
INFORMAnON TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directty from the original or copy submitted. Thus. some thesis and

dissertation copies are in typewriter face. while others may be from any type of

computer printer.

The quailly of this reproduction is dependent upon the quallty of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough. substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UUI a complete manuscript

and there are missing pages. these will be noted. Also. if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g.. maps, drawings. charts) are reproc:luced by

sectioning the original. beginning at the upper left-hand comer and continuing

from left ta right in equal sections with small overlaps.

Photographs included in the original manuscript have been reprocluced

xerographically in this copy. Higher quality 6- x 9- black and white

photographie pnnts are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Raad. Ann Arbor, MI 48106-1346 USA

800-521-0600





•

•

•

Perceptual Coding of Narrowband Audio
Signais

Hossein Najafzadeh-Azghandi

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

April 2000

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

© 2000 Hossein Najafzadeh-Azghandi



1+1 NationalLJbrary
ofC8nada

Acquisitions and
Bibliographie services

395 welinglon Street
OttawaON K1A0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Welington
Ottawa ON K1A 0N4
canada

The author bas granted a noo­
exclusive licence aIlowing the
National Library of Canada to
reproduce, 10an, distribute or sell
copies ofthis thesis in microfonn,
paper or electronic formats.

The author retains oWDership ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-64628-9

Canadl



•

•

•

This thesis is dedicated

To the memory of my father,

To my mother,
And to those who strive to bring prosperity to ALL human beings.

i



•

•

•

ii

Abstract

New applications such as Internet broadcast and communications, consumer multimedia

products, digital A!vI broadcast and satellite networks are emerging. Those applications

require moderate audio quality without annoying artifacts at bit rates below 16 khit/s.

Although speech coders provide high speech quality at bit rates around 8 kbit/s, they

perform poody when encoding audio signals. In this thesis, we present a novel transform

coding paradigm based on the characteristics of the human hearing system. The proposed

encoder, Le., Narrowband Perceptual Audio Coder (NPAC), can accommodate a wide range

of narrowband audio inputs without annoying artifacts at bit rates down to 8 kbit/s.

NPAC employs a variety of algorithms to remove the perceptually irrelevant parts and

statistical redundancies of the input signal. The new aIgorithms used in NPAC include

a perceptual error measure in training the codebooks and selecting the best codewords,

perceptually-hased bit allocation algorithms and an adaptive predictive scheme to vector

quantize the scale factors.

The proposed encoder has moderate complexity and delivers good quality for narrow­

band audio inputs at around 1 bit/sample. informaI subjective tests have heen conducted

to compare the performance of NPAC with an 8 khit/s commercially-available audio coder.

The tests results show that NPAC performs better for both music and speech inputs.
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Résumé

Des nouvelles technologies telles que la diffusion par Internet, la diffusion AlVI numérique,

et les réseaux satellites deviennent de plus en plus populaires et constituent la base de

plusieurs nouvelles applications et produits multimédias. La réussite de ces produits sur la

marché dépend de la qualité des signaux audio et vidéo ainsi que de la largeur de bande

utilisée. Pour le signal audio, il est désirable que le débit soit en bas de 16 kbit/s tout en

offrant une qualité acceptable, c'est-à-dire sans de distorsion remarquable.

li est à noter que certains codeurs de parole permettent de transmettre le signal de

parole au débit de 8 kbit/s avec une très bonne qualité. Toutefois, puisque ces codeurs

profitent de la structure particulière de la parole, ils ne peuvent pas offrir la même qualité

audio pour d:autres signaux comme la musique.

Dans cette thèse, nous présentons une philosophie d:encodage des signaux audio qui

tient compte de la structure du système auditif. Le codeur proposé se nomme Codeur

Audio Perceptuel à bande Étroite (CAPE). CAPE permet d'encoder plusieurs types de

signal audio à bande étroite au débit de 8 kbit/s sans de distorsion remarquable.

Plusieurs nouvealDC algorithmes sont utilisés dans CAPE afins d'éliminer la redondance

statistique ainsi que la partie sans importance perceptuel du signal d'entrée. Parmi les

nouveautés de CAPE, il Y a une mesure d'erreur perceptuelle qui est utilisée lors de

l'entraînement des tableaux de quantification, et pour la sélection du meilleur vecteur de

ces tableau..x lors de l'encodage. De plus, l'allocation des bits pour les gains du spectre

dans différentes bandes de fréquence se fait par un algorithme adaptatif et prédictif qui

tient compte de l'importance perceptuel de ces gains.

Notre codeur a une complexité moyenne. Il permet d'encoder les signaux audio à

bande étroite avec une très bonne qualité en utilisant seulement 1 bit par échantillon à

une fréquence d:échantillonnage de 8 kHz. Nous avons comparé informellement la qualité

subjective de CAPE avec un codeur audio commercial opérant au même débit. Les résultats

indiquent que la performance de CAPE est supérieure pour la musique et la parole.
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Chapter 1

Introduction

Audio compression (corling) is concerned with the efficient transmission or storage of audio

data with good perceptual quality. Audio files require a lot of bandwidth (or memory) for

transmission (or storage). For instance, an audio signal sampled at 8 kHz and using 16

bits for each sample produces a data rate of 128 kbit/s. However~ we will show that it is

possible to reduce the data rate to less than 10 kbit/s while maintaining acceptable quality

of the compressed signal.

Audio coding algorithms has been employed in many applications including digital

broadcasting, personal communication systems, Internet and multimedia communication

systems [1~ 2]. The increasing traffic in wireline and wireless networks calls for high com­

pression efficiency in order to better utilize the capacity of existing resources.

Users of communication systems require high quality reproduction of aIl signals that can

be presented to a common carrier. Therefore, there is a need for bandwidth efficient coding

of variety of sounds including speech, music and multiple simultaneous speakers. Such

signals need to be efficiently represented (good quality at low rates) for transmission over

wireless (e.g., celI phones) or wireline (e.g., telephony or Internet) networks. Traditional

speech coders designed specifica1ly for speech signaIs, achieve compression by utilizing mod­

els of speech production based on the human vocal tract. However, these traditional coders

are not effective when the signal to be coded is not human speech but sorne other signals

such as music. These other signals do not have the same typical characteristics as human

speech. As weil, production of sound from these other signal sources can not be model1ed

on mathematical models of the human vocal tract. As a result, traditional speech coders
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often have uneven results for non-speech signals. For example, for many traditional coders

music-on-hold is coded with annoying artifacts.

In this thesis in order to accommodate a wide variety of audio data, we take into consid­

eration the characteristics of the final receiver, Le., the human hearing system. This means

that any part of the audio signal which is not sensed by the auditory system is considered

perceptually irrelevant and should be discarded. When the perceptually irrelevant informa­

tion is removed, the audio encoder can operate at much lower bit rates and still provide

good sound quality. An audio corling scheme wrnch rninimizes the perceptible distortion is

called a perceptual coding algorithm. Perceptual audio coders use models of the auditory

masking phenomena (will be discussed in Chapter 2) ta identify the inaudible (perceptually

irrelevant) parts of audio signals.

Upper Bound for Operating Bit Rates of Perceptual Audio Coders

According to Shannon's rate-distortion theory, a source signal which is transmitted at a

bit rate below its entropy must have sorne distortion (the distortion level depends on the

bit rate) [3]. However, in perceptual coding we have to consider only the audible part

of the distortion. Johnston [4] has proposed a new concept called perceptual entropyas

the minimum bit rate for transmission of audio signaIs such that no perceptible difference

between the original and coded signal is perceived, Le.. t1-ansparent coding. Based on the

perceptual entropy criterion, it is possible to transmit audio signals without any perceptible

distortion at a rate much lower than that predicted by Shannon's theory based on the J\lISE

criterion. One of the important implications of this new concept is that a signal can be

transparently coded without a high Signal-to-Noise Ratio (SNR). Therefore in audio coding,

an SNR is not a good measure ta judge the quality of the reconstructed signal.

1.1 Motivation for Low Rate Coding of Narrowband Audio

Although a lot of research have been done on high quality carling of wideband audio signais

over the past decade, new applications such as Internet broadcasting, consumer multimedia

products, narrowband digital AM broadcasting and satellite networks are emerging. For

those applications moderate audio quality without annoying artifacts at low bit rates below

16 kbit/s is adequate [5, 6, 7].
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For sorne applications either the number of users is huge (e.g., Internet) or the available

bandwidth is limited (e.g., satellite and radio communications, slow modems). For instance,

for Internet broadcast, ail users should be accommodated including those with a rather slow

connection, i.e., modems with rates of 14.4 and 28.8 khit/s.

As another application, the WorldStar l satellite system provides a data rate of 8 khit/s

per channel [8]. Since the cost per transmission channel is quite high, it is desirahle to

compress the audio signal to 8 or 16 khit/s (for monaural signals) [5].

One important recent application is "Narrowband Digital Broadcasting" (NADIB) which

is a project sponsored by the European Union for digital audio broadcasting in A~I fre­

quency bands [9]. A verification testing for an ANI digital audio broadcasting application

has shown that higher quality compared to that of analog AlVI techniques can be achieved

in the same bandwidth with digital techniques [10].

In 1992, the International Multimedia Association (IMA) made a recommendation for

coding of narrowband audio signals sampled at 8 kHz to he used in computers and mul­

timedia systems. According to that recommendation, 8-bit PClVI (i.e., 64 kbit/s) or 4..bit

ADPClVI (i.e., 32 kbit/s) algorithms are specified for compression of 8 kHz audio data [11].

The specified bit rates are very high for many applications. Currently available general

purpose audio coders operate at bit rates above 16 khit/s Ce.g., ITU G.726 audio stan­

dard). On the other hand speech coders operating at bit rates lower than 16 kbit/s are

not suitable for encoding audio signals. This implies a gap hetween the operating bit rates

of state-of-the-art narrowband speech coders (8 kbit/s and helow) and low bit rate audio

coders operating at around 16 khit/s. We believe that a proper coding paradigm. using

different coding tools based on the characteristics of the human hearing system cao fill the

gap and accommodate a wide range of narrowband audio inputs without annoying artifacts

at low rates down to 8 khit/s.

1.2 Objective of Our Research

In this thesis we have concentrated on perceptual coding of narrowband audio data. The

input audio signal is band-limited from 50 Hz to 3.6 kHz, sampled at 8 kHz, and represented

with 16 bit linear PClVL

The goal of this thesis is to develop a coding structure which allows the compression of

l WorldStar is a trademark of WorldSpace, Ine.
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narrowband audio signals at low bit rates down to 8 kbit/s while producing reconstructed

signals without annoying artifacts. Note that in most commercial narrowband audio coders

such as RealAudio2 and MPEG-4, the user should specify whether the source is music or

speech, and then a different encoder is used for each type.

We propose a new transform audio corling structure based on the characteristics of

the human hearing system. New algorithms are introduced in different blacks of the

coder including a perceptually-based eITor measure, perceptually-trained VQ, adaptive

perceptually-based bit allocation algorithms, adaptive predictive VQ of the scale factors,

prototype window design for the rvlncT, a window switching mechanism taking into ac­

count the asymmetrical characteristics of temporal masking effects.

Our coding system has moderate complexity and a software implementation of the

coder written in the C programming language runs in real time on a computer using a

450 J\lIHz Pentium II processor. The algorithmic delar of this coder is 30 msec, which is

reasonable for most applications. We have focused on the compression of the audio signaIs;

the robustness of the resulting bit stream against channel effects has not been investigated.

However, since the operating bit rate of the coder is around 8 kbit/s, channel coding can

be added and still the total bit rate would be quite low.

Although the proposed coder belongs to the family of perceptual audio coders, we have

to point out certain distinctions between this coder and high rate wideband audio coders.

While the goal of high rate audio corling is to achieve transparent or near transparent quality

of wideband audio with a 7-20 kHz bandwidth [12, 13, 14, 15, 16], our goal is to achieve

moderate audio quality, i.e., without annoying artifacts. State-of-the-art high rate audio

coders spend around 1.5 bits per sample to reproduce high quality audio. Additionally,

since important spectral features of natural audio signals are located between 300-5000

Hz [17], in high rate audio coders most bits are spent on that frequency band. In fact, in

high rate audio coding, the average number of bits per sample for low frequencies (0.3-5

kHz) is considerably more than 1.5 bits per sample. In our coder, we spend 1 bit per sample

for the frequency band 50-3600 Hz. Here we make a trade-off between the bit rate and the

quality of the reconstructed signal and hence expect moderate audio quality.

2RealAudio is a trademark of RealNetworks, Inc.
3 Algorithmic delay is the length of a block of data plus the lookahead.
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Audio coders can be roughly grouped into three classes: parametric coders (also known

as source coders), hybrid coders and waveform coders. Parametric coders estirnate and

transmit the parameters characterizing a particular sound source. Those parameters are

used to reconstruct a signal which sounds similar to the original sound. The waveform of

the reconstructed signal is not necessarily similar to that of the original. Parametric coders

usually operate at very low bit rates at the expense of the quality and naturalness of the

reconstructed signal. On the contrary, waveform coders operate at higher bit rates and try

to match the waveform of the compressed signal to that of the original. Hybrid coders use

techniques from both parametric and waveform coding and provide better quality at higher

data rates (compared to parametric coders). In the following, we briefly describe different

classes of audio coding.

1.3.1 Parametric Coders

Parametric coders or source coders model the signal source with a few parameters. For

speech~ there is a good source model based on the mechanism of speech production. In the

model~ the vocal tract is modeled as a time-varying filter which is excited with either a

white noise source (for unvoiced speech) or a sequence of impulses separated by the pitch

period (for voiced speech). Parametric speech coders operate at around 2 khit/s or below

and deliver synthetic quality.

For general audio signals, a new and very promising trend called object-based audio

coding or structured audio coding is emerging. That is a part of the lIIPEG-4 audio standard

which is used to encode audio data at bit rates of 0.1 ta 10 kbit/s [10, 18]. In an object­

based audio encoder, the input signal is first decomposed into audio abjects which can be

described by appropriate source models and represented by corresponding sets of model

parameters. For each object the model parameters are estimated, coded, and transmitted.

In the decoder for each audio object, a signal is synthesized from the decoded model

parameters. The decoder outputs the SUffi of ail abject signals.
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Hybrid codees attempt to fill the gap between waveform and parametric coders. Waveform

coders provide good quality for narrowband audio at bit rates around 16 kbit/s; on the

other hand, parametric coders operate at very low bit rates but cannot provide natural

quality.

Hybrid coders (including Analysis-by-8ynthesis coders), similar to parametric coders,

extract and transmit the parameters of the audio signal. Nloreover, a compressed error sig­

nal which is the diHerence between the reconstructed signal from the extracted parameters

and the original signal is also transmitted. This way the reconstructed signal waveform

becomes close to the original waveform.

In the field of speech coding, the most successful hybrid scheme has been the Code­

Excited Linear Predictive (CELP) paradigm. Nlany variations of CELP coders have been

standardized including [1, 19] G.723.1 operating at 6.3/5.3 kbit/s, G.729 operating at 8

kbit/s, G.728 a low delay coder operating at 16 kbit/s and ail the digital mobile telephony

encoding standards inclucling [20, 21, 22, 23] G81JI, 18-54, 18-95 and 18-136. Figure 1.1

shows a simple black diagram of a CELP coder. It is based on the modelling of speech

production; two synthesis filters are used ta introduce short and long term correlation

among the speech samples. The parameters of the filters are determined through rninimizing

a perceptually weighted difference between the original and reconstructed signal. Although

CELP coders give high quality speech at bit rates below 8 kbit / s, due to differences between

generai audio signaIs and speech, they perform poody for non-speech signals.

Informadon

Fig. 1.1 Basic blacks of a CELP coder, adapted fram [19J .

For general audio signaIs, object-based analysis-by-synthesis schemes have been recently

proposed [24, 25]. Hybrid schemes function similar to parametric coders with the difference
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that a compressed residuaI signal is aIso transmitted to the receiver in order to enhance

the quality of the reconstructed audio signai.

1.3.3 Waveform Coders

Waveform coders try to produce a reconstructed signal whose waveform is as close as

possible to the original. Since there are no appropriate source models for general audio

signais, waveform coders have been the best choice to encode audio signais. They deliver

high quality for different inputs such as music [26] aIbeit often at the expense of high bit

rates. From a signal representation perspective, waveform coding schemes can be divided

into different classes: time domain and frequency domain algorithms.

Time Domain Coders

Time domain coders perform the coding process on the time samples of the audio data.

The well known coding methods in the time domain are [1] Pulse Code rvIodulation (PCM),

Adaptive Pulse Code Modulation (APCM), DifferentiaI Pulse Code Modulation (DPCM),

Adaptive Differential Pulse Code Modulation (ADPCM), Delta lVlodLÙation (Dl\II), Adap­

tive Delta l\tlodulation (ADM) and Adaptive Predictive Coding (APC). In the following,

we briefly describe sorne important coding schemes in the time domain.

Pulse Code Modulation

Pulse Code J\lIodulation (PCl\Il) is a widely used form of waveform corling. For audio,

a linear PCNI scheme typically spends 16 bits to quantize each time sample. There are

also two slightly clifferent nonuniform PCM algorithms (ITU G.?!! standard), i.e., 1L-1aw

(American standard) and A-Iaw (European standard), which logarithmically quantize audio

samples with 8 bits per sample. Note that the logarithmic quantizer has been designed

to provide a uniform SNR for different talker levels. Although PCrvI provides high quality

audio, the required bit rate is quite high.

DPCM and ADPCM Coders

• In DifferentiaI Pulse Code Modulation (DPCM), instead of the time samples, the difference

between the original and predicted signal is quantized. At the decoder the quantized
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difference signal is added to the predicted signal to give the reconstructed signal. This

scheme is based on the assumption that audio samples are correlated enough such that the

error signal, defined as the difference between the audio samples values and the predicted

values, has a lower variance than the original audio signal. Consequently, we expect to

quantize the error signal with fewer bits than the orig;inal signal.

An enhanced version of DPCM is Adaptive Differential Pulse Code l\tlodulation (AD­

PCM) in which the predictor and quantizer are adapted to local characteristics of the input

signal. There are a number of ITU standards based on ADPCl\tI algorithms for narrow­

band speech and audio coding: G.721 operating at 32 kbit/s, G.723 operating at 40 and 24

kbit/s, G.726 and G.727 operating at 40, 32, 24 and 16 kbit/s. The complexity of ADPCM

coders is fairly low.

Frequency Domain Coders

• Frequency domain coders carry out the compression on a frequency representation of the

input signal. Compared to time domain coders, frequency domain coders usually provide

better quality at the expense of higher complexity [26}. Other advantages of frequency

domain coders include the ability to encode different parts of the frequency spectrum

independently and using adaptive bit allocation schemes to shape the quantization noise

based on perceptual principles.

Since the reproduced signal will be perceived by the hearing system, in order to reduce

the data rate, the auditory masking effects can be incorporated into the corling structures.

Therefore, frequency domain waveform coders are the proper choice for perceptual au­

dio compression since the auditory masking properties are weil modeled in the frequency

domain.

Frequency domain coders are divided into two groups: subband coders and transform

coders. Subband coders employa few bandpass filters (Le., filterbank) to split the input

signal into a number of bandpass signals (subbands signals) which are coded independently.

At the receiver the subband signals are decoded and summed up to reconstruct the output

signal. The ITU has a standard on subband coding (Le., G.722 audio coder [27]) which

encodes wideband audio signals (7 kHz bandwidth sampled at 16 kHz) for transmission at

• 48, 56, or 64 kbit/s.

In transform corling, a fast transformation is used to convert blacks of the input signal
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into a large numher of frequency coefficients. Transform coding is the proper paradigm for

perceptual audio coding due to the following reasons [28]:

• Good transforms compact the signal energy into a few transform coefficients which

allows many transform coefficients to he set to zero without affecting the quality.

• Suitable transforms produce decorrelated coefficients allowing for efficient quantiza­

tion of the transform coefficients.

• Appropriate transforms can provide good frequency resolution which is required to

model the auditory masking effects.

• Using perceptually-based distortion measures is possible.

• Fast transform techniques are available.

Pioneer work on transform corling was done in the late 1970s by Zelinsky and Noll [29~

30], Tribolet and Crochiere [31]. Although that work was mainly intended for coding of

speech in the frequency domain, it is the basis of almost all state-of-the-art audio coders.

Concerning the perceptual aspect of audio coders~ the work published by Schroeder et

al [32] described the use of the auditory masking effects in the corling paradigms. That

work has been the starting point for a large amount of work on perceptual coding of speech

and audio signals.

1.3.4 Perceptual Audio Coding

Fig. 1.2 shows a general block diagram of perceptual audio coders working in the frequency

domain. Perceptual audio coders employ a transform to decompose the input signal into

spectral components. The auditory masking threshold is calculated using the signal spec­

trum. The transform coefficients are quantized and coded using the masking threshold.

In the last step, the encoded transform coefficients are multiplexed with the side informa­

tion to produce a bit stream. In the next chapters we will describe different blocks in a

perceptual audio coder.
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Fig. 1.2 General black diagram of a perceptual coder working in the fre­
quency domain.

1.4 Thesis Contributions

•

In this work we take on the challenge of designing a universal coding structure to accom­

modate narrowband audio inputs at bit rates comparable to existing speech coders. To

accomplish this goal~ we have developed a new audio coding structure based on the char­

acteristics of the human hearing system. The proposed coder ~ which is referred to as the

Narrowband Perceptual Audio Coder ( NPAC), provides moderate quality for narrowband

(4 kHz bandwidth) audio inputs at bit rates down to 8 khit/s [33~ 34~ 35]. The proposed

coder employs a number of different corling techniques which are described in this thesis.

The emphasis has been on using the human auditory mechanism, especially the masking

effects in different parts of the coder to reduce the bit rate while delivering acceptable

quality.

To accomplish our goal, the proposed NPAC employs a variety of perceptual-based

algorithms to remove the perceptually irrelevant parts of the input signal in addition to

statistical redundancies.

The original features of the proposed coder are divided inta three categories as follows.
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Time-to-Frequency Transformation
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• The transform coefficients are non-uniformly divided into 17 subbands in accordance

with the Bark scale to correspond to the frequency analysis that occurs in the ear.

• A prototype window for the MDCT has been designed. The frequency response of

the ear has been considered in the design procedure.

• A window switching method has been employed to reduce the spread of the quan­

tization noise caused by large attacks. The non-symmetrical characteristics of the

temporal masking effects has been considered in the switching criterion.

• A new procedure for designing prototype windows for ~Iodulated Discrete Cosine

Transforms (lVIDCT) has been derived from the Chebyshev polynomial. A number

of windows similar to the KBD window (used in the J\lIPEG audio standard) have

been designed using the proposed procedure. This procedure provides two tuning

parameters which allow to control the temporal and frequency characteristics of the

resulting windows while KBD windows have only one parameter.

Masking Models

• An algorithm has been developed to map the masking thresholds in the DFT do­

main into the masking thresholds corresponding to the ~Iodulated Discrete Cosine

Transform (~IDCT) coefficients.

• A model for the temporal masking effects has been developed and incorporated into

the NPAC coder.

Quantization Algorithms

• A perceptual distortion measure has been introduced to take into account only the

audible part of the quantization noise.

• A perceptually-based vector quantization method, which employs the proposed per­

ceptual distortion measure in populating the codebooks, is utilized. The same distor­

tion measure is used to select the best codewords from the codebooks in the process

of coding.
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• A refinement to the new distortion measure has been made to shape the quantization

noise inside the critical bands.

• In order to reduce the required memory to store the codebooks, a number of methods

have been used to design a single embedded codebook for each critical band.

• Perceptually-based bit allocation algorithms have been proposed and investigated.

One of them is based on the Signal-to..l\iIask Ratio (Sl\iIR) while the others are based

on the distribution of the audible energy.

• A new adaptive VQ system has been employed to quantize the scale factors. In order

to reduce the complexity, predictor matrices with a few non-zero diagonals have been

designed.

• A variable rate corling scheme is suggested based on the SNIR-based bit allocation

algorithm.

1.5 Outline of The Thesis

This thesis is organized into 6 chapters. Chapter 2 is concerned with the human auditory

masking. Starting with a brief overview of the human hearing system, Chapter 2 discusses

the processing of sounds in the ear with an emphasis on the nonuniform frequency analysis

of the input stimuli by the basilar membrane. The critical band concept is investigated

followed by the discussion about the auditory masking phenomena and a number of related

models.

In Chapter 3, we discuss lapped transforms and their importance to audio cading. A

thorough analysis of lapped transforms is given and the conditions for perfect reconstruction

of the output signal are obtained in a matrix form. The Modulated Lapped Transform

(NILT) which is a special case of lapped transforms is analyzed. This is followed by a

comparison of orthogonal and biorthogonal lapped transforms. The role of the prototype

window in the MLT performance is investigated and an optimization procedure for designing

a desirable prototype window is presented. Finally window switching is described as a

. method of reducing pre-echo artifacts.

Chapter 4 begins with a short overview of quantization methods used in audio coders.

Then a number of widely used state-of-the-art audio coders are briefiy described followed
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by an overview of the MPEG audio standards.

In Chapter 5, we introduce the proposed Narrowband Perceptual Audio Coder (NPAC).

The functionality and algorithms for each module is described. A comparison is made

between the performance of NPAC and two coders, Le., RealAudio and the G.729 coders.

Chapter 6 concludes the thesis by providing a summary of our work followed by sorne

remarks about the proposed coder. Finally, we make a number of suggestions for further

work in the field of narrowband perceptual audio coding.
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Chapter 2

Hurnan Auditory Masking

The hearing system converts sound waves into mechanical energy and finally into electrical

impulses perceived by the brain. It consists of the ear, auditory nerve fibers and a part

of the brain. Figure 2.1 shows a simplified structure of the peripheral part of the human

hearing system, Le., the ear.

STRUCTURE Of THE EAR

o uulerNr

o middlee..r

o innernr

•
Fig. 2.1 Simplified structure of the ear, from [36] .

The ear contains three parts, i.e., the outer ear, the middle ear and the inner ear. The

structure and the raIe of each part in perceiving sounds are discussed as follows.
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2.1 Outer Ear
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The outer part of the ear consists of the pinna (auride), the ear canal (external auditory

meatus) and the eardrum (tympanic membrane) [37]. The pinna collects sounds, Le., air

pressure waves in the air which are amplified and conveyed by the ear canal to the eardrum.

The ear canal is like a tube which is sealed in one end. It encloses a column of air which

resonates at around 3 kHz, which enhances the intelligibility of speech [2]. The resonance

of the air inside the ear canal increases the sound pressure level by a factor of 10 at the

eardrum for a range of frequencies from 2 kHz to 5.5 kHz [38]. The sound pressure makes

the eardrum vibrate. This way the sound energy is converted into the mechanical energy.

2.2 Middle ear

The middle ear is an air-filled space containing the three smallest bones in the human body,

Le., the ossicles, including the hammer (malIeus), anvil (incus) and stirrup (stapes). As

it is shown in Fig. 2.2 these bones form a system of levers which vibrate along with the

eardrum. This vibration amplifies the sound and carries it to the inner ear via the oval

window.

There are some tiny muscles in the middle ear which protect the ear against very large

vibrations caused by loud sounds. When the sound level exceeds a certain leveI, these tiny

muscles function in two ways ta protect the inner ear. One set of the muscles contracts

to limit the movernent of the hammer which attenuates the vibrations passing through the

middle ear. Sorne other muscles contract to keep the stirrup away from the oval window in

order to weaken the vibration passed to the inner ear [40].

In addition to the aforernentioned functions the middle ear filters out low frequency

sounds in noisy environments and decreases one's sensitivity to his own speech [40].

Another part of the middle ear system is the eustachian tube which equalizes the air

pressure in the middle ear.

2.3 Inner Ear

The inner ear has a great role in both hearing and the body balance. The hearing organ

is a bony cone-shaped spiral called cochlea which is filled with fluids. Figure 2.2 shows the
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Fig. 2.2 Structure of the middIe and inner parts of the ear, adapted
from [39].

shape of the inner ear.

2.3.1 Cochlea

The CocWea is the part of the inner ear which converts incoming vibrations from the middle

ear into the electrical impulses. Although the modelling of the cochlea functions has been

an active research area for many years, there are still ambiguities in its mechanism such as

the frequency selectivity of the auditory system and the nonlinear behavior of the cochlea.

The cocWea, which is smaller than the tip of a little finger, is divided along its length by

two membranes; Reissner's membrane (vestibular membrane) and the basilar membrane.

It contains many parts including the basilar membrane and the organ of Corti which play

important roles in hearing. Figure 2.3 shows the cochlea cross section.

The vibration in the middle ear is passed to the inner ear by the stirrup which moves

in and out of the inner ear through the oval window. The oval window is 15 to 30 times
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Fig. 2.3 Cochlea cross section [41].
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smaller than the eardrum which amplifies the pressure inside the cocWea [42]. The pressure

change makes the basilar membrane move up and down which is sensed by a collection of

cells called the organ of GoTti. In addition to the signal detection and energy conversion,

the cochlea is able to compress the dynamic range of input signals. The dynamic range

of the hair cells is about 40-60 dB, whereas the range of audible sound pressure levels is

about 100 dB [37].

Since the basilar membrane and the organ of Corti play a great role in perception of

acoustic events, we describe their functions in more details.

2.3.2 Basilar Membrane

•

The basilar membrane extends along the length of the cocWea. It is narrow and stiff at the

end near the middle ear and wider and less stiff at the other end. Its physical properties

strongly affect the response of the basilar membrane to different stimuli.

The basilar membrane reacts to the pressure change in the fluids inside the cochlea.

The pressure change in the cochlea fluids is mainly due to the stirrup movements and also

vibrations reaching the skull from other sources. The response to a single frequcncy input

takes the form of a wave which travels the length of the membrane. The wave stops at a
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specifie region of the basilar membrane (corresponding to clifferent frequencies) along the

length of the membrane where the greatest vibration of the membrane occurs. In fact, each

point on the basilar membrane is tuned to a specifie frequency, with a spatial gradient of

about 0.2 octave/mm [43]. Due to physical characteristics of the basilar membrane, for

high frequencies the maximum amplitude of the travelling wave occurs near the base of the

basilar membrane but for low frequencies the wave travels further along the length of the

basilar membrane. Hence each region along the basilar membrane has the greatest response

ta a distinct frequency component of the sound spectrum..

In fact the basilar membrane performs a frequency to place transformation. This way,

the basilar membrane behaves like a spectrum analyzer. The amplitude and the location

of the vibration peak is sensed by the sensory haïr cells (which will be discussed later).

The location of the vibration peak is important because it determines which nerve fibres

will send signais ta the brain. Since the auditory nerve fibers are very finely tuned, the

brain can identify the frequency of the input signal. The important point is that weak local

activities on the basilar membrane are ignored by the brain and hence are not perceived,

Le., will be masked [2].

For a steady sinusoidal input, each point on the basilar membrane vibrates at the same

frequency but with different amplitudes and phases [40]. When the basilar membrane is

stimulated with two steady inputs with different frequencies, depending on how close the

frequencies are, the basilar membrane shows different behavior. If the input frequencies are

far apart, then there will be two distinct maximum peaks of displacement on the basilar

membrane. In the case that the input frequencies are close enough, then there will be

only one broad maximum on the pattern of vibration and the tones cannot be resolved by

the basilar membrane. The frequency resolution of the basilar membrane is higher at low

frequencies compared ta high frequencies. This fact can be explained by considering the

physical properties of the basilar membrane. For frequencies above 500 Hz, the position on

the basilar membrane which is excited the most by a given frequency varies approximately

with the logarithm of the frequency [37]. AIso for that range of frequency, the bandwidth

of the vibration for a steady stimuli is approximately proportional to the center frequency.

These two characteristics of the basilar membrane explain the frequency resolution of the

hearing system.
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2.3.3 Organ of Corti
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The organ of Corti converts the mechanical movements of the basilar membrane into elec­

trical impulses. These pulses which are carried by the auditory nerve fibers to the brain

contain information about the frequency, the intensity and the timbrel [40].

It contains the sensory haïr cells which are arranged in multiple rows and rest on

the basilar membrane. Auditory nerve fibers are connected to the base of the haïr cells.

Figure 2.4 shows a cross section of the organ of Corti.

-- --

•

•

--
Fig. 2.4 The organ of Corti cross section [41].

There are two types of haïr cells in the organ of Corti. The inner haïr cells, which are

completely sUITounded by the inner phalangeal cells and arranged as a single row along

the basilar membrane! deliver electrical impulses to the brain [40]. The outer haïr cells,

which are arranged in 3 to 5 parallel rows, receive neural signals from the brain [40]. The

hairs at the top of the outer haïr cells make contact with the tectorial membrane when the

basilar membrane moves up and down. When the basilar membrane moves, it excites the

inner haïr cells, which leads to the generation of electrical impulses in the neurons of the

auditory nerve.

Haïr cells vibrate at the frequency of the strongest stimulation in a local region; therefore

they ignore weaker stimulations [2]. This property of the hearing system is the physiological

ITimbre is the attribute of a sound that allows us to differentiate between two sounds of the same pitch,
intensity and duration [401· .
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basis of the simultaneous making phenomenon which will be cliscussed later.

2.4 Critical Bands
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Auclitory perceptif)n is based on a critical band analysis in the inner ear. A critical band is

the bandwidth around a center frequency beyond which subjective responses of the hearing

system abruptly change [40J. The importance of the critical bands comes from the fact that

the hearing system discriminates between energy in and out of a critical band. Additionally,

the simultaneous masking property of the hearing system, which will be discussed later, is

related to the critical bands.

The physiological basis of the critical bands is not clear. However, the existence of

the critical bands is certainly related to the function of the basilar membrane [40J. Each

point on the basilar membrane is tuned to a frequency called the characteristic frequencyj

that is the place at which the travelling wave caused by a stimulus reaches its maximum

amplitude [40]. We can assume a non-ideal bandpass filter, which is referred ta as an

auditory fllter, centered at each characteristic frequency [44J. The effective bandwidth

of the bandpass auditory filter is defined as the critical bandwidth. Each critical band

corresponds a length of 1.3 mm (according ta [2]) or 1.5 mm (according ta [32]) on the

basilar membrane. Nloore [40] defines a critical band as the Effective Rectangular Band

(ERB) which is the bandwidth ofan ideal bandpass filter centered at any frequency (the area

under the squared-magnitude of the ideal filter equals that of the auditory filter centered at

that frequency). According ta Ivloore each ERB cavers 0.9 mm on the basilar membrane.

Note that there is no border between the critical bands and a band can be specified for any

point on the basilar membrane.

The bandwidth of the critical bands was first measured by Fletcher in the 1940's.

According ta his experiment, in order ta measure the bandwidth of a critical band centered

at any frequency, we make a tonal signal inaudible by a narrowband noise centered at that

frequency. If we increase the bandwidth of the noise, the level of the inaudible sinusoid

cao be increased. When the bandwidth of the noise increases above a certain value, Le.,

the critical bandwidth, the level of the sinusoid input remains almost constant. Figure 2.5

shows the threshold level as a function of the noise bandwidth. This experiment is based

on a few assumptions [40]: the hearing system contains a bank of overlapping bandpass

linear filters, the listener is assumed to perceive only the output signal of the auditory filter
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Fig. 2.5 Threshold of a just audible 2 kHz test toue [44] .

centered at the tonal signal frequency and the threshold of the signal is only determined by

the power of the noise at the output of the auditory filter. The power of the noise at the

output of the bandpass fllter determines the threshold of the test tone. Since the bandpass

filter is tuned to the frequency of the sinusoid~ the tonal signal will be passed but a great

part of the noise will he removed (when the noise bandwidth is greater than the critical

bandwidth). The part of the noise which passes through the filter has a remarkable effect on

making the tonal signal inaudible. In this experiment~ increases in noise bandwidth result

in higher noise power at the output of the handpass filter as long as the noise bandwidth is

less than the filter bandwidth. However, when the noise bandwidth exceeds the bandpass

filter bandwidth, further increase in noise bandwidth will have a little effect on the output

noise power. This bandwidth, at which the signal threshold stops increasing, is the critical

bandwidth.

Experiments have shown that the width of the critical bands is narrower at low fre­

quencies. In fact, the signal is processed in the inner ear on a nonlinear scale called the

Bark scale (Bark is the unit of perceptual frequency and a critical band has a width of one

Bark). Therefore, as shown in Fig. 2.6, the peripheral section of the hearing system can he

modeled as a nonuniform filterbank consisting of bandpass filters with bandwidths equal

to critical bandwidths. About 75% of the critical bands are below 5 kHz and hence the

hearing system receives more information from low frequencies. Approximately, the critical
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• bandwidth is 100 Hz up ta 500 Hz. Above 500 Hz, the critical bandwidth is approximately

20% of the center frequency [17]. There is a relation between the distance along the basilar

membrane and its frequency resolution. Considering the fact that a length of 1.5 mm on

the basilar membrane represents approximately 1 Bark, near the top (far from the middle

ear) a length of 0.1 mm represents a frequency difference of about 7 Hz whereas near the

base 0.1 mm represents 450 Hz.

Nlany analytical expressions have been propased in the literature to relate the critical

band number z (in Bark) to frequency f (in Hz). Schroeder et al in [32] propose the

following formula

The bandwidth of each critical band as a function of center frequency can he approximated

by [37]•

f = 650 sinh(z/7).

Zwicker proposes the following [37]

z = 13 arctan(O.00076/) + 3.5 arctan(f /7500)2.

Critical Bandwidth = 25 + 75(1 + 1.4(//1000)2)0069.

(2.1)

(2.2)

(2.3)
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Glasberg and rvloore [40] proposed the following relation

number of ERBs = 21.4 log10 (0.004371 + 1).

The ERB as a function of the frequency is given by [40]

ERB = 24.7(0.004371 + 1).

An example of the critical bands covering a range of 3.7 kHz is listed in Table 2.1.

Table 2.1 List of the critical bands covering a range of 3.7 kHz [2}.
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(2.4)

(2.5)

•
Band No.

1
2
3
4
5
6
7
8
9

10
Il
12
13
14
15
16
17

Center Frequency (Hz)

50
150
250
350
450
570
700
840

1000
1170
1370
1600
1850
2150
2500
2900
3400

Bandwidth (Hz)

0-100
100-200
300-400
400-510
400-510
510-630
630-770
770-920

920-1080
1080-1270
1270-1480
1480-1720
1720-2000
2000-2320
2320-2700
2700-3150
3150-3700

•
2.5 Auditory Masking

Masking is one of the important characteristics of the hearing system by which a weaker

audio signal becomes inaudible by a louder signal occurring simultaneously or close in

time [17]. In daily life we observe many examples of the simultaneous masking. For
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example during a conversation in a very noisy environment, one needs to raise his voice in

order to be understood.

The masking phenomena reflect the limited frequency and temporal resolutions of the

hearing system. The mechanism of aurlitory masking, and the human hearing system

in general, is not weIl understood. Although there are physiological explanations for the

masking phenomena of the hearing system, it is al.most impossible to develop comprehensive

theories only based on physiologïcal data. In order ta obtain enough data, one needs to

have access to the inner parts of the human hearing system such as the cocWea, basilar

membrane, nerve fibers, the brain without damaging them. In order to overcome this

barrier, we have to rely on psychoacoustic data collected through subjective tests.

There are different masking effects with different mechanisms; Simultaneous masking

occurs when the masker and the maskee (masked signal) are presented to the hearing system

at the same time. In addition to simultaneous masking, time domain masking phenomenon,

referred to as temporal masking, occurs when the masker and the maskee are presented close

in time, but not simultaneously. The phenomenon of masking a signal which occurs before

the beg;inning of the masker is called premasking or baclcward masking. Another form of

the temporal masking, which is referred to as postmasking or fonnard masking, happens if

the masked signal occurs after the end of the masker.

In audio carling the masker is the original input signal and the maskee is either the

quantization noise or weak components of the input signal. The masking phenomena can

be exploited to reduce the bit rate, especially if a large number of the spectral compo­

nents of the signal are masked. From a bit allocation point of view, the quality of the

reconstructed signal will be enhanced by assigning bits to spectral components based on

perceptual criteria. By properly shaping the quantization noise spectrum, we can make

it less audible than a noise with the same energy but without noise shaping. In corling

the spectral components, if scalar quantizers are used, the optimal step size for each scalar

quantizer provided by the masking threshold such that the quantization noise lies below

the masking threshold.

For almost aIl audio signais many spectral components are below the masking threshold

and can be discarded. From our experience, on average for music and voiced speech, more

than 50% of the transform coefficients are masked. In order to test the masking properties of

the hearing system, the masking threshold for some speech and audio signals was calculated.

After replacing the masked coefficients by zero, there was no perceptual difference between
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•

•

the original and reconstructed signal. In fact the difference between the original and the

reconstructed signal is not perceivable because it is masked by the signal itself. If we

(intentionally) raise the level of masking to have about 20% of spectral components above

the masking threshold~ the quality of the reconstructed signal is still good. It implies the

importance of coding the perceptually significant spectral components such that they are

reproduced precisely.

2.5.1 Simultaneous Masking

Simultaneous masking occurs when two stimuli are simultaneously presented to the auditory

system and one of them is made inaudible by the other. Physiological evidence reveals that

the simultaneous masking is caused due to the function of the basilar membrane and the

hair cells.

There are two theories for the mechanism of simultaneous masking [40]. One theory

suggests that the masker produces a great amount of activities on the basilar membrane

such that any activity caused by a weaker signal may become undetectable. In fact the

hair cells detect the strongest vibration in any local region (critical band) along the basilar

membrane. The simultaneous masking pattern is weil predicted by this theory which models

the hearing system as a bank of linear filters. The second theory, which is highly nonlinear,

suggests that the masker suppresses the activity which the masked signal would produce if

there is no masker. Based on this theory, the neural response to atone at the characteristic

frequency of that neuron might be suppressed by atone which does not produce any neural

activity in that neurone Many researchers believe that the first theory plays the dominant

role in the mechanism of the simultaneous masking.

Although the physiologically-based theories mentioned above explain the mechanism

of the simultaneous masking phenomenon, the analytical masking models are developed

using psychoacoustic data. In the following, we briefly present sorne psychoacoustic findings

about the simultaneous masking properties of hearing.

To determine the masking pattern (curve) of a simple stimulus, the masker is fixed and

the test signal (maskee) varies. The masking threshold at any frequency is the level of the

test signal when it is just inaudible. Figure 2.7 shows the approximate masking curves due

to narrowband noises centered at 1 kHz and 4 kHz with a level of 60 dB. As it is observed,

the maximum of the masking curves depends on the center frequency. The peak of the
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masking curve is 2-6 dB below the excitation level [37]. Note that the dashed curve in

Fig. 2.7 shows the threshold of hearing in quiet; that is the minimum level at which the

ear can detect atone at a given frequency. This curve is measured by subjective tests.

Listeners usually show different thresholds in quiet and therefore an average is taken as the

threshold of hearing. The following formula expresses the threshold in quiet at frequency

f (in Hz) [45L

Tq = 3.64(f/1000)-0.8 - 6.5exp(-0.6(f/1000 - 3.3)2) + 10-3(f /1000)4 dB. (2.6)

Based on psychoacoustic experiments, although the lower slope of the masking curve is

almost independent of the masker level, the upper slope (towards the higher frequencies)

depends on the level of the masker. As it is shawn in Fig. 2.8 the higher the excitation level

the lower the upper slope is. This nonlinear behavior of the hearing system is attributed

ta the saturation of the outer hair cells in the cochlea at high levels [40] .

Note that the nature of the masker as being noise-like or tonal has an impact on the

masking curve. For instance, the maximum of the masking curve due to a single tone

is more sharp (peaky) [37]. Additionally the distance between the masker level and the

masking threshold is greater for tonal signais.

Fig. 2.7 Masking curves due to two narrowband noises centered at 1 kHz
and 4 kHz. Dashed curve shows the absolute threshold of hearing.•
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Fig. 2.8 lVIasking curves due to a narrow band noise centered at a 1 kHz
tone with level (top to bottom): 80, 60, 40 dB.

2.5.2 SiInultaneous Masking Models

lVlany analytical models have been proposed in the literature to calculate the simultaneous

masking curve. We briefly discuss the following steps which are almost common among the

models and differences are mostly about their parameters. A few masking models will be

presented afterward.

Transformation from Frequeney to Critical Band Seale

The linear frequency is mapped into the critical band scale. This is done ta emulate the

function of the basilar membrane to find a representation of the signal spectrum sunHar

to that presented to the inner ear. As mentioned in previous sections, different analytical

expressions have been proposed (based on the psychoacoustic measurements) to relate the

linear frequency (in Hertz) to the critical band rate (in Bark).

Calculation of the Excitation Pattern

The energy distribution(excitation pattern) along the basilar membrane is calculated. In

fact the excitation pattern is the distribution of the energy of the travelling wave along

the basilar membrane due ta a stimulus. For a complex sound, the excitation pattern for
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each spectral component is found. The shape of the excitation pattern caused by a single

spectral component is called the spreading function. Based on the psychoacoustic findings,

the spreading function is a function of the frequency and the level of the masker. In almost

ail masking models a triangular shape (on a critical band scale) is assumed for the spreading

function. However different slopes of the function on both sides have been reported in the

literature [46~ 44, 37, 47, 48, 49]. From psychoacoustic data, the masking pattern show

steep slopes on the low frequency side (of the masker) of 80-240 dB/octave (for a tonal

masker) and 55-190 dB/octave for a narrowband noise masker [40]. The slope on the high

frequency side becomes less with increasing the masker level. Note that in transform audio

coding, since each black of the input signal is multiplied by a window, the power spectrum

of the signal will be spread due ta the convolution in the frequency domaine It seems that

we have to consider this effect when calculate the excitation pattern2
. However since the

slopes of the spreading function are found from psychoacoustic data and moreover there is

no exact values for those slopes, we might ignore the windowing effects.

If a linear model is assumed for the inner ear, the global excitation pattern is found by

convolving the energy spectrum (on a critical band scale) with a fixed spreading function

(independent of the frequency and level of the masker).

In simultaneous masking models, different spreading functions have been used. The

following spreading function proposed by Schroeder et al [32] is used by Johnston [51],

SpFn(z) = 15.81 + 7.5(z + 0.474) - 17.5(1 + (z + 0.474)2)0.5, (2.7)

•

where z is the critical band number in Bark. This spreading function is independent of

the masker and has slope of 25 dB/Bark on the low frequency side of the masker and -10

dB/Bark on the high frequency side.

Terhardt [45] proposed a triangular spreading function with a fixed slope of 27 dB/Bark

on the lower frequency side and -24 - (230/ f) +0.2L dB/Bark on the higher frequency sicle

(f and L are the frequency (in Hz) and the level (in dB) of the masker). This spreading

function, contrary ta Schroeder's, depends on the masker level and frequency.

2Soulodre in [50] has discussed this effect.
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Calculation of the Global Masking Curve
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•

•

The masking threshold is found by subtracting an offset (masking index) frOID the excitation

level. The masking index depends on the spectral structure of the masker. We will cliscuss

this issue for different masking models in the following sections.

Zwicker suggests that if the variation of the excitation level due to a masker alone and

the excitation caused by the masker and another signal is less than 1 dB, the second signal

becomes inaudible [37]. This amount of variation! Le., 1 dB is fixed regardless of the

masker, meaning that the excitation level due to the maskee should be at least 6 dB below

that of the masker. In reality, the nature of the masker as being tonal or noise-like has

an impact on the masking threshold. For instance the masking threshold due to a narrow

band noise is higher than a tonal signal with the same power. lYloore [44] suggests that

a value of 0.1 dB for the variation of the excitation level is a good criterion to make sure

that the maskee will be inaudible (the excitation due to the maskee will be 16 dB below

the excitation of the masker.). For a noise masker, lYloore assumes a masking offset of 4

dB [40].

The global masking pattern is estimated by a superposition of the individual mask­

ing patterns. There is no clear rule to superpose the inclividual masking patterns. As a

first approximation the hearing system is modelled as a overlapping linear bandpass fil­

terse By this assumption, the global masking pattern is determined by snmmîng up the

individual masking thresholds. !vIany psychoacoustic masking models are based on this

assumption [15, 51, 52]. However, some psychoacoustic experiments suggest that a non­

linear model of the additivity of the individual masking thresholds better fits the hearing

system [53]. A linear summation of the individual masking thresholds results in a lower

global threshold than that obtained by a nonlinear model. The final step is to make sure

that the masking threshold is above the threshold of hearing.

Terhardt's Masking Model

This model proposed in (45) assumes that the masking pattern produced by a pure tone is

triangular in shape on the critical band rate scale. The upper slope of the masking pattern
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which depends on the frequency and the sound level of the masker is given by

230
Su = -24 - T + 0.2L dB/Bark, (2.8)

where f is frequency of the masker in Hz and L is the level of the masker in dB. The lower

slope of the masking pattern is independent of the masker level and is set to 27 dB1Bark.

Fig 2.9 shows the excitation pattern produced by a 1 kHz tone with a sound level of 70 dB

versus the frequency and Bark. The masking level is 2-6 dB below the excitation level.
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Fig. 2.9 Excitation pattern produced by a 1 kHz tone.

The excitation level due ta severa! maskers at frequency j is assumed ta be additive

and given by

where 1 is the number of the spectral components, Zï and Zj are the Bark values of the i-th

and j-th frequencies, Li is the sound level at frequency i and s is the slope of the masking

pattern, i.e.: s = 27 dB if j is less than i and otherwise it will be found from Eq. 2.8. In

arder ta take into consideration the masking effect of the noise inside critical band j, the•

1

L () 10 1 ( ~ 10[Li-s (zi- Zj )]/20)2
ex Zj = ogIO L...J

i=l.i;éj

dB, (2.9)
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intensity of the noise around component j should be added to Lex(Zj ). The noise intensity

Pn is found by summing up the sound intensities of those spectral components which fall in

the critical band centered at Bark Zj except the five central components (the components

at j and two neighboring components at each side). Additionally, the threshold of hearing

is added to the masking power. The final masking power is given by

where Tq is the threshold of hearing in quiet. As mentioned earlier, the masking threshold

lies 2-6 dB below the masking power.

In [54] two following formulas have been given to calculate the masking threshold from

the masking power

•

1

Pmask(Zj) = 10 loglQ[( L 10[Li-S (Z-ï-Zj)1/20)2 + Pn + 10Tq / 1O]dB,
i=l.i:f=j

m(j) = Lex(zj) - 0.8(14.5 + LZjJ )dB, Zj < 14.

(2.10)

(2.11)

(2.12)

•

where LZjJ denotes the integer part of Zj. In this approach the factor 0.8 and the conser­

vative estimate of the offset at high frequencies are to make up for the lack of accuracy in

estimating the nature of the signal, i.e., the tonality factor.

In Terhardt 's masking model the discrimination between noisy and tonal spectral com­

ponents is very approximate. Moreover, there is no frequency-dependent formula to cal­

culate the masking threshold from the masking power. Another problem with this model

is that the masking threshold at each spectral component is calculated due to other com­

ponents, whereas the masking effect of the component itself contributes to the masking

threshold.

Johnston's Masking Model

This model was proposed by Johnston [51] based on the work by Schroeder et al [32]. In

order to calculate the masking threshold, the power in each critical band is found; then the

Bark power spectrum will be spread over ail critical bands through convolving the Bark
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spectrum with the following spreading function

SpFn(z) = 15.81 + 7.5(z + .474) - 17.5(1 + (z + 0.474)2)0.5,

32

(2.13)

where z is the separation in critical bands. This spreading function is independent of the

level and frequency of the masker.

For noise-masking-tone, the masking threshold will be 5.5 dB below the spread spec­

trum.. For tone-masking-noise the masking threshold will be (14.5 + i) dB below the spread

spectrum, where i is the critical band index. In order to determine the nature of the signal

as being tone-like or noise-like, the spectral flatness measure which is defined as follows is

used

SFM = 1OloglO(~ ) dB, (2.14)

• where Gm and Am are the geometric mean and arithmetic mean respectively. Then the

tonality factor is defined as follows

SFNI
a = min(SFM

max
' 1), (2.15)

where SFNl rnax corresponds to a signal which is assumed to be a pure tone and is set to

-60 dB; a zero value for SFNI represents noise. To find the masking threshold the following

offset is subtracted from the spread spectrum (in dB)

oeil = a(14.5 + i) + 5.5(1 - a). (2.16)

•

Finally the masking thr~shold is compared with the threshold of hearing to make sure that

it is not below the threshold of hearing.

MPEG Masking Models

Two psychoacoustic models are given in the MPEG standard [15, 55] _ The output of both

psychoacoustic models is a signal-to-mask ratio for each subband or a group of subbands

to be used in bit allocation.
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Psychoacoustic Model 1
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The input block of the audio signal is multiplied by a Hanning window and transformed to

the frequency domain using a 512-point FFT (Layer 1) or a 1024-point FFT (Layer II). The

output of the FFT is used to determine the tonal and noise-like components by finding the

local peaks. This discrimination is important as there is a difference between the masking

threshold due to a tonal or noise-like component. The masking threshold is calculated for

each component above the threshold in quiet. The masking threshold at frequency i (z(i)

in Bark) due ta a masker component at frequency j (z(j) in Bark) with the sound pressure

level L(z(j)) is given by

where M is the masking function characterized by different lower and upper slopes defined

as•
T(z(j), z(i)] = L(z(j» + T(z(j» + M(z(j), z(i)) dB, (2.17)

M - 17(~z + 1) - (0.4L(z(j» + 6) dB, -3 < ~z <-1

M - (OAL(z(j» + 6)Llz dB, -1 < ~z < 0
(2.18)

M - -17~z dB, O<~z<1

M - -(~z - 1)(17 - O.15L(z(j») - 17 dB, 1<~z<8

where ~z = z(j) - z(i). For reducing the complexity, the masking effect of any masker

is not considered outside the range -3 < ~z < 8. In Eq. 2.17, T(.) is the masking index

which is different for tonal and non-tonal maskers. For tonal maskers

•

T(z(j» = -1.525 - 0.275z(j) - 4.5 dB,

and for nontonal maskers

T(z(j)) = -1.525 - 0.175z(j) - 0.5 dB.

(2.19)

(2.20)
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The global masking threshold at frequency i, Tg(i)~ is obtained by adding the masking

threshold due to each masker to the threshold in quiet~

Tg(i) = 10Iog
lO

(10(Tq (i)/lO) + E 10(T[:ü),z(i)1I 10»,
j

(2.21)

where Tq is the threshold of hearing in quiet. In this model the masking threshold due

to each tonal component is calculated. AIl non-tonal components in a critical band are

summed to form a single non-tonal masker for each critical band. The index number of

the non-tonal component is set to the spectralline nearest to the geometric mean of the

critica1 band.

Psychoacoustic Model 2

This model is based on the model developed by Schroeder et al [32] and very similar to

• the model proposed by Johnston [51]. The main difference between this masking model

and the ~IPEG psychoacoustic model 1 is that instead of a binary classification of the

spectral components~ which is not consistent with the mechanism of the hearing system,

each component is continuously labeled between two lïrnits. A tonality factor is found for

each band based on the predictability of the CUITent spectral line from the correspondïng

two previous components.

AAC Psychoacoustic Model

The psychoacoustic model used in the Advanced Audio Coding (AAC) [52] standard is very

similar to the MPEG psychoacoustic model 2. The only difference is that the offset value

for the tone-masking-noise is 18 dB for all bands.

•

NPAC Simultaneous Masking Model

Since, in our coding paradigm (NPAC) [35], the NIDCT is employed to decompose the

input signal, we have modified the model proposed by Johnston [51] ta calculate the mask­

iug threshold correspondïng the MDCT coefficients. The model is more suitable for an

MDCT-based coder and also discriminates between different frequency bands to calculate

the masking index (offset).
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•

We briefly point out the modification made to Johnston's model. Starting with an

FFT of the input frame, the calculation of the masking threshold consists of the same

steps up to finding the tonality factor. In contrast to the pre"ious model in which the

spectral fiatness measure is used ta identify the nature of the whole frame as being tone­

like or noise-like, we take another approach based on the predictabitity of the transform

coefficients in each critical band. Note that most audio signals have a noise-like structure

at high frequencies despite the fact that they may have a strong harmonic structure at low

frequencies. Considering this fact, it would be more accurate to identify the nature of the

spectrum locally at different critical bands. The tonality factor will be calclÙated for each

Bark using

(2.22)

where XU) is a linear prediction of the CUITent subvector based on the observation of

previous subvectors ...y(j-l) and X(j-2). The relative prediction error is calculated

Il Xi - X(j} Il
e = _ .

Il Xi Il + Il Xi Il
(2.23)

The relative prediction error will be converted to the tonality factor according to [15]

a = min(l, max(-0.3 - 0.43log(e), 0)). (2.24)

The following offset for each critical band is subtracted from the log spread Bark spectrum

ta find the masking threshold

O(i) = a(14.5 + i) + 5.5(1 - a), (2.25)

•

where i is the index of the critical band. Like the previous model, a comparison of the

masking threshold with the absolute threshold of hearing is made. Since the masking

threshold is calculated based on the DFT of the input frame, it is not accurate to use

this masking threshold for the MDCT coefficients. Instead, we consider the following

relationship between the DFT and rvIDCT to find a more accurate masking threshold for
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MDCT coefficients,

C(k) = V2/ M [S(k) 1cos(21rno(~+ 0.5) - LS(k)) ,

36

(2.26)

where S(k) is the Fourier transform of the modulated windowed input signal, C(k) is the

MDCT, no = (M + 1)/2, !vI and N are the number of samples in the frequency and time

domain, respectively. If mOFT is the masking threshold corresponding to the kth DFT

coefficient, then in order to have the same Signal-to-~IaskRatio (S~IR) at any coefficient

in the DFT and MDCT domain, the following relation should hold

Considering the relation between the MDCT and DFT, we find the masking threshold for

the kth MDCT coefficient [35],

• 2 2 ( 21rno (k + 0.5) )
mMOCT = MmoFTcos N - LS(k) .

2.6 Temporal Masking

(2.27)

(2.28)

•

Temporal masking occurs when the masker and the maskee are not presented to the hearing

system at the same time. The temporal masking characteristic of the hearing system is

asymmetric, meaning that the backward masking effect is much less than the forward

masking. Backward masking is effective about 5 msec before the occurrence of a strong

stimuli, whereas forward masking lasts up to 200 msec [2]. An example of the postmasking

is less audibility of low energy consonants following a high energy vowel. Figure 2.10 shows

the temporal masking pattern due to a short burst of a tonal signal [2].

Although psychoacoustic experiments reveal the temporal masking effects, this phe­

nomenon is not weIl understood. Temporal masking effects suggest that the brain rnight

integrate sound over a short time interval or perhaps the brain simply processes loud sounds

faster than soft sounds [2].

Moore suggests that the following different phenomena contribute to the forward mask­

ing effects wIDch occur after the end of a masker [40].

• Temporal overlap of the basilar membrane responses to different stimuli might play
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Fig.2.10 The temporal masking pattern (dashed curve) due to a short burst
of a tonal signal starting at 100 msec and ending at 300 msec [2] .

a role in the temporal masking. This phenomenon contributes to temporal masking

for about la msec after the end of the masker.

• Short term neural fatigue at higher neural levels might reduce the perception of the

activity of the maskee which occurs after the masker.

• The neural activity as a response to the masker persists at higher levels after the end

of the masker. This activity masks the activity produced by the maskee. This effect

is aiso suggested to occur at stages higher than the auditory nerve.

2.6.1 Temporal Masking Model

Of the two forms of temporal masking, backward masking is more vague and also far less

important. Therefore we just focus on the more prominent form of the temporal masking,

Le., forward masking. Any forward masking model is based on psychoacoustic experiments

which reveal the following findings about that phenomenon [40]

• The forward masking level (in dB) is approximated by a linear function of the loga­

rithm of the time intervai between the end of the masker and the onset of the maskee.

The level of the forward masking decays ta zero (regardless of the masker level) after

almost 200 msec.
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• Forward masking is affected by the frequency of the masker and the maskee.

38

A lot of research has been done on the temporal masking of the hearing system and there

are a few analytical expressions which approximate that effect [Sa, S6~ S7~ 58, S9~ 46].

We have developed the following model based on the model proposed in [Sa] as it takes

both the effect of the frequency and the level of the masker into account

TntC/, L) = CI. + (3 exp(-fi,), (2.29)

•

where m t is the temporal masking in dB, L is the masker level in dB, f is the frequency in

Hz and a,;3, f are three parameters to be found from experimental data. In [50] three ex­

pression have been fitted to the experimental data for a, {3". In this work, we consider the

temporal masking if the level of the masker is more than 30 dB. Based on this assumption

and the data given in [50] we have found the following expression for the above-mentioned

parameters:

CI. = O.001L2 + 0.2267L + 17.7142,

;3 = -0.0047L 2 + 1.2256L - 24.32548,

f = -0.0002L4 + 0.OS46L3
- 5.4685L2 + 234.7411L - 332S.0350.

(2.30)

•

Note that the data reported in [SOl indicate the level of the temporal masking at 20 msec

after the masker. Although the time interval between successive frames in our coder is lS

msec, and hence the temporal masking level will be underestimated using this formula, we

have chosen to use it in order to prevent any overmasking of the transform coefficients. In

our coding scheme, we calculate the temporal masking for each critical band. In doing so we

assume that all the energy in each subband is concentrated in the center frequency (except

the first band for which we set / to 100 Hz) and the sound level is due to the contribution

of aU the coefficients in the band. This way, for each frame of transform coefficients we

calculate the masking threshold at 17 frequencies. If the masking threshold is greater than

the sound level in any band, we assume that ail the coefficients in that band are masked. If

the transform coefficients are not completely masked, the masking threshoid will be equally

divided between the coefficients. We have examined the accuracy of this modei by subject

tests and noticed no difference between the original signals and processed signaIs where the

temporally-masked transform coefficients were set to zero.
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2.7 Combined Masking Threshold

39

A combined masking threshold is computed by considering the effect of both temporal and

simultaneous masking thresholds. A lot of research has been done to find how to combine

these two different phenomena [50]. One way to deal with this prohlem is to linearly sum. the

masking levels. According to some experiments this model is not appropriate; and therefore

another model called power-Law has heen proposed in the literature as follows [50! 60, 53]

m - (mP + mP)(l/P)net- 1 2 , (2.31)

•

•

where mnet is the net masking level due to two masking levels ml and m2. A value of 0.3

for parameter p is found to he the best match to experimental data [50] .
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Chapter 3

Signal Decolllposition U sing Lapped

Transforms

The first stage of transform coding is to decompose blocks of the input signal into its

frequency components. In designing the transform, we have to consider the following design

goals.

(a) Perfect Reconstruction

The spectral decomposition should be invertible, Le. ~ the transform should be perfect recon­

struction. This refers to signal decomposition from which the original signal can be exactly

recovered in the absence of quantization [61]. This has the advantage that all noise which is

added in the coding/decoding process is generated by the quantizer. Since the noise source

is known, it can be controlled so that it is masked by the signal. It is also desirable that

the transform and its inverting process both maintain a high degree of frequency selectivity

in order to accurately compute the auditory masking pattern.

(b) Critical Sampling

The analysis system should be critically sampled [61]; i.e., the number of transform co­

efficients per time is the same as the input sample rate. Critical sampling ensures that

subsequent stages of the audio coder are not required ta operate at a higher sample rate

than the input sampIe rate. Although non-critically sampled systems allow more fiexibility
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•

•

in designing the tilterbank, they have a higher sample rate at the output of the analysis

stage than the input sample rate.

(c) Good Frequency and Temporal Resolution

The bandwidth of each bandpass filter (in the filterbank) should be equal to or narrower

than the width of the narrowest critical band, i.e., 100 Hz. This makes it easy to control

the perception of the quantization noise. At the same time, the analysis interval for the

filterbank should be small enough to avoid introducing noise components over an interval

such that (temporal) masking constraints are violated. In generaI, most uniformly spaced

filterbanks cannot meet both of these constraints because of the large variation in width

of the criticaI bands with frequency. ~Ioreover, a high frequency resolution is desirable

to take advantage of the transform gain, which is the frequency domain equivalent of the

prediction gain. (The transform. gain is higher for signaIs with a non-fiat spectrum.)

3.1 Black Transforms

Before computing the transform of a given signal x(n), we must group its samples into

blocks. Referring to x as one of these blocks, the transform of x. X, is computed by

X=Tx,

where T is the transformation matrix. In order to reconstruct x from X, T must be

invertible. Each choice of T leads to a different transform. For compression purposes, T

should compact the energy of each block of data into a few coefficients in the transform

domain. In transform coding, instead of quantizing the samples in the time domain, we

perform the quantization on the transform coefficients by allocating more bits to the coeffi­

cients containing higher energy. Besides energy compaction (in the sense that the energy is

concentrated in only a few coefficients), the transform coefficients should be uncorrelated.

The Karhunen-Loeve transform (KLT) is the optimal transform. This is because the KLT

is the orthogonal transform that will produce a set of uncorrelated coefficients. Moreover,

the KLT maximizes the energy compaction in X. Although the KLT is an ideal choice in

signal compression systems, it is seldom used in practice since it is signal dependent. One

of the major disadvantages of block transforms is the problem of black edge effects that we
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will discuss later.

3.2 Lapped Transforms
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•

•

The basic motivation behind the developrnent of lapped transforms cames from one of

the major disadvantages of traditional block transforms, i.e., block edge effects, which are

discontinuities in the reconstructed signal [61, 62]. In transform corling, we start by trans­

forming a block of N samples of the input signal. The transform coefficients are then

quantized and transmitted. At the receiver, the inverse transform is computed and the re­

constructed signal black is appended to the output. Because of the independent processing

of each block, sorne of the quantization errors will produce discontinuities in the signal.

Due ta the black edge effects, there will he an audible periodically OCCUITing noise in the

reconstructed signal. One of the most cornputationally efficient approaches towards the

reduction of blocking effects is prefiltering and postfiltering (61]. The filtering techniques

have the disadvantage of reducing the cading gain and producing a lowpass effect around

the boundaries.

In lapped transforms, the basis functions are longer than the length of the transform.

In this way, the basis functions from one block and its neighboring block overlap. In

addition to reduction of block edge effects, a lapped transform can achieve significant

improvements in the corling gain Gre (which is discussed later), when compared to standard

block transforms [61].

3.2.1 Analysis of Lapped Transforms

With a lapped transfarm, we map an input block of .N samples into M transform coeffi­

cients. Since we want to have the same sample rate at the input and output of the analysis

stage, we compute AI new transform coefficients for every new !vI input samples. In this

way there will be an overlap of N - M samples in the computation of consecutive blocks.

The idea of a lapped transform is shown in Fig. 3.l.

Here we use a matrix notation to analyze a lapped transform with a 50% overlap between

successive blocks of the input signal. Looking at Fig. 3.1, we transform the first block XCi)
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•
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M INPUT
~

x(n)

OUTPUT
~

3M-l i(n)

Fig. 3.1 Signal processing with a lapped transform with a 50% overlap be­
tween successive frames [61].

of the input signal by

(3.1)

where H is an M x 2fvI analysis matrix, X(l) is a column vector containing the following

2M samples of the input signal

X(l) = [xe -2M + 1) ... x(O)]t, (3.2)

•
and X(l) is the vector of M transform coefficients. The 2M x M synthesis matrix G

transforms X(l) back into the time domain;

(3.3)
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Since the algorithmic delayl for this transformation is 2M - 1 samples, y(l) contains

the following samples,

y(l) = [y(O) ... y(21\f - l)]t. (3.4)

The next black of data, which contains M samples frOID the previous block, goes through

the same steps to obtain

As there is 50% overlap between the input blocks~ we have the same amount of overlap

between y(l) and y(2). In order to have perfect reconstruction~ the sum of the overlapping

parts of y(l) and y(2) should equal the corresponding part of the input signal. Note that

the algorithmic delay is 2M - 1 samples, therefore for perfect reconstruction we must have

•
and

y(2) = GX(2) = [y(N/) ... y(3N/ _l)]t.

[x(M) ... x(2M - 1)] = [xe -lU + 1) ... x(O)].

(3.5)

(3.6)

(3.7)

In order to express the left sicle of Eq. 3.7 in terms of the input signal and the analysis

and synthesis matrices, we rewrite Eq. 3.1 as follows

(3.8)

•

where Hl and H2 are two N/ x M square matrices containing the first and second N/

columns of the analysis matrix H; za(1) and Zb(l) contain the first and second NI elements

of X(I). Also we rewrite Eq. 3.3 as follows

(3.9)

l Algorithmic delay is the length of the block of data plus the lookahead. Note that there is no lookahead
in this transforme
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Therefore~
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(3.10)

where Ya (1) and Yb (2) are the first and second half of y(l); G 1 and G 2 are two Mx M square

matrices containing the first and second M rows of the synthesis matrix G. Similarly we

obtain

Ya (2) = G 1 X(2) , (3.11)

We express the desired part of the reconstructed signal as the sum of the overlapping parts

of y Cl) and y(2) as follows

•
[i:(N/) ... x(2M - l)]t = Yb(l) + Ya (2).

By considering Eq. 3.8 and Eq. 3.10! we obtain the followings

and similarly

(3.12)

(3.13)

(3.14)

By Combining Eq. 3.13 and Eq. 3.14, we obtain the desired segment of the output as follows

(3.15)

Since we have

(3.16)

•
in order to have perfect reconstruction (see Eq. 3.7), we must have in Eq. 3.15

(3.17)
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and
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(3.18)

•

where OM is an Aif x M zero matrix and lM is an Nf x !vf identity matrix.

Perfect reconstruction requires that Eq. 3.17 and Eq. 3.18 be satisfied. However in

audio corling a high coding gain is very desirable. Therefore, the analysis matrix H must

compact the energy of each frame of the input signal into a few transform coefficients.

If we look at the analysis matrix H from a filtering point of view, each row of that

matrix represents the impulse response of a bandpass Fm ffiter. Therefore in order to

achieve a high corling gain, the frequency response of each row should ideally resemble the

frequency response of an ideal lowpass filter with little leakage into other bands. There

are efficient ways to design the analysis matrix such as the Nlodulated Lapped Transform

(NILT) which will he discussed later. One special case of lapped transform is when G = H t
•

In that case the perfect reconstruction conditions become

H 2
t H 1 = H 1

tH 2 =OM,

H 1
tH 1 + H 2

t H 2 =IM.

(3.19)

(3.20)

This special case is referred to as a Lapped Orthogonal TransfoTm (LOT) [63]. Eq. 3.19

requires that Hl and H 2 he orthogonal. It means that the overlapping parts of the basis

functions are orthogonal. Eq. 3.20 implies that the rows of the analysis matrix H form a

set of orthonormal basis functions.

Comment on the Analysis and Synthesis Matrices

From Eq. 3.12, we conclude that

•
(3.21)
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where Range2 and Null3 denotes the range space and the null space of a matrix. Eq. 3.21

leads to

(3.22)

and similarly,

(3.23)

Note that for any matrix dim(Range(.)) = rank (.). Eq. 3.18 implies that

For any M x M matrbc snch as Hl we have

•
(3.24)

(3.25)

From Eq. 3.24, we conclude that

(3.26)

By considering Eqs. 3.22, 3.23, 3.25 and 3.26, we get

(3.27)

and then

(3.28)

•
On the other hand, intuitively the dimension of the null space of the synthesis matrix G

must be zero, meaning that the synthesis matrix should map a vector to a zero vector only

2For matrbc B, Range(B) = {yl3x : B(z) = y}.
3For matrbc B, Null(B) = {zIB(x) = O}.
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if that vector is a zero vector too. Therefore we must have

Eq. 3.28 and Eq. 3.29 lead to
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(3.29)

(3.30)

•

Since G 1 and G 2 map into an M dimensional space, Eq. 3.30 implies that they map into

two orthogonal subspaces which span the entire 1\1 dimensional space.

The analysis matrix H should (ideally) produce M uncorrelated transform coefficients

corresponding to each block of the input signal. This means that the rank of H should

equal M. For sub-matrices Hl and H 2l we have

(3.31)

On the other hand from Eqs. 3.22, 3.23, 3.25 and 3.30, we can conclude

(3.32)

Finally we find the same relationship between the sub-matrices of the analysis matrix as

we have for the synthesis matrix;

(3.33)

•

The Perfect Reconstruction (PR) conditions are the only constraints that must be satisfied.

However, the relations between the sub-matrices provide us with some insight into lapped

transforms. !vloreover, those relations might he used as the constraints for an optimization

procedure to design a lapped transform.

3.2.2 Filterbank Representation of a Lapped Transform

Any transform including a lapped transform can be represented by a filterbank struc­

ture [64, 65, 66]. The finite impulse responses of the analysis filters are the time reversed

of the rows of the analysis matrix H [61]. The finite impulse responses of the synthesis
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filters are the columns of the synthesis matrix G [61]. Fig. 3.2 shows a black diagram of a

lapped transform.

y(n)

go(n)

gl(n)

9M-l(n)

SYNTHESIS

Co(z)

ANALYSIS

ho(N - 1 - n)

h1(N - 1- n)

x(n)

• Fig. 3.2 Filterbank representation of a lapped transform.

In arder ta find the relationship between the z transform of the input x(n) and the

output y(n) of the filterbank, we analyze the first branch of the filterbank. Sïnce we have a

similar structure for ail branches, the input signal goes through the same processing (with

clifferent filters) in different paths. In Fig. 3.2

(3.34)

After downsampling by M, we get

M-l
1 ~ -]2frk 1

Co(z) = - L...J Eo(e AI ZM).

M k=O

(3.35)

•
After upsampling by M, Fo(z) is given by

M-l
M 1 ~ -]2frk

Fo(z) = Co(z ) = }li! ~ Eo(e M z) .
k=O

(3.36)
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By plugging Eq. 3.34 into Eq. 3.36, we get

M-1
1 (N 1) ~ j2:rrk(N-l) -j2:rrk 121rk 1

Fo(z) = MZ- - LeM Xo(e M z)Ho(e M z- ).
k=O

Finally Vez) is given by

M-1

Vez) = L Gi(z)Fi(z),
i=O
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(3.37)

(3.38)

(3.39)

As seen in Eq. 3.39, the filterbank output is a combination of the delayed version of the

• input signal and many other tenus. For a block transform with perfect reconstruction

(without any overlap between successive frames) it is possible to recover x(n) from yen) if

we satisfy the following conditions; for intersymbol interference (rSI) cancellation,

(3.40)

and in order to have no amplitude and phase distortion

(3.41)

•

The above-mentioned conditions cannot be satisfied for lapped transforms as the main

idea of a lapped transform is to construct the output signal by overlapping and adding the

inverse transform of successive blocks of data.

3.3 Modulated Lapped Transforms

Modulated Lapped Transfonns (MLT), which are also known as Nlodified Discrete Cosine

Transforms (lVIDCT), proposed by Princen and Bradley [67, 68], form a family of lapped

transforms that is generated from modulations of a low-pass prototype filter. The basis
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functions of ~ILT have lengths equal to N = 2!vI, where Mis the number of subbands. Per­

fect reconstruction can he achieved with appropriate choices of the phase of the modulated

cosine function and the low-pass prototype window.

The main advantage of an MLT filterbank is that it can he computed efficiently. The

MLT basis functions are defined by [67}

~ M+l 7r
h(n)y 2/Nf cos((n + 2 )(k + 0.5) ML (3.42)

•

•

where k = O~ 1~ ... ~ Nf - 1, n = O~ 1, ... , 2Nf - 1 and h(n) is the low-pass prototype (also

referred to as window). Fig. 3.3 shows the magnitude frequency response of an ]\IILT

generated by modulating a half-sine window.

o
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-35 lLL..&.._~u.....L.._.L.IILI:....t-~.III.&I..L-.J.&ILL.I'.&.---:UL.IUI"I,I""..--I..uu..L-...L.L.ILLL._...L.U

o 500 1000 1500 2000 2500 3000 3500 4000
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Fig. 3.3 Magnitude frequency response of a modulated lapped transform
(l.1 = 8).

3.3.1 Perfect Reconstruction Conditions for an MDCT

We analyze an MDCT when two different windows are used to generate the analysis and

synthesis filterbanks. Then we obtain the perfect reconstruction conditions for the specific

case when only one window is used for the analysis and synthesis filterbanks.
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The MDCT of a black of the input signal x(n) is given by

{2N-l (M 1 1)
X(k) = V!Vi ?; h(n) cos (n + : )(k + 2")~ x(n),

52

(3.43)

where h(n) is the analysis window, Nf is the number of subbands and k = 0, 1, ... , Nf - 1.

Note that the length of each frame of data is N = 2lvi. The inverse MDCT is given by

{2kl-l (M 1 1)
y(n)=g(n)V!Vi~X(k)cos (n+ : )(k+2");/ '

where g(n) is the synthesis window. Substitute Eq. 3.43 into Eq. 3.44 to obtain

(3.44)

•
2 M-1 N-1 lvI+1 1 7r M+1 1 7r

yen) = l'vIgen) L L h(m)x(m) cos(m+-2-)(k+2)NI) cos(n+~)(k+ 2) Nf)'
k=O m=O

(3.45)

1 N -1 l'v!-1(1 1 )
yen) = Mg(n)~h(m)x(m)?; cos ((m-n)(k+2") ;/) + cos ((m+n+M+l)(k+2")~)

(3.46)

N-l M-l

yen) = i~lg(n) Lh(m)x(m) L (cos ( (m - n)(k + ~) ;[)
m=O k=O

N-l M-1

+ ~lg(n) Lh(m)x(m) Lcos(m + n + M + 1)(k + ~) :[).
m=O k=O

(3.47)

Now we consider two different cases; for °< n :5 NI -1 (the first half of yen)), yen) is zero

except for m = n and m = M - 1 - n. We can easily show that for this case, y(n) becomes

yen) = g(n)h(n)x(n) - g(n)h(M - 1 - n)x(NI - 1 - n), n = 0, ... , M - 1. (3.48)

• For 1\1 < n < 2Pv[ - 1 (second half of yen)), yen) is zero except for m = n and m =
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3M - 1 - n; hence

yen) = g(n)h(n)x(n) + g(n)h(3M - 1 - n)x(3NI - 1 - n),
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n = !vI, ... , 2NI - 1.

(3.49)

In Fig. 3.1 the desirable segment (zr) of the reconstructed signal is given by

(3.50)

Since Ya and Yb have different time references! we take the beginning of Yb as the time

reference. Therefore

Xr =g(n + NI)h(n + NI):z:(l)(n + NI) + g(n + M)h(2N[ - 1 - n):z:(l) (2A;f - 1 - n)
(3.52)

+ g(n)h(n)x(2)(n) - g(n)h(lvl - 1 - n)x{2) (NI - 1 - n).
•

We have

and also

x(l)(2lvl - 1 - n) = x(2)(M - 1 - n),

n = 0, ... , NI - 1,

n = 0, ... , lvI- 1,

n = 0, .... M-1.

(3.51)

(3.53)

(3.54)

Therefore in order to achieve perfect reconstruction, the following conditions must be sat­

isfied

h(n)g(n) + h(n + lvI)g(n + .LVI) = 1,

g(n)h(M - 1 - n) - g(n + lvI)h(2N[ - 1 - n) = O.
(3.55)

If we use the same window for the analysis and the synthesis stages, the transform is called

• Modulated Lapped Orthogonal Transform (MLOT). For this case if we use a symmetrical
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window h(n), the perfect reconstruction conditions become

h2 (n) + h2 (n + M) =1,

h(n)=h(N-l-n).

Comment on the Output of the Synthesis Filterbank

As we saw eartier, the output of the synthesis filterbank yen) is given by
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(3.56)

yen) = g(n)h(n)x(n) - g(n)h(M - 1 - n)x(l\I[ - 1 - n),

yen) = g(n)h(n)x(n) + g(n)h(3M - 1 - n)x(3M - 1 - n),

n = 0, ... , M - 1,

n = M, ... , 2N[ - 1.

(3.57)

Since yen) is a combination of x(n) and the time reversed version of x(n), it is not possible

to recover x(n) frOID yen). It is obvious that when we rnap a 2J1v[ dirnensional input signal

• iuto an M dimensional transform vector, we lose sorne information. However, the elegance

of a lapped transform is that we can restore the lost information by adding the overlapping

parts of the successive output vectors of the synthesis filterbank. A segment of the output

signal equals the sum of the first part of the CUITent output and second half of the previous

output of the synthesis filterbank. As we see in Eq. 3.57, the first half of the CUITent output

is g(n)h(n )x(n) minus the tirne reversed version of the first half of the corresponding block

of the input signal, i.e., x(lvl - 1- n), rnultiplied by g(n)h(JIv[ - 1 - n). On the other hand

the second half of the previous output vector equals g(n)h(n)x(n) plus the time reversed

version of the second half of the corresponding block of the input signal, Le., x(NI - 1 - n),

multiplied by g(n)h(lvl - 1 - n). Since there is 50% overlap between the input blocks

of data, the first half of the CUITent block of the input signal is exactly the same as the

second half of the previous block of the input signal. Therefore in constructing the output

signal (via an overlap-add rnethod), it is possible to cancel the tirne reversed terms by using

appropriate analysis and synthesis windows.

As an example, Fig. 3.4 shows the process of constructing a segment of the output signal

for a fiat input x(n) = 1.

•
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Fig. 3.4 Dashed curves: the first and second terms of the second half of the
synthesis filterbank output due ta the first block of data, Dotted curves: the
first and second terms of the first half of the synthesis filterbank output due ta
the second block of data, Solid line: the segment of the reconstructed signal.

3.3.2 Orthogonal versus Biorthogonal Modulated Lapped Transforms

•

A modulated filterbank is generated by modulating a single prototype lowpass filter in case

of an Lapped Orthogonal Transform (LOT) or two prototype lowpass filters for the analysis

and synthesis stages in case of a Lapped Biorthogonal Transfonn (LBT) [69, 70~ 71].

In order to make a choice between the two options, we have to consider the functions

of the analysis and synthesis filterbanks. The analysis filterbank is required to decompose

the input signal and delivers approximately uncorrelated transform coefficients. Moreover,

the energy of the input signal shotÙd be compacted into a few transform coefficients. These

requirements imply that the analysis filterbank should approximate an ideal filterbank. On

the other hand the synthesis window should smoothly go to a small value at the boundaries

in order to reduce block edge effects. Moreover the synthesis filterbank (generated using the

synthesis window) should suppress or attenuate the out-of-band quantization noise which

requires a good filtering performance. Therefore in designing the analysis and synthesis

windows we face confticting requirements.

We can make a compromise and choose an identical window for both analysis and

synthesis (that is the orthogonal case). If the emphasis is only on obtaining a high coding
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gain or less block edge effects (like in image corling) then we employa biorthogonallapped

transform in which two different windows are used. One window is optimized at the expense

of the other window characteristics. The perfect reconstruction conditions (see Eq. 3.56) on

an N point window for an orthogonal transform leaves lV/4 degrees of freedom in designing

the prototype window. However, if two separate windows are used for the analysis and

synthesis filterbanks, we have N /2 degrees of freedom to design a symmetrical analysis

window. This results in an analysis window with a better frequency response. Nevertheless,

in order to have a perfect reconstruction analysis/synthesis system, the synthesis window

will be found using Eq. 3.55. Figure 3.5 shows the analysis and synthesis windows and their

frequency responses of a lapped biorthogonal transform. As we see, the synthesis window
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(a) Analysis window. (h) Analysis window frequency re­

sponse.
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Fig. 3.5 Analysis and synthesis windows for a lapped biorthogonal trans­
form.•

(c) Synthesis window. (d) Synthesis window frequency re­
sponse.
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•

does not smoothly approach zero which is a desirable characteristic of the synthesis window

in order to reduce block edge effects. lVloreover, it is obvious that a better analysis window

leads to a worse synthesis filterbank.

3.3.3 Windows for Modulated Lapped Orthogonal Transforms

Any window which satisfies the perfect reconstruction conditions can be used to generate

the filter banle However, to ohtain a high coding gain, the frequency response of the

window should approximate an ideallowpass filter.

For an ideal .Nf-band filterbank, the bandwidth of each bandpass filter should be Iti,
where Is is the sampling frequency. Since the filterbank is generated by modulating a

prototype lowpass filter (which is the frequency response of the window), the bandwidth

of the prototype lowpass filter should he Iti.
For a fi"<ed length FIR filter, we have to trade the width of the main lobe versus

the stophand attenuation. In sorne corling schemes such as AC-2 and AC-3 [72] and the

AAC [52] a Kaiser-Bessel-Derived (KBD) window is used. This window is defined as follows

n

EW(i)
i=O

N-l

EW(i)
i=O

n = 0, ... , lV/2 - 1, (3.58)

where N is the length of the window and Wei) is the Kaiser-Bessel kemel window function

defined as follows

(3.59)

where 10 is the modified zero order Bessel function of the first kind and v is the parameter

of the window. Figure 3.6 shows the KBD window and its frequency characteristic for

v = 6. As we cao see the KBD window shows a very good stopband attenuation at the

cost of a larger transition band.

• We can design windows similar to the KBD window with similar stopband attenuation.

A family of windows derived frOID the Chebyshev polynomial (type 1) is presented in
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•

Appendix B. The Chebyshev-derived window has two parameters by which we can adjust

the window shape and the frequency response of the resulting prototype lowpass filter.

Fig. 3.6 shows the Chebyshev-derived window and its frequency response.

Optimization Procedure for Window Design

In designing a window for a modulated transform, we have to compromise between the main

lobe bandwidth, transition bandwidth and the stopband attenuation. In order to make a

trade-off between the selectivity and the stopband rejection of the filter bank, we consider

the frequency selectivity of the hearing system. Therefore the transition bandwidth can

be increased in favor of a higher stopband rejection. For instance, in our audio coder

the number of the transform coefficients for each block of input data is 120. Hence, the

bandwidth for each frequency bin of an ideal filterbank should be 4000/120 ~ 33.3 Hz.

Since the narrowest critical bandwidth is 100 Hz, we do not need to have a frequency

resolution better than the hearing system. This fact gives us sorne freedom to design the

prototype lowpass filter. Note that the window is the impulse response of the prototype

lowpass filter. Therefore we use an optimal window and an optimal prototype lowpass filter

interchangeably.

We take a combination of time and frequency constraints to optimize the window. We

try to design the prototype lowpass fllter whose frequency response in the passband and

stopband approximates the frequency response of an ideallowpass filter. We also consider

a transition band for the lowpass filter.

The optimization procedure which is similar to [73] is performed as follows

!!f.+l
h(n) = argmin L W(k)(Hideal(k) - H(k))2

k=O

subject to

h(2M - 1 - n) = h(n)

h2 (n) + h2 (n + Nf) = 1,

(3.60)

•
where lVF is the Fourier transform length, H is the normalized DFT of the window h(n),

and M is the number of transform coefficients of the rvIDCT, that is half the length of the
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(h) KBD window frequency response.
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Fig. 3.6 KBD window with parameter 4 and a Chebyshev-derived window
with parameters (2,1.3) and the frequency responses.

•
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window. H ideal is the DFT of the ideal lowpass fllter defined as follows

60

where kp is the edge of the transition band. For an NF point 0 FT and M MDCT co­

efficients, each ideal bandpass filter is represented by !flï points of the D FT. Since the

prototype lowpass filter generates the filterbank, its bandwidth is half the bandwidth of

each bandpass filter. Therefore the passband of the ideal lowpass filter is represented

approximately by !ffï + 1 points~ meaning that kp ~ !ffl + 1.

ltV is a weighting function which gives different weights to the passband, transition band

and the stop band. Note that we give more weight to the stopband to reduce the leakage

between bands. ltV is defined by

•

Hideal(k) = { l,
0,

{

l,

W(k) = 0,

100,

O<k<kp

kp < k < ks

ks < k,

(3.61)

(3.62)

•

where ks is the edge of the stop band. In order to set a value for ks , we refer to our

discussion above. We assume that the width of the transition band can be larger than a

critical band. Since the critical bandwidths are frequency dependent, we take a value of

200 Hz for the transition band. For a sampling rate of 8000 Hz and an NF point DFT, the

transition width becomes ~ and therefore in Eq. 3.62, ks is set to kp + qg:.
We compare a window designed using the optimization procedure and a sine window

which is widely used in audio coding. Fig. 3.7 shows the sine window and the designed

window. As seen in the Figure, the designed window shows a smoother transition at the

boundaries. NIoreover, the stopband attenuation of the designed window is higher.

3.3.4 Coding Performance of Transform Coding

In transform coding, instead of quantizing the samples of the signal with a desired number

of bits per sample (which is referred to as PCM), we perform the quantization on the

transform coefficients. It is weIl known that a lower mean-square error will result from

quantizing the transform coefficients [3]. Assuming scalar quantizers, the reduction in
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(c) Designed window. (d) Designed window frequency re­

sponse.

Fig. 3.7 Comparison of the sine window and the designed window.

transform coding mean square error over PCM is given by [74]

which is referred to as the trans/oTm coding gain; (u~ is the variance of the kth transform

coefficient). The denominator is the geometric mean of the transform coefficient variances

which is minimized by the KLT. Therefore, the KLT is the optimal transform for transform•

M-l
1 ~ 2

Nf L..J U k

G k=O
TC = -;;::===

M-l

M II ul
k=O

(3.63)



• 3 Signal Decomposition Using Lapped Transforms 62

coding. By using lapped transforms, we can achieve higher coding gains than that of the

KLT [61].

Table 3.1 shows the coding gain of the MLT (using different windows: KBD, Chebyshev­

derived, sine, rectangular4 and designed window), DCT and DFT. As we can see on the

Table the difference between the coding gain using different smooth windows is not remark­

able but there is a big drop in the coding gain using a rectangular window. For ail signais

the coding gain of the ~ILT using a smooth window is greater than that of the DCT.

Table 3.1 Coding gain in dB of an MLT using different windows, DCT and
DFT for female speech, male speech and classical guitar.

•
Transform
MLT, KBD window
MLT, Chebyshev_derived window
MLT, Designed window
MLT, sine window
MLT, rectangular window
OCT
OFT

Female speech
18.76
18.79
18.75
18.48
10.87
15.10
11.15

Male speech
14.70
14.71
14.63
14.58
10.57
13.30
10.62

Classical guitar
14.00
14.01
14.00
14.07
12.81
14.00
11.04

•

3.4 Multiresolution Filterbanks

Since audio signais are analyzed by the hearing system on a critical band scale, a nonuniform

filterbank with frequency division nearly matched to the critical bands seems preferable

over a uniform filterbank. Various multiresolution structures such as nonuniform filter­

banks [75, 76, 77, 78, 79] and wavelets5 [80, 81, 82, 83, 84, 85] have been proposed for audio

coding. However as Ferreira in [86] argues the basic assumption in using a multiresolution

filterbank is that the high frequency spectral components have a short duration while the

low frequency components have long durations. This assumption does not reflect the real­

ity as there is no evidence to support those assumptions. In fact, for steady state parts of

4 A rectangular window with length 2M is one over the middle M points and zero for the rest.
5Wavelets are a set of basis functions generated by shifting (in time) and scaling a single prototype

function.
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the input signal, we need to have a high frequency resolution at all frequencies to achieve

a high coding gain. ~Ioreover, some psychoacoustic evidence suggests that the hearing

system resolves the spectral components inside a critical band at higher levels than the

inner ear [86]. For instance timbre, which characterises a sound, is related to the relative

amplitude of certain spectral components regardIess of the critical-band scale.

Since audio signals have time-varying characteristics, there is no optimal transform.

to decompose the signal. In fact for pseudo-stationary parts, a filterbank with a high

frequency resolution is needed whereas for transients a multiresolution decompositioll would

be preferable. For most audio signals, a short term. stationarity assumption is valid except

for a small fraction of the duration of the audio signal [86]. Therefore, a uniform filterbank

with a high frequency resolution is a better choice for the decomposition of an audio signal.

However the temporal resolution of the filterbank should be increased when high energy

attacks are detected. This requires using a set of filterbanks to be chosen for different

situations. We will discuss this issue later.

Despite ail the work on wavelet-based audio coding, it seems that a transform coder

(using a uniform filterbank) would deliver better quality at low rates [87]. Johnston believes

that a high temporal resolution at high frequencies is not needed ail the time in order to

achieve high quality [87]. ~Ialvar in [61] states that for speech we need a high frequency

resolution not only at low frequencies but also at midd1e frequencies in order to resolve the

formant structures. That is the reason the performance of wavelet-based speech coders at

low rates is not satisfactory [61]. Another problem with wavelet-based coders is a large

algorithmic delay compared to transform-based coders [84].

3.4.1 Adaptive Filterbanks

One of the desirable characteristics of a filterbank is to have a high temporal resolution. As

a matter of fact, for high energy transient parts of the input signal, it is desired to localize

a short burst of quantization noise ta prevent it from spreading over a long period of time.

Some works have been published on adaptive filterbanks to handle this problem [88, 89,

90, 91]. In sorne corling schemes the temporal resolution of the filterbank is increased by

switching to a short window [92, 15, 72, 93].

In a window switching scheme, a suitable window is selected from a set of windows ta

generate the filterbank. The switching criterion is based on the energy [35, 82] or perceptual
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entropy [4]. As an alternative to window switching schemes, Herre and Johnston [94]
use Temporal Noise Shaping (TNS) to continuously adapt the temporal and frequency

resolution of the filterbank.

3.4.2 Perfect Reconstruction Conditions in a Window Switching Scheme

In order to handle the attacks, a short window used to generate the filterbank. We have to

make sure that the perfect reconstruction property of the overall system (in the absence of

quantization) is preserved. A start window is used to switch from a long window to a short

window and stop window is used to switch back. The start window is defined as follows

•
hstart(n) =

h1oog(n),

1,

hshort (n - !vI),

0,

o<n<!YI-1

NI<n<NI+~f-1

M+M<n<M+ 2M -1
3 - - 3

!vI + 2M < n < 2M - l.
3 - -

(3.64)

Fig. 3.8 shows a transition from a long window to a short window through a start window.

1 __._.~

oL..- ----L --'-_----L__""-----J

o
Time samples

M 4M13 5MJ3 2M

•
Fig. 3.8 A transition from a long window to a short window via a start
window.
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Based on Eq. 3.43 and Eq. 3.44, the output of the synthesis filter bank is given by

65

N-l M-l

yen) = ~hstart(n) Lhstart(m)x(m) L cos(m - n)(k +~) :1)
m=O k=O

N-l M-l

+ ~hstart(n) Lhstart(m)x(m) L cos(m + n + M + l)(k +~)~).
m=O k=O

(3.65)

Note that we use hstart for both the analysis and synthesis filterbanks.

We find different segments of yen) as follows. For 0 < n < 1\1- 1, the output becomes

We have used the fact that h1ong(n) = hstart(n) for n = 0, "', NI - 1. As we have seen

before, y(n) is a linear combination of the input signal and its time reversed version. In

constructing the output signal, the second term of Eq. 3.67 will be cancelled by the time

reversed term of the output of the synthesis filterbank due ta the previous black of data.

Remember that in a lapped transform, the first half of the CUITent output of the synthesis

filterbank contains the same terms as the second half of the synthesis filterbank output with

the difference that the time reversed term has different signs. Therefore after adding the

successive outputs of the synthesis filterbank, those terms cancel each other which means

a perfect construction of the output signal.

For NI ~ n < NI + l~ - 1, yen) equals zero except when n = 'm. For this range of time

samples, hstart (n) = 1. Therefore the output signal is given by

•
yen) = h21ong(n)x(n) - hlong(n)hlong(M - 1 - n)x(M - 1 - n),

yen) = x(n).

For M + ~[ < n < M + 2~f - 1, it is given by

n = 0, ... , l'vI - l.

(3.66)

(3.67)

Since for this range of time samples hstart (n) = hshort (n - NI) (that is the second half of the

•
yen) = h 2start (n)x(n) - hstart (n)hstart (3M - 1 - n)x(3NI - 1 - n). (3.68)
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short window), we get

yen) = h2short(n -l\tf)x(n) - hshort(n - M)hshort(2k/ - 1 - n)x(3M - 1 - n).

66

(3.69)

•

•

We realize that the above equation is a linear combination of the input signal and the time

reversed version of the input signal in that specifie range of n. \Vhen we construct the

output signal, the time reversed term will he cancelled by the time reversed term (with an

opposite sign) due to the next (short) frame. Therefore the perfect reconstruction property

of the system for this segment is also achieved. For the last segment, n = M + 2~[ < n <
2M - 1, since h(n) = 0, the output of the synthesis filterbank is zero and the output signal

is constructed by the overlapping parts of two successive outputs of the synthesis filterbank

due to two consecutive short frames. We can easily show that the perfect reconstruction

conditions are satisfied over a transition froID a short window.
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Chapter 4

Audio COlDpression Structures

This chapter is organized in two parts. In the first part of this chapter~ we briefly describe

different quantization techniques. An overview of sorne widely used audio coders and the

MPEG audio standards will he presented in the second part of this chapter.

4.1 Quantization

In the quantization block, the spectral components are represented with a given number

of bits. The goal is to achieve the best possible quality of the reconstructed signal after

quantization. In the process of quantization sorne information is lost, meaning that that

is a lossy compression method. However, in audio corling new terms perceptually lossless

coding or transparent coding have been used in the literature. A lossy audio coding scheme

can be perceptually lossless if the human ear cannot distinguish between the original and

compressed signal.

In some compression systems, a lossless compression step may follow the quantization

block in order to further reduce the data rate. In lossless compression schemes (also known

as noiseless or entropy coding), the original data cau be perfectly reconstructed. In arder

to reduce data rate, the more probable symbols are coded ioto short binary words and vice­

versa [95, 3]. This way the average data rate is reduced. This is fundamentally a variable

rate scheme. Conversion to a fixed rate requires sufficient buffering to get a reduced average

rate. A number of lossless coding schemes have been used in audio corling such as Huffman

codes, run-Iength codes and arithmetic codes. A typical compression ratio for lossless

coding of audio is 2:1.
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In the following we will describe two major quantization schemes which are used in

audio corling, i.e., Scalar Quantization (SQ) and Vector Quantization (VQ).

4.1.1 Scalar Quantization

A scalar quantizer operates on individual values. It divides the range of the input values into

N intervals (cells or Voronoi regions). Each cell is represented by a single value (decision

level). It takes a single value as the input and selects the best match to that value from a

predetermined set of values (codebook). The process of scalar quantization can be modelled

as a nonlinear operation in which a range of input values is represented by a single value

from the codebook.

In transform corling systems using scalar quantization, the transform coefficients are

quantized independently by a set of scalar quantizers and then transmitted to the receiver.

If the input waveform is strongly correlated, high energy compactness (into a few coef­

ficients) is obtained after the transform and a significant corling gain over PCl\tI may be

achieved by using optimal bit allocation to the scalar quantizers [28]. Scalar quantizers are

divided into different classes wmch we briefly discuss as follows.

Uniform Quantization

In this scheme, aIl the cells have the same size. The codewords are equally spaced and lie

at the middle of the cells. The distance between two successive decision levels (step size)

is defined as

N
X max - Xmin

Sq = (4.1)

•

where Sq is the step size, X max and Xmin are the maximum and minimum values of the

input and N is the number of quantization levels. This quantization scheme is matched to

uniform probability distribution functions.

Nonuniform Scalar Quantization

For inputs with a nonuniform probability distribution a quantizer with unequally-spaced

decision levels reduces the MSE for a fixed number of step sizes. In general, for an arbitrary

probability density function, the decision levels and cells are found by minimizing the total



where Px is the probability density function of the input values, Qi (.) is the ith quantization

level, F4 denotes the ith partition (celI) and d(.,.) is the distance (distortion) measure. In

most cases there is no closed solution to this optimization problern. Instead some other

iterative algorithms such as the Lloyd algorithm. [96] are used to design the quantizer.

Sorne popular schernes of nonuniform quantization are JL-Iaw and A-Iaw rnethods which

are used to quantize speech signaIs [74]. As an example, the following power law nonuniform

quantization scheme has been used in lVIPEG-l Layer 3 and NIPEG-2 Advanced Audio

Coding (AAC) [52, 55]

•

•

4 Audio Compression Structures

distortion given by [3]

N

D = L f. d(x, Qi (x))Px(x) dx,
i=l Re

X(i) = nint ( C~:i)l) 0.75 - 0.0946) ,

69

(4.2)

(4.3)

•

where XCi) and XCi) are the i-th transfonn coefficient and its quantized value, nint(.)

denotes the nearest integer value and Bq is the quantizer step size. This quantizer roughly

quantizes big values cornpared to finer quantization of small values.

4.1.2 Vector Quantization (VQ)

A vector quantizer operates on a set of values and gives out an index to the vector in a

lookup table (codebook) which gives the least distortion based on sorne error criterion.

According to Shannon for a fL"{ed number of bits! coding longer blacks of data results

in a lower average distortion [3, 97]. This better performance cornes frOID the fact that

VQ exploits any correlation among the vector components. Vector Quantization shows a

performance advantage over scalar quantization at rates below 1 bit per sample [98]. The

disadvantage of VQ methods is the amount of rnemory required ta store the codebooks.

Additionally, computation power is needed ta search for the best codeword from a large

codebook.

The complexity of vector quantization can be reduced by using different schemes such

as Gain/Shape separation, multistage and split VQ. In a Gain/Shape approach, the nor-
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malized input vector (shape vector) is quantized using a vector quantizer and the gain is

encoded separately. This technique is widely used and allows for using VQ at a reasonable

complexity.

In a split VQ approach, large vectors are broken into smaller ones and then a VQ

system is designed for each subvector. This way the complexity is reduced at the expense

of possibly a higher distortion. Split VQ techniques are the most efficient scheme (in

the sense of distortion-rate) if used with an adaptive bit allocation scheme in which the

available bits are allocated to each subvector based on the local statistics. The adaptive

VQ corling gain demonstrates a significant advantage of VQ over scalar quantization in

transform coding [99, 100, 101]. In our proposed coder, we use an adaptive VQ scheme

along with a perceptually based bit allocation strategy.

Another way to reduce the complexity is to use a multistage VQ structure. In that

method the input vector is fed to the first VQ and then the difference between the input

vector and the selected codeword is used as the input to the second VQ. The quantized

version of the input vector will he the SUffi of the codewords selected frOID the first and

second codebooks. If there are more than two VQ stages, at each following stage the

residual vector (difference between the original and quantized vector) is quantized using a

VQ and the selected codeword will be added to the quantized version of the original vector.

This way at each stage we obtain a finer quantization of the original vector. In this method

like the split-VQ scheme, we usually sacrifice the performance (to sorne extent) to reduce

the complexity.

VQ Design

A vector quantization system consists of a few components, Le., a lookup table (code­

book) to represent the statistics of the vector source, a distortion measure, and a centroid

computation procedure. In the following, we briefly discuss those components.

Designing the VQ codebooks (lookup tables), which are used to encode the input signal,

is a major part of the (off-lïne) computational effort. To create a codebook, a large set

of vectors with characteristics similar to the source is used to create (train or populate) a

codebook. The size of the training set should be large enough to closely represent the input

source. The number of training vectors to the number of the codewords should be at least

la times and more preferably 50 times [98] the number of the codevectors (codewords) in
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the codebook.

A distortion measure (distance measure or quantization rule) is needed to train the

codebook and to select the best match from the codebook to any input vector. The com­

monly used distortion measure is the mean squared error (L2 norm). Other distortion

measures are used such as the LI norm, likelihood and cepstral distance measures. In all

these distortion measures, the error is zero only if the input vector is equal to a codeword

from the codebook. However in this thesis we introduce a perceptually based distortion

criterion which measures the distance between an input vector and the codewords in a per­

ceptual domain. It takes into consideration only that part of the quantization error which

is perceptible to the ear. In this case the perceptual error can be zero for vectors which are

not identical.

In creating the codebook of N codewords, the training vectors are clustered into N

groups (cells) using the distortion measure. Then a centroid computation algorithm finds

the vector which represents the vectors in each cell of the training set.

Iterative methods can be used to design a vector quantization system. As an example

we describe the widely used the Generalized Lloyd Algorithm (GLA) [3] as follows.

Generalized Lloyd Aigorithm (GLA)

The G LA uses a large set of the sample vectors of the input source and delivers a codebook

with the desired size. It is an iterative method which starts with an initial codebook and

refines the codebook until the final codebook is obtained.

First the training vectors are clustered around different codewords based on the distor­

tion measure in which a partition (cell) is defined as

I4. = {xl\'j; d(x, Ci) < d(x, Cj)}, (4.4)

where Ci and Cj are the codewords representing the ith and jth cells respectively. In the

next step the centroid for each cell is found as follows

where i = 1, ... , N and N is the number of partitions (cells). This iterative procedure

continues until the average distortion (or the change in the average distortion) falls below•
Ci = argmin E d(Xi, c),

C XiER,;

(4.5)
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a certain threshold.

Since the design of a VQ system is a multidimensional optimization problem, there is

a possibility that the codewords obtained may not be globally optimal [3]. Therefore, the

initial codebook can have a great impact on the final codebook. J\'Iany methods have been

proposed to mitigate this problem [3, 102]. One of the widely used methods is the LBG

procedure [102] which starts with creating a codebook with only one codeword. Then the

first codeword is split into two codewords to create the initial codebook to generate the

second codebook. The iterative GLA method is used to find the final codebook at each

step. This splitting and training continue until the final codebook is obtained.

Perceptually Trained VQ

In perceptual audio corling, we should take into consideration the limited capability of

the hearing system to resolve different sounds. This leads us to define a perceptually­

based distortion measure which counts only the audible part of the quantization noise.

We incorporate the masking threshold in the distortion measure used while training the

codebooks and selecting the best codewords.

We use a modified version of the LBG algorithm [102] with the following perceptua1ly­

based distortion measure based on the audible noise energy to design the codebooks [33].
The same error criterion is used to select the best codewords in encoding the input vectors.

For an input vector of spectral components X and the jth codeword X{j), the distortion

defined by

d(k) ~ IX(k) - XCi )(k)1 2
- m(k), (4.6)

where m is the vector of masking thresholds corresponding to X. The energy of the audible

noise is calculated by

where K is the dimension of X. The centroid of each Voronoi region is determined by

•
K

D(X, XCi» = L max(d(k), 0),
k=l

(4.7)
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minimizing the energy of the audible noise as follows

1

x~jt = argmin L D(X(i}, XU}),
X(i) i=l

where l is the number of the vectors in region j.

4.2 Frequency Domain Audio Coders

73

(4.8)

•

•

Frequency domain cocling is a popular approach to compressing audio data. The great

advantage of frequency domain encoders is the ability to shape the quantization noise

based on perceptual principles.

Figure 1.2 (repeated as Fig 4.1) shows a general block diagram of perceptual coders

working in the frequency domain. The block diagram consists of the following basic blocks.

,....-

TlMETO
INPUT

QUANTIZATION- FREQUENCY-
M

MAPPING BIT
U

-
X

MASKING

--.. THRESHOLD

CALCULATION

-
Fig. 4.1 General block diagram of a perceptual coder working in the fre­
quency domain.

• A filterbank or transform is used to decompose the input signal into spectral compo­

nents.

• The spectrum is used to calculate an estimate of the masking threshold.
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• The transform coefficients are quantized and coded using the information about the

masking threshold.

• In the last step, the quantized and coded transform coefficients are multiplexed with

additional side information to produce a bit stream.

In the following, we briefly describe a number of widely used wideband audio coders

which made great contributions to the field of audio corling. Note that almost ail popular

audio coders have been designed to code wideband audio data with high quality. On the

other hand the coder presented in this dissertation is meant to accommodate narrowband

audio signals with acceptable quality. However, the basic structure of our narrowband

audio coder is similar in many ways to that of wideband perceptual audio coders.

4.2.1 AT&T Perceptual Audio Coder (PAC)

The AT&T Perceptual Audio Coder (PAC) [103] accommodates monophonic and stereo­

phonie wideband signais (20 Hz to 20 kHz). It aIso has the ability to handle multi-channel

audio signals. The compression ratio is around 8: 1 which implies 2 bits per sample. PAC

was designed based on the DFT-based PXFM [51J and ASPEC [104] audio coders devel­

oped at AT&T. PXFM uses a 2048 point FFT with 1/16 overlap between successive frames

of the input signai. The overlap increases the data rate which in return reduces the coding

gain. ASPEC uses an lVIDCT to decompose the input signal. Since the lVIDCT is a criti­

cally sampled filterbank, it does not reduce the corling gain as was the case with PXFrvI.

ASPEC also uses a window switching mechanism to switch a 1024-point window to a 256­

point window ta reduce pre-echo artifacts. The frequency resolution of ASPEC is half that

of PXFM due to using a l024-point window instead of a 2048-point window. PAC employs

a 2048-point window to achieve a good frequency resolution and switches to a 256-point

window to reduce the pre-echos. Compared to the previous AT&T audio coders, PAC has

a number of new or enhanced features such as composite stereo corling, improved window

switching, entropy corling and an improved masking threshold calculation, bit allocation

algorithm, and buffer control. Figure 4.2 shows a block diagram of the monophonie version

of PAC.

The ~IDCT filterbank takes in either 2048 or 256 time samples. The perceptual model

calculates the masking threshold based on the time-domain signal and the output of the

filterbank. In the noise allocation block, the filterbank outputs are grouped into a small
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•

Fig. 4.2 Block diagram of the monophonie PAC encoder [103].

number of samples. Then based on the band masking threshold, a scalar quantizer is

selected from a set of 121 quantizers. The noiseless block uses a Huffman codebook from a

set of 8 codebooks ta entropy code the coefficients in each band. The bit stream formatter

generates the bit stream and encodes the whole set of information for transmission or

storage. It operates from 32 kbit/s (single channel) up to a 1000 kbit/s (multi channel).

Since PAC utilizes noiseless coding, a rate control module is used to adjust the bit rate by

raising the global masking threshold for an undermasking situation.

4.2.2 Dolby AC-2 and AC-3 Audio Coders

The AC-2 and AC-3 audio coders [105, 106, 72, 107] were developed by Dolby and made

a considerable contribution ta the MPEG-2 AAC audio standard. Both AC-2 and AC-3

accommodates 2D-kHz bandwidth audio signais. AC-2 operates at data rates of 128-192

kbit/s for monophonic inputs. The main foeus of AC-2 is ta code independent channels

with low complexity and relatively low delay. AC-3 has been designed for single point ta

multipoint applications and supports 1 to 5 ehannels. AC-3 supports 32, 44.1 and 48 kHz

sample rates and operates at at 32-640 kbit/s (overall bit rate). The AC-2 coding clelay

is 8-40 msec whereas the AC-3 coding delay is about 100 msec [86]. Figure 4.3 shows a

basic block diagram of the Dolby AC-3 encoder. The AC-2/AC-3 coders are based on the

MDCT. The length of the window is 512 points and for handling the attack transients a

window of 256 points is used. The coders use a Kaiser-Bessel-Derived (KBD) window in

order to have good stopband attenuation. For short blocks, only half of the long KBD

window (512 points) is used and hence there is no overlap between the short windows [87].
The Noise-to..Mask ratio (NMR) is calculated for each rvIDCT coefficient. The rvIDCT

coefficients are normalized by the spectral envelope and then scalar quantized. The step

size of the scalar quantizer is determined by the corresponding NMR.
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•
The AC-3 audio coder has been chosen as the audio system for the North America

high definition television (HDTV) standard and the standard for digital versatile dise

(DVD) [87]. AC-3 is also used in cable television and direct broadcast satellite [108].

4.2.3 Sony ATRAC Audio Coder

•

Adaptive Transform Acoustic Corling (ATRAC) was developed by Sony in the early 1990's

for Sony's rewritable minidisc [109, 110]. The merit of this coding paradigm is its relatively

simple structure which makes it suitable to be installed in portable low-cost products. The

ATRAC encoder takes in a 44.1 kHz stereo audio input and compresses it bya factor of 5,

while achieving transparent quality.

This coder uses a hybrid filterbank with a window adapted to the input signal, adaptive

bit allocation and scalar quantization to code the input audio. The main difference of this

coder from others is its filterbank. The time-to-frequency mapping has been designed by

cascading two quadrature mirror filterbanks. The first filterbank splits the input into equal

bands (0-11 kHz and 11-22 kHz). The second filterbank divides the lower band into equal

bands, i.e., 0-5.5 kHz and 5.5-11 kHz. This time-to-frequency mapping puts more emphasis

on the Low frequencies which are pereeptually more important. The three outputs of the

hybrid filterbank are transformed into the frequency domain using three MDCT filterbanks.

The MDCT coefficients are divided into groups and quantized using the masking threshold.
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Transform-domain Weighted Interleaved Vector Quantization (Twin-VQ) audio coder [111,

112, 113] is based on the MDCT. This coding scheme was a candidate for the MPEG-4 audio

standard and adopted as one of the tools for MPEG-4 audio at bit rates down to 16 kbit/s.

Figure 4.4 shows the structure of the Twin VQ coder. The input signal is transformed
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Fig. 4.4 Block diagram of the Twin VQ encoder [114].

into the frequency domain using an rvIDCT. Window switching is used to reduce pre-echos.

The quantization of the rvIDCT coefficients is done in two steps; first the coefficients are

flattened by the smooth spectrum wwch is calculated using quantized LSF coefficients. In
the second step, a Bark-scale envelope, which is predicted from the previous frames using

a moving average algorithm, is used to farther flatten the transform coefficients. Finally

the flattened coefficients are normalized by the corresponding power. The Twin VQ coder

employs a weighted interleaved VQ to quantize the normalized NIDeT coefficients. In

doing so, the processed transform coefficients are interleaved and split into subvectors.

Each subvector is quantized by a VQ using an LPC weighted distortion measure. This

quantization scheme is robust against channel errOIS as there is no adaptive bit allocation

nor entropy corling used in the coder. An earlier version of the Twin VQ operates at less

than 64 kbitfs. The recent version has a new module to extract the pitch from the input

signal and operates at 16 and 8 kbitfs [115] .
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The Moving Picture Experts Group (MPEG), established in 1988, is a working group of

the ISO/IEC (International Standards Organization/International Electrotechnical Com­

mission) which produces international standards for compression, decompression, and pro­

cessing of video and audio [116]. More specifica1ly, MPEG standardizes the syntax of the

bit streams and publishes a sample coder description [10].

There are three sets of MPEG audio coding algorithms: NIPEG-1 Layer 1/11/111, a mw­

tichannel extension of NIPEG-1 which is referred ta as MPEG-2 Be (backward compatible)

coders, 1'IPEG-2 AAC (Advanced Audio Coding) and MPEG-4 standard which incorpo­

rates 1'IPEG-2 AAC as weIl as a CELP coder and a low rate vocoder. Currently some other

mwtimedia standards are under development including MPEG-7 (a content representation

standard for information search) and MPEG-21 which will define a mwtimedia framework

ta support the delivery of electronic content [10].

• The standardization processes by the MPEG are done in different phases which include

different Layers. The Layers present a family of coders which differ in complexity and

coding efficiency. When going from one Layer to the next one the complexity increases

while the maximum compression ratio goes up.

The MPEG standards have been used in many applications such as broadcasting, stor­

age, multimedia and telecommunication, Digital Video Disc (DVD), Cable and Satellite

TV, IsnN links, Computer based multimedia, and Internet Radio. In the following we

briefly describe the audio part of the MPEG standards.

•

4.3.1 MPEG-1 Audio Coding Standard

MPEG-l [15. 116, 117, 55] include 3 Layers, Le., Layer I/II/Ill. The three Layers have

been defined to be compatible in a hierarchical way, i.e., a decoder designed for a higher

Layer is able to decode bit streams produced by a lower Layer encoder. The MPEG-1

audio standard deals with corling of mono or two-channel stereo audio inputs sampled at

32 kHz, 44.1 kHz and 48 kHz. The bit rate ranges from 32-448 kbit/s (Layer 1), 32-364

kbit/s (Layer II) and 32-320 kbit/s (Layer III). A block diagram of the MPEG-1 Layer

1/11 audio standard is shown in Fig. 4.5.

The MPEG-l audio standard is mainly based on three audio coders, i.e., PASC [119J,

MUSICAM [120J and ASPEC [104]. In MPEG-l Layers 1 and II, the input signal is de-
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Fig. 4.5 Block diagram of the MPEG-1 Layer l and Layer II audio en­
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composed using a 32-channel filterbank. The masking threshold is calctùated using a DFT

of 512 points in Layer l or 1024 points in Layers II and III (The NIPEG psychoacoustic

models have been described in chapter 2.). In Layers l and II, for each subband a set of

12 (Layer 1) or 36 (Layer II) consecutive samples are grouped. A scale factor is found for

each group as the maximum absolute value of the samples. AlI samples in each group are

normalized by the corresponding scale factor. The normalized coefficients are quantized

using nonuniform scalar quantizers (the step size is determined based on the corresponding

SrvIR calculated by the psychoacoustic model). NIPEG-l Layer III (known to the public

as MP3) is different from the previous Layers in many ways. Figure 4.6 shows a black

diagram of the IvlPEG-l Layer III encoder. In order to increase the frequency resolution

Fig. 4.6 Basic structure of the MPEG-1 Layer III audio encoder [118].•
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and the coding gain, a hybrid filterbank is used. In doing so, a 12-point or 36-point IvIDCT

is used to decompose each snbband signal. The selection of the length of the !vInCT is

made based on the perceptual entropy of the input signal. Although the hybrid filterbank

increases the coding gain, it causes serious leakage between frequency bands. In Layer III,
in addition to nonuniform quantizers, entropy coding is also used to reduce the bit rate. If

Layer III is used to deliver a fixed bit rate, a controlloop is employed to adjust the number

of bits assigned in the coding process.

4.3.2 MPEG-2 Audio Coder

IvIPEG-2 has been designed to meet the demands from the satellite broadcasting and cable

television industries. IvIPEG-2 is currently used in point to point audio links, digital radio

links in EUREKA 147 and direct satellite broadcasting [87]. This standard contains two

different work items. The first one is the extension to lower sampling frequencies, providing

better sound quality at low bit rates (below 64 kbit/s for a mono channel). This version of

IvIPEG-2 accommodates audio signals sampled at 16, 22.05, 24 kHz. The bit rate for this

version ranges from 32 to 256 kbit/s (Layer 1) and from 8 to 160 kbit/s (Layer II & Layer

III) [5].

The second work item deals with multichannel audio. The multichannei version of the

lVIPEG-2 standard (audio part) includes two corling standards, i.e., MPEG-2 (SC) [121]

which is backward compatible with the MPEG-l audio coder and the IvIPEG-2 AAC (Ad­

vanced Audio Coding) which is not backward compatible [16,52]. Both versions are able to

code 5-channel audio inputs plus one low frequency enhancement channel. However AAC

provides better audio compression relative to IvIPEG-2 BC. For 5-channel audio signaIs, it

has been shown in MPEG formallistening tests that IvIPEG-2 Al\C provides slightly hetter

audio quality at 320 kh/s than MPEG-2 BC can provide at 640 kh/s [10]. Since MPEG-2

BC is a multichannel extension of MPEG-l, we only describe the AAC version of MPEG-2

in the following section.

MPEG-2 Advanced Audio Coding (AAC)

IvIPEG-2 AAC [16, 52] is a state-of-the-art audio coding standard operating at less than

64 khit/s per channel far multichannel operation and accommodates 1 ta 48 channels.

AAC outperforms aU older audio coders snch as AC-3 and PAC. According to Soulodre et
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al [122], for stereo signaIs, the quality of AAC at 96 kbit/s is comparable to the quality of

PAC at 128 kbit/s and AAC at 128 kb/s is significantly better than PAC at 160 khit/s.

The main reason for AAC's superiority is that it uses a filterbank with a finer frequency

resolution that enables superior signal compression. Additionally, AAC uses a number of

new modules such as Temporal Noise Shaping (TNS) [94] and backward adaptive linear

prediction which enhance the corling efliciency. Compared with ~IPEG-1 Layer III (rvIP3),

AAC is approximately 30% more bit rate efficient due to the improvements implemented

by AAC including an improved filter bank, more efficient entropy coding, and better speech

encoding quality [10J.

There are three profiles for the AAC standard called the rvlain Profile, the Low Com­

plexity Profile, and the Scalable Sampling Rate Profile. The lVlain profile is used when

computation power and memory are not constrained. The Low Complexity profile does

not have ail the processing modules of the main profile and is for the applications in which

low complexity is a primary goal. The Scalable Sampling Rate (SSR) profile is meant for

scaling the bit rate.

Figure 4.7 shows the structure of MPEG-2 AAC. In the following we briefly describe the

processing modules of AAC. The input signal is preprocessed through a pseudo-quadrature

1
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Fig. 4.7 Basic block diagram of the lVIPEG-2 AAC encoder [52].

mirror filterbank. The gain of each bandpass filter in the filterbank is adjusted to reduce

pre-echo artifacts. An MDCT filterbank is used to decompose the input signal. The length

of the MDCT is either 2048 points (for a regular window) or 256 points for a short window.

Moreover the shape of the window can be switched between a sine window and a KBD

window.

A technique called Temporal Noise Shaping (TNS) is used in the frequency domain
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to model the envelope of the input signal in the time domain. This technique is similar

ta the weil known time-domain linear prediction technique. The difference is that the

prediction is performed in the frequency domain ta approximate the temporal envelope

of the input signal. As the linear prediction analysis models the signal spectrum in the

frequency domain, the TNS technique, which is done in the frequency domain, models the

the envelope of the signal in the time domain. By using this method, instead of quantizing

the rvIDCT coefficients, the difference of the coefficients and their predictions are quantized.

This technique is meant to reduce pre-echo artifacts through shaping the noise in the time

domain.

The prediction module uses second-order backward lattice predictors to remove addi­

tional redundancy from individual filterbank outputs. The prediction module increases the

complexity of the coder and hence is used in the main profile of the AAC. The quantizer

module employs nonuniform scalar quantizers to quantize the lVIDCT coefficients (If the

TNS module is activated, a differential scheme is used to quantize the residuals in the

frequency domain). The step sizes are determined by the corresponding SMR and the

rate/distortion control unit. Note that a psychoacoustic model similar to the model used

in the rvIPEG-l Layer III is used to calculate the SMR for each frequency band. After

quantization of the transform coefficients, the Noiseless coding module applies Huffman

corling to vectors of quantized coefficients.

4.3.3 MPEG-4 Audio

The previous MPEG audio standards concentrate on the coding of audio signals with

almost transparent quality. The lVIPEG-4 audio standard has been created ta support

different applications which range from intelligible speech to high quality multichannel

audio [25, 123, 10, 124] .

The lVIPEG-4 audio standardizes processing modules (tools) for natural and synthetic

audio coding at bit rates ranging frOID 2 kbit/s up to 64 kbit/s. A single coding technique

cannat accommodate both speech and audio at ail desired bit rates [125]. To achieve the

highest audio quality for a wide range of bit rates, three types of codees have been defined:

parametrie codees for mostly narrowband speech samples at 8 kHz at 2-4 kbit/s, CELP

codees for both narrowband and wideband speech at 4-24 kbit/s (up to 24 kbit/s for 8

kHz speech and 14-24 khit/s for 16 kHz speech), and Time-to-Frequency (T/F) codees for
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general audio signals at 6-64 khit/s per channel. MPEG-4 also defines tools to synthesize

sounds based on structured descriptions of audio data (also known as structured audio

coding) [18, 24]. Nloreover, 1tIPEG-4 provides bit rate scalability, complexity scalability

and multi-bit rate operation.

Figure 4.8 shows the basic encoder structure of the MPEG-4 audio standard. In the

following we briefly describe different parts of the 1tIPEG-4 audio structure and discuss

sorne of its features.
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• Fig. 4.8 Basic black diagram of the lVIPEG-4 audio encoder [126].

•

The TIF transform coder uses almost ail the modules of lVIPEG-2 AAC. Additionally,

to increase the compression efficiency, several other modules including the BSAC algorithm

(will be discussed in the foilowing paragraph), Twin-VQ quantization [111] for quantization

of spectral components at 6-16 kbit/s, perceptual noise substitution in the noise-like regions

of the spectrum [127], and long term prediction have been added ta the system.

One of the interesting features of MPEG-4 is bit rate scalability, meaning that only a

part of the incoming bit stream can he decoded ta reconstruct the output signal with lower

quality. Bit rate scalability is done in two ways: small step and large step scalability. The

bit sliced arithmetic corling (BSAC) algorithm provides small steps scalability. In the BASe

algorithm, aIl lVIDCT coefficients are quantized in such a way that the quantization noise

lies below the rnasking threshold. The binary representation of four adjacent quantised

coefficients are grouped together. Then the bits in the vectors are noiselessly encoded

according ta their significance, Le., first the most significant bits (lVISB) in each group,

up to the least significant bits. To produce a certain bit rate the encoder will use only

sorne of the noiselessly encoded vectors starting from the most significant subvectors. In

this algorithm, since there is no preference among the MSB of different groups, contrary
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to traditional adaptive transform. coding, the bandwidth is not reduced. AIso the bit rate

can be scaled to reduce the bandwidth of the reconstructed signal. For instance: at a bit

rate of 16 kbit/s: alll\tIDCT coefficients above 3.5 kHz will be discarded [87]. By using the

BSAC algorithm, the decoder can stop anywhere between 16 kbit/s and 64 khit/s with a

1 kbit/s step size [10].

In large step scalability a base layer bit stream produced by one core coder can be

combined with enhancement layer bit streams produced by other core coders to form. a

higher bit rate. For instance, a base layer bit stream produced by the CELP coder can be

combined with an enhancement bit stream produced by the T /F coder [125].

MPEG-4 provides the Structured Audio (SA) modules to synthesize audio signais at

bit-rates from 0.1 to 10 kbit/s [10]. The idea of the structured audio is that a description

of the sound is sent to the decoder to produce a similar sound. The description is created

using the Structured Audio Orchestra Language (SAüL) and Structured Audio Sample

Bank Format (SASBF) [125].

To code speech signais with a natural quality of the compressed signal, a CELP coder

is used. The reason to use a CELP coder comes from the fact that there is a big difIerence

between the performance of speech coders and transform. coders applied to speech for bit

rates below 24 kbit/s [125]. The CELP coder is used for bit rates of 4-24 kbit/s. For

bit rates of 2-4 kbit/s the Harmonic Vector eXcitation Corling (HVXC) [128], a sinusoidal

narrowband vocoder scheme, is used. l\tIPEG-4 also provides tools for the conversion of a

text to speech. The bit rate for this feature spans a range of 200 to 1200 bit/s.
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Chapter 5

Overview- of the NPAC Encoder

A block diagram of the Narrowband Perceptual Audio Coder (NPAC) is shown in Fig. 5.l.

The blocks are described in the following sections. We consider monaural audio signals

sampled at 8 kHz and bandpass filtered ta limit the spectrum ta between 50 Hz and 3.6 kHz.

An !vIDCT is used ta decompose the input signal inta spectral components. The masking

threshold is estimated and used in both the adaptive bit allocation and the quantizatian

of the transform coefficients.

5.1 Time-to-Frequency Mapping

A Ivlodified Discrete Cosine Transform (IvIDCT) [67] is used ta transfarm the audio data.

The IvIDCT provides critical sampling, perfect reconstruction and reduced block edge ef­

fects. There is a direct relationship between the MDCT and DFT [35] which implies that

the rvlncT coefficients represent the frequency content of the input signal. Nloreover,

FFT-like algorithms can be used to compute the MDCT.

Ghoice of MDGT window

For the rvlncT, windowing is used to select the portion of the input signal to analyze.

The length of the window is a compromise between long windows (high coding gain1
) and

short windows (better model transient behaviours and keep carling noise local). Since

the characteristics of audio signais vary with time, and since our coder is alsa intended

lCading gain measures the ability of a transform to concentrate the energy inta a few coefficients [74].
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for speech use, we choose a compromise analysis frame length of 30 msee, a period over

which speech signais can he considered to be pseudo-stationary. The encoder takes in 240

samples (120 samples from the previous frame and 120 new samples) and uses an NIDCT

to decompose the block of data. However, sharp transient sounds require a higher temporal

resolution. This issue is discussed later.

The shape of the time window used for the MDCT affects the frequency selectivity of

the filterbank. We need to trade off resolution in the main lobe versus high attenuation

of the sidelobes. A narrow main lobe keeps energy local to the NIDCT coefficients and

prevents loss of coding gain. The main lobe width should be less than the width of the

narrowest critical band (100 Hz). This choice makes it easier to control the perception of the

quantization noise and to compute the simultaneous masking thresholds more accurately.

On the other hand, the stopband attenuation should be high to reduce spectral leakage.

In the AC-2/AC-3 encoders [72], a KBD window with high stop band attenuation is

used. Although this window performs weIl for many audio signals, it has a poor frequency

selectivity that makes it unsuitable for low-pitch harmonic signais. In [16], in order to

accommodate a wider range of audio signais, the coder allows for switching between a

KBD window and a sine window.

In our coder, we use a single window type. We have designed the time window with a 50

Hz (lowpass prototype) bandwidth. The modulated response has a bandwidth of 100 Hz.

Although, for a window of 240 samples, the MDCT coefficients represent steps of 33.3 Hz,

the choice of 100 Hz allows us to enhance the stopband rejection of the window response.

This window gives an increased corling gain relative to the sine window.

Another approach to reconciling sorne of these conflicting requirements is to use non­

identical windows in the encoder and decoder. In [129], a better frequency response at

the analysis stage is obtained at the expense of a less tapered window at the synthesis

stage. The latter then adversely affects the transitions between blocks. In our work we use

identical anaIysis and synthesis windows.

Handling Transients

For high energy transient parts of the input signal, it is desired ta localize short bursts

of quantization noise to prevent them from spreading over a long period of time. We

handle this problem by switching to a shorter window when a strong jump in energy
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is encountered. As an alternative to switching to short windows at onsets, Herre and

Johnston [94] use Temporal Noise Shaping (TNS) to continuously adapt the temporal and

frequency resolution of the filterbank. The performance of this technique is yet to be fully

investigated when employed in an MDCT-based encoder.

Short windows reduce the carling gain and should be avoided when they do not improve

the coded signal quality. Since backward temporal masking lasts for about 4 msec while

forward temporal masking lasts for about 200 msec~ a distinction should be made between

rises and faIls in the energy of the signal. A simple criterion based on the relative positive

change in the energy of the input signal is used. In the time domain, a local estimate is

made of the change in signal energy. This is done by splitting the input frame into groups

of 3 time samples and calculating the energy of the samples in each interval. The maximum

positive change will be found as follows,

(5.1)

where ej is the energy of interval j. If r exceeds a threshold value, we switch to a shorter

window. Note that in order to maintain perfect reconstruction of the combined analysis

and synthesis stages, a start window is used to switch from long to short windows, and a

stop window switches back [15].

For the short windows we use a frame length of 10 msec (80 samples). Fig. 5.2 shows

the switching of the longer window to a series of shorter windows for a piece of music

containing a transient sound.

5.2 Masking

!vlasking is a property of the hearing system by which a weaker audio signal becomes

inaudible in the presence of a louder signal [17]. The masking depends both on the spectral

composition of the masker and the signal ta he masked as weIl as their variation with

time [32, 40]. In audio coding, the masker is the original input signal and the signal to be

masked is the quantization error.

The masking phenomena can be exploited to determine the best assignment for available

bits. Bits need only be assigned to the audible spectral components. On the average, more

than 50% of the transform coefficients are masked. For the remaining transform coefficients,
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Fig. 5.2 Window switching for a piece of music containing a transient sound.

the step size for the quantizers can be chosen in a way that the quantization noise lies below

the masking threshold.

5.2.1 SiInultaneous Masking

There are many models for computing the simultaneous masking (masker and maskee

present at the same time) threshold [17, 15, 51, 32]. Since the ~IDCT is employed to de­

compose the input signal, we use a modified version of the model proposed by Johnston [51]

which is based on the work by Zwicker [17] and Schroeder et al [32] to calculate the masking

threshold corresponding to the MDCT coefficients.

The masking calculation consists of the following steps:

• Calculate the Bark energy spectrum.

• Convolve the Bark energy spectrum with the spreading function to give the excitation

curve.

• Subtract an offset (dB) depending on a tonality factor from the excitation curve to

give the masking level.
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The Bark spectrum is derived from the frequency spectrum with a non-lïnear transformation

of the frequency variable. This gives a measure of the distribution of energies with respect

to the critical band numbers. The Bark spectrum is convolved with the spreading function

ta give an excitation level.

Masking level calculation

The masking threshold is derived from the excitation level by subtracting an offset (in dB)

to give the masking level. The offset value depends on whether the signal is tone-like or

noise-like.

In contrast to [51] in which a spectral flatness measure is used to identify the nature

of the whole frame, we take another approach based on the predictability of the transform

coefficients in each critical band. Note that most audio signals have a noise-like structure

• at high frequencies despite the fact that they may have a strong harmonic structure at low

frequencies. Considering this fact, it wotùd be more accurate to identify the nature of the

spectrum locally. The tonality factor will he calculated for each critical band using the

predicted value of the CUITent subvector [15],

•

XCi) = 2XCi-1) _ X Ci - 2).

The relative prediction error is calculated as

The relative prediction error will be converted ta a tonality factor according to [15]

a = minCI, max(-0.3 - 0.43 log(5) , 0)).

The offset value is determined by the tonality factor [51]

Loffs(j, a) = a(14.5 + j) + 5.5(1 - a),

where j is the index of the critical band.

(5.2)

(5.3)

(5.4)

(5.5)



• 5 Overview of the NPAC Encoder 91

The masking level can then he calcuIated. However, the masking threshold should be

adjusted to take into account the absolute threshold of hearing.2

MDGT Masking Threshold

Since the masking threshold is calculated hased on the D FT, this masking threshold must be

modified for use with the MDCT coefficients. Consider the following relationship between

the DFT and MDCT coefficients, [35],

C(k) = aIS(k)1 cos((M +:1i2k + 1) - LS(k)). (5.6)

where S(k) is the Fourier transform of the modulated windowed input signal (2Atf values)

and C(k) is an MDCT coefficient. If mDFT(k) is the masking threshold corresponding to

the kth DFT coefficient, then in order to have the same Signal-to-lvIask Ratio (SivIR) at

• any coefficient in the DFT and MDCT domain, the following relation should hold:

The masking thresholds are then related as foliows,

(k) - 2 (k) 2 (1T(NI + 1)(2k + 1) _ S(k))
m MOCT - M m OFT cos 4M L.

5.2.2 Temporal Masking

(5.7)

(5.8)

•

Temporal masking occurs when tones occur close in time, but not simultaneously. A signal

can be masked by another signal that occurs later (premasking). In addition, a signal

can he masked by another signal that ends before the signal begins (postmasking). The

duration of premasking is less than 5 msec, whereas that of the postmasking is in the range

of 50 to 200 msec [2]. Since incorporating the backward masking of the hearing system into

the coder introduces delay with little gain in compression, we neglect that effect and just

exploit the forward masking.

We have used the following model which was proposed in [50] as it takes both the effect

2To make full use of the absolute threshold of hearing, the reconstructed signal should be played back
at the same or lower level than the original.
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of the frequency and the level of the masker into account:

mt(!, L) = cr + /3 exp(- JI,),

92

(5.9)

where mt is the temporal masking in dB, L is the sound (masker) level of the previous

frame in dB, f is the frequency in Hz and cr, /3" are three parameters to be found from

experimental data. In [50] three expressions have been fitted to the experimental data for

cr, {3, ,. In this work, we consider the temporal masking if the masker level is more than

30 dB. Based on this assumption and the data given in [50] we have found the foilowing

expressions for the above-mentioned parameters:

The data reported in [50] indicate the level of the temporal masking at 20 msec after the

masker. Although the time interval between successive frames in our coder is 15 msec,

and hence the temporal masking level will be underestimated using this formula, we have

chosen to use it in order ta be conservative. In the coder, we calculate the temporal masking

for each critical band. In doing so we assume that ail the energy in each critical band is

concentrated in the center frequency (except the first band for which we set f to 100 Hz)

and the sound level is due ta the contribution of ail the coefficients in the band. This way,

for each frame we calculate the masking threshold at 17 points. If the masking threshold is

greater than the sound level in any band, we assume that ail the coefficients in that band

are masked. If the transform coefficients are not completely masked, the masking threshold

will be equaily divided among the coefficients.

•
cr = 0.OOlL2 + O.2267L + 17.7142,

{3 = -0.0047L2 + 1.2256L - 24.32548,

, = -0.0002L4 + O.0546L3
- 5.4685L2 + 234.7411L - 3325.0350.

(5.10)

5.2.3 Calculation of the Combined Masking Threshold

We use a power-Law rule as follows [50] to combine the temporal and simultaneous masking

thresholds

• m - (mP + mP){l/p)net - 1 2 , (5.11)
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•

•

where mnet is the net masking threshold due to two masking thresholds ml and m2' Ac­

cording to [50], a value of 0.3 for parameter p is found to be the best match to experimental

data.

5.2.4 Verification of the Masking Models

In order to verify the masking models, the masking thresholds for several audio signais

were computed. After replacing the masked coefficients by zeros, there was no perceptual

difference between the original and reconstructed signais. If we artificially increase the

level of masking to have about 80% of the transform coefficients masked, the quality of

the reconstructed signal is still good. This experiment shows that we can concentrate on

reproducing the perceptually important spectral components.

5.3 Quantization of the Transform Coefficients

In our coder, we decompose subbands of the transform coefficients into gains and shapes.

Then a VQ scheme along with perceptually-based bit allocation is used to quantize the

shape vectors. To quantize the gains (scale factors), a predictive/non-predictive scheme is

used.

5.3.1 Quantization of the Shape Vectors

One way to accomplish good quantization is to consider the characteristics of the hearing

system such as masking phenomena and limited temporal and frequency resolution. Due to

the limited number of bits available for coding the transform coefficients, vector quantiza­

tion is used rather than scalar quantization. We would like to quantize and transmit only

unmasked transform coefficients. This approach would require additional bits to identify

the masked/unmasked coefficients to reconstruct the audio signai at the receiver. Instead

of doing so, we employ a split adaptive VQ scheme to quantize the transform coefficients.

The bandwidth division is based on the critical bands. The reason for the perceptually­

based band division comes from the fact that the sensitivity of the ear is higher at lower

frequencies which implies a higher frequency resolution at lower frequencies. We incorpo­

rate the masking threshold while vector quantizing the coefficient without transmitting any

information about the masking pattern.



• 5 Overview of the NPAC Encoder 94

We use a modified version of the LBG algorithm [102] with the perceptually-based

distortion measure (defined in Chapter 4) to design the codebooks [33]. The same error

criterion is used to select the best codewords. For a normalized vector K n and the jth

codeword X0 )

(5.12)

where lDn is the vector of normalized masking thresholds corresponding to K n . The nor­

malized energy of the audible noise is calculated by

where K is the dimension of X n • The centroid of each Voronoi region is determined by

rninirnizing the normalized energy of the audible noise as follows•

K

D(Xn , XCi}) = L max(d(k), 0),
k=l

1

X~~t = argmin L D(X~i), XU»),
x(j) i=l

(5.13)

(5.14)

where 1 is the number of the vectors in region j.

At very low bit rates, it is not possible to have transparent coding. Since the quanti­

zation noise level often goes above the masking threshold, it is appropriate to shape the

quantization noise inside each band. Therefore, we may modify the error criterion as follows

cl (k) = (IXn(k) - xU)(k)1
2

- mn(k) 0)
w max X~(k) + lDn(k) "

K

(j) ""'Dw(Xnl X ) = L.., dw(k),
k=l

(5.15)

•
where Dw is the total weighted quantization noise above the normalized masking thresh­

old. By making this modification, we allow the audible quantization noise to get shaped

according to the distribution of energy inside a critical band.
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Memory Reduction for Storage of the Codebooks
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•

•

Vector quantization needs a lot of memory space to store the codebooks. Solutions to

this memory problem have been addressed in the literature [130]. In this work, we have

dealt with this problem as follows; in the process of training the codebooks, a number of

codebooks with different lengths of power 2 for each critical band are trained (the number

of the codebooks depends on the maximum number of bits assigned to the corresponding

band). We use these codebooks along with an adaptive bit allocation scheme to assign a

variable number of bits to each subvector. We investigated different ways to reduce the

memory required to store the codebooks with little loss of quality. In one approach, we

find the closest codewords of the largest codebook to the codewords of the second largest

codebook (in the mean square sense). Then we order the codewords of the larger codebook

to put the selected codewords at the top. We do the same procedure for other codebooks to

end up with an embedded codebook for each band. (Note that in each step, in order to find

the closest codewords from the largest codebook ta the codewords frOID a cadebook with

length 2k we take the first 2k + 1 codewords.) By doing so, we reduce the required memory

by 50% with very little loss of quality.

Another approach that we have taken in the proposed coder is to use the largest code­

book to code a long set of training vectors. Then based on the frequency of selection of

the codewords, we arder the codewords to have the most often selected codewords at the

top of the codebook. The resulting codebook shows almost the same performance as when

we use separate codebooks to quantize the subvectors. To further reduce the memory, the

bands with the same number of coefficients can share the same codebook with little loss of

quality.

5.4 Predictive VQ of the Scale Factors

The transform coefficients in each critical band are normalized by the corresponding square

root energy which must be transmitted to the receiver as side information.

There exists a high level of similarity among the gain vectors. This similarity is due

to the 50% overlap hetween successive frames which causes the spectra ta be highly cor­

related. This inter-frame correlation can he efficiently exploited hy applying a predictive

scheme to quantize the scale factors. Shoham in [131] uses the previous few quantized
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•

vectors ta estimate the CUITent vector. However, processing several past frames makes the

prediction scheme more vulnerable to channel eITors and also the similarity between the

CUITent spectrum with the past ones reduces as we go farther backward. In this work we

consider only the previous quantized spectrum to estimate the CUITent frame. In the coder,

a predictive/non-predictive VQ scheme is used in the log domain to quantize the scale

factors. Since the level of similarity between successive vectors containing the scale factors

are varying according to the nature of the signal, we use the spectral distortion measure

to choose the appropriate scheme in the way that the predictive scheme is employed when

the root mean-squared difference of the CUITent and previous vectors is less than 6 dB,

otherwise the vector of scale factors will be quantized directly. This coding strategy is

compatible with the mechanism of the hearing system; in steady parts of the input signal

such as voiced speech we need finer quantization of both spectral shapes and gains, whereas

for ;unstructured' or noise-like parts more coarse quantization is adequate. This aIso can be

justified through the masking property of the hearing system. As is weIl known, the mask­

ing threshold in the case of tone-masking-noise is lower than that of noise-masking-noise.

For that reason, we need finer quantization for pseudo..periodic parts of the input signal.

In the predictive scheme, we quantize the vectors containing the scale factors through the

following steps (note that all these steps are performed in the log domain.),

• Calculate the mean value of the scale factors

17

1 "" {il
J.Li = 17 L...J 9j ,

j=l

where 9Y} is the log gain of band j at time index i.

• Remove the mean value from the scale factors

(5.16)

(5.17)

•
where g(i} is the gain vector.

• Quantize J1.i using a differential quantizer.

• Predict the CUITent normalized vector from the previous normalized vector using the
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best prediction matrix

Popt = argmin(g:) - p~i-l»),
p

-Ci) _ P -(i-l)
~ - opt~ ,
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(5.18)

where P is the prediction matrix, g!:-l) is the mean-removed quantized version of the

previous vector and g~) is the prediction of the normalized current vector.

• Form the difference vector

(5.19)

•

•

where Pi is the quantized mean value of the CUITent vector.

• The difference vector will be quantized using a two stage VQ.

This approach leads to fine quantization of the scale factors in steady state parts of the

input signal which is highly desirable for high quality of the coded signal. A total of 37

bits is used to quantize the scale factors. For computational reasons, we limit the size of

the codebooks to 2048 codewords. For the predictive scheme, 6 bits for the mean value, 9

bits for the predictor selection and 2 x Il bit 2-stage VQ for the difference vectors.

In the nonpredictive scheme, the vector of scale factors is normalized (in the log domain).

The normalized vector will be vector quantized using a codebook of 2048 codewords. In the

next step the best estimator matrix is selected out of 64 matrices to estimate the CUITent

normalized vector based on the observation of the best codeword selected in the first step.

Then the difference vector will be formed as it is done in the predictive scheme. Finally the

difference vector will be quantized using a codebook of 2048 codewords. Note that 9 bits

is spent to quantize the mean value. For a large set of test vectors, the average spectral

distortion for steady state frames using the predictive scheme was less than 1.5 dB and for

the rest using the non-predictive scheme it was 2.5 dB; the number of quantized vectors

with spectral distortion above 4 dB was almost zero.

5.4.1 Design of the Predictor Matrices

The predictor matrices are designed to mjnjmize the average spectral distortion between

the normalized gain vectors and the predicted vectors. We take a long training set and will
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find the predictor matrices using a modified version of the Lloyd algorithm. First we design

one predictor matrix for the whole training set and then hy perturbing the first matrix and

also performing an iterative procedure, we will find new predictor matrices. This procedure

will go on until the desired number of predictor matrices are found. For each suhset of the

training set (corresponding to a predictor matrix), we find the optimal predictor matrix

through the following optimization procedure:

(5.20)

•
where R j contains the time indexes of the vectors belonging to the jth region. Note that, in

order to perform the optimization, we need to have the quantized vectors. To overcome this

problem, we use the quantized vector obtained through the nonpredictive method and then

refine the predictor matrices by repeating the optimization procedure. In each iteration we

use the finer quantized value for g~-l} obtained in the previous iteration.

By using the orthogonality theorem, we find the solution to the optimization problem

as follows

pU} = nCi}(Rü})-l
opt ~"'Ol 11 1 (5.21)

•

where ag> is the summation of the cross-correlation matrices of the CUITent and quantized

previous vectors in Voronoi region j. RH? is the summation of the autocorrelation matrices

of the quantized previous vectors in the same region. We continue the iterations until the

required number of predictor matrices are found and the change in the average spectral

distortion becomes less than a threshold.

5.4.2 Modification to the Predictor Matrices

By looking at the predictor matrices, we note that the magnitude of the matrix entries

decreases as they are farther from the main diagonal. As a matter of fact, each component

in the CUITent vector will he predicted mainly by the corresponding and a few adjacent

components of the previous quantized vector. We exploit this fact in order to set the

far-off diagonal elements of the predictor matrices to zero. By doing so, we reduce the

computation load and also the memory for the storage of the predictor matrices. In order

to find the predictor matrices, we have to reformulate the optimization procedure. For an
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example, we assume that the main diagonal and its adjacent diagonals are non-zero and

the rest of matrix entries are set to zero. We can easily generalize the following formulation

for any number of non-zero cliagonals;

~) = pg;:- L) ,

where P is the predictor matrix defined

(5.22)

PI,l PI,2

P2,1 P2,2 0

P= (5.23)

0 PLG.17

Pli,1G P17.17

(5.24)

(5.25)
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•

and

PI,l

Pl,2

P2,1

P2,2

P2,3

c= (5.26)

P16.15

P16,16

P16,17

P17,16

Pl7,17

We have to find c to minimize the spectral distortion for each subset (Voronoi region) of

the training set

cU) = arg min '"'" (g(i) - G·ê(j»)opt L.J n 1 ,

c(j) ieRj

c~Jt will be the solution to the following linear equations

(i) _
ACopt - y,

where

A= L:G~Gi'
iERj

y= L:G~~).
iER;

(5.27)

(5.28)

(5.29)

•
It is easy to show that A is a positive definite matrix and therefore we can use the Cholesky

method to solve the linear equations. Figure 5.3 shows the average spectral distortion for

different predictor matrices as a function of the number of matrices. As it can be observed,

there exists a significant gap between the upper curve which corresponds to the diagonal
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predictor matrix and the other predictors. This is due to the fact that other predictor

matrices exploit the lateral correlation among the components of the gain vector. At low

rates, the performances of the preclictors (except the single diagonal predictor) are almost

the same, but as the number of predictors increases, the performance of the predictor

scheme can be enhanced at the cost of a higher computation load and larger memory

storage for the predictors.
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Fig. 5.3 Average spectral distortion versus the number of predictor matrices
(from top to bottom) with 1, 3, 5, 7, 9, Il, 13 and 33 non-zero diagonals. The
lowest curve corresponds to the predictor matrix with ail non-zero diagonals.

where v is the impulse response of the noncausal predictor filter and * denotes convolution.

In order to lower the computation load and required memory, we have investigated a

special case of the above-mentioned procedure in which aIl the predictor matrix entries

on the same diagonal are equal. Viewing this approach frOID a filtering perspective, we

convolve the quantized previous gain vector with a noncausal FIR filter to estimate the

CUITent vector. In the foIlowing, we examine this approach to obtain the optimization

procedure. The current vector is predicted as follows

• ~) = v * g~-l), (5.30)
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For simplicity, like the previous algorithm, we consider only the predictor filters with three

non zero elements. The following formulation can easily he generalized for the predictor

filters with more than three non-zero elements;

(5.31)

where

V2 V3 0

Vl V2 V3

p= (5.32)

• 'U3

0 Vl V2

Rewrite Eq. 5.32

Figure 5.4 shows the average spectral distortion for different predictor filters as a function

of the number of predictors. Like the previous approach, there exists a gap between the•

g-(i) = G.v
nt'

V~dt = arg min L (~) - G(v(j») ,
v(J) iER

j

(j)
V opt will be the solution ta the following linear equations

(j)AVopt = y,

where

A= LG~GÏ7
iERj

Y = L G~g~i).
iER,

(5.33)

(5.34)

(5.35)



• 5 Overview of the NPAC Encoder 103

upper curve which corresponds ta the predictor filter with length 1 (single scalar predictor)

and the other predictors. At low rates, the performances of the predictors (except the

single diagonal predictor) are almost the same, but as the number of predictors increases~

the spectral distortion reaches a saturation value for short filters but for long filters it

decreases linearly with increasing number of predictors. Also the rate of decrease in the

prediction error becomes smaller as the filter length ïncreases. That is expected as there

is not a significant correlation between widely-separated components of the gain vectors.

Compared ta the first approach, for the same number of predictors, the prediction error is

higher in the second approach. This is expected as we assume the same predictar filters ta

predict ail entries of the CUITent gain vector, whereas in the first approach we use different

predictor filters to predict different entries of the CUITent gain vectors.

8 16 32 64 128 256 512
Number of predictors

42
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1
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•

Fig. 5.4 Average spectral distortion versus the number of predictor filters
with length (from top to bottom) 1, 3, 5, 7, 9, 17.

•
5.5 Gain Adjustment

In low rate coding, there are not enough bits to finely quantize the perceptually important

coefficients. In this coder we propose the follawing procedure ta reduce the quantization



where p is the gain adjustment factor, X, X are the original and quantized vectors of

transform coefficients, m is the corresponding masking threshold and K is the dimension

of the subvector. This optimization procedure gives the optimal p to rnjnimize the audible

difference between the input and output vectors. To find the optimal adjustment factor we

have to do the optimization procedure for each critical band which considerably increases

the computation load. Sînce in low rate coding the quantization noise in most bands is

above the rnasking threshold, we take a suboptimal approach to decrease the computation.

First we ignore the rnasking threshold

•

•
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errors by adjusting the gain in each critical band;

K

Popt = argminE max((X(k) - pX(k))2 - m(k), 0),
P k=l

K

Popt ~ argmin E(X(k) - pX(k))2.
P k=l
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(5.36)

(5.37)

•

The resulting p will be optimal in the squared error sense but suboptimal in a perceptual

sense. Note that sorne critical bands are totally or partially masked and therefore there

is no need to lower the quantization noise energy below the masking threshold. In those

bands, the adjustrnent factors are sometimes found to be as large as 1000. To handle

this problem and also limit the dynamic range of the adjustment factor we have chosen a

range of 0.5 to 2 for this factor. Our experirnents have shown that without quantizing the

adjustment factors and with the limited range of values there is a significant improvement

in the quality of the decoded signal. The quality enhancement is achieved at the cost of a

higher rate and a little more computation. The usua! trade off between quality and rate

manifests itself here. With an overhead of less than 2 kb/s, the adjustment factors (vectors

of 17 components with the limited dynamic range) cao be finely vector quantized. By using

this method, the quality of the decoded audio signals even for speech has been judged good

to very good.

Although this block of the encoder adjusts the gains, it cannot be integrated into the

gain quantization black. The quantized gains are needed for the bit allocation block whereas

the gain adjustment factors are found after performing the bit allocation and shape quanti­

zation. However, if the roughly-quantized gains (output of the first stage gain quaotization
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•

•

VQ) are used for the bit assignment, this block can be absorbed into the second stage VQ

of the gain quantization block. This way the rate can be reduced at the expense of accuracy

in the bit allocation.

5.6 Quantization of the Transform Coefficients in Short Frames

When a short window (80 points) is used, a number of changes occur. For a short window,

40 CUITent samples and 40 previous ones are used. The ~IDCT unit generates only 40

transform coefficients. Although the number of the critical bands remains constant at 17,

the distribution of the ~IDCT coefficients within the bands changes. In this case, sorne

low frequency critical bands have only one coefficient. The 17 critical bands are combined

into 7 aggregated bands. This aggregation is performed so that the vector quantization in

split VQ can always operate on code vectors of dimension greater than one. Changes in

the quantization procedure are required to handle the aggregated bands. A single gain is

calculated for each aggregated band. To quantize the spectral shape vectors, the masking

threshold is calculated as for the large frames and then used for the corresponding transform.

coefficients inside an aggregated band.

Since there is little or no similarity between the gain vectors of the consecutive short

frames, the gain vectors of dimension 7 are quantized in a nonpredictive manner. In the bit

allocation process, because of a rather noise-like nature of the signal in the transient parts,

we assume that the masking threshold is 5 dB below the gain in each aggregated band.

5.7 Adaptive Bit Allocation

In traditional transforrn coders, bit assignment is done based on the distribution of the

signal power in the frequency domain aiming at minimizing the total noise power. Since

for most audio signals power is concentrated at low frequencies, few bits are assigned ta

high frequency components. This leads to an output signal wmch suffers from lowpass

effects. In addition to that fiaw, the masking phenornena are not fully taken into account

which often results in allocating bits to the transform coefficients which are masked.

The aforementioned argument underlines the importance of shaping the noise spectrum

based on perceptual principles. Using an adaptive bit assignment based on the perceptual

importance of the subbands, the corling noise can be shaped to be less audible than a noise



• 5 Overview of the NPAC Encoder 106

•

•

with the same energy without noise shaping. Noise shaping can provide high cading quality

without requiring a high (conventional) SNR.

In low rate corling of audio signals, due to the scarcity of bits, unmasked quantization

noise (audible noise) is often inevitable. The final goal in low rate corling is to deliver

acceptable quality with no annoying artifacts. This contrasts with the requirement for

transparent coding in high rate wideband audio coding. Two different strategies cau be

considered to shape the audible noise spectrum [132]. In one approach, the quantization

noise spectrum is shaped in parallel with the masking threshold curve. This way the

audible noise is equally audible in different frequency bands. An alternative approach is to

generate a fiat noise spectrum above the masking threshold. According to [132, pp. 427­

428], these two approaches are different in terms of auditory object formation. In the first

approach, the quantization noise has a temporal modulation similar to that of the input

signal. Therefore, the input signal and the noise will be perceptually fused to form one

auditory object. In the second approach, the noise power is not equally distributed over

the frequency range; hence it is audible to various extents at different frequencies. This

way, the noise remains perceptually distinct from the input signal.

In our coder bit assignment is done both at the transmitter and the receiver using

the quantized gain factors. From the quantized gain factors the masking thresholds are

calculated. Note that for each band we need to specify the offset value which is subtracted

from the excitation level (in the log domain) in order to obtain the simultaneous masking

threshold. The offset value depends on whether the spectrum in each band is tone-like or

noise-like. At low bit-rates we cannot afford to code the offset value for each band. However

we do distinguish between two cases. In one case the input block of data has a harmonic

structure which implies that the spectrum is more tone-like. In the other case the input

has a more noise-like spectrum.

In order to distinguish between the two cases, in our implementation we use the same

flag which is used in gain quantization to select either the predictive or nonpredictive

schemes. When the fiag is on, we suppose that the input frame is tone-like. Since for

many audio segments, the signal is more tone-like in the low frequency bands than the high

frequency bands, we assume higher offset values for the low frequency bands. By doing 50,

we assign more bits to the low frequency bands to maintain the pitch structure of speech.

In each band the distance between the energy and the masking threshold is upper bounded

by the offset value (in dB). Hence the maximum number of bits allocated ta each band
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is determined through dividing the corresponcling offset value (in dB) by the distortion

reduction rate (see the following section). For those frames for which the flag is off, we set

the masking threshold for all bands 8 dB below the excitation level. Fig. 5.5 shows the

offset values and the maximum number of bits alloeated to each transform coefficient in

different frequency bands.

In the case of short frames, since the input signal contains a transient and therefore

does not have any harmonie structure, we simply set the masking threshold 6 dB below

the spread Bark speetrum.
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Fig. 5.5 Offset values for calculating the masking threshold (top) and cor­
responding maximum number of bits per coefficient (bottom) for tone-like
frames (solid lines) and noise-like frames (dashed lines).•
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Critical Band Rate-Distortion Curue

In order to perform bit assignment we need the rate-distortion relationship for each code­

book. A large set of vectors is used to measure the average distortion for different numbers

of bits. Although for any rate-distortion curve a "greedy algorithm" can be used to perform

the bit assignment3
, we have noticed that the rate-distortion data can be weil represented

by a line fitted to the experimental data. As an example Fig. 5.6 shows the rate-distortion

data for the codebook corresponding to critical band 2 which contains 3 coefficients. The

slope of the line which has been fitted to the curve is -2.8 dB/bit. Note that aU shape

vectors in the test set are normalized and distortion is defined as the average energy of the

quantization noise in decibels.
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Fig. 5.6 Rate-distortion data for the embedded codebook corresponding to
critical band 2 which contains 3 coefficients and its linear approximation.

•
Table 5.1 shows the slope of the lines fitted to the experimental data for the embedded

codebook for each band. The correlation coefficient between the experimental data and

the fitted line verifies the accuracy of the linear approximation.

3The distortion must be a convex function of the bit numberso
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Table 5.1 Slope of the rate-distortion tine and the correlation between the
experimental data and the linear approximation for different critical bands.
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Band Number of Slope Correlation
coefficients (dB/bit) Coefficient

1 2 4.9 0.998
2 3 2.8 0.999
3 3 2.9 0.999
4 3 2.9 0.999
5 3 2.9 0.999
6 4 2.1 0.999
7 4 2.1 0.999
8 5 1.6 0.998
9 5 1.7 0.998

10 5 1.7 0.999
Il 7 1.2 0.999
12 7 1.2 0.998

• 13 8 1.0 0.997
14 10 0.9 0.998
15 12 0.8 0.998
16 13 0.7 0.999
17 13 0.7 0.999

5.7.1 Signal-to-Mask Ratio (SMR)-based Bit Allocation

In this approach bit allocation is performed based on the Signal-to-NIask Ratio (SMR).

This way, the resulting noise spectrum will be parallel to the masking threshold curve.

Each critical band is considered as a single entity with its corresponding SMR. The SMR

is equal to the SNR when the quantization noise is at the threshold of audibility, Le., when

the noise level is at the masking threshold. The SNIR for each band is calculated in the

following manner

SMR · = Ê· -T·'J J J' (5.38)

•
where Ê j is the quantized log energy in band j, and Tj is the log masking threshold in

that band. We assume that the initial distortion (in the log domain) for each band is equal

ta the carresponding SrvIR. A "greedy algorithm" 4 using the rate-distortion data can be

4Note that the total distortion is a convex function of the bit numbers.
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employed to assign one bit at a time to the band with the largest (updated)Noise-to-Mask

Ratio (NMR). After assigning one bit to that band, its N!vIR on the average decreases by

the amount given by the corresponding rate-distortion curve.

As a shortcut, a linear approximation of the rate-distortion data along with the values

of S!vIRj's can be used to allocate bits to each band according to the following formula

(5.39)

•

where n contains the indices of the bands with positive SNIR and br is the total number

of bits available to quantize the shape of the frequency spectrum within the critical bands.

The slope of the rate-distortion line, Àj , indicates the approximate reduction in the Noise­

to-!vIask Ratio (NNIR) for one bit assigned to band j. Note that no bits are assigned to

those bands whose SrvIR is negative. After the first round of bit allocation, the fractional

parts of bj 's will be discarded to leave the integer parts. Therefore the total number of

bits allocated in the first step will be less than br. To allocate the remaining bits, the

Noise-to-!vlask Ratio (N!vIR) is approximated for each band taking into account the bits

already allocated in the first step,

(5.40)

•

After calculating the value of NMR's, one bit at a tirne is allocated to the band with the

largest value of the updated NMR. This process will continue until ail remaining bits are

allocated.

5.7.2 Energy-based Bit Allocation

In the energy-based approach, bit assignment is performed based on the energy above the

masking threshold. The distortion is considered as the audible part of the quantization

noise, i.e., the noise above the masking threshold.

The level of audible noise will be relatively higher in the spectral valleys due to the fact

that there is less energy above the masking threshold there than in regions corresponding

ta spectral peaks. We consider two schemes to minimize the audible noise. In the first

scheme the maximum of the distortion in the critical bands is rninimized. In the second
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scheme the total audible noise is rnjnimized.

Mini-Max Scheme

The mini-max bit assignment is done through the following optimization procedure
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arg min(max(Dj(bj ))) subjectto
bj

(5.41)

•

where Nb is the number of bands, br is the total number of bits available for each frame

and Di is the noise above the masking threshold.

We use a "greedy algorithm" to do the bit assignment. After each bit assigned, the

distortion is updated. This way, one bit at a time is assigned to the band with the largest

updated distortion.

Total Audible Distortion Minimization Scheme

The scheme mjnjrnizes the total audible distortion. Therefore the optimization objective

function changes to

Nb

argminL Di subjectto
bi i=l

(5.42)

According to this approach, one bit at a time goes to the band which results in the largest

reduction in distortion. This algorithm can be performed using either a greedy or an

analytical approach. In the analytical algorithm, the energy above the masking threshold

is related to the audible distortion through the following empirical formula

(5.43)

•
where Di is the energy of the audible noise in band i, &i is the energy above the masking

threshold, Ci and {Ji are constants found from the corresponding rate-distortion curve for

the codebook of band i .



• 5 Overview of the NPAC Encoder

The solution ta the above is given by

where
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(5.44)

(5.45)

•

•

The integer parts of the b/s are kept and the remaining bits will be distributed one at a

time ta the band which reduces the total distortion the most.

5.7.3 Comparison and Subjective Evaluation of the Bit Assignment

Algorithms

Figure 5.7(a) shows the power spectrum and the Bark power spectrum of a frame ofvoiced

speech on the Bark scale. The Bark power spectrum. is convolved with the spreading

function ta obtain the excitation pattern. The excitation and the masking curves are

shown in Fig. 5.7(b). As it is seen in Fig. 5.7(b)! the offset level, which is subtracted from

the excitation pattern! is larger at the low frequency critical bands. Notice that in bands

2! 4, 6 and 7 the energy fails below the masking threshold. The number of bits allocated to

different critical bands using the two bit assignment algorithms is shawn in Fig. 5.7(c) and

Fig. 5.7(d). Comparing the two bit allocation algorithms, we notice that the energy-based

algorithm (Fig 5.7(d)) allocates more bits to the bands with a large energy (for instance

bands 1~ 3~ and 5). Both algorithms assign zero bits ta the bands whose energy is below

or almost below the masking threshold (bands 2~ 4, 6, and 7). Note that in this example,

sinee we have made the ealeulations for a single frame of data~ we have ignored temporal

masking effects.

To evaluate the bit assignment algorithms, we performed informallistening tests. We

used the perceptual bit assignment schemes, i.e.~ energy-based approach (the mini-max

scheme and the rninimization of the total distortion scheme) and the SMR-based algorithm

ta eompress two speech files (male and female) and two pieces of music (soprano and guitar).

In the experiments the proposed narrowband pereeptual audio coder (NPAC) was used.



• 5 Overview of the NPAC Encoder 113

LOO r--....---~----.--- .........---.,

3700250 500 1000 2000
Frequency (Hz)

0L...--...6---'""'-----......------'''''''---~

o

80

20

60

40

LOO.-----....----~----------,

ca
"'0

3700
OL--'""'------------L..."""----L~

o 250 500 LOOO 2000
Frequency (Hz)

20

80

60

40

ca
"'0

•
3 5 7 9 LL L3 L5 17

Critical Band

(a) Power spectrum and Bark power spec­
trum (bold curve).

3 5 7 9 11 13 15 17
Critical Band

(b) Bark power spectrum (bold curve), excita­
tion curve (dotted curve) and masking curve
(thin curve).

L2
"'0
C

10=ca
100
lU 8Q.

~= 6
t-
0
100 4
~e 2='
Z

3 5 7 9 Il L3 L5 L7
Critical Band

12
"'0
C

&5 la
100
lU 8Q.

~

= 6
c-o... 4
~e 2='Z

3 5 7 9 Il 13 15 17
Critical Band

(c) SMR-based bit allocation. (d) Energy-based (mini-max) bit alloca­
tion.

•
Fig. 5.7 Power spectrum, Bark power spectrum, excitation and masking
curves for a frame of voiced speech. The lower plots show the bit allocation
using the SMR-based and the Energy-based algorithms.
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Operating at 8 kb/s (120 bits per frame), the coder assigns 81 bits to 17 bands to quan­

tize the spectral shapes. The unquantized adjusted gains5 were used to de-normalize the

quantized shape vectors.

In the first test~ we examined the impact of masking effects on the quality of the decoded

signals. In that test, we ignored any masking effect and performed the bit assignment based

on the distribution of the signal power. The resulting outputs have a higher SNR compared

to the outputs using perceptual bit allocation. However, because a power-based scheme

allocates many bits to the low frequency bands and relatively few bits to the high frequency

bands, the outputs suffer from incomplete corling of the high frequencies. This result verifies

the importance of incorporating the masking effects into any bit assignment algorithm.

The energy-based algorithm which rnjnjmjzes the total audible distortion resulted in

output quality similar to that for the power-based bit allocation. Due to different dimen­

sionality of clifferent critical bands, the distortion reduction rate is higher for the narrower

low frequency bands. lVloreover for many audio signaIs, the power is concentrated in the low

frequency bands. Therefore, more bits compared to other perceptual schemes are assigned

to the low frequency bands. This results in finer quantization of low frequency bands and

coarser quantization of the high frequency bands.

The other schemes (the SMR-based and the mini-max) deliver better quality with less

high frequency distortion. The results show that both algorithms produce decoded signals

which can be distinguished frOID the original. The SlVIR-based algorithm causes less high

frequency distortion at the expense of a little degradation in the pitch structure. Due to this

degradation, the speech segments which are coded using the SNIR-based algorithm sound

harsher. On the other hand~ the decoded audio signals using the energy-based algorithm

carry higher levels of high frequency noise which sounds like an echo along with the original

signal. Listeners showed a slight preference for the Sl\tIR-based allocation scheme over the

mini-max scheme.

Therefore, we use the SMR-based bit allocation algorithm in the proposed coder. How­

ever, for the future~ we believe that the perceptually-optimal bit allocation algorithm for

low rate coding should be based on both the distribution of the audible noise and the SMR.

This is a compromise between the schemes that might be better than either approach alone.

5The quantization error is red.uced by adjusting the gain in each critical band through the following
optimization Popt ~ argminp L:~=l (X(k) - pX(k»2, where P is the gain adjustment factor, X, X are the
original and quantized vectors of transform coefficients and K is the dimension of the subvector.
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5.8 Variable Rate Coding

115

•

•

Johnston in [4J proposed a new concept called perceptual entropyas the minimum. bit rate

for transmitting audio signals such that there is no perceivable difference between the

original and coded signal. Based on the perceptual entropy criterion, it is possible to use

a lossy compression scheme to code any audio signal without any perceivable distortion at

a bit rate equal to its perceptual entropy.

We have conducted an experiment to calculate the number of bits required for each

frame of data to achieve transparent quantization of shape vectors. Due to the variation

in that number, we can use a source-based variable rate scherne to code audio data in

packet-based networks.

Ta estimate the number of bits needed ta achieve transparent carling of the spectral

shapes, we use the SIvIR-based bit allocation algorithm. Table 5.2 shows the instantaneous

minimum, the average and the instantaneous maximum. bit rates for the shape quantiza­

tion of the transform coefficients for different audio signals. Note that sorne frames are

temporally masked; therefore no bits are required to code the shapes. We have to add 2.5

kbfs for the gain quantization to the figures in Table 5.2 except for those frames which are

totally masked.

NlcCourt in [133J reports that for a fixed rate coder, a minimum of Il kbfs is required

to perform transparent adaptive vector quantization of the shape vectors. Although the

maximum rates shown in Table 5.2 are comparable ta the minimum rate reported in [133],

the average required rates are much lower than that bit rate. One conclusion from Table 5.2

is that the proposed coder can provide high quality audio for any narrowband input if the

maximum number of bits is spent to quantize the shape vectors. Note that around 2.5

kbitfs is also needed ta quantize the gains.

Table 5.2 Instantaneous minimum, average and instantaneous maximum
rates (kbit/s) for shape quantization.

File Minimum Average Maximum

Female speech 0.0 7.2 11.5
Male speech 0.6 6.9 10.0
Piano 0.0 8.7 11.3
Orchestral 0.9 7.7 10.8
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5.9 Performance Evaluation
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The proposed coder has been designed ta compress any narrowband audio signal. In the

coder different processing units have been designed to efficiently reduce the bit rate while

maintaining good audio quality.

The number of bits used to code each frame of the input data is 120 (for a long frame)

and 40 (for a short frame), Le., 1 bit per sample. Almost aIl of the bits were spent to code

the normalized transform coefficients and the gains. Table 5.3 shows the bit allocation for

a long and a short frame of data.

Table 5.3 Bit allocation ta code a frame of data.

Long Frame Short Frame

•
Data

Shape Quantization
Gain Quantization
Window Switching Flag
Gain Quantization Flag

Total

81
37
1
1

120

25
14
1
o

40

•

We have implemented the proposed coder in the C language. The source code was

written for flexible experimentation and not optimized for execution speed. Nevertheless,

the coder runs in real time on a computer using a 450 lVIHz Pentium II processor.

5.9.1 Objective Evaluation

Although there are some perceptually-based measures [134, 60, 48, 135, 136] to evaluate

the performance of speech and high rate audio coders, there is still no reliable objective

criterion to evaluate the performance of low rate narrowband audio coders. We use a

perceptually based criterion, which is the ratio of the energy of the input signal to the

energy of the audible noise, for comparing the quality of the coded signal using different

coders. This criterion, which we refer to as the Signal-to-Audible-Noise-Ratio (SANR), is

calculated as follows:

• Each frame of the original and coded signals is transformed into the spectral compo­

nents.
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• Nlasking thresholds corresponding ta each frame of the original signal are calculated.

• The energy of the audible noise is calculated for each frame.

• Finally the SANR is defined as foilows:

Nf

L Il X(ï) 11 2

SANR = ....;..ï=......;l~ _

Nf

LD(ï)
i=l

(5.46)

•

•

where Nf is the number of frames, X(ï) is the ith frame of the original signal and D(ï)

is the energy of the audible noise in the ith frame of the coded signal.

Based on our observations, this criterion is better correlated with subjective ratings than

other criteria such as SNR and Segmental SNR. The accuracy of this criterion is strongly

dependent on the accuracy of the auditory masking model of the hearing system. Note

that for musical inputs there is a high correlation between the subjective quality of the

reconstructed signal and the SANR, but for speech inputs the value of the SANR does not

necessarily predict the quality for different coders.

5.9.2 Subjective Evaluation

In wideband audio coding, the compression process is transparent for most input material.

Nevertheless, the crucial testing involves known difficult-to-code materia1. If the coder

passes this test, it will he transparent for ail audio inputs. For low rate narrowband

coding, some distortion is inevitable. A wide range of material must be tested to ascertain

that the distortion for aIl inputs is not annoying. In our case, we chose a representation set

of material including various types of music, single instrumental music, single and multi­

speaker speech, speech with background noise for testing the NPAC encoder.

It is difficult to make valid comparisons with existing coders as, to our knowledge, there

is no other low rate coder accommodating both speech and music inputs. However, we

have compared the quality of the coded signals using NPAC, the RealAudi06 music coder

operating at 8 kbit/s, the RealAudio speech coder operating at 8.5 kbit/s and the G.729

6RealAudio is a trademark of RealNetworks, Ine.
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speech coder [20] operating at 8 kbit/s. The quality of the coded signais were evaluated

through informaI tests. Eight test audio files including speech, multi-speaker and various

music types were presented over headphones to five untrained listeners. Note that none of

the test passages was used in training the quantizers of the NPAC encoder.

In the listening test, the compressed signais were distinguishable from the originals.

However, the purpose of the test was to know whether the distortions in the output signals

were annoying. Due to narrowband nature, we expect the quality at the best of circum­

stances to he similar to the that of AM broadcast radio.

Compared to the 8 khit/s RealAudio transform coder, the listeners unanimously be­

lieved that the proposed coder delivered significantly better quallty for most music passages

and never performed worse than the RealAudio music coder. For ail speech signais, the

proposed coder provided much better quality than the RealAudio music coder.

Compared to the G.729 coder and the 8.5 kbit/s RealAudio speech coder, the listeners

preferred the quality of almost all compressed signaIs using the NPAC coder. The excep­

tions were for the files containing a single speaker. Even for these cases, the quality was

not far below that of the speech coders. Based on our experiments this coder works weIl

as long as there is no strong harmonic structure due to voiced speech. In the case of the

pseudo-periodic parts of the input signal, due to the sensitivity of the human ear to small

variations of the harmonie structure, some distortion is perceived. However, ta our best

knowledge, NPAC is the only coder that operates weIl for a wide variety of narrowband

audio data at 8 kbit/s.

In regard to the best expected quality (mentioned above), NPAC met the expectations

for almost aIl test passages. However, sorne enhancements should be made to NPAC in

order to achieve the same quality for single speaker passages as the quality delivered by

speech-specific coders such as G.729.

Cading of Speech

The quality of clean voiced speech coded with NPAC is not as good as that of state-of­

the-art speech coders such as the G.729 coder. We speculated that it might he caused by

the degradation of the pitch structure of voiced speech as NPAC does not explicitly model

pitch. In order to verify this hypothesis, we obtained the pitch contour for many speech

signaIs compressed with the G.729 coder and NPAC. The pitch contours were obtained
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using the pitch estimator algorithm of the G.729 coder. We compared those pitch contours

with the pitch contour for the original signais. We observed that the pitch contours of the

signais coded with NPAC were close to the pitch contours for the original signais, even

sometimes closer to the originaIs than those of the signais processed with the G.729 coder.

Therefore, we must conclude that, the problem is not entirely due to pitch destruction.

Then we hypothesized that the distortion of the spectral envelope might have a role in this

problem. This hypothesis was verified since when we replaced the quantized gain factors

with the original gain factors, we got better speech quality.

Another source of problems cornes from the ~IDCT. Quantization of the lVIDCT coeffi­

cients causes sorne uncancelled time aliased components which degrades the speech quality.

We also believe that the timbre7 of speech must be reproduced accurately. Destruction of

the timbre produces some distortion even if we keep the pitch structure intact.

One observation made us ponder while we compared the performance of the G.729

coder and NPAC on pieces of single instrumental music with a harmonic structure. We

realized that the performance of NPAC is similar to or better than that of the G.729 coder.

This observation raised up the question as ta why we have different performance of NPAC

for single instrumental music and voiced speech. We think that a better performance of

the G.729 coder cornes from the fact that speech-specific coders such as the G. 729 coder

are heavily optimized for speech. lVloreover, according to many scientists, the human

auditory system is highly sensitive to any distortion in speech as different parts of the

brain process speech and non-speech stimuli [40]. Sorne scientists believe that there is a

"special mode" for the perception of speech which activates automatically when one listens

to speech sounds [40]. This special mechanism requires high accuracy in the compression

of speech signais.

7Timbre is the attribute of a sound that allows us to differentiate between two sounds of the same pitch,
intensity and duration [40].
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Chapter 6

Concluding Remarks

The purpose of our research has been to develop a corling structure operating at low

bit rates down to 8 kbit/s and delivering moderate audio quality for narrowband audio

signais sampled a.t 8 kHz. To accomplish our goal, the proposed Narrowband Perceptual

Audio Coder (NPAC) employs a variety of perceptual-based algorithms to remove the

perceptually irrelevant parts of the input signal in addition ta statistical redundancies.

The new algorithms used in the coder indude a perceptual error measure in training the

VQ codebooks and selecting the best codewords which takes into account the audible parts

of the quantization noise, perceptually-based bit allocation algorithms, and an adaptive

predictive scheme ta vector quantize the scale factors. We have used the Signal-to-Mask

Ratio (SMR) measure to find the upper bound of the bit rate for the quantization of the

spectral shapes. This upper bound aIong with the ease of the coder makes it possible ta

trade off quality versus rate for applications such as data packet based networks . This

coder can easily be modified to accommodate a wider range of input signals with different

bandwidth and sampling rates.

6.1 Summary of Our Work

In Chapter 1, we expressed the emerging demands for a universal coder capable of ac­

commodating a wide range of narrowband audio data (band-limited ta around 4 kHz) at

low bit rates down ta 8 kbit/s. Specifical1y, we mentioned some new applications such as

broadcasting over Internet, AM broadcasting and satellite communications in which either

the available bandwidth is limited or the number of users is large. While state-of-the-art
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speech coders provide high quality of speech at 8 kbit/s and below, they perform poody

on non-speech inputs. A gap has existed between the operating bit rates of low rate audio

coders and that of speech coders at 8 kbit/s. The challenge is to fill the gap with an

appropriate coding structure.

In Chapter 1 the major classes of coding paradigms, Le., Parametric (source) coding,

Hybrid coding and Waveform coding were discussed. Waveform coding in the frequency

domain has been chosen as the best alternative for the coding of general audio signais. ~Iore

specificaliy, from the two variants of frequency domain coding paradigms, Le., Subband

Coding and Transform Coding, the latter was preferred for reasons which include the

existence of fast transforms, higher frequency resolutions and the ease of incorporating

masking models into the coder. Finally, the basic structure of perceptual audio coders was

presented.

Chapter 2 started with an overview of the physiology of the human ear. The impor­

tance of the basilar membrane was pointed out since it decomposes the input signal into

its spectral components. Due to the structure of the basilar membrane, it behaves like a

nonuniform filterbank (i.e., auditory filterbank). The important concept of critical bands,

which approximate the bandwidth of the auditory bandpass filters, was discussed. The au­

ditory masking phenomena were described. The masking phenomena have two main forros,

Le., simultaneous and temporal masking. The physiological basis and psychoacoustical

evidence for both were examined. Several widely used masking models were described.

Chapter 3 provided a detailed analysis of lapped transforms. Lapped transforms are

a proper choice for transform coders because they perform on overlapping blacks of data

which reduces block edge effects. Modulated Lapped Transforms (~ILT) or Nlodified Dis­

crete Cosine Transforms (MDCT) were analyzed. Nlodulated Lapped Transfonns are com­

putationaliy very efficient as the equivalent filterbank is produced through modulating

cosine functions by a prototype low pass time window. The effect of the prototype window

on the frequency response of the resulting filterbank was investigated. An optimization

procedure to design a good window by trading the width of the transition band versus the

stopband attenuation was presented. Lapped Orthogonal Transforms (LOT) in which an

identical window is used in the analysis and synthesis stages were compared with Lapped

Biorthogonal Transforms (LBT) in which two different windows are used. A new fam­

ily of windows derived from the Chebyshev polynomial with two tuning parameters was

presented. The performance of a number of different windows was investigated using the
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coding gain formula [74]. It was found that as long as the window goes smoothly to zero

at the boundaries, there is no great difference between the windows. Finally, the issue of

adaptive filterbanks was addressed and a window switching method was analysed as a form

of adaptive filterbank to reduce pre-echo artifacts in audio corling.

In Chapter 4, we briefly reviewed two main classes of compression schemes widely used

in aurlio corling, Le., lossy and lossless schemes. In lossless schemes no information is

lost during the compression process whereas lossy methods cause some loss of information.

However a new terminology called perceptually transparent coding was introduced in which

despite some loss of information, no difference between the original and reconstructed signal

can be perceived by the ear. Two main lossy schemes, Le., scalar and vector quantization

were described. Nonuniform scalar quantization methods are suitable for a scalar source

with a nonuniform probability distribution function. Vector Quantization is a more efficient

scheme compared to scalar quantization. It was argued that vector quantization systems

provide higher corling gains at the expense of more complexity. The Generalized Lloyd

Aigorithm (GLA) and the LBG algorithm were briefly reviewed as two iterative methods

to design vector quantization systems. A new perceptually based distortion measure was

proposed which takes into account the audible part of the quantization noise. That measure

was used to design more efficient vector quantization systems for audio coding. In the rest

of Chapter 4, sorne widely used audio coders and the MPEG audio standards including

lVIPEG-1, rvIPEG2 and MPEG-4 were briefly described.

Chapter 5 introduced the proposed corling structure called Narrowband Perceptual Au­

dio Coder (NPAC). We have described different blocks of the coder along with the related

algorithms. An MnCT was used to decompose the input signal into its spectral compo­

nents. The rvlncT coefficients were grouped into 17 subbands to emulate the frequency

analysis in the ear. To quantize the transform coefficients, a Gain/Shape approach was

taken. The shape vectors were quantized using the perceptually-trained codebooks along

with the perceptually-based bit allocation. A number of bit allocation algorithms based

on the auditory masking properties were introduced. The relative merits of the algorithms

were compared and the SMR-based bit allocation method was preferred over the energy­

based bit allocation. To reduce the required memory to store the shape codebooks, a few

methods have been suggested and one of them which is related to the source entropy was

chosen to design a single embedded codebook for each subband. In the process of quan­

tization, the temporal and simultaneous masking thresholds were used to determine the
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acceptable noise level. For simultaneous masking, we have developed a new formulation to

obtain the masking thresholds for the ~IDCT coefficients.

An adaptive predictive/nonpredictive vector quantization scheme has been used to

quantize the gains. Different methods to reduce the number of nonzero diagonals of the

predictor matrices have been proposed and analyzed. Finally, the upper bound for the

bit rate for transparent coding of shape vectors has been found using the SMR-based bit

allocation algorithm. That upper bound shows that the information content of the audio

data is time-varying and for packet-based networks such as Internet, a coding algorithm

with several operating bit rates is appropriate. The subjective performance of NPAC was

compared to the low rate RealAudio Coders and the G.729 speech coder.

6.2 Further Enhancements of the NPAC Encoder

Our prime goal has been to compress narrowband audio signais at low rates (1 bit per

sample) while achieving acceptable quality. As we have pointed out, we expect to get

moderate audio quality contrary to high rate audio coders where transparent corling is

the goal. NPAC performs weIl on most audio signals and outperforms other low rate

audio coders operating at 8 kbit/s. However, we believe that there is still room for the

enhancement of the proposed coder performance. In the following we discuss possible

improvements to different modules of the coder.

6.2.1 Quantization of the MDCT Coefficients

We spend 120 bits to encode each block of 240 time samples (120 from the previous frame

and 120 new samples). As our bit budget is limited ta 8 kbit/s, we had ta develop algorithms

which were suitable for this constraint. Had the coder been operating at higher bit rates,

our approach would have been quite different. For instance, we had ta sacrifice the quality

for reducing the bit rate in a few modules of NPAC. In order to achieve high coding gains,

we have used vector quantization schemes to code different parameters. Vector quantization

increases the complexity of the encoder and demands more memory to store the codebooks.

The most memory demanding part of the coder is the VQ of the shape vectors. Since we use

an adaptive bit allocation algorithm, we have to have different codebooks with different

lengths for each subband. However, we noticed that the probabilities of selecting the

codewords were widely different. This observation led us to consider entropy corling in
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order to reduce the bit rate. However, the drawback of entropy corling is more complexity

and a variable bit rate which is not compatible with fixed-rate channels. Instead, we ran

a large set of test vectors on the largest codebook for each subband, and then ordered

the codewords based on their frequency of selection (the most selected one cornes at the

top). This way we created a single embedded codebook from which different numbers

of codewords are used to encode an input vector. For an example, Figure 6.1 shows the

probability of selection of the codewords belonging to a 3 dimensional codebook with 512

codewords designed for the second critical band. Although the length of the codebook is

512 (equivalent to 9 bits), the actual entropy of a large set of 30000 test vectors is about

7 bits. This shows that some codevectors are more frequently selected while most of them

rarely selected. We believe that better training of the codebooks with more frequently
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Fig. 6.1 The selection probability of the codewords from a 3 dimensional
codebook of 512 codewords.

•

selected codewords might improve the performance of the shape quantization module.

One last thing that might be exploited is the correlation among the indices of the

selected codewords for different subbands. We briefly investigated this issue but did not

get improved performance. A more structured vector quantization system might exploit

this correlation.



• 6 Concluding Remarks

6.2.2 Quantization of the Scale Factors

125

•

•

The scale factors are coded using a predictive/nonpredictive vector quantization scheme.

We aliocate 37 bits for that purpose, i.e., 30% of the bit budget for a frame of data. We

might replace the existing coding scheme with a more efficient one. We tried a linear predic­

tion analysis to estimate the power spectral density. This way we reduced the required bits

to around 20 bits. The resulting scheme causes significant degradation of the compressed

signal because we use an MDCT to decompose the input signal and the grouping of the

lVIDCT coefficients is nonuniform. We even performed the IDFT on the lVIDCT spectrum

and then estimated the spectrum using a linear prediction analysis. The result still was

unsatisfactory. We believe that more research should be done to reduce the bits needed for

this part of the proposed coder.

6.2.3 Masking Threshold

The accuracy of the masking model has a great impact on the performance of the proposed

coder as we have incorporated the masking phenomena in different modules of the coder.

We have used a modified version of the model proposed by Johnston [51] to estimate the

simultaneous masking threshold. Since that model is DFT-based. we have modified the

resulting masking thresholds to find the corresponding masking threshold for the MDCT

coefficients. We believe that there is room for improving the original model as that model

linearly SUffiS the individual masking powers to find the global masking threshold. Since

a linear model underestimates the masking threshold, a nonlinear model, e.g., sorne power

law, would better fit the experimental data.

Concerning the temporal masking model, we have fitted polynomials to the experimen­

tal data to develop the temporal masking moder. A more sophisticated model based on

physiological evidence and psychoacoustical data might improve the performance of the

coder. A phenomenon called overshoot effect, Le., a jump in the masking threshold around

a high energy attack, needs to he studied to see how important it is to code large jumps.

Finally sorne research can be done on the more accurate model to combine the simultaneous

and temporal masking effects.
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An appropriate bit allocation plays a large role in providing good audio quality. We have

investigated different strategies to allocate bits. Our conclusion is that an optimal bit

allocation algorithm should take into account both the distribution of the energy and the

ratio of the signal energy to the masking threshold. The SlVIR-based algorithm is sensitive

to the masking models. Therefore a more accurate masking model would improve the

performance of the SMR-based algorithm. The energy based algorithm usually al10cated

too many bits to the low frequency bands which results in coarse quantization of high

frequency bands. Combining the SMR-based algorithm with the energy-based algorithm

could result in better quality of the reconstructed signaL

6.3 Future Research

In the previous section we discussed possible enhancements to the NPAC encoder. In this

section, we make some suggestions for future research on more general aspects of low rate

audio coding.

• Scalability: The proposed coder has been designed to produce a constant bit rate

suitable for fixed-rate chanuels. However, the coder structure is flexible enough to

produce variable bit rates. A rnoclified version of the proposed coder to handle in­

put signals with different bandwidth and sampling rates has been developed by S.

Plain [137]. For narrowband audio inputs (band-limited to 4 kHz), we just need to

change the number of bits spent to quantize the shape vectors. This way we can

easily trade quality versus bit rates.

• Robustness: For wireless applications, sorne work needs to be done to evaluate the

sensitivity of the bit stream to channel errors. Then an appropriate protection scheme

should be added to the coder to make it robust against channel effects. In packet­

based networks, isolated erroneous bits are not the main concern; instead sorne mea­

sures should be taken to replace lost packets of data.

• Objective Evaluation: Since subjective testing is costly and time consuming, objective

methods to evaluate low rate audio coders are appealing. Objective methods for

the evaluation of speech and high quality audio have been investigated [134, 60, 48,
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135, 136]. However, those methods fail to accurately evaluate the rnoderate quality

provided by low rate audio coders such as NPAC. Although we have modified the

traditional objective measure SNR to a new perceptual measure called Signal-to­

Audible-Noise Ratio (SANR) to evaluate the performance of our coder, it is not

necessarily appropriate for evaluating other low rate coders. One future avenue would

be to develop objective measures for the evaluation of low rate audio coders.

• Speech-specifie Mode Coding: Speech is processed by a specific part of the brain.

The human hearing system is very sensitive to any distortion in voiced speech. Sorne

parametric-hased modules might he added to the proposed coder to achieve hetter

quality for voiced speech. Those parameters might be the pitch period and the

envelope of the harmonics ta maintain the pitch and timbre of the voiced input.

• Object-based Audio Coding: This new audio coding paradigm seems very promising.

It is based on the decomposition of complex audio signals into sorne audio sources

which can he rnodeled with a few parameters. This way the bit rate can he consid­

erably reduced. However, some issues such as the best way to decompose a complex

signal, how to model different audio objects and perceptually-hased quantization of

the parameters, need to be worked out.
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Appendix A

Relation betw-een the DFT and

MDCT

• The MDCT of a frame of input signal x(n) is defined as [61]

N-l

C(k) = J2/M L x(n)h(n) cos(:'(n + no)(k + 0.5))
i=O

(A.l)

where h(n) is the window function, N is the length of the input frame, M = N /2 is the

number of transform coefficients in each frame and no is a constant equal to (M + 1)/2.

Write the above fonnula as

N-l .

C(k) = J2/ML~{x(n)h(n)exp(-J7r(n+:)(k+0.5))} (A.2)
i=O

= v'2/MR{exp(jlj>(k))F(s(n))} (A.3)

where ~ denotes the real part and F denotes the Fourier transform,

•
cjJ(k) = -1r(N + 2)(k + 0.5)

2N

-j1rn
sen) = exp( N )x(n)h(n)

(A.4)

(A.5)
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A Relation between the DFT and MDCT

Finally we get

C(k) = v!2/MIS(k) 1 cos(27rno(k + 0.5) - LS(k))
N

129

(A.6)
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Appendix B

A Falllily of Chebyshev-derived

Windo~s

We modify the magnitude response of a Chebyshev filter to satisfy the perfect reconstruc­

tion conditions. Start with the coefficient for a lowpass Chebyshev filter.

(B.1)

where chebyl is a MatLab command which generates the coefficients of a Chebyshev filter,

N is the length of the window, cr l and Q2 are two parameters determined by the designer.

w = abs(freqz(b, a, N/2)t.); (B.2)

where freqz is a J\ilatLab command which gives the frequency response of a digital filter.

•

wn(n) = w(n) ,
w(n)2 + w(~ - 1 - n)2

Then we find the window coefficients as follows

hCheb(n) = wn (N/4 - 1 - n),

n=O, ...,N/4-1.

n = 0, .", N/4 - 1.

(B.3)

(B.4)
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Using the perfect reconstruction constraints, we find the rest of the window coefficients.

hCheb(n) = (1- hCheb2(N/2 -1- n»o.s, n = N/4, ... , N/2 - 1. (B.5)

hCheb(n) = hCheb(N -1 - n), n = N/2, ... , N - 1. (B.6)
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