INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright materiai had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Factors Influencing a Personal Software

Process

Xiaoming Zhong
School of Computer Science

McGill University, Montreal

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements for the

degree of Master of Science

©Xiaoming Zhong, 1999

February 1, 2000

ivl

National Lib Biblio! ue nationale
of Canada hatd du Caﬁgga
uisitions and Acquisitions et
Bibliographic Services services bibliographiques
/S W Street 395, rue Waellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your g Votre réldrence
Our Mg Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-64486-3

Canadi

Abstract

Following the development of Personal Software Process (PSP) by Humphrey, a
number of efforts have been made to study the impact of PSP on the improvement
of software quality and productivity. However, most of such studies have focused on
the results of the execution of PSP. Little attention has been paid to the underlying
factors that influence the output of the execution of PSP. By investigating which
factors influence the output, and how, we would have an improved understanding
of PSP, which, in turn, could lead to improvement of the design of PSP and hence
of personal software process.

In this thesis, we describe an experiment involving 53 subjects carrying out PSP.
In particular, we examine the factors underlying a personal software process and
analyzed the impact of these factors on the output of PSP execution, namely, the
improvement in software quality and productivity. Our study complements preyious

work on PSP by.providing a “white-box” view of PSP in assessing the effectiveness

of PSP.

Résumé

A la suite du développement du “Personal Software Process” (PSP) par Humphrey,
plusieurs ont étudié 'impact du PSP sur I’amélioration de la productivité et de la
qualité des logiciels. Cependant, la plupart de ces études se sont concentrées sur
les résultats de ’exécution du PSP. Il y a eu trés peu d’attention portée sur les fac-
teurs influengant ces résultats. En examinant quels facteurs ont une influence sur le
résultat, et comment ils les influencent, nous aurions une meilleure compréhension
du PSP. Ceci pourrait mener a I’amélioration de la conception du PSP, et donc du
processus personnel de développement de logiciel.

Dans cette thése, nous décrivons une expérience ou 53 sujets ont utilisé le PSP.
En particulier, nous examinons les facteurs a la base du processus personnel de
développement de logiciel, et nous analysons leur impact sur les résultats d’exécution
du PSP, c’est-a-dire sur I’amélioration de la productivité et de la qualité des logiciels.
Notre étude est complémentaire aux autres travaux sur le PSP, en app;)rtant une

vue de “boite blanche” sur le PSP dans ’évaluation de son efficacité.

Acknowledgments

I wish to thank my supervisor, Prof. Madhaviji, for his guidance and support, and
his valuable suggestions and criticism during the course of this work. I also wish to
thank my family for their continuous support and encouragement throughout my

studies.

Contents

1 Introduction ' 1
2 Background 7
2.1 What Personal Software ProcessIs 7
2.1.1 Development of Personal Software Process 8

2.1.2 The Logic Behind Personal Software Process 8

2.1.3 The PSP Approach and Structure 9

22 The PSP Measures vuieneen.. 10
2.2.1 Development-time Measurement 11

2.2.2 Defect Measurement, 12

223 SizeMeasurement. L0, 14

2.24 Project SummaryData. -. 16

2.2.5 PSP Derived Measures 17

23 Theassessmentof PSP 20
2.3.1 PSP in the Classroom Setting 20

232 PSPinIndustry. 24

3 Research Objective and Experiment Design 30
3.1 ResearchObjective. 30
3.2 Experiment Design 33

3.2.1 Investigation Approach 33
322 ResearchContext 34
3.2.3 Descriptive Models 36
3.3 Model for Analysisof Data 44
3.3.1 Attribute Types. 45
3.3.2 Goal/Question/Metric (GQM) 47
3.3.3 Dependent Variables and Independent Variables 49
334 Regression Anpalysis. 50

4 Data and Results 53

4.1 Significant Attribute (SAtrb) Identification 53

4.2

4.1.1 Significant Attributes (SAtrbs) for Defect Density (Dds) . . . 54
4.1.2 Signiﬁc;z.nt Attributes (SAtrbs) for Defect Removal Rate (Drr) 56
4.1.3 Significant Attributes (SAtrbs) for LOC/Hour 60
4.1.4 Summary on Significant Attributes (SAtrbs) 63
Relationships Between Significant Attributes (SAtrbs) and Some Non-

Significant Attributes (NSAtrbs) 65

il

4.2.1 Noticeable Relationships 66

4.2.2 Summary of PIAtrbs, SAtrbs and NSAtrbs 69

4.3 Trends of SAtrbs in the PSP Projects 70
4.4 Implications of the Findingsfor PSP 71

5 Conclusion and Future Work 74
A PSP Evolution 77
A.1 Baseline Process(PSP0) 77
A.2 Personal Planning Process(PSP1) 78
A.3 Personal Quality Management(PSP2) 78
A.4 Cyclic Personal Process (PSP3) 79

iii

List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

2.7

3.1

3.2

3.3

3.4

3.5

A Schematic Diagram Showing the PSP Design Concepts, PSP Exe-

cution, PSP Output, and Feedback 3
PSP Evolutiont eiei... 11
Time Recording Log 12
Defect Type Standard 14
Defect RecordingLog 15
Sample PSP Project Plan Summary Form 18
Defect Density — from CS215in ERAU 24
Compile and Test Time - from CS215in ERAU 25
PSP ProcessModel 37
Defect Attributes o 0oL, e | . 40
Quality Attributes e o 41
Productivity Attributes. L 44
Goalof Analysis i i i e 49

v

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Goals, Questions and Metrics 52

Relationship between Ddsand YId 55
Relationship between Drrand A/FR 57
Relationship between Drrand YId 58
Relationship between LOC/Hour and A/FR 61
Relationship between LOC/Hour and YId 62
Relationship between ABtkand A/FR 65
Relationship between NTD/NDand A/FR 67
Relationship between TT/TDT and A/FR 68
Trends of A/FR and Yld Over PSP Projects 73

List of Tables

2.1

2.2

2.3

24

2.5

2.6

2.7

3.1

4.1

4.2

4.3

4.4

4.5

PSP LOC Type Definitions 17
Definitions of PSP Measures 19
Quality Improvement in the Five Early Courses 21
Productivity Improvement in the Five Early Courses 21
Summary of AIS Project Data 26
US&S Usage Data 27
Motorola Operational Deféct Data for PSP Projects 29
Dependent Variables and Independent Variables 50
Regression Equations for Defect Density (Dds) 54
Regression Equations for Defect Removal Rate (Drr) 56
Regression Equations for LOC/Hour S 60
Significant Attributes Lo oo o oo 63
Regression Equations between SAtrbs and NSAtrbs 64

vi

Chapter 1

Introduction

It is well known that software development projects are plagued with quality prob-
lem, cost overruns and schedule slippage [Neu93]. Thus, among the key goals of
software development are to be able to build high quality software systems, on time,
within budget and within a satisfactory development environment. A recently rec-
ognized way to help achieve these goals is to improve software development processes
such that the concerned problems are mitigated. Various approaches to process im-
provement have been developed ranging from those at the personal-level to those
at organizational-level: Personal Software Process (PSP) [Hum95a); Capability Ma-
turity Model (CMM) [PCCW93] [Hum89]; Quality Improvement Paradigm tQIP)
[Bas92]; and Total Quality Management [Zul93]. Based on such models, many
process improvement projects and activities have been carried out both in academia

and the software industry [HT97] [ESM96] [Sho96] [Hum95b] [SM96] [She94] [Dio93]

[Woh93] [HSW91].

Focusing at the grass-roots level of software development is Humphrey's Personal
Software Process (PSP) [Hum95a). It is based on the premise that discipline in
software development at the personal level can help increase the effectiveness of
individual engineers [Hum94a] {Hum93]. This, in turn, is likely to improve the
performance of software teams and projects.

PSP is a process framework and a set of methods designed to help engineers to be
m;)re disciplined in their work. It shows them how to estimate the size of individual
projects (or tasks); plan their projects; measure and track their work; and improve
the quality of the products they produce.

The PSP consists of: a series of scripts that define tasks; forms for recording
data; and standards that govern such aspects as coding practices, size counting, and
the assignment of defect types. When engineers follow PSP, they first plan their
work and document the plan. As they do their work, they record development time
and track and record every defect they find. At the end of the project, the engineers
do a postmortem analysis and complete a project plan summary report.

PSP is being taught as a course in a number of universities, among them: the Uni-
versity of Massachusetts (at Lowell) [Hum95b], Carnegie Mellon University [I-iTQS]
{Hum94b], Embry-Riddle Aeronautical University [HT97] {Kha95], and McGill Uni-
versity [SM96] [She94]. PSP courses or concepts have also been used to train pro-

fessional engineers in the software industry [FHK*97] [ESM96] [MKN+96] [Roy96)

[Hum94b] [Hum94c].

The introduction of a new software development method, however, is often ac-
companied by the assessment of the effectiveness of this method. Following the de-
velopment of PSP, a number of efforts have been made to study the impact of PSP
on software development [HT98] [FHK*97] [ESM96] [Hum96a] [Hum96a] [She94].
Their research helps to explain the logic behind PSP and contributes greatly to any

possible refinement of PSP.

PSP DESIGN PSP EXECUTION PSP OUTPUT

PSP Concepts: Execution of the PSP Programme: Results of PSP execution:

® gize estimate e improvement in software productivity
® (ime spent in review

® time estimate ® improvement in product quality

® planning enacted ® number of defects removed | produces

® code review before first compile ® improvement in size and time estimate

® design review ® average number of phases

® postmortem analysis backtrackedto fix adefect | |

skills

sesecescnsenonsien

feedback

Figure 1.1: A Schematic Diagram Showing the PSP Design Concepts, PSP Execu-

tion, PSP Output, and Feedback

Most of the published research, however, has focused on the PSP concepts and
the output of PSP execution, e.g., the relationships between code review and im-
provement in product quality (Figure 1.1). Such research helps to explain the degree

to which PSP improves an individual’s process. It is more like a static analysts of

PSP relationships. But many underlying factors, observed during PSP execution,
that influence the output of PSP have received little attention. This thesis thus
complements previous work on PSP by focusing on the dynamics of PSP, giving
insight into the underlying factors for the observed effects in the output of PSP
execution. Such insight can be used to improve specific aspects of PSP.

A personal software process involves many underlying factors, such as the per-
centage of defects removed before the first compilation, time spent in test phase as
a percentage of total development time, etc. It is clear from previous studies that
PSP, as a whole, has a positive impact on certain dependent variables of software
development, such as number of defects removed per hour, thousand lines of code
developed per hour, etc. But there is no reason to assume that all the underlying
factors contribute equally to the dependent variables. We assume that certain un-
derlying factors play a key role in the impact of PSP on the dependent variables.
Which factors are there is not clear, however, the purpose of this study is to uncover
the influence factors. |

Thus, in this study, we built descriptive models of software quality and produc-
tivity. Based on these models, we investigated the factors, e.g., average number of
phases backtracked to fiz a defect, which most influence process improvement mea-
sured in terms of: LOC per hour, number of defects per KLOC and the number of
defects removed per hour. We then studied how these factors vary through the PSP

execution, so that we can have an improved understanding of the way in which PSP

affects software productivity and quality.

Our study was carried out in the context of a PSP course at McGill University.
Fifty three full-time senior undergraduate students participated in the course during
the period Sepfember to December 1997. Every week, two lectures, each of duration
one and a half hours, were given to the students in which they were taught ways
to carry out and improve their personal processes. After each set of lectures, the
students were assigned a programming project, which utilized the techniques taught
to them. There were a total of eight ! programming projects, per student, which all
used the C++ programming language. Based on the data gathered from these (53

x 8 = 424) projects, we had a number of findings 2, for example:

1. The percentage of defects found and fixed before the first compile (Yield) is a
significant factor that influences process improvement measured in terms of:
(i) defects per delivered thousand lines of code (Defect Density), (ii) defects
found and removed per hour (Defect Removal Rate), (iii) and lines of code

developed per hour (LOC/Hour).

Our analysis indicates that, when Defect Density is used to evaluate software

quality, yield should be taken into account. We also found that one of the

In addition, there were three significant data analysis projects, probing into problems typically

faced in software projects.
2The interpretation of these results are described in the later chapters of the thesis where details

of the data analysis are also given.

obstacles of introducing review skills is because reviews have no significant

positive effect on Defect Removal Rate unless Yield has achieved a high level.

2. Appraisal Time to Failure Time ratio (A/FR): the time spent in design review
or code review as a percentage of the time spent in compile and test - is a

significant factor that influences Defect Removal Rate and LOC/Hour.

Our analysis indicates that the A/FR value can be a useful guide for software

developers in adjusting their review time to achieve a high Defect Removal

Rate during software development.

This thesis describes several other findings. By studying the relationships among the
PSP concepts, process dynamics and the output of PSP execution (see Figure 1.1),
our study gives a new insight into the rationale and logic behind PSP. In return,
this can lead to possible refinements of certain aspects of PSP.

Chapter 2 gives the details of PSP. Chapter 3 states our research objective and

experiment desigr. An in-depth analysis of data is done and results are shown in

chapter 4. Chapter 5 concludes our study.

Chapter 2

Background

This section presents background work which is related to our study. It briefly
describes Personal Software Process (PSP)[Hum95a). This section also provides an
overview of the basic PSP measures, forms, and measurement process to give the
reader some context for the data that were analyzed for this study. Finally, some

reported experiments of PSP were reviewed.

2.1 What Personal Software Process Is

This section describes the development of, the logic behind, the structure of, and

the evolution of Personal Software Process.

2.1.1 Development of Personal Software Process

In 1987, the Software Engineering Institute (SEI) at Carnegie Mellon University pub-
lished a software development capability maturity known as the Capability Maturity
Model (CMM) [Hum87]. By establishing and defining the five levels of progressively
more-mature process capability, the CMM provides an orderly way for organizations
to determine the capabilities of their current process and to establish priorities for
improvement. Its focus, however, is on large-scale software and large-scale software
organizations. Humphrey recently extended the CMM by proposing an approach for
scaling it down to small teams and small software organizations through Personal
Software Process (PSP) paradigm [Hum95a]. PSP addresses the need to use CMM
by individual software practitioners and small software organizations. It relies on
a bottom-up approach rather than a top-down one: instead of imposing software
processes from a managerial direction and targeting projects, PSP focuses on the

individual programmer and targets his/her work.

2.1.2 The Logic Behind Personal Software Process

PSP provides a framework to help software developers to organize and plan their

work, track their performance, manage software defects, and analyze and improve

their personal process. The logic behind PSP is as follows:

e By defining, measuring, and tracking their work, software developers will bet-

ter understand what they do.

e This understanding will enable the software developers to better recognize

what methods work best for them and to see how they can more consistently

apply them.

e The engineers will then have a defined process structure and measurable cri-

teria for evaluating and learning from their own and others’ experiences.

e With this knowledge, the software developers can select those methods and

practices that best suit their particular tasks and abilities.

e By using a customized set of orderly, consistently practiced, and high quality
personal practices, the software developers will be more effective members of

their development teams and projects.

2.1.3 The PSP Approach and Structure

At the technical level, PSP is a structured set of process descriptions, measurements,
forms, scripts and standards that guide software developers in size estimation, plan-
ning, reviewing and data gathering. Various data analyses are defined to.determine
the quality and productivity of soft\ya.re developers’ work. This helps individuals to

develop a quantitative understanding of their process products and processes.

PSP has a maturity framework as does the CMM. It has been structured in
an evolving sequence of seven upward-compatible personal processes. Each process
step is defined and used to guide the individuals through an evolutionary path from
simple process concepts, such as project planning, to advanced levels of process
maturity, such as defect prevention. The PSP evolutionary path consists of seven
consecutive phases (see Figure 2.1). Appendix A contains a brief discussion of these

seven PSP phases.

2.2 The PSP Measures

PSP is based on the principle of data-driven process improvement whereby mea-
surements are central in highlighting process deficiencies and providing a focus for
process improvement. There are three basic measures in PSP: the development-
time, software defects, and software size. All other PSP measures are derived from
these three basic measures. The measurement process and f01;ms ! for these mea-
sures are introduced during the first three assignments at the PSP process levels
PSP0O and PSP0.1. Development-time and defect measures are introduced on the
first assignment; size measures are deferred until a program for counting LOC has

been developed in assignment 2.

!Some measurement definitions and templates sample in this section are from [Hum95a] [HO97).

10

Cyclic PSP 3
clic development
Process Cy op
) PSP2.1
Pe PSP2
:uality Code reviews Design templates
anagement Design reviews
_l
Personal PSPL.L
PSP1 .
Planning Task planning
Process Size estimating Schedule planning
Test report T
PSPO.1
Baseline cunel;? I’Oms (-:oding standard
Personal Time recording Size measurement
Process Defect recording Process improvement proposal
Defect type standard T

2.2.1 Development-time Measurement

Minutes are the unit of measure for development-time. Engineers track the number
of minutes they spend in each PSP phase, less time for any interruptions such as

phone calls, coffee breaks, etc. A form, the Time Recording Log, is used to record

development-time.

The example Time Recording Log (Figure 2.2) illustrates how this form is used.

Figure 2.1: PSP Evolution

11

In the example, the engineer started the Plan phase of his project on Sept. 15 at
7:58 and finished planning at 8:45. The elapsed time was 47 minutes, but actual
effort, or Delta Time, was only 44 minutes, due to an interruption of i:hree minutes
to take a phone call. The engineer started the Design phase at 8:47 and finished at
10:29. A two-minute interruption give a Delta Time of 100 minutes. The remaining

phases, Code, Compile, and Test are recorded in a similar manner.

Date | Start | Stop | Interruption | Delta | Phase Comments
Time Time

9/15 7:58 | 8:45 3 44 Plan phone call
8:47 | 10:29 2 100 | Design create, review design
7:49 | 8:59 70 Code coded functions
9:15 | 9:45 31 Compile compiled and linked
9:47 | 10:10 23 Test ran tests A, B, and C
4:33 | 4:51 18 Postmortem

Figure 2.2: Time Recording Log

2.2.2 Defect Measurement

A defect is defined as any change that must be made to the design or code in order to
get the program to function as desired. Defects are recorded on the Defect Recording

Log as they are found and fixed. The example Defect Recording Log (Figure 2.4)

12

shows the information that is recorded for each defect: the date, sequence number,
defect type, phase in which the defect was injected, phase in which it was removed,
fix time, and a description of the problem and fix.

When an engineer injects a new defect while trying to fix an existing defect,
proper accounting of fix time can become more complicated. A common mistake is
to include the fix time for the new defect twice. To help with this problem, some
space is provided to record a reference to the original defect that was being fixed.
The number of the original defect that was being fixed is recorded in the fix defect
reference of the new defect.

Each defect is classified accurding to a defect type standard as described in
[Hum95a]. The standard includes 10 defect types (Figure 2.3) in a simple, easy-to-
use classification scheme designed to support defect analysis. Engineers can refine
the standard to meet personal needs, but they are encouraged to wait until they
have sufficient data to justify a change.

In the example Defect Recording Log (Figure 2.4), the engineer found the first
defect on Sept. 13. The defect was a type 20 (syntax error) that was injected
during the code phase and removed during the compile phase. The engineer spent
22 minutes finding and fixing the defect. The second error, also a syntax error, was
injected during the code phase and removed during the compile phase, and took 18

minutes to find and fix. Similarly, other defects are recorded in the log.

13

Type Number | Type Name Description

10 Documentation | comments, messages

20 Syntax spelling, punctuation, typos, instruction formats

30 Build, Package | change management, library, version control

40 Assignment declaration, duplicate names, scope, limits

50 Interface procedure calls and references, I/0, user formats

60 Checking error messages, inadequate checks

70 Data structure, content

80 Function logic, pointers, loops, recursion, computation,
function defects

90 System configuration, timing, memory

100 Environment design, compile, test, or other support system

problems

2.2.3 Size Measurement

Figure 2.3: Defect Type Standard

The primary purpose of size measurement in PSP is to provide a basis for estimating

development-time. Lines of code were chosen for this purpose because they meet

the following criteria: they can be automatically counted, precisely defined, and

are well correlated with development-effort based on the PSP research [Hum95a).

Size is also used to normalize other data, such as productivity (LOC per hour) and

14

Date Number Type Inject Remove

Fix Time

Fix Defect

fons | |1t | {20 | | cobe | | empL | |

2 | | |

Description: syntax error in scanf statement

Number Type Inject Remove

Fix Time

Fix Defect

o] o] [] [owe] [owe] [][]

Description: error in linked list struct type declarations within access functions

Date Number Type Inject Remove

Fix Time

Fix Defect

[on3 | 136 | |20 | [cobE | |empL || 1

] L

|

Description: missing;

Date Number Type Inject Remove Fix Time Fix Defect
[[on3 | | 7 | {20 | [cobe | |empL || 1 P
Description: incorrect spelling of identifier in declaration
_ Date Number Type Inject Remove Fix Time Fix Defect
[on3 | | s | | 20 | |cobe | | empL | [1 | | |
Description: function declaration error
Date Number Type Inject Remove Fix Time Fix Defect
oy | | o Y | {copE || cmpL | | 1 | [

Description: link error, missing include for math.h

Figure 2.4: Defect Recording Log

used in practice.

In the PSP course, as in practice, each program involves some amount of new

15

defect density (defects per KLOC). While LOC are suitable for the programming

assignments in the PSP course, any measure that meets these same criteria can be

development, enhancement, and/or reuse. Therefore, the total LOC in a program
will have several different sources, including some new LOC, some existing LOC

that my have been modified, and some reused LOC. Because LOC are the basis for

estimates of development-time, it is important to account for these different types
of LOC separately.

PSP uses the LOC accounting scheme shown in Table 2.1. Base LOC are any
LOC from an existing program that will serve as the starting point for the program
being developed. Deleted and modified LOC are those base LOC that are being
deleted or modified. Added LOC is the sum of all newly developed object, function,
or procedure LOC, plus additions to the base LOC. Reused LOC are the LOC taken
from the engineer’s reuse library and used without modification. If these LOC are

modified, then they are considered to be base LOC.

New and changed LOC are the sum of added LOC and modified LOC. New and
changed LOC, not total LOC, are the most commonly used size measure in PSP.
For example, new and changed LOC are the basis for size and effort estimating,
productivity (LOC/Hour), and defect density (Defects/KLOC). Finally, total LOC
are the total program size, and total new reused LOC are those added LOC that

were written to be reused in the future.

2.2.4 Project Summary Data

Project summary data are recorded on the Project Plan Summary form. This form
provides a convenient summary of planned and actual values for program size, de-
velopment time, and defects, and a summary of these same data for all projects

completed to date. Figure 2.5 shows the four sections of the project plan summary

16

Type of LOC Definition

Base LOC from a previous version

Deleted Deletions from the Base LOC

Modified Modifications to the Base LOC

Added New objects, functions, procedures, or any other added LOC
Reused LOC from a previous program that is used without modification

New and Changed | The sum of added and modification LOC

Total LOC The total program LOC

Total New Reused | New or added LOC that were written to be reusable

Table 2.1: PSP LOC Type Definitions
that were used: Program Size, Time in Phase, Defects Injected, an Defects Removed.
The data on the plan summary form has many practical applications for the
software engineer. The data can be used to track the current project, as historical
data for planning future projects, and as baseline process data for evaluating process -

improvements.

2.2.5 PSP Derived Measures

Each PSP level introduces new measures to help engineers manage and improve
their performance. These measures are derived from the three basic PSP measures:

development-time, defects, and size.

17

Program Size (loc): Plan Actusl To Date
Base(B) 0 0
(Measured) Mcasured)
Deleted(D) 0
Estmated) —_—
(Estimated) Counted)
Moadified(M) 0 0
(Estimated) (Counted)
Added(A, 112
) oM (T-B+D-R)
Reused(R) 174 174 3i6
(Estimated) Counted)
Total New & Changed(N) 1n2 137 759
~Estmah AM)
Total LOC (T) 286 311 1161
B-M+D-R) Measured)
Total New Reused [\ 0 326
Time in Phase (min.) Plan Actual To Date To Date %
Planning 2 44 287 122
Design —as —56 —490 —294
Design review
Code —48 _61 37 02
Code review 30 27 27 1.6
Compile 1S 1 106 64
Test —26_ __38 — 226 196
Postmortem 13 20 94 S5
Total 2350 247 1667 100.0
Defects Injected Plan Actual To Date To Date%
Planning 0 n 0 00
Design 2 1 —10 82
Design review 0 0 0 0.0
Code —_—a I —0 17
Code review 0 0 L) 0.0
Compile 0 0 2 15
Test 0 0 | $6
Total Development i 7 55 100
Defects Removed Plan Actual To Date To Date %
Planning 1] (1] 0 00
Design 0 0 0 00
Design review 0 0 0 0.0
Code 0 0 1 1.8
Code review (1) < 5 91
Compile 4 PR | B 24 45
Test 4 2 25 455
Total Development R 7 11 NS 11 1Y)
After Development 0 0 0

Figure 2.5: Sample PSP Project Plan Summary Form

18

Measure

Definition

Interruption Time

The elapsed time for small interruption from project work

Delta Time

Elapsed time in minutes from start to stop less interruptions

Compile Time

The time from the start of the first compile until the first

clean compile

Test Time The time from the start of the initial test until test completion
Total Time The sum of the time for all phases of a project
Defect Any element of a program design or implementation that must

be changed to correct the program

Defect type

See Figure 2.3, Defect Type Standard

Fix Time The time to find and fix a defect

LOC A logical line of code as defined in the engineers’ counting and
coding standard

LOC/Hour Total new and changed LOC developed divided by the total

development hours

Compile Defects/KLOC

The defects removed in compile per new and changed KLOC

Test Defect/KLOC

The defects removed in the test phase per new and changed KLOC

Defect Density

The total defects removed per new and changed KLOC

Yield

The percentage of defects injected before the first compile that

removed before the fist compile

Appraisal Time

Time spent in design and code reviews

Failure Time

Time spent in compile and test

A/FR

Appraisal Time/Failure Time

Table 2.2: Definitions of PSP Measures

19

Table 2.2 contains a partial list of the derived measures available in PSP and
their definitions. These measurement definitions are included to provide context for

the analyses that follow.

2.3 The assessment of PSP

Because the research on PSP is in its infancy, the experience with PSP is still limited.
Several universities offer a course on PSP as a part of their software engineering
programs. The reports from these courses are generally positive [HT98] [Hum95¢]
[She94]. Concerning PSP in industry, only a few reports are available at this stage
[FHK+97] [ESM96]. In the following two sub-sections, we describe PSP in academia

and industry.

2.3.1 PSP in the Classroom Setting

A one-semester graduate-level PSP course has been developed with a textbook [Hum95a),
a series of exercises, and instructor’s guide. This course is being adopted by a num-
ber of universities in the USA, Canada, Europe and South America. A number of
PSP training experiments have been done since PSP was first introduced in 1993.
In [Hum95b]2, Humphrey summarizes the results from five early completed PSP

courses taught at university of Massachusetts (at Lowell), Carnegie-Mellon Univer-

2The data analyzed in this thesis is not to be confused with PSP data from McGill University

20

sity, Bradly University, McGill University, and Embry Riddle Aeronautical Univer-
sity. Substantial improvement in quality and productivity has been reported based

on the data gathered from these five courses (see Table 2.3 and Table 2.4).

University Bradly CMU ERAU McGill Umass

Number of students 6 12 19 12 4
% Reduction in compile defects 75.7 76.6 88.1 76.7 68.8
% Reduction in test defects 64.2 81.7 83.2 76.7 68.8

% Reduction in total defects 55.1 45.8 80.1 64.0 53.4

Table 2.3: Quality Improvement in the Five Early Courses

Table 2.3 shows the percentage improvement in the defects per KLOC found in
compile, in test, and in total during the PSP exercise. These data compare the

averages of the first two exercises with those of the last two.

Average Loc/Hour Bradly CMU ERAU McGill UMass

The first two exercises 11.4 31.4 13.8 21.1 19.9
The last two exercises 26.9 38.6 22.3 29.3 36.6

Percent Improvement 136.0 22.9 61.6 38.0 82.4

Table 2.4: Productivity Improvement in the Five Early Courses

Table 2.4 shows the productivity increases were significant considering the last
two exercises are substantially larger and more difficult than the first two and engi-

21

neers completed them with lower defect levels.

PSP addresses a number of desirable software engineering behaviors. Starting
with PSP0 and extending through PSP1.1, the engineers learn and practice a series
of measurement and planning methods. Another behavior addressed by PSP is
software design. PSP2 addresses design by introducing design completion criteria
to reduce redoing the design during coding. In [Hum95c], which aims to investigate
how the PSP impacts people and how it changes their behaviors, it is claimed that
the PSP training impacts the performance of engineers and students in a classroom
environment. This claim is supported by the data gathered from a class taken
by 43 engineers and graduate students. The performance is evaluated in terms of
the number of defects per thousand lines of code, yield, defect removal rate, and
estimate accuracy. It is reported that by completing the prescribed PSP exercises
and following the defined processes, engineers can reduce their number of defects
by 75% or more. While results vary considerably among engineers, on average they
achieve productivity improvements of 25% or more.

An experiment using PSP was conducted at McGill University to study personal
“progress function” in software process [She94]. Data from the 12 senior undergrad-
uate students shows that, on average, learning takes place at a rate of 20%;. Of
this, second-order learning (or orgaﬂzati)onal training) amounted to approximately
13% more; whereas first-order learning (or self-learning) amounted to approximately

7%. In this study, detailed statistical methods were used to produce linear and log-

22

linear models of high correlations, involving four variables: productivity, defect-rate,
complexity, and cumulative output.

In the early experiments, PSP was taught almost exclusively to practitioners
or graduate students. However, more recently, PSP has been introduced at the
undergraduate level in some universities. Hou et al.[HT98]} conducted an experiment
in ap.plying components of PSP to 65 CS1 students. The results of their experiments
show that PSP is also of value to novices of CS1 level, regardless of their background.
It is reported that there is a steady drop in the amount of time spent on compile
(from 15% of total time for assignment 6 to 12% of total time for assignment 8)
and huge improvement in the errors in first compile (from 14% of total errors for
assignment 5 to 7% of total errors for assignment 8). Compile time and compile
error were primarily concerned because these two factors were believed to be “major

hurdles” in software developing for a novice.

In a recent project [HT97] in Embry-Riddle Aeronautical University, PSP con-
cepts were introduced into CS1 and CS2. Primarily, the impact of the PSP on
their estimation skills and the quality of their work was investigated. Results for
individual students show a lot of variation in their estimation errors. Thu_s, no
conclusions about the overall estimation skills of the student group can be made.
However, defect density and percent of effort spent in the cdmpile and test phases
were substantially decreased (see Figure 2.6 and Figure 2.7).

Figure 2.6 shows the defect density (the number of defects per thousand lines

23

Defect Density
51 students - CS21S - Spring 1996

150
8 100
S
£
a 50

Figure 2.6: Defect Density — from CS215 in ERAU

of code) for program 3 through 7 (defects were not recorded for program 1 and 2).
There is a clear drop in defects for the last three programs, both for total defects
and for defects found in test.

Another indication of improvement in the development process is the decline of

the percent of effort spent in the compile and test phases, shown in Figure 2.7.

2.3.2 PSP in Industry

PSP is also of interest to industry as a means of training their software engineers.

While there are published reports on the teaching of PSP in classroom setting (at

24

Compile and Test Time
51 students - CS21S - Spring 1996

— Compild

% Effont

Figure 2.7: Compile and Test Time - from CS215 in ERAU

universities and industry), relatively little data on its use and effectiveness in indus-
try are available. This problem is, in fact, due to the time required to introduce
the PSP into a work place and by the length of many software development efforts.
However, PSP courses have been used successfully to train professional engineers
in several organizations. Advanced Information Services (AIS) Inc., Motorola Pag-
ing Products Group, and Union Switch & Signal (US&S) Inc. have trained several
groups of engineers and measured the results of several projects that involved PSP
[FHK*97]. In all the companies, the projects were a part of the normal operations
and not designed for PSP study.

The three companies offered a variety of situations useful for demonstrating the

25

versatility of PSP. The projects at Motorola and US&S involved software main-
tainance and enhancement, while those at AIS involved new product development
and enhancement. Among the companies, application areas involved commercial
data processing, internal manufacturing support, communications products support,

and real-time process control, and work was done in program language C or C++.

Project PSP Non-PSP Product Delivery:Planned/ Acceptance Usage

Staff Staff Size Actual(months) Test Defects Defects
B 3 0 24 requirement 7/5 1 0
C 0 3 19 requirement 2/5 11 1
D 0 3 30 requirement 10/19 6 14
E 1 0 2,225 LOC 6/6 0 0
F 1 0 1,400 LOC 2/2 0 0
G 2 1 6,196 LOC 2/2 0 3

Table 2.5: Summary of AIS Project Data

Table 2.5 shows the data from AIS. The failure of Project A led to the introduc-
tion of PSP in AIS. So it is not listed in the table. Most of the projects involved one
to three engineers. In a group, some of the engineers may received PSP training,
the others may not. For example, Project G involved 3 engineers. Two of v;rhom
were PSP-trained staffs, while one of whom was non-PSP staff. This table shows the

performance of different teams with different percentage of PSP staff and non-PSP

staff.

26

Table 2.6 shows the data from 5 projects completed by PSP-trained engineers
at US&S. All of the five projects were maintenance and enhancement releases for a
large railroad information and control system, and each project required only one
engineer. As shown in this table, no defects have been found in any project during
installation or customer use.

Table 2.7 shows the results of 18 projects completed by PSP-trained engineers at
Motorola. It is noteworthy that several of these products have been used for many

months, and only one defect has been found in one of the products.

Product Lines of Code Months of Use Defects in Test Defect in Use

M45 193 9.0 : 4 0
M10 453 7.5 2 0
M77 6,133 4.0 25 0
M54 477 3.5 5 | 0
M53 1,160 1.0 21 0
Total 8,416 NA 57 0

Table 2.6: US&S Usage Data

Using Action Research empirical method [Che69] [Cla72], El Emam et al. [ESM96]
carried out a joint study between McGill University and CAE Electronics Ltd. of
the imﬁlementa.tion of the PSP concepts at CAE Electronic Ltd., a leading supplier
of flight simulators located in Montreal, Canada. In their study, two evaluations

27

were conducted. The first was the transfer of training defined as “ the effective,
and continued application to trainees’ jobs of the knowledge and skills gained in
training” [Gar93]. The authors claim that seven months after the start of the study,
46.5% of the participants were still using PSP concepts in their real programming
tasks. The second evaluation was of the benefits of the training. The trends in pro-
ductivity, defect density, yield, and the percentage of time spent on test were used
as a measurement of the improvement due to PSP. In their study, the authors did
not find any statistically significant trends in produ;tivity. Defect density, however,
increased from approximately 88 defects/KLOC to 256 defects/KLOC after the code
review lecture. It was also found that average yield increased from approximately
12% before code reviews to 27.7% when code reviews were used and the percentage
of time spent on testing dropped from approximately 37% before code reviews to

approximately 17% afterwards.

28

Project Number Size (LOC) Months Used Total Defects Test Defects Usage Defects

1 463 18 13 5 6
2 4,565 NA 69 10 0
3 1,571 NA 47 8 0
4 3,381 NA 69 22 0
5 5 9 0 0 0
6 22 5 2 0 0
7 1 18 1 0 0
8 2,081 10 34 0 1
9 114 8 18 2 0
10 364 NA 29 2 0
11 7 5 0 0 0
12 620 3 12 2 0
13 720 NA 9 2 0
14 3,894 NA 20 2 0
15 2,075 NA 79 27 0
16 1,270 NA 20 2 0
17 467 NA 17 3 0
18 3,494 8 139 50 -0
Total 25,114 NA 575 136 1

Table 2.7: Motorola Oper.a.tional Defect Data for PSP Projects

29

Chapter 3

Research Objective and

Experiment Design

This section first defines the objective of this study followed by, in section 3.2,
the design of the experiment. The experiment design describes the investigation
approach, the research context and the descriptive models. Following the section

on experiment design is section 3.3. This section describes the model for analysis of

data.

3.1 Research Objective

Each programming assignment results in some 70 pieces of data being collected

by each engineer. The data are used by the engineers to monitor their work on

30

the individual assignments as well as t;o analyze their personal software process
for improvement decisions. The data are also a primary source for researchers to
perform secondary analysis.

The PSP data characterize the attributes of the software process of an engineer
and his/her product. The data collected during the execution of PSP also show
the trends of these attributes through the PSP projects. Some attributes, such as
LOC per hour, number of defects per KLOC and number of defects removed per
hour, are often used to evaluate the effectiveness of PSP because these attributes
are also used to assess an individual’s performance. For example, the improvemént
of defects removed per hour usually indicates the improvement of the quality of an
engineer’s process. Also, how these attributes vary over time through the execution
of PSP directly reflects the effectiveness of PSP. Thus, these attributes have received
particular attention in published research. We define these attributes as Process
Improvement Attribute in this thesis. The formal definition is given in 3.3.1.

Some other attributes, such as the time spent in design review or code review
as a percentage of the time spent in compile and test, average number of phases
backtracked to fiz a defect, and number of defects per KLOC found in test, do not
reflect an individual’s performance directly but may have a great impact on the
improvement of the engineers’ performance. Many PSP techniques, such as code re-
view, focus on changing such attributes and thus change the engineers’ performance

indirectly. We define such attributes as Significant Attribute. The formal definition

31

is given in 3.3.1.

Researchers in different organizations have employed various scientific methods
to explore, from different aspects, the costs and benefits of PSP, based on the data
gathered through PSP training. However, as reviewed in section 2.3, most of the
published reports focus on the analysis of Process Improvement Attributes, such
as defects removed per hour, number of defects per KLOC and LOC/Hour. That
is, it is black-boz analysis. Other attributes, such as average number of phases
backtracked to fized a defect and the time spent in test phase as percentage of total
development time, are often neglected or are not systematically studied, even though
these attributes detail many important aspects of a software process and product.

In this study, we built descriptive models of software quality and productivity
which were used for quantitative analysis. Based on these models, we systematically
studied various process attributes. Specially, by studying the relationships between
Process Improvement Attributes and the other attributes, we identified the Signif-
icant Attributes, which influence Process Improvement Attributes the most. To
achieve a better understanding of the impact of Significant Attributes on Process
Improvement Attributes, we also established the noticeable relationships between
Significant Attributes and Non-significant Attributes. Finally we studied how the
Significant Attributes vary over time through the PSP execution. Thus, our study

provides a way to systematically study the details of a personal software process.

32

3.2 Experiment Design

This section first introduces our investigation approach. Then it describes the re-

search context. Finally the descriptive models are given.

3.2.1 Investigation Approach

We used a four-step method involving: measurement, modeling and analysis, as

outlined below:

1. Set the basis for quantitative analysis. We built several descriptive models:
process model used in the projects, defect-quality model and development-
productivity model. These models lay the foundation for our analysis of per-

sonal process and products. We show these models in section 3.2.3.

2. Define Goal/Question/Metric (GQM) models [Bas84]. We specified the struc-
ture of the analysis by defining specific goals, questions, and metrics using the

GQM models. We show these models in section 3.3.2.

3. Identify the influential attributes. In this step, we determined which attributes
influence process and product improvement the most, using GQM m_odels. spec-
ified in step 2 and the descriptive models defined in step 1. The influential

attributes are shown in section 4.1.

33

4. Analyze the trends of the influential atiributes, over time, through PSP projects.

This is shown in section 4.3.

This four-step method is logically sound because, it proceeds from laying the
foundational pieces of the study in step 1 (namely, the descriptive models) to ques-
tioning about specific attributes in step 2, based on the foundational pieces. Only
then, one can be confident with identifying influential attributes in step 3, and

subsequent analyzing their trends in step 4.

3.2.2 Research Context

The PSP course integrated in this study is a senior undergraduate course entitled
“Personal Software Engineering” taught at McGill University in the Fall of 1997. A

textbook by Humphrey [Hum95a] was used as a basis for this course.

Subjects and background knowledge

Fifty-three full-time students had enrolled in this course. Also, at entry they already
had exposed to object-oriented paradigm and software engineering, which permeates
the course material. For example, size estimation, software design and related tem-
plates are all based on object-oriented software development. We required the use of
programming language C++ for implementing programs. In addition, the students
had at least a basic knowledge of probability and statistics since these topics are an
essential part of PSP’s measurement framework.

34

Programming Tasks

Every week, two lectures, each of duration one and a half hours, were given to the
students in which they were taught ways to analyze and improve their personal
process. After each set of the lectures, the students were assigned a programming
project, which utilized the techniques taught to them, so that the students could
actually implement those'methods, and hence learned them. There were a total of
eight programming projects and three analysis projects per student, through the
‘course, making a total of 424 projects for all the students. All the eight projects are
described in the textbook in the “A Series” exercises [Hum95a}. The three analysis

projects were a local enhancement.

Data Collection

Perhaps the most critical issue in teaching the PSP course is to get across the message
to the students that the course is not just a set of programming tasks. Thus, the
students were told repeztedly that the programs themselves are, in general, incident
to the course and the importance lies in the development process, the quality of
the product and the data collected, and the analysis of data for feedback. They
were reminded again and again, that they would not be graded on how good their
productivity, defect quality, etc. are, but on how well they execute the development
and quality-oriented processes and on how well they record the related data e.g.,

LOC, number of defects, etc. Thus, they were motivated in a number of different

35

ways that “honesty and commitment in doing the tasks and learning” is a key to
their success in the PSP course.

Most of the data collection forms which were used in the course were provided
in the textbook [Hum95a]. An overview of these forms is given in section 2.2.
In addition to this, we used a locally designed questionnaire and an evaluation
form dealing with motivation, which were prepared and validated by the software

engineering group at McGill University.

3.2.3 Descriptive Models

This section describes the process model which was used by the subjects in the PSP
experiment, and models of quality and productivity which lay the foundation for

data analysis in this study.

Process Model

The subjects used a predefined process model, shown in Figure 3.1, to accomplish
a project. In this model, project life-cycle activities are divided into chronological
phases: planning, design, code, compile, test, and postmortem. Design review and
code review are used only from PSP2. |

In Figure 3.1, the thin arrows indicate defects found, thus necessitating feedback
and rework. The origin of the arrows indicates the phase during which a defect is

detected, and arrow head indicates the phase during which a defect is injected. The

36

Planfing lgcccccccccccccrcccccccccccccccncrcoerareercercrarasrcmenseacrencaesmmemee R
.—é- Design |— I :
et DR J I E

=Bt Code ’ E

. CR | E

DR : Design Review '
CR: Code Review H
PM: Postmorterm ——t Test ;

L’ Forward data flows
‘I Feedback/rework links

Figure 3.1: PSP Process Model
solid arrows indicate the flow of artifacts.
The predefined process model facilitates categorizing of time-related and defect-
related data according to the specific phases and activities of the personal process.
Such categorization can then help engineers to analyze their product and process,

to understand the conditions they are in, and to improve them.

Defect Model

To manage software quality effectively, an engineer needs to keep track of every
defect injected during development on a Defect Recording Log(see Figure 2.4). The

defect model is represented as:

D;(Di,‘, Dr;, Dt;; CSti, Btki)

37

where D denotes a defect; Di, Dr, Dt, Cst, and Btk are attributes of defect D

and i is a unique identification number. The attributes are described below.

e Di: Injection Phase

This attribute denotes the phase during which the defect is injected. The
value of Di is either DS(design), DR(design review), CD(code), CR(code review),

CP(compile) or TS(test).
e Dr: Detection Phase

This attribute denotes the phase during which the defect is detected and re-
moved. The possible values for Dr are DS(design), DR(design review), CD(code),

CR(code review), CP(compile) and TS(test).

e Dt: Defect Type

This attribute denotes the type of the defect, as described by defect type stan-

dard, e.g., documentation, assignment, data, function, etc. (see Figure 2.3).

e Cst: Cost of Defect

This attribute denotes the cost of defect as the direct expense incurred in fixing

an injected defect. This includes the following elements:

1. Determining that there is a problem.

38

2. Isolating the source of the problem.

3. Determining exactly what is wrong with the product.

4. Fixing the design as needed.

5. Fixing the implementation as needed.

6. Inspecting the fix to ensure that it is correct.

7. Testing the fix to ensure that it fixes the identified problem.
8. Testins the fix to ensure that it doesn’t cause other problems.
9. Changing the documents to reflect the fix.

When a defect is not corrected properly in the first attempt, subsequent iterations

of the correction must be done until the defect is eliminated. The cost of the original

defect includes all iterative attempts to fix it.
¢ Btk: Backtracking

This attribute denotes the number of phases we have to backtrack in order to fix
a given defect. For example, if a defect is injected in the phase code and removed in

the phase code review, the backtracking for this defect is 1.
Btk = Dr - Di

The definitions of the defect attributes are summarized in Figure 3.2.

39

Attribute | Definition

Di the phase during which the defect is injected

Dr the phase during which the defect is detected and removed

Dt the type of the defect, see (Figure 2.3)

Cst direct expense incurred in fixing the defect

Btk the number of phases we have to backtrack in order to fix
the defect |

Figure 3.2: Defect Attributes

Defect-Based Quality Model

The quality focus in PSP is centered around defect detection and prevention. Other
aspects of software quality, such as reusability, portability, etc. are of secon&a.ry
importance in PSP. Defects, once detected, are best handled as soon as possible and
at the individual level. There are data which suggests the exponential rise in software
costs for fixing bugs farther away from the point of origin [Boe81]. Furthermore,
a significant portion of the post-delivery system evolution costs are attributed to
latent or residual defects in software systems. All these point to the need for strong
detection and prevention mechanisms in the personal processes.

Based on the process model and defect model outlined in the previous section,

we can build a model of process quality:

Q(D1 .. Dn; Dds, Drr, RC/TC, A/FR, Yld, ABtk, DT/TDT,

40

NTD/ND)

where Q denotes quality of a particular process or product; D1 ... Dn are the
defects detected and fixed in the project (defined in the previous section). Dds,
Drr, RC/TC, A/FR, Yld, Abtk, Yld, DT/TDT, NTD/ND are quality attributes of
software process.

The notation of the quality attributes are shown in Figure 3.3.

Attribute | Definition

Dds Defect Density: number of defects per KLOC

Drr Defect Removal Rate: number of defects found and removed per hour

RC/TC reused LOC as a percentage of total LOC

A/FR Appraisal Time/Failure Time(see Table 2.2)

Yld Yield: number of defects removed before the first compile as a

percentage of number of defects injected before the first compile

ABtk average backtracking per defect

DT/TDT | design time as a percentage of total time

NTD/ND | number of defects removed in the test phase as a percentage of

total defects

Figure 3.3: Quality Attributes

41

Development-Productivity Model

Another model that is important for this study is the productivity model. Produc-
tivity is generally measured as hours required to do a unit of work. It is a simple
concept, but not simple to calculate. When we calculate productivity, we must take
into account that without an accompanying assessment of product quality, speed of
production is meaningless [FP96)].

Thus, in our PSP experiment, every project was accompanied by an explicit
requirement descriptic;n in order to support product quality. Any ambiguities were
removed before the subjects started a project. The testing criteria were also em-
phasized in every project. Test cases were carefully designed and test results were
checked.

Behind quality, we must also consider the variation in the definition of software
size (LOC is used in this study). Among the various projects, as this affects the
calculation of “productivity”, we used a puticﬁlar coding standard and a counting
standard in order to minimize the variation in project size.

Another problem usually rests with the variation in expressive power of different
programming languages used in different projects. This was not an issue in our PSP
experiment because C++ was the only programming language that was ﬁsed.

In the PSP course, we used LOC/Hour as the measure of development produc-

tivity. While LOC/Hour may seem simple, the calculation of LOC and the hours

42

should be carefully done in order to obtain meaningful measures. There are various
combination of the LOC tj}pes that can be used to measure development productiv-
ity(see Table 2.1). Added LOC plus modified LOC is chosen by PSP for productivity
calculation. A fairly straightforward measure of development time (minute) is em-
ployed in PSP, as described in section 2.2.1.

The productivity model is specified as:

P(Po, P1, P2)
PO(Size, Effort; LOC/Hour, RC/TC)
P1(Dds, Drr, ABtk, Yld, NTD/ND)

P2(DT/TDT, TT/TDT, A/FR, Spl)

where P is productivity. Size, Effort, LOC/Hour, RC/TC, Dds, Drr, ABtk, Yld,
NTD/ND, DT/TDT, TT/TDT, A/FR, and Spl are productivity attributes.

The notation of the productivity attributes is shown in Figure 3.4.

Summary

In this section, we have described the descriptive models: process model, defect
model, defect-based quality model and productivity model. We also identify various
attributes for each model. These descriptive models will be used as the basis of the

analysis of data described in section 3.3.

43

Attribute | Definition

Size Lines of Code (LOC)

Effort Minute is the unit of the measure for development effort in PSP.

LOC/Hour | Lines of code added or modified per hour.

TT/TDT | Test Time as a percentage of Total Development Time.

Spl System Spoilage, e.g., Total Fix Time as a % of Total

Development Time

RC/TC
Dds,Drr
ABtk,Yld | see Figure 3.3.

NTD/ND

A/FR

Figure 3.4: Productivity Attributes

3.3 Model for Analysis of Data

This section first classifies the attributes we have discussed thus far in this chap-
ter in order to facilitate the description of data analysis. It then describes our

Goal/Question/Metric model and statistical analysis model.

44

3.3.1 Attribute Types

In our study, we focus on the attributes of quality and productivity, such as Defect
Density (Dds) and Average Backtracking (ABtk), which we collectively call here
as Quality and Productivity Attribute (QPAtrb). All of QPAtrb are identified and
organized in the quality model and productivity model (see section 3.2.3, Figure 3.3

and Figure 3.4) based on the data captured during the PSP projects.

Process Improvement Attribute (PIAtrb)

Among the Quality and Productivity Attributes (QPAtrb) described above, there is
a sub-set, such as Defect Density (Dds), Defect Removal Rate (Drr) and LOC/Hour,
which characterizes directly the performance of an engineer. These attributes are
repeatedly used by management to evaluate the improvement of engineers’ pro-
cesses when process improvement activities are being carried out. In this study,
we call these attributes Process Improvement Attribute (PIAtrb). In the published
research on PSP [She94] [Hum94b] [Hum95b] [Hum95c] [ESM96] [Hum96b]
[SM96] [HT97], Defect Density (Dds), Defect Removal Rate (Drr) and LOC/Hour
have received particular attention in assessing the effect of PSP on the engineers’

performance improvement. Thus, these three attributes were identified as PIAtrb

in this study.

45

Significant Attribute (SAtrb)

Among the Quality and Productivity Attributes (QPAtrb) described above, there is
a subset of attributes which most influence, or significantly correlate to, a given Pro-
cess Improvement Attribute (PIAtrb). We call this subset of attributes Significant
Attribute (SAtrb).

Significant Attributes (SAtrb) do not reflect directly any improvement in engi-
neers’ processes, and therefore, are often neglected by management and researchers.
These attributes, however, characterize many important aspects of software devel-
opment, for example, software design, code and test.

For example, the average number of phases backtracked to fix a defect (ABtk) is
a possible SAtrb for PIAtrb LOC/Hour because it is often reported that the farther
a defect penetrates into the software life-cycle, the more efforts are needed to fix it
[Boe81] [Dun84] [Pre92]. Low ABtk, for example, could imply faster fix-up tries,
hence, higher productivity (LOC/Hour). Whether or not this is true in our study,
however, can only be determined through data analysis.

Thus, it is essential to study SAtrb in order to improve our understanding of
a personal software process. Moreover, techniques such as design review and code
review, which are central to the design of PSP, have a direct influence on such
attributes as ABtk and Yield.

Then, clearly, studying SAtrb could provide a deeper insight into the way PSP

46

influences the improvement in software quality and productivity.
Those attributes of QPAtrb that do not qualify as significant attributes are

defined as Non-Significant Attribute (NSAtrb) for a given PIAtrb.

3.3.2 Goal/Question/Metric (GQM)

There are a number of frameworks for identifying and utilizing software engineering
metrics [FP96] [Bas84] [Jon96] [MB97]. We have used the widely used Goal/Question/Metric
(GQM) paradigm. An important aspect of GQM is to define all your goals and iden-
tify metrics in advance and then follow them strictly, instead of getting data first
and then observing the trends and patterns found in it to identify “interesting”

goals. In other word, it is top-down approach.

Goal of Analysis

The research objective was described earlier:
to investigate how the dynamics of personal software process influence
software process improvement during the PSP ezecution.
We formulate the overall goal of analysis:
G: To investigate how software Quality and Productivity Attributes
(QPAtrb) influence Process Improvement Attributes (PIAtrd)
during PSP ezecution.

From this overall goal (G), we derived three subgoals:

47

(a) G1: we first identify the set of Significant Attributes (SAtrb), which
have significant influence on, or significantly correlate to, PIAtrb,
by analyzing the relationships between PIAtrb and other QPAtrb.
This analysis helps us focus on the essential aspects of a software
process while diminishing the non-essential aspects;

(b) G2: we then explore those relationships that are noticeable between
the set of SAtrb identified in G1 and Non-significant Attributes
(NSAtrb). This analysis gives us an improved understanding the
way SAtrb influence PIAtrb (subgoal G2);

(c) G3: we then determine how SAtrb vary across the PSP projects
life-cycle. This analysis helps to assess the effectiveness of PSP
and helps to explain the way PSP improve software process.

The goal of analysis is summarized in Figure 3.5.

Questions and metrics of Interest

We devised the questions, which are shown in Figure 3.6, relevant to our analysis
goals. Each question has an associate metric. The purpose of specifying these ques-

tions and metrics is that it directs data analysis explicitly towards the requirements

of the goals.

48

Overall Goal:

G: To investigate how QPAtrb influence PIAtrb during PSP execution.

Subgoals:

G1: Identify the set of attributes that qualify as Significant Attributes(SAtrb),
by analyzing the relationships between PIAtrb and other QPAtrb.

G2: Analyze the relationships between SAtrbs (identified in G1), and NSAtrbs,
and identify those relationships that are significant.

G3: For those SAtrbs identified in G1, determine how they vary through the

execution of PSP.

Figure 3.5: Goal of Analysis

3.3.3 Dependent Variables and Independent Variables

Dependent variables and corresponding independent variables were identified (Ta-
ble 3.1) based on the descriptive models (see section 3.2.3).

The dependent variables (Dds, Drr, and LOC/Hour) are the elements of Process
Improvement Attributes (PIAtrb). These are the variables that are affected by other
contextual variables, which are listed as independent variables. For each dependent
variable, there is a specific set of independent variables specified in the quality and

productivity models (see Figure 3.3 and Figure 3.4 in section 3.2.3).

49

Dependent Variables | Independent Variables

Dds RC/TC, A/FR, Yld, ABtk, DT/TDT, NTD/ND
Drr Dds, RC/TC, A/FR, Yld, ABtk, DT/TDT, NTD/ND
KLOC/Hour RC/TC, Dds, Drr, ABtrk, Yid, NTD/ND, DT/TDT,

TT/TDT, A/FR, Spl

Table 3.1: Dependent Variables and Independent Variables

3.3.4 Regression Analysis

Regression methods bring out relation between variables, especially between vari-
ables whose relation is imperfect in that we do not have one y for each z [MT77]. In
software engineering, we can cite the relation between software size and development
time, or defect density and yield as examples of imperfect relations in that there is
no one-to-one relationship. Regression methods have already been used in empir-
ical software engineering studies [GR97] [Hum95a] [She94]. Variable regression
models have been employed to estimate the (presumed) relationships between one
variable and another by expressing one in terms of a regression function (such as
linear function, quadratic function or log-linear function) of the other.

Two methods are often employed to choose a particular regression function.
These methods are: (1) an analytical consideration of the phenomenon .concemed,
and (2) an examination of the scatter diagrams plotted from the observed data[Ost63].

In this study, we performed quadratic regression between each dependent variable

50

and its independent variables because the software development contexts suggest a

non-linear relationship. The form of quadratic regression equations is:

DEP = a * INDEP? + b * INDEP + ¢

Where
DEP = Value of a dependent variable
INDEP = Value of an independent variable
a = Quadratic coeflicient
b = Linear coefficient

c = Intercept

51

Sub- | Question Metric

Goals

G1 Q1.1: What attributes affect Defect M1.1: Strength of the relationship
Density, and of those, which are SAtrb? | between Defect Density and other

Attributes.
Q1.2: What attributes affect Defect M1.2: Strength of the relationship
Removal Rate, and of those, which are between Defect Removal Rate and
SAtrb? other Attributes.
Q1.3: What attributes affect LOC/Hour, | M1.3: Strength of the relationship
and of those, which are SAtrb? between KLOC/Hour and other
Attributes.

G2 Q2: Are there any noticeable M2: Strength of the relationship
relationships between SAtrb and between SAtrb and NSAtrb.
NSAtrb?

G3 Q3: What are the trends of the SAtrb M3: Trends of SAtrb across the

across the PSP projects?

PSP projects.

Figure 3.6: Goals, Questions and Metrics

52

Chapter 4

Data and Results

Using the statistical regression analysis model (see section 3.3.4), GQM analytical
framework (see section 3.3.2) and the descriptive models (see section 3.2.3), we

analyzed the data collected from seven ! projects in the PSP course and obtained

the following results.

4.1 Significant Attribute (SAtrb) Identification

This section deals with the first subgoal (G1). By performing quadratic regres-
sion analysis on the data collected, we identified the Significant Attributes (SAtrb)
for each Process Improvement Attribute (PIAtrb): Defect Density (Dds), Defect

Removal Rate (Drr) and LOC/Hour. Two variables are considered significantly cor-

1The data from the first project is not included because the size of the first project could not

be recorded before coding standard and counting standard were introduced in the second project.

53

Independent | Quadratic Equation R?
Variable

RC/TC Dds = 0.0038*RC/TC2+0.2771*RC/TC+46.841 0.0046
A/FR Dds = -0.0002*A/FR2+0.0354*A /FR+45.073 0.0151
Yid Dds = -0.0148*Y1d?+1.229*Y1d+31.392 0.2584
ABtk Dds = -4.5312*ABtk2+21.254* ABtk+23.584 0.045
DT/TDT Dds = -0.0033*DT/TDT?-0.4208*DT/TDT+51.052 | 0.0164
NTD/ND Dds = -0.0107*NTD/ND?+0.952*NTD/ND--36.406 | 0.1829

Table 4.1: Regression Equations for Defect Density (Dds)

related if the correlation coefficient (r) is relatively high (r > 0.5) [Ost63] [PP97].
Since we can not expect a high r value if the dependent variable is a very complex
variable associated with more than one independent variables [PP97], in our study,

we consider a relationship to be significant if the r? is not less than 0.25.

4.1.1 Significant Attributes (SAtrbs) for Defect Density
(Dds)

Table 4.1 lists the quadratic relationships between dependent variable Dds and its
independent variables.

As can be seen from Table 4.1, Dds has a significant relationship only with
Yield(Yld). Figure 4.1 shows the relationship equation graph between these two vari-

ables. The maximum Dds value is associated with projects with Yid = -1.229/(2*(-

54

= -0.0148x% + 1.229x
+31.392

R? = (.2584

200
150
100

Dds{Defects/KLOC)
n
o

o

0 50 100 150
Yld(%)

Figure 4.1: Relationship between Dds and Yld

0.01481)) = 42(%). Both low Yld values and high Yld values are related to low Dds.
As described in section 3.3.1, Dds has been used as a measure of the benefit of using
PSP concepts. Using this measure, it is assumed that if Dds value tends downward,
the code quality is improving.

However, El Emam et.al. have argued that this assumption may not be appro-
priate in the PSP context since we have data only from unit testing [ESM96]. They
argued that Low Dds could mean defect detection is poor or less defects have been
injected.

In our opinion, low Dds associated with high Yld values would imply high code

55

quality since a high Y1d value indicates strong defect detection. On the other hand,
low Dds associated with low Yld values may be a result of poor defect detection and
seems to imply poor code quality. From this, we note our first observation:
Observation 1: When Dds is used to evaluate the quality of software, Yid
may be an tmportant attribute that should also be taken

into account.

Independent | Quadratic Eq;xation R?
Variable

Dds Drr = -0.0024*Dds2-0.3018*Dds+21.081 0.0486
RC/TC Drr = -0.0029*RC/TC?+0.2754*RC/TC+12.453 0.0295
A/FR Drr = -0.0006*A /FR2+0.228*A /FR+2.7327 0.294
Yid Drr = -0.0033*Y1d?-0.1472*Y1d+12.407 0.2737
ABtk Drr = -1.8761*ABtk?-10.521*ABtk+-27.543 0.0221
DT/TDT Drr = -0.0321*DT/TDT?-1.2469*DT/TDT+5.4882 | 0.0281
NTD/ND Drr = -0.0023*NTD/ND?2-0.3008*NTD/ND+20.626 | 0.0449

Table 4.2: Regression Equations for Defect Removal Rate (Drr)

4.1.2 Significant Attributes (SAtrbs) for Defect Removal

Rate (Drr)

Table 4.2 lists the quadratic relationships between dependent variable Drr and its
independent variables.

56

= -0.0006x* +0.228x
+2.7327

R?=0.294

o

= N W B M
o 0o o

o S

Drr{Defects/Hour)

0 100 200 300
A/FR{%)

Figure 4.2: Relationship between Drr and A/FR

As can be seen from Table 4.2, Drr has significant relationships with both A/FR
and Y1d. Figure 4.2 and Figure 4.3 show the relationship equation graph Drr and
A/FR and that between Drr and Yld respectively. As described in section 3.3.1,
Drr has been used to assess the performance of engineers and the quality of their
products. Using this measure, it is assumed that if Drr increases, the defect detection

ability of engineers and the quality of their products ? also increase. As can be seen

2High Drr implies that, in general, the defects have been relatively easy to fix which, in turn,
implies that the defects are fixed close to their points of origin in the software life-cycle. Therefore,

high Drr imnplies that the product, by the time it is completed, is relatively free of defects (i.e., of

57

= 0.0033x%% - 0.1472x
+ 12.407

R:=0.2737

h
o o

-
(-

Drr(Dvefecm’Hour]
o O & % S

0 50 100 150
Yid(%)

Figure 4.3: Relatiohship between Drr and Yld

from Figure 4.2 and Figure 4.3, both increasing A/FR value and increasing Yld
value have positive effect on Drr.

From the relationship equation between Drr and A/FR, Drr v;lue increases with
the increase of A/FR value and an optimal value of Drr is achieved with an A/FR =
-0.228/(2*(-0.0006)) = 190(%). We know that A/FR is the ratio of design and code
review time to compile and test time. Also, we know that it measures the relative
effort spent in early defect removal. Its objective is to detect defects in earlier phases

and thus improve the Defect Removal Rate (Drr). However, once the objective is

a high quality).

58

met, further increase of A/FR will likely decrease Drr. From this, we obtain our
second observation.

Observation 2: The value of A/FR may be a useful guide for software

developers in adjusting their review time so as to achieve
a high Drr during software development.

From the relationship between Drr and Yld, Drr value slightly decreases with
the increase of the Yld value until Yld < -(-0.1472)/(2*0.0033) = 22.3(%) and then
Drr substantially increases with the increase of Yld value (Yld > 22.3%). Form this,
we obtain our third observation.

Observation 3: A Low Yld value may imply that review skills are poor

or that the effort spent on review is not adequate. In this
case, most of the defects captured by review may be syntaz
or simple errors. However, compiling is more effective in
capturing syntaz errors than is a review. This may be
interpreted as: Drr decreases when the Yld value is low.
When the reviews are just introduced, software developers
;ould be discouraged by the decrease of Drr (perhaps due to
the fact that the review skills may as yet be low). They
thus need to be encouraged to spend more efforts on reviews,
especially at this early stage. By striving to tncrease

their Yld, they will think more positively about their time

59

and efforts spent on reviews.

Independent | Quadratic Equation R?
Variable

Dds LOC/Hour = 0.0032*Dds2-0.6589*Dds+53.096 0.1811
Drr LOC/Hour = -0.0003*Drr2-0.527*Drr+24.853 0.1437
RC/TC LOC/Hour = -0.00001*RC/TC?+0.3364*RC/TC+28.185 0.1094
A/FR LOC/Hour = -0.0005>‘A/ FR2+0.2895*A /FR+16.609 0.244
Yid LOC/Hour = 0,0085*Y1d2+0.4715*Y1d+30.936 0.3899
ABtk LOC/Hour = 4.048*ABtk2-23.985*ABtk+63.938 0.0655
DT/TDT LOC/Hour = -0.0414*DT/TDT?+1.3816*DT/TDT+23.587 | 0.0182
NTD/ND LOC/Hour = 0.0037*NTD/ND2-0.4322*NTD/ND-++40.055 0.043
TT/TDT LOC/Hour = -0.0054*TT/TDT?+0.236*TT/TDT+30.34 0.0027
Spl LOC/Hour = 0.0088*Spl%-0.3407*Spl+34.04 0.027

Table 4.3: Regression Equations for LOC/Hour

4.1.3 Significant Attributes (SAtrbs) for LOC/Hour

Table 4.3 lists the quadratic relationships between dependent variable LOC/Hour
and its independent variables.

As can be seen from Table 4.3, LOC/Hour has significant relationships; with both
A/FR and Yld. Figure 4.4 and Figure 4.5 show the relationship equation gi'aph
between LOC/Hour and A/FR and that between LOC/Hour and YId, respectively.

As described in section 3.3.1, LOC/Hour is an important criterion for assessing

60

y = -0.0005x% +
0.2895x + 16.609
R?=0.244

100

LOC/Hour
P
()

0 100 200 300
A/FR{%)

Figure 4.4: Relationship between LOC/Hour and A/FR

the software productivity of engineers. From the relationship between LOC/Hour
and A/FR, LOC/Hour increases when A/FR increases (see Figure 4.4). From the
relationship between LOC/Hour and Yld (see Figure 4.5), LOC/Hour slightly de-
creases with the increase of Yld value until Yld < -(-0.4715)/(2*0.0085) = 27.7(%).
Then, it greatly increases with the increase of the Yld value (Yld > 27.7(%)). From
this, we obtain our fourth observation.
Observation 4: Reviews have significant positive effect on LOC/Hour since
LOC/Hour increases with the increase in A/FR and also

with the tncrease in Yld.

61

= 0.0085x% - 0.4715x
+30.936

R =(0.3899

100
80
60
40
20

LOC/Hour

0 5 100 150
Yid(%)

Figure 4.5: Relationship between LOC/Hour and Yid

It is worth noting that PSP has been reported to have little positive effect on
LOC/Hour [ESM96} [Hum95c| [Hum96b]. This is perhaps because of the overhead
time required to do the several tasks featured in PSP. These tasks, in practice,
are often considered to include making plans, reviewing programs, and tracking
and reporting results. However, our results show that reviews may in fact help
increase productivity (LOC/Hour). Thus, the time spent in reviewing programs
should not be classified as overhead time. This clarification may help engineers

develop a positive attitude towards reviews.

62

PIAtrbs SAtrbs

Dds Yid

Drr Yld, A/FR

LOC/Hour | Yld, A/FR

Table 4.4: Significant Attributes

4.1.4 Summary on Significant Attributes (SAtrbs)

From the above analysis, we have identified the SAtrbs for each Process Improve-
ment Attributes, as summarized in Table 4.4: both Yld and A/FR are Significant
Attributes (SAtrb) for LOC/Hour and Drr, and Yld is the only Significant Attribute
for Dds.

In particular, Defect Density (Dds) may imply high quality of software product
when it is associated with high Yld value and may imply low quality of software
product when it is associated with low Yld value (see Observation 1). Thus, when
Dds is used to eva.lua.t.e the quality of software, the evaluation results may be more
accurate if it’s significant attribute, Yld, is also taken into account.

Yield (Y1d) has no significant positive effect on Drr unless it has achieved a high
level (see Observation 3). This result highlights one of the obstacles in introducing
review skills and emphasizes the importance of developing strategies to encourage
software developers to think positively about the review time in the early stages

when review skills are implemented.

63

Quadratic Equation R2?

ABtk = -0.00005*A/FR>-0.0208*A/FR+3.3126 0.4316
NTD/ND = 0.0023*A/FR2-0.8302*A/FR+79.566 0.3781

TT/TDT = 0.001*A/FR2-0.3241*A/FR+31.71 0.3529

Spl = -0.0006*A/FR?-0.1805*A/FR+19.73 0.1073
ABtk = -0.00003*Y1d2-0.0092*Y1d+2.6081 0.2196
NTD/ND = 0.0026*Y1d?-0.1647*Y1d+49.59 0.175

TT/TDT = 0.0018*Y1d2-0.0865*Y1d+17.802 0.0776
Spl = -0.0031*Y1d2+40.2343*Y1d+10.625 0.1362

Table 4.5: Regression Equations between SAtrbs and NSAtrbs

Defect Removal Rate (Drr) increases with the increase of A/FR when A/FR <
190% and decreases with the increase of A/FR when A/FR > 190%. This A/FR
value may be a useful guide for software developers in adjusting their review time
for achieving a high Drr during software development (see Observation 2).

LOC/Hour increases with the increase of A/FR and Yield (Yld). The analysis
of the relationships between LOC/Hour and A/FR and that between LOC/Hour
and YId clarifies the often misunderstood concept that review time is an overhead
of PSP (see Observation 4). This may help further refinement of PSP, for example,

by developing strategies to encourage engineers to pay more attention to reviews.

64

S 4 = 5E-05x% - 0.0208x +
L 3.3126
a 3 2=
= R?=0.4318
ng 2
i —
e 1
=
@0

0 100 200 300

A/FR(%)

Figure 4.6: Relationship between ABtk and A/FR

4.2 Relationships Between Significant Attributes

(SAtrbs) and Some Non-Significant Attributes

(NSAtrbs)

Now, we know from observations 1, 2, 3, and 4 that the Significant _Attrfbutes
(SAtrb) have a noticeable impact on the target Process Improvement Attributes

(PIAtrb): Defect Density (Dds), Defect Removal Rate(Drr) and LOC/Hour. We

65

can theorize, and perhaps even back up with experience, why® there is such an
impact. However, such arguments would be more credible if our current data-set
can help explain our intuition.

Thus, there is a need for the subgoal (G2), whereby we analyze the relation-
ships between SAtrb and Non-significant Attributes (NSAtrb). If we can determine
that there are some significant relationships between SAtrb and NSAtrb, then these
particular relationships might help explain our intuition about the impact of SAtrb
on Dds, Drr and LOC/Hour. The argument is that, unlike SAtrb, the attributes
NSAtrb, by themselves, clearly do not have significant impact on the Process Im-
provement Attributes (Dds, Drr and LOC/Hour). However, a significant relationship
between a particular NSAtrb and a particular SAtrb might give some more insight
into why that particular SAtrb is significant.

Table 4.5 lists the quadratic relationships between SAtrbs and some NSAtrbs.

First three equations (ABtk, NTD/ND and TT/TDT) are considered significant.

4.2.1 Noticeable Relationships

Figure 4.6 relates A/FR to ABtk (the average number of phases backtracked in
order to fix a defect). As can be seen from this figure, ABtk drops with the increase
in A/FR. Considering Figure 4.2 and Figure 4.4 together with Figure 4.6, we can

infer that the decrease in ABtk contributes to the increase in Defect Removal Rate

3This rationale is not self-evident from the findings.

66

120

2
100 §0.0023x" - 0.8302x

+79.566
R? =0.3781

0
(-

NTD/ND (%)
&8

N
o

o

0 100 200 300
A/FR(%)

Figure 4.7: Relationship between NTD/ND and A/FR

(Drr) and LOC/Hour.

We hold this inference because low ABtk (from Figure 4.6) value can imply that
software defects pertain to the current development phase or previous development
phases not too far away from the current phase. Clearly, in these cases, the de-
fects are relatively easily removed * (Drr value is high in Figure §.2) and software

project has a tendency to move forward at an increased speed, giving rise to higher

productivity (LOC/Hour) (see Figure {.4) and lower cost.

4This argument is also supported in the literature [Boe81].

67

= 0.001x¢ - 0.3241x
+31.71

R? = 0.3529

TI/TDT(%)
- N WA
O 0o

oo

0 100 200 300
A/FR(n)

Figure 4.8: Relationship between TT/TDT and A/FR

Figure 4.7 shows the regression éc-luation graph between A/FR and NTD/ND
(the number of test defects as a percentage of total defects). Here, assuming a
relatively constant number of total defects, A/FR values above 100% are associated
with relatively low number of test defects; whereas, A/FR values below 100% are
associated with relatively high number of test defects. This means that, in general,
higher effort in software reviews leads to fewer defects in the test phase.

Reducing test defects is one of the important objectives in software development
because: (i) a high number of test defects implies poor software quality, and (ii) test

defects are relatively expensive to fix. Since it is generally difficult for engineers to

68

determine product quality during development, the A/FR measure is a useful guide
to personal practice. While our finding hovers around 190% in general, how high
the A/FR ratio should be needs further empirical studies. But it is clear that the
cost of appraisal and the cost of fixing defects during the test phase needs to be
considered.

Figure 4.8 presents the relationship of A/FR and TT/TDT (the test time as a
percentage of total time). This may imply that reviews reduce the time spent in the

test phase because of fewer defects creeping into in the test phase.

4.2.2 Summary of PIAtrbs, SAtrbs and NSAtrbs

From the above analysis, Yield, which is an element of Significant Attribute (SAtrb),
has significant relationships with all the three Process Improvement Attributes (PI-
Atrbs): LOC/Hour, Defect Density (Dds) and Defect Removal Rate (Drr). No
significant relationships between Yield and Non-significant Attributes (NSAtrbs)
were found.

A/FR has also significant relationships with: PIAtrbs (LdC/Hour and Drr),
and three NStrbs (ABtk, TT/TDT and NTD/ND). In particular, A/FR, relative
effort spent in early defect removal, has direct effects on several aspects of personal
software process, e.g., average backtracking, the number of test defects and time
spent on test phase. Through these aspects, A/FR thus influences software devel-

opers’ performance in terms of Defect Density (Dds), Defect Removal Rate (Drr)

69

and productivity (LOC/Hour).

4.3 Trends of SAtrbs in the PSP Projects

We know from the analysis in the previous sections that attributes, Yld and A/FR,
are significant in that they influence several aspects of software development. What
we have not described, as yet, is how these two variables vary, over time, as PSP
execution evolves from PSP0Q to PSP3. This is the subject of sub-goal G3. It is
important to know how Yld and A/FR vary over time because this knowledge can
be feed back (see Figure 1.1) into the improvement (or re-design) of PSP itself.

Figure 4.9 shows A/FR and Yld trends over the seven PSP projects. Here, the
sharp jump in A/FR and Yld with project 7 results from the introduction of design
and code reviews at this point.

From the analysis of section 4.1 and section 4.2, an increase in A/FR contributes
to the decrease in average backtracking (ABtk), the number of test defects and the
time spent on test, and thus it improves Defect Removal Rate (Drr) and productivity
(LOC/Hour). From Figure 4.9, the A/FR increases from 0 in assignment 6 to 72%
in assignment 7 and 68% in assignment 8, which are significant increases.

Our analysis also indicates that the software developers’ Defect Removal Rate
(Drr) and productivity (LQC/ Hour) improve with the increase in the value of Yld.

From Figure 4.9, the Yld value increases to 32% in assignment 7 and 36% in assign-

70

ment 8 from less than 10% in the first 6 assignments. This helps to show that PSP
actually improves the software developers’ performance by improving the Significant

Attributes (SAtrb) that influence the personal software processes the most.

4.4 Implications of the Findings for PSP

Despite this evidence and benefit of PSP, it begs the questions as to how the findings
of this thesis can be used to improve PSP.

Firstly, in the PSP course, students are usually required to complete 10 pro-
gramming projects . However, design and code reviews, which directly influence
the Significant Attributes (A/FR and Yld), are not introduced until assignment 7
(see Figure 4.9)when more than half of the projects have been completed. We have
noted that developers have often expressed concern about significant improvement
in product quality during the early stages of PSP when they themselves are not able
to see the fruits of their efforts. Thus, it seems as though reviews can be introduced
slightly earlier in the course, so that students can see rapid improvement in their
performance and, hopefully, maintain their level of motivation in PSP.

Secondly, our study shows that Yld have no significant positive eﬁ'ectt on Defect
Removal Rate (Drr) unless it has achieved a high level (see Observation 3 and

Figure 4.3). In the projects where reviews have just been introduced, engineers can

5In our study, only 8 projects were required because significant time was devoted to three

additional data-analysis projects, which gave students concrete feedback on the value of PSP.

71

be easily discouraged by the decrease because they have not put adequate efforts
on reviews or because they have not mastered the skills as yet. Therefore, what
they need, especially at this stage, is specific guideline for the baseline of the value
of Yld that should be achieved for a positive impact on Drr. Currently, there is no
such guideline in PSP. While our study suggests an optimal Yld value (not less than
50%)(see Figure 4.3), more studies are clearly needed to validate this proposal. The
review procedures should then emphasize such a Yld value for maximum benefits.

Finally, Our study shows that the A/FR ratio could be a useful guide for the
engineers in adjusting the review time so as to achieve a high Drr during software
development. For example, the optimal value of A/FR in our study is 190% (see
Figure 4.2 and Observation 2). Again, while more such studies are needed, such a
value could become an integrated part of PSP training.

In summary then, our study highlights some new findings from the white-box
stuciy of PSP. In addition, we have also suggested above how such findings could help

improve PSP, although, in general, we support the idea of more empirical studies

prior to changing PSP.

72

40

30

20

—— e . wn - s an en e o e e e e o o o - = A P e e fon - e - e - -

e o e e e e o e e o e e e e o e o e e o - e -

e - e - e e e e e e o e e e e e e e e .- - - e e e e -

—i— L i
4 5

Project Number

A/FR(%)

Yid (%)

The sharp jump in A/FR and Yld with Project 7 results the introduction of

design review and code review at this point.

Figure 4.9: Trends of A/FR and Yld Over PSP Projects

73

Chapter 5

Conclusion and Future Work

Following the development of Personal Software Process (PSP) by Humphrey, a
number of efforts have been made to study the impact of PSP on software process
improvement. However, much of such research has focused on the result of the
execution of PSP - the improvement of software quality and productivity. Little
attention has been paid to the underlying factors that influence the output of the
execution of PSP. By investigating how the underlying factors influence the output,
it is argued that we would have an improved understanding of PSP and, in turn, this
could lead to the improvement of PSP and eventually the processes and products of
PSP. .

In this study, we built an analytical framework consisting of descriptive soft-
ware quality and productivity models, Goal/Question/Metric (GQM) paradigm,

and quadratic regression analyses. We applied this framework in a PSP experiment

74

to investigate how the dynamics of software process influence the improvement of
software quality and productivity during the execution of PSP. The key findings
were:
o Yield and A/FR are the underlying factors that have significant effect on the
output of PSP, evaluated in terms of the improvement in Defect Density (Dds),

Defect Removal Rate (Drr) and LOC/Hour.

e Yield, combined with Defect Density, is an important software quality mea-

surement.

e The A/FR ratio can be used to guide software developers to achieve high

quality and productivity during software development.

e A/FR influences the improvement of software quality and productivity by
influencing various underlying process factors, for example, average number of

phases backtracked to fix a defect.

From these findings, it is clear that our hypothesis: that not all factors underlying
a personal software process have the same impact on quality and productivity, is
true. The factors uqcovered by this study are Yield and A/FR, which are seldom
emphasized in the software engineering literature. The findings, togethe.r with the
contributing factors, are a contribution to software engineering knowledge.

Our study complements previous work on PSP by providing a "white-box” view
of PSP. This helps to improve our collective understanding of personal software

75

process and it could lead to the improvement of PSP itself. For example, reviews
could be introduced earlier in the PSP topics.

Because this study was conducted in a university environment, the results should
not be generalized to PSP projects in industry. Rather, they provide hope and a
basis for stronger hypothesis. Thus, we encourage that the results of this thesis
could be considered in the design of empirical studies in an industrial setting, for

example, to determine the optimal A/FR ratio.

76

Appendix A

PSP Evolution

This appendix contains a briefly discussion of the PSP evolutionary path.

A.1 Baseline Process(PSPO)

PSPO is the initial step and establishes a baseline that includes measurements and
a reporting format. This provides a consistent basis for measuring progress and a
defined foundation on which to improve. PSPO is essentially the current process the
engineers use to write software, enhanced to provide measurements.

Following the first programming exercises, PSP0 is enhanced to PSP0.1 by
adding a coding standard, size measurement, and the process improvement pro-
posal(PIP). The PIP provides a structured way to record process problems, experi-

ences, and improvement suggestions. PSP0.1 also enhances program size measure-

7

ment to separately count methods and procedures.

A.2 Personal Planning Process(PSP1)

PSP1 improves upon PSPO0 by focusing on planning elements. Size measurement
and estimation, resource projection, schedule planning and status tracking are in-
troduced at this stage. The PSPQ forms and templates are expanded to include a
size estimating template; in addition, the plan and summary report now includes
data on program size, as well as reuse data.

While the importance of these techniques for large projects is well understood,

few engineers apply them to their personal work. The PSP demonstrates the value

of these methods at the personal level.

A.3 Personal Quality Management(PSP2)

PSP2 adds personal design and code reviews to PSP1. These reviews help the
engineers to find defects earlier in their processes and to appreciate the benefits
of doing so. They analyze the defects they find in their early programs and use
these data to tailor review check lists to their personal defect propensities. “Review
Yield”, that is the percent of the defects in the program found during review, is
introduced as a useful measure of review process effectiveness.

The design process is addressed in PSP2.1. Its intent is not to tell engineers how

78

to do design but to address the criteria for design completion. In PSP2.1 design
completeness criteria are established and various design verification techniques are
illustrated. While the design phase is used as an example of completeness criteria,
the same approach can be used with such other process phases as requirement spec-
ification, documentation development, and test development. Phase eﬁtry and exit
criteria are needed to provide review entry criteria, to define process measures, and
to track development status.

Up to this point, the PSP stages focus on small, stand-alone programs developed
by an individual. A principle role of PSP, however, is its use as a foundation for
large-scale software development. Therefore, PSP must be able to address growing
product complexity and to relate individuals to their teams. In addition, as teams
form into project, the PSP principles should be scalable to address this broader

need. The first step toward addressing scalability is the introduction of PSP3, a

Cyclic Personal Process.

A.4 Cyclic Personal Process (PSP3)

PSP3 presumes incremental development of a large-scale software system. By utiliz-
ing abstraction principles, PSP3 guides individuals through the development cycles
of complex software by subdividing the complex system into pieces each applicable

to PSP2. PSP3 requires planning and specification of development cycles: design

79

and design review, test development and review. Then, code and code review, com-
pile, and test phases are applied to each cycle. At the end of each cycle, recorded

data is used to assess the current status against the base plan for adjustment or

modification.

80

Bibliography

[Bas84]

[Bas92]

[Boe81]

[Che69]

[ClaT2]

V.R. Basili. "A Methodology for Collecting Valid Software Engineering
Data . IFEFE Transaction on Software Engineering, se-10(6):728-738,

November 1984.

V.R. Basili. The Experimental Paradigm in Software Engineering. In
Proc. Int. Workshop on Erperimental Software Engineering Issues, pages

3-12, (Held at Schlo8 Dagstuhl, Wadern, Germany, September 14-18,

-1992), 1992. Springer Verlag, Berlin, LNCS 706.

B.W. Boehm. Software Engineering Economics. NJ: Prentice-Hall, En-

glewood Cliffs, 1981.

A. Cherns. ”Social Research and its Diffusion”. Human Relations,

22(3):209-218, 1969.

P. Clark. Action Research and Organizational Change. Harper and Row,

1972,

81

[Dio93]

[Dun84]

[ESM96]

[FHK+97]

[FP96]

[Gar93)

[GR97]

R. Dion. "Process Improvement and the Corporate Balance Sheet ”.

IEEE Software, pages 28-35, July 1993.

R.H. Dunn. Software Defect Removal. McGraw-Hill, Englewood Cliffs,

1984.

K. El Emam, B. Shostak, and N.H. Madhavji. "Implementing Concepts
from the Personal Software Process in an Industrial Setting”. In {th

International Conference on Software Process, 1996.

P. Ferguson, W.S. Humphrey, S. Khajenoori, S. Macke, and A. Matvya.
"Results of Applying the Personal Software Process ”. Computer-IEEE

Computer Magazine, 30(5):24-31, 1997.

N.E. Fenton and S.L. Pfleeger. Software Metrics: a Rigorous and Prac-

tical Approach Second Edition. International Thomson Computer Press,

London, UK, 1996.

P. Garavaglia. "How to Ensure Transfer of Training”. Training and

Development, pages 63-68, October 1993.

N. Gorla and R. Ramakrishnan. "Effect of Software Structure Attributes

on Software Development Productivity”. Journal of Systems Software,

36:191-199, 1997.

82

[HO97]

[HSWO1]

[HT97]

[HT98]

(Hum87]

(Hum89]

[Hum93]

W. Hayes and J. W. Over. The personal software process (psp): An em-
pirical study of the impact of psp on individual engineers. Technical Re-
port CMU/SEI-97-TR-001, Software Engineerin Institute, Pittsburgh,

1997.

W.S. Humphrey, T.R. Snyder, and R.R. Wills. "Software Process Im-

provement at Hughes Aircraft”. IEEFE Software, pages 11-15, July 1991.

T.B. Hilburn and M. Towhidnejad. "Doing Quality Work: The Role
of Software Process Definition in the Computer Science Curriculum’;.

SIGCSE Bulletin - Computer Science Education, 29(1):277-281, 1997.

L. Hou and J. Tomayko. ”"Applying The Personal Software Process in
CS1: An Experiment ”. SIGCSE Bulletin - Computer Science Educa-

tion, 30(1):322-325, 1998.

W.S. Humphrey. Characterizing the software process: A maturity frame-
work. Technical Report CMU/SEI-93-TR-024, Software Engineerin In-

stitute, Pittsburgh, 1987.

W. S. Humphrey. Managing the Software Process. Addison-Wésley,

Reading, Mass., 1989.

W.S. Humphrey. "The Personal Software Process, Rationale and Sta-

tus”. In The 8th International Software Process Workshop, 1993.

83

[Hum94a]

[Hum94b)

[Hum94c]

[Hum95a]

[Hum95b]

[Hum95¢]

[Hum96a]

[Hum96b]

[Jon96]

W.S. Humphrey. "Process Feedback and Learning”. In the 9th Interna-

tional Software Process Workshop, 1994.

W.S. Humphrey. "The Personal Process in Software Engineering”. In
Proceedings of the 8rd International Conference on the Software Process,

pages 69-77, 1994.

W.S. Humphrey. "The Personal Software Process ”. Sotware Process

Newsletter, IEEE TCSFE, (1):1-3, September 1994,

W. S. Humphrey. A Discipline For Software Engineering. Addison-

Wesley, Reading, Mass., 1995.

W.S. Humphrey. "Introducing the Personal Software Process ”. Annals

of Software Engineering, 1:311-325, 1995.

W.S. Humphrey. "The Power of Personal Data ”. Software Process

Improvement and Practice, 1:69-81, 1995.

W.S. Humphrey. "The Personal Software Process and Personal Project

Estimating ”. American Programmer, 9(6):2-15, June 1996.

W.S. Humphrey. "Using a Defined and Measured Personal Software

Proces”. IEEFE Software, 13(3):77-89, 1996.

C. Jones. Applied Software Measurement. McGraw-Hill, 1996.

84

[Kha95]

[MB97]

[MKN+96]

[MT77]

[Neu93]

[Ost63]

[PCCW93]

S. Khajenoori. "Personal Software Process: An Experiential Report”.

In 8th SEI CSEE Conference, New Orleans, LA, USA, March29-April 1

1995.

Y. Mashiko and V.R. Basili. "Using the GQM Paradigm to Investi-
gate Influential factors for Software Process Improvement”. Journal of

Systems and Software, 36(1):17-32, 1997.

S. Macke, S. Khajenoori, J. New, I. Hirmanpour, J. Coxon, A. Ceberio,
and B. Manente. ” An Industry/Academic Partnership that Worked: An
In Progress Report”. In Proceedings of the 9th Conference on Software

Engineering Education, April 1996.

F. Mosteller and J.W. Tukey. Data Analysis And Regression. Addison-

Wesley, 1977.

P. Neumann. "System Development Woes”. Communications of the

ACM, page 146, 1993.

Benard Ostle. Statistics in Research. The Iowa State University Press,

Ames, JIowa, U.S.A., 1963.

M. Paulk, B. Curtis, M. Chrissis, and C. Weber. Capability maturity
model for software (version 1.1). Technical Report CMU/SEI-93-TR-

024, Software Engineerin Institute, Pittsburgh, 1993.

85

[PP97]

[Pre92]

[Roy96]

[She94]

[Sho96])

[SM96]

[Woh93]

[Zul93]

R.C. Pfaffenberger and J.H. Patterson. Statistical Methods for Business

and Economics. Richard D. Irwin, Inc., Homewood, Illinois, 1997.

R.S. Pressman. Software Engineering, A Practioner’s Approach.

McGraw-Hill, Inc., 1992.

D. Roy. "The Personal Software Process: An 'Ego-Centered’ Improve-
ment Paradigm”. In Proceedings of the Software Engineering Process

Group Conference, 1996.

K. Sherdil. "Personal 'Progress Functions’ in the Software Process”.

Master’s thesis, School of Computer Science, McGill University, 1994.

B. Shostack. "Adapting the Personal Software Process to Industry”.

Software Process Newsletter, (5), Winter 1996.

K. Sherdil and N.H. Madhavji. ”Human-Oriented Improvement in Soft-
ware Process”. In Proceedings of the 5th European Workshop on Software

Process Technology, Springer Verlag, 1996.

H. Wohlwend. ”Software Improvements in an International Company”.
In 15th International Conference on Software Engineering, _Ba.ltirhore,

Maryland, May 1993.

R.E. Zultner. "TQM for Technical Teams”. CACM, 36(10):79-91, Oct

1993.

86

