
INFORMAnON TO USERS

This manuscript has been reproduced from the miaofilm master. UMI films

the text directty tram the original or copy submitted. Thus. sorne thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quailly of this reproduction is dependent upon the quality of the

copy submltted. Broken or indistinct print. colored or poor quality illustrations

and photographs. Print bleedthrough. substandard margins. and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also. if unauthorized

copyright material had to be removed. a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from 18ft to right in equal sections with small overtaps.

Photographs induded in the original manuseript have been reproduced

xerographically in this copy. Higher quality 6- x 9- black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to arder.

ProQuest Information and Leaming
300 North Zeeb Raad. Ann Arbor, MI 48106-1346 USA

800-521-0600

•

'.

Factors Infiuencing a Persona! Software

Process

Xiaoming Zhong

School of Computer Science

McGill University, Montreal

A thesis submitted to the Faculty of Graduate Studies and

Research in partial fulfillment of the requirements for the

degree of Master of Science

@Xiaoming Zhong, 1999

February 1, 2000

1

1+1 Nalional Ubrary
of Canada

Acquisitions and
Bibliographie Services

38S Wellington street
OKawa ON K1A 0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions el
services bibliOgraphiques

395. rue Wellington
Ottawa ON K1A 0N4
canada

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, 1080, distnbute or sen
copies oftbis thesis in microform,
paper or electronic formats.

The author retains ownership ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sm papier ou sur fOlDlat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-64486-3

Canadl

•

•

Abstract

Following the development of Persona! Software Process (PSP) by Humphrey, a

number of efforts have been made to study the impact of PSP on the improvement

of software quality and productivity. However, most of such studies have focused on

the results of the execution of PSP. Little attention has been paid to the underlying

factors that influence the output of the execution of PSP. By investigating which

factors influence the output, and how, we would have an improved understanding

of PSP, which, in turn, could lead to improvement of the design of PSP and hence

of personal software process.

In this thesis, we describe an experiment involving 53 subjects carrying out PSP.

In particular, we examine the factors underlying a. persona! software process and

analyzed the impact of these factors on the output of PSP execution, namely, the

improvement in software quality and productivity. Our study complements previous

work on PSP by.providing a "white-box" view of PSP in assessing the effectiveness

of PSP.

•

•

Résumé

À la suite du développement du "Personal Software Process" (PSP) par Humphrey,

plusieurs ont étudié l'impact du PSP sur l'amélioration de la productivité et de la

qualité des logiciels. Cependant, la plupart de ces études se sont concentrées sur

les résultats de l'exécution du PSP. n y a eu très peu d'attention portée sur les fac­

teurs influençant ces résultats. En examinant quels facteurs ont une influence sur le

résultat, et comment ils les influencent, nous aurions une meilleure compréhension

du PSP. Ceci pourrait mener à l'amélioration de la conception du PSP, et donc du

processus personnel de développement de logiciel.

Dans cette thèse, nous décrivons une expérience où 53 sujets ont utilisé le PSP.

En particulier, nous examinons les facteurs à la base du processus personnel de

développement de logiciel, et nous analysons leur impact sur les résultats d'exécution

du PSP, c'est-à-dire sur l'amélioration de la productivité et de la qualité des logiciels.

Notre étude est complémentaire aux autres travaux sur le PSP, en apportant une

vue de "boîte blanche" sur le PSP dans l'évaluation de son efficacité.

l

•

•

Acknow-Iedgments

1 wish to thank my supervisor, Prof. Madhavji, for his guidance and support, and

bis valuable suggestions and criticism during the course of this work. 1 aIso wish to

thank my family for their continuous support and encouragement throughout my

studies.

2

•
Contents

1 Introduction 1

2 Background 7

2.1 What Persona! Software Process 1s 7

2.1.1 Development of Persona! Software Process 8

2.1.2 The Logic Behind Persona! Software Process . . 8

2.1.3 The PSP Approach and Structure 9

2.2 The PSP Measures " 10

2.2.1 Development-time lvIeasurement .. · Il

2.2.2 Defect Measurement · 12

2.2.3 Size Measurement. . · . . . 14

2.2.4 Project Summary Data . · · 16

2.2.5 PSP Derived Measures · . . 17

2.3 The assessment of PSP 20

2.3.1 PSP in the Classroom Setting . · · . . 20•

• 2.3.2 PSP in Industry. .. 24

3 Research Objective and Experiment Design

3.1 Research Objective.

3.2 Experiment Design . .

3.3 Madel for Analysis of Data

3.3.1 Attribute Types.

3.3.2 Goal/Question/Metric (GQM)

3.3.3 Dependent Variables and Independent Variables

3.3.4 Regression Analysis

3.2.1

3.2.2

3.2.3

Investigation Approach .

Research Context .

Descriptive Models

30

30

33

33

34

36

44

45

47

49

50

4 Data and Results 53

•

4.1 Significant Attribute (SAtrb) Identification 53

4.1.1 Significant Attributes (SAtrbs) for Defect Density (Dds) 54

4.1.2 Significant Attributes (SAtrbs) for Defect Removal Rate (Drr) 56

4.1.3 Significant Attributes (SAtrbs) for LOC/Hour 60

4.1.4 Summaryon Significant Attributes (SAtrbs) . . 63

4.2 Relationships Between Significant Attributes (SAtrbs) and Sorne Non­

Significant Attributes (NSAtrbs). 65

11

•

•

4.2.1 Noticeable Relationships

4.2.2 Summary of PIAtrbs, SAtrbs and NSAtrbs . .

4.3 Trends of SAtrbs in the PSP Projects

4.4 Implications of the Findings for PSP .

5 Conclusion and Future Work

A PSP Evolution

A.l Baseline Process(PSPO)

A.2 Persona! Planning Process(PSPl)

A.3 Persona! Quality Management(PSP2) .

A.4 Cyclic Personal Process (PSP3)

iii

. . •. 66

69

70

71

74

77

77

78

78

79

•
List of Figures

1.1 A Schematic Diagram Showing the PSP Design Concepts, PSP Exe­

cution, PSP Output, and Feedback 3

•

2.1 PSP Evolution

2.2 Time Recording Log

2.3 Defect Type Standard

2.4 Defect Recording Log.

2.5 Sample PSP Project Plan Summary Form

2.6 Defect Density - from CS215 in ERAU . . .

2.7 Compile and Test Tirne - from CS215 in ERAU

3.1 PSP Process Model . .

3.2 Defect Attributes .

3.3 Quality Attributes

3.4 Productivity Attributes. .

3.5 Goal of Analysis.

iv

. . .. Il

12

14

15

18

24

25

37

40

41

44

. . . . 49

• 3.6 Goals, Questions and Metrics 52. .

4.1 Relationship between Dds and Yld 55

4.2 Relationship between Drr and A/FR · . . . 57

4.3 Relationship between Drr and Yld .. 58

4.4 Relationship between LOC/Hour and A/FR · . . . 61

4.5 Relationship between LOC/Rour and Yld 62

4.6 Relationship between ABtk and A/FR · . . . 65

4.7 Relationship between NTD/ND and A/FR 67

4.8 Relationship between TT/TDT and A/FR . 68

4.9 Trends of A/FR and Yld Over PSP Projects 73

• v

•
List of Tables

2.1 PSP LOC Type Definitions

2.2 Definitions of PSP Measures .

2.3 Quality Improvement in the Five Early Courses

2.4 P roductivity Improvement in the Five Early Courses

2.5 Summary of AIS Project Data

2.6 US&S Usage Data

2.7 Motorola Operational Defect Data for PSP Projects ..

17

19

21

21

26

27

29

3.1 Dependent Variables and Independent Variables 50

•

4.1 Regression Equations for Defect Density (Dds)

4.2 Regression Equations for Defect Removal Rate (Drr)

4.3 Regression Equations for LOC/Hour

4.4 Significant Attributes

4.5 Regression Equations between SAtrbs and NSAtrbs

vi

54

56

.. . .. 60

63

64

•

•

Chapter 1

Introduction

It is we~ known that software development projects are plagued \Vith quality prob­

lem, cost overruns and schedule slippage [Neu93]. Thus, among the key goals of

software development are to be able to build high quality software systems, on time,

within budget and within a satisfactory development environment. A recently rec­

ognized way to help achieve these goals is to improve software development processes

such that the concerned problems are mitigated. Various approaches to process im­

provement have been developed ranging from those at the personal-level to those

at organizational-Ievel: Personal Software Process (PSP) [Hum95a]; Capability Ma­

turity Model (CMM) [PCCW93] [Hum89]; Quality Improvement Paradigm (QIP)

[Bas92]; and Total Quality Management [ZuI93]. Based on such models, many

process improvement projects and activities have been carried out both in academia

and the software industry [HT97] [ESM96] [Sh096] [Hum95b] [SM96] (She94] [Di093]

1

•

•

[\Voh93] [HSW91].

Focusing at the grass-roots level of software development is Humphrey's Personal

Software Process (PSP) [Hum95a]. It is based on the premise that discipline in

software development at the persona! level can help increase the effectiveness of

individual engineers [Hum94a] [Hum93]. This, in turn, is likely to improve the

performance of software teams and projects.

PSP is a process framework and a set of methods designed ta help engineers to he

more disciplined in their work. It shows them how to estimate the size of individual

projects (or tasks); plan their projectsj measure and track their work; and improve

the quality of the products they produce.

The PSP consists of: a series of scripts that define tasks; forms for recording

data; and standards that govern such aspects as coding practices, size counting, and

the assignment of defect types. When engineers follow PSP, they first plan their

work and document the plan. As they do their work, they record development time

and track and record every defect they find. At the end of the project, the engineers

do a postmortem analysis and complete a project plan summary report.

PSP is being taught as a course in a number ofuniversities, among them: the Uni­

versity of Massachusetts (at Lowell) [Hum95b], Carnegie Mel10n University [HT98]

[Hum94b], Embry-Riddle Aeronautical University [HT97] [Kha95], and McGill Uni­

versity [SM96] [She94]. PSP courses or concepts have also been used ta train pro­

fessionai engineers in the software industry [FHK+97] [ESM96] [MKN+96] [Roy96]

2

•

•

[Hum94b] [Hum94c].

The introduction of a new software development method, however, is often ac-

companied by the assessment of the effectiveness of this method. Following the de-

velopment of PSP, a number of efforts have been made to study the impact of PSP

on software development [HT98] [FHK+97] [ESM96] [Hum96a] [Hum96a] [She94].

Their research helps to expIain the logic behind PSP and contributes greatly to any

possible refinement of PSP.

PSPDESJGN PSP EXECU'nON PSP OlJTPtJT

psp Conccpu: Execution of the PSP Programme: ResullS of PSP CJlecuûon:

• sizc eslimlllC • improvement in software produc:tivity

• lime spent in revicw• time eslimale • improvement in product quality

• -----.. • -planning enacted number ofdefects removed prodgça

befote fint compile • improvemeat in sizc and lime estîmarc• codereview

• design revicw • aVer:lge number of phases
siriUs

• postmonem analysis backlJ':lCked to fix a dcfect
......................._.............

fcedhllCk

Figure 1.1: A Schematic Diagram Showing the PSP Design Concepts, PSP Execu-

tion, PSP Output, and Feedback

Most of the published research, however, has focused on the PSP concepts and

the output of PSP execution, e.g., the relationships between code review and im-

provement in product quality (Figure 1.1). Such research helps to explain the degree

to which PSP improves an individual's process. It is more like a static analysis of

3

•

•

PSP relationships. But many underlying factors, observed during PSP execution,

that influence the output of PSP have received little attention. This thesis thus

complements previous work on PSP by focusing on the dynamics of PSP, giving

insight into the underlying factors for the observed e1fects in the output of PSP

execution. Such insight can be used to improve specifie aspects of PSP.

A persona! software process involves many underlying factors, such as the per­

centage of defects removed before the first compilation, lime spent in test phase as

a percentage of total development lime, etc. It is clear from previous studies that

PSP, as a whole, has a positive impact on certain dependent variables of software

development, such as number of defects removed per hour, thousand lines of code

developed per hour, etc. But there is no reason to assume that all the underlying

factors contribute equally to the dependent variables. We assume that certain un­

derlying factors play a key raIe in the impact of PSP on the dependent variables.

Which factors are there is not clear, however, the purpose of this study is ta uncover

the influence factors.

Thus, in this study, we built descriptive models of software quality and produc­

tivity. Based on these models, we investigated the factors, e.g., average number of

phases backtracked to fix a defect, which most influence process improve"ment mea­

sured in terms of: LOC per hour, number of defects per [(LOC and the number of

defects removed per hour. \Ve then studied how these factors vary through the PSP

execution, sa that we can have an improved understanding of the way in which PSP

4

•

•

affects software productivity and quality.

Our study was carried out in the context of a PSP course at McGill University.

Fifty three full-time senior undergraduate students participated in the course during

the period September to December 1997. Every week, two lectures, each of duration

one and a half hours, were given to the students in which they were taught ways

to carry out and improve their personal processes. After each set of lectures, the

students were assigned a programming project, which utilized the techniques taught

to them. There were a total of eight 1 programming projects, per student, which all

used the C++ programming language. Based on the data gathered from these (53

x 8 = (24) projects, we had a number of findings 2, for example:

1. The percentage of defects found and fixed before the first compile (Yield) is a

significant factor that influences process improvement measured in terms of:

(i) defects per delivered thousand lines of code (Defect Density), (ii) defects

found and removed per hour (Defect Removal Rate), (iii) and lines of code

developed per hour (LOC/Hour).

Our analysis indicates that, when Defect Density is used to evaluate software

quality, yield should be taken into account. We aIso found that one of the

1 In addition, there were three significant data analysis projects, probing into problems typically

faced in software projects.

2The interpretation of these results are described in the later chapters of the thesis where details

of the data analysis are also given.

5

•

•

obstacles of introducing review skills is because reviews have no significant

positive effect on Defect Removal Rate unless Yield has achieved a high level.

2. Appraisal Time to Failure Time ratio (A/FR): the time spent in design review

or code review as a percentage of the time spent in compile and test - is a

significant factor that influences Defect Removal Rate and LOC/Hour.

Our analysis indicates that the A/FR value can be a useful guide for software

developers in adjusting their review time to achieve a high Defect Removal

Rate during software development.

This thesis describes several other findings. By studying the relationships among the

PSP concepts, process dynamics and the output of PSP execution (see Figure 1.1),

our study gives a new insight into the rationale and logic behind PSP. In return,

this can lead to possible refinements of certain aspects of PSP.

Chapter 2 gives the details of PSP. Chapter 3 states our research objective and

experiment desigc. An in-depth analysis of data is done and results are shawn in

chapter 4. Chapter 5 concludes our study.

6

•

•

Chapter 2

Background

This section presents background work which is related to our study. It briefiy

describes PersonaI Software Process (PSP)[Hum95a]. This section aIso provides an

overview of the basic PSP measures, forms, and measurernent process to give the

reader sorne context for the data that were analyzed for this study. Finally, sorne

reported experiments of PSP were reviewed.

2.1 What Personal Software Process Is

This section describes the development of, the logic behind, the structure of, and

the. evolution of PersonaI Software Process.

7

•

•

2.1.1 Development of Personal Software Process

In 1987, the Software Engineering Institute (SEI) at Carnegie Mellon University pub­

lished a software development eapability maturity known as the Capability Maturity

Model (CMM) [Hum87]. By establishing and defining the five levels of progressively

more-mature proeess capability, the CMM provides an orderly way for organizations

to determine the eapabilities of their current process and to establish priorities for

improvement. Its focus, however, is on large-seale software and large-scale software

organizations. Humphrey reeently extended the CMM by proposing an approach for

scaling it down to small teams and small software organizations through Personal

Software Proeess (PSP) paradigm [Hum95a]. PSP addresses the need to use CMM

by individual software praetitioners and small software organizations. It relies on

a bottom-up approaeh rather than a top-down one: instead of imposing software

proeesses from a managerial direction and targeting projeets, PSP foeuses on the

individual programmer and targets his/her work.

2.1.2 The Logic Behind Personal Software Process

PSP provides a framework to help software developers to organize and plan. their

work, traek their performance, manage software defeets, and analyze and improve

their personal proeess. The logie behind PSP is as follows:

8

•

•

• By defining, measuring, and tracking their work, software developers will bet­

ter understand what they do.

• This understanding will enable the software developers ta better recognize

what methods work best for them and to see how they can more consistently

apply them.

• The engineers will then have a defined process structure and measurable cri­

teria for evaluating and learning from their own and others' experiences.

• With this knowledge, the software developers can select those methods and

practices that best suit their particular tasks and abilities.

• By using a customized set of orderly, consistently practiced, and high quality

persona! practices, the software developers will he more effective memhers of

their development teams and projects.

2.1.3 The PSP Approach and Structure

At the tech:nicallevel, PSP is a structured set of process descriptions, measurements,

forms, scripts and standards that guide software developers in size estimation, -plan­

ning, reviewing and data gathering. Various data analyses are defined to determine

the quality and productivity of software developers' work. This helps individuals to

develop a quantitative understanding of their process products and processes.

9

•

•

PSP has a. maturity framework as does the CMM. It has been structured in

an evolving sequence of seven upward-compatible persona! processes. Each process

step is defined and used to guide the individuals through an evolutionary path from

simple process concepts, such as project planning, to advanced levels of process

maturity, such as defect prevention. The PSP evolutionary path consists of seven

consecutive phases (see Figure 2.1). Appendix A contains a brief discussion of these

seven PSP phases.

2.2 The PSP Measures

PSP is based on the principle of data-driven process improvement whereby mea­

surements are central in highlighting process deficiencies and providing a focus for

process improvement. There are three basic measures in PSP: the development­

time, software defects, and software size. An other PSP measures are derived from

these three basic measures. The measurement process and forms 1 for these mea­

sures are introduced during the first three assignments at the PSP process levels

PSPO and PSPO.1. Development-time and defect measures are introduced on the

first assignment; size measures are deferred until a program for counting LOC has

been developed in assignment 2.

lSome measurement definitions and templates sample in this section are from [Hum95a] [H097] .

10

•
Cyc:lic PSP3

PersonaI Cyclic dcvelopmcnt

-"'Î~----'
(

Personal

Quaiily

Management

PSP2

Code reviews

Design reviews
1

PSP2.1

Design templates

(
\

PSP1.l
Persanal PSPI
Planning Taslt planning

Size estimating Schedule planning

Proc:ess /~-----I---.2est report 1

Basdine

Personal

Process

1

\
PSPO

Current proc:ess
Time rec:ording

Dereet n:cording
Derect rype standard

PSPO.I
Cading standard

Size measurement
Procas improvement proposai

Figure 2.1: PSP Evolution

2.2.1 Development-time Measurement

•

Minutes are the unit of measure for development-time. Engineers track the number

of minutes they spend in each PSP phase, less time for any interruptions such as

phone caUs, coffee breaks, etc. A forro, the Time Recording Log, is used to record

development-time.

The example Time Recording Log (Figure 2.2) illustrates how this forro is used.

Il

•

•

In the example, the engineer started the Plan phase of bis project on Sept. 15 at

7:58 and finished planning at 8:45. The elapsed time was 47 minutes, but actual

effort, or Delta Time, was only 44 minutes, due to an interruption of three minutes

to take a phone call. The engineer started the Design phase at 8:47 and finished at

10:29. A two-minute interruption give a Delta Time of 100 minutes. The remaining

phases, Code, Compile, and Test are recorded in a similar manner.

Date Start Stop Interruption Delta Phase Comments

Time Time

9/15 7:58 8:45 3 44 Plan phone call

8:47 10:29 2 100 Design create, review design

7:49 8:59 70 Code coded funetions

9:15 9:45 31 Compile compiled and linked

9:47 10:10 23 Test ran tests A, B, and C

4:33 4:51 18 Postmortem

Figure 2.2: Time Recording Log

2.2.2 Defect Measurement

A defeet is defined as any change that must he made to the design or code in order to

get the program to function as desired. Defects are recorded on the Defect Recording

Log as they are found and fixed. The example Defect Recording Log (Figure 2.4)

12

•

•

shows the information that is recorded for each defect: the date, sequence number,

defect type, phase in which the defect was injected, phase in which it was removed,

fix time, and a description of the problem and fixe

When an engineer injects a new defect while trying to fix an existing defect,

proper accounting of fix time can become more complicated. A common mistake is

to include the fix time for the new defect twice. To help with this problem, sorne

space is provided to record a reference to the original defect that was being fixed.

The number of the original defect that was being fixed is recorded in the fix defect

reference of the new defect.

Each defect is classified accllrding to a defect type standard as described in

[Hum95a]. The standard includes 10 defect types (Figure 2.3) in a simple, easy-to­

use classification scheme designed to support defect analysis. Engineers can refine

the standard to meet persona! needs, but they are encouraged to wait until they

have sufficient data to justify a change.

In the example Defect Recording Log (Figure 2.4), the engjneer found the fust

defect on Sept. 13. The defect was a type 20 (syntax error) that \Vas injected

during the code phase and removed during t~e compile phase. The engineer spent

22 minutes finding and fixing the defect. The second error, also a syntax error, was

injected during the code phase and removed during the compile phase, and took 18

minutes to find and fiXe Similarly, other defects are recorded in the log.

13

•

•

Type Number Type Name Description

10 Documentation cOnnLnents, messages

20 Syntax spelling, punctuation, typos, instruction formats

30 Build, Package change management, library, version control

40 Assignment declaration, duplicate names, scope, limits

50 Interface procedure calls and references, 1/0, user formats

60 Checking error messages, inadequate checks

70 Data structure, content

80 Function logic, pointers~ loops, recursion, computation,

function defects

90 System configuration, timing, memory

100 Environment design, compile, test, or other support system

problems

Figure 2.3: Defect Type Standard

2.2.3 Size Measurement

The primary purpose of size measurement in PSP is to provide a basis for estimating

development-time. Lines of code were chosen for this purpose because they -meet

the fol1owing criteria: they can he automatically counted, precisely defined, and

are weIl correlated with development-effort based on the PSP research [Hum95a].

Size is also used ta normalize other data, such as productivity (LOC per hour) and

14

•

•

Dale Number Type Inject Remove FixTime Fix Defect

9/13 1 1 1 1 1 20 1 1 CODE 1 1 CMPL 1 1 22 1 1

Description: syntax error in scanf statement

Dale Number Type Inject Removc Fix Time Fix Defect

9/13 1 1 2 1 1 20 1 1 CODe 1 1 CMPL 1 1
18

1 1 1

Description: error in linlted list SlI'UCllype declarations within access funetions

Date Number Type Inject Removc FIX Time FIX Defect

9113 1 1 3.() 1 1 20 1CODE ICMPL Il 1 1

Description: missing;

Dale Number Type lnject Removc Fix Time Fix Defect

9/13 1 1 7 1 1 20 1 1 CODE 1 1 CMPL II 1 1 1

Description: incorrect spelling of identifier in declaration

Dale Numbcr Type Injccl Remove Fix Tune Fix Defect

9/13 1 1 8 1 1 20
1 1 CODE 1 1 CMPL 1 1 1 1

Description: fonction declaration error

Dale Numbcr Type Inject Rcmovc FixTime Fix Defect

9/13 1 1 9 1 1 20 1 1 CODe II CMPL 1 1 1 1

Description: link error. missing include for math.h

Figure 2.4: Defect Recording Log

defect density (defects per KLOC). White LOC are suitable for the programming

assignments in the PSP course, any measure that meets these same criteria can be

used in practice.

In the PSP course, as in practice, each program involves sorne amount of new

development, enhancement, and/or reuse. Therefore, the total LOC in a program

will have severa! different sources, including sorne new LOC, sorne existing LOC

that my have been modified, and sorne reused LOC. Because LOC are the basis for

15

•

•

estimates of development-time, it is important ta account for these different types

of LOC separately.

PSP uses the LOC accounting scheme shown in Table 2.1. Base LOC are any

LOC from an existing program that will serve as the starting point for the program

being developed. Deleted and modified LOC are those base LOC that are being

deleted or modified. Added LOC is the sum of all newly developed object, function,

or procedure LOC, plus additions to the base LOC. Reused LOC are the LOC taken

from the engineer's reuse library and used without modification. If these LOC are

modified, then they are considered to he base LOC.

New and changed LOC are the sum of added LOC and modified LOC. New and

changed LOC, not total LOC, are the most commonly used size measure in PSP.

For example, new and changed LOC are the basis for size and effort estimating,

productivity (LOC/Hour), and defect density (Defects/KLOC). Finally, total LOC

are the total program size, and total new reused LOC are those added LOC that

were written ta he reused in the future.

2.2.4 Project Summary Data

Project summary data are recorded on the Project Plan Summary form: This form

provides a convenient summary of planned and actual values for program size, de­

velopment time, and defects, and a summary of these same data for all projects

completed ta date. Figure 2.5 shows the four sections of the project plan summary

16

•

•

Type of LOC Definition

Base LOC from a previous version

Deleted Deletions from the Base LOC

Modified Modifications to the Base LOC

Added New abjects, funetions, procedures, or any other added LOC

Reused LOC from a previous program that is used without modification

New and Changed The sum of added and modification LOC

Total LOC The total program LOC

Total New 'Reused New or added LOC that were written to he rensable

Table 2.1: PSP LOC Type Definitions

that were used: Program Size, Time in Phase, Defects Injected, an Defects Removed.

The data on the plan summary form has many practical applications for the

software engineer. The data can be used to traek the current project, as historical

data for planning future projects, and as baseline process data for evaluating process

improvements.

2.2.5 PSP Derived Measures

Each PSP level in.troduces new measures to help engineers manage and improve

their performance. These measures are derived from the three basic PSP measures:

development-time, defects, and size.

17

• SIle (IDe): Pbn Ada8I ToDate
8aIe(B) 0 0

(Mcawrcd) Mcamed)

DeIefed(D) 0
~)

0
Caumed)

MocIirlCd(M) 0 0
(&IïllWed) (Olunted)

Addcd(A) 112 'U
(N.M) (T·B+D-R)

Rased(R) 17. 174 316
<EibmIIed} Counred)

Talai New & CIIaa&ed(N) III 137 759

(Eaimated) (,,+Ml

TOIlIILOCm 286 311 1161
(N+B-M+D-R) Meuumf)

TOIlII New Rcused 0 0 326

nille ln PIIue (adno) "- Actual ToDaIe ToDate'"

PlanninC 42 H 287 172

DaiID 76 56 490 294

DesiGn revicw

Code 48 61 3U 2°1
CodeIeYÏCW 30 27 27 1.6

Compile 15 1 1"6 64
Test 26 38 326 19.6
Posamorfan 13 20 94 56
Tocal 250 247 1667 100.0

Defeds Il\Iected Plan Accual ToDaIe ToDate"

Planning 0 0 0 00

Desip , 10 '82
OcsiGn review 0 0 0 0.0

Code 6 6 40 n7
Codereview 0 0 0 0.0
Compile 0 0 , 36

Test 0 0 3 56
Total DevelopmeDt 8 7 '15 100

Defects Remo.. Plan Adaal ToDatc Tonace ..

Planning 0 0 0 op

OesiCIi 0 0 0 on
Daign~iew 0 0 0 0.0

Code 0 0 1 1.8
Codeleview 0 5 5 91
Compile 4 0 U 435
Test 4 2 25 455
Tocal Developmcnt 8 7 S5 1000
After Developmcnt 0 0 0

• Figure 2.5: Sample PSP Project Plan Summary Form

18

•

•

Measure Definition

Interruption Time The elapsed time for small interruption from project work

Delta Time Elapsed time in minutes from start to stop less interruptions

Compile Time The time from the start of the first compile until the first

dean compile

Test Time The time from the start of the initial test until test completion

Total Time The sum of the time for aU phases of a project

Defect Any element of a program design or implementation that must

be changed to correct the program

Defect type See Figure 2.3, Defect Type Standard

Fix Time The time to find and fix a defect

LOC A logical line oC code as defined in the engineers' counting and

coding standard

LOC/Hour Total new and changed LOC developed divided by the total

development hours

Compile Defects/KLOC The defects removed in compile per new and changed KLOC

Test Defect/KLOC The deCects removed in the test phase per new and changed KLOC

Defect Density The total deCects removed per new and changed KLOC

Yield The percentage of defects injected before the first compile that

removed beCore the fist compile

Appraisal Time Time spent in design and code reviews

Failure Time Time spent in compile and test

A/FR Appraisal Time/Failure Time

Table 2.2: Definitions of PSP Measures

19

•

•

Table 2.2 contains a partiallist of the derived measures available in PSP and

their definitions. These measurement definitions are included to provide context for

the analyses that follow.

2.3 The assessment of PSP

Because the research on PSP is in its infancy, the expericnce with PSP is stilllimited.

Several universities offer a course on PSP as a part of their software engineering

programs. The reports from these courses are generally positive [HT98) [Hum95c)

[She94). Concerning PSP in industry, only a few reports are available at this stage

[FHK+97) [ESM96]. In the following two sub-sections, we describe PSP in academia

and industry.

2.3.1 PSP in the Classroom Setting

A one-semester graduate-Ievel PSP course has been developed with a textbook [Hum95a],

a series of exercises, and instructor's guide. This course is being adopted by a num-

ber of universities in the USA, Canada, Europe and South America. A number of

PSP training experiments have been done since PSP was first introduc~d in 1993.

In [Hum95bJ2, Humphrey summarizes the results from five early completed PSP

courses taught at university of Massachusetts (at Lowell), Carnegie-Mellon Univer-

2The data analyzed in this tbesis is not to be confused witb PSP data !rom McGill University

20

•

•

sity, Bradly University, McGill University, and Embry Riddle Aeronautical Univer­

sity. Substantial improvement in quality and productivity has been reported based

on the data gathered from these five courses (see Table 2.3 and Table 2.4).

University Bradly CMU ERAU l\fcGill Umass

Number of students 6 12 19 12 4

% Reduction in compile defects 75.7 76.6 88.1 76.7 68.8

% Reduction in test defects 64.2 81.7 83.2 76.7 68.8

% Reduction in total defects 55.1 45.8 80.1 64.0 53.4

Table 2.3: Quality Improvement in the Five Early Courses

Table 2.3 shows the percentage improvement in the defects per KLOC found in

compile, in test, and in total during the PSP exercise. These data compare the

averages of the first two exercises with those of the last two.

Average Loc/Hour Bradly CMU ERAU McGill UMass

The first two exercises II.4 31.4 13.8 21.1 19.9

The last two exercises 26.9 38.6 22.3 29.3 36.6

Percent Improvement 136.0 22.9 61.6 38.0 82.4

Table 2.4: Productivity Improvement in the Five Early Courses

Table 2.4 shows the productivity increases were significant considering the last

two exercises are substantially larger and more difficult than the first two and engj-

21

•

•

neers completed them with lower defect levels.

PSP addresses a number of desirable software engineering behaviors. Starting

with PSPO and extending through PSPl.l, the engineers learn and practice a series

of measurement and planning methods. Another behavior addressed by PSP is

software design. PSP2 addresses design by introducing design completion criteria

to reduce redoing the design during coding. In [Hum95c], which aims to investigate

how the PSP impacts people and how it changes their behaviors, it is claimed that

the PSP training impacts the performance of engineers and students in a dassroom

environment. This daim is supported by the data gathered from a dass taken

by 43 engineers and graduate students. The performance is evaluated in terms of

the number of defects per thousand !ines of code, yield, defect remova! rate, and

estimate accuracy. It is reported that by completing the prescribed PSP exercises

and fol1owing the defined processes, engineers can reduce their number of defects

by 75% or more. \Vhile results vary considerably among engineers, on average they

achieve productivity improvements of 25% or more.

An experiment using PSP was conducted at McGill University ta study persona!

"progress function" in software process (She94]. Data from the 12 senior undergrad-

uate students shows that, on average, learning takes place at a rate of 20%. Of

this, second-order learning (or organizationa! training) amounted ta approximately
J

13% more; whereas first-order learning (or self-learning) amounted ta approximately

7%. In this study, detailed statistical methods were used ta produce linear and log-

22

•

•

!inear models of high correlations, involving four variables: productivity, defect-rate,

complexity, and cumulative output.

In the early experiments, PSP was taught almost exclusively to practitioners

or graduate students. However, more recently, PSP has heen introduced at the

undergraduate level in sorne universities. Hou et al. [HT98] conducted an experiment

in applying components of PSP to 65 CS1 students. The results of their experiments

show that PSP is also of value to novices of CSllevel, regardless of their background.

It is reported that there is a steady drop in the amount of time spent on compile

(from 15% of total time for assignment 6 ta 12% of total time for assignment 8)

and huge improvement in the errors in first compile (from 14% of total errors for

assignment 5 ta 7% of total errors for assignment 8). Compile time and compile

error were primarily concerned because these two factors were believed ta he "major

hurdles" in software developing for a novice.

In a recent project [HT97] in Embry-Riddle Aeronautical University, PSP con­

cepts were introduced into CSI and CS2. Primarily, the impact of the PSP on

their estimation skills and the quality of their work was investigated. Results for

individual students show a lot of variation in their estimation errors. Thus, no

conclusions about the overall estimation skills of the student group cari he made.

However, defect density and percent of effort spent in the compile and test phases

were substantially decreased (see Figure 2.6 and Figure 2.7).

Figure 2.6 shows the defect density (the number of defects per thousand lines

23

•
Defect Density

51 students - CS21S - Spring 1996
15or===========i:::::=:==========;==:::L.......

100

50

2 3 4

Program

5 6

-Total
- - -Test

7

•

Figure 2.6: Defect Density - from CS215 in ERAU

of code) for program 3 through 7 (defects were not recorded for program 1 and 2).

There is a clear drop in defects for the last three programs, bath for total defects

and for defects found in test.

Another indication of improvement in the development process is the decline of

the percent of effort spent in the compile and test phases, shown in Figure 2.7.

2.3.2 PSP in Industry

PSP is also o~ interest ta industry as a means of training their software engineers.

While there are published reports on the teaching of PSP in classroom setting (at

24

•

15

10

Compile lDd TCSl Tame

51 lbIdaIIs - CS215 - Sprial 1996

.................
... -.------..... --'- .. !A- __

, ,l" ---.....

s'--....I.------I---.L.---..&.-_---L.__""'--_.....L.......

2 3 6 7

•

Figure 2.7: Compile and Test Time - from CS215 in ERAU

universities and industry), relatively little data on its use and e1fectiveness in indus-

try are available. This problem is, in fact, due to the time required to introduce

the PSP into a work place and by the length of many software development efforts.

However, PSP courses have been used successfully ta train professional engineers

in several organizations. Advanced Information Services (AIS) Inc., Motorola Pag-

ing Products Group, and Union Switch & Signal (US&S) Inc. have trained severa!

groups of engi~eers and measured the results of severa! projects that involved PSP

[FHK+97). In aIl the companies, the projects were a part of the normal operations

and not designed for PSP study.

The three companies offered a variety of situations useful for demonstrating the

25

•

•

versatility of PSP. The projects at Motorola and US&S involved software main­

tainance and enhancement, while those at AIS involved new product development

and enhancement. Among the companies, application areas involved commercial

data processing, internai manufacturing support, communications products support,

and real-time process control, and work was done in program language Cor C++.

Project PSP Non-PSP Product Delivery:Planned/ Acceptance Usage

Staff' Staff' Size Actual(months) Test DeCects Defects

B 3 0 24 requirement 7/5 1 0

C 0 3 19 requirement 2/5 11 1

D 0 3 30 requirement 10/19 6 14

E 1 0 2,225 LOC 6/6 0 0

F 1 0 1,400 LOC 2/2 0 0

G 2 1 6,196 LOC 2/2 0 3

Table 2.5: Summary of AIS Project Data

Table 2.5 shows the data from AIS. The failure of Project A Led ta the introduc­

tion of PSP in AIS. So it is not listed in the table. Most of the projects involved one

to three engineers. In a group, sorne of the engineers may received PSP training,

the others may note For example, Project G involved 3 engjneers. Two of whom

were PSP-trained staffs, while one of whom was non-PSP staff. This table shows the

performance of different teams with different percentage of PSP staff and non-PSP

staff.

26

•

•

Table 2.6 shows the data from 5 projects completed by PSP-trained engineers

at US&S. AlI of the five projects were maintenance and enhancement releases for a

large railroad information and control system, and each project required only one·

engineer. As shown in this table, no defects have been found in any project during

installation or customer use.

Table 2.7 shows the results of 18 projects completed by PSP-trained engineers at

Motorola. It is noteworthy that several of these products have been used for many

months, and only one defect has been found in one of the products.

Product Lines of Code Months of Use Defects in Test Defect in Use

M45 193 9.0 4 0

MIO 453 7.5 2 0

M77 6,133 4.0 25 0

M54 477 3.5 5 0

M53 1,160 1.0 21 0

Total 8,416 NA 57 0

Table 2.6: US&S Usage Data

Using Action Researchempiricalmethod [Che69] [Cla72], El Emamet al. [ESM96]

carried out a joint study between McGill University and CAE Electronics Ltd. of

the implementation of the PSP concepts at CAE Electronic Ltd., a leading supplier

of flight simulators located in Montreal, Canada. In their study, two evaluations

27

•

•

were conducted. The first was the transfer of training defined as " the effective,

and continued application to t rainees' jobs of the knowledge and skills gained in

training" [Gar93]. The authors claim that seven months after the start of the study,

46.5% of the participants were still using PSP concepts in their real programming

tasks. The second evaluation was of the benefits of the training. The trends in pro­

ductivity, defect density, yield, and the percentage of time spent on test were used

as a measurement of the improvement due to PSP. In their study, the authors did

not find any statistical1y significant trends in productivity. Defect density, however,

increased from approximately 88 defects/KLOC to 256 defects/KLOC after the code

review lecture. It was also found that average yield increased from approximately

12% before code reviews to 27.7% when code reviews were used and the percentage

of time spent on testing dropped from approximately 37% before code reviews to

approximately 17% afterwards.

28

•

•

Project Number Size (LOC) Months Used Total Defects Test Defects Usage Defects

1 463 18 13 5 6

2 4,565 NA 69 10 0

3 1,571 NA 47 8 0

4 3,381 NA 69 22 0

5 5 9 0 0 0

6 22 5 2 0 0

7 1 18 1 0 0

8 2,081 10 34 0 1

9 114 8 15 2 0

10 364 NA 29 2 0

Il 7 5 0 0 0

12 620 3 12 2 0

13 720 NA 9 2 0

14 3,894 NA 20 2 0

15 2,075 NA 79 27 0

16 1,270 NA 20 2 0

17 467 NA 17 3 0

18 3,494 8 139 50 0

Total 25,114 NA 575 136 1

Table 2.7: Motorola Operational Defect Data for PSP Projects

29

•

•

Chapter 3

Research Objective and

Experiment Design

This section first defines the objective of this study followed by, in section 3.2,

the design of the experiment. The experiment design describes the investigation

approach, the research context and the descriptive models. Following the section

on experiment design is section 3.3. This section describes the model for analysis of

data.

3.1 Research Objective

Each programming assignment results in some 70 pieces of data being collected

by each engineer. The data are used by the engineers ta monitor their work on

30

•

•

the individuaI assignments as weIl as to analyze their personal software process

for improvement decisions. The data are aiso a primary source for researchers to

perform secondary analysis.

The PSP data characterize the attributes of the software process of an engineer

and his/her product. The data collected during the execution of PSP also show

the trends of these attributes through the PSP projects. Sorne attributes, such as

LOC per hour, number of defects per KLOC and number of defects removed per

hour, are often used to evaiuate the eifectiveness of PSP because these attributes

are aIso used ta assess an individual's performance. For example, the improvement

of defects removed per hour usually indicates the improvement of the quaIity of an

engineer's process. Also, how these attributes vary over time through the execution

of PSP directIy refiects the efi'ectiveness of PSP. Thus, these attributes have received

particular attention in published research. We define these attributes as Process

Improvement Attribute in this thesis. The formal definition is given in 3.3.l.

Sorne other attributes, such as the time spent in design review or code review

as a percentage of the time spent in compile and test, average number of phases

backtracked to fix a defect, and number of defects per [(LOC found in test, do not

refiect an individual's performance directIy but may have a great impact on the

improvement of the engineers' performance. Many PSP techniques, such as code re­

view, focus on changing such attributes and thus change the engineers' performance

indirectly. We define such attributes as Significant Attribute. The formal definition

31

•

•

is given in 3.3.1.

Researchers in different organizati~ns have employed various scientific methods

to explore, from different aspects, the costs and benefits of PSP, based on the data

gathered through PSP training. However, as reviewed in section 2.3, most of the

published reports focus on the analysis of Process Improvement Attributes, such

as defects removed per hour} number of defects per /(LOC and LOC/Hour. That

is, it is black-box analysis. Other attributes, such as average number of phases

backtracked to fixed a defect and the time spent in test phase as percentage of total

development time, are often neglected or are not systematically studied, even though

these attributes detail many important aspects of a software process and product.

In this study, we built descriptive models of software quality and productivity

which were used for quantitative analysis. Based on these models, we systematically

studied various process attributes. Specially, by studying the relationships between

Process Improvement Attributes and the other attributes, we identified the Signif­

icant Attributes, which influence Process Improvement Attributes the most. To

achieve a better understanding of the impact of Significant Attributes on Process

Improvement Attributes, we aIso established the noticeable relationships between

Significant Attributes and Non-significant Attributes. FinaIly we studied how the

Significant Attributes vary over time through the PSP execution. Thus, our study

provides a way to systematically study the details of a personal software process.

32

• 3.2 ExperiDlent Design

•

This section first introduces our investigation approach. Then it describes the re­

search context. Finally the descriptive models are gjven.

3.2.1 Investigation Approach

We used a four-step method involving: measurement, modeling and analysis, as

outlined below:

1. Set the basis for quantitative analysis. We built severa! descriptive models:

process model used in the projects, defect-quality model and development­

productivity model. These models lay the foundation for our analysis of per­

sonal process and products. We show these models in section 3.2.3.

2. Define GoallQuestionlMetric (GQM) models [Bas84]. We specificd the struc­

ture of the analysis by defining specific goals, questions, and metrics using the

GQM models. We show these models in section 3.3.2.

3. ldentify the influential attributes. In this step, we determined which attributes

influence process and product improvement the most, using GQM models spec­

ified in step 2 and the descriptive models defined in step 1. The influential

attributes are shown in section 4.1.

33

•

•

4. Analyze the trends of the influential attributes, over time, through PSP projects.

This is shown in section 4.3.

This four-step method is logically sound because, it proceeds from laying the

foundational pieces of the study in step 1 (namely, the descriptive models) to ques­

tioning about specifie attributes in step 2, based on the foundational pieces. Qnly

then, one can be confident with identifying infiuential attributes in step 3, and

subsequent analyzing their trends in step 4.

3.2.2 Research Context

The PSP course integrated in this study is a senior undergraduate course entitled

"Personal Software Engineering" taught at McGill University in the Fall of 1997. A

textbook by Humphrey [Hum95a] was used as a basis for this course.

Subjects and background knowledge

Fifty-three full-time students had enrolled in this course. Also, at entry they aIready

had exposed to objeet-oriented paradigm and software engineering, which permeates

the course materia1. For example, size estimation, software design and related. tem­

plates are al! based on object-oriented software development. We required the use of

programming language C++ for implementing programs. In addition, the students

had at least a basic knowledge of probability and statisties since these topies are an

essential part of PSP's measurement framework.

34

•

•

Programming Tasks

Every week, two lectures, each of duration one and a hall hours, were given to the

students in which they were taught ways to analyze and improve their personal

process. After each set of the lectures, the students were assigned a programming

project, which utilized the techniques taught to them, so that the students could

actually implement those methods, and hence learned them. There were a total of

eight programmïng projects and three analysis projects per student, through the

course, making a total of 424 projects for all the students. AlI the eight projects are

described in the textbook in the "A Series" exercises [Hum95a]. The three analysis

projects were a local enhancement.

Data Collection

Perhaps the most critical issue in teaching the PSP course is to get across the message

to the students that the course is not just a set of programming tasks. Thus, the

students were told repeê.tedly that the programs themselves are, in general, incident

to the course and the importance lies in the development process, the quality of

the product and the data collected, and the analysis of data for feedback. They

were reminded again and again, that they would Dot he graded on how good their

productivity, defect quality, etc. are, but on how well they execute the development

and quality-oriented processes and on how weIl they record the related data e.g.,

LOC, number of defects, etc. Thus, they were motivated in a number of different

35

•

•

ways that "honesty and commitment in doing the tasks and learning" is a key ta

their success in the PSP course.

Most of the data collection forms which were used in the course were provided

ln the textbook [Hum95a]. An overview of these forms is given in section 2.2.

In addition ta this, we used a locally designed questionnaire and an evaluation

forro dealing with motivation, which were prepared and validated by the software

engineering group at McGill University.

3.2.3 Descriptive Models

This section describes the process model which was used by the suhjects in the PSP

experiment, and models of quality and productivity which lay the foundation for

data analysis in this study.

Process Model

The suhjects used a predefined process model, shown in Figure 3.1, ta accomplish

a project. In this model, project life-cycle activities are divided into chronological

phases: planning, design, code, compile, test, and postmortem. Design review and

code review are used only from PSP2.

In Figure 3.1, the thin arrows indicate defects found, thus necessitating feedhack

and rework. The origin of the arrows indicates the phase during which a defect is

detected, and arrow head indicates the phase during which a defect is injected. The

36

•

•

--,

l.epftd:

DR: Daip Review
CR: Code Rcvicw
PM: PoIaDaIlCIM

Figure 3.1: PSP Process Model

solid arrows indicate the flow 'of artifacts.

The predefined proeess model facilitates categorizing of time-related and defect-

related data according to the specifie phases and activities of the personal proeess.

Such categorization can then help engineers to analyze their product and process,

to understand the conditions they are in, and to improve them.

Defect Model

To manage software quality effectively, an engineer needs to keep track of every

defect injeeted during development on a Defect Recording Log(see Figure 2.4). The

defect model is represented as:

37

•

•

where D denotes a defect; Di, Dr, Dt, Cst, and Btk are attributes of defect D

and i is a unique identification number. The attributes are described below.

• Di: Injection Phase

This attribute denotes the phase during which the defect is injected. The

value of Di is either DS(design), DR(design review), CD(code), CR(code review),

CP(compile) or TS(test).

• Dr: Detection Phase

This attribute denotes the phase during which the defect is detected and re­

moved. The possible values for Dr are DS(design), DR(design review), CD(code),

CR(code review), CP(compile) and TS(test).

• Dt: Defect Type

This attribute denotes the type of the defect, as described by defect type stan­

dard, e.g., documentation, assignment, data, function, etc. (see Figure 2.3).

• Cst: Cost of Defect

This attribute denotes the cost of defect as the direct expense incurred in fixing

an injected defect. This includes the fol1owing elements:

1. Determining that there is a problem.

38

•

•

2. Isolating the source of the problem.

3. Determining exactly what is wrong with the product.

4. Fixing the design as needed.

5. Fixing the implementation as needed.

6. Inspecting the fix to ensure that it is correct.

7. Testing the fix to ensure that it fixes the identified problem.

8. Testing the fix to ensure that it doesn't cause other problems.

9. Changing the documents to refiect the fixe

When a defect is not corrected properly in the first attempt, subsequent iterations

of the correction must he done until the defect is eliminated. The cost of the origjnal

defect includes all iterative attempts to fix it.

• Btk: Backtracking

This attrihute denotes the number of phases we have to backtrack in order to fix

a given defect. For example, if a defect is injected in the phase code and removed in

the phase code review, the backtracking for this defect is 1.

Btk = Dr - Di

The definitioDs of the defect attributes are summarized in Figure 3.2.

39

•

•

Attribute Definition

Di the phase during which the defect is injected

Dr the phase during which the defect is detected and removed

Dt the type of the defect, see (Figure 2.3)

Cst direct expense incurred in fixing the defect

Btk the number of phases we have to backtrack in order to fix

the defect

Figure 3.2: Defect Attributes

Defect-Based Quality Model

The quality focus in PSP is centered around defect detection and prevention. Other

aspects of software quality, such as reusability, portability, etc. are of secondary

importance in PSP. Defects, once detected, are best handled as saon as possible and

at the individuallevel. There are data which suggests the exponential rise in software

costs for fixing bugs farther away from the point of origin [BoeS!]. Furthermore,

a significant portion of the post-delivery system evolution costs are attributed ta

latent or residual defects in software systems. AH these point ta the need for strong

detection and prevention mechanisms in the personal processes.

Based on the process model and defect model outlined in the previous section,

we can build a modelof process quality:

Q(DI .. Dn; Dds, Drr, RC/TC, A/FR, Yld, ABtk, DT/TDT,

40

•

•

NTDfND)

where Q denotes quality of a particular process or product; Dl... Dn are the

defects detected and fixed in the project (defined in the previous section). Dds,

Drr, RC/TC, A/FR, Yld, Abtk, Yld, DT/TDT, NTD/ND are quality attributes of

software process.

The notation of the quality attributes are shown in Figure 3.3.

Attribute Definition

Dds Defect Density: number of defects per KLOC

Drr Defect Removal Rate: number of defects found and removed per hour

RC/TC reused LOC as a percentage of total LOC

A/FR Appraisal Time/Failure Time(see Table 2.2)

Yld Yield: number of defects removed before the first compile as a

percentage of number of defects injected before the first compile

ABtk average backtracking per defect

DT/TDT design time as a percentage of total time

NTD/ND number of defects removed in the test phase as a percentage of

total defects

Figure 3.3: Quality Attributes

41

•

•

Development-Productivity Model

Another model that is important for this study is the productivity model. Produc­

tivity is generally measured as hours required to do a unit of work. It is a simple

concept, but not simple to calculate. When we calculate productivity, we must take

into account that without an accompanying assessment of product quality, speed of

production is meaningless [FP96].

Thus, in our PSP experiment, every project was accompanied by an explicit

requirement description in order to support product quality. Any ambiguities were

removed before the subjects started a project. The testing criteria were also em­

phasized in every project. Test cases were carefully designed and test results were

checked.

Behind quality, we must aIso consider the variation in the definition of software

size (LOC is used in this study). Among the various projects, as this affects the

calculation of "productivity", we used a particular coding standard and a counting

standard in order to minimize the variation in project size.

Another problem usually rests with the variation in expressive power of different

programming languages used in different projects. This was not an issue in our: PSP

experiment because C++ was the only programming language that was used.

ln the PSP course, we used LOC/Hour as the measure of development produc­

tivity. While LOC/Hour May seem simple, the calculation of LOC and the hours

42

•

•

should he carefully done in order to obtain meaningful measures. There are various

combination of the LOC types that can be used to measure development productiv­

ity(see Table 2.1). Added LOC plus modified LOC is chosen by PSP for productivity

calculation. A fairly straightforward measure of development time (minute) is em­

ployed in PSP, as described in section 2.2.1.

The productivity model is specified as:

P(PO, Pl, P2)

PO(Size, Effort; LOC/Hour, RC/TC)

Pl(Dds, Drr, ABtk, Yld, NTD/ND)

P2(DT/TDT, TT/TDT, A/FR, SpI)

where P is productivity. Size, Effort, LOC/Hour, RC/TC, Dds, Drr, ABtk, Yld,

NTD/ND, DT/TDT, TT/TDT, A/FR, and SpI are productivity attributes.

The notation of the productivity attributes is shawn in Figure 3.4.

Summary

In this section, we have described the descriptive models: process model, defect

model, defect-based quality model and productivity model. We also ident.ify various

attributes for each model. These descriptive models will be used as the basis of the

analysis of data described in section 3.3.

43

•

•

Attribute Definition

Size Lines of Code (LOC)

Effort Minute is the unit of the measure for development effort in PSP.

LOC/Hour Lines of code added or modified per hour.

TT/TDT Test Time as a percentage of Total Development Time.

SpI System Spoilage, e.g., Total Fix Time as a % of Total

Development Time

RC/TC

Dds,Drr

ABtk,Yld see Figure 3.3.

NTD/ND

A/FR

Figure 3.4: Productivity Attributes

3.3 Model for Analysis of Data

This section first classifies the attributes we have discussed thus far in this chap­

ter in order to facilitate the description of data analysis. It then describes our

Goal/Question/Metric model and statistical analysis model.

44

•

•

3.3.1 Attribute Types

In our study, we focus on the attributes of quality and productivity, snch as Defect

Density (Dds) and Average Backtracking (ABtk), which we collectively call here

as Quality and Productivity Attribute (QPAtrb). AIl of QPAtrb are identified and

organized in the quality model and productivity model (see section 3.2.3, Figure 3.3

and Figure 3.4) based on the data captured during the PSP projects.

Process Improvement Attribute (PIAtrb)

Among the Quality and Productivity Attributes (QPAtrb) described above, there is

a sub-set, such as Defect Density (Dds), Defect Removal Rate (Drr) and LOC/Hour,

which characterizes directly the performance of an engineer. These attributes are

repeatedly used by management to evaluate the improvement of engineers' pro­

cesses when process improvement activities are being carried out. In this study,

we caU these attributes Process Improvement Attribute (PIAtrb). In the published

research on PSP [She94] [Hum94b] [Hum95b] [Hum95c] [ESM96] [Hum96b]

[SM96] [HT97], Defect Density (Dds), Defect Removal Rate (Drr) and LOC/Hour

have received particular attention in assessing the effect of PSP on the engineers'

performance improvement. Thus, these three attributes were identified as PIAtrb

in this study.

45

•

•

Significant Attribute (SAtrb)

Among the Quality and Productivity Attributes (QPAtrb) described above, there is

a subset of attributes which most influence, or significantly correIate to, a given Pro­

cess Improvement Attribute (PIAtrb). We calI this subset of attributes Significant

Attribute (SAtrb).

Significant Attributes (SAtrb) do not refiect directly any improvement in engÏ­

neers' processes, and therefore, are often neglected by management and researchers.

These attributes, however, characterize many important aspects of software devel­

opment, for exampIe, software design, code and test.

For example, the average number of phases backtracked to fix a defect (ABtk) is

a possible SAtrb for PIAtrb LOC/Hour because it is often reported that the farther

a defect penetrates ioto the software life-cycle, the more efforts are needed to fix it

[BoeS!] [Dun84] [Pre92]. Low ABtk, for example, could impIy faster fix-up tries,

hence, higher productivity (LOC/Hour). Whether or not this is true in our study,

however, can only be determined through data analysis.

Thus, it is essential to study SAtrb in order to improve our understanding of

a personal software process. Moreover, techniques such as design review and. code

review, which are central to the design of PSP, have a direct influence on such

attributes as ABtk and Yield.

Then, clearly, studying SAtrb could provide a deeper insight into the way PSP

46

•

•

influences the improvement in software quality and productivity.

Those attributes of QPAtrb that do not qualify as significant attributes are

defined as Non-Significant Attribute (NSAtrb) for a given PIAtrb.

3.3.2 Goal/Question/Metric (GQM)

There are a number of frameworks for identifying and utilizing software engineering

metrics (FP96] [Bas84] [Jon96] [MB97]. We have used the widely used Goal/Question/Metric

(GQM) paradigme An important aspect of GQM is to define aH your goals and iden-

tify metrics in advance and then foUow them strictly, instead of getting data first

and then observing the trends and patterns found in it to identify "interesting"

goals. In other word, it is top-down approach.

Goal of Analysis

The research objective was described earlier:

to investigate how the dynamics of personal software process influence

software process improvement during the PSP execution.

We formulate the ovêrall goal of analysis:

G: Ta investigate how software Quality and Productivity Attributes

(QPAtrb) influence Process Improvement Attributes (PIAtrb)

during PSP ezecution.

From this overall goal (G), we derived three subgoals:

47

•

•

(a) Gl: we first identify the set of Significant Attributes (SAtrb), which

have significant influence on, or significantly correlate to, PIAtrb,

by analyzing the relationships between PIAtrb and other QPAtrb.

This analysis helps us focus on the essential aspects of a software

process while diminishing the non-essential aspects;

(h) G2: we then explore those relationships that are noticeable between

the set of SAtrb identified in Gl and Non-significant Attrihutes

(NSAtrb). This analysis gives us an improved understanding the

way SAtrh influence PIAtrb (subgoal G2);

(c) G3: we then determine how SAtrh vary across the PSP projects

life-cycle. This analysis helps to assess the effectiveness of PSP

and helps to explain the way PSP improve software process.

The goal of analysis is summarized in Figure 3.5.

Questions and metrics of Interest

We devised the questions, which are shown in Figure 3.6, relevant to our analysis

goals. Each question has an associate metric. The purpose of specifying these ques­

tions and metrics is that it directs data analysis explicitly towards the requirements

of the goals .

48

•

•

Overall Goal:

G: To investigate how QPAtrb influence PIAtrb during PSP execution.

Subgoals:

GI: IdentiCy the set oC attributes that qualiCy as Significant Attributes(SAtrb),

by ana1yzing the relationships between PIAtrb and other QPAtrb.

G2: Analyze the relationships between SAtrbs (identified in GI), and NSAtrbs1

and identiCy those relationships that are significant.

G3: For those SAtrbs identified in GI, determine how they vary through the

execution of PSP.

Figure 3.5: Goal of Analysis

3.3.3 Dependent Variables and Independent Variables

Dependent variables and corresponding independent variables were identified (Ta­

ble 3.1) based on the descriptive models (see section 3.2.3).

The dependent variables (Dds, Drr, and LOC/Hour) are the elements of Process

Improvement Attributes (PIAtrb). These are the variables that are affected by other

contextual variables, which are listed as independent variables. For each dependent

variable, there is a specifie set of independent variables specified in the quality and

productivity models (see Figure 3.3 and Figure 3.4 in section 3.2.3).

49

•

•

Dependent Variables Independent Variables

Dds RC/TC, A/FR, Yld, ABtk, DT/TDT, NTD/ND

Drr Dds, RC/TC, A/FR, Yld, ABtk, DT/TDT, NTD/ND

KLOC/Hour RC/TC, Dds, Drr, ABtrk, Yld, NTD/ND, DT/TDT,

TT/TDT, A/FR, Spi

Table 3.1: Dependent Variables and Independent Variables

3.3.4 Regression Analysis

Regression methods bring out relation between variables, especially between vari­

ables whose relation is imperfect in that we do not have one y for each x (MT77]. In

software engineering, we can cite the relation between software size and development

time, or defect density and yield as examples of imperfect relations in that there is

no one-to-one relationship. Regression methods have already been used in empir­

ical software engineering studies (GR97] [Hum95a] [She94]. Variable regression

models have been employed ta estimate the (presumed) relationships between one

variable and another by expressing one in terms of a regression function (such as

linear function, quadratic function or log-linear function) of the other.

Two methods are often employed to choose a particular regression function.

These methods are: (1) an analytical consideration of the phenomenon concemed,

and (2) an examination of the scatter diagrams plotted from the observed data[Ost63).

In this study, we performed quadratic regression between each dependent variable

50

•

•

and its independent variables because the software development contexts suggest a

non-linear relationship. The form of quadratic regression equatioDs is:

DEP = a * INDEp2 + b * INDEP + c

Where

DEP = Value of a dependent variable

INDEP = Value of an independent variable

a = Quadratic coefficient

b = Linear coefficient

c = Intercept

51

•

•

Sub- Question Metric

Goals

Gl Ql.l: What attributes affect Defect Ml.l: Strength of the relationship

Density, and of those, which are SAtrb? between Defed Density and other

Attrihutes.

Ql.2: What attributes affect Defect M1.2: Strength of the relationship

Removal Rate, and of those, which are between Defect Removal Rate and

SAtrb? other Attributes.

Ql.3: What attributes affect LOC/Hour, M1.3: Strength of the relationship

and of those, which are SAtrh? hetween KLOC/Hour and otber

Attributes.

G2 Q2: Are there any noticeable M2: Strength of the relationship

relationships between SAtrb and hetween SAtrb and NSAtrb.

NSAtrb?

G3 Q3: What are the trends of the SAtrb M3: Trends of SAtrb across the

across the PSP projects? PSP projects.

Figure 3.6: Goals, Questions and Metrics

52

•

•

Chapter 4

Data and Results

Using the statistical regression analysis model (see section 3.3.4), GQM analytical

framework (see section 3.3.2) and the descriptive models (see section 3.2.3), we

analyzed the data collected from seven 1 projects in the PSP course and obtained

the following results.

4.1 Significant Attribute (SAtrb) Identification

This section deals with the first subgoal (G1). By performing quadratic regres­

sion analysis on the data collected, we identified the Significant Attributes (SAtrb)

for each Process Improvement Attribute (PIAtrb): Defect Density (Dds), Defect

Removal Rate (Drr) and LOC/Hour. Two variables are considered significantly cor-

lThe data Crom the first project is Dot included because the size of the first project could not

be recorded beCore coding standard and counting standard were introduced in the second project.

53

•
Independent Quadratic Equation R2

Variable

RC/TC Dds =0.003S*RC/TC2+0.2771*RC/TC+46.841 0.0046

A/FR Dds =-0.0002*A/FR2+0.0354*A/FR+45.073 0.0151.

Yld Dds =-O.014S*Yld2+1.229*Yld+31.392 0.2584

ABtk Dds =-4.5312*ABtk2+21.254*ABtk+23.584 0.045

DT/TDT Dds =-0.0033*DT/TDT2-O.420S*DT/TDT+51.052 0.0164

NTD/ND Dds =-0.0107*NTD/ND2+O.952*NTD/ND+36.406 0.1829

Table 4.1: Regression Equations for Defect Density (Dds)

related if the correlation coefficient (r) is relatively high Cr > 0.5) [Ost63) [PP97].

Since we can not expect a high r value if the dependent variable is a very complex

variable associated with more than one independent variables [PP97], in our study,

we consider a relationship to be significant if the r2 is not less than 0.25.

4.1.1 Significant Attributes (SAtrbs) for Defect Density

(Dds)

•

Table 4.1 lists the quadratic relationships between dependent variable Dds and its

independent variables.

As can be seen from Table 4.1, Dds has a significant relationship only with

Yield(Yld). Figure 4.1 shows the relationship equation graph between these two vari­

ables. The maximum Dds value is associated with projects with Yld = -1.229/(2*(-

54

•
cr 200o
~ 150

l100
~

~ 50....
ta
;g 0

o 50 100

Yld(%)

=-O.0148x2 + 1.229x
+31.392

R2 =0.2584

150

•

Figure 4.1: Relationship between Dds and Yld

0.01481» = 42(%). Both low Yld values and high Yld values are related to low Dds.

As described in section 3.3.1, Dds has been used as a measure of the henefit of ~sing

PSP concepts. Using this measure, it is assumed that if Dds value tends downward,

the code quality is improving.

However, El Emam et.al. have argued that this assumption may not he appro-

priate in the PSP context since we have data only from unit testing (ESM96]. They

argued that Low Dds could mean defect detection is poor or less defects have been

injected.

In our opinion, low Dds associated \Vith high Yld values would imply high code

55

•

•

quality since a high Yld value indicates strong defect detection. On the other hand,

low Dds associated with low Yld values may be a result of poor defect detection and

seems to imply poor code quality. From this, we note our first observation:

Observation 1: When Dds is used to evaluate the quality of software, Yld

may he an important attrihute that should a/so be taken

into account.

Independent Quadratic Equation R2

Variable

Dds Drr =-O.0024*Dds2·O.3018*Dds+21.081 0.0486

RC/TC Drr =-O.0029*RC/TC2+0.2754*RC/TC+12.453 0.0295

A/FR Orr =-O.0006*A/FR2+0.228*A/FR+2.7327 0.294

Yld Orr = -O.OO33*Yld2·O.1472*Yld+12.407 0.2737

ABtk Orr =-1.8761*ABtk2-1O.521*ABtk+27.543 0.0221

DT/TOT Drr =-O.0321*DT/TDT2.1.2469*DT/TDT+5.4882 0.0281

NTD/ND Drr =.O.0023*NTD/ND2-0.3008*NTD/ND+20.626 0.0449

Table 4.2: Regression Equations for Defect Removal Rate (Drr)

4.1.2 Significant Attributes (SAtrbs) for Defect ~emoval

Rate (Drr)

Table 4.2 lists the quadratic relationships between dependent variable Drr and its

independent variables.

56

•
~ 50­..,
o 40:c
~ 30
.J 20

CD

e. 10....
Q 0

o 100 200

AlFR(%)

=-0.0006x2 + 0.228x
+ 2.7327

R2 =0.294

300

•

Figure 4.2: Relationship between Drr and A/FR

As can be seen from Table 4.2, Drr has significant relationships with both A/FR

and VId. Figure 4.2 and Figure 4.3 show the relationship equation graph Drr and

A/FR and that between Drr and Yld respectively. As described in section 3.3.1,

Drr has been used to assess the performance of engineers and the quality of their

products. Using this measure, it is assumed that if Drr increases, the defect det~ction

ability of engineers and the quality of their products 2 aIso increase. As ~an be seen

2High Drr implies that, in general, the defects have been relatively easy to fix which, in turn,

implies that the defects are fixed close to their points of origin in the software life-cycle. Therefore,

high Drr implies that the product, by the time it is completed. is relatively free of deCects (Le., of

57

•
~ 50--Q 40:c
fi 30
~ 20
CI)

e. 10
1­...

Q 0
o 50 100

Yld(%)

= O.0033x2 - O.1472x
+ 12.407

R2 = 0.2737

150

•

Figure 4.3: Relationship between Drr and Yld

from Figure 4.2 and Figure 4.3, both increasing A/FR value and increasing Yld

value have positive effect on Drr.

From the relationship equation between DIT and A/FR, Drr value increases with

the increase of A/FR value and an optimal value of Drr is achieved with an A/FR =

-0.228/(2*(-0.0006» = 190(%). We know that A/FR is the ratio of design and. code

review time to compile and test time. AIso, we know that it measures the relative

effort spent in early defect removal. Its objective is to detect defects in earlier phases

and thus improve the Defect Removal Rate (Drr). However, once the objective is

a high quality) .

58

•

•

met, further increase of A/FR willlikely decrease Drr. From this, we obtain our

second observation.

Observation 2: The value of A/FR may he a useful guide for software

developers in adjusting their review time so as to achieve

a high Drr during software development.

From the relationship between Drr and Yld, Drr value slightly decreases with

the increase of the Yld value until Yld < -(-0.1472)/(2*0.0033) = 22.3(%) and then

Drr substantially increases with the increase of Yld value (Yld > 22.3%). Form this,

we obtain our third observation.

Observation 3: A Low Yld value may imply that review skills are poor

or that the effort spent on review is not adequate. ln this

case, most of the defects captured by review may he syntax

or simple errors. However, compiling is more effective in

capturing syntax errors than is a review. This may he

interpreted as: Drr decreases when the Yld value is 1010.

When the reviews are just introduced, software developers

could be discouraged hy the decrease of Drr (perhaps due to

the fact that the review skills mayas yet be low). They

thus need to be encouraged ta spend more efforts on reviews,

especially at this early stage. By striving to increase

their Yld, they will think more positively about their time

59

•

•

and efforts spent on reviews.

Independent Quadratic Equation R2

Variable

Dds LOC/Hour =0.0032*Dds2-O.6589*Dds+53.096 0.1811

Drr LOC/Hour =-0.0003*Drr2-O.527*Drr+24.853 0.1437

RC/TC LOC/Hour =-0.00001*RC/TC2+0.3364*RC/TC+28.185 0.1094

A/FR LOC/Hour =-0.0005*A/FR2+0.2895*A/FR+16.609 0.244

Yld LOC/Hour =0,OO85*Yld2+O.471S*Yld+30.936 0.3899

ABtk LOC/Hour =4.048*ABtk2-23.98S*ABtk+63.938 0.0655

DT/TDT LOC/Hour =-0.0414*DT/TDT2+1.3816*DT/TDT+23.587 0.0182

NTD/ND LOC/Hour =0.OO37*NTD/ND2-O.4322*NTD/ND+40.055 0.043

TT/TDT LOC/Hour =-0.0054*TT/TDT2+O.236*TT/TDT+30.34 0.0027

Spi LOC/Hour =0.0088*SpI2_0.3407*Spl+34.04 0.027

Table 4.3: Regression Equations for LOC/Hour

4.1.3 Significant Attributes (SAtrbs) for LOC/Hour

Table 4.3 lists the quadratic relationships between dependent variable LOC/Hour

and its independent variables.

As can he seen from Table 4.3, LOC/Hour has significant relationships with bath

A/FR and Yld. Figure 4.4 and Figure 4.5 show the relatianship equation graph

between LOC/Hour and A/FR and that between LOC/Hour and Yld, respectively.

As described in section 3.3.1, LOC/Hour is an important criterion for assessing

60

•
..­."e
:co
o
...1

100
aD
60

40
20
o

y =-0.0005x2 +
O.2895x + 16.609

R2 =0.244

o 100 200

AlFR(%)

300

•

Figure 4.4: Relationship between LOC/Hour and A/FR

the software productivity of engineers. From the relationship between LOC/Hour

and A/FR, LOC/Hour increases when A/FR increases (see Figure 4.4). From the

relationship between LOC/Hour and Yld (see Figure 4.5), LOC/Hour slightly de-

creases with the increase of Yld value until Yld < -(-0.4715)/(2*0.0085) = 27.7(%).

Theo, it greatly increases with the increase of the Yld value (Yld > 27.7(%»). _From

this, we obtain our fourth observation.

Observation 4: Reviews have signifieant positive effect on LOC/Hour sinee

LOC/Hour increases with the inerease in A/FR and also

with the inerease in Yld.

61

=O.0085x2 - O.4715x
+30.936

R2 = 0.3899

50 100 150

Yld(%)

•
100

... 80--c 60::
() 40
0
-' 20

0
0

Figure 4.5: Relationship between LOC/Hour and Yld

It is worth ooting that PSP has been reported to have little positive effect 00

LOC/Hour [ESM96] [Hum95c] [Hum96b]. This is perhaps because of the overhead

time required to do the several tasks featured in PSP. These tasks, in practice,

are often considered to include makiog plans, reviewing programs, and tracking

and reporting results. However, our results show that reviews may in fac~ help

increase productivity (LOC/Hour). Thus, the time spent in reviewing programs

should not he classified as overhead time. This clarification may help engineers

•
develop a positive attitude towards reviews.

62

•

•

PIAtrbs SAtrbs

Dds Yld

Dn Yld, A/FR

LOC/Hour Yld, A/FR

Table 4.4: Significant Attributes

4.1.4 Summary on Significant Attributes (SAtrbs)

From the above analysis, we have identified the SAtrbs for each Process Improve­

ment Attributes, as summarized in Table 4.4: both Yld and A/FR are Significant

Attributes (SAtrb) for LOC/Hour and Drr, and Yld is the only Significant Attribute

for Dds.

In particular, Defect Density (Dds) may imply high quality of software product

when it is associated with high Yld value and may imply low quaIity of software

product when it is associated with lo\v Yld value (see Observation 1). Thus, when

Dds is used ta evaluate the quality of software, the evaIuation results may be more

accurate if it's significant attribute, Yld, is aIso taken into account.

Yield (Yld) has no significant positive effect on Drr unless it has achieved a high

level (see Observation 3). This result highlights one of the obstacles in introducing

review skills and emphasizes the importance of developing strategies to encourage

software developers to think positively about the review time in the early stages

when review skills are implemented.

63

•

•

Quadratie Equation

ABtk =-O.OOOOS*A/FR2-0.020S*A/FR+3.3126 0.4316

NTD/ND = O.0023*A/FR2_0.8302*A/FR+79.S66 0.3781

Tf/TDT =O.OOl*A/FR2-O.3241*A/FR+31.71 0.3529

SpI =-O.0006*A/FR2-O.1S0S*A/FR+19.73 0.1073

ABtk =-0.00003*Yld2-O.0092*Yld+2.6081 0.2196

NTD/ND =O.0026*Yld2-O.1647*Yld+49.S9 0.175

Tf/TDT =O.OOI8*Yld2-O.086S*Yld+17.S02 0.0776

Spi =-0.0031*Yld2+O.2343*Yld+10.62S 0.1362

Table 4.5: Regression Equations between SAtrbs and NSAtrbs

Defect Removal Rate (Drr) increases with the increase of A/FR when A/FR <

190% and decreases with the increase of A/FR when A/FR> 190%. This A/FR

value may be a useful guide for software developers in adjusting their review time

for achieving a high Drr during software development (see Observation 2).

LOC/Hour increases with the increase of A/FR and Yield (Yld). The analysis

of the relationships between LOC/Hour and A/FR and that bëtween LOC/Hour

and Yld clarifies the often misunderstood concept that review time is an overhead

of PSP (see Observation 4). This may help further refinement of PSP, for example,

by developing strategies to encourage engineers to pay more attention to reviews.

64

•

o 100 200

AlFR(%)

= 5E-05x2 - O.02DSx +
3.3126

R2 =0.4318

300

•

Figure 4.6: Relationship between ABtk and A/FR

4.2 Relationships Between Significant Attributes

(SAtrbs) and Sorne Non-Significant Attributes

(NSAtrbs)

Now, we know from observations 1, 2, 3, and 4 that the Significant _Attributes

(SAtrb) have a noticeable impact on the target Process Improvement Attrihutes

(PIAtrb): Defect Density (Dds), Defect Removal Rate(Drr) and LOC/Hour. We

65

•

•

can theorize, and perhaps even back up with experience, why there is such an

impact. However, such arguments would he more credible if our current data-set

can help expIain our intuition.

Thus, there is a need for the subgoal (G2), whereby we analyze the relation­

ships between SAtrb and Non-significant Attrihutes (NSAtrh). H we cao determine

that there are sorne significant relationships between SAtrb and NSAtrb, then these

particular relationships might help explain our intuition about the impact of SAtrh

on Dds, Drr and LOC/Hour. The argument is that, unlike SAtrb, the attributes

NSAtrb, by themselves, clearly do not have significant impact on the Process Im­

provement Attributes (Dds, Drr and LOC/Hour). However, a significant relationship

between a particular NSAtrb and a particular SAtrb might give same more insight

into why that particular SAtrb is significant.

Table 4.5 lists the quadratic relationships between SAtrbs and sorne NSAtrbs.

First three equations (ABtk, NTD/ND and TT/TDT) are considered significant.

4.2.1 Noticeable Relationships

Figure 4.6 relates A/FR ta ABtk (the average number of phases backtracked in

arder ta fix a defect). As can he seen from this figure, ABtk drops with the increase

in A/FR. Considering Figure 4.2 and Figure 4.4 together with Figure 4.6, we can

infer that the decrease in ABtk contributes ta the increase in Defect Removal Rate

3This rationale is not self-evident Crom the findings .

66

•
120
100
80
60
40
20
o

O.0023x2 - 0.8302x
+ 79.566

R2 = 0.3781

o 100 200

A1FR(%)

300

•

Figure 4.7: Relationship between NTDIND and A/FR

(Drr) and LOC/Hour.

We hold this inference beeause low ABtk (from Figure 4.6) value can imply that .

software defeets pertain to the eurrent development phase or previous development

phases not too far away from the current phase. Clearly, in these cases, the de-

fects are relatively easily removed 4 (DM" value is high in Figure 4.f) and software

project has a tendency to move forward at an increased speed, giving ri;e to higher

productivity (LOC/Hour) (see Figure 4.4) and lower cost.

4This argument is also supported in the Iiterature [Boe81] .

67

•
60

.... 50
ê. 40
6 30e20

10
o

0.001,(- 0.S241x
+ 31.71

R2 = 0.3529

o 100 200

AlFR(%)

SOO

•

Figure 4.8: Relationship between TT/TDT and A/FR

Figure 4.7 shows the regression equation graph between A/FR and NTD/ND

(the number of test defects as a percentage of total defects). Here, assuming a

relatively constant number of total defects, A/FR values above 100% are associated

with relatively low number of test defects; whereas, A/FR values below 100% are

associated with relatively high number of test defects. This means that, in ge.neral,

higher effort in software reviews leads to fewer defects in the test phase.

Reducing test defects is one of the important objectives in software development

because: Ci) a high number of test defects implies poor software quality, and (ii) test

defects are relatively expensive to fiXe Since it is generally difficult for engjneers to

68

•

•

determine product quality during development, the AIFR measure is a useful guide

to personal practice. While our finding hovers around 190% in general, how high

the A/FR ratio should he needs further empirical studies. But it is clear that the

cost of appraisal and the cost of fixing defects during the test phase needs to he

considered.

Figure 4.8 presents the relationship of A/FR and TT/TDT (the test time as a

percentage of total time). This may imply that reviews reduce the time spent in the

test phase because of fewer defects creeping into in the test phase.

4.2.2 Summary of PIAtrbs, SAtrbs and NSAtrbs

From the ahove analysis, Yield, which is an element of Significant Attribute (SAtrb),

has significant relationships with all the three Process Improvement Attributes (PI­

Atrbs): LOC/Hour, Defect Density (Dds) and Defect Removal Rate (Drr). No

significant relationships between Yield and Non-significant Attributes (NSAtrbs)

were found.

A/FR has also significant relationships with: PIAtrbs (LOC/Hour and Drr),

and three NStrhs (ABtk, TT/TDT and NTD/ND). In particular, A/FR, relative

effort spent in early defect removal, has direct eifects on severa! aspects of persona!

software process, e.g., average backtracking, the number of test defects and time

spent on test phase. Through these aspects, A/FR thus influences software devel­

opers' performance in terms of Defect Density (Dds), Defect Removal Rate (Drr)

69

•

•

and productivity (LOC/Hour).

4.3 Trends of SAtrbs in the PSP Projects

We know from the analysis in the previous sections that attributes, 'tld and A/FR,

are significant in that they influence severa! aspects of software development. What

we have not described, as yet, is how these two variables vary, over time, as PSP

execution evolves from PSPO to PSP3. This is the subject of sub-goal G3. It is

important to know how Yld and A/FR vary over time because this knowledge cao

be feed back (see Figure 1.1) into the improvement (or re-design) of PSP itself.

Figure 4.9 shows A/FR and Yld trends over the seven PSP projects. Here, the

sharp jump in A/FR and Yld with project 7 results from the introduction of design

and code reviews at this point.

From the analysis of section 4.1 and section 4.2, an increase in A/FR contributes

to the decrease in average backtracking (ABtk), the number of test defects and the

time spent on test, and thus it improves Defect Removal Rate (Drr) and productivity

(LOC/Hour). From Figure 4.9, the A/FR increases from 0 in assignment 6 to 72%

in assignment 7 and 68% in assignment 8, which are significant increases.

Our analysis also indicates that the software developers' Defect Removal Rate

(Drr) and productivity (LOC/Hour) improve with the increase in the value of Yld.

From Figure 4.9, the Yld value increases to 32% in assignment 7 and 36% in assign-

70

• ment 8 from less than 10% in the first 6 assignments. This helps to show that PSP

actually improves the software developers' performance by improving the Significant

Attributes (SAtrb) that influence the personal software processes the most.

4.4 Implications of the Findings for PSP

•

Despite this evidence and benefit of PSP, it begs the questions as to how the findings

of this thesis can be used to improve PSP.

Firstly, in the PSP course, students are usually required to complete 10 pro­

gramming projects 5. However, design and code reviews, which directly influence

the Significant Attributes (A/FR and Yld), are not introduced until assignment 7

(see Figure 4.9)when more than half of the projects have been completed. We have

noted that developers have often expressed concern about significant improvement

in product quality during the early stages of PSP when they themselves are not able

to see the fruits of their efforts. Thus, it seems as though reviews can be introduced

slightly earlier in the course, sa that students can see rapid improvement in their

performance and, hopefully, maintain their level of motivation in PSP.

Secondly, our study shows that Yld have no significant positive effect on Defect

Removal Rate (Drr) unless it has achieved a high level (see Observation 3 and

Figure 4.3). In the projects where reviews have just been introduced, engjneers can

SIn our study, ooly 8 projects were required because signific:ant time was devoted to three

additional data-analysis projects, which gave students concrete feedbac:k on the value of PSP.

71

•

•

be easily diseouraged by the deerease heeause they have not put adequate efforts

on reviews or beeause they have not mastered the skills as yet. Therefore, what

they need, espeeially at this stage, is specifie guideline for the baseline of the value

of Yld that should he achieved for a positive impact on Drr. Currently, there is no

such guideline in PSP. While our study suggests an optimal Yld value (not less than

50%)(see Figure 4.3), more studies are clearly needed to validate this proposai. The

review procedures should then ernphasize such a Yld value for maximum benefits.

Finally, Our study shows that the A/FR ratio eould he a useful guide for the

engineers in adjusting the review time so as to a:chieve a high Drr during software

development. For example, the optimal value of A/FR in our study is 190% (see

Figure 4.2 and Observation 2). Agai~, while more such studies are needed, such a

value could become an integrated part of PSP training.

In summary then, our study highlights sorne new findings from the white-box

study of PSP. In addition, we have also suggested above how such findings eould help

improve PSP, although, in general, we support the idea of more empirical studies

prior to ehanging PSP.

72

•
i-r------------------------,

o-
o

AJFR(%)

Yld (%)

2 3 4 5 6 7 8

•

Project Number

The sharp jump in AIFR and Y1d with Project 7 results the introduction of

design review and code review al this point.

Figure 4.9: Trends of A/FR and Yld Over PSP Projects

73

•

•

Chapter 5

Conclusion and Future Work

Following the development of Persona! Software Process (PSP) by Hump~ey, a

number of efforts have been made to study the impact of PSP on software process

improvement. However, much of such research has focused on the result of the

execution of PSP - the improvement of software quality and productivity. Little

attention has been paid ta the underlying factors that influence the output of the

execution of PSP. By investigating how the underlying factors influence the output,

it is argued that we would have an improved understanding of PSP and, in turn, this

could lead to the improvement of PSP and eventually the processes and products of

PSP.

In this study, we built an analytical framework consisting of descriptive soft­

ware quality and productivity models, Goal/Question/Metric (GQM) paradigm,

and quadratic regression analyses. We applied this framework in a PSP experiment

74

•

•

to investigate how the dynamics of software process influence the improvement of

software quality and productivity during the execution of PSP. The key findings

were:

• Yield and A/FR are the underlying factors that have significant efFect on the

output of PSP, evaluated in terms of the improvement in Defect Density (Dds),

Defect Removal Rate (Drr) and LOC/Hour.

• Yield, combined with Defect Density, is an important software quality mea-

surement.

• The A/FR ratio can be used to guide software developers ta achieve high

quality and productivity during software development.

• A/FR influences the improvement of software quality and productivity by

influencing various underlying process factors, for example, average number of

phases backtracked ta fix a defect.

From these findings, it is clear that our hypothesis: that not aU factors underlying

a personal software process have the same impact on quality and productivity, is

true. The factors uncovered by this study are Yield and A/FR, which are se.1dom

emphasized in the software engineering literature. The findings, together with the

contributing factors, are a contribution to software engineering knowledge.

Our study complements previons work on PSP by providing a "white-box" view

of PSP. This helps to improve our collective understanding of personal software

75

•

•

proeess and it eould lead to the improvement of PSP itself. For example, reviews

eould he introdueed earlier in the PSP topies.

Beeause this study was eondueted in a university environment, the results should

not be generalized to PSP projeets in industry. Rather, they provide hope and a

hasis for stronger hypothesis. Thus, we encourage that the results of this thesis

eould he eonsidered in the design of empirical studies in an industrial setting, for

example, to determine the optimal A/FR ratio.

76

•
Appendix A

PSP Evolution

This appendix contains a briefly discussion of the PSP evolutionary path.

A.1 Baseline Process(P8PO)

•

PSPO is the initial step and establishes a baseline that includes measurements and

a reporting format. This provides a consistent basis for measuring progress and a

defined foundation on which to improve. PSPO is essentially the CUITent process the

engineers use to write software, enhanced to provide measurements.

Following the first programming exercises, PSPO is enhanced to PSPO~l by

adding a coding standard, size measurement, and the process improvement pro­

posal(PIP). The PIP provides a structured way to record process problems, experi­

ences, and improvement suggestions. PSPO.l also enhances program size measure-

77

• ment to separately count methods and procedures.

A.2 Persona! Planning Process(PSPl)

PSPI improves upon PSPO by focusing on planning elements. Size measurement

and estimation, resource projection, schedule planning and status tracking are in­

troduced at this stage. The PSPO forms and templates are expanded to include a

size estimating template; in addition, the plan and summary report now includes

data on program size, as weil as reuse data.

While the importance of these techniques for large projects is weil understood,

few engineers apply them to their personal work. The PSP demonstrates the value

of these methods at the personal level.

A.3 Personal Quality Management(P8P2)

•

PSP2 adds personal design and code reviews to PSPI. These reviews help the

engineers to find defects earlier in their processes and to appreciate the benefits

of doing 50. They analyze the defects they find in their early programs and use

these data to tailor review check lists to their persona! defect propensities. "Review

Yield", that is the percent of the defects in the program found during review, is

introduced as a useful measure of review process effectiveness.

The design process is addressed in PSP2.1. !ts intent is not ta tell engineers how

78

• ta do design but ta address the criteria for design completion. In PSP2.1 design

completeness criteria are established and various design verification techniques are

illustrated. While the design phase is used as an example of completeness criteria,

the same approach can be used with such other process phases as requirement spec­

ification, documentation development, and test development. Phase entry and exit

criteria are needed ta provide review entry criteria, to define process measures, and

ta track development status.

Up ta this point, the PSP stages focus on small, stand-alone programs developed

by an individual. A principle raIe of PSP, however, is its use as a foundation for

large-scale software development. Therefore, PSP must he able to address growing

product complexity and to relate individuals to their teams. In addition, as teams

form into project, the PSP principles should he scalable ta address this broader

need. The first step toward addressing scalability is the introduction of PSP3, a

Cyclic Personal Process.

A.4 Cyclic Personal Process (P8P3)

•

PSP3 presumes incremental development of a large-scale software system. By ùtiliz­

ing abstraction principles, PSP3 guides individuals through the development cycles

of complex software by subdividi~g the complex system into pieces each applicable

to PSP2. PSP3 requires planning and specification of development cycles: design

79

•

•

and design review, test development and review. Then, code and code review, com­

pile, and test phases are applied to each cyc1e~ At the end of each cycle, recorded

data is used ta assess the current status against the base plan for adjustment or

modification.

80

•
Bibliography

•

[Bas84]

[Bas92]

[BoeS1]

[Che69]

[Cla72]

V.R. Basili. "A Methodology for Collecting Valid Software Engineering

Data". IEEE Transaction on Software Engineering, se-10(6):728-738,

November 1984.

V.R. Basili. The Experimental Paradigm in Software Engineering. In

Proc.Int. Workshop on Experimental Software Engineering Issues, pages

3-12, (Reid at SchloB Dagstuhl, Wadern, Germany, September 14-18,

. 1992), 1992. Springer Verlag, Berlin, LNCS 706.

B.W. Boehm. Software Engineering Economies. NJ: Prentice-Hal1, En­

glewood Cliffs, 1981.

A. Cherns. "Social Research and its Diffusion". Human Relations,

22(3):209-218, 1969.

P. Clark. Action Research and Organizational Change. Harper and Row,

1972.

81

• [Dio93]

[Dun84]

R. Dion. "Process Improvement and the Corporate Balance Sheet ".

IEEE Software, pages 28-35, July 1993.

R.H. Dunn. Software Defect Removal. McGraw-Hill, Engiewood Cliffs,

1984.

[ESM96] K. El Emam, B. Shostak, and N.H. Madhavji. "Implementing Concepts

from the Personal Software Process in an Industrial Setting". In 4th

International Conference on Software Process, 1996.

[FHK+97] P. Ferguson, W.S. Humphrey, S. Khajenoori, S. Macke, and A. Matvya.

"Results of Applying the Persona! Software Process ". Computer-IEEE

Computer lJagazine, 30(5):24-31, 1997.

•

[FP96]

[Gar93]

[GR97]

N.E. Fenton and S.L. Pfleeger. Software Metrics: a Rigorous and Prac­

tical Approach Second Edition. International Thomson Computer Press,

London, UK, 1996.

P. Garavaglia. "How to Ensure Transfer of Training". Training and

Development, pages 63-68, October 1993.

N. GorIa and R. Ramakrishnan. "Effect of Software Structure Attributes

on Software Development Productivity". Journal of Systems Software,

36:191-199, 1997.

82

• (H091] w. Hayes and J. W. Over. The personal software process (psp): An em­

pirieal study of the impact of psp on individual engineers. Technieal Re­

port CMU/SEI-91-TR-001, Software Engineerin Institute, Pittsburgh,

1991.

[HSW91] W.S. Humphrey, T.R. Snyder, and R.R. Wills. "Software Process Im­

provement at Hughes Aircraft". IEEE Software, pages 11-15, July 1991.

(HT91] T.B. Hilburn and M. Towhidnejad. "Doing Quality \Vork: The Role

of Software Proeess Definition in the Computer Science Curriculum".

SIGCSE Bulletin - Computer Science Education, 29(1):217-281, 1997.

(HT98] L. Hou and J. Tomayko. "Applying The Personal Software Proeess in

CS1: An Experiment ". SIGCSE Bulletin - Computer Science Educa­

tion, 30(1):322-325, 1998.

•

[Hum81] W.S. Humphrey. Characterizing the software process: A maturity frame­

work. Technical Report CMU/SEI-93-TR-024, Software Engineerin In­

stitute, Pittsburgh, 1987.

[Hum89] W. S. Humphrey. Managing the Software Process. Addison-Wesley,

Reading, Mass., 1989.

(Hum93] W.S. Humphrey. "The Personal Software Process, Rationale and Sta­

tus". In The 8th International Software Process ~Vorkshop, 1993.

83

• [Hum94a] W.S. Humphrey. "Process Feedhack and Learning". In the 9th Interna­

tional Software Process Workshop, 1994.

[Hum94b] W.S. Humphrey. "The Persona! Process in Software Engineering". In

Proceedings of the 9rd International Conference on the Software Process,

pages 69-77, 1994.

[Hum94c] W.S. Humphrey. "The Persona! Software Process ". Sotware Process

Newsletter, IEEE TCSE, (1):1-3, September 1994.

[Hum95a] W. S. Humphrey. A Discipline For Software Engineering. Addison­

Wesley, Reading, Mass., 1995.

[Hum95b] W.S. Humphrey. "Introducing the Persona! Software Process ". Annals

of Software Engineering, 1:311-325, 1995.

[Hum95c] W.S. Humphrey. "The Power of Persona! Data ". Software Process

Improvement and Practice, 1:69-81, 1995.

[Hum96a] W.S. Humphrey. "The Persona! Software Process and Persona! Project

Estimating ". American Programmer, 9(6):2-15, June 1996.

[Hum96b] W.S. Humphrey. "Using a Defined and Measured Persona! Software

Proces". IEEE Software, 13(3):77-89, 1996.

••
[Jon96] C. Jones. Applied Software Measurement. McGraw-Hill, 1996.

84

• [Kha95]

[MB97)

S. Khajenoori. "Persona! Software Process: An Experiential Report".

In 8th SEI CSEE Conference, New Orleans, LA, USA, March29-Aprill

1995.

Y. Mashiko and V.R. Basili. "Using the GQM Paradigm to Investi­

gate InHuentia! factors for Software Process lmprovement". Journal of

Systems and Software, 36(1):17-32, 1997.

[MKN+96) S. Macke, S. Khajenoori, J. New, 1. Hirmanpour, J. Coxon, A. Ceberio,

and B. Manente. "An Industry/Academic Partnership that Worked: An

In Progress Report". In Proceedings of the 9th Conf-erence on Software

Engineering Education, April 1996.

(MT77]

[Neu93]

[Ost63)

F. Mosteller and J.W. Tukey. Data Analysis And Regression. Addison­

Wesley, 1977.

P. Neumann. "System Development Woes". Communications of the

AGM, page 146, 1993.

Benard Ostle. Statistics in Research. The Iowa State University Press,

Ames, Iowa, U.S.A., 1963.

•
[PCCW93) M. Paulk, B. Curtis, M. Chrissis, and C. Weber. Capability maturity

model for software (version 1.1). Technical Report CMU/SEI-93-TR­

024, Software Engineerin Institute, Pittsburgh, 1993.

85

• [PP97] R.C. Pfaffenberger and J.H. Patterson. Statistical Methods for Business

and Economies. Richard D. Irwin, Ine., Homewood, lllinois, 1997.

[Pre92] R.S. Pressman. Software Engineering, A Practioner's Approaeh.

•

[Roy96]

[She94]

[Sho96]

[SM96]

[Woh93]

[Zu193]

McGraw-Hill, Inc., 1992.

D. Roy. "The Persona! Software Process: An 'Ego-Centered' Improve­

ment P aradigm". In Proceedings of the Software Engineering Process

Group Conference, 1996.

K. Sherdil. "Persona! 'Progress Funetions' in the Software Process".

Master's thesis, School of Computer Science, McGill University, 1994.

B. Shostack. "Adapting the Persona! Software Process to Industry".

Software Process Newsletter, (5), Winter 1996.

K. Sherdil and N.H. ~Iadhavji. "Human-Oriented Improvement in Soft­

ware Process". In Proceedings of the 5th European Workshop on Software

Process Technology, Springer Verlag, 1996.

H. Wohlwend. "Software Improvements in an International Company" .

In 15th International Conference on Software Engineering, llaltimore,

Maryland, May 1993.

R.E. Zultner. "TQM for Technical Teams". CACM, 36(10):79-91, Oct

1993.

86

