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Abstract

In this thesis, dynamics and control of multi-body tethered satellite systems are
investigated. First & dynamical model is developed that talies into account the three
dimensional librational motion of the system as well as the nonlinear vibrations of
the tethers, both in longitudinal and transverse directions. The assumed modes
method is used to discretize the continuous tethers. Using Lagrange's equations,
splitting the vector of generalized coordinates to a set of subvectors, where each
subvector corresponds to a specific tether, a set of nonlinear ordinary differential
equations governing the motion of the system is obtained in the explicit analytical
form. A fourth order strain energy expression is used in the formulation to allow
the possibility of moderately large deformation of the tethers. The equations are
applicable whether the length of the tethers are constant (station-keeping phase) or
changing with time (deployment and retrieval phases). They are transformed into

vector form for simulation purposes.

Among the external forces, the aerodynamic forces and their effects on the dy-
namics and stability of the system are given more attention. The free molecular flow
model is used to calculate the aerodynamic forces on the end-bodies as well as on the
tethers. In addition, internal damping forces resulting from the material damping of
the tethers are considered in this investigation. These forces, which are very difficult

to model accurately, are modelled using a viscous damping model.

Equilibrium configurations of the system, as special solutions of the equations of



motion, in the absence or presence of the aerodynamic forces, are studied in more
detail. A closed form solution to the static equilibrium equations is obtained when
there is no external force acting on the system other than the gravitational force. The
sot. of nonlinear equations of motion is then linearized analytically about a particular
cquilibrium configuration for stability and eigenvalue analysis. The natural ft‘eflnew
vies of some single-tether us well as multi-tether systems are calculated using these

lincarized equations.

Stability of a single-tether system in low orbit missions is investigated, ignoring
the aerodynamic forces on the main-satellite as well as on the tether. Assuming
a particular geometricu! coufiguration for the subsatellite and using the linearized
eyuations, the effect of the serodvnamic forces, particularly aerodynamic lift, on
the stability of the system as well as the equilibrivin configuration of the system is
examined through the eigenvalue analysis. This analysis is then extended to multi-

body systems.

Finally the problem of controlling the nonlinear system through the application
of Lyapunov's stability theory is examined for multi-body tethered systems, ignor-
ing the transverse oscillations of the tethers. Initially, based on the Hamiltonian of
the systent, « Lyapunov funetion is introduced for u system with massless and rigid
Lethers. It leads to o lnear tension control law. When the mass of the tethers is
taken into account the Lyapunov function is modified and a new tension control law
is developed which is no longer linear. With the assumption that the longitudinel
oscillutions of the tethers are small compared to the length of the tethers, a Lyapunov
function is constructed for systems with elastic tethers. At the end, a hybrid control

law is examined to improve the performance of the controlled system.
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Résumé

Cette these a pour objet I'étude de la dynamique et de la commande de systtmes
satellisés composés de plusieurs éléments teliés par des fils. Un modele dynamique est tout
d’abord établi: ce modéle tient compte du mouvement de rotation tridimensionel du syst:me
ainsi que des vibrations non-linéaires des fils, dans les sens transversal et longitudinal. La
méthode des modes imposés est utilisée pour discrétiser les fils continus. En utilisant les
équations de Lagrange, et en séparant le vecteur de cocrdonnées généralisées en un ensemble
de sous-vecteurs, oll chaque sous-vecteur correspond A un fil spécifique, un ensemble
d’équations différentielles ordinaires non-linéaires dictant le mouvement du systéme est alors
obtenu sous une forme analytique explicite. Une expression du quatri2me ordre de 1'énergie
de déformation est utilisée dans l1a formulation pour que les grandes déformations des fils
soient possibles, Ces équations sont applicables si la longueur des fils est constante (phase
de maintien en position) ou variable dans le temps (phase de déploiement et de repliement).

Elles sont transformées sous forme vectoriellz pour les besoins des simulations.

Parmi les forces externes, les forces aérodynamiques et leurs effets sur la dynamique
et la stabilité du syst®me sont trés importants. Le modele d’écoulement moléculaire libre est
utilisé pour calculer les forces aérodynamiques sur les extiémites des éléments ainsi que sur
les fils. De plus, les forces d’amortissement internes résultant du matériau composant les fils
sont prises en compte dans cette étude. Ces forces, qui'soﬂt tras difficiles A représenter

précisément, sont modélisées en utilisant un modele d’amortissement visqueux.,

Les configurations d’équilibre du systtme, solutions spéciales des équations du

mouvement, sont étudiées plus en détail en I'absence ou la présence des forces
i



aérodynamiques. Une solution exacte des équations d’équilibre statique est obtenue en
I’absence de forces externes agissant sur le systéme 2 I’exception de Ja gravité. L’ensemble
des équations non-linéaires du mouvement est alors linéarisé analytiquement autour d’une
position d’équilibre particulire pour I’analyse de la stabilité et des valeurs propres. Les
fréquences naturelles d’un seul fil ainsi que celles des systtmes composés de plusieurs fils

sont calculées en utilisant ces équations lingarisées.

La stabilité d’un systtme ne comprenant qu’ un seul fil est étudiée lors de missions
A basse orbite, en négligeant les forces aérodynamiques sur le satellite principal ainsi que sur
le fil. En supposant une configuration géométrique particuliere pour le sous-satellite et en
utilisant les équations linéarisées, I’effet des forces aérodynamiques, en particulier la portance
aérodynamique, sur la stabilité du systeme ainsi que la position d’équilibre du systéme sont
étudiés par une analyse des valeurs propres. Cette analyse est alors étendue aux syst2mes

a plusieurs éléments.

Finalement, le probleme de commande du syst®me non-linéaire est étudié en appliquant la
théorie de stabilité de Lyapunov pour les syst®émes composés de plusieurs éléments reliés, en
ignorant les oscillations transversales des fils. Initialement une fonction de Lyapunov, basée
sur I’ Hamiltonien du systdme est introduite pour un systéme utilisant des fils sans masse et
rigides. Ceci conduit 2 une loi de commande linéaire de la tension. En tenant compte de
la masse des fils, la fonction de Lyapunov est modifiée pour obtenir une nouvelle loi de
commande de la tension qui n’est plus lin€aire. Une fonction de Lyapunov est €laborée pour
des systdmes avec des fils élastiques en supposant que les oscillations longitudinales des fils
sont petites par rapport A leurs longueurs. Enfin, une loi hybride de commande est éudiée

pour améliorer la performance du syst®me asservi.

iv
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Chapter 1
INTRODUCTION

1.1 Introductory Remarks

The idea of using tethers goes back to the last century. Connectling large masses
Iy a long thin string in space was suggested by Tsiolkovsky [1] in 1895 to harness
weak gravity gradient forces for stabilization purposes. Sixty five yvears later in 1960,
a Russian engineer Artsutanov [2] proposed the idea of anchoring a geostationary
satellite to the Earth’s surface by a long cable (tether). However, as far as the actual
application is concerned. it was initially associated with the retrieval of stranded as-
tronauts [3, 4]. The problems related with such a retrieval were clearly demonstrated
in the study by Starly and Adlhoch [3]. Successful experiments during Gemini X1,
XII in September and November of 1966, respectively, established the feasibility of

using tethered systems [5).

The era of tethers in space really came into being when Colombo et al. [6] put
forward the proposal of a Shuttle-borne Skyhook for low-orbital altitude research. In
fact. Bekey [7] considers Colombo to be the father of space tethers. Sinee then. scores
of applications of tethers in space have been proposed and analyzed. These inelide
applications in conjunction with the Shuttle or the proposed Space Station as well as

independent tethered missions.

Because of the wide range of potential applications, there has been a lot of interest



in tethered satellite systems (TSS) in recent years and one can find a fairly rich
literature on their dynamics and control. Since the proposed applications involved
unly two bodies, until recent years, the interest of the investigators was focused on two-
Lody tethered systems. A large number of research works concerning the dynamics
and control of two-body tethered satellite systems have been reviewed by Misra and
Madi |8] and Beletsky and Levin [9]. There have been several proposals recently to use
tethered systems that involve more than two bodies connected together by tethers,
generally called multi-tethered or N-body tethered satellite systems; the available

literature on these is comparatively scarce.

The literature review in this thesis starts with a brief review of the dynamics and
control of two-body tethered systems. It is not exhaustive; only those investigations
directly related to the goal of this thesis are discussed. The literature review is based
on the nature of scientific development rather than the historical sequence. Thus
one can conveniently follow where the spots of difficulties lie and consequently what
issues should be addressed in a study like this. The review of related investigations are
luniped iuto four different groups; dynamical modelling, aerodynamic effects, control
strategies, and multi-body systems. Since our main objective is to contribute to
the study of the dynamics and control of multi-body tethered satellite systems, in a

separate section the availuble literature on their dynamics and control is reviewed.

Prior to the literature review, a few applications related to multi-tethered systems
are deseribed in the next section. The interested readers can find a fairly good number

of applications of tethered satellite systems in general in {7, 10].



1.2 Some Proposed Applications of Multi-Body
Tethered Satellite Systems

1.2.1 Upper Atmospheric Measurements

Limitation of the value of experimental data using sounding rockets and potential of
tethered satellite systems for simultaneous measurement at several locations hinve led
Lo several proposals involving multi-tethered satellite systems for upper atmospheric
measurements. A one dimensional constellation of probes can be lowered Ly the
Shuttle or any other free-flying satellite into the atmosphere in order to provide
simultaneous data collection at different altitudes. The first probe can be tethered to

the Shuttle while the others can be connected together by tethers (Ref. [11}).

1.2.2 Gravity Related Applications

Microgravity Laboratory

A laboratory facility on board the Space-Station can be situated vertically in the
proximity of the center of gravity of the Space-Station. Two opposing tethers with
end masses can be deployed vertically from the Space-Station, one upward snd one
downward |11]. The length of the tethers can be varied to control the position of the
center of gravity of the system, placing it on the microgravity modules to minimize
their gravity gradient acceleration and set it at the microgravity level (1071 g and less).
Among the various microgravity laboratories proposed recently, one can name the
Muterials Technology Lab (MTL) and the Biological Laboratory. MTL is projected
to he a common module, equipped as a lab, to perform a variety of experiments
reluted to the materials technology. Some biological processes that could be studied

would be animal and plant growth, and human performance in microgravity.



Variable Low-Gravity Laboratory

In contrast to the previous application, a laboratory facility can be attached by a
crawler 10 a tether deployed vertically from the Space Station and can be positioned
at different points along this tether {11]. The gravity gradient between the system
center of gravity and the laboratory can be varied by changing the distance of the
crawler and the laboratory from the system’s center of gravity. Usually, the gravity
level inside the laboratory varies with time even if it is located at a constant distance
relative to the Space-Station, because the system’s gravity characteristics change with
the orbital motion. A constant gravity level could be maintained by adjusting the lab
position to compensate for orbital variations. This lab could be used to examine the
cffects of low gravity on physical and biological processes such as crystal growth, fluid
mechanics, plant and animal growth, ete. It has been calculated that the laboratory
could attain g-levels of 10-¢, 104, 102, and 107! at a distance above the center of
gravity of approximately 2.25 m, 225 mn, 22.5 km, and 225 km, respectively, with a
500 kg subsatellite tethered to a Shuttle or Space-Station orbiting at an altitude of

375 km.
1.2.3 Tether Communication Antenna

An insulated conducting tether, with plasma contactors at both ends, may be
connected to a spacecraft located in the middle. Variations in the tether current
can be used to generate ULF, ELF,or VLF waves for communication. Waves would
be emitted by a loop antenna composed of the tether, magnetic field lines, and the
ionosphere [11]. These waves may provide instantaneous worldwide communication
by spreading over most of the Earth via the process of ducting. With a 20 to 100 km
tether and a wire current of the order of 10 A, it appears possible to inject into the

Earth-ionosphere line power levels of the order of 1 W by night and 0.1 W by day.

There are many other possible applications of multi-bedy TSS which will not be



described here for the sake of brevity.

1.3 Literature Review on Dynamical Modelling

Before reviewing the literature on dynamical modelling, it may be useful to make
a few comments on the dynamics of tether satellites. A tethered satellite system
used for a particular mission undergoes three phases: (i} deployment, (ii} station-
keeping, and (iii) retrieval. A reel mechanism is needed to perform the deployment
and retrieval operations., After placing the main satellite on the desired orbit, the
subsatellites can be deployed to the planned altitudes. Once they are positioned
appropriately, tasks such as atmospheric experiments could be carried out during the
station-keeping phase. After completion of the mission, the reel mechanism reels the

subsatellites back to the main satellite; this is the retrieval phase.

Dynamics of a tethered system involves orbital dynamics as well as attitude dy-
namics. The motion of the center of mass of the system around the earth is called
orbital dynamics, while the motion of the system relative to its center of mass is re-
ferred to as attitude dynamics. Orbital dynamics is negligibly affected by the: attitude
dynamics [12], as the energy associated with the former is much larger than that of

the latter. On the other hand, the orbital motion does affect the attitude dynamics

significantly,

Since many parameters play major roles in governing the system behaviour, the
general dynamics of tethered systems is rather complicated. The center of mass moves
around the Earth in a Keplerian orbit; the system swings around its center of mass;
the tethers oscillate longitudinally as well as in transverse directions; the subsatellites
move away from or towards the main satellite during deployment or retrieval phases,
respectively, making the system non-autonomous; tension in the tethers ranges from

less than 0.IN (very weak) to more than 100N, when the length of a tether changes

it



from say, 20 m (quite short) to 100 km (very long). The fact that the air density
varies by several orders of magnitude along the tether and that the atmosphere rotates
with the Earth complicates the motion further. A good model of the system is thus

necessary Lo provide a basis for the analysis and control of its dynamics.

it is well-known that the librational motion of the system is inherently unstable
when it undergoes the retrieval phase [13]. The system can become unstable even
during the deployment phase if the deployment rate is larger than a certain amount
[14). Thus a control strategy is required to control the system; however it is much
easier Lo control the system during deployment compared with retrieval. During the
station-keeping phase, when the unstretched lengths of the tethers are constant, the
dynamics of the system is much simpler compared to the other two phases. However,
it has been shown [15] that for a particular combination of system parameters the
librational motion and consequently vibrational motion of a two-body tethered system
becomes unstable even in the station-keeping phase if the atmospheric effects are taken

into account.

The first study on the control of tethered systems was conducted by Rupp [13].
Although he made a key development in this area, his dynamical model was a drastic
simplification of the actual system. The tether was assumed to be massless and
rigid, and the librational motion of the system was confined to the orbital plane. He
concluded that the deployment phase is basically stable and the retrieval phase is

inherently unstable. He proposed a tension control law in order to control the motion

of the system.

In some applications, the mass of the tether is expected to be of the same order
of magnitude as that of the subsatellite when the tether is long enough, and hence
cannot be ignored. Another important parameter is the elasticity of the tethers,

because the proposed tethers are very thin (sometimes less than 1 nun in diameter)



and long (up to 100 km), and hence flexible. Therefore the tethers vibrate axially as

well as transversely during the deployment, station-keeping or retrieval phases.

Many studies have been carried out after the preliminary work by Rupp to include
mass and flexibility of the tether, which play important roles in the vibrational and
consequently librational dynamies of the system. Some of the pioneering works in this
regards are cited in the following. Baker et al. [14], Kalaghan et al. [16], and Bainum
and Kumar |17| considered mass of the tether and added the out-of-plane libration
as well as longitudinal oscillation of the tether to the dynamical model. luitially the
researchers modelled the longitudinal oscillation of the tether by a single displacement
similar to that of a spring mass system. However, as the mass is distributed along the
tether, & more accurate representation involves combination of axial modes similur
Lo those of an elastic bar. Neglecting the longitudinal oscillation of the tether, Kulln
[18] and Buckens [19] considered the transverse oscillations of the tether. Kalaghan et
al. [16] also considered the transverse motion of the tether; but it was mixed up with
the librational motion of the tether because of the way the coordinate system was
selected. Longitudinal as well as transverse oscillutions of the tether were modelled in
the works by Kohler et al. [20], Modi and Misra |21], Xu [22], Modi und Misra |23, und
(Glaese and Pastrick |24]. It is found that the amplitude of the transverse ovscillations
grew significantly during the uncoutrolled retrieval. Assuming that the energy and
the mode of the vibratory motion remain constant, vou Flotow [25] comeluded that

this amplitude remains more or less unchanged.
1.3.1 Formulation

Different approaches have been used to derive the governing equations of motion,
I general, these equations are obtained using an analytical approach bused on the
balance of work and energy or a vectorial approach based on the balance of forees and

moments. Since a tethered satellite system has both rigid body and elastic motions,



the equations of motion are in reality a set of hybrid partial-ordinary differential
equations. However, because of the difficulties associated with the solution of these
hybrid equations, they are eventually transformed to a set of ordinary differential

equations by discretization,

There are a few studies in which the equations of motion are given in the hybrid
form. Xu [22] derived the set of hybrid equations for a single-tether system using
extended Hamilton's principle; the partial differential equations were then converted
to the ordinary form using Galerkin’s method. Pasca et al. [26] and Pasca and Loren-
zini [27] started from Lagrangian density and came up with the hybrid equations for
the station-keeping phase. The nonlinear hybrid equations were used to study the
linearized motion, and to obtain the eigenfrequencies and equilibrium configurations
of the system. Other researchers such as Beletsky and Levin [28], Matteis and Lu-
ciano [29], and Kim and Vadali [30] obtained hybrid equations using the Newtonian
method to study the dynamics or steady state configurations of the system. Using
Galerkin’s method Kim and Vadali [30] transformed the hybrid differential equations

to the ordinary form.

In most of the investigations, starting from discretization of the system, researchers
derived the ordinary differential equations of motion without getting involved in hy-
birid equations, Having discretized the system, some researchers used an energy based
method, such as Lagrange’s equations or Kane's method, to derive the equations of
motion, while others used a vectorial approach such as the Newtonian one . Misra
and Modi [31], Banerjee and Kane [32], Xu, et al. [33], and Tyc et al. {34] can be cited
among many researchers who used an energy based approach, while researchers such
as No and Cochran [35. 36] and Quadrelli and Lorenzini [37] can he named among
thuse who implemented a method of balance of furces and mouments to derive the

vyuations of motion.



In general, there are two different approaches to discretize a flexible body; math-
ematical discretization and physical discretization. Mathematical discretization, in
contrast to the physical one which must be done at the beginning of modelling, can
be done either before or after the derivation of the equations of motion. The for-
mer directly results in the ordinary differential equations of motion, while the latter
implies conversion of the governing hybrid partial-ordinary differential equations to
a set of ordinary differential equations. Finite difference procedure and Galerkin-
type methods, including Rayleigh-Ritz and the assumed modes methods, belong to
the mathematical approach. Discretization using lumped masses, rod elements, and

finite elements are the well known physical discretization approach.

Finite difference and Galerkin-type methods are fairly standard procedures and
need no elaboration. Finite difference has been used to analyze elastic oscillations
of tethered satellites by Kulla [18], Kohler et al. [20] and Berry {38|. Galerkin-type
methods, particularly the assumed modes method, have been used extensively in
tether dynamics studies. Some examples are Banerjee and Kane [39], Modi and
Misra [23], Bainum et al. {40}, Pasca et al. [26], Kim and Vadali (30}, and Tyc et al.
[34).

Among the above-mentioned physical discretization schemes, the lumped mass
scheme is the most common one. The other two have been rarely used. However
they are reviewed here for the sake of completeness. Lumped mass or bead model
was initially used by Kalaghan et al. {16] at Smithsonian Astrophysical Observatory
(SAO) to study the dynamics of TSS. Flasticity and material damping of the tether
were taken into account through massless tether segments which were assumed to
be longitudinal spring-dashpot systems. A weakness of this approach is the large
number of beads required for simulation. However unlike linear continuum models,
large lateral deformation could be easily handled. Lang [41] has used a bead model

to develop GTOSS, a general software for tethered systems. The software has the

9



capability of haudling several tethers and end-bodies. Netzer and Kane [42] used «
bead model to study the librational dynamics. They did not, however, consider tether

clasticity in their study.

Recently Kim and Vadali [30] studied the tether dynamics using a bead model and
compared the results with those obtained from a linear and a nonlinear continuum
models. Unlike the Kalaghan et al. |[16] model, which measured the position vectors
from the centre of the Earth, they measured the position of a bead relative to the
ceutre of mass of the orbiting system. They considered revolute joints between the
masses and springs and used spherical coordinate systems to represent the position
vector between any two adjacent masses. The equations of motion were obtained
using the Newtonian approach. There have been other investigations of tether satellite
systems that have used bead models. Some examples are the studies by Quadrelli
and Lorenzini [37], No and Cochran {35, 36]. It may be pointed out that all the bead
models cited above were for systems in which the tether had no rotation about its

nominal axis; however, except Netzer and Kane [42], all considered variable length.

Discretizing the tether into a series of rod elements, Puig-Suari and Longuski
|43] modelled the lateral motion of the tether. The mass density of the rods was
assumed to be uniform and Lagrange’s equations were used to derive the equations
of motion. Although the discretization allowed for any configuration of the tether,
the elustic behaviour of the tether was not captured because the strain energy was
uot included in the formulation. Banerjee [44] discretized the tether into a series of
beam elements counected by rotational springs to study deployment of tethers. The
model could account for large bending and rotation, but no axial extension. Finite
element method, which is usually used for two or three dimensional structures with
irregular geometry, wus used by Kohler et al. [20] to discretize the tether. For uniaxial
structures with uniform geometry such as tethers, the advantuge of this method is

debatable.

10



1.4 Literature Review on Effects of Aerodynamic
Forces

The major external forces on any TSS are the gravitational foree, solar radiation
pressure, aerodynamic forces and electrodynamic forces; depending on the position of
the svstem one of them may have a dominant effect. A subsatellite may be deploved
into the upper atmosphere from the Shuttle using a very long tether. At this altitude
the aerodynamic forees are significantly lurge compared to the other external forees,
even gravity gradient, and affects the overall dynamics and control of the system

substantially.

Normally the station-keeping phase is stable {at least, marginally stable) and
the effects of the aerodynamic forces had been presumed to provide danmping and
Lence enhance the stability. However, Beletsky and Levin |28] coutended that in-
plane swinging motion can become unstable due to the combined effects of air dray
gradient, attitude tnotion, and elasticity of the tether; but they gave no details,
Onada and Watenabe [15] studied the effect of atmospheric density gradient. on the
stability and control of tethered subsatellite systems analytically, using a fuirly simple
model for dynamics and aerodynamics of the subsatellite. They have shown that the
uncoutrolled motion of a spherical subsatellite deployed into a region where the effect,
of the atmosphere is significant, can be unstable due to the combined effects of the
tether stiffuess and atmosphieric density gradient. Matteis et al. [29] cousidered the
material damping in the tether and carried out a parametric study of the equilibrium

configuration and stability of a tethered subsatellite system.

I the works described above, o very simple model was used iu which ouly the
acrodynamic drag on the subsatellite was tuken into account, ‘Thus there was no
examination of the effects of the aerodynamic foree on the tether as well as of Lhe

aerodyuamic lift on the subsatellite. The latter was ignored because the subsatellite

11



usually was assumed to be a sphere on which the aerodynamic lift is zero. Pasca and
Lorenzini {27] studied the equilibrium configuration of the system in the presence of
atmospheric forces. They considered the aerodynamic force on the tether as well as
the acrodynamic drag on both the subsatellite and the main-satellite, but not the
acrodynamic lift on the end-bodies. No and Cochran {35, 36] used a more complete
model for aerodynamics and dynamics of the system, which can handle non-spherical
bodies, to study the dynamics and stability of an orbiter-tether-maneuverable sub-
satellite system. They used this model to control the system in the station-keeping
phase using an aerodynamic control. However they did not specifically examine in
their study the role played by the different components of the aerodynamic force (lift
and drag) in the uncontrolled motion. In the existing literature, study of the effects
of the subsatellite aerodynamic lift on the equilibrium configuration and stability of

the uncontrolled system is missing.

There are other researchers (Bainum et al. [40], Kalaghan et al. [16], and Xu
[22], Kim and Vadali [45]) who considered aerodynamic forces in their study, but
they made no systematic analysis of the effects of these forces on the stability of the
system. Even in the numericel simulation of the dynamics of the system, they used

a rather simple aerodynamical model for the subsatellite.

1.5 Literature Review on Control Schemes

Because of the complicated dynamics of tethered satellite systems, their control is
a challenging problem, especially during deployment and retrieval phases. Control of
the system in the retrieval phase is much more difficult, since the system is inherently
unstable in this phase. Various control schemes have been proposed by the researchers
from the very beginning of the tethered satellite application proposals, i.e. , since
1970’s. Based on the nature of the control schemes implemented, they can be basically

categorized into five types:
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(i) Tension control laws

(ii) Length or reel rate control laws
(if) Thruster augmented control laws
(iv) Offset control laws

(v) Aerodynamic contro} laws

These are reviewed briefly. The control schemes can also be categorized based
on other criteria, such as the design methodology like linear or nonlinear control

synthesis.

1.5.1 Tension Control Laws

In tension control laws, the tension in the tether is modulated using an appropriate
feedback of the generalized coordinates and/or their derivatives. This method was
the first to be proposed to control tethered satellite systems; therefore a fairly rich
literature can be found on this control law, among which is the pioneering work of
Rupp [13]. In Rupp's control law the tension in the tether is modulated as a function

of the command length £, actual length ¢ and its time derivative é:
T = k& + kol + ksl .

He applied this control scheme to the in-plane motion of & two-body tethered system.
Baker et al. [14] modified the above law to improve the performance. Instead of an
arbitrary command length, they used a function of actual length as command length,
ie:

ec=ale+a2 .

Bainum and Kumar [17] applied linear optimal control theory to devise a tension
law based on the feedback of the tether length, length rate, in-plane pitch angle and

its rate. The control strategy was very effective during deployment, but was not
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so successful during retrieval. Mod et al. [46] showed that out-of-plane librational
nmt,i.uu cihh grow up to 45, while using the above control scheme. They thus proposed
a modified control law that includes the additional nonlinear feedback of the out-of-
plane tether angular rate. The pitch motion was damped out while the roll was

bounded to u limit cycle of about 10° amplitude through this control.

During retrieval, not only rotations but also vibrations increase gradually. If the
dynamical model consists of rotational motion and longitudinal oscillations only, the
system is controlluble using the above mentioned feedback. However, if transverse
vibrations are also modeled, the system is no longer stable. To control vibrations, Xu
|22 extended the work of Modi et al. [46] by feeding back a linear combination of in-
plane coordinates and nonlinear combination of out-of-plane coordinates (including

librational and vibrational motions).

The above mentioned tension control law require a feed-forward length command
that must be chosen carefully for proper operation of the control system. The design
methodology was not based on stability consideration of the nonlinear system, there-
fore the final state may be critically affected by the initial conditions. The tension
control law can also be obtained based on the Lyapunov approach (or related mission
function approach). It was first implemented for the design of deploymeut/retrieval
control law by Fujii aud Ishijima [47]. Using a similar model and similar approach
Vadali and Kim [48] introduced a different tension control law. Later they applied
the Lyapunov approach to a more realistic model of the system which included mass

of the tether. These works are reviewed in more detail in Chapter 7.

1.5.2 Length or Reel Rate Control Laws

Au alternative to the tension control laws is the length or reel rate control laws, As
opposed to the tension control laws, in the reel rate coutrol laws the nominal length

of the unstretehed tether or its time derivatives are modulated using feedback of the
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state variables. This is equivalent to specifying the rotational speed of the drum or

reel mechanism.

Kohler et al. [20] originally proposed this concept. Misra and Modi [49] proposed
the general form of this control law to study the planar motion of two-body tethered
sutellite systems in the presence of longitudinal and trausverse oscillutions. It was
shown that the rotations during retrieval could be bounded, while both transverse
and longitudinal vibrations grew, when the length rate involved only linear feedback
pitch rate. This suggests that feedback of vibrations is necessary for successful re-
trieval. Xu [22] applied this idea and compared the results with those obtained using
tension control laws., He concluded that reel rate control laws have basically similar

performance as tension control laws.

Similar to the tension control laws, the Lyapunov approach was used by Vadali

and Kim [48] and Monshi et al. [50] to obtain various reel rate laws for two-body

tethered systems.
1.5.3 Thruster Control Laws

Teusion control laws or length rate control laws are unreliable during the terminal
stage of retrieval when the equilibrium tension becomes very small because of small
length of the tether. The tension might even become zero (sluck tether) due to
longitudinal oscillations. To alleviate this difficulty, Banerjee and Kane [32] proposed
to use a set of thrusters (in addition to a torque control law) to control Lhe retrieval
dyvamies. In addition to the tether-aligned thrusters to augment the natural tension,
they also proposed the use of transverse thrusters to stabilize the attitude motion
and speed up the retrieval process. Iu this scheme the in-line thrusters fired when the
tension was below 2 N and an appropriate transverse thruster was fired when piteh

and roll angles grew beyoud certain limit.
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Xu et al. [33] considered control of both rotations and vibrations during retrieval
nsing a set of three thrusters. They used linear feedback of rotational and vibrational
rates to modulate the thrusters. Because of the unavailability of attitude motion
information in the first TSS mission, Lorenzini et al. [51] proposed a simpler thruster

control] scheme.

Thruster control laws have been used by other researchers, like Kim and Vadali
[45) and Fleurisson et al. [52], in conjunction with the other control schemes to obtain
a better performance during the transition period, when the length of the tether is

siall.

1.5.4 Offset Control Laws

When the tether is short and the subsatellite is in the vicinity of the Space-Station
or the mother spacecraft, thruster firings are not allowed due to safety reasons. On
the other hand, tension control laws or reel rate control laws are ineffective during this
terminal stage. Because of these difficulties offset control laws have been proposed
recently as an alternative to the thruster controller by Lakshmanan et al. {53]. This
control Jaw functions generally by changing the offset of the point of attachment
of the tether to the main-satellite, which must not be treated as a point mass any
more. In their dynamical model, Lakshmanan et al. [53] considered the attitude
motion of the main-satellite, which was modelled as a platform, as well as the tether.
Although they considered mass of the tether, their model did not account for the
tlexibility of the tether. Controllability of the linearized equations was established
awd & comparative study of three different control strategies, tension control law,
thruster control law, and offset control law, was conducted. They found that the
ullset controller requires more time to reach a steady state position compared Lo the
uther control laws. However, it is likely to improve as the tether length diminishes.

Later on. Modi et al. [54. 55] validated the mathematical model aimed at studying
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the offset control law by a ground based experimental facility.

Pradhan et al. [56] included the flexibility of the tether in the modelling and
studied the dynamies and control of tethered satellite systems in the presence of
offsets. The system consisted of a rigid platform from which a point mass subsatellite
could be deployed or retrieved by a flexible tether, and was undergoing planar motion
in & Keplerian orbit. They observed that the control of only the rigid degrees of
freedom is not sufficient as the flexible dynamics of the tether becomes unstable
during retrieval. The offset control strategy was found to be effective if a passive

damper was added to reduce the tether oscillations.

Basically the offset control technique is similar to the act of balancing a rod on the
palm of one’s hand. As can be expected, for a given angular disturbance the motion
of the tether would grow proportional to the length of the tether. Hence this control

procedure is most effective when the length of the tether is small.

1.5.5 Aerodynamic Control Laws

In a recent study of the effect of atmosphere on the dynamics of a tethered satellite
system, No and Cochran [35] proposed using an aerodynamic control law to damyp
out the librational motion and longitudinal oscillations of the tether. They developed
the control law using the numerically linearized equations of motion and the LQR
method. They compared the performance of this control luw with a thraster control
law for a system in the station-keeping phase. They concluded that the acrodynamic

control yields results comparable to those obtained by using reaction thrusters and

torquers.



1.6 Literature Review on Dynamics and Control
of Multi-Tether Systems

Study of multi-body tethered satellite systems started with the work of Liu [57)
in 1985, He formulated the dynamics of three-body tethered systems. The tethers
were assumed to be straight and massless. Even though he considered only the in-
plane motion of a cargo transportation system, the equations of motion were very
complicated. This was because of his selection of coordinates which happened to
be subjected to constraints. Pointing out this complexity, he did not present any

numerical results for his set of combined algebraic and differential equations.

Lorenzini [58) analyzed the dynamics of a proposed system for performing micro-
gravity experiments in which the g-laboratory was tethered to the Space-Station. In
1987, the same author discussed the control strategies for deployment of the system
and for damping out the oscillations in the station-keeping phase [59]. The system
considered was a three-body tethered system consisting of the Space-Station, the
micro-g/variable-g laboratory and another scientific platform. The g-laboratory was
in between the other two bodies and crawled along a 10-km-long, 2-mm-diameter
kevlar tether. The analysis was concentrated on the in-plane motion. The tethers
were assumed to be massless, but their longitudinal vibrations were considered. Two

mathematical models were used, one using the Lagrangian approach and the other

Newtonian.

lu 1987, Misra, Amier and Modi [60] used the Lagrangian approach to analyze
the in-plane motion of three-body systems for fixed-length as well as variable-length
tethers. The coordinates used were different from those of Lorenzini. The tethers
were assumed to have negligible mass. In the case of fixed length tethers, they
found three equilibrium configurations, but the equilibrium along the local vertical

was found to be the only stable one. Frequencies of librational motion about the
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stuble equilibrium configuration were calculated. The variable-length cuse included
deployment of a constellation as well as cargo transportation. Among the results, the
most significant one was the observation that large librations could vecur in the cargo

transportation case when the length of one of the tethers became small.

The four-mass tethered system of the Space-Station-based Elevator/Crawler micro-
and variable gravity facility, consisting of two platforms, the Space-Station, and an
elevator, was studied by Lorenzini et al. [61] and by Cosmo et al. [62]. The for-
mer study mainly calculated the accelerations and the g-levels of the Spuce-Station
and the Elevator. The latter analysis considered the dynamics and control of two-
dimensional motion of the system. The degrees of freedom inciuded lengths of the
tethers, longitudinal elastic oscillations and in-plane lateral deflections (these ave the
lateral deflections of the point masses not the lateral elastic vibrations of the tethers).
They formulated the problem with the Lagrangian approach and found the eigenval-
ues and eigenvectors of the system. It was noticed that the longitudinal oscitlntions

are strongly coupled to the in-plane librational and lateral motions.

All the bodies connected by the tethers were modelled as point masses in all of the
above-mentioned studies. On the other hand, Bachmann et al. |[63] included the rigid
body rotational motion of the Space-Station in & three body Space-Station-bused
Tethered Elevator system; they also considered the offset of the tether attachment
point from the Station center of mass. The equations of motion were derived using
the Lagrangian approach. Tethers were assumed massless and lougitudinally elastic

in the formulation stage, but rigid in numerical computations.

None of the above studies on multi-tethered systems cousidered transverse oscil-
lutions of the tethers. Kumar et al. [64] conducted a fairly basic study of the in-plane
transverse oscillations of a three-body, two-tethered system in a circular orbit. They

did not, however, include the longitudinal oscillations of the tethiers iu their model.
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From the Lagrangian of the system, they obtained the linearized equations of motion.
The resulting equations were nsed to analyze the librational as well as transverse elas-
tic motions of the tethers in the vicinity of the stable equilibrium configuration. They
obtained no nonlinear equations of the system and their study was restricted to the

station-keeping phase.

Misra and Modi [65] formulated the general three-dimensional dynamics of N-body
tethered systems using a multiple-pendulum model. The tethers were again assumed
Lo be massless and rigid. The equations obtained were valid for large motion as well
as for variable-length tethers and for any arbitrary orbit. A study on the librational
frequencies was carried out by considering small motion in the neighborhood of the

local vertical equilibrium configuration for the special case of a circular orbit.

It is clear that in the available literature there has been no dynamical modelling
of multi-hody tethered satellite systems that considers the transverse as well as the

longitudinal elastic oscillations; this is true even for a three-body tethered svstem.

1.7 Purpose and Scope of the Thesis

Although one can find a rich body of literature on the dynamics and control of
tethered satellite systems, it is clear from the literature review above that dynamics
and control of mulli-tethered systems is in an early development stage. Most of the
investigations dealt with the librational motion of multi-body systems, Only two or
three studies considered the longitudinal or transverse oscillations of the tethers for

three or four-body systems. but none considered both oscillations simultaneously.

Henee, the goal of this thesis is aimed at developing a general formulation of the
dynamics and control of N-body tethered satellite systems that considers librations
as well as three dimensional elastic oscillations. From the control point of view, there

are very few investigations dealing with control of a multi-tethered system and none
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of these was based on stability consideration of nonlinear systems such as Lyapunov's

approach. The thesis attempts to fill this gap.

In the existing studies on the effects of the atmosphere on the stability and dynam-
ics of a tethered satellite system, usually simple aerodynamic models which consider
only the aerodynamic drag on the subsatellite, and occasionally the drag on the
tether, have been used so far. No study has been conducted to analyze the effect of

aerodynamic lift on the stability of the system. This is done systematically in the

thesis.

1.8 Outline of the Thesis

This thesis may be divided into two parts. The first part presents a general dy-
namical mode] of N-body tethered satellite systems and develops the nonlinear as
well as the linearized equations governing the motion of the sy:tem, while the second
part deals with the study of the effect of aerodynamic forces on the dynamics and
stability of the system as well as development of a tension control law based on the

Lyapunov approach.

In Chapter 2, the dynamical model is developed taking into account:

(i) three dimensional librations;
(ii) mass of the tethers; i

(iii) longitudinal vibrations including variation of the longitudinal strain along the

tethers;
(iv) three dimensional transverse vibrations;

(v) aerodynamic forces in a rotating atmosphere considering the oblateness of the
Earth;
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(vi) geometric nonlinearity, i.e. , nonlinear relation between strain and displacement,

which becomes important for short tethers.

The continuous tethers are discretized using the assumed modes method and then
equations governing the motion of the system are derived using Lagrange's equations.

The set of ordinary differential equations is given in explicit form.

The generalized forces resulting from the aerodynamic forces acting on the end-
bodies and the tethers as well as those due to the material damping in the tethers are
discussed in Chapter 3. Free molecular flow model is used to calculate the aerody-
namic forces in the upper atmosphere. After examining various approaches to model
the material damping of the tethers, a viscous damping model is chosen to evaluate
the effect of material damping on the dynamics and stability of multi-body tethered

satellite systems.

In Chapter 4, the nonlinear equations of motion are initially transformed into
vector form, Possible equilibriumn configurations of the system are then determined.
Static equilibrium equations of the system in the absence of external forces are solved
in a closed form. Equations of motion are linearized analytically about any equilib-

rium configuration of the system. The linearized equations are given at the end.

Natural frequencies of vibrational as well as librational motion of different multi-
body systems ;u'e presented in Chapter 5. The idea of a segmented-tether model
is presented to obtain the higher frequencies of the system. Then the dynamics
of a Tether Elevator/Crawler System (TECS) is studied for various scenarios, and

simulation results are presented.

In Chapter 6, stability of low orbit systems, which is affected by aerodynamic
forces is studied. A qualitative study of the effect of aerodynamic forces, particularly

of the aerodynamic lift, is conducted through eigenvalue analysis of the linearized
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equations of motion of a single-tether system, Stabilization of the system using aero-
dynamic panels is analyzed by considering a specific geometrical configuration for the

subsatellite; a sphere with attached panels. The analysis is then extended to the case

of multi-tether systems.

Control of the nonlinear dynamics of multi-body systems using Lyapunov’s sta-
bility theory is considered in Chapter 7. Because of the complexity of the system and
difficulties associated with applying Lyapunov’s direct method, the transverse oscil-

lations of the tethers are ignored and only the longitudinal oscillations are modelled.

Some closing comments and suggestions for further work are given in Chapter 8.
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Chapter 2
EQUATIONS OF MOTION

2.1 Introductory Remarks

In reality all dynamical systems are distributed-parameter systems, i.e. the pa-
rameters describing the system properties are distributed spatially. However, in
the modelling process some of them are modeled as discrete systems in the very
first step, while the others are modeled as distributed-parameter systems. Dynamics
of a discrete model is described by ordinary differential equations, in contrast to a
distributed-parameter model which is governed by partial or hybrid partial-ordinary

differential equations.

There are different approaches to derive the governing equations (ordinary or par-
tial differential equations). They can be divided into two major categories: vectorial
and analytical approaches. In a vectorial approach, individual components of the sys-
tem are considered; thus the calculation of internal forces resulting from kinematical
constraints is necessary. In fact, this is the main drawback of this approach as far
as the dynamical formulation is concerned. However, it has some advantage in the
design stage. Newton'’s approach is & well known example of the vectorial approach.
Analytical approach, on the other hand, considers the system as a whole and formu-
lates the problems of mechanics in terms of the kinetic energy, the potential energy,

and the virtual work associated with nonconservative forces. In contrast to vectorial
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mechanics, this approach formulates the problem using generalized coordinates and
forces, which are not necessarily physical coordinates and forces. One may name
the extended Hamilton's principle, and Lagrange’s method belonging to this class of

approach.

All of the methods mentioned above can be used to derive the equations of mo-
tion of a discrete system. To derive the partial differential equations governing the
dynamics of a distributed system, one must use either Newton's equations or the
extended Hamilton’s principle, There is some ambiguity regarding using analytical
methods for a system of variable mass (Ref. [66]). It is addressed in more detail in

Appendix F.

Since, except for some simple classical examples, there is no closed-form solution
for distributed parameter systems, one has to obtain an approximate solution by
means of spatial discretization. Discretization essentially transforms a problem de-
scribed by partial or partial-ordinary differential equations into a problem expressed
by a set of ordinary differential equations. Discretization methods are divided into
two major classes; the first represents the solution as a finite series consisting of space-
dependent functions multiplied by time dependent generalized coordinates, while the
second divides the continuous element, say a tether, into a number of segments. The

first method is more analytical in nature while the secoud is more intuitive in char-

acter.

Among the discretization methods based on series expansions, essumed modes
method and Galerkin's method [67] are very well known and most often used methods.
The former is an energy based method, while the latter minimizes a weighted residual
based on the hybrid partial differential equations of motion. In the assumed modes
method, discretization starts once the energy expressions of the system are derived.

Hence, in this method a set of admissible functions, which are differentiable half
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as many times as the order of the system and satisfy only the geometric boundary
conditions of the problem, is used to discretize the continuous elements of the system.
In Galerkin’s method discretization process follows derivation of the equations of
motion and boundary conditions. Thus, instead of admissible functions one has to
use a set of comparison functions, which are differentiable as many times as the order
of the system and satisfy all boundary conditions of the problem, for discretization
purpose. In fact this is a drawback of the second method to discretize a complex
system . Moreover, generally, it is difficult to obtain a set of comparison functions

for a rather complex system.

There are other issues such as geometry, computational objective, etc. which
must be considered in selecting a certain approach to derive the equations of motion
and an appropriate approach to discretize the continuous system. Their discussion is

beyond the scope of this thesis. The interested reader is referred to [67].

In this Chapter, kinematics of the system is considered first; this is followed by
the derivation of energy expressions of the system. The assumed modes method is
used to discretize the continuous tethers. Ordinary differential equations describing
the dynamical behaviour of the system are derived next using Lagrange's equations

applicable for discrete systems.

2.2 System Description

The system under consideration is shown in Figs. 2.1 and 2.2 . Figure 2,1 shows
the geometry associated with the orbital motion. The centre of mass of the system,
C, can be located with respect to the centre of the Earth E , by the radial distance
R., the inclination angle i of the orbital plane to the equatorial plane, the argument
of the perigee 8y, and the true anomaly 8,. Figure 2.2 shows the overall system

in some detail. It consists of N bodies connected by N — 1 tethers. The former,
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i.e. the end-bodies, have masses m;, i = 1,2,..., N, while the tethers have masses
it =1,2,...,N — 1, per unit length. Note that m; is the mass of body i including
the unreeled tether located on it. The mass of tether i is given by m; = p;;. The
i-th tether, with undeformed length, ¢;, connects bodies i and i + 1, and the tethers
make an open chain configuration. To have a more general model and include systems
with crawlers, it is assumed that every tether is reeled partially by the corresponding
end-bodies. Tether 1 is reeled out at a rate of picif; from body i and recled in at a
rate of p.-ﬁ,-f',- to body i + 1. It follows that the rate of change of mass of body ¢ is
given by

i = pi-1Bicrbioy — picls (2.1)
while

Qi — ﬁg =1. (22)

Dimensionless coefficients o; and f; can be either positive or negative and in general,

they are functions of time.

Coordinate systems, X1, Y1, Z1, Xo Ye, Zc and i, s, 2; are introduced to describe
the motion. The last two coordinate systems are rotating coordinate systems, while
the first is an inertial system having its origin at the centre of the Earth. The set
of coordinates axes X, Y., and Z., the orbital frame, has its origin at the centre of
mass C of the system and is so oriented that X -axis coincides with the local vertical,
directed radially outwards from the centre of the Earth to the centre of mass, Z,-axis
is along the orbit normal, and Y.-axis completes the triad. The unit vectors icrjer
and ﬁc are along the X, Y., and Z. axes, respectively. The set of coordinate axes
Z;,¥i, and z; which is called the tether frame corresponding to the i-th tether, is
located at the i-th body such that z; is along the nominal tetherline of the i-th tether
directed from body i to body ¢ + 1. The orientation of these axes with respect to the
orbital coordinate system can be defined by only two rotations 8; and ¢, implying an

assumption that the rotation about the axis of the tether is negligible. At first, the
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rotation 8; is given about the Zc-axis resulting in z;, ;, z; axes and then the rotation
¢; is applied about the negative y;-a.xis yielding axes z;, ¥4, and z; 6; is called the
pitch angle, while ¢; is the roll angle corresponding to the i-th tether. Hence, the

transformation relating the unit vectors along X, Y., 2. and z;,y;, z; axes can be

expressed as
i [ cos¢; 0 sing; cos®; sinf; 0 ic
i ¥ = 0 1 0 —sinf; cosd; 0 je
k; | —sing; 0 cos¢; 0 0 1 k.
[ cosficos¢; sin@;cosd; sing ic
= —sin by cosb; 0 e : (2'3)
| —cosf;sing; —sinfising; cosg; ke

The unit vectors i;, j,-, and k; are along z;,3;, and 2z; axes, respectively.

Since the tethers are very long and thin, their flexibility is taken into account.
They have longitudinal as well as transverse displacements excited by the gravity
gradient, atmospheric forces, Coriolis forces during deployment or retrieval, and other
external forces. The transverse vibrational displacements along y; and z; ( in and
perpendicular to the tether plane, formed by the X. and z; axes, respectively) are
denoted by v; and w;, while the longitudinal vibrational displacement is represented
by u;. These displacements are functions of both time as well as the spatial coordinate
z; and together with the rigid displacement form the position vector ¥¢,, which will

be described later., ' -

One must distinguish between the undeformed and deformed tether length. Here
¢; (associated with the “material coordinate”) denotes the length of the undeformed
tether, while ¢ is the length of the deformed tether, connecting the ¢-th body to
body ¢ + 1, measured along the curved tetherline. Obviously, if there is no transverse
vibration in the tether, £; will be measured a.lohg a straight line, called the nominal
tetherline, but it is still not equal to ¢;, since there is a longitudinal strain in the

tether.
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For given 6; and ¢;, the line connecting the two ends of tether /. the tetherline,
can be defined uniquely with respect to the orbital frame X, Y., Z.: with ;. v;, and
w; the position of an element of the tether can be determined uniquely with respect
to this line. Since u;, v;, and w; are measured from the already rotated tetherline, the
small elastic displacement assumption would be reasonable, although the formulation

presented here is valid for moderately large elastic deformation as well.

The motion of the system can be divided into three components:
1. The entire system rotates around the Earth (orbital dynamics);

2. The system rotates around the centre of mass of the system (librational dynam-

ics);

3. The tethers vibrate longitudinally and transversely (structural dynamics).

These three types of motion are coupled to each other. The last two motions
affect the first (orbital motion) only slightly [12]. Hence it is assumed that the orbit
could be calculated separately without any significant loss of accuracy. The orbit is
assumed here to be Keplerian. Obviously the librational and vibrational motions are

affected by the orbital motion and are more complicated.

2.3 Basic Assumptions

To introduce the dynamical model, some reasonable assumptions based on the
physical insight to the problem are necessary. Without such assumptions the mathe-
matical model becomes very complicated. However, if the assumptions are not quite
correct or they are too simplifying the mathematical model will not represent the
real situation. For example, in the very early stage of research on this subject, some
investigators neglected the out-of-plane rotation of the system and vibrations of the

tether. Corresponding mathematical models of the system are oversimplified and do
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not describe the dynamics of the real system very well. The most important thing is

. to grasp the significant factors and eliminate the trivial ones.

The following assumptions are made in this thesis to obtain a reasonable model

of the system:

(i)

(ii)

The centre of mass, C, is assumed to be moving in an Keplerian orbit around

the Earth.

Orbital motion is assumed to be unaffected by the librational motions and

vibrations of the tethers. This allows separate analysis of the orbital motion.

(iii) Since the sizes of the bodies are much smaller than the lengths of the tethers,

(iv)

(vi)
(vii)

they are regarded as point masses so that their attitude motion can be neglected.
When the tethers are very short during the terminal phase of retrieval or initial
phase of deployment, the assumption is not valid; however, it holds good for
the major part of the mission. The finite size of the bodies, of course, is taken

into account in calculating the aerodynamic forces.

It is assumed that most of the unreeled part of the tethers have negligible
relative velocity with respect to the bodies in which they are located. The
velocity change takes place smoothly in a small portion of the tethers such that
no energy is dissipated in this process. It is also assumed that the reel inertia

is negiigible and the role played by reel dynamics is insignificant.

It is assumed that the atmosphere rotates with the Earth, and the air density

varies exponentially with altitude.
The tethers are assumed to be linearly elastic and have no bending resistance.

Vibrations of the tethers are small in amplitude compared to their instantaneous
length, In spite of this assumption, the nonlinearity in the strain displacement

relation is taken into account; the reason will be given later.
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(viit} It is assumed that the system is in the gravity field of the Earth. The gravi-
tational perturbing forces due to the attraction of the Sun and the Moon are

ignored. The effect of asphericity of the Earth on its gravity fick! is ignored as

well.

2.4 Kinematics of the System

2.4.1 Displacements

Let us denote the position vector of the centre of mass of body i by Ri,i =
1.2,.... N, and that of an arbitrary point on the i-th tether by ﬁt.,i =12...,N=1,
with respect to the centre of mass of the entire system, C (Fig. 2.3). These position
vectors can be expressed in terms of the rotations 8;,¢;, lengths {; and vibrational
displacements u;, v;, and w;,t = 1,2,..., N =1, of the tethers. Since (' is the centre
of mass of the system, we can write

N . e N_l "I g —
YomiRi+ Y pi / Ry, dz; =0 . (24)
i=1 i=1 0

Now let us define ; and T, as the position vector of the center of mass of body

i+ 1 and that of any arbitrary point on the i-th tether, with respect to body i (Fig.

2.3). From the geometry of the system we have

i-1
Ri=Ri+F =R+ ) F; ,
=1
wt - - i=1 .
Rg' =R;+ l-‘.t. =R, + ZFJ + i"t. . (25)
1=l

Substituting Eq. (2.5) into Eq. (2.4) and solving for ﬁl we obtain

- N m; i=1 . N=1 hy i=1 . N=-1 i o, o
R|=—ZE Z:l'j —Z; zrj _Z_./U T, dwi ' (J'b)
=1 =1 =

i=1 i=1

where i, and m denote mass of the i-th tether and total mass of the system, respee-

. * * i " ] I[
tively, Defining p; = Mt NTHES Pio , and
m m
g l f' y
b = — j Fo da; (2.7)
Cu [+}
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where {; is a reference length, we can simplify Eq. (2.6) to

N i-1 e
- m (Zfﬁ-) -2 mbi . (2.8)
i= =1 =1

with the understanding that my = 0 (there is no N-th tether). Using the Heaviside

function

0 if  b>a ., .
H(u—b)={l i bza. (2.9)

one can rewrite R, as

No1
=—Zp, (ZH!—J—I)PJ)-Zﬁibf . (2.10)
i=1

1
If we interchange the sequence of summation over ¢ and 7 in the first term and change

the index 7 to j in the second term , we will have

- N=1 N -
=3 —(ZF;H(i-j-l))Fj—ﬂjbj] : (2.11)

=1 i=1
Back substituting Eq. (2.11) in Eq. (2.5) leads to

N L1 k=
(2#,”(2 e 1)) i"j —ﬁjbj] -+ Zi‘;

i=1 =1

[
T_'l\']2

N=1 N
=Z[ (ZmH(i—j—1))?,-—;1,-5,-+H(k-j—1)i~',]
i=1 i=1
N=1 N -
= [(H(l-'-j—1)‘2#:’”(5—1'"1)) Fj-ﬁjbj] : (2.12)
=1 i=l1
J\f
Sinee Hk=j—=1)=1-H{Gj-4) and Y _p; = | then
i=1
L N-d N .
fo= % [{(S0- #6-i- i) - #G -0} - 28]
i= =1

M

Nr
2 [{ (Z Hi ) - H(j - k)} F; - ﬁ,-E,-] . (2.13)

Defining nondimensional mass coefficients
J
Bj=2p; . ‘4;,_,=B_,'—H(-'j-k) ) (2.]4)
i=]
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we obtain the important kinematic relation between the orbital frame position vectors

R k=1,2....] N, and the local position vectors ¥, f, .j = 1.2.....V =1
L N- . 7
Ri= Y (4uf; - i,b;) . (2.17)
i=

T

where b; is as defined in Eq. (2.7). One may note that the mass coeflicients B; and

Ay; are generally time dependent.

2.4.2 Velocities and Accelerations

Using Eq. (2.15) and the fact that fi,-_,- = B,- while f; is a constant, the velocity
and acceleration of the centre of mass of the i-th body with respect to the centre of

mass of the system, C, can be shown to be

. Na . i .

Ri=), (Bji:i + AyFj — ﬁjbj) ,
i=1

= N-L , . - -

R;= Z (BJ'FJ' + 2B;T; + Aj;F; ~- ﬁjbj) , (2.16)
F=1

where
‘%j=%j+ﬁj><i‘.j s E,-=|;J-+f2,-xl;,- , (2.17)

" ™ o
and similar relations hold good for T; and b;. Here ( ); represents the time derivative
of the vector ( ); with respect to the j-th tether coordinate frame and .ﬁj is the
angular velocity of that frame with respect to the inertial frame. The components of

82, along «x;,y;,z; directions can be written in matrix form as follows:

Q2 cos¢; 0 sing; cosf; sind; 0 0
Q, ¢ = 0 1 0 —sind; cosf; 0 o
., —sing; 0 cosg; 0 0 | 0.+ 0
cosg; 0 sing; 0 (0.. + l}j)sin s
+ 6 10 —d; + = —d; , {2.18)
—sing; 0 cosg; 0 (0 + (j_,-)t'us @,

where 0, is the orbital angular velocity of the centre of mass. [n the veetorial form
the angular velocity £2; can be written as

- -~

2; = (Oc + 0.,) sin q‘)jij - q‘.)jj_,- + (0r + 0_,) cos dik; . (2.19)
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Subsequently the velocity and acceleration of any arbitrary point of the i-th tether

with respect to C are given by

ﬁt, = ﬁi + l:"t. s ﬁt. = ﬁ-; + %t.. ’ (2.20)

where T, is defined similar to T in Eq. (2.17)

2.5 Energy Expressions
2.5.1 Kinetic Energy of the System

The total kinetic energy of the system T consists of two parts, the ki..etic energy of
the bodies and that of the tethers. Each tether has two parts, the reeled and unreeled
parts. Assuming zero velocity for the unreeled part with respect to the corresponding
hody and including its mass to the mass of the body, the kinetic energy of the system

is expressed by

N1 DR y ny N2l optn oo D
T=3 -m (Rc + R,-) : (m + R.-) + apsjo (R,.-+ Rt,) - (Rc + Rt.) dz;
] =1 ~
(2.21)
where R, is the velocity of the centre of mass of the system with respect to the centre

of the Earth. Expanding the dot products and performing some algebra we obtain

+

1 = A e Y L 2,
T = 5"1Rc'Rc + [Zm,-R,— <+ Zp;L thm,-] R,

=1 =1
N & o N2y s o
+Z—9-m,-R.--R; + Z ap,‘fo R Ry dr; . (2.22)
i=1" i=1"

It is shown in Appendix C that the term inside the square brackets is equal to zero!,

Le
N = N-1 LA
Zm,'R; + Zpg A Ry dr; =0 . (2.23)
i=1 i=1

Hence, the kinetic energy can be rewritten as

T= Tarb + Tatt ’ (2-24)

'Derivation of this result is not trivial since masses m;,i = 1,2,..., N, as well as the integral
limits are generally time dependent.
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where
Torb = %mﬁc'ﬁc f "2.25)
and

Ni =& = b -
Tan = ZimiRi‘Ri + 2'2-.0:' A Ry, Ry, dur; . (2,26)
i=1

Here, T,y is the orbital kinetic energy while T,y is the remaining part of the
kinetic energy associated with attitude motion of the system and vibrations of the
tethers. Usually Ty is much smaller than T, and does not affect the orbital motion.
Hence the orbital motion may be calculated separately. T can be developed further.,
Substitution of l’:it_. from Eq. (2.20) into Eq. (2.26) results in

N1 =+ =& Nz21p eifs s .
Tare = E'imiRi-Ri + E -2-,0.-f (R,- + rt..) . (R,- + rt..) dz;
=1 i=1 0
=Y =(m; + m;)ReR; + ZP:R-'"[ Py, dz; + Z-Paf By, Fedzs , (2.27)
=12 i=1 0 =12 Jo

where as defined earlier, iy = 0.

Differentiating Eq. (2.7) with respect to time and using the result given in Ap-

pendix A, we have

2 d {1 r4_ 1 b, ;. i
b; = a (f_o./(.) rhdmi) = 'e; [jo rt‘dm - ﬁieirh (fil t) + aieini(oi t)]

1 4. .
. = —[ f o, dzy —,eiem] , (2.28)
fo 0

o . - ~ . a8 . 9., -

since Ty, (4, t) = F; and Fi,{0,t) = 0 . Note that F, = (Et- + ""i'a?)"h taking into
f

account the fact that the tether may be moving axially and therefore introducing a

convective derivative term. Here — represents the partial derivative with respect to

ot
time in the inertial frame. Equation (2.28, implies that

&4, . .
L fo,dzs = loby + Bl . (2.29)
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Using Eq. (2.29) and substituting for R; and j;8:¢; from Eqs. (2.16) and (B.16)

into Eq. (2.27) one obtains
N 1 N-1 | . . N-
Toau=m 5}1,’ Z: Bij + A,‘jf_, - j.-t_,'l)j (Z Bkl‘& + A,,Ll‘k — pkb*)
i=1 i=1 =1

N-1 . /N- . N-1 No1
+3_ &by (z BiFy + Aty — #kbk) ~ 3 BiF: (Z Byt
k=1

=1 k= =1
: N-1q L. .
+ Ay — itkbk) +> 29.] t'y, Fy, dz; } y (2.30)
=1

. 4 . .
where p; = IE After expanding the dot product over the brackets and carrying out

some algebra, one obtains

o = (55 [ (80) B (ns) i

I=1 k=1 1

N .
I L 2 I
- (Eu) #;BibjT) + 3 (Z#iAiink) ;T — (Z#aAu) BT by

isl i=1 i=1

—

N « . . . ..
+3 (Z#i) Exfisbs-by + fi; Bib;Tr + B;AjFe-b; — f;fb;-by

=1

(3]

- BjBij'ﬂ. - AjkBij-I:"k +ﬁjBkE_f'Fk]

N=1} . 1
+ zl 2p,j{; rtJ.rtJda:JJ . (2.31)
=
Delining
Af
Fio =Y pidijAikc (2.32)
i=1

factoring out similar terms, and implementing the results of Appendix B lead to
N=1N~-1 1 P
Tow=m ; gl [——B BLrJ r + 2F.ﬂ\r.1 l'L .):qu’ka by,

'H‘JAJLPA b AJLB L r’- + ”JB‘EJ "]
N=-1 1

+2 55 f rtJ-fv’tJdm,-} : (2.33)
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2.5.2 Gravitational Potential Energy of the System

Similar to the kinetic energy of the system the total gravitational potential energy
of the system consists of two major parts; that due to the end-bodies and the tethers,

respectively, i.e.,

Ug = -5 -2Mmi__ Z f zi (2.34)

i=1 |Rc + R!I i=] |RC R'-\
where G is the universal gravitational constant, M is the mass of the Earth and ﬁc
is the position vector of the centre of mass measured from the centre of the Earth.
Here the end bodies are again assumed to be point masses and the Earth is assumed

to be spherical. .

Using binomial expansion and retaining terms up to the third order one obtains
GM GM
e+ Rl [(Re+R)- (Ro+R)]

PR ~ o o\ 2
GM [I_Rc-n Rit g(mc-n)

;= M (ReR.+ 28R + RR) ™

A T , (2.35)

where R; = |R¢|. From Eq. (2.34) now we get
GM GM .

— [
Ug = R m + e (ZmiR, + Zpi/ Rtidﬂ:i)
c

i=1
G M 3
i 2R3 [ mi (Ri - -E- (Rc Ri) Rc) Ri

+Zplj (ﬁ'ti - Eg' (ﬁc'ﬁ-ti) I.i-c) 'ﬁhdzi] . (2'36)
¢

i=1

Since by definition of the centre of mass the first bracket is equal to zero, the gravi-

tational potential energy can be written as

Ug=Ug,, +Uc, . (2.37)
where
UG = —gﬁﬁm , (2.38)



and is relevant to the orbital motion of the system. On the other hand,
UGnll = 2R3 [Zmi (Rl - 3 )
+ Epi.lo l (ﬁ'h - SGC'ﬁ-ti)'i‘c) ‘Rtidmi] ) (2.39)
i=]
where Ec is the unit vector along X -axis, i.e, R.= Rcic.

Substituting for ﬁt,. and R; from Eq. (2.5) and performing similar algebra as that

performed for the kinetic energy, we come up with the following expression for Ug,,,

as a function of local position vectors ¥; and ¢, 5 = 1,2,...,N = 1;
N-1N-1
UG = mao Z z [ Fy {rJ - 3(‘:: r:)'c} B + 25 Ak {Ti
i=1 k=1
SRS U SR PRy T RN
—3(|¢-rk)|c} ‘b; - 5 Rilk {b,- - 3(|¢-b_,-)|c} -bk]
N-1
1, b, 2 2] =
+J_=1 §p,-f0 {rt, - 3(1c‘rt,.)1c} -rtjd:r:,-} . (2.40)

{GM
where ap = R and is not a constant in general.

2.5.3 Strain Energy of the System

The tethers are very long and thin thus flexible. When they deform, some strain
energy is stored in the tethers. In the linear theory of strings, it is assumed that the
initial tension in the string is large enough so that transverse displacements cause
negligible change in this tension. But in the case of tethered satellite systems, the
tension in the tethers, which are caused more or less by gravity gradient and cen-
trifugal forces, varies as the lengths change. When the tethers become shorter and
shorter during retrieval, these forces weaken, since they are proportional to length
¢;, in general. Therefore one can not neglect the effect of transverse displacements
on the tension. This implies that the longitudinal vibration is strongly coupled with

transverse vibrations in this case.
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Considering an infinitesimal element AB of the i-th tether having an undeformed

length di; (Fig. 2:4), one can express the strain energy stored in this element as

EA;

dUg, = ——62d T {2.41)
where
ds; — dx;
L Bl .42
=S (242)

and ds; is the deformed length of the element. Geometry of the deformed element

vields
o] ) 32 2 2% _}__ au\* | (o)’
€= 5 {[(dm, + dw;)" + dvi + dw,-] dr;p = |{(l + T, + P

; 2% :
+(3—f)] —1. (2.434)

. Oup O dw; .
Since —, —, and — are small compared to one, the above expression for ¢; can
oz; Ox; dr;

be expanded using the binomial theorem. Retaining te:ms upto the third order we

have

0u, v dw;\ du; A LAY .
2] ] e

The first term in the right hand side is the strain caused by longitudinal displacement
u, and the remaining terms are the strain caused by transverse displacements o; and
uy.  The third order terms have much smaller effect than the second order terms
and in most calculations can be neglected. However they are retained here to have a

cunsistent energy expression upto the fourth order.

sSubstituting Eq. (2.44) inte Eq. (2.41), retaining terms npto the fourth order,
integrating the result over ¢;, and adding up the strain energy of all the tethers, one

oltains

N-1 2,
Up =S EA, j Eids; | (2.45)
i=] 0
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where
o _1fou 1 [(u)? (8w ]\
=313, Y2 |\5z ) T \as,
1 8u,- 2 61.-; 2 aw,‘ 2
@) o
2.6 Orbital Motion

Although the kinetic energy and potential energy of the orbital motion, T,,; and
Ug,,, have no direct contributions in the attitude motion of the system, the orbital
motion of the system has a great effect on the dyn: mics of the system through the
orbital rate, 6., Energies associated with the attitude motion of the system are
negligible compares’ to the energies associated with the orbital motion. Hence, the
orbital motion can be calculated separately. Effects of small perturbations due to the
attitude motion and other disturbances can be compensated with a control system

such that the entire system moves in a Keplerian orbit.

A Keplerian orbit is a2 planar orbit resulting from central force motion. This

motion is characterized by

. h
b= — |
c R.
h2

Re= GMT+ecos0y)

(247)

where k is a constant, representing the angular momentum per unit mass of the
system and e is the eccentricity of the orbit. R, 0. are as defined earlier. Angular

momentum per unit mass, and orbital energy of the system are related through

| (GMP (2 -1)
N2 +Ug,,) m

Equation (2.47) represents an ellipse, parabola, or hyperbola depending on whether

(2.48)

e < l,e = 1, or e > 1, respectively. When e is zero the orbit is circular. We will
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be concerned with either a circular or an elliptic orbit, which is a closed trajectory

around the centre of the Earth.

The mean orbital rate of the motion is given by
. [GM\}
Ww = (-:5—') ¥ (2.49)

where a is the semi-major axis of the orbit, given by

h

Solving Eqs. (2.47)-(2.50) for g and R,, one obtains

6. =l - 82)—{‘;(1 +ecosfc) |

GM\} 1-¢
Rc:(u‘ﬂ) 1+ecosf, (2:51)

In the case of a circular orbit, e = 0, éc and R. are constants and are simply related

by )
bo = (GR“; ) , (2.52)

where R, is the orbit radius. However when e is nonzero the instantaneous orbital

rotational velocity, éc, and the orbit radius, R., vary with 8., i.e. they vary with time.

8. oscillates around @.

The above relations show that one can establish the orbital motion knowing Toes +
Ug,,, and e of the system, or equivalently angular mom=ntum per unit mass A and

semi-major axis a of the system.

2.7 Discretization of the Continuous Tethers

As was mentioned in Section 2.1, a continuous tethe: can be discretized using either
an analytical approach or a bead model. Here in this thesis, we discretize the system

following the former approach, using the assumed modes method, and construct a
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set of generalized coordinates based on that. Then we derive the governing ordinary

differential equations of motion in the next Section.

The elastic displacements of an element of the i-th tether at a distance z;, mea-
sured from the mass m; along the undeformed tether, are denoted by u;, v;, and w;,
along z;, ¥, and z; axes, respectively. The first one is the longitudinal displacement,
while the last two are the transverse displacements of the element. Therefore the

displacement vectors f; and ¥y, can be written as
o= (G Fug)l . Feo= (304w + vl + wik; (2.53)
where u,, is the longitudinal displacement at z; = ¢;.
In the assumed modes method the elastic displacements, which are functions of

both z; and time ¢, can be expanded in terms of a set of admissible functions as

follows:

ug(zi, t) = X7 (80)€(8) , vilzat) = YT (s)my(t)

wy(zg,t) = Z7 (s)vilt) (2.54)

where s; = z;/¢; is a non-dimensional distence, and X;, Y, Z; are column vectors
containing tongitudinal and transverse admissible functions corresponding to the i-th
tether. The admissible functions are arbitrary, but they must satisfy at least the

geometric boundary conditions in an energy formulation.

Considering the system configuration and definition of the longitudinal and trans-
verse elastic displacements, one can realize that the geometric boundary conditions

of tether { can be expressed as

ui(0,t) =0 , ui(li,t) =ug #0 ,
vi(0,t) = vy (85, t) =0 104(0,t) = wi(8;,t) =0 . (2.55)
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There are infinite sets of functions that satisfy the above boundary conditions.

Among them the following functions are chosen as admissible functions in this for-

mulation:

Xie(ss) = s35°1 Yie(s:) = Zix(ss) = V2sin(krsy) . (2.56)

In three-dimensional motion, N point masses can have a maximum of 3N degrees
of freedom. Confining the centre of mass to a specified trajectory reduces this number
to 3N — 3. Since the system under consideration consists of N point masses connected
by N — 1 elastic tethers in a chain configuration, the motion of the system can be
described by 3N — 3 rigid degrees of freedom, corresponding to the rigid body motion

of the tethers, and N, elastic degrees of freedom for all tethers.

The generalized coordinates of the system, which make an N; dimensional column

vector q, are chosen here as

q= {Ch,qg, v .QN—l}T (2.57)

where the N, dimensional subvector q; is the contribution of the i-th tether to the

generalized coordinates vector and consists of

T
q; = {6i1¢i: eil 5?. 'TT, U?} . (2‘58)

84, &4, €y describe the rigid body motion of the i.th tether while &; 7, ¢ describe its
elastic motion, It is clear that the total number of generalized coordinates, N, is

the summation of generalized coordinates corresponding to the all tethers, N, i =

1,2,....,.N-1,ie
N=-1

No= 3 No . (259)

Such a definition of the generalized coordinates leads to a very interesting char-
acteristic of the system which helps us to reduce the effort involved in deriving the

equations of motion analytically, which can be considerable otherwise. Considering
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the expressions for f;,f, and b; in Eqs. (2.53) and (2.7) and the fact that they
are only function of the i-th subset of generalized coordinate, q;, we can write their
partial derivatives with respect to q, as
o _ [ {0 .@: {0} of, _ [ {0} if i#n (2.50)
oqn Dr. ' 0qn Do, ' &q, Dy, if i=n ' .

where Dy, Dp,, Dy, are N, dimensional column vectors with vectorial elements

defined by

o, 6‘bn 6rt
D, = — , Dy, = . Dy, = 2.61
e 9qn b a(In ¢ a‘In ( )
Expressions for these are given in Appendix D. Note that _6(?)_ is N, dimensional
n

vector in which its elements are the partial derivatives of ( ) with respect to the

elements of q,,. Advantage of Eq. (2.60) is taken in this formulation extensively.

2.8 Equations of Motion

For the model used and the way that generalized coordinates are defined here, the
best approach seems to be the Lagrangian approach. In the rather general case, Ny,
the number of generalized coordinates, is greater than the number of degrees of free-
dom and the generalized coordinates are related through the following nonholonomic
constraints:

N' :
Y (o dg,) +apdt =0 , i=12,..., N, (2.62)

r=1

where a;r and ay are functions of q and ¢. Equation of motion corresponding to the
generalized coordinate g, is given by

d {oT aT aU
3 (5;) 3‘],- o =Qr+ ZairAi ) (2.63)

where T and U are the kinetic energy and potential energy of the system, respec-
tively. Q. represents the generalized force corresponding to g, due to nonconservative

external forces, while Ay,i = 1,2,..., N, are unknown coefficients called Lagrange’s
multipliers.
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In the absence of constraints, where N is equal to the number of degrees of
freedom, Eq. (2.63) is simplified as

d T oT BU

8.) o, 6qr

For a simple system with a constant mass, in which ¥ = F(q,t) and the kinetic

=Qr . (2.64)

energy expression is given by T = mE-F /2, one can essily show that
d {oT BT w OF

o() . 8()

where 29 and e e N, dimensional vectors whose elements are partial deriva-
q

tives of { ) with respect to the elements of q and §, respectively.

In a general case where m is a function of time or generalized coordinates, as in our
problem where the mass of the bodies and the tethers change during deployment and
retrieval, the above relation does not hold . There are some other terms appearing
in the right hand side of Eq. (2.65) due to the derivatives of mass coefficients with
respect to time, generalized coordinates, and generalized speeds. In this case one

should exercise more care in the differentiation procedure.

Having done so for the derivatives of the kinetic energy of the system under

consideration and performing some algebra, we obtain
I-.1 - (3Tau) _ aTatt

oq dq
- NZINZLT 8By s 8B, 8B (wﬁ'jk
=m ij—b; T +Ak‘—"""l‘l'k—23 £;-Fr -

0B; OB, . 81’&
+Ajk‘5;) £y-Fx — B El‘: rk] [(ij + AiyBx - AjkBj) o=

by or; or
+2m¢Ber -_— - Aﬁ:B,l‘j 3q + #,Bk— l'k] [ de__k_

dq
- 35,& oF _ Oby '-‘-
+#kAkja_q') T5+ (I‘jAjk 3q #:ﬂk-—) gﬂj (
o 41,
_a) ( 2fg, 'r’g,dz,) } . (2.66)
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Further simplification can be made by using Egs. (B.12) and (B.13) and interchanging

indices & and j in some terms to obtain

NZN2X T 8B, aB; OBy, . 1. 9B;:
F1=m{j§§ #"akb rk-l-A,kaq 2B 6 r‘,n+ 5_,;.6qu11
aBk.. — abk Brk dE

—B’_c)q r; I‘A] |:‘),ukB T Jq A BiFj == 7 + i B2 3

or or, 3-' ar,
—B (24 + &) F rJ . k] + [(F acl; + BreAri—5— 3q ) T+ (luJAJk 3(;
by | N2 (da @ 41: -,
FJFL a ) ] Z:PJ (dtgfi —_ _6_&) ( 0".2_]'%-1‘(,:(!27',') } . (2.67)

Contribution of the gravitational potential energy in the equations of motion cor-

. . OUg . . . .
responding to q is —dc'q“i After some algebraic manipulation they can be written
as

a
r, = gc‘lUGuu

, | NI 0B .  10F /., U3 S
= mn«l‘, { 2 Z [’;J a k ( ; — 3(lc ) ) T+ é--a—:c (I‘J' - 3(lc-l‘j)lc) -l‘k]

J=1 k=1
oF, b T
+ [(F al‘k + p Ay 7q ) {rJ - 3(1c r_,)lc} + (ﬁ,-A,-ka—z
db s
R ") {b; - b,-)nc}]
Nl 21 (. o NE Y
+ 2 pig"i (./; § {rt, - 3(lc'rt,)lc} ‘rt,dmi)] } . (2'68)

i=1

Strain energy contributes the following term to the equations of motion of q :

N-1
3=%—-—ZEA,3 ([ Ed.v_,) . (2.69)

=1
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Substituting I'y, I'y, and I3 into Eq. (2.64) and rearranging some terms, we get

IN= aB . OBpg, - s
Q. Z}Z}{ —* [b,+ao{b - 3(i-b))i }] -rk-a—;(zs,-r,-
£

+B,t;) i A,c,aaB" 65 + o {f; - 3(cF))ic}] R

1_ 6B
+§6k, 2q k [r, T + aj {rJ - 3(i r,)l.,} rk]}
-1 BF . |, Ofx
+ Bi (24 + 54T +2 Bkb ———A B;F
g;é[ 5 (2456 Jk)J 5q 113 jaq jkjrj aq]
N-IN-1 5§ a" )
+ 2 Z {(ij—k‘ + fkAkj 3q ) [r, + aj {rj - 3(|c -F5)ie }]
j=1 k=1

of _ _ dbg
41 z : _f(d 8

d ‘il EA; 8
_a) ( A Zrti rgjd:r,) + Ta—q (/ gjda:,)} . (2.70)

In fact q consists of the subsets qu,n = 1,2,...,N — 1, defined in Eq. (2.58).

Since T, l;k, Ft,, and £ have no partial derivatives with respect to q, except when

k = n, the above equations can be further simplified. Having done so, one obtains

the equation of motion corresponding to q,, in the following form

N-1
ZGnd + 2 Hoj + ZPns +8p = '—Qn . (2.1)
J=1 =1

where

Cri = Zan {[#5 (b +of {B; - 3(ic:B,)ic }) — (2B4¥; + Bs¥,)

- " ~ 1 .« e
— ATy — 950- (2‘4'\1' - 5,;5) {i"j - 3(ic-i"j)i¢}] i+ 55,,,?,’4‘,.} , (2.72)

H,; = [-B, (2Asn + 610) B + 28;Bub; — AgnByEy| Dy, | 2.73)
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Po; = (FiuDry + finAn; Db,) - [ + of {F; — 3(F)ic }]
+ (#jAjnDr, — Bjia Dy, ) [51' +of {b; - 3(ic-f5,-)ic}] o (2.74)

5, = Pnaoa (-/ {r"‘ 3(1c ﬁ")L} 'Ft"dzn) *on (%3—?1:

a y 1 . . E‘A a A
—— i~ n o =
c?qﬂ) ( o 2% rt"dm") + m 0Oq, ( gﬂdw“) d (2.75)

where Dy,,, Dy, and Dy, are as defined earlier.

2.8.1 Librational Motion

Equations of motion corresponding to the libration motion of the n-th tether is
obtained if q, is substituted by ,,, where 1, is either in-plane libration, ,, or out-
of-plane libration, ¢,. Since the mass coefficients B; have no partial derivatives with
respect to 0, or ¢, the first summation in Eq. (2.71), vanishes. The component of

S, corresponding to the libration degrees of freedom can be also simplified by noting

that
. d 3 3 tn ] e o d t“:o aFtn
fn ai'.tn s t""_', al‘e, al-:tm
._./ rt" a" d.l.“) = Pn'/; Tt,* a¢ﬂ dmn ﬂ‘npnen (rtn %)zn:lﬂ

: (o O
aﬂpﬂeﬂ (rtn a:‘;")xn—o ) (2-76)

where the last term is zero because components of Dy, vanish at & = 0 in the case of

librational degrees of freedom. Using the resuits of Appendix D one can note that

:, (R 81‘(,,, _ ai:n N drd
o= (5), =5 @
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After some manipulation, Sy, can be expressed as

Oty

- o . . A IRY) ar n
Sgn = Pn /(; (Fea + of [Fen — 3(‘:'“..)':]) S52dTn + Bufn: T

T (2.78)
Hence the equation of motion governing the libration of the n-th tether is given

by
NZIH = Qd’n
W ZP,;,M + Sy , (2.79)

i=1
where Hy,, and Py, are the components of H,; and Py, defined in Eqgs. {2.73) and

(2.74) respectively, corresponding to the libration degrees of freedom, and Sy, is as
defined in Eq, (2.78). Note that since £, is a function of the spatial coordinate z,, and
elastic generalized coordinates only, the elastic potential energy has no coutribution

in the librational equations of motion directly.

2.8.2 Vibrational Motion

Similar to the librational motion the first summation in Eq. (2.71), vanishes again

and same equation as Eq. (2.79) holds for the vibrational motion

N-1 N-1 Q
ZH‘ni + EPenj + SGn === ) (2'80)
i=1

provided that S, is re-defined as follows:

SEn. = pﬂ\lﬂ' (rtn + ag {rtn - 3(l¢'rtn)IC}) a t dzﬂ. + Bﬂ.rﬂ. a €n
EA, o€,
+ m Jo Ed.‘tn . (2.8])

Here ¢, is one of the elastic generalized coordinates €,, 7, ¥, which describe longi-

tudinal and transverse oscillations of the n-th tether, respectively.

2.8.3 Longitudinal Rigid-Body Motion, £,

Indeed this is the most challenging part of derivation of the equations of motion,

because of two reasons: firstly, component of Gy corresponding to ¢, in Eq. (2.71)
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does not vanish since the mass coefficients are length-dependent and secondly, the
upper limit of the integrals appearing in the expression for S, is our generalized
coordinate, £,, under consideration. Partial differentiation of these integrals with
respect to £, is carried out in Appendix E. The equation of motion corresponding to
¢, is then given by

N-1 N-1 N-1 Qe
Ge".f + thnj + Zpenj + Sln = ol (2.82)
j=1 =

m

i=1
where Gy,;, Hq,,, P, are the corresponding component of Gnj, Hpj, Hy; defined

in Eqs. (2.72)-(2.74), respectively, while Sy, is given by
. [ o S o af ofy, | Of, Lok
S‘n = pﬂj{; [l'tn + a% {rtn - 3(lc'rtn)lc‘}] * (_a;: + aen ) dzn + Bnl'n'ln
EAn & 38,1, EAn

Feny Lhn
m Jo 8, T+ m

. 1Nre o
(gn)z,,=zn + Pn (an - "2") [l'tn-rgn] 2,20 (283)

Combining Egs. (2.78), (2.81), and (2.83) and using the definition of D, and Dy,
in Appendix D, one can replace S, defined by Eq. (2.75) by the following equation

Su= [ (Feu + 08 {Foo — 30T )ic}) Dinton + Bubu D,

In
EAnj 28_“(13:“ +L, . (2.84)
m Jo Oqn

where Ly, is an N, dimensional vector in which all the elements are zero except the

one that corresponds tc the generalized coordinate ¢,. It is given by

Ly, = EA,
m

- 1 - X
(En)zp=t, T Pn (au - 5) [l't,.'l't..] (2.85)

Tn=0 .
2.8.4 Some Special Cases
Case 1: Bj =0

In fact B; = 0,j = 1,2,..., N — 1 represent the case that each body, except the
body 1, are reeled in/out only from the previous body, i.e. body j + 1 is deployed or
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retrieved only from body j. Since B; = 0, consequently 98; _ {0}. Hence G; and

dq
H,; vanish in Eq. (2.71), and the equations of mction arc given by
N- 1
LP"L’F +8,=—=Qn , (2.86)
o m

where P,;, S, and Q,, are as defined earlier.

Case 2: Massless Tethers

In the absence of tether masses Gj, Hp; and S, become zero and the equations

of motion are simply given by

FinDr, [r, + ag {rJ ~ 3(ic r,);,_.} En‘: 32,, (] £ da:n) =—Qn . (2.87)

These equations match those obtained by Misra and Modi [63), if F; is defined by
B =0i; , (2.88)

and elasticity of the tethers is ignored. Note that even in the case of massless tethers,
the tethers can be modelled as massless springs. Hence generally the position vectors
f'; are expressed by

F = (& + &)y (2.89)

where £; denotes the longitudinal stretch of the j-th tether.

Equation (2.71) together with Eqs. (2.72), (2.73), (2.74), and (2.84) desctibe the
general dynamics of an N-body tethered system. They are used extensively in this

thesis for further analysis.

51



P, perigee

1, inclination angle

cquatorisl plane

Figure 2.1: Geometry of orbital motion
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(b)

Figure 2.2: Geometry of the system: (a) projection of the N-body system in the
orbital plane; (b) Definition of angles §; and ¢,.
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Chapter 3

DERIVATION OF THE
GENERALIZED FORCES

3.1 Introductory Remarks

Although there are various environmental forces affecting the system dynamics
sucl as solar radiation pressure, the Earth’s magnetic field, luni-solar perturbations,
acrodynamic forces, ete., we would consider the aerodynamic forces as the only signif-
icant environmental forces here, because of their larger magnitude in the case of low
altitude orbits. In most of the research works in which atmospheric eflects were con-
sidered, only the aerodynamic drag on the subsatellite was taken into account, while
the aerodynamic lift acting on it as well as the aerodynamic forces on the tether were
ignored. There are some studies in which the atmospheric drag on the tether was also
included, however it was assumed that the relative velocity of air remained constant

along the tether,

To obtain a more general aerodynamical model, in this formulation, sume of the
above shortcomings are eliminated.  The aerodynamic forees on all the bodies as
well as on the tethers are caleulated assuming free molecular flow regime, which is
described briefly in the next section. Moreover the aerodynamic forces are determined

assumiing that:
o the atmosphere is rotating with the Earth;
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e the air density varies exponentially with the altitude;

e the bodies at the end of the tethers have no attitude motion relative to the
tethers, i.e. the angles of attack required in aerodynamic calenlations arve simply

related to the librational motion of the tethers.

In many of the investigations related to tether satellite systems, the effects of
material damping on the elastic vibrations of the tethers have been neglected and
the vibrating tethers have been modelled as conservative continuum systems. This
is because the inclusion of material damping increases the complexity of the model.

However, it must be included in a general model because:
e it Lias a significant effect on the stability of the system;
¢ it has a positive effect un the computational effort required.

The generalized forces resulting from material damping are considered in this formu-

lation assuming viscous damping.

In addition to these two kinds of forces, there might be other external forces
such as those from the thrusters that contribute to the generalized forees. They are
disenssed in a general manner at the end of this chapter. Splitting the generalizedd

forces into these three categories we can then write
A

Q=Q:++Qp+Qo . (4.1)

where Q,4,Qp, and Qg represent generalized forces corresponding to the acrody-

namic. material damping, and other external forees, respectively.

3.2 Aerodynamic Forces

At high altitude, say 90 km or so, the atmospheric composition is signilicantly

different from that at the sea level, and it can no longer he treated as a continuum,

P ]
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Tsien [68] as well as other researchers such as Siegel [69], and Hayes and Probstein
[T0] have proposed a division of fluid mechanics into various regimes according to
the degree of rarefaction as measured by the value of the Knudsen number. This
basic parameter is defined as the ratio of the mean free path A, the average distance
travelled by a molecule before collision with another molecule, to a characteristic
length L, e.g. typical dimension of a subsatellite. In general, the atmosphere can
be cateporized as: (i) ordinary continuum, where the density is sufficiently high so
that intermolecular collisions dominate over collisions with the boundaries (A/L < 1,
say 107%); and (ii) free molecular flow, where the gas is sufficiently rarefied so that
collisions with the boundaries dominate over collisions between molecules (A/L > 1,
say 10%). Between these two limiting regimes there is of course a wide class of flows
of varying character, which form the transient regime. In terms of altitude, that up
to 90 km, from 90 km to 140 km, and beyond 140 km, correspond approximately to

continuum, transient, and free molecule regimes, respectively.

Iu practice, a subsatellite will be located in either the transient or free molecule
regime, where thé acrodyramic effects must be calculated differently from that in the
case of the continuum model. Because of the simplicity of the free molecular flow
model on one hand and the purpose of this thesis, which is aimed at a conceptual
study of the atmospheric effects, on the other hand, we calculate the aerodynamic

forces using only the free molecular flow model in this formulation.

3.2.1 Free Molecular Flow Model

The free molecular flow model !, relies on the kinetic theory of gases. For aerody-
namic calculations, one is interested in the transfer of momentumn from atmospheric
molecules to the satellite or the tether. There are two canonical limiting cases in

this model that bound the molecular-momentum transfer at the object surface: spec-

'For more details the interested reader is referred to Ref [71)

oy |
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ular reflection and diffuse reflection, where the former is cssentially a deterministic
concept while the latter is a probabilistic one. The real case lies between these two

limiting cases and the transferred momentum depends on various characteristics of

the system.

Introducing two factors, ¢, and gy, called accommodation coeflicients for normal
and tangential momentum exchange, or for brevity normal and tangential accommo-
dation coefficients, we can express the aerodynamic force acting on an clement of
surface dA by

df =df,+df, (3.2)

where

- (D (S
dFp = 0ndFO + (1= 0 )dFS)

. +(D) ~(8)
dfy=oWdf, +{(1-o)df, " . (3.3)

Subscripts ¢ and n are used to specify the tangential and normal components, while

D
superscripts D and S denote specular and diffuse reflections, respectively. d ff, ) .
(D)

af, dff‘s), and dfgs) for an element dA, Fig. 3.1-a, are given by [71|

d}im = H(cosa)pVpcosa|Vpcosa + Vj| fradA |

D -~
df£ ) = H(cosa)pVisinacosa tadA ,
=(8)

df, =2H(cosa)pVicos®a figdA | .
afe =6 , (3.4)

where H is the Heaviside function (H(z) = 0if 2 < 0, and H(z) = 1ifz2 2 0), p
is the density of local atmosphere, V g with magnitude Vg is the relative velocity of
air with respect to the element, 124 is the unit inward normal to the surface dA, o
is the local angle of attack, t4 is the unit tangential vector in the plane of Vi and
fi 4, and V; is the mean velocity of the gas molecules which is related to the surface

temperature. At the altitude of interest, Vj is typically about 5% of Vj, and hence is
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ignored in this formulation. From Fig. 3.1 one can write

osar = Vang
cosa = Vi ’
i, = PaXx(Vex) (3.5)

lfea % (VR x fa)|l

where &, is clearly not defined if Vg xia=0.
Substituting Eqgs. (3.3)-(3.5) into Eq. (3.2), ignoring V;, and recognizing that
tisina =dg—f cosa (3.6)
we arrive at
df = H(cos a)pVi cosa [(2 — 0y — o) cosa foy + 04DR]dA (3.7)

where D is the unit vector along V . The aerodynamic force and torque acting on
the hudy can now be found by integrating Eq. (3.7) over the body surface. They are

given by

-

f=pVi [0:5me +(2—0oy, — Ut)gPP] .

i = pVE [00SpEp X B + (2~ 0w — 0)Grp| (3.8)
where

Sp = fﬂ(cos ajeosa dA ,  Ep= S}—pfl—](cos a)cosa TdA |

-

Spp = fH(cos a)cosPa dA , Gpp= %fﬁ(coso) cosa ¥ x dA , (3.9)

provided the small effects of rotations of the body are neglected.

The accommodation coefficients usnally have average values in the range of 0.8 <
oo < LY. The limiting cases, specular and diffuse reflections, are resulted by

setting o, = 0y = 0 and o, = o = 1. respectively.
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Using the above results and the geometrical configuration of a particular body one
can find the aerodynamic forces acting on that particular body. The acrodynamic

forces are presented here for the following cases:

o For a sphere with projection surface area A, = 7R,
-~ 1 . N .
s = EPAS‘,R(-)- — Oyt at)VR . (“'10)
o For a plate with normal unit vector 72 and surface area A,,
Fo=pAp [Vra|[oVa+ (20, - o)(Via)| . (3.11)

e For a cylinder along unit vector 7, with base surface area A, = 7R2,; and

projection surface area A, = 2R Hcyy,

Fo=po (A 1Vral+ A [VaE]) Vi + p(2— 0 — 0)

- —p 2 e d rs — a -
X [A,, VRal(Vra)h = A (ViP5 x #) x n] o (Ba2)
o For an element dr of the tether with diameter d; along unit vector #,
- - - — 2 iy - - f
df, = pd, |V gt} [a',VR - 5(2 -0, =)V xn)x n] dr (3.13)

Note that for the above configurations, because of symmetry, the acrodynamic torque

m on the hody is equal to zero.

3.2.2 Relative Velocity of Air

The relative velocity, Vg of a particular point of the system with respect Lo air
depends on the orbital velocity of the centre of mass of the system, the velocity of the
atmosphere due to its rotation about the Earth's axis and the velocity of the point,
relative to the centre of mass of the system due to the rotations and vibrations of the
tethers, The last one is so small compared to the other two parts that it has been

neglected in mauny investigations. However, it is included in this formmlation.
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A simple model for the speed of the atmosphere is that the latter rotates at the
same angular velocity as the Earth. This makes caleulation of the relative velocity of
Lthe air, relatively simple. In fact this is the model used in this formulation. However,

in reality the atmospheric speed is greater at lower latitudes.

Hence the relative velocity of body i and of a specific point on the i-th tether of

the system under consideration are given by

-

V,-=-[ﬁ¢+l:i.-—/-i><(ﬁc+ ")] :

‘7t‘ =— [ﬁ.c + ﬁt. - Ax (ﬁc +ﬁ.gi)] , (3.14)

where A = AK is the angular velocity of the atmosphere, ﬁ.;, ﬁ.,-,ﬁ.t,, and ﬁg. are as

defined in section 2.4, while the orbital velocity R. is given by

Ro=Ri+R6.5 . (3.15)

Let us define the Earth-centered inertial axes, Xy, Y}, Z;, such that Z;-axis is from
south to north direction, X,-axis is in the equatorial plane along the line of nodes
(assumed fixed) and Yj-axis completes the triad. Let I,J,K be the unit vectors along
the X, Y7, Z; axes, respectively. The orientation of the orbital coordinate axes with
respect to Lhe inertial coordinates is specified by the orbit inclination angle i and angle
0, = Oy + Jo, where 8y is the argument of the perigee while 8, is the true anomaly.
At first, the rotation 7 is given about X axis resulting in X/, Y/, Z! axes and then
ratation 0, is applied about Z! axis yielding X, Y, Z, axes. Hence the unit vectors

associated with the orbital and inertial coordinate systems are related by

[ I 10 0 cosll, =—sinf;, 0 1L
J =0 cosi —sini sinfly, cosfy, 0 jt. . (3.16)
] X " I_ 0 sini cost 0 0 1 l:(c
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where {, the inclination angle should not be mixed up with index i. Performing the

matrix multiplications in Eq. (3.16). we obtain

A=AK=A (sin 0, sini i. +cos, sini . +cosi k) . (3.17)

It can be shown that for orbits inclined to the equatorial plane, the out-of-orbit
component of the relative velocity is larger in the neighbourhood of the equatorial
nodes. This leads in turn to periodic attitude excitation. Hence for aerodynamic
stabilization schemes one must guard against the destabilizing possibilitics that ac-

company parametric excitation, in the case of inclined orbits.

3.2.3 Density of the Atmosphere

The atmosphere density p is very difficult do model accurately. The rarefied
fringe of the upper atmosphere is an exceedingly complex physical system. Many
gaseous species interact continuously, influenced by outside energy sources including
the Earth’s rotation, the Earth’s magnetic field, sunlight, and the Sun’s unsteady
electrically charged efluent. Even more important, one must be aware of large Hue-
tuations in density even at a fixed altitude. The two dominant causes of these llue-
tuations are the Earth’s day-night (diurnal) cycle and colar activity luctuations. For
precise calculations, the chemical composition and species temperatures must also be

available. A good reference for the Earth’s atmosphere is Ref [72].
g p

Once again, since our purpose here is to analyze the effects of the atmosphere from
phenomena point of view rather than quantitatively, a simple exponential model is
used to express the atinospheric density variation. In other words, the air density, p,

is represented approximately by

h—1
p = pyexp (— : Hulu) , (3.18)

where pp is the reference density at the reference altitude Ay and Hy, is the scale height,

The altitudes h; and hy, of body i and of any particnlar puint on the i-th tether are
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simply given by

hi=R.- Re + Ry ic ,

hy, = R. — Rg + Ry, ic , (3.19)
where Rg is the radius of the Earth.

Measurements have shown that the radius of the Earth is slightly shorter along
the N-S direction than that along the W-% direction. Hence, strictly speeking, the
Earth cannot be assumed to be spherical. It is more like an ellipsoid. The semi-major
axis ag of the Earth is 6378.16 km while the semi-minor axis bg is 6356.78 km {73] and
the equatorial plane is essentially a circle. Supposing that the air density is the same
everywhere on the Earth’s surface, one can see easily from Eqs. (3.18) and (3.19) that
this 20 km oblateness would affect the air density significantly even for a circular
orbit. This is because the air density varies with altitude exponentially. The system
will have a lower altitude in the equatorial region compared to that over the north and
south poles. Thus it experiences larger aerodynamic forces in the equatorial plane.
In this thesis the same model as in Xu [22] has been used for the oblateness of the

Earth, i.e.,
apbo

; (3.20)
[bo(l —sin?i sin%4,) + a3sin®{ sin 3,]

Another important parameter that affects the air density is the orbital eccentricity,
e. R. does not remain constant when e # 0. Thus the system is sometimes far above
the Earth and therefore is influenced by less aerodynamic forces, while at some other

time it is closer to the Earth. Obviously the difference depends on how large e is.



3.2.4 Generalized Aerodynamic Forces

Once f; and dfy , aerodynamic forces on the i-th body and an element of the
i-th tether, are known, the generalized aerodynamic forces can be calculated {rom

N-1 -
QA—Zf: +Z:j ft aRtl ’ (']-.-,l)

i=1
where the first summation is the contribution of the aerodynamic forces on the end-

bodies, while the second one is due to that on the tethers. Once again substituting
from Eqgs. (2.5) and (2.15) for R; and ﬁt, and considering Eq. (2.60), Eq. (3.21) can
be transformed to

./ ‘Dt" dft +Z A"lDr" +P“.Dbﬂ) F,‘. ' (3‘22)
i=1

where F A, is defined as
- 6o
. Fot [[dFe, =281,
Fa = ’ (3.23)
fN [ i = N

3.3 Generalized Structural Damping Forces

As the tethers oscillate, some energy is dissipated in the deforming process, which
one can account for through material damping. The damping mechanism is guite
complex and may be described adequately only by considering the microscopic phe-
nomenon inside the material. To state it simply, there is some hysteresis phenomenon
when the material is subject to vibration. The area enclosed by the hysteresis curve

indicates the energy dissipation which turns to heat.

There are twe commonly used models to describe material damping, 1.e. strtetural
damping and viscous damping. For a better understanding, let us consider a bar or
a string undergoing longitudinal oscillation where the governing equation of motion
is given by

Fu &u

o7 = FAgm +Wn (3.24)
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where the egcneralized damping force, @Qp, for both viscous and structural damping
cases can be written as
d (d*u
=cEA—-|=—] . 3.25
QD 9t \ Jx? ( )
I the case of viscous damping, ¢ is a constant damping coefficient and in the case

of structural damping, ¢ = (v/w) depends on the driving frequency w, where v is a

constant called structural damping coefficient.

N
Using the assumed modes method, u(z,1) = 3_ xa(2)gn(t). the equations of mo-

n=1
tion of the discretized system are given by the following matrix form
Mg+ Dg+Kq= {0} , (3.26)

provided that there is no external force on the system. M, D, and K will be diagonal
matrices if x,’s are chosen as the eigenfuctions of the undamped system (in the string

ot bar problem). In the case of viscous damping, matrix D is simply given by
D=cK , (3.27)

where as was mentioned earlier ¢ is a constant. However in the case of structural

damping D has the following form
D=+4Q"K , (3.28)"

where Q is a diagonal matrix consisting of the natural {requencies of the undamped

system,

By analogy with a mass-dashpot-spring system, one can see that viscous damping
produces a damping ratio proportional to the natural frequency of each mode

[ :
Cn = SWn s (3.29)

while in the case of structural damping all dynamical modes have the same damping

ratiu

=13 (3.30)



When some other functions rather than the eigenfuctions of the undamped system
are chosen as the admissible functions, matrices M, D, K are no longer diagonal. In
this case Eq. (3.27) is still valid for viscous damping while Eq. (3.28) does not hold
any more. In order to have a diagonal damping matrix after decomposition process

D must satisfy the following matrix equation;
DM 'K = KM™'D . (3.31)

It has been shown that the Cauchy series
o i
D=M) x(MK) , (3.32)
i=—00
where the coefficients x; are a set of arbitrary variables, is a solution of Eq. (3.31).
These coefficients can be set to obtain the desired damping ratio for the interested

frequencies. To have a constant damping ratio for all the modes of the discretized

system, {, = % , n=12,...,Ng Eq. (3.32) is substituted by
Ng-1 .
D=M) «(MK) , (3.33)
i=0

where k;'s are obtained from the following set of linear algebraic equations

Ne
Zn;wi"l =7, n=12,...,N, , (3.34)
i=0

and wy, is the n-th natural frequency of the system.

In practice instead of the above technique, Rayleigh’s approach, which is in fact

a specific case of Cauchy series, is used. In this approach, the damping matrix, D, is

assumed to be a linear combination of the mass matrix, M, and the stifiness matrix,
K, te.,

D = koM + 5K (3.35)

where again the coefficients xy and &, can be calculated based on the desired damping

ratio for any two modes of interest. To obtain an equal damping ratio for modes &
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[

and n, G =¢n = 21, those coefficients must satisfy the following equations

;—No+wkﬂl =7,
k
(3.36)

;:no Fwpky =y
For a nonlinear system, introduction of damping forces becomes more complicated,
because the stiffness forces cannot be represented simply as multiplication of a stiff-
ness matrix and the generalized coordinate vector. The problem becomes even more
complicated in the case of a system consisting of rigid and fiexible parts, because of
the presence of coupling terms in the mass matrix. However we can extend the above
discussion to these cases by an extension of the definition of the stiffness matrix. For

a linear system, like a simple bar or string, the stiffness matrix K is simply given by

Qg

K=—, 3.37

~ (3.37)

where Qg is the array of generalized forces corresponding to the internal elastic forces,

given by

oUg

= — 3.38

Qe 24 (3.38)

Therefore, once the elastic potential energy of the system is known, one can construct
the stiffness matrix using Eqs. (3.37) and (3.38), and then introduce the appropriate

damping matrix using the viscous damping approach, Rayleigh’s approach, or Cauchy

series.

In this thesis, to avoid this complexity, viscous damping is used to represent the
effects of material damping on the system dynamics, i.e. Eq. (3.27) in conjunction
with Eq. (3.37) is used to introduce generalized forces due to material damping, i.e.

_ . 9Qe. 8 {OUg).
Qp=c an—caq(aq)Q- (3.39)
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3.4 Other External Forces

The generalized forces corresponding to other external forces, if there are any,

other than those mentioned above are simply obtained from

Ni . ORp
=3 Fo —2 | 3.40
Qo ; % g (3.40)

where Ny is the number of the external forces, Fo, is the pnysical external force
vector, and I-.I;-_ is the position vector of the point of application of -i':'o.- with respect

to the centre of mass of the system.

Normally, non-elastic internal forces have no contribution to the generalized exter-
nal forces, because of the cancellation of the work done by opposite forces. However
for the system under consideration the work done vy the tension in the tethers, which
are in fact internal forces, must be taken into account in the case of retrieval and
deployment. Using the above equation and the fact that the tension forces act along
the tethers, one can show that these forces contribute only to the generalized {orces

corresponding to the rigid body longitudinal motion of the tethers, ¢;.
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Figure 3.1: Geometry of an object: (a) molecules incident on an element of the body
surface; (b) Orthogonal triad of surface-oriented unit vectors.
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Chapter 4

LINEARIZATION AND
EIGENVALUE ANALYSIS

4.1 Introductory Remarks

The equations of motion given by Eq. (2.71), derived in Chapter 2, must be trans-

formed to the vector form

Mg=f, (4.1)

for any further operation such as dynamical simulation, eigenvalue analysis, or voztrol
synthesis. In Eq. (4.1) M is the Ny X N, dimensional mass matrix and is a function
of generalized coordinates, q and time ¢, f is the Ny dimensional array of generalized
forces and is a function of generalized speeds, q, as well as generalized coordinates

and time.

4.2 Vector Form of the Equations of Motion

Only those terms in Eq. (2.71) involving second order derivatives with respect to
time contribute to the mass matrix. Hence it is more appropriate to rewrite this

equation in the following form

3
pn+e.,=;Qn, n=12...,.N=-1, (4.2)
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where p,, 1. given by

{n - N-1 w“
Py = ﬁn o Dt"'Ft“d.'E" + z [-AjnDr,.'Bjrj + (F:iuDl‘" + ﬁu-‘\ru'Dh..
i=1
- AujDB,.) 'Fj + (ﬁjAjnDrﬂ - ﬁj.ﬁnvb,, + ﬂjDB")'Ej] . (1-3)

while e, consists of the remaining terms in the left hand side of Eq. {2.71). In the

above equation Dpg, is

Iy . (4 "1)

{0}
L {0} )

It is clear that only p, contributes to the mass matrix while e, has no contribution

in this regard.

Noting that i"_,-,ﬁ,-, and Fy, are functions of q; only 1, one can show that their
second order time derivatives can be expressed as
£, =Dl +d
J rJL‘J r_, k)
= . 3
b; =Dy, q; +dy, ,
Ft, = 'D;I;E]J + dtJ . (4.5}
The first order time derivatives are included in (-i‘,.}, ete. Using Eq. (B.18) and the

definition of Dy, in Eq. (4.4), we can write

B,‘Fj = T’%,‘L + agj . (4.6)

INote that they are functions of the generalized coordinates corresponding to the j-th tether
only.
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where
&Bj = —pj[;‘jéjl:"j . (4.7)

Expressions for vectors dr;, dp;, and dy; are given in Appendix D.

Substituting for 'i"',-, b;, ‘i"'t,. and B,f; from Egs. (4.5) and (4.6) into Eq. (4.3) and
performing some algebraic manipulations, pn can be rewritten as

N=-1
Pnzhn+ZMnj€ljr n=1:2v"'1N—'1 1 (4'8)
j=1

where My,; is an Ny, x Ny, dimensional matrix given by

in

~ AnDB,) Df, + (BiAinPr, — Bifin Dy, + iPB,) Dy, ,  (4.9)

and h, is given by

N-1

tn - -
hn=pn [) Dy, dt,dzn + [—Ajn'*"rn ‘dp; + (FinDr, + finAn; Dy,
=1

7
—AnjDBni"n) '&rj + (ﬁjAjnprn = jinDyp, + ﬁjanFn) 'ab,] . (4‘10)

Now we can rewrite Eq. (4.2) by substituting for p,. After some manipulation,

equations of motion corresponding to q,, are given by

N-1
Y Myd; = fn, n=12...,N-1, (4.11)
j=1

where .

= %Qn —ep—h, . (4.12)
Note that My; is the submatrix representing the contribution of the j-th tether to the
equations of motion corresponding to the generalized coordinates of the n-th tether,

Qn, while £, is the N, dimensional subvector of forcing array corresponding to these

generalized coordinates.
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For the station-keeping phase, which is examined extensively in the following

sections, f, is given by

N-
fn = %Qn— {z;l [(Fj“D"" + finAnjDp,,) - [&rj + O.'g {F,' - 3(ic-i’j)ic}]
j=

+ (p'jAJ'n'Dr“ - ﬁjﬁnDb“) . [&b_‘- + C!g {EJ - 3(;.:53);:}”
+ pn _/; e"‘Dt,,. [de. + o {Fr, — 3(ic-Fe,)ic ] dza

- L
.Y 9‘."31“,,} . (4.13)

2m Jo Oq,

4.3 Equilibrium Configuration

A solution of the system , q*(t), is a set of time functions which satisfy Eq. (4.1),
i.e,
Mg =1, (4.14)
where

M*=M(q"t) , f'=f(q"q"t) . (4.15)

On the other hand, an equilibrium configuration of a system is a particular solution
consisting of a set of constants, ¢f(t) = i, 1 =1,2,..., N,. It is sometimes referred
to as the fized point of the system. It can be found, if there is any, by solving the
equations of motion after putting §° = {0}, §° = {0}, i.e.,

f°(q% {0},¢) = {0} . (4.16)

In addition to the above mathematical step a physical insight of the problem is needed
to formulate the possible equilibrium configurations of the system. Following descrip-

tions try to provide such an understanding of the problem.

In the deployment and retrieval stages of a tethered satellite system the reel mech-
anisms reel the tethers out or in, respectively. Hence the nominal lengths of the teth-

ers, which are also some of the generalized coordinates of the system, do not remain

74



constant. This implies that there is no static equilibrium state or fixed point in these
stages. However during the station-keeping stage. where the nominal lengths of the
tethers remain constant, one can expect a static equilibrium state depending on the
applied forces and orbital motion of the system. In the case of a noncircular orbit

there is again no equilibrium configuration.

Ii the forces acting on the system are only gravitational and internal elastic forces,
a multi-body system has an infinite number of equilibrium points. In the case of a
two-body system with a rigid tether, there are four configurations; two along the local
vertical and two along the local horizontal. Those equilibrium states which are along
the local vertical can be shown to be stable due to the gravity gradient, while the
other two positions are unstable. In the case of three body systems, Amier and Misra
(60} obtained the equilibrium configurations analytically. The stability of the system
about. these configurations was discussed in that study. For a general case it is very
difficult to obtain all possible equilibrium configurations. However, the local vertical
and horizontal configurations are equilibrium states even for a general multi-body

tethered system.

Il in addition to the gravitational force, there are environmental iorces acting on
the system, the whole situation is changed. First of all, in contrast to the case of
no environmental forces, there are no equilibrium states for an inclined circular orbit
because of the aerodynamic forces in a rotating atmosphere. The only possible equi-
librium configurations exist in the case of an equatorial circular orbit. Furthermore,
the equilibrium states are significantly affected by the aerodynamic {orces acting on

the bodies and the tethers.

Let us consider a two hody tethered system which is located in an orbit close
tu the Earth. For the sake of argument let us also assume that the center of mass

of the system is approximately coincident with that of the main satellite and the



acrodynamic force on the main satellite as well as on the tether are negligible, The
equilibriura configurations along the local vertical which were stable no longer remain
along the local vertical and their stability depends on the system parameters. The
lower position is displaced from the vertical line by an angle &, whose magnitude
depends on the system parameters. In addition, the tether no longer has a straight
shape in the lower equilibrium position. If the acrodynamic force on the tether is also
included in the calculation, the equilibrium position, curvature of the tether, and the

stability of the system are changed.

In the case where environmental forces are involved, the equilibrium state can be
found analytically only for a very simple model, otherwise it must be obtained nu-
merically. The situation becomes more complicated for a multi-body, multi-tethered
system, and determining the equilibrium position of the system analytically is ex-
tremely difficult, if not impossible, Hence there is almost no way except using the

numerical approach for this purpose.

4.3.1 Static Equilibrium Equations

Letting the lengths of the tethers remain constant and putting é; = 0, ¢ = 0in Eq.
(2.71), lead to the equations of motion corresponding te the dynamics of the system

in the station-keeping phase, given by
N-1 1
J_;Pnj +8n=—Qn" (4.17)

where Pp; and S, are defined by Egs. (2.74) and (2.84), respectively, with the under-
standing that L, appearing in Eq. (2.84) is a zero array in the station-keeping phase.
To obtain the algebraic equations corresponding to the equilibrium states, two more

steps must be Laken;
¢ orbital motion is confined to a circular orbit, i.e. ,
b.=ap=%. , R.=constant. (4.18)
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e time derivative of the generalized coordinates are set to zero, i.e.

0i=éi=¢.’i=$i=0 N

E,=6={0} , @=9={0} , Pi=in=10} . (4.19)

Having done so, the desired equations can be written as

_]__Qc__Nz_:l{(p. DE, + fndni D5, ) - [0 x (8 x 75) + 02 {5 - 3(.£D)0.)]
m n"j=l in&r, T Hnsinj&p, i i™Y c \1s c'fille

+ (B;AmDS, ~ BiEnD5, ) - 5 % (42 x Bg) + 02 {B5 - 3(-69)i.}|}
+ fn fo !"tDﬁn- (925 x (925 x 78) + Q2 {72, - 3G78)ic}] dzn
EA, [t0ES
2m .[0 oqe

n

dtn , (4.20)
- ~ ~
where now .QJ- =0, (sin ¢ji; + cos ¢jkj).

In the following sections the static equilibrium equations are specialized for two
cases: atmospheric missions when Q4 # {0}, but Qo = {0}, and systems with no

external forces, Qo = Q4 = {0}.

Systems Used in Atmospheric Missions

As mentioned earlier, in the presence of atmospheric forces, a static equilibrium
state can exist only in the equatorial plane, If only the 2erodynamic drag on the bodies
and tethers are considered and there are no other external forces, one can physically
visualize that the only possible equilibrium configurations are in the orbital plane.
The corresponding equations, after some manipulation, are given by

N~1

Q5,, = —3mQ? i {2 [(anﬁ" X £% + finAnjkn % BE) (-75) + (35 Ajmkn X FS

i=1

- .\ o fn | . -
= Bjfinkn % 53) (iB5)] + fn L (kn x i-‘fn)(ic-F:n)dz,,} :
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6z=0,

N-1
[(anx!n + ﬁnenAnjx tu) (ic'F;) + (ﬁj“ljnxlu
1

1

Q4, =-3m (icin) {

i=

o . s o Y L EA, tn (8, \°
-”J'pneﬂ.x-n) (lc'bg)]"'ﬁ'n/(; (lc‘rfn)xndxn}‘*‘ A ( ") dr, .,

2 85“
N-1
Q5 = -3m02 (ed) {Z [unAns ¥ enle5) = RipnlnY on(ic B
n J=1

e EA, & (0E.\"
+Pn.[0 (‘c'rfn)Yndmn}"' ) ./0 (%‘i‘) dz,

N-1
Q%,, = —3m® (i-kn) {Z [ﬁnEnA,,,-Z.,.(ic.i-‘j) - p,ﬁne,,z.n(ic-bg)]
j=1

L EA, [t (8E,\°
+Pn.L (lc-rfn)zndn:n}-}— 2'1.[) (Bun) dz, , (4.21)

where after substitution for ugn, v, and w,, £, is given by
2 2 2
_1(eX,,  1[fa¥, \*, (0Z. \° 1 (06X, oY,
én=3 (6:1:“ St l( oz, ”") *+ (am,." ") 3\, on) |\ Bz, ™
8z, \*
+ ( o2, u“) ] . (4.22)

Systems With No External Forces

In the absence of any external forces other than gravitational forces, it can be seen
by inspection that 85 = 0, ¢S =0, n¢ = {0}, v& = {0} satisfy the above equations,

while €;,n =1,2,..., N — 1 are governed by the following equation

N-1
Y [(FinXen + bntnAniXon) (& + Xe]€5) + (A X e
i=1

Ly
~ Ryt on) (83/2¢0 + X.J85) |+ o [ Xa(@n + XTe2)d2n

EA, tn (0E,\°,
e | (ae,,) dzn= {0} , (4.23)
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which are a set of linear equations in terms of £5's. Combining tiie equations corre-
3 i i lgeb btain ££ f the followi
sponding to all n and performing some algebra, one can obtain £ from the following

vector cquation:

[ A Ap ... Aw-n [ & ) [ ¢ )
Ao Aw ... Aogpn- £ co
1 p = 4 >, (4.24)
L Avoin Awv-nz - Awe-pev-ny b U ERS ) Lena

where Ay is an Ny, X Ng, matrix given by

Anj = (Fjuxtn + ﬁnenAnjxtn) xl}.‘ + (ﬁjA:iuxln - ﬁjﬁnenx-n) xa}

tn EA, M (8X,)\ {0X.\%
+ s L XoXZdzn = Snj fo ( ")( ) dz, , (4.25)
c

Oz, oz,

and e, is an N, vector given by

ln N-1
on = ~bn [ Xnzadzn = 3 (FinXen + batonXon)
=1
+ (BjAinXtn ~ BifntnXon) 6/260] (4.26)

4.4 Linearization of the Equations of Motion

The equations of motion given by Eq. (4.1) are fully nonlinear and describe any
motion of the system. Once a solution of the system, q*, is found, any other solution
corresponding to small deviation from that solution, called the nominal solution,
can be obtained using the linearized equations of motion rather than the nonlinear

equations. The linearization is obviously carried out about the nominal solution.

Let us assume that q is a solution with small deviation from the nominal solution,
qQ',ie,

q=q"+0q (4.27)
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Using Tayler expansion up to the first order. Fq. (4.1) can be rewritten as
[OMY" 2| x , LA AN
4+ == M@E +6q) =1+ |=] & — &¢
[M + \(’iq) éq + O(éq ]] (Q"+6q)=1"+ (iiq) oq + (Uél) 0q
+ 064", 84°) . (4.28)

Neglecting the second order terms and implementing Eq. (4.14). we obtain
BM)' ] v of \ afr\’
— | éq|q" +M¥éq=|—; ég+ | =] éq (1.2%)
[( dq dq/ 99
where a starred variable indicates the valve of that variable at the nominal solutiou.

oM\ " No oM\
fote tuat | (M ' ix with its ij- quals to Y 2 S
Note tua [\ 3 ) Sq] is a matrix with its ij-th element equals to 2 ( o ) S

.. . . of of . .
t,j=1.2,...,N,. Matrices — and - are the Jacobian matrices of the furce vector,

] 0q

f. with respect to the vectors of generalized coordinates and speeds, respectively.
4.4.1 Linearization about the Equilibrium State

When an equilibrium state is chosen as the nominal solution about which lineariza-

tion is carried out, Eq. (4.29) becomes
afr\’ af\"

M bg={—| 6q+ | —| & 4.30

9= 13q) *9*\5g) 9> (4.30)

where the mass matrix M and force vector f are defined in Section 4.2, Having the

. . . of 17—
expression for f, we can calculate the Jacobian matrices, — and —. They can be

dg

evaluated either numerically or analytically.

Since the static equilibrium states exist only for a system in a cireular orbit and in
the station-keeping stage, only the corresponding Jacobian matrices are given in the
fullowing sectivns. Because of the disadvantages of numerical differentiation (noise.
etc. ) they are obtained here analytically, For the sike of brevity. just the final
forms are given. Note that in the station-keeping phase, lengths of the tethers are no
longer part of the vector of generalized coordinates. Therefore the rows and columns
corresponding to them are excluded from the Jacobian matrices that are given in

Appendix D.
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Matrix [-(-)L]
iq

d . .
Matrix [Jt-‘-] is composed of (N ~ 1)? submatrices and can be written as follows:
q

oo n ]
day da; 7 dan-
wowm o
H | 9 dqu = dan- .
e , (4.31)
Ofn_y  Ofn_y Ofn_y
TR TR - TR

o, . . . , , L
where —= is an N, x N,, matrix in which each row is the partial derivative of each
Qi
clement of the vector £, with respect to the elements of the generalized coordinates

corresponding lo the tether k,qg. 1t is given by

of, N- = - PR
.~ o { 3 (P, + i T,) - d, + 02 {F; - 3 )ic}]
J J=1

+ (ﬁJAJqun - Jﬁjﬁnjbn)‘ [EibJ + Qﬁ {EJ —_ :j(ic'sj)ic}]}

—%{@%“ﬂ?h+nﬁvh—3¢¢kﬁ4yva+3%{&"

+ Q2 {Ft,, — 3(i-Fe, );c}]) day, + if;l /Uf,. a(.q}" (3‘2;‘) d.::,,}

— {(Fkn'Dr.. + jtu -4||ka,,) ' [Prk + Qf {Drk - :‘)'(i"pr’-' )i‘}]ll

+ (74 A De, = ina Do) [Py + 92 { Do, — 36Dy, )]}

1 aQu
—a 1,32
+ m dqu (4.32)
where matrices J and column vectors P are defined as follows:
(JDy,, dDy, dDy,,
R i
od ady, ody
P. = - Ty . = no = k ) 4,33
¥y ()q‘ ]);, 3q]. ’Pf-', (.)q’. (l 5 )

Expressions for these are given in Appendix D.
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. |of
Matrix [al-]

. . 1 0f .
Similarly Matrix [—] can be written as

a9
1 ﬂ',_ of, afy
f)f]] 3512 o aélN—‘l
o o oh
3 3o Ba
_3_f._ - qh qQq aAN-1 ‘ (4.34)
dq
Moy Oy Ofn_,
L Jq, 09 = Oqn-1 |
where
of,, it r ] .
F‘qk = -6knp"./(; .Dtn .‘R'tm dm“ - (Fk"Drli + ’l,;-4g;k.Db,.) .'Rl{k
1 0Q
— (i Ap — fipil RT ——lt 4.135
(PLAanr., FLFHDIJ..) Rbk + m (J(:'“ ' “ "')
and column vectors R are defined as
8d, ady, ody .
R, = —= Ry = ——— , Ry = —— . 4.3(
Tn (-)(':l& 1 Ibr| aqk t dq“ ( ')

Their expressions can also be found in Appendix D.

aQ

Jacoblan matrices d—Q and —

dq dq
Amoug the three components of the generalized forces Q,,. defined in Eq. (3.1), the
Jacubian matrices corresponding to Qo can be calculated if the explicit expression
uf Qg as a Tunction of the generalized coordinates is provided, Jacobian matrices
correspouding to the generalized aerodynamic forces Qg for a general case, are very
complicated to evaluate, Their calculations for a simple case, a two-body system, is
given analytically in Chapter 6. For a more complex system they should be calenlated

numerically.



Uising the previous formulation for the generalized forces due to the material
damping. Qp, here we can express the corresponding Jacobian matrices in the explicit

form. Let us rewrite Qp defined in Eq. (3.39) as
Qp=Cq , (4.37)

where the matrix C is a function of the generalized coordinates only. Since at the

equilibrium point q° = {0}, it is very easy to see that

aQo\" _ ac.)'_ e
and
6QD [ BC. c acol)c
— = — C—"' -=Ce . -.
(aq) (ac';“) +(o% :39)
Hence, the corresponding Jacobian matrices at the equilibrium point are simply given
by
aQp ’__
(5%) -0
€ ¢ e ... [0
9o\ _[2 (3Ug)|"_| [0 G .o 10| (4.40)
0q dq \ 9q S N
01 o] ... Cx.
where
EA, & 9 (0E.\ ,
C"— 2 0 aq:; (acln)d‘LN ' (L‘“)

4.5 Eigenvalue Analysis

Ouce the equilibrium point and the linearized matrix equation of motion of the
systemy about this particular solution are obtained, we can calculate the eigenfre-
quencis as well as the associated mode shapes governing the oscillations of the linear
svstem. In fact these frequencies and mode shapes describe the motion of the non-
linear system in the vicinity of the equilibrium point, as long as the linearization is

valid. By calculating the eigenvalues of the linearized system. one can analyze the
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stability of the system around the equilibrium point, in the linear sense. Clearly, this
analysis is valid for the motion of the system in the close neighbourhood of this point.
This approach is used to analyze the stability of a tethered satellite system used in
atmospheric missions, in Chapter 6. To analyze the stability of the nonlinear system,
one must utilize a nonlinear approach such as Lyapunov's second or indireet method.
which is often very difficult to implement for a general case. With some assumptions,
this method is applied in Chapter 7. to control the motion of the system during the

inherent unstable retrieval stage.

Rewriting the linearized equations of motion, given by Eq. (4.30), in the following
form

M°6g + D*6q + K*6q = {0} , (1.42)

eigenvalues of the system can be obtained from the following algebraic equation,

det(AA-B)=0 , (4.43)

where
_ | M= 0] _| =D -K°¢ Iy
[ e[ ]

Since the order of the matrices A and B are 2N,, Eq. (4.43) leads to a polynomial of
order 2N, in terms of A, which in turn results in 2N, solutions for A. Corresponding

to each Ay, m =1,2,...,2N,, there is an eigenvector W, which is ubtained from

(AX, —B)W, =[0] . (4.45)

lu general A, and W, are complex variables and can be written as
Ay =+ iw, . W,=U,+/V, . (4.46)

where 7 = /=1, For a mechanical system, such as ours the cigenvidues and cigenvee-

tors are vither real or in a complex conjugate pair.
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The inaginary part of the n-th eigenvalue, wy, indicates the frequency of the
corresponding mode and the real part, 7,, relates to the damping ratio of this mode.
The stability of the linear system is evaluated by examining 7,’s. The system is

asymptotically stable if

<0, n=12,...,2N, , (4.47)
is marginally stable if

ms0, n=12,...,2N, , (4.48)
and is unstable if at least one of the eigenvalues has positive real part, i.e. ,

r;:,- >0 . (4.49)



Chapter 5

NUMERICAL RESULTS OF
THE UNCONTROLLED
SYSTEM

5.1 Introductory Remarks

Based on the formulation developed in the previous chapters, & computer program
was generated. It is capable of handling two kinds of problems: (i} numerical inte-
gration of the equations of motion and (ii) eigenvalue analysis for small motions of
the system in the station-keeping phase. After discussing some aspects of the nu-
merical procedures and programming, typical numerical results are presented in this
Chapter. These results can be categorized in two groups; the first one is to validate
the formulation while the second one is to get an insight into the general dynamical

behaviour of multi-body tethered systems.

5.1.1 Comments on the Numerical Procedures

After obtaining an equilibrium state of the system, eigenvalue analysis is carried
out by calculating the eigenvalues of the linearized system. The static equilibrium
equations (Eqs. (4.20)) are solved using the Newton-Raphson method for a set of
nonlinear algebraic equations. Once the equilibrium state has been obtained, matrices

A and B in Eq. (4.44) can be calculated. Eigenvalues of the system are then evaluated
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from Eq. (4.45), using the QR algorithm. Computation of the eigenvalues was found
to be fast. As an example, the eigenfrequencies of a 17-body system, in which every
elastic tether was discretized using 6 shape functions, were obtained in 66 seconds
on a 486-DX2-66 PC computer. Of course the execution time depends on different
variables such as: proximity of the initial guess to the equilibrium state, system

parameters, load distributions, etc.

Integration of the equations of motion was very time consuming, because of the

fullowing main reasons:

e The dynamical model involves many generalized coordinates. The computing
time is dramatically increased with the increased number of generalized coordi-

nates.

¢ The set of equations of motion is stiff in the numerical sense, because the time
constants of the system vary by several orders of magnitude. For a multi-
body satellite system the vibrational frequencies are much higher than those
of librational motion. The difference becomes larger during the initial period
of deployment and final period of retrieval, when the lengths of the tethers are
short. Therefore to handle the integration, the step size must be chosen to be

very small to expect a correct result.,

e Since the mass matrix, M, and force vector, f, are time and generalized coor-

dinate dependent, Eq. (4.1) must be solved at each time step to obtain .

Not much can be done about these facts. One could try to model the system with
as few degrees of freedom as possible to represent the actual dynamics of the system
reasonably.  Using appropriate shape functions is the best approach to reduce the

order of the system.

In order to solve the set of equations given by Eq. (4.1). which are linear in terms
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of §, an LU decomposition method is used first. Integration of the stiff diffcrential

equations is then accomplished by implementing Gear’s method.

5.1.2 Remarks on the Programming

Prior to deriving the equations of motion of an N-body TSS system as outlined in
Chapter 2, a symbolic program, using the symbolic manipulation language MAPLE-
V, had been developed. This program is capable of deriving the governing equations
of motion for the system under consideration symbolically and then transfer these
equations to a FORTRAN code for simulation and numerical purposes. Although
the program can be used for an arbitrary number of bodies in principle, because of
available hardware restrictions, it encounters difficulties with a system with either a
large number of bodies or a large number of elastic degrees of freedom. That is because
all the algebraic tasks such as integration in the energy expressions and differentiation
in the Lagrange's method, are left to the computer and MAPLE-V to handle. These
tasks are very time consuming and need a reasonably high speed computer with an

appropriate memory space, while all calculations for this thesis were carried out on a

486 PC.

Difficulties with the above-mentioned symbolic program moti;lated the present
formulation and generation of a numerical program, written in the FORTRAN lan-
guage. However the symbolic program was used to double check the results of the
numerical program. This was done in addition to comparing the results of the nu-
merical program with those of other investigators for some simple cases for validation

purpose.

Evaluation of the integral terms associated with the tether mass and elasticity,
appearing in the force vector (Eq. (4.10)), mass and Jacobian matrices (Egs. (4.9),
(4.32), and (4.35)), is the most challenging and time consuming part of the numerical

task. For example, computation of the force vector and mass matrix of a three-body
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TSS with 18 degrees of freedom for a given state takes 22.1 seconds on a 436/66
PC computer, if Simpson’s rule with 128 divisions is used for numerical integration.
This many divisions are needed to get six-digit accuracy. However it takes only 0.16
seconds if those integral terms are excluded. Thus one has to pay a heavy penalty
for considering the small contributions from these integrals associated with the tether

mass, if they are going to be evaluated by numerical routines.

Indeed this fact makes the numerical integration of the differential equations of
motion very time consuming, if not impossible at times. It needs to be overcome
somehow, The conventional way to tackle this difficulty is, if possible, to break the
integrals into the summation of several smaller integrals, which need to be calculated
only once. These smaller integrals are computed at the beginning of the program.
However, that is almost impossible in the present case, because of the large number
of thesc integrals, say over a hundred, and the very complicated and lengthy relations

resulting from the breaking up the original integrals.

Hence, to solve this problem, advantage was taken of the ‘translate’ feature of
MAPLE-V. Since the above mentioned integrals have similar form for all the tethers,
- one can calculate them for a general case analytically in MAPLE-V. Then the results |
are translated to some FORTRAN files, which are used as required subroutines in
the numeric program. In order to make this calculation possible, the number of
lougitudinal and transverse degrees of freedom must be known. In fact this number
is the corresponding maximum allowable number of elastic degrees of freedom of a
tether in the numeric program. Here 2 is chosen as this maximum number in each
direction.  Although 2 elastic degrees of freedom in each direction is a reasounably
practical number in dealing with a rigid-elastic system, it imposes a large restriction
on the fidelity of modelling the tether flexibility. To remove this constraint one can
increase it to a new number, say 3 or 4, and obtain the required FORTRAN subroutine

by re-exccuting the MAPLE-V program, written for this purpose. However a larger
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number could not be chosen, because of the limitation of symbolic computation on a
PC. To overcome this restriction. a numerical trick was used so that any large number
of elastic degrees of freedom, say 10 in each direction, can be considered. It will be

discussed in Section 5.2; case 3.

Although the output FORTRAN files resulting from the MAPLE-V program have
large sizes, approximately 200 K-bytes, the computation time is much smaller than
that for the numerical integration. For the example mentioned earlier, computation
time of the force vector and the mass matrix decreases from 22.1 seconds to only 0.2

second, using this approach.

5.2 Eigenvalue Analysis

In this section results of several cases, considered by other researchers, are used
to validate the formulation first. Then a couple of new cases, that cannot be handled
with the previous investigations, are presented to show the capability of the present

work to analyze a multi-tethered system with a large number of flexible tethers,
5.2.1 Validation

One cannot find in the literature results of an eigenvalue analysis corresponding
to a multi-tethered system considering longitudinal as well as transverse oscillations

of the tethers. Thus the following three cases are considered for comparison:

(i) eigenfrequencies of the librational motion (rigid-body motion) of a four-body

system studied by Misra and Modi [65];

(i1} eigenfrequencies of a three-body tethered system undergoing transverse oscilla-
tions but no longitudinal motion, studied by Kumar et al. [64];
(ili) non-dimensional planar eigenfrequencies of a two-body tethered system obtained

by Pasca and Pignataro [26] which include both longitudinal and transverse

vscillations,
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In all cases the system is in a circular orbit and in the station-keeping phase.

Case 1: Librational Frequencies of TECS

Table 3.1 shows the comparison between librational frequencies obtained from
the present formulation and those of Misra and Modi |65] for a four-body TSS, called
Tethered Elevator/Crawler System (TECS). The system shown in Fig. 5.1 consists
of a Space-Station (mg), lower and upper platforms (m; and m4) and an elevator
(m3) between the Space-Station and the upper platform. The following parameters
were chosen by Misra and Modi [65]: m, = m4 = 104 kg, mp = 10° kg, m3 = 10°
ke, ¢ = €2 + €3 = 10 km; f2 was varied. Corresponding in-plane and out-of-plane
frequencies are shown in Table 5.1. The frequencies have been non-dimensionalized
by dividing them by the orbital frequency so that, the results are valid for any orbital
altitude. The second and third column of the Table show almost exact agreement of

the results for the in-plane frequencies.
Misra and Modi have shown that the in-plane and out-of-plane librational fre-

() - (2" o

where wo, and wy; are the j-th out-of-plane and in-plane frequencies, respectively,

quencies are related by

while €2 is the orbital frequency. This relation holds for the results obtained from

the present formulation as shown in the last column of the Table.

Note that the lowest in-plane and out-of-plane non-dimensional frequencies are
equal to 1.7321 (= v/3) and 2, respectively, which are the same as those of the single-
tether case. In fact, the tethers are aligned while oscillating with these frequencies
and the system behaves like a single-tether system. It may also be noted that the
third librational frequency is substantially higher than the other two and is associated

primarily with the transverse motion of the light elevator.
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Table 5.1: Non-dimensional librational frequencies of TECS; my = 10" kg, my = 10°

kg, m3 =10 kg, my; = 108 kg, &, = 108 m, £, + (3 = 10° m.

{y m Wy Wwo “’Jn: 1
[65] Thesis Thesis || Thesis

L7321 ] 1.7321  2.0000 Jj 1.0000

50 1.8972 1.8972 2.1446 || 1.0000
245.6908 | 245.6908 || 245.6928 || 1.0000

1.7321] 1.7321 2.0000 || 1.0000

1000 1.8974 1.8974 2.1448 || 1.0000
DT.T848 | 57.7T849 || 57.7935 || 1.0000

1.7321 1.7321 2.0000 || 1.0000

2000 1.8975 1.8975 2.1449 ([ 1.0000
43.3548 | 43.3548 | 43.3663 || 1.0000

1.7321 1.7321 2.0000 | 1.0000

3000 1.8977 1.8977 2.145C || 1.0000
37.8576 | 37.8576 || 37.8708 || 1.0000

1.7421 1.7321 2.0000 | 1.0000

4000 1.8978 1.8978 2.1452 || 1.0000
354264 | 35.4264 35.4405 || 1.0000

1.7321 1.7321 2.0000 || 1.0000

5000 1.8979 1.8979 2.1452 || 1.0000
34.7246 | 34.7246 || 34.7390 {| 1.0000

1.7321 1.7321 2.0000 || 1.0000

6000 1.8930 1.8980 2.1453 || 1.0000
354552 1 354552 | 35.4693 ([ 1.0000

1.7321 1.7321 2.0000 || 1.0000

7000 1.8981 1.8981 2.1454 || 1.0000
37.9191 | 37.9191 37.9323 || 1.0000

1.7321 1.7321 2.0000 || 1.0000

8000 1.8981 1.8981 2.1454 || 1.0000
43.4605 | 43.4605 ]| 43.4720 | 1.0000

1.7321 1.7321 2.0000 { 1.0000

9000 1.8981 1.8981 2.1455 || 1.0000
57.9728 | H7.9728 | 57.9814 || 1.0000

1.7321 1.7321 2.0000 il 1.0000

9995 1.8982 1.8982 2.1455 || 1.0000
TT8.3286 | 778.3287 { 778.3293 {| 1.0000
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Table 5.2: In-plane dimensionless frequencies (w/f1.) of a 3-body system ({; + 0, = 10
km, my = 10% kg, my = 5 x 10° kg, m3 = 10? kg, p = 6 kg/m, EA = 61645 N)

Case 1: £,/8,=1/5 || Case 2: {;/€,=1/3 || Case 3: {;/€,=1/1

| Mode || Thesis | [64] [ Thesis | [64] Thesis [64] Type

[ 1 1.725 1.732 1.725 1.732 1.724 1.732 Lib.
2 6.503 6.506 5.692 5.694 5.164 5.166 Lib.
3 22,084 - 21.959 - 21.094 - Long.
4 80.535 - 70.817 - 63.867 - Long.
5 81.807 81.756 89.291 90.484 133.075 | 134.088 || Tran.
6 161.131 | 162.917 | 178.665 | 180.366 | 146.909 | 147.642 | Tran.
7 244.424 | 243.821 | 271.027 | 269.843 || 266.356 | 267.580 | Tran.
8 322,178 | 326.062 || 278.702 | 279.322 [ 294.268 | 295.183 | Tran.

Case 2: Eigenfrequencies of Transverse Oscillations of a Three-Body TSS

Table 5.2 compares the in-plane, non-dimensional eigenfrequencies (w/€).) of a
three-body tethered system obtained by the present formulation, with the results of
Kumar et al. [64]. The system consists of three point masses, m; = 10° kg, m, = 5000
kg, my = 10* kg, the two tethers having a linear mass density of p; = p; = 6
kg/km and axial stiffness EA; = EA; = 61645 N, Three different cases of length

conligurations are considered, assuming {; + €, = 10 ki,

Although the linearized in-plane librations and elastic oscillations of the system
are coupled and every eigenfrequency contributes to the motion of all the generalized
courdinates, the coupling is fairly weak so that each frequency can be associated
exclusively with either libration or one longitudinal or one in-plane transverse mode.
This can be verified by observing the corresponding eigenvector. Thus the modes are

vasily identitiable and are shown by the label “Type’ in the last column of Table 5.2.

Since Kumar et al. [64] did not consider longitudinal elastic oscillations of the
tethers in their analysis, they have no eigenfrequencies corresponding to these modes

of the system. Although the results of the present formulation are in good agreement
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with those of Ref. [64], the small differences can be explained as folluws: ignoring
the longitudinal elastic oscillations leads to omitting the gyroscopic effects in the

linearized form of in-plane transverse motion.

Case 3: Eigenfrequencies of a Two-Body Tethered Satellite System

Tables 5.3 and 5.4 compare the non-dimensional planar eigenfrequencies of different
cases of a two-body tethered system obtained from the present formulation with those
of Pasca and Pignataro [26]. The results are for single-tether systems, however, there

is a very interesting point to note, showing the capabilities of the present {ormulation

for multi-tether systems.

As was mentioned in the previous section, the number of elastic modes of a tether
in each direction was limited to two in the computation due to symbolic manipulation
limitation. It means that each tether at most could have six elastic DOFs. With this
limitation, one can expect to obtain only the first two longitudinal and the first
two transverse eigenfrequencies of the in-plane motion of a two-hody (single-tether)
system, and the higher frequencies of the system can not be caleulated. However,
using what we call a segmented-tether model, i.e., by breaking the tethers to a number
of smaller tethers and putting a very small mass at the connection points of the smaller
tethers, one can obtain the higher frequencies of the system to whatever order one
desires, limited only by the numerical computation capability of the facility being
used. This in fact shows the very powerful feature of the present formulation in

handling multi-tether systems.

Table 3.3 compares the results of Ref. [26) and the present formulation, employing
a segmented-tether model, for a two-body tethered system with tether density, p =
5.76 kg/km, longitudinal stiffness, EA = 2.8 x 10* N, and various tether leugth and
mass combinations. The orbit is a circular one with orbital radius, R, = 6657 km.

As an example. the two-body tethered system in the first case (€ = 100 ki, my = 10°
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Table 5.3: In-plane dimensionless frequencies (w/Q.) of a 2-body system (p = 5.76
kg/km, EA = 2.8 x 10° N)

£ =100 km £=20km £=20 km
Mode | m, =10° kg m; = 00 m = 00 Type
my = 500 kg m, = 576 kg my = 115.2 kg
[ Thesis | [26] [ Thesis | [26] || Thesis [ [26]
I [ 1731 [ 1.794 [ 1.732 T 1.733 [ 1.732 | 1.742 [ Lib.

2 6.389 | 6.905 | 12.777 | 12.780 | 6.709 | 6.750 | Tran.
3 12.059 | 12.457 || 25.245 | 25.241 [ 12.747 | 12.811 { Tran.
4

5

17.879 | 18.269 |} 37.795 { 37.771 || 18.929 } 19.014 | Tran.

! 23.742 | 24.143 || 50.369 | 50.319 || 25.148 | 25.256 || Tran.
10 |l 53.344 | 53.807 Tran.
11 54.541 | 54.559 Long.
12 || 59.337 | 59.758 Tran.

kg, my = 500 kg) is represented as a 21-body system with m; = 10%kg, m; = .001
kgt = 2,...,20, my = 500 kg, and p; = 5.76 kg/km, {; = 5 kmz: = 1,...,20.
In addition to the three rigid DOFs, three elastic DOFs (one longitudinal, one in-
plane transverse, and one out-of-plane transverse elastic DOF) are considered for
each segment. In total, the system has 120 DOFs of which 20, corresponding to
the tether lengths, are not involved in the eigenvalue problem since the system is in
the station-keeping phase. It takes only 80 seconds to find the fixed point and the

cigenfrequencies of this system on a 486/66 PC computer.,

The first column of Table 5.3 shows the order of the eigenfrequencies, while the
last column represents the type of the modes. As can be seen the results for the
second case (€ = 20 km, my = co,my = 576 kg) agree better than the two other
cases, because the parameter ¥ = pl/m, defined in Ref. [26}, which has an important
vole in their analysis and the employed perturbation method, has a much lower value
in this case than the other cases. As mentioned by the authors in Ref. [26], their

results are more accurate for smaller 4, which agree better with the present results.



Table 5.4: In-plane dimensionless frequencies {(w/€.) of a 2-body system (f = 20 km,
p=5.76 kg/km, EA = 2.8 x 10° N)

my = 10° kg my = 10° kg m, = 500 kg
mq = 500 kg my = 10° kg mq = 500 kg
Thesis | [26] || Thesis | [26] [ Thesis | [26]
1732 | 1738 || 1.718 | 1.728 | 1.732 | 1.742 || Lib.
11.956 | 11.993 || 14.432 8.486 | 8.341 || Tran.
23.578 | 23.644 |1 113.430 | 113.385 || 16.507 | 16.191 || Tran.
35.286 | 35.368 || 227.023 | 226.736 [| 24.637 | 24.155 || Tran.
47.019 | 47.112 || 340.934 | 340.095 || 32.799 | 32.142 || Tran.
455.167 { 453.455 Tran.

Mode Type

] | ] W2 2] —

Table 5.4 shows the effect of the mass-ratio of the end-bodies on the in-plane
eigenfrequencies of a typical two-body tethered system. Since v has reasonably small
values in these cases, the results given in [26] are accurate and are in good agreement
with those of the thesis. However, in one of the cases, the second mode, which is a

longitudinal mode, has somehow been missed in Ref. [26)].

5.2.2 New Results for Multi-Tether Systems

Vibrational Frequencies of TECS

Table 5.5 presents the eigenvalues of the TECS in both the absence and presence
of material damping of the tethers. Here the mass of the end-bodies and lengths of
the tethers are slightly different from those of the previous case (i.e. Table 5.1). [u
addition, the tethers are considered to be elastic and massive. The new parameters
are chosen as follows: m; = 104 kg, m; = 3 x 10° kg, ma = 5000 kg, mq = 10" kg,
f{, = 105 km, {; = | km, &a = 9 km. The tethers have a lincar mass densily of
g = p2 = pa = 6 kg/km and an axial stiffness of EA; = FA; = EA3 = 61575.2
N. The system is in a circular orbit at an altitude of 450 km, and is in the station-
keeping phase. The elastic oscillations of each tether are represented by 3 elastic

DOFs. one longitudinal. one in-plane and one out-of-plane transverse elastic mode,
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Table 5.5: Eigenvalues and nominal stretches of the tethers of TECS (m; = 107 kg,
my = 3 x 10° kg, ma = 5000 kg, my = 10% kg, & = 10.5 km, £, =1 km, &3 = 9 km,

p =106 kg/km, EA =61575.2 N)

[n the absence of In the presence of
Mode . . . . Type
| material damping material damping

L L ____ System eigenvalues 1 “
1 [ 0&x 1.7247i[[-0.00001 £ 1.7247i [[ I.P. Lib.
2 0+ 1.78391 || -0.00001 £  1.7839i || LP. Lib.
3 0+  2.0000 i 0x 2.00001 | O.P. Lib.
4 0L 205121 0 £ 2.0512 1 || O.P. Lib.
5 0 §.4160 i { -0.00001 £ 8.41601i | LP. Lib.
6 0+ 8.4768 i 0x 8.4768 1 || O.P. Lib.
7 0% 21.79901i || -0.26528 = 21.7974 i | Long.
8 0+ 2270671 -0.28789 £ 22.70481i || Long.
9 0+ 68.89321i 0+ 68.89321 | LP. Tran.
10 0+ 6890041 0+ 68.90041| O.P. Tran.
11 O+ 784984 | -0.00000 = 78.49841i || 1.P. Tran.
12 0+ 7850471 0% 78.50471 || O.P. Tran.
13 0£ 105313411 -6.20478 £ 105.1304 i || Long.
14 0+ 72318141 0+ 723.18141 || L.P. Tran.
15 0+ 723.18211 | 0% 723.18211 1 O.P. Tran.

[ Tether Stretches: £, = 67.835 m, &5, = 6.464 m, &5, = 55.351 m

Therefore the complete attitude motion of the system is described by 15 DOFs. The
effect of material damping of the tethers on the response of the system is studied by
introducing a damping ratio of £ = 1.2% based on the first natural frequency of the

longitudinal elastic oscillation of the system.

Eigenvalues of the system in the absence and presence of material damping of the
tethers are given in Table 5.5. At the bottom, the longitudinal stretches of the tethers
in the equilibrium position of the system are given. The material damping affects the
in-plane longitudinal modes strongly, but the in-plane transverse modes through a
weaker coupling, Thus the eigenvalues associated with the transverse osciilations

have much smaller damping (negative real parts). That is because the steady state
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longitudinal is non-zero. This can also be observed in the dynamical response of
the system given in Section 5.3.2. Since the material damping affects the longitudinal
oscillations of the tethers through first order terms, while the in-plane and out-of-plane
motions are completely decoupled in the linear sense, the material damping has no
effect on the out-of-plane frequencies. Also one can notice that the material damping,
lere, has almost no effect on the natural frequencies of the system (imaginary parts),

but has a greater effect on the real parts of the eigenvalues associated with the higher

modes of the system.

Case 1: Eigenfrequencies of a Ten-Tethered TSS

Table 5.6 presents some results for a 10-probe tethered system deployed from the
Shuttle and compares the first ten longitudinal and the first ten transverse frequencies
with those of a single-probe case. The two-body system is exactly the same as the
first case of Table 5.3, while the multi-body system consists of m; = 10° kg, m; = 500
kgi =2,...,11, p; =5.76 kg/km, EA; =2.8x10° N2 =1,...,10, & = 55 km, {; = 5
km. = 2,...,10. Thus the total tether length is the same (100 km). Both systems
have the same orbital motion. One can observe many more low-frequency elastic
modes for the 10-probe system. It is also noted that the in-plane and out-of-plane
transverse frequencies are related by (wo /€. )f = (wy /Qc)'f 4+ 1. Note that because of
coupling between elastic oscillations and librations of the tethers, this relation, which

is exact in the case of rigid tethers, turns to be an approximation.

5.3 Transient Dynamics

Several simulations of three-dimensional transient dynamics of three-body and
four-body tethered systems were carried out using the nonlinear equations of motion
(Eq. (4.1}) derived in the previous chapters. Among them some were chosen so as to

verify the formulation and the integration program.
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Table 5.6: The first ten non-dimensional longitudinal and transverse frequencies
(w/9Q,) of 2 2-body TSS and an 11-body TSS (p = 5.76 kg/km, EA = 2.8 x 10°
N).

Case 1: Single-Probe TS3 Case 2: Ten-Probe TSS
Mode my = 10° kg, m, = 500 kg my = 10° kg, m; = 500 kg
£ =100 km £, = 55 km, {; = 5km
Longit. Transverse w:ﬂ_uz Longit. Transverse w:f:w:
wp wo ¢ Wi wWo <

54.541 | 1.731 | 2.000 | 1.002 || 24.209 | 1.726 | 2.000 | 1.010
208.026 | 6.388 | 6.466 ] 1.002 || 93.781 | 4.882 | 4.984 | 1.005
389.134 ) 12.059 | 12.101 | 1.002 || 174.065 | 8.356 | 8.416 | 1.005
577.896 | 17.879 | 17.907 | 1.002 [ 251.930 | 11.940 | 11.982 | 1.005
771.800 | 23.742 | 23.763 | 1.002 [ 321.395 | 15.605 | 15.638 | 1.006
971.095 | 29.627 | 29.643 | 1.002 || 370.592 | 19.331 | 19.358 | 1.006
1176.628 | 35.528 | 35.542 | 1.002 || 412,193 | 23.039 | 23.061 | 1.007
1389.404 | 41.445 | 41.458 | 1.002 || 463.049 | 26.241 | 26.260 | 1.008
1610.410 | 47.383 | 47.393 | 1.002 || 508.205 | 28.699 | 28.716 | 1.008
1840.492 | 53.344 | 53.354 | 1.002 [ 542.257 | 32.367 | 32.383 | 1.008

E@O’J-JGEU‘J‘-‘MM'—-

5.3.1 Verification: Librational Dynamics of a Three-Body
TSS

Transient dynamics of two different three-body tethered satellite systems with rigid

and massless tethers are considered here, in order to verify the formulation.

Case 1: Constant Lengths

The first system is the same as the one that Misra and Modi [65) considered. 1t is in
the station-keeping phase and has the following parameters; m; = 10° kg, m, = 500
kg, 2y = 107 kg, £, = 200 m, £, = 300 m. It is known that the motion of the system
about the local vertical is composed of stable oscillations involving various natural

{requencies. These natural frequencies for the present system are as follows:

LW , w
In-plane frequencies: F’l = 1.7321 , ﬂ_h = 15.2139 ,
¢ c
. W, -
Out-of-plane frequencies: —L = 2 , =02 _ 152467 ,
Qc Qc
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where they are nondimensionalized using the orbital frequency, Q.. Figure 5.2-a
shows the response corresponding to small initial deviations from the local vertical:
61 = 2°,82 = 5°, ¢, = 5° ¢2 = 4°. The oscillations are stable and identical to those

obtained by Misra and Modi [65], thus validating the present formulation.

Figure 5.2-b shows the response of the above system to the following set of initial
conditions: 8, = —89.95°%, 6, = —89.95° ¢, = 2.9°, ¢o = 2.3°. In fact these initial
conditions are small deviations from the local horizontal equilibrium state, which is
an unstable one. One might think that the system will move to the stable vertical
configuration, which is not the case. It is true only for a specific energy level; other-
wise, end to end tumbling takes place. As can be noticed in Fig. 5.2-b the nonlinear

system keeps on rotating in the orbital plane, while the out-of-plane motion remains

small.

Case 2: Variable Lengths

The second system is the system that Monshi et al. |50] studied. They obtained
numerical simulation results for uncontrolled exponential retrieval of the system. Here
in addition to exponential retrieval, exponential deployment is also considered. In
order to compare the results with those of Monshi et al. [50], the length rate was

chosen as:
éj = Cchfj - (5.2)

where ¢; is the exponential rate corresponding to the j-th tether. The negative value
for c; results in retrieval of the j-th tether while the positive value corresponds to its

deployment,

The system consists of three bodies with the following masses; m; = 10° kg ,
me = 5 x 10° kg, and m3 = 10* kg. In the deployment case the exponential rates, c;'s

were chosen as ¢; = ¢ = 0.3, while for retrieval they were chosen as ¢; = —0.1 and
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¢z = —0.5. The corresponding initial configuration of the system is given in the figure
captions. Figures 5.3 and 5.4 show the pitch and roll angles as well as the length
variation of the two tethers during the deployment and retreival phases, respectively.
The pitch motion during retrieval are compatible with those of Monshi et al. [50],
while the other results were not obtained by them. As can be noticed, the system is

stable in the deployment case, while it is highly unstable in the retrieval one.

5.3.2 Numerical Simulation of TECS

With some confidence that the formulation and coding are correct, a four-body

system (TECS) is now considered.

Case 1: Constant Lengths

Simulation up to 17000 sec (~ 3 orbits) of the station-keeping phase of TECS
was carried out with a set of initial conditions which perturb the system from its
equilibrium position and excite its general dynamics. The system parameters are
exactly the same as those used to determine the system vibrational frequencies in

Section 5.2.2. The initial conditions were chosen as follows:

91 =.07 ra.d(4.01°), ¢1 =.05 rad(2.86°), {u = 64.0 m M= 10.0 m, ¥ = 00m
82 = .03 rad(1.72°), ¢ = .04 rad(2.29°), £ =6.00m, 1y =0.0m, vy =0.0m
63 = .03 rad(1.72°), ¢3=.04 rad(2.29°_), €3 =520m, 13 =0.0m, v33 =50m

Figure 5.5 shows the time history of some of the generalized coordinates of the system
in both the absence and presence of material damping . The effect of material damping
on the longitudinal oscillations of the tethers is quite evident. However, as has been
mentioned before, it has almost no effect on the transverse oscillations of the tethers.
It can be seen that some higher frequencies of the transverse oscillations of the tethers
are damped out even in the absence of material damping. One might explain this in

terms of numerical damping, arising from the numerical procedures.
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Case 2: Variable Lengths

Figures 5.6 and 5.7 display simulation results up to 18 orbits for librational motion
and 2.5 orbits for vibrational motion of the tethers for a two-phase operation: de-
ployment of the elevator in approximately one orbit followed by the station-keeping
phase. The elevator (mj3) is deployed from the space-station by increasing the second

tether length. The following strategy was used for this operation;

= () + —A# (t - %sin(z%t ) t<T
& = (&) = (&2)0 + ALy t>T (5.3)

I

my = (ma)o — p2[02 = (£2)0]
where (£;)o = 1 km, Af; = 9 km, and T = 5600 s for the present case. The same

parameters were chosen as in the station-keeping phase and the initial conditions were

set as follows:

6, = .07 rad(4.01°), ¢, = .05 rad(2.86°), &) =64.0 m, 5y, =50.0 m, »,; =10.0m
0; = .03 rad(1.72%), ¢, = .04 rad(2.29°), €1 =6.00m, nn =10.0m, vy =500 m
0; = .03 rad(1.72°), ¢3 = .04 rad(2.29°), &3 =52.0 m, 9y =50.0 m, vy =10.0m

The deployment strategy is shown in Figs. 5.6-a,b while the Hamiltonian of the
system is shown in Fig. 5.6-c. Note that during the station-keeping phase the Hamil-
tonian is conserved which gives some confidence in the formulation and numerical
analysis. Examining the results shown in Figs. 5.6 and 5.7, one can see that the de-
ployment here has a greater effect on the librational and vibrational motion of tethers
2 and 3 rather than on the first tether. It can be explained by a very small effect
of deployment on the position of the centre of mass and consequently on that of the
lower plétfurm. The Coriolis effect on the librational motions can be seen clearly
from Figs. 5.6-e,f. It can be seen that during the accelerating period these motion
tend to grow, while it is the converse for the decelerating period. Therefore it is
evident that the librational motion can become very large, even in the deployment

phase, for sume deploying rates. Because of the very close librational frequencies of
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the system in the final station-keeping phase, there is a beat phenomenon between
the librational motion of the first tether and the other two tethers, which can be seen

in Figs. 5.6-de,f

Fig. 5.7-a shows the longitudinal oscillations of the tethers. It can be seen that
during deployment, the longitudinal stretches of tethers 2 and 3 are affected more
than that of tether 1. This is because of increasing tension in these two tethers due
to the deployment of ms and my to large distances from the centre of mass. Typical
transverse vibrations of the tethers, usually oscillatory motions with high frequencies

are shown in Fig. 5.7-b. The shorter the tether length, the higher the frequency.

5.4 Microgravity Evaluation

A variety of experiments, dealing with material processing, pharmaceutical re-
search, have been proposed for the Space-Station microgravity laboratory. The
threshold levels of acceleration noise for such experiments range from 102 to 1078 g,
Tether Elevator/Crawler System (TECS) can be used for this purpose. Microgravity
experiments can be carried out onboard a stationary microgravity laboratory (SML)
that is attached to the Space-Station. In order to minimize the gravity gradient accel-
eration onboard this laboratory, the centre of mass of the system must be as close as
possible to the stationary microgravity laboratory. The above range of microgravity
can be achieved by crawling the elevator between the Space-Station and the upper

platform and controlling the tether lengths.

Microgravity acceleration of body i located at R; measured in the orbital frame
is defined as the difference between the absolute acceleration of the body and the
acecleration acting on the body resulting from the Earth’s gravity, i.e.

GM
IR. + R;[?

Note that for a circular orbit, when R; becomes zero. i.e. the i-th body is located at

a;= ﬁo + ﬁ. + (ﬁc + ﬁ-e) ' (5.4)
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the origin of the orbital frame which is assumed to be coincident with the centre of

mass, the microgravity acceleration becomes zero.

Here microgravity fluctuation of the TECS, which is initially located at its equi-
librium position along the local vertical, due to application of thrusters of the Space-
Station is studied. The system parameters are exactly the same as those of Section

5.3.2. The thruster exerts the following thrust in this operation;

T =0 t<tip,
= wlt—to)
T=Tocosuj1 ta<t<ty,
1 — o
T =0 ti<t<ta,
. Tp #w(t—to),
T=—cos——k; ly<t<ly,
20 ta — g 1 2 3
T=0 t>ty,

where Tp = 5000 N, to = 720 s, t; = 840 5, o = 1440 s, and t4 = 1560 s.

Figures 5.8 and 5.9 show the librational and some of the vibrational motions of
the tethers, respectively. Microgravity variation at the Space-Station as well as the
elevator level is shown in Fig. 5.10. As can be seen the system is initially at rest, as
far as the attitude motion is concerned. Because of the thruster force, the librational
motion as well as the vibrational motions of the tethers are excited. Consequently,

microgravity acceleration at the body levels fluctuate,

One can appreciate the value of this formulation when needs to compare the
results for the case in which the elasticity of the tethers are ignored with those when
it is considered. In Figs. 5.8 and 5.10 the solid-lines represent the flexible tether case
while the dotted-lines correspond to therigid tether case. Comparing the microgravity
acceleration at the Space-Station and elevator levels, we can say that the closer to the

centre of mass of the system, the more affected is the microgravity by the flexibility
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of the tethers. It can be seen that at the Space-Station level, where the laboratory is
Jocated, the radial component of the microgravity acceleration (x-component}, is more
affected by the tether oscillations than those of the transverse components (y and z-
components). That is because, in general, the transverse components of microgravity
acceleration are mostly influenced by the librational as well as the vibrational motions
of the tethers, but at this level the transverse oscillations of the tethers are small and
have no significant effects on the transverse component of microgravity. However,
as can be seen the x-component, which is the most important component in the
microgravity experiments is highly affected by the longitudinal oscillations of the
tethers, Hence we can conclude that ignoring the flexibility of the tethers in evaluating

the microgravity accelerations leads to inaccurate results.
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106



(a) (b)

5.0 0
0.0 -180 -
=360 —
5.0
1 [ i I 1 |

50 0
0.0 — -180 —
. 250

5.0 0

5.0 3.0 1

0, (deg)

8, (deg)

P, (deg)
o
S
1 1 I 1 1

P, (deg)
[} l [ —r
[ I I ] L

T | T I T l T l '3.0 T I T ! T | T l
0 1 2 3 4

Non-Dimensional Time (orbits)

o
-
[ V)
(2]
3

Figure 5.2: Transient response of a three-body TSS, station-keeping: (a) 6,(0)

2°.05(0) = 5° 6, (0) = 5°, 65(0) = 4% (b) 6;(0) = —89.95°,08,(0) = —89.95°, ¢,(0)
2497, 0a{0) = 2.3°,

107



0~ 0 -
g g
g -107 2 -107
- iy
'20 I‘r T l T l '20 T |
0.17 0.1
g_ 0.0 gﬂ 0.0 -
& &
I B e N T
20 W
] 20 -
€ 3
- N 10 ~
1 X
o ] I T I I I lj o 1 I |7I T Fl I
0 1 2 3 4 0 1 2 3 4

Non-Dimensional Time (orbits)

Figure 5.3: Transient response of a three-body TSS, deployment: ¢,(0) = 20 m,
(,(0} =30 m, 6,(0) = 6,(0) = 0,,(0) = $,(0) = 0.1°; ¢; = ¢; = 0.3.

108



0, (deg)
g
1

0.12 4

0.00 —

?,(deg)

0.12 -

100 —

£, Gam)

.1
8.0 -
J

85 —
.

80
0.0

Figure 5.4: Transient response of a three-body TSS, retrieval:

L S
0.1 0.2

L]

|
0.3

|
04

9, (deg)

@, (deg)

£, (km)

120

60 —

30

0.12 —

0.00 —

-0.12 4

100 —

60 —

40 —

olo

0.1

Non-Dimensional Time (orbits)

6,(0) = 10 km,

({0} = 100 km. 8,(0) = 6,(0) = 0, 6;(0) = 62(0) = 0.1°; ¢, = =0.1. ¢, = —0.5.

109



a
40 (2) (b)
? oo .g -
;.- = 2o
| :%‘a' ’
40 V |
L
80.0 — : -
pm—y ! . %
E ‘i L =
F T | - l
‘ 1-.‘“;:' ] g gg
T T W " 38
60.0 — -
L] I 1 1 ‘ L I 11 I
25 -
] g i
) 0.0 - %” -
o gg
o
- =] .
25 - -
L B — T T 1
0.0 10 2.0 3.0 0.0 1.0 2.0 3.0

Non-dimensional Time (orbits)

Figure 5.5: Typical dynamic response of TECS with constant length: (a) in the
absence of material damping; (b) in the presence of material damping,

110



@ ®)

(m)

v

Out-of-plane tran,
oscill. of tether 1

N 4, (M

Non-dimensional Time (orbits)

Figure 5.5: Contd.

111



(a) (d)

10.0—|_ 5.0
£ £ il
T s

-12.0 -

(¢) )

E g -5.0
“o m -‘
hao) @ i
==t
-10.0 —
L l L [] ] T I 1] |
2.0 0.0 8.0 12.0 18.0

Non-Dimensional Time (orbits)

Figure 5.6: Typical dynamic response of TECS with variable length: (a) length
variation of tether 2; (b) deployment rate of tether 2; (¢) Hamiltonian of the
systeni: (d) in-plane libration of the tether 1; (e) in-plane libration of the tether 2;
(f) in-plane libration of the tether 3.

112



(a) ®)

780
100
= 7120
E
-
‘: X
w 66.0
60.0 .
' T
150.0
S
= 1000 E
'g' -
N
—
o —
w500
0.0
800 o0
E
8 =
.u' -5.0 T ‘l
80.0 1.00 1.10
T 'I— i —t_ |

0.0 10 20

Non-Dimensional Time (orbits)

Figure 5.7: Typical dynamic response of TECS with variable length: (a) longitudinal
oscillation of the tethers; (b) in-plane transverse oscillation of tether 2.

113



6.0 — 0.4

0, (deg)

0.0 - ._'E 0.0 -
e‘-

Non-Dimensional Time (orbits)

Figure 5.8: Librational motion of TECS due to the thruster force: —— rigid-tether
model, ..... fiexible-tether model

114



] 0.1 —
80 — .
7 — 0.0 o
E 7- £ i
= -
o N s 01—
60 — A
L I 13 I -012 [ I | I
9.0 —-' H 0.01
£ 751 £ 000
] b l
o 1 -0.01
6.0 — e
|l 0,02 -
4-5 ) ] 1 l L 1 L] I
- 0.1 -
70 S
3 | -
~- 604 E
N > 0.0~
i 5
50 J
40 ] I ] l -001 L I 1 I
0.0 0.5 1.0 0.0 0.5 1.0

Non-Dimensional Time (orbits)

Figure 5.9: Typical vibrational motion of TECS due to the thruster force.



0E+0
G ]
it 0E+0 P
© < ea
-6E-5
AE-4 2E-3
i g
-] 1E4 .-
-2E-3
0E+0
-3E-3
= 1E-5 5 OE+0
o o I
-] ]
" |
0E+0 1E-4
JE-4— 3E-2
-— r f—
2 2E-4- K-, 2E-3
';:5 - -
- ~
— 1E4 — {E3
0E+0
0.0 0.0

Non-Dimensional Time (orbits)

Figure 5.10: Microgravity acceleration components and magnitude of TECS at the
Space-Station and Elevator level: —- rigid-tether model, ..... flexible-tether model

116



Chapter 6

STABILITY ANALYSIS OF
SYSTEMS IN ATMOSPHERIC
MISSIONS

6.1 Introductory Remarks and Assumptions

As mentioned in Section 1.4, a tethered satellite system, which is normally stable or
marginally stable in the absence of any external forces other than gravitational force,
can become unstable due to the combined effects of the stiffness of the tethers and the
atmospheric density gradient. It is observed that there is no instability if one of these
two factors is ignored. So far the researchers have examined the role of aerodynamic
drag in their analysis and no study can be found that analyzed systematically the

role played by aerodynamic lift in the uncontrolled motion.

In this chapter, to start with, the stability problem for a single-tether system is
reviewed, considering only the aerodynamic drag on the system. It is then extended
to multi-tethered systems. The effects of aerodynamic lift on the stability of the
system is studied next. Since our objective is to examine the qualitative behaviour,
only a two-body, i.e. , a single-tether system is considered for this part of analysis.
It is expected that a multi-tether system will behave similarly. It is assumed that
the system is in the station-keeping phase and moves in an equatorial circular orbit

around the spherical Earth.
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6.2 Stability Analysis of Single-Tether Systems
6.2.1 Equations of Motion

In order to conduct our discussion here, let us assume that the system, shown in
Fig. 6.1, has a massless and straight but not rigid tether. Thus one has to use only

the first longitudinal mode shape, given in Eq. (2.56), to model the elastic motion of

the tether, i.e., !

u(z,t) = (%)E ) (6.1)

where, L is the nominal length of the tether and is constant. Since the system is
a single-tether one and is in the station-keeping phase, it has only three degrees of

freedom. The vector of generalized coordinates is then defined by
q=1{0,4,£}7 , (6.2)

where @ and ¢ represent the in-plane and out-of-plane librational angles of the tether,

respectively, while £ represents the total stretch of the tether.

ldentifying different terms in Eq. (2.71) for the present system, defining the lon-

gitudinal strain

€= % , (6.3)

as a new elastic generalized coordinate instead of £, and performing some algebra,

the equations of motion can be obtained as follows:

é—{l+¢) [4’2 + cos® ¢ (Qf +é)2 + 9 (3 cos? § cos® ¢ — 1)] + fit = mQ;," !

] o 2(0c+6)é Q

§ — 2tan¢ A 4 30%sin0cos = : :
an ¢ (Q, + 9) ¢+ ™ + 392z sindcos 0 L0+ (JPeos §

bl 2(‘& 2 P 2 .2 . . —- Qda »

o+ T + [(!l‘.+0) + 392 cos 0] sin decous ¢ = e ETEmr (6.4)

Note that since the system has only one tether, all subscripts corresponding to the tether number
are omitted in this section.
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where 1, is the equivalent mass defined by

mymy
my + ms

(6.5)

and Q, Q4 and Q, stand for the generalized aerodynamic forces corresponding to
the generalized coordinates, 4, ¢, and ¢, respectively. Using Eq. (3.22) they can be

written as

Qo = —(1 +¢)cosd 7,
Qo= (1+¢) Tk
Q. =~y , (6.6)

where i,,j,,l-(, are the unit vectors along the tether coordinate system and T is the

resultant aerodynamic torque about the centre of mass and is given by

- - t -
F=—(L-t)}, +0F, +[_(L_t.);r. dfy . (6.7)

In Eq. (6.7) f,, }'2 and d}’.t represent aerodynamic forces acting on the end-bodies
TTL]L
my + ma
the subsatellite with respect to the centre of mass and z. is the distance measured

and an element of the tether, respectively, £. = is the nominal distance of

from the centre of mass of the system along the unstretched tether downward. The

acrodynamic forces j",, f.g and dft are calculated using Eq. (3.8).

To write the generalized aerodynamic forces explicitly, which is needed for any
further anaiysis, the geometrical configuration of the bodies must be known. For the

sake of simplicity the following is assumed:

e The main satellite is at a higher altitude and above the sensible atmosphere
such that the aerodynamic force acting on it can be ignored.

e The aerodynamic force on the tether is negligible,

o The subsatellite consists of a sphere with an attached lifting panel.
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6.2.2 Linearized Equations of motion

In order to have the linearized equations of motion in the explicit form, only two
dimensional (in-plane) motion of the system is considered here. Nonlinear equations
of planar motion is simply obtained by removing the last line of Eqgs. (6.4) and (6.6)
and substituting zero for ¢ and ¢ in the other equations. Using Eq. (4.21) for a
single-tether system with the above-mentioned assumptions and the definitions of ¢

and @, one can find the equilibriuin states of the system from the following set of

nonlinear equations:

£a €e = 3(1 + &) cos? 4, = Qe

m.L m,L? "’

3 2 . QG -

2 2 = — %O 3 8

29,_. sin 26, = mA e {(6.8)

where the subscript e denotes the magnitude of a variable at the equilibrium point.

Using Eqgs. (3.10) and (3.11) the magnitude of the generalized aerodynamic lorces at,

the equilibrium point are given by

. Q!.e = Pe["- (Aavr'ue + Aplviflvl, cOos 'll)) '
Qs. = pel. (AsVeve + ALVLIVL sing) (1 +¢,) (6.9)
where
pe = poexp [la(l + €.} cosO,./Hy]

ue = RN — A)siné, ,
Ve = (e — A)[R.cos 0, — (1 +¢.)]

Ve=\/ue2+7)=2 3

Vi. = u.cosp + v, singp (G.10)

while ¢ represents the angle between the lifting panel and normal to the tether, as

shown in Fig. 6.1-b.
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Substituting for @4, and performing some algebra in conjunction with some ap-
proximation, one can show that the steady state angle 8, is obtained from the solution

of the transcendental equation

R} (0. — A)? exp (€. cosb./Hp) [A, cos b,

*)
51 20, = —-—-.——-,—
sn Smp L2

+ Ap|sin(0. + ¥)|sin(f. + ¢¥)siny] . {6.11)

Furthermore, the steady state strain is approximately given by

m,

te & ma(EA = 3m.LQ2co
+ Ayl sin(0. + ¥)]sin(8. + 1) cos ] + 3my LOZ cos® 9,} . (6.12)

s ) {PORE(Q., - A)2 exp (f. Cos at/HDJ [A_, sin @,

Considering small motion about the equilibrium point (8.,¢.), i.e.
0=0.+60 , e=¢.+bc , {6.13)
the linearized equations of motion of the system are given by:
u=(B+A)u (6.14)
where u is the state vector defined by
u = {86, 5¢,60,6¢}" . (6.15)

B is the Jacobian matrix of the system in the absence of aerodynamic forces, while
A is the contribution of aerodynamic forces in the Jacobian matrix. Matrix B can
he calculated either directly from Eq. (6.4) or from the general form of the linearized

equations of motion, Eqs. (4.30)-(4.36). Those matrices can be written as:

[ Znds ZwZs ZoZy+ ZwZa+ ZuZe ZoZy+ ZnZ:+ Z12Zs
A= Lsls 242y Z132) + Z1aZa+ 21525 VAYY AR ATV
0 0 0 0 }
| 0 0 0 0
) 2 i
0 —2& =302 cos 20, —3& sin 20,
Zy £A Zy
B=|2Z, 0 =3Z,0sin20, ——t 32 cos? 0, | (6.16)
10 0 o
0 | 0 0
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where

Zo =(1+¢) .

Z, = —pLo(l +e)sinb./Hy .

Z, =pl.cosb.[Hy .

Zs =—¢. ,

Z, = R — A)cost, .

Zs ==Ll +¢) .

Zg =—R.(. — A)sind, ,

Zy =—(R—A). .

Zg =1,

Zo =(AsVeve + AV Ve siny) fma (] + ¢.)

Z1o = pe (Agvou, [ Ve + 2A,|Vi | cos ¥ sin ) fmaL(l + )
Zi1 = pe (A0 Ve + 24,V | sin® ¥ + AV.) fmal(1 +¢.)
Ziz = pe (AsVev. + Ay|V, Vi, sin ) fma L(1 + )

Zyz = (AVeu, + A,\Vi |V, cos ) fma L |

Zra = pe (Asuc? Ve + 24, Vi cos® o + AVe) [l

Z1s = pe (Asvou [V, + 24|V, | cos i sin ) fmal . (6.17)

6.2.3 Zigenvalue Analysis

The formulation results for various cases in the absence of aerodynamic forces were
validated in Section 53.2. In this Section, we extend the validation to the formulation
with aerodynamic forces by comparing the results obtained here (suppressing the ont-
of-plane motion) with those of No and Cochran [36] and Onada and Watanabe [15]
fur a spherical subsatellite (that is with no lift). The following data have heen used

in their studies;

o radius of orbit R. = 6.6 x 10°% (m)



Table 6.1: Comparison of Results with other rescarchers

L tkm) Thesis No and Cochran [36) Onads and Watanabe {15)
== — _I" S
100 4,35 % 107% £ 2.26 x 1073 4.38 x 10~% % 2.28 % 10~ 415 x 107% £ 2.23 x 102
16 698 x 1071 4+ 2,04 x 1073 6.41 x 10717 4 2.04 x 107 -
14 -1.B0x 10712 £ 2,04 x 1073 || -1.83 % 10712 & 2.04 x 1073 .

o subsatellite mass m, = 300 (kg)
A =T7x107% (rad/sec)
EA =10% (N)
Cp =22
Aegy =10 (m?)
po = 1.38 x 1071 (kg/m®)
Hy = 6700 (m)

o angular velocity of the atmosphere
¢ tether stiffness

o drag coefficient

e acrudynamic effective surface

¢ reference atmosphere density at R,

o scale height

The same data are used here, excepting 4.;; and Cp. Since Cp = 2 for a sphere in
this formulation, we compensate for the difference by choosing A, = 11, so that the

product C'pA, remains the same. Also to make the comparison possible 4, is set to
mymy

my + ma

thuse of the above mentioned researchers are given in Table 6.1, It can be seen that

zero and it is assumed that m, = = my. The results obtained here and

the vigenvalue results are in good agreement.

Effects of EA, L, and R. on the stability of the system for different radii of the
spherical subsatellite (R, = 0.25 — 3.0 m) are shown in Figs. 6.2 and 6.3. Note that
the eigenvalues are nondimensionalized with respect to the orbital rate. The results
confirm what Onada and Watanabe [13] concluded in their paper. The system loses
stability if the tether stiffuess falls below a certain value or if the subsatellite is placed

at a sufficiently low altitude by either increasing L or decreasing R..
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6.2.4 Simulation Results

To obtain a better understanding of the problem some simulation resuits for in-
plane librational motion of a single-tether system are presented here. The system has

the following parameters:

R. = 6390 km, m. = m; =500ke, {, ~ L =100km. 4, =10m?.

po=6.139 x 1071 l-:g/1113 at 7., Hp=06700m .

and four different cases are considered:

e case I: rigid tether with no aerodynamic force;
e case 2: rigid tether with aerudynamic drag on the subsatellite;
e case 3: elastic tether with aerodynamic drag on the subsatellite (A = 10° N);

e case 4: same as case 3 but with FA =4 x 104 N,

Figure 6.4 shows the librational motion of the system due to small deviation
from its equilibrium point 2. It can be seen that the system is marginally stable in
rase 1. Adding aerodynamic effects to case 1 results in a new equilibrium point and
asvmptotical stability of the system. However, the system can be unstable, depending
on the stiffness of the tether, if elasticity of the tether is inchided (case 3 is stable,

while case 4 with a smaller EA is uustable).

6.3 Stability Analysis of Multi-Tethered Systems

Similar behaviour can be observed in the dvnamics of a multi-tethered system that
i= moving in a low Earth orbit. In the following, the eigenvalues and simulation results

for two different three-body systems are presented. The systems differ only in their

*Note that the equilibrium point differs from case to case because of the aerodynamic and elas-
ticity effects.
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tether stiffness. The system parameters are as follows:

R, = G600 km, my = 10° kg, my = 100kg, ms = 50kg, {; = 90km, {; = 10km,

A, = A, = 3w, py=138x 107" kg/m® at R., Ho = 6.7km, py = p = Gkg/km.

The mass of the tethers as well as their transverse oscillations are considered in
the analysis. For the first case, the tether stiffness is taken as EA; = FA, = 107 N,
while for the second one it is EA; = EA; = 10° N. Here only the in-plane motion is

studied and one longitudinal and one transverse mode are considered for each tether.

The equilibrium configuration and the eigenvalues are given in Tables 6.2 and
6.3 respectively, for the two cases. Eigenfrequencies of the system in the absence of
acrodynamic forces are also given in these tables. It can be seen that the systems are
marginally stable, when aerodynamic forces are not taken into account. Including
the air density gradient and the resultant aerodynamic forces leads to the instability
of system 1, in which the modulus of elasticity of the tethers is much lower than that
of system 2, Examining the eigenvectors of the unstable system, one can find that
most of the instability is predominant in the librational motion of the tethers. This
can be seen clearly in Fig. 6.5-a which shows the time history of librational motion of
tether 1 of the two systems. Typical time histories of transverse oscillation of tethers

! and 2 of the second system is shown in Fig. 6.5-b, which are stable.

6.4 Investigation of The Aerodynamic Lift Ef-
fects

The same configuration as that of Onada and Watanabe is used iu this investiga-
tion, except that a lifting panel is attached to the spherical subsatellite (Fig. 6.1-b),
in order Lo study the effects of the aerodynamic lift on the system stability. The
comparison is done by examining the real part of the critical eigenvalue (the one with

the lowest imaginary part), which is usually related to the swinging motion of the
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Table 6.2: Eigenvalues of system 1 (EA = 10* N)

In the absence of
aerodvnamic forces

In the present of
aerodynamic forces

0+ 1.7150¢

+1.0472 x 10792 4+ 1.761 14

0+ 5.0510: —3.0389 x 1079 £ 5.1246¢

0 £ 7.6318: —§.0668 x 10703 £ 778471

0+ 14.408¢ —1.2325 x 10792 & 14,4494

0 £ 22,196/ ~2.2157 x 10793 £ 25.66S:

0+116.30: —5.6389 x 1079 £ 117.31:
Equilibrium Point

gh = 0.001 02e = (.0°
€11, = 1350.5m, ez, = 33.07m
i, = 0.0, g, =00

m

6, = 3.26°, 0, = 12.03°
€11, = 1344.3m, €, = 26.37Tm
i, = 319.6m , 5, = 121.5m

Table 6.3: Eigenvalues of system 2 (EA = 10° N)

In the absence of
aerodynamic forces

In the present of
aerodynamic forces

04 1.7304:
0 £ 5.0195:
0 £ 7.5930¢
0 4 22.057:
0 + 45.4506:
0 £ 367.76i

I

Equilibrium Point |

—3.8775 x 107" + 1.7643
—2.8754 x 107% 4 5.15414
—6.2044 x 1079 £ 7.7690/
—1.8583 x 107% £ 34.433:
—2.0467 x 107% + 45.579:
—4.2271 x 1079 £ 369.17:

6y, = 0.0°, 0,, = 0.0°
€11, = 133.3m, €y, = 3.27Tm
mi. =0.0,ny, =00

¢, = 2.81°, 0, = 10.2¢°
€11, = 129.6 m, ¢y, = 0.24 m
M. = 267.0m, 1g), = 78.8m

e
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tether. The following parameters, which are more or less the same as those in the
previous cases are used in this analysis, while the other parameters vary as indicated

in the graphs:
m, 2 my = 500kg, A =7 x 10 %rad/s, Ho = 6667Tm, po = 1.13 x 107" kg/m®,

where po is the air density at R, = 6600 km. Since the aerodynamic force on the

tether changes the results only marginally, it has been ignored in the following.

Figure 6.6 shows the effects of the added panel and the surface area ratio, A,/A4,,
on the real part of the critical eigenvalue of the system, Re();), and its equilibrium
librational angle, @., for two different values of 1, which s the angle between the
panel and the normal to the tether. Here A, and A, represent the surface area of the
panel and projected area of the sphere (1 R?) , respectively. Each curve in the graphs
represents a typical }ralue of A, . Clearly, the system is unstable [R.(A) > 0] in the
absence of the panel (A,/A, = 0), but it becomes stable when A,/A, is sufficiently
large. The minimum value of A,/A; required for the stabilization depends on the
radius of the spherical subsatellite. Comparing Figs. 6.6-a and 6.6-b, one observes
that the effects of the lifting panel change with 1. For 1 = 145° the stabilizing effect
is larger than that for ¥ = 90° , while the changes in the equilibrium librational angle

are just the oppaosite, which is desirable.

Effects of 4 on the equilibrium librational angle of the tether and the real part
of the critical eigenvalue are shown in Fig. 6.7 for a typical value of ¥, and for two
different values of ¢ (0 and 0.8). Similar trends are seen in both cases. For a small
value of 7, the lifting panel makes the system more unstable. This is because the
panel produces a lift force which is more or less along the tether and increases the
tether tension, For larger ¢ this component reduces the tether tension and makes the
system stable. There is a jump point at ¥ = 160°, where the lifting panel is along the

relative velocity, The most appropriate value of ¥ lies between 130° and 150° where
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the stabilizing effect is greater and changes in 8, are smaller.

The effect of changing the parameters EA, R, and L, in the case of a sphere with
an added panel is shown in Fig. 6.8. Figure 6.8-a shows that the stabilization effect
of the aerodynamic panel is greater when the main satellite is located at a lower
altitude. Comparing the curves in Fig. 6.8-b, one concludes that the more flexible
the tether, the greater is the stabilization effect. Also, it is concluded from Fig, 6.8-c

that the stabilization effect is usually larger for a longer tether.

Simulation results, shown in Fig. 6.9, support the above discussion. Time histories
of the swinging motion and elastic oscillation of the tether for the case of a spherical
subsatellite without any lifting panel are given in Fig. 6.9-a. The effect of adding
a panel is shown in Fig. 6.9-b, where the system has been stabilized without much

change in its equilibrium point.

Aerodynamic lift also strongly affects the stability of the sysi.em in the case of non-
spherical subsatellites. Figure 6.10 shows this for a cylindrical subsatellite rigidly fixed
to a tether, making an angle ¢ with the tether (Fig. 6.10-d). Each curve represents a
different H .,/ R, (height/radius) ratio, while A, = 2H 1 Roy is kept constant. For
a given angle ¢ , decreasing Hyf Reyt means producing more lift and consequently

increasing the stability of the system, which can be seen in Fig. 6.10-a,b,c.

Since the in-plane and out-of-plane motions are decoupled in the linearized case,
one expects the in-plane characteristics of the system to remain unchanged when the
out-of-plane motion is added to the two dimensional case. Comparison of the results
shown in Fig. 6.11-a for the three-dimensional case to that of Fig. 6.6-a corresponding
Lo planar motion of the same system confirms this. However, it should he emphasized
that the out-of-plane motion affects the in-plane motion if the orbit is either elliptical

or nou-equatorial, or if oblateness of the Earth is taken into account. Although the
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out-of-plane motion does not affect the planar characteristics in the present case, the
ont-of-platie vscillation frequency (/m{A2) in Fig. 6.11-b) decreases from 2 due to the

acrodynamic force effects.

6.5 Physical Interpretation

In the absence of aerodynamic force and elasticity of the tether, any deviation
from the equilibrium position, local vertical, is restored by the component of the
gravitational force on the subsatellite normal to the tether. Aerodynamic drag which
is almost perpendicular to the tether, causes a slight deviation of the steady-state
position from the local vertical. The new position is obtained from the equilibrium
hetween the normal components of the aerodynamic drag and the gravitational force.
In the absence of tether elasticity, any positive deviation from the steady-state con-
figuration puts the subsatellite at a higher altitude. Since the air density decreases
caponentially with an increase in the altitude while the gravitational force decreases
with inverse squarc of |F|, the normal component of the net force opposes the swing-
ing motion of the subsatellite and returns it towards its equilibrium point. The same

cifect is observed for a negative deviation.

In the presence of tether elasticity, a positive deviation from the steady-state po-
sition causes the centrifugal force to increase and the tether elongates, and therefore,
the altitude of the subsatellite decreases. In this case, the normal component of the
resultant force is in the direction of the deviation and excites the swinging motion.

Similarly, the reverse holds true for a negative deviation.

Adding the lifting panel to the subsatellite imposes a new aerodynamic force on the
subsatellite, which can be decomposed into two components, normal and tangential to
the tether. Each of these two components can be used to stabilize the swinging motion

of the subsatellite in a different way. The normal component shifts the equilibrium
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point to a higher altitude such that the destabilizing ~ffect is less. The tangential
component opposes the centrifugal force and decreases the tether elongation therehy
reducing the aerodynamic force. and therefore stabilizes the swinging motion. The
magnitude and direction of these components are changed by changing the position

of the lifting panel on the subsatellite.
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(b)

~ Figure 6.1: Tethered subsatellite system: a): system configuration (X, — Y, is the
orbital plane, b): spherical subsatellite with an added lifting panel.
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Chapter 7

CONTROL SYNTHESIS;
LYAPUNOV APPROACH

7.1 Introductory Remarks

The idea of using Lyapunov’s stability theory to control attitude motion of a space-
craft goes back to 1968, when Mortenson [74] used this method to control the dynam-
ics of an arbitrary rigid body. Since then many investigators have used this method
fur analyzing the control problems associated with spacecraft attitude manenvers,

among which one can mention the works such as {75, 76, 77, 78, 79]

As far as tethered satellite systems are concerned, a Lyapunov type approach
was used to synthesize a tension control law for deployment/retrieval by Fujii and
Ishijima [47). They used what they called a “mission function’ for this synthesis.
Using basically the same dynamical model, two other control laws were introduced
by Vadali {80). The model was initially quite simple and similar to the one used by
Rupp [81]. However Fujii et al. [82] and Vadali and Kim [48, 45] extended their work
to three dimensional motion of two-body systems with massive but rigid tethers and
obtained various tension and reel rate control laws . Using the Lyapunov approach,
Moushi et al. [50] came up with a reel rate control law to control the motion of a

two-body satellite system with massless and rigid tethers.



All of the above works, based on Lyapunov's stability theory, considered single
tether systems. No study has been conducted to control the dynamics of multi-
tethered systems, even a three-body system, using the Lyapunov approach. Extension
from a single to a multi-tether system is difficult because of the complexity of the
dynamics. In this chapter we attempt to do this. Using the formulation presented
in Chapter 2, we initially derive the control law for a multi-tether system with rigid
and massless tethers. Then the work is extended to systems with massive and flexible

tethers.

7.2 Lyapunov’s Second Method

The idea behind Lyapunov's direct method, which is also known as Lyapunov’s
second method, is to answer the stability question without actually solving the equa-
tions of motion. The method consists of finding a suitable scalar function for the
dynamical system, called Lyapunov function, defined in the state space, and using
it in conjunction with the differential equations in order to test the stability of the
system. Except for linear autonomous systems, for which a Lyapunov function can be
obtained by solving a set of simultaneous algebraic equations, there is no systematic
way of producing a Lyapunov function for a general dynamical system. There is no
unique Lyapunov function for a given system, and indeed there is a large degree of

flexibility in the selection of a Lyapunov function.

In the following a brief description of Lyapunov’s stability theory is presented
for an n-degree-of-freedom autonomous system governed by a set of 2n-first-order

differential equations
z=12Z(z) , (7.1)

where 2 and Z are real 2n-vectors.

Let us assume that the origin is a singular point of the system, Z({0}) = {0}. Next
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let us consider a real continuous scalar function £(z) whose first partial derivatives
. with respect to 2 exist and the function vanishes at the origin, i.e. , £{{0}) = 0. Now

the stability criteria according to Lyapunov’s theory are as follows [83]:

If there exists a positive definite scalar function of the state varisbles,
L(z) > 0, whose total time derivative is negative definite or semidetinite,
L(z) < 0, along every trajectory of the system governed by Eq. (7.1), then
the trivial solution 2 = {0} is stable, i.e. the system is stuble at the origin
of the state space. The trivial solution is asymptotically stable, if L(z) is

negative definite along every trajectory.

This method is very powerful and has two salient features: (1) The method can
examine the stability of nonlinear systems for large motion. (2) It can reveal the
stability of the system by utilizing the differential equations of the system, but without
actually solving them. On the other hand, the main disadvantage of this method is the
practical difficulties in applying. It requires constructing a Lyapunov function which
may not be always possible. Hence Lyapunov’s direct method should be regarded
as more of a philosophy of approach than a method. The fact that for a particular

case an appropriate Lyapunov function cannot be found gives no indication of the

system’s stability or instability.

7.3 Hamiltonian of the System as a Suitable Can-
didate

The Lagrangian of a mechanical system, in general, is given by
L=T—V=T2+T1+TQ'"{1 . (7.2)

where Ty is the non-negative quadratic function of the generalized speeds, 75 is alinear
humogenous function in the generalized speeds, and Ty is a non-negative function

of the generalized coordinates and time. The potential energy, U, of the system
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corresponding to the conservative forces, is also a scalar function of the generalized

coordinates and time. The Hamiltonian of the system is defined by
Ne oL
H = e— | — L , 7.3
(k}_;l% 3 Qk) (7.3)
which, with the help of Eq. (7.2}, can be expressed as
H=To-To+U . (7.4)

Using Eq. (7.3), together with Lagrange's equations of motion,

d {3L oL
— — — —— k — e .
m (3d’k) E™ = Qk , =12,...,Nq , (7.5)

the total time derivative of the Hamiltonian can be obtained as

d

. dH N aL
H—--E'—kglquk-—E . (7.6)

When time does not appear explicitly in the Lagrangian, such as the system under
consideration, the last term in the right hand side vanishes, and the time derivative

of the Hamiltonian is given by

Ng
H=YqQx . (1.7)

k=1

Usually, for a mechanical system starting from the Hamiltonian of the system,
one can find some indications to establish an appropriate Lyapunov function. For a
single tether system with a massless and rigid tether moving in a circular orbit, the

Hamiltonian is given by
H =m {42 + 6% cos® ¢ + 02 (3sin® G cos® ¢ + 4sin? 6 - 3)| + 2} . (7.8)
The Lyapunov function used by Vadali and Kim [48] was

£=C[¢*+6cos®  + 02 (3sin® 9 cos® ¢ + 4sin? )| + %K(A a2, (19
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where A represents a nondimensional length equal to £/¢; and C and K are two
arbitrary positive constants. Using this Lyapunov function they obtained a tension
control law to control the nonlinear dynamics of the system. Monshi et al. [50] used
a more or less similar Lyapunov function:

L=C [¢2 + 6% cos® ¢ + 02 (3 sin® 0 cos® ¢ + 4 sin® ¢)] +In (-:;) , (7.10)

and derived a reel rate control law to control the system in the retrieval stage.

As can be seen, the two Lyapunov functions are constructed starting from the
Hamiltonian of the system. In fact in the following sections a similar approach is

used to obtain the control law for a multi-tether system.

7.4 Hamiltonian of the Multi-Tether System

Since the equations of motion for the general case are very complicated, while
implementing the Lyapunov method is rather difficult, a special case is considered.
It is assumed here that the system is moving in a circular orbit and is influenced by
no external forces except the gravitational ones. Transverse oscillations of the tethers
are assumed to be negligible. As far as the mass and flexibility of the tethers are
concerned, initially they are assumed to be negligible. However, subsequently these

assumptions are removed one by one.

For the system under consideration the Hamiltonian of the system, Eq. (7.4), can

be re-written as

H=(T+Ug+Ug)~ (To+Ug) , (7.11)

where T2 and Ty are as described earlier, Ug is the elastic potential energy, Ug, and

Ug, are two components of the gravitational potential energy which are defined later.
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Examining Eq. (2.26) one obtains

N Ny N, 3Rg aR‘ £ aﬁ.g‘ 3ﬁ.t‘
ZEZ%% Mo aa TP B Bg T (

=In=1k=1 O¢n  Oa
m [X [ OR; OR; _ [4OR. ORq,
To= E{f_@l Mo e TP e e )| (712

It is clear that both T» and Ty are non-negative scalars. Performing similar algebra

as in Chapter 2, T can be rewritten as

N-1N-1 e 'y
___{ZZ OFy OFc . . OB 8By ., OF 95n

ko gy ~ BBk
S Mot o "M at ot 3t ot
. [lnOF, Ofy,
+ Spkfn A 3: T da:,.} . (7.13)

Since transverse oscillations of the tethers are ignored, the displacement vectors,

Fn, b, and F¢, can be written as

= (en + uln) iﬂ = Tnin )
rtn = (mn + un) ’i.n = fg,jn y
- 1

b

el‘l -
n= E;./O e, d2n = bpin , (7.14)

where u,, is the longitudinal stretch at any arbitrary point of the n-th tether, while
g, is that of the whole tether. Recalling that the system is moving in a circular

orbit, partial derivatives of these vectors with respect to time are given by

ar. 61

?:’ = fua’ = rp{lc.cos ¢ﬂJn 1

35‘}" _ ain — s

at - r‘n at - rthC cos ¢n.lﬂ. 1

ab oi -
a5 = bp—2 6: bnSlc €OS Ppin -

Substituting back the above equations in Eq. (7.13) results in
mQQN—lN
To= 2 Pnfirbnbi + 20 Ankt by
n=] k=1
+ nkfn j:" e T 020 dnde - {7.15)
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Using Eq. (2.39), the gravitational potential energy of the system can be written

as the difference of two non-negative functions as follows

Ug=Ug, - Ug, , (7.16)
where
mQ2 N - -+ - 2 “ ei — - - - 2
Ug, = 3 £ {z#i [Ri'Ri - lc‘Ri) ] +Pij [Rt."Rti - (iC'Rti) ]dzi}
i=1 0
2 o=\ s B g \2
Ug, = mf}; Ey; (IC'R-;) + p,‘[) (lc-Rt‘) dz; b . (7.17)
i=1
Similar to Tp, Ug, can be written as
N-1IN-1
Ugo =m0 3 Y [Fakrare — finfrbubk + 2in AnkTrbn
n=1 k=1
fn .- n moa
+ Snkpn ‘/; TeaTtadTn] (icin) (icik) (7.18)

Recalling Eq. (7.11), we can express the Hamiltonian of the system as the differ-

ence of two non-negative scalar functions

H=P —P , (7.19)

where

P] =T2+U01+UE y
Po=To+Ug, - (7.20)

P, and P, are non-negative because all the components Ty, Ty, Ug, Ud.. and Ug,
are non-negative scalar functions. To construct a Lyapunov function based on the
Hamiltonian of the system, it is enough to compensate for Py which appears with
a negative sign in the Hamiltonian expression. Substituting for Ug, and T, the

expression of Py is griven by

B mng N-IN-1

Po= 2 3 3 [Frkrnre — finfikbbk + 2finAnkribn
n=] k=1

+ Snkfn _/: “rt,,rg,.dz...] {cos $n CO8 Prin-ik + 2(i¢in)(icik)} . (r21)
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In the absence of all non-conservative external forces the only generalized {oree
appraring in the equations of motion. is @, = =T, .n = 1,2.,.... N — 1. where T,
| denotes the tension in the n-th tether. Hence, since time does not appear explicitly
in the Lagrangian expression in the present case. the total time derivative of the
Hamiltonian, Eq. (7.7}, is given by
N=1

H=Y (-0T.) . (7.

n=l

bt |
[ &
18]
—

7.5 Tension Control Laws

7.5.1 Systems with Rigid Massless Tethers

[gnoring the mass of the tethers, P, given by Eq. (7.21) can be simplified to

mQ‘N"'N‘

P[]'—

kTl {cos ¢, cos ék,]n J;, + .2(1c 1,1)(1c 1L )} (7.23)

2 n=1 k=1

where in the absence of elasticity of the tethers r, is given by

Ty = gu . (7.24)
Hence Fy is simply given by
sz N-=IN-1 )
PU nL‘Euek {C05 ¢n Ccos ¢LJH Jk + o(lc ln)(’«c IL)} . (7»:‘-'-‘-))
2 n=1 k=1

Let us introduce the following Lyapunov function

N-1 N-1)
1 .
L=H+3S+ 22 -0 V=P - P0+3S+2 c’ &, —€.) , (7.26)
n=1 r:-.-l
where 5, defined by
ﬂzN —IN=-1
S=—=% 3 Fululs , (7.27)
n=1 k=1

is introduced to overcome the negative part of the Hamiltonian, — Py, while €., is the
command length. In the above, C* is an arbitrary positive constant. First we must

show that £ is always a non-negative function.
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Since P and the last term in Eq. (7.26} are always nou-negative, it wonld be
sufficient il we show that 3.5 — B is always non-negative. It is clear that
|cos o, cos o] <1,
‘ju'jkl <1,
lin'icl S 1 [
lik‘icl <1. (7.28)
This results in
cos d’u Cos ¢kju'jk + Q(ic'iu)(ic‘ik) ..<_ 3. (729)

Since {, is always poritive one concludes that
£l [cos G cos @ Juds + 2(i1a) (k)] <300 (7.30)
Clonsequently since the Fji's are all positive, it is clear that
35— P>0 , (7.31)

and hence, £ is always non-negative.

Differentiating Eq. (7.26) with respect to time gives us
N-1 .
L=H+35+ Y Ci(ba =€)t —L,) . (7.32)
n=l
Substituting for & from Eq. (7.22) and for S from time derivative of Eq. (7.27), we

can write

, N-1 ) N-1N=1 . N-1 . .
L= z (_enTn) + 3"193 z: z Fnkenek + 2 C:;(en - ecu)(fn - eﬂn) . (7'33)
n=1 a=1 k=1 n=l1

Note that F,;’s are symmetric with respect to the indices n and & and in the case of

massless tethers they are constant.

Usually the command length, £, is chosen either as the final length or a function of

the present length. As we will see later, they basically represent the same command.
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Let us ronsider the following function for the command length

. =

Cn

sy +0, . (7.3

where 2, and o, are two positive constants. Differentiating the above relation and

substituting back in Eq. (7.33). we obtain

N=-1, N=l]
= Z fn Tn + C’( -rx)(fu - ecn) + 3”193 Z Fﬂk[k . (T.J-))
n=1 k=1

Selecting the tension in the tethers such that L becomes always non-positive leads
to the control law that guarantees the stability of the system in every trajectory of
the system. Let us set the tensions as

N=1
T, = (1 = en)(bn = £e) + 3mQ2 S Folie + Kol (7.36)

k=1
where K, is another arbitrary positive constant, then £ reduces to

N-1

L= Z( K &2) . (7.37)

Substituting for (., from Eq. (7.34) into Eq. (7.36) and defining ti¢ following con-

stants
a,
£ = —
AT =
Cn=Ci(l —g,)* , (7.38)
the tension control law is given by
. N-1
T,, = I'\’(" fn + C“(E“ - L’,n) + -Smﬂf 2 Fnkek n= 1,2, ey N-1. (739)
k=1

i one chooses £, < ¢, the final length is less than the present length, i.e. the control
law forces the length of any tether to a smaller value, which is nothing but retrieving

the subsatellites. Setting ¢y, = 0 leads to a complete retrieval.



7.5.2 Systems with Rigid Massive Tethers

A procedure similar to that in the previous case is followed to vbtain the control

faw for a system with massive but rigid tethers. In this case,

ry = fn .

rtn =&y .
E'l

b, =— , To
T (7.-10)

and Py, after performing some algebra, is given by

?TLQ"\_‘\_I !‘m“k -ﬁ'i
nk 4 a2 —{ fk )Eu -"nkfn

2 n=1 k=1

6“ n -
+ —%‘Lf’n] {cos ¢y COS oun ,]L + )(1c 1.. lc u)} (T.41)

Since ft, = p.lo, the above equation can be rewritten as

nln): 1N =1

Pp=—= Z Z Do laly {cos Oy COS oun JL +2 lc |,. lc u)} (7.42)

2 n=1 k=1

where D, is a dimensionless mass coefficient defined by
oy p . Ok s -
Dy = Fu — 'pr:lﬂeﬂck + Pa Anily + %plfn . ("‘l'l)

As can be seen. in contrast to Fy; in the previous case, D,y is time dependent and is

not syminetric with respect to the indices n and k. However D, is always positive.
Next a similar Lyapunov function as before is introduced for the present case, i.e.

N=i
L=H+35+ z %C,.(t’,, - Ef")2 , (7.44)

n=l -
where C,, and {;, are as defined earlier, but S is now defined by

sz N-1N=-1

nkbnle - (7.45)

n=1 k=1

Since Dy like Fyy is always positive it is clear that

L>0 . (7.46)
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Because of the time dependence and asymmetry of Dy, £ obtained has a slightly

different form from the case of rigid and massless tethers. It is now given by

. N-1 . 2N=1N=-1
L= z (—'cuTa ) }""'Q z Z [D"A enek + pn(’k) + ancurkl
n=l n=1 k=1
N=1 .
+ z Culu(ln = {y,) (7T.47)
n=1

Using the definition of Dy, its derivative with respect to time can be written as

. . pubi.s L, N b s .
an = Fuk - Efi(evtek + enek) + P (Anken + Ankeu) + _;P_e" . ("46)

For the sake of simplicity let us assume that B, in Eq. (B.16) is zero, i.e. body
i+ | is reeled infout only from body ; however, the following procedure can be easily

extended to the general case. With this assumption, Eq. (7.48) can be simplified to

r n 611 n
D = —”—ﬂ (6uls + €ube) + PrAnibn + ;” LY (7.49)
Substituting for D, in Eq. (7. 47) and performing some algebra, we obtain
. 3 1192N W= n 61; n
L= d z 2 {(an + Dkﬂ)e ek - (P pke ek P'n. uken - ;P en) t’,;&}
2 n—l k=1 A
N-1
+ Y (~6T) + PUACELAR (7.50)
n=1 n=1

Next let us define a new dimensionless mass coefficient, G, as

6" n

1 -~ -~ - -~ -
= § (ank - Pnpkgnfk + 2PnAnkeu + PkAkuek + 6nkpnen) . (7-51)

I
Gn.k = .'2'

(D nk + D kn ";.)‘pk

Then we can write £ as

. N=1 N=1
L= E ¢, [‘—Tu + Cu(ln — &4,) + 3mQ§ 2 G',.kek] . (7.52)
n=1 k=1

Similar to the previous case, if the tension in the tethers are chosen according to the

following law

. .N-l
Ty = Keybu+ Calla = €4,) +3m02 Y Gusle  n=1,2,...,N—1, (153)
k=1
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the stability of the controlled motion would be guaranteed. Note that in contrast
to the case of massless and rigid tethers, the tension control law here is not a linear
function of the lengths of the tethers. That is because G is itsell a funetion of the

lengths of the tethers.

7.5.3 Systems with Flexible and Massless Tethers

In many cases, flexibility of the tethers cannot be ignored. However if one considers
all elastic oscillations, transverse and longitudinal, it is difficult, if not impossible to
construct a Lyapunov function. Hence, only the most important elastic motion of the
system, the longitudinal oscillations of the tethers will be considered in constructing
the Lyapunov function. Furthermore, the mass of the tethers will be neglected in this

Section. It will be considered later.

Siuce the tethers are assumed to be massless, only the first longitudinal mode of
each tether can be taken into account. Considering the admissible {function defined
in Eq. (2.56), we can write

n=Cu+E (7.54)
where £, is the longitudinal stretch of the n-th tether and clearly less than ¢, sub-

stituting for r,, Py is given by

szN"‘N'
P = Z z ELL b + En ek + &x) {CO&’ ¢n cos ¢LJH JL + (lc ln)(lc IL)} (7055)
2 n=l k=1

Let us assuine that

£n<g£u y n= 1,2,.-.’N—1 v (7-56)

where g is a positive number. In practice, it is a small number. It is then clear that
szN—lN-

PO < —= 2 Z Fnk 14 9 281;& {CO& ¢u COs ¢k]n JA. + Z(Ir: lﬂ.)(lc |k)} (757)
2 n=1 k=1

As before the following function is chosen as the Lyapunov function:
N=1
'
L=H+3S+ 22 Wl — (7.58)

- =1
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where S is now defined by

leZ.\'-h\-l

S=—=£3 3 (1 +0?Fulubs . (7.54)

= n=l k=1

Onee again one can easily show that

35— Py >0 . (7.60)

Proceeding in a similar manner as in the case of rigid and massless tethers. the

control law for the present case is given by

N-1
T, = Ke b + Co(ly = £1,) +3(1 + 0)*m2 > Fule, n=12,....N=1 . (7.61)
k=1

7.5.4 Systems with Flexible and Massive Tethers

Extending the Lyapunov method to control a tethered satellite system with flexible
and massive tethers even for a two-body system is a very complicated job, if not im-
possible. To the best of the author’s knowledge such a study has not been conducted
yet. In order to account for the mass of the tethers to the previous case once again
we assume that the transverse oscillations of the tethers are negligible, compared to

the longitudinal ones, therefore can be ignored.

With the above assumptions the following relations for the displacements are

obtained:!

Ty = ‘eﬂ + ue,
Tia =Tn + Uy ,
1 &y
= fo (20 + )z, . (7.62)

As in the previous case let us assume that

U, < pzy, , g, <pl, , n=12,...,N-1, (7.63)

!Note that here u, is the longitudinal stretch of tether n and contains all longitudinal elastic
degrees of freedom corresponding to the n-th tether.
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It implies that

ry < Oyl + o) .,

T, < ry(l + 0)
2

( -
by, <7ﬂ1( + o)de,, . (7.64)

Using these relations, Eq. (7.21), and the definition of D, given in Eq. (7.43), one
can see that

rnn? N-IN=-

2D b0, {cos @y COS ¢kjn'jk + 2(35-3,.)(3,_.3,\.)} . (7.65)
2 n=1 k= I

Based on the previous experience a proper Lyapunov function is then chosen as

N-1
C H ‘* JS'*' Z ;Cn(g" ef“)-z [] (7.66)
n=1
where
Qz N=-1N-1
‘ﬂl ukeﬂek R (7.67)
n=1 k=]

Subsequently one obtains the tension control law as the following
. N-1
Ty = K ba+Co(ln—85,)+3(1 + 0 mQ2 Y Gril n=12,...,N=-1, (7.68)
k=1
where G and Dy, are as defined in Eqgs. (7.51) and (7.43), respectively.

7.5.5 Some Results and Discussion

Two different systems, a two-body 2ud a three-body tethered systems are consid-
ered to apply the tension control laws obtained in this Section to control the dynamics
of the system in the retrieval stage. These cases are considered to show that those
control laws can stabilize the unstable motion of the system in the retrieval stage.
Optimizing the performance of the controller is a separate issue that one can practice

while selecting the most appropriate gains or using a hybrid controller.
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The Two Body-System

The system consists of a main-satellite undergoing a circular orbit connected with
a long tether, initially 50 km. to a subsatellite. The subsatellite is being retrieved

towards the main-sateilite. The parameters of the system are as follows:
my =3 x 10%kg, my = 10°kg, p; = 6kg/km, EA, = 61575.2N, R, = 6828km,
and the initial conditions of the system are set as follows:
6,(0) = 10°, ¢;(0) = 5°, £,(0) = 50km, £,(0) = 167.7m.

Three different cases are considered: (i) rigid and massless tether; (ii) rigid and
massive tether; and (iii) massive and flexible, but straight tether. The longitudinal
oscillation of the tether is represcnted by its first mode, i.e. strain is constant along

the tether. The following parameters are selected for the control laws given in Eqgs.

(7.39), (7.53}), and (7.68):

K¢ =6.266N.s/m C; = 3.51 x 1074N/m, &, =0, g =0.01.

It is well known that the retrieval phase of the uncontrolled system is unstable.
Results presented in this section show the effectiveness of the tension control laws in
stabilizing the system. Figure 7.1 compares the simulation results of the controlled
system with rigid and massless tether with those of the system with rigid but massive
tether. The dotted-lines represent the system with massless tether, while the solid-
lines represent the massive one. In the figure {1, Ty, and P, are retrieval rate, tension
in the tether, and the required power to retrieve the subsatellite, respectively. As
can be seen, mass of the tether has a small effect on the performance of the system.
The differences are so small that it can hardly be seen in the plots. Note that when
the length of the tether is large and mass of the tether is comparable to that of

the subsatellite, the tension in the tether (Fig. 7.1-c), and subsequently the power

157



required (Fig. 7.1-f) are quite different. However, this difference diminishes when the

tether becomes short,

Effect of the flexibility of the tether on the dynamics of the controlled system
is shown in Fig. 7.2. The dotted-lines correspond to the system with no flexibility,
while the solid-lines represent the system with flexible tether. Since the controller
gains are selected similarly in both cases, comparing the results, one can conclude
that including the flexibility of the tether leads to a faster retrieval at the cost of
larger librational motion. It can be seen that the tension in the tethers in the flexible
case are slightly smaller than those of the rigid case. However the power required (P)
is reverse. This is in agreement with the physical understanding of the problem. The
longitudinal oscillation of the tether for the system with flexible tether is shown in
Fig. 7.2-¢c. As can be seen £, the longitudinal stretch of the tether, is always positive.

It assures us that the tether does not become slack.

The Three-Body System

The three-body system is also in a circular orbit, It consists of a main-satellite and
two subsatellites. The main-satellite retrieves the first subsatellite. At the same time
the second satellite is reeled in by the first satellite. As in the case of the two-body
system, the longitudinal oscillations of the tethers are modelled by their first modes.

The system parameters are as follows:

m1 =3 x 10%kg, my = 10%kg, m3 = 500kg, p; = g2 = 6kg/km,
E Ay = EAz = 61575.2N, R. = 6828km,

and the initial conditions are set as

61(0) = 82(0) = 10°, ¢1(0) = ¢2(0) = 5°, £,(0) = 50km, £3(0) = 20km,
£1{0) = 296.5m, £(0) =47.4m .
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Similar to the two-body system, three different cases are considered here: (i) rigid
and massless tethers; (ii) rigid and massive tethers; and (iii) massive and flexible. but

straight tethers.

Figure 7.3 compures the dynamics response of the system with massless tethers
with those of the systemn with massive tethers. The dotted-lines represent the massless
tether case while the solid-lines are corresponding to the massive tether case. The

controller gains are as follows:

K¢ = 6.714N.s/m, K¢, = 2.965N.s/m, C; = 5.26 x 107" N/m,
Co=175x107*N/m, ¢, =¢;, =0.

Results of the system with massive and rigid tethers are compared with those of
the flexible tether case in Fig. 7.4. Since the preceding gains result in an undesirable
performance, the controller gains are chosen slightly different from the previous gains.

They are chosen as follows:

Ky = 13.43N.s/m, K¢ = 5.93N.s/m, C, = 6.31 x 104 N/m,

Co=21x10""N/m, &, =¢;, =0, g=.01.

Comparing the results shown in these two figures, one can draw similar conclusions
as those for the two-hody system. Note that simulating the flexible system is more
challenging and time consuming than the rigid case. That is because as the tethers
become shorter, the tension in the tethers reduce and the governing equations become

stiffer in the numerical sense.

7.6 Hybrid Control Laws

Resuits presented in the previous Section show the capability of the tension control

laws in stabilizing the system in the retrieval phase. However, one can see that these
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control laws do not have the desired performunce. Generally, it can be said that
the controllers perform mudii better in the initinl stage of the retreival than the final
stage. The tension control law seems to be slow. In fact a fast retrieval with Lounded
libretions, specially out-of-plane librations, cannot be achieved using these control
laws. The faster is the retrieval, the larger are the librational motions. That is

because in these control laws only lengths of the tethers and their rates are fed-back.

To improve the performance of the controller, one option is to use a hybrid control
law. In this Section a thruster augmented control law using Lyapunov's stability
theory is developed. One will appreciate the improvement of the performance when
the results of the hybrid control laws are compared with those of the tension control
luws. For the sake of brevity, the analysis is presented only for a multi-body system
with massless and rigid tethers. However, the analysis can be extended to other cases
similar to those in Section 7.5. In the numerical results, a system with massive and

flexible tethers is cunsidered to show the effectiveness of the hybrid control laws,

Without any loss of generality, let us assume that body 1 is the main-satellite, In
order to control the librations of the system, a thruster is located at each subsatellite,
Let us denote the force of the thruster on body i + 1(i = 1,2,...,N = 1) by )

Using Eq. (3.40), one can easily show that the generalized forces are now given by
Qau = Plfueﬂ Cos ‘!b!’l ’
Qq‘r.; =P, .-.',,En '
Qtn==Ta+ Fz, , (7.69)

where P, P, , P.. are the components of the resultant force P in the n-th tether

coordinate system, defined by
' N-1L
P = Ppin+ Pynjn + Pk = ZAi+1.nFi . (7'70)
i=]

Now iet us select a similar Lyapunov function as the one given in Eq. (7.26) for
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the present case. Time derivative of this function is then given by

-1 N~
L'. = zeﬂ [—Tn + Pzn + C"ﬂ(cn - ff“) + 31’1’1(25 Z Fnk‘:k‘l
k=1

N-1
+ Z [o-n(Py,.en COS(.D" + ‘Pn(Pz,. u)] (7-71)
. n=1

Selecting

P.z:,.:O 1

Py" Kﬂﬂgfg/ COs ¢n y

P=n = h-'i'n‘&ﬂ H
. JN-1
Ty = Py, + Kg b + Co(ln — £7,) + 3mQ* Y Frili (7.72)
. k=1

where K¢, Kg,, and Iy, are arbitrary positive constants, one obtains

=z
L

L=

™

= (Keu82 + Ko, lab% + Ko, 0nd?) . (7.73)

_.
Il
—

th
.
Since £, is always positive, it is clear that £ is always non-positive. Eq. (7.72)

describes the hybrid control law.

The forces of the thrusters, FPLi=12...N-1, required to implement the
control law, are obtained from the components of B,’s forces. Let us define column

vectors P, and F,, as
P" = {Pz“, Plln‘ P«‘-u}T 1 Fﬂ = {anl Fllu! FZn}T t (7'74)

where Py,, Py,, P;, and Fy,, Fy,, F:, are the components of P, and F, in the n-th

tether coordinate frame. Denoting the rotation matrix of the n-th tether frame with

respect to the orbital frame by R, and using Eq. (7.70), one can show that
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L Pyor )

Hence ¥y, Fs,...,Fy_; are obtained by solving the above set of linear equations.
For a two-body system, Eq. (7.75) results in
le = P:n/Aﬂl =0, Fm = Pw/Ama F:; = P:;/A'.’l . (7'76)

It means that the thruster force has no component along the tethe:. However, for a
multi-tethered system, even by setting P, 's zero, generally one should expect thruster

forces with non-zero component along the tetherline, ie. F,, #0, n=1,2,.. . N -,

7.6.1 Numerical Results

Figures 7.5 - 7.7 show the effectiveness of the hybrid control law in achieving a
desirable performance for the controlled system. In Figs. 7.5 and 7.6 the results of
a two-body system are shown, while in Fig, 7.7 a three-body system is considered.,
For the two-body system all the different cuses, massless tether, massive but rigid
tether, and massive and flexible tether, are considered. However, in the case of the
three-body system the results are compared between massless-tether aud massive-

tether systems only. The flexibility of the tethers are not taken into account in this
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case. The parameters and the initial conditions of the systems are exactly as those

considered while studying the tension control law (Figs. 7.1 - 7.4).

The following gains are used to retrieve the subsatellite in the case of the two-body

system:

K¢ =2.239N.s/m, Kg = Kg, = 10*N.s/rad, C; = 4.211 x 10™*N/m,
¢, =0, p0=0.01.

Figure 7.5 compares the results of the massless-tether system with those of the
‘massive-tether system, while in Fig. 7.6 the results of rigid-tether system and flexible-
tether system are compared. From these figures one can observe that the retrieval
duration is significantly reduced by using the hybrid control law compared to that in
Figs. 7.1 and 7.2. At the same time the out-of-plane librational motion is bounded
to a small magnitude, which is desirable. Of course faster retrieval and smaller out-

of-plane motion can be obtained for the cost of a larger thruster force.

For the three-body system the following controller gains are chosen:

Ky = 2.821Ns/m, K¢, = 1.364 Nis/m, Ky, = Ky, = Ky, = K4, = 10* N.s/rad,
Cy =474 x 107 N/m, Cp =144 x 107" N/m, ¢, = ¢, = 0.

Figure 7.7 compares the motion as well as the time history of the forces of the massless-
tether system with those of the massive-tether system. The effectiveness of the hybrid
control law is quite evidence when the present results are compared with those of the
tension control law given in Fig. 7.3. Note that in contrast to the two-body case the
x-components of the thrusters are not zero. Comparing the results for the two-body
and three-body systems, one observes a fairly similar behaviour in the dynamics of

the controlled systems.

As far as the effects of mass and flexibility of the tethers are concerned, similar

conclusion to those of the tension control law can be drawn. Looking at the results
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shown in this Chapter, one can conclude that using a tension control law adone reselts
in somewhat poor performance; therefore a hybrid control law should be used to
ubtain a g od performance. Furthermore, ignoring the elasticity of the tethers leads

to poor results; hence they should be included in the analysis.
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Figure 7.1: Dynamical response of a controlled two-body system (tension control
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tether.
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tether.
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Chapter 8

CONCLUSIONS

8.1 Summary of Finding

Throughout this thesis, the main objective of the investigation has been the dy-
namical analysis of multi-body tethered satellite systems: their modelling, analysis
of their stability in low-altitude missions, and control synthesis using Lyapunov’s
stability theory. Both dynamical analysis and control synthesis of these systems are
extremely complex problems. The two problems are closely related so that developing
a good dynamical model makes the control synthesis easier. Rather than presenting a
massive amount of data, the emphasis has been on the modelling and understanding

of the problem.

Discretizing the tethers using the assumed modes method, a set of ordinary dif-
ferential equations describing the rotational motion as well as the vibrations of the
tethers has been derived. An analytical procednre has been used to linearize the
equations obtained from the discretized model to analyze the eigenvalues and stabil-
ity of the system. Aerodynamic forces on the system have been calculated using the
free molecular flow model to study their effects on the stability of the system used
for atmospheric missions. In the absence of external forces, an analytical solution is

obtained for the static equilibrium equations.

Ignoring the transverse vibrational motion of the tethers, a nonlinear tension con-
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trol law has beer developed to control the svstem during the retrieval stase. The

coutrol law has been obtained using Lyvapunov's divect method by avalvzing the

Hamiltonian of the system in several steps. The control law was then validated

by numerical analysis of sone sample cases. A hybrid control law has been proposed

to improve the performance of the controller system.

(i)

(iii)

(iv)

The important conclusions derived from this study are sutnmarized helow.

The dynamical model of multi-body tethered satellite systems must cousider
the elastic vibrations of the tethers. Similar to the librational motion of the
tethers, their longitudinal as well as the transverse vibrational motion tend 1o

grow during the retrieval stage,

Longitudinal and transverse vibrations of the tethers are strongly coupled, par-
ticularly when the tethers are short. The dynamical model must, consider the
noulinear term in the strain expression caused by transverse vibrations, since
there can be a significant difference between the linear and nonlinear resuits,
During the retrieval process, the tension in the tethers becomes weaker and

weaker and the nonlinear strain term becomes more and more significaut.

Dvnamics and stability of the system in low-altitude missions are significantly
affected by aerodynamic forces on the end-bodies as well as the tethers, Chang-
ing the geometry of the bodies changes the aerodynamic forces and consequently
the stability of the system. Stability behaviour as well as equilibrium configu-
rations of the system change if the bodies are changed from those with no lift 1o
bodies with lift. Consideration of the general aerodynamical model rather than

only the aerodynamic drag is indispensable for proper design of low-altitude

orbital missions.

The elasticity of the tethers plays an importunt role in the dynamies, stability,

and control of multi-body tethered satellite systems. Combined effect of the
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(vi)

(vii)

tether flexibility and the atmospheric density gradient can lead 1o instabiliny
of the svsten. Although it makes the dynamical analysis as well as control
synthesis more challenging, the tether elusticity must be included in the analysis

to derive more reliable results.

The material damping present in the tethers affects their longitudinal oscilla-
tions. However they have very negligible effect on the trunsverse oscillatious
and the libratious of the tethers. On the other hand, the material dumping has
a great effect on the computation time; in fact it may be reduced significantly

by damping.

The retrieval phase is the critical phase of the mission as far as stability and
coutrol of the system are concerned. Among the different well-known control
methods for tethered satellite systems, tension control laws and reel rate control
laws are easy to implement and more practical. The reel rate of the tethers
(€:/€;) or tension affects the in-plane libration of the tethers more than the
out-of-plane motion. Therefore controlling the latter with unaided reel rate or
tenston control law is a demanding task. That is because the coupling between

the in-plane and out-of-plane rotations is a weak nonlinear one.

Lyapunov’s direct method is a very powerful method, since it is applicable to
the motion of the system in large and it can reveal the stability of the system
just by using the equations of motion without actually solving them. However
constructing a proper Lyapunov function is a very challenging and strenuous
task. Using the Hamiltonian of the system and then compensating for the
negative terms to form a Lyapunov function, a tension control law and a hybrid
control law have been formulated that stabilize the in-plane and out-of-plane
librations in the sense of Lyapunov. The control laws are linear in terms of
length of the tethers, if mass of the tethers are ignored; but they are highly

nonlinear if these masses are included. Fast retrieval and bounded out-of-plane
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librational motion cannot be achieved throngh a tension control law adone, One
hits to use other schemes or a hybrid control law such as the oue proposed in
this thesis. In the control analysis it was found that ignoring the elasticity of

the tethers can completely lead to ncorrect results.

8.2 Recommendation for Future Work

There are many possibilities for extension of the present investigation. Ouly some

of them are mentioned below.

(i)

(i)

(iii)

(iv)

(vi)
(vii)

{viii)

The attitude dynamics of the end-bodies are not considered in the present. dy-

namical model. Further research should include these motions as well.

Spinning of the tether(s) along its (their) nominal tetherline is not included in
this study. It can result in further instability for high spinning rates, particularly

in the transverse oscillations of the tethers.

Dynamics of the reeling system may be modelled in more detail to avoid any

confusion about the interactive force due to the change of mass of the tethers.

A more complete and realistic aerodynamic model could be developed for further

studies, particularly for the control synthesis using aerodynamic forces.

The perturbing effects of other environmental forces such as solar radiation pres-
sure and electrodynamic forces on the motion of multi-body tethered systems

can be investigated, for applications in which these effects are significant.
The proposed control laws must be verified by experiments.

Control synthesis using the Lyapunov approach may be extended to include

both longitudinal as well as transverse vibrations of the tethers.

Further studies can be conducted on dynamics and control of multi-tethered

systems with a non-chain configuration.
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{ix} Methods similar to those employved in this thesis ~2an be used to study the
dyuamics and control of deployment of multiple beam type appendages. solar
panels, ete.

(x) Other control synthesis such as LQR or feedback linearization can be used to

devise the desired control laws.
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Statement of Originality and
Contribution to Knowledge

Original contributions made in this thesis to the knowledge on tethered sutellite

systems may be summarized as follows:

(i)

(iv)

A fairly general dynamical model of N-body tethered satellite systems has been
proposed. Both types of vibrations (longitudinal and transverse) of tethers in
multi-tethered systems have been considered simultaneously for the first time

in the dynamical analysis.

Analytically linearized equations of motion have been presented for eigenvalue

as well as stability analysis.

Effects of aerodynamic lift of the end-bodies on the stability and dynamics of
low-altitude missions have been studied in detail. It has been found that they
can change system stability significantly. Passive stabilization of a low-altitude

tethered subsatellite using aerodynamic panels has been investigated,

Lyapunov approach has been used to control the nonlinear system and various
nonlinear tension control laws have been developed. Longitudinal elasticity and

mass of the tethers have been considered in the control synthesis.

A hybrid control law, using thruster and tension control law, has been developed

to achieve the desired performance in controlling multi-tethered systems.
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Appendix A

Leibnitz’s Integral

In some cases, we need to evaluate time derivative of an integral with time-

dependent limits. In fact in this thesis, they have the following form
d &
I= E A f(zi,t) dz; , (Al)
where f(z;,t) can be a scalar or a vector. Using Leibnitz's rule, we obtain

& 9 .
i =j; =21 (2, t) doc+ £ (8006 . (A.2)

Here in our problem, body 7 reels out tether i at a rate oybs. It implies that

dz: .
I; = L o;é; and is constant along z;. We can then write
dt

49 , . . .
I= _/0 "a—t'f(-'ru t) dz; + ailyf (€, 1) + (1 — a)&if (8, t) + aili f(0,t) — aifsf (0, £)
) . , :
= A ‘af(g;h t) dz; + ail; [f(xi, t) 5‘ + (l - a.-)t’;f(fi. t) + aieif(ol t)
Ly . .
= .[0 -é—tf(a:i, t) dz; + 4 [f(zi, t)]g‘ + (1 - ai)eif(eh t) + aieif(oi t) : (A3)
Carrying the constant Z; inside the integral leads to
Lo . 8 . .
I = ,/u af(zi, t) + xiaf(% )l dzi+ (1 — a)bif (8, 8) + 2ilif(0,8) . (A.4)
Since a; — f; = 1, we obtain
d & 4 d . .
S 1@t dn= ["2rGut) do- pls (60) +odif0) . (AS)

where in some cases f(0,t) vanishes and in some cases does not.
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Appendix B

Mass Coefficients

Usiug the definitions of Bj, Aj;, and Fyj, given in Egs. (2.14) and (2.32), and the

fact that total mass of the system is constant, i.e.

N
Zui =1, (Bl)
i=1

we obtain the following relations which have been used in simplifying the algebra in

the formulation.

1. Using Eq. (2.14) we can write

N N N N
SwiAy =3 mi(Bj~ H(i —i)| = Bjd pi— D mH(j—i) = Bj - B; . (B.2)
i=1 i=1 E=]

i=1]
Thus
N
i=]
2. Differentiating Eq. (B.1) with respect to time, ¢, and generalized coordinate 4,
results in
N N O
Yai=0, Y=0. (B.4)
i=1 i=199r

3. Time differentiation of Eq. {2.14) leads to
; d L. .
since H(j — i) is constant.
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4. Using the delinitions of A;; and B, we have

N

N N )
Sjudi = zu. (B, — H(j—1)) = B,,Z,u, Y H(G—i)=0-8; . (B.6)
i

=1 i=|

Hence

N .
Y hiAy = —B; . (B.7

i=1
5. Differentiating of Eq. (2.32) with respect to time, we obtain

. N i N ] . .
Fij = Za MY MEDY (ﬂkAksAkj + uBiAni + ukAk,vB,-) . (B.8)
k=1 k=1

Taking out B; and B; from the summation and using Eq. (B.3), we get
. N N
Fij = ZizkAmAk,- = Zflk [Bi— H(i—k)||B; ~ H(j — k)|

= B;B; Zm - B;Z#kH(J — k) JZ;LLH i—k)
k=1 k=1
N
+ > i H(Gi—k)H (- k)
k=1

N
=-B;B; - B;B; + Y i H(i—k)H(j - k) . (B.9)
k=1

For the lust term we can write
J :
SiH(G-kY=B; if  j<i
z,u,ﬂ(z —k)H{j - k)= *! . (B.10)
SuH(G-k)=B if j>i
k=1
Combining these two cases, we have
z,u.kHz— H(j—k) = B;H(i—3)+BiH(j —i) - 6;B; . (B.11)
Backsubstituing in Eq. (B.9) and using the definition of A;;, we obtain

Fi = ~B;Aj;; — BiAy — 4B (B.12)

6. Similarly differentiation of Eq. (2.32) with respect to g, leads to

oFy _ _0B;, _ 9B 9B;

—L A — Ay -6
dq, 9q, . Oqr & ogr

(B.13)
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7. Differentinting Eq. (2.1} with respect to time implies that

m, + My (Pi-—l.‘ji-l[i-l - piﬂ'ifli) + pil;

i = - = - = ﬁi—l.jl'—l(:i-l"'ﬁl.'iil:i (B
since a; — F; =1 and g; = r%l Using this result, we can write
. J J . . . .
Bi=3 =3 (ﬁi-lﬁi-xfi-l - ﬁiﬁife) = pordolo — p;i,;¢; . (B.15)
i=1 i=1

Since there is no tether number 0, we get
Bj = —p;B;(; . (B.16)

8. From Eq. {B.16) we conclude that

. 0, k£j ,
9B; _ 0B, _ 7 (B.17)
agk 5fk .

and

Bj=-b; (/3',-5?,- + ﬁjé}‘) : (B.18)
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Appendix C

Proof to Equation (2.23)

Differentiating Eq. (2.4) with respect to time, we get
d N . N-1 € -
o ZmiRi+ Zp,]; R, d:r:,-] =0 . (C.1)
i=1 i=1
Substituting for Ry, from Eq. (2.5) we have

N . - N . N=1 d ¢ .
z (mi+mi)R; + 2 (mi+m)R; + Zpiﬁ A fe, dz; =0 . (C.2)
i i=1

i=1 i=1
Using Eq. (A.5) derived in Appendix A and the fact that £¢,(0,¢) = 0 and F¢,((;, ¢) =
F;, we can rewrite the above relation as

N N . Na
Y (hit+m)Ri+ D (mi+m)Rit+ Y (Pijo
i=1 i=) i=t

¢, . -
ft.- dﬂ.‘i - ﬁifii";) =0 , (C3)

Since R; is not function of z;, it can be taken inside the integral sign. Using the

definition of Ry,, we obtain

N 2 N . N=l s 3
Y (mi+m)Ri— Y piflilifi + [E‘miRi + D pi | Re dz‘i] =0 . (C4)
i=1 i=1 i=1 i=1
Hence
N . N-1 £ . N L. N-1 )
Zm¢R,- + EpiL R, dz; = --Z(Th,' + ﬁ'li) R; + Zp,-ﬁ,-e,-i-‘.- . (CS)
i=1 i=l i=1 i=1

The right hand side can be simplified by substituting for R; from Eq. (2.5) and

for p;0;¢; from Eq. (B.16) and changing the index in the last summation:
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-«

No. o N-U e N N2l ) 1
SR+ Zpij; Ry, dej = —m [Zfl.- (Z.‘l,-ji"_, - ﬂ_,b,-)] - Y BT,
i=1 i=1 i1 \j=1 ot

N—l N - N .
=m Z [ﬁj (ZI‘!) bj - (Zﬂ;‘-‘!;‘j) F_,‘ - ijj] . (C.ﬁ)
i=1 i=|

i=1

L,

Finally using Eqs. (B.4) and (B.7), we would get

N s N"l f.— :. N—l - . -
Zm,-R,— + Epgjo- Rt.- d:r,' =m Z (le-"j - ij"j) =0 . (('-.7)
i=] i=1 Jj=1
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Appendix D

Definition of Column Arrays and
Matrices

Before expressing the desired vectors, column arrays and matrices, the following
variubles, which are used extensively in this appendix, are defined to shorten the for-
mulation. Recalling the definitions of the admissible functions, X;(s;), Y;(s;), Z:(s;),

we define:
Xe=Xi(si=1) ,

l i 1
x-i"-indSi . ¥ =./0.Yid3i 1 Z.,-=.L Zds;
1Y,

o 4Xi o ]
x‘_dsi ! Y‘_dsi ! ZI—dsi '
d?X; d*Y; d*z;
Xi=—"7%, Yi=—F, Zi=—%, D.1
P ds? Podst ds? (B-1)

Using the above definitions a set of vectors which are resulted from the elasticity of

the tethers, is defined here as follows:
B =XT& i+ Ym ji+ 2w ki
Ju=XJg L+ Y. 05 +2. v ki |
C=XT& L+ Y ji+2oi ki
Cu=XJ& i+ Y. I 5+ 2. o ki
G=XT6 L+ Yndi+2Tvk
Bi=X"Teh+Y" T i +2 v ki,
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Bi=XTeL+Y 9 5i+270 k, . (.2)

Another set of vectors, corresponding to the rotation of the tethers, is defined as:

-

A= [q;,' (ég + é,v) cos &; + b sin a’n] i+ [—é»,- (f}g + é.-) sin; + 0 cos m;] ki .
= (G + ) cosaids = (do + 6, sin ok

f)i = [~ (B0 +6;) sin 0i + Gy cos éu] i + [— a4 (6o + 0:) cos o = fysin o ki

9, = sin é;i; + cospik;

5’; = ti)j((:USgbii‘j — sin Q‘)if(i) . (D‘;)
D.1 Position Vectors, T, b;, T,

Local position vectors F;, Fe,, and b; in tether coordinate system are delined as:

= (31' + XJE,) i,
Fe, = widi +9;

.1 st ‘-’

L
bi = .f—ofo Ftidﬂii = 28 |; + ﬂu . (D4)

D.2 Velocity Vectors, 1"";-,51-,1:%.

1

The time derivatives of the position vectors in the inertial frame are related to those

of tether frame through the following equations;

. Q
T SN ¢ JRVE
N -]
b;=b; +§2; x b; ,

Ty, = Fp, + 92 x 1y, (D.5)

where §2; is defined earlier and the local time derivatives are given by

=] R . -

fi= (fi + X{fﬁi) i

2 ¢; ¢;- . ¢

bi"'e_o‘l'l'e,ﬂl'i' Cu;

o

Fo = b+ 38+ G, (D.6)
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D-3 Vectors dri, db', dtl
Vectors c’i,,.&.,,,c'it_. used in Eq. (4.5). are defined as

‘:il'- = 21},)( ; +.ﬁi X (fl, x Fi) + /-ii x ¥,

- . 9. .3 _ - - -
db. = t,—‘i; + "E“'I‘C.,' +2.Q,'>< bi +.Q,' x (ﬂ. x b,‘) + Ai X b,’ '
0 0
- —2.‘3,@;_, .0, .o - 2 = = - = -
t, = 7 Si+sip; + 25, + 2602; % I, + §2; % (£2; I‘g.) + A x Ty, , (D.7)
]
where §; = —i(a.- — 5;), and «; as defined earlier is the reeling rate of tether i from

£
the i-th body.

D.4 Column Vectors D’s

The column vectors Dy, Dy, and Dy, are in fact partial derivatives of vectors
£, b;, and rt, with respect to the elements of generalized coordinates corresponding

to the i-th tether, q;, respectively. They are given by

[ F,x T ) [ Fyxb; ) [ Fix Ty )
—lix & —ji % By —Ji x R,
H 1 — " - 1 il —
L - —b;+ —ﬁ-ii I+ % i
{ ¢ 24, £; L
Dy, = § X, i , Db, = ¢ y D, = 3 (D.8)
4h i X i;‘/fo X; ii
0 : :
{ } &Y 3:/ 60 Yiji
{5 " 7 k:
\ J \ GZaki/ly ) { i K; )

D.5 Column Vectors P’s

The column vectors Pr,, Py,, and Py, which are partial derivatives of position

vectors a‘.i.&bi, and (-ig.-, respectively, with respect to the elements of q; are given by
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;!.: X &fi
- - El -
—Ji X dp, +26;% T; +42; x {cd; x F;)
+di X (‘2; X E,') +ﬁ, x i:i

Pr, =4 - - . L.
o Xei[£2: x (82 < 1;) 4+ Ay x iy

o}

-ji X &b.- + 2é; % l;i +ﬁi X {6; X E;)
+é; x (§2; x b;) + B; % b;

X {2éi(ﬂi x i5) + {92, x (42,
b4 it)l + g;‘(/-ii X .i,,)} /fo

N

Phb;

Y.; {Qéi(ﬂi X §i) + €92 x (82;
x §i)] + £ A; x 5:)} /o

Z.; {2éi(ﬂi x ki) + &92; x (82,
L x th;)] + L’,-(]i,- b4 i‘(‘)} /fo
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¥: % dt,

"ji = &c. + 20y % Ty, + 2 x (G, x fy,)
+@, % (£, x B,) + B, T,

¢ R - .
5y {[—QFX’,- + .é,-x”gli,' 4- QX"'(Q,; x ii)}

I}

P, =1 Xl x (8 x i) + (A x i) - (D.9)

g' - - ~
$i {l—‘ZE—TY'i + 8 Y i + 2Y': (82 % j:')}
1

+ Yi[92: x (£2: x §;) + (A x ji)l

£; . A
8¢ {[—2?Z'i + 82" |k; + 22':(02; x k;)
+ Zil 2 x (0 x ki) + (Aq x )| J

“

D.6 Column Vectors R’s

The column vectors Ry,, Ry, and Ry, are partial derivatives of vectors &'.-,., c-ibl..
and &t‘ with respect to the elements of generalized speeds, q;, respectively. They are

given by

4 \

29, X ;',- +82; X (F; % F) +F; x (8 X F) + &; x £
—2jix %i =82 % 5y x F) = Jix (s x B) + @ x s
R = 2Xei(£2; x ) (o

{6}
; {0} J
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[

2'?,-5( Ei +4. i X (‘?x X 5:) +‘?. x (J}g X l;,) i'ﬂ",- N li;,
—2§ix by —82; % (j; x b:) = i x (€2 x B;) + & x b;

2 . - .
F—K.,—(C,-i.- + ci-ﬂi x 1:)
' 0

2 - =
aYoi(ei.li + £:802; % ;)

2 . . .
—Z.;(t:k; + (02, x k;)
\ €o

’

° - -
29, % Py, + 82 % (F; x Ty;) + 9, x (§2; x Ft,) + 6; X Fy,
~2i x Fo, — i x (Ji x Be,) = Ji % (2 x Fy,) + & x £,
‘ 2xt(ﬂt X i.) + 2.§;X'Ji ¢ .(DIU)

2Y,(2; % Ji) + 25,Y"§;

\ 2Z,($2; x k;) + 25,2" ik,
D.7 Matrices J’s

Matrices T,y Tpy To,, defined in Eq. (4.33), are indeed Jucobiun matrices of

position vectors ¥, by, F, with respect to q;, respectively, i.e.

d {aoF & [ob; a9 {of
Tei=c—=)  Toi=—|—|  To,=—[—] . D.l1
T (3‘1f) "~ dq; (‘9"*) " oa (dqf) (D-1)
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Sinee they are svmmetric matrices, only the lower triangular part of the matrices ave

]n'(fsvul,r,-:l here.

~

Jr,:
[

Jb‘_E

Jti:

Fi % (F: x i) * *
(G x ) x ¥; i x Gix Fi)  *

~ -

Xo; cos ¢ §; Xeiki 0
{8 & [
{3} @[]

to¥; % (%: % bi)

lo(3s % By) x F;

o] 3]

*

£:X ,; cos i Ji X ok
£;Y ,;(sin $iki — cos cb,'ii) {5}
~8,2,;5in ¢4 J; A
Fi % (F: % Fy,) * *
(i1 x bs) x 7, Jix Gix F)
X cos ¢: ji X.k; :6

Y (sin é:k; ~ cos gta,-i,-) {5} i;

-

~2Z;sin ;i -Z;i;
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fodi x (i x by)

¥ x *
* * *
6] « «
0 [ﬁ] *
5] [o] [o] ]

* * }
* *
* *

(D.12)



Appendix E

Rigid Longitudinal Equation of
Motion

In the cuse of length equation, g, = {,, one should exercise care to carry out the
differentiation of integrals with length-dependent limits. Let us substitute £, for g,

in S, defined in Eq. (2.75) and rewrite it as

. EFA, O €n fn 1 T o 3] e
Se. = mn% ( End: r,,) + pnoeg 68,,./ te, — 3(1c-rt“)l,_.} g, dity,
d & e} 4.
‘" ——— —— i 1 . 3.
+ p (dt ae" aen) ( 0 2rtu rtu Z l) (l l)

Since all the integrands are functions of £, as well as x,, because of the way the
admissible functions were defined, we should use Leibnitz's rule to carry out the

differentiation inside the integrals. Having done so, we would get,

. (an)n b 581; (EA)n ft" d [
S = 1] n
t m Jo 8¢, dan + m € )z, T Pn0 0 i, |2 {Fe,
- 3(|c rt")lc} rt,.] doy + pnao [{rt" 1,._. l‘t”)lc} F"']m..zr...
d ¢ & £ l .
7 —_——— i . O
+pﬂ- (dt 68 ae ) 0 zrtn rtu‘ In ([ z)

In order to compute S, , let us first deal with the term

f’) tnl-

d &« 6 /1.
dl‘fl . 31:5
( €, Jo 2"" rt" (E3)

= — | —— (=t -Fe ) dz, -
dt 0 aen 2rtn rtn) L
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Since £y, is & function of the spatial courdinate oy

tether length £, and time 1, te,
Ft" t" ‘L”

Lo di. then we can write!

, . (E.4)
dre | " O6, | ot |
Sinee &, = {:,, we uet,

Ty, _ Oy, Oty

LLIRE L (E.5)
(3[,, axﬂ d[ﬂ
Note that this is not consistent with

oF  of
-.C-}'_q-l - 'a_q 1 (E-G)

—

) ., OFt,
hecause of the convective term I, e
L

Using Eqgs. (E.5) and (A.5), I can be rewritten as

n |u OF,: Oy 3 8l:"t a;-' t
- ) " n L — d
! /0 [l't,. (amn + _i'ﬂ’n) + I, (81,1 + Tn

d¢,
5 . . or,, 8Ftu
T =¥t Fe,d2Zn — Bnbn [rt" (3 * oty )LF‘“
] . ai"t, 6i-‘t
- . " ....._.'L . E'"
+ anly [rtn ( 3;5" + 8911 )l Zn=0 ( [)
But
[ . 6rt 1 = ; “
bt LW} = |=Fs T .
./0- Fen 5o Idzn T [21't,. rt"]zn=0 ’ -
and

fn . art a tﬂ I KX 1 * »
rld d - —P. P, n ' E.g
L Fen g, 450 = 3 Jp 37 tnTtad® [2"“ e L..=e.. (E.9)

! Note that it is convenient to write Fg, 4s 8 function of the spatial coordinate z,, and time, thus
in the usual way, f¢_ is given by

. . Ofy Oy,
Tt, = on 8z, at

Howcever, here £, is considered us a separate variable. This means 7t in the above equation is

1] é
(=4 2
equivalent to £, ar. — 7 in Eq. (E.4).
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by using Leibnitz’s rule conversely. Substituting these relations in Eq. {F.7) and

collecting similar terms. we obtain

fn .. OF T, . . ('F F
[ = / Fooo [ b S5 ) oy = duly |Fope |t =t
0 Oy, ély, dry, JE, Fo=ln

+ Qi [, [ Sty ET [1* ¢ ] (E£.10)
‘ Fe. | = — - | =F¢ T . DB
R oy Oy Z4=0 2 bt Ty =0
From the definition of ¥y, and admissible function, one can see that
.| OFy . .
| — +— = [F ] . E.1l
" [ U;’rﬂ afﬂ xy=0 t =0 { ! ]

and

. ai:t,. ai‘.t“ s . . .
€n [8‘17" + _Ufn ]xu:t! = Ly, [l't.,‘]r"-___’“ =r, . (].4'2)

Hence [ can be simplified as:
e"'_-. 3!" " 8i: n LA 1 - L o g
I = _/(; Ftn" (5_1:11 + 'd_{tn') dIp = Bplyfp-iy + (aﬂ - 5) [rt“'rtn]z",__o . (h‘l'i)

Finally we can write S, in the following form by substituting back the above

relation into Eq. (E.2)

EA), (t0E, ; b (o OF
g, = ( In d + (EA)?: (Eﬂ):r e T p'nf T, - .-rt"
m 0o &, m e 0 diy,

+ ['i':g" + ag {ft,, - 3(ic‘it..)ic}] C;c *dTn, } + %ﬁ" [ag {Fe.

AT O S N1 &
- 3(l¢'l‘¢")lc} 'rtu] - ﬁupnfﬂrn'ln + Pn (an - 5) [rtn'rtu]h:o (E.14)

Ty =y

Since F, = 0 at z,, = 0, after some manipulation we obtain

S4, = Pn /(; " [%t,, + ag {i"t" 1,, i, ) |¢}] ((();e:‘ di:t") dz,

In
C e o EA t G, EA
+ Bni:n'in + ( )n 3f d Int+ —— ( ) ( "):l:...=ln
N N o
+ pﬂ (aﬂ. - 5) {rt".rt"]:,.:l) ' (E-15)
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Appendix F

Comments on the Analytical
Mechanics Approaches

Use of the anclytical mechanics approaches to derive the equations of motion has

Lheen a controversial subject, for a system with a changing mass. Similar to Newton's
J y gimng

scecoud luw
. dF
F= _1: 3 (F'l)
the extended Hamilton's principle
]
f(azHW)dc -0, (F.2)
1

can be applied only to a system with a constant mass. In the case of a system with a
changing mass, one has to use a modified form of these equations. Newton's second
law was extended for a system of changing mass, in the early stage of the development
of fluid mechanics [84]. Using the idea of open and closed control volume, Mclver
|85], modified the extended Hamilton's principle for a system of variable mass. In a

general form it is written as

ty

/ [(aco +OW) + §_pli-0)(V - F)-nda] dt =0 , (F.3)

where at position ¥ and time ¢ the particle has the density and velocity of p and
i", respectively. B, is the boundary of the open control volume, 17, L, and §W are

the velocity of this boundary, Lagrangian of the open system and the virtual work
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serformed on the same svstem due to the virtual displacement 8¢, respoectively, i
i A ! A

fuct p(V — £)dA is the mass flow rate crossing the boundary surface element o A,

Using the modilied form of the extended Hamilton's prineciple researches like
Melver [85] and Laithier [86], showed that similar equations can be obtained as that
of Newton's method for a system of changing mass such as the rocket problem and

vibratious of a tube conveying fluid internally.

[n the following an illustrative example is considered to compare the eguations of
motion using Newton’s second law with those of an analytical method for a tethered
sutellite system. It can be seen that one can arrive at similar equations of motion
using either of approaches. However, based on different assumptions made during the

modelling, one can come up with different equations.

F.1 An Illustrative Example +F

The system, which models o tethered

. : . A i
sutellite system in a very simple form, con- Id

sists of a mass m suspended through a hole A

o)
-
P

by an inextensible tether with a mass den-
sity of p per unit length. In this model,
point A represents the attachment point of
the tether to the reel mechanism, and F is P ¢

the tension force applied by the reel mecha-

nism at this point. [t is assumed that there i ¢

is no force acting on the system other than

F. The upper part of the tether (d)} mod- B Control

o |Volume

els the unreeled part, while the reeled part

is modelled by the lower part (€). Figure F.1: Nlustrative example
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The equation of motion is obtained for three different cases: (a) thie apper part
iv assummed to be moving with the same velocity as the lower part: (b) the upper
part, has no motion and the velocity change takes place suddenly; and (c) most of the
upper part has no motion and the velocity change takes place within a smali portion

of the upper part of the tether such that no energy is lost in this process.

F.1.1 Case 1: The Upper Part Moves with the Same Ve-
locity As the Lower Part

In this case we are dealing with a rigid body system moving with respect to the

inertial frame with the displacement d. From Newton's method, we have

. "

F=(m+pl)d, T={m+pl)d . (F.4)
Since d + £ = L = constant, we can write
=—(m+pL), T=—(m+pt)f . (F.5)

Similar equations can be obtained using Lagrange's method along with Lagrange

multiplier or extended Hamilton’s principle.

These relations show that the tension at point A, the point that the tether is
really attached to the reel mechanism, in general, is different from that of point B, if
it is assumed the upper part has moving. They are approximately equal only when
d < €. In other words there is an inconsistency if one assumes that the unreeled part
of the tether has the same velocity as the reeled part and uses the tension at point B

as the regulating tension applied by the reel mechanism and controller.

F.1.2 Case 2: The Upper Part Has No Motion and the
Velocity Changes Suddenly

Assuming that the upper part has no motion and the velocity change takes place

suddenly between the upper part and the lower part and using the Newton’s method
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for a contral volume, one obtains
T = —(m + pO){ — o2 (.6

Ay, . . .
The term pf~ in the right hand side is the transport momentum across the control

volume,

To apply the modified form of the extended Hamilton's principle. Eq. (F.3). let
us assume that our closed contro! volume is the box shown in Figure F.1 with the
dotted-lines and the open control volume is coincident on the closed control volume
instantaneously. Let us give a virtual displacement §¢ and figure out the different

terms in Eq. (F.3).

At the boundary, ¥ is zero, therefore the closed integral over the houndary vau-

ishes. Lagrangian of the open system is given by

1

L,= §M£""" , (F.7)

where M = m + pf is the total mass inside the open control volume. Performing the

§ operator, we would get

1

6Ly = 56(M)é2 + MESs(€) = MEs(é) (F.8)

since 6(M) = 0 is a constraint of the open system. Hence we can write

. , dM . "
8L, = MES(E) = %(ME:SE) - (d—ﬁff +Me)6e | (F.9)
For the present system %I— = pé, thus
d . " "
6L, = IE(ME&E) — (pt° + ME)5C . (F.10)

The virtual work on the open system is simply given by

§W = —T6¢ . (F.11)
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Substituting for §£, and &, performing some algebra. and implementing 46 = 0

at t; and {1, we obtain
[:’ [-T-pé2 = (m + pt){| 86dt = 0 . (F.12)
Sinee 8 is any arbitrary virtual motion, one concludes that
T = —(m + pl)é — pf* (F.13)
which is identical with the result of Newton's method.

F.1.3 Case 3: The Upper Part Has No Motion and the
Velocity Changes Smoothly Within a Small Portion
of the Tether

In this cuse we assume that the velocity changes smoothly between the upper and the
lower parts within a small portion of the tether, such that: first there is no energy lost
due to the momentum transfer; and second this portion is so small that its kinetic
cuergy is negligible. It is equivalent to assuming that the incoming tether enters
the closed control volume with the average velocity, éf Using Newton's second law
or the extended Hamilton’s principle for the open system, the equation of motion

corresponding to ¢ is given by

T = —(m+ pt)f - %pég . (F.14)

Similar equation can be obtained if one starts from the conventional form of the

Lagrange's equation to derive the equation of motion corresponding to ¢

d (8KE) _OKE _ o (F.15)

dt \ &¢ EY]
where K E = 1(m + p€)® and Q, = —T. After some manipulation we can write

w 1 .
T = —(m + pl)¢ — §p€2 . (F.16)
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F.2 Concluding Remarks

In the study of dynamics and control of a two-body tethered satellite system, Kim
|66] used the first assumption and obtained the equation of motion corresponding to
f with no extra term associated with the momentum transport at the attach point
of the tether and the main-satellite. He then suggested using a pseudo generalized
coordinate € in using the Lagrange's method to arrive at similar equations as those
of the Newton's method, Instead of using this idea , which makes the derivation of
motion difficult in a general cuse such as N-body tethered satellite systeni, one can

start from Eq. (2.65) and integrate it for whole system.

For the formulation of an N-body system, developed in this thesis, it is equivalent
to dropping G,,; in Eq. (2.71) and L, in Eq. (2.84). If variation of the masses is to
be ignored even in the kinematics, then all the B,- and B i=12...,N — 1 must
be equated to zero. However as was mentioned earlier assuming similur velocity for
the unreeled part and reeled part from one hand, and using the tension at one end of
the reeled part of the tether as the applied tension by the reel mechanism from the

other hand, are not consistent.

As the final words we would like to mention two points here: first, the difference
between assuming similar velocity between the reeled part and uunrecled part of the
tethers and assuming smooth change in the velocity from zero to deployment /retrieval
rute, appears only in the equation of motion corresponding to ¢, i.e. none of the
equations associated with librational as well as vibrational motion are affected, no
matter which method is used. Secondly, the difference in reality even in the € equation

is so small in practical cases that it has been often ignored by the researchers.

To sense the difference let us consider a two-body tethered satellite system moving

in a circular orbit, where the main satellite is coincident with the centre of mass. The
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system is assumed to have no librational motion. The tether is being deploved at a

constant rate. With the three different assumptions of the previous Section, we would

obtain the following equations:

- 1 a
=Ty = (mn + pl)¢ — 2(n + Epf)fﬂg .

. 1 n il
—Ta = (m + pt){ = 2(m + —pl){Q; + pt~ .

2
p 1 "
=Ty = (i + pl} = 2(m + rz-pc”)fﬂg + §p€“ .

For a system with the following parameters

m = 500kg, p=4kg/km, ¢ = 5m/s, Q. = 0.0012 rad/s,

Table F.1 compares Ty, To, and Tj for different lengths of the tether.

Tuble F.1: Comparison of tension in the tether

[¢km [Ty (N) [T (N)[T3 (N) |
100 201.6 201.5 ] 201.55
10 14.98 14.88 14.93
1 1.45 1.35 1.40
0.1 0.144 0.044 0.094

(F.17)
(F.13)

(F.19)

[t can be seen that except for the tether with a small length, the difference is

negligible. Taking into account the fact that ¢ likely to be much smaller than 5 m/s

in the early/final stuge of deployment/retrieval , when the tether is short, one can

realize that the tensions will be of the same order with either of the three assumptions.

Note that including the librational as well as the vibrational dynamics of the tether

us well as the dynamics of the mainsatellite will result in even smaller difference.
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