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Abstract 

The classical theory of poroelasticity developed by Biot (1941) deals with the time­

dependent response of the fluid-saturated porous media derived from the coupling of the 

mechanical deformations and the deformations of pore fluid. The classical theory of 

poroelasticity has been successfully applied to a range of problems of interest to 

geomechanics and biomechanics. The brittle poroelastic media can experience alterations 

in poroelasticity properties resulting from the generation and/or growth of micro-defects. 

The effects can be modelled by appeal to continuum damage mechanics. Damage­

induced alterations can influence the consolidation behaviour of a damage-susceptible 

poroelastic medium. Continuum damage mechanics concepts can be incorporated within 

the theory of poroelasticity to model the damage-induced alterations in poroelasticity 

properties. This thesis deals with the development of a computational procedure for 

modelling the damage-induced alterations in both elasticity and hydraulic conductivity 

characteristics of a brittle poroelastic medium. Furtherrnore, the evolution of damage can 

also exhibit a stress state-dependency. The computational procedure has also been 

extended to include the stress state-dependent evolution of damage in brittle poroelastic 

media. The alterations in the elastic stiffness and the hydraulic conductivity are 

characterized through a damage evolution function with relationship to distortional strain 

invariant. The stress state-dependency of the damage process is governed by the state of 

the volumetrie strains. It is assumed that an overall decrease in the volumetrie strains 

does not resuIt in damage evolution. 

The computational procedure that accounts for damage-induced evolution of stiffness and 

hydraulic properties and stress state dependency in damage evolution are used to model 

practical problems of interest in geomechanics, applied mechanics and civil engineering. 

The fluid pressure development within a spheroidal fluid inclusion surrounded by a 

damage-susceptible poroelastic medium has been examined through the computational 

procedure. The computational procedure has also been used to study time-dependent 

translational displacements of a rock socket embedded in a damage susceptible soft rock 
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and the procedure has been also applied to examme the time-dependent in-plane 

displacements of a flat elliptical rigid anchorage. The computational results indicate that 

the consolidation behaviour of the brittle poroelastic media can be significantly 

influenced through consideration of the damage-induced alterations in both the elastic 

stiffness and the hydraulic conductivity, the latter property exerting a greater influence. 

The dependency of the evolution of damage to the state of stresses can also influence the 

consolidation of a poroelastic medium. 
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Résumé 

La théorie classique de la poroélasticité développée par Biot (1941) traite la réponse 

transitoire des matériaux poreux saturés à travers le couplage des déformations 

mécaniques et des déformations du fluide poreux. La théorie classique de la poroélasticité 

a été utilisée avec succès dans la résolution de plusieurs problèmes de géomécanique et 

de biomécanique. Le milieu poroélastique fragile peut subir des altérations dans les 

propriétés poroélastiques qui résultent de la génération et/ou croissance des micro­

défauts. Ces altérations induites par endommagement peuvent influencer a consolidation 

des matériaux poroélastiques il ne peut pas être modélisé par la théorie classique de 

poroélasticité. 

Le concept de la mécanique des milieux continus endommagés introduit par Kachanov 

(1985) peut être incorporée dans la théorie de la poroélasticité pour modéliser les 

altérations induites par endommagement aux propriétés poroélastiques. Le but de cette 

étude est de développer une méthode itérative par éléments finis considérant les 

altérations induites par endommagement aux caractéristiques élastiques et hydrauliques 

d'un milieu poroélastique fragile. De surcroît, l'évolution de l'endommagement 

peut devenir dépendante de l'état des contraintes; la procédure de calcul a également été 

élargie pour inclure cette dépendance dans un milieu poroélastique fragile. Les altérations 

de la rigidité élastique sont caractérisées à travers une fonction d'évolution 

d'endommagement en relation avec l'invariant de la déformation de distorsion. Dans un 

contexte géomécanique, l'évolution de l'endommagement peut mener à une 

augmentation de la conductivité hydraulique dans les geomatériaux. Il y a peu 

d'observations expérimentales sur l'effet de l'endommagement sur la conductivité 

hydraulique des géomatériaux et son influence sur la consolidation des geomatériaux. L~s 

altérations à la conductivité hydraulique sont caractérisées par une fonction 

d'endommagement basée sur les observations expérimentales disponibles. La dependance 

du procédé d'endommagement sur l'état de contraintes est régie par l'état des 

déformations volumétriques. On considère que la compaction due à l'état des 
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déformations mène à une insignifiante évolution d'endommagement dans les matériaux 

poroélastiques susceptibles à l'endommagement. La méthode de calcul est utilisée pour 

résoudre des problèmes en géomécanique, mécanique appliquée ainsi qu'en génie civil. 

Le développement de la pression du fluide dans une inclusion fluide sphérique entourée 

d'un milieu poroélastique à dommage-susceptible a été examiné par cette méthode de 

calcul. La méthode de calcul a également été utilisée pour étudier le déplacement lateral 

transitoire d'une inclusion rocheux rigide dans une matrice rocheuse elastique. Elle a 

également été appliquée pour examiner le déplacement d'un ancrage elliptique plat 

rigide. 

Les résultats numériques indiquent que la consolidation d'une milieu poroélastique 

fragile peut être significativement influencée par les altérations induites par endommage 

à la conductivité hydraulique. La dépendance de l'évolution de l'endommagement à l'état 

de contraintes peut également influencer la consolidation d'un milieu poroélastique. 
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CHAPTERI 

INTRODUCTION AND LITERATURE REVIEW 

1.1. General 

In conventional treatments of the mechanics of fluid saturated porous media it is 

implicitly assumed that the porous fabric has an unchanging form. In certain situations, 

the stresses sustained by the porous fabric can lead to the alterations in its mechanical and 

fluid flow characteristics. The scope of this thesis relates to the study of the mechanics of 

fluid saturated media where micro-mechanical damage can lead to the alterations of the 

mechanical and fluid transport properties. In geomaterials that are characterized as brittle 

in their mechanical response, the micro-mechanical alterations of the porous fabric can be 

visualized as the development of micro-cracks or micro-voids, which can be modelled 

using the theory of continuum damage mechanics. 

Fluid saturated porous materials, including soils, rocks and biomaterials are multiphase 

materials consisting of a deformable fabric, which is saturated with either incompressible 

or compressible pore fluids. The porous fabric can be visualized either as an assemblage 

of individual particles with inter-granular bonded contact or a porous medium with an 

interconnected network of pores. Examples of the former can include cemented sands and 

examples of the latter can include low porosity rocks. The mechanical behaviour of a 

multiphase porous material can be significantly different from that of a single-phase 

material (either solid or liquid) due to the interaction between the porous fabric and the 

pore fluid. 



1.2. Theory of Poroelasticity 

The theory of poroelasticity, which describes the mechanics of fluid-saturated porous 

elastic media, has its origins dating back to the classical work of Terzaghi (1923). The 

contributions of other researchers including Fillunger (1913) and Rendulic (1936) are 

now gaining acceptance and recognition. A recent review of developments in the theory 

of poroelasticity is given by de Boer (2000). The theory of soil consolidation proposed by 

Terzaghi (1923) assumes that when a saturated geomaterial is subjected to externalloads, 

both the porous fabric, or the soil skeleton, and the pore fluid participate in carrying the 

applied loads. Terzaghi (1923) also postulated a theory of soil consolidation, which 

accounts for the time-dependent partitioning of the stresses in the pore fluid and· in the 

soil skeleton. The time-dependent variation of the pore pressure during a consolidation 

process follows a diffusive pattern. According to the theory of consolidation, the 

externally applied loads are initially carried by the pore fluid and if the pore fluid is 

incompressible, the soil as a whole will not experience any initial volumetrie 

deformations. With time, and depending upon the nature of the drainage conditions, the 

pore pressures will be transferred to the soil skeleton, which results in consolidation 

settlements. The consolidation process of saturated geomaterials is characterized by the 

time-dependent coupling between the deformation of the porous skeleton and the flow of 

pore fluid through the voids within the porous skeleton. 

The original development of Terzaghi (1923) was primarily concerned with the one­

dimensional behaviour of saturated soils. Terzaghi (1923) assumed that the soil skeleton 

is isotropie and elastic and that the pore fluid is incompressible. The individual soil 

particles themselves were regarded as non-deformable. The fluid flow through the porous 

skeleton was governed by Darcy's law (1856). Biot (1941, 1955, 1956) extended the 

theory of Terzaghi to include the three-dimensional effects, compressibility of both the 

pore fluid and the soil particles and the anisotropie behavior of the soil skeleton. The 

contributions made by Terzaghi (1923) and Biot (1941, 1955 and 1956) established the 

basis for the classical theory of poroelasticity for a fluid saturated medium. The classical 

theory of poroelasticity is now regarded as a major development in applied continuum 
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mechanics and pro vides a framework for the examination of a variety of engineering 

problems dealing with the mechanics of fluid-saturated porous e1astic media. 

1.3. Applications of Poroelasticity 

The classical theory of poroelasticity has been successfully applied to the study of time­

dependent transient phenomena encountered in a wide range of natural and synthetic 

materials, including geomaterials and biomaterials (Schiffman, 1984; Whitaker, 1986; de 

Wiest, 1969; Detournay and Cheng, 1993; Coussy, 1995; Selvadurai, 1996,2001; Cheng 

et al., 1998; de Boer, 1999,2000; Wang, 2000). The classical theory of poroelasticity has 

been extensively applied to the analytical study of a large class of problems of practical 

interest to geotechnical engineering. The earliest of such applications is due to Mandel 

(1953), who examined the problem of the consolidation of a cubical element of saturated 

soil and made the classic observation concerning the time-dependent increase in the pore 

water pressure prior to its decay. This observation was confirmed by Cryer (1963) and 

laid the basis for the pore pressure response, which is now referred to as the Mandel­

Cryer effect. de Josselin de Jong (1953) examined the time-dependent consolidation of 

the axial loading of a spherical cavity, located within an extended poroelastic medium. 

Noteworthy contributions in the study of semi-infinite domains of poroelastic media are 

due to McNamee and Gibson (1960 a,b). They examined ,the problems of the surface 

loading of a poroe1astic half-space for axisymmetric and plane strain deformations with 

either permeable or impermeable surfaces. Soderberg (1962) examined the time­

dependent behaviour of a rigid pile embedded in a poroelastic medium and subjected to 

an axial load through an approximate analyticai method.· Jana (1963) studied the time­

dependent radial deformations around a cylindricai cavity Iocated in a poroelastic region. 

Jana (1963) determined the analytical solutions for radial deformations obtained during 

the early stages of the consolidation process. Cryer (1963) aiso cqmpared the three­

dimensional theory of poroelasticity developed by Biot (1941) with the one-dimensional 

theory proposed by Terzaghi(1923) and applied both theories to the problem of 

consolidation of a poroelastic sphere. Cryer (1963) illustrated that Terzaghi's theory 

cannot account for the increase in pore pressure prior to its decay, which has also been 
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determined by Mandel (1953) for a poroelastic region with a cubic shape. Gibson et al. 

(1963) and Verruijt (1965) have confirmed the existence of the Mandel-Cryer effect 

through the experimental observations. de Josselin de Jong and Verruijt (1965) 

investigated the primary and secondary consolidation of a spherical clay sample, 

subjected to hydrostatic pressure at outer surface, using a double-cell apparatus 

containing the sample. The experimental results were compared with the analytical 

results, given by Cryer (1963). de Josselin de Jong and Verruijt (1965) also observed a 

difference between the experimental observations and analytical predictions and this was 

attributed to secondary consolidation resulting from creep of the porous skeleton. 

Schiffman and Fungaroli (1965) examined the problem of consolidation of a poroelastic 

half-space subjected to tangential loading, for half-spaces with free draining and 

impervious surfaces. Poulos and Davis (1968) examined the time-dependent behaviour of 

a rigid pile embedded in a poroelastic medium and subjected to an axial load. Poulos and 

Davis (1968) determined an approximate analytical solution and presented the results for 

a variety oflength to diameter ratios of the rigid pile. Gibson et al. (1970) mathematically 

investigated the time-dependent settlement of both a plane strain uniform loading 

(infinite flexible strip footing) and an axisymmetric uniform loading (circular footing) 

located on a finite poroelastic layer with a smooth impervious base. The surface to which 

loads were applied was assumed to be free draining and the transient settlement was 

obtained for various ratios of the size of the load to the depth of finite poroelastic layer. 

Shanker et al. (1973) investigated analytically the plane strain consolidation of a 

poroelastic half-space, subjected to surface tangentialloadings, for either free draining or 

impervious surfaces. Agbezuge and Deresiewicz (1975) investigated the problem of rigid 

indentation of a poroelastic half-space for the cases of either free draining or impervious 

indentation surface. Analytical solutions to the problem of the rigid indentation of a 

poroelastic half-space were proposed by Chiarella and Booker (1975) and Gaszynski and 

Szefer (1978). Deresiewicz (1977) also investigated the influence of alterations in 

Poisson's ratio of the porous fabric on the rigid indentation of a poroelastic half-space. 

Deresiewicz (1977) showed that a larger Poisson's ratio (within acceptable bounds) 

results in a faster rate of consolidation. Updated analytical studies of the rigid indentation 

of a poroelastic half-space and a poroelastic infinite space are given by Selvadurai and 
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Yue (1994) and Yue and Selvadurai (1995) respectively. Booker and Small (1975) 

investigated the stability of the solutions for the classical theory of poroelasticity 

developed by Biot (1941). Rice and Cleary (1976) obtained Navier-type equations for the 

consolidation process in terms of displacement components. Rice et al. (1978) studied the 

deformation field around a spherical cavity filled with a highly permeable soft material, 

surrounded by a poroelastic medium that was subjected to shear. The soft material can be 

treated as a weakened rock located at a fault zone. Rice et al. (1978) developed an 

analytical solution for the time-dependent displacement field around the spherical cavity. 

Randolph and Wroth (1979) developed a closed-form analytical solution for the 

consolidation around a driven pile in soft clay. The driving of the pile results in 

generation of excess pore pressure, which dissipates with time and as a result, the soft 

clay experiences consolidation. Randolph and Wroth (1979) assumed that the dimensions 

of the plastic zones can be neglected in comparison with the dimensions of the region 

over which consolidation occurs, which ensures the applicability of the classical theory of 

poroelasticity developed by Biot (1941). The results are also of interest to analysis of 

pressuremeter tests, used to obtain the in-situ consolidation properties primarily the 

coefficient of consolidation of clay. Siriwardane and Desai (1981) investigated the 

influence of the non-linearity in soil skeleton and fluid flow, using a finite element 

method. One-dimensional consolidation and axisymmetric consolidation of a poroelastic 

medium were examined. Siriwardane and Desai (1981) showed that the non-linearity in 

poroelastic parameters can have a significant influence on the consolidation behaviour of 

a poroelastic medium. Booker and Small (1984) examined analytically the time­

dependent behaviour of a permeable flexible circular footing embedded on a fluid­

saturated half-space of clay. These authors determined the time-dependent settlement of 

the footings and observed that the degree of consolidation of the circular footing is' 

influenced by the rigidity of the footing. Booker and Small (1986) also extended their 

studies to include impermeable flexible circular footings embedded on a fluid-saturated 

half-space. The time-dependent deflection of a rigid circular anchor has also been 

examined by Small and Booker (1987) in connection with an impermeable disc anchor. 

Yue and Selvadurai (1994) presented an analytical study of the eccentric loading of a 

rigid circular foundation located at the surface of a poroelastic half-space region, with 
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either permeable or impermeable .pore pressure boundary conditions. Kassir and Xu 

(1988) examined the harmonic dynamic response of a rigid strip foundation embedded in 

a poroelastic half-plane, which can exhibit linear hysteretic damping. Gibson et al. (1989) 

investigated the Mandel-Cryer effect for a poroelastic sphere experiencing large 

displacements, where natural (Hencky) strains are applicable. They observed that 

Mandel-Cryer effect can be influenced by the presence of the large strains. de Boer and 

Ehlers (1990) also investigated the influence of related mechanisms on the behaviour of 

poroelastic media. Detoumay and Cheng (1991) presented an analytical model of the 

hydraulic fracture phenomenon within a poroelastic medium, resulting from the 

pressurization of a fluid saturated cylinder. Lan and Selvadurai (1996) analyzed the time­

dependent response of two interacting rigid circular indentors, resting on a poroelastic 

half-space through the mathematical analysis of a mixe Cl boundary value problem. The 

results also demonstrated the influence of the pore pressure boundary conditions, in the 

form of either free drainage or impervious free surface, on the time-dependent response 

of the interacting indentors. Selvadurai and Mahyari (1997) examined the process of 

steady crack extension in fluid saturated media. They confirmed the accuracy of the 

computational scheme through comparison with analytical results given by Atkinson and 

Craster (1991). Kanji etaI. (2003) determined a closed form analytical solution for pore 

pressure and stresses generated within a pressurized hollow cylinder of transversely 

isotropic poroelastic material. Li (2003) investigated analytically the consolidation 

around a pressurized borehole in a porelastic· medium with double porosity, in the 

presence of a non-isotropie in-situ stress state. Li (2003) observed that the pore pressure 

decay in the borehole can be influenced by non-isotropy in the in-situ stress state. The 

mechanics of geomaterials induced as a result of the withdrawal of water or energy 

resources such as oil and natural gas can be also examined through the classical theory of 

poroelasticity. Computational schemes have been used successfully for the study of such 

problems. The articles by Valliappan et al. (1974), Schrefler and Simoni (1987) and 

Lewis and Schrefler (1998) give further discussions and references in this area. 

The the ory of fluid saturated poroelastic media has recently gained attention in its 

application to the modelling of thermally driven fluid flow in saturated geological media. 
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One important factor, which is involved in thermally driven fluid flow through a porous 

medium, relates to the relative compressibility between the pore fluid and both the solid 

material and porous skeletal fabric. A contribution in this area due to Brownell et al. 

(1977), determined the governing equations, related to the hydrothermal response of 

geothermal reservoirs. The formulations given by these authors can model the 

incremental non-linear behaviour of the porous fabric. The time-dependent pore pressure 

development in a fluid-saturated poroelastic region surrounding a spherical heat source 

has been investigated by Booker and Savvidou (1984) using an analytical approach. The 

problem ofmodelling ofthermally driven consolidation of the poroelastic media has been 

examined by Aboustit et al. (1985) who use finite element methods. McTigue (1986) 

investigated the problem of thermally driven one-dimensional consolidation. Selvadurai 

and Nguyen (1995) investigated the coupled thermal-hydraulic-mechanical behaviour of 

fractured rocks by using a finite element procedure and applied computational methods to 

model the thermally driven consolidation around nuclear waste repositories. Giraud and 

Rousset (1996) conducted experimental observations on thermally driven consolidation 

in fluid-saturated porous media. The experimental observations were used to model the 

time-dependent behaviour of tunnels, excavated in deep clays. Zhou et al. (1998) 

mathematically examined thermal-hydraulic-mechanical response of the axisymmetric 

problems, including thermal cylindrical and spherical heat sources, located in poroelastic 

media. Pao et al. (2001) used the finite element procedure, applicable to coupled thermal­

hydraulic-mechanical procedures to model the time-dependent behaviour of the oil­

reservoirs containing two liquid phases of water and oil. A recent study by Khalili and 

Selvadurai (2003) developed the complete thermo-hydro-mechanical theory for a 

poroelastic medium exhibiting double porosity. 

The classical theory of poroelasticity and its developments that include the influence of 

the non-linear response of the porous skeleton, irreversible deformations of the porous 

skeleton and other time-dependent phenomena have found applications in the study of a 

variety of natural and synthetic materials including biological materials such as bone, 

tissues, arteries, skin. A documentation of developments in this area is given by 

Selvadurai (1996) and Cowin (2001). 

7 



The purely mathematical approaches to the study of poroelasticity problems have 

limitations due to several factors. The presence of time-dependency invariably involves 

the application of Laplace transforms, which makes the numerical inversion procedure 

both complicated and computing intensive. Aiso the analytical approaches are more 

suitable for situations involving regular domains and simplified loading configurations. 

In order to examine configurations encountered in practical problems involving 

poroelastic domains, with complicated loading patterns etc., it becomes necessary to 

develop alternative approaches. The two computational approaches that have been widely 

applied to the modelling, are the finite element and boundary integral or boundary 

element techniques. The first application of the finite element method to the study of a 

problem in the consolidation of geomaterials is due to Sandhu and Wilson (1969). They 

applied a Galerkin technique along with a variational principle due to Gurtin (1964) to 

develop a computational procedure for the analysis of soil consolidation. The study by 

Sandhu and Wilson (1969) presents computational resuIts for the problem of the one­

dimensional consolidation and for the problem of the consolidation of a poroelastic half­

space, subjected to a strip load. Christian and Boehmer (1970) applied the finite element 

method to investigate the plane strain problem in poroelasticity, including the 

consolidation of a long poroelastic cylinder subjected to hydrostatic stress at the outer 

surface. Ghaboussi and Wilson (1973) and Booker and Small (1975) have developed 

finite element methods for the analysis of problems associated with surface loading of 

semi-infinite poroelastic media. Selvadurai and Gopal (1986) and Schrefler and Simoni 

(1987) have applied mapped infinite elements to investigate the consolidation of 

saturated geomaterial regions of infinite extent. Noorishad et al. (1984) examined time­

dependent behaviour of a fluid-saturated fractured porous rock using a finite element 

procedure developed for modelling coupled thermal-hydraulic-mechanical behaviour of 

porous media. Selvadurai and Nguyen (1995) also developed a finite element scheme, 

applicable to the modelling of thermal-hydraulic-mechanical phenomena in fractured 

poroelastic media filled with a compressible fluid. Selvadurai and Nguyen (1995) also 

applied the computational scheme to investigate transient thermally driven behaviour of 

fluid-saturated porous media. Cui et al. (1996) applied the finite element method to 

model the stress concentration near the wall of an inclined borehole, located· in an 
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anisotropic poroelastic medium. They also developed a generalized finite element 

formulation, applicable to plane strain problems in poroelasticity and modelled the 

consolidation response of a poroelastic medium around a pressurized cylindrical cavity. 

Lewis and Schrefler (1998) give an account of the application of the finite element 

formulations for the study of coupled thermal-hydraulic-mechanical problems in porous 

media, consisting of different liquid phases (either compressible or incompressible) 

within the porous media. Lewis and Schrefler (1998) also gave a documentation of the 

possible applications of couple thermal-hydraulic-mechanical modelling to petroleum 

engineering and water reservoirs. Cleary (1977) gives a review of the boundary element 

methods that are applicable to the fluid-saturated porous media and examines the problem 

of a point heat source, located in a poroelastic region. A review on the boundary element 

formulations for poroelastic media are also given by Banerjee and Butterfield (1981) and 

Brebbia et al. (1984). Cheng and Liggett (1984a) used the boundary element technique to 

investigate the class of problems dealing with fracture propagation within a poroelastic 

region. These authors also investigated soil consolidation by using boundary element 

methods and applied the procedures to study the problem of consolidation of a strip load 

located in both a homogenous and a layered poroelastic half-space either compressible or 

incompressible pore fluids. Dargush and Banerjee (1991) used the boundary element 

method to examine the axisymmetric soil consolidation, including indentation of a rigid 

cylinder and consolidation arounda cylindrical pile subjected tonormal loadings. 

Dominguez (1992) used the boundary element method to investigate the behaviour of 

poroelastic media, subjected to a harmonic excitation. The transient response of a 

pressurized spherical cavity, located at a poroelastic medium was investigated by 

Senjuntichai and Rajapakse (1993) by considering the associated initial boundary value 

problems. Chopra and Dargush (1995) successfully applied the boundary element method 

to examine the problem of consolidation of a poroelastic sphere. 

1.4. Non-linear Behaviour of Soil Skeleton 

The assumption of the linear elastic response of the soil skeleton is a significant 

limitation when applying the classical theory of poroelasticity to brittle geomaterials, 
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which can exhibit a non-linear response due to a variety ofprocesses ranging from elasto­

plastic phenomena to fracture. The non-linear processes that are being investigated in this 

thesis focus on the evolution of micro-cracks and micro-defects, which can be addressed 

through a phenomenological theory of continuum damage mechanics. The generation of 

defects in the soil skeleton can influence geomaterial behaviour in terms of reduction in 

its stiffness and an attendant increase in the hydraulic conductivity. As a result, 

consolidation behaviour of brittle saturated geomaterials can be influenced by generation 

of defects in the porous soil skeleton. 

The finite element approach has versatility in that the mechanical response needs no 

longer be restricted to the c1assical elasticity model. The c1assical the ory of poroelasticity 

can be extended to inc1ude more complicated responses of the porous fabric. These can 

inc1ude elasto-plastic and viscoplastic behaviour of the skeletal response (Desai and 

Siriwardane, 1984). The boundary element techniques, due to the more mathematical 

nature of their formulations and the extensive use of Green's function techniques in the 

computation, are largely suited to the computational modelling of problems in c1assical 

poroelasticity. 

The notion of development of micro-mechanical damage is entirely phenomenological 

when considering the fact that the deformable fabric of the fluid saturated medium is in 

itself a porous medium. The scales at which the defects that contribute to damage 

evolution should be such that the constitutive behaviour of the porous fabric in the 

damaged state can still be described through a c1assical continuum mechanics 

formulation. For example, the pore scale of rock such as sandstone can be of the order of 

0.0001 mm and the continuum damage evolution can result in distributed defects of the 

order of 0.001 mm and the continuum notion applicable to the damaged state will be 

realistic provided the dimension of the representative volume element is within the order 

of 0.01 mm. Admittedly, these are not rigorous limits for the various scales, but intended 

to illustrate the ranges of relative length scales that would make the modelling 

meaningful. The damage evolution in the porous skeleton is therefore interpreted in a 
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phenomenological sense, where the porous skeleton will experience both alterations in 

the elasticity and fluid transmissivity properties as a result of micro-mechanical damage. 

Brittle geomaterials can expenence both continuum damage and discrete fracture 

simultaneously. Observations made by Bazant (1991) point to the generation of micro­

defects in the region around the crack, which is referred to as a process zone. There are 

several factors influencing the dominant mode of flaw generation and flaw development 

in brittle geomaterials. Factors that control the flaw evolution include the stress state, the 

rate of loading, the microstructure of the geomaterial, the presence of stress singularities 

(e.g. crack tips) and the capability of a flaw to either extend or to remain closed. For this 

reason, establishing one universal criterion cannot be regarded as basis for the 

determination of the mode of flaw generation that governs the elastic behaviour of brittle 

geomaterials in a damaged state. In many instances, the characteristics of the brittle 

response can be determined only through experimental observations. The concept of 

continuum damage rnechanics is more relevant to the description of the mechanical 

behaviour of semi-brittle geomaterials such as soft rocks, overconsolidated clays and 

other porous geological media that can exhibit reductions of the elastic stiffness at stress 

levels weIl below the peak or failure stress. The progressive reduction in elastic stiffness 

prior to the peak stress is assumed to be a result of the growth of existing micro-defects 

or generation of new micro-defects. The process of dis crete cracking is more related to 

predominantly brittle geomaterials such as competent rocks (e.g. granite or basait) 

subjected to low confining pressure (See Figure 1.1). This research focuses on defect 

generation as a result of micro-mechanical damage in semi-brittle geomaterials (e.g. 

sandstone) that are subjected to stress levels well below the peak stress levels. 

Experimental observations (Cheng and Dusseault, 1993) confirm the presence ofthis type 

of phenomenon in brittle geornaterials such as sandstone. At the se stress levels, brittle 

geomaterials behave as continua and continuum damage evolution is expected. The 

influence of development of micro-defects during the damage evolution pro cess III a 

saturated geomaterial can be examined by incorporating the concept of continuum 

damage mechanics introduced by Kachanov (1958) within the framework of the c1assical 

theOl'y of poroelasticity developed by Biot (1941). The alterations in both the 
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deformability of the damaged material and the evolution of its hydraulic conductivity 

properties with damage are eonsidered to be the topies of primary interest to 

geomechanics. 

L 
t 

Damaged region 

r 

z 

Figure 1.1 Indentation of a brittle poroelastic geomaterial. 

1.4.1. Continuum Damage Mechanics 

The concept of continuum damage mechanics was tirst proposed by Kachanov (1958) in 

his classical studies pertaining to the modelling of the creep response of materials. The 

theory examines the development of micro-defects such as micro-cracks and micro-voids 

and their influence on the behaviour of materials prior to the development of macro­

cracks su ch as fractures. The theory of continuum damage mechanics has been widely 

used to examine the non-linear behaviour of a variety of materials including metals, 

concrete, composites, ice, biomaterials, frozen soil and other geological materials. 

Accounts of continuum damage mechanics and its applications are given in the articles 

by Krajcinovic (1984, 1996), Lemaitre (1984), Bazant (1986), Nemes and Speciel (1996), 

Wohua and Valliappan (1998 a,b) and Voyiadjis et al. (1998). Krajcinovic and Fonseka 

(1981 a,b) used the concept of continuum damage mechanics to model the uniaxial 

tension and compression response of concrete as a brittle material susceptible to dàmage. 

Simo and lu (1987) also used the concept of continuum damage mechanics to model the 
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response of concrete at stress levels well below the failure usmg the experimental 

observations by Wang (1977). Chow and Wang (1987) developed a tensorial form of 

continuum damage mechanics, applicable to anisotropic damage in damage-susceptible 

materials. The application of continuum damage mechanics to concrete has been 

investigated by Mazars andPijaudier-Cabot (1989 a,b). lu (1990) investigated the 

evolution of damage variables in damage-susceptible materials, associated with the 

continuum damage mechanicsapproach by using approaches derived from micro­

mechanics. Selvadurai and Au (1991) applied continuum damage mechanics in the 

presence of visco-plasticity to model the indentation of a polycrystaline solid. Their 

results were applied to model the behaviour of ice at temperatures significantly below the 

freezing point. Cheng and Dusseault (1993) used the experimental observations from 

tests conducted on sandstone, to model the mechanical behaviour of a brittle geomaterial 

such as sandstone. They applied the resulting developments to examine the response of a 

strip footing, resting on a half-space consisting of sandstone. Tinawi and Ghrib (1994) 

investigated the response of concrete gravit y dams by using continuum damage 

mechanics applicable to anisotropic damage. Selvadurai and Hu (1995) modelled the 

behaviour of frozen soils exhibiting tertiary creep by using the concept of continuum 

damage mechanics. Mahyari and Selvadurai (1998) proposed an iterative finite element 

procedure that accounts for the evolution of damage within a damage-susceptible 

poroelastic medium and applied the computational scheme to the problem of the 

axisymmetric indentation of a damage-susceptible poroelastic half-space by a rigid 

cylinder with a smooth, impermeable flat base. Mahyari and Selvadurai (1998) utilized 

the experimental observations for damage-induced alterations in poroelasticity 

parameters, given by Cheng and Dusseault (1993) (related to the damage-induced 

decrease in elastic stiffness) and Shiping et al. (1994) (related to the damage-induced 

alterations in hydraulic conductivity of poroelastic materials) to conduct the 

computational modelling. Valliappan et al. (1996) used continuum damage mechanics to 

model the seismic response of gravit y dams through a damage evolution function, based 

on the consideration of tensile principal strains. Valliappan et al. also (1999) used a 

similar methodology to model the seismic response of arch dams. Shao and Lydzba 

(1999) applied the concept of damage mechanics to model the evolution of isotropic 
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damage within poroelastic media using microstructure parameters. Bart et al. (2000) 

studied mechanics of fluid-saturated brittle rock in connection with the anisotropic form 

of continuum damage mechanics. These authors modelled the experimental results from 

triaxial test conducted on brittle rocks. Lee et al. (2000) introduced a fatigue model, using 

continuum damage mechanics, applicable to the evaluation of the life cycle of asphalt 

pavements. Planas and Elices (2003) used damage mechanics to examine damage 

evolution in concrete due to cooling at very low temperatures. Selvadurai (2004) 

introduced the concept of " stationary damage" to develop alternative techniques for 

examining the mechanics of poroelastic media susceptible to damage. In the stationary 

damage concept the evolution of stiffness and hydraulic· conductivity at the start of the 

poroelastic process is maintained in the reminder of the transient process. The technique 

was applied to the modelling of indentation of a damage susceptible poroelastic half­

space. 

The non-linear behaviour of materials due to generation of micro-mechanical damage can 

be developed by introducing a set of parameters referred to as local damage variables. 

Damage variables reflect average material degradation at a scale normally associated 

with the classical continuum formulations. Therefore, the introduction of the damage 

variable makes it possible to adopt and extend any classical continuum theory applicable 

to material behaviour, to the domain of damage mechanics. Instances where this approach 

has been successfully applied, are given by Sidoroff (1980), Krajcinovic (1984), Lemaitre 

(1984), Chow and Wang (1987) and Lemaitre and Chaboche (1990). (See also Voyiadjis 

et al., 1998). 

1.5. Experimental Observations on Damage Evolution 

The non-linear behaviour of most brittle materials in the pre-peak load range results from 

the growth of existing micro-defects or generation of new micro-defects (see Simo and 

lu, 1987). A typical micro-crack generated in a brittle geomaterial (sandstone) is shown 

in Figure 1.2 (Gatelier et al., 2002). The evolution of micro-cracks and micro-voids ev en 

at damage levels well below those required for material failure is assumed to be the 
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essential mechanisms that can lead to alterations in elastic stiffness and hydraulic 

conductivity in porous brittle materials (see Cheng and Dusseault, 1993 and Shiping et 

al., 1994). The experimental basis for the assumption is provided through a number of 

investigations. 

500Jlm 

Micro-crack 

Pore-scale 

Figure 1.2 Micro-cracks in sandstone (Modified after Gatelier et al., 2002). 

1.5.1. Damage-induced Alterations in Mechanical Properties 

Cook (1965) investigated the reduction in elastic stiffness through the changes in elastic 

energy concepts introduced by Griffith (1921). The reduction in elastic stiffness of brittle 

rocks is also theoretically demonstrated by Cook (1965). The uniaxial tension and 

compression tests, conducted by Cook (1965) on Tennessee Marble also point to the 

reduction in the elastic stiffness. Bieniawski et al. (1967) conducted experimental 

investigations on South African hard rocks, described as Norite, using uniaxial 

compression tests and observed that the elastic stiffness reduced as a result of 

development of micro-defects. The degradation in mechanical properties of concrete as a 

brittle material even at stress levels well below the peak has been observed .by Spooner 

and Dougill (1975) (Figure 1.3). This degradation has also been observed by Mazars and 

Pijaudier-Cabot (1989) for concrete (Figure 1.4). Cheng and Dusseault (1993) 

investigated the degradation in mechanical properties of sandstone as a result of evolution 
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of damage. Cheng and Dusseault (1993) proposed a damage evolution function for soft 

rocks through the application of continuum damage mechanics theories to experimental 

observations conducted by Cheng (1987) on sandstone samples subjected to uniaxial 

compression. The damage evolution function proposed by Cheng and Dusseault (1993) 

has also been used in the computational modelling used by Mahyari and Selvadurai 

(1998) to determine time-dependent response of damage-susceptible fluid-saturated 

poroelastic media. 

The evolution of damage is expected to be highly stress state-dependent. The 

investigations conducted by Hunsche and Hampel (1999) illustrate the stress state­

dependency of the damage-induced alterations in mechanical properties of rock salt. 

Hunsche and Hampel (1999) also observed that in the absence of expansion within the 

element of damage-susceptible material, no significant damage-induced alterations in 

mechanical properties are expected. This observation has also been supported by Schulze 

et al. (2001) through their research conducted on rock salt. 

From the results of experimental investigation discussed, we may conclude that the 

degradation in mechanical properties occurs as a result of the evolution of damage within 

the damage-susceptible materials. Furthermore, the alterations can also be influenced by 

the stress state-dependency. 
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Figure 1.4 The results of uniaxial compression tests conducted on concrete (After Mazars 

and Pijaudier-Cabot, 1989) 

1.5.2. Damage-induced Alterations in Hydraulic Conductivity Properties 

A review of the damage-induced alterations in the fluid transmissivity characteristics of 

brittle geomaterials is givenin a recent article by Selvadurai (2004). The damage-induced 

alterations in the hydraulic conductivity of saturated geomaterials have been investigated 

by Zoback and Byerlee (1975) through experiments conducted on granite (Figure 1.5). 

The experiments indicate the increase in the hydraulic conductivity by up to a factor of 

four at stress levels within 50% of the peak stress. The results of experiments conducted 

by Shiping et al. (1994) on sandstone indicate that for different stress states, the hydraulic 

conductivity is increased by an order of magnitude (Figure 1.5). Results of triaxial tests 

conducted on anisotropic granite reported by Kiyama et al. (1996) also indicate the trend 

towards an increase in hydraulic conductivity due to the evolution of micro-defects. A 

phenomenological relationship for the evolution of hydraulic conductivity due to damage 

process in claystone has also been proposed by Skoczylas and Shao (1996). The micro­

mechanical damage-induced increases in hydraulic conductivity has also been reported 

by Coste et al. (2002) in connection with experiments conducted on rocks and claystone. 

These authors have observed an increase in hydraulic conductivity of up to two-orders of 

magnitude. Investigations of hydraulic conductivity alterations in excavation-damage 
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zones have also been reported by Zhang and Dusseault (1997), who used simple constant 

head borehole tests to evaluate the alterations in hydraulic conductivity. Souley et al. 

(2001) examined the excavation damage-induced alterations in hydraulic conductivity of 

granite of the Canadian Shield; an increase in hydraulic conductivity of four orders of 

magnitude was observed in the damaged zone (Figure 1.6). Experimental results given by 

Samaha and Hover (1992) show an increase in the hydraulic conductivity of concrete 

subjected to compression. The study conducted by Gawin et al. (2002) also shows an 

increase in the hydraulic conductivity of concrete at high temperatures due to generation 

of thermo-mechanical damage. This study also presented a set of empirical relationships 

to determine alterations in hydraulic conductivity of concrete as a function of temperature 

and damage. Bary et al. (2000) conducted an experimental study of the evolution of 

hydraulic conductivity in concrete gravit y dams subjected to fluid pressures. They 

presented experimental results that investigate the evolution of hydraulic conductivity of 

concrete subjected to axial stress. 

The evolution of hydraulic conductivity in natural salt has also been investigated by a 

number of researchers including Stormontand Daemen (1992) and Schulze et al. (2001). 

An increase in permeability has been observed as a result of evolution of micro­

mechanical damage due to applied stresses (Figure 1.7). It should be noted that natural 

salt is susceptible to creep; therefore, elastic damage is only a minor component of the 

overaU mechanical response. With reference to damage evolution it should be noted that 

not aU stress states will induce such an increase ~n hydraulic conductivity of geomaterials. 

The studies conducted by Brace et al. (1978) and Gangi (1978) indicate that hydraulic 

conductivity of granite can be reduced by increasing confining stresses. Similar 

observations have been made by Patsouls and Gripps (1982) for chalk and by Wang and 

Park (2002) for sedimentary rocks and coal. Experimental data given by Zhu and Wong 

(1997) point to the decrease of hydraulic conductivity due to an increase in the deviator 

stress levels; however, these studies deal mainly with the behaviour of geomaterials at 

post-peak stress levels and applicable to the stress-softening range. These 
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effects are not within the scope of this research, which mainly deals with hydraulic 

conductivity evolution during damage in the stress levels that maintain the elastic 

character of the poroelastic material (Figure 1.8). It should also be mentioned that the 

phenomenon of a reduction in the hydraulic conductivity as a result of an increase in 

deviator stress in the presence of high confining pressure can be relevant to certain 

classes of geomaterials that can exhibit pore closure during shearing. 

In the context of stress state-dependency of the damage process, Schulze et al. (2001) 

observed that, in the absence of dilation, the hydraulic conductivity of rock salt cannot be 

increased significantly. According to the experimental observations discussed previously, 

it can be concluded that damage-induced alterations can occur in the hydraulic 

conductivity of geomaterials and that for certain materials, these alterations can also be 

stress state-dependent. 

1.6. Computational Modelling of Damage Evolution III a Saturated Brittle 

Geomaterial 

The computational modelling of damage evolution in a brittle geomaterial taking into 

consideration alterations in both the deformability and the hydraulic conductivity 

characteristics of the material has been investigated by only a limited number of 

researchers. Mahyari and Selvadurai (1998) proposed a computational scheme as an 

iterative finite element technique that accounts for alterations in both the elasticity and 

hydraulic conductivity characteristics of a saturated brittle geomaterial through the 

updating the governing material parameters. They successfully applied the computational 

scheme to examine the axisymmetric problem of the indentation of a brittle geomaterial 

such as saturated sandstone. The computational scheme proposed by Mahyari and 

Selvadurai (1998)provides a basic framework that can be extended to examine three­

dimensional problems in general, and further modified to take into consideration the 

stress state-dependency in the damage evolution process. Shao et al. (1998) developed a 

one-dimensional finite element technique to examine the influence of damage-induced 
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alterations in poroelastic parameters on the consolidation of c1aystone, which was 

modelled as a brittle poroelastic material. These authors used the experimental 

observations conducted on c1aystone reported by Skoczylas and Shao (1996). The 

computational scheme has aiso been applied to the study of problems with a simple 

geometry and to the analysis of deep cavities. The computational scheme has been used 

for examining unsaturated geomateriais of a multiphase nature, accounting for soli d, 

liquid and air components. This makes it possible to computationally model effects of 

drying in fluid-saturated media, particularly when thermo-hydro-mechanical problems 

involving heating of the material are examined. Bary et al. (2000) investigated hydro­

fracture of concrete by adopting a damage model that considers the alterations in 

hydraulic conductivity of concrete due to the damage process. A computational study has 

also been conducted by Tang et al. (2002) in order to examine the alterations in hydraulic 

conductivity of sedimentary rocks. The basis of the computational scheme proposed by 

Wang and Park (2002) is essentially identicai to that proposed originally by Mahyari and 

Selvadurai (1998); the damage evolution function used for incorporating the alterations in 

the hydraulic conductivity, however, is a rather complicated one with certain terms that 

could be determined only by appeal to micro:.mechanical considerations. This is a 

significant limitation for use of the computational scheme in general problems in 

geomechanics with both complex geometries and complicated boundary conditions. The 

damage evolution function used by Tang et al. (2002) can model the dependency of the 

evolution of damage on the applied confining pressure but it cannot address stress state­

dependent evolution of damage with reference to a general three-dimensional principal 

stress space. Wang and Park (2002) have also examined the damage-induced alterations 

in hydraulic conductivity of sedimentary rocks through the computational modelling 

procedure presented in their studies. 

1.7. Objectives and Scope of the Research 

Brittle geomaterials can experience non-linear elastic responses due to the generation of 

micro- mechanical defects. In geomaterials with pore space that is saturated with a pore 

fluid, the growth of existing micro-defects or the generation of new micro-defects can 
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also lead to alterations in fluid transport characteristics. The alterations in hydraulic 

conductivity can be significant even at stress levels well below the peak and rupture 

stress levels. The alteration in the hydraulic conductivity can influence the time­

dependent consolidation response of fully saturated brittle geomaterials. The alterations 

in the hydraulic conductivity can exert a greater influence on the consolidation behaviour 

even at low stress levels, than the reduction in elastic stiffness. In a multiphase material, 

the influence of the damage-induced alterations in the mechanical and hydraulic 

conductivity behaviour of the geomaterial can be greater than those for a single-phase 

brittle solid susceptible to damage. One of the objectives of this research is to examine 

the influence of damage-induced alterations on time~dependent behaviour of a fluid­

saturated brittle geomaterials through a computational scheme that accounts for 

alterations in both elasticity and hydraulic conductivity characteristics. The 

computational scheme is applied to study a number of problems in geomechanics, which 

are not only of fundamental interest but also have applications potential in engineering 

and geomechanics. The accomplishments of the research can be summarized as follows: 

(i) Extension of the computational scheme proposed by Mahyari and Selvadurai 

(1998) for axisymmetric problems to the study of three-dimensional problems. 

This enables the application of proposed computational developments to the 

modelling and study of practical problems in geomechanics. 

(ii) Examination of the stress state-dependency on the evolution of damage by using a 

computational scheme, which accounts for the influence of the "sense" of stress 

on the damage process. It is assumed that no significant damage evolves as a 

result of compaction of geomaterials due to the applied stress states. This lS 

supported through the experimental observations available in the literature. 

(iii) Application of the computational scheme to the study of problems of interest in 

geomechanics including the modelling of pore pressure decay in a fluid inclusion 

embedded in a brittle geomaterial, which is relevant to engineering geology and 

petroleum engineering; the study of a laterally loaded rigid pile embedded in a 

brittle geomaterial with applications to foundation engineering and the inodelling 
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of the mechanics of an anchor embedded in a brittle geomaterial, with possible 

applications to foundation engineering, tunneling and hydraulic structures. 

(iv) Other applications include the study of the indentation of a damage susceptible 

poroelastic half-space by a rigid cylindrical indentor, which is reported in a 

publication (Shirazi and Selvadurai, 2002). 

1.8. Statement of Originality and Contributions 

(1) The work presented in this thesis extends existing studies dealing with the mechanics 

. of damage susceptible fluid-saturated media to include damage-induced alterations in 

both elasticity and hydraulic conductivity characteristics and to develop a 

computational methodology that can examine three-dimensional problems. To the 

author' s knowledge, these extensions are considered to be novel and specific 

problems that model general three-dimensional approach are considered to be 

original. 

(2) This thesis presents a methodology for examining the stress state-dependent damage 

evolution in fully saturated brittle geomaterials through a computational scheme that 

accounts for such damage process. This development is also considered to be novel 

and highly original. 

(3) The developments presented in this thesis have significant applications potential in 

geomechanics, geotechnical engmeermg, foundation engineering, petroleum 

engineering and engineering geology. The extension of the studies to include 

applications to biomechanics merits further investigation. 

(4) The contributions resulting from the thesis have been published or accepted for 

publication in leading international journals and referred conference proceedings with 

a high degree of selectivity and standards in the general areas of computational 

geomechanics, applied mechanics and civil engineering. 
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CHAPTER2 

COMPUTATIONAL DEVELOPMENTS IN THE MODELLING OF 

POROELASTIC MEDIA 

2.1. Introduction 

In this research, the classical theory of three-dimensional poroelasticity developed by 

Biot (1941, 1955, 1956) is used for the computational modelling of linear, isotropic, 

elastic porous media saturated with an incompressible pore fluid. The relevance of this 

idealization to the modelling of geomaterials can be established by examining certain 

typical examples of poroelastic behaviour involving fluid saturated geomaterials. 

Consider for example, an over-consolidated clay with an elastic modulus in the range of 

10 MPa. For such a material the pore fluid, which has a bulkmodulus of 23 GPa can be 

regarded as an incompressible fluid. In contrast, when considering a porous granite with a 

skeletal elastic modulus of the order of 10 GPa , the pore fluid must be regarded as being 

compressible. These limiting assumptions can be established by appeal to Skempton's 

pore pressure parameters B = 1/(1 + nCw / Cc) , where n is the porosity and Cw and Cc 

are the compressibility factor of pore fluid and porous fabric, respectively, which relates 

the pore pressure development to the compressibility of the constituents of the fluid 

saturated medium (Skempton, 1954). As the compressibility ratio nCw / Cc approaches 

zero, the fluid can be regarded as being incompressible. In geomechanics, the pore fluid 

is usually water and the assumption pertaining to either the compressibility or 

incompressibility of pore water can be made only through consideration of the relative 

compressibility characteristics of the 4eformable porous solid to that of the pore fluid. 

This chapter presents the partial differential equations governing the classical the ory of 
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poroelasticity. The essential features of the c1assical theories of poroelasticity are 

reviewed with an emphasis on the physical and mathematical features of the theory of 

poroelasticity developed by Biot (1941), which is the standard theory used by most 

re'searchers for studying time-dependent behaviour of poroelastic media. The basic 

material parameters that de scribe the behaviour of poroelastic media saturated with 

incompressible fluids are also discussed. 

The Chapter also presents a brief reVlew of the finite element approach for the 

computational treatment of the partial differential equations governing c1assical 

poroelasticity. The focus ofthe presentation is on Galerkin's finite element technique that 

is used to develop the computational scheme. The formulations are presented for the 

general three-dimensional do main to model the problems with complex geometries and 

boundary conditions. The twenty-node isoparametric brick element is utilized for 

discretization of the three-dimensional domain. A Cartesian tensor notation is used in the 

presentation with Einstein's summation convention applied to repeated indices. In 

addition the following sign conventions are adopted: tensile stresses in the solid skeleton 

are considered positive and compressive pore fluid pressures are considered negative; the 

shear stresses follow the sign convention that is used in solid mechanics and 

geomechanics (Fung, 1965; Davis and Selvadurai, 1996,2002). 

2.2. Classical Theories of Poroelasticity 

The mathematical formulation and analysis of consolidation behaviour of a fluid­

saturated porous medium is generally attributed to Terzaghi (1923). A consequence of the 

the ory is the introduction of the concept of effective stress in the theories of soil 

mechanics. Terzaghi (1923) proposed a fundamental approach to the study of a fully 

saturated soil and developed the one-dimensional theory of soil consolidation through a 

model of a porous medium that experiences small deformations. The basic assumptions 

of Terzaghi' s the ory are as follows: (i) The porous skeleton of the soil is considered to be 

mechanically and hydraulically isotropic and homogeneous. (ii) The fluid flow through 

pores and mechanical deformations are one-dimensional. (iii) The strains are small. (iv) 
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The mechanical response of the porous skeleton is governed by a linear isotropic elastic 

Hookean law and pore fluid flow is governed by an isotropic form of Darcy's law. (v) 

The pore fluid is incompressible in comparison with the porous fabric. The soil layer is 

subjected to a total vertical stress (J" and it is assumed that mechanical deformation and 

fluid flow through the layer are one-dimensional. The flow through the element is 

governed by Darcy's law as follow as: 

v = ki = -k 8h 
=8z 

(2.1) 

where k is hydraulic conductivity of soil and h is the total fluid head. The pore fluid 

pressure is also related to the total fluid head in the following form: 

p=YII,h (2.2) 

where p is the pore pressure and r w is the unit weight of water. Substituting (2.2) in 

(2.1), (2.1) takes the form: 

k 8p 
v =---

= rw 8z 
(2.3) 

The equation of continuity, associated with quasi-static fluid flow In the deforming 

porous skeleton is: 

dE" dv= k 8
2 
P 

--=-=----
dt dz rw 8z 2 

(2.4) 

where E" is the volumetrie strain of the porous skeleton. For an isotropic poroelastie 

medium experieneing one-dimensional straining, the rate of volumetrie strain ean be 

expressed in terrns of one-dimensional modulus of the soil skeleton in the following 

form: 

27 



dB" 1 aO" 
--=----
dt Eoed at 

(2.5) 

E(1- v) 
where E = is the oedometric modulus, E is elastic modulus, v IS 

oet! (1 + v)(1- 2v) 

Poisson's ratio. The effective stress (j' for one-dimensional consolidation· of a 

poroelastic medium, saturated with an incompressible fluid takes the form: 

(j' = 0' - P (2.6) 

where 0' is the total stress, which is identical to the total vertical external stress, for one­

dimensional consolidation and p is pore pressure. If we assume that the externally 

applied stress 0' is constant in time, then 

aO" ap 
= (2.7) at at 

Combining (2.4), (2.5) and (2.7), we obtain: 

(2.8) 

where the coefficient of consolidation CI' takes the form: 

C = k(l-v)E 
" (1 + v)(l- 2v)y", 

(2.9) 

and indicates that the pore pressure within the poroelastic layer has a diffusive pattern. 

The result (2.8) was first derived by Terzaghi (1923) to examine the time-dependent pore 

pressure decay in the one-dimensional consolidation of a poroelastic layer. 
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Terzaghi's theory of one-dimensional consolidation has been widely applied to the 

analysis of practical problems and became a standard procedure in the geotechnical 

analysis of the effects of consolidation. Many conventional methods for predicting the 

magnitude and the rate of settlements beneath the foundations use this theory (Harr, 

1966; Lambe and Whitman, 1969). 

A generalization of the Terzaghi's theory to include three-dimensional effects was 

suggested by Rendulic (1936). This theory is based on the assumption that during the 

proeess of soil consolidation, the first invariant of the total stress remains constant during 

the dissipation of excess pore pressure. This hypothesis leads to Terzaghi-Rendulic 

theory for soil consolidation. In this theory, the total stress field in the soil medium is 

treated independently and usually accomplished through the assumption that it is 

governed by a time-independent elastie analysis of the elastic medium. 

The three-dimensional form of the continuity equation, which is identical to (2.4), takes 

the following form: 

(2.10) 

The rate of volumetrie changes can be expressed in the following form: 

a&" 1 a CT;, 
-=---
al A al 

(2.11 ) 

where A is the bulk modulus of the soil skeleton and CT;, takes the form: 

rr 1 -.!. (CT + CT + CT ) - p - .!. J - P U'''-3 xx xv zz -3 1 (2.12) 
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where, JI is the first invariant of total stress. Rendulic (1936) assumed that the first 

invariant of total stress (JI) remains constant with time within the poroelastic medium. 

This results in the following equation, which is identical to Equation (2.7) for the one­

dimensional theory of consolidation developed by Terzaghi (1923); 

ao-;, ap 
--=--

at at 

Substituting (2.13) and (2.11) in to (2.10), we obtain 

or 

C V 2 = ap 
" p al 

(2.13) 

(2.14a) 

(2.14b) 

where, V 2 is Laplace's operator. The pore pressure, obtained from (2.14) again has a 

diffusive pattern. The coefficient of consolidation (C,.) for the Terzaghi-Rendulic theory 

has the following form: 

C =Âk= kE 
" y." 3y.,,(1- 2v) 

(2.15) 

Rendulic (1936) also conducted experimental observations on samples, subjected to 

triaxial states of stress and compared those with the theoretical results, obtained from 

Equation (2.14). Rendulic (1936) observed that the coefficient of consolidation ( CI') is 

not a constant parameter and depends on the dimensionality of the problem (see e.g. 
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Terzaghi, 1943). Therefore, the coefficient of consolidation, defined by (2.15) should be 

considered as a variable that takes the form: 

c = kE 
l' Ywf(x,y,z) 

(2.16) 

where, f(x,y,z) relates the rate of volumetrie changes to the state of effective stresses 

within the poroelastic medium. 

One of the serious drawbacks of the above mentioned theories is the absence of a correct 

form of coupling between the time-dependent deformation of the soil skeleton and the 

flow of the pore fluids. As a result of thisdeficiency, sorne special features of the 

consolidation process, such as the Mandel-Cryer effect (Mandel, 1950 and 1953; Cryer, 

1963) do not appear in the two uncoupled theories proposed by Terzaghi (1923) and 

Rendulic (1936). This aspect of the appropriate form of the coupling between the 

mechanical deformations and pore fluid pressure is a major development of the theory of 

three-dimensional soil consolidation proposed by Biot (1941) (see e.g. Schiffman et al., 

1969). 

The the ory of three-dimensional linear poroelasticity for a saturated medium was 

formulated by Biot (1941, 1955, 1956) to model more reaiistically the mechanical 

behaviour of saturated soils and rocks. In this theory, the soil skeleton is mode lIed as 

deformable, linear, elastic, porous medium saturated with either an incompressible or a 

compressible pore fluid. A set of partial differential equations was formulated by Biot 

(1941, 1955, 1956) to describe the coupled mechanical behaviour of saturated porous 

media. Biot's the ory of poroelasticity results in a completely self-consistent set of 

boundary conditions and a well-posed initial boundary value problem. 

Biot's theory accounts for the time dependent interaction of the soil skeleton and pore 

fluid (i.e. the coupliilg between the deformation of the porous skeleton and the 

deformation of the pore fluid). The coupled mechanical state is described by mechanical 
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variables (effective stresses and the excess pore pressure) and kinematic variables 

(displacement of the porous skeleton and fluid velocity) applicable to each phase. The 

mechanical and kinematic variables are time-dependent. Four of these variables are 

independent and account for the coupling behaviour of the governing equations. They are 

the three displacement components and the excess pore pressure. Consequently, four 

independent boundary conditions (three for solid phase and one for pore fluid phase) 

should be applied to formulate boundary and initial value problems for saturated porous 

media. The four independent boundary conditions correctly match the situations 

encountered in many practical problems associated with fully saturated soils and rocks. 

Biot's theory is sufficiently general in that both the Terzaghi's c1assical one-dimensional 

consolidation theory and the Terzaghi-Rendulic theory can be recovered as special cases, 

but has the additional advantage that phenomena such as the Mandel-Cryer effect can be 

observed in the pore pressure response. 

2.3. Governing Equations of Poroelasticity 

The three-dimensional theory of poroelasticity developed by Biot (1941) that accounts 

for the time-dependent response of consolidation of porous media is based on the 

following assumptions: (i) the mechanical behaviour of the porous fabric is isotropic, (ii) 

the constitutive behaviour of the porous fabric is governed by Hookean elasticity, (iii) 

strains are infinitesimal, (iv) fluid flow through the pores is governed by an isotropic 

form of Darcy's law, (v) the mechanical and hydraulic behaviour of the poroelastic 

medium is uninfluenced by the deformations of the medium. 

Based on Biot's (1941, 1955, 1956) original formulation (which has also been followed 

by Rice and Cleary (1976) and Detournay and Cheng (1993)) the basic mechanical 

variables are considered to be the total stress dyadic T (see Selvadurai, 2000 b) and the 

scalar excess pore pressure p. The corresponding kinematic quantities include the strain 

dyadic S, displacement vector u in porous fabric, the volumetric strain in the fluid ;" 

and specific discharge vector v in the pore fluids. The strain energy density function W 

can be expressed in the following form: 
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1 
W = -(T : S + pç..) 

2 
(2.17) 

The meehanieal response of the porous fabrie is governed by a Hookean linear isotropie 

el asti city relationship of the form: 

(2.18) 

where f.1, A are the shear modulus and the bulk modulus applicable to the porous fabrie, 

respeetively, a poroelastie parameter introduced by Biot and Willis (1957), 1 is a unit 

tensor and C,. is the volumetrie strain of porous fabrie, whieh takes the form 

C,. = 'V.u (2.19) 

The pore pressure generated in the pores is given by the relationship 

p = f3(ç,. + ac .. ) (2.20) 

where j3 is also a poroelastic parameter, introduced by Biot and Willis (1957). The result 

(2.20) indicates that the generated pore pressure is related to both volumetric strain of 

porous fabric and volumetrie variation of the fluid content. The compressibility of pore 

fluid is refleeted in two poroelastie parameters a, f3 introdueed by Biot and Willis 

(1957). For the case of an incompressible pore fluid a = 1.0 and f3 ---+ +00 . The effective 

stress dyadic takes the form: 

T' =T+apl (2.21) 

The additional equations, induding equilibrium, the strain displacement relation, Darey's 

law and eontinuity equation are required to complete the theory of poroelasticity. The 

quasi-static equilibrium equations in the dyadie form are 
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V.T+f=O (2.22) 

where f is the body force veetor and V lS the veetor differential operator (see 

Selvadurai, 2000 a), whieh takes the form 

(2.23) 

with in Cartesian eoordinates, the veetor differential operator takes the form: 

(2.24) 

Result (2.24) ean be re-written in the following notation Hi (j = 1,2,3), whieh are the 

eomponents for the eoordinates. 

The strain dyadie is related to the displaeement veetor in the following form: 

1 
S = -(Vu + uV) 

2 

The isotropie form of Darey's law for quasi-statie pore fluid flow takes. the form: 

k 
v=--Vp 

y II' 

(2.25) 

(2.26) 

where k is the hydraulie eonduetivity and y IV the unit weight of water. The eontinuity 

equation of fluid flow follows as: 

àç,. + V.v = 0 
àt 
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Results (2.17) to (2.27) form a system of linear partial differential equations that can 

model the three-dimensional response of the poroelastic medium, and the formulation of 

specifie problems can be completed through the assignment of appropriate boundary and 

initial conditions. The partial differential equations that govern the time-dependent 

behaviour of a poroelastic medium take the forms: 

JiV.Vu + (Ji + .:t)VV.u + aVp +f = 0 (2.28a) 

ap _ ~ fN.Vp + ajJ aB" = 0 
al r", al 

(2.28b) 

The system of equations (2.28) can be formulated in Carte sian coordinates and Ji,.:t can 

also be replaced with elasticity parameters Ji, v, where v is Poisson's ratio. In the 

absence of body forces, the system of equations in Cartesian coordinates take the forms: 

(2.29a) 

~fN2p- ap +ajJaBkk =0 
rI!' al· al 

(2.29b) 

The poroelastic parameters a, jJ, which define respectively, the compressibility of the 

pore fluid and the compressibility of the soil fabric that were introduced by Biot and 

Willis (1957) can be expressed in the following forms; 

3(vu - v) 
a = -----"----

B(l- 2v)(1 + vu) 

; jJ = 2JiB2 (1- 2v)(1 + Vu )2 

9(v
II 

- v)(l- 2v,J 
(2.30) 

where v is the undrained Poisson's ratio, and B can be identified with the pore pressure 
Il 

parameter introduced by Skempton (1954). The parameter B is defined as the ratio of the 
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induced pore water pressure to the changes in total isotropic stress, measured under 

undrained conditions. 

The bounds for the constitutive parameters, governing time-dependent behaviour of the 

fluid-saturated poroelastic media carl be obtained by consideration of the requirements 

for a positive definite strain energy potential defined by (2.17) (Rice and Cleary, 

1976).The bounds for the parameters take in the following forms: 

f.1>0; -1 < v < VII ~ 0.5 ; k > 0; (2.31) 

In geomechanics, the lower limit of -1 for V and VII can be replaced by the realistic 

limit of zero. Consequently, the bounds for geomaterials take the forms: 

o ~ V < VII ~ 0.5 ; 0< B ~1 (2.32) 

In the case of a poroelastic medium, which is saturated with an incompressible pore fluid, 

the poroelastic parameters take the forms: 

VII =0.5; B =1 (2.33) 

In this case ~I' = E: kk' a = 1, fJ ~ 00 and the governing equations reduce to: 

2 f.1 0 
f.1VU .+ E:kk·+P·= 

1 (1 - 2 v) ,1 ,1 

(2,34a) 

aE:kk _ 2kf.1(1- v) D2 
-- - y E:kk 

at rll'(l- 2v) 
(2.34b) 

The boundary and initial conditions on the variables U p P and/or on their derivatives 

can be prescribed, for a well-posed problem. Aspects of uniqueness of the classical 
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poroelasticity problem as posed by Biot (1941) are given by Coussy (1995) and Altay and 

Dokmeci (1998). 

In this research attention will be restricted to theories of poroelasticity, which are largely 

applicable to the brittle geomaterials that are fully saturated with water. The pore fluid is 

considered to be incompressible. This results in the assumption of incompressibility of 

both solid particles constituting the porous fabric and pore fluid; consequently the 

governing partial differential equations of classical the ory of poroelasticity, developed by 

Biot (1941) can be reduced to the system of equations defined by (2.34). The formulation 

of classical theory of poroelasticity for this case has been documented by a number of 

researchers including, Desai and Christian (1977), Detournay and Cheng (1993) and 

Lewis and Schrefler (1998). 

2.4 Computational Modelling of Poroelastic Media 

The finite element technique is now regarded as a well-established computational 

approach for examining a variety of problems in the engineering sciences (Bathe, 1996; 

Zienkiewicz and Taylor, 2000). This technique is based on subdividing the do main into 

discrete finite elements. The elements are connected at nodal points and continuity of 

displacement and pore pressure fields are prescribed at the element boundaries. The 

values of the field variables within the elements are interpolated by polynomials of their 

nodal values. The governing partial differential equations of the classical theory of 

poroelasticity can be represented as a system of linear matrix equations by using a 

variational principle to obtain the system of integral relationships. The Galerkin 

technique is applied to solve the system of integral formulas. The computational 

modelling of the classical problem in poroelasticity through finite element techniques is 

first attributed to Sandhu and Wilson (1969). They applied the variational princip les 

introduced by Gurtin (1964) to the classical theory of poroelasticity developed by Biot 

(1941) to model the consolidation behaviour of a poroelastic region saturated with an 

incompressible pore fluid. Sandhu and Wilson (1969) also successfully applied the finite 

element scheme to model the problem of one-dimensional consolidation and the 
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consolidation of a strip foundation, resting on a poroelastic half-space. In work that 

followed, Ghaboussi and Wilson (1973) applied Gurtin's variational principle to model 

the consolidation behaviour of a poroelastic region saturated with either compressible or 

an incompressible pore fluid. Ghaboussi and Wilson (1973) applied the finite element 

technique to model the consolidation behaviour of the problem of an axisymmetric sand 

drain and the problem of consolidation of a poroelastic half-space, subjected to an 

axisymmetric flexible load. The investigations by Booker and Small (1975) and Sandhu 

et al. (1977) focus on different spatial interpolation schemes and temporal 

approximations for the study of the poroelasticity problem. Topics of related interest are 

also given by Turska and Schrefler (1993) and Lewis and Schrefler (1998). 

Booker and Small (1975) have applied the finite element technique to examine problems 

associated with surface loading of a poroelastic half-space. Selvadurai and Gopal (1986) 

and Schrefler and Simoni (1987) have also applied the finite element technique to 

determine consolidation behaviour of a poroelastic half-space using special infinite 

elements. A paper of particular interest to this research is by Mahyari and Selvadurai 

(1998) who used an iterative finite element procedure to examine the mechanics of 

indentation of a fluid-saturated poroelastic half-space susceptible to damage. 

Finite element teclmique has a greater appeal to the modelling of engineering problems, 

particularIy those dealing with transient time-dependent problems, problems related to 

non-linear material behaviour and problems with general three-dimensional 

configurations, which are generally too complex to attempt a solution based on the 

analytical solution of the governing equations. In this research, a Galerkin finite element 

technique is adopted to formulate iterative computational procedures to examine the 

poroelasticity problems, related to initiation and evolution of damage in fluid-saturated 

poroelastic media. 
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2.5 Finite Element Formulations 

The numerical procedure introduced by Galerkin (1915) can be applied to approximate 

. the partial differential equations of the classical theory of poroelasticity (2.29 a, b) and to 

reduce them to a set of linear matrix equations. The detail of the procedure is weIl 

documented by Sandhu and Wilson (1969), Christian and Boehmer (1970), Ghaboussi 

and Wilson (1973), Aboustit et al. (1985), Schrefler and Simoni (1987), Lewis and 

Schrefler (1998) and Zienkiewicz and Taylor (2000). The finite element formulation of 

the thermal consolidation of porous media is also documented by Selvadurai and Nguyen 

(1995), Giraud and Rousset (1996) and Pao et al. (2001). 

A brief review of the Galerkin technique and the finite element approximation of 

c1assical theory ofporoelasticity, is given in the following sections. 

2.5.1 Galerkin Weighted Residual Method 

The formulation of the finite element procedure applicable to three-dimensional 

consolidation is derived for the general case without referring to any specific element 

types. In the absence of body forces the governing equations take the form: 

(2.29a) 

~ IN 2 P _ ap + afJ aE kk = 0 
rH' al al 

(2.29b) 

The initial boundary value problem to be solved should satisfy the governing equations 

(2.29a) and (2.29b) and initial conditions within the domain R and the associated 

boundary conditions satisfied on the boundary S of the domain. Applying Galerkin's 

technique, the governing equations can be transformed into matrix equations where 

variables are the nodal displacements and pore pressures. Sandhu and Wilson (1969) and 

Ghaboussi and Wilson (1973) have shown that for ensuring the stability of the solution, 

the nodal displacements are assigned an order different (higher) from the stresses and 
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pore pressures. Let ui./ (i = 1,2,3; J = 1, ... ,N) be the nodal displacements for N discrete 

points in R and PK (K = 1, ... , n ) the nodal pore pressures in n nodes at an arbitrary time 

t. The displacement vector and pore pressure for any arbitrary point with coordinates xi 

in the domain Rare approximated in the following form: 

(2.35) 

(2.36) 

where N.~ and Nf are, respectively, shape functions for the displacement and pore 

pressure field; J = 1, ... , N and K = 1, ... , n; ui.J is the displacement of the solid skeleton at 

node J in the i'" direction. The indices in capital letters (e.g. J and K) refer to the 

nodal values and the indices in small letters (e.g. i and j) refer to the coordinate 

directions. The summation convention on repeated indices is also adopted. Generally, N;' 

and Nf can be different but both N; and Nf must exhibit CO continuity. 

2.5.1.1 Galerkin Formulation for the Equilibrium Equation 

Applying Galerkin's weighted residual method to the equilibrium equations(2.29a) we 

obtain 

(2.37) 

where 1= 1, ... ,N. Applying Green's theorem, (2.37) can be rewritten in terms of surface 

and domain integrals in the forms 
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f NII(a.u; aUj J d'S f .(au; au; JaN;' dR -+- n· - /1.-+- -- + ,'a a./ Il a a a . x. x. x. x. x· 
./' '/''/ 

( au J (au J aN
Ii 

f,N;' /L-j +ap n;dS- f /L-
j 

+ap __ 1 dR =0 
s ax Il ax. ax . 

./ ./' 

(2.38) 

where Sis the boundary that corresponds to R. Substituting the representations (2.35) and 

(2.36) into (2.38) and making use of the strain-displacement representation of the 

constitutive relationships, 

(
au; au; J (auk ) 

(J'i = /1 -+- + À-+ap Si ./ 8x. ax. aX
k 

) 
./ ' 

(2.39) 

We can rewrite (2.38) in the form 

[ 
aNIi (aN" aN" J aN" aN" } f /1 __ 1 -_.Iu+-_.Iu. +À--./--./U R+ 

/1 a a ,./ a././ a a ././ x· X. X x x· ././ , ''/ (2.40) 

f aN;' NP dR - f N" d'S a-- KPK - 1 (J' .. n. 
/1 ax. s If./ , 

The matrix form of equation (2.40) can be written in the form 

[K]{ô} + [C]{p} = {Ft} (2.41) 

where {ô} and {p} are the vectors ofthe nodal displacements and pore pressures: 

l' l' {ô} = {{U II U 21 U 31 } ... {U IN U2N U3N }} 

{p}1' = {PI ... p,,}1' 
(2.42) 
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{Ft} corresponds to the vectors representing the traction applied at the boundary S. The 

components of the coupling matrix [Cl due to the interaction between the solid skeleton 

and the pore fluid are given in the following form: 

(2.43) 

The stiffness matrix· [K] applicable to the porous skeleton takes the form: 

[K] = J [Bf[D][B]dR 
Il 

(2.44) 

where [D] is the stiffness matrix corresponding to the isotropic elastic behaviour of the 

porous skeleton. For a material that exhibits isotropie linear elastic response, The 

stiffriess matrix [D] onlydepends on two elastic constants f1 and Il. The strains are 

related to the nodal displacements through the matrix [B], which depends on the shape 

functions N;' . 

2.5.1.2 Galerkin Formulation for the Fluid Continuity Equation 

Applying the Galerkin method to the flow continuity equation (2.29b), its weighted 

residual equivalent can be obtained in the form of: 

(2.45) 

Applying Green's theorem to (2.45), we can rewrite it in terms of boundary and domain 

integrals in the form 
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f NI' kij ap ndS _ f aN f' kij ap dR 
sI a 1 lia a r", Xj Xi r", Xj 

- f Nf' ap dR + f aN" ~(aUi \,./R = 0 
Il f3 at Il 1 at aXi r 

Substituting (2.35) and (2.36) in to (2.46), we obtain: 

aW II d aN" k .. aw" 
f aNl' __ J ~dR- f __ 1 ~ __ K P dR 

Il 1 a dt /1 a a K Xi Xi r", Xj 

- f N" ~ N" dp K dR = - f N" kij ap ndS 
Il 1 f3 K dt s 1 a. 1 rw x.J 

The matrix form of (2.4 7) can be expressed in the form 

[ct {dÔ} - [H]{p} - [E]{d
p

} = {Fq} 
dt dt 

where the hydraulic conductivity matrix [Hl takes the form: 

aN P k aNP 
[Hl = J __ 1 -.-!L __ K dR 

/1 3xi rw 3x j 

The compressibility matrix for the pore fluid [El takes the form : 

[El = f NP ~NPdR 
R 1 f3 K 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

The inward fluid flux through the boundary S is {Fq}. The matrix equations (2.41) and 

(2.48) conclude the finite element approximations of the classical theory of 

poroelasticity. 
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2.5.1.3 Time Integration and Stability 

An incremental form of the governing equation is necessary to model the non-linear 

behaviour of materials resulting from evolution of damage or plasticity phenomena. (see 

Lewis and Schrefler, 1998 and Zienkiewicz and Taylor, 2000). Through differentiation of 

the equilibrium equation (2.41), the system of incremental coupled equations takes the 

form: 

(2.51) 

The matrices in (2.51) relate the increments ofresponses (d{ô},d{p}) to the increments 

of external driving forces (dFt and Fq). The matrices are dependent on the CUITent state 

( {ô}, {p} ) in the system. 

The system of coupled equations in (2.51) is discretized in the time do main using the 

following finitedifference scheme applicable to any variable X in the system: 

xy =(l-r)Xo +rX' (2.52) 

dX X'-Xo 
=---

dt !'J.t 
(2.53) 

Where /j,t is time increment, Xo, X' ,XY are the values of Xat different times 

t, !'J.t, t +!'J.t respectively; r is a value that varies between 0 and 1. When r = 0, the 

finite difference scheme is termed fully explicit; for r = 1 the finite difference scheme is 

referred to as fully implicit and when r = 0.5, the finite difference scheme is referred to 

as the Crank-Nicholson scheme. 
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Applying the finite difference scheme to d{ô}/dt and d{p}/dt in (2.51) results in the 

following discretized matrix equation: 

C ]{U t
+

ôt
} [K 

{- yiltH + E} PI+r'.t . - CT 

where 

K = stiffness matrix of the porous skeleton; 

C = stiffness matrix due to interaction between porous skeleton and pore fluid; 

E = compressibility matrix of the pore fluid; 

H = hydraulic conductivity matrix; 

F = force vectors due to external traction; 

Ut' Pt = nodal displacements and pore pressures at time t; 

ilt = time increment 

y = time integration constant and ( ) T denotes the transpose. 

and the time integration constant y varies between 0 and 1. 

2.5.2 Finite Element Discretization in Space 

(2.54) 

Using a standard finite element approach, the three-dimensional domain R is discretized 

into a number of finite elements. The element selected to discretize the poroelastic 

domain is the twenty-node isoparametric element, the displacements within the element 

are interpolated as functions of the 20 nodes, whereas the pore pressures are interpolated 

as functions of only the eight corner nodes (Figure 2.1). This type of element can be used 

to model the transient time-dependent response of poroelastic medium with a sufficient 

accuracy for problems that investigate consolidation behaviour of a poroelastic medium 

under general three-dimensional conditions. Abousit et al. (1985) and Lewis and 

Schrefler (1998) indicated that less spatial oscillation in the solution occur for the case 
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where the pore pressure field is interpolated at lower number of nodes than the number 

associated with displacements field, in a finite element where aU degrees of freedomare 

interpolated at aU nodes. This choice of element characteristics are considered necessary, 

especially when computational modelling is used to examine the limit of undrained 

behaviour. The case of limiting undrained response is achieved by setting the hydraulic 

conductivity and compressibility matrices to be zero. Therefore, the diagonal terms of 

(2.54) become zero. The physical meaning of this spatial oscillation can be explained as 

follows: The fluid pressure has the same dimension as the stress, and strain is directly 

related to stress through the elasticity parameters fi and v. Since the strain is expressed 

in terms of the spatial derivatives of the displacement field, the polynomials used, as 

interpolation functions for fluid pressure should be one order lower than the functions 

that are used for the displacement field. Such a procedure will satisfy the consistency of 

fields of variables. 

1 

e 

x 

Figure 2.1 Three-dimensional isoparametric element. 
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2.5.3 N umerical Properties of the Discretization in Time 

The basic requirements of modelling a differential equation through a computational 

scheme are consistency and stability of the approximate computational solution. 

Consistency ensures that the computational solution converges to the exact solution and 

the stability ensures that the round off errors of the initial values do not grow during the 

solution process. In contrast to ordinary differential equations, the partial differential 

equations governing initial boundary value problems, including those of the classical 

theory of poroelasticity, may result in a stable approximate solution that converges to the 

solution of a different system of equations, and consequently the computational scheme 

will exhibit inconsistency (see Farhat and Sobh, 1990 and Lewis and Schrefler, 1998). 

It is assumed that the application of a proper choice of an element can result in 

consistency and convergence of the finite element discretization in space. It therefore 

remains to establish the convergence of the discretization scheme in time. The total error 

of a computational scheme is determined by the evaluationof the difference between the 

exact solution X (t"+1) and the computational solution X"+l that corresponds to a time 

instant (1/+1' which takes the form: 

Total error = ec + es (2.55) 

where, ec = X(t,,+l) - X/Hl corresponds to the error due to the discretization of (2.54) and 

es = X"+l - %"+1 corresponds to the error due to the stability. The total error can be 

considered to be negligible, when the norm of the two types of errors is negligible. 

Lewis and Schrefler (1998) determined the error ec for (2.54), which takes the form: 

l ,1 2 3 
ec =-(1-2r)O(M-)+-r O(M ) 

2 2 
(2.56) 
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where O(t'l.t) corresponds to the order of error. In order to examine the stability of the 

solution, Turska and Schrefler (1993) also performed a stability analysis. To aid the 

analysis, the amplification factor X is taken in the form: 

(2.57) 

The amplification factor X should be determined to be a nontrivial solution of (2.54) for 

F = 0 if the following condition is satisfied: 

Ixl <1 (2.58) 

This results in the stability of the system of equations (2.54) and the error Ilell--) 0 when 

n --) oc!. Then, a modal decomposition of equation (2.54) is performed, for the case where 

F is set to zero (See Lewis and Schrefler, 1998). We assume that f.1Pf.12, ... ,f.1111 

correspond to the distinct complex eigenvalues of the solution and m is the rank of the 

matrix that leads to the solution. The homogeneous form of (2.54) decomposes into m 

equations: 

(1 + yMf.1j )X'I+\ (j) = (1- (1- y)Mf.1j )XII (j) (2.59) 

where j = 1,2, ... , m and XII (j) denotes the scalar values, obtained by solving (2.54) 

through the computational scheme. The condition corresponding to (2.58) can be written 

as 

1- (1- y)Mf.1j < 1 

1 + yt'l.tf.1 ; 

Substituting, Re[f.1j] = f.1 Il and Im[p;] = f.1/ , the inequality (2.60) takes the form: 
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(2.61) 

Assuming that r > 1/2 and f.1 H > 0 , the inequality (2.61) is satisfied for aIl values of M 

and f.11; consequently, this ensures that (2.54) exhibits unconditional stability if r > 1/2. 

If f.1 H S; 0 , the inequality (2.61) results in a conditional stability with a requirement that 

the time step M should satisfy the requirement 

(2.62) 

The inequality (2.62) results in the lower bounds for the time step I1t. Assume that 

r < 1/2; Conditional stability is achievedby determining an upper bound for the time 

step M in the following form: 

(2.63) 

The solution of (2.54) is unstable, only when f.1H S; O. 

The criteria for the stability of the time-integration scheme for solving (2.54) are also 

given by other investigators. Booker and Small (1975) suggest that unconditional stability 

is assured when r 2:: 1/2. According to Nguyen (1995), Selvadurai and Nguyen (1995) 

and Mahyari (1997) the stability of solution can generally be achieved with the values of 

r close to unity. 
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CHAPTER3 

MECHANICS OF BRITTLE FLUID SATURATED POROELASTIC 

MEDIA SUSCEPTIBLE TO MICRO-MECHANICAL DAMAGE 

3.1 Introduction 

The partial differential equations governing the classical theory of poroelasticity were 

developed by Biot (1941) by assuming a linear elastic behaviour of the porous skeleton. 

This assumption is a significant limitation in the application of the classical theory of 

poroelasticity to brittle geomaterials that could exhibit degradation in elastic stiffness and 

other non-linear effects resulting from the stress transfer from the pore fluid to the porous 

skeleton, during the consolidation process. Such non-linear behàviour and irreversible 

phenomena can be due to development of micro-defects such as micro-cracks and/or 

micro-voids in the porous skeleton, whichcan also lead to alterations in the hydraulic 

conductivity characteristics of the porous medium. The classical theory of continuum 

damage mechanics introduced by Kachanov (1958) can be incorporated within the 

classical theory of poroelasticity to model damage phenomena in brittle fluid-saturated 

porous materials. Experimental evidence shows that the process of evolution of damage 

in a brittle geomaterial is a stress state-dependent phenomenon; therefore any damage 

model has to account for the stress state-dependency for the development of micro­

mechanical damage. This Chapter deals with the development of a finite element 

approach for modelling the influencé of damage-induced alterations in both elasticity and 

hydraulic conductivity characteristics of the porous skeleton on the time-dependent 

behaviour of brittle fluid saturated poroelastic media. 
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Figure 3.1 Typical stress-strain curve and the damaged induced alterations in hydraulic 

conductivity of the brittle geomaterials. 

Classical continuum damage mechanics accounts phenomenologically for the influence 

of micro-cracks on material behaviour prior to the development of macro-cracks (i.e. 

fractures). At the level of micro-cracks development, the material is assumed to behave 

as a continuum. Therefore, damage can be interpreted phenomenologically as a reduction 

in the elastic stiffness of the material due to the generation of micro-defects. The focus of 

this research is restricted primarily to modelling of the brittle elastic behaviour of 

geomaterials to which a continuum description is applicable during the damage evolution 

process and the stress states are substantially lower than those required to initiate failure 

in the form of material yield and/or macro-crack formation (Figure 3.1). The 

development of damage invariably results in anisotropy in the internaI structure of the 

porous medium. In this thesis, however, attention is restricted to the consideration of 

isotropic damage evolution, which can be defined by appeal to a single scalar variable. 
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The time-dependent behaviour of brittle fluid saturated geomaterials can be influenced by 

the evolution of damage in the porous skeleton. The notion of continuum damage relates 

to brittle geomaterials such as soft rocks, overconsolidated clays~ etc., which exhibit 

progressive degradation in stiffness in an elastic sense due to the generation of micro­

cracks and micro-voids. The generation of these defects can also lead to alterations in 

hydraulic conductivity characteristics that can influence the time-dependent poroelastic 

behaviour of the saturated geomaterial. With the class of materials examined in this 

thesis, the coupling of both alterations in elasticity and hydraulic conductivity 

characteristics is 'considered to be significant even at stress levels weIl below the peak 

stress. Figure 3.1 illustrates the typical idealized behaviour of a britt~e fluid saturated 

geomaterial that experiences damage in the porous skeleton. In this figure & e refers to the 

strain that corresponds to the limit of the linear elastic response; &" refers to the strain 

that corresponds to the peak stress and & r refers to the strain that corresponds to a 

residual strain. 

The influence of micro-mechanical damage on the time-dependentporoelastic behaviour 

of brittle saturated geomaterials can be examined by incorporating continuum damage 

concepts within the classical theory of poroelasticity. This can be achieved by altering the 

elastic stiffness and hydraulic conductivity characteristics of the porous medium with the 

state of damage in the material. Based on experimental observations conducted on 

sandstone, Cheng and Dusseault (1993) have proposed an anisotropic damage criterion 

for the degradation of stiffness due to damage evolution. Their treatment of damage in 

poroelastic media, however, does not take into account the alterations in hydraulic 

conductivity characteristics of the geomaterials that can result from the generation of 

micro-cracks and micro-voids. Such an extension was first proposed by Mahyari and 

Selvadurai (1998) who considered alteration in the hydraulic conductivity characteristics 

of the material experiencing damage by introducing a relationship for the isotropic 

damage-induced alterations in hydraulic conductivity. The proposaIs of Mahyari and 

Selvadurai (1998) were based on experimental observations made by Shiping et al. 

(1994) on sandstone. Furthermore, Mahyari and Selvadurai (1998) also proposed an 

iterative finite element scheme for examining the time:"dependent behaviour of brittle 
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fluid saturated geomaterials by considering simultaneous alterations in both elasticity and 

hydraulie eonduetivity charaeteristies of porous skeleton. They applied the eomputational 

seheme to examine the problem of indentation of a brittle geomaterial half-spaee by a 

rigid smooth impermeable indentor with a flat base. The .finite element formulation 

proposed by Mahyari and Selvadurai (1998) was applicable to only axisymmetrie 

problems. One of the developments of this thesis is an extension of the work of Mahyari 

and Selvadurai (1998) to include generalized three-dimensional behaviour of the 

poroelastic material with isotropie damage proeess. Experimental observations (e.g. 

Sehulze et al., 2001) also indicate that the damage evolution is highly stress state­

dependent. This research also extends the original concepts developed by Mahyari and 

Selvadurai (1998) to include stress state-dependency of the damage evolution process. 

The computational scheme developed in connection with this research accounts for the 

isotropic damage-induced alterations in the elasticity and hydraulic conductivity 

characteristics. The isotropic damage evolution functions, which are used to model the 

reduction in the elastic stiffness and the increase in the hydraulic conductivity, are related 

to the distortional strain invariant. Admittedly, the damage process is expeeted to be 

highly anisotropie and could be restricted to localized zones. The stress state-dependency 

of the evolution of damage is also taken into consideration through constraints applicable 

to the first invariant of the effective strain tensor. The three-dimensional fini te element 

formulations developed in conneetion with the research are used to examine problems 

with generalized loadings and three-dimensional states of deformation. In the ensuing 

chapters, the extended computational scheme is applied to examine problems of 

importance to geomechanics. 

3.2 Continuum Damage Mechanics Concepts 

The ongm of the concept of continuum damage mechanics (CDM) is attributed to 

Kachanov (1958), in recognition of his initial studies into the phenomenological 

modelling of tertiary creep in engineering materials. Classical continuum damage 

mechanics models the effect of internaI degradation of materials prior to the development 
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of macro-cracks, which results in fracture. Continuum damage mechanics has been 

widely used to predict the non-linear behaviour of a variety of materials including metals, 

concrete, composites, ice, frozen soils and geological materials. Krajcinovic and Fonseka 

(1981) used the concept of damage mechanics in connection with the energy function for 

a damaged material and developed a damage function to account for the evolution of 

damage under uniaxial loadings. Bazant (1986) investigated the evolution of micro­

mechanical damage around crack tips. Mazars and Bazant (1989) document the evolution 

of both macro-defects and micro-defects in concrete. Simo and lu (1987) applied the 

concept of continuum damage mechanics to model the evolution of damage in concrete 

through comparison with the experimental observations, conducted on concrete by Wang 

(1977). The work of lu (1990) examines the theoretical concepts of postulating 

continuum damage mechanics in the general tensorial form. Selvadurai and Au (1991) 

examined the problem of indentation of a polycrystalline solid through application of 

continuum damage mechanics in connection with viscoplasticity. Cheng and Dusseault 

(1993) applied the concept of continuum damage mechanics to modelling of soft rocks 

including sandstone, and proposed a damage evolution function, applicable to soft rocks. 

Selvadurai and Hu (1995) examined the mechanics of frozen soils using the concept of 

continuum damage mechanics. They applied damage modelling to examine the 

mechanics of a pipe section embedded in a frozen soil and experiencing uplift. Shao et al. 

(1997) investigated the time-dependent behaviour of brittle geomaterials by using 

continuum damage mechanics and modelled the experimental observations conducted on 

brittle rocks. Shao et al. (1998, 1999) investigated the behaviour of brittle soft rocks 

through a computational scheme that accounts for the evolution of damage. These authors 

also applied the concepts to examine damage-induced alterations in the Lac du Bonnet 

Granite encountered at the Canadian Underground Research Laboratory (URL) in 

Pinawa, Manitoba. Mahyari and Selvadurai (1998) investigated the time-dependent 

behaviour of the damage-susceptible poroelastic media through a computational scheme 

that accounts for damage-induced alterations in both elasticity and hydraulic conductivity 

characteristics of poroelastic media. Aubertin et al. (2000) investigated the evolution of 

damage in connection with plasticity, using results of experiments, conducted on brittle 

soft rocks including rock salt and Lac du Bonnet Granite. Souley et al. (2001) also 
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examined the damage-induced alterations in hydraulic conductivity of Lac du Bonnet 

Granite through the application of the concept of continuum damage mechanics within a 

computational scheme. The studies by Tang et al. (2002) examine the damage-induced 

alterations in hydraulic conductivity of granite by using continuum damage mechanics 

concepts, which is incorporated into a finite element approach. Planas and Elices (2003) 

studied the evolution of damage as a result of the process of cooling of concrete, by using 

continuum damage mechanics. Literature related to developments in damage mechanics 

in general are documented in the review articles and texts by Lemaitre and Chaboche 

(1990), Krajcinovic (1984 and 1996) and Voyiadjis et al. (1998). 

Physically, damage can be regarded as the development of defects in the form of micro­

cracks or micro-voids. The process of damage evolution begins from the virgin state of a 

material and ends with fracture of the material region. The non-linear behaviour of most 

brittle materials can result from either the initiation of new micro-defects and/or the 

growth of existing micro-defects. This can be modelled by introducing local damage 

variables. Damage variables reflect the average material degradation at a scale, which is 

normally associated with classical continuum concepts. This facilitates the adaptation of 

the damage mechanics concepts within any theory associated with classical continuum 

mechanics (i.e. elasticity, plasticity, viscoelasticity, creep, etc.). The coupling of elasticity 

and continuum damage mechanics has been investigated by a number of researchers. 

Sidoroff (1980) investigated the incorporation of anisotropic damage mechanics into the 

elasticity. Mazars (1982) investigated the application of continuum damage mechanics to 

analyze the response of the concrete structures. Chow and Wang (1987) presented a 

general tensorial form of the damage formulation, applicable to classical elasticity. 

Mazars and Pijaudier-Cabot (1989a,b) used continuum damage mechanics to model the 

behaviour of concrete structures susceptible to micro-mechanical damage. Eskandari and 

Nemes (1999) represented the damage variable in terms of fourth rank isotropic tensors 

and applied it to model the experimental observations conducted on quartzite rock under 

uni axial compression loading. 
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3.2.1 The Damage Variable 

Continuum damage mechanics is based on the definition of the variables that relate the 

average degradation as a result of micro-scale discontinuities to phenomenological 

representations at macro-scale level associated with classical continuum mechanics. 

Kachanov (1958) was the first to introduce a continuous variable related to density of 

such discontinuity defects. 

Figure 3.2 shows a representative volume element of damaged material that is large 

enough to contain many defects and small enough to be considered as a material point 

within the concepts associated with formulations in continuum mechanics (see Davis and 

Selvadurai, 1996). The overall initial cross sectional area Ao is defined in relation to the 

outward unit normal n. When damage evolves, Ao is reduced to the net area A. The 

damage variable D associated with the surface on which tractions Tact is defined by 

D (3.1) 

(a) (b) 

Figure 3.2 Representative element of (a) virgin state and (b) damaged state of brittle 

material. 

The damage variable varies from zero, which corresponds to the virgin state to a critical 

value De' which corresponds to the fracture of material. In the general case, the micro-
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defects are oriented and the damage variable D is a function of the vector n. In such a 

case the damage variable has a tensorial form (Lemaitre, 1984; Chowand Wang, 1987). 

In the theory that assumes isotropic damage, the damage process is assumed to result in 

the development of micro-voids with no dominant directional dependency (i.e. nearly 

spherical shape) and in the case where damage evolution is due to generation of micro­

cracks, the orientation of the cracks is assumed to have no preferred orientation. In these 

circumstances the damage evolution can be defined by appeal to a single scalar damage 

variable D. 

3.2.2 The Net Stress 

The introduction of a scalar damage variable D leads directly to the concept of a net 

stress that corresponds to the stress related to the net area. For isotropic damage, the net 

stress tensor CT:; is related to the stress tensor CTij in the undamaged state follows as: 

/1 CTU 
CT·· =--

If I-D 

Damaged material : 
1 
1& 
1+-+ 

Equivalent virgin material 

Figure 3.3 Schematic presentation for the hypothesis of strain equivalence. 
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The determination of parameters for the damaged material is possible through the use of 

the equivalency between the damaged state and the corresponding virgin state. The 

equivalency hypothesis, which is used most often, is the strain equivalency between the 

damaged and the undamaged state, first introduced by Lemaitre (1984). The hypothesis 

. can be stated as follows: A damaged volume of material under the applied stress (j 

exhibits the same strain respdnse as the virgin state subjected ta the net stress (j" 

(Figure 3.3). This hypothesis ensures that the forms of the constitutive laws applicable to 

the virgin material are also applicable to the damaged material, with the measure of stress 

applicable to the damaged state being represented by the net stress. The constitutive 

equation for the damaged material that exhibits isotropic damage and elastic isotropy 

takes the form: 

(3.3) 

where f-ld = f-l(D) , v d = v(D) are the variable damage-dependent shear modulus and 

Poisson's ratio, respectively. Using the hypothesis of strain equivalence, the elastic 

parameter f-ld can be determined by altering the elastic parameter corresponding to the 

virgin state, and takes the form: 

f-ld = (l-D)f-l (3.4) 

The strain equivalency hypothesis assumes that Poisson's ratio remains constant during 

the dan1age process; i.e., v d = v. Other forms of equivalencies can be established and 

examples of such relationships are given by Wohua and Valliapan (1998a). For the 

purposes of this research, we shall adopt the equivalency relationships derived from the 

postulate given by Lemaitre (1984). 
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3.3 The Evolution of Damage 

The development of damage in the form of generation of new micro-defects or growth of 

existing micro-defects results in graduaI degradation of material properties. The damage 

variable is therefore an evolving internaI variable that varies from an initial value Do 

(Do = 0 for undamaged virgin material) to the critical value De corresponding to the 

stage at which macro-cracks are initiated (i.e. fracture). For a given state of stress, the 

evolution of damage is an intrinsic property of the material, which is characterized by a 

damage evolution function. The damage evolution function can either be postulated using 

a micro-mechanics approach or determined explicitly using experimental results. 

Using experimental results derived from tests conducted on soft rocks, such as sandstone, 

Cheng and Dusseault (1993) assumed that the damage is a function of the shear strain 

energy and proposed a damage evolution function for soft rocks, which can be expressed 

as 

(3.5) 

where ';d is the equivalent shear strain defined by 

j: ( ) 1/2 (3 ) 1 /2 
':Jd = eiie ti = roci (3.6) 

In (3.6) roci is the octahedral shear strain (see e.g. Davis and Selvadurai, 1996) and a, 7J 

are material constants. The critical damage variable De is associated with macro-cracks 

and rupture. 
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3.4 Stress State-dependency of the Evolution of Damage 

With brittle geomaterials, the behaviour under tensile stress states can be significantly 

different from the behaviour under compressive stress states. This implies that the 

evolution of damage should take into consideration the distinction between tensile stress 

states and compressive stress states. In this thesis, we refer to the "sense" of the stress 

states to distinguish between these two types of responses. It is likely that the 

development of the micro-defects in the porous skeleton can be enhanced for the case of 

tensile tri-axial stress states. On the other hand, the compressive tri-axial stress state can 

suppress the development of such effects. Any arbitrary combination of principal stresses 

including tensile and compressive stress state can induce different magnitudes of damage 

evolution. The influence of various stress states on the evolution of damage requires the 

experimental determination of the material response due to different stress paths. The 

experimental observations of the stress state-dependent damage evolution in brittle 

geomaterials are relatively scarce; therefore, they are insufficient to develop a 

comprehensive stress space-dependent theory applicable to the brittle geomaterials. The 

limited experimental data available show that the evolution of damage is enhanced in a 

brittle geomaterial that experiences volumetric expansion (see e.g. Schulze et al., 2001). 

Using these observations it is postulated that damage can initiate only when the strain 

state satisfies the criterion 

(3.7) 

where the tensile strains are considered to be positive. 

In contrast to the reduction in elastic stiffness as a result of material degradation during 

the evolution of damage under tensile stresses, the enhancement of the elastic stiffness is 

also possible as a result of void reduction or void closure due to compressive stresses. 

Such phenomena have also been observed during experiments conducted on geomaterials 

including granite (Zhu and Wong, 1997). The enhancement of elastic properties is most 

likely to occur when the micro-defects have an elongated form such as micro-cracks or 
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flattened cavities. This would also require paying attention to the influence of the effects 

of oriented defects, which is beyond the scope of this research. Since this research is 

focused on the isotropic idealization of damage modelling, attention is restricted to the 

evolution of damage for the states of strain that satisfy (3.7) and it is assumed that the 

porous skeleton remains intact for any other state of strain. Admittedly, this is only a 

plausible approximation and since the intention of the study is to obtain sorne insight into 

the stress state-dependency of the evolution of damage and the relevant influence on 

time-dependent behaviour of the fully saturated brittle geomaterials, the simplified 

assumption of (3.7) is justifiable. 

(J ,,":"/ " (J 

-

/ ,," / 
/ 

(a) 

0 0 0 0 0 
(J (J 

o 0 0 0 0 
0 0 0 0 0 

(b) 

Figure 3.4 A cracked volume subjected to stress (a) micro-cracks (b) micro-voids. 

3.5 TheoreticaI Observations on Damage-induced Alterations in the Poroelasticity 

Parameters 

The existence of the damage-induced alterations in both elasticity and hydraulic 

conductivity properties is also supported by the theoretical studies, mainly related to 

micro-mechanics. In this section, a brief review of evidence related to the damage­

induced alterations in brittle material properties is presented. This includes a 
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documentation of the relationships, associated with micro-mechanics in order to 

demonstrate the influence of the development of micro-defects on material properties. 

3.5.1 Damage-induced Alterations in the Elastic Stiffness of Brittle Materials 

Cook (1965) investigated the damage-induced alterations of elasticity parameters in 

brittle geomaterials, experiencing damage in the form of micro-cracks (Figure 3.4a). 

Cook (1965) related the average elastic modulus of a medium containing a random 

distribution of micro-cracks to the virgin elastic modulus in the following form: 

Ecracked 1 = (3.8) 

where C is a function of micro-cracks orientation, n > 0 is a function of the density of 

micro-cracks and v is Poisson's ratio. Since for elastic geomaterial 0 < v < 1/2, 

therefore (1- v 2
) > 0 .The relationship (3.8) indicates a reduction in the elastic modulus 

of a cracked region. The result (3.8) can be rewritten in a form identical to the 

conventional result (3.4) developed in continuum damage mechanics, 

Ecracked = (1- D)E (3.9a) 

where D takes the form 

D = 2ff(1- v
2
)C

2
n 

1 + 2ff(1- v 2 )C 2n 
(3.9b) 

Equation (3.9) indicates that the elastic stiffness is reduced due to the evolution of 

damage in the form of a random distribution of micro-cracks. 

The damage-induced alterations in the deformability characteristics as a result of micro­

voids generation has also been investigated by Budiansky and O'Connell (1976) (Figure 
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3.4b). Budiansky and Q'Connell (1976) determined the average elastic modulus of brittle 

materials susceptible to micro-voids, which takes the form: 

(3.10) 

where Ecracked and E are the elastic moduli of the damaged and virgin material, 

respectively, v is the Poisson's ratio, f and gare dimensionless micro-voids shape 

factors that depend on Poisson's ratio v and the orientation ofmicro-voids, N is a 

function of the density of the micro-voids and a is the average size of the micro-voids. 

Result (3.10) can be interpreted in relation to the conventional result (3.4) that accounts 

for the damage-induced alterations in the elastic stiffness. Using the conventional form, 

we can rewrite (3.10) as 

Ecracked = (1- D)E 

where D now takes the form 

2N( 3) 
D = 1- a [3f(v) + 2g(v,P)] 

15 

(3.lla) 

(3.11 b) 

These results indicate that the average elastic stiffness is reduced due to the evolution of 

damage in the form of micro-voids. 

Although, equations (3.9) and (3.11) cannot predict the damage-induced alterations in the 

elastic stiffness, precisely, they point to the trend regarding the deterioration in elasticity 

parameters, resulting from the evolution of micro-defects. 
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3.5.2 Damage-induced Alterations in Hydraulic Conductivity of a Damage­

susceptible Materials 

The damage-induced alterations in the hydraulic conductivity of brittle geomaterials such 

as the Lac du Bonnet Granite have been investigated by Souley et al. (2001) using a 

semi-empirical method. Souley et al. (2001) postulated that the relationship for hydraulic 

conductivity generation during damage in brittle geomaterials can be expressed in the 

form 

3 a 3 
k = ka ; when -3 < IraI 

ao 

(3.12a) 

(3.12b) 

where a and ao are the average size of the elongated micro-cracks and the average of the 

grain size, respectively, IraI is the ratio between the crack length at the percolation flaw 

threshold and C is a function of micro-crack density. The result (3.12) confirms the 

evolution in hydraulic conductivity after a specific average size of micro-cracks 

propagate within a damage-susceptible geomaterial. 

An identical set of results is obtained by Cernuschi et al. (2004) for the evolution of 

thermal conductivity of brittle ceramics. It should be noted that in view of the 

mathematical similarity between Fourier's law for heat conductivity and Darcy's law for 

fluid flow through porous medium, the changes in thermal conductivity during cracking 

of a brittle geomaterial can be interpreted in terms of the evolution of hydraulic 

conductivity during cracking. 
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3.6 Computational Scheme for Time-dependent Response of Brittle Geomaterials 

Susceptible to Damage 

The influence of damage-induced alterations in el asti city and hydraulic conductivity 

characteristics in a fully saturated brittle geomaterial can be examined by incorporating 

continuum damage mechanics within the classical theory of poroelasticity. This can be 

achieved by allowing the material parameters to evolve during the damage process. The 

damage functions relate the damage variable obtained from a continuum damage 

mechanics basis to the altered poroelastic parameters. The ensuing sections present the 

damage evolution functions for isotropic damage-induced alterations in the elasticity and 

hydraulic conductivity characteristics of the brittle geomaterials and adopt the functions 

based on the available experimental observations for sandstone as the test case for 

examining the mechanics of soft rocks experiencing micro-mechanical damage. Finally, 

the iterative computational scheme used in this research is documented. 

3.6.1 Degradations of Elasticity Parameters 

The constitutive parameters applicable to an isotropie elastic material expenencmg 

micro-mechanical damage can be determined as a function of intact elastic properties 

using the hypothesis of strain equivalence. The elastic shear modulus for a brittle material 

that exhibits isotropic damage can be taken form 

Jid = (1- D)Ji (3.13) 

where Ji is the shear modulus applicable to vlrgm elastic material. Based on the 

hypothesis of strain equivalence, the Poisson's ratio is assumed to be constant. The 

damage evolution function can specify the variation of the damage variable D with the 

state of strain in a mate rial. The damage evolution function proposed by Cheng and 

Dusseault (1993) is used in this study to account for the degradation in elastic stiffness in 

a brittle material. Integrating (3.5), the damage evolution function takes the form, 
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(3.14) 

where Do is the initial value of the damage variable corresponding to the intact state of a 

material (Do = 0 for the virgin state). 

3.6.2 Alterations in Hydraulic Conductivity 

The establishment of damage functions that account for the alterations in hydraulic 

conductivity for a fully saturated brittle geomaterial is essential to developing any 

computational approach forbrittle geomaterials susceptible to damage. In this research, a 

phenomenological relationship for the damage evolution function is postulated based on 

the results of experiments conducted on granite and sandstone by Zoback and Byerlee 

(1975) and Shiping et al. (1994), respectively (Figure 1.5). Based on experimental 

evidence, the hydraulic conductivity is assumed to have a quadratic variation with respect 

to the equivalent shear strain ;d. This relationship takes the form, 

(3.15) 

where k d
, k O are the hydraulic conductivity applicable to the damaged material and the 

virgin material, respectively and fJ is a damage related material constant. 

3.7 The Computational Procedures 

The concept of continuum damage mechanics is incorporated within the finite element 

procedure developed in coimection with this research. The computational procedures 

developed are capable of examlning the influence of alterations in the elasticity and 

hydraulic parameters resulting from damage evolutiùn. The damage criteria related to 

evolution of these properties are based on the relationships (3.14) and (3.15). Two 

approaches for the evolution of damage within a brittle geomaterial have been adopted. 

66 



The first approach models stress state-independent damage evolution (i.e. stress state­

independent). The scalar damage variable is first obtained, using (3.14) at the twenty-

seven Gauss points within the three-dimensional finite element. The shear modulus pd 

and the hydraulic conductivity k d are then updated at these locations to account for 

damage evolution. The discretized governing equations are then solved to obtain the set 

of strains at each integration point using the updated poroelastic parameters pd and k d 

using an incremental analysis. The coupling between the state of strain and state of 

damage at each time step is solved by an iteration process. The standard Newton­

Raphson technique (see e.g. Smith and Griffiths, 1988) is used as the iteration algorithm 

in the computational procedure. In the second approach, the stress state-dependency of 

evolution of damage is incorporated. It is assumed that damage can be initiated only for 

stress states where the brittle geomaterial satisfies the constraint (3.7). The basic 

computational algorithm used in this research, which also incorporates the concept of 

stress state-dependency in the damage evolution is shown in Figure 3.5. 
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(I) Compute Il = E;; 

(Il) Check the criteria 

No: Damage growth: Go to (III) 

Yes: No further damage evolution. Use poroelastic parameters p, k with no more 

damage-induced modification. Go to (V). 

(III) Compute D at Gauss integration points 

(IV) Update the poroelastic parameters 

p" = (1- D)p 

(V) Solve the governing equations for U" p, and calculate the strain tensor 

1 
E=-(U.+u) 

'I 2 1,.1 J,I 

(VI) Check the criteria 

No: Damage growth. Retum to (1). 

Yes: No further damage evolution. Exit. 

Figure 3.5 Computational scheme for the stress analysis of a poroelastic medium 
exhibiting stress state-dependent evolution of damage. 
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CHAPTER4 

ONE-DIMENSIONAL CONSOLIDATION OF POROELASTIC 

MEDIA 

4.1 General 

In poroelasticity, the problem dealing with one-dimensional consolidation is an important 

fundamental problem. It can be used as an illustrative problem to verify the validity of the 

computational scheme, proposed in Chapter 3. The geometry and boundary conditions of 

a three-dimensional problem can be confirmed in such a way that a fully constrained-one­

dimensional state can be induced in any element within the region. Therefore, the 

problem of one-dimensional consolidation can be used as verification for the stress state­

dependent criteria, proposed for this research. Furthermore, the problem of consolidation 

of a poroelastic sphere can also be treated as a special case of spatially one-dimensional 

consolidation involving spherical symmetry. The appropriate form of the coupling 

between time-dependent deformation of the solid skeleton and pore fluid pressure is an 

essential point in connection with behaviour of a poroelastic sphere, where an increase in 

pore pressure followed by decay is observed in anàlytical results. This phenomenon, 

which is referred to as Mandel-Cryer effect has been analytically proved by Mandel 

(1953) and Cryer(1963) in connection with the mathematical analysis of the 

consolidation of a poroelastic sphere. The absence of the Mandel-Cryer effect is a main 

drawback for the Terzaghi's theory of consolidation, whereas the general three­

dimensional theory of consolidation introduced by Biot (1941) accounts for this effect. 
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This Chapter deals with the analytical and computational modelling of the consolidation 

of an one-dimensional poroelastic element. As a special case of one-dimensional 

consolidation, the problem of consolidation of a poroelastic sphere will be discussed with 

reference to the theories of poroelasticity developed by Terzaghi (1923) and Biot (1941). 

Finally, the choice of element required to ensure the stability of the finite element 

procedure developed in connection with research is investigated for the problem of one­

dimensional consolidation. 

4.2 The One-dimensional Consolidation of a Poroelastic Layer 

We examine the problem of one-dimensional consolidation of a soil column of length H , 

which rests on an impermeable base (Figure 4.1). The boundary conditions applicable to 

displacements and pore pressures are also shown in Figure 4.1. The column is subjected 

to an external vertical stress (Jo in the form of a Heaviside step function of time. 

u =0 x 

l--!-+--++ Y 

8p =0 
ay 

H 

Figure 4.1. Boundary conditions for the problem of one-dimensional consolidation 
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4.2.1 Analytical Solution of One-dimensional Consolidation Problem: Terzaghi's 

Theory 

The analytical solution for the time-dependent development of the pore pressure within 

the soil column shown in Figure 4.1 was first given by Terzaghi (1923), although through 

an analogy with the transient heat conduction equation, the origin of the solution dates 

back to Fourier (1822). The partial differential equation governing one-dimensional 

. consolidation is given by 

t;:::: 0 (4.1) 

where, coefficient of consolidation ( CI') takes the form: 

c = k(1-v)E 
l' (1 + v)(1- 2v)yll' 

(4.2) 

It is assumed that the total stress is applied instantaneously and at the beginning of the 

consolidation process (t = 0+) this stress will be completely carried by the pore fluid. 

This results in an initial condition of the following form: 

p(z,O) = (Jo for 05:.z5:.H when t = 0+ (4.3) 

The solution for the time-dependent pore pressure, developed at any location z is in the 

following form (see Terzaghi, 1943): 

p(z,t) ~ 2 (. MZ) (M 2r ) 
~- = L..- sm- exp-

(Jo 1/1;\ M H 
(4.4) 
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where M = 7r (2m + 1) for m = 1,2, ... and T is referred to as a time factor, which can be 
2 

expressed in, 

(4.5) 

4.2.2 Analytical Solution of One-dimensional Consolidation Problem: Biot's Theory 

The equations governmg Biot's theory of consolidation for a poroelastic medium, 

saturated with an incompressible pore fluid take the forms, 

"\12u + Jl ckk + P . = 0 
,... 1 (1-2v) ,1 ,1 

(2.34a) 

BCkk _ 2k.u(I- v) n 2 
--- v ckk 

Bt Yw(1- 2v) 
(2.34b) 

For one-dimensional consolidation, the total stress can be written as; 

2Jlv 2.u 
0' __ = 2Jlc __ +--C_~ + P = --c_ + P 

cc -- 1- 2v "" 1- 2v -
(4.6) 

For the one-dimensional consolidation problem, equilibrium considerations require that 

the total axial stress a zz remains constant in the poroelastic element and equal to the 

externally applied stress 0'0: i.e. 

2Jl 
0'0 = --c __ + P = canst. 

1- 2v .. 
(4.7) 

Furthermore, for one-dimensional consolidation, cxx = c
JY 

= 0 and the volumetrie strain 

is given by, 

72 



(4.8) 

Using (4.7) and (4.8), we can obtain the derivatives of the volumetric strain with respect 

to time and z to give, 

~ 8Ckk = ap 
1-2v al al 

2Ji' n2 a2 
p 

--y [; = 
1- 2v kk 8z 2 

(4.9a) 

(4.9b) 

Substituting (4.9a) and (4.9b) in the (2.34b), the partial differential equations governing 

the one-dimensional pore pressure response associated with the theory of poroelasticity 

developed by Biot (1941) can be written as; 

8p kE(l- v) 8 2 p 

al y,,,Cl- 2v)(l + v) az 2 (4.10) 

The result (4.10) is identical to the result (2.8) or (4.1) determined through Terzaghi's 

theory. Therefore, the Biot's theory and Terzaghi's theory result in identical formulations 

for the one-dimensional consolidation of a poroelastic column or element saturated with 

an incompressible pore fluid. 

4.2.3 Numerical Results for the Problem of One-dimensional Consolidation 

The problem of one-dimensional consolidation is examined in order to validate the finite 

element procedure developed for this research. The computational modelling takes into 

account the following aspects: (i) the ideal poroelastic response without any damage­

induced alterations in poroelastic properties, (ii) the evolution of stress state-independent 

damage and its influence on both elasticity and hydraulic conductivity properties, (iii) the 
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evolution of stress state-dependent damage and its influence on both elasticity and 

hydraulic conductivity characteristics. For one-dimensional consolidation, it is expected 

that the response for stress state-dependent evolution of damage be identical to ideal 

poroelasticity due to the compressive state of stress applied to the entire region, in the 

absence of any damage. The computational results include the influence of both loading 

and unloading responses. Figure 4.2 illustrates the finite element discretization of the 

domain subjected to one-dimensional consolidation. The material parameters used for the 

computational modelling are those for sandstone given by Cheng and Dusseault (1993) 

and Shiping et al. (1994); i.e. 

Elasticity parameters: E = 8300 MPa ; v = 0.195 

Fluid transport parameter: kO = 10-6 mIs 

Vu = 0.4999 

Failure parameters: (Je = 30 MPa (compressive); (J1' =3 MPa (tensile) 

Damageparameters: r=1J=130; De =0.75 ,P=3.0xl05 

The depth of the layer is assumed to be 1 OO( m) and the total stress, applied to the layer is 

IOOkPa. 

Figure 4.3 presents a comparison of computational results, obtained from the finite 

element procedure discussed in Chapter 3 and analytical results. Figures 4.4 and 4.5 

present the computational results for one-dimensional consolidation with evolution of 

damage in the sense of either stress state-independency or stress state-dependency. The 

damage-induced alterations in the hydraulic conductivityincreases the rate of 

consolidation as a result of faster dissipation of the excess pore water pressure. 

Furthermore, no damage evolution exists when the stress state-dependent criteria for the 

evolution of damage within the region are utilized. A compressive state of stress results 

in no alteration in the poroelastic properties of the column. 

The computational scheme is also applied to examine the influence of the choice of the 

assignment of the dependent variables, namely the displacements and pore fluid pressures 
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to the nodal locations on the stability of the results. To examme this, the following 

choices of element configurations are considered: (i) a twenty-node element, where aIl 

nodes are assigned the displacements and pore pressures and (ii) a twenty-node element, 

where aIl the nodes are assigned the displacement and only the edge nodes account for 

the pore pressure. Figure 4.6 presents the computational results for those choices of 

elements. Figure 4.6 indicates that at early times, instability occurrs, in situation where aIl 

nodes account for the displacements and pore pressures in finite element discretization. 

z y 

Figure 4.2 Finite element discretization of the domain considered in the problem of one­

dimensional consolidation. 
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Figure 4.3 A comparison between the computational results obtained by the finite 

element procedure and analytical results for ideal poroelasticity. (results for both loading 

and unloading) 
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Figure 4.4 Computational results for one-dimensional consolidation (Stress state­

independent evolution of damage). 

76 



0.001 0.01 0.1 

· p(t) 
0.9 • 

0.8 

0.7 

0.6 ; 

T 

0"0 

-Ideal poroelasticity 

o Stress state-dependent 
damage 

10 100 

Figure 4.5 Computational results for one-dimensional consolidation (Stress state­

dependent evolution of damage). (results for both loading and unloading) 
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Figure 4.6 Computational results for two choices of computational schemes (A) only 

edge nodes account for pore pressure effects, (B) aIl nodes account for pore pressure 

effects. 
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4.3 The Consolidation of a Poroelastic Sphere 

The problem of the consolidation of a poroelastic sphere has been investigated 

analytically by Mandel (1953) and Cryer (1963). Both these investigations demonstrated 

that the analytical solutions for pore pressure development at the centre of sphere (Figure 

4.7), obtained from Terzaghi's theory and Biot's the ory ,can be considerably different. 

The application of Biot's theory to the poroelastic sphere predicts an increase in the pore 

pressure, at an early time, following by a decay, which Terzaghi's the ory cannot account 

for due to the absence of an appropriate form of coupling between mechanical 

deformations and deformations of the pore fluid. This effect was first observed by 

Mandel (1953) and confirmed by Cryer (1963) and is generally referred to as the Mandel­

Cryer effect. In the following section, the Mandel-Cryer effect in a poroelastic sphere 

will be discussed. 

Total stress (Jo 

r 

Figure 4.7 The prob1em of the consolidation of a poroelastic sphere. 
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4.3.1 Analytical Solution for Consolidation of a Poroelastic Sphere Based on 

Terzaghi's Theory 

The partial differential equation governmg pore pressure decay in a fluid-saturated 

poroelastic sphere where constitutive response is defined through Terzaghi's theory is 

given by, 

The boundary and initial conditions prescribed to a poroelastic sphere are: 

p(R,t) = 0"0 

p(a,t) = 0 

at 

at 

t=O 

t>O 

(4.ll) 

(4.l2a) 

(4.12b) 

where a is the radius of the sphere. This problem can be solved using Laplace transform 

techniques and the solution for the pore pressure at the centre of the sphere can be 

represented (see eryer, 1963) in the form; 

p(O,T) = 1 + O(T 3 / 2 ) 

0"0 

(4.l3) 

where, 0"0 is the total radial stress applied at the outer boundary of the poroelastic sphere 

and T is a dimensionless factor oftime given by, 

(4.14) 

The slope of the time variation of the generated pore pressure against the time factor at 

the early consolidation times (t ~ 0) is given by, 
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p(O, T) p(O,O) 

Slope = 
0"0 0"0 

p(O,O) 
(4.15) 

Therefore, Terzaghi's theory gives a diffusive pattern of the generated pore pressure with 

time. 

4.3.2 Analytical Solution for Consolidation of a Poroelastic Sphere Based on Biot's 

Theory 

Cryer (1963) determined the time-dependent pore pressure development at the centre of a 

poroelastic sphere and subjected to the total radial stress () 0 at the outer boundary 

(Figure 4.7), using the theory of poroelasticity, developed by Biot (1941). 

In the case of a poroelastic medium, saturated with an incompressible pore fluid, the 

system of partial differential equations governing the radial displacement U fi and the pore 

fluid pressure pare given by, 

,uV.Vu + (,u + A)VV.U + aVp + f = 0 (4.16a) 

ap k r-l\J fJ aB.. ° ---pv.Vp+a -= 
al Yw W 

(4.l6b) 

where in spherical coordinates R, B, rp (see e.g. Selvadurai, 2000 a), 

a 1 a 1 a v =-eR +--eB + e 
aR RaB RsinB arp 'P 

(4.17a) 

V.A = _1_~(R2 A ) + 1 a (A sinB) + 1 aA(Û 
R 2 aR fi RsinB aB B RsinB arjJ 

(4.17b) 
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Using the sphericalcoordinate system R ,8 ,rp in which radial displacement is UR and 

radial strain cIIII' defined by cilil = 8u II and volumetric strain c" is in the form of 
8R 

C" = ;2 ~ (R 2u lI ), the initial condition associated to the system of equations (4.16) that 

corresponds to zero volumetric strain at t = 0 can be expressed as, 

at t= 0 (4.18) 

The boundary condition associated to the system of equations (4.16) that corresponds to 

zero pore pressure at the outer surface is given by, 

p(a,t) = 0 at t> 0 (4.19) 

The boundary condition associated to the system of equations (4.16) that corresponds to 

the radial stress at the outer surface takes the form, 

8u II 1 8 2 
2/1-+1--(R u ) =-(J 

f" 8R R 2 8R R 0 
(4.20) 

Using a Laplace transform technique, Cryer (1963) has examined the above initial 

boundary value problem to develop an expression of the pore pressure. At early times, 

this result can be expressed as (see Cryer, 1963) 

p(O,T) =1+ 8(l+v)(1-2v).JT +O(T 3/ 2 ) 

(Jo Jr(l- v) 
(4.21) 

where T is the dimensionless time factor defined by Equation (4.14). Considering the 

slope of the generated pore pressure vs. the time factor we obtain, for early time of the 

consolidation process (t ~ 0 ), 
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p(O, T) p(O,O) 

Slope = (J'o (J'o = 8(1 + v)(1-2v)-!f+O(T 312 ) 

p(O,O) Jr(I- v) 
(4.22) 

Therefore, Biot's the ory gives an initial increase of the pore pressure at the centre of a 

poroelastic sphere except for the case when v = 0.50. This increase is referred to as 

Mandel-Cryer effect. The results of experiments conducted by Gibson et al. (1963) and 

Verruijt (1965) also support the existence of the Mandel-Cryer effect (Figure 4.8). 

The result (4.22) shows that the Mandel-Cryer effect is influenced by the mechanical 

properties of the poroelastic medium and hence damage-induced alterations in poroelastic 

parameters are expected to influence the Mandel-Cryer effect. 

p(O,t) 

0-0 

1.0 

Figure 4.8. The Mandel-Cryer effect, obtained from the experimental observations (After 

Gibson et al., 1963). 

4.4 Numerical Results for Consolidation of A Poroelastic Sphere 

The problem of consolidation of a poroelastic sphere (Figure 4.7) is examined to validate 

the finite element procedure developed for this research. The analytical solution given by 
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Cryer (1963) is used to compare with the numerical results determined through the finite 

element procedure. 

Cryer (1963) used Laplace transform technique to determine analytically the time­

dependent pore pressure development at the centre of a poroelastic sphere, which can be 

expressed as; 

peT) _ ~ -8\f' +2(4\f' -sn)/cosF, _ 
- ~ 2 exp( SII T ) 

0-0 II~I Sil -12\f' + 16\f' 
(4.23) 

where \f' = f.1 1(2f.1 + À), T is defined by (4.14) and sn are the roots of the characteristic 

·equation, 

(4.24) 

and S is the Laplacetransform parameter. 

Figure 4.7 shows the finite element discretization and boundary conditions for the 

problem of consolidation of a poroelastiC sphere. The material parameters used for the 

computational modelling are those for sandstone given by Cheng and Dusseault (1993) 

and Shiping et al. (1994); i.e. 

Elasticity parameters: E = 8300 MPa ; v = 0.0,0.33,0.50 

Fluid transport parameter: e = 10-6 mis 

Vu = 0.4999 

The radius of the poroelastic sphere is assumed to be 10(m) and the external radial stress 

applied is 1 OOkPa . 

Figure 4.9 presents a comparison of computational results, obtained from the finite 

element procedure discussed previously and results of the analytical developments by 
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Cryer (1963). Figure 4.9 shows a good agreement between the results obtained by the 

finÎte element procedure and analytical results. 
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Figure 4.9 Pore pressure development at the centre of a poroelastic sphere 
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CHAPTER5 

THE SPHEROIDAL FLUID-FILLED INCLUSION IN A DAMAGE­

SUSCEPTIBLE GEOMATERIAL 

5.1 Introduction 

The spheroidal fluid inclusion, located in an extended poroelastic medium is an idealized 

form of the defects in geomaterials. In reality, the sedimentation and glacial tills can 

result in development of the fluid inclusions. The fluid inclusions can have an arbitrary 

shape resulting from the in-situ stress states and the preferred orientation of the existing 

defects. It is therefore convenient to consider a fluid inclusion of an idealized shape. 

Spheroidal fluid inclusions, including oblate, prolate and spherical inclusions can be 

treated as an idealized shape of the defects in geomaterials. The fluid inclusions are of 

interest of different fields of engineering, including engineering geology, petroleum 

engineering and geotechnical engineering. 

Fluid-filled inclusions also belong to a class of problems where the pore pressures 

increase at early stages of the consolidation process due to the compatible interaction 

between incompressible pore fluid and the deformations of the porous solid skeleton. As 

discussed in Chapter 4, the existence of Mandel-Cryer is a result of the formulation of 

poroelasticity problems in terms of Biot' s theory of poroelasticity. The consolidation 

theories of Terzaghi (1923) and Rendulic (1936) are void of the excess pore pressure 

effect. Experimental observations of the Mandel-Cryer effect are also given by Gibson et 

al. (1963) and Verruijt (1965). 
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A physical explanation for the Mandel-Cryer effect is related to the observations that at 

the early stages of pore pressure development, the changes in volume associated with 

consolidation will invariably occur at regions close to surfaces that allow the free 

drainage. The reduction in volume in these exterior regions induces a compression of the 

interior regions and such stressing action willlead to the development of additional fluid 

pressures within the interior regions. Therefore, the Mandel-Cryer effect results from 

these additional fluid pressures. A list of references related to this area is documented by 

Cryer (1963), Schiffman (1984), Detoumay and Cheng (1993) and by Wong et al. (1998) 

in connection with the study of unsaturated soils. 

Cryer (1963) also suggested that the amplification and subsequent decay in pore pressure 

is related to the elastic stiffness and hydraulic conductivity of the poroelastic medium. It 

is therefore expected that any alterations in poroelastic parameters as a result of the 

development of damage in the porous skeleton will aiso influence the amplification and 

decay in pore pressure within the brittle poroelastic solid. This influence of damage­

induced alterations in poroelastic parameters on Mandel-Cryer effect has not been 

addressed in the literature. 

Although not directly related to a fluid inclusion, the work of de Josselin de Jong (1953) 

examined the time-dependent response of a spherical cavity subjected to an axialloading 

and located in an extended poroelastic medium. Rice et al.. (1978) determined an 

analytical solution for the deformation around a spherical inclusion filled with highly 

permeable soft material, surrounded by a poroelastic medium and subjected to shear 

stress. Kanji et al. (2003) examined analytically the time-dependent pore pressures and 

stresses developed within a pressurized hollow cylinder of transversely isotropie 

poroelastic material. Li (2003) developed an analytical solution to the problem of 

consolidation around a pressurized borehole located in a poroelastic medium with double 

porosity, resulting from stressing, in presence of non-isotropie in-situ state of stresses. Li 

(2003) also indicated that the pore pressure decay in the borehole is influenced by non­

isotropy in the in-situ stress state. 
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The complex geometry and the time-dependency of the fluid pressure within the fluid 

inclusion can be a significant restriction in using the analytical approach to model the 

fluid pressure development within the spheroidal fluid inclusion located in an extended 

poroelastic medium. Therefore the attention is focused on the application of the 

computational procedures for the study of the spheroidal fluid inclusion problem. 

This Chapter deals with computational modelling of fluid pressure development within 

spheroidal inclusions located at an extended brittle poroelastic medium susceptible to 

damage. The pore pressure development is due to a far-field tri-axial stress state where 

the components have a time-dependency as in the form of Heaviside step function. The 

tri-axial stress state can reflect the in-situ stress state in the geological material resulting 

from geostatic stresses or the geo-tectonics of the region. Depending upon the geometric 

aspect ratio, spheroidal fluid inclusions can be grouped into either oblate orprolate 

inclusions. The influence of damage-induced alterations in the poroelasticity parameters 

and stress state-dependency of the evolution of damage, on the development of fluid 

pressure development within the spheroidal fluid inclusion is examined through the 

computational scheme presented in the previous chapters. 

5.2 Computational Modelling and Results 

The problems dealing with both oblate and prolate spheroidal fluid inclusions are 

examined separately. The inclusions are located at an extended damage susceptible 

poroelastic medium and subjected to a tri-axial state of stress defined by a far-field axial 

stress (J A and a far field radial stress (J Il both of which have a time-dependency in the 

form of a Heaviside step function. The excess pore fluid pressures in the far field are 

maintained at zero and the development of the fluid pressure within the spheroidal 

inclusion is investigated for the following cases, (i) damage-induced alterations in both 

the elasticity and hydraulic conductivity characteristics, (ii) the influence of the 

anisotropy in the far-field stress state, (iii) The influence of stress state-dependency of the 

evolution of damage and (iv) the geometric aspect ratio of the spheroidal fluid inclusion. 

For the purposes of computational modelling, sandstone is selected as a poroelastic 
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material susceptible to damage. The following parameters are used for sandstone, which 

have been given by Cheng and Dusseault (1993) and Shiping et al. (1994). 

Elasticity parameters: E = 8300 MPa ; v = 0.195 

Fluid transport parameter: e = 10-6 mIs 

Vu = 0.4999 

Failure parameters: (je =30 MPa (compressive); CYr =3 MPa (tensile) 

Damage parameters: r = 17 = 130 ; De = 0.75 ,p = 3.0x 105 

ldeally, the computational modelling of the fluid inclusion should be represented as a 

fluid element with incompressible behaviour. This entails the re-formation of the 

computational procedure to account for the fluid response. The procedures for the 

implementation of the fluidelement are discussed by Zienkiewicz and Taylor (2000). In 

this research, however, the spheroidal fluid inclusion is modelled by considering an 

alteration in the poroelastic parameters applicable to the inclusion region. This is 

considered sufficient for purposes of illustrating the overall response of the fluid 

inclusion. Accordingly, the inclusion is modeled as a non-damage-susceptible poroelastic 

medium with a relatively low shear modulus (low in relation to the surrounding 

poroelastic medium) and a relatively high hydraulic conductivity. The specific values of 

the poroelastic parameters chosen to model the fluid inclusion are as follows: 

Elasticity parameters: G = 1 MPa; VI = 0.4999 

Fluid transport parameters: kO = 10-3 mIs 

These values give a nearly uniform time-dependent fluid pressure variation within the 

inclusion region, to within an accuracy of 2% in the spatial variation. These fluid 

pressures are determined using the pore pressures ca1culated at the specific locations of 

the element, which are applicable to the poroelastic element. A reduction of G by an 

order of magnitude and the increase in kO by an order of magnitude does not result in a 

noticeable change in the computed fluid pressures. The computational results are verified 
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at each stage to ensure that aIl points within the inclusion have the same fluid pressure at 

any given time. 

5.2.1 The Oblate Spheroidal Fluid Inclusion 

First is considered the problem of an extended poroelastic medium susceptible to 

damage, which is bounded internally by an oblate spheroidal fluid inclusion (Figure 5.1). 

The poroelastic medium is subjected to a far-field tri-axial stress state defined by an axial 

stress a A and radial stress aN that have a Heaviside step function form. Figure 5.2 

shows a typical finite element discretization and the associated boundary conditions used 

in the computational modelling of the oblate fluid inclusion problem. Figures 5.3 to 5.5 

illustrate the range of responses for the time-dependent development of the pressure in 

the oblate fluid inclusion for the cases where the extended medium exhibits (i) the elastic 

response without any evolution of damage, (ii) the alterations in elastic stiffness due to 

evolution of damage with or without alterations in hydraulic conductivity to assess the 

influence of increase in hydraulic conductivity in time-dependent response and (iii) the 

geometry of the oblate spheroidal fluid inclusion. The results illustrate the significant 

influence of the hydraulic conductivity evolution in the poroelastic medium susceptible to 

damage on both the rise and decay of the pressure in the fluid inclusion. The results 

indicate that the geometry of the fluid inclusion also has an influence on both the rise and 

decay of the pressure in the fluid inclusion. As the oblate spheroid flattens or as n = b / a 

becomes small, the alterations in the elastic stiffness and hydraulic conductivity of the 

damage-susceptible poroelastic medium induced by stress amplification in regions of 

high boundary curvature of the inclusion results in both a more rapid generation of the 

peak fluid pressure and its decay. Figure 5.6 shows comparisons for the pressure decay in 

a flattened oblate spheroidal fluid inclusion corresponding to poroelastic materials that 

exhibit stress state-dependent and stress state-independent evolution of damage for a 

range of values of the parameter R that accounts for the non-isotropy of the far-field 

stress state. It is evident that for the fluid inclusion with an oblate spheroidal shape, the 

influence of the non-isotropy in the far-field stress state on the pressure decay response 

increases as R decreases. 
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Figure 5.1. Oblate spheroidal fluid inclusion in an extended poroelastic medium. 
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Figure 5.2. Finite element discretization of the damage susceptible poroelastic medium 

bounded intemally by an oblate spheroidal fluid inclusion: geometry and boundary 

conditions. 
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Figure 5.3. Evolution offluid pressure in the oblate spheroidal fluid inclusion in a non­

isotropie far field stress field: Comparison of results for the damaged and ideal 

poroelastieity material responses (n = 0.5). (Stress state-independent damage evolution) 
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Figure 5.4. Evolution offluid pressure in the oblate spheroidal fluid inclusion in a non-

isotropie far field stress field: Comparison of results of the damaged and ideal 

poroelastieity material responses (n = 0.5; 1.0). (Stress state-independent damage 

evolution) 
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Figure 5.5. Evolution of fluid pressure in the oblate spheroidal fluid inclusion: 

Influence of the geometry of the oblate spheroidal inclusion in a non-isotropie far field 

stress field. (Stress state-independent damage evolution) 

93 



p(t) 

a", 

1.6 

1.4 

1.2 

p(t) 0.8 

0'111 
0.6 

0.4 

0.2 

0 

0 0.5 

1.8 

1.6 

1.4 

1.2 

p(t) 

am 0.8 

0.6 

0.4 

0.2 

0 
0.5 

1.8 

1.6 

1.4 

1.2 

0.8 

0.6 

0.4 

0.2 

0 0.5 

-Ideal poroelasticity 

o 

t~lrl!:-;S stah: inJcpcndcl11) 
Jmnagc 

(Slrcssstulcdcpcndcnt) 
dUll1u~c 

n=0.20, R=l/2 

1.5 

-Elastic 

o 

(Slress sWlc indcpcndcnn 
dmnagc 

(!)lrcs.~ SlalCllcpcndcllt) 

d(lInagc 

n = 0.20, R = 2 

1.5 

p(t) 

Œm 

2.5 

p(t) 

0'/11 

2.5 

-Ideal poroelasticity 

(SlresS stalc ind\.-11CnJcllt) 
dallUl~ 

o 
(SlreSS stalc ucpcndcnt) 
dmnug.c 

n = 0.20, R = 1 

1.5 

1.2 

0.8 

0.6 

0.4 

0.2 

0 

0 0.5 

1.6 

1.6 

1.4 

1.2 

0.8 

0.6 

0.4 

0.2 

0.5 

2.5 

1.5 

.fT 

-Ideal poroelasticity 

o (SlresS sUIte dCl"cndcnt) 
dumagc 

(Stress stalc indcpcndcm) 
dmnugc 

n=0.20, R=l/3 

2.5 

~Ideal poroelasticity 

c 

{Strt:ss stllle indcpcndcnn 
d:UllllgC 

{S(rc.~s shl!c dcpcndcnO 
dmnagc 

n = 0.20, R = 3 

1.5 2.5 

Figure 5.6. Evolution offluid pressure in the oblate spheroidal fluid inclusion in a non­

isotropie far field stress with different deviatorie stress ratios. ( Stress state-dependent 

damage evolution.[ R = a A / ail ; n = b / a 
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5.2.2 The Prolate Spheroidal Fluid Inclusion 

The computational modelling is now applied to examine the problem of an extended 

damage-susceptible poroelastic medium, which. is bounded intemally by a prùlate or an 

elongated fluid inclusion (Figure 5.7). A typical finite element discretization of the 

poroelastic domain used in the computational modelling of the prolate fluid inclusion and 

the associated boundary conditions are sh6wn in Figure 5.8. Figures 5.9 to 5.11 

demonstrate time-dependent development of fluid pressure in the prolate fluid inclusion 

for the cases where the poroelastic medium exhibits (i) the elastic response without any 

evolution of damage, (ii) the alterations in elastic stiffness due to evolution of damage 

either with or without alterations in hydraulic conductivity and (iii) the geometry of the 

prolate spheroidal fluid inclusion. Similar to the oblate fluid inclusion problem, the 

results indicate the relative influence of the alterations in hydraulic conductivity in the 

damage-susceptible poroelastic medium on both rise and decay in fluid pressure. The 

variation in the geometry of the elongated spheroid also has an influence on fluid 

pressure in the elongated fluid inclusion. As the prolate fluid inclusion approaches a 

needle-shape, both the time to attain the peak fluid pressure and the time for the 

dissipation of the generated fluid pressure, are reduced. Figure 5.12 illustrates the results 

that demonstrate the influence of the non-isotropy of the far-field stress state on the rise 

and decay of the pressure within the fluid inclusion. As the far-field axial stress (J'A 

increases with respect to the far-field radial stress (J'II' the time for attainment of the peak 

fluid pressure and the time for decay ofthisfluid pressure in the fluid inclusion located in 

the damage-susceptible poroelastic medium are both considerably reduced. In contrast to 

the results obtained for the oblate or flattened spheroid, the influence of the non-isotropy 

of the far-field stress state is dominant when R that accounts for the non-isotropy, 

increases. Agairt, the stress amplification as a result ofboth the shape of the inclusion and 

the axial stress state contributes to an increase in the damage in the regions that highly 

stressed thereby altering the amplification and decay pro cesses of the pressure within the 

fluid inclusion. 
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Figure 5.8. Finite element discretization of the damage susceptible poroelastic medium 

bounded internally by a prolate spheroidal fluid inclusion: geometry and boundary 

conditions. 
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Figure 5.9. Fluid pressure for prolate fluid inclusion in a non-isotropie stress field 

(n =·2.0). (Stress state-independent damage evolution) 
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Figure 5.10. Evolution of fluid pressure in the prolate spheroidal fluid inclusion: 

Influence of the geometry of the prolate spheroidal inclusion in a non-isotropie far field 

stress field. (Stress state-independent damage evolution) 
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CHAPTER6 

LATERAL LOADING OF A ROCK SOCKET EMBEDDED IN A 

DAMAGE-SUSCEPTIBLE GEOLOGICAL MEDIUM 

6.1 Introduction 

Structural elements such as piles, piers or rock sockets have applications in geotechnical 

engineering. They are used frequently to transmit axial, lateral and torsional loads to the 

interior of the supporting geological medium. An early investigation of related interest is 

the work of Reese and Matlock (1956). They investigated the problem dealing with the 

calculation of the ultimate lateral resistance of a pile derived from process at a pile-sand 

interface. Broms (1965) also investigated the ultimate lateral load of a pile embedded in 

sands or cIays. Poulos and Davis (1980) presented a set of elastic solutions for flexible 

piles subjected to both axial and lateral loading. Xu and Poulos (2000) investigated the 

elastic response of a group of piles embedded in an elastic half-space and subjected to a 

lateral load. Short anchor piles and rock sockets are used quite frequently in rock 

mechanics applications where foundations resting on rock formations need to be 

anchored against uplift and lateral loads. Parkin and Donald (1975) investigated the 

different aspects related to the design and performance of rock sockets embedded in 

Melbourne mudstone. Pells and Turner (1979) determined an elastic solution applicable 

to rock sockets located in a half-space region and subjected to an axial load. Rowe and 

Pells (1980) studied analytically, the axial de formation of a rock socket embedded in 

mudstone. This problem was also investigated by Donald et al. (1980) who used the finite 

element methods to model the interaction problem. Williams and Pells (1981) also 

investigated the skin resistance of rock sockets located in soft rocks, using full scale load 

tests. Glos and Briggs (1983) conducted a full scale test on rock sockets embedded in a 
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soft rock to determine the elastic deformation of the rock sockets at the low stress levels 

associated with the working loads. Rowe and Armitage (1987) studied analytically the 

behaviour of drilled piers in soft rock, to determine in particular the influence of the 

disturbance of the rock region due to shaft drilling on the bearing capacity of the rock 

piers. Whitworth and Turner (1989) conducted a full scale tests on the rock socket piles 

in the Sherwood Sandstone of Central Birmingham, UK. Douglas and Williams (1993) 

presented a documentation of the design of West Gate Freeway Project in Sydney, 

Australia as a study case for the design of rock sockets embedded in soft rocks including 

mudstone and sandstone. Leong and Randolph (1994) examined the deformation and 

failure of rock socket piles using finite element methods. These authors modelled the 

response of the rock sockets by appeal to the theoryofplasticity. 

A parameter that de fines the flexible or rigid nature of a rock socket embedded in a 

geologic medium is its relative flexibility. The relative flexibility of the pile is determined 

through a combination of parameters including the rock socket dimensions (e.g. length 

(L) and diameter (d» and the elastic stiffness ratio between pile material and 

geomaterial (El' / Es)' These parameters can be combined to develop a non-dimensional 

parameter usually referred to as the relative stiffness. The relative stiffness parameter 

usually evolves in an analysis and formulation of a soil-pile or geologic medium-rock 

socket or soil-structure interaction problem (see Selvadurai, 1979a). An example of such 

a non-dimensional relative stiffness parameter is, 

(6.1) 

As indicated by Poulos and Davis (1980), as the relative stiffness Rbecomes large 

(R > 100) the flexibility of the pile in bending becomes small and the pile can be 

considered as a rigid element. The idealization of a pile as a rigid element is a useful 

limiting case for determining the pile-geomaterial interaction behaviour for anchor piles 

and rock sockets that are normally associated with many civil engineering applications. 

Fmihermore, when the effects of flexibility of the pile can be eliminated, the resuIting 
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analysis is considerably simpler than the equivalent analysis that takes into consideration 

the influence of flexibility. The focus of this research is to investigate the time-dependent 

behaviour of a rigid anchor pile, which is embedded near the surface of a saturated 

geomaterial half-space region. The classical theory of poroelasticity developed by Biot 

(1941) can be used to examine the mechanics of fluid saturated geologic materials such 

as fluid saturated sandstone, mudstone, shale and other soft rocks, which usually require 

the use of anchor piles and rock sockets to sustain uplift and lateral loads. The 

consideration of fluid saturation effects in the supporting geomaterial introduces time­

dependent effects into the modelling of the interaction problem. Bjerrum et al. (1958) 

were the first to present a review of available evidence related to the time-dependent 

response of the piles embedded in saturated geomaterials. The evidence was also 

discussed in detail by Bjerrum and Flodin (1960). The studies discussed by Bjerrum et al. 

(1958) dealt mainly withpiles embedded in soft clays where effects of both primary 

consolidation and secondary creep were present in the material behaviour. Soderberg 

(1962) used the classical theory of poroelasticity and an approximate procedure to 

examine the time-dependent response of the rigid piles embedded in cohesive soils. 

Poulos and Davis (1968) developed an analytical solution for the problem of a single 

rigid pile surrounded by a poroelastic region with either an incompressible or a 

compressible pore fluid. The results were also presented for the response of the single 

rigid pile embedded either in a poroelastic half-space region a poroelastic region of a 

finite depth. The poroelasticity solutions are only for the case of the single rigid pile· 

embedded in a poroelastic medium and subjected to an axial load and do not account for 

the time-dependent response of a laterally loaded rigid pile. In order to investigate time­

dependency in the embedded pile or rock socket problem it is necessary to use the 

computational procedures that take into account the coupled aspects present in the theory 

of poroelasticity. 

In this chapter we examine the problem of the lateral translational behaviour of a rigid 

pier or rock socket that is embedded at the surface region of a damage susceptible fluid 

saturated poroelastic medium. The evolution of damage in the supporting brittle 

poroelastic medium can influence the transient time-dependent response of the short rigid 
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pile, resulting primarily from the alterations in poroelastic properties. The damage­

induced reduction in elastic parameters can result in a larger lateral displacement of the 

rock socket at the end of the consolidation process and the damage-induced increase in 

the hydraulic conductivity is expected to accelerate the consolidation process in the 

surrounding poroelastic medium. Furthermore, the lateral loading of the rock socket can 

introduce the development of damage that is stress state-dependent due to the 

development of both compressive and tensile stress states in the supporting brittle 

geomaterial. This stress state-dependency of the evolution of damage can also have an 

influence on the time-dependent behaviour of the rigid short pile. 

In the analysis of the laterally loaded rigid pile considered here the exposed end of the 

pile is subjected to a lateral load in the form of a Heaviside step time function (Figure 

6.1). The computational modelling accounts for the evolution of damage in porous 

skeleton with alterations in both elasticity and hydraulic conductivity characteristics. The 

stress state-dependency in the evolution of damage is also taken into consideration. In the 

treatment of the isolated rigid pile, the supporting geomaterial is generally regarded as a 

semi-infinite domain. The finite modelling of a semi-infinite domain as a finite region 

does place restrictions on the extensive applicability of the results. One possibility is to 

incorporate infinite elements for the computational modellingof the do main (see e.g. 

Bettess and Zienkiewicz, 1977, Selvadurai and Gopal, 1986 and Schrefler and Simoni, 

1987, etc.). The alternative approach is to calibrate the modelling" of the do main by 

comparing the results for the computational modelling with equivalent results, mostly 

analytical, applicable to the problem of a laterally loaded rigid pile embedded in an 

elastic medium. Once the adequacy of the computational representation of the semi­

infinite do main is established, the computational modelling can be extended to the 

consideration of the poroelasticity problem that incorporates both effects of classical 

poroelasticity and damage phenomena. 
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6.2 Elastic Solutions for a Rigid Pile Embedded in an Elastic Half-space 

In this section, we examine the computational modelling of the problem of the axial 

loading of a rigid pile embedded in an isotropic elastic half-space and compare the results 

of the elastic stiffness derived from the computational modelling with equivalent results 

available in the literature. 
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1+- 1t-+l 
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Rigid pile 

Poroelastic medium 

Figure 6.1. A laterally loaded rigid pile embedded in a poroelastic geomaterial 

The problem of the axial loading of a cylindrical elastic inclusion embedded in an elastic 

half-space was examined by Muki and Sternberg (1969). These authors used the results 

developed by Mindlin (1936) for the internaI loading of a half-space to formulate the 

integral equations and proceeded to solve these numerically. The problem of rigid 

spheroidal anchor region embedded in an isotropie elastic half-spaee and subjected to an 

axial load was developed by Selvadurai (1976). Luk and Keer (1979) developed an 

analytical solution for a cylindrical elastic inclusion embedded in an elastic half-space 

and subjected to the axialloading and compared the results for the axial stiffness with the 

exact closed form solution given by Selvadurai (1976). This problem has also been 
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extended to coyer the problem of the lateral loading (see e.g. Apirathvorakij and 

Karasudhi, 1980 and Poulos and Davis, 1980). The problem of the rigid pile embedded in 

an elastic medium also provides solutions that are applicable to the poroelasticity 

modelling of the analogous problem. The elasticity solution applicable to the case where 

v = 0.50 corresponds to the poroelastic behaviour at the start of the consolidation process 

and v = v' corresponds to the poroelastic result corresponding to t ~ OC! • The elasticity 

solutions are incapable of providing information of the rate of consolidation experienced 

by the pile. An analytical treatment of a hollow rigid pile embedded in an isotropic elastic 

half-space region is developed by Selvadurai and Rajapakse (1985). In this study the 

fundamental solutions associated with the interior loading of a half-space region were 

used to generate the integral equations for unknown interface tractions. These authors 

were able to determine the results for the stiffness of the hollow pile under generalized 

displacements and rotation. For the purposes of calibration of the computational 

procedures developed in this thesis, we present the results for the translational elastic 

stiffness for the case of a rigid cylindrical pile that is embedded in a half-space region and 

subjected to a lateral load. The alternative analytical results were developed by Poulos 

and Davis (1980) and Apirathvorakij and Karasudhi (1980) and Selvadurai and 

Rajapakse (1985). The Table 6.1 presents the results of these analytical solutions for the 

case of a rigid pile embedded in an elastic half-space for a Poisson's ratio v = 0.195. In 

Table 6.1, Po is the lateral force; fi is the shear modulus; d is the pile diameter and f.. h 

is translational displacement of the head of the rigid pile along the line of application of 

the lateral force. Table 6.1 indicates that the analytical solution given by Selvadurai and 

Rajapakse (1985) provides estimates for the stiffness for a larger range of pile 

dimensions. For this research the elastic solutions given by Selvadurai and Rajapakse 

(1985) are employed as the basic solutions for the purposes of validating the accuracy of 

the computational methodologies for the purely elastic problem. 
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Table 6.1 Comparison oftranslational stiffness of a laterally loaded rigid pile embedded 

in elastic half-space for different given analytical solutions. ( v = 0.195) 

2Po 1 j.1dt1" 

Method of Analysis LI d = 1.0 Lld=2.0 LI d = 4.0 

Apirathvorakij and Karasudhi (1980) - 8.13 9.54 

Poulos and Davis (1980) 6.25· 8.93 10.84 

Selvadurai and Rajapakse (1985) 7.03 9.80 11.44 

6.3 Computational Modelling of the Laterally Loaded Rock Socket 

In this section we examine the problem of a rigid rock socket pile (length (L) and 

diameter (d », embedded in bonded contact with a damage-susceptible poroelastic half­

space and subjected to a lateralload (Figure 6.1). Rock sockets are generally regarded as 

short rigid piles. As an example, the maximum LI d ratio investigated by Rowe and 

Armitage (1987) is 4.0; Leong and Randolph (1994) modelled LI d ratios that ranged 

. form 1 to 5 and Whitworth and Turner (1989) examined values of LI d that ranged from 

1 to 5. At the interface between the rock socket and the poroelastic medium, several types 

of pore pressure boundary conditions exist. Since complete bonding conditions are 

assumed, no separation is allowed to develop at the rock socket-poroelastic medium 

interface. Therefore, the displacements and pore fluid pressures are the only prescribed 

boundary conditions at the rock socket-poroelastic medium interface. It is also assumed 

that the displacements are continuous at the rock socket-poroelastic medium interface. 

The pore pressure boundary conditioq at the interface can depend on the method of 

installation of the rock socket and the hydraulic conductivity characteristics of the rock 

socket in relation to the poroelastic medium. Therefore, the boundary conditions 

corresponding to pore fluid pressure at the interface of rock socket-poroelastic medium 
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cannot be determined with certainty. In the computational modelling, it is assumed that at 

the interface, the pore pressure can exhibit boundary conditions that correspond to either 

completely pervious (i.e. fully draining) or completely impervious (i.e. undrained) 

conditions. In order to model the rock socket as a rigid cyl indri cal element, the elastic 

modulus of the rock socket region is considered to be 103 times greater than the elastic 

modulus of the undamaged supporting poroelastic region. This enables the modelling of a 

nearly rigid rock socket (with LI d = 4.0) and the relative rotation between the head 

(z = 0) and the toe (z = L) of the rock socket along its axis to be less than 10-4 radians. 

In the finite element modelling, the interface between the rock socket and the poroelastic 

region does not correspond to a precise cylindrical surface, therefore, the adopted do main 

discretization ensures that the interface corresponds, approximately, to a cylindrical 

shape. The head of the rock socket is subjected to a lateral load directed along the x-axis, 

in the form of a Heaviside step function of time (Figure 6.1). 

Since the poroelastic region is homogeneous, the problem exhibits a state of symmetry 

about the plane containing the line of action of the horizontal force P(t). In the 

computational modelling therefore, attention is restricted to a region with the following 

dimensions: - 15d :s; x :s; 15d; O:s; y :s; 20d; O:s; z :s; 20d , where d is the diameter of the 

rigid rock socket. The boundary conditions at the outer surfaces of the region correspond 

to the conventional zero normal displacement and zero sheartraction conditions 

applicable to the porous skeletal response and the pore fluid pressure boundary conditions 

are prescribed to be zero. The finite element discretization and the associated boundary 

conditions applicable to the two classes of interface conditions (pervious/impervious) are 

shown in Figures 6.2 and 6.3. We consider the problem related to a rigid cylindrièal rock 

socket that is embedded in a poroelastic medium susceptible to damage for the following 

categories (i) ideal poroelastic response of the medium without any damage evolution; 

(ii) the poroelastic response of the medium with evolution of damage but no alterations in 

hydraulic conductivity characteristics; (iii) the poroelastic response with evolution of 

damage and alterations in both elasticity and hydraulic conductivity characteristics and 

(iv) the poroelastic response of the medium with stress state-dependent evolution of 

damage and alterations in both elasticity and hydraulic conductivity characteristics. 
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6.4 Computation al ResuIts 

In the computational modelling, the idealized problem corresponding to a rock socket 

embedded in a half-space is modelled as a finite domain. It is therefore necessary to 

evaluate the dimensions of the finite domain that will approximate a half-space region. 

We first consider the theoretical problem of a rigid pile, embedded in an elastic half­

space region. Solutions were presented by Poulos and Davis (1980) and Selvadurai and 

Rajapakse (1985). The analytical results obtained by these authors for the rigid pile have 

been compared with equivalent results obtained through the computational modelling 

where the domain is offinite extent. The validation of the resultsfor the non-dimensional 

parameter 2Po 1 j.Jd11", (where Po is the lateral load; f.1 is the shear modulus; d is the 

pile diameter and 11" is translational displacement of the head of the pile along the line of 

action of the lateralload direction), with the pile geometry defined by the parameter LI d 

are shown in Table 6.2. The results show good agreement between the analytical results 

given by Selvadurai and Rajapakse (1985) and the computational estimates for values of 

LI d > 1. The results of Poulos and Davis (1980) correlate well with the computational 

results when L 1 d ~ 1 . 

Table 6.2. Comparison of translational stiffness of a rigid pile subjected to a lateralload 

and elastic behaviour of the medium ( v = 0.195) 

2Po 1 j.Jdl1 h 

Method of Analysis LI d = 1.0 LI d = 2.0 LI d = 4.0 

Present study 6.28 9.71 11.26 

Poulos and Davis (1980) 6.25 8.93 10.84 

Selvadurai and Rajapakse (1985) 7.03 9.80 11.44 
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These results indicate that the computational methodologies can be successfully adopted 

to model the problem of the elastic behaviour of the laterally loaded rigid pile embedded 

in an isotropie elastic half-space. We now extend the computational modelling to include 

the problem of laterally load of a rock socket that is embedded in a damage-susceptible 

poroelastic medium. We consider all aspects of damage-induced alterations in the 

poroelastic properties and stress state-dependency in the modelling. The material 

parameters are those that are provided for sandstone by Cheng and Dusseault (1993) and 

Shiping et al. (1994): 

Elasticity parameters: E = 8300 MPa ; v = 0.195 Vu = 0.4999 

Fluid transport parameter: e = 10-6 mis 

Failure parameters: O'c =30 MPa (compressive); O'T=3 MPa (tensile) 

Damage parameters: r = '7 = 130; De = 0.75 ,fi = 3.0 X 105 

The finite element discretization of the three-dimensional region containing the laterally 

loaded rock socket is shown in Figure 6.4. The computational modelling is performed for 

different values of the length to diameter (L 1 d) ratio of the rock socket. The non­

dimensionai parameter, which is used to represent the time-dependent transiationai response 

of the rigid pile is the same as that used by Selvadurai and Rajapakse (1985) (i.e. 2Po 1 Jld!1", 

where Po is the magnitude of the laterai Ioad which is constant with time and 11" IS now 

time-dependent). The time factor used to simplify the normalized time is defined by; 

T = 8J1(1- v)kOt 

(1- 2v)d 2 
(6.2) 

where JI, v are shear modulus and Poisson's ratio of the porous skeleton, respectively and 

kO is the hydraulic conductivity of the undamaged poroelastic material. The degree of 

consolidation of the pile as estimated from the pile head translational displacement is defined 

by: 
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(6.3) 

where ~ li (t) is the translational displacement at the center of pile in the direction of applied 

load, at time t. 

Detail at A 

Poroelastic medium 

Figure 6.4. Finite element discretization of the rock socket-poroelastic medium system. 

Figure 6.5 illustrates the time-dependent translational displacement at the head of a rock 

socket with aspect ratio LI d = 1.0, for the case where the interface between the rock socket 

and the poroelastic medium is assumed to be completely pervious (i.e. fully drained). The 

excess pore water pressures at this interface are therefore zero. The results presented in 

Figure 6.5 are related to the four categories of poroelastic response of (i) ideal poroelastièity 

that does not account for any evolution of damage in porous skeleton, (ii) poroelastic damage 

with only reduction in elastic stiffness, (iii) stress state-independent evolution of damage 

with both alterations in elasticity and hydraulic characteristics and (iv) stress state-dependent 

evolution of damage with both alterations in elasticity and hydraulic conductivity 

characteristics. The results show that damage-induced alterations in hydraulic conductivity of 
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the brittle poroelastic medium have a greater influence on the transient response of the rock 

socket than the situation where there is only evolution of damage with reduction in elastic 

stiffness and without any alteration in the hydraulic conductivity. Computational results for 

the stress state-dependent modelling of damage evolution shows less of a difference between 

the ideal poroelastic situation than that for the analysis involving damage-induced alterations 

in both elasticity and hydraulic conductivity characteristics. This is likely due to development 

of compressive stress within the damage-susceptible poroelastic medium, which is restricted 

mainly to one side of the laterally loaded rock socket and that the evolution of damage is 

restricted in view of the stress state-dependent criteria for damage evolution. Figure 6.6 

illustrates the time-dependent lateral displacement at the head of a rock socket with 

LI d = 1.0, for the case where the interface between the rock socket and the poroelastic 

medium is impervious (fully undrained). The results show the same trend as for the analysis 

involving the impervious interface. Figure 6.7 illustrates a comparison between the two cases 

for pervious and impervious interfaces for the case where L / d = 1.0. The influence of 

damage-induced alterations in the case of the impervious interface is greater, but the 

differences are marginal. The change is due to slower rate of pore water pressure dissipation 

for the case of an impervious interface and that any alterations in the hydraulic conductivity 

of the brittle poroelastic medium can influence the time-dependent response in a greater rate. 

Figures 6.8 and 6.9 illustrate the results for the degree of consolidation of the laterally loaded 

rock socket derived, respectively, for interfaces with pervious and impervious pore fluid 

pressure boundary conditions. These results indicate that the rate of consolidation increases 

for situations where damage-induced alterations in the hydraulic conductivity characteristics 

are taken into account. Furthermore, for poroelastic behaviour that accounts for stress state­

dependent damage evolution, the change is less significant. Figures 6.10 to 6.19 illustrate 

similar results applicable to the problems where the rock socket dimensions correspond to 

LI d = 2.0 and 4.0. 
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Figure 6.5. Numerical results for the time-dependent translational displacement of a rock 
socket (L / d = 1.0) embedded in a brittle poroelastic half-space (pervious interface). 
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Figure 6.6. Numerical results for the time-dependent translational displacement of a rock 
socket (L / d = 1.0) embedded in a bri~tle poroelastic half-space (impervious interface). 
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Figure 6.7. Comparison ofresults for the rock socket with (LI d = 1.0)with either a 
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Figure 6.8. Numerical results for the degree of consolidation of a laterally loaded a rock 

socket (L 1 d = 1.0) embedded in a brittle poroelastic half-space (pervious interface). 
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Figure 6.9. Numerical results for the degree of consolidation of a laterally loaded rock 
socket (L 1 d = 1.0) embedded in a brittle poroelastic half-space (impervious interface). 
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Figure 6.10. Numerical results for the time-dependent translational displacement of a 
rock socket (LI d = 2.0)embedded in a brittle poroelastic half-space (pervious interface). 

116 



11.5 
-Ideal poroelasticity 

11 -.- (Stress-state inde pendent) damage 

10.5 o (Stress~state dependent) damage 

x Damage (No permeability evolution) 

10 
2Po 

J1dt1." 9.5 

9 

8.5 

8 

0 10 20 30 40 50 60 70 80 

Figure 6.11. Numerical results for the time-dependent translational displacement of a 
rock socket (LI d = 2.0)embedded in a brittle poroelastic half-space (impervious 

interface). 
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Figure 6.12. Comparison ofresults for the rock socket with (LI d = 2.0)with either a 
pervious or an impervious interface bètween the rock socket and poroelastic half-space. 
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Figure 6.13. Numerical results for the degree of consolidation of a laterally loaded rock 
socket (L / d = 2.0) embedded in a brittle poroelastic half-space (pervious interface). 
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Figure 6.14. Numerical results for the degree of consolidation of a laterally loaded rock 
socket (L 1 d = 2.0) embedded in a brittle poroelastic half-space (impervious interface). 
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Figure 6.15. Numerical results for the time-dependent translational displacement of a 
rock socket (LI d = 4.0)embedded in a brittle poroelastic half-space (pervious interface). 
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Figure 6.16. Numerical results for the time-dependent translational displacement of a 
rock socket (LI d = 4.0)embedded in a brittle poroelastic half-space (impervious 

interface). 
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Figure 6.17. Comparison of results for the rock socket with (L 1 d= 4.0) with either a 
pervious or an impervious interface between the rock socket and poroelastic half-space. 
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Figure 6.18. Numerical results for the degree of consolidation of a laterally loaded rock 
socket (LI d = 4.0)embedded in a brittle poroelastic half-space (pervious interface). 

120 



0.9 
-Ideal poroelasticity 

0.8 
---k- (Stress-state independent) damage 

0.7 
o (Stress-state dependent) damage 

0.6 
x Damage (No permeability evolution) 

U 0.5 

0.4 

0.3 

0.2 

0.1 

0 

0 10 20 30 40 50 60 70 80 

Figure 6.19. Numerical results for the degree of consolidation of a laterally loaded rock 
socket (LI d = 4.O)embedded in a brittle poroelastic half-space (impervious interface). 
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CHAPTER 7 

MECHANICS OF AN IN-PLANE LOADED RIGID ANCHORAGE 

EMBEDDED IN A DAMAGE-SUSCEPTIBLE POROELASTIC 

REGION 

7.1 Introduction 

Anchorages are used quite extensively in geotechnical engineering practice to provide 

restraint against tensile and uplift loads. The applications of anchorages include earth 

retaining structures, slope stabilization procedures, structures such as guyed towers in 

power transmission, restraints for pipelines subjected to uplift and earth movement. 

The geotechnical study of anchors requires the estimation of both their ultimate load 

carrying capacity and the estimation of their time-independent and time-dependent 

displacements under sustained loads in the working range. Wit~ prestressed anchors, the 

time-dependent loss of anchorage loads also becomes an important consideration in their 

geotechnical design. The mechanical behaviour of anchors is largely determined by (i) 

their geometry, (ii) the method of installation of the anchorage and (iii) the geomaterial in 

which the anchor is installed. The technology aspects of these considerations is given in 

articles by Girault (1969) and Hanna (1972, 1982) and Adams and Klym (1972), who 

also give detailed accounts for different types of anchorages, their installation and the 

procedures for the estimation of the ultimate and working load responses. The study of 

anchor behaviour is best approached by considering (i) the types of anchors (i.e.) general 

shapes or specialized configurations, (ii) types of geomaterials in which the anchor is 

installed and (iii) the method of installation of the anchorages. The study of the 
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mechanical behaviour of anchors installed in granular media requires approaches that are 

quite distinct of those required for the study of anchorages that are located in cohesive­

fluid saturated geomaterials. The former category of anchors has been extensively 

studied, starting from the work of Balla (1961) and others including the studies Meyerhof 

and Adams (1968), Vesic (1971, 1972) and Ladanyi and Johnston (1974). These studies 

include the modelling of plate and cylindrical anchors, which are either with shallow 

embedment or deeply located in granular soil media. Developments in this area include 

both experimental and computational procedures (Davie and Sutherland, 1977), Rowe 

and Davis, 1982) that have been used to estimate both their ultimate load capacity and the 

load-deformation behaviour. 

Flat anchorage 

Anehor rod 

y 

z Geologie medium 

Figure 7.1 A flat anchorage located in a geologic medium 

In this Chapter, we are primarily concemed with the study of the mechanics of flat 

anchors, which are embedded in fluid saturated poroelastic media that are susceptible to 

damage evolution during their loading in a sustained manner. A flat anchor is an 

idealized concept of an anchorage that can be created by the pressurization of a geologic 

medium by a cementitious fluid. The pressurization results in the development of a 

hydraulic fracture zone, which allows for migration of the cementitious fluid, when 

hardened, serves as the anchorage. The orientation of the anchorage zone can be arbitrary 

and will depend on the in-situ geostatic state of stress (and the fracture characteristics of 
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the geomaterial). The desirable flat anchorage is one where the flat anchorage is oriented 

along the line of application of the anchor rod force (Figure 7.1). 

The flat anchor problem has been examined quite extensively in connection with the 

study of their time-independent elasto-static behaviour. Although these elastic solutions 

are not directly related to the topic of poroelastic geomaterials susceptible to micro­

mechanical damage analysis of such anchorages, they represent an extensively studied 

topic in geomechanics, which can be used to examine the accuracy of computational 

schemes that are used to examine the purely poroelastic behaviour of the anchor region. It 

should be noted that in a generalized elastic solution for an anchor problem, the case 

involving v = 0.50 corresponds to the consolidation response as t ---+ 0 and the elastic 

solution with v ---+ v' corresponds to the poroelastic response as t ---+ 00. The earliest 

study of the flat plate anchor problem is due to Collins (1962) , who presented an exact 

closed from solution to the problem of the axial loading of a circular anchor plate located 

in an isotropic elastic infinite medium. Keer (1965) examined the problem related to the 

in-plane loading of a circular anchor plate located in an isotropic elastic infinite medium. 

The study by Kassir and Sih (1968) dealt with the problem of a rigid anchor plate 

embedded in an isotropic elastic medium and subjected to a generalized force resultants 

at centroid. More general approaches to the study of disc shaped anchor problems were 

presented by Kanwal and Sharma (1976) and Selvadurai (1976), who examined problems 

related to spheroidal anchor region, embedded in elastic media, using singularity methods 

and spheroidal function techniques, respectively. From these solutions, the results for disc 

anchor problems and elongated needle shaped anchor problemscan be recovered as 

special cases. These studies have also been extended by Zurieck (1988) to include the 

problem of a spheroidal anchor region located in a transversely isotropic region. An 

extensive series of studies of the disc anchor problem related to an elastic medium of 

infinite extent was conducted by Selvadurai and coworkers who extended these studies to 

include transversely isotropic behaviour of the elastic medium, the influence of bi­

material regions, elliptic geometry of the disc and the influence of boundary surfaces, etc. 

(Selvadurai, 1978, 1979b, 1980,1993,1994, 1999, 2000c and 2003, Selvadurai and Singh, 

1984a,b and Selvadurai and Au, 1986). 
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Related investigations dealing with fiat anchor problems were also given by Gladwell 

(1999), who examined the axialloading of a di sc inclusion located at a bi-material region 

and confirmed the applicability of the bounding technique first developed by Selvadurai 

(1984) for the evaluation of the axial stiffness of inclusions located at a bi-material 

interface region. Selvadurai (2003) has also extended the application of the bounding 

technique for the study of the in-plane loading of circular plate anchor located at the 

interface of two dissimilar elastic half-space regions. 

Porous medium Porous medium 

medium medium 

(a) (b) 

Figure 7.2 Rigid di sc inclusion surrounded with a brittle poroelastic medium (a) b / a < l, 

(b)b/a>l 
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The studies of anchor problems in general, dealing with poroelastic media are relatively 

scarce. Selvadurai and Gopal (1986) presented a solution to the problem of a disc 

embedded at the base of a borehole in a poroelastic medium in connection with their 

modelling of the screw plate test. The translation of a rigid spheroidal anchor located in a 

poroelastic medium was examined by Rajapakse and Senjuntichai (1995), who used a 

boundary element approach. The modelling of the Biot consolidation problem for a di sc 

inclusion located at an indentor of an infinite space region and subjected to generalized 

force resultants was given by Yue and Selvadurai (1995). These authors presented the 

complete sets of integral equations, governing the problems in the half-space domain and 

the solution of the resulting Fredholm integral equations and Laplace transform inversion 

was performed numerically. This investigation represents the orily comprehensive study 

of the problem of a di sc anchor related to a poro~lastic medium of infinite extent, which 

also provided the time-dependent consolidation response. Of related interest are the 

studies by Selvadurai (1978, 1981) which examine the time-dependent response of 

anchors that are embedded in viscoelastic media. The analytical study of the flat anchor 

problem related to a poroelastic medium can be attempted only when the geometry of the 

flat anchor region corresponds to a regular simple shape, such as either a circular or 

elliptical shape. The analytical study of the flat anchor problem can also be made 

intractable when other process such as damage~induced alterations in the deformability 

properties and the fluid transport properties of the poroelastic medium changes with time. 

In this Chapter, we apply the computational methodologies developed in the previous 

chapters to the study of the in-plane loading of a flat anchor region that is embedded in a 

damage susceptible poroelastic medium of infinite extent. Although the computational 

procedure can be applied to plate or flat anchor region of arbitrary shape and arbitrary 

loading, to keep the changes in the parameters influencing the poroelastic behaviour to a 

minimum and to allow consideration of comparison with available analytical results, we 

restrict attention to the consideration of the in-plane loaded disc anchor problem 

examined in this section. The variables investigated in the computational modelling 

includes (i) the geometry of the elliptical plate or flat anchor in relation to the direction of 

loading, (ii) the evolution of elasticity and hydraulic conductivity parameters in relation 
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to damage development and (iii) the stress state-dependency of the evolution of damage 

and its influence of the time-dependent translation of the anchor. 

7.2 Elastic Solution for the ln-Plane Loading of a Flat Anchor Region 

In this section, we examme the problem of a rigid elliptical flat anchor, which is 

embedded in bonded contact with an isotropic elastic medium. The analytical solution to 

the problem where the surrounding geomaterial exhibits isotropic perfectly elastic 

characteristics was first presented by Kassir and Sih (1968). An analytical solution for the 

in-plane translation of an elliptical anchor located at a bi-material elastic interface was 

given by Selvadurai and Au (1986). These authors determined the in-plane translation of 

an elliptical anchorage located at a bi-material elastic interface in the following form; 

(7.1) 

where 

(7.2) 

where Po is the in-plane load and a, b are the dimensions of the elliptic anchorage; Ll is 

the horizontal displacement of theanchor and fil' VI ,fi2' V 2 are the shear modulus and 

Poisson' s ratio for the materials and K (eo) and E( eo) are the complete elliptic integrals 

(see e.g. Byrd and Friedman, 1971). 

Selvadurai (2003) gave a set of bounds for the in-plane translation of a circular disc 

anchor located at a bi-material elastic interface, which takes the form; 
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(lü l +rlü2) < Po < 
2lül {2 + /32 + 3lü2a 2} + 2lü2r{2 + /31 + 3lül a l } - 32a~(JlI + JlZ) -

(7.3) 
(7 -8vl )(1- V 2 ) + r(7 - 8v2 )(1- VI) 

where 

1 
a j =-ln(3-4v j ); 

27r 
/3j = (1-2v j) 

7ra j 

(1 + 0(7 - 8vI )(7 - 8v2 ) 

af3. 
lü. = 1 1 ; r = Jll / Jl2 

1 (1 + a/) 
(7.4) 

where Po is the in-plane load and a is the radius of the eireular anehorage; ~ is the 

horizontal displacement of the anchor and JlI' VI ,Jl2' V 2 are the shear modulus and 

Poisson's ratio for the materials. Table 7.1 presents the elastic solution for the circular 

and elliptieal anehors using the analytical results given by Selvadurai and Au (1986) and 

Selvadurai (2003). The results in Table 7.1 is for the rigid anchorage located in an elastic 

region, therefore we substitute JlI = Jl2 and VI = V 2 in (7.1) and (7.3). The average of the 

upper and lower bound, obtained by equation (7.3) is used in Table 7.1. The elastic 

parameters used in (7.1) and (7.3) follow as; 

Elasticity parameters: E = 8300 MPa ; V = 0.195 

Failure parameters: O"c=30 MPa(eompressive); O"r=3 MPa (tensile) 

The anchor dimension a IS assuméd to be 1.0(m) and the applied load Po to the 

anchorage is 3 14 kN . 

Table 7.1 illustrates the analytieal results for elliptieal and dise anchors in the form of a 

dimensionless parameter proposed by Selvadurai (2003) as Po / 64a~JI where Po is the 

in-plane load and a is either radius of dise for the case of cireular anchorage or the 

dimension of the elliptical anchor along the direction of application of the load, !1 is the 

horizontal displacement of the anchorage and JI is the shear modulus of the surrounding 
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elastic region. It should be noted that the analytical result for the in-plane elastic stiffness 

of the rigid dise anchorage can be approximated as the average of the upper and lower 

bounds given by Selvadurai (2003). Alternatively, the exact result is given by (see e.g. 

Kassir and Sih, 1968 and Selvadurai, 1980b) in the following form; 

Po (l-v) = --'---'--
64,ua~ (7 - 8v) 

(7.5) 

Table 7.1. Comparison ofresults for ideal elastic analysis (v = 0.195) 

Po 164a~,u 
Disc shape Circular Ellipse (1/2) Ellipse (113) Ellipse (1/5) 

Present study 0.141 0.0485 0.0290 0.0104 

Analytical solution 0.139 0.0480 0.0283 0.0100 
Selvadurai Selvadurai and Selvadurai and Selvadurai and 

(2003) Au (1986) Au (1986) Au (1986) 

7.3 Computational Modelling 

The problem of a rigid anchorage embedded in bonded contact with a damage-susceptible 

poroelastic region and subjected to an in-plane load in the form of a Heaviside step 

function of time is examined through the computational scheme developed in the course 

of this research (Figure 7.2). The prescribed boundary conditions for pore fluid pressure 

and displacements are shown in Figure 7.3. 

Since the poroelastic region is homogeneous, the problem exhibits a state of symmetry 

about the plane containing the line of action of the horizontal force P(t). Therefore, the 

attention is restricted to a model of the region; - 30a :s; x :s; 30a ; O:s; y :s; 30a ; 

o :s; z :s; 30a, where a is either radius of disc for the case of circular anchorage or the 

anchor dimension along the direction of the applied load, for the case of elliptical 

anchorage. The boundary conditions at the outer surfaces of the region correspond to the 
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conventional zero normal displacement and zero shear traction conditions applicable to 

the porous skeleton and the pore fluid pressure boundary conditions are prescribed to be 

zero. We consider the problem of a rigid flat anchor e.mbedded in a damage-susceptible 

poroelastic region for the following categories of poroelastic responses (i) ideal 

poroelastic response of the medium without any evolution of damage; (ii) the poroelastic 

response of the medium with the evolution of damage but no alterations in hydraulic 

conductivity characteristics; (iii) the poroelastic response with the evolution of damage 

and alterations in both elasticity and hydraulic conductivity characteristics; (iv) the 

poroelastic response of the medium with stress state-dependent evolution of damage and 

alterations in both elasticity and hydraulic conductivity characteristics. 

Figure 7.3. Boundary conditions for a rigid flat anchorage surrounded with a poroelastic 
medium. 

7.4 Computational Results and Discussion 

In the computational modelling, the idealized problem that corresponds to a rigid 

anchorage embedded in an infinÏte region is mode lIed as an anchorage in a finite domain. 

Therefore, it is necessary to evaluate the influence of the dimensions of the computational 

domain used in the finite element modelling. To evaluate this, we first examine the 

problem of a rigid anchorage, which is embedded in an extended elastic region. As noted 

previously, the problem has been investigated by a number of the researchers and we use 

here the analytical solution given by Kassir and Sih (1968) and Selvadurai and Au (1986) 
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for the problem of rigid elliptical anchorage and the results given by Selvadurai (2003) 

for the case of rigid circular disc anchorage. The computationa1 resu1ts have been 

compared with equivalent analytical results given above. Table 7.1 provides a 

comparison of the results obtained from analytical and computational approaches for 

Po 1 64a~JI , (where Po is the in-plane load and a is either radius of disc for the case of 

circular anchorage or the radius along the direction of applied load for the case of 

elliptical anchorage and ~ is the horizontal displacement of the anchor and JI is the 

shear modulus of the surrounding elastic region). For a range of anchor shapes, the results 

show reasonable agreement between the analytical and the computationa1 estimates. 

F or the purposes of the computational modelling, we select sandstone as the damage­

susceptible poroe1astic material with the following properties given by Cheng and 

Dusseault (1993) and Shiping et al. (1994); 

E1asticity parameters: E = 8300 MPa ; v = 0.195 

Fluid transport parameters: e = 10-6 mis 

Vu = 0.4999 

Failure parameters: 0' c = 30 MPa (compressive); 0' T = 3 MPa (tensile) 

Damageparameters: Y=1]=130; De =0.75 ,P=3.0x105 

The anchor dimension a IS assumed to be 1.0(m) and the applied load Po to the 

anchorage is 314 kN . 

The finite element discretizations of the three-dimensional domain containing the 

laterally loaded rigid anchor region are shown in Figure 7.4. 
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Figure 7.4. Finite element discretization for a flat rigid anchorage for cases (a) b 1 a < 1 
(b) bla>1 

The computational modelling is performed for different aspect ratios (b 1 a) (see Figure 

7.2). The non-dimensional parameter, which corresponds to the horizontal displacement 

of the rigid. anchor is the same as that used by Selvadurai (2003) and takes the form 

Po /64a!1J1 ' (where Po is the lateralload, a is the anchor dimension, !1 is the horizontal 

displacement of the anchor and J1 is the shear modulus of the surrounding elastic 

region). The time factor takes the form; 

T = 2J1(1- v)kOt 

(1- 2v)a 2 
(7.6) 

where J1, v are shear modulus and Poisson's ratio of the porous skeleton, respectively 

and kO is the hydraulic conductivity for the virgin state, a is either the radius of the disc 

for the case of circular anchor or anchor dimension along the direction of the applied load 

for the case of elliptical anchor and t is time. 

Figure 7.5 presents a comparison between the analytical results presented for the time­

dependent displacement of the flat circular anchor in an extended poroelastic medium 

developed by Yue and Selvadurai (1995) and the analogues computational results derived 
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from this research. These results illustrate a satisfactory agreement in both the magnitude 

and time-dependent variation between the analytieal and eomputational results. 

Figure 7.6 illustrates the transient time-dependent horizontal displacement of a rigid dise 

anchor. The results presented in this Figure is related to the four categories of poroelastie 

responses namely ideal poroelasticity, poroelastie damage with only reduction in elastic 

stiffness, stress state-independent evolution of damage with both alterations in elasticity 

and hydraulic conductivity charaeteristics and the stress state-dependent evolution of 

damage with both alterations in elastieity and hydraulic conductivity characteristics. The 

results show that damage-induced alterations in hydraulie eonductivity of the brittle 

poroelastie medium have a greater influence on the time-dependent response of the dise 

anchor than the case of evolution of damage with' only reduction in elastic stiffness and 

without alterations in hydraulie eonduetivity. The computational results for stress state­

dependent modelling of damage evolution indieate less of a difference between the ideal 

poroelastie case and that involving damage-induced alterations in elasticity and hydraulic 

conductivity characteristics. This is most likely due to the development of a compressive 

state of stress within the damage-susceptible poroelastic medium, located at one region of 

the rigid di sc anchor. According to the stress state-dependent criteria for damage 

evolution, this reglOn cannot experience damage-induced alterations in poroelastic 

parameters. 

Figure 7.7 illustrates the time-dependent horizontal displacement for the case of an 

elliptical anchorage subjected to an in-plane load directed along its major axis 

(b / a = 1/2). The results indicate similar trends for the elliptical anchor, however the 

results show greater of a difference between the modelling involving ideal poroelasticity 

and the modelling that involves damage-induced alterations in poroelasticity parameters. 

This is likely due to development of high shear stress zones at the tip of the anchor. 

Figures 7.8 and 7.9 illustrate identical results applicable to the rigid elliptical anchorage 

with b / a = 1/3 and b / a = 1/5. The results show greater influence of damage-induced 

alterations in the hydraulic conductivity on the time-dependent in-plane displacement of 

the rigid anchorage, which could be attributed to the elliptical shape of the anchorage. 
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Figure 7.10 illustrates time-dependent horizontal displacement for an elliptical anchorage 

subjected to an in-plane load along the direction of minor axis for (b / a = 2). The results 

show the same trend for both the disc anchor and the elliptical anchor subjected to a 

lateral load directed along the major axis. In comparison to the results for disc anchor, 

computational results for the case of elliptical anchor subjected to an in-plane load 

directed along the minor axis shows a greater difference between the ideal poroelastic 

case and the case that involves damage-induced alterations in poroelastic parameters 

again, this is likely due to development of the zones of high stress at the tip of the anchor. 

Figure 7.11 and 7.12 illustrate similar results applicable to the rigid elliptical anchor 

dimensions defined by b / a = 3 and b / a = 5 . 

In general, the computational results presented in this Chapter indicate that the geometric 

shape of the anchoring can increase the damage-induced alterations in the hydraulic 

conductivity and consequently influence the transient behaviour of the anchorage. The 

elongated anchorage can generate higher shear stresses at the edge of anchorage and this 

results in the evolution of damage in the zone surrounding the rigid anchor, which again 

influences the consolidation response. 
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o Computational 

Po 0.14 
o 

64aJlô 
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Figure 7.5 A comparison between the analytical results given by Yue and Selvadurai 

(1995) for an impermeable circular anchorage and the computational results. 
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Figure 7.6. Numerical results for the time-dependent in-plane stiffness for a rigid flat 

anchor embedded in a poroelastic medium susceptible to damage. 
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Figure 7.7. Numerical results for the time-dependent in-plane stiffness for a rigid flat 

anchor ( b / a = 1/2) embedded in a poroelastic medium susceptible to damage. 
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Figure 7.8. Numerical results for the time-dependent in-plane stiffness for a rigid fiat 

anchor (b / a = 1 / 3) embedded in a poroelastic medium susceptible to damage. 
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Figure 7.9. Numerical results for the time-dependent in-plane stiffness for a rigid fiat 

anchor ( b / a = 1/5) embedded in a poroelastic medium susceptible to damage. 
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Figure 7.10. Numerical results for the time-dependent in-plane stiffness for a rigid fiat 

anchor (b / a = 2) embedded in a poroelastic medium susceptible to damage. 
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Figure 7.11. Numerical results for the time-dependent in-plane stiffness for a rigid fiat 

anchor (b / a = 3) embedded in a poroelastic medium susceptible to damage. 
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Figure 7.12. Numerical results forthe time-dependent in-plane stiffness for a rigid fiat 

anchor (b / a = 5) embedded in a poroelastic medium susceptible to damage. 
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CHAPTER8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 General 

In the preceding chapters, an iterative finite element procedure was presented to study the 

evolution of micro-mechanical damage in a poroelastic medium susceptible to damage. 

The computational procedure developed has also been used to examine problems of 

interest in geomechanics and to examine the influence of the damage-induced alterations 

in poroelastic parameters on the time-dependent response of a damage-susceptible 

poroelastic medium. In this final Chapter, we shall summarize the main achievements of 

this research and suggest recommendations for future work. 

8.2 Summary and Concluding Remarks 

Fluid-saturated poroelastic materials such as soft rocks and heavily over consolidated 

saturated clays can exhibit non-linear responses, which could result from the 

development of micro-mechanical damage in porous fabric. The damage-susceptible 

poroelastic material can experience such non-linear responses even at stress levels weIl 

below the peak. The development of micro-defects can alter both the deformability and 

the hydraulic conductivity characteristics of porous media and consequently can 

influence the time-dependent behaviour of damage-susceptible poroelastic materials. One 

of the objectives of the research is to examine the influence ofthe evolution of damage in 

porous skeleton on the time-dependent behaviour of a damage-susceptible poroelastic 

medium. The classical theory of poroelasticity developed by Biot (1941) has been 
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extended to examine the influence of the damage-induced alterations in both elasticity 

and hydraulic conductivity characteristics of poroelastic materials. An iterative finite 

element procedure has been developed to account for the evolution of damage-induced 

alterations in poroelastic properties. The evolution of damage in the brittle poroelastic 

media can exhibit dependency on the state of stress. The consolidation behaviour of a 

poroelastic medium is influenced by the state of stresses within the medium. One of the 

objectives of the research is also to extend the computational procedures to account for 

the stress state-dependecy on the evolution of damage in damage-susceptible poroelastic 

media. 

The review of the literature on computational modelling of poroelastic media indicates 

that the computational modelling of damage-susceptible brittle poroelastic media that 

accounts for the stress state-dependent damage-evolution in both el asti city and hydraulic 

conductivity characteristics received limited attention. The research has developed 

procedures to examine these phenomena applicable to three-dimensional problems. In 

order to achieve the objectives of the research, the following steps of the research 

pro gram have been completed. 

1. A finite element procedure has been developed, which is applicable to the study of 

problems related to the theory of poroelasticity with three-dimensional geometries. In this 

step, the poroelastic medium is modelled as a deformable elastic porous fabric filled with 

an incompressible fluid. A twenty-node isoparametric element is used to model the intact 

geomaterial. The polynomial shape functions that correspond to the variation of the pore 

pressure field are one order lower than those that correspond to the displacement fields. 

This results in the minimized spatial oscillations in pore pressure obtained by the 

computational modelling. The computational scheme is also verified by appeal to 

available analytical solutions in the literature for the consolidation of poroelastic media, 

inc1uding the c1assical solution for the consolidation in one-dimension developed by 

Terzaghi (1923), and the consolidation of a poroelastic sphere developed by Cryer 

(1963). 
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2. The computational modelling of c1assical theory of poroelasticity is extended to 

examine the behaviour of the damage-susceptible poroelastic media. The iterative finite 

element procedure accounts for the damage-induced alterations in both elasticity and 

hydraulic conductivity characteristics of the poroelastic media. Furthermore, the stress 

state-dependency of the evolution of damage in the brittle poroelastic media is taken into 

account. In order to model the evolution of damage in damage-susceptible poroelastic 

materials, the concept of Continuum Damage Mechanics is incorporated into the c1assical 

theory of poroelasticity to model the porous skeletal behaviour. The main features of the 

iterative finite element procedure developed in connection with this research for the study 

of damage-susceptible media can be summarized as follows: 

• The elasticity and hydraulic conductivity characteristics of the porous medium are 

represented as functions of the state of isotropic damage in the brittle geomaterial. 

The deterioration in elastic stiffness as a reduction in the linear elastic modulus is 

governed by the isotropic damage evolution function for soft rocks proposed by 

Cheng and Dusseault (1993). This damage evolution function is characterized by 

the dependency of the damage parameter on the distortional strain invariant. The 

alterations in hydraulic conductivity of the brittle porous fabric are governed by a 

damage evolution function, postulated based on the available experimental 

observations conducted on brittle saturated sandstone by (Shiping et al., 1994). 

• At each time increment, the elasticity and hydraulic conductivity characteristics 

are updated at each integration point within an element composing the discretized 

domain. The coupling between the state of strains and the state of damage at each 

time step is achieved by an iterative approach in a time-dependent analysis. The 

standard Newton-Raphson technique is used in the iterative algorithm. The 

adopted convergence criterion is based on the norm of the evolution of damage 

variable, related to a specified tolerance. The initial state of damage either 

uniform or non-uniform can also be prescribed in the computational modelling. 

• The dependency of the evolution of damage on the stress state is modelled by 

considering the state of volumetric strain in an element of the fluid saturated 
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geomaterial. Experimental observations by Schulze et al. (2001) show no 

significant damage evolution when the state of stresses applied to an element of a 

brittle geomaterial results in volume reduction of the porous skeleton. The 

iterative finite element procedure has been extended to include the stress state­

dependency on the damage evolution. In the modelling, the possibility of the 

evolution of damage is characterized as the state of stresses that results in 

expansion in the brittle geomaterials. In order to model stress state-dependent 

damage, the volumetric strain is determined for each element and damage within 

can be initiated only when, the volumetric strain is positive. It should be 

mentioned that convention sign mIe is implemented in the computational scheme. 

developed in this research. 

3. The computational scheme is used to examine a number of problems of interest to 

geomechanics. The problems follow as; (i) the fluid pressure development and decay 

within a spheroidal fluid inclusion surrounded by a damage-susceptible fluid saturated 

geomaterial; (ii) the time-dependent translational displacement at the head of a rock 

socket embedded in a damage-susceptible fluid-saturated soft rock and (iii) the time­

dependent in-plane displacement of a flat rigid anchorage located in a damage­

susceptible fluid saturated geomaterial. Due to the coupled nature of the poroelasticity 

problem, the effects of damage evolution, and the influence of complex geometries 

associated with these problems, solutions can be obtained only through computational 

procedure. The computational results presented in the thesis to examine the influence of 

evolution of damage on the time-dependent behaviour of the above problems are 

considered to be original and relevant to geomechanics. The problems are modelled 

according to four categories (i) ideal poroelasticity with no damage evolution, (ii) 

damage evolution with only alteration in elasticity properties and no change in the 

hydraulic conductivity properties during the damage process, (iii) stress state-independent 

evolution of damage with alterations in both elasticity and hydraulic conductivity 

properties and (iv) stress state-dependent evolution of damage with alterations in both 

elasticity and hydraulic conductivity properties. The main features of the computational 
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modelling of the problems discussed in this thesis and related computational results can 

be summarized as; 

• The problem of a spheroidal fluid inclusion located in a damage-susceptible 

geomaterial and subjected to a far field triaxial stress state (in the form of a 

Heaviside step function of time) has been examined through the computational 

procedure developed. The fluid pressure development and decay is influenced by 

the damage-induced alterations in poroelastic parameters. The influence of 

damage evolution on the time-dependent behaviour of a damage-susceptible 

saturated geomaterials results mainly from the alterations in the hydraulic 

conductivity characteristics. This influence is greater when the spheroidal fluid 

inclusion is elongated or the spheroidal fluid inclusion is subjected to a triaxial far 

field stress state with the radial stress larger than the axial stress. Furthermore, the 

influence of damage-induced alterations in poroelastic properties on fluid pressure 

development and decay within the spheroidal fluid inclusion is greater when 

damage evolution is stress state-independent. For stress state-dependent evolution 

of damage, the development of the compaction zones results in no evolution of 

damage within damage-susceptible geomaterial. 

• The time-dependent displacement of a rigid rock socket embedded in a damage­

susceptible saturated geomaterial and subjected to a lateralload (in the form of a 

Heaviside step function of time) has been examined for a range of aspect ratios 

L / d. The consolidation of the medium is enhanced for rock sockets when the 

damage-induced alterations in poroelastic parameters are taken into account. The 

evolution of damage on the time-dependent behaviour of a rock socket is also 

influenced by the length to diameter ratio (Lld) for the rigid rock socket. The 

damage evolution has a greater influence on the time-dependent translational 

displacement of a rigid rock so~ket with a larger ratio of (Lld). Furthermore, the 

stress state-dependency of the damage evolution can enhance the time-dependent 

translational displacement of the rigid rock socket. 
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• The time-dependent displacement of a flat rigid anchorage located in a damage­

susceptible geomaterial subjected to an in-plane load (in the form of a Heaviside 

step function of time) has been examined for a range of elliptical anchorage 

shapes using computational schemes developed. The time-dependent in-plane 

displacement of the flat rigid anchorage is influenced by the damage-induced 

alterations in the poroelasticity parameters. This influence varies with the 

different geometries of anchors. The circular disc anchor exhibits the least 

alterations in the time-dependent response due to the evolution of damage. The 

difference between the ideal poroelastic geomaterials and the damage susceptible 

geomaterial is increased for the elliptical anchorages as a result of stress 

concentration that can occur at the tip of the anchorage. The damage-induced 

alteration in poroelastic parameters has a greater influence on the time-dependent 

response of the elliptical anchorage with a greater ratio of dimensions. The 

influence of damage evolution on the time-dependent behaviour of damage­

susceptible saturated geomaterials is again attributed mainly to the alterations in 

the hydraulic conductivity characteristics. Furthermore, the stress state­

dependency of evolution of damage and stress levels can influence the time­

dependent response of a flat rigid anchorage. 

8.3 Recommendations for Future Work 

In the preceding sections, the main achievements of this research have been summarized. 

The research has extended the classicaltheory of poroelasticity for damage-susceptible 

geomaterials through an iterative finite element procedure to account for the evolution of 

damage with alterations in both elasticity and hydraulic conductivity characteristics. The 

computational scheme is verified by comparison with the analytical solutions available in 

the literature for problems in the classical theory of poroelasticity. The computational 

scheme has been successfully applied to the problems of interest in geomechanics, 

applied mechanics and civil engineering. In the ensuing, possible extensions to the 

research are suggested. 
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• As discussed previously in the literature review of this research, there is only a 

limited number. of experimental observations dealing with the damage-induced 

evolution of hydraulic conductivity in geomaterials. Furthermore, in most of the 

available observations, the stress state-dependency of the evolution of damage has 

not been addressed due to the fact that the experimentation involved uniaxial 

testing of samples of geomaterial. The research can be extended to the 

experimental evaluation of the damage-induced alterations in hydraulic 

conductivity of geomaterials where the stress state can be of a general triaxial 

state. Results derived from such experimentation can be used to develop better 

representations of the damage-induced evolution of, notably the hydraulic 

parameters. 

• The damage-induced alterations in hydraulic conductivity characteristics of 

geomaterials, investigated in this research is in the form of an increase m 

hydraulic conductivity due to the evolution of micro-mechanical damage at the 

stress levels weIl below peak damage levels. The computational scheme can be 

extended to account for any arbitrary damage-induced alteration in the hydraulic 

conductivity characteristics of geomaterials, including a decrease in hydraulic 

conductivity characteristics due to the void coIlapse at high confining stress states 

associated with geomaterials. 

• The scope of the research can also be extended to include anisotropic damage 

models, which can be used to model directional dependency in the damage 

phenomena in porous media. The damage evolution criteria governing alterations 

in both the deformability and hydraulic conductivity characteristics of damage­

susceptible porous media should then be formulated in generalized tensorial form. 
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MAIN ACHIEVEMENTS OF THE THESIS 

The work presented in this thesis introduces a new three-dimensional iterative finite 

element procedure has been developed to examine the influence of the isotropic damage­

dependent alterations in both the elasticity and fluid transport characteristics of the 

damage-susceptible poroelastic geologic media. The computational scheme proposed in 

this research can also examine the influence of stress state-dependency on the evolution 

of damage. The detail related to the three-dimensional finite element pro gram used in this 

research is available in Appendix A. 

The computational developments have been applied to a range of problems of interest to 

geomechanics and civil engineering. The computational simulations indicate that the 

damage-induced alterations in hydraulic conductivity has a greater influence on the time­

dependent response of the damage susceptible poroelastic medium. 

The stress state-dependency of the damage process can also influence the time-dependent 

response of a damage-susceptible poroelastic medium. 
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APPENDIXA 

THREE-DIMENSIONAL FINI TE ELEMENT PRO GRAM USED IN 

THE RESEARCH 

The three-dimensional finite element pro gram developed for the research can examine 

the coupled behaviour of damage-susceptible poroelastic media. The program performs 

an incremental non-linear analysis using the classical theory of poroelasticity developed 

by Biot (1941) with updated poroelastic parameters at each increment. The pro gram has 

been written in FORTRAN 90. A twenty-node isoparametric element is used and the 

displacements within the element are interpolated as functions of the twenty nodes, where 

as the pore pressures are interpolated as functions of only the eight corner nodes. This 

configuration allows less spatial oscillations in the computational results at early times. 

The poroelastic parameters are updated using the damage variables determined at twenty 

seven Gauss integration points of each element. 

The program can also accept the finite element discretization and boundary conditions, 

generated by stress analysis software COSMOS 2.5 M developed by Structural Research 

and Analysis Corporation, as input data and apply the proposed computational scheme 

through this research to the three-dimensional domain. 

The finite element program determines the nodal displacements and pore pressures 

solving the system of equations through Gauss back substitution method. Any person 

interested to have access to the three-dimensional finite element pro gram developed in 

this research can contact with Professor A.P .S. Selvadurai, William Scott Prof essor in 

department of civil engineering and applied mechanics, McGill University or Mf. Ali 

Shirazi. 
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