National Library
E é g of Canada

Acquisitions and

Biblictheque nationale
du Canada

Direction des acquisitions et

Bibllographic Services Branch  des services bibhographiques

385 Weilngton Streot
Onawa. Oniano
K1A ONS KA ONS

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, e Wellngton
Cuawa (Cntano)

ST T S A

W e R e e

AVIS

La qualité de cette microforme
déepend grandement de la qualité
de la theése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



FINITE ELEMENTS AND VECTOR ABSORBING
BOUNDARY CONDITIONS IN 3-D

by

Vassilios N. Kanellopoulos, B.Sc¢.Physics, M.Eng.

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Electrical Engineering Department
McGill University
Montréal, Québec, Canada
December, 1991

®© Vassilios N. Kanellopoulos



National Library
I""II of Canada

Acquisitions and

Biblothéque naticnale
du Canada

Direction des acquisitions €}

Bibliographic Senices Branch  des services bibliographiques

335 Wellington Street 395, rue Wellingion
Omnawa, Ontano Onawa (Oniano)
K1A ONg KIAON:

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in anvy form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

AT RPN Lo o s e W

Shw B Nre LD

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve Ia propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-87567-4

Canada



ZTOUG YOVELC MOV

To my parents



Abstract

The use of the Finite Element Method (FEM) for the numerical solution of elec-
tromagnetic scattering in unbounded regions requires proper boundary conditions on the
outer surface that truncates the infinite three-dimensional space. in this work new vector
absorbing boundary conditions are proposed that: a) cause almost no reflection on the
outer surface for the outward radiation, and b) preserve the symmetry ard sparsity of the

finite element matrices.

A computer program was written to implement the new boundary condition. The
program uses curvilinear finite elements which do not introduce spuriocus corruptions.
The errors due to incomplete absorption decrease as the outer surface is moved further
away from the scatterers. An error of about 1% in near-field values was obtained with
the second order-absorbing boundary condition, when the outer surface was less than half

a wavelength from the scatterer.



Résumé

L'utilisation de la Méthode des Eléments Finis (MEF) pour la résolution
numérique des probleémes de diffusion d’ondes électromagnétiques en milieux ouverts
nécessite |2 définition de conditions aux limites propres sur 12 surface externe tronquant
I'espace tridimensionnel infini. Le travail présenté dans cette thése a conduit 2 proposer
de nouvelles conditions vectorielles aux limites absorbantes qui a) n’occasionnent qua-
siment aucune réflexon du rayonnement progressif sur la surface extérieure et, b) con-

servent aux matrices d'éléments finis leur caractére symétrique et creux.

Un programme informatique a été élaboré pour mettre en oeuvre les nouvelles
conditions aux limites. Ce programme utilise des éléments finis curvilignes qui ont I'a-
vantage de ne pas introduire des solut.ons parasites. On observe une diminution de la
marge d’erreur résultant de I'absorption incompléte 2 mesure que I'on déplace la surface
externe 2 une distance croissante de la source de diffusion. Un taux d’erreur d’environ
19 dans les valeurs du champ proche a été obtenu avec les conditions aux limites
absorbantes de second ordre lorsque la surface externe était placée 2 une distance
inférieure 2 une demie longueur d'onde de la source de diffusion.

Résumé
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HMepanym

H yomom g MeBobou twv Tlenepaopevay Ttotyaiwv (MIIE) via Tv cpSpnuist entiva
REOBATaTV TAEKTQONAYVITTIKTIG OKE3QOTC OE GVOIKTEG TIEQLOXES, XPEtaletar kaTeAAmAEg
opLaxeg OUETKEG T TNG €SWTEQIKTIC ETRQAVELRS TIOU QIIOKOTTEL TOV QNELDO TOLOSacaTo
Xweo. T’ autrv Trv Satoifn TEOTEVOVIAL VEEG SLOVUCHQTIKES GTIOQQOQPTITIKES OPLaKEG GUvENKES
oL oTioleG: a) TIpoEevouy GYESOV UndaUNVEG OVOKAGOES ETR TG eEwTEpUmG sTpaveleg oY
ekegyopevn axuvofoha, xat B) StaTnpouv TV CURHETOLE KOt TNV OTORaSIKOTITTA Twv THVEKWY
TWV TENEQAOREVWY GTOLYELWV.

O1 veEG QUTEG OQLAKEG GUVBTKEG EQAOUOCTIKGV OE EVA TIQOYLAHUE TIOU YOAQINKE OF
TAEKTOOVIKO UNOAOVIOTT}. TO TQOYQQUNG XOTCLHOTIOLEL KOPTUAOYRAIG TIETIEQRONEVE GTOLYET
Ta onoia SEV £MQEQOW TROAOLTKES AVCEIG. Ta OpeAuaTa AOYw GTIEAOUS QMOPQLOPNOTS
puxpavouy xabwe 7 EEWTEQIKT) ETQAVELS GTIOUGKQUVETAL GTT0 TOUS OKESROTES. Zoaluata g
taEng tov 1% omg mpeg Tou xovmvou TESIOV TapaTondnkav pe Seutepou Pabpov
ATOPPOPNTIKEG OpLAXES OUvBTKES, otav 7 e5wTeQik smoaveia BOtoXOTav OF QmtooTeoT)
ILKPOTEDT) TOU HLOOV UNKOUS KUHATOC QN0 TOV OKESoTY)

Hepdaym iv



b)

d)

Contributions to Original Knowledge

New n th order Absorbing Boundary Conditions have been developed for the 3-D

vector wave equation.

A new functional has been derived implementing the second order Absorbing
Boundary Conditions (ABC). The functional leads to a2 symmetric matrix problem,
which was previously not possible.

It bas been shown how the new functional can be used with tangentially-continuous
finite elements of mixed order - the kind necessary to eliminate the effects of
spurious corruptions. In particular, it has been shown that additional, normal con-
tinuity of the field is needed on the Absorbing Boundary Surface (ABS).

Computational results have confirmed what was until now a theoretical conjecture:
that the second-order ABC gives significantly more accuracy than first-order, at no
extra cost. Field values of about 1% error where obtained with the second-order
ABC when the ABS was placed less than a half wavelength away from the scatterer.

Contributions v



Acknowledgements

First of all I would like to express my sincere respect and appreciation to my supervisor
Dr. J.P. Webb for his acute counselling and guidance, his invaluable mathematical enlight-
enments throughout my research, and his determination to go on at critical times. I thank
him for his loyalty to the principle: originality can never be something that only looks good.

I am also deeply grateful to Dr. DA Lowtner and Dr. P.P. Silvester for their fruitful
discussions and comments and for the facilities they provided, Dr. TJ.F. Pavlések for sharing
with me elements of his life-time research experience, Dr. Steve McFee for his valuable
contribution and Dr. Nick Chepurniy from Cray Research Canada for his patience and

willingness to provide computer time and efficient software tools on the Cray computers.

To my parents Nikolaos and Maria in Thessaloniki-Greece I owe the most. Their love,
Jaith, continuous interest and constant care, were strongly felt at all times regardless the
distance. I :hank them from the bottom of my heart. Special thanks are addressed to Valérie
in Paris-France for her affection and devotion.

I also thank my uncles Dino and Billy in Montréal-Canada for their help and
encouragement during the long years of my research at McGill university and the members
and ex-members of the CADLab for their cooperation and friendship.

Financial support from the Natural Sciences and Engineering Research Council
(NSERC) of Canada and the Centre de Recherche Informatique de Montréal (CRIM) is
gratefully acimowledged.

Acknowledgements vi



Evyepiotieg

Ev mpwroLg 8a nfsAa va exppacw TOv SLALKQIVY) OEPCOHO KaL EXTLUNCT MOV OTOV ETTI-
Prentovra xebmymrn pov, Sidaxtopa J.P. Webb na trv ofudsoxm emufeym xat xabodnynon
TOU, TI QVEXTIUIIES pafnuaTikes Siepwtioels Tov ke oAn T dtaoKeia TnC EPEVVIC Lo,
xXaL y1¢ TV QNOPACIOTIKOTIIZ TOV V& TPOYWEEL OTIC KYOLUES OUYpeS. Tov suycoiotw na
TV TMOTN TOV OTTV QOXTF T TOWTOTUMA TOTE JEV HTMOPEL VQ EIvat XQW TIOL HOVO Qaveta
OHOPPO.

Emone sty Sabutate suyvopwv otoug Sidaxtopes D.A. Lowther xat P.P. Silvester
yia Ti¢ yovueg CulTnOELS Kal OX0ALa TOUG, Kat 1ia Tt¢ SLEUKOAUVOELS TTOU p1OU TapeLyay,
otov &idaxtopa TJ.F. Pavldsek mov poipactixe palt pov ororyeia ano tiv Sia fov
gpeuvIITIKT) TOU TIELa, otov &idaxtopa Steve McFee na v noAvtiun ovuBoin tov xat otov
Sibaxtopa Nick Chepurniy amo tv  Cray Research Canada na tnv vmopovn tov Xat
mpoBupa TOV va TTAPACYEL UNOAONIOTLKO YXPOVO Kal QUOSOTIKG EQYAAELX AOYIOMXOU GTOUG
vrroAopoteg Cray.

Zzou¢ yovers pov Nixodao xat Mapia ot Gscoaiovikn tng EAdadog opetiw ta nep-
togotspa. H ayamn Tovg, 7 motn Tovg, 10 StapKES EVOLaPEQOV KaL 1) CUVEXTIC poovTida noav
sviova xat Sapkws awofnra mapa Tv anoctacn Tous svyapiotw ex Pabous xapdiag.
Eilixec suyaptoneg ansvbuvovrar ot Valérie oto Mapwor Tng aihag na Tnv Tpupspota
XQL TV aQOgLwaT] TIG.

Emong suyapiotw toug Bstoug pov Nvo xar MmAiv oro Movrpeal rov Kavada na
17 fonPeia TouS Kt TLE EVBaLOUVOELS TOUG KaTd TV OLEOKELR TWY UaKpwV ETWY TN ECEWVIG
pov oro navemornuo McGill, xat ta Twova xat naiaiotepe peAn tov spyagrnoov CAD
7ia TIV GUVEQYROLR KGL PLALG TOVG.

TsAo¢ avayvwpilsTar g svyvwuocuvn 7 owovouxT unootnoén ano 1o ZuufovAio
Epewne Pvowwv Emotnpwv xat Mpypavoioyiag (NSERC) tov Kavade xar o Kevrpo
Epevvne xar ITAnpopopikns tov Movrpead (CRIM).

Evyaponeg

s



Table of Contents

Abstract

Résumé

Tgpuinym

Contributions to Original Knowledge
Acknowledgments

Evyaptoneg
Table of Contents

CHAPTER 1 Introduction

1.1 Problem definition
1.2 Earlier work on open boundary problems
1.2.1 High-frequency methods
1.2.2 Integral methods
1.2.3 Differential methods
1.3 Thesis outline

CHAPTER 2 3D Finite Element Analysis of Time-Harmonic Problems

2.1 Maxwell’s equations
2.1.1 Interface conditions
2.1.2 Boundary conditions - Surfaces of symmetry.
2.1.3 The curl-curl eqr=tion

2.2 Varijational formulation - Functional

2.3 Curvilinear coordinate system - Covariant projections

2.4 Finite Element discretization

CHAPTER3 The Absorbing Boundary Condition Concept........oereene
3.1 Conditions of the fields on a surface S at infinity

Table of Coatents

&

ii
i

iv

S:

g

O v Lh h W =

10

12

12
13
13
14
14

17

24



2 The vector radiation function and the expansion theorem

-----------------------

33 The differential operators B and the absorbing boundary condition

3.4 The first and second order Absorbing Boundary Conditions
3.4.1 The first order ABC
3.4.2 The second order ABC

-------------------

-------------------------

CHAPTER 4 Implementation of the Absorbing Boundary Condition
(ABC) 1n a Variational Formulation

4.1 Problems without symmetries where the ABC spherical surface S is
closed

42 Problems with symmetries where the ABC spherical surface S is open

CHAPTER 5 Programming Considerations

5.1 The subroutines and a brief description
52 Working with the covariant components
5.2.1 The surface divergence in covariant projections
5.2.1 The surface divergence in covariant projections: a simpler way ..

CHAPTER 6 Results
6.1 Spherical TE wave functions

6.1.1 The (m,n) = (0,1) case

6.12 The (m, n) = (0,2) case

6.1.3 The (m,n) = (1,1) case

6.1.4 The (m.n) = (1,2) case

6.2 Scattering from a metallic sphere
6.3 Computational considerations

CHAPTER 7 Conclusions
7.1 Suggestions for further work

APPENDIX A An alternative form for the Homogeneous Neumann
Boundary Condition

Table of Contents x

25
26

28
29
29

31

31
34

38

29
42
42
44

48
49
51
53
54

58
62
72

75

80



APPENDIX B Local Geometric and Field node resolution.....eseenee

B.1 Local geometric node numbering
B.2 Local field node numbering

APPENDIX C Supplementary Vector Identities in Spherical Coordinates

APPENDIX D

D.1 The Ly(V ,H, ) operator
D2 The B,(H) operator

APPENDIX E

E.1 The functional for the second order ABC
E2 The Absorbing Boundary Condition as 2 natural condition to the
variational formulation

APPENDIXF Description of the Input Data Structure

F.1 The file "input.dat” for a two-element problem
F.2 The file "mesphe.dat” for the mesh generator

REFERENCES

Table of Contents X

81
82
&3
84

86

67
99

101

102



CHAPTER 1

Introduction

Since the evolution of computers in early 60's, the numerical solution of equations
that describe physical phenomena opened new horizons in our ability to better
understand the behaviour of nawre. This ignited a tremendous effort among scientists
and engineers in developing computer-aided methods that would predict the behaviour

of such physical phenomena. The new era of computer simulation was born.

In the world of electromagnetics, computer simulation techniques have proven to
be powerful tools in predicting and giving a better understanding of the behaviour of
electromagnetic fields and the performance of various devices. For scattering problems
in the frequency domain, where the operating frequency is known, integral equation
techniques, such as the Method of Moments (MoM), were the first to be exploited and
for years they dominated the research, as well as the commercial market [Richmond-65].
Such techniques were, and still are, successfully used in antenna design, and in scattering
by conducting and dielectric objects. More on the available computer programs based on

integral formulations and moment method solutions may be found in [Balanis-89],
chapter 12.

The implementation of numerical techniques generally leads to a system of
equations, which in matrix notation is:
[A]-[x] = [b] (1.1)
[A] is the final square matrix, [b] is the known right hand side, and the sclution is the
unknown column vector [x].
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Integral equation techniques produce a non-symmetric and dense final matrix. By
the word dense, it is meant that 21! the entries of the matrix are assumed to be non-zero.
The inversion of such 2 matrix is a process with a computational cost proportional to N3
where N is the number of equations in the problem, and its memory storage
requirements are proportional to N?. Integral methods are effective when the scatterers’
geometrical dimensions are large compared to the wavelength, but when many dielectric
materials of complicated geometries are present, they require far more storage and

computational effort because all the dielectric interfaces have to be modelled.

For the latter type of problems, differential equation techniques, such as Finite
Differences (FD) or Finite Elements (FE), are superior to integral equations. They are
based on a partial differential equation and the final matrix they produce is sparse. After
a standard procedure the matrix can be banded. In addition, if the variational formulation
is employed, the final matrix is symmetric. Problems with many dielectric materials are
handled without extra computational cost. FD are more suitable for problems with more
regular geometries, while FE can easily handle any kind of arbitrary geometries and give
better accuracy when highly complex inhomogeneities are present. A typical figure for
sparsity is 0.1%, i.e. 99.9% of the entries in the matrix are known to be zero, and
therefore do not have to be stored. Symmetric sparse matrices are highly efficient in
memory storage requirements and computational cost. Depending on the method used,
N'® or N? are typical costs for solving such matrices.

Both techniques, FD and FE, have been exploited in the past and they provide
excellent results when the problem’s geometric domain is finite. That means the
geometric space is enclosed by surfaces where known boundary conditions or symmetries
are imposed, e.g. the microwave resonator, where the volume of interest is enclosed by

conductors. For open boundary problems though, where the geometric domain is not

CHAFPTER 1
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bounded by any surface with known boundary conditions and extends to infinity, FD or
FE suffer because an artificial boundary has to be used in order to truncate the infinite

domain.

Integral equation techniques have the advantage that they solve ‘unbounded
problems, without any extra complications. Such methods though suffer from huge
memory requirements and high computational cost, due to the dense matrices they
produce. However, for a small class of problems with a few electrically-large regions, in
each of which the material is homogeneous, integral techniques are to be preferred.
Although the produced matrices are dense, their size is smaller than those of the Finite
Element Method, and are in general preferable in computational cost. Nevertheless, a
comparison in accuracy and computational cost done by Peterson [Peterson-89a,
Peterson-89b] showed that for highly inhomogeneous and complex scatterers of relatively
small electrical dimensions, the differential equation techniques are to be preferred from
integral equations.

Therefore, one should think, 2 numerical technique based on a partial differential

equation, capable of handling open boundaries would be attractive. This is the approach
of the current work.

1.1 Prohlem definition

This treatise deals with the implementation of the Finite Element Method (FEM)
in solving open boundary vector wave problems. A new type of boundary condition is
introduced. It is based on a local symmetric differential operator, in other words it does
not destroy the sparsity and symmetry of the FE matrices. This boundary condition is
applied on the surface of a closed sphere. The mathematical sphere truncates the infinite
domain of the problem to a finite one and should completely enclose the volume of
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interest. The volume of interest is defined as the three-dimensional region that contains
all the metallic and dielectric scatterers, which may be of any shape and complexity. The

FEM can be applied in the finite region.

The role of this new type of boundary condition is to absorb all outgoing electro-
magnetic waves causing almost no reflection on the surface of the sphere. Due to its
absorbing character, the boundary condition is called an Absorbing Boundary Condition
(ABC), and the sphere an Absorbing Boundary Sphere or Ab'sorbing Boundary Surface
(ABS).

unbounded
free space

Figure 1.1 A cross section of a typical 3D opea boundary problem. The gray area represents the
finite volume where the FEM is applied. The ABC is applied on the ABS and absorbs all outgoing
waves.

It should be noted, however, that for static problems, a zero boundary condition is
often placed on an artificial boundary that is far away from the sources, where the fields
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are in any case almost zero [Emson-88]. Such 2 boundary condition however, cannot be
applied in wave problems because it would cause reflections on the artificial boundary
and it would lead to erroneous results no matter how far the artificial boundary may be

placed.

12 Earlier work on open boundary problems

The techniques used in high frequency open boundary vector problems can be
classified as follows:

high-frequency  i.e. Geometrical Theory of Diffraction (GTD) and its variants.
methods
integral ie. Electric (or Magnetic) Field Integral Equation, Extended

Boundary Condition Method, Volume Integral Equation.

differential ie. Finite Differences Time Domain (FDTD), Time Domain Finite
Volume (TDFV), Finite Elements Time Domain (FETD), Finite
Elements (in frequency domain), Hybrid (a combination of Finite
Elements for a finite region coupled to an integral technique for the
infinite exterior), Infinite Elements, Ballooning.

12.1 High-frequency methods

The GTD, an extension of geometrical optics, is an efficient tool for problems with
regular geometries and electrically large scatterers. It is, however, less efficient and
accurate when metallic and dielectric scatterers of irregular shape are present
[Hansen-81].
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122 Integral methods

Integral methods start by posing the physical problem as an integral equation. There
are two kinds of integral equations: surface and volume. The surface techniques
formulate the problem in terms of equivalent surface currents that flow over closed 3D
surfaces that contain homogeneous material [Iskander-83]. The volume techniques for-
mulate the problem in terms of equivalent volume currents flowing inside the dielectric
scatterer [Schaubert-84, Hagmann-86]. The mathematical formulations are usually
transformed to a matrix equation by the Method of Moments [Harrington-68]. Integral
methods are computationaly expensive relative to differential methods when complicated
dielectrics are present - see the discussion in introduction. Also, they suffer from singular
terms in certain cases and an increase in discretization or in frequency may lead to a

divergence of the numerical solution.

1.2.3 Differential methods

Differential methods start by posing the physical problem as a differential equation.
For a well-posed problem proper boundary conditions are required. Special boundary
conditions have to be imposed on the outer surface that terminates the discretized

volume of interest.

In the FDTD technique the lattice truncation plane and the lattice truncation
conditions gave acceptable accuracy in absorbing the outgoing radiation
[Umanshankar-82]. All FDTD methods however, suffer from the stepped edge approxi-
mation ¢f curved objects not fitting directly into the finite difference grid. In addition,
because FDTD requires a topologically regular grid, it is difficult or inefficient to get 2
grid of varying density which is needed for problems of complicated geometries. The
contour FDTD is an alternative that can model curved objects [Katz-91]. A more
promising approach was proposed by Fusco et al. [Fusco-91] using curvilinear coordinates
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and contravariant field components. However, the topological inefficiency of the finite
difference grid still remains. The FETD method was proposed by Cangellaris et al.
[Cangellaris-87] to combine the simplicity of the explicit integration scheme of the FDTD
method with the versatility of the finite element spatial discretization procedures. It uses
an irregular grid, but for stability reasons and for the CFL criterion to be satisfied the
grid has to be structured. The TDFV method (a Lax-Wendroff explicit scheme) has also
been successfully used in canonical antennas and array problems using the body fitted
coordinates for modelling complex structures [Mohammadian-91]. The difference with
the other methods is that this doesn’t require an interlaced mesh for the electric and
magaetic fields.

All Time Domain methods are efficient for electrically large scatterers due to their
explicit integration schemes. However, since a structured grid is required, they are not
efficlent for problems requiring grids of highly localized different densities. Such
problems may include many arbitrarily shaped dielectrics of high permittivity. However,
frequency dormain results over a range of frequencies can be obtained from time domain
results using the Fast Fourier Transform. The related cost using frequency domain
techniques would be quite high since the problem has to be solved separately for each
frequency. Thus, the TD techniques are to be preferred. If a single frequency is needed,
frequency domain techniques are computationaly cheaper.

Finite Elements are differential methods that use unstructured, irregular meshes.
They fall into two categories according the final matrix they produce: a) partially dense,
and b) sparse. Partially dense techniques, i.e. ballooning, series methods, hybrid, result in
a complete coupling of the degrees-of-freedom on the outer boundary; therefore, the
piece of the final matrix corresponding to the outer boundary is dense. The loss of sparsity

makes them more computationaly expensive, Sparse techniques include infinite elements
and ABCs.
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The Boundary-matching method (Ballooning), a finite element technique initially
proposed by Silvester et al. [Silvester-77], and later modified by Dasgupta [Dasgupta-84],
solves the Laplacian problem of open type. It relies on treating the exterior region as a
single super element. Ballooning has not been used in free-space scattering problems
[Emson-88). The Transfinite Element Method introduced by Lee et al. [Lee-87], is a
series sclution technique similar to the unimoment method proposed earlier by Mei
[Mei-74]. In both techniques the interior region is solved by finite elements (or finite
differences) and on the outer circular boundary a series of analytic basis functions are

applied.

A hybrid technique, called the picture-frame method, uses finite elements in
separate regions of the problem where inhomogeneous materials are present and links
these regions or "frames” with an integral equation [McDonald-80]. Variations and
improvements of this approach applied to two-dimensional Laplacian or wave problems
may be found in {Marin-82, Orikasa-83, Collins-90, Ramahi-91a]. An extension to 3D
scalar potential problems was presented by Meunier et al. [Meunier-86]. A 3D vector
hybrid approach with application in hyperthermia, a medical cancer therapy, was
presented by Lynch et al. [Lynch-86]. The inhomogeneous patient is modelled with finite
elements and boundary elements are used for the unbounded fields external to the
patient. A vector finite element-boundary integral formulation for scattering by 3D
cavities in an infinite ground plane was later presented by Jin et al. [Jin-91]). The
technique employs finite elements for the interior region and appropriate radiation
integrals for the exterior. The resulting equations are solved by demanding tangential
continuity on the exterior boundary surface. Hybrid methods may suffer from uniqueness
problems for electrically large scatterers [Peterson-89b).

Infinite elements have been applied successfully in oper regions. A set of local
shape functions including a decay factor is used in the exterior elements that extend to
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infinity [Rahman-84, McDougall-89]. The accuracy of the method depends on the proper

choice of the decay factors. They have not been used for electromagnetic scattering in

free space.

Engquist et 2l. proposed absorbing boundary conditions using Padé approximations
for the scalar 2D wave equation [Engquist-77). They are local and they keep the sparsity
pattern of the system of differential equations. First and second approximations that lead
to well-posed symmetric matrices were given. They are more suitable when the truncation
contour is a rectangle. Bayliss et al. introduced new absorbing boundary conditions based
on the Sommerfeld radiation condition [Bayliss-82]. They are applied on a spherical
truncation surface. Symmetric first and second order conditions and their implementation
for the finite element method are given. Preliminary 3D examples with axial symmetry
are given using linear elements, clearly showing the superiority of the second order
compared to the first. D’Angelo et al. compared Engquist-Majda and Bayliss-Turkel
second order absorbing boundary conditions for the scalar wave equation [D’Angelo-89,
D’Angelo-90]. It was shown that the Bayliss-Turkel ABC is more accurate than the
Engquist-Majda even when it is brought closer to the scatterers and therefore it is more
efficiently computationaly. More applications using 2D scalar ABCs can be found in
[Ramahi-89, Pearson-89, Webb-90, Sumbar-91]. Finally Mittra et al. and later Ramahi et
al. proposed new 2D ABCs that can be applied on an outer boundary of any shape
[Mittra-89, Ramahi-91b].

Peterson was the first to develop first and second order ABCs of the Bayliss-Turkel
type for the vector 3D wave equation [Peterson-88]. His second-order expression however
does not lead to symmetric matrices. D’Angelo et 2l. derived a second order 3D vector
Engquist-Majda ABC [D’Angelo-90]. In 3D their derivations for a vector Engquist-Majda
ABC produced a non-symmetric operator and for acceptable results the outer boundary
had to be placed 0.8 wavelengths away from the scatterer.
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In this thesis, 2 symmetric, second-order ABC for the vector 3D wave equation is
developed [Webb-89, Kanellopoulos-91].

1.3 Thesis outline

This thesis is organized as follows:

Chapter 2 gives a brief description of Maxwell’s equations and the variational for-
mulation of the problem. It follows a summary of the curvilinear coordinate system and
the definition of the covariant components of a three dimensional vector. Then the Finite

Element discretization using curvilinear covariant projection elements is presented.

The Absorbing Boundary Condition concept and the derivations of the new 3D
vector nth order ABC are found in Chapter 3. Explicit expressions for first and second
order ABCs are given. The implementation of symmetric first and second order ABCs in
a variational formulation is described in Chapter 4. The special treatment required for

the Absorbing Boundary Sphere is discussed in detail in the end of Chapter 4.

Chapter 5 describes the main subroutines of the computer program written to
implement the new theory. The non-trivial treatment of the surface divergence term in

covariant components is given at the end of the chapter.

The results of a series of test and of realistic problems are given in Chapter 6. All
problems were carefully chosen so that a comparison with analytical solutions be
available. The convergence and the efficiency of both first and second order ABCs are
demonstrated in each of the problems analyzed.
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Chapter 7 summarizes the new contributions presented in this dissertation. It
stresses the efficiency of the second order ABCs and indicates the weakness of the
method. Probing further, new ideas are proposed for the generalization and the

improvement of the new technique.

The text and the equations in this thesis were written with the Lotus Manuscript
word processing software [Lotus Manuscript-89]. The Autocad drafting package was used

for the drawings [AutoCAD-88], and the Grapher data visualization package for the
diagrams [GRAPHER-88].
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CHAPTER 2

3D Finite Element Analysis of Time-Harmonic Problems

2.1 Maxwell’s equations

The physical laws that govern the behaviour of electromagnetic fields are expressed
by Maxwell’s equations. In 2 three dimensional space with no volume currents or charges

and for time harmonic fields, this behaviour 1s described by:

VXE=-jwu,p,H (2.1)
VxH= jwe,€e E (2.2)
V-e,¢,E=0 (2.3)
Vep,u H=0 (2.4)

where J is the square root of minus one, w is the angular frequency, €, and W, are
the permittivity and permeability of free space respectively, €, and p, are the relatve
permittivity and permeability of medium. The last two quantities are functions of position
and may be complex. The vectors E for the electric field and H for the magnetic field
are assumed to be finite and at all ordinary points to be continuous furnctions of position
and time, with continuous derivatives [Stratton-41). Should an abrupt change occur in the
physical properties of the medium, the fields and their derivatives may be discontinuous.
In such case the field behaviour is determined by the interface conditions. A unique

solution to a given problem may not be obtained unless proper boundary conditions are
specified.
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2.1.1 Interface conditions

Should a change occur in the physical properties of the medium, the following
quantities remain continuous across the surface of discontinuity, also called interface:
HxA pH-A EXn €, E-fi
where N is the unit normal to the interface. The interface conditions are necessary for

a well posed problem.

2.12 Boundary conditions - Surfaces «* symmetry

Boundary conditions prescribe to given values the tangential field components on a
surface. A unique solution may only be obtained if the proper boundary conditions are
imposed. Let a surface be S and f being the unit vector normal to the surface. The

following boundary conditions may apply:

Homogeneous Dirichlet, where the tangential component of the magnetic field is zero:

Hx 1 =0. Such a surface is often called a perfect magnetic wall and it is usually 2

plane of symmetry.

Inhomogeneous Dirichlet, where the tangential component of the magnetic field is
assigned a nonzero value: Hx it = Ho where H, is the given value. Such a surface

is often called an excitation surface or port, since it drives the problem.

Homogeneous Neumann, where the tangential component of the electric field is zero:
Exfi=0 or (VXxH)xNh=0. Such a surface is often called perfect electric wall
and it is usually either a perfect conductor or a plane of symmetry. Using equation
(2.2) this boundary condition may be rewritten as: H-fi= 0 (see Appendix A).
Therefore, on a perfect electric conductor the normal component of the magnetic
field is zero.
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2.1.3 The curl-curl equation

Taking the curl of (2.2) and substituting in that the curl of E from (2.1), we get a

second order differential equation, the vector Helmbholtz or curl-curl equation:

Vxelan-;:gu,ﬂ-o (2.5)

where the normalized frequency is given by: ko=wy€ols. Throughout this work
various expressions are given for the magnetic field B. Similar expressions hold for the

electric field E and will not be given explicitly.

The vector Helmholtz equation has a unique solution given the boundary conditions
of the problem.

2.2 Variational formulation - Functional

As an alternative to solving a differential equation that describes the physical
problem (strong form) one can solve a weak form, such as a variational principle. The
variational formulation looks for the stationary point of a symmetric bilinear form, the
functional, subject to certain boundary conditions. Electromagnetic problems defined by
the two curl Maxwell equations (2.1),(2.2) or the curlcurl equation (2.5), may be
formulated variationally. Such vector variational formulations can be found in [Morse-53,
Berk-56, Webb-83). For a driven problern and for linear, isotropic, lossy materials and for
time-harmonic fields the suggested functional is given by:

F(H)-L{-E-l:(VxH)-(VXH)-kﬁu,H-H}dV (2.6)

where V' is the volume of interest and it is assumed to be dividable into a finite number
of non-overlapping sub-volurnes (Section 2.4). In such a case the material properties €,
and p, are assumed constant inside the sub-volumes but can be discontinuous
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throughout the volume 1/, In addition. the magnetic field H is assumed to be C,
continuous in each of the sub-volumes and tangentially continuous across sub-volume

interfaces, see equation (2.11).

The stationary point of the functional (2.6), subject to the boundary conditions of
the problem, is the unique solution. Note that, although the original differential equation

is second-order, only first derivatives appear in (2.6).

The interface conditions (Sec. 2.1.1) should be satisfied everywhere in volume V',

and on all sub-volume interfaces, see equation (2.11). However, not all four interface
conditions have to be enforced explicitly. It has been shown [Webb-81, Crowley-88b] that
the enforcement of only tangential field continuity is necessary. The other interface
conditions, as well as the homogeneous Neumann boundary condition are satisfied
naturally at the stationary point of the functional. For this reason these conditions are
called natural conditions to the variational formulation.

The enforcement of just tangential field continuity between two adjacent
sub-volumes can be beautifully implemented by covariant projection elements

[Crowley-88a]. An outline of this approach is presented in the following section.

2.3 Curvilinear coordinate system - Covariant projections

In the general or curvilinear coordinate system, a three dimensional vector H can

be written as:
H=H,a*+H,a"+H,a" (2.7)
Or as:

H=H'a,+H"a,+H"a, (2.8)

CHAFPTER 2 15



The H,.H,.H, are the covariant components or covariant projections of the field, the
vectors at,a",a¥ are the reciprocal unitary vectors, the HY,H".H" are the
contravariant components or contravariant projections of the field and the vectors
a;.a,.a, are the unitary vectors. The reciprocal unitary vectors, as well as the unitary
vectors are not necessarily of unit length and they are used as basis vectors in the
curvilinear coordinate systemn. The unitary and the reciprocal unitary vectors satisfy the

following conditions:

a,rat=1, aga=a;-av=0
a,ra"=1, a,-a‘=a,-a"=0 (2.9)
a,ra"=1. a,a'=a,a"=0

A six-faced curvilinear structure and the curvilinear coordinate system are
illustrated in Figure 2.1. An excellent description of the unitary and reciprocal basis
vectors and their properties may be found in [Stratton-41], page 38.

Multiplying equation (2.7) by one of the unitary vectors, say a; we get:

l—l-alt-l-lt (2.10)

Thus, the covariant projection M. is nothing but the projection of the field H in the

direction of the unitary vector a.. It should be noted, however, that the direction of the
vector Hya* is normal to the surface defined by the unitary vectors a,.a, which is not
parallel to the vector a.. In other words, the direction of each component of the field
H defined in (2.7) is normal to one of the surfaces of constant £,7m or v. In addition,
the projection of H along the direction a® isnotjust Hya®. The other two components
have in general non zero projections in t-hat direction.
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Figure 2.1 Curvilinear clement in the general coordinate system. It has 6 faces which are surfaces
of constant £.m or . The unitary vectors ag.a,.a. are always tangent to the coordinate axcs
§.1.v. The reciprocal unitary vector a” is normal to the surface defined by a,.a,. whichisa
surface of constant v . Similarly, the reciprocal unitary vectors at and a™ are normal to the surfaces

of constant § and n respectively.

Setting H, and H, to zero is equivalent to setting to zero the field tangent to a

surface of constant v. The importance of using covariant projection curvilinear elements

will become clear in the next section.

2.4 Finite Element discretization

In order to solve a problem numerically, its infinite degrees of freedom have to be
made finite. In the finite element method, the volume of interest is divided into a finite
number of non overlapping sub-volumes, called finite elements. They are defined in space
by the shape functions. Similarly, trial functions describe the field (scalar or vector) dis-
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tribution inside them [Zienkiewicz-77, Silvester-90]. The discretized functional is given

by:
o 1
F(H)‘ZI {E—(VxH)-(VxH)-kgu,H-H}dV (2.11)
=17V, r
where M is the number of sub-volumes in the problem.

In this work, each finite element is a curvilinear brick as shown in Figure 2.1. It has
a local curvilinear coordinate system (¥.m.v) and it is bounded by 6 faces. These faces
are surfaces of constant £.7 or v. The origin of the local curvilinear coordinate system
lies in the centre of the element. The element occupies the region:
-1<g<1]
-1<n<1 (2.12)
-1svsl
A set of scalar shape functions defines the geometry of the elemient in the local
coordinate system. There are 27 geometric nodes in the element, arrangedina3x3x3
grid (see Appendix B). Each geometric node has a corresponding shape function. In this
work this function is a second order polynomial in each of £.m and v. It has a value
of one at its own geometric node, and zero at the other 26. Thus, any point

P(X,.¥p.2,) inside the element can be given in cartesian coordinates by:

27
xp- Zl xiglcgp'np'vp)

27

Y= _Zlyig.-(sp.n,-vp) (2.13)

£
27 .
ZP- ;zlgl(gponpovp)

where g:(§,.Mm,.Vv,) is the second-order shape function corresponding to the ith
geometric point, evaluated at the point p(%,.m,.v,). The functions g.'s are
explicitly known a priori, [Crowley-88b]. The parameters (x;.y..2Z;) are the cartesian
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coordinates of the geometric point ;. There is a one to one correspondence between the
local curvilinear and the global (eg. cartesian) coordinate system [Crowley-88b]. The local

geometric node numbering is illustrated in Appendix B.

A set of vecror trial functions has to be used in order to model the field distribution
inside the element. The vector trial functions are similar to the scalar shape functions,
but now there are directions assigned to each of them. The directions are that of the
reciprocal basis vectors, eqn.(2.7). It is not necessary to use the same order polynomizls
as trial functions for the field components. In fact, it has been shown that the choice of
mixed order vector trial functions, first and second, is crucial in avoiding spurious cor-
ruptions [Crowley-88a].

The nodes for the vector trial functions are called ficld nodes, to distinguish them
from the earlier geometric nodes. There are 54 field nodes in each element, 18 in each
of the three directions in the local coordinate system, Figure 2.2. Two adjacent elements
have a total of 96 field nodes (54 +54-12) after field continuity is imposed. The degrees

of freedom (DOF) of a problem is the total number of field nodes that do not have
prescribed values.

Expressions similar to (2.13) hold for the covariant field components. The field at
any given point p inside the element is given by:

H |, = Hga'l, + Haa"|, + H,a"|, (2.14)

and
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S|
af

Figure22 The 18 vector trial functions for the covariant field component H, . They vary quadratically

on surfaces of constant v and hinearly along the v local coordinate direction.
18
Heatl= Z He g (85,0M,0V5)
i=1
18
Hnan | o= Z H‘l\(fﬂicgp‘np'vp) (2.15)
=1

i8
Hoa" 1= ) Hof(5,M,.v,)
i=]

where f,(5,.7,.v,) =1y (E,.M,.v,)at is the vector trial function that corresponds
to the ith § field node, evaluated at the point p(£,.M,.Vv ). Itis of mixed order and
varies linearly with § and quadratically with i and . Similarly for the vector trial
functions f,, and f,;. They vary linearly with n and v respectively and quadratically
with the other coordinates. All vector trial functions point inwards for the proper and

CHAPTER 2 20



consistent imposition of tangential field continuity. Each of the parameters H,, is the
covariant component at node i. Similarly for H,, and H,,. The local field node

distribution may be found in Appendix B.

Expression (2.15), for each finite element, is substituted into the functional (2.11)
and the Integrations carried out. In this work Gauss-Quadrature was used for the inte-
grations. This results in a quadretic for the unknowns Hy.H,,.H,,: differentiating to
find the stationary point gives 2 set of linear equations.

Once the parameters Hg;.H,;.H,; have been found, the field can be evaluated
everywhere in the element using (2.14). The cartesian field components may be found as

follows:

Each of the reciprocal unitary vectors at,a".,a“ can be expressed as a linear

combination of the cartesian unit basis vector set - see equations (6) and (9), page 39, in
[Stratton-41]. Thus, the magnetic field H in (2.7) can be expressed in its cartesian

components in the cartesian coordinate system as:

H=(H,ai+H,al+H,a})a,+
(Heal+H,a)+H,a))a,~ (2.16)

(Htai* Hna:* Hva:)az

where a} is the x component of the reciprocal unitary vector a® and so forth. The

&,.4,.&, are the cartesian unit basis vectors.

There are some important advantages in using curvilinear covariant projection
elements:
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1y

2)

3)

4)

Their curvilinear shape allows a better modelling of curved objects.

The imposition of vector boundary conditions becomes as simple as the

imposition of scalar boundary conditions.

Only tangential field continuity is imposed across elements, which is consistent
with the variational principle. This leaves the normal components free, so they
can be discontinuous when abrupt changes in material properties or sharp

metallic edges are present.

The use of mixed order trial functions for the field distribution frees the problem
from any spurious corruptions that may appear even in deterministic problems
[Crowley-88b, Pinchuk-88].



CHAPTER 3
The Absorbing Boundary Condition Concept

Consider the following open boundary problem, shown in Figure 3.1. The volume
of interest V' contains the electromagnetic source el . the metallic scatterers m/ . m2
and the dielectric scatterers d/,d2.d3. The closed surface S truncates the infinite

domain of the problem and renders the volume of interest 1/ finite dimensions.

Figure 3.1 A typical open boundary problem. The surface S encloses the volume V' where clec-

tromagnetic sources, metallic and dielectric scatterers are preseat.
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The above three-dimensional problem can be solved with finite elements if a known
boundary condition is imposed on the surface S. Such a boundary condition should
simulate the behaviour of the infinite space outside the closed surface S. This can be
done by absorbing all the outward propagating waves from the volume V', incident on
the surface S from within. Thus, the artificial surface S should be invisible to the

outgoing waves and no reflections would occur on S.

The search for such an absorbing boundary condition is the focal point of this work.

3.1 Conditions of the fields on a surface S at infinity

In open boundary problems, infinity can be regarded as a separate boundary. A
condition at infinity is necessary for the problem to be well posed. For scalar fields, the
Sommerfeld radiation condition determines the behaviour of the fields at infinity
[Wilcox-56a), and it is given by:

Ro=

. du
llmR(S—E jkou) 0 (3.1)
where u is a scalar wave function with a time variation of the form e/**, and k&, is

the normalized frequency given in Section 2.1.3.

For vector fields, the Silver-Miiller radiation condition gives the behaviour of the
field on a closed surface at infinity [Wilcox-56b]:

lim 1&,X(VXH)-jk,H|?’dS=0 (3.2)

R Jrap

where H is a vector wave function, dS=R?sin6d8d¢ is the surface element of a
sphere of radius R and &, is the unit vector normal to the surface S.

Essentialy, the Silver-Miiller radiation condition is an Absorbing Boundary
Condition (ABC) on a sphere of infinity radius. It insures that there is no reflection on
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that sphere of outward-propagating waves. More precisely, it guarantees that there are
no incoming waves from infinity. This ABC is the vector form of the Sommerfeld

radiation condition.

3.2 The vector radiation function and the expansion theorem

Consider the exterior domain D which consists of all points lying outside a closed

boundary surface S. see Figure 3.1. A complex-valued vector field H defined in the
domain D is a vector radiation function if it satisfies both the curl-curl equation (2.5)
and the Silver-Miiller radiation condition (3.2).

According to the expansion theorem [Wilcox-56b), for an exterior domain D{r >c].

a vector radiation function can be written as;

— h,(0,
H = H(r.8.9) = gZ%.l32 (3.3)

n=0

where r.9,9 are the spherical coordinates and g = PRl

The first term of this series varies as > and satisfies the vector absorbing boundary

condition introduced in the previous section. Te put it in another way, the first term of
the series is annihilated by the absorbing operator:

&, XVx - jko
However, on the sphere r = R all the terms of the series are present: a perfect absorbing
operator would annihilate them all. In general, local differential operators cannot do this.

However, operators can be constructed which annihilate more terms, and which are
therefore more accurate.,
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3.3 The differential operators B, and the absorbing boundary condition

A scalar expression similar to (3.3) exists for scalar wave functions. In [Bayliss-82}
an expansion has been derived for 2 general N th-order differential operator that exactly
annihilates the first NV terms of the scalar expansion. In this section analogous operators
By are defined that annihilate the first N terms of any vector radiation function H.

From (3.3) and (Cl.c) the (©.¢) part and the radial part of the vector H can be
written as:

— h (8. =
He=H(r.0.0)= Y oo H-H(r.8.00=3 g

z=0 =0 rt

h.. (8.
—(-1& (3.4)

Using the following relation:

2 L _ g . +n+a
ar(rn-a) r,.a(.'ko r ) (3-5)

and the vector identity (C.6) we get:

4,XVXH, = (!’ko*g)ﬂm (3.6)

where g is defined in section 3.2, &, is the unit vector in the radial direction and

h,.(9,
an-Hn.(r-9.¢)-g—‘r(,,-,¢) (3.7)
We now define the differential operator
Ly(u) = a,xqu-(jko*-g)u (3.8)
From (3.8), using (3.6) and for N20 and 20, we have:
" f hae. h (8,
annu)-zn(g—%) - (n-N)g®) (3.9)

and for N=n=K, (3.9) gives:
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Ly(Hg)=0 (3.10)

Similarly, using (3.8), (C.7) and for N 20 and r20, itis shown in Appendix D.1
that:

LN(vtar'Hnr) = LN(V:HM) =

hnr 8, hnr e,
= L,{V,{g%}) = (n+1—N)V,{gr(T;¢)} (3.11)

where:

H,,=-H, -4, . h,,~h,-4a, and

nr

h.(8.9)

Ho = g =203 (3.12)

For N=n+1=K+1 (3.11) gives:

Lea(V,Hy) = O (3.13)

In (3.10), the operator Ly annihilates the r:,, term of the vector H, defined in (3.4)
and so Lx., annihilates the }, term. In (3.13), the operator Ly.,{¥V, ) annihilates the
;:—.; term of the vector H,, andso Lx(V, ) annihilates the },, term. Thus, an operator
of the form L,.,(H,)+Lx(V,H,) annihilates the }, term of the vector radiation
function H, (33). Inbothcases Ly and L,.; have the effect of multiplying by } but
leaving the 6,¢ dependance unchanged.

The operators By, N=1,2,..... . are now defined as:

By(u) = (LN-I)N(U:) -+ SU-N)N-I(Vgur) (3.14)

where s is an arbitrary number. The superscript N denotes that the operator Ly.; is
applied N times; similarly for the superscript N - 1.
Applying the operator By to H, we have that:
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h.(8.0
By(H,) = BN(Q—('—"‘-))=

rn-l
h. (9.
- (n-'-I-N)(n-—Z-N)---(n—1)(n)grn(_—!_:) -
h,.(6.9)
s(R+1-N)(R=2-N)- - (r- 1)V {g=0 (3.15)

In the expressions (3.3), (3.12) for the vector radiation function it is true that
h,,(8.4)=0. or H,=H,,. This is because H, since it satisfies the curl-curl equation
(2.5) has also to satisfy V-H=C [Wilcox-56b). Then from (3.15), it is obvious that the
right-hand side vanishes for n=0,1......,N -1, ie. the operator B, annihilates the
first N terms of the vector radiation function H. Further, for n> N -1 each of the
terms on the right-hand side in (3.15) is proportional to —; (considering the ; term

included in the ¥, operator). Thus,
1
BH(H)-O('W) (3.16)

The above is an approximate absorbing boundary condition on the spherical surface S
of radius r. The approximation gets better as r increases. For N =1, it improves at
therate 1/r3, andfor N=2 attherate 1/r° [Webb-89].

3.4 The first and second order Absorbing Boundary Conditions

In general, an absorbing boundary condition takes the form:
4,XVxu = P(u) (3.17)

where P is a linear operator on u. Not-e that in both operators P, and P, (3.19) and
(3.21) no radial derivatives are present.
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3.4.1 The first order ABC

For N =1, (3.14) gives:
By(H) = Lo(H) + sV/H,
= &, ,XVxH, - jk,H, + sV,H, using (3.8)
= &,XVXH - jk,H, - (s-1)V,H, using (C.5)
or
B,(H) = a,xVxH - a(r)H, + (s-1)VH, (3.18)

where a(r)= jkq.

The first order absorbing boundary condition B8,;(H)=0 can be rcwritten as

a4, XVxH = P,(H), where P, is defined by
Pi(u) = a(r)u, + (1-s5)V,u, (3.19)

3.4.2 The second order ABC

For N =2, (3.14) gives:

Bo(H) = (L,)%(H,)) + sL(Y.H,)
and after some algebra we get (see Appendix D.2):

- - . )
B2(H) B(")a'XVXH B(")H'

+Ux4,[4,-(VXH)] + (s-1)V,(V-H,)
+(2-s)a(r)v,H, (3.20)
where a(r)=jko and B(r)=1/(2jko+2/r).
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The second order absorbing boundary condition B.(H)=0 can be rewritten as

4,XVXxH = P,(H), where P is defined by

Py(u) = a(rju, + B(r)Vxala, (Vxu)]
+ (s=1)B(rIV,(V-u,)
+ (2-85)a(r)B(r)V,u, (3.21)
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CHAPTER 4
Implementation of the Absorbing Boundary Condition (ABC)

in a Yariational Formulation

This chapter deals with the variational formulation of the problem. A functional F

is derived for the first and second order ABC. The stationary point of F is the solution
to the curl-curl equation in volume V':

ngl—VxH-kgu,H - 0

(see eqn. (2.5) in Section 2.1.3) with the ABC (first and second order) applied on a
spherical surface S which encloses the volume V:

a4, XVxH = P, (H)

see eqns. (3.17), (3.19) and (3.21) in Section 3.4.

4.1 Problems without symmetries where the ABC spherical surface S is closed

The following functional can be derived from eqn. (2.5) using 2 standard method
[Linz-79, Chapter 7]:

1
p(H)-fV{H-vxe—VxH—kgu,H-H}dl/ (4.1)

where all the parameters have been explained in Section 2.2 and the vector field H may
be complex. Applying the vector identity

A-VXVUXB = (VXA)-(VxB) - V-(AXVXB)

and using the divergence theorem on (4.1) we get:

F(H) = f{ei(vxu)-(vXH)-kgu,H-H}dV - EleVxH-dS (4.2)
v r SE,
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where the closed surface S completely surrounds the volume 1/, The above expression
for the functional T is the generalized form of (2.6). The difference between (2.6) and
(42) is the extra surface term [ s&l—l XVXxH-dS. The absence of this term in (2.6)
causes the homogeneous Neumann boundary condition (Section 2.1.2) to be naturally
satisfied at the stationary point of F, see Section 3.4 in [Silvester-90]. If the surface S
is a sphere, then by using the vector identity BXC-A=CxA-B=-AXC:-B we can
rewrite the surface integral in (4.2) as:

%HxVxH-dS = —feié,xVxH-HdS
SCr r

and (4.2) becomes:

Fay = [{2@xm@xmy-kiun-njar - [ Laxvxn-nas e
v r S€,

In Section 3.4, two approximate expressions P;(H) and P.(H) have been derived for
the integrand quantity &,X VxH, which correspond to the first and second order ABC.
‘We want the stationary point of F in (4.3) to satisfy the Absorbing Boundary Conditions
B,.(H)= 0 paturally, (n =1 or 2). It has been shown in the Appendix E.2, that this will
be the case if 4,XVXH is simply replaced by P.(H) in equation (43). Thus, the
functional F is now given by:

1 . -k2u H- . (1 :
F(H) = fv{er(VXH) (VXH)-kgou H H}dV fsErP,,(H) HdS (4.4)

The operator P,(H) is the absorbing boundary operator associated with the energy flow
through the surface S, and n=1,2 for the first or second order ABC respectively. The
variational formulation requires that the linear operator P, issymmetric:

fpn(ﬁ)-vds = fP,,(v)-uds (4.5)
S S

where u and v are complex vector functions.
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For the first order ABC, the choice s =1 only gives a symmetric operator, see eqn.
(3.19):

P,(H) = «a(r)H, (+.6)

Assuming that all dielectric materials are inside the volume 17 and the region close to
and outside the surface S is air, the corresponding functional is:

F(H) = L{el(VxH)z - kgu,uz}av ~ fsa(r)nfds (4.7)

For the second order ABC, the choice s =2 only gives the symmetric operator, see
eqn. (321):
Po(H) = a(r)H, + B(r)vxa.[a,-(VxH)]
+ BV (V-H.) (4.8)
Again, assuming that all dielectric materials are inside the volume V" and the region close

to and outside the surface S is air, the corresponding functional is given by (Appendix
E.1):

F(H) = L{EI-(VXH)Z - k%p,H"’}dV +
fs{ﬁ(")Hf + B(r){a,- (VxH))?
- B(r)(V-H)*}dS (4.9)

Requiring that F be stationary leads to a symmetric matrix equation. Peterson’s
expression however, for the second order ABC corresponds to the choice s=1, which
gives a non-symmetric operator [Peterson-88]. His ABC can be implemented by a
weighted-residual formulation, but this does not lead to a symmetric matrix cquétion.
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4.2 Problems with symmetries where the A3C spherical surface S isopen

This section deals with problems with symmetries where the spherical surface S 1s

just part of 2 sphere, ie. half, quarter or eighth. In this case the first variation of the
functional F gives:

%6(1’-‘(1—!)) - L{:—er(bH)'VxH - k§(aH)-H}dV

. fs{acaﬂg)-nx + B(r)[&,- (VXGH)][4, - (VXH)]

- B(r)(V-58H,3(V-H,}}dS (4.10)
After some algebra and using #19 p.501 and #42 p.503 in [Van Bladel-64], we get:

LscrCHy) - fau.(Vxle - kgﬁ)dv
2 v €,

+ faﬁ-{a(r)u, + VXHX&, + B(r)V(V-H,)
3
+ B(r)vxa,.[a,-(VxH)]}dS
+ fcé,,,-{aﬂ,v-l-l, + BHX&,[&, - (VTXH)]}HC (4.11)

where S is a surface that is part of a sphere, C is the boundary of S and &, is the
unit vector in the plane tangent to the spherical surface and perpendicular to C. see
Figure 4.1. Each integral in (4.11) must vanish for any 6H at the stationary point of F,
so:

yxLloxH - k3H = 0 (4.12)

r

a(r)H, + YXHXE, + B(r){V.(V-H,) + VX&[&,(YXH)]} = O (4.13)
A, -(6H,V-H, + (6H)X4a,[4, - (VXH)]) = O (4.14)

(4.12) is the governing curl-curl equation in volume V', and (4.13) is the second order
Absorbing Boundary Condition applied on the spherical surface S. Equation (4.14) can
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be rewritten as:
4,-6H,V-H, + 4,-6H,[4, (VxH)] = O (4.15)
where &. is the unit vector on the plane tangent to the spherical surface, and tangential

to C. see Figure 4.1. Note that H, denotes the magnetic field tangent to the spherical
surface S, rather than the magnetic field tangent to the contour C.

Figure 41 A surface S that is part of a sphere, its boundary C and the unit vectors 5,.4,, and
a,.

Suppose now that C lies on a magnetic wall, i.e. it is the intersection of the spherical
surface S and a magnetic wall. Then, &.- 5H,.= O is imposed explicitly because of the
magnetic wall, Then (4.15) implies V-H,=0. Since H, and % are set to zero on the
magnetic wall,

10

V-H,~0 =» V-H, + F-;;(rzl-i,) - 0 (4.16)

ie. V-H=0. So, the correct divergence condition arises naturally.
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Suppose now that C lies on an electric wall, i.e. it is the intersection of the spherical
surface S and an electric wall. Then, in order for (4.15) to be satisfied, it is necessary
that V- H,=0 and &, -(VxH)=0 on C. The latter condition is equivalent to E, =0
on C which is correct due to the electric wall. The first condition, however, imposes
something which is untrue. Thus, in order to have the right boundary conditions, we need
to explicitly impose &4,:6H,~0 on C on electric walls.

If the surface integral of the second order absorbing boundary condition in (4.9) is
divided into integrals over quadrilaterals before the first variation of the functional is
taken, see (2.11), then the first variation includes a line integral similar to that in (4.11)
around the boundary of each auadrilateral C;:

fc{am-aﬂ,v-ﬂ, + A&_-8H [4,- (VXH)]}dC (4.17)

Now, two such integrals will contribute to each line separating two quadrilaterals, one
from each quadrilateral. The first variation of the functional will vanish if and only if the
sum of these two contributions is zero, for each such line on the absorbing boundary
surface. Since the tangential field continuity is imposed, (see Section2.2), |a,.-5H, | will
be the same on both sides of the line, and the vanishing of the first variation just enforces
the continuity of &,- (VXxH) which is correct. However, a4, 5H,, is not continuous,
and requiring that the first variation of the functional vanishes forces that V-H,=0 on
both sides of the lines, a restriction which is in general wrong, as discussed above. To
correct this, continuity of &..+6H, has to be enforced over the absorbing boundary
surface.

In conclusion, for the proper imposition of the second order Absorbing Boundary
Condition, extra conditions have to be explicitly enforced:
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a) onthe ABC spherical surface, normal continuity has to be imposed on the magnetic

field components tangent to the sphere, between the quadrilaterals the ABC surface

is divided into.

b) 4&,-6H,=0 has to be imposed on those parts of C which lie on electric walls.
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CHAPTER 5

Programming Considerations

A computer program has been written in standard Fortran 77 [Balfour-79] to
implement the numerical method presented in this dissertation. The program is in
modular form and well documented. It solves the problem in the deterministic sense, i.e.
for a given excitation frequency it gives one field solution. The code was successfully tried

on the following computers:

a) an 80386 IBM compatible with 25Mhz clock speed, 80387 co-processor, 16Mb RAM
80Mb (18ms) hard disk and the NDP Fortran-386 compiler [NDP Fortran-90] under
DOS 3.3.

b) aSUN 4/110 (first generation of SPARC machines) with 8Mb RAM, 0.9 MFLOPS
and the SUN Fortran compiler under the SunOS Release 4.1.1.

¢} a CRAY Y-MP super-computer with the CFI-77 Fortran compiler and the BCS
library {BCSLIB-EXT-89] under UNICOS 6.0.12.

The program solves for the stationary point of the functional (4.4) in volume V

where metallic and lossy dielectric materials can be present. It uses curvilinear finite
elements, (see Sections 2.3, 2.4). After the input data are read, it automatically imposes
tangential field continuity between elements having common faces. Since the final matrix
is expected to be very sparse, the problem’s sparsity pattern is found and stored to be
used later by the solver. The entries of the sparse matrix are calculated for each element
in turn during the local element assembly, and placed in the right position in the global
matrix. All the computations involve the co~iriant projections of the field components.
There are two kinds of interpolation functions:
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a) these for the spatial resolution and are used to define the geometrical shape of
every curvilinear element, and
b) these for the field resolution and are used to define the field distribution inside
every curvilinear element.
The interpolation functions for the spatial resolution are 2nd order polynomials, but the
ones for the field resolution are mixed order polynomials (1st and 2nd), so that no
spurious modes are present. All interpolation functions are calculated and stored. Two
sets of interpolation functions are used: one for the volume integral and one for the
surface integral. For the integrations, Gauss quadrature is used. After the boundary
conditions are imposed, the normal continuity is imposed on the covariant projections on
the ABC spherical surface. The matrix equation is solved and the solution is stored. This
solution contains the covariant projections field components. Finally, the solution is
transformed back to the cartesian or spherical components and the result is written out
to an ASCII file. The following Section gives a brief description of the subroutines used.
The subroutines are listed with the same order as they are called by the main program.

5.1 The subroutines and a brief description

READIN: Reads from file "input.dat” the geometrical information of the
finite elements, material properties and field excitation. All
input data are in cartesian coordinates. More details on the
input data structure can be found in Appendix F.

HITRI: From the 27 geometric nodes of each curvilinear element, it
constructs the 54 field nodes for that element (for the
geometric and field node definition see Section 2.4 and
Appendix B) and imposes tangential field continuity between

elements with common faces. Each field component is con-
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SPAT:

PRECAL:

CAIL2D1:

ASSEMB:

CHAPTER 5

sidered as a field node. Also, it finds the pairs of the covariant
projections that have to be made continuous on the ABC
surface, (normal field continuity). At present it is necessary
that the edges of the faces lying on the ABC spherical surface
be colinear with lines of constant© or ¢.

Builds the sparsity pattern of the final matrix.

Prepares the interpolation functions for the local volume
integrations at Gauss points which lie inside each element.
They will be used later by ASSEMB. Note that the
interpolation functions for the spatial resolution are different
from those for the field resolution.

Prepares the interpolation functions for the local surface
integrations at Gauss points which lie on the quadrilaterals
that form the ABC spherical surface. These points however,
do not lie on the boundaries of these quadrilaterals. The same
distinction between spatial and field resolutions applies here
100.

Prepares the interpolation functions for the local surface
integrations for the spatial resolution at the geometric nodes
but for degenerate quadrilaterals: that is quadrilaterals that
have one edge of zero length. It is only used for the assembling
of the surface divergence term.

It is called once for each finite element in turn. It builds the
local matrices for the volume integral and the surface integral
of (4.4) and then puts it in the appropriate positions in the



COMPUT:

SETBV:

CONMOD:

MODIFY:

SOLVER:

CHAPTER 5

sparse global matrix. Both first and second order ABCs can
be assembled. More on assembling the final matrix can be

found in Section 5.2,

Prepares the interpolation functions at the geometric nodes
(as opposed to the Gauss points) of each element. These
values will be used later by SETBV, MODIFY and CARTES.

Sets the boundary values at the appropriate positions. These
values are in terms of the covariant projection field compo-
nents. For the case of a magnetic wall, the tangential com-
ponenis are set to zero. For anm excitation surface, the
covariant projections are set to known non zero values after

being converted from the cartesian input values.

Modifies the matrix [ A] and creates a non zero right-hand
side [b]. sothe newequationisnow: [A]-[x]=[b] where
[x] is the unknown vector, instead of [A]-[x]=0, where

some of the elements in [x] have prescribed values.

Imposes normal continuity on the field components that lie
on the ABC surface.

Solves the matrix equation [A]-[x]=[b], where [A] is
a complex, symmetric indefinite matrix. A frontal solver was
used written by J.P. Webb and based on [Irons-80]. It is very
efficient in using as little RAM as possible, however, it creates
two scratch files which are of considerable size. This solver
(subroutines *clditd’ and ’clditi’) ran successfully on the 80386
IBM compatible and the Sun 4/110 computers. The Boeing
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Computer Services library [BCSLIB-EXT-89] was used on the
Cray Y-MP super-computer. The whole process is done in

RAM and no scratch files are created.

CARTES: It converts the solution from covariant projections to cartesian
or spherical components and prints the result to the ASCII
file "field.out™. For each finite element this file contzins: the
coordinates for the geometric nodes and the three field

components on every geometric node.

5.2 Working with covariant components

Assembling the global matrix of the discretized form of the first variation of (4.4),
requires that 2ll the calculations are in covariant components. For the volume part,
Crowley’s implementation was used to build the volume terms, [Crowley-88b]. The
surface part of the functional includes a dot product for the first order ABC, eqn. (4.7),

and a dot, a curl and a divergence term, eqn. (4.9).

The dot term in covariant projections is straight forward using trial functions
defined on the surface of the quadrilateral. The radial component of curl in covariant
projections is given in Chapter 1, p47. eqn. (61) [Stratton-41}. However, there is no
expression given in covariant projections for the surface divergence term. The procedure

used to express this term in covariant projections is explained below.

5.2.1 The surface divergence in covariant projections

Stratton gives the following expression for the divergence of a 3-component field,
P45, eqn.(55), [Stratton41]:
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1

V-H-?

_{Vlu

a | —
;(H‘\!g) (5.1)
Using the above expression, the surface divergencc is given by:
—(HYg 5.2
\G 2350 ‘( ) (5.2)

where H' are the contravariant components on the surface, JE =la,Xa,}. and a,

Vs-H =

and a. are the unitary vectors, see Figure 5.1.

n

Stpy
aoe S

Figure 5.1 The unitary vectors &, and @ of a two-dimensional surface in 3-D space.,

Let the vector N be the unit normal to the surface, see Figure 5.1:

a,Xa,
= (5.3)
Vg
Then, the reciprocal unitary vector a' is given by:
a' = -l—azxﬁ (5.4)

[

and therefore:

CHAPTER 5 43



which is correct, see eqn. (2.9). Similarly:

a’ - —l—a,xﬁ (5.5)

Vg

and it is also true that a®-a,=1. So, the contravariant component H' is given by:
H' = H-a'
and using (5.3) and (5.4) this becomes:

1

a,*3a

5.6
g (S.6)

Similarly, for the contravariant component H? we have:

(a,-az)
 —

and finally the surface divergence in (5.2} can be rewritten in covariant components as:

1

o 1
VoH = =(rr=anPHm(ar aHy)

0
*a_uzjlzclal I°Hz- (@, a,)H,)) (5.7

522 The surface divergence in covariant projections: a simpler way

Expression (5.7) is very complicated to code. An easier approach for the computer
implementation is given below.
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Assuming that the surface S is a sphere, the tangential field in spherical

coordinates is given by:
H, = H,4, + H,&, (S.8)

where 4, and &, are two of the three spherical unit basis vectors. The surface

divergence on S is given by:

v -4 = 12He H, 1 __2H,

¢ T r 26  rtan(8) = rsin(8) oo (5-9)

The Hy and H, components of the field can be expressed as (see also Section 2.4):

Q@
Hy =  Heg,(u',u?) (5.10)
i=]

9
H, = 3 H,g.(u'.u?) (5.11)
t=1

where g.(u',u?) are second-order trial functions in two dimensions similar to those

described in eqn. (2.13). The surface divergence term of the functional (4.9) over the area
of a quadrilateral is given by [Stratton-41]:

f(v,-H,)"’ds - f’ ;fl (V,-H)2gdu'du? (5.12)
ule=) ¥ ulaeg

where g has been defined in Section 5.2. Using (5.10) and (5.11), the above may be
rewritten as:
) 9
Jontas = 3 S HuHGQY + 3D HuH,QY ¢
i=1 = ~is

9 ° 9
2121HNH”Q?; + lzl ZlHunQtjo (5.13)
i=] = -1 =

or in matrix form:

[ Hy%as = HL, Q H, (5.14)
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Indices i, ;j refer to the interpolation points, and H,, is a column vector of the g 2nd

¢ values of the field. The square matrix Q has entries of the form:

3 3
o= Y Y wglig)wa U lut 1Flu? i - b u®)? af i,

ig=1 j0=1

where the indices ig, jg refer to the integration Gauss points which lie on the spherical
surface but not on the contour of the quadrilaterals the spherical is divided into, and
wg's are the Gauss weights. The quantities g;; are functions of r,6,¢.u’ and u2,

and they are evaluated at every Gauss point ig,jg. Similar expressions exist for

06 e []:]
e v/ and iy

Equation (5.13) gives the surface divergence term of the functional in spherical field

components. The field in covariant projections is given by:

H = H,a!' + H,a?

Then, the Hy and H, field components are given by:
H, = H-&, = H,a'-5, + H,a®-5, (5.15)
H, = H-a, = H,a'-a, + Hya®-a, (S.16)

The covariant projections H, and H> can be expressed as:

&

Hy, = ) H,f,(u'.u?) (S.17a)
i=]1
-]

Hp = ) Hpfp(u',u?) (5.17b)
{=]

where f,,(u'.u?),f5(u',u?) are mixed order trial functions in two dimensions
similar to those described in eqn. (2.15): Using (5.15) and (5.17) the H, component at
the geometric node ¢ is given by:

[.] [-]
i=1 4=

(5.18)
{ 3
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Similar expression holds for H,,. Thus, the relation between spherical and covariant field

components is given by:
Hee = M H,,
where M is a non-square matrix. Then eqn. (5.14) becomes:
f(v‘-H,)zdS = Hg, Q H,,
= (M Hp) Q@ MH,
= H}, U H, (5.19)

where U=MTQM.

Expression (5.19) gives the surface divergence term in the covariant projection field

components and it was used in the computer program implementation.
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CHAPTER 6

Results

The computer program described in the previous chapter was tested on a range of
problems in order to check the validity and the performance oi the proposed Absorbing
Boundary Conditions. The purpose was to demonstrate the foiiowing: '

a) the efficiency and accuracy of the ABCs;
b) convergence;
¢) difference in performance between first and second order ABCs ; and

d) the behaviour of degenerate elements, i.e. elements having a face of zero area.

Two sets of numerical experiments were performed. The first set modelled
individual spherical wave functions. The second numerical experiment solved the realistic
problem of scattering of an incident plane wave by a metallic sphere.

Since there was no previous experience, a large number of FE meshes were tried
with different element densities. The results presented in this chapter are from meshes

that gave accurate results with the minimum number of elements.

In all cases analytic solutions were available and they were compared with the
computed FE results. The object here is to provide a detailed check on field values rather
than comparison with macroscopic parameters, so that a thorough understanding of the
behaviour of the ABCs is obtained.
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6.1 Spherical TE wave functions

Analytical expressions for'sphcrical TE wave functions may be found in Chapter 6
of [Harrington-61]. In a source-free homogeneous region of space, and for spherical

waves, the analytical expressions for the magnetic field components are given by:

H - 1 2 . kz)p (6.1)
i jwu pol\ ar? °) .
Hy = : .
° r sin(®) 2¢ * jwu, e r 2rod (6.2)
1 2A, 1 1 2%F,
H - —— i -
* r 29 jwu,He F sin(®) ar 2¢ (63)

For an outgoing TE spherical wave, the wave potentials F, and A, are given by:

3 nk
Foo= ) Coagf 35— HEZCker) PRCcoS(E)) o™ (6.4)
n=1
A, = 0O (6.5)

where m,n are integers, C. , are constants, H'?} are the Hankel functions of the
2

second kind, p.138, #24.30 in [Spiegel-68), and P are the associated Legendre
functions of the first kind, p.149, #26.2 in [Spiegel-68].

For every set of integers ( m, n), equations (6.1) - (6.4) give a magnetic field which

is an exact solution to Maxwell’s equations in spherical coordinates. Any true field can

be represented as a linear superposition of these spherical harmonics.

‘We now consider the boundary value problem where the magnetic field components
H, and H, are constrained on the surface of a sphere. Their constrained values are given
by (6.2) and (6.3). Outside this sphere is free space. The solution to this problem is an
outgoing spherical wave, characterized by the set of integers (m.n).
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This boundary value problem was solved using finite elements and ABCs. The
results were compared with the analytical ones. Four ( m, n) cases are considered here.
Essentially, the volume modelled with finite elements is the space between two concentric
spheres. The inner sphere is the excitation surface, where both He and H, are
constrained, and the outer sphere is the absorbing boundary surface, where the ABC is

imposed, see Figure 6.1.

A

absorbing boundary
surface

excitation X
surface

Figure 6.1 Modelling a sector of a sphere with curvilinear elements. In this mesh there are three
clements in the © direction, 2nd one in 7 and ¢ directions respeciively.

Because of symmetries, only sections of the problem were modelled in each case. The
curvilinear nature of the elements made them easy to fit to the spherical inner and outer
boundaries. In the first two cases degenerate curvilinear elements were successfully used.
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Such elements, because they are simple to use, are very promising in finite element meshes
that model complicated structures, where otherwise more than one type of conventional

elements would have to be used.

A simple 3D mesh generator was written to facilitate the generation of input data.
It reads the file "mesphe.dat” and such a file is illustrated in Appendix F.2. It produces
the output file "mesphe.out” which is used as input data by the finite element code.

6.1.1 The (m, r) = (0,1) case

In this case the field varies only in the ~ and 9 directions and H, = O. Therefore,
only one element was used in the ¢ direction. There were four elements in the 8
direction and one element every 0.03 A in the r direction, where A is the wavelength.
The size of each curvilinear element was (r.6,¢) = (0.03 A, 22.5°, 1(°). Note the
degenerate elements touching the z axis, see Figure 6.1. Due to symmetries, the modelled
volume was confined by boundary surfaces holding the following boundary conditions:

Boundary surface Boundary Condition

r = 03A excitation surface (prescribed Hy and H,)
r = R Absorbing Boundary Condition

e = @ electric wall

e = 90 magnetic wall

¢ = O electric wall

¢ = 10° electric wall

Figure 6.2 shows how the error changes as the absorbing boundary surface is moved
outwards. In the smallest problem (R=0.06 wavelengths) there were 8 elements and 318
field nodes, and in the largest (R=0.3 wavelengths) 40 elements and 1422 field nodes.
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(For field node definition see Section 2.4.) Results for first and second order Absorbing

Boundary Conditions are included. The error shown is the largest value of
e = I HFEM - Hexlct ]

over the volume modelled, expressed as a percentage of | H.xac: | 2t the point where the

largest value of e occurs.

" )

~ first order ABC

} 3

o] -

© 10+

P -

[+4] -

-U .

il

o

E i

=

g

= -

g second order ABC
17
0.00 0.06 2 018 024 030 036

0.1
R (wavelengths)

Figure 62 Solution errcr versus R, which is the distance between the excitation surface and the
absorbing boundary surface, for the case (m, ) = (0,1).
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6.1.2 The (m. r) = (0,2) case

In this case the field varies only in the ~ and 6 directions and H, = O. Therefore,
only one element was used in the ¢ direction. There were six elements in the 8 direction
and one element every 0.03 A in the r direction, where A is the wavelength. The size
of each curvilinear element was (r.9.4) = (0.03 X\, 9.12°, 10°). Note the degenerate
elements touching the z axs, see Figure 6.1. Due to symmetries, the modelled volume
was confined by boundary surfaces holding the following boundary conditions:

Boundary surface Boundary Condition

r = 03A excitation surface (prescribed Hy and H,)
r = R Absorbing Boundary Condition

6 = (¢ electric wall

€ = 547356° magnetic wall

¢ = @ electric wall

¢ = 10° electric wall

Figure 6.3 shows how the error changes as the absorbing boundary surface is moved
outwards. In the smallest problem (R=0.12 wavelengths) there were 24 elements and 870
field nodes, and in the largest (R=0.48 wavelengths) 96 elements and 3294 field nodes.
Results for first and second order Absorbing Boundary Conditions are included. The error
e has been defined in Section 6.1.1.

The second order ABC absorbs any outward-propagating wave with a - and ;';

r

variation; it absorbs less completely waves with %5 variation and even less completely

waves with f-; variation. The variable n in (m. r) determines the variation of the field

along the r direction. For the (0,2) case the field varies as % while in (0,1) it varies as
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0.03 w12 1 0.30 0.39 0.48 0.57
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Figure 63 Solution error versus R, which is the distance between the excitation surface and the
absorbing boundary surface, for the case (m. n) = (0,2).

:—,. see eqns. (6.&) - (6.4). In both cases the ABC is an incomplete absorber. For the (0,2)
case the absorbing boundary surface has to be placed further away in order to absorb the
outward-propagating wave as efficiently as in the (0,1) case. Larger values of » would
require that the absorbing boundary surface is placed even further for good absorption.

6.1.3 The (m, n) = (1,1) case

In this case the field varies in all three coordinate directions r, 8 and ¢. There

were four elements in the © and ¢ directions and one element every 0.03 A in the r
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direction, where A is the wavelength. The size of each curvilinear element was (r, 9, ¢)
= (0.03 A, 21.75°, 225°). However, H; and H, are undefined on the z axis, so the
previous meshes touching the z axis cannot be used because no boundary condition can
be imposed on the degenerate surface © = 0°. To overcome this problem, the z axis was
not modelled. Instead a new excitation suriace 6 = 3° was introduced, so, no degenerate
elements were present, see Figure 6.4. Due to symmetries, the modelled volume was

confined by boundary surfaces holding the following boundary conditions:

ZA

absorbing boundary
surface

excitation
surfaces

Figure 6.4 Modelling a sector of a sphere with curvilinear elements. There are no elements touching
the z axis.
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Boundary surface Boundary Condition

r = 03A excitation surface (prescribed Hy and H,)
r = R Absorbing Boundary Condition

e = 3 excitation surface (prescribed H, and H,)
8 = 90 electric wall

$ = O electric wall

¢ = 90 magnetic wall

Figure 6.5 shows how the error changes as the absorbing boundary surface is moved
outwards. In the smallest problem (R =0.06 wavelengths) there were 32 elements and 1044
field nodes, and in the largest problem (R =0.3 wavelengths) there were 160 elements and
4644 field nodes. Results for first and second order Absorbing Boundary Conditions are
included. The error e was defined ia Section 6.1.1.

For this spherical harmonic (1,1) the absorbing boundary surface absorbs as
efficiently as in the (0,1) case. This is because in both cases the field varies as :—, .
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Figure 65 Solution error versts R, which is the distance betwesn the excitation surface and the
absorbing boundary surface, for the case (m. n) = (1,1).

Figure 6.6 shows how the error changes as the mesh density changes. The absorbing
boundary surface is at a constant distance of r = R = 0.3 A from the excitation surface.
In the smallest problem there was one element in the € and ¢ directions and two
elements in the r direction. The next mesh had two elements in the 6 and ¢ directions
and four elements in the r direction. For three clements in © and ¢ there were six
elements in the r direction and so forth. All elements have the same size within the same
mesh. However, they are different from one mesh to the other. In the smallest problem
there were 2 elements and 96 field nodes, and in the largest problem there were 250
elements and 7040 field nodes. Results for first and second order Absorbing Boundary
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Figure 6.6 Convergence results as the mesh density increases for the case (m.n) = (1,1). The

absorbing boundary surface has been kept at a constant distance R=03A. The number of elements
in the - direction are twice as many asin © {(or ¢) direction.

Conditions are included. Note that when further discretization of the mesh does not
improve the performance of the ABCs, the error from the second order ABC is about
one order of magnitude smaller than that from the first order.

6.1.4 The (m. n) = (1,2) case

In this case the field varies in all three coordinate directions r.6 and ¢. There

were three elements in the © direction, five in ¢ and one element every 0.03 A in the
r dircction, where A is the wavelength. The size of each curvilinear element was (r.e.¢

CHAPTER 6 58



= (0.03 A, 15°, 18°). No degenerate elements were present. Due to symmetries, the
modelled volume was confined by boundary surfaces holding the following boundary

conditions:

Boundary surface Boundary Condition

r = 03A excitation surface (prescribed H, and H,)
r = R Absorbing Boundary Cecndition

g = 45 electric wall

& = o magnetic wall

¢ = @ electric wall

¢ = 90° magnetic wall

Figure 6.7 shows how the error changes as the absorbing boundary surface is moved
outwards, In the smallest problem (R =0.06 wavelergihs) there were 30 elements and 988
field nodes, and in the largest problem (R =0.48 wavelengths) there were 240 elements
and 6952 field nodes. Results for first and second order Absorbing Boundary Conditions
are included. The error e has been defined in Section 6.1.1.

For this spherical harmonic (1,2) the absorbing boundary surface absorbs as
efficiently as in the (0,2) case. This is because in both cases the field varies as :1

Figures 6.8 and 6.9 show the amplitude and phase of the magnetic field component
H, for the (1,2) case, at the geometric point (r.9.¢) = (036 A, 60°, 72°), versus the
distance R between the excitation surface and the absorbing boundary surface. The
computed component H, generally had a larger error than the other two components
since it is the least prescribed by the boundary conditions. The results from the second
order ABC converge better to the theoretical values than those from the first order.
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Figure 6.7 Solution error versus R, which is the distance between the excitation surface and the
absorbing boundary surface, for the case (m. r) = (1,2).
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Figure 6.8 Amplitude of the magnetic field component H, versus R, which is the distance between

the excitation surface and the absorbing boundary surface, for the case (m. )} = (1,2).
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Figure 6.9 Phase of the magnetic field component H, at one point versus R, which is the distance
between the excitation surface and the absorbing boundary surface, for the case (m. n) = (1,2).

6.2 Scattering from a metallic sphere

~ Consider the boundary value problem of scattering of an incident plane wave by a
mezallic sphere, see Figure 6.12. For an x-polarized and 2-traveling plane wave incident
on a metallic sphere of centre (0,0,0), the magnetic field is given by:

Eo ~jkgrcont®)
._elo“‘(

H =
4 Tlo

where E, is a constant, and 7, is the intrinsic impedance of free space: n, = 376.73
Ohms. The wave potentials for the scattered field are given by:
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E = nk
Al = nok:u cos(¢)zlb,, -T"r H® (kor) PL(cos(8))  (6.6)
r n= s

FP o= =2 sin(0) Y can/ Ml H®\(kor) Pl(cos(8))  (6.7)
ko 5V 2 ne3

Tke constants b, and c. are defired in egn. (6-102), page 294, [Harrington-61). The
magnetic field H is given by eqns. (6.1} - (63). The total field is, of course, the sum of
the incident and scattered fields.

This boundary value problem was solved using finite elements and ABCs. The
results were compared with the analytical ones. The volume modelled with finite
elements was the space between two concentric spheres. The inner spnere is the metallic
sphere, and it is the excitation surface, where both H, and H, are constrained to known
values of the scattered field given by eqns. (6.2), (6.3), (6.6) and (6.7). The outer sphere
is the absorbing boundary surface, where the ABC is imposed. Since H, and H, are
undefined on the z axis, the z axis was not modelled, see Figure 6.4. Due to symmetries,
the modelled volume was also confined by boundary surfaces holding the following
bouridary conditions:

Boundary surface Roundary Condition

r = 03A excitation surface (prescribed H, and H,)
r = R Absorbirg Boundary Condition

e = 3 excitation surface (prescribed H, and H, )
e = 177 excitation surface (prescribed H, and H,)
$ = O magnetic wall

¢ = 9 electric wall

Note that in this case a quarter of the sphere was modelled and not just an eighth

asin (m, r) = (1,1) case. There were twelve and six elements in the © and ¢ directions
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respectively, and one element every 0.03 A inthe r direction, where A is the wavelength.
The size of each curvilinear element was (r.98.¢) = (0.03 A, 14.5°, 15°). The values of
the Hankel and the associated Legendre functions required for the excitation field values
were double checked using the Mathematica-386 software, see [Woliram-88].

Figure 6.10 shows how the error changes as ** absorbing boundary surface is
moved outwards. In the smallest problem (R =0.0¢ .engths) there were 144 elements
and 4360 field nodes, and in the largest problem (R =0.42 wavelengths) there were 1008
clements and 26848 field nodes. Results for first and second order Absorbing Boundary
Conditions are included. The diagram clearly shows the superiority of the second order
ABC.

Figure 6.11 shows how the error changes as the radius D of the metallic sphere is
increased, while the absorbing boundary surface is kept at a constant R=036 A, see
Figure 6.10. This is equivalent to increasing the excitation frequency while keeping the
ABC surface the same number of wavelengths away from the scatterer. It appears that
there is almost no change for the second order results, while first order gives better values
as D increases. For very big values of D the inner sphere would look rather like a plane
scatterer and the first and second order results should give the same accuracy for an

incident plane wave.
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Figure 610 Scattering by a metallic sphere. Solution error versus R, which is the distance between
the excitation surface and the absorbing boundary surface. The radius of the mstallic spherc is Du03
AL

Figure 6.12 shows a y-z cross-section of the metallic sphers scatterer and the
absorbing boundary surface in the presence of the incident plane wave E. , H. The
line AB is along the radial direction at & = 24.75° and ¢ = 90°. The next Figures compare
calculated field values with the analytical ones on geometric points along AB. Accurate
results were obtained (second order ABC) when the absorbing boundary surface was less
than one half a wavelength away from the scatterer.
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Fligure 6.11 Scattering by a metallic sphere. Solution error versus D, for R=036 A.. D is the radius

of the metallic sphere, and R is the distance between the excitation surface ard the absorbing
boundary surface.



absorbing
boundary
surface
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wave

Figure 6.12 A y-z cross-section of the 3D geometry. The gray area is the metallic sphere of radius
D which is completely enclosed by the concentric absorbing boundary surface of radins D+R. The
incident plane wave is x-polarized and z-travelling. D = 03\ and R = 036 A. where A is the
wavelength.

Figure 6.13 shows values of the amplitude of the scattered field H*, normalized to

the incident field amplitude, versus r along AB, see Fig. 6.12. The percentage numbers
are the errors e on the corresponding geometric points. e = | Hggy = Hexaer |+ and they
are expressed as a percentage of | Hi,,.. | - The second order values are almost the same
as the theoretical ones. The percentage error increases as we move away from the
excitation surface. This is because on that surface the field components H, and H, have
prescribed values.

Figures 6.14 and 6.16 show values of the amplitude of the scattered field
components H} and H3. normalized to the incident field amplitude, versus r along
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Figure 613 Scattering by a metallic sphere. Normalized amplitude of the scattered magnetic field
H* versus r along AB, see Fig. 6.12. The percentages are the errors at the corresponding points
as a percentage of the theoretical values.

AB, see Fig. 6.12. Figures 6.15 and 6.17 show values of the phase of the scattered field
components H? and Hs. versus r along AB, see Fig. 6.12. On the ¢ = 90° plare H,
= 0. In all cases the superiority of the second order ABC is clear.

For scattering from an arbitrary metallic scatterer the electric field E formulation

has 10 be used with the following boundary conditions on the surface of the scatterer:
E* = -E.
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Figure 614 Scattering by a metallic sphere. Normalized amplitude of the scattered magnetic ficld
component H; versus r along AB, see Fig. 6.12.
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Figure 616 Scattering by a metallic sphere. Normalized amplitude of the scattered magnetic ficld
component H§ versus - along AB, see Fig. 6.14.
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6.3 Computational considerations

For a 30-element problem of 988 field nodes, the assembly of the global matrix took
7 minutes and 14 seconds and the solver 8 minutes and 40 seconds on an 80386-based
computer, (see beginning of Chapter 5 for computer specifications). All times for the
80386-based computer refer to total time as opposed to CPU time only. The total disc
space required by the solver for scratch files was 0.936 Mbytes. Similarly, for a
240-element problem of 6952 field nodes the assembly of the global matrix took S5
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minutes and 49 seconds and the solver 9 hours and 1 minute and 65 seconds on the same

computer. The disc space required in this case was 36.84 Mbytes. The next table gives

more information regarding the computational cost on the 80386 computer.

80386
Number of non- | Computational cost in | Computational cost in
Field nodes zeros in global assembling the global | solving the simulta-
matrix W matrix W neous equations

Qg8 40062 Tmin 14s 8min 40s

1840 79020 14min 10s 28min 14s

3118 137457 24min 35s 1h 26min 1s
4396 195894 34min 58s 3h 1imin 1s
5674 254331 45min 22s 5h S8min 65
6952 312768 55min 49s 9h 59min 1s
7343 338766 58min 29s 15h 6min 37s

For 2 144-element problem of 4360 field nodes the assembly of the global matrix took 8
seconds and the solver 4 seconds of CPU time on the CRAY Y-MP super-computer.
Similarly, for a 1008-element problem of 26848 field nodes the assembly of the global
matrix took 53 seconds and the solver 152 seconds of CPU time on the same
super-computer. The next table gives more information regarding the computational cost
on the CRAY Y-MP computer. It should be noted here that the vectorized and
parallelized BCS solver was used [BCSLIB-EXT-89), which is specifically written for the
CRAY super-computers. No special instructions were implemented in the rest of the code
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to take advantage of the architecture of vector parallel machines. Should such care had

been taken for the rest of the code, the times for the matrix assembly would have been

considerably smaller.

CRAY Y-MP
Number of non- | Computational cost in | Computational cost in
Field nodes zeros in global assembling the global | solving the simulta-
L=.== matrix W matrix W neous equations

4360 219562 8s s

8108 433600 15s 1ls

11856 587638 235 3s

19352 955714 38 89

23100 1139752 45s 96s

26848 1323790 53s 152

30556 1507828 60s 170s

34343 1691866 68s 2545
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CHAPTER 7

Conclusions

In this treatise a new method has been proposed for the use of finite elements in
three-dimensional open-boundary vector wave problems. It is based on new local differ-
ential boundary conditions, the Absorbing Boundary Conditions (ABCs), which are
applied on a spherical surface that completely encloses the volume of interest. These
boundary conditions preserve the sparsity and the symmerry of the finite element matrices
providing a pure finite element technique as opposed to hybrid solutions, (FE combined
with integral techniques), that alter the sparsity of the matrices. Existing vectorized sparse
solvers take full advantage of such sparse matrices reducing drastically the computational
cost.

General expressions for nth order ABCs have been derived. First and second order

ABCs have been implemented into a symmetric bilinear form suitable for the finite
element code.

Curvilinear covariant-projection elements of mixed order (first and second) have
been used in all the 2nalyzed sroblems. These elements enforce only tangential continuity
on the magnetic field vector between the elements and they are free of spurious
corruptions. Normal continuity is imposed naturzally by the variational formulation. Their
curvilinear nature makes them highly suitable for problems with curved surfaces. In
addition, degenerate curvilirear elements have been successfully tested in this thesis.
They are degenerate because at least one of their faces is shrunk to a line, ie. a face of
zero area. Such elements are very useful in problems where many and highly complicated
dielectric materials have to be modelled. Therz is no necd to usc different types of finite

elements in the same mesh, since curvilinear elements can model any geometry.
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Several tests were tried to exploit the performance of the new method. They can be
categorized into three groups:
a) moving the absorbing boundary spherical surface away from the scatterer
b) increasing the discretization of the finite element mesh
¢) increasing the excitation frequency
The numerical results obtained showed that the second order ABC is superior to that of
the first order. For the realistic problem of scattering of a plane wave by a 3D metallic
sphere, it was found that accurate results of an error smaller than 1% in field values were
obtained, when the absorbing boundary sphere is placed less than half wavelength away
frem the scatterer, compared to at least one or two wavelengths, required by other type
of boundary conditions [D’Angelo-90]. This minimizes the extra free space that has to be
modelled, thus the number of the unknowns is not significantly increased and therefore
neither is the computational cost. For the same geometry, the first order ABC absorbs
less, giving a field solution with values having a 10% error, one order of magnitude higher
than those of the second order. In both cases the error refers to comparisons of the
numerical with the analytical field values on the same geometric points. The difference
in computational cost in assembling the first from the second order ABC is negligible.
Without a doubt, the second order ABC is to be preferred.

In all formulations throughout this dissertation the magnetic field H has been used.
Identical expressions hold for the electric field E. Since no normal continuity is imposed
by the curvilinear covariant-projection elements no special considerations have to be
taken at dielectric interfaces when the electric field formulation is used. Simitarly for the
- magnetic field and magnetic material interfaces. For the same reason, problems with
| skarp metailic edges can be modelled in 2 straight forward manner and without extra
complications [Miniowitz-91], as well as problems where both magnetic and dielectric
materials are present. -
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The work in this dissertation concludes that finite elements and Absorbing
Boundary Conditions in open boundary electromagnetic problems can be as successful as
they have been in closed boundary problems in the last two decades. The present
technique opens a whole new area for potential applications in computer simulation with
finite elements such as microwave junction radiation, microwave heating, and in
particular hyperthermia, a technique used for cancer treatment, where many and highly
inhomogeneous dielectrics (i.e. living tissues) are present. This is because the presence
of dielectrics is easily treated by finite elements.

71 Suggesﬁoﬁs for further work

FURTHER GENERALIZATION: Due to the presence of the surface divergence
term in the formulation, normal coatinuity has to be imposed on the magnetic field
components on the absorbing boundary spherical surface, see Section 42. This, however,
does not amount to simply setting the covariant projections equal to each other, because
the value of the normal field component does not in general equal to the value of the
corresponding covariant projection at that point, see Section 2.3 and [Crowley-88b}. Thus,
for the sake of simplicity for the computer code, by enforcing the edges of the elements
lying on the absorbing boundary spherical surface to be colinear with the lines of constant
© or ¢, makes the imposition of normal continuity a rather trivial task. This however,
is by no means a restriction of the method. A modification of the code could easily allow
the above mentioned edges to have any orientation possible.

HIGHER-ORDER ABSORBING BQUNDARY CONDITIONS: Symmetric
bilinear forms for the finite element code with ABCs of order higher than two have not
been implemented. Such ABCs require higher derivatives and the mixed order finite
elements used in this work could no longer be used; therefore new higher-order mixed
clements would have to be invented. '
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MULTL-SPHERICAL ABSORBING BOUNDARY SURFACE: As 2
disadvantage of the new method one could consider the analysis of problems with long
and thin geometries, see Figure 7.1. In such cases the fact that the absorbing boundary
surface has to be a sphere often leads to the inclusion of useless empty space which also
has to be discretized, and the absorbing boundary sphere is at distances much greater
than a half wavelength.

absorbing 2
boundary
surfaces Ry

scatterer

suggested
approach current
approach

Figure 7.1 A y-z cross section of the 3D geometry of a typical open boundary problem. The approach
followed in this thesis includes one spherical ubsorbing boundary surface of radius R,. (thin line).
The suggested approach could include a mult. -spherical absorbing boundary surface of radii R, and
Rz. (thick linc). Point A lies on the intersection line of the two spherical surfaces of radii R, and
Ra.-
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However, there is no restriction in the formulation to using only one absorbing boundary
sphere. Thus, as an alternative many absorbing spherical surfaces of different radii could
be introduced. Further investigation of this idea is needed. Figure 7.1 shows the current
and the suggested method for a long and thin scatterer. In the current method the scatterer
is enclosed by a sphere of radius R;. In the suggested method the discretized volume
would be enclosed by four different open spherical surfaces, two of radius R, and two
of radius R;. Therefore the discretized region for the suggested method would be much

smaller, resulting in smaller memory requirements and less computational cost.

AUTOMATIC MESH GENERATORS: Development of automatic mesh
generators for spherical outer boundaries would facilitate a lot the method presented
here. After the user specifies the geometry in the volume of interest, an automatic mesh
generator could build the rest of the mesh for the remaining volume setting a spherical

absorbing boundary surface at approximately half wavelength away from the closest
scatterer.

VIRTUAIL REALITY: Three-dimensional pre and post-processing could benefit
greatly from the application of the concept of vinual reality [Rheingold-91]. "Moving” in
a realistic 3D space would give the design engineer the ability to model more easily
complex and highly inhomogeneous structures and would provide a better understanding
of the field solution, resulting in more efficiently designed products. Medical techniques
like hyperthermia are in great need of simulated experiments of electromagnetic energy
deposition, and virtual reality suits perfectly these demands.
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APPENDIX A

An alternative form for the Homogeneous Neumann Boundary Condition

(From Section 2.1.2)

Multiplying both sides of equation (25) by the unit vector %t normal to the
boundary su-face, we get:

1 1
H-fi= VX-XVXH)'n Al
kgur( €, ( )

The expression for the homogeneous Neumann boundary condition is given by:
Exn=0

which can also bes written as:
el(vm)xﬁ-o (A.2)

From vector anmalysis it is true that:t Hxt=0 = (VxH)-fi=0. Using this,

equation A2 gives:
Vxelr(VxH)-ﬁ-O (A.3)
and because of (A.1) we get:
H-fi=0
QED
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APPENDIX B

Local Geometric and Field node resolution

(From Section 2.4)

For better visualization and clarity, and without any loss of generality, let the
current finite element be the cube shown in Figure B.1. The cube is analyzed in three
planes: front, mid and back. In the following two sections the geometric as well as the

field node resolution are shown on each plane.

back plane

mid
plane

front plane

Figure B1 A finitc clement and its three planes of analysis in the Jocal curvilinear coordinate system.
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B.1 Local geometric node numbering

3 2 1 21 20 }9
64 3 44 24, % 22
front plane back plane
o— —- ® * —e —o
9 8 7 27 26 22
12 11 10
a, 15¢ 1.4 ?13

mid plane
a, Y

® L )
18 17 16
Figure B2 The 27 geometric nodes of the finite element. For each geometric node there is a cor-

responding second order trial function with unit value on that node and zero on all the other nodes.

The shape of the element in 3-D space is defined by the 27 geometric nodes interpolated by the trial
functions.
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B.2 Local field node numbering

6 7 4 2 1
8 5 3
13 11 10 }
12 M M g
21 18 16

front {plane

18 20 17 15 14

32 29

Figure B3 The 54 field nodes and the correspondizy 54 vector trial functions. There are 3 sets of
18 nodes, one set for cach of the three coordinate directions. In cach set, the trial functions are mixed
order, first and second. Each geometric node may correspond to none, one, two or three ficld nodes.
Trial functions inthe a® direction are first order in that direction and second order in the other two.
For compatibility in imposing tangential field continuity across the elements, it was chosen that all
vector trial functions point inwards.
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APPENDIX C

Supplementary Vector Identities in Spherical Coordinates

H = H,a, + H,a4 + H,&, (C.1a)
= H, -+ H, - H, {C.1b)
- H, H, (C.1c)
&4.xH = &,xH, {(C.2)
a,x(4,xH) = -H, = H, - H (C.3)
VxH = VxH, + VXH,
- UxH, - &,xVH, (C.4)
& XVXH - V,H, = &a,xVxH, {(C.5)
4,XVxH, = - ;H, (C.6)
a4, XxXVxH, = V,H, (C.7)
a, . ) e
4[4 -(VXH = e —(H,.sin(8 - —H c.8
r[ r ( )] rSln(e)[ae( ] 1 ( )) a¢ 0:| ( )
H, 0
(VxH), = -a,xVH, + a,xT - a,x;n, (C.9)
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H
8,X7x= = —H, =~ -8 X7XH (C.10)

&, XIx(&,xVxH) %(Q,XVXH) (C.11a)

[
!
nl
‘m-
x
<
X
I
|

1 e
= -=-5_XUX - X—(V¥x .
ré, H a, a’_( H) (C.11b)

3H,
4,XVXV H, = —v,(—-) (C.12)
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APPENDIX D

D.1 The L,(V.,H. ) operator

(From Section 3.3)

H..(O.
Ly(V,H,) = LN(V,{Q—;(R_I—‘:))})=

using(3.6):

= a,xva‘{gH———-—“'(ﬁ;m} - (jko-o-y.)vl{gH——-"(ne_;'b)}

r r

using (C.6):

1 [ Hu(.6) 5 [ Hu(8.0)
"‘:Vr{g = } i 37V={9—,-T}

H,. (0.
- (retolotes)
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1 : .
. Considering the = term included in the V, operator:

3 -2 Hnr(e-c)) . N=1 Hnr(e-¢)
'(Iko"'nr )vt{g_—rx_ol_-.—} - (J’ko" - )V,{g——-;,,—-}

r r

or

LN(lear) - (R*I-N)v:{gw}
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D2 The B,(H) operstor

(From Section 3.4.2)

The operator that anmihilates the first two terms of the vector radiation function (3.3) is
given by:

Bo(H) = (1,)%(H) =+ sL(Y.H,) (D.2.1)
(L)*(H) = &,XVx(8,XVXH,) - (§+2fko)a,xvm,
—axva‘ - (1+'k )ZH D.2.2
. - ~+ jko | H, (D.2.2)
Using (C.10) on H, instead cfon H and expanding we get:

(L,)%(H,) = & XVX(&XUXH) - (§+2fko)a,xvxu.

2k, 2)
Ch0_ k2 |H
(1 - kg |H,

Using {C.11) on H, instead of on H we get:

(L:)*(H) = —(§+12ko)a,xvxn, - &,x32(YXH)

2k
- (j-r—‘l—kg)n, (D.2.3)
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Applying the operator &, X :—r from the left of the vector identity (C4) and using (C3)

we get:
éxa VxH éra(VxH - aVH (D.2.4a)
X = (7 XH) ¥ = b =9 H, 2.4a
or
a x2 (TxH) ax2(UxH) ~ 2vn (D.2.4
"or ¢ "oer ¢ or VT 2-4)

Applying the &, X operator from the left of the curl-curl equation (2.5), and using the
vector identities (C.5) and (C.6) we get (see also C8):

A, XVXxVxH = 5.xkZH

ar

_(IXH),

o
* V03, (VxH)] - 5=(VxH), = & xkiH  (D.2.5)

Applying the vector identity (C.6) on the vector V,H, we get:

-V H,
4,XVUXV,H, =

2
- S (TH,) (D2.6)

Equation (D2.4) through (D.2.5) and (D.2.6) gives:
ﬁ,x%(VxH,) - 8,XVXV,H, + &,xV,J[&,-(VXH)]

VxH V. H,
—a,x( - e :_ + k3H, (D.2.7)

Using (C.12), the above can be rewritten as:
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2H,
arxi(va:) = ‘V'(“"‘) * A, XVXVH, - &,xV,[a,(VXxH)]
er \ ér
(VXH),  UH, X
-8, X — + —— = kiH, (D.2.8)
From V-H=0 we get that:
oH, 2
> =H, - V.- H,
So,
2
4,XVXVH, = ZVH, + V(7 H) (D.2.9)

and by substituting the above expression back to (D.2.8) we get:

2
5,X;(VXHK) - %ngr + V(V,-H) =+ &,xV,[4&,-(VxH)]

1 VH, o,
28, X(VXH), + —= - kiH,

and using (C.5) we have:

3
&, x—(VxH) = ?v,ﬁ, + V{V,-H) + &a,x7V[4&,-(VXxH)]

'%*‘thXH. + kgH, (D.2.9)
Then the operator (L,)?(H,) may be written as:

1 ) 2
(I.,)z(H,) = -2(;+1ko)a,xv>cl-l, - FV'H' - V,(V,-H,)

- 4,XV,[4, (VXxH)] + 2(;'%-&%)!1, (D.2.10)
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Using (3.8), the operator L,(V H,)} gives:

L,(V,H) = a,xvxv,H, - (jko*g)v:Hr

2
(using (D.2.9): = ?V,H, - V(V,-H) - (jko*F)vzH,

Then the B,(H) operator is given by:
By(H) = (L,)*(H) + sLy(VH,)
| . 2
- -2(;+jko)a,xva, - ZVH,
=V (V,-H) - & xV,[a, - (VXH)]

k
+2(j—r-9-k§)H, + s?V,H,

+sV(V.-H) - S(jko"' %)err

using (C.5):
1 . |
+j2koV,H, - V(V,-H) - a,xV,[&,-(VXH)]
.ko 2
~2{ j2-kE H, + ST(T,HY
- jsk,V H,
= —2(%+jk°)érXVXH + (s-1)V,(V,-H)
ke
-arxv:[ar'(va)] + 2 j"r__ko H,
+(2-5)jkoV H,
and finaly using (C.4):
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D SEPA Loaln)
Ba(H) = i@ vxH ~ gt

+Ux4,[&,-(IXH)] = (s-1)V,(V-H,)

- (2-s)a(r)V.H,

where a(r)=jko and B(r)=1/(2jko+2/r).
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APPENDIX E

E.1 The functional for the second order ABC

{From Section 4.1)

For s =2 the surface term of the functiona! is:
f H-P,(H)dS =
s

= [(atrH H, + B(rIH-Vxa,[4, (TXH)]
s
« B(r)H-V(V-H)}dS (E.1.1)
Using the vector identity V- (A XB)=B- VXA - A-VxB, and for a spherical surface

S of constant radius r =R, the second part of the surface integral in (E.1.1) may be

rewritten as:
fH-an,[é,-(VXH)]dS - —fv-Hxa,[a,-(VxH)]ds
5 s
+La,[a,-(VxH)]-vads (E.1.2)

The first integral on the right side of (E.1.2) vanishes over a closed surface, see #18,#19
p. 501, and #42 p.503 in [Van Bladel-64). The second integral on the right side of (E.1.2)

can be rewritten as:
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f[a,-(VxH)]zds (E.1.3)
5

Similarly. using the vector identity V- (9 A)=A - Vy+wV- A and for a spherical

surface S of constant radius r = R, the third part of the surface integral in (E.1.1) may

be rewritten as:

fH-V:(V,-H,)dS - fH‘-V,(V,-H,)dS
S s

= fV,'(H:V;'H,)dS - f(V,-H.)(v,-H,)dS(E.M)
s 35

The first integral on the right side of (E.1.4) vanishes over a closed surface, see #18,#19
p-501, and #42 p.503 in [Van Bladel-64]. Also from the same reference: V-H, = V,-H,.

Thus, from (E.1.1), (E.1.2), (E.1.3) and (E.1.4) we have that;

. = . 2 - . 2
Jm-pnas = [1a,-vxwras - [ (v, -no%as

AFPPENDIX E 54



E.2 The Absorbing Boundary Condition as a natural condition to the variation formu-

lation
(From Section 4.1)

The stationary point of the functional F in (4.4), is given by:
5(F(H)) = 0 =
aU{(VxH)z-kﬁu,Hz}dV + fSP,,(H)-HdS) = 0 (E.2.1)
v

where n = 1or 2 and it denotes the first or second order Absorbing Boundary Condition.

The volume part of (E.2.1) gives:
ZL{VX(C)H)-VXH - k3(8H)-H}dV (E.2.2)
The surface part of (E.2.1) gives:
fS{H'ﬁ(P(H)) + P,(H)-(6H)}dS
Because of the linearity of the operator P,. the above may be written as:
JRERACHIEPRONTIET

and because the operator P, is symmetric, the above may be written as:
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L{(5H)'Pn(H) + Pn,(H)-(bH)}dS
or
ZI P.(R):- (8H)dS (E.2.3)
s

Using the vector identity A-VXTXB = (VXA)-(VXB) - V-(AXVxB) and

from (E.2.2) and (E.2.3), we have that (E.2.1) can be rewritten as:

L{V-(GH)XVXH + (8H)-VXVXH - k2(8H)- H)}dV

+ fscan)-P,,(H)ds = 0
Applying the divergence theorem above we get:
L(bH)-(VxVxH -~ kiH)av
+fs(5H)-(-a,x\7xH + P(H))dS = 0O (E.2.4)

Since (E.2.4) holds for any &H, it is true that VX VxH~-k3H =0 in volume V. and

&4, xVxH = P,(H) on the spherical surface S.
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APPENDIX F

Description of the Input Data Structure

(From Section 5.1)

This Section describes the input data structure of a two-element problem. The
program reads the data from the file “input.dat”, and such 'a file is illustrated in the
following Section. The first two columns have been added extra to facilitate the
explanation using markers (#1, #2, etc).

The marker ## denotes a single empty line where comments can be added. The
line marked with #1, is a single line and contains two numbers: the first is the total
number of elements and the second is the total number of geometric nodes (i.e. points)

in the problem, (parameters nelmnt and gnodes in the program respectively).

Every element has 27 geometric nodes. When 2 elements have a2 common face they
share 9 geometric nodes. So, for a two-element problem the total number of geometric
nodes is 27+27-9=45. There is no restriction on the number of lines required for the
geometric nodes. So, line #2 says that the first node of element 1 (local node numbering,
see Appendix B.1) is geometric node 1, the second node is geometric node 6, etc. The
coordinates of the geometric nodes are given later. At the end of the geometric nodes,
there are 6 numbers (marker #3) which are intentionally in italics. Every number gives
information on the boundary conditions for each of the 6 faces of the finite element. A
positive integer means that the face is an excitation face. Every excitation face is char-
acterized by a different positive integer. -3 means that the Absorbing Boundary Condition
will be applied on that face, -2 means that the face is a magnetic wall and -1 means that
the face is an electric wall. Thus, the first face of the first element is labeled as -2, the
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second as -1 etc. For the local face numbering see subroutines facel-6. Markers #4 and

#5 denote the beginning and the end for the geometrical information for the second
element.

Marker #6 denotes the beginning of the cartesian coordinate information. The first
column is the geometric node, and the next 3 columns are the x, y and z cartesian
coordinates for that node.

The line marked with #8, gives the x, y and z coordinates of the centre of the ABC
surface. Line marked with #9 gives the relative dielectric permittivity and relative
magnetic permeability of the medium inside the first element, (parameters smarr! and
tmatrl in the program respectively). The line right below gives the same information for
the second element. These numbers may be complex. Line marked with #10 gives the
normalized excitation frequency k.-

Marker #11 marks the first line containing information on the problem’s excitation.
Each line has S columns. The first column gives the positive integer that characterizes
each excitation face, discussed earlier. So, from line mark with #3, we see that element
1 has 2 excitation faces, and so does element 2. Back to line marked with #11, the second
column gives the geometric node in local numbering (1-27). The next three columns have

the x, y and z components of the excitation field. These numbers may be complex.
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F.1 The file "input.dat” for a two-element problem

#¥ oelmat, gnodes
#1 2 45
## read the geometric nodes of the clements
*2 1 6 11 2 7 12 3 8 13
6 21 2 17 2 27 18 23 28
31 36 41 32 37 42 33 38 43
#*3 2 -1 1 0 0
#4 3 8 4 9 14 5 10 15
18 23 ¥ 24 22 20 25 30
38 34 39 43 35 40 45
5 0 4 -3

# - 2 coordinates

&
]

#6

BRUGLAGRREsY®RNcnswE=g LY

S52335959E-02
6.5319950E-02
7.8503937E-02
S.1587923E-02
1.0467192E-01
72537434E-01
9.0671796E-01
1.0880616E +00
1.2694051E + 00
14507487E+00
1.0000000E +00
1.2500000E + 00
1.5000000E + 00
1.7500000E +00
2.0000000E +00
3.7007108E-02
4.6258885E-02
5.5510666E-02
6.4762443E-02
7.4014217E-02
5.1291710E-01
6.4114642E-01
7.6937568E-01
8.9760494E-01
1.0258342E+00
70710677E-01
8.8388348E01

y
0.0000000E +00
0.0000000E + 00
0.0000000E +00
0.0000000E + 00
0.0000000E+00
0.0000000E+00
0.0000000E+00

0.0000000E + 00
0.0000000E + 00
0.0000000E +00
0.0000000E +00
0.0000000E +00
0.0000000E +00
0.0000000E +00
0.0000000E + 00
3.7007112E-02
4.6258889E-02
5.5510666E-02
6.4762443E-02
7.4014224E-02
5.1291716E-01
6.4114642E-01
7.6937574E-01
8.9760500E-01

9.9862951E-01
12482870E+0G
1.4979433E+00
1.7376016E+00
1.9972590E+00
6.8835455E-01
8.6034323E-01
10325319E+00
1.2046205E+00
13767091E+00
7T5497901E-08
9.4372375E-08
1.1324685E-07
13212133E-07
1.5059580E-07
9.9862951E-01
12482870E+00
1.4979343E+00
1.7476016E+00
1.9972590E +00
6.8835455E-01
8.6044323E-01
1.0325319E+00
12046205E+ 00

1O0258343E+00 13767091E+00

7.0710677E-01
8.8388348E-01

L.0606601E +00
1.2374369E +00
14142135E+00
-22876774E-09
-2.8595968E-09
-3.4315162E-09

LOG06602E+00
1.2374369E+00
1.4142135E+00

6.5419950E-02
7B503937E-02

UBEEBREYRNRURRES
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7.5497901E-08

9.4372375E-08
L1324685E-07
1301213307
1.5099580E-07

52335959E-02  9.9862951E-01

12482870E+00
L4AS79444E+00



884Ul

41
42
43
44
45

X-y-Z

#7
##
#8
##
#9 1

2
##
#10
##
#11

S LB ALWVWUWWWWWLWRNNRERNRNENRNRRM KRR RS R
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~4.00343H4E-09
~4.5753548E-09
-3.1707120E-08
-3.9633903E-08
-4.7560683E-C8
-5.5487462E-08
6.3414241E-08
-43711388E-08
-3.4639237E-08
~6.5567036E-08
-7.6434935E-08
~B742277TE-08

9.1587923E-02
1.0467192E-0)
T2537434E-01
9.0671796E-01
1.0880616E+00
1.2694051E+00
14507487TE+00
1.0000000E + 00
1.2500000E+ 00
1.5000000E -+ 00
1.7500000E + 00
2.0000000E + 00

1.7476016E+00
1.9972590E + 00
6.8855455E-01
8.6044323E-01
1.0325319E+00
1.2046205E +00
13767091E+00
75497901E-08
9.4372375E-08
1.1324685E-07
1.3212133E-07
1.5099580E-07

coordinates of the ABC spherical surface

0.0, 00,00
element no, material properties (smatrl tmatrl)

(1.00,0.00) (1.00,0.00)
(1.00,0.00) (1.00,0.00)

Normalized frequency ko
1.88495E+00
global constrained face number, local geometric node number and the x-y-z field constrains

3 (0.00000E+00, 0.00000E +00) ( 2.00241E-02, 1.34107E-01) ( 0.00000E + 00, 0.00000E +00)

6  ( 0.00000E +00, 0.00000E +00) ( 4.98921E-02, 1.00411E-01) { 0.00000E + 00, 0.00000E +00)

9 (0.00000E +00, 0.00000E +00) ( 7.10480E-02, 6.38286E~02) ( 0.00000E +00, 0.00000E +00)

12 (-LO1182E-01,-6.70536E-02) (-5.11583E-02, 6.70536E-02) ( 9.72552E~02, 1.45216E-02)
(-621214E-02,-4.81961E-03) ( 8.92659E-03, 5.90090E-02) ( 4.90322E-02,-3.69999E-02)

( 8.84565E-09, 5.86201E-09) (-1.82341E-01, L.53806E-09) { 1.37540E-01, 2.05366E-02)

( 6.71801E-09, 2.55133E-09) (~1.03798E-01, 4.20430E-02) ( 1.03788E-01,-2.50282E-02)

( 5.43082E-09, 4.21344E-10) (-5.31948E-02, 5.41894E-02) ( 6.93420E-02,-5.23258E-02)

( 0.00000E +00, 0.00000E +00) (-1.17327E-01, 1.13599E-01) ( 0.00000E +00, 0.00000E +00)

( 0.00000E +00, 0.00000E +00) {-5.37533E-02, 1.25404E-01) ( 0.00000E +00, 0.00000E +00)

( 0.00000E +00, 0.00000E +00) ( 1.80095E-03, 1.16083E-01) ( 0.00000E +00, 0.00000E +00)

(-277150E-04,-1.83657E-04) (-1.17604E-01, 1.13415E-01) (-2.38873E-03,-4.19612E-03)

(-L70159E-04,-1.32013E-05) ( 1.63079E-03, 1.16070E-01) (-2.02541E-03,-2.29266E-03)

( 2.42293E-11, L60S61E-11) (-1.17881E-01, 1.13231E-01) (-337817E-03,-5.93421E-03)

( 1.84012E-11, 6.98831E-12) (-5.41742E-02, 1.25245E-01) (-2.60068E-03,-4.36041E-03)

( 148756E-11, 1.15371E-12) ( 1.46063E-03, 1.16056E-01) (-2.86437E-03,-3.24231E-03)

( 0.00000E +00, 0.00000E+00) ( 1.80095E-03, 1.16083E-01)  0.00000E +00, 0.00000E +00)

( 0.00000E + 00, 0.00000E +00) ( 437281E~02, 9.06636E-02) ( 0.00000E +00, 0.00000E +00)

( 0.00000E +00, 0.00000E +00) ( 6.9015SE-02, 5.56939E-02)  0.00000E +00, 0.00000E +00)

(-1.70159E-04,-1.32013E-05) ( 1.63079E~03, 1.16070E-01) (-2.02541E-03,-2.29266E-03)

(-950702E-05, 6.73173E-05) ( 6.89205E-02, 5.57613E-02) (-2.41841E-03 -5 30653E-04)

( 1.48756E-11, 1L15371E-12) ( 1.46063E-03, 1.16056E-01) (-2.86437E-03,-3.24231E-03)

( L16897E-11,-3.02804E-12) ( 4.34607E-02, 9.07329E-02) (-3.26669E-03,-2.04988E-03)

( 8.31078E-12,-5.88529E-12) ( 6.88254E-02, 5.58286E-02) (-3.42015E-03,-7.50456E-04)

3 (0.00000E+00, 0.00000E+00) ( 7.10480E-02, 6.38286E-02) ( 0.00000E +00, 0.00000E +00)

6  ( 0.00000E+00, 0.00000E +00) ( 7.87649E-02, 2.63334E-02) ( 0.00000E+00, 0.00000E +00)

9 ( 0.00000E+00, 0.00000E +00) { 7.29818E-02,-7.64272E-03) { 0.00000E +00, 0.00000E + 00)

12 (-621214E-02,4.81961E-03) ( 8.92659E-03, 5.90090E-02) ( 4.90322E-02,-3.69999E-02)

18 (-347083E-02, 2.45759E-02) ( 3.82735E-02, 1.69332E-02) ( 2.80843E-03,4.48472E-02)

DRBEsN*"RREas ™ YREE
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4 21 (5.43082E-09, 4.2134E-10) (-531948E-02, 5.41894E-02) ( 6.93420E-02,-5.23258E-02)
4 24 (426783E-09,-1.10526E-09) (-1.88715E-02, 5.1618TE-02) ( 3.50849E-02,-6.44185E-02)
4 27 (3.03330E-09,-2.13849E-09) ( 3.56516E-03, 4.15090E-02) ( 3.97172E-03,-6.34236E-02)

F.2 The file "mesphe.dat” for the mesh generator

(From Section 6.1)

The following file is read by the 3D mesh generator and it is self~explanatory - see also
Fig.6.1 and discussion above. All elements are assumed to have the same material

properties. The total number of elements in the produced mesh is 12x 12 x 6 = 864.

Number of elements in ., €. and & directions

12126

D, D+R (in meters)

1022

Omin+ Omax (in degrees)

3177

Smin+ Omax (0 degrees)

0%

Boundary constrain labels for the two spherical surfaces defined by:
D and by D+R (integers)

1.3

Boundary constrain labels for the two surfaces defined by:
O 2nd by 0,.. {integers)

21

Boundary constrain labels for the two surfaces defined by:
$me a0d by ¢, (integers)

2-1

material properties (parameters smatrl and tmatrl)
(10,0.0) (10,00)

Normalized frequency &,

1.88495
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