5.3: Pointer dereference example 

Since this binding happens at run-time and is unknown without sophisticated points-to 
analysis, the compiler loads/stores (as appropriate) each reference to either a pointed­
to or dereferenced variable. 

Unaliased local and parameter variables: The only types of variables left are una­
liased local and parameter variables. Usually they are kept in registers and are never 
loaded nor stored, except in one special case. That case is when the first use or defi­
nition of the variable is in a conditional body (see Figure 5.4). If so, then subsequent 
uses (such as the printf in the example) cannot know for sure that the variable was 
loaded or not, and so will reload the variable. Since all uses after the definition will 
load the variable, all definitions must store the variable to maintain consistency. 

void foo(int cond){ 
int a; 

} 

i£(cond) a = 10; 

printf("hello "); 
if(cond) printf("there Y.d" ,a); 

Figure 5.4: Example C code showing the first definition of a variable in a conditional body 

5.1.2 Algorithm for Reducing Loads and Stores 

This section presents two algorithms for reducing the number of loads and stores in a pro­
gram. The first reduces them for references to unaliased local and parameter variables, 
and the second for references to global and aliased variables. They are orthogonal, and 
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void foo(int cond){ 
int a,b; 

} 

if(cond) a = 10; 
b = 100; 
if(cond) a++; 

Figure 5.5: First reference of a variable in a conditional 
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together deal with three of the four types of references that cause loads and stores in Me­
CAT. References to arrays and structures are still loaded/stored for each use/definition, as 
a sophisticated high-level transformation (such as scalar replacement [CCK90]) is required, 
and is beyond the scope of this thesis. 

Reducing Local Loads 

The first algorithm presented, reducing loads and stores for references to local and parameter 
variables, is trivial to implement given the high-level information available from the SIMPLE 

IR, but pays rich dividends in producing superior code. The transformation is based on a 
simple observation about unaliased local variables: 

Unaliased local variables are constrained to exist completely inside the function body in 
which they are declared. Therefore, in a semantically correct program, for any particular 

variable there must be a definition of that variable that dominates all uses and subsequent 

definitions of it, in any execution of the program. Moreover, a variable used before being 

defined has an unspecified value. 

From this observation, one can safely assume that an unaliased variable always resides in 
a register, and thus neither loads nor stores are generated for any such variable. An aliased 
variable can be determined in one of two ways. When the McCAT points-to analysis 
[Ema93, Ghi92, EGH94] is employed, aliased variables are clearly and easily identified. 
Otherwise, a more conservative approach is used: any variable whose address is taken in 
the program is considered to have an alias. 

Figure 5.6 shows the pseudo code for the trivial C function in Figure 5.5. On the left 
is the pseudo code for the naive approach, and on the right the approach guided by the 
above observation. Notice that the variable a, first placed in a register in the initial if 

statement, must be stored at the end of the then body block, and again reloaded in the 
second if statement. The pseudo code on the right, however, has no loads or stores for a, 
as a semantically correct program requires that either both if then bodies are entered, or 
neither. In the case of a use occurring before a definition, the C language does not guarantee 
it a specific value and so leaving a random value in the register is acceptable. 

When considering parameter variables, the observation is simply extended-they are 
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<<Save Registers>> 
If Statement: 
Conditional: 
REG(cond)(O) <-LOAD(Int)- MEM(cond) 
REG(cond) 
end of sequence 
Branch delay slot: nop 

Then Statements: 
REG(a) := 10 
MEM(a)(O) <-STORE(Int)- REG(a) 
end of sequence 

Else Statements: 
end of sequence 
end of If Statement 

REG(b) := 100 

If Statement: 
Conditional: REG(cond) 
end of sequence 
Branch delay slot: nop 

Then Statements: 
REG(a)(O) <-LOAD(Int)- MEM(a) 
REG(a) := REG(a) + 1 
MEM(a)(O) <-STORE(Int)- REG(a) 
end of sequence 

Else Statements: 
end of sequence 
end of If Statement 
MEM(b)(O) <-STORE(Int)- REG(b) 
<<Restore Registers>> 

<<Save Registers>> 
If Statement: 
Conditional: 
REG(cond)(O) <-LOAD(Int)- MEM(cond) 
REG(cond) 
end of sequence 
Branch delay slot: nop 

Then Statements: 
REG(a) := 10 
end of sequence 

Else Statements: 
end of sequence 
end of If Statement 

REG(b) : = 100 

If Statement: 
Conditional: REG(cond) 
end of sequence 
Branch delay slot: nop 

Then Statements: 
REG(a) := REG(a) + 1 
end of sequence 

Else Statements: 
end of sequence 
end of If Statement 

<<Restore Registers>> 

Figure 5.6: Reducing the number of loads and stores of local variables 
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similar to local variables in that they can only be referenced inside one function body. 
However, they differ slightly in that they are first defined outside the function. The solution 
used in McCAT is to insert a dominating load in the function body, so that all subsequent 
uses can be guaranteed that the value is in a register. The algorithm is straight forward: 
A function is scanned in a forward manner, and at the first use or definition, a load is 
inserted. If the use/definition is in the outer most block of the function, the load precedes 
it, otherwise the use/definition was inside one or more conditional bodies. In this case, the 
load is inserted before the outermost conditional body. A conditional body is considered 
to be any control structure, including loops. If the variable is already in a register (for 
example, a parameter in an in register window), no load is needed. 

A dominating load is inserted only for those parameters referenced in the function 
body-if they are never used, no load is generated. If the parameter is used in only one 
arm of a conditional body ( eg the then part of an if statement), the dominating load is 
still generated, even though the load may be unnecessary. However, should the parameter 
be referenced subsequently, then the dominating load pays for itself by eliminating the need 
of a load for the second use. 

Figure 5. 7 illustrates this approach. On the left is a C function using the parameter twice, 
both instances are nested inside a conditional body. The LOAD instruction (marked by 
(*))is the inserted load that dominates both uses ofthe parameter (marked by (Y,) ). This 
transformation for local and parameter variables makes a significant difference in reducing 
cycle time, as shown in Chapter 8, and in addition is extremely cheap to perform, adding 
a small cost to the overall run time of the compiler, linear in the size of the program. 

Reducing Global Loads and Sure Alias Substitution 

The next transformation works on references to global and aliased variables. First, a de­
scription of dealing with global references is given, and then a description of the extension 
to aliased variables. 

In the previous section, the transformation was possible because of the limited scope of 
the variables being referenced ie limited to one particular function body. However, references 
to global and aliased variables can occur anywhere in the program, and thus nothing can 
be determined a priori about the sequence of variable uses and definitions. 

In addition, the McCAT register allocator is intra-procedural, so global variables cannot 
be guaranteed to be mapped to the same register when referenced in different function 
bodies, so keeping globals in registers across function calls is unsafe. As a result, McCAT 
aspires only to keep globals in a register within a basic block-they are loaded on the first 
use in a basic block, and stored at the end if they were defined. 
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<<Save Registers>> 
REG(param1)(0) <-LOAD(Int)- MEM(param1) (*) 

void foo(int cond, 
int param1, 
int param2){ 

int a,b; 

} 

if(cond){ 
a = 10; 

} 

else { 
a = param1; 

} 

while(cond){ 
cond = param1 -1; 

} 

If Statement: 
Conditional: 
REG(cond)(O) <-LOAD(Int)- MEM(cond) 
REG(cond) 
end of sequence 
Branch delay slot: nop 
Then Statements: 

REG(a) := 10 

Jump-Over-Else to LifendO: 
nop 
end of sequence 

=> Else Statements: 

REG(a) := REG(param1) 
end of sequence 
end of If Statement 

While Statement: 
Conditional: REG(cond) 
end of sequence 
Branch delay slot: nop 

While Body 
REG(cond) := REG(param1) - 1 
Jump-to-while branch delay slot: 
nop 
end of sequence 

<<Restore Registers>> 

Figure 5.7: Insertion of a dominating load for parameter variables 

(Y,) 

(Y,) 
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The algorithm is simply a forward traversal of each basic block, inserting a load imme­
diately before the first use,3 and when the end of the block is reached, all the globals that 
were defined are stored. 

Dealing with references to aliased variables is slightly more complex, but similar. After 
running the points-to analysis, two types of aliased variables can be distinguished: definitely 
points-to and possibly points-to. A definitely points-to variable is a variable that, at a 
particular program point, the analysis can statically determine that it points to only one 
variable. A possibly points-to variable, on the other hand, is a variable that the analysis 
knows is a pointer, but can give only a conservative estimate of to what it points. In 
Figure 5.8, for example, the code on the left illustrates a variable ptra that the points-to 
analysis would catergorize as defintely pointing to a, at program point X. On the right, 
at program point X, since ptrab is previously dynamically set, it is considered to possibly 
point to either a or b. 

{ 

int a=O,*ptra; 
ptra = la; {:} 
*ptra = *ptra + 10; I* X *I 

} 

int foo(int size) 
{ 

int a=O,b=l,*ptrab; 
if(size > 12) 

ptrab = ta; 
else 

ptrab = tb; 
*ptrab = *ptrab + 10; I* X *I 

} 

Figure 5.8: Sure and possibly points-to variables 

If the referenced variable is possibly points-to, then each use requires a load, and each 
definition a store. However, if the variable is definitely points-to then a two-phase transfor­
mation is used. In the first phase, the dereference operations are replaced by references to 
the points-to variable, as shown in the C fragment in Figure 5.9 (the replaced dereference 
operations are on the right). 

Invisible variables, ie variables pointed to by parameters, are also handled in this fash­
ion. A variable is created at the LAST level to represent the points-to variable while in 
a register, and this variable is substituted for the dereference operations. Figure 5.10 
shows a C fragment on the left, and the corresponding generated pseudo assembly code 
on the right. The parameter paramin function bar points to the variable locaLa, which 
has scope only in function foo. Since locaLa is not visible in function foo, then param 
points to an invisible variable. A register called -parm-param, using the naming convention 
-parm-<ParameterName>, is created, and represents this invisible variable when it is held 

3 Assuming no definitions of the variable preceded it in the basic block. 



' 0 

CHAPTER 5. TRANSFORMING LAST 

{ 

int a=O,*ptra; 
ptra = .ta; 
a = 10; 
*ptra = *ptra + 10; 

} 

{ 

int a,*ptra; 
ptra = .ta; 
a = 10; 
a = a + 10; 

} 

Figure 5.9: Sure alias substitution of pointer dereference 

:foo(void){ 
int local_a; 

bar(.tlocal_a); 
} 

bar(int *param){ 
*par am = *param + 1; 

} 

;========================================= 
Function body :for "bar" 

;========================================= 

<<Save Registers>> 
REG(param)(O) <-LOAD(Addr)- MEM(param) 
REG(-parm-param)(O) <-LOAD(Int)- REG(param) 
REG(temp_1) := REG(-parm-param) 
REG(-parm-param) := REG(temp_1) + 1 
REG(param)(O) <-STORE(Int)- REG(-parm-param) 
<<Restore Registers>> 
end o:f sequence 

Figure 5.10: Example of an invisible variable 

in a register ( ie it is equivalent to *para.m.). 
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Once alias substitutions have been made, then the second phase of the transformation 
is applied: loads and stores are inserted in a similar manner as they were done for global 
variables ie a load at the initial use, and a store at the end of the block if the variable was 
defined. An important observation at this point is that since this transformation occurs only 
in basic blocks, then the instructions occur in a strictly sequential order, and so a definitely 
points-to variable will remain definitely points-to throughout the whole basic block.4 

As a future extension, global definitely-aliased variables could be held in registers across 
basic blocks that contain no function calls, or over function calls that are identified as free 
of references to these variables. Such a call must also not have any calls within it that 
reference these variables. 

4 Although, through the magic of pointer arithmetic, a dereferenced variable cannot always be guaranteed 
to definitely point to a variable. In this case however, as soon as the dereferenced variable no longer definitely 
points to a specific variable, substitution from this point on will no longer be performed, and loads/stores 
will be generated for each use/definition. 
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5.2 Instruction Scheduling 

This section presents an overview of basic-block instruction scheduling algorithms, an enu­
meration and brief introduction of the scheduling algorithms used on LAST and how the 
scheduling framework was implemented in LAST. 

5.2.1 Overview of Instruction Scheduling 

The motivation behind a pipelined architecture is to have the CPU working 'all the time' ie 
an instruction issuing every cycle [HP90]. This requires that the results of one instruction 
be produced before being needed by a following instruction. For many integer arithmetic 
operations the result takes only one cycle to compute and so is not a problem, but for 
others it may take longer: load and multiply instructions, for example, can take several 
cycles before their result is ready; branches make it difficult to determine what instruction 
next to fetch, so it can be several cycles until the next one is issued [HP90, DS90]. 

These long latency operations can degrade the performance of a program in conventional 
scalar architectures5 if results are not produced fast enough: instructions that use the result 
will simply wait until it is ready. With instruction scheduling, programs can run upwards 
of 25% faster [Tie89, GM86], that is, without scheduling, programs can run at least 20% 
slower. 

There are several kinds of instruction scheduling; only local, or intra-basic block, schedul­
ing is performed on LAST, as implementing a cross-basic block (global) scheduler [Fis81] is 
beyond the scope of this thesis. There are various algorithms for scheduling at the basic­
block level, but they all take a similar approach [Kri90], and so it was possible to support 
several list schedulers in the Me CAT compiler (currently five are supported). 

Essentially, list schedulers take the instructions in a basic block, create a directed acyclic 
graph (DAG) of the instructions, where a node represents an instruction, and an arc a 
dependency between instructions. Then, using this DAG, the instructions are sorted into 
various levels, where usually all the nodes on the same level can be issued simultaneously, 
should the hardware support parallel execution on such a scale. A list of potential candidate 
instructions is generated, from which instructions are selected and inserted in order. 

For example, Figure 5.11 shows three array accesses in a single basic block. Figure 5.12 
shows the DLX6 assembly code generated for this C fragment of code; on the left is the 
unscheduled code, on the right the scheduled version. Looking at the unscheduled code, it 
is noticeable that the load ( 14: lw ) generates a nop instruction ( 15: nop) (here, a load 

5 For simplicity of explanation, out-of-order issue and execution architectures are ignored. Due to resource 
limitations, however, they too can benefit from scheduling. For a more thorough treatment, refer to Johnson's 
text on superscalar design [Joh91J. 

6 DLX is a fictional architecture based on the MIPS R2000 [HP90J. It is one of the target architectures, 
and is used in this example for brevity. 
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is assumed to take two cycles to complete), since the store instruction ( 16: sw ) uses the 
result. Note that the entire basic block takes 16 cycles to complete. 

main(){ 
int i, A[4], 8[4], temp_O; 

i = 2; 
A[i] = 10; 
temp_O = (i + 1); 
B[i] = A[temp_O]; 

} 

Figure 5.11: Three array references in a basic block 

Figure 5.13 shows the dependency graph for the DLX assembly code. The instructions 
have been arranged in levels, where each level indicates the machine cycle (marked on the 
right) that the instruction starts execution; given enough resources on a parallel machine, 
the code could complete in seven machine cycles. 7 Looking at the unscheduled code in 
Figure 5.12, there is one opportunity for overlapping instructions-replacing the nop with 
another instruction, and bring the cycle count down from 16 to 15 (for a scalar, pipelined 
machine). There are several candidates for replacing the nop, and the various algorithms 
use different heuristics to make a selection. For simplicity, instruction 10 has been chosen, 
and the scheduled code on the right shows it replacing the nop instruction. 

The next section lists the various scheduling algorithms supported in the McCAT com­
piler. 

5.2.2 List Schedulers in LAST 

As mentioned above, McCAT currently supports five list-schedulers. The contribution of 
this thesis includes only the framework for instruction scheduling, hut the list scheduling 
algorithms themselves are beyond the scope of this thesis. The scheduling algorithms were 
therefore cloned from course projects by Erik Altman and Chandrika Mukerji (see the 
McCAT genealogy section). The list scheduling algorithms used are listed below. 

Shieh-Papachristou: This is the default instruction scheduler used, as a previous study 
found it to be reasonably effective [Muk91]. It has a hierarchical list of 5 characteristics 
to prioritize candidate instructions and handles floating point functional units, as well 
as ALU forwarding [SP89]. 

Level Scheduling: This is the most basic algorithm, and simply calculates the critical 
path of instructions in each basic block. 

71gnoring start-up costs for the pipeline. 
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1: addi r4,r0,#2 i = 2 1: addi r4,r0,#2 
2: add r2,r30,#-84 r2 = tA 2: add r2,r30,#-84 
3: slli r3,r4,#2 r3 = i * 4 3: slli r3,r4,#2 
4: add r3,r3,r2 calculate t(A[i]) 4: add r3,r3,r2 
6: addi r9,r0,#10 r9 = 10 (rO==O) 5: addi r9,r0,#10 
6: sw O(r3),r9 store r9 in A[i] 6: sw O(r3),r9 
7: addi r5,r4,#1 temp_O = i + 1 7: addi r5,r4,#1 
8: add r6,r30,#-100 r6 = tB 8: add r6,r30,#-100 
9: slli r10,r4,#2 r10 = i * 4 9: slli r10,r4,#2 

10: add r10,r10,r6 calculate t(B[i]) 11: add r7,r30,#-84 
11: add r7,r30,#-84 r7 = tA 12: slli r8,r5,#2 
12: slli r8,r5,#2 r8 = temp_O * 4 13: add r8,r8,r7 
13: add r8,r8,r7 calculate t(A[i]) 14: lw r8,0(r8) 
14: lw r8,0(r8) load A[temp_O] to r8 10: add r10,r10,r6 
15: nop wait for load 16: SW O(r10),r8 
16: SW O(r10),r8 store r8 at B[i] 

.~ 
Figure 5.12: Unscheduled and scheduled pseudo code ......,; 

4 
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Figure 5.13: Dependency Graph used for Scheduling Array References 
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Gibbons & Muchnich: This algorithm schedules instructions which have the greatest 
number of children, inter-locks with at least one of them, and is on the longest exe­
cution path [GM86]. 

Bernstein fixed and variable weights: These are two algorithms based on Bernstein's 
work [Ber88, BG89], the second being an extension of the first. The first algorithm 
prioritises each instruction based on its weight, where an instruction's weight is the 
amount of time it and its children will take ie the shortest critical path. Each instruc­
tion is assumed to take the same amount of time. The second algorithm tailors the 
weights to the instructions. 

5.2.3 Implementation of Scheduling Framework 

As described in the previous sections, the preparatory work is the same for all the list 
schedulers, and consists of breaking the program into basic blocks, building a dependency 
DAG for each block, running the scheduling algorithm, and manipulating the basic block 
list according to the scheduler. 

The McCAT scheduler considers a basic block to he a sequence of LAST suhtrees delim­
ited by nodes that represent a change of flow control, such as if, while, do while, switch, 
for, break, continue, return and function calls. There are several phases carried out in 
instruction scheduling, as illustrated in Figure 5.14. The unshaded nodes represent those 
phases implemented as part of this thesis. 

The scheduling phases are expose loads, find basis blocks, calculate dag, schedule code 
and manipulate LAST, and are described below. 

Figure 5.14: Scheduling phases in the McCAT list scheduler 

Expose Loads: This phase removes any loads or stores that were in conditional bodies of 
control-nodes. LAST separates the nodes used for calculating the conditional expres­
sions of these statements to ease analysis. The expose loads phase moves them into 
their basic block, exposing them to the instruction scheduler (the scheduler does not 
attempt to schedule either conditional bodies or delay slots). 
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For example, the statement "if(a == 0) printf( 11boo 11
)" would have a LAST sub­

tree for the a == 0 expression, and a separate one for the printf statement. The 
conditional expression might require a load of a for the evaluation, and it is this load 
that is moved to be visible to the scheduler. 

fu subsequent phases it is possible for the register allocator to again spill or load a 
register in the conditional body, but it will be up to the allocator to insert a nop node, 
if appropriate. 

Find Basic Block: The second phases counts and identifies individual basic blocks in each 
function being processed. Two arrays keep track of the beginning and end of each 
basic block. These two arrays are used by the list scheduler to schedule each basic 
block individually. 

The nodes pointed to by these arrays must be anchor nodes or represent change of 
control flow ie must be guaranteed to remain at the beginning and end of each basic 
block, regardless of how the other nodes are scheduled. The BEGIN_BODY and 
EOSEQ, and control flow nodes serve as these anchor nodes. 

Calculate DAG: The next phase calculates all the data dependencies between the vari­
ables, using the variable names to avoid false dependencies. The phase consists of a 
bottom-up traversal of each basic block, and creating dependency arcs between uses 
and preceding definitions of registers, and is similar to live variable analysis (explained 
in Chapter 6). The dependency graph (a directed acyclic graph, or DAG) is used to 
schedule LAST nodes. 

Schedule Code: This phase (indicated by the five nodes labeled "algorithm n") is where 
one of the possible five scheduling algorithms is invoked to schedule the given basic 
block, using the DAG just calculated. These algorithms schedule only arithmetic op­
erations, loads and stores-conditional branch delay slots are not handled. Scheduling 
delay slots is based on control dependencies, whereas long latency operations depends 
on data dependencies, and thus requires a different algorithm [HP90]. 

Manipulate LAST: After running the particular scheduling heuristic, a linked list repre­
senting the schedule of nodes is passed on. This schedule is used to reorganize the 
sequence of LAST nodes that represent the basic block being scheduled. The doubly 
linked nature of LAST greatly simplifies its manipulation at this point. 

The effectiveness of instruction scheduling, and of the load/store reduction algorithms, 
is presented in the results chapter (Chapter 8). 



Chapter 6 

Analyzing LAST 

This chapter provides an example analysis to demonstrate how LAST can be analysed in a 
structured and compositional manner. The analysis chosen is the traditional live variable 
analysis, which occurs just before the register allocation phase (Figure 6.1); the information 
generated by live variable analysis is crucial for the McCAT register allocator. First, a brief 
review of the analysis is given, after which the algorithm for determining live ranges on the 
LAST tree is presented. Finally, the third section provides an overview of the implementation 
details. 

live variable 
analysis 

Figure 6.1: Live Variable analysis on LAST 

6.1 Brief Review of Live Variable Analysis 

Live variable analysis is a traditional flow analysis required by non-trivial register allocators 
such as those using the interference-graph coloring approach [CAC+81, Bri92, LJ92] or 
McCAT's cyclic interval graph approach [HGAM92]. Live variable analysis indicates when 
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a variable contains a value that will be used later on in the program ie that is alive­
any such variable is an excellent candidate for being kept in a register. If, at a particular 
program point, a variable is never used again, or is redefined before being used, then it is 
considered dead. 

The fragment of C code in Figure 6.2 provides a simple example. The left hand column 
is the C code, the middle column (inside the comments) is the line number, and the third 
column (again, inside the comments) are the variables that are alive at the end of the 
statement. 

Variable a is defined1 at line 1, used in line 3, defined again in line 6 and used finally in 
line 7. Notice that a is alive after the first and second statement but is dead in statements 
four and five, as it is redefined in the sixth statement. Since band care used at the very end, 
they are live through out the sequence of instructions. Variable a is redefined in statement 
six, and is used in statement seven, and so is live for the duration. The register allocator 
therefore knows that it is profitable to keep a in a register during statements 1, 2 and 3, 
and also 6 and 7, but not for 4 and 5. 

main(){ 
line# vars alive 

a = 10; I* 1: {a} *I 
b = 11; I* 2: {a} *I 
c = a + b; I* 3: {b} *I 
c = c + b; I* 4: {b,c} *I 
d = b + 3; I* 6: {b,c} *I 
a = c; I* 6: {a,b,d} *I 
printf("Y.dY.dY.d",a,b,d); I• 7: {} •I 

} 

Figure 6.2: Example of live variable analysis 

The traversal of individual statements is illustrated in Figure 6.3, which shows an as­
signment statement a = a + b bracketed by program points: program point B preceding it, 
and A following. Since live variable analysis is a backward analysis, the traversal proceeds 
first through program point A before reaching the assignment statement, with flow informa­
tion being stored at each statement. The flow information stored at the current statement 
(a = a + b) is the information that was generated after analysing program point A ie in 
a forward traversal of the program, the flow information associated with each statement 
records the state of the program just after the statement is processed. 

After storing the flow information generated from program point B, the statement 
(a = a + b) is analysed. First, the left hand side is inspected. Variables on this side 

the statement a = b + c we sa.y a is defined, a.nd b,c used [ASU88]. 
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of a modify statement are defined, and so from this point backwards, the variable is con­
sidered dead (a is marked dead). Next, the right hand side of the assignment operator 
is processed. All variables on the right hand side will be used, so from this point these 
variables will be alive (a and b are marked alive). Note that the variable a is considered 
alive because although it is defined, the use of variable a precedes the definition. After the 
operands are processed, the statements previous (in a forward sense) to this are inspected 
(program point B) where the new, updated flow information will be stored before repeating 
the analysis process again. 

Figure 6.3: Detail of live variable analysis algorithm at the statement level 

6.2 Live Variable Analysis in LAST 

Since live variable analysis is relatively well-known, this section focuses on the different 
conceptual approach taken in LAST, compared that of traditional analyses utilizing control 
flow graphs. Specifically, in the analysis, the LAST traversal is aware of the structured 
nature of the program, rather than the traditional method of following the flow of control 
without recognizing the program's structure. The program is therefore treated as a series of 
hierarchically related conditional and unconditional bodies, as is presented in the following 
text. 

For the purposes of elucidation, live variable analysis on some generic examples is pre­
sented, to provide an intuitive understanding of the traversal. Following the examples is an 
abridged version of the algorithm. 

The examples utilize two control structures: the if and while statements. In addition, 
the three forms of 'constrained' goto statements (return, continue and break), which 
have an important impact on the analysis, are included in the while loop examples. In 

the diagrams, the letters "A" and "B" inside circles indicate program points, the rectangles 
with rounded edges sequences of instructions, the ovallabeled "Merge" a merge operator, 
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and the solid arcs the direction of traversal of the analysis. 

Figure 6.4: Detail of live variable analysis algorithm for an if statement 

The first example is with an if statement, which illustrates the effect of a conditional 
body on the flow of the analysis through the program. Figure 6.4 depicts two if statements: 
on the left an if with both then and else bodies, and on the right an if with only a then 
body. Dealing with the if statement on the left, the diagram is equivalent to the code in 
Figure 6.5. 

Since the analysis is backward, processing the if statement would start at its end 
(program point A), and process the then and else bodies independently. The results of 
these must be merged afterwards (merging using a union operator), and the result used 

program point B 
if(cond) 

then body 
else 

else body 
program point A 

Figure 6.5: Pseudo code for live variable analysis example 
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when processing the conditional body of the if statement. The resulting information is 
then propagated to program point B. 

For the second example, on the right, the traversal is similar, except that there is no 
else body to process. Therefore, the live information from program point A is merged with 
the information generated from processing the then body. 

As is obvious, the traversal is straight forward, and essentially merges live variable 
analysis flow information from conditional bodies with that from previous instructions, and 
a single pass over the instructions is sufficient to gather the information. However, dealing 
with loops is slightly more complicated, requiring a fixed-point iterative solution. As a 
reminder, a fixed-point iterative solution means that the output data flow information of 
the loop is fed back into the loop, and the process repeated until the output flow information 
between two successive iterations is identical. 2 

The number of iterations for structured programs is at most two per loop block (intu­
itively, one iteration to correctly initialize the input for the next iteration, a second iteration 
to use the correct input). A while loop is used to demonstrate the processing of loops in 
LAST. Dashed lines indicate the flow of analysis information during the fixed-point iteration. 

Figure 6.6 shows three while loops, each one including one of the three constrained 
gotos: return, break and continue. These are considered gotos because they change the 
flow of control, but are limited in the location of their destination, ie any return statements 
go to the end of a function body, continue to the beginning of the innermost surrounding 
loop, and break to the end (plus to the end of switch statements). 

These constrained goto statements are included because they can alter the control flow 
of a program, and thus its flow information. As shown in the diagram, these statements are 
handled by recording the associated flow information with each statement at each hierarchy, 
and using this saved information to re-initialize the data flow input. The pseudo-code for 
the algorithm provides an explanation of the mechanics of handling return, break and 
continue statements. 

The leftmost while loop in Figure 6.6 corresponds to a fragment of code such as in 
Figure 6.7. The flow information enters from point A, and is used as input into the loop 
body S3. The return statement, however, indicates the end of the function, and so its input 
is null. The null flow information is used to process the conditional body S2 preceding 
the return statement. At the top of the conditional, flow information from S3 and the 
conditional return block are merged, and used as input for the next block of code, Sl, and 
the while condition. After the conditional body is processed, the flow information is then 
fed back into the bottom of the loop (S3) for the next iteration. When the flow information 
has converged, it is propagated to program point B. 

The middle diagram of the while loop is identical to that on the left, except that a break 

2 Convergence is guaranteed. For the formal proof, refer to the dragon book [ASU88]. 
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Figure 6.6: Three examples of live variable analysis algorithm for while statements 

program point B 
while(cond) { 

S1 

} 

if(cond1){ 

} 

S3 

S2 
return; 

program point A 

Figure 6.7: Structure of while loop containing a conditional return statement 
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statement replaces the return. Now, instead of the return statements' flow information 
being initialized from null, it's initialized from program point A, since a break will transfer 
control to just after the loop. Similarly, the third while loop on the right utilizes a continue 
statement, which is initialized from the flow output of each iteration. 

Figure 6.8 presents an algorithm for generating and storing live variable information by 
traversing a LAST tree. It is complete except for function calls, which are handled identically 
to arithmetic operators, except that all registers holding parameters are marked Alive (this 
case was left out for brevity). 

The algorithm determines the lifetime of variables inside of registers. The recursive 
function live_analysis takes four arguments: the node being analysed (node), the current 
flow information (info ), the flow information associated with a break statement (Breaklnfo ), 
and the flow information for a continue statement ( Continuelnfo). 

If an assignment statement is analysed, the flow information is first stored with the node, 
and then variable being defined is marked as dead, and the right-hand side is analysed. This 
side will be a basic operator, and ifthey correspond to registers ( ie are not constants), then 
the variables are marked as alive. Since load and store operators can take registers as 
operands (see Figure 4.7), they are marked as alive if being read (for the store), or dead if 
being redefined (for the load). 

For control structures there are two groups: if or switch, and loops. For if and 
switch statements, their bodies must be processed in parallel, and afterwards the informa­
tion merged. The condition expression is then analysed, and merged again with the flow 
information (see Figure 6.4). Since break statements behave differently in switch state­
ments, the Breaklnfo is set to the state of liveness just following the switch statement ( ie 
assigned to info). As live_analysis is recursive, Breaklnfo is reset to its previous value 
once the svi tch has been processed. 

Loops are treated differently since their bodies are usually repeatedly entered, and the 
flow information from the previous iteration affects the lifetime of a variable (if it lives across 
iterations). Analysis of loop bodies is therefore performed twice: once to initialize the live 
variable information, and a second time to use the correct values in the analysis. Note that 
the Continuelnfo corresponds to the live information from the beginning of the loop, and 
so the Continuelnfo is set to the merged information after the first iteration. Breaklnfo is 
set to info, as in the switch statement. 

The three controlled goto statements (continue, break and return) are handled next. 
Since the analysis is intraprocedural, all variables are dead after a return statement. For 
break statements, ~ow of control is to either the end of a loop, or the end of a svi tch 
statement, so the Breaklnfo is returned. Similarly, for continue, Continuelnfo is returned. 

Finally, since the analysis is a backwards one, live_analysis moves to examine the 
previous LAST node. 
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f* node is the current program node, info the live variable information passed from the previous 
* statement. Breaklnfo contains flow information used to initialize the flow information when 
* a break is encountered, and Continuelnfo for the continue statement. *I 

Livelnfo live_analysis(AstNode node, Livelnfo info, Livelnfo Breaklnfo, Liveinfo Continueinfo) 
{ node = GotoEndofSequence(node); I* go to end of list *I 

} 

switch (StatementType(node)) { 
case assignment: 

node.info = info; I* store flow information *I 
info[left_child(node)) = Dead; I* kill the assigned variable *I 
return live_analysis( right_child( node) ,info, Breakinfo, Continueinfo ); 

case load: 
info[destination(node)) = Dead; 
if (source(node) == REGISTER) info[source(node)) Alive; I* ~gnore constants *I 
return info; 

case store: 
info[source(node)] = Alive; 
if (destination( node) == REGISTER) info[destination(node)] = Alive; 
return info; 

case basic_operator: I* includes arithmetic, logical and conversion operators *I 
if (left_child(node) == REGISTER info[left_child(node)] Alive; 
if (right_child(node) == REGISTER info[right_child(node)] = Alive; 
return info; 

case control_structure: 

} 

if (structure == IF or SWITCH) { 
if (structure SWITCH) Breakinfo = info; I* break reset for switch statement *I 
foreach subbody in node 

subbody.info = live_analysis(node.subbody, info, Breaklnfo, Continueinfo ); 
merged_body _info merge_all_subbodies( node); 
condition_info = live_analysis( conditional( node), info, Breaklnfo, Continuelnfo ); 
merged_info = merge_info(merged_body _info, condition_info ); 

else { 
merged_info info; I* initialize to info *I 
do twice I* is a loop, so process twice *I 
{ body_info live_analysis(body(node), merged_info, info, merged_info); 

condition_info = live_analysis( conditional( node), merged_info, info, merged_info ); 
merged_info merge_info(body _info,condition_info ); 

} 
} 
I* the above calculated flow information through a control structure. This information 
* must now be merged with information that did not flow through the control structure *I 

return merge_info(info, merged_info); 

case RETURN: return EMPTY; I* analysis zs intraprocedural, so everything is dead *I 
case BREAK: return Breaklnfo; 
case CONTINUE: return Continuelnfo; 
} 
return live_analysis(previous(node),info, Breakinfo, Continuelnfo); I* go backwards *I 

Figure 6.8: High-level algorithm for performing live variable analysis on LAST 
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Chapter 7 

Retargeting McCAT 

As mentioned previously, there is a considerable software investment in an optimizing com­
piler, and retargeting is a natural way to amortize this investment. The objective, of 
course, is to make retargeting the compiler cheaper than actually rewriting the analyses 
and transformations that motivate the retargeting in the first place. This can be a chal­
lenging objective, as there is a trade-off between generating efficient code and simplifying 
retargeting, and there is little point in retargeting an inefficient compiler. 

The McCAT retargeting strategy is to restrict the types of machines targeted, and 
within this set, abstract the architectural details that are common across all the machines. 
These features are then explicitly represented in LAST where the various algorithms can 
examine and manipulate them. Since an abstract machine is modeled, the algorithms can 
be reused for all the new targets-they do not need to be rewritten. In addition, since 
all the complexity is contained in LAST, the code generation phase is relatively easy to 
write. The code generation phase is where LAST is mapped onto assembly instructions and 
printed to a file, and consists mostly of traversing LAST, recognizing subtrees of nodes as a 
particular operation, and printing the corresponding assembly instruction(s). 

7.1 Architectural Classes 

Even though LAST is restricted to RISC architectures, there are still sufficiently different 
approaches to designing them which can result in sometimes radically different features. 
Recognizing these features can often mean a significant difference in performance, and so 
warrants different configurations of LAST. LAST therefore supports different classes of 
architectures. They are described in Section 3.2.4, but as a brief reminder are: register 
windows (or not), explicit (implicit) condition codes, multiplication/ division in floating 
point registers (or not), and support for high-level operations such as structure copies, 
exclusive or and negation operators. 
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When compiling for a specific machine, the architectural classes are selected, and the 
options toggled on or off (see Figure 7.1). Then, during the blastify phases where LAST is 
generated from SIMPLE, the appropriate set of LAST nodes are created . 

. c 

Target selection 

Code Generation 

Figure 7.1: Selection of Architectural Classes 

The analyses and transformations in LAST operate on all the different configurations­
they must, since the classes are orthogonal and so any combination is possible. For instance, 
whether or not a machine supports exclusive or operations is orthogonal to the type of con­
dition codes supported. Therefore, the algorithms can be used on any architecture without 
being rewritten. There is, however, the issue of specific architectural features that are found 
on only certain RISC machines. These features can require sophisticated analyses to iden­
tify. The RS/6000 is an excellent example: it has a special multiply-accumulate instruction 
that consumes only three machine cycles [OMMN90] that can significantly improve floating­
point performance of some programs. Since this hardware feature is currently found only 
on RS/6000 architectures, an algorithm that exploits it is of limited usefulness, and should 
be implemented as a separate phase. One has the option of placing the phase in either the 
code generation module, or intermixed with other compiler phases-either are feasible ap­
proaches, b:ut it is conceptionally simpler to implement it as another transformation phase, 
rather than being part of the code generation module. 

7.2 Code-Generator Generator 

The code generation phase is where the abstract meets the concrete: LAST subtrees are 
mapped to appropriate assembly instructions. This module is meant to be completely 
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rewritten when McCAT is retargeted, and so is designed to be as simple as possible. The 
code generation phase actually consists of two phases: calculation of offsets, and generation 
of assembly code (see Figure 7.2). The offsets module calculates the offsets for local and 
parameter variables, and allocatesfdeallocates temporary storage for structures passed as 
parameters. In addition, it detects variables marked as existing only in registers, and does 
not allocate space for them (see Section 3.4.4 for a brief description of this optimization). 

The code generation phase handles the mapping of LAST subtrees to assembly instruc­
tion(s). The actual instruction set used to specify the program varies from machine to 
machine, and it is the job of the code generation phase to map LAST to the appropriate 
assembly format. For example, there is only one representation in LAST for an addition in­
struction, but the machine could require the addition be specified as "add result, opl, op2", 
"add opl, op2, result", "result add opl, op2", or some other variation. This encoding, and 
other 'nitty-gritty' details are hidden in the code-generation module. 

Figure 7.2: Code Generation Phase 

Isolating the actual mapping of instructions simplifies retargeting by limiting the files 
requiring modification, and by keeping the complexity in LAST, simplifies changing the 
module. 

To simplify the code generation phase, a code-generator generator is used. A code­
generator generator, as the name implies, takes the description of a target machine and 
creates a code generator. Code-generator generators are useful and powerful tools used to 
simplify the porting of compilers [AGT89, FHP92b, ESL89]. They provide a way of spec­
ifying a pattern to match, and associated 'actions' to perform (usually being the printing 
of assembly code instructions to a :file). The generator then creates a program that auto­
matically will traverse the data structure provided as input, and perform the matching of 
patterns specified. 

McCAT utilizes the code-generator generator BURG[FHP92b] (and its more powerful 
relative IBURG[FHP92a]) to automate the monotonous task of creating code generators for 
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the various target arthitectures. 
As high-level input, BURG takes IR tree patterns, associated 'actions' (code templates), 

and a cost. This cost is calculated by the programmer depending on the relative 'expense' 
of one instruction to another. BURG traverses theIR, looking for the largest pattern it can 
match with the cheapest cost (called a cover), using dynamic programming (ASU88, CLR92]. 
When a pattern is matched, the associated action is performed ie the code template is 
emitted. For example, BURG might be handed the pattern ASSIGN(REG,PLUS(REG,REG)) 

(corresponding to the LAST subtree generated for the C code x = y + z) and action add 

REG1,REG2,REG3. When the pattern is matched, the string "add r1,r2,r3" is printed 
(assuming the register allocator has allocated rl, r2 and r3 to x, y and z respectively). 

The patterns matched are limited to individual subtrees (with SEQ nodes as the root), 
but within these subtrees BuRG guarantees an optimal cover. This property is crucial for 
CISC architectures, but under-utilized for RISC, and indeed a great portion of BuRG's 
potential goes untapped. However, BURG allows the target machine to be specified in 
concise, high-level templates, and provides the traversal mechanism for LAST, and it is 
these features that make B u RG so usefuL 

A 'user-friendly' interface was written for BURG, called McBURG[Don92], and is cur­
rently used for three target machines (DLX, SPARC and RS/6000) plus the pseudo as­
sembly. Figure 7.3 illustrates a fragment of the McBURG specification used for the add 
instruction in DLX. There are three patterns specified: "REG", "PLUS(reg,reg)" and 
"MODIFY(reg,reg)". The first pattern is for a leaf register (REG) node, and it simply 
prints out the register. The function emit knows the correct format for the target archi­

tecture, and takes a pointer t to the REG node, where the register mapping has been 
stored. 

MODIFY(reg,reg) expects two reg subtrees (which reduce in this fragment to REG and 
PLUS(reg,reg)) the left child being the assignment destination, and the right child being 
the plus operator. The action saves a pointer to the destination, and then descends into the 
operand. This rather inelegant arrangement is used since LAST uses an infix notation, rather 
than a pre- or postfix notation ie in an assignment operation, the plus node is the right child 
of an assignment node, and so the assignment destination is unavailable when processing 
the plus node (there are no pointers back to parent nodes). Assembly instructions usually 
use prefix notation, and so the use of modify kids is a way of converting the infix form of 
LAST to the prefix form. 

The next pattern, PLUS (reg, reg), expects a plus node with two register children. 
First, it emits the string add, and then descends subtrees pointed to by three variables: 
modifykids, kids [0] and kids [1]. The variable modifykids is a global variable and is 
set by the MODIFY pattern, 

The entire McBu RG specification for the various target machines consist of similar 
patterns for all the possible subtree combinations in LAsT(which number under 100 for 
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!*********************************************************************! 
I* Since operators such as PLUS are children of MODIFY, I must remember 

the destination for when I bump into the operator *I 
!*********************************************************************! 
stm: MODIFY(reg,reg) TOPDOWI;{ 

/•remember what I was looking at *I 
modifykids= kids[O]; 
modifynts= nts[O]; 
I• go down right child •I 
reduce(kids[l], nts[l]); 

!*********************************************************************! 
I* just print out the name of the register *I 
!*********************************************************************! 
reg: REG ;{ 

emit("%R", t); 
} 

!*********************************************************************! 
I* print out code for add first, then the children (left then right) *I 
!*********************************************************************! 
reg: PLUS(reg,reg) TOPDOWI = (2);{ 

emit ("add "); 

} 

reduce(modifykids,modifynts); I* descend assignment dest. •I 
emit(","); 
reduce(kids[O], nts[O]); I* descend left child •I 
emit(","); 
reduce(kids[1], nts[l]); I* descend right child *I 

Figure 7.3: Sample McBURG specification 
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DLX), a relatively easy task. However the proof, as they say, is in the pudding, and the 
success of this retargetability strategy will be tested as McCAT is retargeted to more and 
more RISC architectures, although the initial retargeting to the SPARC and RS/6000 is 
very promising. A basic working version of Me CAT was targeted to each of these machines, 
in both cases, in under one month by one person working part time, while learning both 
the architecture and LAST. It is expected that once experienced in re- targeting LAST, 

subsequent new RISC machines will be more easily accommodated. 



Chapter 8 

Results 

8.1 Description of Benchmarks & Test Strategy 

To illustrate the utility and effectiveness of the example transformations performed on 
LAST, the results from a small collection of benchmarks is presented. These benchmarks 
are described in Table 8.1, with the second column, # SIMPLE statements, indicating the 
number of SIMPLE C statements in each program. Each benchmark has been stripped of 
comments, and all blank lines removed. 

The benchmarks were compiled for the DLX architecture [HP90], and their execution 
simulated using the DLXSim simulator [HM90]. DLXSim can report individual. instruction 
counts. However, for the purposes of these experiments we concentrate on the number of 
loads, stores and total cycles consumed. 

The DLX architecture, as mentioned before, is a RISC architecture based partly on the 
MIPS R2000. The simulator configuration used is the default, with Table 8.2 listing the 
various latencies for the floating-point and load/store functional units. All other operations 
are single cycle. DLXSim does not simulate a cache. 

Each benchmark was compiled six different ways, twice with DLXCC, and four times 
with McCAT. DLXCC is a 1.37.1 version of GCC ported to DLX. The DLXCC-compiled 
benchmarks were compiled with and without the -0 option. The latter is used as a base for 
comparison-the results of all the other benchmarks are normalized to its results. While 
the McCAT results are reasonable, in general they do not perform as well as the optimized 
DLXCC versions. The reason is that DLXCC implements many other optimizations such 
as constant sub-expression elimination, strength reduction, jump optimization (which is 
needed, especially after a goto-filled program is restructured), dead-code elimination, and 
scheduling of conditional branch delay slots. The only optimizations currently performed 
by McCAT are the load/store reduction, register allocation and instruction scheduling. 

The four variations for the McCAT compiled benchmarks use two of the load/store 
available algorithms: improved (keep all local variables in registers) and extended (keep 
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Benchmark #SIMPLE Description 
statements 

Dhrystone 440 The well known synthetic benchmark Dhrystone, inspired by 
Whetstone. Attempts to characterize CPU and compiler 
performance for a typical program. Outermost loop performs 
only one iteration due to the slow simulation speed of the 
simulator. 

25 A recursive solution to the Towers of Hanoi problem. 
Intmm 105 A 40 x 40 integer matrix multiply. 
Knight 93 A recursive solution to the Knight's Tour problem: given an 

8 by 8 chessboard, determine a series of moves so that a knight 
starting at position 1,1 visits each square without repetition. 

Mersenne 248 Computes the digits of M= 2P-l, where p is set to 89. 
Sorts 226 Generates a random sequence of 100 integers and applies 

both bubble- and quicksort algorithms. 
Tomcatv 567 C version of the FORTRAN program Tomcatv. This 

program is a highly vectorizable double precision floating ,- point mesh generating benchmark. The FORTRAN version is 

'-' part of the SPEC benchmark suite. 
Whetstone 1715 A synthetic benchmark, based on the frequency of 

Algol statements in programs submitted to a university 
batch operating system in the early 1970s. 

Table 8.1: Description of benchmarks 

Unit Latency 
(cycles) 

Add/Subtract 2 
Divide 19 
Multiply 5 
Load 2 
Store I 

Table 8.2: Latendes for DLX floating-point and load/store functional units 
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aliased and global variables in registers within basic blocks). The naive approach generates 
inferior code, and for brevity is left out. For each load/store reduction transformation, 
an unscheduled and scheduled (using the Shieh-Papachristou algorithm) is performed. Ta­
ble 8.3 lists the meanings of the abbreviations used in the following graphs. 

Abbrev. 
OptDLX% 
Impr.% 
ImprSch. % 
Ext.% 
ExtSch.% 

Meaning 
Percentage improvement for optimized DLXCC ( dlxcc -0 
%age improvement for McCAT using improved load/st 
as above but with scheduling 
%age improvement for McCAT using extended load/st 
as above but with scheduling 

Table 8.3: Explanation of abbreviations for results 

Note that in the result figures, the vertical scale is typically from 0 to 1.0, with 1.0 
representing 100%. 

8.2 Benchmark Results 

8.2.1 Dhrystone 

Figure 8.1 shows the results for the dhrystone be"!lchmark. The results are quite good, and 
McCAT actually performs better than the optimized version of DLXCC when using the 
'improved' load/store algorithm. Obviously, loads and stores constitute a large proportion of 
the execution time of the benchmark. Interestingly, the 'extended' algorithm performs worse 
than either the DLXCC or 'improved' versions. The transformation was, in a sense, too 
successful, since it found many global and aliased variables to keep in registers. However, the 
register pressure was too great, causing the the register allocator to spill and reload variables 
enough times to slow the overall execution of dhrystone. When the current register allocator 
spills a variable, loads and stores are inserted for all uses of the variable within the function, 
not just at the site of high register pressure. DLXCC has a more effective strategy. 

8.2.2 Hanoi 

Hanoi (Figure 8.2) is another benchmark where McCAT produced better code than DLXCC 
( ie another program with a significant number of dynamic loads). There are very few global 
or pointer dereferences, so the results are the same for the improved and extended versions. 
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c 
Figure 8.1: Dhrystone results 

Figure 8.2: Hanoi results 
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8.2.3 Intmm 

While McCAT does not perform as well as DLXCC on the intmm benchmark (Figure 8.3), 
the load/store transformations by themselves enable a speed-up of 30%. Scheduling can 
reduce it by a further 5%, although McCAT will definitely benefit from the addition of 
other traditional optimizations. 

As in the dhrystone benchmark, high register pressure causes the extended version of 
McCAT to perform worse than the unscheduled improved version. 

Figure 8.3: Intmm results 

8.2.4 Knight 

In the knight benchmark (Figure 8.4), the improved load/store reduction algorithm out­
performs that of DLXCC, although the lack of other optimizations keeps the McCAT 
version about 15% slower than the optimized DLXCC version. There are neither pointers 
nor globals, so there is no difference between the improved and extended versions. Addi­
tionally, since knight's basic blocks are small, instruction scheduling makes only a minor 
improvement to the program's running time. 

8.2.5 Mersenne 

Figure 8.5 presents the results for the mersenne benchmark. Like hanoi, there are few globals 
and pointer dereferences, and like intmm, the McCAT versions are up to 30% faster than 
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Figure 8.4: Knight results 

the unoptimized version. Again, there is room for further significant improvements with 
other optimizations, when compared with the optimized DLXCC results. 

Additionally, there is a spectacular reduction in the number of loads for both DLXCC 
and McCAT. The majority of the savings come from moving the loading of array base 
addresses to the outside ofloops (see Section 3.4.2). 

8.2.6 Sorts 

The sorts benchmark (Figure 8.6) provides the first example of a significant gain from 
the extended load/store reduction algorithm. The improved version allows only a 10% 
improvement in performance, but the extended version is close to 30%. There is, again, an 
illustration of the need for other optimizations when compared to the optimized DLXCC 
result. The number ofloads in the optimized DLXCC version is quite low, not only because 
of its own load/store reduction algorithm, but also the effect of other optimizations that 
reduce the total number of instructions generated for the benchmark. 

8.2. 7 Tomcatv 

The results for the tomcatv benchmark highlight one area of needed improvement: register 
allocation. This is the only benchmark where a scheduled version performs worse than 
an unscheduled version (Figure 8.7). Tomcatv has very large basic blocks that, even in 
unscheduled versions, place pressure on the register allocator. The Shieh-Papachristou 
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Figure 8.5: Mersenne results c 

Figure 8.6: Sorts results 

0 
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algorithm used in Me CAT stretches the lifetimes of variables enormously in this benchmark, 
resulting in an avalanche of register spills and reloads. The McCAT extended version 
reduces the number of loads and stores, and thus reduces the restrictions on the scheduler, 
producing a highly parallel, but register intensive program. 

Figure 8.7: Tomcatv results 

8.2.8 Whetstone 

Both the improved and extended load/store reduction algorithm substantially reduces run­
ning time in whetstone (Figure 8.8), by around 40%. DLXCC, again, produces a faster 
program (over 20% faster), indicating the many further improvements possible in McCAT. 
Scheduling slightly improves running time, but in conjunction with the extended load/ store 
algorithm, increases the register pressure to a point where register spills and reloads increase 
running time past that of the improved scheduled version. 

8.3 Observations & Impressions 

As much background reading as one may perform, research inherently requires a certain 
leap of faith and of risk taking. Hindsight enables 20/20 vision, and in retrospect while 
some design decisions may have been excellent choices, others might have been better. This 
section lists some of the author's impressions on the development of LAST. 

• As in many software projects, the amount of testing needed was underestimated. The 
author initially tried to split his time about equally between development and testing, 
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Figure 8.8: Whetstone results 

but in the final stages, much more time was required for testing. Above everything 
else, compilers must be correct, and due their complexity, benchmarks are the only 
way to efficiently ensure correctness. 

In addition, it became apparent that the worst person to create test cases for a com­
piler is a compiler-writer. Fortunately, amazing permutations of C code are not un­
common in publicly available C source code, and were invaluable for testing LAST. 

• Limiting the abstract machine to RISC was an effective decision, and allowed LAST to 
be quite low level while maintaining retargetability. Low~level optimizations, as well 
as bug-fixes, were instantly available for all supported targets. 

• The interpreter was extremely helpful in debugging LAST. It allows a direct, machine­
independent way of manipulating LAsT, along with some debugging capability. The 
current version of the McCAT backend does not support debugging information, 
and so complicated benchmarks that failed were very challenging to debug (before 
the interpreter). In one case, the author spent six days on a benchmark, while the 
interpreter was being developed. Within three hours of it being available, the problem 
was located and solved. 

• The current method of retargeting, while simple, requires a fair knowledge of LAST, 
and represents a reasonable investment in time. An interface to the backend, and 
of configuring LAST(perhaps similar to the machine description files used in GCC), 
would be very useful. 
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Chapter 9 

Conclusions & Future Work 

9.1 Conclusions 

This thesis has presented LAST, a low-level structured intermediate representation used 
in the McCAT C compiler. LAST is designed to expose low-level architectural details to 

various code-improving algorithms, while retaining a high degree of retargetability. 
The structured approach simplifies the development of analysis and transformation 

phases, as evidenced by the simple but powerful algorithms used for live variable analy­
sis, and the reduction of the number of loads and stores. The reduction algorithm alone 
improves the performance of several benchmarks by up to 30%. In addition, the structured 
nature of LAST easily supports pervasive flow information, enabling the points-to informa­
tion gathered and stored in the SIMPLE IR to be used in LAST to reduce loads and stores 
associated with global and aliased variables. The pervasive flow information has enabled 
an additional performance improvement in the tomcatv benchmark of 20%. 

There is, however, an 'over-optimization' effect in some benchmarks, where too many 
variables are held in registers, causing the register allocator to spill and reload the vari­
ables on every use. These register reloads retard overall performance considerably in some 
benchmarks, and point to the need for additional information to locate and isolate regions 
of high register pressure, so the allocator spills variables in these regions only, rather than 
at every use and definition. 

LAST also enables McCAT to be retargeted to other RISC machines without unduly 
compromising the quality of code produced. This was a non-trivial goal-there is an in­
herent trade-off between high-performance and ease of retargeting. Abstraction minimizes 
the changes required when retargeting the compiler, but gives the code-improving transfor­
mations less information to work with, often resulting in less efficient code. On the other 
hand, the more specific the compiler, the more work is required to rewrite the analysis and 
transformation phases when retargeting to a different machines. LAST attains both goals 
by limiting McCAT's targets to RISC architectures, and abstracting features common to 
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them. 
Since LAST is focused towards RISC machines and is configurable, it can represent low­

level architectural details such as branch delay slots and register windows, allowing powerful 
low-level transformations (like register allocation and instruction scheduling) to be highly 
effective. At the same time, since only the configuration of LAST changes from machine 
to machine, all the analyses and transformations on LAST can be reused, and only the 
McBURG specification file need be rewritten. Currently McCAT is being retargeted to the 
SPARC, Alpha and RS/6000 architectures, and in all cases a basic, working version was 
available within one month, including the time taken to learn SIMPLE, LAST and McBURG. 

9.2 Future Work 

The work done in this thesis has laid the foundation for the McCAT backend by providing 
both an intermediate representation and a code generator. Additionally, it provides impor­
tant analyses and code-improving transformations. Based on this foundation, there remain 
many important issues to address, the most important of which are discussed below. 

• Accurate information needs to be generated for the register allocator. Initially, it 
was assumed that the register allocator was sophisticated enough to handle the addi­
tional pressure placed by the 'extended' algorithm, but there are serious limitations, 
especially when other life-extending transformations ( eg instruction scheduling) are 
used. 

• Jump optimizations such as branch chain elimination need to be implemented. Mc­
CAT's program structurer can sometimes create structured programs that are not as 
fast as their unstructured counterparts. While the penalty generally appears to be in 
the region of 5% for programs requiring structuring, some benchmarks are penalized 
even further [EH94J. Structuring will typically produce a cascade of test conditions, 
using sequences of if, do while and break statements to replicate the flow control of 
a goto. Branch chain elimination would bypass all the intermediate condition checks 
by specifying the ultimate target label for a branch (such as for a break). The LAST 

nodes used to represent a program would not change: the only apparent difference 
would be at code generation time, when printing out the label for a break statement. 
At first glance, this optimization seems to create an unstructured program out of a 
structured one, but in fact does not. The change in control flow is not arbitrary, but 
essentially follows the normal flow without performing the tests. In following the flow 
of control of the cascading tests, there are no side effects ie values are only read, not 
written, and so the succession of jumps can be safely shortened. If there were inter­
vening instructions between the conditions, then the branch chain elimination would 
not be performed. 
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• Larger, longer running benchmarks should be used to test McCAT, in order to further 
investigate the optimizations, and also to ensure the correctness of LAST generated 
code. 

• The scheduling algorithm should be extended, to include 

1. Scheduling instructions inside conditional branch delay slots. This optimization 
can improve a program's performance by an additional 10% [Tie89]. 

2. Minimizing register pressure by scheduling with knowledge of register usage. The 
balanced scheduling algorithm, by Kerns and Eggers, [KE93] can be a candidate 
algorithm for implementation. 

3. Utilizing points-to information to reduce various data dependencies between 
aliased variables while scheduling. Currently, a load or store of any aliased vari­
able will have a dependency edge to all other loads and stores of aliased variables. 
The may points-to information (a list of variables that may be aliased to one an­
other) gives highly precise information [EGH94], so the number of dependencies 
between loads and stores can be reduced significantly. 

• Implementation of traditional optimizations, either at the LAST level, or at SIMPLE. 

Of immediate benefit would be common sub-expression elimination and strength re­
duction, as evidenced by the generally superior performance of the optimized DLXCC 
generated code. 
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Glossary 

ACAPS: Advanced Compilers, Architectures MIPS: Company designing RISC architec-
and Parallel Systems, a research group 
at McGill university. 

AST: Abstract syntax tree. 

CFG: Control flow graph. 

CISC: Complex Instruction Set Computer. 

DAG: Directed acyclic graph. 

DLX: Fictious instruction set based on MIPS 
R2000 architecture. Created as a peda-

tures and manufacturing UNIX-based 
workstations. The MIPS series of ar­
chitectures includes the R2000 and R3000. 

McCAT: McGill Compiler/ Architecture Test bed. 
A system used for researching advanced 
compiler and architecture concepts, de­
veloped by the A CAPS group. Included 
in the the testbed is the McCAT C 
compiler. 

gogical tool in Hennessy and Patterson RISC: Reduced Instruction Set Computer. 

[HP90]. RTL: Register Transfer Language (GNU). 

FIRST: An abstract syntax tree generated 
by GNU's GCC front-end, and used to 
create SIMPLE. 

A common acronym else, also used by 
Davidson to mean Register Transfer Lists. 

SEQ: Sequence node, a LAST structural node 

GCC: The GNU C compiler, a highly portable, (Section 4.1). 
publicly available C compiler. 

GNU: Gnu's Not UNIX. An organization 
associated with the Free Software Faun-
dation in Massachusetts, Boston, de­
voted to providing free software to the 
programming community. 

IR: Intermediate representation. Also known 
as intermediate code (IC) and interme­
diate language (IL). 

SIMPLE: Simple intermediate representa­

tion. A simplified abstract syntax tree 
used as the high-level IR in the Me­
CAT C compiler. 

SPARC: Scalable Processor ARChitecture. 
The architectural specification of a RISC 
chip used in modern Sun workstations. 
SPARC architectures utilize register win­
dows. 

LAST: Low level Abstract Syntax Tree, a Sun: A manufacturer of UNIX-based work-
low-level intermediate representation used stations. 
in the McCAT compiler. 
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SIMPLE Grammar 

The grammar for SIMPLE is presented below, as implemented in the McCAT C compiler. 
For a more complete coverage of SIMPLE, the reader is directed to Bhama Sridharan's thesis 
[Sri92]. 

all_stmts stmtlist stop_stmt 
stmtlist 

stmtlist stmtlist stmt 
stmt 

stmt compstmt 
expr ';' 
IF '(' condexpr ')' stmt 
IF '(' condexpr ')' stmt ELSE stmt 
WHILE'(' condexpr ')' stmt 
DO stmt WHILE'(' condexpr ')' 
FOR '('exprseq ';' condexprseq ';'exprseq ')' stmt 
SWITCH'(' val ')' casestmts 
(;' 

compsmt '{' all_stmts '}' 
'{' '}' 

'{' decls all_stmts '}' 

'{' decls '}' 

I•• decls denotes all possible C declarations. The only difference is that••/ 
I•• the declarations are not allowed to have initializations in them. ••I 

condexprseq : exprseq ' ' ' condexpr 
condexpr 

exprseq exprseq ',' expr 
expr 
condexpr '?'exprseq': 'exprseq 
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stop_stmt BREAK';' 

casestmts 

CORTINUE ' ; ' 
RETURJI ';' 
RETURJI val '.' ' 
RETURN'(' val ')' ';' 

'{' cases default'}' 

'.' ' 
'{' '}, 

cases cases case 
case 

case CASE INT_CONST':' stmtlist stop_stmt 

default: DEFAULT':' stmtlist stop_stmt 

expr rhs 
modify_expr 

call_expr: ID '(' arglist ')' 

arglist arglist ',' val 
val 

modify_expr varname '=' rhs 

'*' ID '=' rhs 

rhs binary_expr 
unary_expr 

unary_expr simp_expr 

'*' ID 
't' varname 

lcall_expr 
I unop val 
I '('cast ')' varname 

I•• cast here stands for all valid C typecasts **I 

binary_expr : val binop val 

unop '+' 
,_, 
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binop re lop 
,_, I '+' 'I' 
'i' I 'I, '<<' 

re lop : '<' '<=' I '>' 

condexpr val 
val relop val 

simp_expr varname 

val ID 

INT_CONST 
FLOAT_CONST 
STRING_CONST 

CONST 

varname arrayref 

arrayref : 

reflist 

compref 
ID 

ID reflist 

'[' val '], 

I 

reflist ' [, val 

idlist idlist ' ' ID 
ID 

compref ' (' '*' ID ') ' 
idlist 

'*' I 'Y., 
'>>' '-, 

'>=' (==' 

'], 

' ' idlist 

99 
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LAST Grammar 

This appendix gives the grammar for LAST. 

function : save sequence restore EOSEQ 

save : SEQ SAVE_REGISTERS 
restore : SEQ RESTORE_REGISTERS 

sequence : SEQ seq_body sequence 
I I* empty *I 

termsequence : SEQ BEGIN-BODY sequence EOSEQ 

seq_body modify 
load 
store 
fn_call 
conversions 
reg_moves 
comparisons 
control 
structured_goto 
REG_WIN_DUT REG 
REG_WIN_IN REG 
ADJUST_SP 
PDP_PARMS 
PASS_FARM REG 

modify : MODIFY REG mod_src 

mod_src REG 
CONSTANT 
fn_call 
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comparisons 
arithmetic 

arithmetic MULTIPLY REG REG 
DIVIDE REG REG 
PLUS REG regconst 
PLUS CONSTANT REG 
MINUS REG regconst 
BIT_AID REG regconst 
BIT_IOR REG regconst 
BIT_XOR REG regconst 
BIT_NOT REG 
NEGATE REG 
TRUTH_IDT REG 
LSHIFT REG regconst 
RSHIFT REG regconst 

control: if 
switch 
for 
do 
while 

if IF cond if_hack 

if_hack IF_ELSE_HACK thenbody JUMP_DVER_ELSE delay_slot EOSEQ elsebody 
IF_ELSE HACK thenbody 

thenbody termsequence 
elsebody termsequence 

switch : cond delay_slot cases 

cases SEQ CASE case_labels casebody cases 

SEQ DEFAULT casebody EOSEQ 

case_labels SEQ CONSTANT case_labels 
EOSEQ 

casebody : sequence structured_goto EDSEQ 

do : DO termsequence cond delay_slot 

while : WHILE cond delay_slot whilebody 

whilebody: sequence JUMP_TD_WHILE delay_slot EDSEQ 

for : FOR initlstop delay_slot incrementljump 
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initNstop FOR_STUFF initialize stopNbody 

stopNbody FOR_C_N_B stop forbody 

incrementNjump : FOR_INC_N_JUMP increment jumpback 

initialize : termsequence 

stop : cond 

increment : termsequence 

jumpback : LOOP_TO_FOR delay_slot 

forbody : termsequence 

delay_slot : sequence EOSEQ 

cond seqloads comparisons seqstores 
seqloads modify seqstores 

seqloads SEQ load seqloads 
I• empty •I 

seqstores SEQ store seqloads 
I• empty •I 

load : LOAD REG load_src 

load_src REG 
ADDRESS 
CONSTANT 
MEH 

store STORE store_dest REG 

store_dest REG 

fn_call 

HEM 

FN_CALL args LABEL 
FN_CALL args REG 

args ARG REG args 
ARG CONSTANT args 
NOARG 

reg_moves : HVI2F REG REG 
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MVI2F REG CONSTANT=O 
MVF21 REG REG 

conversions FD2S REG REG 
FD21 REG REG 
FI2S REG REG 
FI2D REG REG 
FS21 REG REG 
FS2D REG REG 
FIXUD2S REG REG 

comparisons GE REG regconst 
GT REG regconst 
EQ REG regconst 
LT REG regconst 
LE REG regconst 
NE REG regconst 

structured_goto : BREAK 
I CONTINUE 
I RETURN sequence EOSEQ 

c regconst REG 
CONSTANT 
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Detailed Results 

I V'...t.v') DLX Opt. % Impr. % lmpr. % Ext. % Ext. % 
DLX Sched Sched 

Cycles 571.49 430.49 75.33 419.00 73.32 405.00 70.87 493.00 86.27 455.00 79.62 
Loads 131.00 81.50 62.21 68.50 52.29 72.50 55.34 86.50 66.03 90.00 68.70 
Stores 92.00 77.00 83.70 68.00 73.91 72.00 78.26 75.00 81.52 78.50 85.33 

Table C.1: Dhrystone results 

Table C.2: Hanoi results 

Table C.3: Intmm results 
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(X 106
) DLX Opt. % Impr. % Impr. % Ext. % Ext. % 

DLX Sched Sched 

Cycles 88.57 50.60 57.13 64.57 72.90 62.75 70.85 64.57 72.90 62.75 70.85 
Loads 23.42 3.60 15.37 3.18 13.57 3.18 13.57 3.18 13.57 3.18 13.57 
Stores 5.76 2.81 48.79 2.53 43.91 2.53 43.91 2.53 43.91 2.53 43.91 

Table C.4: Knight results 

DLX 

Cycles 181378 
Loads 41262 1450 
Stores 19726 9904 

Table C.5: Mersenne results 

% Impr. Ext. 

c 34.65 273543 84.66 224798 73.00 
23.47 38796 46.65 46.88 26534 31.90 
47.43 7520 46.15 47.35 7523 46.17 

Table C.6: Sorts results 

DLX Opt. % Impr. % Impr.l % Ext. % Ext. % 
I DLX Sched. Sched. 

Cycles 65680 30677 46.71 66448 101.17 642ll91 97.76 48357 73.63 53633 81.66 
Loads 10216 4692 45.93 5088 49.80 1 116.45 4899 47.95 9174 89.80 
Stores 2189 2281 104.20 1968 89.90 1991 90.95 2020 92.28 2951 134.81 

Table C. 7: Tomcatv results 

(x10°) DLX Opt. % lmpr. % Impr. % Ext. % Ext. % 
DLX Sched Sched 

Cycles 15.16 5.72 37.77 9.45 62.37 8.61 56.78 9.61 63.40 9.18 60.58 
Loads 4.24 0.67 15.72 1.17 26.34 1.13 26.61 1.08 2~ 1.23 29.10 
Stores 2.09 0.34 16.10 0.34 16.13 0.35 16.67 0.52 2 0.60 28.74 

Table C.8: Whetstone results 
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