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Abstract 

We consider the design and performance of CDMA-based multiuser detectors with 

partial information. Specifically, we assume that the multiuser signal presented to 

the receiver is contaminated by interference from sources whose parameters — power, 

delay, signature sequence — are unknown. The application we have in mind is to 

the uplink reception problem in CDMA cellular wireless, it being reasonable in such 

a setting to suppose that detailed parametric models of out-of-cell interferers may 

not be available to every base station. 

In the first part of the thesis, we propose forms of enhanced multiuser detectors 

with partial information, whose front end uses the covariance structure of the out-

of-cell contribution to suppress interference prior to multiuser signal detection. The 

proposal, amenable to adaptive as well as non-adaptive implementation, features 

a bank of linear equalizers at the input, and either a maximum-likelihood (ML) 

sequence detector or a linear detector at the output. Computational complexity, 

given the size of the detection group, is independent of the total number of active 

users. 

The second part of the thesis evaluates the performance of the proposed receiver 

structures, both for the AWGN channel and for the multi-path channel with slow 

Rayleigh fading. The evaluation criteria include mean squared error, effective signal-

to-noise ratio, probability of bit error, asymptotic efficiency and near-far resistance. 

The results, functions not only of the channel parameters but of the particular char­

acter of the side information assumed available, provide an expanded view of the 

performance tradeoffs available in the application of multiuser detectors. The pro­

posed receivers are observed to be near-far resistant and superior to enhanced single-

user detectors. The ML-based variants that we studied outperform the linear ones, 

the performance difference being especially significant when parameter information 

is incomplete or MAI is severe. Bit error rate decreases with the size of the detec­

tion group, and falls off rapidly with the number of resolved multi-path components. 

Comparison of short and long spreading in our numerical experiments suggest that 

short spreading is less sensitive to incompletely characterized interference. 
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Sommaire 

Nous traitons du design et des performances de detecteurs AMRC multi-utilisateurs 

a information partielle. Nous supposons plus particulierement, que le signal multi-

utilisateurs a l'entree du recepteur est contamine par des interferences dont les 

parametres de source - puissance, retard, signature - sont inconnus. L'application 

que nous envisageons est celle liee au probleme de la reception des signaux cellu-

laires sans fil AMRC de la voie montante. Dans ce cas, il est raisonnable de supposer 

que les modeles parametriques detailles de ^interference extra-cellulaire ne sont pas 

toujours disponibles pour toutes les stations de base. 

Dans la premiere partie de la these nous proposons une structure de recepteur 

dont le pre-traitement exploite la structure de covariance de l'interference extra-

cellulaire. pour supprimer l'interference avant le decodage multi-utilisateurs. Cette 

structure, qui se prete aussi bien a une realisation adaptative que non-adapt at ive, 

comporte une serie d'egaliseurs lineaires a l'entree et d'un detecteur a maximum de 

vraisemblance (MV) ou d'un detecteur lineaire a la sortie. La complexity du calcul 

est independante du nombre total d'utilisateurs actifs pour une grandeur donnee du 

groupe de detection. 

La seconde partie de la these evalue les performances de la structure du recepteur 

propose dans le cas du canal BBGA et celui du canal multivoie a evanouissements de 

Rayleigh. Le critere devaluation tient compte de l'erreur quadratique moyenne, du 

rapport signal-bruit, de la probabilite d'erreur sur les bits, de l'efficacite asympto-

tique et de l'immunite a l'effet pres-loin. Les resultats, qui dependent non-seulement 

des parametres du canal mais egalement du caractere particulier de l'information 

laterale que nous supposons disponible, offrent une meilleure vue d'ensemble des com-

promis disponibles lors de Pemploi de la detection multi-utilisateurs. L'architecture 

proposee se revele etre resistante a l'effet pres-loin et superieure aux detecteurs com­

plexes a utilisateur unique. La variante MV que nous avons etudiee a surpasse 

la variante lineaire, l'ecart en termes de performances etant particulierement sig-

nificatif lorsque l'information disponible sur les parametres est incomplete ou que 

interference multi-acces est importante. Le taux d'erreur sur les bits diminue en 

fonction de la grandeur du groupe de detection et diminue rapidement en fonc-

tion du nombre de chemins multivoies isoles. La comparaison entre l'etalement a 
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sequence courte et a sequence longue a l'aide de nos resultats numeriques suggere 

que l'etalement a sequence courte est moins sensible a l'interference incompletement 

caracterisee. 
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Chapter 1 

Introduction 

Mobile phones and wireless data services have greatly influenced our daily lives. Par­

allel to well-known wireline networks, the widespread deployment of cellular wireless 

networks and their services has been witnessed almost everywhere in our modern life, 

which will revolutionize the concept of communication and information processing for 

business, professional, and private applications. To satisfy the growing demand for 

global wireless communication services, future mobile systems are required to accom­

modate a set of the standard service capabilities; for example, the third-generation 

(3G) wireless systems have been required to satisfy the International Telecommuni­

cations (IMT-2000) requirements [1, 2]. Thus, the system design to achieve all these 

goals in a cellular wireless network is a challenging task. Among the many difficul­

ties imposed by this demand for services are cell-based multiple services for multiple 

users in a limited radio frequency resource and a time-varying wireless propagation 

environment; that is, the multiple-access schemes play a crucial role in the system 

design. 

In multiple-access applications, where many users transmit to and from a single 

point over a limited and shared radio resource, multiple-access techniques are re­

quired to manage the sharing of the resource to guarantee the separation of users' 

signals in simultaneous transmissions. The commonly used, multiple access tech­

niques include time division multiple access (TDMA), frequency division multiple 

access (FDMA), and code division multiple access (CDMA). CDMA technology has 

shown more promise to potentially enhance performance than other multiple access 
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technologies; in fact, it has been chosen as the globally adopted standard air inter­

face in 3G wireless communication systems [3, 4]. Our research interest of this thesis 

focuses on CDMA technology, which will be described in the sequel; information 

on TDMA and FDMA schemes can be found in many references and textbooks, for 

example, [5, 6]. 

CDMA technologies can be broadly divided into two categories: frequency-hoping 

CDMA (FH-CDMA) and direct-sequence CDMA (DS-CDMA). The FH-CDMA tech­

nique can be viewed as a hybrid of TDMA and FDMA. In a FH-CDMA system, the 

available spectrum (channel) bandwidth is subdivided into a large number of contigu­

ous frequency slots. In any signaling (time) interval, the transmitted signal occupies 

one or more of the available frequency slots; the selection of the frequency slot(s) is 

pseudorandom, according to the preassigned unique hoping pattern for each user. 

In a DS-CDMA system, all users transmit over the entire available spectrum 

bandwidth at the same time. The bandwidth of a user's (information) signal is 

expanded by multiplying it with a spreading waveform, often referred to as s igna ture 

waveform or pseudo-noise (PN) waveform, whose bandwidth is much wider than 

that of the user's signal. In its simplest, binary form, a signature waveform consists 

of a chip waveform (usually common to all users) and a PN sequence (unique for 

each user) whose rate is some large integer multiple of the information bit rate. 

As a consequence, DS-CDMA is often referred to as a wideband multiple-access 

technique. The receiver can distinguish a user by its unique PN sequence from the 

received aggregate signal of multiple users. 

In this thesis, we'll address the problems of base-station receiver design in cellular 

wireless DS-CDMA networks. Because of the sharing of the same radio spectrum, 

any signal of a user will result in multiple-access interference to other active users 

(assuming nonorthogonal signature waveforms), and in a fading multipath propa­

gation environment, it will also produce the inter-symbol interference (ISI) to the 

user itself; if not properly controlled, one user signal can be very strong and mask 

the weak signals of other users at the receiver. Thus, it is very challenging for the 

base-station receiver design to take these effects into account in wireless DS-CDMA 

systems. In a multi-cell setup, the base-station receiver in a cell has the parameter 

knowledge — timing, signature waveform, and/or signal strength — of the in-cell 

users. However, the base station usually has no such knowledge of the users who 
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Fig. 1.1 Direct-sequence code-division multiple-access (DS-CDMA) 
communication system (baseband model). 

are out of the cell, and the signals of the unknown users are not under control of 

the in-cell receiver; some out-of-cell mobiles (especially these close to the desired cell 

edge) can transmit substantially high powers, due to their poor-quality links, thus 

resulting in the strong out-of-cell interference that can not be ignored for the in-cell 

signal reception. As a result, it becomes even more challenging for the CDMA re­

ceiver design that incorporates all available user information and takes the effects of 

in-cell and out-of-cell sources into consideration in cellular wireless DS-CDMA net­

works. This thesis will propose and evaluate forms of enhanced base-station receiver 

architectures under the partial system parameter information scenarios, which can 

fully exploit the known parameter knowledge of in-cell users and the available sta­

tistical signal characterization of out-of-cell sources for both the multiuser detection 

of in-cell users and the suppression of unwanted interference in cellular wireless DS-

CDMA networks. We start with reviewing in more detail the DS-CDMA technique: 

important benefits, existing impairments, and sensible solutions. 

1.1 Direct-Sequence Code-Division Multiple-Access 

(DS-CDMA) 

The block diagram shown in Fig. 1.1 illustrates the basic elements of a typical DS-

CDMA baseband communication system for transmitting the binary information 

sequences of multiple users. At the transmitting end, the information bits of a user, 

generated at the bit rate, are fed into the channel encoder to produce a coded symbol 

sequence; this sequence (usually performing additional interleaving in many systems 

of practical interest) is then modulated by the (binary) modulator; and finally, the 
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Fig. 1.2 Typical cellular multiple-cell systems with a frequency reuse 
pattern. Cells with same-number designation use the same set of fre­
quencies simultaneously. 

modulated signal is multiplied by a preassigned, unique signature waveform of the 

user. The inverse procedures are made at the receiving end to obtain the estimated 

information bits of the user. The PN sequence employed in both the transmitter 

and the receiver for each active user needs to be unique: it furnishes the addressing 

or identification such that multiple users can be properly separated at the receiver 

end. Synchronization (or timing) of the signature sequence generated at the receiver 

with the signature sequence contained in the incoming received signal is required to 

demodulate the received signal. Moreover, both the timing and the phase recovery 

are desired at the receiver for coherent reception. The chip rate of PN sequence 

is usually much higher than information bit rate, and the ratio of the chip rate to 

the bit rate is often loosely referred to as the processing gain. Note that the 

processing gain in a coded CDMA system is split into two parts: a coding factor 

(due to the channel coding) and a spreading factor (due to the signal spreading of 

the coded symbols); for a CDMA system without channel error coding, the coding 

factor is considered one, and thus the spreading factor is equal to the processing gain. 

Further information on the fundamentals of DS-CDMA can be found in [7, 8, 9]. 

Among many attractive features of DS-CDMA technology are its ideal frequency 
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reuse and its effective use of silence activity in a bandwidth-on-demand, fair-sharing 

manner. Frequency reuse is one of the most important cellular parameters in the 

evaluation of spectrum utilization efficiency and can be described as follows: each 

cell is assigned a group of distinct radio channels to guarantee the disjoint frequency 

bands and avoid mutual interference between the neighboring cells. Cellular wireless 

systems based on TDMA/FDMA technology requires frequency reuse to prevent or 

reduce co-channel interference [10, 5]. A typical cellular TDMA/FDMA multiple-

cell network with a frequency reuse pattern is shown in Fig. 1.2. Each hexagon 

represents a cell and cells marked with the same number designate simultaneous 

use of the same set of carrier frequencies (channels). Since the number of available 

frequencies (or channel sets) is 7, the frequency reuse factor is 1/7 [5, 11]. Contrary 

to TDMA/FDMA, a cellular DS-CDMA network can reuse all seven frequencies (or 

channel sets); that is, one frequency band can be used by each cell, leading to a 

frequency reuse factor of 1 and thus, more efficient spectrum use than TDMA and 

FDMA schemes. Moreover, the ubiquitous frequency usage in all CDMA cellular 

cells makes frequency assignment and management much easier; for example, when 

a mobile user migrates from one cell to another, its service can be readily offered by 

different base stations simultaneously, a technique known as soft hand-off. 

Because of the ubiquitous frequency usage in a cellular CDMA system, trans­

mission power becomes a commonly shared resource for all active users and thus, 

the advantages of the voice activity factor and data burst on-and-off characteristic 

along with variable bit rates can be effectively (and naturally) used; the effective 

interference is alleviated at the receiver during the off-periods of other interfering 

signals, leading to an ultimate system performance improvement. Moreover, since 

each incoming transmission signal contributes a certain amount of interference, rais­

ing the total interference power at both the base station and the mobile users, the 

effect of increasing the number of active mobile users in a ceUular CDMA network 

is a smooth performance degradation, known as soft capacity. 

So far, we have described a few key features of cellular DS-CDMA networks. 

However, there are some impairments embedded in DS-CDMA based systems that 

must be overcome to achieve full CDMA capacity. The primary drawback is multiple-

access (or co-channel) interference (MAI), due to multiuser communication channels 

sharing the same frequency bandwidth. Second, the MAI in unbalanced power see-
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narios results in the well known near-far problem. Third, the received aggregate 

signal at a base station in a cellular wireless CDMA network involves both the 

in-cell and the out-of-ceU interfering sources whose parameter knowledge is substan­

tially different, and some unlocked out-of-cell interfering sources can be very strong 

to the in-cell reception. And finally, channels are time varying and characterized 

by the fading, multi-path effects that are common to all mobile radio propagation 

environments. 

Reasonable techniques employed to overcome these CDMA drawbacks include 

power control, channel coding, diversity schemes, and multiuser detection, each of 

which is able to tackle the CDMA problems from a different angle and provide partial 

solutions. Power control (PC) can effectively manage the shared power resource of 

the in-cell signals to minimize the transmitted power while maintaining the required 

quality of service (QoS) for an individual in-cell user, thus keeping the total inter­

ference at a minimum level as well as alleviating the near-far problem. For example, 

to compensate for the deep faded signal in wireless fading multi-path channels, the 

fast power control strategy has been employed in both forward and reverse links 

of CDMA2000 systems [3, 4], where the estimated performance metric is compared 

with the desired target in each PC slot, and the transmitted power is adjusted ac­

cordingly (i.e., raising or lowering the power level if the measured metric is below or 

above the target value). Many power control schemes can be found in [12]-[16]. An 

effective power control algorithm can reduce the MAI level and alleviate the near-far 

problem from the in-cell sources; however, it is difficult to resolve the near-far prob­

lem resulting from the out-of-cell interfering sources in a multi-cell wireless CDMA 

network. 

Reliable communication hinges on effective ways of adding redundancy to the 

data to protect it from the random disturbances introduced by the channels. The 

channel error-correction coding schemes are such an effect way of putting this re­

dundancy in the transmitted bits to correct the received signal errors introduced 

by transmission medium, and can improve the overall channel bandwidth utilization 

of random access CDMA channels [17]-[19]. Moreover, the recently-proposed Turbo 

coding scheme [20, 21], often thought of as a refinement of the concatenated encod­

ing structure and an iterative algorithm for decoding the associated code sequence, 

can approach performance very close to the Shannon capacity (at the expense of 
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complexity); specifically, for a bit error probability of 10 - 5 and a Turbo code rate 

of 1/2, a required Eb/N0 of 0.7 dB was reported. The powerful error correction 

capability of channel error control coding has been widely used in practical wireless 

communication systems. For example, the convolutional code with a code rate of 

1/3 and constraint length of 9 was employed in IS-95 digital cellular systems [22, 23]. 

Convolutional and Turbo coding schemes have both been employed in CDMA2000 

cellular systems for fundamental channel and supplemental channel transmissions 

in radio configurations 3, 4, and above [3]. Since channel error-correction coding 

requires redundancy, it consumes more spectrum bandwidth in a coded DS-CDMA 

system, thus reducing the spreading gain for a given frequency bandwidth CDMA 

system. 

Diversity technology is another important performance-enhancement scheme in 

advanced wireless networks such as the 3G wireless CDMA systems; it is especially 

applicable when combined with current VLSI technology and well-developed ad­

vanced digital signal processing techniques. Diversity techniques can be broadly 

divided into two categories: non-contrived diversity and contrived diversity schemes. 

Non-contrived diversity is formed naturally by wireless propagation environments 

such as fading multi-path channels (e.g., the multi-path diversity in a RAKE re­

ceiver [28, 29]) and soft hand-off. Contrived diversity is a controlled (artificially 

designed) diversity with delicate antenna design and sophisticated signal processing. 

It includes receiver (spatial) diversity, for example, adaptive antenna array [24]-[27] 

and beamforming/sectorization [30, 31, 32, 33]); transmitter (spatial) diversity [34], 

for example, spatial and temporal (ST) coding [35]; and polarization diversity, that 

is, the polarization division multiple access (PDMA) serving voice and data with 

different signal polarization. 

Multiuser detection (MUD) technology, unlike other schemes, explores the sig­

nal infrastructure of multiple access interference (MAI) itself for joint multiple-user 

signal detection or effective MAI cancellation. MUD can remove the interference 

limit floor in DS-CDMA systems without occupying more radio spectrum resources, 

thus increasing spectral efficiency and system capacity; for example, the maximum-

likelihood sequence multiuser detector proposed in [36] can approach the single-user 

performance of an isolated single-user communication channel when the base sta­

tion has the parameters of all active users and a sufficiently-large computational 
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capability. Consequently, MUD that addresses the CDMA impairments has drawn 

a great deal of attention in the past decade; such an advanced technology has also 

been proposed as one of very promising options to enhance performance in 3G and 

future-generation wireless CDMA systems [37, 1, 2, 38]. 

In this thesis, our research focuses on the multiuser detection technology in 

multiple-user, multiple-cell DS-CDMA networks. 

1.2 Multiuser Detection Issues in Cellular DS-CDMA 

Networks 

We consider the base-station reception for reverse link transmission in a typical 

cellular DS-CDMA wireless network, where the partial system parameter information 

setting is assumed: the aggregate signal received at any base station consists of 

components from the in-cell sources, whose parameters — received power, timings 

and signature sequence — are known to the receiver, components from the out-of-

cell sources, whose parameters are unknown, and background noise. The base-station 

receiver is interested in the signal detection of the in-cell known users; however, since 

some undesired signal components from unknown users — for example, the out-of-

cell mobiles close to the boundary of the desired cell — can be very strong to the 

base-station reception, the out-of-cell interfering sources can not be ignored in the 

signal detection of the in-cell users. As a consequence, the effective base-station 

multiuser reception in a multi-cell CDMA network becomes the problem of both the 

joint detection of in-cell users and the suppression of the out-of-cell or unwanted 

interference. 

Now it comes to a question: How have the interference cancellation and multiuser 

detection problems been treated previously in the literature? A detailed review of 

CDMA receivers can be found in Section 2.3; here, we briefly examine the general de­

tection strategies. There are two popular methodologies in addressing the problems 

of multiuser detection and interference suppression. The first methodology assumes 

the parameter knowledge of all active users at the receiver (i.e., the centralized user 

information scenario) and involves no signal equalization in the receiver front end. 

Typically, a bank of conventional matched filters (MFs), one for each active user, can 

be employed in the receiver front end, and the output sequences of these MF filters 
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can provide a sufficient statistic [36] for the joint detection of the active users; a de­

cision algorithm applied to the statistic to separate users in the second-stage signal 

processing can be either nonlinear or linear. When the second-stage signal processing 

employs the maximum likelihood sequence (MLS) decision algorithm, the overall re­

ceiver architecture is the well-known optimum multiuser detector proposed by Verdu 

in [36]; when the second-stage processing employs a linear transformation such as 

decorrelating or MMSE, the overall architecture becomes a form of sub-optimal, ex­

tensively studied linear multiuser detectors. Since the parameter knowledge of the 

out-of-cell users is usually unknown at the base-station, the multiuser receivers pro­

posed in line with this methodology are appropriate for the base-station reception in 

a single-cell CDMA system, where the out-of-cell sources are absent. In this thesis, 

we propose forms of the nonlinear and linear multiuser receivers for the base-station 

reception in multi-cell wireless CDMA settings, where the out-of-cell interference is 

present and the interference suppression is considered; we relax the the centralized 

user information requirement, assuming that while the shape of the chip waveform for 

each source is known, signature sequences, received powers, and timings are known 

for the in-cell sources only at the receiver. 

The other methodology involves signal equalization technique in the detector 

front end for interference cancellation, assuming that certain parameter knowledge 

of at least one active user is known at the receiver. In such a case, an enhanced front-

end filtering in place of the conventional matched filter is employed to suppress the 

unwanted interference while the signal equalization target is the transmitted bits of 

an individual user, which is called single-user-ohented signal equalization technique 

in this thesis; the second-stage signal processing simplifies to a binary decision device, 

leading to another form of extensively studied linear CDMA detectors. Thus, the 

resulting receiver architecture is most appropriately applied to the case where the 

parameter knowledge of only one user is known to the receiver. However, the single-

user-oriented signal equalization is not very efficient for the base-station reception in 

that it can not explicitly use the information on other (in-cell) known users to enhance 

performance. In fact, directing the equalization toward a single-user signal destroys 

the well-formed multiuser signal correlation infrastructure of the multiple known 

users, which otherwise can be used for effective joint detection of the multiple users. 

The multiuser signal infrastructure of the in-cell sources, or the so-called multiple-
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access interference (MAI), is known to the base-station reception, and exploiting 

it to demodulate the multiuser signals and remove the interference limit floor is 

a fundamental rationale behind MUD. In this thesis, we'll demonstrate that it is 

feasible to fully exploit the knowledge of the in-cell users for effective joint detection 

and for performance enhancement with partial information (e.g., multi-cell) setups 

at a base station. The crucial strategy to achieve these goals is to direct the front-end 

signal equalization toward the multiuser signal aggregate of the in-cell known users, 

rather than the signal component of each individual known user. Thus, the known 

signal correlation infrastructure among the in-cell users can be retained, rather than 

destroyed, during the out-of-cell interference suppression in the front end, and then 

used for effective MUD in the second stage; the parameter knowledge of in-cell known 

users can be explicitly incorporated into the multiuser detection and the interference 

suppression to improve performance. Such a signal processing technique is referred to 

as multiuser-oriented signal equalization throughout this thesis, which distinguishes 

our proposed multiuser detection scheme from other schemes found elsewhere in the 

literature. 

For the (nonlinear) maximum likelihood sequence multiuser detection, whose 

implementation complexity increases exponentially with the number of known users 

in the joint detection group, MUD of all in-cell users may incur an extremely high 

implementation cost; it may be beyond the affordable computational capacity of 

a base station when the number of the in-cell users is very large. In such a case, 

the joint detection for a subset of the in-cell users, able to trade performance for 

complexity, becomes especially important in a real wireless CDMA system. We also 

investigate such a detection issue in our research. 

In this thesis, we propose and evaluate forms of enhanced multiuser detectors 

for base-station reception in a cellular DS-CDMA wireless network, assuming partial 

system parameter information setup. We write K for the total number of in-cell 

and out-of-cell signals received, Kn < K for the number of in-cell signals whose 

parameters are known and used for MUD (while the K — Kn out-of-cell interfering 

sources are unknown and need to be suppressed), and M < Kn for the size of the 

target group: the group of signals selected for multiuser signal estimation (in the front 

end) and joint detection (in the second stage). The notation K/Kn/M designates 

both the detection problem and the information structure that characterizes it. In 
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addition, J denotes the number of resolved components for each user in fading multi-

path channels. Detailed system models can be found in Sections 2.1 and 2.2, and 

the justification of certain important research assumptions is provided in Section 

2.6. Part of the research results have been published in [42, 43, 44], and the original 

thesis contributions are stated in next section. 

1.3 Thesis Contributions 

The principal, original contributions of this thesis are: Firstly, a linear multiuser-

oriented signal equalization technique, beating conventional matched filtering and 

single-user-oriented equalization schemes, is proposed for both interference suppres­

sion and multiuser signal estimation in the receiver front end. By directing the tar­

get toward the multiuser signal aggregate desirable for joint detection, the proposed 

equalization technique generalizes the concepts of the single-user-oriented, binary sig­

nal equalization schemes; it enables the full exploration of the available knowledge 

of multiple users to estimate the desired multiuser signals on a symbol-by-symbol 

basis during the suppression of unwanted interference; it allows for elaborate and 

effective MUD with partial information to enhance performance. Thus, such a sig­

nal equalization scheme distinguishes our proposed multiuser detection scheme from 

alternatives found in the literature. (Sections 2.5, 3.1, 3.4.1, and 3.4.2 for AWGN 

channels; Sections 3.5.1 and 3.5.2 for fading multi-path channels). 

Secondly, based on the proposed multiuser-oriented signal equalization methodol­

ogy, multiuser receiver architectures for maximum likelihood sequence (MLS) detec­

tion and linear multiuser detection are derived in multi-cell CDMA networks under 

AWGN and Rayleigh fading multi-path channels. In general, the proposed architec­

tures have two stages. The first stage, forming the front end of the device, amounts to 

a bank of linear multiuser-oriented signal equalizers on the basis of MMSE criterion, 

one for each of the target sources for joint detection; its role is to estimate the mul­

tiuser signal aggregate by suppressing the unwanted interference. The second stage, 

acting jointly on all outputs from the front-end equalizers, is a maximum-likelihood 

sequence (MLS) detector or linear multiuser detector; its structure is calculated from 

the second-order statistics of the equalizer error processes, assumed approximately 

Gaussian on the basis of a Central-Limit argument. The proposed maximum likeli-
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hood sequence (MLS) multiuser detection is a generalization of the MLS multiuser 

detection [36, 45] to multi-cell, partial information scenarios. 

The proposed receivers can be characterized by K/Kn/M detection that desig­

nates the multiuser detection, the interference suppression, and and the information 

structure that characterizes it. When the number of known-parameter users is set to 

one, the proposed K/l/1 linear MMSE receiver reduces to a form of enhanced linear 

single-user detectors [46, 47, 48]. In the particular case of a single-cell system un­

der AWGN channel where out-of-cell interference is absent, the front end reduces to 

the conventional matched filter bank; the overall architecture for Kn/Kn/Kn MLS 

multiuser detection reduces to the one described in [36]; and the architecture for 

Kn/Kn/Kn linear detection reduces to the linear MMSE [49] or decorrelating [50] 

detector. 

The multiuser receivers developed in this thesis can be categorized in detail as 

follows: 

• K/Kn/Kn MLS multiuser detector in AWGN CDMA channels, whose compu­

tational complexity (in terms of the number of multiplications) is on the order 

of 2Kn (for synchronous in-cell transmissions), independent of K (Sections 3.1 

and 3.2). 

• K/Kn/Kn linear decorrelating and MMSE multiuser detectors in AWGN CDMA 

channels (Section 3.3). 

• K/Kn/M (M < Kn) MLS detectors for AWGN CDMA channels, whose com­

putational complexity is on the order of 2 M (in the synchronous case) and 

on the order of 23 M (in the asynchronous case), independent of K and Kn in 

both cases. They can provide a configurable trade-off between performance 

and complexity (Section 3.4). 

• K/M/M MLS multiuser detector under multi-path slowly Rayleigh-faded chan­

nels, whose computational complexity is in the range of 0 ( J 2 M ) (in the syn­

chronous case) and 0 ( J2 3 M ) (in the asynchronous case), independent of the 

total number of unwanted/unresolved interfering components (Section 3.5). 

• K/M/M linear multiuser detection architecture in multi-path slowly Rayleigh-

faded channels (Section 3.6). 
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• A least-mean-squared (LMS) based adaptive implementation of the proposed 

multiuser detectors (Section 3.8). 

And finally, the system performance of the proposed multiuser detectors is an­

alyzed and evaluated with respect to signal-to-interference (plus noise) ratio (SIR), 

asymptotic efficiency, near-far resistant and bit error rate, and also justified with the 

benchmark performance of several well-known multiuser receivers, including con­

ventional matched filter, the enhanced single-user based (K/l/1) detector, and the 

centralized K/K/K multiuser detector. Moreover, the study investigates a vari­

ety of issues of practical importance to system design and signal reception, such 

as the trade-off between performance and implementation cost, and the impacts of 

user parameter knowledge, detection group size, the number of resolved multi-path 

components, and so forth. 

The analytical and simulation results demonstrate that the proposed front-end 

linear multiuser-oriented signal equalization scheme is effective; the proposed MLS 

multiuser detectors are near-far resistant and able to approach the performance 

bound of an ideal single-user system, as the base station approaches the full parame­

ter knowledge of all active users; the proposed K/Kn/Kn linear detectors outperform 

the well-known enhanced single-user K/l/l detectors; the proposed K/Kn/Kn MLS 

detectors outperform the proposed K/Kn/Kn linear detectors at the price of a higher 

computational cost. 

The performance evaluation details are given below: 

• Provided a performance analysis of the proposed multiuser-oriented signal 

equalization in terms of minimum mean-squared error (MMSE) and effective 

SNR; quantified the equalization performance by numerical examples (Section 

4.2). 

• Presented upper and lower bounds to the bit-error probability for the proposed 

K/Kn/M MLS detection in synchronous AWGN CDMA channels; provided nu­

merical examples to evaluate the performance of the MLS and linear detectors 

(Sections 4.3.1 and 4.3.2). 

• Provided a bound analysis on bit-error probability for proposed K/M/M MLS 

and linear multiuser detectors in multi-path slowly Rayleigh-faded CDMA 
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channels; quantified their performance in multi-cell, partial information setups 

(Sections 4.3.3 and 4.3.4). 

• Analyzed the statistical characteristics of short spread and long spread sig­

nals (Section 3.7); quantified their impacts on performance (Sections 4.3.2 and 

4.3.4). 

• Presented an analysis of the asymptotic efficiency and near-far resistance for 

the proposed multiuser detectors; quantified the detection performance by nu­

merical examples (Section 4.4); provided an explanation of the saddle-shaped 

asymptotic efficiency performance in a full-blown MLS multiuser detector (Sec­

tion 4.4.3). 

1.4 Thesis Organization 

Chapter 2 provides the fundamentals to this thesis research, including the system 

model and research assumptions, a thorough review of the literature on CDMA 

receivers, the problem formulation and the research statements. 

In Chapter 3, the multiuser-oriented signal equalization scheme is proposed for 

the receiver front-end signal processing; forms of enhanced MLS and linear multiuser 

detectors, applicable to the base-station reception in multi-cell CDMA networks, are 

derived under Gaussian channels and multi-path Rayleigh fading channels; a form 

of unifying K/Kn/M MLS multiuser receiver architecture is developed to provide a 

trade-off between performance and complexity. 

Chapter 4 presents performance analysis and evaluation on the proposed multiuser-

oriented signal equalizer, linear and nonlinear multiuser detectors developed in Chap­

ter 3. It also quantifies the impacts of a variety of issues of interest, including de­

tection group size, short spreading vs. long spreading, and the number of resolved 

multi-path components. 

Chapter 5 addresses the applications of the proposed multiuser detectors in cur­

rent and future wireless networks; Chapter 6 summarizes this study and provides 

future research directions. 

Appendices A-F provide necessary definitions, proofs and numerical derivations. 
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Chapter 2 

Fundamentals 

In this chapter, we first present a system model, study assumptions, and background 

for this thesis research. Then a detailed literature review and a problem analysis 

of CDMA receivers are addressed to elaborate on what has been done so far in this 

area. Finally, the multiuser detection rationale in multi-cell CDMA networks and 

the research statements of this thesis are described. 

2.1 System Models for Code Division Multiple-Access 

2.1.1 Cellular CDMA network model 

We consider the signal reception at a base station (or cell site) in a multi-cell Ab­

user DS-CDMA wireless network. For the target detection group of M users in a cell 

with Kn known users, the issue in question is the K/Kn/M multiuser signal detection 

problem in the partial system parameter framework, where M < Kn < K. The signal 

presented to the base station includes contributions from the in-cell sources as well 

as the out-of-cell sources. Assuming that user k (1 < k < K) is assigned a signature 

waveform sk(t) of one bit duration Tb, the signature waveform can be expressed as 

N-l 

sk(t) = Y^ ak{n)ip(t - nTc), 0<t<Tb, k = 1,2,. . . , K (2.1) 
n=0 

where {ak(n), n = 0 , 1 , . . . , N — 1} is the kth user's spreading sequence, consisting 

of N chips that take on the values {±1} and can be written as a vector form afc = 
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Xj(t) 

r(t) 

(Transmitter) (Receiver) 

Fig. 2.1 The multiple-access model of a cellular CDMA network. 

[ak(0) ak(l) ... ak(N — 1)]T. Tc is the inverse of chip rate and we have Tb = NTC. 

ip(t) is a chip pulse that is a deterministic function defined over [0, NCTC), where Nc 

is an integer that is determined by the system design. The signal waveform sk(t) is 

assumed to be normalized to have unit energy, i.e., fQ
 b s2

k(t)dt = 1. 

The transmitted baseband signal of user k can be represented as 

+oo 

Xk (t) = ^2h(l)sk(t-lTb), l<k<K (2.2) 
l=—oo 

where bk(l) is the transmitted bit x of user k at time lTb and takes on a value from 

{±1}. 
After each user's signal passes through its respective propagation channel, the 

baseband signal received by the base station is the aggregate of K individual trans­

missions as [51] 

+oo K 

r(t) J2 Y, y/P~Ml)Vk(t - lTb) + n(t) (2.3) 
/=—oo k=\ 

where Pk is the received signal power of user k, including the effect of antenna gains 

a path loss, and a large-scale loss; n(t) is additive white Gaussian noise (AWGN) 

xIt may designate either a coded symbol or an uncoded information bit. However we do not 
consider the effect of the channel correction coding in this MUD study. 
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with two-sided power spectral density NQ/2\ yk{t) is the channel output of user k, 

given by applying sk(t) to the channel input as 

Vk(t) = sk(t) * hk(t) (2.4) 

in which * symbolizes the convolution operator and hk(t) is the channel impulse 

response of user k. The system model of a cellular CDMA network is shown in Fig. 

2.1. 

From (2.3), the L-bit instance of the received signal presented to the receiver 

can be split into the contributions from in-cell, out-of-cell and background noise, 

respectively, as 

L K 

/=i fc=i 

= SF(bKn) + S! + n(t) (2.5) 

where S ^ b ^ J = Y,i=i J2k=i y/Pkh{l)yk(t - lTh) is the received signal aggregate 

contributed by the Kn known in-cell users, S{ = Xw=i J2k=K +i VP~k~bk(l)yk(t — lTb) 

is the received signal aggregate contributed by the K — Kn unknown users, and n(t) 

is the additive white Gaussian noise. hKn denotes the KnL x 1 bit vector of the 

Kn known users. We present the system assumptions for (2.5) and the K/Kn/M 

detection in next subsection; the multiuser detection and the interference suppression 

rationale will be described in Section 2.5. 

2.1.2 Sys tem assumpt ions 

The users in the cellular CDMA network are enumerated so that the indices { 1 , . . . , M} 

identify the target group; {M + 1 , . . . , Kn} identify the other in-cell users whose sig­

nal parameters are known; {A n̂ + 1 , . . . , K} identify the interferers whose parameters 

are unknown. 

The transmitted bits of each user take on values from {±1} with equal probability; 

they are modeled as zero-mean, uncorrelated random variables for the same user and 

zero-mean independent random variables for different users. The chip waveform tp 

is common to all users and is known to the receiver. 
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Channel models: 

• For MUD study in AWGN channels, an ideal radio propagation model is em­

ployed, whose impulse response hk(t) for user k is given by hk(t) = 5(t — 

n), 1 < k < K, in which rk represents the propagation delay of the kth user's 

signal at the receiver. 

• For MUD study in multipath fading channels, the lowpass impulse response of 

the channel at time instant t to an impulse transmitted by user k at time t — r 

is expressed as [6] 

j 

hk{T;t) = Y,arnk(t)5(T-^-Tk), \<k<K (2.6) 
m = l 

where {amk{t)} are time-varying channel coefficients of user k. J = [TmW\ + 1 

(\x\ denotes the smallest integer greater than x, and Tm is a multipath delay 

spread, assuming that Tm <C Tb) is the number of delay taps that can be 

resolved at the CDMA receiver. rk denotes the propagation delay of user k. 

Assumptions for Kn in-cell users: 

• BPSK modulation and coherent reception. 

• The delay, phase, and received amplitude are known a priori. 

• In multipath slowly-faded channel, estimations of channel coefficients {amk(t)} 

for known users in joint detection group are required. 

Assumptions for K — Kn out-of-cell users: 

• The second-order signal statistic of S{ in (2.5) needs to be estimated based on 

the received aggregate signal or overhead channels, and no other knowledge of 

out-of-cell users is required. 

• Information about the total number of active users, K, is not required for the 

joint detection schemes; in our numerical examples, K — Kn unknown signal 
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sources represent the mobiles with relative strong interfering powers (e.g., out-

of-cell mobiles close to the cell edge of a cell of interest) to the base-station 

reception that need to be suppressed. 

Additional assumptions: 

• Short spreading codes are assumed throughout this thesis for analysis and 

simulation, unless otherwise stated. 

• In theory, long spreading codes can also be employed in MUD, but they will 

incur a performance loss as compared to the short spreading codes [51, 52]. 

Since it is a topic of interest, this thesis will present some analyses on the 

characteristics of long spread CDMA signals (in Section 3.7), and quantify 

the performance by numerical examples (in Sections 4.3.2 and 4.3.4). Where 

employed, the long spreading codes will be explicitly stated. 

We have assumed that the timings and received amplitudes of (in-cell) known 

users, as well as the channel parameters (in a slow fading multi-path scenario), are 

known a priori to the receiver. The estimations of these parameters, though not 

of prime interest in this thesis, can be made available through an overhead channel 

[53, 54]; for instance, each mobile in 3G systems [3] has provided a pilot channel 

for reverse-link coherent demodulation and channel estimation. Furthermore, the 

topic of estimating reception parameters without overhead information has also been 

extensively studied in the literature, including [55, 56] for timing and carrier phase 

estimation and [57, 58, 59] for channel estimation. 

2.2 Cyclostationarity and Channel Equalization 

It can be shown that the aggregate CDMA signal at the receiver is a continuous-time 

cyclostationary process in wireless propagation environments (also, cf. [62]). First, 

we examine the cyclostationarity of the received signal at a base station under an 

AWGN channel. In such a channel environment, the received signal r(t) in (2.3) can 
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be written as 

+00 K 

i=—00 fc=i 

where the transmitted symbols {bk(l)} are modeled as E[bk(l)} = 0, E[b*k(l)bk> (I)] = 

5kk> for different users, and E[b*k(l)bk(l')] = 5a> for different bit intervals of user k, Skj 

is the Kronecker delta (V7 7̂  j , <5y = 0 and Su — 1). The delays {rk} are modeled as 

(unknown but) deterministic parameters. sk(t) is a spread signal waveform of user 

k, which is a deterministic function defined over the bit interval (0, Tb). It is readily 

seen that the mean value of r(t) is zero, and the autocorrelation function can be 

written as 

<S>rr(t + T,t) = E[r*(t + T)r(t)] 
+00 K 

= Y Y, PkS^ + r-lTb- rk)sk(t - lTb - rfc) + E[n*(t + r)n(t)}. 
i=—00 fc=i 

(2.8) 

Since sk(t - lTb - rk) is a deterministic function and n(t) is a Gaussian stationary 

process, we have 

$rr(t + r + mTb, t + mTb) = $rr(t + r, t) (2.9) 

for m = ± 1 , ± 2 , . . . . Hence, the autocorrelation function of r(t) is periodic with a 

period Tb. Thus, the received CDMA signal r(t) is a cyclostationary process with a 

period Tb in an AWGN channel. 

Secondly, we consider this issue under a slowly-faded multipath channel described 

in (2.6); the time-variant tap weights {amk(t)} are assumed to be constant for a short 

period, for example, a fast power control group of 1.25 milliseconds [3]. Thus, the 

channel impulse response can be simplified from (2.6) as 

j 

hk(t) = Y arnkS(t - — - Tfc), \<k<K. (2.10) 
m = l 
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Fig. 2.2 A linear chip-matched (fractionally-spaced) FIR employed as 
a single-user-oriented signal equalizer in a cellular CDMA network. 

where {amk} are assumed to be independent for different users and different multiple 

path components. By checking the autocorrelation function of r(t) in such a channel 

condition, it is seen that the received CDMA signal aggregate at the base station is 

also a cyclostationary process with a period of one bit interval Tb in a slow-fading 

multipath channel. 

The sampled discrete sequence of the continuous cyclostationary signal may or 

may not be cyclostationary, depending on the sampling rate's relation to the cyclo­

stationary period. In particular, samples with a sampling rate equal to the inverse 

of the cyclostationary period are actually a wide-sense stationary sequence and the 

autocorrelation matrix of the samples is symmetric and Toeplitz [63]. On the other 

hand, samples by oversampling (with respect to the cyclostationary period) are wide-

sense cyclostationary and the autocorrelation matrix of the samples is symmetric, 

but usually not Toeplitz. Such signal cyclostationarity can be used for effective 

channel identification and signal equalization; in fact, recent research results suggest 

that exploiting the cyclostationarity characteristic of communication signals can lead 

to algorithms requiring only second-order statistics for channel amplitude and phase 

estimation [60, 57, 64, 61], interference cancellation [46, 65, 66] and signal separation 

[67, 68, 69], which is more attractive than higher order statistic (HOS) techniques. 

To take advantage of the cyclostationarity property for effective signal estimation, 

a so-called linear fractionally-spaced filter is often employed with an observation over 
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the cyclostationary period. A typical chip-matched FIR structure for linear signal 

equalization is shown in Fig. 2.2, where ip(t) is the chip waveform, Tb and Tc are the 

bit interval and the inverse of chip rate, respectively, rk is transmission delay of user 

k, the number of tap weight coefficients {wk(n)} is equal to the spreading gain N, and 

bk(l) and bk(l) are the transmitted bit of user k and its estimate at the output of the 

equalizer at the Ith bit interval, respectively. By choosing a set of optimal tap weight 

coefficients {wk(n)} on the basis of a certain optimization criterion, the linear signal 

equalizer in Fig. 2.2 can not only suppress the multiple access interference from other 

users but also mitigate the effect of inter-symbol interference (ISI) in a dispersive 

channel. Moreover, the equalization structure can adapt to the slow time variation 

of wireless propagation channels by periodically updating the tap weight coefficients 

{wk(n)}. Note that the linear signal equalization shown in Fig. 2.2 is single-user-

oriented in the sense that the equalization target is the transmitted bits bk(l) of 

user k only. We'll illustrate in this thesis that by directing the equalization target 

toward the signal aggregate of multiple users (to be defined in Section 2.5), rather 

than a single-user signal bk(l), such a linear fractionally-spaced filter architecture can 

achieve the multiuser-oriented signal equalization in the front end of the proposed 

multiuser detectors, in which the known parameter knowledge of more than one user 

can be fully exploited to enhance performance. 

2.3 DS-CDMA Receivers 

In this section, we'll review the literature on DS-CDMA receivers to date. The 

DS-CDMA receivers can be broadly divided into two categories: single-user receiver 

and multiuser receiver. The single-user receivers refer to the detectors whose sig­

nal detection or estimation is based on the single-user signal of interest. For the 

interference suppression in most of the detectors in this category, a front-end signal 

equalization technique is employed to estimate the transmission bits of a single user 

only on the basis of the second-order statistic of the received signal; thus the mul­

tiuser signal infrastructure (desirable for joint multiuser detection) in the received 

aggregate is not retained after the front-end signal equalization. In contrast, the 

multiuser receivers refer to the detectors whose signal detection considers the uti­

lization of the well-formed multiuser signal correlation infrastructure. The receivers 
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in this category usually assume the full parameter information of all active users; 

that is, the receiver has knowledge of signature sequence, timings, and channel im­

pulse response of each user, as well as the received amplitude for many nonlinear and 

linear multiuser detectors. The classification of DS-CDMA receivers is presented in 

Fig. 2.3. 

2.3.1 Single-User receivers 

The single-user CDMA receivers can be further classified into linear and nonlinear 

receivers on the basis of their detection strategies. 

Linear Receivers 

Conventional MF receiver 

The conventional matched filter (MF) receiver only requires the signature waveform 

and the timings of a single user of interest for signal detection, and assumes that 

signals from other users and background noise are a white Gaussian process. Because 

of its simple implementation, the conventional MF filter is still used in many practical 

CDMA systems, such as second- and third-generation wireless CDMA systems [3]. 

However, since it neglects the existence of multiple-access interference (MAI), the 

receiver performance will incur a severe degradation in a multiuser environment, 

especially, under near-far scenarios [58]. 

To improve the detection performance, research efforts over the past decades have 

been focused on CDMA receivers with better performance. There are two directions 

toward this goal: (1) searching for good PN codes, and (2) applying interference 

suppression techniques. The research following the first direction is reflected in the 

early CDMA study in which the orthogonal PN codes or signature sequences with 

small correlation values are investigated [70, 71]; the CDMA capacity analysis can 

be found in [72, 73, 74]. In the past decade, extensive research along the second 

direction has been undertaken, leading to forms of so called enhanced single-user 

detectors. The CDMA receivers employ a front-end linear single-user based signal 

equalizer to suppress the interference of unknown or unwanted signal sources and to 

estimate the transmitted bits of the single user. We focus on the review for such 
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Fig. 2.3 Classification of DS-CDMA receivers. 

enhanced single-user detectors in the sequel. 

Linear adaptive single-user detectors 

The linear adaptive single-user detectors [48, 65, 47] assume that the receiver 

has knowledge of the signature waveform and timings of a single user of interest for 

coherent reception, and they also require an initial training sequence (at the start of 

the transmission) to implement an adaptive detection. These single-user detectors 

can be characterized as adaptive K/1/1 linear receivers in terms of our definition. 

A filter structure, shown in Fig. 2.2, can be employed as the front-end filter 

signal equalizer in the linear single-user detectors. As a result, the cyclostationary 

nature of CDMA signals can be explored in the suppression of the MAI from other 

interfering sources. Moreover, the filter structure can adapt to the time variations 

of channels by automatically adjusting the coefficients. 

The linear adaptive single-user detectors can achieve a significant improvement in 

MAI and near-far environments as compared to the conventional MF receiver. This 

type of linear detector can be especially applicable in scenarios where the parameter 

knowledge of only one user is known; however, the detection is not very effective for 

a CDMA base-station reception, since these linear detectors do not intend to exploit 
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the parameter knowledge of other known users to improve the detection performance. 

Blind linear single-user detectors 

The term blind arises from the sense that no training sequence is required in a 

CDMA receiver. Without a training sequence, a form of K/l/1 non-adaptive linear 

single-user detector is proposed in [46, 77], where a linear fractionally-spaced FIR 

architecture was employed in the receiver front end, and the target signal bk(l) was 

considered a random variable to be estimated in the front-end signal equalizer. An 

MMSE estimation of the single-user signal bk(l) leads to optimal equalizer tap coef­

ficients; this can be achieved by solving the Wiener-Hopf filter equation [63] for the 

coefficient vector (see Appendix D). Thus, the matrix inversion is required in the lin­

ear optimal signal equalization and its computational complexity increases linearly 

with the number of coefficient taps used in the front-end equalizer. 

To adaptively implement the detection without the knowledge of a training se­

quence, the self-recovering single-user detectors are investigated in [78] - [82]. In 

[78] - [80], a constrained minimum output energy (CMOE) criterion was employed; 

in [81, 82], the blind adaptive detection was based on the second-order statistics of 

the received signal. These blind adaptive single-user detectors can also be viewed a 

estimation-detection architecture [83], in which the front-end signal processing con­

siders the single-user signal as a random variable that needs to be estimated before 

making the binary detection. 

Other schemes used for blind adaptive signal detection include the subspace tech­

nique [84, 85, 86]. The signal detection mechanism in [84, 86] maximizes the projec­

tion of the received signal into the estimated single-user signal space (or equivalently, 

minimizes the projection into the noise space) by using the eigenvalue decomposition 

(ED) or singular value decomposition (SVD) on the estimated correlation matrix of 

received signal vector; the single-user receiver [85] incorporates both the subspace 

and space-time diversity techniques into the signal detection and the interference 

rejection. 

Other blind adaptive detectors employ a parallel structure that consists of one 

conventional MF receiver and one linear adaptive single-user detector; the minimiza­

tion of the error formed by the difference of the outputs of the two receivers leads 

to the convergence of tap coefficients in the linear adaptive single-user detector [80]. 
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As a consequence, the training process is not required. However, as expected, the 

scheme suffers a little performance degradation since the output of the conventional 

MF receiver is utilized in place of the desired transmitted bits. 

To exploit the parameter knowledge of more than one user at the base station to 

enhance performance, linear detectors [39]-[41] have recently been proposed, which 

can be described as K/Kn/l linear detection; their methodology is to explore the 

available knowledge of known in-cell users to cancel the out-of-cell interfering sources 

and to estimate the transmitted bits of the user of interest. In [39] and [40], a linear 

hybrid multiuser detection was proposed based on the subspace tracking technique; 

its signal equalization was performed by a combination of a decorrelating projection 

into the known signal space of in-cell known sources and a MMSE suppression of 

unknown out-of-cell signals. In [41], a linear adaptive detector was proposed on the 

basis of the signal "orthogonalization", which can be approximately achieved by the 

inverse of the known signal auto-correlation matrix of the in-cell users and by the 

stochastic approximation with averaging. Since these linear detectors employ the 

single-user-oriented signal equalization technique, the well-formed multiuser signal 

correlation infrastructure of the in-cell sources is not explicitly or fully used for the 

signal estimation and detection. 

SNR-maximizing single-user detectors 

Another criterion to optimize the front-end linear filtering or equalization is to max­

imize the desired signal-to-interference and noise ratio at the filter output, thus 

leading to a form of SNR-maximizing single-user detectors [75, 76, 11, 87]. This 

form of detectors employs a fractionally-spaced linear filter, whose sampling rate is 

greater than the chip rate, such that the cyclostationarity of the CDMA interfering 

sources can be fully exploited; these single-user linear detectors are one-shot based 

and suppress the interference from other users by taking advantage of the coloration 

of the chip-waveform power spectrum or whitening the multiple-access interference 

and noise. The spatial-temporal one-shot linear detector based on single-user SNR-

maximizing criterion is proposed in [88], where the optimization of the filter response 

was performed jointly in both spatial and time domains using a receiver antenna ar­

ray at the base station. Such linear detectors, which can also be characterized as 

K/l/1 detection, are able to offer good near-far resistance and achieve better perfor-
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mance than the conventional MF filter. They can be considered a good alternative 

to conventional MF filters since they are applicable to both long-spread CDMA sys­

tems and short-spread ones. However, since only the knowledge of one single user 

is assumed in these receiver design, they are not very efficient for the base-station 

reception where the receiver has the parameter knowledge of more than one user 

in terms of user information utilization. The one-shot linear detector [89] exploited 

the partial information (i.e., chip delay and signal strength) of the known users to 

enhance performance, which can be considered Kn/Kn/1 linear detection. 

Nonlinear Receivers 

Optimum detector 

Nonlinear, optimum single-user detector is proposed in [90] to track and detect the 

signal of the user of interest on the basis of the likelihood-ratio statistic in the pres­

ence of unlocked interfering users; its implementation complexity per bit increases 

exponentially with the total number of active users in the system. However, it is 

not appropriate for base-station reception in a cellular CDMA network, since the 

use of available parameter knowledge of in-cell known users for joint detection is not 

considered in this detection methodology. 

DFE 

The decision-feedback equalizer (DFE) consists of two tapped-delay line (TDL) fil­

ters [6]: a feed-forward filter and a feedback filter; it is usually employed to mitigate 

the effects of severe inter-symbol interference to improve performance in the pres­

ence of moderate to severe amplitude distortion. The choice of DFE receivers is 

often motivated by the fact that they are capable of exploiting the cyclostationary 

nature of the CDMA signal to effectively cancel multiple-access interference [91, 92]. 

The computational complexity of DFE detectors is a linear function of the num­

ber of taps of the feed-forward and feedback filters. As the interference needs to be 

subtracted from the signal aggregate in the process of receiver equalization and detec­

tion, a good estimate of the received signal amplitudes of users of interest is required. 

Neural networks 



28 Fundamentals 

Another class of nonlinear multiuser detectors is neural networks. Unlike other com­

mon interference suppression techniques, neural networks are capable of performing 

nonlinear filtering [93]. Different schemes with neural networks are proposed for 

nonlinear multiuser detectors in literature, among which are multi-layer perception 

(MLP) [94], adaptive detection on the basis of radio basis functions (RBF) [95], 

and eigenvector neural networks [96]. They can detect signals in non-stationary and 

non-Gaussian environments, and can achieve near-optimum performance. However, 

the principal concerns about these detectors are their high implementation costs, 

propagation errors, and slow convergence rates in their adaptive detection. 

Other types of detectors 

Other CDMA detectors include the nonlinear suboptimal single-user maximum-

likelihood sequence (MLS) detectors over Rayleigh fading channels presented in 

[97, 98, 99], and multiuser detectors employing adaptive antenna array and beam-

forming techniques [24, 30, 35, 33]. In frequency-selective fading channels, the tem­

poral diversity (or path diversity) feature can be utilized by taking advantage of the 

characteristic of wideband CDMA signals, and thus the well-known RAKE receivers 

such as [28, 29,100] can be well applied to CDMA systems. In the scenarios where the 

multipath components can not be resolved but their inter-delays are known, a form 

of optimum and suboptimum detectors is proposed in [101, 102], which generalizes 

the RAKE receivers assuming the path resolvability. 

2.3.2 Multiuser receivers 

In this class of CDMA detectors, the parameter knowledge of multiple users 

signature sequence, timings, and received amplitude — is assumed to be available to 

the receiver, and the well-formed MAI information of the known users is explicitly 

explored for joint multiuser detection. On the basis of their detection algorithm the 

multiuser receivers can be further divided into linear and nonlinear receivers For 

the linear multiuser detectors, linear transformations are employed to separate the 

signals of the known users; for the nonlinear sequence detectors, nonlinear multiuser 

decision algorithms are utilized for joint detection of the known users, both exploiting 

the parameter knowledge and the signal correlation infrastructure of multiple known 
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users. 

The early research study on multiuser detection started from late 1970s and fo­

cused on CDMA-based optimum nonlinear detection, including [103, 104, 105, 36]. 

It is Verdu's milestone work [36] that has really incited the wide research interest 

on multiuser detection; his study demonstrates that the CDMA systems are not 

necessarily interference-limited. Because the maximum-likelihood sequence (MLS) 

multiuser detection proposed in [36] plays a crucial role in the research and develop­

ment of multiuser receiver designs, we start our review of this receiver category from 

it. 

Nonlinear Receivers 

Optimum detector 

We consider the reverse-link receiver design at the base station in a single-cell 

A^-user DS-CDMA system under an AWGN channel, in which the receiver has the 

parameter knowledge of all Kn active users, and the problem in such a setup can 

be characterized as Kn/Kn/Kn detection. To examine the problem of the optimum 

multiuser detection in such a centralized information case, we write, from (2.5), the 

received baseband signal at the base station as 

L Kn 

r^ = YYj^kbk{l">Sk^t-lTh~T^+n^ (2-n) 
/=1 k=\ 

= S?(bKn) + n(t), (2.12) 

where L symbolizes the total number transmitted bits for each user, rk is the trans­

mission delay of user k, and the other notations are same as in (2.5). S®(bKn) = 

YA=I E f= i y/Pkh{l)sk{t - lTb - rk) and bKn denotes the KnL x 1 bit vector of all 

active users. The issue of interest is the classical problem of detecting the random 

signal S^(bKn) in the additive white Gaussian noise [106], [107]. By formulation of 

the likelihood ratio between each of the hypotheses 

Hh : r(t) = S?(bKn) + n(t), over all bit symbols of the Kn users (2.13) 
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and a null hypothesis H0 : r(t) = n(t), the optimum multiuser detection, in the sense 

of minimizing the bit error probability, is made in favor of the largest likelihood ratio 

[106] over all bit symbols, or equivalently, maximizes the likelihood function 

£({r(t); c o < t < oo} |b*J = K exp{n{bKn)/2o%} (2.14) 

where K is a constant, a2
N = N0/2 is the noise variance, and 

/

OO /"CO 

S?(bKn)r(t)dt- [S?(bKn)]
2dt. (2.15) 

•oo J — oo 

The received-signal dependent term on the right-hand side of Equation (2.15) can 

be further written as 

/

oo L _n /"oo 

S?{bKn)r(t)dt = Y S y^bkH) / sk(t - lTb - rk)r(t)dt 
•°° i=i k=i • J ' - 0 0 

L Kn 

= YJ2^bk^y^ (2-16) i=i fc=i 

where 

/

oo 

sk(t - lTb - rk)r(t)dt (2.17) 

•oo 

is a sample of the integral at the instant of lTb + rfc, which is actually the output of 

a filter matched to the modulation signal at the Ith bit interval of user k. The whole 

sequence from outputs of a bank of Kn matched filters, 

y=[yi,i • • • yi,Kn 2/2,1 • • • y*,Kn ••• y L , i ••• yL,Kn}
T, (2.18) 

is able to provide a sufficient statistic for the decision of the information bit vec­

tor bKn [51, pp. 155], [108]. Therefore, the optimum AVuser multiuser receiver 

structure consists of a front-end matched filter bank, followed by a maximum like­

lihood decision algorithm, as shown in Fig. 2.4. To obtain the optimum detection 

formulation, let A P be the KnL x KnL diagonal matrix defined as 
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A P = d i a g { v
/ A ••• y/P~K~n ... VP~i ••• \[P~K~n "Pi ••• VPK~], 

and {C(i — l)} be the Kn x Kn normalized signal correlation matrices whose entries 

are defined by 

Cjk(i — l)= / Sj(t-iTb-Tj)sk(t-lTb-Tk)dt. (2.19) 

Then the maximization of the likelihood function (2.14) is equivalent to selecting a 

bKn that maximizes the decision metric Q(bKn) given in (2.15), or the metric in its 

discrete-time vector form as 

Q(bKn) = 2b£ n A P y - b £ n A P C A p b K n , (2.20) 

where 

C 

C(0) C r ( l ) 0 0 

C(l) C(0) CT(1) 0 

0 C(l) C(0) CT(1) 

0 

0 

0 

0 

0 

0 

0 

C(l) C(0) C r ( l ) 

0 C( l ) C(0) 

(2.21) 

is a symmetric KnL x KnL matrix. When the Viterbi decision algorithm is em-
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ployed, it was shown [51] that the time complexity per bit for the optimal multiuser 

detection is independent of the total number of transmitted bits for each user, L, 

and only depends on the number of known users, Kn, on the order of 2Kn. Notice 

that the matrix C, whose entry is the signal correlation infrastructure between users 

j and k described in (2.19), is a key component for the optimum multiuser sequence 

detection in the decision metric (2.20). An extension of the optimum MLS detec­

tion under an AWGN channel to the single-path, frequency-selective Rayleigh-fading 

channel was proposed in [45], assumed to be a perfect channel estimate; the one-shot 

maximum likelihood sequence detection with a linear array was proposed in [109] for 

synchronous DS-CDMA systems. 

The optimum maximum likelihood sequence detection has assumed expensive in­

formation requirements: the timings, signature waveform, received signal strength of 

all active users in the system, and a high computational capability at the base sta­

tion. Such full information requirements are available at the base-station receiver in 

a single-cell CDMA system; however, they are usually not available at a base-station 

receiver in a multi-cell CDMA network. 

Interference cancellation (IC) and decision-driven detectors 

We'll review several nonlinear multiuser detectors with less complexity than the 

optimum multiuser detection in the following; more nonlinear multiuser detectors of 

this type can be found in a few review papers [114, 115, 38]. 

Nonlinear, estimation and subtractive interference cancellation detectors include 

the multi-stage nonlinear CDMA detectors and the successive-cancellation detectors. 

The multi-stage nonlinear CDMA detectors proposed in [111, 112, 113, 116, 117] 

assume the centralized system parameter setup; that is, the parameter knowledge 

— signature waveform, timings and signal strength — of all active users is available 

to the receiver, thus applicable to the base-station reception in a single-cell CDMA 

network. The group-based detectors [113, 116] intend to reduce the implementation 

complexity of the optimum Kn/Kn/Kn detection; joint detection for a subset of 

Kn users is proposed with the time complexity per bit on the order of 2 M /M, and 

M < Kn symbolizes a group size. Such detectors can be characterized as Kn/Kn/M 

nonlinear detectors, which consist of a bank of Kn MF/decorrelating filters at the 

front-end signal processing and a nonlinear maximum likelihood sequence decision 
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algorithm. In a cellular CDMA network with full user information scenarios, a 

decision-based multiuser detector that takes advantage of macro diversity (i.e., soft 

hand-off) can be found in [118]. Another nonlinear detector, with a reduced and 

differential parallel interference cancellation technique, has been proposed recently 

in [119]. 

The idea behind the successive interference cancellation detectors [104, 110, 114, 

120, 121] is to demodulate the active users with respect to their desired signal 

strengths: the signal of user with the largest SNR is first detected, and then sub­

tracted from the received signal aggregate; detection of the user with the second 

largest SNR follows, and so forth, until the weakest user is detected. Such an idea is 

capable of achieving the capacity region on the basis of information theory [122]. As 

long as the bit estimates and signal parameter estimates are reliable, the IC based 

receivers can deliver near-optimum performance. The complexity per bit of this op­

eration grows linearly with the number of users whose signals of interest are being 

cancelled. 

Other nonlinear multiuser detectors include an adaptive, nonlinear multiuser re­

ceiver [123] proposed for the base-station reception in a multi-cell CDMA network. 

In [123], initial training sequences of the in-cell users are required for the detection, 

whereas the other parameters of the known users, such as signature waveform and 

timings, are not explicitly used; since this receiver employs the single-user-oriented 

equalization, the multiuser signal correlation infrastructure desirable for MUD is not 

retained in the front-end estimation of individual single-user signal and thus must 

be regenerated for the nonlinear detection, therefore introducing double estimation 

errors; the ML decision metric employed in the detector is basically the one described 

in (2.20) that was developed for the optimal multiuser detection with a full user in­

formation setup. 

Linear Receivers 

Linear multiuser detectors in this category can be characterized as Kn/Kn/Kn linear 

detectors. The receiver architecture is same as the one described in Fig. 2.4, except 

that a linear transformation and a binary decision algorithm replace the nonlinear 

Viterbi algorithm. Such linear multiuser detectors are suboptimal, but they are still 
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far superior to conventional MF receivers with respect to their error-probability per­

formance in interference-limited environments; moreover, their computational com­

plexity increases linearly with the number of users. Two important types of the linear 

detectors are the decorrelator (or decorrelating detector) and the MMSE detector. 

Decorrelators 

Assuming that the signature waveforms and timings of all active users are avail­

able at the receiver, the decorrelators (or decorrelating detectors) choose the linear 

transformation to have zero output multiple-access interference in the absence of 

background noise (zero-forcing) [50, 124, 125, 126]. To gain insight into the decor-

rlating CDMA receivers, we denote the output y from the MF filter bank in (2.18) 

as 

y = CAPbKn + N (2.22) 

where N is the output noise vector of Kn matched filters that has a zero mean and 

an autocorrelation matrix ^ C ; Ap is the amplitude KnL x KnL diagonal matrix; C 

and other parameters were defined in (2.21). By applying the linear transformation 

C~l to both sides of Eq. (2.22), we obtain the estimated bits for individual users as 

APbKn = APbKn + C_ 1N. (2.23) 

It is apparent from (2.23) that such a linear estimation of b# n is unbiased and the 

linear detectors do not require the estimation of the received signal power for each 

user. Note that the linear decorrelating detectors are a sensible choice when the 

received amplitudes are completely unknown, and they can be shown to be near-far 

resistant [127]. However, these detectors may result in significant noise enhance­

ment and suffer a performance degradation, when the background noise power is not 

negligible. 

A one-shot decorrelating detector is proposed in [128], and other truncated, 

window-based decorrelators are put forward in [129, 130, 131, 132]. Decorrelat­

ing receivers with space-time coding are proposed in [27, 133] for the base-station 

multiuser signal detection in synchronous DS-CDMA systems. Adaptive versions of 
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decorrelators are investigated in [134, 125, 135, 124]; they are applicable in multipath 

fading environments. 

MMSE detectors 

MMSE detectors are an alternative to the decorrelating receivers when the re­

ceiver has additional knowledge of received signal powers of the active users. Such 

detectors are capable of suppressing both the multiple-access interference and the 

background noise on the basis of MMSE equalization criterion [49, 80]. Instead of 

C_1 , the linear transformation 

/Cop* = (C + ^ A p 2 ) - 1 (2.24) 

is applied to both sides of Eq. (2.22) such that the mean-squared error (MSE) 

E[(APb - JCy)T(APb - /Cy)] 

can be minimized. It is noted from (2.24) that such a linear estimation is biased. The 

linear MMSE detectors are well defined in the sense that the transformation in (2.24) 

always exists because the matrix therein is the sum of a nonnegative definite matrix 

C and a diagonal positive definite matrix ^ A p 2 ; the linear MMSE transformation 

exists even though the decorrelating solution may not exist. As a consequence, 

the linear MMSE detectors usually perform better than the linear decorrelators; 

furthermore, as the level of background noise tends to zero, performance of the 

linear MMSE detectors converges to that of the linear decorrelating detectors. 

A combination of MMSE detector and soft hand-off diversity is proposed in [118] 

for a multi-cell CDMA network. A linear MMSE detector for demodulating the 

transmitted bits of all users in a single bit interval, based on a finite length of output 

(bit-spaced) samples, is proposed in [49], and can be readily extended to an adap­

tive version due to limited input samples and one-shot estimations. In addition, 

an MMSE adaptive detector that processes the output samples of the decorrelating 

detector is proposed in [136]; an MMSE detector with maximum-ratio combining 

(MRC) is proposed for synchronous multi-carrier (MC) CDMA systems in a fre­

quency non-selective Rayleigh fading channel [137]. 
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Both decorrelating and MMSE linear detectors are applicable to base-station 

reception for a single-cell CDMA system, where the parameter knowledge of all 

active users is available to the receiver and there is no out-of-cell interference. Notice 

that the front-end filtering in these linear multiuser detectors extracts the signal 

correlation infrastructure of the known users, which can be used for "real", joint 

detection in second stage in that the detection exploits an intact multiuser signal 

infrastructure imbedded in the original received signal rather than a regenerated 

one. Therefore, the detection philosophy in these receivers is different from that of 

the enhanced single-user CDMA receivers, in which the front-end filtering focuses 

on the single-user-oriented signal estimation and does not retain the well-formed 

multiuser signal correlation infrastructure (that is actually valuable for MUD). 

2.4 Performance Criteria 

The performance criteria frequently used in the evaluation of CDMA receivers include 

probability of bit error (or bit error rate), asymptotic efficiency, minimum mean 

squared error and signal to interference-plus-noise ratio (SIR). 

2.4.1 Probability of bit error 

An accurate performance evaluation for maximum-likelihood sequence multiuser de­

tectors is often with respect to probability of bit error. However, the closed-form 

expression of the probability of bit error for the detection is usually intractable. Al­

ternatively, the performance appraisal often resorts to the upper and lower bounds 

of the probability of bit error under specific system settings. 

In the performance analysis of MLS multiuser detectors, the indecomposable error 

vectors and the indecomposable set of error vectors (defined in Appendix C) play an 

important role since they can more accurately describe the transmitted vectors. For 

the MLS detection of Kn users in a CDMA synchronous system, there are a total 

of 3Kn error sequences; however, the number of the indecomposable error vectors 

can be very small. For example, we consider a specific system setup, in which all 

PN code cross-correlations are identical and positive, and the received amplitudes 

of all users are equal. In such a case, there are no indecomposable error vectors of 

weight (see Appendix for definition of error vector weight) equal to or greater than 
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3; specifically, the ^-dimensional indecomposable error vectors that affect user 1 

can be expressed as [51] 

[+1 ,0 ,0 , . . . , 0,0], 

[ + 1 , - 1 , 0 , . . . , 0,0], 

[ + 1 , 0 , - 1 , . . . , 0 , 0 ] , 

[ + 1 , 0 , 0 , . . . , - 1 , 0 ] , 

[+1 ,0 ,0 , . . . , 0 , -1 ] , 

plus their antipodal sequences. It is seen that only 2Kn (out of 3Kn) error sequences 

are indecomposable in such a special case. This system setting and resulting inde­

composable error vectors will be employed for the bound performance evaluation of 

the proposed multiuser detectors with partial information in Chapter 4. 

The performance bounds for the joint detection in a A^-user synchronous DS-

CDMA system can be found in Appendix C, where the upper bound of the probability 

of bit error for user A; is presented in (C.3) and the lower bound is expressed by (C.6). 

2.4.2 Asympto t i c efficiency 

An alternative to the bit error rate (BER) in the evaluation of Kn/Kn/Kn MLS 

multiuser detection is the asymptotic efficiency, which is defined as [138] 

nk = sup j o < 7 < 1 I lim^Pki^/Q ( ^ ^ ) < + ° ° } > (2-25) 

where pk is the BER for user A;, a is a parameter relevant to the signal-to-noise ratio, 

and Ek is the actual energy per bit of user k. 

2.4.3 Near-far resistance 

The near-far resistance is the worst-case asymptotic efficiency over the power distri­

butions among all users. The near-far resistance of user k for the Kn/Kn/Kn MLS 
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multiuser detection can be simply written as [51] 

1 

{C\ )kk 
Vk = T ^ I T " (2-26) 

where C\ is the correlation matrix of the signature waveforms of Kn known users. 

2.4.4 Minimum mean squared error and SIR 

Minimum mean squared error (MMSE) and SIR are other alternatives to evaluate 

the performance of CDMA receivers, especially the linear detectors in which an in­

terference cancellation scheme is employed. A performance analysis with respect to 

the minimum mean squared error is presented in Appendix D for enhanced K/l/1 

linear detectors and their adaptive implementations in a cellular A'-user DS-CDMA 

network. SIR can also be used to evaluate the effectiveness of the interference sup­

pression and the signal estimation for a user of interest. SIR is closely related to 

MMSE; it can be shown that the minimum mean squared error at the output of 

linear filtering always leads to the maximum SIR [139, 11]. 

2.5 Problem Formulation and Research Statements 

2.5.1 Problem Formulation 

We consider the problem of effective base-station receiver design in a multi-cell DS-

CDMA network. The received signal components at a base station consist of contri­

butions from in-cell known users, out-of-cell unknown users, and background noise. 

The received signal can be expressed, from (2.5), as 

r(t) = S ? ( b O + # + n(i) (2.27) 

where S f (bKn) is the received signal aggregate of Kn known in-cell users; S{ is the 

received signal aggregate of K - Kn unknown users, which can not be ignored for 

the signal detection of in-cell users; and n(t) is additive white Gaussian noise. The 

fundamental problem of the base-station reception is detecting signals of K known 

users (Sf ( b / r j ) i n t h e presence of out-of-cell interfering sources (S{) and background 

noise. Notice that 5 / is usually a zero mean cyclostationary process with a period 
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of the bit interval for short spread signals (cf. Section 2.2); more precise statement 

of the signal cyclostationarity is to be addressed in Section 2.6. Our research makes 

no assumptions about 5 / except that its second-order statistic can be estimated at 

the receiver. Based on this framework whose assumptions are very reasonable in 

a practical wireless network (e.g., 3G systems), we will demonstrate in this thesis 

that the effective joint detection of in-cell users at the base station does exist in the 

multi-cell CDMA network. 

In such a partial system parameter setup, the base-station receiver has different 

knowledge about the in-cell signals and the out-of-cell sources. Signature waveform, 

timings, and received signal strength of each in-cell user are assumed known or 

knowable at the receiver, whereas only the second-order statistic of S( is assumed. As 

a result, the receiver design for effective base-station reception should treat the two 

signal aggregates — S^(bKn) and S[ — differently such that the known parameter 

knowledge of the in-cell known users and the statistical knowledge of the out-of-

cell unknown users can be fully incorporated into signal detection and interference 

suppression. In this thesis, we propose a technique to achieve these objectives. The 

proposed receiver architectures include two processing stages: the front end deals 

with the suppression of S{, while retaining the multiuser signal correlation structure 

of SP(bKn); the second stage deals with the joint detection of in-cell known users 

based on the outputs of the front end. 

The challenging task in the front-end signal processing is extracting the mul­

tiuser signals of the known users in the interference suppression procedure. To 

see the desired multiuser signal aggregate that is desired for MUD, let us con­

sider a synchronous CDMA system under an AWGN channel for the convenience 

of problem elaboration. In such a case, S^b^) in (2.27) can now be written as 

SPfoKn) = YA=I Yskl\ y/Pk~bk{l)sk{t - lTb). In the absence of 5 / , it is known that a 

bank of front-end Kn MF can provide a sufficient statistic (cf. (2.18)) for the opti­

mum MUD [36]. The output from the matched filter of user k in the Ith bit interval 

can be expressed as 

yi,k 
/

oo 

sk(t - lTb)r(t)dt 
•oo 

/

oo 

sk(t - lTb)n(t)dt, 
•oo 
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where 

dk{l) = / sk{t-lTb)S?{bKn)dt 
JlTb 

= f^y/PMl)Pkj (2.28) 

in which pfcj is the correlation of signature waveforms between users k and j over a 

one-bit interval. {dk(l), k — 1, 2, . . . , A'n, / = 1, 2, . . . , L} are sufficient for the op­

timum multiuser detection when the out-of-cell interference is absent. It is observed 

from (2.28) that dk(l) can be seen as the projection of S^{bKn) onto the signature 

space of user k over one (Ith) bit interval; moreover, dk(l) has a well-formed infras­

tructure constructed by signals of the in-cell known users. The set of the quantities 

{dk(l)} provides the basis for joint multiuser detection in a CDMA-based system. 

In the presence of S{ (i.e., there exist K — Kn out-of-cell unknown interfering 

signal sources), we still intend to extract the quantities {dk(l)} (desirable for the 

multiuser detection) from a larger received aggregate; each equalization target dk(l) 

is only composed of signals from the in-cell known users. In such a scenario, the 

estimation of dk(l) and the suppression of the out-of-cell interference are required, 

different from the centralized information (e.g., single-cell) scenario in which a bank 

of front-end matched filters is sufficient to provide such desirable multiuser signal 

information. To achieve these goals, we employ a form of linear signal equalizers 

in place of the matched filters in the front end of our proposed multiuser detec­

tion with partial information. Specifically, the front-end signal equalization uses a 

factionally-spaced chip-matched linear filter architecture and targets the multiuser 

signal aggregate dk(l) (rather than the transmitted bit bk(l) of user k) on the basis 

of MMSE criterion, thus leading to multiuser-oriented signal equalization technique. 

Notice that the chip-matched filtering can well exploit the CDMA signal cyclosta­

tionarity for the linear equalization. Moreover, since the transmitted bits in question 

are unknown, dk(l) is considered a random variable in the front end that will be esti­

mated on a bit-by-bit basis. The optimal linear estimation problem here with respect 

to MMSE criterion is equivalently to solving the Wiener filter equation [63] to find 

the optimal tap coefficients for the linear multiuser-oriented signal equalizer. As a 
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consequence, {dk(l)} can be estimated by a bank of front-end Kn multiuser-oriented 

signal equalizers. Moreover, it can be shown (in Section 3.2) that their equalizer 

outputs can provide a sufficient statistic with minimized residual interference and 

noise components for joint detection of Kn in-cell known users in the second stage. 

Either a linear or nonlinear decision algorithm can be applied for the multiuser de­

tection. Joint detection of Kn in-cell users in such a scenario can be characterized as 

K/Kn/Kn detection. In our study, we also provide a form of K/Kn/M (M < Kn) 

MLS detector that can trade performance for complexity. The proposed linear and 

nonlinear multiuser receivers and detailed derivations will be presented in Chapter 

3. 

For the proposed multiuser detectors, we evaluate their performance by a combi­

nation of analysis and simulation and in terms of several well-known metrics, such as 

minimum mean-squared error (MMSE), effective SNR, BER, asymptotic efficiency, 

and near-far resistance. Moreover, we justify them with a few benchmark receivers. 

In addition, we also study many performance-impact parameters such as the detec­

tion group size, the number of out-of-cell unknown users, the number of resolved 

multi-paths, the near-far problem, the spreading code types, and the estimation er­

rors. Details of the performance analysis and evaluation will be presented in Chapter 

4. 

2.5.2 Research Statements 

In this thesis, we develop and evaluate forms of enhanced nonlinear and linear mul­

tiuser detectors for base-station reception in a multi-cell DS-CDMA wireless network 

under AWGN and slowly Rayleigh-faded multipath channels. The proposed receiver 

architectures have two processing stages. The first stage amounts to a bank of linear, 

multiuser-oriented signal equalizers on the basis of MMSE criterion, one for each of 

the target sources for joint detection; its role is to estimate the multiuser signal aggre­

gate by suppressing the unwanted interference. The second stage, acting jointly on 

all outputs from the front-end equalizers, is a maximum-likelihood sequence (MLS) 

or linear multiuser detector; its structure is calculated from the second-order statis­

tics of the equalizer error processes, assumed approximately Gaussian on the basis 

of a Central-Limit argument (also, cf. [140, 141]). 
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Table 2.1 Comparison of relevant multiuser receivers in terms of 
K/Kn/M detection structure, where K < Kn < M. Knowledge of one 
user includes signature waveform, timings, and/or received amplitude; 
for a fading channel, it may also include training or channel estimation. 

Multiuser 
detection 

type 

(Adaptive) 
Linear K/l/1 

(Adaptive) 

Linear K/Kn/1 
Linear 

KjKjKn 
Linear 

K/KjKn 
Nonlinear 

Kn/Kn/Kn 

Nonlinear 
Kn/KJM 

Adaptive MLS 

K/Kn/Kn 
Non- linear 
K/KJM 

Front-end 
linear 

filtering type 

single-user 
based equal 

single-user 
based equal 

MF 
multiuser 

based equal 

MF 
MF/ 

decorrelating 
single-user 

based equal 
multiuser 

based equal 

Separation 

rule for 
known users 

binary 
decision 

involved in equal/ 
binary decision 

linear trans/ 
binary decision 

linear trans/ 
binary decision 

MLS sequence 
decision 

MLS sequence 
decision 

MLS seq deci/ 
metric similar to [36] 

Derived MLS 
seq det metric 

Info 
Exploited 

one-user 
knowledge 

ATn-user 
knowledge 

Kn-user 
knowledge 

ATn-user 
knowledge 

ATn-user 
knowledge 

A^-user 
knowledge 

initial training 
of Kn users 

AT„-user 
knowledge 

Reference 

[46] [48] 
[79] 

[41] [39] 

[49] [50] 
this work 

V 

[36] [45] 

[113] [116] 

[123] 

this work 

V 

The multiuser detection developed in this thesis can fully exploit the known pa­

rameter knowledge of the in-cell users and the statistical knowledge of the out-of-cell 

sources to enhance performance. The front-end multiuser-oriented signal equaliza­

tion scheme plays a crucial role in the proposed joint detection with partial infor­

mation; it distinguishes the proposed multiuser detectors from alternatives found in 

the literature. For linear detectors [46, 48, 79, 41, 39], their front-end equalization 

target is exclusively the single-user transmitted bit bk(l), and thus the well-formed 

signal correlation infrastructure (of paramount importance to multiuser detection) 

of multiple known users can not be retained. For the other types of linear CDMA 

detectors [49, 50], they assume the full parameter information of all active users, thus 
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applicable to the base-station reception in a single-cell CDMA system (or the cases 

where the out-of-cell unknown sources are assumed weak or white). The multiuser 

detection proposed in this thesis is an extension of the multiuser detection [49, 50] 

in a single-cell setup to a multi-cell CDMA environment. 

For nonlinear MLS multiuser detectors [36, 45, 113, 116, 123], S{ is assumed 

absent or white in [36, 45, 113, 116]. [123] only uses training sequences to combat S[ 

with the single-user-oriented signal equalization, but it has no intention to explicitly 

employ the other available parameter knowledge of the in-cell known users to improve 

performance. The proposed MLS multiuser detectors are a generalization of MLS 

detection [36, 113, 116] to a multi-cell CDMA network under AWGN channels, and 

a generalization of [45] to a multi-cell setup under fading multipath channels. A 

classification of the multiuser detectors closely relevant to our research interest and 

respective receiver feature description are presented in Table 2.1. 

2.6 Limitations and Approximations 

We make certain assumptions in order to simplify the derivation and performance 

analysis of our multi-user detector. This section reviews the most important of those 

assumptions and assesses their impact on the applicability and generality of the 

results. 

The main assumptions are these: 

• The modulation format is BPSK. 

• The chip waveform is time-limited. In the detailed calculations, it is further 

assumed that in fact the chip waveform is time-limited to Tc — to the duration 

of a bit divided by the processing gain. 

• The outputs from the front-end equalizers are approximately Gaussian. 

The following explains: 

• Modulation format: Our model here is consistent with the IS-2000 standard 

for 3G wireless [3], which calls for BPSK on the reverse link for mobiles with 

a radio configuration of 3 or greater. IS-2000 does provide for quadrature 
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modulation and complex spreading on the forward link. The receiver struc­

ture we derive here (in Chapter 3) can in fact be amended to accommodate 

QPSK (or complex PN spreading) with different PN codes for the in-phase and 

quadrature channels. The signature vector thus becomes complex-valued, as 

do the tap coefficients that parameterize the equalizers. Matrix transpose in 

the complex setting becomes Hermitian transpose. 

• Chip waveform: Practical channels are frequency-limited, which implies that 

the chip waveform has infinite time duration. Our assumption in this con­

nection is thus not, strictly speaking, consistent with practice. We claim that 

the inconsistency does not materially impact our conclusions, mainly because 

practical chip shapes (the raised-cosine, for example) fall off sufficiently quickly 

outside of [0, Tc) that the energy leakage from one chip interval to another can 

be neglected in the (bit-based) performance calculations. Longer chip shapes 

can in any case be accommodated both by the receiver architecture (without 

change either in the front-end equalization or in the multi-user detector) and 

by the performance analysis (but at the cost of additional computational com­

plexity; see Sections 3.1, 3.7). The particularly simple shape selected for con­

venience in our derivations is seen elsewhere; see, for example, [36, 46, 39, 41]. 

• Gaussian approximation: Our assumption here is at least informally suggested 

by the Central Limit Theorem. The role of the front-end equalizers is to sup­

press the interference contributed by those sources (which for convenience we 

describe as "out of cell") whose parameters are unknown at the base station. 

In the scenario of interest to us, and which we hold to be of practical im­

portance, the out-of-cell interferers are many and weak, except possibly for a 

small number of strong ones. In such a case, the residuals produced by MMSE 

equalization are typically roughly equal and small; for example, in a five-user 

system, where all but one of the sources are known (in-cell), the power in the 

interference signal following equalization comes in at some four percent of the 

power in the target signal (see Table 4.4 in Chapter 4). The detailed shape of 

the distribution of the residual signal is of little import when the associated sig­

nal power is so small relative to that of the signals of interest. Reference [140], 

which considers more carefully the applicability of the Gaussian approximation 
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in settings such as ours, provides additional confirmation that the assumption 

is not unreasonable. 

There is a final remark that we include here regarding the definition of our model. 

As spelled out in Sections 2.1.2 and 2.5.1, the unknown interference (the out-of-cell 

contribution to the received signal) is supposed characterized by its second-order 

statistics (essentially the covariance function). These are shown to be periodic, in 

the sense of remaining unchanged when the origin of time is shifted by one pe­

riod. The period in question is Tb, the duration of a single bit. Such periodicity 

is described by saying that the unknown interference is (wide-sense) cyclostation­

ary. Cyclostationarity is proved in Section 2.2 subject to three conditions: that all 

signature sequences are one bit wide (short spreading), that consecutive bits within 

each source stream are iid, and that the user population is plesiochronous — that 

is, that all bit intervals in all streams have the same length. The point we wish to 

make here concerns the difference between cyclostationarity and stationarity (both 

understood as wide-sense, though the basic facts have strict-sense formulations as 

well). As noted, all transmitted signals are individually cyclostationary. The time 

offset due to propagation delay from transmitter to receiver does not change that. So 

individual signals are cyclostationary at the receiver. Because a sum of uncorrelated, 

cyclostationary processes (all with the same period) is itself cyclostationary, it ensues 

that the aggregate signal at the receiver is cyclostationary. It can happen, though, 

that the period of the aggregate is smaller than the common periods of the compo­

nents. The effect depends on those time offsets due to propagation delay, offsets that 

in general differ from one component signal to another. If there are M components 

whose arrival times at the receiver are uniformly spaced across a bit period, then 

the period of the aggregate is Tb/M, suggesting that in the limit of large M the 

aggregate is not merely cyclostationay, but in fact stationary. Similarly, if the time 

offsets of the M components are drawn randomly, in iid fashion from the uniform 

probability distribution on [0, Tb), then in the limit of large M the aggregate is again 

stationary — both conditionally (with probability one), given the actual values of 

the time offsets, and unconditionally, where the time offsets are averaged out in the 

calculation of the covariance. Appendix F supplies the details. 

We do not make any specific assumptions about the distribution of time offsets 
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at the receiver. We do assume that the covariance function for the aggregate "out-of-

cell interference, whether cyclostationary or in fact stationary, can be estimated at 

the receiver. It will be seen (from Section 3.7, Chapter 4 and the comparisons offered 

there between short and long spreading) that receiver performance can benefit from 

the cyclostationary signal structure produced by short spreading. 
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Chapter 3 

Receiver Architecture 

In this chapter, we propose and derive forms of nonlinear and linear CDMA mul­

tiuser detectors in partial system parameter scenarios under Gaussian channels and 

multipath slowly Rayleigh-faded channels. 

3.1 K/Kn/Kn Multiuser Equalization in Gaussian Channels 

In this section, we consider the multiuser-oriented signal equalization for base-station 

K/Kn/Kn detection in a multi-cell AT-user CDMA network under Gaussian channel, 

in which the receiver knows the signature waveform, timings, and received signal 

amplitude of Kn (< K) in-cell active users, but has no parameter knowledge of the 

K — Kn out-of-cell interfering sources. Without a loss of generality, we assume that 

users of interest for joint detection are indexed from 1 to Kn, and other unknown 

users from Kn + 1 to K. For convenient analysis of the proposed equalization and 

detection ideas, we assume that the Kn users are bit synchronized; thus, we have the 

propagation delay rk = 0, k = 1, 2 , . . . , Kn. The signal equalization and detection 

problems for an asynchronous setup will be addressed in Section 3.5, where the effect 

of multipath fading is considered. 

From (2.5), the received aggregate signal can be written as 

L Kn L K 
r(*) = SS>/AM0s*(*-m) + 2 Y y/Pk~bk(l)sk{t - lTb - rk) + n(t) 

1=1 fc=l 1=1 k=Kn+l 

= St
D(bKn) + S{ + n(t), (3.1) 
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where I denotes Ith bit interval, Pk, bk(l), and sk(t) are, respectively, the received 

signal power, transmitted bit, and signature waveform of user k. {rk, k = Kn + 

1, Kn + 2, . . . , K} are the transmission delays of out-of-cell unknown interfering 

sources, which are assumed to be unknown but deterministic parameters. S^(bKn) = 

YA=I X^fii yfPkbk(l)sk{t - lTb) is the received signal aggregate due to the contribu­

tion oiKn known users of interest; S( = Xw=i 2~2k=Kn+i \/rPk~bk(l)sk(t — lTb — Tk) is the 

received signal aggregate due to the contribution of K — Kn unknown users; n(t) is 

additive white Gaussian noise (AWGN) with two-sided power spectral density N0/2. 

bKn denotes the KnL x 1 bit vector of the in-cell users. The role of multiuser equal­

ization is to effectively suppress S( while retaining the multiuser signal correlation 

infrastructure of S^(bKn) (to be employed for joint MUD in the second stage). 

3.1.1 Multiuser information for A^-user joint detection 

As discussed in Section 2.5.1, if there were no out-of-cell K—Kn interfering resources, 

the signal aggregates of Kn users — {dj(l)} described in (2.28) — would provide a suf­

ficient statistic for the in-cell A^-user joint detection, which are produced by passing 

the received signal through a bank of Kn MF filters. In the presence of the out-of-cell 

interfering signals, the quantities {dj(l)} can provide sufficient information of mutual 

signal infrastructure among the signals of the Kn in-cell users that is desirable for 

joint detection of the users. However, a bank of Kn MF filters can no longer generate 

these desired quantities; instead, a bank of front-end Kn signal equalizers is required 

to suppress the interference from K — Kn unknown sources and estimate {dj(l)}. 

Each of the front-end signal equalizers employs a linear, fractionally-spaced, chip-

matched filter in our study such that the cyclostationary characteristics of CDMA 

signals can be well exploited; each signal equalization targets respective multiuser 

signal aggregate dj(l), as shown in Fig. 3.1. As a result, each front end forms a lin­

ear multiuser-oriented signal equalizer, different from the single-user-oriented signal 

equalizer proposed in the literature in which the desired multiuser signal aggregate 

is not retained after the front-end equalization. An estimate of {dj(l)} by the front-

end multiuser signal equalization can provide a decision statistic that enables "real", 

elaborate multiuser detection in the second stage. 

Each desired multiuser signal aggregate dj(l) at the Ith. bit interval can be con-
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sidered a projection of the received signal aggregate of the Kn users S ^ b ^ J into 

the known signal space of user j , which is expressed as 

dj(l) = <S?(bKn)lSj(t-lTb)> 
Kn 

= ^2y/Fkbk{l)pjk, J = l ,2 , . . . , /vn , (3.2) 
fc=l 

where < x(t),y(t) >— J^°oox(t)y*(t)dt denotes the inner product of signals x(t) and 

y(t), and pjk =< sk(t),Sj(t) > is the correlation between signature waveforms of 

user j and user A; at the Ith bit interval. It is seen that dj(l) has a zero mean and a 

variance 

E[(d3(l))
2] = YPkP2^ (3-3) 

k=i 

where E[*] denotes an expectation operation over the transmitted bits. Thus, the 

variance of dj(l) is known to the receiver; in fact, the parameter knowledge of the Kn 

in-cell users has been explicitly incorporated into this second-order statistic, which 

can be employed for effective signal equalization and detection (to be described in 

next subsection and the following section). In our study, dj(l) is first treated as a 

random variable to be estimated by a linear multiuser-oriented signal equalizer, thus 

leading to a linear optimal front-end filter design; then, an estimate of dj(l) is used 

for second-stage joint MUD. Consequently, the proposed multiuser detection with 

partial information setups can be considered an estimation-detection problem (also, 

see [83]). 

3.1.2 Linear optimal estimation of desired multiuser signals 

Our goal is to design a bank of Kn linear optimal multiuser-oriented signal equalizers, 

one for each of the known users and using MMSE estimation criterion, such that the 

mean squared error between the desired multiuser signal dj(l) and its estimate dj(l) 

at the output of the front-end linear equalizer for user j can be minimized, where 

j = 1, 2, . . . , Kn. 
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Fig. 3.1 A linear FIR filter for multiuser-user equalization in a decen­
tralized user information scenario to estimate dj(l) defined in (3.2). 

A. Discrete-Time Signal Representation 

The n th sample in the Ith bit interval at the output of the chip-matched filter 

for user j (as shown in Fig. 3.1) can be written as 

/

oo 

r(t)ip*(t-lTb-nTc)dt, 
•oo 

(3.4) 

where 0 < n < N — 1, N is the processing gain, and I symbolizes the Ith t ransmit ted 

bit of user j . Notice tha t the chip waveform ip(t) in (3.4) can be any deterministic 

function. For the convinence of symbol notation, we consider a chip waveform tha t 

is confined to the interval [O,^) 1 ; this particularly simple shape selected for conve­

nient analysis is seen elsewhere, for example, [36, 46, 39, 41]. As a result, we have, 

JQ
cip2(t)dt = 1/N for the normalized signature waveform Sj(t), and the chip-rate 

sample rj(l,n) can be expressed as 

Kn rw- L K 
Fk r^n) = EV^ ( / K ( n ) + ^ £ V^^Wti^ftO+n^n), (3.5) 

k=l i=l k=Kn+l 
1 Other forms of chip waveforms include a time function defined over a longer duration than T 

or a bandlimited signal. 
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where ak(n) is the nth chip of user k, 

N-l „T c 

$(*. l) = Y flfc(m) / W + lT* - lTb + nTc ~ mTc ~ Tk)lp*(t)dt, 
m=0 J0 

and nj(l, n) = J^nrt n ^ ^ * ^ ~~ ^b ~ n ^ ^t- Let us define an Af-dimensional 

vector at the Ith bit interval of user j as r,(/) = [rj(l, 0) Tj(l, 1) ... rj(l, N — 1)]T. 

n,(Z) = [ n ^ , 0 ) n , ( / , l ) • • • n3(l, N-l)f. ujk(l,i) = [ufk\l,i) ufk\l,i) ... ufk-
1)(l,z)f. 

From the above definition for Ujk(l,i), Ujk(l,i) can be shown to have the following 

properties: 

Property 1: ujk(l, i) depends on the time difference between bit intervals / and i, and 

the transmission delay rk of user k relative to user j . 

Property 2: Given rk > 0 and / (of user j), u.jk(l,i) is a non-zero vector only when 

i — I or i = I — 1. 

Using the above properties of Ujk(l, i), the sample vector Tj(l)2 can be simplified 

as 

Kn rp- K 
r^) = H^r^(0^+ Y #*('WM) + M'-iW.i-i)] + njW. 

k=l k=Kn + l 

(3.6) 

where ak — [ak(0) ak(l) . . . ak(N — 1)}T and Pk are, respectively, signature vector 

and received signal power of user k. n,(/) is an A^-dimensional Gaussian vector with 

zero mean and covariance matrix O2
NIN in which I;v denotes the N x N identity ma­

trix, a% = N0/2N. Notice that the chip-rate sample sequence of user j , {rj(l,n)}, 

is cyclostationary with a period of one bit interval Tb. 

B. Impulse Responses of the Linear Optimum Filters 

2With a chip waveform defined over longer interval than Tc, it will include more terms char­
acterizing the leakage energy in the non-central chip intervals (usually assuming relative small). 
However, the analysis is straightforward. 
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The output of the jth equalizer at the Ith bit interval of user j has the form 

d,(0 = wjr,(/), (3-7) 

where w, = [WJ(0) Wj(l) ... Wj(N - 1)]T is an AT-dimensional tap-coefficient vector 

representing the coefficients in the j t h equalizer. The linear optimal equalizer is 

designed such that the mean squared error between dj(l) and its estimate dj(l) can 

be minimized. Such an MMSE estimation criterion results in the optimum coefficient 

vector Wj0 in the equalizer, which is the solution to the Wiener-Hopf filter equation 

[63] 

SJWJ 0 = p j , (3.8) 

where Sj = E[rj(l)rj(l)T] is an N x N correlation matrix of the sample vector in 

the equalizer of user j at any given bit interval, and Pj = E[rj(l)dj(l)] is an N x 1 

cross-correlation vector between the sample vector and the desired multiuser signal 

aggregate associated with the front-end jth equalizer. It can be shown, from (3.6), 

that the correlation matrix Sj can be expressed as 

1 Kn K 

SJ = J^J2Pk3Lk3^+ E Pk[ujk(lJ)uJk(l,l) + ujk(l,l-l)uJk(l,l-l)} 
k=l k=Kn+l 

+CTNIN 

= Sfn+S^+o2
NlN, (3.9) 

where the transmission delays of unknown sources have been modeled as unknown 

but deterministic parameters. Pk denotes the average received signal power of an 

unknown user. S^n = j ^ Yik=i Pk&k&k is the correlation matrix due to signals from 

Kn known users, S^n = Ef=/r„+i pk[ujk(l, l)ujk(l, 1) + ujk(l, I - l)ujk(l, I - 1)] is the 

correlation matrix due to signals from K — Kn unknown interfering sources, and CF%IN 

is the correlation matrix of background AWGN noise. Notice that the correlation 

matrix S^ is independent of the bit interval I, since ujk(l,l) and Ujk(l,l — 1) in Sj 

only depend on (short) signature sequences and independent of the bit interval I. 
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The cross-correlation vector can be represented as 

-. Kn 

PJ = ^YPkp3kak' (3-10) 
fc=l 

where pjk is the correlation of signature waveforms between user j and user k. No­

tice that the cross-correlation vector Pj is known to the receiver and includes the 

multiuser information of Kn in-cell users; in fact, this second-order statistic has in­

corporated the known signature waveforms, timings and receive signal amplitudes of 

the Kn users in the formulation. 

Since the spreading waveforms of different users are independent, Sj is usually 

non-singular 3. From (3.8), the optimum coefficient vector wJO can be written by 

wJO = Sjlp3, (3.11) 

where X~l denotes the inverse of matrix X. It is important to notice that from (3.10) 

and (3.11), the parameter knowledge of the Kn known users has been explicitly used in 

the proposed linear multiuser-oriented signal equalization for both the estimation of 

the desired multiuser signal aggregate and the suppression of the out-of-cell unknown 

interfering sources. 

Let us define a new quantity, enhanced signature waveform, for user j with respect 

to the N xl optimum coefficient vector of the jth equalizer, wJO = [WJO(0) Wj0(l) ... 

wjo(N - 1)]T, as 

i V - l 

71=0 

(t) = Ywio{n)Ht~nTc), j = 1,2, . . . , Kn, 0<t<Tb, (3.12) 

where ip(t) is the chip waveform. The impulse response of the linear optimal equalizer 

(estimator) for user j can be represented by 

hj(t) = wj(Tb-t), j = l,2,...,Kn, 0<t<Tb. (3.13) 

Thus, a bank of front-end Kn linear multiuser-oriented signal equalizers with im-

3If, in some extreme case in which S-, is singular, the CDMA system is not operating properly 
and the optimum coefficient vector w.,0 may not exist [81]. 
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pulse responses {hj(t)}, as defined in (3.13), can replace a bank of Kn MF filters in a 

multi-cell CDMA network for the suppression of interference from K - Kn unknown 

sources and the estimation of multiuser signal aggregates {dj(l)} of the known users 

(desirable for joint MUD in the second-stage) simultaneously in the front-end signal 

processing. Notice that each of Kn linear MMSE equalizers also maximizes the ratio 

of the desired multiuser signal aggregate of Kn users over the residual interference 

of K - Kn unknown sources plus noise at the output of the front-end linear filter 

[139, 11]. 

Estimation of Sj. In the design of the linear optimal estimators formulated in 

(3.11), the cross-correlation vector p., is known, but the signal correlation matrix Sj 

defined in (3.9) is usually unknown due to the fact that the component matrix Sj n 

is unknown. Given that the received powers and relative delays of users are constant 

over a period of interest for multiuser detection (for example, within a power control 

group), the correlation matrix Sj can be estimated by a moving (time) average based 

on X recent received signal vectors {rj(i)} as [39] 

Sj(x) = ̂ -Yr^r^T- <3-14) 
i=i 

Eq. (3.14) provides a simple way to estimate the correlation matrix, which is based 

directly on the input received signal; however, it should be noticed that the infor­

mation about the known users is ignored in such a case. Alternatively, the correla­

tion matrix Sj can be obtained by first measuring the second-order statistic of the 

unknown interfering sources only or the component matrix S^7", through training 

sequences of the known users that can be found, for example, in the users' traffic 

frames of 3G wireless UMTS-TDD mode network [4]. The cross-correlation vector 

described in (3.10) can always fully exploit the parameter knowledge of the known 

users in the proposed multiuser-oriented equalization. 
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3.2 Maximum Likelihood Sequence (MLS) Mult iuser 

Detection 

The output sequences of the bank of Kn linear optimum filters designed in last 

section provide a decision statistic for joint detection of the Kn users. We'll show 

that such a decision statistic is sufficient. For the jth linear equalizer with its impulse 

response hj(t), the estimate of dj(l) at the output of the front end, observed at the 

time instant (I + l)Tb, can be expressed as 

dj(l) = < r(t), h3{lTb + Tb-t)> 

r(t)h*(lTb + Tb- t)dt, j = 1, 2 , . . . , Kn. (3.15) 
/ 

We have assumed that the correlation matrix described in (3.9) is non-singular, and 

thus the Kn basis functions {hj(t)} defined in (3.13) (or equivalently, Kn orthonor-

mal basis functions derived from {hj(t)}) span the signal space of Kn users whose 

modulation is BPSK. In the case of the unknown interfering sources and the back­

ground noise, the functions {hj(t)} do not span their signal space. However, since 

the unknown sources and the noise are independent of the known signal sources, 

the unknown interference and noise terms that fall outside the known signal space 

is irrelevant to the detection of the Kn known users [6, P. 235 ]. In other words, 

the joint detection of Kn users can be based entirely on the equalization output 

sequences {dj(l)}. It is important to observe that the Kn basis functions {hj(t)} 

is closely related to the projection energy from the unknown interference and the 

noise onto the signal space. In our proposed multiuser-oriented equalization, such 

an unwanted projection energy can be minimized (or the energy of the unknown 

interference and noise terms that fall outside the desired known signal space can be 

maximized). Consequently, {dj(l)} can provide a sufficient statistic with minimized 

residual interference and noise components for detecting the signals of the Kn known 

users. 

Now define an output sample vector d = [d(l)T d(2)T . . . d(L)T]JCnLxl where 

d(/) = [d\(l) d2(l) • • • dKn{l)\KnXi^ a n d denote the entries of Kn x Kn matrices R 
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and Q, and Kn x (K — Kn) matrix Q(l — i) as 

{R}jk = <sk(t),hj(Tb-t)>, 

J = 1) 2, . . . , Kn, k = 1 ,2 , . . . , A n , (3.16) 

{W}jfc = <M^-*) , /» J - (T 6 - t )> > 

j = 1, 2 , . . . , A n , /c = 1 ,2 , . . . , A n , 

and 

respectively; then, the output sequence vector d can be written by 

d = nLAKnbKn + QLA^J + N, 

(3.17) 

{Q{l-i)}j(k~Kn) = < sk{t - iTb - Tfc), /ij(/T6 + T6 - t) >, 

j = l,2,...,Kn, k = Kn + l,Kn + 2,...,K, (3.18) 

(3.19) 

where, by definition, 

bKn = Ml) 62(1) • • • bKn(l) 6i(2) 62(2) . . . 6Xn(2) . . . b,(L) b2(L) ... bKn(L)fKnLxl. 

bT = [bKn+l(l) bKn+2(l) ... bK(l) ... bKn+1(L) bKn+2(L) ... bK(L)]JK_Kn)Lxl. 

AKn=diag{AKn(l), AKn(2), . . . , AKn(L)}KnLxKnL, 

AKn(l) = ting{y/I\, sTP2, . . . , y/P£}KnxKn. 

Aj = diag{Aj(l), Aj(2), •••, i4j(I>)}JCwLxJgnL, 

A/(Z) = diag{v/PA-n+i, ^PKn+2, • • • , VP~K}(K-Kn)x(K-Kn). 

N = [N(1)T N ( 2 ) r . . . N(L) r ]£ B L x l , N(Z) = [^(Z) z2(Z) . . . zKn{l)]$nxi, where 

Zj(l) in N(l) is defined as ^(Z) = < n(t), hj(lTb + Tb + r,- - t) >, j = 1 ,2, . . . , ATn. 

fti 

R 0 0 0 . . . 0 

0 R 0 0 . . . 0 

0 0 R 0 . . . 0 

0 . . . 0 0 R 0 

0 . . . 0 0 O R 

(3.20) 

-1 KnLxKnL 
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Notice that zt(l) is a Gaussian random variable with zero mean and variance ^ ; N is 

the output noise vector of the MMSE equalizers, which has zero mean and covariance 

matrix 

E[NNT] = ^ W L ; (3.23) 

and its vector components (N(Z)} satisfy £[N(i)NT(Z)] = ^ W for Z = i and zero 

otherwise. By definition (3.18), it can be shown that the Kn x (K — Kn) matrix Q(i) 

satisfies Q(i) = 0, unless i = 0 and 1. 

We rewrite the output sequence vector in (3.19) as 

d = nLAKnbKn+dI + N, (3.24) 

where d/ = Qz,Art>/ is the residual interference vector from the K — Kn users. The 

output residual interference vector d/ can be assumed to be approximately Gaussian 

on the basis of a Central-Limit argument. Such approximate Gaussianity behavior 

for the residual interference at the outputs of linear MMSE estimators has been well 

studied under various conditions (see [140, 141]). 
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Now our problem in (3.24) is reduced to a sequence detection (the sequence 

in question being bKn) in coloured Gaussian noise channel. Thus the maximum-

likelihood sequence decision algorithm for the Kn known users selects a bKn0 that 

maximizes the payoff function 

exp | - i ( d - TZLAKnbKn)
T(RI + ^ W z , ) - 1 ^ - KLAKnbKn)} , (3-25) 

where Rj is the correlation matrix of the residual interference of K — Kn interferers 

defined by P / = E[djdJ]. After neglecting the terms that are common to all of the 

hypotheses in (3.25), we obtain the maximum-likelihood decision metric for multiuser 

detection in partial information settings that selects a bKn0 to maximize the log-

likelihood function 

fl(bO = 2bT
KnAT

Knd-bT
KnAT

KnnuAKnbKn, (3.26) 

where d = ft£(#J + ^ W z J ^ d , and Ku = ft£(i*7 + fWL)~lnL. Notice that the 

multiuser detection metric described in (3.26) for K/Kn/Kn MLS detection has been 

formulated in a way that is similar to (2.20) for Kn/Kn/Kn MLS multiuser detection. 

However, the two detection metrics are quite different in that the new formulation 

considers the suppression of the K — Kn out-of-cell unknown sources and includes the 

effect of the residual interference. The architecture for the proposed K/Kn/Kn mul­

tiuser detectors consists of a linear optimal multiuser-oriented signal equalizer bank, 

followed by maximum-likelihood sequence detection algorithm, as shown in Fig. 3.2. 

The computational complexity per bit of MLS decision algorithm is 0(2Kn/Kn), in­

dependent of K, in settings where the in-cell sources are synchronized. The proposed 

K/Kn/Kn MLS multiuser is a generalization of the MLS multiuser detector [36] to 

multi-cell wireless networks; in the special case where Kn = K, the front-end filter 

bank reduces to a bank of MF filters, and the proposed MLS multiuser detector be­

comes the well-known architecture for optimum Kn/Kn/Kn MLS multiuser detection 

with full parameter information setup [36]. 
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Fig. 3.2 The structure of proposed K/Kn/Kn MLS multiuser detectors 
in CDMA AWGN channels. 
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3 . 3 K/Kn/Kn L i n e a r M u l t i u s e r D e t e c t i o n 

Recently, linear multiuser detection under additive Gaussian channels has been ex­

tensively studied, due to its low-complexity and robust near-far resistance. In the 

case where full parameter knowledge of all active users is available to the receiver, the 

Kn/Kn/Kn linear multiuser detectors [50, 49] have a well-known receiver architecture 

that consists of a bank of front-end Kn MF filters, followed by either a zero-forcing 

or an MMSE linear transformation. In this section, we propose K/Kn/Kn (Kn < K) 

linear detection with partial information (e.g., multi-cell) setups. 

The architecture of the K/Kn/Kn linear detection can be obtained by replacing 

the second-stage, nonlinear MLS decision algorithm in Fig. 3.2 with either a zero-

forcing or an MMSE decision algorithm, which is shown in Fig. 3.3. 
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3.3.1 K/Kn/Kn decorrelating detectors 

We write the output sequence vector in (3.24) as 

d = nLAKnbKn + Nint, (3.27) 

where Nint = d/ + N. Notice that d/ is the residual interference vector from the K — 

Kn unknown users, assumed to be (small-valued) approximately Gaussian with zero 

means on the basis of a Central-Limit argument; N is filtered Gaussian background 

noise. Using decorrelating (zero-forcing) criterion and neglecting the effect of residual 

interference and background noise N,n t , the bits of individual users can be estimated 

by 

AKnbKn = AKn*>Kn + ^Z'Nmt- (3.28) 

The zero-forcing interference cancellation can also be viewed as a maximum-likelihood 

estimation of the transmitted signal. To examine this, recall the detection problem 

in (3.26) that the MLS decision algorithm selects a discrete-valued bit vector bKn0 

to maximize the metric 

Q(bKn) = 2bT
KnAlnd-bT

KnAT
KnnuAKnbKn, (3.29) 

where d = KftRj + f W ^ M , and Uv = ft£(fl/ + ^WL)-lKL. Now consider 

the scenario where the discrete-valued assumption is dropped for bKn, i.e., bK is 

thought to be continuous-valued variables. As a consequence, the nature of the 

problem has changed from a detection to an estimation; the estimator is followed by 

a simple device that produces the final bit decisions. With this framework in mind, 

maximization of &(bKn) can be accomplished by direct differentiation of (3.29) with 

respect to bK_, which gives rise to a linear transformation with a solution W 

AKnbKn = Tl^d 

= Ki'd 

= AKnbKri+n-L
lNint. (3.30) 
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Fig. 3.3 The structure of proposed K/Kn/Kn linear multiuser detec­
tors in CDMA AWGN channels. 

Thus, the K/Kn/Kn linear decorrelating detector consists of a bank of Kn front-end 

linear multiuser-oriented signal equalizers, followed by a zero-forcing linear transfor­

mation. Such an architecture is an extension of the linear decorrelating detector [50] 

in a full information (e.g., single-cell) setup to a partial information (e.g., multi-cell) 

setup. 

Notice that the above derivation shows that, in a maximum-likelihood sense, a lin­

ear receiver is the best means of estimating continuous-valued bit symbols embedded 

in additive Gaussian interference plus noise. From the same sense, the zero-forcing 

detection is suboptimal, since the transmitted bit symbols are actually discrete-

valued. 

3.3.2 K/Kn/Kn linear MMSE detectors 

The decorrelating detectors generally enhance the residual interference and noise 

since it neglects them in the linear transformation, and thus suffer from a performance 

penalty. Alternatively, a linear transformation /C can be employed in place of VJj} in 



62 Receiver Architecture 

(3.30) such that the mean squared error E[(AKnbKn — ^d)T(AKnbKn — /Cd)] can be 

minimized, thus suppressing both the interference from the other known users and 

the residual interference plus background noise in the front end. On the basis of the 

projection principle [142], minimization of such a mean squared error is equivalent 

to finding the error variable (AKn^Kn ~ ^ d ) that is orthogonal to any component of 

d; that is, 

E[(AKnbKn - /Cd)d] = 0. (3.31) 

Solving the equation(3.31) leads to the optimal choice K. for K/Kn/Kn linear MMSE 

detector, which can be expressed as [51] 

Kopt = A2
Knl(nLA2

KnTL + Pi + ^ W 1 . (3.32) 

Thus the architecture of the K/Kn/Kn linear MMSE multiuser detector consists of 

a bank of front-end Kn linear multiuser-oriented signal equalizers, followed by the 

linear MMSE transformation Kopt. 

The K/Kn/Kn linear MMSE detector is well defined in the sense that the trans­

formation in (3.32) always exists because the matrix therein is the sum of a nonneg-

ative definite matrix TZL and a diagonal positive definite matrix ^J-WL', that is, the 

linear MMSE transformation exists, even though the decorrelating solution in (3.30) 

may not exist. Moreover, the K/Kn/Kn linear MMSE detector performs better than 

the K/Kn/Kn linear decorrelators, since it takes the effect of the residual interfer­

ence plus noise into consideration. It is seen that when particularizing K/Kn/Kn 

linear MMSE detection to the case where Kn = K, Rr = 0 and WL = TZL, the 

front-end linear optimal filters reduce to a bank of conventional matched filters, and 

the second-stage linear MMSE transformation becomes 

£oPt = (nL + -fA-K
2
n)-

1; (3.33) 

thus, the proposed linear MMSE detection architecture reduces to the one proposed 

in [49]. Moreover, in the case where Kn = 1(< K), the proposed structure reduces 

to the extensively studied [46], [47], [48] for the linear single-user MMSE detection. 
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3.4 K/Kn/M Equalization and MLS Detection in Gaussian 

Channels 

In Section 3.2, we have proposed the K/Kn/Kn MLS multiuser detection with im­

plementation complexity increasing exponentially with Kn. When Kn is very large, 

or the receiver is constrained to certain computational capability, the resulting com­

plexity of K/Kn/Kn MLS multiuser detection can be too high to be affordable for 

a base-station reception. In this section, we propose a flexible K/Kn/M (M < Kn) 

MLS detection architecture with tradeoffs between performance and complexity. For 

the K/Kn/M MLS detection, we assume that the users of interest for joint detection 

in the target group are indexed first, from 1 to M; the other known users, from M+l 

to Kn; and the unknown interfering sources, from Kn + 1 to K. For convenient elabo­

ration of the detection design, we further assume that transmissions of the Kn in-cell 

sources are synchronized, whereas signals of K — Kn out-of-cell unknown sources are 

asynchronous. 

3.4.1 The detection statistic for M users 

In the absence of multiple access interference (MAI) from K—M sources, the sampled 

outputs of M MF filters form a sufficient statistic for the joint detection of the M 

users. Write (/, g) for the usual (L2) inner product between functions / and g, and 

Pjk for the correlation (sj,sk) between signature waveforms of users j and fcona 

single bit interval. The multiuser signal aggregate desirable for MUD at the output 

of the j t h MF filter (sampled at the ith bit interval) can be denoted by 

M 

dj(i) = (rM{t), Sj(t - %Th)) = Y \ZP~kbk{P>Pjk, (3.34) 
fc=i 

where 
M 

rM{t) = YY1 VP~Ml)sk(t - lTb) 
1=1 k=l 

represents the received signal from the sources in the target group observed over an 

L-bit interval. Notice that the multiuser signal defined in (3.34) for joint M-user 

detection is actually a projection of r^ ( i ) into the signal space, expanded by the 
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known signature waveforms of the M users. 

In the presence of the K — M sources, the multiuser signal aggregate dj(i) of 

M users in the target group is considered our desired front-end signal equalization 

target associated with user j . Our approach to the design of a receiver for the 

K/Kn/M detection extracts the dj(i), in the form of MMSE estimates dj(i) (on a 

bit-by-bit basis), from a larger received aggregate of K sources and background noise; 

these dj(i) are then processed by an M-ary multiuser maximum-likelihood sequence 

detection algorithm. 

3.4.2 Linear MMSE estimation of the dj(i) 

The estimate of dj(i) in the j th equalizer, dj(i) , is obtained by processing the received 

signal r(t) through a linear equalizer consisting of an Af-tap fractionally-spaced chip-

matched filter (shown in Fig. 3.1), and by directing the linear signal equalization 

toward the multiuser signal aggregate dj(i) on the basis of MMSE criterion. The 

output of the j th equalizer at the zth bit interval of user j has the form 

dJ(i)=wjrj(i), (3.35) 

where Tj(i) is the chip-rate sample vector of the received signal at the output of chip-

matched filter in the ith bit interval described in Appendix A. Wj = [WJ(0) Wj(l) . . . 

Wj(N — 1)]T is an A^-dimensional coefficient vector of the j th equalizer; the optimum 

coefficient vector wJO can be obtained by solving the Wiener-Hopf filter equation 

SJwJ0 = P j , (3.36) 

where Sj is an N x N correlation matrix of a (chip-rate) sample vector over one 

bit interval in the j th equalizer, i.e., Sj = E[rj(i)rj(i)T], and pj is an N x 1 cross-

correlation vector between the sample vector and the desired multiuser signal ag­

gregate, i.e., Pj = E[rj(i)dj(i)]. The correlation matrix Sj can be formulated as 

described in (3.9). The cross-correlation vector can be represented as 

1 M 

Pj = T7 Y ^Pjk^k N 
k=i 

(3.37) 
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where Pk and a*, denote, respectively, the received signal power and the JVx 1 

signature vector of known user k, and pjk is the correlation of signature waveforms 

between user j and user k. 

The enhanced signature waveform Wj(t) and the impulse response of the linear 

optimum equalizer hj(t) can be denoted as given in (3.12) and (3.13), respectively, 

with respect to the optimum coefficient vector Wj0. As a result, the estimate of dj(i) 

at the output of the front-end linear filter of user j , observed at the time instant 

(i + l)Tb, can be expressed as 

dj(i) = (r{t),hj(iTb + Tb-t)) 

r(t)h](iTb + Tb- t)dt, j = 1 , . . . , M. (3.38) 
/ 
J — c 

Define d(i) = [di(i) d2(i) . . . dj(i) . . . dM(i)]T (i being the bit index and j being 

the user index); all of the output samples from the front-end M multiuser-oriented 

signal equalizers form the ML x 1 column vector constructed by concatenating the 

d(i) 

d = [d ( l ) r d ( 2 f . . . d ( L ) T ; (3-39) 

then with a little bit of work, it can be shown that in fact 

d = ULAMbM + QLAM + N. (3.40) 

The symbols in the expression are defined in the Appendix A. Briefly, IZL is a matrix 

of the inner products of signature sequence sk (of user k) and impulse response hj 

(of equalizer k), and QL is a matrix of the inner products of sk> and hj, where j = 

1 , . . . , M, k = 1 , . . . , M, and k = M+l,..., K ; AM, Aj are diagonal matrices whose 

diagonal elements are amplitudes yfPk, arranged cyclically; b / is the bit sequence 

contributed by the interfering sources and b ^ , the heart of the matter, is the bit 

sequence to be decoded. The symbol N (on the far right in the expression for d) 

denotes a zero-mean Gaussian ML-vector with the block-diagonal covariance matrix 

displayed in the Appendix A. 

Let Ri be the autocorrelation matrix of the residual interference of the K — M 
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sources, which is defined by Ri = £ [d /d j ] = E\QLAiATj Qj] where the expectation 

is performed over the detection-related unknown quantities of K — Kn signals; then 

the following result characterizes Rj. 

Proposition 1: The autocorrelation of the residual interference Ri is an ML x ML 

symmetric matrix that has zero entries outside a band along its diagonal with upper 

and lower bandwidth 2M — 1. 

The proof of Proposition 1 is presented in Appendix E. It is expected that correla­

tions between residual interference components in different bit intervals are relatively 

small, since the MMSE equalization is made on a symbol-by-symbol basis; that is, 

E[Q(1)QT'(0)] and E[Q(0)QT(1)] are matrices with small-valued entries. Moreover, 

since QL is associated with the signal correlation between the users in the target 

group and other unwanted sources, Proposition 1 still satisfies in the case where the 

in-cell sources are asynchronous. 

3.4.3 The maximum-likelihood sequence detect ion 

The goal is to recover b ^ from d. Rewrite d in the form 

d = TlLAMbM + d7 + N, (3.41) 

where d7 = Q^Ajbi represents what remains of the unwanted MAI following the 

filtering provided by the equalizer front end. d/ should be small, to the extent 

that the filtering is effective. It can be argued ([140, 141]) that d/ is approximately 

Gaussian, in which case, the sum d/ + N (residual MAI + noise) is approximately 

Gaussian as well. Thus, our problem is reduced to sequence detection (the sequence 

in question being b ^ ) in coloured Gaussian noise, for which the optimal estimate 

bM is the vector bMo that maximizes the likelihood function 

expL^(d-nLAMbM)T(RI+^wL)-1(d-nLAMbM)\ 
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where Rj is the correlation matrix of the residual interference of the K—M sources 

defined by Rj = E[didJ]. This simplifies to 

bMo = arg max {2bT
KIA

T
Md - bT

MAT
MKuAMbM}i (3.42) 

DA/ 

where d = KT
L(Ri + fWL)~ld, and Uv = V7L(Ri + ^ ^ L ) ' 1 ^ - The proposed 

receiver structure can be outlined in Fig. 3.4, and its computational complexity per 

bit of the A/-user MLS decision algorithm is 0(2A//M) in settings where the in-cell 

sources are synchronized, independent of K and Kn. 

Remarks : 

(1) The detector that was just derived has the form described in [36], except that 

the matched-filter bank there is replaced here by a bank of multiuser-based signal 

equalizers developed in Sections 3.4.1 and 3.4.2. In the particular case K — Kn — M, 

our receiver reduces to the one in [36]; in the case of K = Kn and M < Kn, it is 

an alternative implementation to the subset detection proposed in [113], where an 

MMSE-based front-end filtering here replaces a decorrelating-based processing there. 

(2) It follows from (3.41) that 

Ri + YWL = E d d T - RLAMAlRj, (3.43) 

suggesting that the correlation matrix for the variable dj + N can be estimated from 

the outputs of the equalizer front end. 

(3) Partitioning strategy: It is found from the numerical results (to be presented 

in Chapter 4; also, refer to [113]) that users with weak received signals can benefit 

from joint detection with strong-power users. Thus, one of the recommended parti­

tioning strategies sorts the Kn known users by their received powers from strongest 

to weakest; it selects the user with the strongest signal and the user with the weak­

est signal, the user with the second strongest signal and the user with the second 

weakest signal, and so forth, putting them in one detection group until the group 

size is equal to M; it chooses other detection groups similarly until none of the Kn 

users remain. 
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I th equalizer 

hi(t) 

jth equalizer 

h,(t) 

di(i) 

dj w 

M t h equalizer 

hM{t) 

d${i) 

Maximum 

Likelihood 

Sequence 

Decision 

>Mo 

Linear MMSE multiuser equalizers 

Fig. 3.4 The structure of proposed K/Kn/M multiuser MLS detector. 

3 . 5 M u l t i u s e r S i g n a l E q u a l i z a t i o n a n d M L S D e t e c t i o n i n 

F a d i n g M u l t i p a t h C h a n n e l s 

In this section, we consider the multiuser signal equalization and detection under 

frequency-selective slowly Rayleigh-faded channels for a cellular CDMA network. 

We write K for the total number of active users in the network and M (< K) for the 

number of users of interest to be jointly detected. It is assumed that a J-multipath 

model is employed in our analysis; all multipath components of the M known can 

be tracked, estimated and resolved (to be used for joint MUD), whereas multipath 

signal components from the other users are considered unwanted interfering sources 

to be suppressed in the front-end filtering. Thus, there are a total of Kp = KJ 

signal components in the network, among which Mp = MJ components are path 

components of interest to the receiver for multiuser-oriented signal equalization and 

joint M-user MLS sequence detection. 

From (2.3) and (2.6), the aggregate equivalent complex baseband signal at the 
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receiver can be represented by 

L K 

^ = E E y/Pkbk(i)^{t)sk{t - iTb) + n(t) (3.44) 
i = -L k=l 

where Pk, bk(i) and Tb are, respectively, the received signal power, the zth transmitted 

bit and the bit interval of user k. Note that the transmitted bit length for each user 

has been modified to 2L+1 in (3.44) for convenient analysis. sk(t) = [sk(t-rkl) sk(t-

Tki) •-. sk(t — Tkj)]T whose element is a normalized signature waveform given by 

N-l 

Sk{t) = Y,a'<(nMt-nTc)> 0<t<Tb, (3.45) 
71=0 

assuming that the signature waveforms from different users are independent and the 

time-shifted signature waveform components of the same user are uncorrelated. J 

denotes the total number of path components for each user. rki is the transmission 

delay of the Zth path component of user k, {ak(n), n = 0,1,... ,N — 1} is the A;th 

user's spreading sequence, consisting of N chips that take on values {±1} and can be 

written as a vector form as ak = [ak(0) ak(l) ... ak(N—l)]T. ip(t) is a chip pulse that 

is defined over [0, Tc) (For effect of a chip waveform of a longer duration on chip-rate 

sample measurements, see comments in Section 3.1.2), and satisfy fQ
 c ip2(t)dt = 1/N, 

where Tc = Tb/N is the inverse of the chip rate. The noise process h(t) is circularly 

symmetric, complex-valued, additive, and Gaussian with power spectral density N0. 

fk(t) = [aki(t) ak2(t) ... akJ(t)]
T; the fading coefficients {akm(t)} from K - M 

undesired sources are considered complex-valued, mutually-uncorrelated (over both 

k and m), zero-mean, stationary Gaussian random processes. 

For the total number of signal component of K users, Kp = KJ, we re-index, for 

convenience of the analysis, the Kp component signals as 1, 2 , . . . , J for the multipath 

components of user 1, J + 1, J + 2 , . . . , 2 J of user 2, and so forth; signal components 

from M users in the target detection group are first indexed. Thus, the subscript k 

in sk(t) denotes the signature waveform of the kth signal component in the following, 

where k = 1,2,. . . , Kp, and the same re-indexing notations of k in fading coefficients 

ak(t) and transmission delays rk. As a result, the received signal can be expressed 
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as 

L Kp 

f(t) = Y ! C y/P~Ml)<*k(t)sk(t - lTb - Tk) + rt(t) 
l=-L k=l 

= rD(t) + fu(t)+n(t) (3.46) 

where fo(t) = 2^2I=-L 2^2k=i y/Pk~bk(l)otk(t)sk(t
 — lTb — Tk), where rk is a transmission 

delay of resolve 

sk(t-lTb -T f c) . 

delay of resolved path component k, and fu{t) = 2~2I=-L Y2k=M +i \fP~kbk(l)ak(t) 

3.5.1 Multiuser information for joint detection in fading multipath 

channels 

In a fading multipath channel, each transmitted signal may disperse into many repli­

cas of itself through the propagation environment at the receiver and these signal 

multipath components from each user can usually be considered to fade indepen­

dently. The received Mp aggregate signal components from the M known users, 

rD(t) in (3.46), are of prime interest for joint multiuser detection, whereas signal 

components of the unwanted K — M users (i.e., fv(t)) need to be suppressed based 

on their second-order statistic. 

As before, we define the projection of rD(t) onto the component signature wave­

form of the jth multipath as the desired multiuser signal aggregate to be estimated 

in the front-end filtering (and then to be jointly decoded for the M users in the 

second-stage signal processing). The multiuser signal aggregate dj(l) can be written 

as 

dj(l) = <fD(t), Sj(t - lTb -Tj)> 

j = l,2,...,Mp, (3.47) 

where < x(t), y(t) >= J^ x(t)y*(t)dt denotes the inner product. As a result, a bank 

of Mp front-end linear equalizers, one for each finger reception, needs to be employed 

in the presence of unwanted sources fu(t) to estimate {dj(l)}. It is important to 
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notice that while Mp linear filters are employed and thus Mp estimates of the target 

quantities {dj(l)} are produced, the transmitted bits of interest come from only M 

users; thus, the second-stage MLS decision algorithm only needs to search in an M-

diementional signal space for joint sequence detection of the M users, leading to an 

implementation complexity that inceases exponentially with M but linearly with J. 

3.5.2 Liner optimal multiuser signal estimation 

The front-end j t h linear equalizer (for each finger reception) employs a fractionally-

spaced chip-matched filter; an observation window of Tb is used for the bit-by-bit 

based signal equalization, thus leading to an Af-tap filter. For convenient analysis, 

we further assume that the delay spread Tm of each known user satisfies Tm «Tb 

(cf. [116, 143]). It should be noticed that in scenarios where there is a relative large 

delay spread, the analysis is similar and straightforward. The nth sample in the 

Zth bit interval at the output of the chip-matched filter in the equalizer for the j t h 

component path is given by 

rj(l,n) = <f(t),iP(t-lTb-nTc-Tj)> 

/

oo 

f(t)ip*(t - lTb - nTc - Tj)dt 
-oo -oo 

L Kv 
» 

i=-L k=l 

Y Y VP~kak(i)h{i)u^(l, i) + n3(l, n), j = l,2,..., Mp,(3.48) 

where 

N-l fTc 

„(»)(/, i) = Y a * ( m ) / ^(* + lTb - iTb + nTc - mTc + Tj - rk)r(t)dt, (3.49) 
m=0 ^° 

nj(i>n) = Jtn+nn+l?^ *(*) ^*(* " lTb ~ nTc ~ Tj) dt,0<n<N-l,i symbolizes 

the zth transmitted bit of the j t h component signal, and ak(i) = ak(iTb). Let us 

define an Af-dimensional vector at the Zth bit interval of the j t h component signal 

as Tj(l) = [rj(l,0) rj(Z, 1) . . . rj(l,N — l ) ] r , then the sample vector Tj(l) can be 
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represented by 

L KP 
rj(l) = E E ^ ^ ^ l M l + n̂ O, j = l,2,...,Mp, (3.50) 

i=-L k=l 

where ujk(l,i) = [ufk\l,i) u?k\l,i) ... u ^ M F - M O = [n,(Z,0) nj(l,l) . . . 

nj(l, N— 1)]T is an A^-dimensional Gaussian vector with a zero mean and a covariance 

matrix cr2I/v, where IN denotes the N x N identity matrix and a2 = N0/N. The 

output of the j th equalizer at the Zth bit interval of the j t h component signal has the 

form dj(l) = wJrj(Z), where Wj = [WJ(0) Wj(l) ... Wj(N — l)]T is an Af-dimensional 

coefficient vector, representing the coefficients in the j t h equalizer. Thus, targeting 

the desired multiuser signal aggregate dj(l) defined in (3.47), the linear optimum 

equalization finds a coefficient vector Wj0 that minimizes the mean squared error 

Wj0 = arg jmnN E[(wJY](l) - d3(l))% (3-51) 

and the resulting weight coefficient vector is actually the solution to the Wiener-Hopf 

filter equation given by 

SjWj0 = P j , j = 1,2,. . . , Mp, (3.52) 

where Sj is an N x N correlation4 matrix of the sample vector in the equalizer of user j 

at any given bit interval, i.e., Sj = E[T*(1)TJ(1)T], and Pj is an N x 1 cross-correlation 

vector between the sample vector and the desired multiuser signal aggregate dj(l), 

i.e., Pj = E[rj(l)d*(l)]. The cross-correlation vector of the j t h equalizer can be 

written as 

Mp 

PJ = J2Pk{a£(l-l)Pjk{lJ-l)ujk{l,l-l) 
k=l 

+a2
k{l)Pjk(l, l)ujk{l, 1) + a2

k(l + l)pjk{l, I + l)ujk(l, I + 1)} (3.53) 

4The pseudo-correlation of the complex received signal vector is in fact zero, assuming that the 
real and image fading parts are zero mean and independent Guassian. 
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and the correlation matrix can be written as 

MP 

Sj = ^ p ^ a ^ z - i H ^ z ^ - i X ^ z - i ) 
*:=i 

+a2(l)ujk(l, l)ujk(l, 1) + a2(l + l)njk(l, I + l)ujk(l, I + 1)} 

Kp 

+ Y PkH(l-l)ujk(l,l-l)uJk(l,l-l) 
k=Mp+l 

+a2(l)ujk(l, l)ujk(l, 1) + a2(l + l)ujk(l, I + l)uJ,(Z, I + 1)] 

WlN (3.54) 

= Sf + Suj + a2IN, (3.55) 

where Pjk(l,i) =< sk(t — iTb — Tj),Sj(t — lTb — Tj) > is the partial correlation 

between signature waveforms of the j t h and kth signal components at their Zth 

and ith bit intervals, respectively, S^ = 2~2k=i Pk{al(l ~ l)ujk(lJ — l)ujfc(M — 

1) + o;̂ (Z)ujfc(Z, l)ujk(l, I) + a\(l -)- l)ujfc(Z, Z + l)uJfc(Z, Z -f 1)} is the correlation ma­

trix of the M users of interest and the resolved Mp signal components, and Sj7 = 

E^Mp+iPk[a2
k(l-l)njk(l,l-l)nJk(l,l-l) + a^^ 

l)u^,(Z, Z + 1)] is a correlation matrix of the Kp — Mp interfering components from 

the K — M unwanted sources, in which al(.) is the mean energy of the path k at 

a bit interval. Notice that, since {ujfc(Z,Z — l)},{ujfc(Z, Z)}, and {ujfc(Z,Z + 1)} are 

actually independent of Z based on Property 1, Sj and pj are both independent of 

the bit interval Z (as long as the channel doesn't vary greatly in the period of interest 

for joint multiuser detection; for example, a 1.25-millisecond power control slot [3] 

in a slow fading environment). 

Generally, Pj is known to the receiver and the correlation matrix Sj is not. One 

way of estimating Sj is to use a moving (time) average based on Z recent received 

signal vectors {vj(i)} as 

1 Z 

S,(Z) = yY,T&>j(i)H • (3-56) 
t = i 

Observe that this estimate is only based on the received signal vectors sampled at 

different bit interval. 
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Let us define the enhanced signature waveform in the form for the j t h (1 < j < 

Mp) component signal with respect to the N x 1 optimum coefficient vector as 

N-l 
WJ^) = Z ) wio(n)ip{t - nTc), 0<t<Tb, (3.57) 

n=0 

the impulse response of the linear equalizer can be denoted by hj (t) = VDJ (Tb — t). 

Thus, the estimate of dj(l) after the j t h linear equalization can be written in terms 

of the enhanced signature waveform as 

dj(l) = < f(t), Wj(t - lTb -Tj)> . (3.58) 

Now define the data vector for M users with Mp = JM resolvable component signals 

as 

b = [bT(-L, M) bT(-L + 1, M) . . . bT(L - 1, M) bT(L, M)]T, (3.59) 

where 

b(Z, M) = [h(l) bx(l) ... 6x(0 62(Z) 62(Z) . . . 62(Z) . . . bM(l) bM(l) ... bM(l)]T; 

J J J 

the signature waveform vector as 

s(t) = [gT(t + LTb) gT(t - LTb + Tb) ... g(i - LTb - Tb) gT(t - LTb)]
T, (3.60) 

where 

g(*) = M* ~ r i ) s2{t ~r2) ••• sMp(t - TMp)]
T; 

the enhanced (or effective) signature waveform vector as 

w(t) = [hT(t + LTb) hT(t - LTb + Tb) ... b{t - LTb - Tb) hT(t - LTb)]
T, (3.61) 

where 

h(t) = [wx(t - n) w2(t - r2) . . . wMp(t - rMp)]
T; 
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and the matrix of fading coefficients as 

where 

C = diag{C(-L) C(-L + 1) . . . C(L - 1) C(L)}, 

C(Z) = diag{a1(Z)a2(Z) ...aMp(l)}. 

(3.62) 

With these symbol definitions, we can readily describe the joint detection of Mp signal 

components for M users in the target group, which is given in next subsection. 

3.5.3 Maximum likelihood sequence multiuser detection 

The output vector at the outputs of the Mp linear equalizers can be written as 

d = 1ZCAMb + d7 + N 

where IZ is a (2L + 1)MP x (2L + 1)MP matrix that is defined as 

K = w*(t)sT(t)dt 

(3.63) 

0 

0 

with an MD x Mv block element 

R(0) R ( - l ) 0 0 

R(l) R(0) R ( - l ) 0 

0 R(l ) R(0) R ( - l ) 

0 

0 

0 

0 R( l ) R(0) R ( - l ) 

0 0 R( l ) R(0) 

(3.64) 

/

oo 

h*(t-iTb)g
T(t-lTb)dt. 

•oo 

(3.65) 

AM is the (2L + 1)MP x (2L + 1)MP amplitude matrix of the received signals from 

the M users of interest and is defined as 

AM = d iag{VV . . . V ) , 
2L+1 

(3.66) 
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in which 

V = diag{V7\ y / A . . . \/~Pi^fP2 % ...\[PM~^JPM •• 

J 

VPM}-

(3.67) 

d/ = /^or[/(i)w*(t)cZi is the residual interference vector of unwanted Kp — Mp 

component signals from the K — M users. N is the output noise vector, which has 

a zero mean and an autocorrelation matrix A/QW, where W is given by 

W = 

W(0) WT(1) 0 0 

W( l ) W(0) WT(1) 0 

0 W( l ) W(0) WT(1) 

0 

0 

with an Mp x Mp the block element 

0 

0 

W ( l ) 

0 

W(0) 

W ( l ) 

0 

0 

0 

WT(1) 

W(0) 

(3.68) 

/

oo 

h*(t-iTb)h
T(t-lTb)dt. 

•oo 
(3.69) 

Notice that after the front-end linear equalization, the output sequence includes the 

desired multiuser signals of the M users, the residual interference from unwanted 

sources, and background noise; the first component is what we need for the multiuser 

detection of the M users, while the latter components (d7 + N) can be assumed 

to be approximately Gaussian on the basis of a Central-Limit argument (also, cf., 

[140, 141]). With the above analysis in mind, the discrete-time multiuser detection 

task in (3.63) becomes a sequence detection problem in a coloured Gaussian noise 

channel. Thus, the maximum-likelihood sequence detector for the M users selects a 

b 0 to maximize the likelihood function 

b 0 = arg max exp 
b e 2 ( 2 L + l)M 

1.-, 
(d - -RCAMb)H(RI + A W ^ d - KCAMb) \ (3.70) 
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Ri is the correlation matrix of the residual interference of K—M interferers defined by 

Ri = E[d*jdJ]. After simple operations and neglecting the terms that are common to 

all hypotheses in (3.70), we obtain the decision metric that selects a b„ to maximize 

fi(b) = 2Re{bTAT
MCHnT(Ri + N0W)~ld} - bTAT

MCHKT(Ri + N0W)-lKCAMb 

= 2Re{bTAT
MCHd} - bTAT

MnDAMb 

= 2Re{bTAT
My}-bTAT

MnDAMb, (3.71) 

where TlD = CHTZT(Ri + NoW^UC, 

d = TiT(Ri + NQW)-1^, (3.72) 

and 

y = CHd. (3.73) 

Notice that the expression in (3.73) represents the maximal-ratio combining (MRC). 

After absorbing the linear optimum filtering and MRC into the decision variable 

vector y, the maximum-likelihood decision function, or detection metric, can be 

formulated in a way similar to (3.26) for AWGN channel. Thus, the architecture 

of proposed multiuser MLS detector consists of a bank of Mp linear optimum filters 

and MRCs, followed by an maximum-likelihood sequence (MLS) decision algorithm, 

shown in Fig. 3.5. 

When particularizing the proposed multiuser detection to a single-path full infor­

mation (e.g., single-cell) scenario, in which M = K and thus d/ = 0, the front-end 

linear optimum filtering reduces to a bank of Mp MF filters; the architecture reduces 

to one described in [45]. 

3.5.4 Discussions on implementation complexity of the proposed MLS 

detectors 

A. In the absence of fv(t) with 3=1: We have Kp — K and Mp = M = K, and thus 

TID in (3-71) becomes a correlation matrix between the known signature waveforms 

in an asynchronous CDMA system, which is a band matrix with upper and lower 
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Fig. 3.5 Proposed multiuser MLS detector under CDMA fading mul­
tipath channels. 

bandwidth M — 1. When Viterbi decision algorithm and the recursive state search 

mechanism are employed, the computational complexity of the multiuser decision 

algorithm is the well known on the order of 2M [51], since the dimensionality of the 

state space of the algorithm is 2 M _ 1 . 

B. In the absence of fv(t) with J ^ 1: We have K = M and Mp = Kp = JM, 

meaning that J independent multiuser signal replicas are resolved at the receiver 

for each user and there are a total of Mp components; however, since only M signal 

sources are transmitting, the multiuser detection in such a setup has a computational 

complexity of 0 ( J2M) — increasing linearly with J and exponentially with M. 

C. In the presence of rv(t) with J=F. We have Kp = K and Mp = M (< K). Thus, 

the computational complexity per bit in the proposed MLS decision algorithm is 

on the order of 2(2Z,+1)M/(2L + 1)M, in theory. However, it can be substantially 

reduced because of an excellent characteristic of the correlation matrix 1ZD in (3.71). 

For the MLS decision algorithm, TlD plays a key role in deciding the implementation 

complexity; while IZD is no longer a band matrix with upper and lower bandwidth 

M - 1, it is still a symmetric matrix with its off-diagonal entries becoming smaller 

as they move away from the diagonal. 

To examine it in detail, llD can be expressed as KD = CHTZT(Ri + NQW)~1TIC, 
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where C is a diagonal matrix; TZ and W are symmetric band matrices with upper 

and lower bandwidth M — 1; and Ri is a symmetric correlation matrix of residual 

interference from unknown sources, which can be shown by definition to be a band 

matrix with upper and lower bandwidth 2M — 1. Notice that the off-diagonal entries 

in these matrices become smaller as they move away from the diagonal, since they 

are correlations between signals of different users or in different bit intervals. Thus, 

Ri + N0W is a symmetric band matrix with upper and lower bandwidth 2M — 1 

with relative small off-diagonal entries. It can be shown that in such a case, the 

off-diagonal entries in a band along the diagonal of (Ri + NQW)-1 with upper and 

lower bandwidth 2M - 1 are equivalent to those of (Rr + NQW) [144]. With this 

provision in mind, the left and right multiplications of (i?/ + AT0W)-1 with band ma­

trices 1ZC (i.e., IZD) result in a matrix whose off-diagonal entries are smaller as they 

move away from the diagonal; moreover, since the proposed front-end linear equal­

ization is on a bit-by-bit basis, it effectively decreases the overall signal correlation 

length [145, 146], thus speeding up the decreasing rate (or de-correlation) of these 

off-diagonal entries as they move, from one bit to another, away from the diagonal. 

It is seen that the decreasing-valued off-diagonal entries in HD away from the diago­

nal indicate that the effects of these elements on a (central-positioned) bit detection 

are becoming negligible. Thus, we apply a cut-off strategy for the proposed MLS 

multiuser detection such that 1ZD is approximately expressed by a band matrix with 

upper and lower bandwidth 3M — 1; this is equivalent to considering the correlation 

effects of four adjacent bit intervals, two for each side, on the bit detection, while 

neglecting effects of the other smaller off-diagonal entries. Such a cut-off correlation 

length can be justified to have provided enough information for the bit decision as 

follows: The residual interference correlation matrix Ri is small-valued to the ex­

tent that each front-end linear equalization is effective; moreover, IZp approaches a 

band matrix with upper and lower bandwidth M — 1, or correlation matrix in the 

centralized detection setup [51] as entries of Ri approaches zeros, meaning that the 

entries of 1ZD in the bandwidth of M — 1 along the diagonal contains the principal 

correlation information for each bit detection. With the cut-off approximation, the 

proposed MLS decision algorithm can be shown to have time computational com­

plexity on the order of 23 M [51, pp. 166-173] when Viterbi algorithm is employed. 

Notice that the computational complexity is related to the cut-off thresholds that can 
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trade implementation cost for detection performance; for example, we can employ a 

shorter cut-off length (e.g., 2M — 1) to further reduce the computational complexity 

of the proposed MLS multiuser detection. Detailed investigations on the reduced 

complexity and its trade-off issues for MLSD algorithm can be found, for example, 

in [145, 146]. Other complexity reduction schemes for MLS multiuser detection al­

gorithm can be found in [147, 148] whose computational complexity is polynomial. 

D. In the presence of fu(t) with J ^ l : We have Mp = JM resolved signal compo­

nents in the system. However, since each of the M sources has J signal replicas, the 

dimension of the sequence search state only increases linear with J. As a result, the 

MLS multiuser detectors in such a case have a computational complexity of 0 ( J23M). 

In summary, the computational complexity of the proposed maximum likelihood 

sequence decision algorithm is in the range from 0 ( J 2 M ) (synchronous settings or 

full-blown detectors) to 0 ( J2 3 M ) (asynchronous settings). 

Remarks: 

We have presented asymptotic computational requirements above for the second-

stage non-linear MLS decision algorithm based on Viterbi decision algorithm and 

the recursive state search mechanism with an infinite length of the transmitted bits 

(i.e., L —> oo). In reality, a finite-L-bit frame is chosen for the joint signal detection. 

Thus, additional computational costs are required for the search of first 3M bits of 

each user in the frame before the recursive algorithm can be applied. Other fixed 

computational costs include the inverse of the correlation matrix for each front-

end equalizer and its (non-adaptive) update, whose complexity is typically on the 

order of N3 where N is the number of weighting taps (equal to the processing gain 

in our study) in the equalizer. For an adaptive implementation of the front-end 

equalization, the computational cost can be reduced since the matrix inverse is not 

required, and will depend on the adaptive algorithm employed; the complexity of 

least mean squared (LMS) algorithm we employ in this study is on the order of N. 
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3.6 Linear Multiuser Detection in Fading Multipath 

Channels 

In this section, a linear transformation in the second-stage signal processing is applied 

to the estimates of the desired multiuser aggregates (i.e., the outputs of a bank of 

front-end Mp linear MMSE equalizers); it leads to a linear multiuser detector in a 

partial information (e.g., multi-cell CDMA) setup. 

For convenient analysis, we assume that transmissions of all active users are 

synchronous (an extension to the asynchronous scenarios is straightforward [81]). It 

is further assumed that the delay spread of multipath signal components from each 

user is much less than one bit period (cf., [143]). As a result, the linear multiuser 

joint detection of the M users can be made on a symbol-by-symbol basis, i.e., one-

shot sequence demodulation. We particularize the notation (for scenarios where 

out-of-cell signals are assumed to be asynchronous) described in last section to the 

synchronous case as follows: Let djv/p denote the estimate of the Mp x 1 bit vector 

b M p (that is, b(i,M) given in (3.59)); R, the Mp x Mp matrix R(0) in (3.64); W , 

the Mp x Mp matrix W(0) in (3.68); C, the Mp x Mp fading matrix C(i); d /p, the 

Mp x 1 residual interference vector (with covariance matrix equal to R ; = E'fdJdJ]); 

and N M , the Gaussian background noise vector (with covariance matrix WJV0) at 

the zth bit interval. Thus, the output vector after the Mp linear MMSE equalizers 

can be written as 

dMp = RCVbM p + d /p + NMp- (3.74) 

Note that the first term on the right-hand side of the equation (3.74) is what we 

need for joint detection of the M users, while d/p -I- N M p can be assumed to be 

approximately Gaussian on the basis of a Central-Limit argument, with a covariance 

matrix equal to W / = R/ + WN0. After the front-end equalization, we face the 

joint detection for the M-user target group. Thus, the decorrelating filter can be 

employed to eliminate the MAI among the group of desired users. The output of the 

decorrelating filter is given by 

z = R _ 1 d M p = CVbM p + n7 (3.75) 
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where the residual interference plus noise vector n/ = R - 1 d / p + R - 1 N M P is Gaussian 

zero mean with covariance matrix equal to W^ = R _ 1 W / R _ i / . Without a loss of 

generality, we consider the component vector of user 1 in (3.75), which is denoted by 

z x H C S O n b i - l - n n , (3.76) 

where (X)u denotes the (1,1) block entry, a square J x J sub-matrix, in the matrix 

X and n n is a Gaussian zero mean J-vector with covariance matrix (W v )n associ­

ated with user 1. Since the resolved multipath signal components for each user can 

be effectively combined to maximize the output SIR, we derive the maximal-ratio 

combining (MRC) architecture for the linear detection. By Cholesky decomposition 

(W v )n = LL H , the residual interference plus noise vector can be whitened as 

zi™ = y ^ i + L^n/ i (3.77) 

where y = L_1Ci and cx = dia,g{ai(i) a2(i) ... aj(i)}. The output of the coherent 

MRC for user 1 can be written as 

di = yHyVP~ib1 + y ^ L - V i (3.78) 

It is noted that y-^y = c f [(Ww)ii]_1Ci. The architecture of proposed linear mul­

tiuser detection consists of a linear multiuser equalizer bank, a decorrelator, signal 

whitening and MRC, which is shown in Fig. 3.6. The proposed linear multiuser de­

tection under multipath fading channel is is an extension of [143] in a full information 

(e.g., single-cell) setup to a partial information (e.g., multi-cell) setup. 

3.7 Multiuser Signal Equalization and Detection with 

Long-Spread Signals 

In this section, we study the statistical characteristics of long-spread signals and their 

resulting interference suppression and joint detection capability. Short spreading 

codes are often employed for multiuser detection analysis and the receiver design, 

due to the fact they are not bit-by-bit varying and their correlation characteristics 

can be well used. In contrast, long spreading sequences vary on a bit-by-bit basis, 
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Fig. 3.6 Proposed linear multiuser detection architecture 

but they can also be applicable to MUD, in theory. It is expected that multiuser 

detection in a long-spread system requires a higher computational implementation 

than a short-spread system, since the former needs to update its signal waveform 

cross-correlations in every bit interval. 

We assume a cellular AT-user CDMA network, in which the receiver has parameter 

knowledge of the Kn in-cell users and has no parameter knowledge of K — Kn out-of-

cell users. It is further assumed that in-cell signal transmissions are synchronous for 

convenient analysis. The front end employs a bank of Kn fractionally-spaced chip-

matched filters (one for each user) to estimate the multiuser signal aggregates of 

Kn users while suppressing the interference from K — Kn resources. For the known 

long spreading codes assigned to in-cell users, the cross-correlation vector can be 

expressed as (3.10) and is known to the receiver, but the correlation matrix is not 

known and needs to be estimated. From (3.9), the correlation matrix associated with 

user j has the form 

sf tU, 
+ s?» + oii NLN (3.79) 

<Kn where S* n = ^ 2^2k=i f̂cafcaifc i s t n e correlation matrix due to signals from Kn known 

users, aj = [%(0) %(1) . . . dj(N - 1)]T and Pj are, respectively, the signature vec­

tor and the received signal power of user j , S^n = Y^=Kn+l PkE[ujk(l, l)ujk(l, I) + 

ujk(l,l — l)\ijk(l, l — l)] is the correlation matrix due to signals from K-Kn unknown 
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interfering sources in which Pk denotes the average received signal power of unknown 

user k; the expectation E[] is over the long spreading sequences that are modeled 

as random variables taking values equally from { + 1 , - 1 } . 

Signal detection in a full information (e.g., single-cell) setup: In such a case, 

there is no interference from out-of-cell sources (e.g., S^n = 0) and the front-end lin­

ear equalizer bank reduces to a bank of Kn MF filters. Although the parameter 

knowledge of the Kn in-cell users — including the long spreading codes — is known 

to the base station, the receiver must update S^" for multiuser detection in every bit 

interval, because S^n and the cross-correlation vector of user j change on a bit-by-

bit basis; this leads to a more computational implementation for multiuser detection 

with long-spread signals than short-spread signals. 

Interference suppression and signal estimation in a partial information 

(e.g., multi-cell) setup: In such a case, both signal suppression of interference 

from the out-of-cell sources and estimation of the desired multiuser signal aggregate 

of the Kn users are required in the front-end linear equalization. Since the matrix 

component S^n is known, the correlation matrix Sj is known if the statistical char­

acterization of unknown S -̂" can be estimated (for example, using training sequences 

or an overhead channel). It can be shown that the matrix S^" has a simple, closed-

form formulation. To see this, we express S^n as S"n = J2k=Kn+i ^kCJk, where CJk 

represents a component correlation matrix, due to contributions from an unknown 

user k and a known user j , which can be written by 

C f = E[ujk(i,i)uJk(i,i) + ujk(i,i- l)ujk(i,i- 1)]. (3.80) 

One good characteristic of C\ can be summarized in the following proposition: 

Proposition 2: For a given chip waveform of duration Tc and long spread signals 

from unknown K — Kn sources, the correlation matrix Cjk is a constant band matrix 

with upper and lower bandwidth 1, independent of the unknown user k (k > Kn) 

and the user j (j < Kn) of interest. In particular, when a rectangular chip waveform 
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is utilized, C] can be expressed as 
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The proof of Proposition 2 is presented in Appendix B. Note that the quantity 

C\ is independent of the unknown interfering sources and the user of interest; more­

over, C\ is a band matrix along its diagonal with upper and lower bandwidth 1, 

demonstrating that the correlation of long spread signals is non-zero only over two 

adjacent chip intervals. Therefore, the component correlation matrix S^n from the 

contributions of unknown interfering sources with long spreading signals is signifi­

cantly different from the one with short spreading signals whose S^n has non-zero 

entries. As a result, it can be seen from the above analysis that short-spread signals 

can provide more accurate statistical information about the unknown interference 

for signal equalization, leading to a more effective interference suppression capability 

than long-spread signals. In Chapter 4, we will quantify, by numerical examples, 

the difference in performance between long-spread signals and short-spread signals 

when they are respectively employed in CDMA systems for the proposed multiuser 

detection. 

The Proposition 2 can be generalized to the cases where a chip waveform that is 

time-limited on [0, NCTC) (where Nc is an integer), which can be described as follows: 

Proposition 2': For a given chip waveform defined over [0, NCTC) and long spread 

signals from unknown K — Kn sources, the correlation matrix Cj is a constant band 

matrix with upper and lower bandwidth Nc + 1, independent of the unknown user k 

(k> Kn) and the user j (j < Kn) of interest. 
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This statement can be easily shown by realizing the fact that adjacent chip-rate 

samples within a period of Nc chip intervals have a non-zero correlation for such a 

time-limited chip waveform. 

3.8 An Adaptive Implementation of Multiuser Equalization 

and Detection 

The front-end multiuser-oriented signal equalization in the proposed multiuser detec­

tors has no requirements for initial training. However, when additional initial training 

is provided for each known user, the optimal filter coefficients in each front-end linear 

equalizer can be recursively approached, leading to an adaptive implementation of 

the MUD and obviating the need to estimate the covariance matrix of the received 

signal and the matrix inversion. The adaptive implementation can also track channel 

(slow) time variations, which is important to a practical CDMA system. 

Initial training sequences can be used before actual data transmission, and then 

the decision-directed mode can be employed once an adaptive algorithm has con­

verged. In this section, we apply a simple, but well-known adaptive algorithm — 

least mean squared (LMS) — to each of the front-end Mp linear MMSE multiuser 

equalizers for K/M/M detectors developed in Sections 3.5 and 3.6 under fading 

multipath channels. The LMS algorithm employs unbiased noisy estimates of the 

gradient vector to adjust the coefficients of an MMSE equalizer, which, in our case, 

can be written by 

(m+l) _ w (m) 
•j wi • ' = w) - //j-ej-Mr^m), j = 1, 2 , . . . , Mp, (3.82) 

where w]m ) is a weight-vector in the j th equalizer at the mth iteration of coefficient 

adjustment, Tj(m) is an input vector in the mth time instant, p,j is the step size 

of the algorithm, and ej(i) = dj(i) - rj(i)wy is an estimate error in the equalizer 

j at the ith time instant. Thus, in such an adaptive implementation scenario the 

so-called enhanced signature waveform defined for user j in (3.12) needs to be based 

on the steady-state coefficients {w -̂ }, that is, replacing {wJ0} with { w ^ } in (3.12V 

then the impulse responses of the MMSE filter expressed in (3.13) can be formulated 
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accordingly. 

It can be shown that the LMS algorithm converges if and only if the step-size 

parameter pj satisfies the condition [63] 

0 < ^ < 7 7 ^ T ' j = l,2,...,Mp, (3.83) 
tr[2>j\ 

where tr[Sj] denotes the trace of correlation matrix Sj. 

3.9 Summary 

In this chapter, we developed forms of enhanced uplink multiuser detectors with 

partial information setups that can fully exploit the parameter knowledge of known 

users and the statistical knowledge of unknown sources to improve performance. The 

receiver architectures for maximum likelihood sequence (MLS) and linear multiuser 

detection were derived and formulated in a cellular CDMA network under AWGN 

and slowly Rayleigh-faded multipath channels. Generally speaking, the proposed 

architectures have two stages: The first stage, forming the front end of the device, 

amounts to a bank of linear multiuser-oriented signal equalizers on the basis of MMSE 

criterion, one for each of the target sources for joint detection; its role is to estimate 

the multiuser signal aggregate by suppressing the unwanted interference. The second 

stage, acting jointly on all outputs from the first equalization banks, is an MLS or 

linear multiuser detector; its structure is calculated from the second-order statistics 

of the equalizer error processes, assumed approximately Gaussian on the basis of 

a Central-Limit argument. The proposed K/Kn/Kn MLS multiuser detection for 

AWGN channel is a generalization of the MLS multiuser detection [36] to partial 

information, multi-cell CDMA scenarios, whose computational complexity is on the 

order of 2Kn, independent of K; the proposed K/M/M MLS multiuser detection 

for Rayleigh-faded multipath channel is a generalization of the MLS detection [45] 

to partial information, multi-cell CDMA scenarios, whose computational complexity 

is in the range of 0 ( J 2 M ) to 0 ( J 2 3 M ) , independent of K and the total number 

of multipath components JK. The K/Kn/Kn linear multiuser detection employs 

a strategy quite different from those proposed in [39]-[41] in that the parameter 

knowledge of all Kn known users can be explicitly used in the proposed receivers; 
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the proposed K/M/M linear detection in fading multipath channel is an extension 

of the linear detection [143] in full information (e.g., single-cell) settings to partial 

information (e.g., multi-cell) scenarios. 

A form of unifying K/Kn/M (M < Kn < K) multiuser detection was also 

proposed under an AWGN channel, providing tradeoffs between performance and 

complexity with the settable parameter M; the implementation complexity of the 

multiuser detectors increases exponentially with M — on the order of 2M in syn­

chronous settings and 23 M in asynchronous settings, but independent of Kn and 

K. In the special scenario where the number of known-parameter users is one, the 

proposed K/l/1 linear MMSE receiver reduces to a form of the enhanced linear 

single-user detectors [46], [47], [48]. In the particular case of a full information (e.g., 

single-cell) system setup under AWGN channel, the front end reduces to the conven­

tional matched filter bank; the Kn/Kn/M MLS multiuser detection is an alternative 

implementation to [113]; the overall architecture for Kn/Kn/Kn MLS multiuser de­

tection reduces to the one described in [36]; the architecture for Kn/Kn/Kn linear 

detection reduces to the linear MMSE [49] or decorrelating [50] detector. 

We have also investigated the second-order statistical characterization of un­

known out-of-cell interfering sources (that is associated with the detector's interfer­

ence suppression capability) and the detection complexity with long-spread signals 

or short-spread signals. Finally, an adaptive implementation of the proposed mul­

tiuser detectors has been addressed, using LMS adaptive signal processing algorithm 

and assuming that an initial training sequence for each known user is provided. In 

such a case, the optimal tap coefficients in each front-end multiuser-oriented signal 

equalizer can be recursively approached and no matrix inversion is required. 
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Chapter 4 

Performance Analysis 

In this chapter, we study, by both analysis and simulation, the performance of the 

multiuser detectors developed in Chapter 3 for cellular CDMA networks; the eval­

uation criteria include minimum mean squared error, effective signal-to-noise ra­

tio (SNR), probability bit error, asymptotic efficiency, and near-far resistance. We 

also justify the proposed multiuser detectors by comparing their performance with 

that of a few benchmark CDMA receivers, including conventional MF receiver, en­

hanced single-user-oriented linear detectors, the full-blown multiuser detectors and 

the single-user reception in an isolated single-user system. Numerical examples are 

carefully chosen to quantify the performance of the proposed multiuser detectors in 

different system setups, each trying to address one or two performance aspects. 

Section 4.1 introduces the system settings and assumptions used in performance 

analysis and evaluation. The performance of the proposed linear multiuser-oriented 

signal equalization is studied in Section 4.2 with respect to minimum mean squared 

error and SNR; its goal is to examine the effectiveness of the front-end linear multiuser-

oriented signal equalization. Section 4.3 presents the performance analysis and eval­

uation on the multiuser detectors in terms of the probability of bit error for both 

AWGN and dispersive slowly Rayleigh-faded channels. Finally, Section 4.4 addresses 

the detection performance with respect to asymptotic efficiency and near-far resis­

tance. 
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4.1 Analysis and Simulation Configurations 

This section presents assumptions and configurations used for the performance eval­

uation in this chapter. The notation of the symbols used to describe the proposed 

multiuser detection is given below: K denotes the total number of active users in 

a multi-cell CDMA network; Kn (Kn < K), the number of (in-cell) users whose 

parameter information is known at the receiver of a cell of interest and exploited 

for multiuser detection; M (M < Kn), the number of (in-cell) users chosen for joint 

detection (M being a system parameter of the proposed multiuser detection to be 

studied as well); J, the number of resolved multipath components (another param­

eter of interest to be studied); N, the number of chips in each bit interval (i.e., 

spreading factor); and finally, p, a step size of the adaptive algorithm. Thus, the 

notation K/Kn/M can designate both the detection problem and the information 

structure that characterizes it. 

4.1.1 Spreading sequences 

Spreading sequences employed in the numerical examples for performance evaluation 

include Gold codes of length N = 7 given in Table 4.1 (also used in [113, 114]) and 

random sequence codes of length N = 31 described in Tables 4.2, 4.6 and 4.7, each 

with a fixed cross-correlation between paired sequences (The code cross-correlation 

is 0.2258 in Table 4.6, 0.3548 in Table 4.2, and 0.4839 in Table 4.7). A rectangular 

chip waveform of duration Tc is employed. 

4.1.2 Channel models and system settings 

Two types of channel models are used for performance evaluation in this chapter: 

AWGN channel and 3-path Rayleigh-faded channel. For the multipath fading model, 

it is assumed that the fading taps from the different paths of each user are i.i.d com­

plex Gaussian with zero mean and roughly the same variance; the fading coefficients 

of interest can be resolved, tracked, and estimated (for instance, a pilot channel is 

provided for reverse link coherent demodulation and channel estimation and one 

dedicated finger is assigned as a path search engine for Rake reception in 3G systems 

[3]), where schemes such as [53, 54] can be applied. Moreover, in our simulation 
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study, the quasi-static frequency selective fading setup is assumed; that is, the com­

plex fading coefficient in each path remain constant for a fixed number of symbols 

(i.e., within the channel coherent period) and is then changed to a new indepen­

dent value. Our performance analysis is limited to synchronous CDMA settings as 

[50, 81, 124, 112] for convenient analysis. 

4.1.3 Other assumptions 

In our numerical examples, the K — Kn out-of-cell unknown sources represent a 

few interfering sources with significant signal powers, for example, the sources from 

the out-of-cell mobiles close to the boundary of the desired cell that have strong 

interference and cannot be ignored for the in-cell signal reception. For benchmark 

performance, the single-user performance in an isolated single-user system is pro­

vided; the performance with the parameter knowledge of all K users, corresponding 

to the full-blown K/K/K MLS detection, is also evaluated. In the study for near-far 

scenarios, different received powers or relative received amplitude/power distribu­

tions are always with respect to the received amplitude/power of user 1. In an 

adaptive implementation for the front-end linear multiuser signal equalization, an 

initial training sequence is assumed for each of the known users, such that the opti­

mal filter impulse response can be recursively approached (thus obviating the need 

to estimate the covariance matrix of the received signal). 

4.2 Performance of Linear Multiuser-oriented Signal 

Equalization 

4.2.1 Normalized minimum mean square error (NMMSE) 

In last chapter, we proposed a multiuser-oriented signal equalization strategy for 

front-end signal processing to extract desirable multiuser decision statistic and to 

suppress interference from unwanted sources, based on the linear minimum mean 

squared error (MMSE) criterion. To evaluate the effectiveness of the front-end equal­

ization, we employ K/Kn/M (K < Kn < M) detection architecture developed in 

Section 3.4, and present an analysis on the front-end output mean squared errors in 

this subsection. For the front-end linear optimal filtering associated with user j , the 
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output MMSE between the desired multiuser signal aggregate and its estimate has 

the form (cf. Appendix D) 

41(e) = ^ - P , T w J 0 , j = l,2,...,M, (4.1) 

where p^ is the cross-correlation vector between the received signal vector and the 

target multiuser signal aggregate of the j t h equalizer, and w J 0 is the optimal coef­

ficients of the equalizer, o2 is the variance of the desired multiuser signal aggregate 

associated with user j , given by 

a2 = E[dj(i)d)(i)] 
M 

njk EV 
k=l 

= p j a , j = l , 2 , . . . , M , (4.2) 

in which * denotes the complex conjugate, dj(i) = Z~2k=i^/^kbk(i)Pjk, Pk is the 

received signal power of user k, â  is the spreading vector of user j , consisting of N 

spreading chips, and pjk = jj&k&j represents the correlation between the signature 

waveforms of users j and k. 

From (4.1) and (4.2), we can write J^]n(e) as 

Jml(e) = Pjaj-Pjwjo 

= pJdjo, j = l,2,...,M, (4.3) 

where djo = a.j — W JO . Thus, the optimum coefficient w J 0 can be decomposed into 

two components: the signature sequence vector a, and its deviation vector dj0, as 

wjo = a,- - dj0, j = 1,2,. . . , M. (4.4) 

The deviation vector dj0 is devised to offset the signature vector â  of user j (i.e., the 

conventional MF filter) in order to effectively estimate the desired multiuser signal 

aggregate and suppress the unwanted interfering sources. It is seen that the deviation 

vector becomes a zero vector in the absence of the K — M unwanted users; that is 

Wj0 = a.j, and the front-end linear multiuser signal equalizer reduces to conventional 
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MF filter. Finally, a normalized minimum mean squared error (NMMSE) is defined 

(such that the minimum mean squared errors with different detection group sizes M 

can be fairly compared) as 

<%lm(e) = 1 - ^ , J = 1,2,...,M. (4.5) 

4.2.2 Effective signal to noise ratio 

An alternative performance criterion to evaluate the front-end linear multiuser signal 

equalization is the effective SNR at the output of the j th equalizer for K/Kn/M 

detection, which can be defined with respect to the above NMMSE as 

SNR{j) = 1 ~ ffirm(e) 
JNorm\c) 

T 
P^ w,-„ 

= ^TTT^ J = 1,2, . . . ,M, (4.6) 

where dj0 is a difference vector between the enhanced signature vector and the orig­

inal signature vector of user j . It is known that minimizing the mean squared error 

(MSE) also maximizes the desired signal to noise ratio (SNR) [139, 11]. 

4.2.3 Statistical characterization of residual interference 

The statistical characterization of the residual interference at the output of each 

front-end multiuser signal equalizer can offer an important metric for evaluating the 

effectiveness of the linear equalization. One important characteristic of the autocor­

relation matrix Ri that describes the maximum residual interference energies related 

to the minimum mean square errors {J^jn(e), j = 1,2,..., M} can be expressed by 

the following proposition: 

Proposition 3: The autocorrelation matrix Ri of the residual interference, under 

stationary channel conditions, can be described relative to the minimum mean square 



94 Performance Analysis 

rU) errors { J^ n ( e ) , j = 1, 2 , . . . , M} from the M linear MMSE equalizers as 

^ < E ^ „ ( e ) , 
j=l 

(4.7) 

assuming that the background noise power is nonzero, where tr[Ri] is the trace of 

Ri and L is the length of the user's transmission bits. 

Proof: From definition (3.34), the vector notation of the desired multiuser signal 

aggregates desirable for M-user joint detection can be written as 

d = CLAMbM, (4.8) 

where the bit vector bM = [&i(l) b2(l) ... bM(l) bx(2) b2(2) ... bM(2) ... bx(L) 

b2(L) ... bM(L)]T and the amplitude vector AM = diag{^4M(l), AM(2), ..., 

AM(L)}, AM(i) = diag{^/f\, jP~2, ..., yfP^i}. CL is a symmetric ML x ML 

matrix, defined as 

CL = 

!(0) 

0 

0 

0 

0 

0 

C(0) 

0 

0 

0 

C(0) 

0 

0 

0 

0 

0 

0 

0 

C(0) 

0 

0 

0 

0 

0 

C(0)J MLxML 

(4.9) 

where {C(/)} are M x M normalized signal cross-correlation matrices whose entries 

are given by 

/

oo 

Sj(t)sk(t + lTb)dt, j = l,2,...,M, k = l,2,...,M. 
•oo 

(4.10) 

By applying the optimum coefficient vectors for each of the front-end linear multiuser 

equalizers, the output vector from the M linear optimal filters can be obtained and 

denoted in (3.40), and thus, the auto-correlation matrix of the output error sequence 
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vector can be written as 

N0. E[(d - d)(d - d)T] = (CL - KL)AMAT
M(CL - UL)T + Ri + -fwL, (4.11) 

where we have assumed that the transmitted bits are modeled as random variables 

that: (1) take on values from { + 1,-1} with equal probabilities, (2) are uncorrelated 

for the same user, (3) are independent for different users, and (4) are independent 

of background noise. Then we have 

tr{E[(d-d)(d-d)T}} = tr[(CL-nL)AMAT
M(CL-TZL)T} 

Nn 
+tr[Ri] + ^-tr[WL). (4.12) 

Under stationary channel conditions, the elements are periodic in M along the di­

agonal of each of the matrices in (4.12). Since tr[(CL - TLL)AMAM(CL - TlL)T] > 0, 

^tr[WL] > 0, and the left-hand side of Eq. (4.12) can be denoted as L Y^f=1 4iL(e)> 

we obtain the proposition. 

The above proposition demonstrates that the total energy of the residual inter­

ference sequences from all M linear MMSE equalizers in each bit interval is upper 

bounded by the sum of the corresponding M minimum mean square errors. As a 

result, the MMSE at the output of each multiuser-oriented linear equalizer is a good 

metric in characterizing the front-end interference suppression capability. 

Table 4.1 Gold code of length 7. 

seq. no. spreading sequences 

1 +1 -1-1 +1 +1 +1 -1 
2 + 1 + 1 - 1 - 1 - 1 - 1 - 1 
3 -1 +1 -1 +1 +1 +1 -1 

4 + 1 - 1 - 1 - 1 - 1 + 1 - 1 
5 - 1 + 1 + 1 - 1 - 1 + 1 + 1 

4.2.4 Numerical examples 

For the proposed K/Kn/M detection, the front-end signal processing consists of a 

bank of M front-end linear multiuser-oriented signal equalizers, one for each of the 
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Table 4.2 Random signature sequences of length 31 with a fixed cross-
correlation value 0.3548 constructed by the random search. 

seq. no. random spreading sequences 

1 - 1 - 1 1 1 - 1 - 1 1 1 1 - 1 - 1 - 1 1 - 1 - 1 1 - 1 1 1 1 -1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 
2 1 - 1 1 1 1 - 1 1 1 - 1 - 1 - 1 - 1 1 - 1 - 1 1 1 - 1 1 1 1 - 1 - 1 1 1 - 1 1 1 1 1 1 
3 1 - 1 1 1 - 1 1 1 1 1 1 - 1 - 1 1 - 1 1 1 1 1 1 1 1 1 - 1 - 1 1 - 1 1 - 1 1 1 - 1 
4 1 - 1 - 1 1 1 - 1 1 1 1 1 - 1 - 1 - 1 - 1 - 1 1 1 1 1 1 - 1 1 1 1 - 1 - 1 1 - 1 1 1 1 
5 1 1 1 1 - 1 - 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 1 1 - 1 1 1 1 - 1 1 - 1 - 1 1 1 - 1 1 1 - 1 

M users. To evaluate the effectiveness of the linear signal equalization, we examine 

the minimum mean square error and effective SNR produced at the output of the 

filter for user j . It is assumed that the parameter knowledge of the K — Kn unknown 

sources is not available to the receiver, but their signal second-order statistic can be 

independently estimated, through pilot channels or training sequences (for example, 

each traffic frame of known users provides a training sequence in [4]). The procedure 

for obtaining the numerical results is described as follows: 

1. Generate information bi ts of users: The transmitted information bits of 

active users were independently generated and the bits for the same user took 

the values of 0 or 1 with equal probability. 

2. C D M A signal spread: The signals of users were BPSA'-modulated (0 —• 

+1 ; 1 —> -1 ) and spread by PN sequences, given in Table 4.1 or Table 4.2, 

employing rectangular chip waveform. 

3. Estimate correlation matrix: The NxN correlation matrix of the unknown 

sources, S^n, was estimated based on a moving time average over 200 bit 

intervals as 

1 200 

200 
i=l 

where rUn(i) is the sample vector of the received K — Kn unknown sources at 

the chip-matched filter output of user j at the zth bit interval. Since the signal 
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correlation matrix of Kn known sources, S^n, is available at the receiver, the 

NxN correlation matrix of all received signal aggregates, Sj, can be estimated 

by Sj = Sfn+S^. 

4. Estimate optimal filters: The optimal coefficient vectors for the front-end 

linear M-user equalization were estimated by 

where pj is a known cross-correlation vector that can be represented as 

pJ = A7 S PkPik*k 
k=i 

in which Pk and ak denote, respectively, the received signal power and the 

N x 1 signature vector of known user k, and pjk is the correlation of signature 

waveforms between user j and user k. 

5. Performance evaluation: The formulations of MMSE in (4.5) and effective 

SNR in (4.6) were applied. 

E X A M P L E 1 — using Gold sequences of N = 7 

In this example, we consider a synchronous CDMA system with a total of five 

active users, whose signals are spread by Gold sequences of N = 7 given in Table 4.1. 

Among these active users, four are in-cell users whose parameter knowledge is known 

to the receiver in a cell of interest. The fifth user is out-of-cell user and the base 

station has no knowledge of its parameters; however, its signal is relatively strong, 

and it can not be ignored by the base-station receiver for joint detection of the four 

known users. 

We examine the normalized minimum mean square error at the output of the 

front-end linear optimal multiuser signal equalizer for user 1 as a function of detection 

group size M, where M is a value from one to four: M = 1 represents user 1 itself 

only; M — 2 represents the detection group of users {1,2}; M = 3 represents the 

detection group of users {1, 2, 3}; and M = 4 represents the group of all active known 
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users {1, 2, 3,4}. For a given M, the multiuser signal infrastructure of the M users 

is interested, while the K — M sources are considered unwanted signals that must 

be suppressed in the front-end signal processing. 

Table 4.3 Normalized minimum mean square errors at the outputs of 
linear MMSE equalizers for user 1 in a five-user cellular CDMA network: 
K = 5, Kn = 4 and M = 1 - 4 . Case I: Gold sequences of N = 7, 
Eb/No = 14 dB (user 1), equal received powers: P2 — P3 — P4 = Pi; 
Case II: Gold sequences of N = 7, Eb/N0 = 14 dB (user 1), non-equal 
powers: P2 = 10 Pu P3 = P4 = P^ 

Case 

I 
II 

Normalized MMSEs of 
M=l M=2 M=3 

0.0899 0.0814 0.0514 
0.0907 0.0693 0.0448 

user 1 
M=4 

0.0344 
0.0304 

Table 4.3 shows the NMMSE results for two cases: A perfect power control is 

assumed in Case I; a non-equal power distribution (e.g., due to non-perfect power 

control) is studied in Case II. In both Case I and Case II, the normalized min­

imum mean square error of the linear equalizer designed for user 1 decreases as 

the detection group size M increases; this illustrates that a larger detection group 

is more favored for interference suppression and signal estimation in the front-end 

filtering. These observations can be intuitively explained by energy ratio of the de­

sired multiuser signal aggregate over unwanted signal aggregate. In this example, 

the ratio of the number of desired multiuser signal (power) units to the number of 

unknown/unwanted signal units is 1:4 for Case I and 1:13 for Case II, when M — 1; 

such a ratio becomes 4:1 for Case I and 13:1 for Case II, when M = 4. It is impor­

tant to notice that in the proposed multiuser-oriented signal equalization scheme, 

multiuser signals from the known users for joint detection are retained rather than 

suppressed in the front-end signal processing, while only the unknown/unwnated 

interfering sources are suppressed, thus able to incorporate all available user infor­

mation into interference suppression and signal estimation (and joint detection as 

well in the second stage) to improve performance. However, the single-user-based 

signal equalization, in its original form, doesn't distinguish the unknown sources 

from the signals of the other known users (both being considered unwanted interfer-
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ence that will be suppressed) in the front end. Thus, the multiuser-oriented signal 

equalization technique proposed in this study is different from the single-user-based 

equalization scheme proposed in the literature with respect to processing methodol­

ogy for interference suppression and signal detection; it opens up our mind for CDMA 

signal equalization and detection and provides a framework for effective multiuser 

detection with partial information. 

It is also observed from the table that the NMMSE value of user 1 dramatically 

decreases as M increases from 1 to 2 in Case II, while the value decreases only slightly 

in Case I. The reason is that user 2 in Case II has a much stronger received signal 

power than user 1 and other users (P2 = lOPi), and when detection group size M in­

creases from one to two, the strong signal of user 2 changes from a "hostile" (to user 

1), interfering source that must be suppressed to a "friendly", cooperating source 

that combines the signal of user 1 to suppress the other interfering sources. These 

phenomena demonstrate that a member with a weak received signal can benefit from 

members with strong received signals in the same detection group for interference 

suppression of the unwanted sources (it was also observed in [113]). 

E X A M P L E 2 — spread by random sequences of N = 31 

In this example, we study the NMMSE of the front-end linear multiuser signal 

equalization when spreading sequences with a large cross-correlation are employed 

— that is, there is more MAI between users. The random sequences of N = 31 

with an equal cross-correlation value of 0.3548 (given in Table 4.2) are employed in 

this example, different from the Gold sequences used in Example 1 that have a very 

small (excellent) cross-correlation. We examine the effects of the proposed linear 

signal equalization with different group sizes on performance. 

We consider a five-user synchronous CDMA system in which four users are in-cell 

sources whose parameter knowledge is known to the receiver in a cell site of interest, 

while the fifth user is an out-of-cell unknown source whose signature sequence, tim­

ings and received power are not available to the cell site. The detection group size 

M is from one to four. 

First of all, from Table 4.4, a performance similar to Example 1 can be observed: 

in both equal power and non-equal power cases, the normalized MMSE decreases 

as the grouping size M increases; the NMMSE in the power-imbalanced Case II 
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Table 4.4 Normalized minimum mean square errors at the outputs of 
the front-end linear multiuser signal equalizers for user 1 in a five-user 
CDMA system: K = 5, Kn = 4, and M = 1 - 4. Case I: N = 31 with 
random spreading and cross-correlation of 0.3548, Eb/No = 16 dB (user 
1), equal received powers; Case II: N = 31 with random spreading and 
cross-correlation of 0.3548, Eb/No = 16 dB (user 1), non-equal powers: 
P2 = 10Pi,Pk = Pi, fc = 3,4,5,6. 

Normalized MMSEs of user 1 
Case 

I 
II 

M=l M=2 M=3 M=4 

0.0649 0.0572 0.0508 0.0440 
0.0652 0.0286 0.0267 0.0241 

is smaller than the perfect power control Case I for a given grouping size M > 

1, indicating that a user with a weak received signal can benefit from the joint 

detection group, especially members with strong received powers. Note that our 

results do not suggest that the power control functionality can be removed from 

CDMA systems with MUD, since it is required to save the battery life of mobiles 

and achieve different grades of services (GoS); however, our results do illustrate that 

the constraining power control requirement in current CDMA systems can be relaxed 

if the interference suppression and multiuser detection techniques are employed in 

the receiver. 

Secondly, we evaluate the enhanced single-user detection and the MF-filter de­

tection with regard to SNR when M = 1. It can be readily estimated from Table 4.4 

that the effective SNR of user 1 is SNRe = 11.58 dB in Case I, and SNR,. = 11.56 

dB in Case II. If the conventional MF receiver is employed for user 1 in such a sce­

nario, it is estimated that the output signal-to-noise ratio is SNRMF = 2.98 dB in 

Case I, and SNRMF = -2.14 dB in Case II. As a result, the enhanced detection 

is near-far resistant; moreover, the detection with M = 1 gains more than 8 dB in 

Case I and more than 13 dB in Case II as compared to the conventional MF receiver 

in such scenarios. 

Finally, compared to the performance bound of an isolated single-user system 

i.e., Eb/N0 = 16 dB, the enhanced (linear) single-user (M = 1) detection still incurs 

a performance loss of about 4.5 dB. In this thesis, we'll demonstrate that such a 
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performance gap can be reduced using our proposed K/Kn/Kn linear and MLS 

detection schemes by fully exploiting all available knowledge of multiple known users 

(to be quantified in the following sections). 

4.2.5 Mean square error in an adaptive implementation 

Each front-end linear multiuser signal equalizer can be adaptively implemented when 

initial training sequences are provided for users in the joint detection group, in which 

the optimal coefficients of the linear equalizer are recursively approached (thus ob­

viating the inversion of the correlation matrix of the receiver signal that the Wiener 

solution requires). Toward this goal, an adaptive least mean squared (LMS) al­

gorithm in the family of stochastic gradient algorithms is applied in the following 

analysis to study the behaviour of adaptive convergence and the mean squared error 

in stable states. 

We consider the K/M/M multiuser signal equalization and detection problem 

in slowly Rayleigh-faded multipath channel where K — M resources are unwanted 

signals to be suppressed, and J paths (or fingers) for each of the M known users can 

be tracked and resolved at the receiver. Mp = MJ front-end linear multiuser signal 

equalizers are employed to suppress the signal components from K — M unwanted 

users and estimate the desired multiuser signal aggregates {dj(l)} defined in (3.47) 

(desirable for second-stage joint detection of the M users). Using the LMS algorithm, 

the optimal coefficients for the j t h linear equalizer can be recursively approached by 

w < m ) = w f - p3ej(l)v3(l), j = 1, 2 , . . . , Mp, 

where w y is a weight-vector in the j th equalizer at the Ith bit iteration of coefficient 

adjustment, Tj(l) is an N x 1 vector consisting of N output samples in the Ith bit 

interval from the chip-matched filter, ej(l) — (dj(l) — wjJr^Z)) is the estimation error 

at the Ith bit interval, and pj is a step size in the algorithm that satisfies the sufficient 

convergence condition 

Q < ^ < AT , o v i = l,2,... JAfp , (4.13) 
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where {Xk } is a set of eigenvalues associated with the correlation matrix Sj = 

E[v0(l)rj(in 

The noisy estimates cause random fluctuations in the coefficients around the 

optimum Wiener solution w J0 of the j th linear equalizer, leading to an increase in 

the mean square error(MSE) at the output of the equalizer. The MSE associated 

with the j th equalizer will converge to the final MSE Jp\e) = J^ l^e) + Jeioo(e), 

in which 1 < j < Mp, and Jexoo(e) is the variance of the measurement noise, or 

excess mean-squared error. The excess mean-squared error Jexoo(e) can be expressed 

in terms of the minimum MSE J^]n(e) as [63] 

*N ,, \C?) 

^exoo(e) — Jmin\e)~ ^ / v 7(f) ' j = 1; 2, . . . , Mp, 
2 ~~ Z^k=l Pj\ 

and the final, stable-state, normalized MSE can be written as 

r0)/ 

(4.14) 

jU) (p) _ JF (e) 

°) 

' ' - ^ " • n ^ V ' ' 1 ' 3 " - ^ t4-15' 
where a? = E[dj(l)d*(l)], a7 is the signature vector of user j , and pj is the cross-

correlation vector of the j th linear equalizer. 

In the following example, we study the equalizer transient behaviour and its (nor­

malized) MSE on an adaptive implementation of the front-end linear signal equaliz­

ers. 

EXAMPLE 3 — Equalizer transient behavior and MSE 

In this numerical example, the linear equalizer transient behavior and its MSE 

performance are examined. We consider a five-user CDMA system. Signals of active 

users are spread by a set of random sequences with a cross-correlation of 0.3548 

(given in Table. 4.2); four of the five users are known in-cell synchronous sources- a 

three-path slow Rayleigh-fading channel model is assumed with the average energies 

among the three paths: 0.350, 0.335, and 0.315, and the path delays: 0, Tc, 2TC (one 

chip interval difference). We also assume that all the three path components can be 
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tracked and resolved (i.e., J = 3). 

Figures 4.1 and 4.2 show the transient and convergent behaviour of the three 

resolved paths in each of the fingers for user 1 on the basis of the LMS adaptive 

algorithm. A total of 600 bit iterations are employed for each user in the initial train­

ing with step size p = 0.1. Figure 4.1 shows single-user-oriented signal equalization 

whose target is the transmitted bits of user 1. Fig. 4.2 shows multiuser-oriented sig­

nal equalization whose target is the multi-component aggregate of all known users; 

that is, dj(l) includes the signal correlation infrastructure of Mp (= 12) components 

from M (= 4) users. It can be observed from the figures that the convergence rate 

in Fig. 4.2 is faster than the rate in Fig. 4.1; specifically, the three tracking fingers 

in Fig. 4.2 almost enter stable states after 300 bit iterations, whereas the three 

fingers in Fig. 4.1 do not converge to stable states until 400 bit iterations. This ob­

servation illustrates that the multiuser-oriented signal equalization performs better 

than the single-user-based signal equalization with respect to their dynamic transient 

behaviours for an adaptive implementation; the explanation is that the former can 

incorporate all known user information including the four training sequences into its 

signal equalization. 

Table 4.5 Simulated MSEs at the outputs of the proposed linear equal­
izers for user 1 under a 3-path Rayleigh-fading channel in a five-user 
CDMA system: Eb/N0 = 20 dB (user 1), Pk = l,k = 1,2,3,..., 5, 
N = 31, K = 5, M = 4, and step size u = 0.1. 

path M = l M=4 

"~#1 0.0997 0.0876 
# 2 0.0994 0.0883 
# 3 0.1121 0.1047 

The MSEs of reception fingers in their stable states as shown in Figures 4.2 and 

4.1 are tabulated in Table 4.3. The results demonstrate that the MSE in the stable 

states for each finger in the case where M = 4 is less than the MSE in the case where 

M = 1, meaning that the multiuser-oriented signal equalization is more effective in 

suppression of unwanted interfering sources. Moreover, we can estimate the perfor­

mance of single-user detection (i.e., M — 1) after the maximal-ratio combining as 
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1.2 V 

feO.8 

Transient behaviour of the equalization bank 

Five-user CDMA system. K=5, M =4, and N=31 

Three-path fading channels, J=3 

Single-user-based equalizers lor 

—: 1th path (bottom) 

- : 2th path (middle) 
-.: 3th path (top) 

300 
Bit iterations 

Fig. 4.1 Transient and convergent behaviors of the single-user-based 
signal equalizer of user 1 with a system setup: K = 5, M — 1, Eb/No = 
20 dB (user 1), a three-path model, short random spreading of N = 31 
and a cross-correlation of 0.3548, and a step size of p, = 0.1. 

follows: For finger 1 with M = 1, the normalized MMSE (normalized by its aver­

age path fading energy 0.350) is 0.0285, and thus SNRel = 3.995 dB. Notice the 

fact that the first finger has the best output effective SNR among the three resolved 

paths of user 1. If the three paths are optimally combined, we have the RAKE out­

put effective SNR < 8.77 dB. Note that for a simple estimation, we have assumed 

that the other two fingers have the same performance as the first one; thus RAKE 

output SNR is less than SNRei + 4.77 (i.e., 10*log 3) dB. Compared to single-user 

performance limit of Eb/N0 = 20 dB, this example shows more than an 11-dB gap 

between the linear single-user-based detection and the performance bound. This 

leaves a large room (cf. Example 2 under AWGN channel) for possible performance 

enhancement in the multipath fading channels, motivating us to find other advanced 

MUD detection schemes in such a partial system parameter information setup; the 

proposed 5/4/4 linear and nonlinear multiuser detectors can provide one of the so­

lutions achieving this goal. 
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Fig. 4.2 Transient and convergent behaviors of the multiuser-oriented 
signal equalizer of user 1 in a system setup: K = 5, M = 4, Eb/No = 20 
dB (user 1), a three-path model, short random spreading of N = 31 and 
a cross-correlation of 0.3548, and a step size of p = 0.1. 

4.3 Probability of Bit Error 

The performance of the proposed maximum-likelihood sequence (MLS) and linear 

multiuser detectors is analyzed with respect to bit error probability in this section. 

Numerical examples are also provided to quantify the performance of the proposed 

multiuser detection under various system setups and channel conditions. 

4.3.1 K/Kn/M MLS detection performance under AWGN channel 

In this subsection, we present an analysis of bit error probability for K/Kn/M MLS 

multiuser detection under synchronous CDMA AWGN channels. Since a closed-form 

expression for the bit error probability of the multiuser MLS detector is usually in­

tractable, we seek upper and lower bounds on the performance measurement for the 

proposed detection. An upper bound of bit error probability is summarized in the 

following proposition: 
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Proposition 4'- Given the decision metric described in (3.42), a K/Kn/M MLS 

multiuser detector is upper bounded on the probability of bit error of user j (1 < 

j < M) by 

pfIL(a)<Y^w{€)Q(Vm), (4-16) 
eeFj 

where w(e) is the weight of the error vector e (see Definition 2 in Appendix C), 

a2 = ^ , and Q(*) is the Q-function, defined as Q(x) = J^° ~7^e~t2/2dt. Fj is the set 

of indecomposable error vectors associated with user j (see Definition 3 in Appendix 

C). /(e) can be written as 

f(e) = eTAT
M1luAMe, (4.17) 

where IZu is the correlation matrix and AM is the received amplitude matrix of M 

known users. 

Proof: From (3.42), the maximum likelihood function can be expressed as Q.(bM) = 

2bT
MAT

Md - bT
MAT

MnuAMbM, where d = KT
L(Ri + ^WL)~ld, and nv = nl(RT + 

^-WL)~lTZL. From [51, R189], we have that the union bound of probablity of bit 

error of user j for the MLS detection can be written by 

Vf L(CT) < Y Prk G A ( b M ) ; ft(bM - 2c) > fi(bM)], 

where Vj is the set of error vectors that affects user j and A(b M ) is the set of error 

vectors that are admissible with a given transmitted bit sequence bM (see Definition 

1 in Appendix C). Since the event {e G A(b M ) } depends only on the transmitted 

vector and all transmitted bits are assumed to be equiprobable and equally likely, 

we have [51, R189] 

M 

Pr[e e A(bM)] = [ ] PrHbk ~ ^)ek = 0] = 2"WW. 
k 

Moreover, because of symmetry, the event Cl(bM - 2e) > 0 ( b M ) is independent of 
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the transmitted vector b M , due to the fact that 

Q(bA/ - 2e) - fi(bA/) = -4eTAT
Md + 2bT

MAT
MTLuAMe + 2eTAT

MTZuAMbM 

^AljUuAMe 

= ^ e ^ ^ K ^ + ^W^-^d. + N) 

- 4 e M i / ^ t / ^ M e , (4.18) 

where we have used the equation (3.41) in denoting d. It was shown [140, 141] that 

the residual interference plus noise (i.e., d/ + N) at the output of the front-end linear 

MMSE equalization is approximately Gaussian; thus, the first term on the right-hand 

of Eq. (4.18) can be considered a Gaussian variable with zero mean and variance 

Var(di, N) = 16eT AljHuAMe, (4.19) 

since Ri = £ [d /d j ] (E[*] being the expectation operator) and £[NN T ] = ^ W L 

(also, cf. (3.23)). 

As a result, we conclude from (4.18) that 

Pr[Q(bM - 2e) > ft(bM)} = Q ( v 7 ( 0 ) . (4-20) 

where /(e) can be written by 

/(e) = eTAMnuAMe. 

Notice that /(e) designates an SNR in our case that determines the detection perfor­

mance. From above analysis, it is seen that the events {e 6 A(bA /)} and {Q(bM — 

2e) > fi(bAf)} a r e independent. Thus, we have 

pfL(<j) < ^ P r [ e e A ( b M ) ] P r [ ° ( b M - 2 e ) > Q ( b M ) ] 
eeVj 

= Y 2-w{e)Pr[n(bM - 2c) > Q(bM)}. (4.21) 
eeVj 

Moreover, by removing all the (redundant) decomposable error vectors from Vj 
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[51, P. 190] or using the indecomposable set Fj associated with Vj, (4.21) is tightly 

bounded and can be expressed as 

p!IL(*)<Y2~w{e)Q{^7&)-
eeFj 

So, Proposition 4 is derived. 

Notice that in our case, the third condition (3) in Definition 3 of Appendix C 

that is used to identify the decomposable error vectors (such that the indecompos­

able set of error vectors Fj can be derived from the set of error vectors Vj) needs 

to be replaced by (e')TXe" > 0, where X = AMHuAM. Using the indecomposable 

set Fj, the upper bound of probability of bit error (4.16) can provide reasonably 

accurate worst-case results in AWGN channel if /(e) is high [51]. The lower bound 

of probability of bit error is described by the following proposition. 

Proposition 5: Given the decision metric described in (3.42), a K/Kn/M MLS 

multiuser detector is lower bounded on the probability of bit error of user j (1 < j < 

M ) b y 

VfV) > 2 1 -^ -«-Q (y/f~~) , (4.22) 

where 

fj,min = mm{eT A MKUAMC}, 

Wj^min is the minimum weight of the error vector(s) in Fj that achieves fjimin, and 

a2 = ^ 
o 2 . 

Proof: We derive the lower bound of bit error probability by detecting the multiuser 

signals with the side information. With the help of a genie, a detection bit error for 

user j will occur if and only if the transmitted bM and the error sequences affecting 

user j are such that either of the following events occur [51, P. 195] : 

{e e A(b M )} f]{n(bM - 2c) > ft(bM)}; 
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{e G A ( - b M ) } f | M b M + 2c) > 0 ( b M ) } . 

The two events are nonoverlapping, since {A(bA/)} and {A(—b^/)} are disjoint; 

moreover, these events have identical probabilities. It has been demonstrated in the 

proof of Proposition 4 that the events {e G A(b M )} and {Q.(bM - 2e) > Q(bM)} are 

independent, and so are the events {e G A(—bA/)} and {£l(bM + 2e) > Q(bM)}. By 

choosing error vectors e and — e (one for each admissible set) from Fj that achieve 

the smallest energy /(e) , denoted by /j,mm, and noting the fact that /(e) = /(—e), 

the lower bound of bit error probability can be expressed as 

pfL(a) > Pr[e G A(bM)]Pr[n(bM - 2e) > Q{bM)] 

+Pr[e G A(-bM)]Pr[n(bM + 2e) > Q(bM)] 

= 21-™— Q[^/J~~). 

Thus, Proposition 5 is derived. 

Notice that for the full-blown K/K/K MLS detection where only the additive 

white Gaussian noise is present, the lower bound (4.22) is tight and close to the 

upper bound (4.16) in high (enough) SNR region [51]. When a —> 0, the additive 

terms in the right-hand side of (4.16) will be dominated by Q (yjfj,min) terms, since 

Q(x) is a monotonous decrease function in the range x G [0,+oo}. However, the 

lower bound (4.22) can not always provide tight results for K/Kn/M MLS mul­

tiuser detection with partial information (i.e., Kn < K), since there exist both the 

additive white Gaussian noise and the residual interference in such detection sce­

narios. In some cases in which the variance of the residual interference may be 

relatively large, there could be other error sequences (than e and —e) such that the 

resulting items {2~W^Q ( ^ / ( e ) ] } can not be neglected as compare with the items 

2i-wj,minQ (y/J~n~~), even if a —> 0; in other words, the lower bound (4.22) may 

provide a very loose performance. Observe that the performance of K/Kn/M MLS 

detection will be lower-bounded by the lower-bound performance of the full-blown 

K/K/K MLS detection. 
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Table 4.6 Random signature sequences of length 31 with a fixed cross-
correlation value 0.2258 constructed by random search. 

seq. no. random spreading sequences 

1 - 1 1 1 1 - 1 1 1 1 - 1 - 1 1 - 1 - 1 1 - 1 1 - 1 1 - 1 - 1 1 - 1 1 1 - 1 - 1 - 1 1 - 1 1 -1 
2 - 1 1 1 - 1 1 1 - 1 1 - 1 1 1 - 1 - 1 - 1 1 1 1 1 1 - 1 - 1 - 1 1 1 1 - 1 1 1 - 1 1 1 
3 - 1 - 1 1 1 1 - 1 - 1 1 - 1 1 1 - 1 - 1 - 1 - 1 1 1 1 - 1 - 1 1 1 - 1 1 1 1 - 1 1 1 1 - 1 
4 - 1 - 1 1 1 - 1 1 - 1 1 - 1 - 1 - 1 1 - 1 - 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 - 1 
5 - 1 1 - 1 1 1 1 - 1 1 1 - 1 - 1 - 1 - 1 - 1 1 - 1 1 1 1 - 1 1 1 1 1 - 1 - 1 - 1 1 1 1 - 1 
6 1 1 - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 1 - 1 1 - 1 1 1 1 1 1 - 1 1 - 1 1 1 1 1 - 1 1 - 1 1 - 1 
7 - 1 1 1 1 - 1 - 1 - 1 1 - 1 1 1 1 - 1 - 1 1 - 1 - 1 1 1 - 1 1 - 1 1 1 - 1 1 - 1 1 1 - 1 1 
8 - 1 - 1 - 1 1 1 1 1 1 - 1 - 1 1 1 - 1 1 1 1 1 1 1 - 1 - 1 - 1 1 1 1 1 - 1 1 1 - 1 - 1 

Table 4.7 Random signature sequences of length 31 with a fixed cross-
correlation value 0.4839 constructed by random search. 

seq. no. random spreading sequences 

1 1 - 1 - 1 - 1 - 1 - 1 1 1 - 1 1 1 - 1 1 1 1 1 1 - 1 - 1 - 1 1 - 1 -1 - 1 1 - 1 - 1 - 1 1 1 1 
2 1 - 1 - 1 - 1 - 1 - 1 1 1 - 1 1 - 1 - 1 1 1 1 1 - 1 -1 -1 - 1 - 1 1 1 -1 - 1 - 1 1 - 1 1 1 -1 
3 1 1 - 1 - 1 - 1 - 1 1 1 - 1 1 1 - 1 1 - 1 1 1 - 1 - 1 1 - 1 1 - 1 1 - 1 - 1 - 1 1 1 1 1 1 
4 1 - 1 - 1 - 1 - 1 1 1 1 - 1 1 1 - 1 1 1 1 1 - 1 - 1 - 1 - 1 1 - 1 1 - 1 - 1 1 1 - 1 - 1 - 1 1 
5 1 - 1 1 - 1 - 1 - 1 1 1 - 1 1 - 1 -1 - 1 - 1 1 1 -1 -1 -1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 
6 1 - 1 - 1 1 - 1 1 1 1 - 1 1 1 - 1 - 1 - 1 1 1 1 - 1 - 1 - 1 - 1 - 1 1 - 1 - 1 - 1 1 - 1 1 1 1 

4.3.2 Numerical results 

For K/Kn/M detection, the outputs from a bank of M front-end linear multiuser-

oriented signal equalizers provide a decision statistic that can be used for joint de­

tection of the M users in the second-stage processing; we present several numerical 

examples in this subsection to quantify the detection performance with regard to 

bit error probability in AWGN channels. The numerical results are obtained by the 

following procedure: 

1. Generate user information bits: As described in Section 4.2.4. 
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2. C D M A signal spread: The signals of the users are BPSA'-modulated (0 —• 

+1; 1 —> — 1 ) and spread by PN sequences with rectangular chip waveforms 

where the random signature sequences have a spreading gain of 31 and a fixed 

cross-correlation, as given in Table 4.6 or 4.7. 

3. Estimate correlation matrix: As described in Section 4.2.4. 

4. Estimate optimal filters: As described in Section 4.2.4. 

5. Residual matrix: The correlation matrix of the residual interference plus 

noise is estimated at the output of the front-end linear equalizer bank by the 

time average over a 200-bit interval as 

N 1 20° 

Ri + -^m = ̂  Y a«aT(*) - RLAMAIRJ, 
1 = 1 

where AM is the amplitude diagonal matrix and RL is the signal correlation 

matrix of the known users. 

6. Performance evaluation: For MLS multiuser detection in Examples 4 — 7, 

the upper bound of bit error probability (4.16) was employed to evaluate the 

performance of user 1 for the proposed K/Kn/M (M > 1) joint detection like 

[116], since it can provide tightly-bounded results; for linear detection, the 

K/Kn/Kn linear MMSE and decorrelating detectors developed in Section 3.3 

are studied, and the probability of bit error is evaluated by the estimated ef­

fective SNR. 

E X A M P L E 4 — K/Kn/Kn MLS and linear multiuser detectors 

In this example, we evaluate the performance of the proposed K/Kn/Kn MLS 

detector and K/Kn/Kn linear MMSE and decorrelating detectors in terms of the 

probability of bit error, and compare them with conventional MF filter, the full­

blown K/K/K MLS detector and the receiver in an isolated single-user channel. We 

consider a synchronous cellular CDMA system with six active users, in which the 

signals of the active users are spread by random spreading sequences with a fixed 
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MUD in a six-user short spread DS-CDMA system with N =31 
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Fig. 4.3 Bit error probabilities of user 1 versus Eb/N$ for conventional 
MF receiver, 6/6/6 optimum, 6/5/5 MLS multiuser detection, and 6/5/5 
linear detectors in a six-user CDMA system with random spreading of 
fixed cross-correlation value 0.2258, spreading factor N = 31 and perfect 
power control. 

cross-correlation of 0.2258 (given in Table 4.6) and a spreading factor of N = 31. 

We assume that five out of the six users are in-cell users whose parameter knowledge 

is known to the receiver at a cell site of interest, and the sixth user is unknown 

(emulating a scenario when an interfering source with a strong signal is close to 

the edge of the cell of interest). Equal received powers are also assumed. For the 

proposed 6/5/5 detection schemes, a bank of five front-end linear multiuser-oriented 

signal equalizers is used to suppress the interference from the sixth unknown source, 

while a decision statistic including the multiuser information of the five known users 

is produced; the second-stage signal processing applies an MLS decision algorithm, 

a linear MMSE or linear decorrelating transformation to the decision statistic. 

Fig. 4.3 shows that the conventional MF receiver experiences a severe perfor­

mance degradation, and its performance only improves slightly as the SNR increases. 

However, the performance can be significantly improved by either a 6/5/5 linear 

MMSE (denoted by the dashed -x- line) or 6/5/5 linear decorrelating (denoted by 

the dotted -*- line) detector; moreover, the MMSE linear detection outperforms the 
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Fig. 4.4 Bit error probabilities of user 1 versus Eb/No for conventional 
MF receiver, 6/6/6 optimum, 6/5/5 and 6/5/4 MLS multiuser detectors, 
and 6/5/5 linear MMSE detector in a six-user CDMA system with ran­
dom spreading of a fixed cross-correlation value 0.4839, spreading factor 
N = 31 and perfect power control. 

decorrelating linear detection, and the performance of the two linear detectors con­

verges as SNR increases. It is shown in the figure that the proposed 6/5/5 linear 

detectors still incur a 2.3-dB loss at BER of 10 - 4 , as compared with the single-user 

performance bound (denoted by the solid line). The performance can be further 

improved when an MLS decision algorithm replaces a linear transformation in the 

second-stage signal processing; specifically, the proposed 6/5/5 MLS multiuser de­

tector gains additional 1.8 — 2 dB at BER of 10 - 4 over the linear detectors, driving 

the detection performance very close (i.e., about 0.3-dB) to the full-blown 6/6/6 

MLS detection or single-user performance bound. 

E X A M P L E 5 — Performance/cost trade-off and effect of code cross-correlation 

In this example, we examine the performance of the proposed K/Kn/M MLS 

detection and the K/Kn/Kn linear MMSE detection using PN code with a large 

cross-correlation. As in the last example, we consider a synchronous cellular CDMA 
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system with six active users, except that the user signals are spread by PN code 

with a cross-correlation of 0.4839 described in Table 4.7. The large code cross-

correlation means high multiple access interference among the users. In such a 

setup, we quantify the 6/5/5 MLS detector and 6/5/4 MLS detector to examine 

a trade-off between performance and implementation complexity. The performance 

of the proposed linear and MLS multiuser detectors is also compared to that of the 

conventional MF receiver and the optimum (full-blown) 6/6/6 MLS detector, and 

single-user bound. 

Fig. 4.4 shows that the performance of the MF filter does not improve as Eb/N0 

increases, implying that the interference dominates the performance all the time. The 

performance can be significantly improved when the 6/5/5 linear MMSE detector is 

employed instead of MF reception; the proposed 6/5/5 multiuser MLS detector can 

further gain about 2.1 dB at BER of 10 - 4 over the 6/5/5 linear detection. Moreover, 

We evaluate the proposed 6/5/4 MLS detection to illustrate a trade-off between 

performance and cost with respect to the 6/5/5 MLS detection; specifically, the 6/5/4 

MLS detection trades a 0.9-dB performance for the implementation complexity of 

0(24) from 0(25). If a network design can provide the receiver with the parameter 

knowledge of the out-of-cell source such that the full-blown 6/6/6 MLS detection is 

performed, an additional 1-dB gain can be obtained over the 6/5/5 MLS detection. 

Note that there is a 0.6-dB gap between the 6/6/6 MLS detector and single-user 

bound at BER of 10 -4 , while the gap decreases as Eb/N0 increases. 

To quantify the effect of PN code with increased cross-correlation on performance, 

we can compare the relevant results in Fig. 4.4 and in Fig. 4.3; specifically, there 

is approximately a 1.5-dB performance loss at BER of 10~4 for the linear MMSE 

detection due to an increase in the code cross-correlation from 0.2258 to 0.4839 

and a 1.1-dB performance loss for the 6/5/5 MLS detection; this degradation is rel­

atively small, compared to the doubling (i.e., a 3-dB increase) of the code correlation. 

E X A M P L E 6 — effect of unknown short-spread signals on performance 

In this example, we consider an eight-user short-spread synchronous CDMA sys­

tem in which active users employ random spreading sequences with a fixed cross-

correlation of 0.2258 and a spreading factor of N = 31. We examine the effect of 
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Fig. 4.5 Bit error probabilities of user 1 versus Eb/No for six-user MLS 
detection in 8/8/6, 8/7/6, and 8/6/6 detection and information scenarios 
in an eight-user short spread CDMA system with random spreading of 
fixed cross-correlation value 0.2258, spreading factor N = 31 and an 
equal received power is used in the simulation. 

unknown interfering sources on performance of the six-user MLS detection as the 

number of the unknown users varies. 

The effect of the number of out-of-cell interfering sources (or the total unknown 

interfering power level) on the six-user joint detection performance is plotted in Fig. 

4.5, where the number of unknown users varies from 0 to 2. The figure illustrates 

that the performance of the six-user MLS detection degrades very slowly as the num­

ber of unknown sources grows from zero to two in a short-spread CDMA system. 

Specifically, there is a 0.45-dB loss in performance from 8/8/6 MLS detection to 

8/7/6 MLS detection at BER of 10 - 4 , and a 0.55-dB performance loss from 8/7/6 

MLS detection to 8/6/6 MLS detection. Such an observation demonstrates that the 

six-user MLS detection has a good capability to cancel the unknown short-spread 

signals as long as their second-order statistic can be precisely estimated; this can 

be attributed to the multiuser-oriented signal equalization scheme and the excellent 

signal characterization of short spread CDMA signals, which is cyclostationary with 

a period of one bit interval (cf. Section 2.2) and suitable for per-bit based signal 
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MUD in an eight-user long spread CDMA system with N=31 
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Fig. 4.6 Bit error probabilities of user 1 versus Eb/No for six-user 
MLS detection in 8/8/6, 8/7/6, and 8/6/6 detection and information 
scenarios in an eight-user CDMA system with spreading factor of N = 31. 
User signals are long spread by random sequences with cross-correlation 
between 0.2258 and 0.097. Equal received power is used in the simulation. 

estimation and equalization. 

E X A M P L E 7 — effect of unknown long-spread signals on performance 

In this example, we consider the same setting as the previous example, except 

that the user signals are long spread by random sequences with cross-correlations 

between 0.2258 and 0.097. We will examine the effect of long spread CDMA signals 

and unknown interfering sources on performance for the proposed 8/8/6, 8/7/6, and 

8/6/6 MLS detectors. 

It is obvious from Fig. 4.6 that the performance quickly degrades as the number 

of unknown interfering long spread signals increases (as compared to Fig. 4.5); a 

substantial performance loss was observed from 8/8/6 detection to 8/6/6 detection. 

Specifically, there was a 1.2-dB loss in performance from 8/8/6 MLS detection to 

8/7/6 MLS detection at BER of 10"4, and a 1.8-dB performance loss from 8/7/6 MLS 

detection to 8/6/6 MLS detection. Such observations imply that the suppression of 
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unknown long spread interfering source(s) in the front-end linear signal equalization 

is not efficient even if the interference second-order statistic can be precisely mea­

sured. The primary reason is that the correlation period for long spread signals is 

very short — on the order of one chip period; in fact, the correlation matrix of the 

unknown long spread signals is a band matrix with upper and lower bandwidth of 

1 (cf. Section 3.7 for analysis details) because the signature waveform for each user 

changes on a bit-by-bit basis. As a result, a noise floor is expected to appear for the 

multiuser detection as more unknown interfering sources with long spread signals are 

seen at the base-station receiver. 
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Fig. 4.7 Average bit error probabilities of user 1 versus SNR for con­
ventional MF receiver, three-user MF-based detectors (linear MMSE de­
tector, and MLS detector), single-user-based 4/1/1 linear MMSE de­
tector and three-user equalization-based 4/3/3 detectors (liner MMSE 
detector and MLS detector) in a four-user synchronous CDMA system 
with power distribution [l,4,4,l]Pi over the four active users. 
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E X A M P L E 8 — simulated performance for different CDMA receivers 

We have evaluated the bounded performance of the proposed multiuser detec­

tors in the previous examples. In this example, we study the performance of several 

CDMA receivers — by pure simulation; that is, we employ their decision metrics 

instead of their performance formulation. The simulation results can provide an av­

erage detection performance for each of the receivers in given system configurations. 

We consider a four-user CDMA system under an AWGN channel with a simula­

tion setup similar to [113]: The first three users are known-parameter users, while 

the fourth user is an unknown interfering source. Signals of the active users are 

spread by Gold sequences of N = 7. The received powers are set for a near-far 

scenario with a power distribution (relevant to user 1) over the four active users as 

[l,4,4,l]Pi. To illustrate the effect of unknown interference in such a setting, we sim­

ulate the proposed three-user equalization-based MLS and linear MMSE detectors, 

three-user MF-based MLS and linear MMSE detectors, and two other well-known 

receivers: the enhanced single-user detectors [46] [48] and the conventional MF re­

ceiver. A benchmark performance in an isolated single-user communication channel 

is also provided. 

Fig. 4.7 shows the average bit error probabilities of user 1 versus the SNR for 

conventional MF receiver, three-user MF-based 4/3/3 detectors (linear MMSE de­

tector and MLS detector), enhanced single-user-based 4/1 /1 linear MMSE detector, 

and the proposed 4/3/3 detectors (linear MMSE detector and MLS detector). The 

three-user MF-based 4/3/3 detectors, neglecting the fourth interfering source, con­

sist of a bank of three front-end MF filters, and a linear MMSE transformation or 

MLS decision algorithm in the second stage. The proposed 4/3/3 detectors exploit 

the full knowledge of users to suppress interference of the fourth known user; they 

consist of a bank of three multiuser-oriented signal equalizers, followed by either a 

linear MMSE transformation or an MLS decision algorithm. The single-user-based 

4/1/1 linear MMSE detector suppress the interference with the parameter knowl­

edge of only one user, though information about all three users is available at the 

base-station receiver. 

It is evident from Fig. 4.7 that if there is no any interference cancellation tech­

nique employed for the detector design, MF-based receivers perform poorly and 
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show interference-limited performance floors; it is interesting to observe that when 

the MLS multiuser detection (denoted by solid -*- line) or linear MMSE detection 

(denoted by dashed -*- line) is applied to the output sequences from the three MF 

filters of the known users, their performance is only equivalent to that of the MF 

receiver (denoted by dashed -A- line), implying that either the output sequences 

from MF filters cannot provide a reliable decision statistic for multiuser detection, 

or relative strong interference from unknown signal source(s) cannot be neglected 

for effective joint multiuser detection. The enhanced single-user-based 4/1/1 linear 

MMSE detection (denoted by dashed -o- line) can greatly improve the system per­

formance in terms of bit error probability, assuming that only parameter knowledge 

of the desired user is used. Since the receiver has the parameter knowledge of the 

three known users, it can be fully exploited in the signal equalization and detection 

to improve performance (one motivation behind this thesis research). The proposed 

4/3/3 linear MMSE detector (denoted by dashed -o- line) demonstrated a 0.9dB 

performance gain at BER of 10 - 3 over the 4/1/1 detector. However, it is shown in 

Fig 4.7 that the proposed linear MMSE detection still incurs a more than 3-dB loss 

as compared to the single-user performance bound (denoted by the dashed line) at 

BER of 10 - 3 . Thus, one question naturally arises: Is there any further performance 

enhancement (another motivation behind this thesis research)? The answer to this 

question is yes, namely, the proposed 4/3/3 MLS detection (denoted by solid -o-

line); specifically, the nonlinear multiuser detection achieves an additional 1.3-dB 

gain over the 4/3/3 linear MMSE detection at BER of 10 - 3 , and the price of the 

gain is an increased implementation complexity in the second-stage signal processing 

— on the order of 23 in such a setting. 

4.3.3 Multiuser detection performance under multipath fading channels 

In this subsection, we analyze the performance of the proposed MLS and linear 

multiuser detectors developed in Sections 3.5 and 3.6 under synchronous system 

settings. It is assumed that there are K active users in the system, and each user 

has 3 Rayleigh-faded path components whose delay spread is much smaller than one 

bit interval; there are M (< K) known-parameter users with a total of Mp = MJ 
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path components that can be resolved for MUD at the base-station receiver. With a 

synchronous setup, R( l ) and R ( - l ) in (3.64) and W ( l ) in (3.68) reduce to R( l ) = 

R ( - l ) ~ 0 and W ( l ) « 0. The correlation matrix of the residual interference 

Ri reduces to a block diagonal matrix. For convenient analysis, we use the same 

notations as in Section 3.5, simplified here to one-shot M-user signal equalization 

and joint detection. 

We derive an upper-bound on the probability of bit error for the proposed K/M/M 

MLS detection under the dispersive channel conditions. Similar to the proof for 

Proposition 4 in Section 4.3.1 (also, cf. [45]), it can be shown that the upper bound 

on the probability of error of user j , conditioned on the fading channel matrix C, is 

given by 

p3(K, M,J\C)<Y 2-WMie)Q{y/erA'rdTlDAue), (4.23) 
ee£j 

where Q(*) is the Q-function, defined as Q(x) = fx°° x |=e _ t l2dt. Sj = {e € 

{ —1,0, l}Mp} (with a dimension of Mp = JM) is the indecomposable set of the 

error vectors resulting from M sources, and each user is associated with J compo­

nents in Sj that take the same value (i.e., the same error pattern). Thus, WM(G) 

now designates the total number of error patterns in the error sequence e or the 

number of users that are affected by the error sequence in such a scenario (also, cf., 

[51, 45, 149]). IZD and AM are, respectively, the correlation matrix and received 

amplitude matrix (cf., Section 3.5.3 for the definitions). Let us define 

X = eTAT
MnDAMe 

= cHVTAMKT(Ri + N0W)-l-RAMVc 

= cHHc, (4.24) 

where c and V are defined as the Mp-dimensional vector c = [OJI(O) a2(0) . . . aM (0)]T 

and the diagonal matrix V = diag{ei e2 ... eMp}, respectively, and H = VTAMTlT(RI+ 
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N0W) lHAMV. The characteristic function of X is given as [150] 

wM{e)J 

J 

WA/(e)J 

^xO) = n i—^r 
i=l 

•WM{G)J 

= £r^v (425) 
i = l 

where {A^} are the nonzero eigenvalues (assumed to be distinct) of the matrix K/H, 

with /C being the covariance matrix of the complex-valued Gaussian random vec­

tor c. The coefficients of the partial fraction expansion {7^} can be expressed as 

7Ti = r E n / / v^T- T n u s > t h e unconditional bit error probability for multiuser MLS 

detection in such a situation is obtained by averaging over the channel state infor­

mation as 

/

oo 

Q{y/x)fx{x) dx 

wM(e)J 

= Y^WM{e) Y -: 2 
ee£i i=l 

A,; 
2 + A. 

(4.26) 

where the power density function of the chi-square-distributed random variable X 

is fx{x) = Z~27^i'e^J
 x

ie~X^Xi- Notice that Aj can be considered the effective average 

signal-to-interference (SIR) ratio for the ith component. In the particular case when 

M = K and with a single-path channel model, it coincides with the upper bound 

proposed in [45]. 

It is worthwhile to justify our analysis in a particular scenario: an isolated single-

user CDMA system under a J-path Rayleigh-faded channel model; the proposed 

front-end linear equalizer bank reduces to a bank of J MF filters. Thus, Ri — 0, we 

have a total of two error vectors (i.e., wM(e) = 1 with e and - e ) , and H reduces 

to H = AM^R-AM/NQ. It is further assumed that the user's signature waveform is 

ideal in that its time-shifted versions are orthogonal; then, TZ reduces to a diagonal 

matrix, and the bound described in (4.26) reduces to the well-known single-user 
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RAKE bound given in [6], denoted by p\ as 

Pi = E? 
i = l 

1 -
A (0) 

\ J2 + A (o) 
(4.27) 

where A;0) = j±E[\ a{(0) \2]. The performance of the proposed K/M/M MLS 

detection under multipath slowly Rayleigh-faded channels is lower bounded by (4.27). 

For the proposed K/M/M linear multiuser detection described in Section 3.6, the 

second-stage signal processing amounts to separating the signal components of the 

M known users, and optimally combining the signal replicas of the same user on the 

basis of outputs from the front-end Mp linear multiuser-oriented signal equalizers. 

Thus, an analysis of the detection performance under Rayleigh fading multipath 

channels is similar to [143]. The unconditional bit error probability upper bound 

turns out to be 

P.M = E t 
1=1 

1 -
Xi 

2 + Xi 
(4.28) 

where {AJ are the nonzero eigenvalues (assumed to be distinct) of the matrix KH, 

with K being the covariance matrix of the complex-valued Gaussian random vec­

tor Ci. The coefficients of the partial fraction expansion {ffj} can be expressed as 

^i = Yli=i,i^i A7=V
 I n t h e s P e c i a l c a s e where M = K, the performance formula­

tion in (4.28) for the K/M/M linear detection under slow Rayleigh-fading multipath 

channels is same as [143]. 

4.3.4 Numerica l resul ts 

In this subsection, we provide numerical results in the evaluation of the proposed 

K/M/M detection under three-path slow Rayleigh-fading channels. Different path 

components for each user experience independent fading, with the average energy 

distribution among the three paths being 0.350, 0.335, and 0.315, and assume the 

quasi-static frequency-selective slow-fading setup: the fading coefficients for three 

paths of a user are generated based on a complex Gaussian distribution, and are 

not changed for a 200-bit interval once generated. It is equivalent to assuming that 
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the coefficients are constant in one transmission frame of 20 milliseconds in IS-2000 

systems [3]. It is further assumed that in-cell sources are bit synchronous and three 

path delays are set to [0, Tc, 2TC] in the simulation; out-of-cell unknown signals can 

be asynchronous. 

Due to fading and multipath nature, the received amplitudes of path components 

can be significantly different and thus an indecomposable set of the error sequences 

is very expensive to calculate; even if an indecomposable error-vector set is found, 

loosely-bounded performance is possible. Therefore, the detection performance is 

evaluated using a decision metric instead of bound analysis in fading multipath chan­

nel conditions; in fact, such a scheme will provide an average receiver performance 

that is of more practical interest. The procedure to obtain the numerical results is 

described as follows: 

1. Generating the information bits of users: The transmitted information 

bits of the active users are independently generated and the bits for the same 

user take a value of 0 or 1 with equal probability. 

2. Spreading the C D M A signal: The signals of the users are BPSA'-modulated 

(0—> +1 ; 1 —> — 1 ) and spread by PN sequences with spreading gain of 31, 

using rectangular chip waveforms; the spread signals of each user are weighted 

by the fading coefficients (assuming to be quasi-static) and time shifted by 

allocated delays. 

3. Estimating the correlation matrix: The continuous aggregate received 

signal passes through the chip-matched filter of user j and is sampled at the 

chip rate to obtain the discrete (sampled) received signal vector, Vj(i), for the 

user. The NxN correlation matrix of the received signal is then estimated 

based on a moving time average of 100 bit interval (assuming less than the 

coherence time in a slowly-faded quasi-static channel) by 

.. 100 

i= i 

where Tj(i) is the received aggregate signal sample vector at the chip-matched 

filter output of user j at the ith bit interval. 
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4. Estimating the optimal filters: The optimal coefficient vectors for the 

front-end linear M-user equalization are estimated by 

where p j , the cross-correlation vector, can be represented by 

Mp 

PJ = X]pfcK(/-i)pjfc(/,/-i)uJfc(/,/-i) 
fc=i 

+a2
k(l)pjk(l, l)ujk(l, 1) + a2

k(l + l)pjk(l, I + l)ujk(l, I + 1)} 

in which Pjk(l, i) = < sk(t — iTb — Tj), Sj(t — lTb — Tj) > is the correlation between 

signature waveforms of the j t h and kth signal components at their Ith and ith 

bit intervals, respectively. a\(l) is the fading signal component power of path 

I. Elements of ujk(l, I + 1) were defined in (3.49). 

5. Estimating the residual matrix: The correlation matrix of the residual in­

terference plus noise is estimated at the output of the front-end linear equalizer 

bank by time averaging over 100 bits as 

N 1 10° 
Rl + -fW = Too E a(0dT(*) - RCAMAlCTnT, 

i = i 

where d(i) is the front-end equalizer output sequence vector, AM is the ampli­

tude diagonal matrix of active users and RL is the signal correlation matrix. 

6. Evaluating the performance: For MLS detection, M-user joint detection is 

based on the outputs of MJ linear optimal multiuser-oriented signal equalizers 

by applying the decision metric 

fi(b) = 2Re{bTAT
My}-bTAT

MnDAMb, 

where TZD = CHTZT(Ri+N0W)~1IZC, whose off-diagonal entries beyond a band 

with upper and lower bandwidth 3MP — 1 are set to zeros in the simulation by 
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Fig. 4.8 Average bit error probabilities of user 1 versus SNR for mul­
tiuser detectors under three-path Rayleigh-fading channels in a six-user 
CDMA network with short random spreading of N = 31 and equal cross-
correlation of 0.2258, K = 6, M = 3,5, J = 3 and Pk = Pi, A; = 
2, 3,4, 5, 6. The performance is compared with the single-user RAKE 
bound (J=3). 

applying the cut-off strategy discussed in Section 3.5.4, and y = CHd; other 

details can be found in (3.71). 

For the proposed linear detection, the probability of error is estimated based 

on the SNR at the output of the RAKE receiver developed in Section 3.6. 

Notice that for the given three-path fading model, J denotes the number of re­

solved paths (RAKE fingers) used for the maximal-ratio combining (MRC); in the 

case when J — 2, for example, only the two strongest paths from the three sig­

nal replica are tracked for the RAKE combining; the third path signal component 

is considered unknown interfering source that must be suppressed in the proposed 

multiuser detection (that is, the performance/complexity tradeoff issues and path 

diversity effect are considered). 

E X A M P L E 9 — K/M/M detection in dispersive channels 
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In this example, we quantify the performance of the proposed MLS and linear 

detection in a six-user (K = 6) CDMA system under a three-path Rayleigh-faded 

channel. We assumed that five users are parameter-known synchronous users and 

the three path components for each user can be tracked and resolved (J = 3) at 

the receiver; the sixth is unknown, out-of-cell asynchronous sources. Signal of all 

active users are short spread by random sequences with an equal cross-correlation of 

0.2258. 

Fig. 4.8 is obtained by simulating the scenario of equal received (large-scale 

based) signal powers, and it serves to study the performance of the 6/5/5 linear de­

tection developed in Section 3.6 and the 6/5/5 MLS detection developed in Section 

3.5, as well as the 6/3/3 MLS detection, which trades the detection performance 

for implementation complexity. To benchmark the investigated performance of the 

multiuser detectors, the single-user RAKE lower bound (cf. (4.26) or [6]) is provided. 

The results illustrate that the 6/5/5 linear detector (denoted by the dashed -x- line) 

is efficient since no interference and noise floor appears; the 6/5/5 MLS detector (de­

noted by the solid -o- line) can achieve an additional gain of about 3.2 dB at BER 

of 10~4 over the linear detector. The 6/3/3 MLS detector (denoted by the dashed 

-*- line) simulates a scenario where the base station can not afford a computational 

complexity of 3 * 215 (i.e., M = 5) but a complexity of 3 * 29 (i.e., M = 3); in such a 

case, the nonlinear detector trades a performance loss of about 1.4dB for the reduced 

implementation complexity (Note that its performance is still better than the linear 

detection by a 1.8-dB gain at BER of 10 - 4). Compared to the single-user RAKE 

bound (denoted by the dashed - - line), the 6/5/5 MLS detector has a gap of about 

1.9 dB, due to the effect of the three unknown interfering fading components from 

the sixth user. 

E X A M P L E 10 — effect of the number of resolved paths on performance 

In this example, we study the effect of path diversity on performance in a five-user 

short-spread CDMA system under a three-path slowly Rayleigh-faded channel. The 

simulation setup is: The in-cell known sources are bit synchronous, while the fifth is 

unknown, out-of-cell asynchronous sources; we study the 5/4/4 MLS detection, and 

signals of five users are spread by random sequences with an equal cross-correlation 
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Fig. 4.9 Average bit error probabilities of user 1 versus SNR for 5/4/4 
MLS multiuser detector under a 3-path Rayleigh-fading channel in a 
5-user short-spread CDMA system with random spreading with equal 
code cross-correlation of 0.3548 and N = 31, equal received large-scaled 
powers,and J = 1 — 3. 

of 0.3548 and N = 31; equal received large-scale powers (excluding the small-scale 

Rayleigh fading) for all users are assumed. Thus, the aggregate received signal at 

the base station includes a total of 15 signal components, amongst which 12 signal 

components are from the four known users and the other three are from the unknown 

(strong) interfering source. For J (1 < J < 3) resolved multipath components for 

each known user, Mp = 4J signal components are of interest for multiuser signal 

equalization and joint detection; the other 15 — 4J path components are not resolved 

and considered unwanted interfering sources to be suppressed in each of Mp front-end 

linear multiuser-oriented signal equalizers. 

Fig. 4.9 shows the average bit error probability of user 1 for 5/4/4 MLS de­

tection as a function of SNR with a different number of resolved path components 

(e.g., fingers employed) at the receiver. We observe from Fig. 4.9 that the bit er­

ror probability falls off sharply as the number of resolved multipath components 

J increases from one to three. It can be explained as follows: When J = 1, the 

number of resolved signal components from the four known users is 4, and the other 
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Fig. 4.10 Average bit error probabilities of user 1 versus SNR for 
an adaptive implementation of 5/4/4 MLS detector under a three-path 
Rayleigh-fading channel in a five-user short spread CDMA system with 
random spreading with equal cross-correlation of 0.3548 and N = 31. An 
initial 600-bit training for each user of interest is employed, the step size 
is set to p — 0.1, and the LMS algorithm is used for recursive estimates 
of the optimal coefficients. 

unresolved 11 path components (plus the three components from the fifth unknown 

source) need to be suppressed in each front-end linear multiuser signal equalizer; 

as J increases, more path components are assumed to be resolved at the receiver 

and can be included in the joint detection of the four users, leading to improved 

interference suppression capability and increased path diversity gains (since fewer 

unwanted signal components need to be suppressed in the front-end linear multiuser 

signal equalizers and more resolved components are combined for joint detection). 

The best scenario is that all 3 paths (i.e., J = 3) for each of the known users are 

resolved and used for interference suppression and joint detection; that is, a total 

of 12 desired signal components are combined to "combat" the 3 interfering signal 

components from the unknown user and retained in the front-end multiuser signal 

equalization, which are used for the second-stage nonlinear joint detection. 

Fig. 4.10 illustrates an adaptive implementation of the 5/4/4 joint detection 
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in Fig. 4.9. An initial 600-bit training is employed at the start of transmissions, 

and the LMS algorithm is used to adaptively search for the optimum coefficients 

in 4J front-end linear equalizers, thus obviating the estimation of the correlation 

matrix and avoiding the matrix inversion operation in calculation of the optimum 

linear coefficients (e.g, Wiener solution). The step size set to p — 0.1 (equivalent to 

l/(2*total-signal-power)) in the training process, and the initial equalization coeffi­

cients start from zero. 

Fig. 4.10 also shows that the probability of bit error of the 5/4/4 MLS detection 

falls off sharply as the number of resolved paths J increases, which is consistent with 

Fig. 4.9. Figures 4.10 (i.e., adaptive case) and 4.9 (i.e., non-adaptive case) demon­

strate equivalent performance in terms of the probability of error in the 5/4/4 MLS 

detection. This can be explained as follows: For the non-adaptive implementation, 

the correlation matrix of the received aggregate signal needs to be estimated by a 

moving timing average over the observed multiple-bit interval, resulting in a cer­

tain estimation error as compared to the true statistical value and a relative higher 

computational complexity due to the matrix inversion operation. In the adaptive im­

plementation, the optimum tap coefficients in each of the front-end linear equalizers 

are recursively approached using a gradient of instantaneous error, thus introducing 

excess mean-squared error in the solutions; however, the scheme has avoided the 

correlation matrix estimation and inversion, leading to a lower computational com­

plexity. 

E X A M P L E 11 — effect of errors in parameter estimation on performance 

In this example, we examine the performance sensitivity of the proposed 5/3/3 

MLS and linear detectors to estimate errors in the received amplitudes and channel 

fading coefficients required for the joint detection. We consider a five-user CDMA 

system under a three-path Rayleigh-fading channel, in which the signals of the active 

users are short spread by random sequences with an equal cross-correlation of 0.2258 

and a spreading factor of N = 31. We assume that the receiver has the parameter 

knowledge of first three users whose transmissions are bit synchronous, but has 

no knowledge of the other two users whose signal components are asynchronous 

and must be suppressed in the front-end linear multiuser signal equalization. The 

estimation of the received signal amplitude (including the fast fading effect) for each 
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MUD under a 3-path fading channel in a five-user short spread system, N=31 

14 16 
E/Nn(dB) 

Fig. 4.11 Average bit error probabilities of user 1 versus SNR for mul­
tiuser MLS detector under a three-path Rayleigh-fading channel in a 
five-user short spread CDMA system with a random spreading of N = 31 
and an equal cross-correlation of 0.2258. A 5% estimation error of the re­
ceived amplitude is introduced for each known user to examine its effect 
on performance. 

of the three paths of the known users experiences a 5% error, where the positive 

or negative error percentage is randomly generated among all multipaths in our 

simulation. 

The simulation results, shown in Fig. 4.11, demonstrate that the proposed 5/3/3 

MLS and linear detectors experience a slight performance degradation in such a case. 

Specifically, the 5/3/3 MLS detection suffers a negligible degradation, and the 5/3/3 

linear detection suffers a 0.2-dB loss at BER of 10 - 4 ; this insensitivity to the esti­

mate errors can be probably explained as follows: The joint detection proposed in 

this thesis is based on the multiuser path-component aggregate of multiple users; an 

estimate error of one path component may make the signal aggregate value deviate 

up from its true value, while an estimate error of another path component may cause 

it to go down. The probability of all the estimate errors changing the the desired 

signal aggregate value in one direction is very small. As a consequence, the inde­

pendent estimation errors of all path components involved in the multiuser signal 
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aggregate tend to cancel each other out. 
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Fig. 4.12 Average bit error probabilities of user 1 versus SNR for 5/4/4 
MLS multiuser detector under Rayleigh-fading 3-path channels in a five-
user synchronous CDMA systems. The users' signals are long spread by 
random spreading sequences with the cross-correlations between 0.3548 
and 0.097, and with N = 31; the parameter knowledge of the first four 
users are known and the fifth user is strong, unknown interfering source; 
both equal power and non-equal (large-scaled) power scenarios are con­
sidered for the known users, whereas the average interference (large-
scaled) power of the fifth, unknown user is fixed relative to user 1 as 

P5 = Pl-

E X A M P L E 12 — effect of long spread signals on performance 

In this example, we study the performance of the 5/4/4 MLS multiuser detec­

tor in a long-spread CDMA system under a Rayleigh-faded 3-path channel. There 

are five synchronous users in a CDMA network, in which first four users are con­

sidered known-parameter sources of interest to the base-station receiver; the fifth 

user is considered an unknown out-of-cell interfering source with a relatively strong 

transmission power (that cannot be ignored during the joint detection); the user sig­

nals are long spread by random spreading sequences with cross-correlations between 

0.3548 and 0.097 and with N = 31. 
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Fig. 4.12 illustrates the average bit error probabilities of user 1 versus SNR for 

the proposed MLS multiuser detection with different path resolved cases and near-

far scenarios. By comparing Fig. 4.12 to Fig. 4.9, we see a significant performance 

degradation in this example; in fact, a performance floor forms as the SNR increases, 

even if there is only one strong (relative to the desired user's signal), unknown 

signal source; this implies that the residual interference dominates performance as 

the background noise diminishes. This inefficient interference suppression results 

from the short-correlation characterization of long-spread CDMA signals (also, see 

explanations in Example 7). However, the effect of path diversity on performance 

is evident, shown in Fig. 4.12: The probability of bit error falls off sharply as the 

number of resolved paths J increases from one to three, and the detection is near-far 

resistant for any fixed level of unknown out-of-cell interference. 

4.4 Asymptot ic Efficiency and Near-Far Resistance 

Asymptotic efficiency and near-far resistance, alternative criteria over the bit er­

ror rate for multiuser detection, characterize the detection performance relevant to 

single-user bound at high SNR regions. 

4.4.1 Asymptotic efficiency 

We present an analysis on the asymptotic efficiency of user 1 for K/Kn/M MLS 

multiuser detection in an AWGN channel developed in Section 3.4. Let iq denote the 

indecomposable error-vector set defined in an one-symbol interval; 7£L, a matrix of 

inner products between signature sequences (of known users in the target detection 

group) and linear equalizer impulse responses; Ri, the correlation matrix of the 

residual interference of unwanted signal sources; No, background noise density; and 

WL, correlation matrix of front-end linear equalizer impulse responses. Other details 

can be found in Appendix A. The asymptotic efficiency is a performance relative to 

the single-user bound at high SNR regions, where in our case, the SNR of user 1 (in 

a single-user channel) is ^ or ^ - . We assume that the bounds of (4.22) and (4.16) 

for effective K/Kn/M MLS multiuser detection are dominated by a term equal to 

(modulo a certain factor) /i,min in these high SNR regions, and then the asymptotic 
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efficiency of user 1 can be expressed as [113, 51] 

J l,min 

m Pi/o-2 

1 
ee~Fi;€i=i i q 

min — eTAT
MnuAMe, (4.29) 

where nv = TiT
L(2Ri/NQ-\-WL)-lnL. For the K/K/K MLS multiuser detection, the 

asymptotic efficiency (4.29) becomes the optimum asymptotic efficiency described 

in [51]; for the K/Kn/M MLS multiuser detection with partial information, the 

asymptotic efficiency (4.29) is always less than unity since the residual interference 

is nonzero. 

4.4.2 Near-far resistance 

The near-far resistance represents the worst-case asymptotic multiuser efficiency in 

(4.29) over all possible average received powers {Pk} of the signals of the M — 1 users 

(other than user 1 of interest) in the M-user detection group. For K/Kn/M MLS 

multiuser detection in an AWGN channel, the near-far resistance of user 1 is given 

by [127] 

fji = r inf 771; (4.30) 
{Pk}eEM 

where r/i is defined in (4.29). EM is the set of all possible received signal powers 

from the desired users, save user 1; that is, EM = {Pk\ Pk > 0, k — 2, 3 , . . . , M}. 

4.4.3 Numerical results 

In this subsection, we evaluate the performance of the proposed multiuser detection 

in terms of asymptotic efficiency and near-far resistance. We consider a four-user, 

synchronous CDMA system, the same setting in [113, 125]: The signature sequences 

of the users are Gold code of length 7; one-shot (sequence) multiuser detection is stud­

ied. The results were obtained using the procedure (Steps 1 through 6) in Section 

4.3.2, except that PN sequences given in Table 4.1 were used, and the performance 

was evaluated in terms of (4.29) and (4.30). 
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Fig. 4.13 The asymptotic efficiency of user 1 vs. amplitude ratio for 
K/Kn/M in a four-user synchronous CDMA system with full informa­
tion: Kn = K = 4, M = 1 - 4, and Gold sequences of N = 7. 

E X A M P L E 13 — 4/4 /M multiuser detection 

In this example, we examine the performance of the proposed multiuser detection, 

assuming the parameter knowledge of the four active users is available to the receiver, 

that is, Kn = K = 4; other assumptions include: Eb/N0 = 15 dB (associated with 

user 1) and Gold sequences of N = 7. Specifically, we study the asymptotic efficiency 

and near-far resistance of the 4/4/1 (i.e., 4/4/4) linear MMSE detector, the 4/4/2 

and 4/4/3 MLS multiuser detectors, and the full-blown 4/4/4 MLS detector; we 

also examine asymptotic efficiency as a function of received signal amplitude (with 

regard to user 1), and provide an explanation of the saddle-shaped performance of 

the nonlinear detection schemes. 

Fig. 4.13 demonstrates the asymptotic efficiency of user 1 as a function of re­

ceived amplitude with different detection group sizes. It is seen that the asymptotic 

efficiency of the single-user detection (i.e., M = 1) is about 0.47; it increases as 

M increases, and approaches unity for the full-blown MLS detection (i.e., M = 4). 

The asymptotic efficiency of user 1 becomes constant when the received amplitude 

of other users (relative to user 1) is large for each M; this indicates that these mul-
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tiuser detectors are robust in the face of the power imbalance, and thus, are near-far 

resistant. These results are consistent with [113], in which a zero-forcing-based lin­

ear filtering (an alternative to the MMSE criterion proposed here) was used in the 

front-end signal equalization, and joint detection with different grouping sizes was 

investigated. These multiuser detectors show different performance losses in terms 

of near-far resistance. Specifically, the near-far resistance of user 1 is about 0.47 for 

the single-user-based (4/4/1) linear MMSE detector, 0.493 for 4/4/2 MLS detector, 

and 0.57 for 4/4/3 and 4/4/4 detectors. 

It is interesting to observe the changes in the asymptotic efficiency over the 

received power (relative to user 1) distribution for the proposed 4 / 4 / M (M > 1) MLS 

detectors. The asymptotic efficiency of these multiuser detectors starts to degrade 

once the relative received amplitude drops below 1.0, and reaches its lowest point at a 

certain lower level; however, as the relative amplitude continues to decrease (toward 

zero), the asymptotic efficiency starts to increase (i.e., the detection performance 

is getting improved). The resulting curve forms a saddle-shape (or "V"-shape) in 

the relatively low received amplitude region (between 0 and 1). Such a performance 

phenomenon in MLS multiuser detection is well known in the literature; however, it 

appears to haven't had a clear explanation. We try to provide an explanation for the 

saddle-shaped performance, using 4/4/4 MLS detection in this example. For the full­

blown nonlinear detection, the front-end linear multiuser-oriented signal equalizers 

reduce to MF filters, and the second stage uses an MLS decision algorithm. The 

one-shot output from the front-end MF filter of user j can be written as 

4 

dj(l) = YyfP~khk^pik + e^ .?' = 1 > 2 , 3 , 4 , (4.31) 
fc=i 

where pjk in (4.31) is the cross-correlation between the signature waveforms of users 

j and k. e7 is filtered background noise after the j t h front-end filter. Pk and bk(l) 

are the received signal power and the transmitted bit at the Ith bit interval of user 

k, respectively. It is well known that {dj(l),j = 1, 2, 3,4} at the Ith bit interval can 

provide a sufficient statistic for the one-shot sequence multiuser detection. This is 

achieved by searching all possible combinations (or vectors) of the four users' trans­

mitted bits, (bi(l),b2(l),b3(l),b4(l)), at the Ith bit interval, comparing them with 
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the observation samples (di(l),d2(l), dz(l), d^(l)), and finding the "closest" vector in 

terms of the maximum likelihood. Thus, the resulting performance depends very 

much on the signal constellations of Ylt=i VP~k~bk{l)Pjk for all (24) different combi­

nations of (b\(l), b2(l), 63(0, b^(l)). A combination of the four users' transmitted bits 

that leads to a unique signal constellation is referred to as an effective bit combination 

in the sequel. The number of total effective bit combinations in z~2k=i y/P~k~bk(l)pjk is 

bounded by 24, and as a function of the received power distribution among users and 

the cross-correlation between the signature waveforms of paired users; it is directly 

related to the nonlinear sequence detection performance. For a tractable analysis, we 

consider a simple power-distribution and cross-correlations scenario: Assuming that 

Pi — P3 = P4 = xPi, where a: is a small-valued signature waveform cross-correlation 

and equal for any signature pair. As a result, (4.31) can be expressed as 

4 

A(0 = VA(M0 + xpYh(l))+eu (4.32) 
fc=2 

and 

4 

dj(l) = y/F^xbjil) + pbx(l) + xp Y h{l))+ej, . 7=2 ,3 ,4 , (4.33) 
k=2,kft 

where p (< 1) in (4.32) and (4.33) is cross-correlation between the signature wave­

forms of any paired users. We discuss how to search through all the effective bit 

combinations for joint detection of the four users below: 

xp > 1: When xp > 1, there are a total of eight effective bit combinations leading to 

different signal constellations for VP~i(bi(l)+xpY^i=2 h(l)) in (4.32); there are 

a total of 12 effective bit combinations leading to different signal constellations 

for Vj,j ^ 1 and jF\(xbj(l) + pbx(l) + xpY?k=2,k# &*(/)) in (4.33). Moreover, 

the distances between different signal constellations are very large. In such a 

case, the 4/4/4 MLS detection for user 1 benefits greatly from the multiuser 

signal samples at the outputs of the other front-end filters (i.e., d2(l) — d4(l)), 

and can achieve the single-user performance bound. 

x ~ p: When x and p take values of same order (both less than one), there are a total 
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of eight effective bit combinations leading to different signal constellations for 

y/P~i(bi(l) + xpJ2t=2bk{l)) in (4.32); there are also more chances to form an 

identical signal constellation in (4.33) with different bit combinations due to 

the fact that when j = 2, for example, the constellation term can be written 

as \fPi[x(b2(l) + ph(l)) + p(b\(l) + xb4(l))]; mutual cancellation of the bit com­

binations from four users is then possible, resulting in the number of effective 

bit combinations for any j,j ^ 1 in (4.33) being (much) smaller than 12. Fur­

thermore, the area of different signal constellations also shrinks significantly. 

In such a case, the 4/4/4 MLS detection for user 1 probably benefits the least 

from the multiuser signal samples at the outputs of the other front-end filters, 

thus resulting in the worst case performance (i.e., near-far resistance). 

x —> 0: When x approaches zero, a total of eight effective bit combinations lead to 

different signal constellations for \/T^(bi(l) + xpi~2k=2bk(l)) in (4.32); there 

are a total of twelve effective bit combinations that result in different signal 

constellations for Vj,j ^ 1 and y/P[(xbj(l) + pbi(l) + xpJ2k=2,k&bk(l)) in 

(4.33). Although the area of different signal constellations shrinks significantly 

in such a case, the signal component from user 1 dominates in each of the four 

observation samples at the front-end equalizer outputs; thus, the detection 

performance of user 1 can be gradually improved to the single-user bound. 

Such an explanation also applies to the asymptotic efficiency in the 4/4/3 and 

4/4/2 MLS detection scenarios. However, e7 in (4.31) should be interpreted as resid­

ual interference plus noise, since each front-end filter in these detectors employs the 

linear multiuser-oriented signal equalization (rather than MF filtering) for interfer­

ence suppression of the unwanted signal source(s). 

E X A M P L E 14 — 4 /3 /M multiuser detection 

In this example, we study the performance of the proposed multiuser detection 

with partial system parameter information, corresponding to K = 4, Kn = 3 and 

M = 1 — 3, in a four-user synchronous CDMA system; the same setting as the 

previous example, except that the fourth user is assumed to be unknown (out-of-

cell) interfering source. Signals of users are spread by Gold sequences of N = 7, 

and the performance of user 1 is evaluated for 4/3/1 linear detector, and the 4/3/2 
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and 4/3/3 MLS detectors with Eb/N0 = 15 dB (in terms of user 1). To obtain the 

optimum coefficients (or Wiener solution) for each front-end linear equalization, the 

autocorrelation matrix of the unknown fourth user's signal is estimated (through 

overhead channels) using a time averaging over 200 received symbols as described 

in Section 4.2.4, and the cross-correlation vector is calculated using the definition in 

(3.37) on the basis of the parameters of the known users in target detection group. 

It is seen from Fig. 4.14 that the asymptotic efficiency of user 1 is 0.42 for the 

linear single-user-based detection, 0.51 for the 4/3/2 MLS detection, and 0.75 for 

the 4/3/3 MLS detection. Since near-far resistance is the worse-case asymptotic effi­

ciency performance over a (relative) power distribution, it is obtained from the figure 

that the near-far resistance is 0.42, 0.446, and 0.535 for the linear single-user-based 

detector, the 4/3/2 MLS detector and the 4/3/3 MLS detector, respectively. Com­

pared these results with Example 13, we can find that each corresponding detector 

for a given M (1 < M < 3) here incurs some performance loss, which is expected 

since the receiver assumes no parameter knowledge of the fourth interfering source 

(i.e., partial information setup). 
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4.5 Summary 

In this chapter, we studied the performance of multiuser linear and MLS detectors 

with partial information, which were proposed for reverse-link base-station reception 

in cellular CDMA networks under both AWGN and multipath slowly Rayleigh-faded 

channels; the evaluation criteria included minimum mean squared error, effective 

signal-to-noise ratio, probability bit error, asymptotic efficiency and near-far resis­

tance. We also justified these detectors by comparing them with several well-known 

CDMA receivers, including conventional MF receivers, enhanced single-user-oriented 

linear detectors, the full-blown (centralized) multiuser detectors and the receiver in 

an isolated single-user channel. 

Numerical examples were carefully chosen to quantify the performance of the pro­

posed multiuser detectors. The numerical results illustrated that the front-end linear 

multiuser-oriented signal equalization proposed in this thesis is effective, beating con­

ventional MF filtering and single-user-based signal equalization. The proposed linear 

and nonlinear multiuser detectors are efficient and near-far resistant. We also exam­

ined performance-impacting parameters such as detection group size, the number of 

unknown out-of-cell (strong) interfering sources, the number of resolved path compo­

nents, spreading type and parameter estimation errors. Other important issues we 

investigated included the trade-off between detection performance and implemen­

tation cost, the near-far problem, and performance of an adaptive variants of the 

proposed multiuser detectors. 



140 



141 

Chapter 5 

Application Issues 

The CDMA receivers developed in this thesis can be characterized as a combination 

of interference cancellation and "real" multiuser detection, and they can provide one 

feasible way for effective base-station reception in multi-cell CDMA networks, where 

the receiver has only the parameter knowledge of a subset of user population. Thus, 

the proposed multiuser detection has potential applications in current and future 

wireless networks to increase spectrum utilization efficiency and system capacity. 

In Section 5.1, we present a brief overview of 3G wireless systems and describe 

attractive features that are appropriate for use of the multiuser detectors developed 

in this study. Sections 5.2-5.5 provide a few specific application scenarios using the 

proposed multiuser detection to improve performance. 

5.1 3G System Configurations for Advanced Signal 

Reception 

Currently, there are two types of CDMA-based, globally-adopted standards for the 

third-generation (3G) cellular wireless systems [151]: CDMA2000 [3] and Wideband-

CDMA (WCDMA) [4]. CDMA2000 is backward compatible with IS-95A/B, and 

supports the reuse of existing IS-95A/B service standards; it includes single-carrier 

direct-spread (DS) systems and multi-carrier (MC) systems. The baseline chip rate 

for a DS-CDMA system is 1.2288 Mcps (i.e., lx), and the scalable chip rate and 

RF bandwidth are Nxl.2288 Mcps and JVxl.25 MHz, respectively, where N = 
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1,3,6,9,12; a multi-carrier approach can be used to maintain orthogonality (and 

thus compatibility) with IS-95 carriers. CDMA2000 cellular wireless networks can 

be configured to satisfy different service requirements. There are six different radio 

configurations (RCs), each with a different rate (e.g., 9.6 kbps or 14.4 kbps) set, cod­

ing and modulation schemes; applications with RC1 and RC2 setups are backward 

compatible with IS-95A/B mobiles. The Third-Generation Partnership Projects 2 

(3GPP2), created at the end of 1998, has been placed in charge of developing the 

global CDMA2000-based standard. The CDMA2000 Release 0 is basically lxRTT; 

Release A is well-known for its 307 kbps support; Release B has light content (mainly 

the "rescue channel"); the latest release (end of December 2002) is CDMA2000 Re­

lease C [3] in which a set of standardized features for lxEv-DV is provided. The 

future CDMA release (Release D) will probably include items such as reverse-link 

enhancement features, cell selection soft hand-off and antenna enhancement tech­

nologies [152]. 

Compared to the IS-95, CDMA2000 systems put a lot of efforts into fast and 

reliable channel measurements to enhance performance throughout overhead chan­

nels, such as reverse-link pilot channels and auxiliary pilot channels; such efforts can 

guarantee advanced signal estimation and detection to mitigate the effects of fading 

and interference, and support more voice users and higher data-rate services. New 

features in CDMA2000 systems include coherent detection (e.g., reverse-link BPSK 

modulation), fast power control, Turbo coding and spatial diversity. The improved 

channel estimation and user information in CDMA2000 systems provide an excellent 

condition for applying the CDMA multiuser receivers developed in this study. 

The WCDMA standard, sponsored by Japan's ARIB (Association of Radio In­

dustries and Businesses) and the ETSI (European Telecommunications Standards 

Institute), is based on wideband Direct-Spread (DS) CDMA technology. WCDMA 

systems employ an RF bandwidth of 5 MHz with a chip rate of 3.84 Mcps, and can 

provide high bit-rate services at up to 2 Mbps. WCDMA supports two basic modes 

of operation: Frequency Division Duplex (FDD) and Time Division Duplex (TDD). 

FDD mode employs separate RF bandwidths for reverse- and forward-link transmis­

sions, whereas TDD mode uses a single RF frequency band for both reverse- and 

forward-link transmissions. Equivalent to the 3GPP2 for CDMA2000, the organiza­

tion of Third-generation Partnership Projects (3GPP) has been created to proceed 
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the detailed standardization work for WCDMA. 

One of the most important features of WCDMA systems is their provision for 

advanced CDMA receiver concepts [37]: its air interface has been crafted so that 

advanced receiver concepts, such as multiuser detection and antenna technology, 

can be deployed by the network operator to increase capacity. Toward this goal, 

pilot symbols and common pilot channels have been provided to enable reliable 

channel measurements [153, 154] and coherent detection in both reverse- and forward-

link transmissions. As a consequence, using the proposed multiuser detectors in 

WCDMA-based cellular wireless networks is very attractive, especially in TDD-based 

systems where short spread CDMA signals are employed and the number of in-cell 

users is small. 

5.2 Joint Detection for Multiple SCH Services 

In a cellular CDMA network that meets the CDMA2000 standard, high-rate data 

services are provided by supplement channels (SCHs), and up to two reverse-link 

SCH (R-SCH) channels for each mobile are supported in radio configuration (RC) 

3 and RC4. A high-rate SCH requires a (much) higher transmission power than a 

low-rate fundamental channel (FCH); the data traffic is bursty and usually lasts a 

few seconds (e.g., 5 seconds). As a result, signals from one active R-FCH channel of 

a mobile will usually result in significant interference to the base-station reception 

for other users as well as the other channels of the mobile itself, leading to severe 

near-far effects and ISI (in a multipath fading environment). The situation wors­

ens in the case when two R-SCH channels of the mobile are served simultaneously. 

For instance, if we assume a two-path propagation environment (for one-antenna 

base-station reception), a mobile with two active SCH channels will have four path 

components. Even if the mobile time-aligned signal components from the respective 

SCH channels are assumed to be free of mutual interference (due to their signal 

orthogonality), any path component (finger) reception of the mobile at the receiver 

experiences the two time-shifted interfering components from itself: one from the 

same SCH channel (i.e., ISI) and one from the other SCH channel (i.e., the near-far 

effect), and other interfering sources (e.g., from other mobile users). If the effects of 

these interfering sources are not taken into consideration, it will significantly degrade 
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the detection performance of the mobile. In such a case, the signals from the two 

SCHs of the mobile can be jointly detected to improve performance by using the 

K/2/2 linear or nonlinear multiuser detectors developed in this research. Since the 

parameter knowledge of the two SCH channels is known to the base-station receiver, 

the known signal infrastructure of the resolved components from the mobile can be 

fully explored for joint multiuser detection; then, the signal components resulting 

in the ISI and near-far problem are changed from 'hostile", mutual interference to 

"friendly cooperation" for the base-station reception. Moreover, the joint multiuser 

detection can also incorporate the full parameter knowledge of the two SCH channels 

into the suppression of other unwanted interfering sources. In addition, since signals 

from one mobile experience the same fading pattern, one channel measurement (from 

the pilot channel) can be used for the joint detection of the two R-SCH channels, 

improving the hardware utilization. Notice that the multiuser detection of the signal 

components from multiple mobiles and SCHs is straightforward. 

The K/2/2 multiuser detection described for reverse-link applications can be used 

for forward-link reception at a mobile station in the scenarios where the two forward 

SCHs (F-SCHs) are simultaneously active (in a forward-link setup with RC3, RC4 

or RC5). 

5.3 Joint Detection for Transmissions in TDD Mode 

The WCDMA TDD mode is typically applied to wireless networks with small-cell 

(i.e., micro-cell) environments because of its discontinuous transmission and time­

sharing nature. The tight, fast reverse-link power control is hard to perform in a 

TDD system, since the reverse link is not continuously available. The effect of out-

of-cell interfering sources becomes evident to any base station because of the small 

cell sizes. Thus, advanced CDMA receivers such as multiuser detectors are desirable 

for mitigating the near-far effect and suppressing unknown or unwanted interference. 

In a TDD system, short spread signals are employed, the number of simultaneously 

active users is small (i.e., Kn — 1-16) in each cell and the transmissions of in-cell 

users are well scheduled. Moreover, the transmission control and channel assignment 

enable excellent channel estimation for signal reception. Specifically, every trans­

mission frame in TDD mode is divided into 15 time slots, each with 2560 chips or 
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0.26 microseconds (^ts), and one time slot is allocated to either a reverse-link burst 

or forward-link burst. Each data burst (or time slot) contains two data fields sep­

arated by a midamble, followed by a guard period; the midamble in a reverse-link 

burst is a training sequence of 512 chips that can be used to accurately estimate the 

reverse-link channel impulse response. Therefore, the proposed K/Kn/Kn linear or 

MLS multiuser detectors are applicable to the base-station reception in a CDMA 

TDD-mode network. 

For forward-link transmissions in TDD mode, the enhanced single-user-based 

K/l/1 multiuser detectors can be applied at each mobile station to suppress the 

unwanted interfering sources. Moreover, when two or more transmission services are 

simultaneously enabled in a mobile, their signals can be jointly detected using the 

proposed K/M/M linear or MLS multiuser detectors to improve performance. 

5.4 Multiuser Detection for Spatial Diversity and Softer 

Hand-off 

It was shown in Chapter 4 that the bit error rate falls off sharply as the number 

of resolved multipath components for each in-cell user increases; however, the im­

plementation complexity only increases linearly with the number of resolved paths 

for a given number of users in the detection group. The results demonstrate that 

it is worth the cost and effort for CDMA system design to take advantage of path 

diversity to enhance performance. In CDMA2000 and WCDMA systems, the RAKE 

receivers that are currently being used can exploit path diversity in wireless fading 

multipath environments; however, they are usually MF-based, and no countermea-

sures against interference are considered in each finger reception. One feasible, ef­

fective method that is going forward to improve performance at the base station is 

employing the K/M/M linear detectors proposed in this study for fading multipath 

channels. Moreover, the K/M/M nonlinear (MLS) detectors can be used to further 

enhance performance when the base station can offer the required computational 

capability (the complexity being on the order of 2M) and multiuser information. 

For the receiver antenna diversity, each antenna is "raking" the desired signal 

components from a subset of in-cell users at the base station; the signal components 

of one or more users that are raked from all the base-station antennas can be jointly 
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detected by applying the proposed multiuser detection. Hand-off technology is a 

sort of antenna diversity that has been employed in current 3G wireless systems to 

guarantee service continuity and improve performance. Revere-link hand-off schemes 

fall into two categories: soft and softer hand-offs. The soft hand-off, also called 

macro path diversity, refers to reverse-link transmissions that have two or more 

simultaneous radio links between a mobile and different base stations; a base-station 

controller chooses a good frame among those from the mobile that have been received 

at the different base stations (i.e., so-called frame selection diversity). In contrast, 

softer hand-off transmissions have two or more radio links between a mobile and 

different sectors within the same base station; a single RAKE receiver combines 

all the resolved paths (or fingers) in the softer hand-off links. The resolved path 

components in the softer hand-off can be fully exploited to enhance performance by 

applying the proposed multiuser detection. 

5.5 Multiuser Detection for Hotspot Traffic Relief 

In a cellular wireless network, traffic loads in different cells (or base-station sectors) 

are often not uniformly distributed over the network coverage area; they are also 

time-varying in each cell. Many cases can be observed in a live cellular network 

where one or two cells are with heavily loaded traffic, while the surrounding cells 

have a light traffic load. Overloaded cells, often referred to as hotspots, can result 

in high blocking rates for new calls and high link dropping rates for active calls; 

thus, it is difficult to guarantee the grade of service (GoS) of users in these hotspot 

cells. Relieving hotspot situations and improving their service quality is challenging 

in dense traffic areas. One way to deal with hotspots is to "wisely" adjust the cell 

coverage by managing the forward-link channel powers of relevant cells in the network 

in order to optimize the system spectrum usage and achieve the required GoS. For 

example, the "cell breathing" algorithm reduces the forward-link coverage of heavily-

loaded cells and increases the coverage of lightly-loaded cells such that some traffic 

(close to the cell edge) is shed to the sounding cells to relieve the overloaded cells. 

Such a scheme requires excellent coordination among the different base stations and 

accurate measurements of the traffic loads to trigger power adjustments; this leads to 

a very high implementation complexity. Alternatively, we can increase the spectrum 
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utilization efficiency and cell capacity by employing advanced receiver technologies. 

The multiuser detectors proposed in this thesis, for example, can be applied to 

relieve the hotspot situations. By incorporating the available parameter knowledge 

of multiple known users, services and antennas into interference suppression and joint 

detection, less power will be required for each link to achieve the same GoS and the 

system (or sector) capacity can be increased, thus resulting in hotspot traffic relief. 
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Chapter 6 

Concluding Remarks 

6.1 Research Summary 

In this thesis, we proposed and evaluated forms of enhanced multiuser detectors for 

base-station reception in cellular DS-CDMA wireless networks. The study was based 

on the partial system parameter configurations; that is, the received aggregate at any 

base station is composed of: (1) components from the in-cell sources, whose param­

eters (e.g., received power, timings, signature sequence) are known to the receiver; 

(2) components from the out-of-cell sources, whose parameters are unknown; (3) and 

background noise. In such setups, CDMA receivers that only assume the knowledge 

of a single user are not efficient, and multiuser detectors that employ a bank of 

front-end MF filters are not applicable, since the out-of-cell interfering sources can 

not be ignored. In contrast, the proposed multiuser detectors can fully exploit the 

parameter knowledge of the in-cell known users and the statistical knowledge of the 

out-of-cell unknown interfering sources to enhance performance. 

As a first step in the receiver design, a multiuser-oriented signal equalization 

scheme was developed for receiver front-end signal processing to treat in-cell and 

out-of-cell signal sources differently, since their available knowledge is significantly 

different. Such a front-end signal equalizer can extract (or estimate) the multiuser 

signal aggregate of the in-cell known users (desirable for joint multiuser detection) 

directly from a larger received signal aggregate during the suppression of unwanted 

interfering sources; it generalizes the concept of the single-user-oriented, binary signal 

equalization scheme, and allows for "real", elaborate multiuser detection. Thus, the 
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multiuser-oriented signal equalization technique distinguishes our proposed multiuser 

detectors from alternatives found in the literature. 

Based on the front-end multiuser signal equalization philosophy, maximum like­

lihood sequence (MLS) and linear multiuser detectors have been derived in AWGN 

channels and slowly, Rayleigh-faded multipath channels. The proposed receiver ar­

chitectures with partial system information setups have two stages. The first stage, 

forming the front end of the device, amounts to a bank of linear multiuser-oriented 

signal equalizers on the basis of MMSE criterion, one for each of the target-group 

sources for joint detection; its role is to estimate the multiuser signal aggregate by 

suppressing the unwanted interference. The second stage, acting jointly on all out­

puts from the front-end equalizers, is a maximum-likelihood sequence (MLS) or linear 

multiuser detector; its structure is calculated from the second-order statistics of the 

equalizer error processes, assumed to be approximately Gaussian on the basis of a 

Central-Limit argument. The proposed K/Kn/Kn maximum likelihood sequence 

(MLS) multiuser detection for AWGN channels is a generalization of MLS multiuser 

detection [36] for multi-cell CDMA scenarios, whose computational complexity is on 

the order of 2Kn, independent of K. The proposed K/M/M MLS multiuser detection 

for Rayleigh-faded multipath channel is a generalization of MLS detection [45] for 

CDMA multi-cell, multipath environments, whose computational complexity ranges 

from 0 ( J 2 M ) (synchronous cases) to 0 ( J2 3 M ) (asynchronous cases), independent of 

K and the total number of multipath components JK. The proposed K/Kn/Kn 

linear multiuser detection in AWGN channels is an extension of multiuser detec­

tion [49, 50] (in a single-cell full information setup) to multi-cell partial information 

CDMA setups, and the K/M/M linear detection in multipath Rayleigh-faded chan­

nels is an extension of the linear detection [143] to multi-cell partial information 

CDMA scenarios. 

We also proposed a unifying K/Kn/M MLS multiuser detector architecture that 

can trade performance for complexity with a configurable parameter M (2 < M < 

Kn), where M can be determined by how much computational capability and infor­

mation the receiver has; the receiver implementation complexity increases exponen­

tially with M — on the order of 2M in synchronous settings and 23M in asynchronous 

settings (for AWGN channels) — but independent of Kn and K. Moreover, the nota­

tion K/Kn/M designates both the detection problem and the information structure 
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that characterizes it. In the special scenario where the number of known-parameter 

users is one, the proposed K/l/1 linear MMSE receiver reduces to a form of en­

hanced linear single-user detectors [46, 47, 48]. In the particular case of centralized 

information (i.e., K = Kn) setups under an AWGN channel, the front end reduces 

to the conventional matched-filter bank; the overall architecture of Kn/Kn/Kn MLS 

multiuser detection reduces to the one described in [36]; Kn/Kn/M MLS multiuser 

detection provides an alternative to [113]; the architecture of Kn/Kn/Kn linear de­

tection reduces to a linear MMSE [49] or decorrelating [50] detector. 

In addition, an adaptive implementation of the proposed multiuser detectors 

was provided, assuming that the initial training sequences for in-cell active users 

were employed. In such a case, each of the front-end linear multiuser-oriented signal 

equalizers can recursively approach its optimal filter tap coefficients; using a decision-

directed mode, the adaptive multiuser detectors can also adapt to channel variations 

in wireless propagation environments. 

The performance of the proposed multiuser linear and MLS detectors was eval­

uated with respect to minimum mean squared error, effective signal-to-noise ratio 

(SNR), probability bit error, asymptotic efficiency and near-far resistance. Numer­

ical examples were carefully chosen to quantify the performance of the proposed 

receivers with partial information. We also justified them by comparing the pro­

posed detectors with several benchmark CDMA receivers. Moreover, we studied 

many performance-impacting parameters that are relevant to the multiuser detec­

tion, such as the detection group size, the number of resolved path components, the 

spreading type and the parameter estimation errors; other important performance 

issues that were investigated include a performance/complexity trade-off, the near-

far problem and the convergence behaviour of the adaptive multiuser detectors. In 

addition, the saddle-shaped asymptotic efficiency of MLS multiuser detection as a 

function of power distributions was intuitively explained in a four-user, full-blown 

detection scenario. 

Numerical results, functions not only of the channel parameters but of the partic­

ular character of the side information assumed available, provide an expanded view of 

the performance tradeoffs available in the application of multiuser detectors. It was 

shown that the linear and MLS detectors that employ a bank of front-end MF-based 

filters while neglecting out-of-cell interference incur a severe performance penalty 
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in multi-cell partial information scenarios, demonstrating that the performance en­

hancement doesn't come by simply increasing the implementation complexity and 

without giving a proper receiver design. The linear and MLS multiuser detectors 

developed in this thesis for base-station reception in cellular CDMA networks are 

near-far resistant; the proposed linear multiuser-oriented signal equalization is effec­

tive, beating the conventional MF filtering and single-user-oriented signal equaliza­

tion techniques. The proposed K/Kn/Kn linear detectors outperform the enhanced 

single-user-based (K/l/1) linear detectors, illustrating that exploring the full knowl­

edge of in-cell known users can enhance performance. The proposed K/Kn/Kn MLS 

detectors outperform the proposed K/Kn/Kn linear detectors, demonstrating that 

the proposed MLS multiuser detection can further enhance system performance over 

the proposed linear detection at the price of a higher implementation cost; moreover, 

the performance difference is especially significant when parameter information is 

incomplete or MAI is severe. The K/Kn/M (M > 1) MLS detector can offer an 

improved performance as M increases (i.e., trading performance for complexity), 

for fixed K and Kn- The K/Kn/Kn MLS detector can approach the performance 

bound of an ideal single-user system as Kn goes to K; that is, the base station 

approaches the full knowledge of all K active users. The relevant CDMA receivers 

investigated in this research can be sorted in terms of performance improvement as 

the conventional MF (K/l/1) filter, the enhanced single-user K/l/1 detectors, the 

proposed K/Kn/Kn linear detectors, the proposed K/Kn/M MLS detectors and the 

full-blown K/K/K MLS detector; their computational complexity and information 

requirements at the receiver increase accordingly. 

The results also illustrated that the proposed adaptive detectors perform well in 

terms of their convergence behaviour and the MMSE at the output of each front-end 

equalizer; the detectors show a slight performance degradation when a 5% estima­

tion error of the received amplitude is introduced for each of the known users in the 

detection group. An important observation from the numerical experiments is that 

short spreading is less sensitive to incompletely characterized interference than long 

spreading. There is a difference in multiuser detector's ability to suppress interfer­

ence from out-of-cell unknown sources for short spread and long spread signals; the 

latter incurs an obvious performance loss as compared to the former. Furthermore, 

for a fixed detection group size M, the bit error rate falls off sharply as the number 
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of resolved multipath components for each in-cell user increases; the results suggest 

that path diversity is an effective way of enhancing performance, and that trading 

multipath diversity implementation for performance is worthwhile, since the recep­

tion cost only increases linearly with the number of resolved multipath components 

in the multiuser detection. 

Application issues of the proposed multiuser detectors in current and future wire­

less CDMA networks were addressed. Specifically, we provided a few practical appli­

cation scenarios in CDMA2000 and WCDMA systems, where the implementations 

of the multiuser detectors developed in this study are feasible and the potential 

performance enhancements are expected. 

6.2 Directions for Future Study 

Directions for future work based on this thesis research are provided in this section. 

6.2.1 Other forms of enhanced nonlinear multiuser detectors 

In the proposed multiuser receivers, linear MMSE and decorrelating transformations 

and MLS decision algorithms have been employed in the second stage for joint detec­

tion. In fact, other decision algorithms are also applicable in the second-stage signal 

processing as long as they can exploit the well-formed multiuser signal correlation in­

frastructure for MUD. For example, we can use nonlinear decision algorithms such as 

multi-stage, parallel interference cancellation (PIC) schemes [111], [112],[113], [116], 

[117] and successive interference cancellation (SIC) schemes [104], [110], [114], [120]. 

In their original forms, most of these nonlinear detectors assume a centralized in­

formation (e.g., single-cell) setup and thus, their front-end filtering is MF-based. 

For partial information (e.g., multi-cell) configurations, the linear multiuser-oriented 

signal equalizer developed in this study can replace the MF-based front-end filter­

ing to suppress out-of-cell unknown interfering sources and extract desired multiuser 

signal aggregate of in-cell sources, leading to other forms of enhanced nonlinear mul­

tiuser detectors in cellular CDMA networks. Although the development of a receiver 

architecture for these nonlinear multiuser detectors is straightforward, detailed per­

formance analysis and evaluation require more research efforts. 
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6.2.2 A combination of the multiuser detection and channel encoding 

Another important issue that needs to be investigated is quantifying the system 

performance when employing both the multiuser detection and a channel error cor­

rection coding, where the common frequency spectrum is shared by the multiuser 

detection and coding, and the signals of the active users to be jointly detected be­

come coded symbols. Since channel coding schemes are usually employed in practical 

wireless systems, such an evaluation in a cellular DS-CDMA wireless network would 

certainly be worthwhile. 
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Appendix A 

Detailed Symbol Notations 

As a front-end optimal filtering for K/Kn/M multiuser detection, a bank of M 

linear multiuser-oriented signal equalizers is employed, each of which consists of a 

chip-matched filter and an Af-tap FIR filter (over a bit period). 

For the j th equalizer, where 1 < j < M, the nth sample in the ith bit interval 

at the output of the chip-matched filter is given as 

rj(i,n) = (r(-),ip(. - iTb - nTc)) 
Kn 

fc=i 
L K 

Y Y y/KbkilWgihlHnjfrn), (A.l) 
l=lk=Kn+l 

where u^k(i,l) = ^ J a f c ( m ) j Q
c tp(t + iTb-lTb + nTc-mTc-Tk)ip*(t)dt, nj(i,n) = 

l!n+nTt1)Tc n(*) ^*( f ~ iTb ~ nT^ dt, 0 < n < N - 1, &nd i symbolizes the zth 
transmitted bit of user j . Let us define an A'-dimensional vector at the ith bit 
interval of user j as Tj(i) = [rj(i, 0) rj(i, 1) ... rj(i, N — 1)]T, then the sample vector 
Tj(i) can be represented by 

Kn K 

rj(i) = Y^P~kbk^Sik/N+ S VPk[bk(i)njk(i,i) 
fc=l k=Kn+l 

+bk(i - l)ujk(i, i-l)] + rij(i), (A.2) 

where a^ is the signature sequence vector of user k, Ujk(i, 1) = [uyk(i, I) u k(i, I) ... 
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Ujk~
x'(i, l)]T, and n.j(i) = [nj(i,0) nj(i,l) ... Uj(i,N — 1)]T is an AT-dimensional 

Gaussian vector with zero mean and covariance matrix cr^Ijv, where IJV denotes the 

NxN identity matrix and a% = N0/2N. 

Let us define entries of two M x M matrices, R and Q, and one M x (K — M) 

matrix Q(i — I) as 

{R}jk = (sk(-),hj(Tb--)), 

j = l,2,...,M, k = l,2,...,M, (A.3) 

{W} i f c = (hk(Tb--),hj(Tb--)), 

j = l,2,...,M, k=l,2,...,M, (A.4) 

and 

{Q(i-l)}j{k_M) = (Sk(.-lTb-Tk),hj(iTb+Tb—)), 

j = l, ..., M, k = M + l,...,K, (A.5) 

respectively, where r M + 1 = rM+2 = • •. = rKn = 0. Thus, from (3.37) and (3.38), d 

can be formulated as 

d = nLAMbM + QLAibi + N 

where, by definition, 

bM = [bi(l) b2(l) ... bM(l) 6i(2)6a(2) . . . bM(2) ... h(L) b2(L) ... bM(L)]T. 

b / = [bM+i(l) ••• M l ) ••• bM+1(L) ... bK(L))T. AM = diag{AM(l), AM(2), 

..., AM(L)}, AM(i) = di&g{y/F\, y/P~2, . . . , y/P^}. Aj = diag{A7(l), 4 ,(2) , 

. . . , ML)}, Ar(i) = diag{%/FM~^, S/PMT2, ..., yfP^}. N = [N(1)T N(2)T . . . 

N(L)T ]T , N(z) = [zi(i) z2(i) ... zM(i)]T, where Zj(i) in N(z) is defined as Zj(i) = 
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n, 
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0 
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(A.7) 

and 

WT = 

w 
0 

0 

0 

0 

0 

w 
0 

0 

0 

w 

0 

0 

0 

0 

0 

0 

0 

w 
0 

0 

0 

0 

0 

w 

(A.8) 

where KL and WL are two ML x ML matrices and QL is an ML x (K — M)L 

matrix. From (A.5), it can be shown that the M x (K — M) matrix Q(Z) satisfies 

Q(/) = 0 unless I = 0 and 1. Notice that zt(i) is a Gaussian variable with zero mean 

and variance ^ , and N is the output noise vector of the MMSE equalizers which 

has zero mean and covariance matrix 

E[NNT] = ^WL, (A.9) 
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and for its vector components {N(z)}, we have covariance matrix as £ ,[N(/)N r(z)] = 

-rjpW for i = I and zero otherwise. 
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Appendix B 

Proof of Proposit ion 2 

Proof: From (A.l), let's define hjk as hjk = \rk/Tc\ where [̂ J denotes the integer 

part of the real number x, rk is the transmission delay of out-of-cell user k (Kn + 1 < 

k < K), and 0 < fijk < N — 1, then rk = fijkTc + Vjk where Vjk is a random variable 

uniformly distributed over [0, Tc]. Thus, u^k(i,l) can be written as 

flfcl ..(N-njk - l + n)xi(vjk) 

$(i, i'.- 1) = < + ak(N - njk + n)xr{vjk) 0 < n < njk 

{ ak(N - l)xi(vjk) n = njk 

{ ak{0)Xr(vjk) n = njk 

ak(n - njk - l)xi(vjk) (B.l) 
+ ak(n- njk)xr{vjk) njk < n < N - 1 

where Xi(vjk) = JQC ^(t + TC- vjkW{t)dt and Xr{vjk) = JQ
Tc ^{t-vjk)ij>*(t)dt. Now 

it can be shown that the diagonal entries of the matrix E[ujk(i, i)ujk(i, i) + ujk(i, i — 

l)ujk(i,i- l)|rfc] are x*(vjk) + Xr(vjk), the sub-diagonal entries are Xi(vjk)xr{vjk), 
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and the entries elsewhere are zeros, then Cj can be written by 

Cf = 

Ca Ca 

Cb Ca 

0 cb 

0 ... 

0 ... 

0 
cb 

Ca 

0 

0 

0 
0 

cb 

cb 

0 
Ca 

cb 

0 
0 

0 

cb 

Ca 

(B.2) 

-J NxN 

where Ca = jr f0
Tc[x2(vjk) + xf(vjk)] dvjk and Cb = ^ JQ

Tc Xi(vjk)Xr{vjk) dvjk. 

For a rectangular chip waveform, we have ijj(t) = /jpjr, 0 < t < Tc, thus, 

Xi(Tjk) = jfr a n ( l Xr{Tjk) = CNTJk '•> ^ o w w e c a n s ° l v e explicitly the following two 
integrals: 

-A ( T c - ^ f c ) 2 , v. 
N2T* + 

jk 

N2T2 }dv 'jk 
3N2 (B.3) 

and 

TcJo 
(Tc - Vjk)vjk , _ 1 

Tr ./n N*T? jk ~ 6 JV2 • 
(B.4) 
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Appendix C 

B E R Bounds for Kn/Kn/Kn MLS 

Detection 

The exact analysis for the probability of bit error for MLS detector is usually un-

tractable. However, we can derive the upper and lower bounds of the bit-error-rate 

(BER) for Kn/Kn/Kn MLS detection under a synchronous CDMA system, which is 

presented as follows. 

Definition 1: error vectors. Let the normalized difference between any pair of 

distinct transmitted vector be referred to as an error vector and denoted as e. The 

set of error vectors that affects the kth user is 

Vk = {e G {-1, 0, 1}*", ek ± 0} (C.l) 

and the set of the error vectors for the Kn users is given by 

Kn 

v=\Jvk. 
k=l 

Note that for an error vector set 14 and binary transmitted bits, the total number of 

the error vectors is 2*3 X " - 1 . The vectors in 14 can be divided into an indecomposable 

subset (see Definition 3) that is important for the performance analysis, and its 

complement subset. 

The set of error vectors that are compatible (or admissible) with a given trans-
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mitted bit sequence bKn G {—1, l}Kn is defined by 

A ( b * J = {e G V, ek = bi or 0} 

= {eGV,2e-bKne{-l,l}Kn}. 

The error vector component in the admissible set is zero if no error occurs at that 

component or equal to the transmitted vector component otherwise. The compatible 

(or admissible) error vectors that affect user k can be denoted by 

A fc(b*j=A(bon^-

Definition 2: weight and energy of an error vector. The number of nonzero 

components (weight) of an error vector and the energy of a hypothetical multiuser 

signal modulated by e are denoted, respectively, by 

Kn 

w(«0 = Y I €k i 
fc=i 

and 

j° \k=i 

S(*)W2 = I [ >tkVPkSk(t)\ dt 

- T AT = e1 APCxAPe (C.2) 

where sk(t) and \fP~k are signature waveform and received signal amplitude of user k. 

AP is a Kn x Kn amplitude matrix of Kn users and C\ is a Kn x Kn correlation matrix 

of signature waveforms of Kn users (Since the synchronous scenario is considered, 

one-shot sequence decision is sufficient for the (optimum) MLS multiuser detection). 

Definition 3: indecomposable set. Fk C Vk is an indecomposable set for user 

k, obtained from Vk in (C.l) by discarding its decomposable error vectors that can 

be decomposed into non-zero vectors such that (1) e = e + e"; (2) if e = 0, then 

e' = €" = 0; (3) (e)TXe > 0, where X = AT
PCXAP. 



163 

With the above definitions, the upper bound of the probability of bit error of the 

optimum multiuser detector for user k is expressed as [51] 

Pk(o) < Y 2"w(e)Q ( ILMf) (C.3) 

where Q(*) is the Q-function, defined as Q(x) = J^° x ^ e - ' '2dt. 

Definition 4: minimum distance, minimum weight. The minimum distance of 

user k, dk<min, is defined as 

dk,min = mineeFfc || 5(e) || (C.4) 

and the minimum weight of user A;, Wk,min, is defined by 

wk,rmn = mineeFfc ;||S(€)||=dfc,min w(e) (C.5) 

The lower bound of the probability of bit error of the optimum multiuser detector 

for user k is expressed as [51] 

pk(a) > 21"Wfc—Q (dJ^A (C.6) 
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Appendix D 

Mininum Mean Squared Error for 

K/l/1 Linear Detection 

Consider the single-user based signal equalization and detection of user j , whose 

architecture is shown in Fig. 2.2, we need to minimize the mean-squared error 

between the equalization target, bj(i), and equalized output (or a decision statistic), 

bj(i). The output of the equalizer for user j has the form 

bj(i)=wjTj(i) (D.l) 

where the AT-dimensional coefficient vector w7- = [WJ(0) Wj(l) ... Wj(N — 1)]T is 

chosen to minimize the mean squared error 

MSE = E[(bj(i) - wjrj(i))2] . (D.2) 

where Tj(i) is an N x 1 vector consisting of N output samples in the zth bit interval 

from the chip-matched filter. The minimization of the MSE results in the optimum 

coefficient vector wJ0, which is the solution to the Wiener filter equation [63] 

SjWj0 = pj (D.3) 

where Sj is an N x N correlation matrix of the sample vector in the group-based 

equalizer of user j at any given bit interval, i.e., Sj = E[rj(i)rj(i)T], and p;- is a 
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N x 1 cross-correlation vector between the received signal sample vector and the 

desired transmitted bit, i.e., Pj = E[rj(i)bj(i)} = jjPjdLj. As a result, the minimum 

mean-squared error at the output of the equalizer is 

J%n(e) = 1 - P j w j o . (D.4) 

Alternatively, the minimization of the MSE can be recursively achieved using 

an adaptive algorithm such as LMS or RLS. We employ the LMS algorithm in the 

following analysis. 

The LMS algorithm employs unbiased noisy estimates of the gradient vector 

to adjust the coefficients of single-user-based signal equalizer. The noise in these 

estimates causes random fluctuations in the coefficients about their optimal values 

Wj0, and thus leads to an increase in the MSE at the output of the single-user-based 

equalizer. As a result, the MSE for the j th single-user-based equalizer converges to 

the final MSE as J{J\e) = J^n(e) + Je(£»(e), where l<j<M and Je
(2>o(e) is the 

variance of the measurement noise, or excess mean-squared error, when the step size 

parameter pj is set sufficiently small [63]. The final MSE with the LMS algorithm 

can be written as 

Jfie) = J%n(e) + j£l(e) 
N n \W 

= (l-p>,o)(l + £ - ^ A , (D.5) 
k=l Z ~ ^3Xk 

where {Xk} is the set of the eigenvalues of the correlation matrix Sj. In practice, a 

training or known sequence of the desired user can be used to recursively approach 

the optimum coefficients of the equalizer. After the linear equalizer achieves stable 

states, its coefficients can be adaptively adjusted using a decision-directed mode [48]. 
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Appendix E 

Proof of Proposition 1 

Proof: Since Ai is a diagonal matrix and its entries do not affect our conclusions on 

checking the zero entries of Ri, let Ai be a unit matrix, and thus AiAj = I. Then, 

from (A.7), we have 

QLQT
L = 

0 

0 

Q(0)QT(0) Q(0 )Q r ( l ) 0 

Q( l )Q r (0 ) T Q(0)QT(1) 

Q(1)QT(0) T . . . i 

0 
Q(1)QT(0) T Q(0)O/ ( l ) 

0 Q(1)QT(0) T 

0 

0 

0 

(E.l) 

MLxML 

where T = Q(0)QT(0) + Q(1)QT(1). Since Q(0)QT(1) and Q(1)QT(0) are both 

M x M matrices, RI(=E[QLAIAJQJJ}) is a symmetric matrix that has zero entries 

outside a band along its diagonal with upper and lower bandwidth 2M — 1. • 
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Appendix F 

From Cyclostationary to 

Stationary 

This little note describes one way in which a sum of cyclostationary random pro­

cesses can approach stationary. The notions of cyclostationarity and stationarity are 

used here in the wide (or weak) sense only1; prefix "ws" is occasionally inserted as 

a reminder. All processes are assumed centred, and thus of zero mean. 

Notation: 

• X is a cyclostationary (real) random process with covariance function R and 

period T; in particular, 

R(s, t) = EX(s)X(t), R(s + T,t + T) = R(s, t), all s, t 

• Xi,X2,..., are iid replicates of X. 

• U is a random variable independent of X and uniformly distributed on [0, T). 

U\, U2,... are iid replicates of U, the U sequence being independent of the X 

sequence. 

• Y is a random process obtained from X by shifting the origin of time by U: 

Y(t) = X(t + U) (all t). Yt is constructed similarly from Xh [/*: Y{(t) = 

1This for convenience; there is no doubt a strong-sense version as well of the basic facts 
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Xi{t + Ui). 

Fact : Y is (ws)-stationary. 

Proof: Compute F,Y(s)Y(t) by conditioning first on U. Recalling that U is uni­

formly distributed and independent of AT, we have 

/

T r-T+s 

R(s + u,t + u)du = / R(u, u + A)du, 

where A = t — s. Define f&(u) = R(u,u + A). The assumed cyclostationarity of X 

implies that / A is periodic, with period T. So 

r-T+s rT 

'o 

a function of A only. 

/

T+s rT 

U(u)du = j fA(u)du^F(A), 

Remarks: It follows by the Strong Law of Large Numbers that as M —> oo, 

1 M 

— YRis + ui^ + Ui)^ E^(s + U,t + U) = F(t-s). (F.l) 

Write U M for the M-vector (Ul,...,UM). Define 

M 

A 1 

V M i=l 

The cumbersome notation for the argument of ZM is meant to serve as a reminder 

that ZM depends on U M . The normalization in the definition of ZM is exactly what 

is needed to support asymptotic unconditional Gaussianity in the limit of large M, 

where "unconditional" means that the f/'s are averaged out in the computation of 

the statistics. The conditional covariance function for ZM is defined by 

SM(s,t;uM) k E[ZM(s;VM)ZM(t;lJM) \ TJM = uM). 

For given s, t the prescription defines a random sequence Sx(s, t; U1), S2(s, t; U2),.... 
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Claim: ZM is asymptotic conditionally ws-stationary, in the precise sense that the 

variables ZM{t; U M ) converge (F.l) to a function of the difference t — s. 

Proof: The Y", are statistically independent, both with and without the conditioning 

on the C/'s. So 

M „ M 

SM(s,t;uM) = ^^2E[Yi(s)Yi(t) \ U{ = u%] = ^ Y R(s + w - * + <>• 
i=l i = l 

Combine this with Eq. (F.l) to conclude that 

1 M 

SM(s, t; UM) ^—^Ris + Uut + Ui)^ F(t - s). 
i = i 

as claimed. 

Summary: Cyclostationary X can be made stationary by including (and averaging 

out) a random time shift U that is uniformly distributed over one period. X can be 

made asymptotically stationary (F.l) by summing a large number of independent 

realizations, each time-shifted by a quantity u that is drawn from a distribution uni­

formly distributed over one period; in that case the averaging ove the time shift is 

done spatially by averaging arithmetically over components, rather than statistically 

over U. • 
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