
National Librarv
of Canada .

Bibliothèque nationale
du Canada

Acquisitions and DirectIon des acquisItions ct
Bibliographic serlnces Branc.h des services bibhographiqucs

~Wclhnc;:on Srcc: 395. l1.Je W~lrnc;':011

0nawa.01:ano 0n.JWa (Onlanè)
K1AQN4 K~AON':

',~. ', ..' ~,,, ..' ,.......~"' ..
.,,, ',." .......... ".,......'.,..

NOTICE

The quality of this microform is
heavily dependent upon the
quality of th~ original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Sorne pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



•

•

•

Flr-nTE ELEMEI\"TS AND VECTOR ABSORBING

BOUNDARY COI\rnmONS IN 3-D

by

Vassilios N. Kanellopoulos, B.Sc.Physics, MEng.

A thesis submitted to the Faculty of Graduate Studies and

Research in partial fulfillment of the requirements

for the degree of Doetor of Philosophy

Eleetrical Engineering Depanment

McGill University

Montréal, Québec, Canada

December, 1991

@) Vassilios N. Kanellopoulos



.",. National Library
of Canada

Bibliothèque nationale
du Ganada

ACQuisitions and Direction des acqUisitions et
Bibliographic Services Branch des services b,bliograpr,iques

395 Well'!"9lon Srecl 395. rue \\i'elhnc::::on
O:".awa. On,.no O:".aw. (On,.no)
K1AON.: K1AON":

The author has granted an
irrevocable non-exclusive licence
allowing the National Ubrary of
Canada to reproduce, loan,
distribute or sell copies of
hisjher thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in hisjher thesis.
Neither the t."esis nor substantial
extracts trom it may be printed or
otherwise reproduced without
hisjher permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autotisation.

ISBN 0-315-87567-4

Canada



•

•

•

!:TOUÇ ro''SLÇ ~U

Tomyparents



•

•

Abstract

The use of the Finite Element Method (FEM) for L'le numerical solution of elec­

tromagnetic scattering in unbounded regions requires proper boundary conditions on the

outer surface that truncates the infinite three-dimensional space. In this work new veetor

absorbing boundary conditions are proposed that: a) cause almost no reflection on the

outer surface for the outward radiation, and b) preserve the symmetty 3I!d sparsity of the

finite element matrices.

A computer program was written to imple~ent the new boundary condition. The

program uses curvilinear finite elements which do not introduce spurious corruptions.

The errors due to incomplete absorption decrease as the outer surface is moved further

away from the scatterers. An error of about 1% in near-field values was obtained with

the second order-absorbing boundary condition, wben the outer surface was less than balf

a wavelength from the scatterer.

• Abslract ii
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Résumé

L'utilisation de la Méthode des Eléments Finis (MEF) pour la résolution

numériq'.le des problèmes de diffusion d'ondes électromagnétiques en milieux ouverts

nécessite la définition de conditions aux limites propres sur la surface externe tronquant

l'espace tridimensionnel infuù. Le travail présenté dans cette thèse a conduit à proposer

de nouvelles conditions vectorielles aux limites absorbantes qui a) n'occasionnent ql!a­

siment aucune réflexion du rayonnement progressif sur la surface extérieure et, b) con­

servent aux matrices d'éléments finis leur caractère symétrique et creu.v_

Un programme informatique a été élaboré pour mettre en oeuvre les nouvelles

conditions aux limites. Ce programme unlise des éléme:lts finis curvilignes qui ont l'a­

vantage de ne pas introduire des solur:ons parasites. On observe une diminution de la

marge d'erreur résultant de l'absorption incomplète à mesure que l'on déplace la surface

externe à une distance croissante de la source de diffusion. Un taux d'erreur d'environ

1% dans les valeurs du champ proche a été obtenu avec les conditions aux limites

absorbantes de second ordre lorsque la surface externe était placée à une distance

inférieure à une demie longueur d'onde de la source de diffusion.
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H XtllJCTll nJÇ M&80ôoU "twv TI&1t&(XIo!,&Vwv !:"tOLX&lWV (Mn!:) 'YLct"tl'Jl' cteLe!'TJ"tL"-'TI &mÀUCITJ

1t(lOJ3ÀTJ!!ct"tlllV TJÀ&lC"tQO!'cryvTl"tl1CTJÇ CIIC&ÔOCITJÇ 0& ctVOLIC"t&Ç n&t?LOX&/;. )(Q&lctl;&"tctL ICct"taÀÀTJÀ&Ç

OQLctlC&Ç cruv9T)1C&Ç &m nJÇ &ÇW"t&f?LICTJÇ &m'Pct\'&lctç nou cmOIC01t"t&l "tO" ctlt&I{Xl 1:QLOOLctcr,ct"tO

XW(lO· r ctU"tl'J" "tl'JI' &crteL13TJ 1t(lO"t&lVOV"tctL V&&Ç OLctVUCI!!ctUIC&Ç cmOQQO'PTJUIC&Ç Ol?LctlC&Ç ou...9'l1C&Ç

OL onOL&ç ct) 1t(lO;&\'OUV~ !'TJÔctl1TJII&Ç avetlC1.ctcr&lç &m "tl'}Ç &!;W"t&f?LICTJÇ &m'PctV&lctç CI"tl'JI'

&Ç&t?XO!!&"'1 CDCtLvol3oÀ1ct, lCctL 13) OLlrtTJeOUV"tl'Jl' CIIJIll1&"tQLct lCctL "tl'JI' on0ect0LlCOnrrct '"tlllV mVctlCwv

"t"'"~ CI1:0LX&llllV.

OL V&&Ç ctU'"t&Ç OQLctlC&Ç cruv9T)"-<:ç &'Pcte!,OCI"tTJlCctV 0& &\let neorect!'!'ct nou Yea'P'"tTJ1C& 0&

T)À&1C"tQ01Il1C0 unoÀO'ylCl"CT). To neorect!'!'ct )(QTJCIL!,onOL&llCct!,nuÀorect~ct1l&1t&f?ctCl!!&\Iet CI1:0LX&lct

"tct onOLct &v &m'P&(lOUV naeaCILUIC&Ç ÀUCI&lÇ. Tct o'PaÀ\1ct"tct '-orw ct"t&ÀOuç cmoeeo'PlJCTllÇ

IUlCeaLvoUV ICctBwç TJ &ÇW"t&f?LICTJ &m'PctV&lct cmO!'ctlCl?UV&"tctL cmo "tOuç cnœôacrn:ç. !:'PaÀ\1ct"tct nJÇ

'ta!;T)ç "tou 1% anç ~ "tou ICOVUVOU mOLOU nctea'"tTJeTJllrJlCctV !!& ô&U't&!?Ou l3ctB!!ou

cmOQQOqlTJUIC&Ç Ol?LctlC&Ç cruv9T)1C&Ç. o"tctV TI &ÇUl't&l?LICTJ &mcpctV&lct l3eLCllCO"tctV CI& cmOCl"tctCITJ

1UICl?O't&l?TJ "tOU 1U00U IlTilCOuç ICUIlct"toç cmo "tov CllC&ÔaCl"CT).
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•
a)

Contributions to Original Knowledge

New n th order Absorbing Boundary Conditions have been developed for the 3-D

veetor wave equation.

•

b) A new functional has been derived implementing the second order Absorbing

Boundary Conditions (ABC). The funetionalleads to a symmetric matrix problem.

which was previously not possible.

c) It has been shown how the new functional cao be used with tangentially-continuous

finite elements of mixed order - the kind necessary to eliminate the effeets of

spurious corruptions. In particular, it has been shown that additional, normal con­

tinuity of the field is needed on the Absorbing Boundary Surface (ABS).

d) Computational results have confirmed what was until now a theoretical conjecture:

that the second-order ABC gives significaotly more accuracy than first-order, at no

extra cost. Field values of about 1% error where obtained with the second-order

ABC when the ABS was placed less than a halfwavelength away from the scatterer.
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CHAPTERI

Introduction

Since the evolution of computers in early 60's. the numerical solution (lf equations

that describe physical phenomena opened new horizons in our ability to belter

understand the behaviour of nature. This ignited a tremendous effort among scientists

and engineers in developing computer-aided methods that would predict the behaviour

of such physical phenomena. The new era of computer simulation was bom.

ln the world of eleetromagnetics, computer simulation techniques have proven to

be powerful tooIs in predicting and giving a belter understanding of the behaviour of

eleetromagnetic fields and the performance of various devices. For scattering problerns

in the frequency domain, where the operating frequency is known, integral equation

techniques. such as the Method of Moments (MoM), were the first to be exploited and

for years they dominated the research, as weil as the commercial market [Richmond-65].

Such techniques were, and still are, successfully used in antenna design, and in scattering

by conducting and dielectric objects. More on the available computer prograrns based on

integral formulations and moment method solutions may be found in [Balanis-89],

chapter 12.

The implementation of numerical techniques generally leads to a system of

equations. which in matrix notation is:

[A]' [x] • [b] (1.1 )

[A] is the final square matrix, [b] is the known right hand side, and the solution is the

unknown column veetor [x] .

• OiAPTERl 1
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Integral equation techniques produce a non-symmetric and dense final matrix. By

the word dense, it is meant that all the entries of the matrix are assumed to be non-zero.

The inversion of such a matrix is a process with a computational cost proponional to N 3

where N is the number of equations in the problem, and its memory storage

requirements are proportional to N2. Integral methods are effective when the scatterers'

geometrical dimensions are large compared to the wavelength, but when many dielectric

materials of complicated geometries are present, thc:y require far more storage and

computational effon because all the dielectric interfaces have to be modeIIed.

For the latter type of problems, differential equation techniques, sucb as Finite

Differences (FD) or Finite Elements (FE), are superior to integral equations. They are

based on a partial differential equation ~d the final matrix they produce is sparse. After

a standard procedure the matrix cao be banded. In addition, if the variational formulation

is employed, the final matrix is symmetric. Problems with many dielectric materials are

handled without extra computational cost. FD are more suitable for problems with more

regular geometries, while FE cao easily handle any kind of arbitrary geometries and give

better accuracy when highly complex inhomogeneities are present. A typical figure for

sparsity is 0.1%, i.e. 99.9% of the entries in the matrix are known to be zero, and

therefore do not have to be stored. Symmetric sparse matrices are highly efficient in

memory storage requirements and computational cost. Depending on the method usee!,

NI.S or N 2 are typical COSts for solving sucb matrices.

Both techniques, FD and FE, bave been exploited in the past and they provide

excellent results wben the problem's geometric domain is finite. That means the

geometric space is enclosed by surfaces wbere known boundazy conditions or symmetries

are imposee!, e.g. the microwave resonator, wbere the volume of interest is enclosed by

conduetors. For open boundary problems thougb, wbere the geometric domain is not

CHAPTER.l
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bounded by any surface \\,"Ïth known boundary condiùons and extends to infinity. FD or

FE suffer because an artificial boundary has to be used in order to truncate the infinite

domain.

Integral equaùon techniques have the advantage that they solve 'unbounded

problems, without any extra complicaùons. Such methods though suffer from huge

memory requirements and high computaùonal cost, due to the dense matrices they

produce. However, for a small class of problems with a few electrically-Iarge =egions, in

each of which the material is homogeneous, integral techniques are to be preferred.

Although the produced matrices are dense, their size is smaller than those of the Finite

Element Method, and are in general preferable in computational cost. Nevertheless. a

comparison in accuracy and comput:;.ùonal cost done by Peterson [peterson-89a,

Peterson-89b] showed that for highly inhomogeneous and complex scatterers of relatively

small electrical dimensions, the differenùal equaùon techniques are to be preferred from

integral equations.

Therefore, one should think, a numerical technique based on a partial differential

equation, capable of handling open boundaries would be attractive. This is the approacl:

of the current work.

1.1 Problem definition

This tteatise deals with the implementaùon of the Finite Element Method (FEM)

in solving open boundary veetor wave problems. A new type of boundary condition is

inttoduced. It is based on a local symmetric differential operator, in other words it does

not desttoy the sparsity and symmetry of the FE matrices. This boundary condition is

applied on the surface of a closed spbere. The mathematical spbere ttuncates the infinite

domain of the problem to a finite one and sbould completely enclose the volume of

• CHAPTERl 3
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interest. The volume of interest is defined as the three-dimensional region that contains

ail the metallic and dieleetric scatte~ers, which may be of any shape and complexity. The

FEM cao be appli~d in the finite region.

The raIe of this new type of boundary condition is ta absorb all outgoing electro­

magnetic waves causing almost no refiection on the surface of the sphere. Due la its

absorbing charaeter, the boundary condition is caIled an Absorbing Boundary Condition

(ABC), and the sphere an Absorbing Boundary Sphere or Absorbing Boundary Surface

(ABS).

unbounded
free space

F1pre 1.1 A C'OSS sectiOD of a typica1 3D~ bouaclary problcm. The gray area represeDts the

fiDile volume whcrc the FEM is applicd. The AllC is applied CD the ABS aad absorbs ail outgoing

waves.

It should be noted, however, that for static problems, a zero boundary condition is

often placed on an artificial boundary that is far away from the sources, where the fields

• CHAPTERl 4



• are in any case almost zero [Emson-SS). Such a boundary condition however. cannol be

applied in wave problems because it would cause reflections on the artificial boundary

and it would lead to erroneous results no matter how far the artificial boundary may be

placee!.

1.2 Earlier work on open boundary problems

The techniques used in high frequency open boundary vector problems can be

classified as follows:

hjrb-freQllenQ' Le. Geometrical Theory of Diffraction (GlD) and its variants.
metbod<

•
jnteLDl

djfferential

i.e. Electric (or Magnetic) Field Integral Equation, Extended

Boundary Condition Method, Volume Integral Equation.

Le. Fmite Differences Time Domain (FDlD), Time Domain Finite

Volume (lDFV), Finite Elements Time Domain (FEID), Finite

Elements (in frequency domain), Hybrid (a combination of Finite

Elements for a finite region coupled to an integral technique for the

infinite exterior), Infinite Elements, Ballooning.

1.2.1 High.frequency methods

The GlD, an extension ofgeometrical optics, is an efficient tool for problems with

regular geometries and eIectrically large scatterers. It is, however, less efficient and

accurate when metallic and dieIectric scatterers of irregular shape are present

[Hansen-81].

• CHAPTERl s
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1.2.2 Integral methods

Integral methods stan by posing the physical problem as an integral equation. There

are two kinds of integral equations: surface and volume. The surface techniques

formulate the problem in terms of equivalent surface currents that flow over closed 3D

surfaces that contain homogeneous material [Iskander-83]. The volume techniques for­

mulate the problem in terms of equivalent volume currents fl:owing inside the dieleetric

scanerer [Schauben-84, Hagmann-86]. The mathematical formulations are usually

transformed to a matrix equation by the Method of Moments [Harrington-68]. Integral

methods are computationalyexpensive relative to differential methods when complicated

dieleetrics are present - see the discussion in introduction. AIso, they suffer from singular

terms in cenain cases and an increase in discretization or in frequency may lead to a

divergence of the numerical solution.

1.2.3 Differentiai methods

Differential methods stan by posing the physical problem as a differential equation.

For a well-posed problem proper boundary conditions are required. Special boundary

conditions have to be imposed on the outer surface that terminates the discretized

volume of interest.

In the FDID technique the lattice truncation plane and the lattice truncation

conditions gave acceptable accuracy in absorbing the outgoing radiation

[Umanshankar-82]. AlI FD'ID methods however, suffer from the stepped edge approxi­

mation cf curved objects not fitting direetly into the finite difference grid. In addition,

because FDID requires a topologicaIly regular grid, it is difficult or inefficient to get a

grid of varying density which is needed for problems of complicated geometries. The

contour FDID is an alternative that can model curved objects [Katz-91]. A more

promising approach was proposed by Fusco et al. [Fusco-91] using curvilinear coordinates
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and contravariant field components. However. the topological inefficiency of the finite

difference grid still remains. The FE1D method was proposed by Cangellaris et al.

[Cangellaris-87] to combine the simplicity of the -;xplicit integration scheme of the FDID

method with the versatility of the finite element spatial c!;scretization procedures. 1t uses

an irregular grid, but for stability reasons and for the CF1~ criterion to be satisfied the

grid bas to be structured. The IDFV method (a Lax-Wendroff explicit scheme) has also

been successfully used in canonical antennas and array problems using the body fitted

coordinates for modelling complex structures [Mohammadian-91]. The difference with

the other methods is that tbis doesn't require an interlaced mesh for the eleetric and

magnetic fields.

AlI T1IIle Domain methods are efficient for eleetrically large scatterers due to their

explicit integration schemes. However, since a struetured grid is required. they are not

efficient for problems requiring grids of highly localized different densities. Such

problems may include many arbitrarily shaped dieleetrics of high permittivity. However,

frequency domain results over a range of frequencies can be obtained from time domain

results using the Fast Fourier Transform. The related cost using frequency domain

techniques would be quite high since the problem has to be solved separately for each

frequency. Thus, the ID techniques are to be preferred. If a single frequency is needed,

frequency domain techniques are computationaly cheaper.

Fmite Elements are differential methods that use unstructured, irregular meshes.

They fall into two categories according the final matrix they produce: a) partially dense,

and b) sparse. Partially dense techniques, i.e. ballooning, series methods, hybrid, result in

a complete coupling of the degrees-of-freedom on the outer boundary; therefore, the

piece ofthe final matrix corresponding to the outer boundary is dense. The loss of sparsity

makes them more computationaly expensive. Sparse techniques include infinite elements

andABCs.

• OiAPTERl 7



•

•

The Boundary-matching method (Ballooning), a finite element technique initially

proposed by Silvester et al. [Silvester-77], and later modified by Dasgupta [Dasgupta-84},

solves the Laplacian problem of open type. It relies on treating the exterior region as a

single super element. Ballooning has not been used in free-space scattering problems

[Emson-88}. The Transfinite Element Method introduced by Lee et al. [Lee-S7], is a

series St'Iution technique sirnilar to the unimoment method proposed earlier by Mei

[Mei-74}. In both techniques the interior region is solved by finite elements (or finite

differences) and on the outer circular boundary a series of analytic basis functions are

applied.

A hybrid technique, called the pieture-frarne method, uses finite elements in

separate regions of the problem where inhomogeneous materials are present and links

these regions or "frames" with an integral equation [McDonald-SO}. Variations and

improvements of this approach applied to two-dimensional Laplacian or wave problems

may be found in [Marin-82, Orikasa-83, Collins-90, Ramahi-91a}. An extension to 3D

scalar potential problems was presented by Meunier et al. [Meunier-86}. A 3D vector

hybrid approach with application in hypertherrnia, a medical cancer therapy, was

presented by Lynch et al. [Lynch-S6]. The inhomogeneous patient is modelled with finite

elements and boundary elements are used for the unbounded fields extemal to the

patient. A vector finite element-boundary integral formulation for scattering by 3D

cavities in an infinite ground plane was later presented by Jin et al. [Jin-91]. The

technique employs finite elements for the interior region and appropriate radiation

integrals for the exterior. The resulting equations are solved by demanding tangential

continuity on the exterior boundary surface. Hybrid methods may suffer from uniqueness

problems for eleetrically large scatterers [peterson-89b].

Infinite elements have been applied successfully in open regions. A set of local

shape functions including a decay factor is used in the exterior elements that extend to
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infinity [Rahman-84, McDougall-S9]. The accuracy of the method depends on the proper

choice of the decay factors. They have not been used for electromagnetic scall\:ring in

free space.

Engquist et al. proposed absorbing boundary conditions using Padé approximations

for the scalar ID wave equation [Engquist-77]. They are local and they keep the sparsity

pattern of tb,e system of differential equations. First and second approximations that lead

to well-posed symmetric matrices were given. They are more suitable when the truncation

contour is a rectangle. Bayliss et al. introduced new absorbing boundary conditions based

on the Sommerfeld radiation condition [Bayliss-82]. They are applied on a spherical

truncation surface. Symmetric first and second order conditions and their implementation

for the finite element method are given. Prelirninary 3D examples with axial symmetry

are given using Iinear elements, c1early showing the superiority of the second order

compared to the first. D'Angelo et al. compared Engquist-Majda and Bayliss-Turkel

second order absorbing boundary conditions for the scalar wave equation [D'Angelo-89,

D'Angelo-90]. It was shown that the Bayliss-Turkel ABC is more accurate than the

Engquist-Majda even when it is brought c10ser to the scatterers and therefore it is more

efficiently computationaly. More applications using ID scalar ABCs can be found in

[Ramahi-89, Pearson-89, Webb-90, Sumbar-91]. Finally Mittra et al. and later Ramahi et

al. proposed new ID ABCs that can be applied on an outer boundary of any shape

[Mittra-89, Ramahi-91b].

Peterson was the first to develop first and second order ABCs of the Bayliss-Turkel

type for the vector 3D wave equation [peterson-88]. His second-order expression however

does not lead to symmetric matrices. D'Angelo et al. derived a second order 3D vector

Engquist-Majda ABC [D'Angelo-90]. In 3D their derivations for a vector Engquist-Majda

ABC produced a non·symmetric operator and for acceptable results the outer boundary

bad to be placed 0.8 wavelengtbs away from the scatterer.
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In this thesis, a symmetric, second-order ABC for the veetor 3D wave equation is

developed [Webb-89, KaneIIopoulos-91].

1.3 Thesis outline

This thesis is organized as foIIows:

Chapter 2 gives a brief description of MaxweII's equatiohs and the variational for­

mulation of the problem. It foIIows a summary of the curvilinear coordinate system and

the definition of the covariant components of a three dimensional veetor. Then the Fmite

Element discretization using curvilinear covariant projection elements is presented.

The Absorbing Boundary Condition concept and the derivations of the new 3D

veetor n th order ABC are found in Chapter 3. Explicit expressions for first and second

order ABCs are given. The implementation of symmetric fust and second order ABCs in

a variational formulation is descnoed in Chapter 4. The special treatment required for

the Absorbing Boundary Sphere is discussed in detail in the end of Chapter 4.

Chapter 5 descnoes the main subroutines of the computer program wrltten to

implement the new theory. The non-trivial treatment of the surface divergence term in

covariant components is given at the end of the chapter.

The results of a series of test and of realistic problems are given in Chapter 6. AIl

problems were carefully chosen so that a comparison with analytica1 solutions be

available. The convergence and the efficiency of both first and second order ABCs are

demonstrated in each of the problems analyzed.
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Chapter 7 summarizes the new contributions presented in this dissertation. It

stresses the efficiency of the second order ABCs and indiC:ltes the weakness of the

method. Probing further. new ideas are proposed for the generalization and the

improvement of the new techIÙque.

The tex! and the equations in this thesis were written with the Lotus Manuscript

word processing software [Lotus Manuscript-89]. The AutoC:ld drafting package W:lS used

for the drawings [AutoCAD-88]. and the Grapher data visualization package for the

diagrams [GRAPHER-88].
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3D Finite Element Analysis of Time-Hannonic Problems

2.1 Maxwell's equations

The physical laws that govem the behaviour of eleetromagnetic fields are expressed

by Maxwell's equations. In a three dimensional space with no volume currents or charges

and for time harmonic fields, this behaviour is described by:

(2.1 )

(2.2)

(2.3)

(2.4)

•
where j is the square root of minus one, tA) is the angular frequency, Eo and 110 are

the permittivity and permeability of free space respectively, Er and J.1r are the relative

permittivity and permeability of medium. The last twO quantities are functions of position

and may be complex. The veetors E for the eleetric field and H for the magnetic field

are assumed to be finite and at aIl ordinary points to be continuous functions of position

and time, with continuous derivatives [Stratton-41). Should an abrupt change occur in the

physical properties of the medium, the fields and their derivatives may be discontinuous.

In such case the field behaviour is determined by the interface conditions. A unique

solution to a given problem may not be obtained unless proper boundary conditions are

specified.
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• 2.1.1 Interface conditions

Should a change occur in the physical properties of the medium. the following

quantities remain continuous across the surface of discontinuity. also called interface:

Hxti Exti

•

where fi is the unit normal to the interface. The interface conditions are necessary for

a weil posed problem.

2.1.2 Boundary conditions - Surfaces l·r -:ymmetry

Boundary conditions prescribe to given values the tangemial field componems on a

surface. A unique solution may only be obtained if the proper boundary conditions are

imposed. Let a surface be S and fi being the unit vector normal to the surface. The

following boundary conditions may apply:

Homogeneous Dirichlet, where the tangential component of the magnetic field is zero:

H x fi = O. Such a surface is often called a perfect magnetic wall and it is usually a

plane of symmetry.

Inllomogeneous Dirichlet, where the tangential component of the magnetic field is

assigned a nonzero value: H x fi - Ho where Ho is the given value. Such a surface

is often called an excitation surface or port, since it drives the problem.

Homogeneous Neumann, wbere the tangential component of the eleetric field is zero:

E x fi - 0 or ("J x H) x fi - O. Sucb a surface is often called perfeet eleetric wall

and it is usually either a perfeet conduetor or a plane of symmetry. Using equation

(2.2) this boundary condition may be rewritten as: H' ft - 0 (see Appendix A).

Therefore, on a perfeet eleetric conduetor the normal component of the magnetic

field is zero.
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•
2.1.3 The curi-curl equation

Taking the corI of (22) and substituting in that the cori of E frorn (2.1), we get a

second order differential equation, the veetor Helmholtz or corl-eurl equation:

i7 x.!. x i7 x H - ;:~Il,H - 0
E,

(2.5)

•

where the nonnalized frequency is given by: k 0 = OJ~ E 0 Il 0 • Throughout this work

various expressions are given for the magnetic field H. Sirnilar expressions hold for the

eleetric field E and will not be given expliciùy.

The veetor Helmholtz equation has a unique solution given the boundary conditions

of the problem.

2.2 Variational fonnulation - Functional

As an alternative to solving a differential equation that describes the physicaJ

problern (strong form) one cao solve a weak fonn, sucb as a variational principle. The

variational formulation looks for the stationary point of a symmetric bilinear fonn, the

functional, subjeet to cenain boundary conditions. Eeetromagnetic problems defined by

the two eurl Maxwell equations (2.1),(22) or the curI-curI equation (2.5), may be

formulated variationally. Sucb vector variational formulations cao be found in [Morse-53,

Berk-56. Webb-83]. For a driven problem and for linear, isotropie, lossy materials and for

time-harmonic fields the suggested functional is given by:

F(H) - Iv{:.(i7 x H)' (i7 x H) - k~Il,H' H }dV (2.6)

where V is the volume of interest and it is assumed to be dividable into a finite number

of non-overlapping sub-volumes (Section 2.4). In such a case the material properties Er

and Il, are assumed constant inside the sub-volumes but cao he discontinuous
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throughout the volume v. In addition. the magnetic field H is a5Sumed to be C 1

continuous in each of the sub·volumes and tangentially continuous across sub·volume

interfaces, see equation (2.11).

The stationary point of the functionaI (2.6). subject to the boundary conditions of

the problem, is the unique solution. Note that, aIthough the original differential equation

is second-order, orny first derivatives appear in (2.6).

The interface conditions (Sec. 2.1.1) should be satisfied everywhere in volume V.

and on a11 sub-volume interfaces, see equation (2.11). However, not aIl four interface

conditions bave to be enforced explicit1y. It has been shown [Webb-81, Crowley-88b] that

the enforcement of only tangential field continuity is necessary. The other interface

conditions, as well as the bomogeneous Neumann boundary condition are satisfied

naturally at the stationary point of the functional. For this reason these conditions are

ca11ed natura! conditions to the variationaI formulation.

The enforcement of just tangential field continuity be!Ween !wo adjacent

sub-volumes can be beautifully implemented by covariant projection elements

[Crowley-88a]. An out1ine of this approach is presented in the following section.

2.3 CurviIinear coordinate system - Covariant projections

In the generaI or auvilinear coordinate system. a three dimensional vector H can

be written as:

(2.7)

or as:
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•
The Ht • H". Hv are the covariant components or covariant projections of the field, the

veetors a t. a ". a v are the reciprocal unitary veetors, the Ht • H". Hv are the

contravariant components or contravariant projections of the field and the veetors

a t • a " . a v are the unitary veetors. The reciprocal unitary veetors, as weil as the unitary

veetors are not necessarily of unit length and they are used as basis veetors in the

curvilinear coordinate system. The unitary and the reciprocal unitary veetors satisfy the

following conditions:

(2.9)

•

A six-faced curvilinear structure and the curvilinear coordinate system are

illustrated in Figure 21. An excellent description of the unitary and reciprocal basis

veetors and their properties may be found in (Stratton-41], page 38.

Multiplying equation (27) by one of the unitary veetors, sayat we get:

Thus, the covariant projection H t is nothing but the projection of the field H in the

direction of the unitary veetor a t. It should be noted, however. that the direction of the

veetor Ht a t is normal to the surface defined by the unitary veetors a". a v which is not

parallel to the veetor a t. In other words, the direction of each component of the field

H defined in (27) is normal to one of the surfaces of constant ~. Tl or v. In addition,

the projection of H along the direction a t is notjust Htat. The other two components

have in general non zero projections in that direction.
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v

Flgure 2.1 CurWinear clement in the general eoordinate system. It has 6 faces which are surfaces

of CODSlaDt ~. '1 or v. The unitary veetors a •• a •• a. are a1ways tangent to the coordinate axes

~. '1, v. The reàprocal unitary veetor a' is normal to the surface defmed by D •• D.. which is a

surface ofconstant v. SimiJarly, the reciprocal unilary veetors D' and a' are normalto the surfaces

of CODSlaDt ~ and " respectively.

Setting H ~ and H" to zero is equivalent to setting to zero the field tangent to a

surface ofconstant v. The importance ofusing covariant projection curvilinear elements

will become clear in the next section.

2.4 Finite Element discretization

In order to solve a problem numerically, its infinite degrees of freedom bave to be

made finite. In the finite element method, the volume of interest is divided into a finite

number of non overlapping sub-volumes, called finite elements. They are defined in space

by the shape funetions. Similarly, trial functions describe the field (scalar or vector) dis-
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• moution inside them [Zienkiewicz-77, Silvester-90]. The discretized functional is given

by:

F(H)E f: r {.!.(7XH)'(7XH)-k~~,H'H}dV
'-1 JV t Et'

where M is the number of sub-volumes in the problem.

(2.11 )

In this work, each finite element is a curvilinear brick as shown in Figure 2.1. It has

a local curvilinear coordinate system (~. Tl •v) and it is bounded by 6 faces. These faces

are surfaces of constant ~. Tl or v. The origin of the local curvi1inear coordinate system

lies in the centre of the element. The element occupies the region:

-1~~~1

-1~Tl~1

-1~v~1

(2.12)

•
A set of scalar shape funcùons defines the geomeuy of the elenient in the local

coordinate system. There are 27 geometric nodes in the element, arranged in a 3 x 3 x 3

grid (see Appendix B). Each geometric node has a corresponding shape funcùon. In this

work this funcùon is a second order polynomial in each of ~. Tl and v. It has a value

of one at its own geometric node, and zero at the other 26. Thus, any point

p (x p• y p •z p) inside the element can be given in cartesian coordinates by:

27

X p - l Xigl(~P·Tlp'vp)
&-1

where 9 i (~p •Tl p • v p) is the second-order shape funcùon corresponding to the i th

geometric point, evaluated at the point p (~p • Tlp •v p) • The funcùons 9 ..s are

explicitly known a priori, [Crowley-88b]. The parameters (x,. y,. z.) are the cartesian
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'-1
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Zp- l z.g.(~p.Tlp.vp)
1:-1
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•

coordinates of the geometric point i. There is a one to one correspondence between the

local curvilinear and the global (eg. canesian) coordinate system [Crowley-SSb]. The local

geometric node numbering is ilIustrated in Appendix B.

A set of veetor trial functions has to be used in order to model the field distribuùon

inside the element. The veetor trial functions are similar to the scalar shape funetions.

but now there are directions assigned to each of them. The directions are that of the

reciprocal basis veetors, eqn.(2.7). It is not necessary to use the same order polynomials

as trial functions for the field components. In faet, it has been shown that the choice of

mixed order vettor trial functions, first and second, is crucial in avoiding spurious cor·

ruptions [Crowley-88a].

The nodes for the veetor trial functions are called field nodes, to distinguish them

from the earlier geometric nodes. There are 54 field nodes in each element, 18 in each

of the three directions in the local coordinate system, Figure 2.2. Two adjacent elements

have a total of 96 field nodes (54+54-12) after field continuity is imposed. The degrees

of freedom (DOF) of a problem is the total number of field nodes that do not have

prescribed values.

Expressions similar to (2.13) hold for the covariant field components. The field at

any given point p inside the element is given by:
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•

•

•

-a
a~ f IIj

18

H(a(I ..- IH(if(i(~ ... Tl ... v .. ).-1
18

H~a~I..- IH~.f~i(~ ... Tl ... V .. )
i-l

18

Hva
v

1..- IHvifvi(~ ... Tl ... v ..)
'-1

(2.15)

where f (i(~ .. ' Tl ... v ..) - f (i(~'" Tl ... v ..)a( is the veetor trial function that corresponds

to the ith l; field node, evaIuated at the point p(~ ... Tl ... v ..). It is ofmixed order and

varies linearly with l; and quadratically with Tl and v. Similarly for the veetor trial

functions f ~i and f vi' They vary linearly with Tl and v respectively and quadratically

with the other coordinates. AlI veetor trial functions point inwards for the proper and
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consistent imposition of tangential field continuity. Each of the parameters Hl' is the

covariant component at node i. Similarly for H", and Hv •• The local field node

distribution may be found in Appendix B.

Expression (215), for each finite element, is substituted into the functional (2.11)

and the integrations carried out. In this work Gauss-Quadrature was used for the inte­

grations. This results in a quadr?~c for the unknowns Hli • H"' •Hv,: differentiating to

find the stationary point gives a set of linear equations.

Once the parameters H~,. H", .Hvi have been found, the field can be evaluated

everywhere in the element using (214). The canesian field components may be found as

follows:

Each of the reciprocal UIÙtary veetors a ~ •a " •a v can be expressed as a Iinear

combination of the cartesian UIÙt basis veetor set - see equations (6) and (9), pa:;e 39, in

[Stratton-41]. Thus, the magnetic field H in (27) can be expressed in its cartesian

components in the cartesian coordinate system as:

(H~a~ + H"a~+ Hva;)â y+

(H~a~ + H"a~+ Hva;)â%

(2.16)

where a ~ is the x component of the reciprocal UIÙtary veetor a ~ and 50 forth. The

â" , â y , â" are the cartesian unit basis veetors.

There are some important advantages in using curvilinear covariant projection

elements:
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• 1) Their curvilinear shape allows a better modeIIing of curved objects.

•

2) The imposition of vector boundary conditions becomes as simple as the

imposition of scalar boundary conditions.

3) Oruy tangential field continuity is imposed across elements, which is consistent

with the variational principle. This Ieaves the normal components free, so they

can be discontinuous when abrupt changes in material properties or sharp

metallic edges are present.

4) The use of mixed order trial functions for the field distn"bution frees the problem

from any spurious corruptions that may appear even in deterministic problems

[Crowley-88b, Pinchuk-88].
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The Absorbing Boundary Condition Concept

Consider the following open boundary problem, shown in Figure 3.1. The volume

of interest V contains the eleetromagnetic source eJ. the metallic scatterers m J . m2

and the dieleetric scatterers dl. d2 •d3. The closed surface S truncates the infinite

domain of the problem and renders the volume of interest V finite dimension.<.

s
--~ D

v
e1

d2

m1

C•

FIgure 3.1 A typica1 open boundary problem. The surface S encloses the volume V where clec­

tromagnctic sources, metallic and diclcctric scatlerers are prCSCDL
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The above three-dimensional problem can be solved with finite elements if a known

boundary condition is imposed on the surface S. Such a boundary condition should

simulate the behaviour of the infinite space outside the c10sed surface S. This can be

done by absorbing aIl the outward propagating waves from the volume V. incident on

the surface S from within. Thus, the artificial surface S sbould be invisible to the

outgoing waves and no reflections would occur on S.

The search for such an absorbing boundary condition is the focal point of this work.

3.1 Conditions of the fields on a surface S at infinity

In open boundary problems, infinity can be regarded as a separate boundary. A

condition at infinity is necessary for the problem to be weil posed. For scalar fields, the

Sommerfeld radiation condition determines the bebaviour of the fields at infinity

[Wilcox-56a], and it is given by:

~~R(~~-jkoU)-O (3.1)

wbere u is a scalar wave function with a time variation of the form eJw., and k o is

the normalized frequency given in Section 2.1.3.

For veetor fields, the Silver-MülIer radiation condition gives the bebaviour of the

field on a c10sed surface at infinity [Wilcox-56b]:

lim r lârXCvXH)-jkoHI2dS-O (3.2)
R". Jr-R

wbere H is a veetor wave funetion, d:S - R2 sin ede dcjl is the surface element of a

spbere of radius R and li r is the unit veetor normal to the surface S.

Essentialy, the Silver-MülIer radiation condition is an Absorbing Boundary

Condition (ABC) on a spbere of infinity radius. It insures tbat there is no reflection on
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• that sphere of outward-propagating \\;aves. More precisely, it guarantees that there are

no incoming waves from infinity. This ABC is the veetor form of the Sommerfeld

radiation condition.

3.2 The vector radiation function and the expansion theorem

Consider the exterior domain D which consists of ail points lying outside a closed

boundary surface S, see Figure 3.1. A complex-valued veetor field H defined in the

domain Disa vector radiation function if it satisfies both the curl-eurl equation (25)

and the Silver-MüIIer radiation condition (32).

According to the expansion tlteorem [Wilcox-56b], for an exterior domain D [ r > c) •

a veetor radiation function can be written as:

•
~ h.(e.41)

H - H(r,e.41) - g L .-1
n-O r

where r, e, 41 are the spherical coordinates and g - e-jt
o' •

(3.3)

The first term of this series varies as ;: and satisfies the veetor absorbing boundary

condition introduced in the previous section. To put it in another way, the first term of

the series is annihilated by the absorbing operator:

â,X'il X - jk o

However. on the sphere r - R ail the terms of the series are present: a perfeet absorbing

operator would annihilate them alL In general. local differential operators cannat do this.

However. operators cao he construeted which annihilate more tenDS, and which are

therefore more accurate.
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• 3.3 The dilTerential operators B N and the absorbing boundalj' condition

A scalar expression sirrular to (33) exists for scaJar wave functions. In [Bayliss-82]

an expansion has been derived for a general N th-order differential operator that exaetly

annilulates the tirst N terms of the scaJar expansion. In this section analogous operators

B N are defined that annihilate the tirst N terms of any veetor radiation funetion H.

From (33) and (Cl.c) the (a. $) part and the radial part of the veetor H can be

wrinen as:

f- ho,(a.$)
H,-H,(r.a.$)- Lg 0-1 •

11-0 r

g ( n.. a)- --- jko"--rlt.-o r

•

Using the following relation:

:rC;'a)
and the veetor identity (C.6) we get:

â,xV'xH o, - (jko"~)Ho,

(3.5)

(3.6)

where g is defined in section 3.2, â, is the unit veetor in the radial direction and

We DOW define the differential operator

LN(u) - â,XV'XU-(jko"~)U

From (3.8), using (3.6) and for N ~ 0 and n ~ O. we have:

L (H )-L ( ho,(a.$)) _ (n-N) h.,(a.$)
N ., N g 0-1 g 0-2

r r

and for N - n - K. (3.9) gives:

(3.7)

(3.8)

(3.9)
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(3.10)

Similarly, using (3.8), (C.7) and for N 2: 0 and n 2: O. it is sho\\n in Appendix 0.1

that:

_ L (v {hn,(e.cl»})
N ,g r n-'

wbere:

(3.11 )

h n,. - h n,.- â,. and

For N = n'" 1 = K'" 1 (3.11) gives:

(3.12)

•
(3.13)

1In (3.10), the operator L K amùhilates the ,'" term of the veetor H, defined in (3.4)

and so L K - 1 amùbilates the ..!.. tenn. In (3.13), the operator L K _ 1('l, ) annihilates the,
;., term of the veetor H,. and so LK ('l, ) annihilates the ..!.. tenn. Thus, an operator, ,

of the form LK- 1(H,)'" LK(V ,H,) annihilates the ..!.. term of the veetor radiation,
funetion H. (3.3). In both cases L K and L K _ 1 bave the effeet ofmultiplying by ;. but

leaving the e. cl> dependance uncbanged.

The operators BN. N - 1•2 •.. . . .• are now defined as:

(3.14)

•

where s is an arbitrary number. The superscript N denotes that the operator LN _ 1 is

applied N times; simi1arly for the superscript N - 1.

Applying the operator B N to Hn we have that:
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(3.15)

•

•

{
hor(6.9)}

s(n"I-N)(n"2-N)'" (n-I)\7, g r O- N

In the expressions (33), (3.12) for the veetor radiation function it is nue that

h" (e . cjl) - O. or H 1 - H, r' This is because H. since it satisfies the curl-curl equation

(25) has also to satisfy \7. H - 0 [Wilcox-56b]. Then from (3.15), it is obvious that the

right-hand side vanishes for n = O. 1 ...... N - 1. ie. the operator B N annibilates the

first N terms of the veetor radiation function H. Funher, for n > N - 1 each of the

terms on the right-hand side in (3.15) is proponional to •.~.' (considering the ;: term,
included in the \7, operator). Thus,

BN(H) - 0C2~-') (3.16)

The above is an approximate absorbing boundary condition on the spherica1 surface S

of radius r. The approximation gets better as r increases. For N· 1. it improves at

the rate I/r 3
• and for N - 2 at the rate lIrs [Webb-89].

3.4 The first and second order Absorbing Boundary Conditions

In genera1, an absorbing boundary condition takes the form:

â,X\7 x u - peu) (3.17)

where P is a linear operator on u. Note that in both operators P, and P 2 (3.19) and

(3.21) no radial derivatives are present.
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•
3.4.1 The tirst order ABC

For N = 1. (3.14) gives:

or

Bl(H) - â,x'VXH - a(r)H, ... (s-I)'V,H,

where a(r) - jk o•

using (3.8)

using (C.S)

(3.18)

The first order absorbing boundary condition B, (H) - 0 tan be r"written as

•
P,(U) • a(r)u, ... (l-s)'V,u,

3.4.2 The second order ABC

(3.19)

For N = 2. (3.14) gives:

B 2 (H) - (L l )2(H,) ... sL 2 ('V,H,)

and after sorne aIgebra we get (see Appendix D.2):

B
2
(H) - __l_â x'VxH ... cx(r)H

l3(r) , l3(r) ,

"''VXâ,[â,'('VXH))'" (s-I)'V,('V'H,)

... (2- s)cx(r)'V,H,

where cx(r)-jko and l3(r)-I/(2jko"'2/r) .

(3.20)
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• The second order absorbing boundary condition B 2 (H) - 0 can be rewritten as

â, x 'i7 x H - P2(H). wbere P 2 is defined by

•

• CHAPTER3

P 2 (u) • a(r)u, + f.>(r)'i7xâ,[â,· ('i7xu)]

+ (5-1 )f.>(r)'i7,('i7· u,)

+ (2- 5)a(r)f.>(r)'i7. u,
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- r .!.HX'i7XH'dS (4.2)
JSE r

•

•

CHAPTER4

Implementation of the Absorbing Boundary Condition (ABC)

in a Variational Formulation

This chapter deals wit1::l the variational formulation of the problem. A funetional F

is derived for the first and second order ABC. The stationary point of F is the solution

to the curl-curl equation in volume V:

1 2
'i7X-'i7xH-kol.L H - 0

Er r

(see eqn. (2.5) in Section 2.1.3) with the ABC (first and second order) applied on a

spherical surface S which encloses the volume V:

â r x 'i7xH - P1.2(H)

see eqns. (3.17), (3.19) and (3.21) in Section 3.4.

4.1 Problems without symmetries where the ABC spherical surface S is c10sed

The following functional cao be derived from eqn. (25) using a standard method

[Linz-79, Chapter 7]:

F(H)- fv{ H·'i7X :rI7XH-k~l.LrH'H }dV (4.1)

where all the parameters have been explained in Section 2.2 and the veetor field H may

be complex. Applying the veetor identity

A·'i7X'i7XB· ('i7XA)'('i7xB) - 'i7'(AX'i7XB)

and using the divergence theorem on (4.1) we get:

F(H) - i {:}'i7 x H)' (17 x H) - k~l.LrH· H }dV
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•

where the c10sed surface S completely surrounds the volume V. The above expression

for the funetional F is the generalized form of (2.6). The difference between (2.6) and

(42) is the extra surface term Js ~Hx "V x H . d S. The absenC"e of this term in (2.6)

causes the homogeneous Neumann boundary condition (Section 2.12) to be naturally

satisfied at the stationary point of F. see Section 3.4 in [Silvester-90]. If the surface S

is a sphere, then by using the veetor identity BxC, A • C x A . B • - A xC, B we can

rewrite the surface integraJ in (42) as:

r .!.HX"VXH·dS - -J.!.â,X"VXH'HdSJSE r Er

and (42) becomes:

F(H) - i {:, ("V x H)' ("V x H) - k~J.1,H· H }dV
In Section 3.4, !wo approximate expressions Pl (H) and P 2 (H) bave been derived for

the integrand quantity â, x "V x H. which correspond to the fust and second order ABC.

We want the stationary point of F in (4.3) to satisfy the Absorbing Boundary Conditions

B. ( H) - 0 naturally, ( n • 1 or 2). It has been shown in the Appendix E.2, that this wi11

be the case if â, x "V x H is simply replaced by P ft (H) in equation (4.3). Thus, the

functional F is now given by:

F(H) - J.{.!.("VXH)'(\7XH)-k~J.1,H'H}dV + r .!.P.(H)'HdS (4.4)
v Er JSE r

The operator p. (H) is the absorbing boundary operator associated with the energy fJow

tbrough the surface S. and n· l •2 for the fust or second order ABC respectively. The

variationaJ formulation requires that the linear operator p. is symmetric:

r p.(u). vdS • r p.(v)· udS (4.5)Js . Js

where u and v are complex veetor functions.
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• For the fust order ABC. the choice s = 1 only gives a symmetric operator, see eqn.

(3.19):

(4.6)

Assuming that all dielectric materials are inside the volume V and the region close to

and outside the surface S is air, the corresponding functional is:

F(H) - L{LCVXH)2 - k~llrH2}dV ... La(r)H;dS (4.7)

For the second order ABC. the choice s = 2 only gives the symmetric operator, see

eqn. (321):

Again, assuming that all dielectric materials are inside the volume V and the region close

to and outside the surface S is air, the corresponding functional is given by (Appendix

E.1):•

P2(H) = a(r)H, ... l3(r)'i7 Xâ r[â r ' ('i7XH)]

... l3(r)'i7,('i7'H,)

F(H) - L{:r (17 x H)2 - k~llrH2 }dV ...

!s<a(r)H;'" l3(r)[â r '('i7xH)]2

- l3(r) (17 . H,)2}dS

(4.8)

(4.9)

Requiring that F be stationary leads to a symmetric matrix equation. Peterson's

expression however, for the second order ABC corresponds to the choice s - 1. which

gives a non-symmetric operator [peterson-88]. His ABC can be implemented by a

weighted-residual formulation, but this does not lead to a symmetric matrix equation.
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4.2 Problems with symmetries where the ABC spherical surface S is open

This section deals with problems with symmetries where the spherical surface S is

just pan of a sphere, i.e. half, quaner or eighth. In this case the first variation of the

functional F gives:

.!.Ô(F(H)) - J. {.!.V'X(ÔH).V'XH - k~(ôH)· H}dV
2 v Er

. L{a(ôH,)· H, • l3(r)[â r • (V' X ôH))[â r · (V' XH)]

- l3(r)(V'· ôH,) (V'. H,)}dS (4.10)

After some algebra and using #19 pS01 and #42 pS03 in [Van Bladel-64], we get:

.!.Ô(F(H)) - J. ôH· (V'X.!.V'XH - k~H)dV
2 v Er

·13(r)V' Xâ r [âr ·(V'XH)]}dS

• hâ... {ÔH,7.H,. ôHxâr[âr·(V'xH)]}dC (4.11)

where S is a surface that is pan of a sphere, C is the boundary of S and â.. is the

unit veetor in the plane tangent to the spherical surface and perpendicular to C, see

Figure 4.1. Each integral in (4.11) must vanish for any ôH at the stationary point of F,

so:

(4.12)

(4.14)

•
(4.12) is the governing curl-curl equation in volume V, and (4.13) is the second order

Absorbing Boundary Condition applied on the spberical surface S. Equation (4.14) can
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•
be rewrinen as:

â 'ôHIl'H + â 'ôH[â '(IlXH)) - 0m t : e t r (4.15)

where â. is the unit vector on the plane tangent to the spherical surface. and tangential

to C. see Figure 4.1. Note that Hl denotes the magnetic field tangent to the spherical

surface S. rather than the magnetic field tangent to the contour C.

s
c

•
Figure 4.1 A surface S that is part of a spberc, its boundary C and the unit veetors â,. â.. and

Suppose now that C lies on a magnetic wall, i.e. it is the intersection of the spherical

surface S and a magnetic wall. Then, â.· ôH. - 0 is imposed explicitly because of the

magnetic wall. Then (4.15) implies Il· H. - O. Since H r and 66:' are set to zero on the

magnetic wall,

10 2Il· H - 0 .. Il· H ... --(r H) - 0
• • r 2 0r r

Le. V' H - O. So, the correct divergence condition arises naturally.

( 4.16)
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Suppose now that C lies on an electric wall, Le. it is the intersection of the spherical

surface S and an eleetric wall. Then, in order for (4.15) to be satisfied, it is necessary

that "il' H, - 0 and â,' ("il x H) - 0 on C. The latter condition is equivalent to E, - 0

on C which is correct due to the eleetric wall. The fust condition, however, imposes

something which is unttue. Thus, in order to have the right boundary conditions, we need

to explicitly impose â .. · 6H , - 0 on C on eleetric walls.

If the surface integral of the second order absorbing boundary condition in (4.9) is

divided into integrals over quadrilaterals before the first variation of the funetional is

taken, see (211), then the first variation includes a line integral simiIar to that in (4.11)

around the boundary of each l!'~adrilateral C,:

l {a.. ·6H,"iI·H, + â c '6H,[â,'("iI X H)]}dC (4.17)
c.

Now, two such integrals will contribute to each line separating two quadrilaterals, one

from each ql!adrilateral. The first variation of the functional will vanish if and oruy if the

sum of these two contnôutions is zero, for each such line on the absorbing boundary

surface. Since the tangential field continuity is imposed, (see Section 2.2), 1â c 'liH, 1will

be the same on both sides of the line, and the vanishing of the first variation just enforces

the continuity of â,' ("il x H) which is correct. However, â .. · liH" is not continuous,

and requiring that the first variation of the functional vanishes forces that "il' H, - 0 on

both sides of the Iines, a restriction which is in general wrong, as discussed above. To

COrrect this, continuity of â .. 'liH, has to be enforced over the absorbing boundary

surface.

In conclusion, for the proper imposition of the second order Absorbing Boundary

Condition, extra conditions have to be explicitly enforced:
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•

•

a) on the ABC spherical surface, normal continuity has to be imposed on the magnetic

field components tangent to the sphere, between the quadrilaterals the ABC surface

is divided into.

b) â m • Cl H, - 0 bas to be imposed on those parts of C which lie on electric walls.



•

•

CHAPTER5

Programming Considerations

A computer program bas been written in standard Fortran 77 [BaIfour-79] to

implement the numerical method presented in this dissertation. The program is in

modular forro and well documented. It solves the problem in the deterministic sense, Le.

for a given excitation frequency it gives one field solution. The code was successfully tried

on the following.computers:

a) an 80386 IBM compatIble with 25Mhz dock speed, 80387 co-processor, 16Mb RAM

80Mb (18ms) bard disk and the NDP Fortran-386 compiler [NDP Fortran-90] under

DOS 3.3.

b) a SUN 4/110 (first generation of SPARC machines) with 8Mb RAM, 0.9 MFLOPS

and the SUN Fortran compiler under the SunOS Release 4.1.1.

c) a CRAY Y-MP super-computer with the CFT-77 Fortran compiler and the BCS

hbrary [BCSLIB-EXT-89] under UNICOS 6.0.12.

The program solves for the stationary point of the functional (4.4) in volume V

wbere metallic and lossy dieleetric materials cao be present. It uses curvilinear finite

elements, (see Sections 2.3, 2.4). After the input data are read, it automatically imposes

tangential field continuity between elements baving common faces. Since the fin31 matrix

is expeeted to be very sparse, the prnbl.em's sparsity pattern is found and stored to be

used later by the solver. The entries of the sparse matrix are calculated for each element

in mm during the local element assembly, and placed in the right position in the global

matrix. AlI the computations involve the cO'-mant projections of the field components.

There are two kinds of interpolation functions:
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a) these for the spatial resolution and are used to define the geometrical shape of

every curvilinear element, and

b) these for the field resolution and are used to define the field distribution inside

every curvilinear element.

The interpolation functions for the spatial resolution are 2nd order polynomials, but the

ones for the field resolution are mixed order polynomials (lst and 2nd), so that no

spurious modes are present. All interpolation funetions are calculated and stored. Two

sets of interpolation functions are used: one for the volume integral and one for the

surface integral. For the integrations, Gauss quadrature is used. After the boundary

conditions are imposed, the normal continuity is imposed on the covariant projections on

the ABC spherical surface. The matrix equation is solved and the solution is stored. This

solution contains the covariant projections field components. Fmally, the solution is

transformed back to the cartesian or spherical components and the result is written out

to an ASCII file. The following Section gives a brief description of the subroutines used.

The subroutines are listed with the sarne order as they are called by the main program.

5.1 The subroutines and a brierdescription

•

READIN:

HlTRI:

Reads from file "input.dat" the geometrical information of the

finite elements, material properties and field excitation. AlI

input data are in cartesian coordinates. More details on the

input data structure cao be found in Appendix F.

From the 27 geometric nodes of each curvilinear element, it

construets the 54 field nodes for that element (for the

geometric and field node definition see Section 2.4 and

Appendix B) and imposes tangential field continuity between

elements with co=on faces. Each field component is con-
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•

•

SPAT:

PRECAL:

PCAL2D:

CAUDl:

ASSEMB:

CHAPTERS

sidered as a field node. Also, it finds the pairs of the covariant

projections that have to be made continuous on the ABC

surface, (normal field continuity). At present it is necessary

that the edges of the faces lying on the ABC spherical surface

be colinear with Iines of constant e or cp.

Builds the sparsity panern of the final matrix.

Prepares the interpolation functions for the local volume

integrations at Gauss pOints whicb lie inside eacb element.

They will be used later by ASSEMB. Note that the

interpolation functions for the spatial resolution are different

from those for the field resolution.

Prepares the interpolation functions for the local surface

integrations at Gauss points whicb lie on the quadrilaterals

that form the ABC spherical surface. These points however,

do not lie on the boundaries of these quadrilaterals. The same

distinction between spatial and field resolutions applies here

too.

Prepares the interpolation functions for the local surface

integrations for the spatial resolution at the geometric nodes

but for degenerate quadrilaterals: that is quadrilaterals that

have one edge ofzero lengtb. It is onlyused for the assembling

of the surface divergence tenn.

It is caIled once for eacb finite element in turn. It builds the

local matrices for the volume integral and the surface integral

of (4.4) and then puts it in the appropriate positions in the
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• sparse global matrix. Both first and second order ABCs can

be assembled. More on assembling the final matrix can be

found in Section 5.2.

COMPUT: Prepares the interpolation functions at the geometric nodes

(as opposed to the Gauss points) of each element. These

values will be used later by SETBV, MODIFY and CARTES.

SETBV: Sets the boundary values at the appropriate positions. These

values are in terms of the covariant projection field compo-

nents. For the case of a magnetic wall, the tangential com-

p'l!le!!:s are set to zero. For an excitation surface, the

covariant projections are set to known non zero values after

being convened from the canesian input values.

CONMOD: Modifies the matrix [A) and creates a non zero right-hand

side [b). sothe newequation is now: [A)' [xl - [b) where

[x) is the unknown vedor, instead of [A)' [x) - O. where

some of the elements in [x) have prescribed values.

MODIFY: Imposes normal continuity on the field components that lie

on the ABC surface.

SOLVER: Solves the matrix equation [A)' [x) - [b). where [A) is

a complex, symmetric indefinite matrix. A frontal solver was

used written by J.P. Webb and based on (lrons-80]. It is very

efficient in using as little RAM as possible, however, it creates

two scratch files which are of considerable size. This solver

(subroutines 'cldltd' and 'cldlti') ran successfully on the 80386

IBM compatible and the Sun 4/110 computers. The Boeing
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•
CARTES:

Compt:ter Services library [BCSUB-EXT-89] "..as used on the

Cray Y-MP super-computer. The ",hole process is done in

RAM and no scratch files are created.

It converts the solution from covariant projections to cartesian

or spherical components and prints the result to the ASCII

file "field.out". For each finite element this file contaïns: the

coordinates for the geometric nodes and the three field

components on every geometric node.

•

5.2 Working with covariant comllOnl::1!Its

Assembling the global matrix of the discretized form of the first variation of (4.4),

requires that all the calculations are in covariant componcnts. For the volume part,

Crowley's implementation was used to bwld the volume tenns, (Crowley-88b]. The

surface pan of the functional includes a dot produet for the first order ABC, eqn. (4.7),

and a dot, a C'.lrI and a divergence term, eqn. (4.9).

The dot term in covariant projections is straigbt :orward using trial functions

defined on the surface of the quadriIateral. The radial component of curl in covariant

projections is given in Chapter l, p.47. eqn. (61) (Stratton-41]. However, there is no

expression given in covariant projections for the surface d.:Vergence tenn. The procedure

used to express tbis term in covariant projections is explained below.

5.2.11be surface divergence in covariant projections

Stratton gives the following expression for the divergence of a 3-component field,

p.4S. eqn.(SS), (Stratton-41]:
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• l 3 .3­
'V'H - -)"-(H\lg)

[g;:;.3u·
(S.l )

Using the above expression, the surface divergence is given by:

l 2 .3
'V . H - -)" -(H'[g) (S.2)s 1:_> •

",g'_loU

where H' are the contravariant components on the surface. [g -1 a 1x a2 1. and a,

and a 2 are the unitary veetors, see Figure 5.1.

........
n

• FIgure 5.1 The unitary vectors a 1 and az of a two-dimensioD31 surface in 3-D space.

Let the veetor t\ be the unit normal to the surface, see Figure 5.1:

Theo, the reciprocal unitary veetor a 1 is given by:

1 l
a - ..rga 2 xra

and therefore:

(5.3)

(5.4)
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(5.5)

•
which is correct, see eqn. (2.9). Similarly:

1
.["Ç/' x fi

and it is aIso true that a 2 • a 2 = 1. So, the contravariant co~ponent H' is given by:

HI • H.a'

and using (5.3) and (SA) this becomes:

HI _ H .!.Ia 12 _ H (al·a2)
1 9 2 2 9

Similarly, for the contravariant component H2 we have:

H2 = H·a 2

(5.6)

(5.7)

•
H l 1 12 _ H (a 1· a2)= 2- aIl

9 9

and finally the surface divergence in (5.2) can be rewritten in covariant components as:

1 0 1 2
V's·H - r={-l r=(l a 2 1 H 1 -(a 1 ·a2)H2)

'19 Du '/9

o l z
"-zr=(lall Hz-(al·az)Hz)}

Du '19

5.2.2 The surface divergence in covariant projections: a simpler way

Expression (5.7) is very complicated to code. An easier approach for the computer

implementation is given below.
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•
Assuming that the surface S is a sphere. the tangential field in spherical

coordinates is given by:

(5.8)

where li. and â. are two of the three spherical unit basis veetors. The surface

divergence on S is given by:

\1,' H, -
10H.-- ...r oe rtan (e)

... 1 oH.
rsin (e) c)l\l

(5.9)

The He and H. components of the field can be expressed as (see also Section 2.4):

9

He = LHe,g,(U 1.U 2)
i-I

9

H. - LH.,9,(U I ,U 2
),-.

(5.10)

(5.11)

(5.12)•
where 9 i (u 1 , U 2) are second-order trial functions in two dimensions similar to those

described in eqn. (2.13). The surface divergence term of the functional (4.9) over the area

of a quadrilateral is given by [Stratton-41]:

J(\1,. H,)2dS - {--If.:--. (\1,' H,)2.,Jgdu
1
du

2

where 9 bas been defined in Section 5.2. Using (5.10) and (5.11), the above may be

rewritten as:

(5.13)

or in matrix form:
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• Indices i. j refer to the interpolation points, and Heo is a column vector of the a and

$ values of the field. The square matrix Q has entries of the form:

3 3

Q~: - L L wg(ig)wg(jg)~ 1u '1 21u 2 12 - (u '. U
2)2 q~Jol'o.JO

ta-} Ja-l

where the indices ig. jg refer to the integration Gauss points which lie on the spherical

surface but Dot on the contour of the quadrilateraIs the spherical is divided into, and

wg's are the Gauss weights. The quantities q~J. are functio~of r, a.l!l. u land u 2.

and they are evaluated at every Gauss point ig • jg . Similar expressions exist for

Q"" Q" d Qoeil • IJ an 1/ •

Equation (5.13) gives the surface divergence term of the functiona! in spherical field

components. The field in covariant projections is given by:

H - Ha' + H a 2
1 2

•
Theo, the He and H. field components are given by:

He = H'âe - H, a " â e + H2a 2 'âe (5.15)

(5.16)

The covariant projections H, and H2 can be expressed as:

6

HI = LH llf li (U
I .U 2)

1:-1
(5.17a)

6

H2 = LH2if2,(UI.U2),-1 (5.17b)

46CHAPTERS

similar to those described in eqn. (2.15): Using (S.iS) and (5.17) the

the geometric node i is given by:

Hel - (ÎHllfll(UI.u2»)al'âel
J-1 (
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• SuniIar expression holds for H••. Thus, the relation between spherical and covariant field

components is given by:

where Misa non-square matrix. Then eqn. (5.14) becomes:

JCv,' 1-l,)2dS - H~. Q H••

- (M H 12 )T Q M H 12

- H;2 U H12 (5.19)

•

•

Expression (5.19) gives the surface divergence term in the covariant projection field

components and it was used in the computer program implementation.
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CHAPTER6

Results

The computer program described in the previous chapter was tested on a range of

problems in order to check the vaIidity and the performance or the proposed Absorbing

Boundary Conditions. The purpose was to demonstrate the foiiowing:

a) the efficiency and accuracy of the ABCs;

b) convergence;

c) difference in performance between first and second order ABCs; and

d) the behaviour of degenerate elements, i.e. elements having a face of zero area.

Two sets of numerical experiments were performed. The first set modelled

individual spherical wave functions. The second numerical experiment solved the reaIistic

problem of scattering of an incident plane wave by a metalIic sphere.

Since there was no previous experience, a large number of FE meshes were tried

with different element densities. The results presented in this chapter are from meshes

that gave accurate results with the minimum number of elements.

In aIl cases analytic solutions were available and they were compared with the

computed FE re.emlts. The object here is to provide a detailed check on field values rather

than comparison with macroscopic parameters, so that a thorough understanding of the

behaviour of the ABCs is obtained.

• CHAPTER6 48



• 6.1 Spherical TE wave functions

Analytical expressions for spherical TE wave functions may be found in Chapter 6

of [Harrington-61]. In a source-free homogeneous region of space. and for spherical

waves, the analytical expressions for the magnetic field components are given by:

Hr - . 1 (è 2

2
... k~)Fr (6.1)

)wl!rl!o èr

1 èA r 1 1 è 2 F
H.

r
(6.2)-- ... - --

r sin(e) ècjl jWl!rl!o r èrèe

1 èA r 1 1 è 2 F
H.

r- -- ... (6.3)
r èe jWl!rl!o r sin(e) èr ècjl

where m. n are integers, C... ft are constants, H (2). are the Hankel functions of the
"·2

(6.S)

(6.4)P::'(cos(e))F =r

For an outgoing TE spherical wave, the wave potentials Fr and A r are given by:

f- ~nkor (2)
L C.... -2- H••1(kor)

m-O Z
ft-l

•
second kind, p.138. #24.30 in [Spiegel-68]. and P;:' are the associated Legendre

functions of the first kind. p.149. #262 in [Spiegel-68].

For every set of integers (m. n). equations (6.1) - (6.4) give a magnetic field which

is an exact solution to MaxweU's equations in spherical coordinates. Any true field cao

be represented as a linear superposition of these spherical harmonies.

We now consider the boundary value problem where the magnetic field components

He and H. are constrained on the surface of a sphere. Their constrained values are given

by (62) and (6.3). Outside this sphere is free space. The solution to this problem is an

outgoing spherical wave, characterized by the set of integers ( m. n )•
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• This boundary value problem was solved using finite elements and ABCs. The

results were compared with the analyticaI ones. Four ( m. n) cases are considered here.

EssentiaIly, the volume modeIIed with finite elements is the space between two concentric

spheres. The inner sphere is the excitation surface, where both H. and H. are

constrained, and the outer sphere is the absorbing boundary surface, where the ABC is

imposed, see Figure 6.1.

z

excitation
surface

•
o

absorbing boundary
surface

y

Fl&ure 6.1 ModeIIiDg a seclor of a spherc wiIh c:urWincar elemcnlS. In t!1is mesh there are thrcc

elements in thc e clircctiOIl, lIIId DOC in r lIIId '" clircctiODS rcspcc:cl0i:iy.

Because of symmetries, only sections of the problem were modelled in each case. The

curvilinear nature of the elements made them easy to fit to the spherical inner and outer

boundaries. In the first two cases degenerate curvilinear elements were successfully used.
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Such elements, because they are simple to use, are very promising in finite element meshes

that model complicated structures, where otherwise more than one type of conventional

elements would have to be used.

A simple 3D mesh generator was written to facilitate the generation of input data.

It reads the file "mesphe.dat" and such a file is illustrated in Appendix F.2. It produces

the output file "mesphe.out" which is used as input data by the finite element code.

6.1.1 The (m, n) =(0,1) case

In this case the field varies only in the r and e directions and H.· O. Therefore,

only one element was used in the 4> direction. There were four elements in the e
direction and one element every 0.03 ~ in the r direction, where ~ is the wavelength.

The size of each curvilinear element was (r. e. $) = (0.03 ~. 22S. 10"). Note the

degenerate elements touching the z axis, see Figure 6.1. Due to symmetries, the modelled

volume was confined by boundary surfaces holding the foUowing boundary conditions:

Boundary surface Boundary Condition

r = 03~ excitation surface (prescribed H 9 a..d H. )

r = R Absorbing Boundary Condition

e = O" eleetric wall

e = 90" magnetic wall

4> = O" eleetric wall

4> = 10" eleetric wall

Figure 6.2 shows how the errar changes as the absorbing boundary surface is moved

outwards. In the smallest problem (R=0.06 wavelengths) there were 8 elements and 318

field nodes, and in the largest (R=03 wavelengths) 40 elements and 1422 field nodes.
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• (For field node definition see Section 2.4.) Results for first and second order Absorbing

Boundary Conditions are included. The error shown is the largest value of

over the volume modelled, expressed as a percentage of 1Haxa.. 1 at the point where the

largest value of e occurs.

order ABC
-IR-

1-0
010
1-0
1-0
CI)

'0-CI)--
S
:l
Ei-• X
CIl
S

1

0.00 0.06

second order ABC

0.12 0.18 0.24 0.30
R (wavelengths)

0.36

FJaure 63 Solution crror versus R, which is the distance between the excitation surface and the

absorbiDg boUDdaIy surface, for the case (m. n) • (D,1).
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• 6.1.2 The (m. n) =(0,2) case

In this case the field varies only in the r and e directions and H. - O. Therefore.

only one element was used in the cp direction. There were six elements in the e direction

and one element every 0.03 À. in the r direction, where À. is the wavelength. The size

of each curvilinear e1ement was (r. e. $) = (0.03 À.. 9.12". Hl"). Note the degenerate

elements touching the z axis, see Figure 6.1. Due to symmetries, the modelled volume

waS confined by boundary surfaces holding the following boundary conditions:

Boundary surface Boundary Condition

r = 0.3 À. excitation surface (prescribed H8 and H.)

r = R Absorbing Boundary Condition

e = (1' e1ectric wall

€ = 54.7356" magnetic wall

• cp = (1' e1ectric wall

cp 1(1' electric wall=

Figure 6.3 shows how the error changes as the absorbing boundary surface is moved

outwards. In the smallest problem (R=0.12 w:lvelengths) there were 24 elements and 870

fléio nodes, and in the largest (R=0.48 wavelengths) 96 elements and 3294 field nodes.

Results for first and second order Absorbing Boundary Conditions are included. The error

e has been defined in Section 6.1.1.

1 1
The second order ABC absorbs any outward-propagating wave with a ; and ;z

variation; it absorbs less completely wav.es with l, variation and even less completely
r

waves with ~ variation. The variable n in (m. n) determines the variation of the fjeld
r

along the r direction. For the (0,2) case the fjeld varies as ~ while in (0.1) it varies as
r
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~

0
~

~

Cl)

"Cl 10-Cl)--
S
::s
5-X
CIl
S

second order ABC

1

0.03 0.12 0.21 0.30 0.39 0.48 0.57
R (wavelengths)

•

•

FIgure 6.3 SoIutioD emlI' versus R, which is the distaDce betweeD the excitatiOD surface and the

absorbiDg boUDdaIy surface, for the case (m. n) • (0,2).

2,. see eqns. (6.1) - (6.4). In both cases the ABC is an incomplete absorber. For the (0,2)
r

case the absorbing boundary surface has to be placed further away in order to absorb the

outward-propagating wave as efficiently as in the (0.1) case. Larger values of n would

require that the absorbing boundary surface is placed even further for good absorption.

6.1.3 The (m. n) =(1,1) case

In this case the field varies in aIl three coordinate directions r. a and cp. There

were four elements in the e and cp directions and one element every 0.03 À. in the r
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•
direction, where À. is the wavelength. The size of each curvilinear element was (r . e . 4»

= (0.03 À.. 21.75". 22.5"). However. H. and H. are undefined on the z axis, 50 the

previous mesbes toucbing the z axis cannot be used because no boundary condition can

be imposed on the degenerate surface e =0" .To overcome this problem, the z axis was

not modelled. Instead a new excitation surface e = 30 was introduced. 50, no degenerate

elements were present, see Figure 6.4. Due to symmetries. the modeIIed volume was

confined by boundary surfaces bolding the foIIowing boundary conditions:

z

excitation
surfaces

•
o

absorbing boundary
surface

y

FJ&ure 6.4 Modclling a scctor of a spbcre with curvilin= clements. Tbcre arc no clements loucbing

the z axis.

• CHAPTER6 ss



• Boundary surface Boundary Condition

r = 0.3 À excitation surface (prescribed H. and H. )

r = R Absorbing Boundary Condition

e = 3" excitation surface (prescribed H r and H.)

e = 90" eleetric 'W'lÙl

4> = 0" eleetric 'W'lÙ!

4> = 90" magnetic 'W'lÙ!

•

Figure 65 shows how the error changes as the absorbing boundary surface is moved

outwards. In the smallest problem (R= 0.06 wavelengths) there were 32 elements and 1044

field nodes, and in the largest problem (R= 0.3 wavelengths) there were 160 elements and

4644 field nodes. ResuIts for first and second order Absorbing Boundary Conditions are

included. The error e was defined i:l Section 6.1.1.

For !bis spherical harmonie (1,1) the absorbing boundary surface absorbs as

efficientlyas in the (0,1) case. This is because in bath cases the field varies as :,.
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......... first order ABC
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0. 0$.0'

$.0

Cl>

"0-Cl>--1::
;:l
S-x second order ABC
<tl
E

• FIgure 60S Solution error versus R, which is the distancc bctween the excitation surfacc and the

absnrbing boundary surface, for the case (m. n) z (1.1).

Figure 6.6 shows how the error changes as the mesh density changes. The absorbing

boundary surface is at a constant distance of r =R =0.3 À. from the excitation surface.

ln the smaIIest problem there was one element in the e and cP directions and two

elements in the r direction. The next mesh had two elements in the e and cP directions

and four elements in the r direction. For three elements in e a.'1.:1 cP th~re were six

elements in the r direction and 50 forth. AlI elements have the same size within Lie same

mesh. However, they are different from one mesh to the other. In the smaIIest problem

there were 2 elements and 96 field nodes, and in the largest problem there were 250

elements and 7040 field nodes. Results for first and second order Ab50rbing Boundary
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second order ABC

first order ABC

•

•
1

o 1 234 5 6
Number of elements in 19 (or q;) direction

FIgure 6.6 C:lnvergence rcsults as the mcsh dcnsity incrcascs for the case (m. n) a (1,1). The

absorbing boUlldaly surface bas bccn kept al a constant distance R-O.3l1.. The numbcr of clements

in the r direction arc twice as many as in e (or <l» direction.

Conditions are included. Note that when further discretization of the mesh does not

improve the performance of the ABCs, the error from the second order ABC is about

one order of magnitude sma11er than that from the first order.

6.1.4 The (m. n) =(1,2) case

In tbis case the field varies in all tbree coordinate directions r. e and $. There

were tbree elements in the e direction, five in $ and one element every 0.03 À. in the

r direction, where À. is the wavelengtb. The size ofeacb curvilinear element was (r •e. cil)
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= (0.03 À. 15°. ISO). No degenerate elements were present. Due to symmetries. the

modelled volume was confined by boundary surfaces holding the folIo\\ing boundary

conditions:

Boundary surface Boundary Condition

r = 0.3 À excitation surface (prescnbed H. and H. )

r = R Absorbing Boundary Condition

e = 45" eleetric wall

e = 90" magnetic wall

cp = 0" eleetric wall

cp = 90" magnetic wall

Figu:-e 6.7 shows how the error changes as the absorbing boundary surface is moved

outwards. In the smallest problem (R=0.06 wavelengths) there were 30 elements and 988

field nodes, and in the largest problem (R=0.48 wavelengths) there were 240 elements

and 6952 field nodes. Results for first and second order Absorbing Boundary Conditions

are included. The error e has been defined in Section 6.1.1.

For this spherical harmonie (1,2) the absorbing boundary surface absorbs as

efficiently as in the (0,2) case. This is because in both cases the field varies as 1;.
r

Figures 6.8 and 6.9 show the amplitude and phase of the magnetie field component

H r for the (1,2) case, at the geometrie point (r. e. CP) = (0.36 À. 60". Tr), versus the

distance R between the excitation surface and the absorbing boundary surface. The

computed component H r generaIIy had a larger error than the other two components

since it is the least prescnbed by the boundary conditions. The results from the second

order ABC converge better to the theoretical values than those from the first order.
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first arder ABC.......

s..
0
s..
s..
Q)

"t:l
- 10
Q)--a
;l
s->:
<tl
S second order ABC

•
l+-_,...-_r----,_---._---._-,-_...._....----,
0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54

R (wavelengths)

Figure 6.7 SolutiOD error versus R, which is the dÎSlaDce belWeeu the excitatioD surface and the

absorbiDg boUDdary surface, for the case (m. n) a (1,2).

CHAPTER6 60



a
/

...

theory
first order ABC
second order ABC

••• , A =è
(.••• -v

Cil .0--;
, .'.. ......... /

" -G'- l'l
.~_.-.., /

/
/

/
/

lZl
/

/
/

,/

[3.. - B _****

1.4

• 1.3

--- 1.2
8
"--< 1.1'-'"

s.. 1.0::r:
0.9

0.8

•
0.7 +--,----,r-----r--.-...--r---,r---.-....,

0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54
R (wavelengths)

FIgure 6.8 Amplitude of the magnetic field component H, versus R. which is the distance between

the excitation surface and the absorbing boundary surface, for the case (m. n) - (1,2)•
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FIgure 6.9 Phase of the ",agnetic field component H r at one poiDt versus R, whic:h is the distaDce

between the excitation surface and the absorbing boundary surface, for the case (m. n) = (1,2).

6.2 Scattering from a metallic sphere

Consider t!le boundaxy value problem of scattering of an incident plane wave by a

me:aIlic sphere. see Figure 6.12. For an x-polarized and z-traveling plane wave incident

on a metallic sphere of centre (0,0,0), the magnetic field is given by:

H
l Eo -/~or ...(8l

- "-e
y 110

where Eo is a constant, and 110 is the intrinsic impedance of free space: 110 = 376.73

Ohms. The wave potentials for the scattered field are given by:
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• Eo f- )nkor (2) 1A: - k COS(l!l) L b. -- H ,(kOr) p.(COS(S))
Tlo oll, '-1 2 .-=:;

(6.6)

(6.7)

•

•

The constants bft and Cft are defiI:ed in eqn. (6-102), page 294, [Harrington-61]. The

magnetic field H is given by eqns. (6.1) - (6.3). The total field is, of course., the sum of

the incident and scattered fields.

This bound2ry value problem was solved using finite elements and ABCs. The

results were compared with the analytica1 ones. The volume modelled with finite

elements was the space between two concentric spberes. The inner spÏlere is the metallic

spbere, and it is the eJ:àtation swface, wbere both H. and H. are constrained to known

values of the scattered field given by eqns. (62), (6.3), (6.6) and (6.7). The outer sphcre

is the absorbing boundary swface, wbere the ABC is imposed. Since H. and H. are

undefined on the z axis, the z axis was not modelled, see Figure 6.4. Due to symmetries,

the modelled yolume was aIso confined by bounda.ry surfaces holding the following

bOu:idary conditions:

Boundary surface &undary Condition

r = O.31\. excitation surface (prescribed H. and H.)

r = R Absorbing Boundary Condition

e = 3° excitation surface (prescribed H, and H.)

e = 117 excitation S'mace (prescribed H r and H.)

cp = (J' magnetic wall

cp = 90" e1eetric wall

Note that in this case a quarter of the sphere was modelled and not just an eigbth

as in (m, a) =(1,1) case. l'here were twelve and six elements in the e and cp directions
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respectîvely, and one clement every 0.03 À in the r direc-.ion, where À is the \liavelength.

The size of cach curvilinear element was (r •e. ç,) = (0.03 À. 14.5" • 15"). The values of

the Hankel and the associated Legendre funetions required for the excitation field values

were double checked using the Mathematica-386 software, see [Wolfram-88].

Figure 6.10 shows how the error changes as" absorbing boundary surface is

moved outwards. In the smallest problem (R = O.()( .engths) there were 144 elements

and 4360 field nodes, and in the largest problem (R-=0.42 wavelengths) there were 1008

elements and 26848 field nodes. Results for first and second order Absorbing Boundary

Conditions are included. The diagram clearly shows the superiority of the second order

ABC.

Figure 6.11 shows how the error changes as the radius D of the metallic sphere is

increased, while the absorbing boundary surface is kept at a constant R=036 À. see

Figure 6.10. This is equivalent to increasing the excitation frequency while keepiI:g the

ABC surface the SliIIle number of wavelengths away from the scatterer. It appears that

there is almOst no cbange for the second order results,w~e first order gives better values

as D increases. For very big values of D the inner sphere would look rather like a plane

scatterer and the first and second order results should give the same accuracy for an

incident plane wave.
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S second order ABC

•
1+--.-------,r-----r--,---.--.....---~__.,
0.00 0.06 O., 2 iJ. , 8 0.24 0.30 0.36 0.42 0.48

R (wavelengths)

FIgure 6.10 Scanerillg by a melallic spbcrc. Solution error versus R, wlücb is the distance bctwccn

the excitatiOIl surface 3IId the absorbÙlg boUlldary surface. The radius of the melallic spbcre is D -03

À.

Figure 6.12 shows a y-z cross-section of the metallic spher~ scatterer and the

absorbing boundary surface in the presence of the incident plane wave E~ • H~. The

line AB is along the radial direction at e=24.75" and cp =90" . The next Figures compare

calculated field values with the analytical ones on geometric points along AB. Accurate

results were obtained (second order ABC) when the absorbing boundary surface was less

than one half a wavelength away from the scatterer•
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FIgure 6.11 Scancring by a metallic sphcrc. Solution CrTor versus D. for R=O.36 À. Dis the radius

of the melallic sphcrc, and R is the distance bctween the excitation surface and the ahsorbing

boundary surface.
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• absorbing
boundary
surface

)! H;
x0 ~ y

incident
wave

y

~--- metallic sphere

•
Figure 6.U A y·z O'oss-scetion of the 3D geometry. The gray area is the metallie sphere of radius

o whieh is eompletely enclosed by the eoneentrie absorbing boundary surface of radius 0 +R. The

incident plane wave is x-po1arized and z-traveUing. 0 - 03 >.. and R • 0.36 >... where >.. is the

wave1ength.

Figure 6.13 shows values of the amplitude of the scanered field H·. normalized to

the incident field amplitude, versus r along AB, see Fig. 6.12. The percentage numbers

are the errors e on the corresponding geometric points. e = 1HhM - H:xoct 1. anJ they

are expressed as a percentage of 1H:xa.t 1• The second order values are almost the same

as the theoretical ones. The percentage error increases as we move away from the

excitation surface. This is because on that surface the field components H8 and H. have

prescnbed values.

Figures 6.14 and 6.16 show valu~ of the amplitude of the scanered field

components H~ and H;, normalized to the incident field amplitude, versus r along
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FIgure 6.13 5canering by a metallic sphete. Normalized amplitude of the scanered magnetic field

H' vezsus r a10ag AB, sec F"J8. 6.12. The perceDtages are the =ors al the cone:;ponding points

as a percentage of the theoretical values.

AB, see Fig. 6.12. Figures 6.15 and 6.17 show values of the phase of the scattered field

components H: and H:. versus r along AB, see Fig. 6.12. On the cp =90" plane H.
= O. In all cases the superiority of the second order ABC is clear.

For scattering from an arbitrary metallic scatterer the eleetric field E formulation

bas to be used with the following boun~ary conditions on the surface of the scatterer:

E" - -El,
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F"lglIre 6.14 Scattc:riDg by a metallic sphere. Norma1ized amplitude of the scaltcred magnctic field

component H ~ versus r a10ng AB, see Fig. 1ï.12.
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FIgure 6.16 5catlcring by a metallic spbcrc. Norma1izcd amplitude of the scatlcrcd magnelic field

compoDcnt H: versus r a10Dg AB, sec FIS- 6.u.
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• FJ&ure 6.17 Scancring by a metalIic sphcrc. Phase of the scaacrcd magnctic 6cId componcnt H:

versus r along AB, sec Fig. 6.12.

6.3 Computational considerations

For a 3().element problem of988 field nodes, the assembly of the global mattix took

7 minutes and 14 seconds and the solver 8 minutes and 40 seconds on an 80386-based

computer, (see beginning of Chapter 5 for computer specifications). AIl times for the

80386-based computer refer to total time as opposed to CPU time only. The total disc

space required by the solver for scratch files was 0.936 Mbytes. Similarly, for a

24O-e1ement problem of 6952 field nodes the assembly of the global mattix took 55
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minutes and 49 seconds and the solver 9 hours and 1 minute and 65 seconds on the same

computer. The disc space required in this case "'"as 36.84 Mb)1es. The nc:xt table gives

more information regarding the computational cost on the 80386 computer.

80386

Numba" ornon- Computational cost in Computational cost in
Field nodes zeros in global assembling the global solving the simulta-

matrixW matrixW neous equations

9S8 40062 7min 14s Smin40s

1840 79020 14min lOs 2Smin 14s

3118 137457 2Amin3Ss 1h26min 15

4396 19S894 34min58s 3b 11min 15

5674 254331 45min22s S1l58min 6s

69S2 312768 SSmin49s 9b59min 15

7344 338766 S8min29s 1Sh6min37s

For a 144-eIement problem of 4360 field nodes the assembly of the global matrix took 8

seconds and the solver 4 seconds of CPU time on the CRAY Y-MP super-computer.

Similarly, for a l008-element problem of 26848 field nodes the assembly of the global

matrix took S3 seconds and the solver 152 seconds of CPU time on the same

super-computer. The next table gives more information regarding the computational COS!

on the CRAY Y-MP computer. It should be noted here that the veetorized and

parallelized BCS solver was used (BCSllB-EXT-89], which is specifically written for the

CRAY super-computers. No special instructions were implemented in the rest of the code
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to take advantage of the architecture of veetor paraUeI machines. Should such care had

been taken for the rest of the code, the times for the matrix assemblv would have been

considerably smaIIer.

CRAYY-MP

Nnmberof:lon- Computational cost in ComputationaI cost in
Field nodes zeros in global assembling the global sohing the simulta-

matrixW matrixW neous equations

4360 219562 8s 4s
1

8108 403600 15s Ils

11856 587638 23s 34s

19352 955114 38s 89s

23100 1139752 45s 96s

26848 1323790 53s 15"'..$

30596 l507828 60s 170s

34344 1691866 68s 254s
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CHAPTER7

Conclusions

In this treatise a new method has been proposed for the use of finite elements in

three-dimensional open-boundary vettor wave problems. It is based on new local differ­

ential boundary conditions, the Absorbing Boundary Conditions (ABCs). which are

app!ied on a spherical surface that completely encloses the volume of interest. These

boundary conditions preserve the sparsity and the symmetry of the fmite element matrices

providing a pure finite element technique as opposed to hybrid solutions, (FE combined

\\ith integral techniq;Jes). that alter the sparsity of the matrices. Existing vectorized sparse

solvers take full advantage of such sparse matrices reducing drastically the computational

cost.

General expressions for n th order ABCs have been derived. First and second order

ABCs have been implemented into a symmet.~c bilinear form suitable for the finite

element code.

Curvilinear covariant-projection elements of mixed order (first and second) have

been used in all the l!nalyzed jlroblems. These elements enforce only tangential continuity

on the magnetic field vettor between the elements and they are free of spurious

corruptions. Normal continuity is imposed naturally by the variational formulation. Their

curvilinear nature makes them highly suitable for problems with curved surfaces. In

addition, degenerate curvilinear elements have been successfully tested in this thesis.

They are degenerate because at.least one of their faces is shrunk to a !ine, i.e. a face of

zero area. Sucb elements are very useful in problems wbere many and bigbly comp!icated

dieleetric rnateriaIs have to be modelled. There is no need to use different types of finite

elements in the same mesb, since curvilinear elements can model any geometry.
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Several tests were tried to exploit the performance of the new method. They can be

categorized into three groups:

a) moving the absorbing boulldary spherical surface a'W-ay from the scatterer

b) increasing the discretization of the finite element mesh

c) increasing the excitation frequency

The numerical results obtained showed that the second order ABC is superior to that of

the fust order. For the realistic problem of scanering of a plane wave by a 3D metaI1ic

sphere, it was found that accurate resuJts ofan error smaIIer than 1% in field values were

obtained, when the absorbing boundary sphere is placed less than half wavelength away

from the scanerer, compared to at least one or !Wo wavelengths, required by other type

ofboU:ldary conditions [D'Angelo-90). This minimizes the extra free space that 11as to be

modeIled, !bus the number of the unknowns is not significantly increascd and therefore

neither is the computational cost. For the same geometry, the fust order ABC absorbs

less, giving a field solution with values having a 10% error, one order of magnitude higher

than those of the second order. In both cases the error refers to comparisons of the

numerical with the anaIytical field values on the same geometric points. The difference

in computational cost in assembling the fust from the second order ABC is negligtble.

Without a doubt, the second order ABC is to be preferred.

In aIl formulations throughout this dissertation the magnetic field H has been used.

Identical expressions hold for the eleetric field E. Since no normal continuity is imposed

by the curvilinear covariant-projection elements no special considerations have to he

taken at dieleetric interfaces when the eleetric field formulation is used. Sirr..ilarly for the

magnetic field and magnetic material interfaces. For the same reason, problems with

sharp metaIlic edges cao he modelled ~ a straight forward manner and without extra

complications (Miniowitz-91), as weIl as probleD'lS where both magnetic and dielectric

materials are present.
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The work in this dissenation concludes that finite elements and Absorbing

Bounda.ry Conditions in open boundary eleettomagnetic problerns can be as successful as

they have been in closed boundary problerns in the last tv.:o decades. The present

technique opens a whole new area for potential applications in computer simulation v.;th

finite elements sucb as microwave junction radiation, microwave heating. and in

particular hyperthermia, a technique used for cancer treatment, where many and highly

inhomogeneous dieleetrics (i.e. living tissues) are present. This is because the presence

of dieleetrics is easily treated by finite elements.

7.1 Suggestions for further work

FURlliER GENfRALTZA1JON: Due to the presence of the surface divergence

term in the formulation, normal co:ltinuity has to be imposed on the magnetic field

components on the absorbing boundary spherical surface, see Section 42. This. however,

does not amount to simply setting the covariant projections equal to each other, because

the value of the normal field component does not in general equal to the value of the

corresponding covariant projection at that point, see Section 2.3 and [Crowley-88b]. TnU5,

for the sake of ~plicity for the computer code, by enforcing the edges of the elements

lying on the absorbing boundary spherical surface to be colinear with the lines ofconstant

e or cp. makes the imposition of normal continuity a rather trivial task. This however,

is by no means a restriction of the method. A modification of the code could easily allow

the above mer.tioned edges to have any orientation possible.

HIGHEB-ORDER ABSORBING BotJNPARY CQNDmQNs: Symmetric

bilinear forms for the finite clement code with ABCs of order higber than two bave not

been implemented. Sucb ABCs require higher derivatives and the mixed arder finite

clements used in this work could no longer be used; therefore new higher-order mixed

clements would bave to be invented.
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MULTI-SPHERICAL ABSORBING BOUNDARY SURFACE: As a

disadvamage of the new method one could consider the analysis of problems v.ith long

and thin geometries, see Figure 7.1. In sucb cases the faet that the absorbing bound:ù")'

surface has to be a sphere often leads to the inclusion of useless empty space which also

has to be discretized, and me absorbing boundary sphere is at distances mucb greater

than a half wavelengtlL

•

absorbing
boundary
surfaces

z

scatterer

-_......_.---h=;---.y

suggested
approach current

approach

•

FIgure 7.1 A y-z aoss SCdiOD oC the 3D gcomCby.,ra typical open boundaIy problcm.The approach

CoUowcd in this thcsis inc1udcs ODe sphcrical :.bsorbing boundaIy surface oC radius R,. (thiD liDe).

The suggcstcd approach could inc1ude a muli-sphcrical absorbiDg boundaIy surface or radü R, and

R.. (thick liDe). Point A lies aD the intersectiOD liDe or the IWO sphcrical surfaces or radü R, and

R••
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However, there is no restriction in the formulation to using only one absorbing boundary

sphere. Thus, as an alternative many absorbing spherical surfaces of different radii could

be iotroduced. Furtber investigation of this idea is needed. Figure 7.1 shows the current

and the suggested method for a long and thin scatterer. In the current method the scatterer

is enclosed by a sphere of radius RI' In the suggested method the discretized volume

would be enclosed by four different open spherical surfaces, two of radius R 1 and!Wo

of radius R2 • Therefore the discretized region for the suggested method would be much

smaller, resulông in smaller memory requirements and less computational cost.

A1ITQMATIC MESH GENERATORS: Development of automatic mesh

generators for spherical outer boundaries would facilitate a lot the method presented

here. Mer the user specifies the geometry in the volume of interest, an automatic mesh

generator could build the rest of the mesh for the remaining volume setting a spherical

absorbing boundary surface at approximately half wavelength away from the closest

scatterer•

VIRTIJAl. REALITY: Three-dimensional pre and post-processing could benefit

greatly from the application of the concept of virtual reaIity [Rheingold-91). "Moving" in

a realistic 3D 3pace would give the design engineer the ability to model more easily

complex and highly inhomogeneous structures and would provide a better understanding

of the field solution, resulông in more efficiently designed produets. Medical techniques

like hypertbermia are in great need of simulated experiments of eleetromagnetic energy

deposition, and virtual reality Mts perfectly these demands.
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• APPENDIXA

An alternative forrn for ~he Homogeneous Neumann Boundary Condition

(From Section 2.12)

Multiplying both sides of equation (25) by the unit veetor fl normal to the

boundazy 54-face, we get:

H' fl =_I_('i7X..!..X'i7 XH)' t\
k~llr Er

(A.l)

The expression for the homogeneous Neumann boundazy condition is given by:

Ext\=O

..!..('i7XH)Xli-O
Er•

which cao aIso b~ written as:

From veetor analysi~ it is true that:

equation A2 gives:

(A.2)

H x t\ = 0 => (17 x H)' t\ = O. Using this,

•

and because of (Al) .....e get:

APPENDIXA

17 X..!..('i7X H)·n - 0
Er

H·t\-O

QED

80

(A.3)



• APPENDIX B

Local Geometrie and Field node resolution

(From Section 2.4)

For better visualization and c1arity, and without any 1055 of generality. let the

current finite element be the cube shown in Figure B.l. The cube is analyzed in three

planes: front, mid and back. In the following !wo sections the geometric as well as the

field node resolution are shown on each plane.

back plane

• 1 1
1 1
1 1
1 1
1 J--­
l ,,
J,e-----,,,

front plane

rnid
plane

Figure B.1 A finile clement and ils thrcc planes ofanaIysis in the local CIIl"IiIincar coordinale system.
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B.I Local geometric Dode numbering

•• 3 2
• •

1 21
•

20
•

19
•

6 5 .4 24. 23 .22• •

front plane bac"k plane
• • •

9 8 7 27 26 25

12 11 10
• • •
1

a"L 151 14 .13• 1

• rnid plane j
a~· a • •17 18 17 16

FIgure B.2 The Z1 geometric lIodes of the fmite c1emenL For cach geometric lIode there is a cor­

=po"dillg secolld order triaJ fuIIetiOIl with \lllÏt value 011 thatllode and zero 011 aJI the other lIodes.

The shape of the clement Î113-D space is defmed by the 27 geometric lIodes ÎIIterpolated by the triaJ

fuIIetiollS.
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(. . 0)

, Ir 3B r •
46. 44 43

\: r 0 Il 1
~ 51 ' ~ , ~

back plane
• "'- --.:. • v ~ ..:)

•
B.2 Local field node numbering

6 7 4 2 1

,l .,t Il t,
13 11 10 1

12® • ® 4 &9

21 lB 16

front plane

19 20 17 15 14

25

39

41

45

54

52

22

40

53

37

:;0

35

4B

34

36

49

47

•
26

ail

33

~

Ir 24 • •
2B~ 27

Il
~ 31 ' ~

,
~

mid plane
~ -

32 29

23

30

FIgure B.3 The 54 fie!d nodes and the corresponclli:~ 54 vedor triaJ Cundions. Tbere are 3 sels of

18 nodes, one set for eacb of the three coordinate diree:tions. In each set, the triaJ funelions are mixcd

order. first and second. Eacb geometrie node may correspond to none, one, IWO or three field nodes.

Trial Cunctions in the a t direction are fust order in that dirce:tion and second order in the other [Wo.

For compab"bility in imposing tangeotiaJ ficld continuity across the clements. it was cbosen thal ail

vector triaJ Cunctions point inwards.
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Supplementary Vector Identities in Spherical Coordinates

•

(C.la)

(C.lb)

(C.le)

(C.2)

(C.3)

(CA)

(C.S)

H, _ ~H

r Dr'
(C.6)

(C.7)

•

âr[â,' (V' x H)] = â, [0 (H sin (a)) - ~H ] (C.8)
rsin (a) Da • 0$ e
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• H
â xvx- =, r

1
-â XVX H
r '

(C.IO)

1 il
= --â XV'xH - -(â xvXH)r r èr ,.

1 il
= --â xV'xH - â.X-(V'XH)r r • ilr

(C.lla)

(C.llb)

•
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APPENDIX D

D.I The L" CVtH AT) operator

(From Section 33)

using C3.6):

_ â xVxV { Hn,C9. 9)} _ (ok ... N)v { Hn,C9.41)}
, t 9 n-I J 0 r t 9 n-Ir r

using CC.6):

_ (ok ... N)v { Hor C9. 41 )}
J 0 r t 9 rn-.

-_!....V { Hn,C9.$)} _ (ok ... !:!-:2)v { Hnr C9.$)}
iJr • 9 rn-I J 0 r t 9 rA-1
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Consldermg the term included in the v, operator:

r

•

•

or
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• D.2 The B 2 ( H) operator

(From Section 3.42)

The operator that annihilates the first !WO terms of the vector radiation function (33) is

given by:

•

H (1 )2- fi X'i7x_' + -+jko H
r r r r

Using (ColO) on H, instead cf on H and expanding we get:

Using (Coll) on H, instead of on H we get:

(
2ko 2)

+ j7-k o H,

(0.2.1 )

( 0.2.2)

(0.2.3)
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•Applying the operator â, x # from the left of the veetor identity (CA) and using (C3)

we get:

0 0 0
A, x -(17 x H) - A, y -(17 x H,) ... -17 ,H,

or or or

or

0 0 0
Ar X -(17 x H), - Ar X -(17 x H,) ... èr'i7,Hrèr èr

(0.2.4a)

(0.2.4)

Applying the Ar X operator from the left of the curl-curl equation (25), and using the

veetor identities (CS) and (C.6) we get (see aIso C.S):

•
or

('i7XH), è
- ... 17 [â . (17 x H)] - -(17 x H) = Ar X k~Hr ,r or'

Applying the veetor identity (C.6) on the veetor "i7,Hr we get:

(0.2.5)

-"i7,H r
Ar x 'i7 x 'i7,H r -

r
o

- -(17 H )èr ,r (D2.6)

Equation (D.2.4) through (D.2.5) and (D.2.6) gives:

oar x-("i7xH,) - Ar X"i7X"i7,H r ... â r x 'i7,[â r '("i7XH)]
èr

("i7XH), "i7,H r 2
-â r X r ... -r- ... koH,

Using (C.U), the above can be rewritten as:

(D.2.7)
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• (v x H),
-â x +, r (0.2.8)

From V' H =0 we get that:

2
--H - v . Hr r 1 t

50,

and by substituting the above e.~ression back to (D.2.8) we get:

(0.2.9)

• and using (C5) we have:
_ èJ
arX-(vxH,)

èJr
2- -v Hr ' r

(0.2.9)

Then the operator (L 1 )
2 (H,) may be written as:

(L 1)2(H,) - -2U + l k o)â r X VXH,
2- -v Hr ' r
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Using (3.8), the operator L2 (v,H,) gives:

• - (Jok .~)v H
\ 0 r : r

•

(using (D.2.9): = ~V,H, • v,(v, H,) - (jko .. ~)'V,Hr

Then the B 2 (H) operator is given by:

BN(H) - (L 1 )2(H,) .. sL 2 ('V,H,)

-2(;" jk o)â, x 'VX H, - ~'V ,H,

-'V,('V,'H,) - ârx'V,[â,'('VXH)]

(
ko 2) 2"2 j-r -ko H, .. s-'V Hr ' r

using (C.S):

- -2(;"jko}~,X'VXH, - 2U"jko)'V,Hr

"j2k o'V,H r - 'i7,('i7,'H,) - â,X'i7,[â,'('i7XH))

"2(j~O-k~)H, ... S'V,('i7,'H,)

- -2U.. jko)âr X 'i7XH" (s-I)'i7,('i7,'H,)

-ârXV,[âr'('i7xH)] ... 2(}~O-k~)H,

+(2-s)}ko'i7,Hr

and tinaly using (C.4):
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1 a(r)
---â x\7xl-l + --1-1

f3(r) , f3(r) ,

+\7Xâ,[â,·(\7xl-I)] + (s-I)\7,(7·1-I,)

+ (2- s)a(r)\7,H,

where a(r)-jko and f3(r)-1/(2jk o+2/r) .
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E.l The functional for the second order ABC

(From ')eetion 4.1)

For s - 2 the surface term of the funetiona) is:

LH'P2(H)dS •

- L<a(r)H'H, ... 13(r)H''il x â,[â,'('ilXH)]

... l3(r)H' 'il ,('il' H,)}dS (E.U)

•
Using the veetor identity 'il . (A x B) • B . 'il x A - A . 'il x B. and for a spherical surface

S of constant radius r - R. the second part of the surface integral in (E.U) may be

rewritten as:

LH'\7Xâ,[â"('il XH)]dS • - L'il'HXâ,[â"('ilXH))dS

... Lâr[â"('ilXH))''ilXHdS (E.1.2)

The first integral on the right side of (E.l.2) vanishes over a closed surface, see #18,#19

p. SOI, and #42 p503 in [Van Bladel-64]. The second integral on the right side of (E.1.2)

cau be rewritten as:
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• (E.1.3)

•

SillÙlarly. using the veetor identity \1. (1lI A ) - A . \11l1 + 1lI \1 . A and for a sphericaI

surface S of constant radius r = R. the third pan of the surface integral in (E.I.I) may

be rewritten as:

Js H' \1 ,(\1, H,)dS - Js H,' \1 ,(\1,' H,)dS

- l \1,' (H,\1,' H,)dS - l(\1,· H,)(\1,' H,)dS(E.1.4)

The first integral on the right side of (El.4) vanishes over a c10sed surface. see #18.#19

pS01, and #42 pS03 in [Van Bladel-64). Also from the same reference: \1, H, - \1,' H, .

Thus, from (EU). (E.l.2). (E.l.3) and (El.4) we have that:

l H' P2(H)dS = l[â r ' (\1 x H)]2dS - l (\1,' H,)2dS
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• E.2 The Absorbing Boundary Condition as a natural condition to the \"ariation formu­

lation

(From Section 4.1)

The stationary point of the functional F in (4.4), is given by:

/i(F(H» • 0 ~

(E.2.1)

where n - 1 or 2 and it denotes the first or second order Absorbing Boundary Condition.

The volume pan of (E.21) gives:

•
2 !v{'i1X(/iH)''i1XH - k~(/iH)'H}dV

The surface pan of (E.21) gives:

l {H' /i(P(H» ... P.(H)· (/iH)}dS

Because of the linearity of the operator p.. the above may be written as:

l {H' P .(/iH) ... P .(H)· (/iH)}dS

and because the operator P ft is symmetric, the above may be written as:

(E.2.2)
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or

2 i P .CH)· CoH)dS CE.2.3)

Using the veetoridentity A' \7 x \7 x B • C\7 x A) . C\7 x B) - \7. C"'- x \7 x B) and

from (E.22) and (E23), we bave that (E2.1) can be rewritten as:

1{\7'COH)X\7XH'" CoH)·\7x\7XH - k~Col-I)'H}dV

... iCOH),p.CH)dS = 0

•
Applying the divergence theorem above we get:

ICOH)' C\7X\7XH - k~H)dV

... iCOH)'C-ârX\7XH'" PCH»dS • 0 (E.2.4)

Sînce (E2.4) bolds for any oH, it is true that \7 x \7 x H - k~H = 0 in volume V, and

â r x \7 x H - P .CH) on the spberical surface S •
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APPENDIX F

Description of the Input Data Structure

(From Section 5.1)

This Section describes the input data structure of a two-element problem. The

program reads the data from the file "input.dat", and such a file is illustrated in the

following Section. The fust two columns have been added extra to facilitate the

explanation using markers (#1, #2, etc).

The marker ## denotes a single empty line where comments can be added. The

line marked with # l, is a single line and contains two numbers: the first is the total

number of elements and the second is the total number of geometric nodes (i.e. points)

in the problem, (parameters nelmnt and gnodes in the program respectively).

E\'~ïi element has 27 geometric nodes. When 2 elements have a common face they

share 9 geometric nodes. So, for a two-element problem the total number of geometric

nodes is 27+27-9=45. There is no restriction on the number of lines required for the

geometric nodes. So,line #2 says that the first node of element 1 (local node numbering,

see Appendix B.1) is geometric node l, the second node is geometric node 6, etc. The

coordinates of the geometric nodes are given later. At the end of the geometric nodes,

there are 6 numbers (marker #3) which are intentionally in italics. Every number gives

information on the boundary conditions for each of the 6 faces of the finite element. A

positive integer means that the face is ~ excitation face. Every excitation face is char­

aeterized by a different positive integer. -3 means that the Absorbing Boundary Condition

will he applied on that face, -2 means that the face is a magnetic wall and -1 means that

the face is an electric wall Thus, the fust face of the first element is labeled as -2, the
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second as -1 etc. For the local face numbering see subroutines facel-6. Markers #4 and

#5 de!:!ote the beginning and the end for the geometrical information for the second

element.

Marker #6 denotes the beginning of the cartesian coordinate information. The first

column is the geometric node, and the next 3 columns are the le, y and z cartesian

coordinates for that node.

The line marked with #8, gives the le, y and z coordinates of the centre of the ABC

surface. Line marked with #9 gives the relative dieleetric permittivity and relative

magnetic permeability of the medium inside the first element, (pararneters smatrl and

tmatrl in the program respeetïvely). The line right below gives the same information for

the second element. These numbers may be complex. Line m~ked with #10 gives the

normalized excitation frequency k 0 •

Marker #11 marks the first line containing information on the problem's excitation.

Each line has 5 columns. The first column gives the positive integer that charaeteru:es

each excitation face, discussed earlier. Sa, from line mark with #3, we see that element

1 has 2 excitation faces, and so does element 2. Back to line marked with #11, the second

column gives the geometric node in local numbering (1-27). The next three columns have

the le, y and z components of the excitation field. These numbers may be complex.
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• F.I The file "input.dat" for a t\>'O-element problem

15
30
45

8 13
23 28
38 43

10
2S
40

99

5
20
35

nclmnl, gnodos
2 45
read lbe gcometrie nodos of lbe clements
161127123
16 21 26 17 22 Z1 18
31 36 41 32 37 42 33
-2 -1 2 1 0 0
3 8 13 4 9 14
18 23 28 19 24 29
33 38 43 34 39 44
-2 -1 3 0 4 -3
gnode x y z coordinatos
1 5.2335959E-Q2 O.OOOOOOOE+00 9.986295lE~1

2 6.5419950E-Q2 O.OOOOOOOE+OO l.2482870E+OG
3 7.8503937E-Q2 O.OOOOOOOE+OO L4979444E+00
4 9.1587923E-Q2 O.OOOOOOOE+OO L7476016E+00
5 1.0467l92E~1 O.OOOOOOOE+OO l.9972590E+OO
6 7.2S37434E~1 O.OOOOOOOE+OO 6.8835455E~1

7 9.ll67l796E~1 O.OOOOOOOE+OO 8.6044323E~1

8 l.0880616E+00 O.OOOOOOOE+OO L0325319E+00
9 l.2694O.SlE+00 O.OOOOOOOE+00 1.20462OSE+ (lQ

10 L4507487E+00 O.OOOOOOOE+OO L376709lE+OO
11 1.oooooooE+00 O.OOOOOOOE+OO 7.549790lE~

12 l.25OOOOOE+OO O.OOOOOOOE+OO 9.437237SE~

13 LSOOOOOOE+OO O.OOOOOOOE+OO L132468SE~7

14 L7500000E+00 O.OOOOOOOE+OO 1 321?l33ë~7
15 2.0000000E+OO O.OOOOOOOE+OO L5099580E~7

16 3.7OO7108E-Q2 3.7007112E-Q2 9.9862951E~1

17 4.62588851::-Q2 4.6258889E-Q2 l.248287OE+OO
18 5.5510666E-Q2 5.5510666E-Q2 L4979444E+ 00
19 6.4762443E-Q2 6.4762443E-Q2 L7476016E+00
20 7.4014217E-Q2 7.4014224E-Q2 l.9972590E+OO
21 5.l2917l0E~1 5.l291716E~1 6.883545SE-01
22 6.4114642E~1 6.4114642E~1 8.6044323E~l

23 7.6937568E~1 7.6937574E~1 L0325319E+OO
24 8.9760494E~l 8.9760500E~l l.2046205E+OO
2S 1.0258342E+00 L02S8343E+00 L3767ll91E+00
26 7.ll710677E~1 7.0710677E~1 7.5497901E~

TT 8.8388348E~1 8.8388348E~1 9.4372375E~

28 l.0606601E+OO l.0606602E+OO Ll32468SE~

29 L2374369E+00 L2374369E+00 ] 32]2]~
30 L414213SE+00 L414213SE+00 L5099580E~

31 -2.2876774E~ 5.2335959E-Q2 9.9862951E~1

32 -2.ll595968E-09 6.54l995OE-Q2 l.248287OE+OO
33 -3.43151~ 7.8503937E-Q2 L4979444E+OO

#3
#4

##
#1
##
#2

#5
##
#6
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34 -4.o:r.>435-lE-D9 9.15879::3E-02 1.7476016E+00
35 -4.57S.>5-lSE-D9 1.0467192E-ol 1.99n590E· 00
36 -3.1707UOE-OS 72537434E-01 6.8S35-l55E-ol
37 -3.9633903E-OS 9.0671796E-ol 8.~3::3E-Ol

38 -4.75606S3E-OS 1.0880616E+00 1.0325319E+00
39 -5.5-l87462E-OS 1.2694051E+00 12046205E+00
40 -o.3414241E-OS 1A507487E+00 1.376709lE+00
41 -4.37l1388E-OS 1.0000000E+oo 7.5-l9790lE-OS
42 -5.4639237E-OS l.2500000E+oo 9A37::375E-OS
43 -6.5567086E-OS LSOOOOOOE.;.oo U324685E-07
44 -7.64949jSE-OS 1.7500000E+00 1.32l2133E-07

#7 45 -8.7422777E-OS 2.0000000E+oo 1.5099580E-07
## x-y-z coordinatcs of the ABC spherical surface
#8 0.0, 0.0, 0.0
## c1cmCl1l no, matcrial propcrtics (smatrl,tmatrl)
#9 1 (1.00,0.00) (1.00,0.00)

2 (l.()0,0.00) (1.00,0.00)
## Normalizcd frcqucoc:y k o
#10 L88495E+00
## global constraincd face numbcr, iocal gcometrie node numbcr and the x·y·z field constrains
#11 1 3 (O.OOOOOE+oo, O.OOOOOE+oo) (2.00241E-Q2, 1.34107E-01) (O.OOOOOE+oo, O.OOOOOE+oo)

1 6 (O.OOOOOE+oo, O.OOOOOE+oo) (4.9S921E-Q2, 1.00411E-01) (O.OOOOOE+oo, O.OOOOOE+oo)
1 9 (O.OOOOOE+oo, O.OOOOOE+oo) (7.10480E-Q2, 6.38286E-02) (O.OOOOOE+oo, O.OOOOOE+oo)
1 12 (-1.01182E-ol,-o.70536E-02) (-8.11583E-02, 6.70536E-02) ( 9.7'.s52E-02, 1.45216E-02)
1 18 (-o.2l214E-Q2,-4.81961E-ll3) (8.92659E-ll3, 5.90090E-02) ( 4.90322E-Q2,-3.69999E-02)
1 21 (8.84565E-D9, 5.8620lE-D9) (-1.82341E-ol, l.53806E-D9) ( 1.37540E-01. 2.05366E-02)
1 24 (6.7180lE-D9, 2.55133E-D9) (-l.03798E-Ol, 4.20430E-02) ( 1.03788E-ol.-2.5ll"..82E-o2)
1 rl (5.43082E-D9, 4.2l344E-I0) (-5.31948E-Q2, 5.41894E-02) (6.93420E-02,-5.23"'.58E·02)
2 1 (O.OOOOOE+oo, O.OOOOOE+oo) (-1.17327E·Ol, 1.13599E-01) (O.OOOOOE+oo, O.OOOOOE +00)
2 4 (O.OOOOOE+oo. O.OOOOOE+oo) (-5.37533E-Q2, 1.25404E-01) (O.OOOOOE+oo, O.OOOOOE +00)
2 7 (O.OOOOOE+oo, O.OOOOOE+oo) ( 1.80095E-03, 1.16083E-ol) (O.OOOOOE+oo, O.OOOOOE +00)
2 10 (-2.77l5OE-04.-1.83657E-04) (-1.17604E-ol. 1.13415E-ol) (-2.38873E-03.-4.196l2E-03)
2 16 (-1.70159E-04,-1.32013E-oS) ( 1.63079E-03. 1.16070E-ol) (-2.02S41E-03,-2.29266E-ll3)
2 19 (2.42293E-ll, 1.6056lE-11) (-l.l788lE-ol, 1.l3231E-ol) (-3.37817E-ll3,-5.93421E-ll3)
2 22 (L840l2E-ll, 6.9883lE-ü.) (-5.41742E-02, 125245E-ol) (-2.60068E-ll3,-4.36041E-03)
2 25 (l048756E-ll, 1.1537lE-12) ( 1.46063E-ll3, l.16056E-ol) (-2.86437E-03.-3.24231E-03)
3 1 (O.OOOOOE+oo, O.OOOOOE+oo) (1.80095E-03, 1.16083E-ol) (O.OOOOOE+oo, O.OOOOOE+oo)
3 4 (O.OOOOOE+oo. O.OOOOOE+oo) (4.37281E-02, 9.06636E-02) (O.OOOOOE+oo. O.OOOOOE+oo)
3 7 (O.OOOOOE+oo, O.OOOOOE+oo) (6.90155E·02, 5.56939E-02) (O.OOOOOE+oo, O.OOOOOE+oo)
3 10 (-1.70159E-04••1.32013E-QS) ( 1.63079E-ll3, 1.16070E-ol) (-2.0254lE-ll3.-2.29266E-ll3)
3 16 (-9.507O2E-OS,6.73173E-Q5) (6.89205E-Q2, 5.57613E-02) (-2.4184lE-03,-5.30653E-04)
3 19 (1.48756E·ll, 1.1537lE-12) ( 1.46063E-ll3, l.16056E-ol) (-2.86437E-ll3,·3.24231E-ll3)
3 22 (1.16897E-ll,-3.02804E-12) (1I.34607E-Q2, 9.07329E-02) (-3.26669E-03,-2.04988E-ll3)
3 25 (831078E-l2,-5.88529E-12) (6.88254E-Q2, S.582S6E-02) (-3.42015E-03,-7.50456E-04)
4 3 (O.oooooE+oo. O.OOOOOE+oo) (7.10480E-Q2, 6.38286E-02) (O.OOOOOE+oo, O.OOOOOE+oo)
4 6 (O.oooooE+oo. O.oooooE+oo) (7.87649E-Q2, 2.63334E-02) (O.OOOOOE+oo. O.OOOOOE+oo)
4 9 (O.OOOOOE+oo.O.OOOOOE+oo) (7.29818E-Q2,-7.64rl2E-ll3) (O.OOOOOE+oo.O.oooooE+oo)
4 12 (-o.2l214E-Q2,-4.8l96lE-03) (8.92659E-03, S.90090E-02) ( 4.90322E-Q2,-3.69999E-02)
4 18 (-3.47083E-Q2, 2.45759E-02) ( 3.8rl35E-Q2, 1.69332E-02) ( 2.8D843E-03,-4.48472E-02)

•

•
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4 21 (5.43Q82E-<l9, 4.2l344E-10) (-5.319.:8E-D2, 5A1894E-D2) (6.9'".:>420E-Q2,-5.2325SE-D2)
4 24 (4.26783E-<l9,-1.l0526E-<l9) (-1.88715E-Q2, 5.161S7E-D2) ( 3.50S49E-D2,-6A41S5E-D2)
4 'Z7 (3.03430E-<l9,-2.14S49E-09) ( 3.56516E-D3, 4.1509OE-D2) ( 3.9717'..E-D3,-6.34236E-D2)

F.2 The file "mesphe.dat" for the mesh generator

(From Section 6.1)

The following file is read by the 3D mesh generator and it is seIf-expIanatory - see aIso

Fig.6.1 and discussion above. AlI eIements are assumed to have the same materiai

properties. The total number of eIements in the produced mesh is 12 x 12 x 6 = 864.

Number of clements in r. 9. and cl> directions
12126
D, D+R (m melcrs)
1.02.2
9•••• 9••• (m dcgrc:cs)
3177
+•.• ' , ... (m degrecs)
090
Boundary CXlDSIraÏD labels for the two spberical surfaces dermcd by:
D and by D+R (mlegers)
1-3
Boundary CXlDSIraÏD labels for the two surfaces dermed by:
9••• and by 9••• (mlegers)
21
Boundary coDSIraÏD labels for the two surfaces defmed by:
'm.• and by 'm.. (mlegers)
-2 -1
malerial propertics (paramelcrs smarrl and rmarrl)
(1.0,0.0) (1.0,0.0)
Norma1ized frequeacy k 0

1.88495
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