
RNDN: OPTIMIZED QUERY COMPILATION FOR GPUS

by
Alexander Krolik

School of Computer Science
McGill University, Montreal

May 2022

A thesis submitted to McGill University

in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

Copyright © 2022 by Alexander Krolik





To Laurie





Abstract

Ever expanding data necessitates efficient analysis, with query compilation prov-
ing an effective optimization technique. GPU database systems complement this ap-
proach, exploiting a parallel accelerator increasingly available on consumer devices.
They are limited, however, by the high costs of data transfer and compilation that
reduce performance on workloads with varying data and queries. In addition, many
such existing systems fail to execute comprehensive benchmark sets. We present a
new approach to query compilation for GPUs, providing an optimized compilation
pipeline that significantly increases performance on end-to-end evaluation. Trading
minor slowdowns in execution for major speedups in compilation, we replace the
expensive proprietary pipeline by our own runtime-suitable compiler and assembler
that specifically target relational queries. In particular, we take SQL queries written
in HorseIR, outline kernels of compatible operations, and produce a parallel inter-
mediate representation. This PTX code is translated to machine instructions and
assembled to binary for execution on the CUDA platform. Each operator is imple-
mented by a simplistic yet efficient algorithm, and complemented by an optimized
execution engine. Compared to existing CPU and GPU database systems, we show
performance improvements on both cached and end-to-end workloads while main-
taining completeness on a significant benchmark suite. Importantly, we effectively
trade execution for compilation, significantly outperforming proprietary compilation
pipelines without excessively degrading cached query performance.

i



ii



Résumé

L’augmentation des données nécessite une analyse efficace et la compilation des
requêtes est une des techniques d’optimisation convenable pour la performance. Les
systèmes de base de données à processeurs graphiques agrémentent cette technique
en exploitant l’accélérateur parallèle fréquemment offert sur les appareils des consom-
mateurs. Toutefois, ils sont limités par les coûts de transfert et de compilation élevés
qui réduisent la performance lorsque les requêtes ou les données sont variables. De
plus, plusieurs de ces systèmes de base de données à processeurs graphiques ne par-
viennent pas à exécuter des tests de performance complets. Alors, nous présentons une
nouvelle approche à compilation de requêtes SQL, pour les processeurs graphiques,
en fournissant un pipeline de compilation optimisé, qui améliore considérablement la
performance des évaluations de bout en bout. Dans l’approche utilisée, nous rempla-
çons le pipeline propriétaire coûteux par un compilateur et un assembleur adaptés à
l’exécution, qui ciblent les requêtes relationnelles. Dans l’ensemble, pour notre sys-
tème, des ralentissements mineurs lors de l’exécution seront remplacés par des accélé-
rations majeures dans la compilation. En particulier, nous prenons des requêtes SQL
écrites en HorseIR, nous définissons les noyaux de calcul d’opérations compatibles et
nous produisons un langage intermédiaire parallèle. Ce langage intermédiaire parallèle
PTX est traduit en code machine et il est assemblé en binaire pour être exécuté sur
la plateforme CUDA. Chaque opérateur est mis en œuvre par un algorithme simpliste
et pourtant efficace, et il est soutenu par un moteur d’exécution optimisé. Contraire-
ment aux systèmes de base de données CPU et GPU existants, nous démontrons des
améliorations dans les résultats, tout en maintenant l’exhaustivité sur un ensemble
représentatif de requêtes SQL, sur les tests de performance de requêtes stockées et de

iii



bout en bout. En somme, notre système sacrifie l’exécution pour l’amélioration de la
compilation et la performance de bout en bout. Elle surpasse de manière importante
les pipelines de compilation propriétaires sans dégrader excessivement la performance
des requêtes stockées.

iv



Acknowledgements

Firstly, I would like to thank my supervisors, Clark Verbrugge and Laurie Hen-
dren, for all of their support since way back in my undergrad. From my first summer
research project to this thesis, I have always appreciated your guidance and encour-
agement to try new ideas and tackle the next problem – all while lending an ear to
whatever obstacles I encountered, no matter where I faced them. Even though Laurie
sadly will never see this complete thesis, her influence has been present throughout
this process and will stay with me for the years ahead. On a personal note, I miss you,
and will never forget your curiosity, determination and compassion. And a special
thank you to Clark for helping with the transition and for encouraging me to extend
this work well beyond the initial scope and into new areas. While not a direct super-
visor, I would also like to thank Bettina Kemme for the inspiration in she provided
in her research course that later became a key part of this thesis.

I would also like to thank my lab mates who I have worked with and been friends
with over the years. Whether that be writing papers and developing solutions with
Hanfeng Chen, lengthy discussions of ideas or challenges with Prabhjot Sandhu and
David Herrera, bouncing my thoughts around with Erick Lavoie, Akshay Gopalakr-
ishnan, or Steven Thephsourinthone, or the many many others who I have met over
the years, you have all been part of this work in one way or another. I also really
appreciate the warmth that we have as a group, and the encouragement and kindness
as we navigated this chapter together.

I also want to thank my family and friends who have listened and encouraged me
to pursue my goals, and helped me along the way. In particular, Dominique Ferland
for her help translating the French abstract, Lei Lopez for her friendship since my

v



first summer project, Giulia Alberini her teaching camaraderie, Vincent Foley and
Antonio Giordano for their help with COMP 520, and Kamil Legault and Ziuwin
Leung for listening in the evenings to the challenges of the day. I would also like to
give a very special thank you to my best friend and companion, Alexander Patton,
for his caring support and kindness.

I would also like to give thanks to the School of Computer Science, its then-director
Bettina Kemme, and most of all Laurie Hendren for their trust in teaching COMP
520 (Compiler Design). It was an amazing experience, and has been a key part of
learning how to present ideas to a new audience. Thank you to all the students I
taught over the years for your patience and enthusiasm, to my TAs for their help and
support with teaching, and to the all administrative and technical support staff in
the department for your help making it happen.

I would like to acknowledge the previous efforts to explore NVIDIA architec-
ture, and in particular the work by Scott Gray on the Maxwell and Pascal architec-
tures. Their projects and documentation were instrumental to this thesis, and laid
the groundwork required for many of our techniques.

Laslty, I would like to thank the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), Laurie Henden and Clark Verbrugge, the School of Computer
Science and McGill University for their funding to complete this thesis.

vi



Contents

Abstract i

Résumé iii

Acknowledgements v

Contents vii

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

1 Introduction 1

1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 HorseIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

vii



2.3 GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Abstract Architecture . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Real Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Compilation Pipeline . . . . . . . . . . . . . . . . . . . . . . . 14

3 Overview 17

3.1 Frontend and Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Frontend and Compiler 21

4.1 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Outliner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Program Representation . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.4 Geometry Analysis . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.5 Compatibility Analysis . . . . . . . . . . . . . . . . . . . . . . 36

4.2.6 Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Target Language: PTX . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Thread Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.3 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.4 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Assembler 57

5.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Register Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Linear Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



5.3 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Target Language: SASS . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Memory Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.3 Structured Control-Flow . . . . . . . . . . . . . . . . . . . . . 67

5.3.4 Branch Inlining . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.5 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 SCHI Directives . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.2 Instruction Classes . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.3 Scheduler Properties . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.4 Scheduler Algorithm . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.5 Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Binary Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.2 ELF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Runtime 93

6.1 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 SQL Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.2 GPU Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 CUDA Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Compiler and Linker . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.1 Buffer Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.2 Buffer Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



7 Evaluation 105

7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3 Execution Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.1 GPU Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.2 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4.1 Compilation Time . . . . . . . . . . . . . . . . . . . . . . . . 115

7.4.2 Cached Execution . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.3 Uncached Execution . . . . . . . . . . . . . . . . . . . . . . . 118

7.4.4 Total Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5.1 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.5.2 Compiler and Assembler . . . . . . . . . . . . . . . . . . . . . 126

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8 Related Work 133

8.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.1.1 Query Compilation . . . . . . . . . . . . . . . . . . . . . . . . 134

8.1.2 GPU Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2 Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2.1 Automatic Parallelism . . . . . . . . . . . . . . . . . . . . . . 141

8.2.2 Languages and Intermediate Representations . . . . . . . . . . 142

8.2.3 Language Extensions and Frameworks . . . . . . . . . . . . . 143

8.2.4 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2.5 Lower-Level Compilers . . . . . . . . . . . . . . . . . . . . . . 144

8.2.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.3 Assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.3.1 NVIDIA Architecture . . . . . . . . . . . . . . . . . . . . . . . 145

8.3.2 Register Allocation . . . . . . . . . . . . . . . . . . . . . . . . 147

8.3.3 Instruction Scheduling . . . . . . . . . . . . . . . . . . . . . . 148

x



8.3.4 Control-Flow Structuring . . . . . . . . . . . . . . . . . . . . . 150

9 Conclusion and Future Work 153

9.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xi



xii



List of Figures

2.1 Example SQL query . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Example HorseIR query . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Abstract GPU architecture . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Comparison of Pascal and Ampere GPU architectures . . . . . . . . . 13

2.5 NVIDIA CUDA compilation pipeline . . . . . . . . . . . . . . . . . . 15

3.1 rNdN overall system architecture . . . . . . . . . . . . . . . . . . . . 17

3.2 rNdN frontend compiler architecture . . . . . . . . . . . . . . . . . . 18

3.3 rNdN backend assembler architecture . . . . . . . . . . . . . . . . . . 19

3.4 rNdN runtime architecture . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 rNdN frontend and compiler architecture . . . . . . . . . . . . . . . . 21

4.2 HorseIR syntax example . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 HorseIR semantics example . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 GPU outliner architecture . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 HorseIR analysis framework example . . . . . . . . . . . . . . . . . . 26

4.6 Augmented data-dependence graph example . . . . . . . . . . . . . . 27

4.7 Shape analysis example . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.8 Shape analysis merge rules . . . . . . . . . . . . . . . . . . . . . . . . 31

4.9 Shape analysis parameter initialization . . . . . . . . . . . . . . . . . 32

4.10 Shape analysis domains and partial orderings . . . . . . . . . . . . . . 34

4.11 Geometry analysis example . . . . . . . . . . . . . . . . . . . . . . . 35

4.12 Outlined data-dependence graph example . . . . . . . . . . . . . . . . 37

4.13 Compatibility analysis steps . . . . . . . . . . . . . . . . . . . . . . . 38

xiii



4.14 Compatibility analysis algorithm: step 1 . . . . . . . . . . . . . . . . 40

4.15 Compatibility analysis algorithm: step 2 . . . . . . . . . . . . . . . . 41

4.16 Compatibility analysis algorithm: step 3 . . . . . . . . . . . . . . . . 42

4.17 Outlined program example . . . . . . . . . . . . . . . . . . . . . . . . 44

4.18 Outlined library function example . . . . . . . . . . . . . . . . . . . . 44

4.19 Example PTX program . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.20 PTX framework type-correctness . . . . . . . . . . . . . . . . . . . . 47

4.21 GPU device memory transactions . . . . . . . . . . . . . . . . . . . . 48

4.22 Thread layout for GPU kernel geometries . . . . . . . . . . . . . . . . 49

4.23 PTX function signature example . . . . . . . . . . . . . . . . . . . . . 50

4.24 Thread-data assignment for GPU kernel geometries . . . . . . . . . . 51

4.25 Code generation example template . . . . . . . . . . . . . . . . . . . 52

4.26 Sort library function example . . . . . . . . . . . . . . . . . . . . . . 53

4.27 Group library function example . . . . . . . . . . . . . . . . . . . . . 54

4.28 String data representation . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 rNdN assembler architecture . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 If branch transformation . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Register bank organization . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Register allocation for varying data sizes . . . . . . . . . . . . . . . . 60

5.5 Linear scan register allocation example . . . . . . . . . . . . . . . . . 62

5.6 Example SASS programs for Pascal and Ampere . . . . . . . . . . . . 63

5.7 Control-flow structuring algorithm . . . . . . . . . . . . . . . . . . . . 68

5.8 Control-flow structuring algorithm: loops . . . . . . . . . . . . . . . . 69

5.9 Control-flow structuring algorithm: loop exits . . . . . . . . . . . . . 70

5.10 Control-flow structuring algorithm: if-else branches . . . . . . . . . . 71

5.11 Divergence stack example . . . . . . . . . . . . . . . . . . . . . . . . 72

5.12 Pascal code generation templates for structured control-flow . . . . . 73

5.13 Ampere code generation templates for structured control-flow . . . . 74

5.14 Global variable address generation . . . . . . . . . . . . . . . . . . . . 75

5.15 Code generation templates for 32-bit unsigned integer multiplication . 76

xiv



5.16 Code generation templates for 64-bit integer addition . . . . . . . . . 76

5.17 Peephole optimization examples . . . . . . . . . . . . . . . . . . . . . 77

5.18 Scheduling directives binary layout . . . . . . . . . . . . . . . . . . . 78

5.19 Instruction scheduling properties . . . . . . . . . . . . . . . . . . . . 81

5.20 Instruction scheduling algorithm . . . . . . . . . . . . . . . . . . . . . 83

5.21 Instruction scheduling example . . . . . . . . . . . . . . . . . . . . . 85

5.22 Scoreboard register data-dependencies . . . . . . . . . . . . . . . . . 86

5.23 Assembled SASS program example . . . . . . . . . . . . . . . . . . . 88

6.1 rNdN runtime architecture . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Thread block layouts for vector geometry . . . . . . . . . . . . . . . . 96

6.3 Thread block layouts for list geometry . . . . . . . . . . . . . . . . . 97

6.4 Dummy LLVM module for linking libdevice . . . . . . . . . . . . . . 99

6.5 Vector buffer GPU layout . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 List buffer GPU layout . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Buffer transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1 rNdN execution and compilation breakdown (ptxas -O3 backend) . . 108

7.2 rNdN execution and compilation breakdown (ptxas -O0 backend) . . 109

7.3 rNdN execution and compilation breakdown (complete system) . . . . 110

7.4 rNdN execution breakdown . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 rNdN compilation breakdown . . . . . . . . . . . . . . . . . . . . . . 114

7.6 rNdN compilation speedup over state-of-the-art . . . . . . . . . . . . 116

7.7 rNdN cached execution speedup over state-of-the-art . . . . . . . . . 117

7.8 rNdN uncached execution speedup over state-of-the-art . . . . . . . . 119

7.9 rNdN total speedup over state-of-the-art . . . . . . . . . . . . . . . . 120

7.10 Algorithmic and data layout speedups . . . . . . . . . . . . . . . . . 122

7.11 @like algorithm speedup . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.12 Data allocation speedup . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.13 Outliner execution speedup . . . . . . . . . . . . . . . . . . . . . . . 127

7.14 Outliner compilation speedup . . . . . . . . . . . . . . . . . . . . . . 128

xv



7.15 Register usage vs. ptxas . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.16 List scheduling speedup . . . . . . . . . . . . . . . . . . . . . . . . . 131

xvi



List of Tables

2.1 Comparison of Pascal and Ampere GPU properties . . . . . . . . . . 14

4.1 HorseIR function parallelism metadata . . . . . . . . . . . . . . . . . 28
4.2 HorseIR shape abstractions for SQL queries . . . . . . . . . . . . . . 29
4.3 HorseIR size abstractions for SQL queries . . . . . . . . . . . . . . . . 29
4.4 HorseIR shape rules for binary element-wise vector functions . . . . . 33
4.5 Mapping from HorseIR types to PTX . . . . . . . . . . . . . . . . . . 49

5.1 Special registers in PTX and SASS . . . . . . . . . . . . . . . . . . . 65
5.2 Constant parameter space layouts in SASS . . . . . . . . . . . . . . . 66
5.3 Scheduling properties for each instruction class . . . . . . . . . . . . . 80
5.4 Scheduling stall counts for each dependency . . . . . . . . . . . . . . 84
5.5 ELF format header section properties . . . . . . . . . . . . . . . . . . 89
5.6 ELF format function metadata sections . . . . . . . . . . . . . . . . . 90
5.7 ELF format relocatable addresses . . . . . . . . . . . . . . . . . . . . 92

6.1 Data buffer properties . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1 Evaluation comparison systems . . . . . . . . . . . . . . . . . . . . . 106
7.2 TPC-H @like patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 TPC-H outliner kernel count . . . . . . . . . . . . . . . . . . . . . . . 129

xvii



xviii



List of Abbreviations

AST: Abstract syntax tree

CFG: Control-flow graph

GPU: Graphics processing unit

GPGPU : General-purpose graphics processing unit

ILP: Instruction-level parallelism

IR: Intermediate representation

JIT: Just-in-time

PC: Program counter

PE: Processing element

PTX: Parallel thread execution

RDBMS: Relational database management system

SASS: Shader assembler

SIMD: Single-instruction multiple-data

SM: Streaming multiprocessor

xix



xx



Chapter 1

Introduction

With sizes ever increasing, the efficient storage and analysis of large scale data
is a fundamental question for the database community and has driven significant re-
search in recent years. Compilation is one effective proposal for repeated queries,
eliminating the interpretation overhead found in traditional designs and amortizing
the additional cost over multiple executions [38, 150, 152]. More recently, database-
specific approaches have also been used in place of general-purpose compilers, allowing
competitive performance over interpretation even for new queries by performing only
necessary optimization [69, 117]. Alternatively, expensive computation can be of-
floaded to specialized accelerators like the GPU, exploiting their vast parallelism and
high memory bandwidth for impressive speedup [150, 103, 20]. Unfortunately, despite
widespread adoption in modern architectures, their use has so far been hindered by
the low memory capacity and slow transfer speeds of current hardware, the high com-
pilation cost of current pipelines, and the complex design of efficient parallel GPU
algorithms. Existing approaches are therefore best suited to contexts where data can
be completely cached in device memory and the query either pre-compiled or inter-
preted. Additionally, current systems typically support only a subset of database
queries [45], and require low-level expertise for algorithm design due to their uncon-
ventional and sometimes closed-specification architecture. High performance GPU
databases are thus within reach, but their their potential is still limited compared
their well-researched CPU counterparts in many scenarios.

1



Introduction

In this thesis we propose rNdN, an end-to-end and open-source1 compilation
pipeline and execution engine for relational database queries on the GPU. Our ap-
proach is compiler-first, focusing on balanced and runtime-suited compilation strate-
gies rather than algorithm design and optimization. This removes an important
limitation faced by existing work and extends the use of compiled GPU databases to
short running queries and competitive end-to-end evaluation. We also aim for sim-
plicity, composing intuitive techniques and algorithms rather than intensive query-
or domain-specific optimization. Despite being low-level, we maintain significant
generality and can adapt to future architectures. We compare our approach to mod-
ern and open-source CPU and GPU database systems, both interpreted and com-
piled [101, 38, 150, 103]. Our results show performance improvements in several key
use cases, notably cached and end-to-end scenarios, over all comparison systems and
on a variety of queries. Compilation speedups exceed 5.5x geomean, leading to end-
to-end improvements of 4.4x compared to NVIDIA’s optimizing pipeline for Ampere.
Importantly, we also support a complete analytics benchmark. We present research
challenges in Section 1.1, specific contributions of this thesis in Section 1.2, related
publications in Section 1.3, and the thesis roadmap in Section 1.4.

1.1 Challenges

Our approach targets short running SQL queries with smaller yet significant data
sizes, improving performance through GPU acceleration without the usual compila-
tion overhead. This presents the following challenges, that we address in our design:

Extracting parallelism: Query programs define the execution from input to out-
put, comprising a mix of data organization and computation. To efficiently
exploit the GPU, we must therefore extract parallel sections from arbitrary pro-
grams, each corresponding to a kernel. For best performance, parallelism must
be maximized while the cost of data produced by each operation minimized.

1https://github.com/akrolik/rNdN

2

https://github.com/akrolik/rNdN


1.2. Contributions

Exploiting hardware: Most GPU algorithms are designed for a narrow problem
and require significant manual and low-level optimization for best performance.
As a runtime compiler approach, we must therefore define efficient code genera-
tion patterns for a wide variety of functionality without requiring extensive op-
timization. Additionally, since NVIDIA hardware details are relatively opaque,
extensive analysis is required to best exploit underlying hardware capabilities.

Data management: Due to well-known size limitations of GPU memory and PCI-e
bandwidth, proper data transfer and allocation strategies are required. This is
especially relevant as database systems manipulate large amounts of data.

Fast compilation time: As end-to-end query execution includes the compilation
cost, an effective implementation must offset additional overhead with improve-
ments in computation. For short running queries in particular, the compilation
overhead is many times larger than the computation itself – on average over
75% of the overall execution. This requires addressing a major shortcoming of
existing GPU compilers, namely their high cost, without slowing computation.

1.2 Contributions

rNdN is complete database system that compiles and executes SQL queries on the
GPU. We divide contributions into 3 categories discussed below: (1) the compiler and
assembler pipeline; (2) a supporting runtime; and (3) performance evaluation.

Compilation Pipeline

Kernel outliner: Using shape and geometry abstractions that capture GPU par-
allelism, and the implicit synchronization defined in array-based intermediate
representations, we automatically pipeline compatible operations into efficient
kernels beyond simple element-wise functions. Given an arbitrary query pro-
gram in HorseIR, we propose an efficient analysis chain that extracts parallelism
and minimizes costly intermediate data materialization.

3



Introduction

High-level code generation: Lowering to a GPU-specific intermediate representa-
tion, PTX, we bypass expensive high-level language compilers while maintaining
high performance. We select efficient code generation strategies that adapt ex-
isting, simplistic algorithms to execute database queries written in HorseIR.

Low-level code generation: As the cost of assembling CUDA-compliant binaries
is excessive for runtime use, we propose an alternative assembly pipeline that
trades minor slowdowns in execution for major speedups in compilation. Ex-
tending the existing reverse-engineering efforts and runtime compiler research,
we explore and formalize the necessary components for generating high perfor-
mance code for multiple architectures without the usual compilation overhead.

End-to-end pipeline: To our knowledge, we present the first detailed, end-to-end
and open-source solution for generating an efficient CUDA binary from a high-
level language without the use of proprietary or closed-source components.

Runtime

Supporting compiled queries on the GPU, we formalize the necessary steps for the
execution engine, present a mapping abstract kernel geometries to thread layouts,
and motivate the necessary data management optimizations for GPU buffers.

Coverage and Performance

Coverage: We correctly execute all 22 queries of the widely used TPC-H benchmark,
supporting and accelerating a variety of database computation. While we are
not the first GPU database to achieve this feat, none of the recent systems we
evaluated offered complete support for the entire benchmark.

Performance: Our system shows significant improvement over both CPU and GPU
database systems, both compiled and interpreted, and on a variety of use cases.
Additionally, we demonstrate that our approach effectively balances compilation
and execution for significant speedup in end-to-end execution.

4



1.3. Publications

Evaluation: We present a complete execution breakdown of the compilation and
computation phases, identify the key trade-offs and performance implications,
and enable reasoned optimization of GPU databases.

1.3 Publications

Portions of this thesis have been previously published, and their approach integrated
into our overall system. We note two publications related to the design of database
systems, and two miscellaneous publications on compilers and parallelism.

1. Alexander Krolik, Clark Verbrugge, and Laurie Hendren. r3d3: Optimized
query compilation on GPUs. In 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pages 277–288, 2021. [125]

Contributions: This paper presents the initial system design of rNdN, and
concerns the frontend compilation and execution of database queries on the
GPU. I proposed the design, implementation and evaluation of the r3d3 system.

2. Hanfeng Chen, Alexander Krolik, Bettina Kemme, Clark Verbrugge, and
Laurie Hendren. Improving database query performance with automatic fusion.
In International Conference on Compiler Construction, pages 63–73, 2020. [39]

Contributions: Developed concurrently with our GPU approach, this paper
presents CPU loop fusion techniques for HorseIR queries. I assisted with writing
and discussed ideas for the HorseIR specification and shape analysis/fusion.

Miscellaneous Publications

1. Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren. Au-
tomatic vectorization for MATLAB. In Languages and Compilers for Parallel
Computing, pages 171–187, 2017. [40]

Contributions: Addressing vectorization of MATLAB programs, this work
proposes an algorithm for analyzing and transforming loops. I assisted with
presentation, organization and writing.

5



Introduction

2. Clark Verbrugge, Christopher J. F. Pickett, Alexander Krolik, and Allan
Kielstra. Exhaustive analysis of thread-level speculation. In 3rd International
Workshop on Software Engineering for Parallel Systems, page 25–34, 2016. [226]

Contributions: This work proposes strategies for launching and joining spec-
ulative execution of loop iterations. I conducted scalability experiments and
addressed correctness of the dynamic programming algorithm.

1.4 Roadmap

The remainder of this thesis is organized as follows:

Chapter 2: We provide background on database systems, the HorseIR intermediate
representation, and GPU architectures and compilation.

Chapter 3: We describe a high-level overview of our system design and the compo-
nents required to compile and execute database queries on the GPU.

Chapter 4: We define the frontend and compiler pipeline that outlines pipelined
kernels and generates efficient PTX intermediate code for database queries.

Chapter 5: We define the backend compiler (assembler) pipeline that translates
from intermediate form to machine code. We discuss low-level details including
register allocation, code templates, instruction scheduling, and binary files.

Chapter 6: We outline the runtime system that supports execution of the compiled
queries, including the execution engine and data management.

Chapter 7: We evaluate the performance of our system, breaking down the impor-
tance of each phase, comparing against modern CPU and GPU databases, and
considering the impact of each optimization.

Chapter 8: We contextualize our work, presenting other research in compiled
queries, GPU databases, compilers, and assemblers.

Chapter 9: We conclude with important takeaways and propose future research that
could extend the use of our system beyond database queries.

6



Chapter 2

Background

In this chapter we present the background for rNdN, detailing the basis for our
work as well as the specialized parallel hardware used in our approach. We begin
by briefly describing relational database systems and SQL query processing in Sec-
tion 2.1. Next, we present our chosen representation of SQL queries, HorseIR, and its
implications in Section 2.2. Finally, we explore GPUs in Section 2.3, including high
and low-level architecture views, programming, and compilation pipelines.

2.1 Databases

With data sizes ever growing, efficient storage and analysis has become increasingly
important. To this end, relational database systems (RDMBS) are optimized imple-
mentations that provide tabular data storage and “powerful query languages” [188].
Based on the relational model, data is either stored by row (row-oriented) or by col-
umn (column-oriented), with the latter designed for efficient querying [214]. Data
may also be stored on-disk or in main-memory, removing the I/O bottleneck and
increasing performance [101]. We focus on in-memory, column-oriented databases
in our approach as they are more easily adapted to GPUs. The query language is
described in Section 2.1.1, and execution in Section 2.1.2.

7



Background

2.1.1 SQL

SQL is a declarative programming language used for querying relational databases,
uncoupling the output from its implementation. Based on relational algebra, it com-
prises a set of operations that analyze relational data. Common query operations are
summarized below, with more details available in other resources [188].

Project Select a subset of columns.

Where Select a subset of rows, according to a boolean predicate.

Aggregate Equivalent to reduction, combine data into a single value (e.g. SUM, MIN).

Join Combine data from related tables using a cross product.

Group Collect elements with common values into bins, each of which is aggregated.

Sort Orders rows according to one or more attributes.

Distinct Select only unique values.

Each operation varies in cost, depending on its computation and the underlying
data. Joining and grouping are the most expensive, while projection and selection are
comparably lightweight. A simple example query is shown in Figure 2.1 that selects
a subset of country data according to a boolean predicate.

SELECT name

FROM country

WHERE size > 10

Figure 2.1 – SQL query projecting (SELECT) the name attribute of all countries FROM
the county table WHERE the size attribute is greater than 10.

8



2.2. HorseIR

2.1.2 Execution

SQL queries are translated to a relational algebra tree, representing the required
operations as well as their dependencies [33]. The tree is optimized to find a min-
imal cost execution plan, with each operation augmented with algorithmic details.
During optimization, multiple plans are produced and the most efficient is heuristi-
cally selected [188]. The query plan can then either be evaluated in an interpreter
using efficient operator implementations [101], or compiled to binary for execution us-
ing additional optimizations like pipelining [152, 39]. Compiling the query typically
yields faster execution, but must be balanced against compilation time for overall
performance in cold-start, uncached environments. Compilation overhead can be
amortized by repeated execution, or reduced using caching or minimal optimization.
In this project we use execution plans from HyPer, a CPU database system designed
for efficient execution and compilation [152].

2.2 HorseIR

HorseIR is an array-based intermediate representation (IR) designed to represent and
optimize relational database queries [38]. Given an SQL query, the database system
produces an efficient query plan with SQL-specific heuristics, translates the plan to
HorseIR, and applies traditional compiler optimizations. The database system can
therefore combine benefit from both the compiler and database fields. Notably, as an
array-based language, it is ideal for vector processing or SIMD architectures.

The language provides a comprehensive set of built-in functions from array-based
languages, including unary and binary functions (e.g. @abs, @plus) and algebraic op-
erations (e.g. boolean selection @compress). Queries are represented using a mixture
of these basic functions and SQL-specific operations. For example, general purpose
boolean compression supports SELECT, while complex operations like GROUP and JOIN

have dedicated built-in functions (e.g. @group and @join_index). Similarly, the
type system comprises basic vector types such as i32, f64 and str (32-bit integer,
64-bit float and string) as well as database-specific formats. Vectors are analogous

9



Background

to column data, while lists represent tuples of columns. Lists may either be homo-
geneous or heterogeneous depending on the column types. Built-in functions @each*
operate on lists directly, applying array-based functions to each cell independently.
Enumerations designate foreign keys similar to pointers, and tables and dictionar-
ies support tabular data and key-value mappings respectively. Compound types are
parameterized by their elements, simplifying code generation and optimization.

An example HorseIR program is shown in Figure 2.2, implementing the prior
SQL query shown in Figure 2.1. Recall that the query selects a subset of countries
according to a boolean size predicate. In the first phase, table and column data
is loaded from the underlying store, with each column represented as a vector. It
must then be cast to the appropriate type for the query, ensuring correctness of the
subsequent code. The predicate is then evaluated, returning a vector of true/false
values, one for each row. Using this boolean mask, compression selects a subset of the
input data, extracting only those rows corresponding to a true value. Finally, the
result is formed into a table and returned to the user. Note that tables are represented
as a vector of symbol column names (sym), and an equivalently sized list of columns.
As a compound type, lists can either be parameterized by their element types, or
specify the wildcard type ? that is inferred by the compiler.

def main() : table {

// Load table and columns

var t1:table = @load_table(`country:sym);

var t2:i32 = check_cast(@column_value(t1,`size:sym),i32);

var t3:sym = check_cast(@column_value(t1,`name:sym),sym);

// Evaluate selection predicate amd select only true rows

var t4:bool = @gt(t2 ,10: i32);

var t5:sym = @compress(t3,t4);

// Form output table

var t6:list <?> = @list(t5);

var t7:table = @table(`name:sym ,t6);

return t7;

}

Figure 2.2 – SQL query represented in HorseIR. The program loads column data,
selects rows with predicate (size > 10), and forms the output table.

10



2.3. GPUs

2.3 GPUs

A modern GPU is a multi-core execution unit designed for general throughput com-
putation (GPGPU) [136]. Compared to the traditional CPU-system, the architecture
is thus fundamentally optimized for parallel applications and presents unique design
and implementation challenges. We focus on NVIDIA GPUs in this work, although
other vendors all follow similar overall designs. We explore the a high-level abstract
architecture in Section 2.3.1, two recent hardware implementations in Section 2.3.2,
before discussing compiler design in Section 2.3.3.

2.3.1 Abstract Architecture

At the most granular level, an abstract GPU consists of a large set of processing ele-
ments (PE), each conceptually representing a core of the execution unit. Organized
hierarchically, processing elements are grouped into streaming multiprocessors (SM),
and the set of multiprocessors form the GPU as shown in Figure 2.3. Compared to
a CPU, there are thus a larger number of cores, though as the cores are simpler in
design and relatively slower, the GPU is most amenable to throughput computation.
Additionally, due to the hierarchical design, algorithms must judiciously use synchro-
nization for efficient execution. While cores within a multiprocessor do have limited
synchronization and data-sharing capabilities, full inter-multiprocessor synchroniza-
tion is not supported by current architectures.

PE

SM
Shared
Memory

Registers
Page

PE PE

SM

Device Memory

PCIe

Host
Memory

...

... CPU

GPU

Host

Figure 2.3 – Abstract GPU architecture. (Adapted, © 2021 IEEE [125])

11



Background

Memory follows a similar pattern, with a distinct store for each level in the hier-
archy. Each processing element is assigned a segment of the registers page, multipro-
cessors have fixed-size shared memory, and device memory is universally accessible.
In data-heavy programs, memory requirements for registers and shared memory thus
limit the amount of parallelism. Device memory also serves as the entry and exit
point for data transferred over the PCIe-bus from the host system. Latency follows
capacity, with smaller stores having correspondingly lower access times, while de-
vice memory is the largest and highest latency. Appropriate data caching is thus
important to improve performance.

A GPU program specifies the behaviour of a single thread, as well as any inter-
thread synchronization. Threads are organized into thread blocks which in turn form
the grid. At runtime, thread blocks are dynamically assigned to a multiprocessor
wherein threads are dispatched to cores in groups of 32 (a warp). The number of
concurrently executing thread blocks is therefore limited by the underlying hardware
and precludes full inter-block synchronization. Additionally, despite the conventional
wisdom that all threads within a block execute in lock-step, as the number of threads
within a block greatly exceeds the number of cores, synchronization is required for
consistent memory. GPUs thus provide intra-block thread barriers, and global and
shared atomics. Efficient GPU programs must therefore saturate cores with inde-
pendent threads and effectively use synchronization. Note that as thread-creation
overhead is low, increased parallelism can yield overall speedup.

2.3.2 Real Architecture

A high-level view of GPU architectures is sufficient for most applications, allowing
developers to adapt their algorithms. However, intensive optimization and machine
code generation require a lower-level understanding as the underlying hardware has
additional characteristics not exposed in user-level code. Two recent NVIDIA archi-
tectures, Pascal (2016) [158] and Ampere (2020) [160], are shown in Figure 2.4 and
explored and compared below. In this thesis, we target both architectures using a
general-purpose approach, showing the utility across platforms.

12



2.3. GPUs

Core

Register File (16,384 x 32-bit)

Warp Scheduler

Dispatch

Pa
rti

tio
n

Shared Memory (96 KB)

...

...

SM - GP102 (Pascal)

Dispatch

Core

LDST

LDST

SFU

SFU

Core

Core

DP
DP... ......

Core Core LDST SFU

(a) NVIDIA GTX 1080 Ti (Pascal) [158, 222].

I+F32

Register File (16,384 x 32-bit)

Warp Scheduler

Pa
rti

tio
n

Shared Memory (128 KB)

...

...

SM - GA102 (Ampere)

Dispatch

I+F32

LDST

LDST

SFU

SFU

F32

F32

DP...
I+F32 F32 LDST SFU

LDST SFU

(b) NVIDIA GTX 3080 (Ampere) [160].

Figure 2.4 – Comparison of recent consumer NVIDIA GPU architectures.

A GPU multiprocessor is divided into partitions, each executing a collection of
warps. A warp is a set of 32 consecutive threads, all belonging to the same thread
block. During execution, thread blocks are assigned to multiprocessors and warps
divided among partitions according to a hardware-specific allocation scheme1. Each
clock cycle, the warp scheduler selects the next available warp and dispatches the
current instruction to the appropriate functional unit. In the case of dual issue, 2
consecutive instructions may be issued per warp, as discussed in Chapter 5. Func-
tional units commonly include cores, special function units (SFU; e.g. cosine, sine,
reciprocal) and double-precision units for computation (DP), as well as load-store
units (LDST) for data accesses. Cores may either be general-purpose for both integer
and single-precision computation (Pascal) or more specialized as in Ampere. Note
that some units like double-precision may be shared between multiple partitions [222].
If the number of functional units is less than the size of a warp, the throughput is
limited and multiple cycles are needed to issue the instruction [168]. The published
number of CUDA cores corresponds to the number of single-precision floating point

1https://forums.developer.nvidia.com/t/some-doubts-about-the-task-scheduling-
of-nvidia-gpu/50263

13

https://forums.developer.nvidia.com/t/some-doubts-about-the-task-scheduling-of-nvidia-gpu/50263
https://forums.developer.nvidia.com/t/some-doubts-about-the-task-scheduling-of-nvidia-gpu/50263


Background

Table 2.1 – Comparison of Pascal and Ampere GPU properties [158, 222, 160].

Property Pascal (1080 Ti) Ampere (3080)

# Multiprocessors 28 68

# Partitions 4

# Total Cores 3584 8704

Dispatch Dual Single

Memory
Device Memory 11 GB 10 GB
Shared Memory 96 KB 128 KB
Registers 16,384 x 32-bit

Functional Units

Cores 32 x I32/F32 16 x I32/F32; 16 x F32
LDST 8 4
SFU 8 4
DP 2 shared 1 shared

units. A comparison of the functional units and partition properties of both archi-
tectures is shown in Table 2.1. Note that shared memory is multiprocessor-wide,
whereas registers are allocated per partition. At first glance the newer architecture
has a smaller number of functional units and limited dispatch. However, combining
the increased number of multiprocessors with more efficient instructions leads to per-
formance improvements. Further architecture-specific details are described in later
chapters as we explore the compiler implementation.

2.3.3 Compilation Pipeline

Compilation for NVIDIA GPUs follows a 2 stage process, transforming a high-level
SIMT program to a binary form executable on the hardware as shown in Fig-
ure 2.5 [167]. In the first stage, user-written CUDA code is translated to PTX, a
low-level intermediate representation designed by NVIDIA targeting a virtual archi-
tecture [170]. This avoids complications from register allocation, instruction schedul-
ing, and binary formats which all depend on hardware implementations. The PTX
code can then be distributed to user machines where it will undergo stage 2 compila-
tion. As the intermediate code is mostly architecture independent, delaying compila-
tion has the advantage of supporting multiple systems with a single implementation,
in addition to being faster to compile than the original code. Note that PTX is a

14



2.3. GPUs

versioned IR, which has different functionality depending on the compute capabil-
ity, an abstract versioning system for GPU architecture. The distributed code must
therefore only use features supported by the target system and compute capability.

During stage 2, the compiler (also referred to as the assembler) translates from
PTX to SASS, the machine code used in the CUDA binary format (.cubin) [162].
SASS is short for “Streaming Assembler”2, and is tied to a specific GPU family.
As the architecture evolves, the underlying instruction set changes, including both
the binary format and operations supported. The assembler must therefore consider
properties of the real architecture in its implementation, constraints not present in the
high-level program. As it executes on the target machine, it should also be efficient
or use caching to reduce overhead.

.cu Stage 1
(PTX Gen) .ptx Stage 2

(cubin Gen) .cubin

Virtual Architecture Real Architecture

Figure 2.5 – NVIDIA CUDA compilation pipeline [167].

2https://stackoverflow.com/questions/9798258/what-is-sass-short-for

15

https://stackoverflow.com/questions/9798258/what-is-sass-short-for


Background

16



Chapter 3

Overview

rNdN is a complete GPU compiler and execution engine specializing on SQL
database queries. Given a HorseIR query program, it extracts parallel kernels (Fron-
tend), compiles to binary (Compiler+Assembler), executes the program and returns
the result (Runtime). We emphasize end-to-end performance, dependent on runtime-
efficient compilation and optimized execution. The design is separated into 3 main
components shown in Figure 3.1: Frontend and Compiler, Assembler, and Runtime
described in Section 3.1, Section 3.2 and Section 3.3 respectively.

HorseIR 
Query

Compiler

DB

Execution

Kernels 
CPU 
Code

Frontend

Runtime

GPU Assembler

JIT

Figure 3.1 – rNdN overall system architecture.

17



Overview

3.1 Frontend and Compiler

We follow the standard 2 stage compilation pipeline, beginning with our frontend.
The first stage compiler parses the input query, decomposes the program into kernels
and CPU control code, and produces GPU code for the parallel sections as shown in
Figure 3.2. This separates the problem of parallelization from the complexities of code
generation and execution, and allows selectively offloading expensive computation.
We can thus effectively improve performance over typical CPU database systems.

A query program consists of a single function entry point, calling a sequence of
built-in functions. We begin by parsing the HorseIR program, and enforcing semantic
requirements. As a statically-typed language, this includes building a symbol table
and type-checking before ensuring that all variables are assigned before use. Since we
target a typed low-level IR, static-typing is imperative for high-performance.

Given the parsed program, we then determine parallel sections using the Outliner,
so-called because it “outlines” sections of the original program that are suitable for
the GPU. This approach was inspired by the Velociraptor compiler which similarly
extracts interesting regions [74]. The remaining program consists of CPU control code
and sequential operations. Kernels are designed to maximize parallelism and minimize
high-latency data accesses, while satisfying dependencies and synchronization.

Each kernel can then be compiled to PTX code, mapping from the high-level built-
in functions to a parallel GPU equivalent. As outlined kernels are valid sequences
of operations, our generation strategy is simple and efficient, keeping compilation
overhead low. In addition, optimizations necessary for performance are embedded
directly in the code patterns instead of a separate phase. A full description of the
outliner and code generation strategies is discussed in Chapter 4.

HorseIR 
Query

Code 
GeneratorKernels 

CPU 
CodeSyntax

.ptx 
Code

Semantics Outliner

Figure 3.2 – rNdN frontend compiler architecture.

18



3.2. Assembler

3.2 Assembler

PTX code is typically assembled to binary by time-costly NVIDIA proprietary tools,
providing limited insight and control into the process. We present a drop-in replace-
ment assembler that translates PTX code to SASS machine code while minimizing
overhead as shown in Figure 3.3. This enables runtime JIT compilation previously
unsuitable for short-running programs typical for query processing. We target both
10-series and 30-series GPUs, demonstrating the portability of our approach.

Assembly begins with register allocation, allowing us to assign virtual registers in
PTX to real registers in SASS. The number of registers is determined by the device,
although remains consistent across the target platforms. For each intermediate func-
tion, we then map to the supported instruction set using optimized patterns. Most
operations map 1-to-1 or decompose to an efficient hardware-dependent sequence.

As JIT-capability is a primary concern for our design, optimization is kept to a
minimum and focuses on improving performance with low overhead. We thus focus on
two improvements, instruction scheduling and peephole transformations. We assume
that the generated code is largely optimal, getting the bulk of the performance from
efficient parallel algorithms. This avoids needless costs from intensive fixed-point
analyses and transformations typical to most optimizing compilers.

The last phase of assembly generates a binary ELF file compatible with the CUDA
runtime, completing the compilation pipeline. SASS instructions are translated to
binary using our framework, and augmented with NVIDIA-specific properties. We
therefore remain independent of the proprietary pipeline while maintaining compati-
bility. The assembler is described in detail in Chapter 5.

Register
Allocator

.ptx 
Code

.cubin 
Binary

Binary 
Generator

.sass 
Code

Code 
Generator

Optimizer

Figure 3.3 – rNdN backend assembler architecture.

19



Overview

3.3 Runtime

Once the query has been assembled to an executable form, it is passed to the runtime
shown in Figure 3.4 along with the CPU control-code. The interpreter coordinates
execution of the CPU code and dispatches kernels to the GPU for parallel sections. As
the CPU is reserved for basic data manipulation functions, the interpretive overhead
is negligible compared to the overall query. Alongside the interpreter, we provide
an SQL library providing complex functions like sort, group, join and like. Each is
implemented for the GPU using internal control-flow and data structures that are not
efficiently expressible in HorseIR.

We build on-top of the NVIDIA CUDA runtime library and provide a unified inter-
face for accessing and initializing the GPU. Expensive operations like data-caching,
initialization, allocation and deallocation are optimized with versions suitable for
query processing. An external library from NVIDIA provides complex math func-
tions, compiled and optimized using LLVM.

Lastly, the data registry serves as the CPU-bound storage for the database, storing
data in-memory and in columnar format. Data is automatically transferred and kept
consistent between the two devices as the query is executed by the interpreter. The
transfer cost, a significant bottleneck in GPU applications, is thus kept to a minimum.
We discuss the runtime in Chapter 6.

Interpreter
GPU Engine

SQL Library

CUDA 
Runtime

GPU

Data 
Registry

DB

External 
Library

LLVM

CPU 
Code

.cubin 
Binary

Figure 3.4 – rNdN runtime architecture.

20



Chapter 4

Frontend and Compiler

In this chapter we present the frontend and stage 1 compiler pipeline, beginning
with the input HorseIR query program and describing the steps required to outline
and generate efficient GPU code. We start with the frontend in Section 4.1, briefly
detailing the parsing and semantics phases. In Section 4.2, we continue with the
analysis framework and outliner, presenting our approach to automatically determin-
ing parallel sections (kernels) and CPU control code. Lastly, we describe the code
generation strategy for built-in and library functions, thread layouts, and targeted
optimizations in Section 4.3 before summarizing our approach in Section 4.4. The
resulting PTX and CPU code are passed onto the Assembler and Runtime, described
in Chapter 5 and Chapter 6 respectively.

HorseIR 
Query

Code 
GeneratorKernels 

CPU 
CodeSyntax

.ptx 
Code

Semantics Outliner

Frontend

Figure 4.1 – rNdN frontend and compiler architecture.

21



Frontend and Compiler

4.1 Frontend

HorseIR is a statically-typed language that may either be compiled or executed in an
interpreter [38]. Programs are defined in a default module comprising a collection
of imports and user-defined functions. A main function serves as the entry point and
kernels represent parallel sections as shown in Figure 4.2. Provided by the system,
a Builtin module provides array-based and database functions, while an additional
GPU module implements parallel algorithms requiring non-HorseIR control-flow or
structure allocations. Query programs call a sequence of built-in and kernel functions
before returning tabular data. Although not pictured, HorseIR has structured control-
flow (loops and conditional statements) used in generic computation beyond SQL.

module default {

import Builtin .*; // Array/database functions

import GPU.*; // GPU library functions

def main() : table { // Query entry point , returns table

var t0:i32 = [...]; // Load input data

var t1:i32 = @main_1(t0); // GPU kernel call

var t3:i64 = @GPU.order_lib (...); // SQL `ORDER BY ' library call

var t4:list <?> = @list(t3); // Collect columns for output table

var t5:table = @table(`order:sym , t4); // Form output table

return t5;

}

kernel main_1(t0:i32) : i32 { // GPU kernel definition

var t1:i32 = @plus(t0, 1:i32); // Array built -in function

return t1;

}

}

module Builtin { // Array and database functions

def plus(t0:?, t1:?) : ? __BUILTIN__ // Element -wise binary `+'

def load_table(t1:sym) : table __BUILTIN__ // SQL table loading

[...]

}

module GPU { // GPU library functions

def group_lib (...) : dict <i64 , i64 > __BUILTIN__ // SQL group

def order_lib (...) : i64 __BUILTIN__ // SQL sort

[...]

}

Figure 4.2 – HorseIR syntax example, including built-in modules and kernel functions.

22



4.1. Frontend

We implement a scanner+parser module using flex [2] and bison [1], parsing the
input HorseIR query into an abstract syntax tree (AST). We then enforce semantic
requirements with a symbol table and type checker as shown in Figure 4.3. The 3-
pass symbol table resolves modules, imports, and functions calls to either user-defined
functions and kernels, or library functions imported into the module. This is followed
by type checking, which ensures type-correctness and infers wildcard types (“?”) using
built-in function rules. Type inference is required for static GPU code generation as
the target language has no inference capability, and the input queries translated from
SQL do not provide types for all variables. Lastly, we ensure variable declarations
are defined on all paths before use with a definitely assigned analysis.

module default {

import Builtin .*;

import GPU.*;

def main() : table {

var t0:i32 = [...];

var t1:str = [...];

var t2:? = @Builtin.plus(t0 , 1:i32); // Infer t2:i32; resolve @Builtin.plus

var t3:? = @like_lib(t2 , "%C":str); // Infer t3:bool; resolve @GPU.like_lib

[...]

}

}

Figure 4.3 – HorseIR semantics example, inferring wildcard types and resolving func-
tion calls/imports. Note that function calls can use the full path to resolve conflicts.

As an array-based language with SQL-specific functionality, HorseIR is well-suited
for use in GPU databases. In particular, as array-based languages naturally expose
data-dependencies and functionality is limited through the use of built-in functions,
extracting parallelism is trivial compared to other imperative languages and the code
generation strategies are simplified. Additionally, by directly supporting SQL func-
tionality and types, traditional compiler techniques may be applied where necessary.
As a compiler-first approach, this is especially relevant for high performance.

23



Frontend and Compiler

4.2 Outliner

SQL queries are translated to a single HorseIR function, mixing both sequential and
parallel operations sourced from array-based languages and SQL databases. Before
code generation, we must therefore identify sections of parallel code and outline them
into efficient GPU kernels. The surrounding CPU-based control code can be executed
in an interpreter without significant overhead as the primary computation is offloaded
to the accelerator. Central to efficient outlining are 3 key ideas:

1. Minimize data access times, keeping data in fast memory;

2. Minimize redundant data accesses, loading data once; and

3. Maximize parallelism, keeping threads active.

We therefore define kernels as pipelines of compatible operations that are either data-
dependent or share input data. This keeps intermediate data in fast registers memory,
reduces reads and writes to slow device memory, and minimizes inactive threads
that reduce parallelism. Compatibility, or the decision to combine operations into a
single kernel, is thus essential to efficient execution and considers program properties,
parallelism potential, and device capabilities. The full outlining pipeline has 5 main
steps shown in Figure 4.4 and described in subsequent sections:

1. Data-dependency analysis and representation; (Section 4.2.2)

2. Shape analysis, recovering variable layouts; (Section 4.2.3)

3. Geometry analysis, mapping from shapes to threads; (Section 4.2.4)

4. Compatibility analysis, forming kernels; (Section 4.2.5)

5. Builder, generating the outlined form; (Section 4.2.6)

24



4.2. Outliner

Shape
Analysis

Shapes

AST

Geometry
Analysis

Dependency
Analysis

Dependency
Graph

Geometries

Compatibility
Analysis

Outline
Builder

Outlined
Graph

CPU
Code Kernels

Figure 4.4 – GPU outliner pipeline for extracting kernels from input HorseIR queries.
(© 2021 IEEE [125])

4.2.1 Framework

As part of our compiler, we provide a complete HorseIR data-flow analysis frame-
work for analyzing queries and determining important program properties. Inspired
by McSAF [52], the data-flow analyses traverse the structured control-flow of the
program, exploiting loops and conditional statements provided by the IR to simplify
analysis. Loops are conservatively analyzed using a fixed-point, ensuring computed
properties are valid regardless of the iteration. Despite our supported SQL queries
having no explicit control-flow, this generalizes our approach for future research on
scientific computation. In addition, we provide a simple statement analysis that col-
lects program properties independent of execution. Shown in Figure 4.5 is a simple
live-variables data-flow analysis that determines, at each statement, which variables
may be used at some point in the future. Note that as no control-flow is present, only
a single iteration of the fixed-point analysis is represented. Recall that basic HorseIR
types (e.g. i32) are vectors, with scalars values considered a vector of size 1.

As program analysis is the most expensive part of compilation, we spend consid-
erable effort optimizing the data representation. In particular, we eliminate excess
copying and allocation by storing objects (program properties) using pointers, al-
lowing reuse between statements. Additionally, we reduce the data per-statement
by half, storing either the In or Out sets depending on the use case. Lastly, sets

25



Frontend and Compiler

def main() : i32 { // Live variables

var t1:i32 = [...]; // In={} Out={t1}

var t2:i32 = @abs(t1); // In={t1} Out={t1, t2}

var t3:i32 = @plus(t1, t2); // In={t1, t2} Out={t3}

var t4:i32 = @mul(t3 , 2:i32); // In={t3} Out={t4}

return t4; // In={t4} Out={}

}

Figure 4.5 – Example live-variables analysis for a HorseIR program without control-
flow. At each point, we collect the set of variables that may be accessed in the future.

and maps provided by the standard library are replaced by optimized third-party
implementations as they represent a significant cost of the overall pipeline [133].

4.2.2 Program Representation

Compatibility analysis creates kernels by pipelining data-dependent operations, min-
imizing intermediate materialization and redundant accesses. We therefore begin by
constructing an augmented data-dependence graph, capturing potential compatibil-
ity from dependencies and encoding parallelism metadata. A fixed-point data-flow
analysis collects sets of statements that read and write each variable, and we subse-
quently form a data-dependence graph in which nodes are statements and edges are
dependencies. Dependencies include write-read (true) dependencies, read-write (anti)
dependencies, and write-write (output) dependencies. The result is combined with
Shape and Geometry Analyses described in Sections 4.2.3 and 4.2.4 to outline kernels
that also maximize parallelism. An example program and associated data-dependence
graph is shown in Figure 4.6 and metadata subsequently described.

We augment the data-dependency graph with parallelism metadata, encoding the
target architecture and synchronization and simplifying further analyses. Each node
is tagged as either CPU or GPU, and all synchronized edges marked using rules
defined below. CPU functions are limited to quick data management and challenging
string manipulation, offloading the core computation to the GPU. We also identify
library functions that operate as independent black boxes in the outline, as their

26



4.2. Outliner

def main() : table {

var t1:i32 = [...]

var t2:i32 = @min(t1);

var t3:bool = @eq(t1 , t2);

var t4:i32 = @compress(t3, t1);

[...]

}

(a) Input Horse program.

t4:i32 = @compress(t3, t1)

t3:bool = @eq(t1, t2)

t2:i32 = @min(t1)

*

t1:i32 = ...

(b) Augmented data-dependence graph.

Figure 4.6 – Example HorseIR program and augmented data-dependency graph. Bold
nodes execute on the GPU; edges tagged ‘*’ are synchronized. (© 2021 IEEE [125])

control flow or structure allocations preclude easy pipelining. A subset of function
metadata is shown in Table 4.1, covering common and special cases.

Edges are synchronized in two cases: (1) write synchronization of the parent
instruction; or (2) read synchronization of the child instruction. Write synchroniza-
tion is required when the result scatters data globally across threads, as is the case
with indexed writing and reductions. Read synchronization is conversely required
for instructions that gather data across threads, as with indexed reads. Note that
synchronization is variable dependent, as each variable has different read and write
properties. For a pair of data-dependent instructions, the edge must be synchronized
if read or write synchronization is required for any dependency.

We exploit two exceptions present in SQL queries to improve performance by elim-
inating intermediate synchronization. Firstly, boolean masking (@compress) performs
an indexed write, typically requiring synchronization and writing the output to device
memory. In our approach, we selectively disable GPU threads according to the mask
and delay compression until absolutely necessary (e.g. read synchronization). If the
result is aggregated (common for SQL), synchronization and writing are eliminated
entirely. Secondly, Chen et al. addressed a common occurrence for reductions on lists
which produces a single value per cell [39]. If the subsequent operation converts each
cell to an element in a vector (@raze), we can generate the vector in place.

27



Frontend and Compiler

Table 4.1 – Parallelism metadata for a subset of HorseIR functions.

Function Target
Synchronization

Description
Read Write

@eq(a, b) GPU 7 7 Element-wise comparison, no synchroniza-
tion required.

@compress(a, b) GPU 7 7 Boolean compression, no synchronization
required (optimized by disabling threads).

@index(a, b) GPU a:7; b:3 7 Indexed-read (gather), requires read syn-
chronized data.

@index_a(a, b, c) GPU a:3; b:7; c:7 3 Indexed write (scatter), requires read syn-
chronized data, write synchronized result.

@min(a) GPU 7 3-reduction Reduction, write synchronized result.

@raze(a) GPU 7 3-raze Convert list-of-vectors to a single vector,
write synchronized result.

@load_table(a) CPU - - Load SQL table from datastore.

4.2.3 Shape Analysis

An efficient GPU kernel maximizes parallelism, avoiding excess inactive threads. We
therefore statically analyze the data layout and size of each variable, determining its
abstract shape. The result is subsequently used in Geometry analysis to compute
efficient thread layouts of each parallel operation and determine compatibility.

For each HorseIR type we define an abstract shape parameterized by one or more
sizes. Shape and size definitions are shown in Table 4.2 and Table 4.3 respectively.
Vector data represents a contiguous array, allocated with fixed length. Lists represent
collections of vectors, one per cell, with each cell potentially differing in size. As a
convenience, if only one vector is provided, it applies to all cells. For databases, we
support enumeration as foreign keys, dictionary for grouping, and table for input and
output relations. Enumerations are parameterized both by the size of the foreign
key, as well as the size of the remote column. Grouping collects elements into bins
according to a common value. The result is represented as a dictionary, with each
value associated to a vector. Lastly, table data is parameterized by the number of
rows and columns. In generalized HorseIR, compound types list, enumeration and
dictionary may be parameterized by other shapes not used in SQL.

28



4.2. Outliner

Table 4.2 – Shape abstractions for SQL queries. (Adapted, © 2021 IEEE [125])

Shape Description

Vector(N) Array of size N

List(N, [Vector]) Collection of N Vectors, one per cell

Enumeration(N, M) Foreign key of size N, pointing to Vector of size M

Dictionary(N, List(N, [Vector])) Dictionary of N key-value pairs

Table(N, M) Tabular data of size N x M

Kernel outlining occurs statically, before the program is executed. Size represen-
tations must therefore be powerful enough to identify identical allocations used for
compatibility. We define 4 size kinds, capturing common cases shown in Table 4.3.
Vector literals can be represented exactly at compile time with constant, while data
loaded from input relations is represented as a symbol. We can guarantee symbolic
correctness as input tables are immutable throughout execution. Compression is ex-
pressed recursively, associating the initial size with the boolean mask. We can thus
recover the initial size, and identify compressions which share behaviour. Lastly, dy-
namic sizes capture function outputs that depend on exact content such as @unique.
We associate each dynamic shape with a unique identifier used to determine equality.

Table 4.3 – Size abstractions for SQL queries. (© 2021 IEEE [125])

Size Description

Constant(k) Compile-time constant

Symbol(s) Symbolic input size

Compressed(Size, Mask) Boolean masked size

Dynamic Runtime dependent size

Note that compressed sizes include the boolean mask in their representation, iden-
tifying variables compressed with the same value. This is required, as compressed
shapes with same size but different masks require distinct thread layouts. Before
Shape analysis, we thus associate each variable with a unique data object using an
auxiliary analysis. In the case of divergent control-flow, we associate the merged pro-
gram variables with new unique objects. An example HorseIR program and its Shape
analysis are shown in Figure 4.7. Boolean masks are indicated by the variable name.

29



Frontend and Compiler

def main() : table {

var t1:i32 = [...] // `amount column

var t2:i32 = @min(t1);

var t3:bool = @eq(t1 , t2);

var t4:i32 = @compress(t3, t1);

var t5:list <i32 > = @list(t4);

var t6:table = @table(`out , t5);

return t5;

}

(a) Input Horse program. Variable t1 loads data
from the ‘amount column.

Variable Shape

t1 Vector(‘amount)

t2 Vector(1)

t3 Vector(‘amount)

t4 Vector(‘amount[t3])

t5 List(1, Vector(‘amount[t3]))

t6 Table(1, ‘amount[t3])

(b) Shape analysis output for each variable.
Note ‘amount[t3] is shorthand for Com-
pressed(‘amount, DataObject(t3))

Figure 4.7 – Example shape analysis output for the example HorseIR program.

Definition (“Laurie’s 6 steps” [98, 225])

Shape analysis is a fixed-point static analysis, approximating the data layout and size
of each variable at runtime. Following is the formal analysis definition.

Step 1: Approximation

We collect sets of tuples (variable, shape) mapping each variable to its allocated
shape and size at each program point. The shape and size abstractions are
defined in Tables 4.2 and 4.3 respectively.

Step 2: Definition

Let v be a variable defined at program point d. At program point p, variable v
has shape s if on all paths from d to p variable v has shape s, and variable v is
not redefined between d and p.

Step 3: Direction

Forward analysis, collecting shapes about the execution up to program point p.

Step 4: Merge Operation

We merge control-flow paths by a modified set union, recursively merging shapes
for each variable into a single representation. We define the merge operation
for each shape in Figure 4.8. Intuitively, we return the most specific result

30



4.2. Outliner

possible, maintaining the shape kind and size if equal. For compound types list
and dictionary, we pair-wise merge element shapes. Sizes must either be equal,
or a new dynamic size is created. For compression, only the base sizes must be
equal - differing masks create a new unique object.

def MergeShape(shape1 , shape2 ):

if shape1.kind != shape2.kind:

return Wildcard ()

switch shape1.kind:

case Vector:

size = MergeSize(shape1.size , shape2.size)

return Vector(size)

case List:

size = MergeSize(shape1.size , shape2.size)

if shape1.size == shape2.size:

elements = MergeShapes(shape1.shapes , shape2.shapes)

return List(size , elements)

else:

return List(size , [VectorShape(Dynamic )])

case Enumeration:

size = MergeSize(shape1.size , shape2.size)

foreign = MergeSize(shape1.foreign , shape2.foreign)

return Enumeration(size , foreign)

case Dictionary:

size = MergeSize(shape1.size , shape2.size)

if shape1.size == shape2.size:

elements = MergeShapes(shape1.shapes , shape2.shapes)

return Dictionary(size , List(shape1.size , elements ))

else:

return Dictionary(size , List(size , [VectorShape(Dynamic )]))

case Table:

rows = MergeSize(shape1.rows , shape2.rows)

cols = MergeSize(shape1.cols , shape2.cols)

return Table(rows , cols)

def MergeSize(size1 , size2 ):

if size1 == size2: # For compressed sizes , includes substructures

return size1

if size1.kind == Compressed and size2.kind == Compressed:

if size1.size == size2.size: # Sizes equal , masks different

return Compressed(size1.size , DynamicObject)

return Dynamic ()

Figure 4.8 – Merge rules for shape and size abstraction.

31



Frontend and Compiler

Step 5: Starting Approximation

For the function entry point, we add a dynamically-sized shape for each pa-
rameter (Figure 4.9), or the function call shapes in the case of interprocedural
analysis. Other basic blocks are initialized with the empty set, computing the
least fixed-point and providing useful shape information for subsequent steps.

• in(Entry) = {(v, DynamicShape(v.type)) | v ∈ parameters}

• in(Entry) = {(v, CallShape(v)) | v ∈ parameters}, interprocedural

• in(Bi) = {}, for other basic blocks

def DynamicShape(type):

switch type:

case Vector:

return Vector(Dynamic)

case List:

// Dynamic1 may be replaced by a constant if defined in the type

return List(Dynamic1 , [Vector(Dynamic2 )])

case Enumeration:

return Enumeration(Dynamic1 , Dynamic2)

case Dictionary:

return Dictionary(Dynamic1 , List(Dynamic1 , [Vector(Dynamic2 )]))

case Table:

return Table(Dynamic1 , Dynamic2)

Figure 4.9 – Dynamic shape initialization for function parameters.

Step 6: Flow Equations

HorseIR consists primarily of assign statements, generating a new tuple for
each assigned variable. We use the following flow equation, where the gen set
for statement Si is given by the specific built-in or user-defined function and
the kill set removes previous tuples of each defined variable.

out(Si) = (in(Si) \ kill(Si)) ∪ gen(Si)

We define the shape rules for each built-in function and interprocedural analysis
for user-defined functions. The rules for unary and binary element-wise vector
functions are shown below as well as the extension to lists.

32



4.2. Outliner

Table 4.4 – Shape rules for binary element-wise vector functions. (S, C, and D are
short for Symbolic, Compressed and Dynamic; only the Vector size is shown)

Shape b
1 N Sb Cb Db

1 1 N Sb Cb Db

S
h
ap

e
c

M M
if M == N: M
else: Error

Dynamic Dynamic Dynamic

Sc Sc Dynamic
if Sb == Sc: Sb
else: Dynamic

Dynamic Dynamic

Cc Cc Dynamic Dynamic
if Cb == Cc: Cb

else: Dynamic
Dynamic

Dc Dc Dynamic Dynamic Dynamic
if Db == Dc: Db

else: Dynamic

Unary: a = @function(b)

gen(Si) = {(a, b.shape)}

Unary functions operate on each vector element individually, propagating
the input shape and producing a same-size Vector.

Binary: a = @function(b, c)

gen(Si) = {(a, Table(b.shape, c.shape))}

Binary functions are more complex, as they may either broadcast a scalar
value, or perform an element-wise computation. Given constant values,
we can compute the exact resulting shape. Otherwise, we require equality
before falling back to dynamic. Full shape rules are defined in Table 4.4.

Lists: a = @each(@function, b)

gen(Si) = {(a, List(b.size, [@function(e) for e in b.shapes])}

List functions operate on each cell in isolation (or pair-wise for binary
functions taking two lists). We therefore recursively analyze the element
shapes, applying the function to each cell separately. The resulting list
shape has the same size, and one element shape per cell.

33



Frontend and Compiler

To ensure termination, we define our flow and merge functions to be monotonic
on a finite domain that contains a greatest element and a least element.

• Least element (⊥): Uninitialized shape/size

• Greatest element (>): Wildcard shape/dynamic size

We conceptually divide the domain into separate sections, one per shape, each
joined at the least and greatest elements in the overall domain. The sections
for vector and list shapes are shown in Figure 4.10 and explored below.

V(Dynamic)

V(⊥)

V(1) V(n) V(Symbol1) V(Symboln) V(Size1[Mask1]) V(Size1[Maskn]) V(Sizen[Mask1]) V(Sizen[Maskn])

V(Size1[DynamicMask]) V(Sizen[DynamicMask])

... ... ... ...

...

(a) Vector shape.

L(Dynamic x Dynamic)

L(⊥ x ⊥)

L(Size1 x Shape1) L(Sizen x Shape1) L(Size1 x Shapek) L(Sizen x Shapek)

L(Size1 x Dynamic) L(Sizen x Dynamic)

......

...

...

L(Dynamic x Shape1) L(Dynamic x Shapek)......

...

(b) List shape.

Figure 4.10 – Shape analysis domains and partial orderings for list and vector shapes.
The overall domain connects the least elements to a generic uninitialized shape, and
the greatest elements to a generic wildcard (not pictured).

34



4.2. Outliner

Vector shapes are parameterized by one of 3 sizes: constant, symbolic, and
compressed. The ordering is mostly flat, as vectors of different shapes have no
relation. We do, however, allow for compressed vectors of the same size but
different boolean masks as their relation is based on runtime data.

List shapes are parameterized by the Cartesian product of the size (the number
of cells), and the cell shape. We assume only a single cell shape for simplicity,
but the idea can be extended to uneven cells. The ordering allows for dynamism
in both elements independently as it gives more precise analysis results.

4.2.4 Geometry Analysis

Given the shapes of each program variable, we compute the geometry of each state-
ment, abstracting its thread layout and determining compatible operations. As we
parallelize only the core computation, geometry is limited to vector and list oper-
ations. All other operations are CPU-based and have no associated geometry. An
example program and its associated geometries are shown in Figure 4.11, operating
on vector data. We describe the mapping from geometry to thread layouts used for
code generation and execution in Section 4.3.2.

1 def main() : table {

2 var t1:i32 = [...] // `amount column

3 var t2:i32 = @min(t1);

4 var t3:bool = @eq(t1 , t2);

5 var t4:i32 = @compress(t3, t1);

6 var t5:list <i32 > = @list(t4);

7 var t6:table = @table(`out , t5);

8 return t5;

9 }

(a) Input Horse program. Variable t1 loads data
from the ‘amount column.

Statement Geometry

2 CPU

3 Vector(‘amount)

4 Vector(‘amount)

5 Vector(‘amount)

6 CPU

7 CPU

(b) Geometry analysis output for each
statement.

Figure 4.11 – Example geometry analysis output for the example HorseIR program.

Geometry is a statement-based analysis, traversing the program and determining
the geometry for each statement in isolation. Using the result from shape analysis, we

35



Frontend and Compiler

compute the geometry using a set of predefined rules, one for each built-in function.
These rules map the parameter and return shapes to an abstract thread layout suitable
for GPU processing. User-defined functions are omitted in our approach, focusing on
self-contained kernels, but can be supported with interprocedural analysis. Shown
below are the geometry rules for select classes of built-in functions.

Unary: a = @function(b) Geometry = Shape(a)

Unary functions propagate the input shape, performing an element-wise com-
putation. The operating geometry is thus the shape of the output vector.

Binary: a = @function(b, c) Geometry = Shape(a)

Binary functions either broadcast from a scalar value onto a vector, or perform
an element-wise computation. We can simplify the analysis by taking the output
shape of the function, as it corresponds to the amount of work performed.

Compression: a = @compress(b, c) Geometry = Shape(b)

Compression masks an input vector according to a same-size boolean array. The
operating geometry is thus the shape of the input vector.

Reduction: a = @function(b) Geometry = Shape(b)

Reductions produce a single value for a vector shape. The geometry thus cor-
responds to the shape of the input vector.

Lists: a = @each(@function, b) Geometry = Analyze(@function, b)

For list operations, we use a recursive approach to computing geometry, ana-
lyzing the vector geometry of each cell using the nested function. We then form
the list geometry which parallelizes cells and their contents. The list size is
propagated from the input as the number of cells does not change.

4.2.5 Compatibility Analysis

Compatibility analysis extracts parallelism from a HorseIR query program, given
the augmented data-dependence graph and geometry analysis. Each parallel region
or kernel is defined such that parallelism is maximized, while slow data accesses

36



4.2. Outliner

and intermediate materializations are minimized. Operating on the augmented data-
dependence graph, the analysis merges compatible operations in a greedy manner.
Compatible operations are those that may benefit from being merged into a single
kernel, minimizing data access costs while maintaining parallelism as detailed in our
3 step algorithm defined below. The resulting kernels satisfy data-dependency and
synchronization requirements, and efficiently exploit parallelism. We continue the
previous example from geometry analysis (Figure 4.11), showing outlined regions in
grey in Figure 4.12. Each region represents a parallel fragment that can be translated
to a single GPU kernel during code generation. Only the main computation is shown,
as CPU-resident operations are not formed into kernels.

t4:i32 = @compress(t3, t1)

t3:bool = @eq(t1, t2)

t2:i32 = @min(t1)

*

t1:i32 = ...

(a) Augmented data-dependence graph.

t1:i32 = ...

t3:bool = @eq(t1, t2)

t4:i32 = @compress(t3, t1)

t2:i32 = @min(t1)

*

(b) Outlined data-dependence graph.

Figure 4.12 – HorseIR program outline, showing outlined regions from compatibility
analysis in grey. Synchronized edges are tagged ‘*’, and GPU-capable nodes are bold.
CPU-only nodes (t5, t6) forming the output table are omitted. (© 2021 IEEE [125])

We use a 3 step greedy algorithm to identify kernels, illustrated by example for a
simple program fragment in Figure 4.13. By outlining kernels directly in the high-level
HorseIR program, we simplify the design and implementation of subsequent compiler
phases. Each step focuses on a specific merging case that optimizes data accesses
while maintaining high degrees of parallelism.

1. Identify data-dependent, unsynchronized operations with identical geometry;

37



Frontend and Compiler

2. Merge kernels with common input data; and

3. Merge parent-child kernels and optimizing compressed geometry.

Care must be taken in outlining the graph to avoid data-dependent cycles between
kernels as HorseIR programs are acyclic other than well-structured loops (cycles are
only implied in the representation). We must also ensure that input and output
synchronization requirements are satisfied. Unsupported cycles may be introduced if
the input and output of an operation are optimistically merged into a single kernel,
but the operation itself cannot be included due to synchronization. Each step is
described in detail below, along with its associated algorithm.

1

2 3 4

5

* *

(a) Input data-dependence graph. Synchro-
nized edges tagged by ‘*’.

1

2 3 4

5

* *

(b) Step 1: Identify data-dependent opera-
tions with no synchronization.

1

2 3 4

5

* *

(c) Step 2: Merging sibling kernels (2)-(3)
with common input data.

1

2 3 4

5

* *

(d) Step 3: Merge parent kernel (1) with the
best legal successor (2-3). Note that merging
(1) with (4-5) would introduce a kernel cycle.

Figure 4.13 – Compatibility analysis steps breakdown. All nodes have identical ge-
ometry and are GPU-capable. (© 2021 IEEE [125])

38



4.2. Outliner

Step 1

The first step of outlining merges data-dependent GPU operations with identi-
cal geometries, focusing on high-payoff pipelines. We traverse the graph reverse-
topologically, tagging GPU-capable operations with their respective kernel. For each
statement, we may either extend an existing kernel, or form a new parallel region.
Extension is possible if the following are all true, otherwise we start a new kernel:

1. All successors belong to the same kernel;

2. The kernel geometry is identical to the statement; and

3. All successor edges are unsynchronized.

Requiring all successors belong to the same kernel avoids creating pairs of interdepen-
dent kernels without cycle detection. Applied to the example program in Figure 4.13b,
only nodes 4 and 5 may be merged. Edges 2-3 and 3-5 are synchronized, and node 1
has multiple successor kernels. The complete algorithm is shown in Figure 4.14.

Step 2

Given the kernels identified the step 1, we optimize the result in 2 integrated phases,
representing merged kernels as super nodes in an updated graph. Traversing forward-
topologically, we merge sibling kernels for each node, provided that they are not
connected by a path. If a path exists but separate kernels were formed in step 1,
then there must exist a synchronized data-dependency that prevents merging. We
additionally require that the geometries are identical, maximizing parallelism. This
steps reduces redundant input data loads, while satisfying synchronization. Shown in
Figure 4.13c, independent sibling kernels 2 and 3 may merged as they both load input
data from node 1 and have identical geometry. No merging is possible with super
node 4-5 due to synchronization. The first optimization step is shown in Figure 4.15.

39



Frontend and Compiler

kernelMap = {}

def Outline(graph , geometries ):

// Build kernels bottom -up, greedily identifying pipelines

for statement in ReverseTopologicalOrder(graph):

if graph.IsGPU(statement ):

kernel = SelectKernel(statement , geometries[statement], graph)

if kernel == None:

// Start a new kernel if none found

kernel = Kernel(geometries[statement ])

kernelMap[statement] = kernel

else:

kernelMap[statement] = None

def SelectKernel(statement , geometry , graph):

kernel = None

for successor in graph.Successors(statement ):

// Synchronized edges create a new kernel

if graph.IsSynchronized(statement , successor ):

return None

// Ensure that all successors are in the same kernel

if kernel == None:

kernel = kernelMap[successor]

else if kernel != kernelMap[successor ]:

return None

// Kernel geometry must be equal to the statement

if !IsEqual(kernel.geometry , geometry ):

return None

return kernel

Figure 4.14 – Step 1: Identify data-dependent operations with identical geometry.

40



4.2. Outliner

def MergeLoads(node):

// Iterative merging of successor nodes with equal geometry

for successor1 , successor2 in graph.SuccessorPairs(node):

// Ensure no path between the kernels (required by synchronization)

if graph.ContainsPath(successor1 , successor2 ):

continue

// Merge sibling kernels if geometry identical

if IsEqual(successor1.geometry , successor2.geometry ):

graph.MergeNodes(successor1 , successor2)

Figure 4.15 – Step 2: Merge kernels with input dependencies.

Step 3

Once the successor kernels are merged in the previous step, we then merge the cur-
rent node with the best compatible successor that does not introduce a cycle. The
best successor is that which shares the most data-dependencies, reducing intermedi-
ate materialization. We also optimize compression, allowing longer pipelines which
incrementally mask the active geometry. This is especially useful for queries which ag-
gregate a subset of rows, avoiding the write synchronization required for compressed
data entirely. For this step only, we thus relax compatibility to include compressed
geometry. In particular, we allow the best successor geometry to be a subset of the
parent node. The resulting kernel uses the full, unmasked geometry for execution.
Completing the example in Figure 4.13d, we merge the parent kernel with the 2-3
super node as it is the only choice that does not introduce a cycle between kernels.
The alternative, merging the parent kernel with the 4-5 super node would no longer
be acyclic. Note that compression is not considered as all geometries in the example
are identical. The algorithm for selecting the successor kernel is shown in Figure 4.16.
Note that as a greedy algorithm, merging some kernels may in fact hurt performance
as the gains from eliminating intermediate materialization may be more than offset
by reductions in parallelism from compressed geometries or register pressure.

41



Frontend and Compiler

def MergeCompress(node):

bestSuccessor = None

bestSize = 0

for successor in graph.GetSuccessors(node): // Successor loop

// Synchronized edges preclude merging

if graph.IsSynchronized(node , successor ):

continue

// Ensure no edges from any other successor (creates a cycle)

for successor2 in graph.GetSuccessors(node):

if graph.ContainsDirectedPath(successor2 , successor ):

continue // Successor loop

// Geometry must be compatible , allowing compressed successor size

if !IsCompatible(node.geometry , successor.geometry ):

continue

// Maximize the dependency count , reducing materialization

size = graph.GetDependencyCount(node , successor)

if size > bestSize:

bestSuccessor = successor

bestSize = size

// Merge the current node with its best successor

if bestSuccessor != None:

graph.MergeNodes(node , bestSuccessor)

Figure 4.16 – Step 3: Merge parent-successor kernels with compressed geometries.

42



4.2. Outliner

Control-Flow

HorseIR supports structured control-flow through loops and if-else conditional state-
ments. While not present in SQL queries, compatibility analysis extends to such
structures in a recursive manner. The outliner first traverses the body (loops) or
branches (if-else) recursively before proceeding as normal, considering each structure
a super node in the graph. We can therefore generate kernels with limited control-
flow, although the compilation cost will be higher due to the required fixed-point
shape analysis and recursive traversal.

Loops: Loops in HorseIR come in two variations while and repeat. Both iteratively
execute a sequence of statements shielded by a scalar condition, common to all
threads. We can therefore translate any loop whose body statements have
identical geometry and form a single kernel. Note that scalar operations are
compatible with any kernel geometry, as they can be executed once per thread.
We additionally require that the body has no synchronization, leaving such
cases to the interpreter which can repeatedly call the loop body kernel. Loop
carried dependencies are thus allowed as long as no synchronization is present
– we are parallelizing the loop body and not the iterations.

If-Else: Conditional statements follow the traditional format, with scalar condition
similar to loops. They may be translated to GPU code if each branch forms a
single kernel, and have identical geometry. We require identical geometry for
simplicity, even though divergence is not possible. Synchronization is allowed,
provided that it ends the branch (otherwise multiple kernels are required).

4.2.6 Builder

The last step in the outliner translates the graph back to HorseIR, constructing new
kernels, library calls and the CPU control-code. Statements are ordered using a
forward-topological traversal, ensuring that variables are defined before use. The
program is then run through the semantics phase again, ensuring correctness at low
cost. The completed example program is shown in Figure 4.17.

43



Frontend and Compiler

t1:i32 = ...

t3:bool = @eq(t1, t2)

t4:i32 = @compress(t3, t1)

t2:i32 = @min(t1)

*

(a) Outlined data-dependence graph.

def main() {

var t1:i32 = [...]

var t2:i32 = @main1(t1);

var t4:i32 = @main2(t1, t2);

}

kernel main1(t1:i32):i32 {

var t2:i32 = @min(t1);

return t2;

}

kernel main2(t1:i32 , t2:i32):i32 {

var t3:bool = @eq(t1 , t2);

var t4:i32 = @compress(t3, t1);

return t4;

}

(b) Outlined HorseIR program.

Figure 4.17 – HorseIR program translation from outline to code. (© 2021 IEEE [125])

Library functions require complex internal control-flow or specific structure allo-
cations that are not present in HorseIR. They are also type-specific and are therefore
generated at compile time for each query program, although caching is possible for
frequent types. An outlined library call decomposes into the invocation, and one or
more kernels for the core computation. Code generation implements the templates,
and the runtime is responsible for execution. Shown in Figure 4.18 is a library call
to the @order function. The library patterns are described in Section 4.3.4.

def main() {

var t1:i32 = [...]

var t2:i64 = @GPU.order_lib(@order_init , @order , t1);

}

kernel order_init(data:i32) : i64 , i32 {

var index:i64 , data_out:i32 = @GPU.order_init(data , 0:bool);

return index , data_out;

}

kernel order(index:i64 , data:i32) {

@GPU.order(index , data , 0:bool);

}

Figure 4.18 – Outlined library call to sorting function @order.

44



4.3. Code Generation

4.3 Code Generation

Our code generation strategy targets PTX, a low-level intermediate representation
from NVIDIA designed for GPUs [170]. It follows a simplistic approach, mapping
from high-level HorseIR functions to a parallel GPU-friendly language without ex-
tensive optimization. We describe the PTX language and our implementation frame-
work in Section 4.3.1. Thread layouts and code generation templates are discussed
in Sections 4.3.2 and 4.3.3, while library function implementations are covered in
Section 4.3.4. Lastly, we briefly present limited optimizations in Section 4.3.5.

4.3.1 Target Language: PTX

PTX, or Parallel Thread Execution, is general-purpose intermediate representation
for GPUs [170]. Designed to be platform independent, functionality is attached to
compute capabilities, each representing a class of hardware. For portability reasons,
we only use features supported by capability sm61 (Pascal) and sm86 (Ampere) in
PTX version 7.4. PTX code is assembled by the driver to a device specific instruction
set (SASS), and the resulting binary is executed by the CUDA runtime. By generating
PTX instead of CUDA, we bypass the first compilation phase and reduce the compile
time. An example PTX program that increments an array is shown in Figure 4.19.

PTX programs are split into modules, each defining a set of module-scope variables
and functions. They also specify the version, target (compute capability) and the
address size for pointers (64-bit for our architectures). Linking directives may be
used to extend symbol visibility to program-scope and import external declarations
from other modules. Kernels are tagged as entry points accessible by the runtime,
while other functions are only accessible from GPU code. Functions contains a list of
parameters and a statements block.

PTX is a statically-typed language, comprising signed and unsigned integers, float-
ing points and boolean predicates. For type-agnostic operations like shifting, untyped
“bit” variables are also supported. Variables are defined with their type and state
space, indicating their storage in the GPU memory hierarchy. Spaces include global

45



Frontend and Compiler

.version 7.4

.target sm_61

.address_size 64

.visible .entry add(. param .u64 input , .param .u64 output) {

.reg .b32 %r<7>;

.reg .b64 %rd <8>;

// Load input and output addresses from parameters

ld.param.u64 %rd1 , [input];

ld.param.u64 %rd2 , [output ];

cvta.to.global.u64 %rd3 , %rd2;

cvta.to.global.u64 %rd4 , %rd1;

// Compute the global thread index using the thread block and local indexes

mov.u32 %r1, %ctaid.x;

mov.u32 %r2, %ntid.x;

mov.u32 %r3, %tid.x;

mad.lo.s32 %r4 , %r2, %r1 , %r3;

cvt.u64.u32 %rd5 , %r4;

// Compute the input address and load the value

add.s64 %rd6 , %rd4 , %rd5;

ld.global.u8 %r5, [%rd6];

// Increment value by 1

add.s32 %r6, %r5, 1;

// Compute the output address and store the new value

add.s64 %rd7 , %rd3 , %rd5;

st.global.u8 [%rd7], %r6;

ret;

}

Figure 4.19 – Example PTX program incrementing each value in an array.

(device memory), shared, registers, and an additional parameters space for passing
constant values to kernels. Input and output buffers are passed by their address as
an unsigned integer. Variable declarations may be parameterized by a size, defining
multiple variables with a common prefix.

Instructions are likewise typed, and require that arguments match the specified
type. Data conversions are explicit, with the exception of bit-typed instructions and
variables. Instructions include arithmetic and comparison operations for computa-
tion, and movement and synchronization for accessing and ensuring consistency of
data. For data operations like loading, the state space is also included.

46



4.3. Code Generation

We implement a typed PTX representation using C++ templates, enabling type-
correctness in our code generation. Each instruction is templated, statically ensuring
arguments match the required types and space. If incorrect arguments are used, an
error is generated when building the code generator rather than at runtime. We also
selective enable and disable instruction features (e.g. saturation) depending on the
type, ensuring no improper flag can be set. In cases where the type rules are relaxed,
explicit adapter classes allow converting between types. Shown in Figure 4.20 is a
fragment of code generation for correct, incorrect, and adapted types.

// Typed arguments , including registers and immediate values

auto destination = new PTX::Register <PTX::UInt64Type >("%d");

auto sourceA = new PTX::Register <PTX::UInt64Type >("%s");

auto sourceB = new PTX::Value <PTX:: UInt64Type >(100);

// Type correct add instruction , corresponding to "add.u64 %d, %s, 100"

auto add = new PTX:: AddInstruction <PTX:: UInt64Type >(

destination , sourceA , sourceB

);

// Type incorrect move instruction , error when building code generator

// .u32 instruction with .u64 operands

auto move = new PTX:: MoveInstruction <PTX::UInt32Type >( destination , sourceA)

// Untyped 64-bit variable (.b64)

auto untypedA = new PTX::BitAdapter <PTX::UIntType , PTX::Bits::Bits64 >( source );

Figure 4.20 – PTX framework example showing the type system.

4.3.2 Thread Layout

Each kernel has an associated geometry, abstractly representing the thread layout.
Before generating parallel code, we must therefore define a mapping that will be used
to partition data between threads. Each kernel loads data by a geometry-dependent
indexing function before generating the body, as discussed in Section 4.3.3. We there-
fore maintain independence between the geometry and code generation patterns, sim-
plifying the pipeline.

47



Frontend and Compiler

GPU device memory is accessed by transactions, loading or storing1 an aligned
data segment in a single operation [161]. Coalescing merges accesses to the same
segment into a single transaction, optimizing bandwidth and improving performance.
Efficient GPU code thus requires that threads belonging to the same warp access
neighbouring data locations, canonically reduced to the idiom “consecutive threads
access consecutive locations” by GPU programmers. We show a comparison of efficient
and inefficient memory access patterns in Figure 4.21.

T1 T2 T3 T4

Txn 1

(a) Efficient memory access pattern.

T1 T2 T3 T4

Txn 1 Txn 2

(b) Inefficient memory access pattern.

Figure 4.21 – GPU device memory transactions (8-byte data, 32-byte transaction).
Adapted from NVIDIA CUDA documentation [161].

Our approach supports vector and list geometries, with all other operations ex-
ecuted on the CPU. The corresponding layouts are designed to coalesce accesses,
assuming data is not gathered/scattered. We illustrate the thread mappings in Fig-
ure 4.22 and describe them below. All parallelism is simplified to a single dimension.

Vector geometry: Vector geometry assigns a single thread per element, each oper-
ating on data corresponding to its global thread index.

List geometry: List geometry assigns a fixed sequence of threads to each cell, to-
gether computing the result. For simple and efficient mapping, each cell gets the
same number of threads. Some threads may therefore be inactive, or operate
on multiple elements in a loop.

1https://stackoverflow.com/questions/20186744/memory-coalescing-in-global-
writes

48

https://stackoverflow.com/questions/20186744/memory-coalescing-in-global-writes
https://stackoverflow.com/questions/20186744/memory-coalescing-in-global-writes


4.3. Code Generation

T1 T2 T3 T4 TN...

...

Vector data

(a) Vector geometry: 1 thread per data element.

T1 T2 T3 T4 T5 T6 T7 T8
x

Cell 1 Cell 2

(b) List geometry: Fixed threads (4) per cell.

Figure 4.22 – Thread layout for GPU kernel geometries. (© 2021 IEEE [125])

4.3.3 Templates

Code generation translates each high-level HorseIR built-in function to a parallel
GPU equivalent. Each template is simplistic, using minimal low-level optimization
and focusing instead on high-payoff algorithm design. The generated code is therefore
easier to understand and analyze, while performing well on real queries. We depend
on the assembler phase for architecture specific optimization.

Type Support

We begin by mapping vector HorseIR types to those in PTX as shown in Table 4.5,
with integer and floating point mapping trivially. Lists are decomposed into their
cell types for computation. Predicate values are stored in .pred for comparison and
branching, but must accessed as 8-bit integers in device memory. Strings and symbols
are stored as 64-bit hashed values, also referred to as dictionary encoding [61]. This
limits the kind of computation possible on the GPU, but is sufficient in practice.
Lastly, date and time values are mapped to signed integers for epoch time.

Table 4.5 – Mapping from HorseIR types to PTX.

HorseIR PTX

bool .pred

char
.s8

i8

i16 .s16

i32 .s32

i64 .s64

f32 .f32

f64 .f64

HorseIR PTX

str
.u64

sym

date

.s32
month

minute

second

dt
.s64

time

49



Frontend and Compiler

Functions and Geometry

We split code generation into two components: (1) control code, and (2) expressions.
Control code includes loading parameters, and mapping from threads to indexes used
to load and store data. This allows us to isolate geometry dependent code from the
core computation in most instances, simplifying generation.

Each function contains input and return parameters as well as the exact runtime
geometry. Parameters are passed as a pair of pointers in device memory, correspond-
ing to the data and size buffers. Data sizes are used for bounds checking of loading
and storing results, as the number of threads does not necessarily match the data.
This may be due to device requirements (the number of threads in each block must
be the same), or accessing data of unknown size. Note that although input buffer
sizes are constant and could be passed directly to the function, we prefer to leave
data GPU-resident wherever possible. We also include the runtime geometry as a
parameter, as it defines the active threads. An example signature for a function with
one input and one output parameter is shown in Figure 4.23, each described as a pair
of pointers to device memory. Data allocations are further described in Chapter 6.

.visible .entry kernel(

.param .u64 input_data ,

.param .u64 input_size ,

.param .u64 output_data ,

.param .u64 output_size ,

.param .u32 geometry

)

Figure 4.23 – Example PTX function signature for one input parameter and one
return parameter. Vector geometry is passed as an unsigned integer.

Vector computation is simplistic, as each thread is responsible for a single unit of
data. Code generation thus initializes parameters and loads the runtime geometry
before generating the function body statement-by-statement. Data is loaded and
stored depending on its shape, either as a vector, or broadcast from a single value
as shown in Figure 4.24a. For loading and storing compressed data, we use a global

50



4.3. Code Generation

prefix sum based on StreamScan [241] to convert the boolean mask to an index,
similar to the idea from Funke et al. in their GPU database system [68]. Described
in other work as chained-scan, thread blocks are executed in order and the prefix sum
propagated from one to the other using device memory [147]. The propagation and
block ordering variables (32-bit each) are loaded and stored as packed data (64-bit)
for memory consistency [147]. As thread block indexes do not always relate to the
launch order, they must be “dynamically allocated” during execution [241, 76].

List computation is more complex, assigning a fixed number of threads per cell.
The exact size is chosen by the runtime system described in Chapter 6, and depends
on the data cell sizes. To handle cases where the data size exceeds the allocated
threads, we iterate over chunks for each cell. Loading and storing data thus get
the current index from the loop iteration rather than the GPU. The control code
is shown in Figure 4.24b, along with the data index computations. As compression
rarely occurs in lists, we omit its computation.

globalIndex = blockIndex * blockSize

+ threadIndex

dataIndex = globalIndex # Vector

dataIndex = 1 # Broadcast

dataIndex = <prefix sum > # Compressed

(a) Vector geometry.

cell = globalIndex / listThreads

index = globalIndex % listThreads

while index < sizes[cell]:

dataIndex = index # Vector

dataIndex = 1 # Broadcast

[...]

index += listThreads

(b) List geometry.

Figure 4.24 – Thread-data assignment for each GPU kernel geometry.

Templates

Most array-based functions map easily to GPU code, as each thread in the compu-
tation is independent. We generate code statement-by-statement, translating each
function in isolation using a templated approach, with type-correctness given by our
PTX library. Named registers are allocated for each variable, and an unlimited num-
ber of temporaries for each template. We ignore register pressure, as the allocation

51



Frontend and Compiler

var t0:i32 = [...];

var t1:i32 = [...];

var t2:i32 = @plus(t0, t1);

(a) HorseIR input code.

.reg .s32 %t<3>;

add.s32 %t2, %t0 , %t1;

(b) PTX output code.

Figure 4.25 – Example code generation template for adding two 32-bit integers.

scheme depends on the assembler. Shared memory is allocated as needed and capped
at the device maximum. Common code generation templates include:

Element-wise: Unary and binary element-wise functions map to PTX instructions
directly in nearly all cases. Shown in Figure 4.25 is an example translation for
the sum of two 32-bit integers.

Date: Date and time functions are implemented according to the POSIX specifica-
tion [102], and based on standard library implementations2.

Reduction: Reductions aggregate vector data into a single value (e.g. @min). We
follow the standard approach, implementing a warp-shuffle reduction to produce
a single value per warp, followed by an atomic reduction operation (compare-
and-swap for unsupported types [168]) to compute the overall value [138].

Compression: Compression follows a lazy approach, representing the result as a
pair (variable, mask) and delaying the compaction. The mask is propagated
to further computation, and only evaluated when required (e.g. storing or
reducing data). Reduction considers only values with true in the mask, and
store computes the write indexes using a prefix sum.

Member: Member function produces a boolean output, checking whether each value
in one vector is present in another. Two implementations are provided: (1) an
iterative approach that sequentially loops over the second vector using shared
memory caching; and (2) an optimized hash table extended from the join im-
plementation described in Section 4.3.4. Hash tables are used by default.

2https://www.sourceware.org/newlib/

52

https://www.sourceware.org/newlib/


4.3. Code Generation

Unique: Unique function produces a vector of distinct values. Two implementations
are provided: (1) an iterative approach that loops over the vector; and (2) a
library approach that sorts the input and removes duplicates using compression.
We default to the iterative approach as it supports good performance for the
entire benchmark. Additionally, our library strategy does not support finding
unique elements in list cells due to incompatibility with @each.

4.3.4 Library

Library functions are implemented using one or more nested kernels, invoked by the
runtime engine. Kernels are type-specific, and are therefore generated and compiled
for each individual query according to a generic PTX pattern. While caching is
possible for common types, compile-time generation is required for all other cases.

Sort: We implement bitonic mergesort, an in-place approach to sorting that itera-
tively sorts and merges power-of-2 sequences of increasing length [18]. Shared
memory is used for sorting when the lengths are short enough as it greatly re-
duces the latency. Note that since HorseIR outputs the sorted data by index, we
also maintain a list of indexes that are swapped along with the data as shown
in Figure 4.26. For non-power of 2 data, we pad before sorting.

Indexes

Values

0 4 1 3 2Input

O
ut
pu

t 0 2 4 3 1

0 1 2 3 4

Figure 4.26 – Sort library function example.

Group: Grouping produces a dictionary, mapping each unique value (the “key”) to
its occurrences in the input data (the “values”), all of which are represented as
indexes. An example group call is shown in Figure 4.27.

We follow a 3-step process building on the sort implementation:

1. Sort the data, returning sorted values and their indexes;

53



Frontend and Compiler

2. Find unique values, returning their indexes;

3. Build the dictionary (see Section 6.3).

0 1

0 1Keys

Values

0 3 5 3 0Input

2

2
4 3

O
ut
pu

t

Figure 4.27 – Group library function example.

Unique values are found in parallel, checking the sorted data for changes in
value, and applying the compression algorithm. Dictionary generation is de-
scribed in a later section as it depends on the buffer allocation strategy.

Join: Joining two tables abstractly computes the cross product, only producing rows
that conform to a predicate. We implement two alternative algorithms, a gen-
eral purpose loop join, and an optimized hash join for equality joins. Both
approaches follow the usual 3-stage process, as the join result is dynamic [92]:

1. Evaluate the cross product, computing the result size;

2. Allocate result buffers;

3. Re-evaluate the cross product, outputting the result.

Loop: The loop join algorithm computes the entire cross product M x N, with
each thread producing the join result for one element in M. Optimization is
possible using shared memory to coalesce reads and maximizing parallelism
by selecting M as the larger table, though it remains an expensive algorithm.
It remains useful, however, for general joins with non-hashable predicates.

Hash: We also provide an optimized hash join algorithm, based on a public
domain GPU hash table [62] that uses the murmur3 hash function [12].
Each thread computes the result for a single element, using the hash table

54



4.3. Code Generation

to reduce the search space. While hashing is designed for equality, we can
still use this approach for predicates which contain at least one equality
comparison by only hashing on equality keys. Other keys are evaluated
when probing the table. A similar approach is used in OmniSci [150].

Like: Strings are typically CPU resident and only transferred to the GPU as a hash
value. String comparison is thus efficient and data transfers reduced. This is
sufficient for most queries, but falls short for those using SQL LIKE as they
require the string contents. We therefore employ a string pad, an array repre-
sentation of all string data stored on the CPU with null termination. The hash
values are therefore indexes into the pad and allow complex string operations
on the GPU; collisions are thus impossible. Null termination is used in place of
a length property. An example string pad and associated vector data is shown
in Figure 4.28.

r N d N \0 C S \0

0 5Data

String Pad

Figure 4.28 – LIKE string pad representation for two strings (“rNdN” and “CS”).

Transferring the entire string pad to the GPU is costly, as it contains data for
the entire database. We thus use an optimized caching kernel that transfers
and caches strings required for the operation using Unified Virtual Addressing
(UVA) – a seamless method for accessing CPU data allocated using CUDA [89].
Additionally, we can transfer multiple bytes (characters) in a single access using
vector loads. We implement a simplified and optimized version of LIKE opera-
tion inspired by tutorials [57], adapted for the GPU and our representation.

4.3.5 Optimization

Code generation templates are efficient in isolation, with further optimization left to
the assembler. We do however employ 3 basic optimizations important for queries:

55



Frontend and Compiler

1. Computing the GPU thread index is frequently used to access data. We there-
fore cache the computed index for all further computation;

2. Structured control-flow is used in all cases, greatly simplifying the assembler;

3. Power-of-2 computations (multiplication, division, remainder) used for sorting
(and grouping) are optimized using bit operations.

4.4 Summary

Our frontend and compiler adapt query execution to the GPU environment, trans-
lating from high-level HorseIR programs to lower-level PTX intermediate code. We
first parse the input query program and enforce semantic requirements, before auto-
matically outlining parallel regions (i.e. kernels) using abstract shape and geometry
information. Kernels are then compiled to efficient PTX code by composing intuitive
algorithms for each operation, bypassing the first stage in the traditional compila-
tion pipeline to reduce overhead. The output is further processed by the assembler
described in Chapter 5 and executed in the runtime system presented in Chapter 6.

56



Chapter 5

Assembler

PTX intermediate code is a stepping stone that separates generation of GPU
algorithms from low-level machine details. In this chapter we therefore present the
backend stage 2 compiler, also referred to as the “assembler”, that translates from
PTX to a target specific binary. Designed for runtime systems, each step trades
minor slowdowns in execution for major improvements in compilation, outperforming
the proprietary NVIDIA pipeline on end-to-end workloads. Our balanced approach
thus targets only necessary optimizations, and is significantly more lightweight than
traditional ahead-of-time compilers like LLVM [127]. We begin by describing the
compilation and analysis framework in Section 5.1, followed by register allocation
in Section 5.2. The machine code specification is discussed in Section 5.3, along
with code generation, control-flow structuring and peephole optimization. Lastly,
we cover instruction scheduling in Section 5.4 and binary generation in Section 5.5
before summarizing our approach in Section 5.6. The resulting binary is loaded and
executed by the runtime, presented in Chapter 6.

Register
Allocator

.ptx 
Code

.cubin 
Binary

Binary 
Generator

.sass 
Code

Code 
Generator

Scheduler

Figure 5.1 – rNdN backend compiler (assembler) architecture.

57



Assembler

5.1 Framework

Similar to HorseIR, we implement a complete PTX analysis framework, support-
ing code generation and optimization; though as low-level language with unstruc-
tured control-flow, it requires additional steps. We therefore begin by constructing a
control-flow graph (CFG), taking straight-line PTX code with labels and building a
traversable graph of basic blocks, single-entry, single-exit sections of code. Following
the standard approach, we traverse the program and collect leading statements [151]:

1. First statement;

2. Branch targets; and

3. Statements after branches.

Basic blocks are formed by collecting statements from one leader (inclusive) to an-
other (exclusive). We standardize control-flow during this process by transforming
predicated statements into traditional if (and if-else) branches using labels as shown
in Figure 5.2. Predication is thus only used in conditional branching and simplifies
the analysis framework. For efficiency reasons, predication is later restored in the
machine code as described in Section 5.3.4.

@$p0 add.u32 $t2 , $t0 , $t1;

(a) Predicated statement.

@!$p0 bra End;

add.u32 $t2 , $t0 , $t1;

End:

(b) Traditional if branch.

Figure 5.2 – Transforming predicated statements to a traditional if branches.

Building on the CFG, we implement a fixed-point analysis framework traversing
basic blocks and collecting program properties. Basic blocks are traversed using a
worklist algorithm, initialized with entry blocks and adding successors only if the
analysis result changes [151]. The worklist is sorted using a postorder traversal for
efficiency [180]. Similar to the HorseIR framework, we optimize the properties for
each instruction using pointers and store only necessary data.

58



5.2. Register Allocation

5.2 Register Allocation

PTX targets a virtual machine with unlimited registers, requiring a register allocation
scheme when targeting hardware with finite resources. We describe GPU properties
in Section 5.2.1, and the register allocation algorithm in Section 5.2.2.

5.2.1 GPUs

A modern GPU contains a large number of registers in each multiprocessor, parti-
tioned between threads at runtime. As resources are finite, the number of registers
per thread can therefore limit the occupancy, that is, “the ratio of active warps to
the maximum number of warps supported on a multiprocessor” [164]. An efficient
allocation must therefore balance spilling against occupancy, maximizing parallelism
while not degrading performance of individual threads. Regardless of the allocation,
each thread is limited to at most 255 general-purpose vector registers (RX) and 7
predicate registers (PX), in addition to the zero register (RZ) and true predicate (PT).
Later architectures also support uniform registers for values shared across a warp
computed using a special unit and instructions [30, 29, 106, 162].

General-purpose registers are all 32-bit in size, organized in banks as shown in
Figure 5.3 [83]. Each instruction can read one value per bank in each clock cycle, with
concurrent accesses to a single bank causing delays. We should therefore distribute
source operands between banks where possible, or use scheduling directives discussed
in Section 5.4 to cache reused registers. In our approach we choose to ignore bank
conflicts, preferring instead to minimize compile time. As discussed with scheduling,
queries are load/store-intensive and therefore less likely to benefit from small decreases
in arithmetic latency than with more computation heavy applications.

R1R0 R3R2

...

R5R4 R7R6

Figure 5.3 – Register organization with 4 banks, each shown in a different colour.
The number of banks is architecture dependent [239].

59



Assembler

For smaller data sizes, a single 32-bit register is allocated, or in the case of boolean
data, a single predicate register. For larger data, consecutive registers are allocated
in groups, aligned to the data size. An example 64-bit register pairing for long
integer or double values is pictured in Figure 5.4 and can be extended to other types.
Instructions access register pairings by referring to the lowest element.

R1 R254R0 R3R2 ...

(a) 32-bit register.

R1 R254R0 R3R2 ...

(b) 64-bit register pair (aligned).

Figure 5.4 – Register allocation for varying data sizes.

5.2.2 Linear Scan

Register allocation has been treated as a graph colouring problem, capturing variables
that must be allocated to separate registers in an interference graph [151]. Each node
represents a variable and each edge the existence of a program point where both
variables are simultaneously live. Edges thus preclude register sharing and the best
allocation corresponds to the lowest number of colours. Although minimizing registers
appears optimal, NVIDIA forum posts describe the proprietary allocation scheme
as using all “necessary [registers] to achieve the best performance”1. Preliminary
experiments also show that small changes in register usage is mostly inconsequential.

As graph colouring is NP-hard, heuristics are often used to approximate the so-
lution. Chaitin’s algorithm is one such approach, iteratively pruning the interference
graph and colouring nodes in the reverse order [34, 26]. This is suitable for offline com-
pilation, but too costly for runtime systems. Instead, we use a linear scan allocator
adapted for GPU properties [185, 219]. Like graph colouring it operates on liveness,
but on a more conservative representation, live intervals, that assumes variables are
continuously live from first to last use. Registers are then allocated on a first-come
first-serve basis according to the following greedy algorithm. Note that we do not

1https://forums.developer.nvidia.com/t/on-the-register-allocation-optimization-
of-cuda-compiler/69309/6

60

https://forums.developer.nvidia.com/t/on-the-register-allocation-optimization-of-cuda-compiler/69309/6
https://forums.developer.nvidia.com/t/on-the-register-allocation-optimization-of-cuda-compiler/69309/6


5.3. Code Generation

consider spilling heuristics and instead allocate as many registers as required as the
current benchmark suite remains well below the limit (never exceeds 100 registers).

1. Compute live variables using a fixed-point data-flow analysis;

2. Transform live sets to live intervals (start, end);

3. Sort live intervals by start position;

4. For each live interval (start, end):

(a) Free dead allocations (those with end position before the current start);

(b) Allocate aligned register group RX..RY;

(c) Add interval (start, end, RX..RY) to active allocations.

The resulting register allocation can be used to generate machine code. An exam-
ple PTX program fragment and its associated register allocation steps are shown in
Figure 5.5. We present the outgoing liveness set for each program point, captur-
ing variables that are used in subsequent instructions. For linear scan, we picture the
state at each iteration, with bold elements newly added and red indicating a discarded
dead allocation. Note that PTX instructions use the following operand order:

destination, sourceA, sourceB, ...

5.3 Code Generation

We translate PTX code to SASS, a machine code representation that can be assembled
to binary form. As with our first stage compiler, each pattern is designed and opti-
mized in isolation. The SASS language is described in Section 5.3.1 and its associated
memory layouts for each level in Section 5.3.2. Control-flow generation and branch
inlining are discussed in Sections 5.3.3 and 5.3.4 respectively. We then cover code
generation templates in Section 5.3.5 and peephole optimizations in Section 5.3.6.

61



Assembler

1 ld.global.s32 %t0 , [...]; {%t0}

2 ld.global.s32 %t1 , [...]; {%t0, %t1}

3 add.s32 %t2, %t0 , %t1; {%t1, %t2}

4 add.s32 %t3, %t2 , %t2; {%t1, %t3}

5 add.s32 %t0, %t1 , %t3; {%t0}

6 st.global.s32 [...] , %t0; {}

(a) Live variables analysis (out sets).

(t0, 1, 5)
(t1, 2, 4)
(t2, 3, 3)
(t3, 4, 4)

(b) Sorted live intervals.

(t0, 1, 5)

Allocation Active

t0 = R0 (R0, 5)

(t1, 2, 4)

Allocation Active

t0 = R0 (R0, 5)
t1 = R1 (R1, 4)

(t2, 3, 3)

Allocation Active

t0 = R0 (R0, 5)
t1 = R1 (R1, 4)
t2 = R2 (R2, 3)

(t3, 4, 4)

Allocation Active

t0 = R0 (R0, 5)
t1 = R1 (R1, 4)
t2 = R2 (R2, 3)
t3 = R2 (R2, 4)

(c) Register allocation for each iteration, showing the newly allocated register and its associated
interval end in bold. Intervals discarded as dead are shown in red.

Figure 5.5 – Linear scan register allocation example for PTX.

5.3.1 Target Language: SASS

SASS is a human readable representation of the machine code for NVIDIA GPUs.
Varying between families, we support the Pascal and Ampere architectures directly,
while other iterations may require additional tuning. Unlike PTX, which follows
an open-source specification, SASS is officially closed-source with the exception of
instruction mnemonics and disassembly tools for extracting code from assembled bi-
naries [162]. Fortunately, several open-source projects have reverse engineered the
instruction format, including asfermi for Fermi [246], MaxAs for Maxwell and Pas-
cal [83], and TuringAs for Turing through Ampere [239]. A more systematic approach
explored by Hayes et al. can also decode instructions for any architecture [90], and
CuAssembler has also been proposed for multiple architectures [46]. Other low-level
details have been discovered through microbenchmarks by Jia et al. and summarized
in technical reports [107, 106]. Note that these projects are limited to manipulation
of SASS code and are therefore not complete replacements of the stage 2 compiler.

62



5.3. Code Generation

While sufficient for Pascal, the decomposition of the Ampere instruction set has
so far been limited and is insufficient to support SQL queries. We therefore analyze
a large dump of instructions and their binary representations from CuAssembler, a
proposed open-source assembler, reverse engineering the binary layout for each sup-
ported instruction [46]. This work, along with the open-source projects listed above
and NVIDIA disassemblers form our understanding of SASS and low-level details.
We show an example Pascal SASS program that increments an array in Figure 5.6a,
the equivalent program for Ampere in Figure 5.6b and highlight differences below.

// Load block and local thread indexes

S2R R4, SR_CTAID.X ;

S2R R2, SR_TID.X ;

// Compute global thread index

// c[0x0][0x8] - block size constant

XMAD.MRG R3, R4, c[0x0][0x8].H1, RZ ;

XMAD R2, R4, c[0x0][0x8], R2 ;

XMAD.PSL.CBCC R4, R4.H1, R3.H1, R2 ;

// Compute address using the thread

// offset and parameter constant

// c[0x0][0 x140] - low bits

// c[0x0][0 x144] - high bits

IADD R2.CC , R4, c[0x0][0 x140] ;

IADD.X R3 , RZ , c[0x0][0 x144] ;

// Load , increment , store

LDG.E.U8 R4, [R2] ;

IADD32I R6 , R4 , 0x1 ;

STG.E.U8 [R2], R6 ;

EXIT ;

(a) Pascal code (sm61).

// Load block and local thread indexes

S2R R4, SR_CTAID.X ;

S2R R2, SR_TID.X ;

// Compute global thread index

// c[0x0][0x0] - block size constant

IMAD R4, R4, c[0x0][0x0], R2 ;

// Compute address using the thread

// offset and parameter constant

// c[0x0][0 x160] - low bits

// c[0x0][0 x164] - high bits

IADD3 R2 , P0 , R4, c[0x0][0 x160], RZ ;

IADD3.X R3, RZ, c[0x0][0 x164], RZ,

P0 , !PT ;

// Load , increment , store

LDG.E.U8 R4, [R2.64] ;

IADD3 R6 , R4 , 0x1, RZ ;

STG.E.U8 [R2.64], R6 ;

EXIT ;

(b) Ampere code (sm86).

Figure 5.6 – SASS implementations to increment each element of an array. Each
thread computes its position in the grid (i.e. the layout of all threads in the kernel),
computes the offset variable address, and performs the increment.

63



Assembler

Both instruction sets are expressed in 3-address notation, with instructions for
arithmetic (integer and float), load/store, control-flow and synchronization. Differ-
ences primarily arise in binary representation and code generation templates. We
note the following important differences between architectures:

Carry codes: Pascal uses flags (.CC/.X) to implement carrying, while Ampere uses
a mix of explicit predicates (P0) and flags (.X only);

Arithmetic instructions: Code generation patterns for multiplication, division
and remainder use instructions optimized for their architecture. Notably, Pascal
uses a sequence of XMAD instructions (16-bit multiplier, 32-bit addition [59]) to
implement merged 32-bit multiplication and addition, while Ampere supports
efficient execution directly using IMAD.

Preferred instructions: For instructions which have multiple variants (e.g. IADD,
IADD32I, and IADD3), we note a shift towards the more general version in newer
architectures despite maintaining support for the entire set. We speculate this
is due to an increased instruction size that allows merging previously distinct
instructions and ease in code generation. In particular:

• Preference for 3-source instructions (e.g. IADD3) in Ampere2;

• Preference for generalized instructions (e.g. SHF for shifting instead of SHR
and SHL) in Ampere;

Memory layouts: Discussed in Section 5.3.2, the layout of constant memory spaces
(i.e. c[0x0][...]) uses architecture-specific offsets for parameters.

5.3.2 Memory Hierarchy

Memory allocation and layout occurs both at compile time and during the linking
phase. We discuss the organization of each level in the hierarchy in the following
sections, with further details on the binary generation in Section 5.5.

2https://forums.developer.nvidia.com/t/ampere-sass-annotation/176758/6

64

https://forums.developer.nvidia.com/t/ampere-sass-annotation/176758/6


5.3. Code Generation

Registers

General-purpose registers (RX) and predicates (PX) are the basic storage unit for
computation, allocated using a GPU-adapted linear scan. Temporary registers used
for computation are allocated as needed, subject to hardware thread limits. We omit
uniform registers as they are not portable across all supported targets.

Special Registers

Special registers carry system parameters that vary between threads (e.g. indexes)
or over time (e.g. clock). Immutable by the user-program, they are moved to the
regular registers space using a special S2R instruction (Special 2 Register). A subset
of special registers is shown in Table 5.1 for both PTX and SASS. Note that GPU
thread indexes are 3-dimensional, but we only use the x-dimension in our approach.

Table 5.1 – Special registers in PTX and SASS.

PTX Variable Special Register

%tid.x SR_TID_X

%tid.y SR_TID_Y

%tid.z SR_TID_Z
...

%globaltimer32_lo SR_GLOBALTIMERLO

Parameters

Kernel parameters are stored in a constant space accessible during execution. This
includes explicit parameters in the function signature, as well as system parameters
that are constant across threads and time. Parameters are stored at pre-defined offsets
in the 0x0 constant space and represented in SASS as:

c[0x0][offset]

Dynamic system parameters are stored in the special registers space described previ-
ously. We show a subset of the parameters space in Table 5.2 along with the offsets

65



Assembler

for both supported architectures. Explicit parameters are positioned after system
parameters as they vary in quantity and size.

Table 5.2 – Constant parameter space layout for each architecture. %ntid variables
indicate the size of each thread block dimension.

Variable Pascal Ampere

%ntid.x 0x8 0x0

%ntid.y 0xc 0x4

%ntid.z 0x10 0x8
...

Explicit Parameters Offset 0x140 0x160

Constants

SASS instructions are constant size, either 64-bit or 128-bit depending on the archi-
tecture, with limited space for immediate values. A second constant space similar to
parameters may thus store kernel-specific values, accessed in a similar manner:

c[0x2][offset]

Constant data is embedded directly into the binary by the assembler, and loaded by
the CUDA runtime, requiring it be constant across all invocations. When generating
operands, immediate values are used wherever possible, with constants only used
when exceeding available bits. The constant pad is a concatenation of aligned values.

Shared/Global

Shared and global variables are relocatable objects allocated by the CUDA runtime,
and are thus not part of the SASS definition. We discuss their address generation in
Section 5.3.5 and linking directives in Section 5.5.

66



5.3. Code Generation

5.3.3 Structured Control-Flow

Each function body is represented as a graph of basic blocks (CFG). We therefore
begin by describing the control-flow generation before covering templates for each in-
struction in Section 5.3.5. As this functionality is architecture-dependent, we describe
each target separately after general control-flow structuring.

Recovering Structure

Supporting general unstructured control-flow proves challenging, particularly for the
Pascal architecture. We simplify the problem by targeting only structured control-
flow, enabling template-based code generation for structures equivalent to if-else
branches, loops and breaks. This necessitates a well-structured CFG from the fron-
tend compiler, limiting the kinds of control-flow used in code generation templates.
Additionally, as a CFG has no inherent structure, we must recover each kind of sup-
ported control-flow. While these structures could have been directly generated in the
earlier phase, we instead chose to recover structure and support more general input.
We base our structuring algorithm on the following observations:

• Loops must have exactly one back edge, jumping from the latch to the header ;

• Loop exit branches come in 2 varieties:

– Latch blocks which conditionally break;

– Intermediate blocks which conditionally break;

• If-else structures have two branches, each of which is independent;

• Structured control-flow reconverges at the immediate post-dominator, the first
common block on all paths from the divergence point to the program exit; and

• Blocks belong to a single structure in well structured control-flow.

Each kind of control-flow structure is represented by a recursive data structure, storing
its branches and the continuation point. The algorithms for recovering each kind of
control-flow are based on control-flow analysis and described below [98].

67



Assembler

We structure control-flow graphs recursively, greedily classifying basic blocks start-
ing from the function entry point. Unstructured control-flow may thus be detected
when a block belongs to more than one structure. For each block, we determine if it
begins a loop, a well-structured break or if-else statement, or if it ends the current
structure (e.g. branch of if-else statement, loop body). The main algorithm is shown
in Figure 5.7, with each component described below.

def Structure(context , node):

if node == None: // Base case

return None

// Recover loop structure with node as the header

loopStructure = StructureLoop(context , node)

if loopStructure != None:

return loopStructure

// Nodes reached from multiple unstructured paths not supported

if processedNodes.contains(node):

error (" Unstructured control -flow")

processedNodes.insert(node)

// Get the reconvergence/continuation point of the current structure

postDominator = ImmediatePDOM(node)

// Divergent control -flow

if GetOutDegree(node) == 2:

trueBranch , falseBranch = GetBranches(node)

return StructureBranch(context , trueBranch , falseBranch , postDominator)

// Loop latch without condition ends body

if context.kind == Loop and context.latch == block:

return SequenceStructure(node , None)

// Branch end point , continuation already handled by if -else structure

if context.kind == Branch and context.exit == postDominator:

return SequenceStructure(node , None)

// Continuation point without branching

nextStructure = Structure(context , postDominator)

return SequenceStructure(node , nextStructure)

Figure 5.7 – Main algorithm for recovering control-flow structures.

68



5.3. Code Generation

Loops: Loops are structured recursively, first determining its properties (header,
latch, body, exit) and then traversing the function body under a new loop
context. We require that loops are well-nested with a single back edge, unique
header, and well-structured breaks. If no back edges are detected, then the
block does not begin a loop and processing continues in the main algorithm
(StructureLoop returns None). Loop body blocks are identified by traversing
the CFG in reverse, starting from the back edge and ending at the header,
collecting all intermediate blocks. The immediate post-dominator of all body
blocks serves as the loop exit, and is unique for each loop. Lastly, we recursively
structure the CFG from the exit point to process the remaining program. The
complete loop detection and structuring algorithm is shown in Figure 5.8.

def StructureLoop(context , node):

// Basic block already detected as a loop header , continue in the main function

if context.kind == Loop and context.header == node:

return None

// Consider all edges incoming to the node

for predecessor in GetPredecessors(node):

// Back edges are those who are dominated by the header

if IsDominated(predecessor , node):

// Decompose loop components

header = node

latch = predecessor

body = GetLoopBody(header , latch)

exit = GetLoopExit(header , body)

// Recursively structure the loop body

l_context = LoopContext(header , latch , exit , body)

bodyStructure = Structure(l_context , header)

// Structure exit point

nextStructure = Structure(context , exit)

return LoopStructure(bodyStructure , nextStructure)

// No loop found

return None

Figure 5.8 – Loop detection and structuring algorithm.

69



Assembler

Loop exit: For loop structures we detect two kinds of exit structures. The first
case corresponds to a tail-controlled loop, where we conditionally branch to the
header or the exit block. The second a conditional break within the loop body,
which incidentally covers head-controlled loops. Using the loop context, we can
easily recover both kinds as they follow a standard structure. Unsupported
cases are likewise easily detected, such as unstructured control-flow or continue.
If no exit block is found, then the branch may correspond to a standard if-else
statement. The complete loop exit algorithm is shown in Figure 5.9.

def StructureExit(context , trueBranch , falseBranch , postDominator ):

// Node (latch) branches to header and exit

if node == context.latch:

if trueBranch == context.exit and falseBranch = context.header:

return ExitStructure(node , None)

else if trueBranch == context.header and falseBranch == context.exit:

return ExitStructure(node , None)

error (" Unstructured loop control -flow")

// Break within loop body

if trueBranch == context.exit and body.contains(falseBranch ):

falseStructure = Structurize(context , falseBranch)

return ExitStructure(node , falseStructure)

else falseBranch == context.exit and body.contains(trueBranch ):

trueStructure = Structurize(context , trueBranch)

return ExitStructure(node , trueStructure)

else if postDominator == context.header or postDominator == context.exit:

error (" Unstructured loop control -flow")

// Standard if-else statement

return None

Figure 5.9 – Loop exit detection and structuring algorithm.

If-else: If-else branch are constructed greedily, recursively structuring each branch
under the assumption that paths are independent. Note that for branches with-
out an else component, only one path is structured as the missing path points to
the post-dominator. The structure is complete by processing the continuation
point. We show the if-else structuring algorithm in Figure 5.10.

70



5.3. Code Generation

def StructureIfElse(context , trueBranch , falseBranch , postDominator ):

// Only keep branches within the structure

if trueBranch == postDominator:

trueBranch = None

if falseBranch == postDominator:

falseBranch = None

// Recursively structure standard if -else

l_context = BranchContext(postDominator)

trueStructure = Structure(l_context , trueBranch)

falseStructure = Structure(l_context , falseBranch)

// Structure continuation point

nextStructure = Structure(context , postDominator)

return BranchStructure(block , trueStructure , falseStructure , nextStructure)

Figure 5.10 – If-else branch detection and structuring algorithm.

Pascal

In the Pascal architecture, instructions are issued by the warp scheduler using a single
program counter per warp. This is trivial in SIMD when all threads within a warp
execute the same path, but challenging when they diverge. As a SIMD unit may
only execute a single instruction at a time, divergent paths are in effect serialized,
executing one after the other and incurring additional cost [19]. Note that divergence
between warps does not require any special handling as they operate on separate
program counters. Control-flow is implemented using two methods:

• Instruction predication (@P ...); and

• Hardware divergence stack.

Predication associates instructions with a boolean mask, selectively enabling/dis-
abling lanes in the SIMD unit on a per-instruction basis. This is effective for sim-
ple if-else branching, but is insufficient for more complex control-flow like loops and
nested structures. In these instances, a hardware managed divergence stack may be
used, managing active threads and their respective paths by tracking divergence and
reconvergence points [47, 48, 154, 143, 124].

71



Assembler

1 SSY L1 ;

2 @P BRA L2 ;

3 IADD R0, R1, R2 ;

4 SYNC ;

5 L2:

6 IADD R0, R1, R3 ;

7 SYNC ;

8 L1:

(a) If-else statement in SASS us-
ing the Pascal divergence stack.

Line Active Mask Stack (Top on the left)

1 1111

2 1111 <SYNC, L1, 1111>

3 0101 <DIV, L2, 1010> <SYNC, L1, 1111>

4 0101 <DIV, L2, 1010> <SYNC, L1, 1111>

5 1010 <SYNC, L1, 1111>

6 1010 <SYNC, L1, 1111>

7 1010 <SYNC, L1, 1111>

8 1111

(b) Progress of the divergence stack as the program executes,
capturing the state before each instruction executes. We assume
only 4 threads for simplicity.

Figure 5.11 – Example if-else program using the divergence stack to manage diver-
gence on Pascal (inspired by [47, 48, 124])

To manage complex control-flow, each warp in-flight has an active mask for cur-
rently enabled threads, and an associated hardware divergence stack. Tokens on the
divergence stack represent execution paths and their associated continuation points.
A continuation point is an address-mask pair that indicates the PC address and ex-
ecution predicate once the current path is complete. By manipulating the stack, we
can thus serialize divergent execution by selectively enabling and disabling threads
and jumping between addresses. An example if-else program and its associated stack
and active mask are shown in Figure 5.11.

Divergent sections begin by pushing a SYNC token onto the stack using an SSY in-
struction and its reconvergence point. Note that since we use only structured control-
flow, the immediate post-dominator identified during structuring is ideal for recon-
vergence [67]. For top-level divergence the associated predicate mask is typically all
true (1), but varies for nested control-flow. Next, a conditional branch pushes a DIV

(divergence) token, storing the continuation point for the path not-taken and updat-
ing the active mask for the path taken. Execution continues along the taken path
until complete and the stack is popped using a SYNC instruction. We can then update
the active mask and PC, before executing the other branch. Once both paths are
complete, the program continues from the reconvergence point.

72



5.3. Code Generation

SSY L1;

@!P SYNC ;

<Body >

SYNC ;

L1:

(a) If statement.

SSY L1 ;

@P BRA L2 ;

<False >

SYNC ;

L2:

<True >

SYNC ;

L1:

(b) If-else statement.

SSY L1 ;

L2:

@P SYNC ;

<Body >

BRA L2 ;

L1:

(c) While loop.

SSY L1 ;

L2:

@P1 SYNC ;

<Body1 >

@P2 SYNC ;

<Body2 >

BRA L2 ;

L1:

(d) While loop/break.

Figure 5.12 – Structured control-flow SASS code generation patterns for Pascal.

Given the divergence stack, we thus define code generation patterns for each kind
of structured control-flow (continue is unsupported). Each template begins by declar-
ing a divergence point and its associated reconvergence address, and using the stack
to manage paths. We use one additional feature not covered in the previous example
– predicated path termination (@P SYNC). This allows us to remove threads from the
current active mask until all are inactive, at which time the reconvergence point is
followed. Shown in Figure 5.12 are the templates for if-else structures and loops.

Ampere

Previous hardware iterations had a single PC per warp, requiring hardware assistance
for intra-warp divergence. Beginning with Volta (precursor to Ampere), each thread
maintains its own PC under a model named Independent Thread Scheduling [139].
This removes prior guarantees that threads within a warp execute the same instruc-
tion at the same time [171], but enables intra-warp divergence without the need for a
dedicated stack. An instruction to force reconvergence and reinstate warp-level con-
vergent execution guarantees, WARPSYNC, has correspondingly been added [162, 171].
Note that despite each thread managing a distinct PC, SIMD units are still limited
to a single instruction at a time. Divergence within a warp thus still results in seri-
alized execution and should be avoided wherever possible. Inter-warp divergence is
unchanged from previous architecture designs.

73



Assembler

With this change, the hardware stack has morphed to a convergence barrier im-
plementation where state is associated with a barrier resource (max 16) instead of
a stack token [162]. Although no longer necessary for most standard control-flow, it
provides a method of selectively reconverging threads similar to the hardware stack.
For simplicity, we choose to maintain patterns equivalent to those for Pascal, mapping
each barrier resource to a position in the divergence stack. An example pattern for if
statements is shown in Figure 5.13.

BSSY B, L2

@!P BRA L1

<Body >

L1:

BSYNC B

L2:

Figure 5.13 – SASS code generation patterns for if statement on Ampere, using barrier
resource B and reconvergence point L2.

5.3.4 Branch Inlining

Using the hardware divergence stack to manage divergence is costly and complex. We
therefore prefer to use predication where possible, undoing the prior CFG transfor-
mation in select cases. In particular, we target if and if-else structures which have:

• No nested structures, each branch is a single basic block;

• No predicated instructions in either branch;

• No predicated code generation templates required for SASS.

Note that this depends on the contents of the basic blocks, as the equivalent SASS
code must not have any predicated instructions. We also require that basic blocks
are small as predicated instructions are issued even if no threads are active. A block
size of 6 instructions was experimentally determined as the threshold.

74



5.3. Code Generation

5.3.5 Templates

Code generation is architecture specific and depends on its underlying instruction
set. Like in the frontend compiler, we do not aim for optimal code, but rather a
complete set of templates that are high-performance on query programs. Operand
and instruction generation are discussed below, highlighting important differences
between architectures where they arise.

Operands

Each instruction has a set of operands, specifying the input and output values for the
operation. We support 4 kinds of operands in our implementation:

Registers/Predicates: Registers and predicates are given by the allocation scheme
and temporary storage allocated as needed. If an immediate value requires reg-
ister storage, the value is moved into a new temporary local to the instruction.

Addresses: Addresses are represented as a base-offset pair, where the base is a reg-
ister and the offset either embedded directly in the instruction as an immediate
or added to the base and stored in a temporary. Global and shared variables
are generated as relocatable addresses, initially zero, which are patched when
allocated. An example global variable 64-bit address is shown in Figure 5.14.

MOV R0, 0x0 ; // Address lo bits

MOV R1, 0x0 ; // Address hi bits

Figure 5.14 – Global variable address generation (shared addresses are 32-bit). The
hex immediate values are later patched to the actual address.

Immediates: Immediate values are embedded directly in the instruction where pos-
sible, depending on the available bits. Floating point values are truncated,
keeping the most-significant-bits and discarding zeros. On Pascal, values are
typically limited to 20 or 32-bits, while Ampere supports 32-bits in all relevant
cases. For larger data sizes, the kernel constants space is used.

75



Assembler

Instructions

We adopt a simplistic code generation strategy, focusing on each instruction in iso-
lation and translating directly from PTX to SASS with limited optimization beyond
strength reduction. For complex instructions like multiplication, division and remain-
der we adopt optimized patterns from NVIDIA discovered using disassembly and rely
on their internal expertise for performance [59]. Shown in Figure 5.15 are the platform
specific code generation patterns for 32-bit unsigned integer multiplication.

// Input: R1, R2

// Output: R0

// Temporaries: R3, R4

XMAD.MRG R3, R1, R2.H1, RZ ;

XMAD R4, R1, R2, RZ ;

XMAD.PSL.CBCC R0, R1.H1, R3.H1 , R4 ;

(a) Pascal code (XMAD).

// Input: R1, R2

// Output: R0

IMAD R0, R1, R2, RZ ;

(b) Ampere code (IMAD).

Figure 5.15 – Code generation templates for 32-bit unsigned integer multiplication.

We adopt NVIDIA’s strategy of using general instructions instead of more spe-
cific versions in Ampere (e.g. IADD3 instead of IADD), and consider platform-specific
instruction specifications. As shown in Figure 5.16, Ampere code requires explicit
predicates for the carry bit instead of flags used in Pascal (underlined for emphasis).

// Input: [R0 , R1], [R2, R3]

// Output: [R4, R5]

IADD R4.CC, R0, R2 ;

IADD.X R5, R1 , R3 ;

(a) Pascal code (carry flags).

// Input: [R0 , R1], [R2, R3]

// Output: [R4, R5]

// Temporaries: P0

IADD3 R4 , P0, R0, R2, RZ ;

IADD3.X R5, R1 , R3 , RZ , P0, !PT ;

(b) Ampere code (predicate carry).

Figure 5.16 – Code generation templates for 64-bit integer addition using carry codes.

76



5.4. Scheduler

5.3.6 Optimization

A full optimization framework is too costly for runtime compilation, owing to the
fixed-point analyses required. We therefore focus on peephole optimizations that fix
minor inefficiencies introduced during code generation – a more effective approach
than implementing special case handling in each template. Shown in Figure 5.17 are
the only two peephole patterns implemented in our system, both of which remove
impactless instructions. We remove redundant moves when the source and destina-
tion are the same, and dead loads whose value is subsequently ignored. The former
frequently occurs due to register allocation, and the latter from a lack of dead code
elimination. More general approaches may be more effective, however, experiments
with limited constant propagation and the associated register reduction did not sig-
nificantly decrease execution. Additionally, the required fixed-point analyses notably
increased compile-time and hurt overall performance.

MOV R2, R2 ;

(a) Redundant move.

LDG.E RZ, [R2] ;

(b) Dead load (zero register is immutable).

Figure 5.17 – Peephole optimizations for code generation artefacts, both of which
safely remove impactless instructions without fixed-point analyses.

5.4 Scheduler

GPUs use compile-time instruction scheduling to satisfy dependencies and maximize
instruction-level parallelism (ILP), addressing both correctness and performance. As
a result, the hardware is simplified and program-specific optimization is enabled [83].
Our scheduler is based on MaxAs, optimized for our context and extended across
multiple platforms [83]. We describe the scheduling directives in Section 5.4.1 and
the associated instruction classes for each hardware architecture in Section 5.4.2. The
scheduling algorithm and key motivators are presented in Sections 5.4.3 and 5.4.4,
and an optional optimization for variable-cycle instructions in Section 5.4.5.

77



Assembler

5.4.1 SCHI Directives

Scheduling directives are embedded in the binary program, either as part of the
instruction format or interwoven in the instruction stream [106, 90, 83]. Also called
SCHI directives, recent architectures like Ampere use the former, while Pascal has
one compound directive for every 3 instructions. We show the binary format in
Figure 5.18 and describe each component below.

6-bits 3-bits 3-bits 1-bit 4-bits4-bits
Cache Wait Read Write Yield Stall

Figure 5.18 – SCHI directives binary layout.

Stall count: After each instruction is issued, a fixed-length stall delays further exe-
cution of the warp before it becomes re-eligible for dispatch. This allows fixed-
cycle instructions (e.g. IADD, MOV) to satisfy dependencies.

Yield flag: Each cycle, the warp scheduler may either continue with the current warp
or switch to another. The yield flag serves as a hint to the hardware [83, 239].

Read/write barriers: For variable-cycle instructions (e.g LDG, STG) barrier re-
sources allow warps to wait an indeterminate length before continuing. A set
of 6 barrier resources shared between reads and writes tracks the number of
unsignaled dependencies using a scoreboard register [108]. Setting a barrier
increases the scoreboard after dispatch, while signaling decreases.

Wait barriers: Instructions may wait on a dependency barrier before execution
(previously set using read/write barriers). All specified scoreboard registers
must reach zero before the instruction is issued.

Register cache flags: Register bank conflicts serialize accesses and slow execution.
The hardware thus provides a small cache, one per source operand position, to
store recurring registers. Bank conflicts can be avoided by accessing the cache.

An efficient schedule must therefore minimize barrier waits and stall counts to increase
ILP and decrease cycles waiting. Register caching and yield hints are optional.

78



5.4. Scheduler

5.4.2 Instruction Classes

We associate each instruction with an instruction class that determines its execution
properties. While NVIDIA provides some limited information, we recovered the bulk
of the specification for Pascal from MaxAs classes [83] and updated this information
with our own microbenchmarks for Ampere. Instruction classes (collectively a profile)
allow our scheduler to make correct and efficient instruction orderings. We summarize
profiles for Pascal and Ampere in Table 5.3 and describe each property below.

Functional unit: Each instruction is executed on a functional unit, corresponding
to the hardware defined in Chapter 2. The functional unit depends on the
operation, as well as the data type. For Pascal, we use the generic “Core”
notation for the main functional units, whereas Ampere is type-specific.

Depth: Fixed latency between dispatch and result availability for fixed-cycle instruc-
tions, or until the barrier resource becomes active for variable-cycle instructions.

Write: Variable latency between dispatch and destination register write for variable-
cycle instructions, taken as an approximation for all instructions in the class.

Read delay: Fixed latency between dispatch and time at which the source register
is read, allowing ILP with the source computation.

Read hold: Variable latency between dispatch and time at which the source register
is available for reuse for variable-cycle instructions.

Throughput: Determined by the number functional units, throughput latency is
given by the number of cycles required to dispatch all threads in a warp [168].

Dual issue: If dual issue is supported (Pascal only), two instructions taking different
data paths may be issued in a single cycle. We follow the MaxAs convention
and specify if dual issue is supported for the second instruction.

Reuse cache: Only certain instructions support the register operand cache.

Note that these properties are approximations used to guide a correct schedule, but
may differ from the actual hardware implementation.

79



Assembler

Table 5.3 – Scheduling properties for each class. Variable latencies (indicated by *) are
approximate and used only as hints, whereas fixed latencies are exact. Throughputs
are computed from the number of functional units and the CUDA guide [168].

Class Unit
Latencies

Dual Reuse
Depth Write* Read Delaya Read Hold* Throughput

S2R S2R 2 ˜25 - - 4 7 7

Control Core 5 - - - N/Ab 7 7

Integer Core 6 - - - 1 7 3

Single Core 6 - - - 1 7 3

Double DP 2 ˜45 - ˜10 32 7 3

Special SFU 2 ˜13 - ˜10 4 3 7

Comparison HCorec 13 - - - 2 7 3

Shift HCore 6 - - - 2 7 3

Shared Load LDST 2 ˜25 2 ˜8 4 3 7

Shared Store LDST 2 - 2 ˜8 4 3 7

Global Load LDST 2 ˜165 4 ˜13 4 3 7

Global Store LDST 2 - 4 ˜15 4 3 7

(a) Pascal instruction properties. Adapted from MaxAs [83].

aRead delay for predicates is always zero.
bControl instructions must complete.
cHalfCore, executes at half throughput without impacting latency of other instructions.

Class Unit
Latencies

Reuse
Depth Write* Read Delay Read Hold* Throughput

S2R S2R 2 ˜25 - - 8 7

Control F32 4 - - - N/Aa 7

Integer I32 5b - - - 2 3

Single F32 5 - - - 1 3

Double DP 2 ˜45 - ˜12 64 3

Special SFU 2 ˜18 - ˜15 8 7

Comparison I32 13 - - - 2 3

Shift I32 5 - - - 2 3

Shared Load LDST 2 ˜25 - ˜8 8 7

Shared Store LDST 2 - - ˜9 8 7

Global Load LDST 2 ˜220 - ˜10 8 7

Global Store LDST 2 - - ˜14 8 7

(b) Ampere instruction properties. Dual issue unsupported.

aControl instructions must complete.
bInteger instructions may have lower latency in some circumstances, omitted for our scheduler.

80



5.4. Scheduler

5.4.3 Scheduler Properties

Our scheduler must be correct and efficient, producing an instruction order that
reduces stalls and maximizes ILP while satisfying dependencies. We therefore define
5 key properties of our approach, each of which is shown by example in Figure 5.19:

1. Fixed-latency instructions must complete before their result is accessed;

2. Variable-latency instructions must set the appropriate read/write barrier, and
their children must wait until signalled;

3. Independent instructions should be executed concurrently, increasing ILP;

4. Long critical paths should be prioritized, hiding their execution with ILP;

5. Instruction throughput should be considered, delaying execution of further
instructions on the same functional unit (not pictured in Figure 5.19).

Note that although throughput may impact instruction dispatch, the hardware will
insert stalls internally [83], thus the scheduler only considers it a hint. We do not con-
sider dual issue and register reuse in our scheduler as initial experiments showed that
the compilation cost exceeds benefits. This is likely due to the intensive read/write
nature of queries, resulting in a program dominated by high-latency operations.

IADD32I R0 , R0, 0x1 ; (Stall =6)

IADD R0, R0, R1 ; (Stall =...)

(a) Fixed-latency instructions.

LDG R0, [R1] ; (Write=SB0)

IADD32I R0 , R0, 0x1 ; (Wait=SB0)

(b) Variable-latency instructions.

IADD32I R0 , R0, 0x1 ; (Stall =1)

IADD32I R2 , R2, 0x1 ; (Stall =5)

IADD R0, R0, R0 ; (Stall =...)

(c) Independent instructions.

LDG.E R0, [R2] ;

LDG R1, [R0] ;

IADD32I R1 , R1, 0x1 ;

(d) Long critical path.

Figure 5.19 – Key instruction scheduling properties for correctness and efficiency.

81



Assembler

5.4.4 Scheduler Algorithm

Instruction scheduling produces an efficient and correct instruction order, typically
processing a dependency graph that captures relationships between instructions. We
schedule each function at a basic block level, further divided into schedulable sections.
Each section is free of control dependencies, either from control-flow or instructions
that prevent reordering (e.g. clock reads). The associated dependency graphs consist
only of data dependencies and are thus smaller and more efficient to construct and
analyze. We implement a variant of list scheduling [75], traversing each schedulable
section’s dependency graph and selecting the next instruction based on a heuristic.
The set of instructions eligible for scheduling are those whose dependencies may be
satisfied, either fixed or variable latency. Our heuristic selects the next instruction
based on 3 ordered properties, reducing stall counts and maximizing ILP:

1. Prefer lower expected latency before dependencies are satisfied;

2. Prefer longer critical path length to end of program; and

3. Prefer lower line number.

Expected latencies are given by the fixed and variable-cycle latencies of each parent
instruction, specific to the hardware profile. We compute the critical path length in
a similar manner, considering the expected latency of each instruction in the path.
The line number is used to break ties and produce a deterministic schedule. List
scheduling is also employed by MaxAs [83], from which we derive our approach,
though we incorporate dependency barriers and employ an alternative heuristic.

Algorithm

List scheduling is an iterative algorithm, maintaining the clock of the last scheduled
instruction, the available time of each instruction, and a list of currently available
instructions. It begins by computing a dependency graph for the schedulable section,
computing write-read (true/flow), read-write (anti) and write-write (write) dependen-
cies, and initializing the list of available instructions as those with no predecessors.

82



5.4. Scheduler

Intuitively, available instructions are those whose dependencies are satisfied and have
available time less than or equal to the current clock cycle. In each iteration, we then
heuristically select the next instruction from the available set, schedule the current
instruction, and compute the earliest available time of each successor. Scheduling
an instruction adds it to the current schedule, sets the stall count, and manages de-
pendency barriers. A high-level overview of the list scheduling algorithm is shown
in Figure 5.20. We describe barrier selection for variable-cycle dependencies in Sec-
tion 5.4.5 and stall count selection below.

def ListSchedule(section ):

clock = 0

schedule = []

activeBarriers = []

availableTimes = []

availableInstructions = []

// Initialize dependency graph , and set of available instructions

BuildDependencyGraph(section)

InitializeAvailableInstructions(section)

// Select the next instruction according to the heuristic

while [previousInstruction , nextInstruction] = Next(availableInstructions ):

schedule.insert(nextInstruction)

// Manage read/write barriers

InsertWaitBarriers(nextInstruction)

InsertReadWriteBarriers(nextInstruction)

// Reduce the previous instruction stall while satisfying dependencies

UpdateStall(previousInstruction)

// Update earliest available time of all successors

UpdateAvailableTimes(availableTimes)

// Update the list of available instructions and heuristics

UpdateAvailableInstructions(availableInstructions)

// Ensure all instructions are complete

WaitOnBarrier(activeBarriers)

Figure 5.20 – Instruction scheduling algorithm.

83



Assembler

Stall Counts

Setting the stall count for an instruction is a two step process, first selecting an initial
value which ensures completion of the current section and then optimizing the smallest
gap which satisfies dependencies. At the end of the section we thus guarantee that
all fixed-latency instructions are complete, while variable-latency instructions require
waiting on all active barriers. The minimum stall count is the difference between the
available time and the current clock cycle, with the available time for each dependency
kind shown in Table 5.4, adapted from MaxAs for true and anti-dependencies [83] and
augmented with write dependencies. For our heuristic we also maintain the expected
time to account for variable-latency dependencies and (not pictured) throughput.

Table 5.4 – Available and expected stall counts for each dependency kind.

Kind
Variable-Latency

Fixed-Latency
Available Expected

Write-Read (True) Depth latency (2) Write latency Depth latency parent - read latency child

Write-Write (Write) Depth latency (2) Write latency Depth latency parent - depth latency child

Read-Write (Anti) Depth latency (2) Read hold 1

In particular note that variable-latency instructions must stall 2 cycles for the barrier
to become active [83]. For fixed-latency write dependencies, depth latencies of both
the parent and child instructions are adjusted by their respective throughputs, ensur-
ing that writes are in-order for all threads. For fixed-latency anti-dependencies, we
assume the read latency of the parent is smaller than the write latency of the child.

Example

An example schedule using the Pascal profile is shown in Figure 5.21, continuing the
running example for the chapter. Its associated dependency graph has been trimmed
for simplicity, showing only the initial instructions and their dependencies. Depen-
dencies include true dependencies (t), anti-dependencies (a), and write dependencies
(w). Instruction schedules are formatted as a tuple:

[Cache, Wait barriers, Read barriers, Write barriers, Yield flag, Stall count]

84



5.4. Scheduler

XMAD.PSL.CBCC R4, R4.H1, R3.H1, R2;

XMAD R2, R4, c[0x0][0x8], R2;

at

S2R R2, SR_TID_X;

tw

S2R R4, SR_CTAID_X;

tw

t

XMAD.MRG R3, R4, c[0x0][0x8].H1, RZ;

t

at

(a) Dependency graph for a subset of the example. Edges are tagged with their dependencies:
t = true/flow dependency, w = write dependency, a = anti-dependency.

S2R R4, SR_CTAID_X; [C-;B-;R-;W2;Y1;S1]

S2R R2, SR_TID_X; [C-;B-;R-;W2;Y1;S2]

XMAD.MRG R3, R4, c[0x0][0x8].H1, RZ; [C-;B2;R-;W-;Y1;S1]

XMAD R2, R4, c[0x0][0x8], R2; [C-;B-;R-;W-;Y1;S6]

XMAD.PSL.CBCC R4, R4.H1, R3.H1 , R2; [C-;B-;R-;W-;Y1;S6]

IADD R2.CC , R4 , c[0x0][0 x140]; [C-;B-;R-;W-;Y1;S6]

IADD.X R3, RZ , c[0x0][0 x144]; [C-;B-;R-;W-;Y1;S2]

LDG.E.U8 R4, [R2]; [C-;B-;R5;W0;Y1;S2]

IADD32I R6 , R4, 0x1; [C-;B0;R-;W-;Y1;S2]

STG.E.U8 [R2], R6; [C-;B-;R5;W-;Y1;S4]

EXIT; [C-;B5;R-;W-;Y1;S5]

(b) Scheduled SASS code, using notation from an offline bloga, inspired by MaxAs [83]. For each
instruction, we tag the: [Cache, Wait barriers, Read barriers, Write barriers, Yield flag, Stall count].

ahttps://newspanning.com/article/179/ (inaccessible, blog offline)

Figure 5.21 – Scheduled SASS function for Pascal.

85

https://newspanning.com/article/179/


Assembler

5.4.5 Barriers

Dependency barriers govern variable-latency dependencies between instructions, with
the parent setting the barrier and child waiting until signaled. Implemented using a
scoreboard register, each barrier resource counts the number of in-progress instruc-
tions and signals dependencies only once all are complete. This is problematic as
the number of barriers is finite, 6 on current hardware, and the number of inde-
pendent variable-latency instructions executed concurrently may be higher. NVIDIA
addresses this issue by providing a special instruction, DEPBAR, which waits only until
the barrier scoreboard register decreases below a threshold. By counting the num-
ber of variable-cycle instructions sharing the barrier between the parent and child,
we can determine the required value, shown by example in Figure 5.22. Note that
instructions sharing the same scoreboard must therefore complete in-order.

LDG.E R0 , [R4] ; (Write=SB0 , Count =1)

LDG.E R1 , [R6] ; (Write=SB0 , Count =2)

LDG.E R2 , [R8] ; (Write=SB0 , Count =3)

DEPBAR.LE SB0 , 0x2 ; // Wait until SB0 barrier has at most 2 elements

IADD32I R0 , R0, 0x1 ;

Figure 5.22 – Scoreboard registers allow a single barrier to be shared for concurrent
variable-latency instructions without waiting for all to complete.

Our scheduler inserts partial barriers where possible, increasing ILP from variable-
latency instructions. As signaling must occur in order, we use scoreboards only for
the most expensive instructions, one for each of reads and writes to global and shared
memory (4 total). If we must wait until the scoreboard reaches zero, the typical
SCHI directives are used, otherwise we prefer partial barriers. All other instruction
classes (e.g. double precision) share the remaining two barrier resources, one for reads
and one for writes, with dependencies handled through SCHI directives. Note that
NVIDIA has a strategy outlined in their patent for further sharing [108]. Despite
their presence in Ampere, we have been unable to reliably use partial barriers for
optimization – likely due to re-ordering changes that are not publicly available.

86



5.5. Binary Generation

5.5 Binary Generation

Lastly, we translate the SASS program to an assembled binary that is loaded and
executed by the CUDA runtime. The assembly stage building the binary program is
described in Section 5.5.1 and ELF file generation in Section 5.5.2.

5.5.1 Assembly

Assembling a program translates from a human readable representation to binary
form. We build on our SASS library, generating a binary instruction sequence and
associated metadata for each function according to the following steps:

1. Sequence basic blocks, creating a linear sequence of instructions;

2. Add termination self-branch, signaling the end of function;

3. Pad instruction sequence to a multiple (Pascal: 6; Ampere: 16) using NOPs;

4. Insert SCHI directives (Pascal only, Ampere uses inline directives);

5. Resolve branch target addresses;

6. Construct function metadata:

• Global/shared variables and relocations;

• Constant memory pad;

• Synchronization barrier count;

• CRS stack size (divergence stack);

• Register count;

• (Optional) Required thread dimensions;

• Indirect branches (SSY);

• Addresses of some special instructions: EXIT, SHFL and certain S2R;

7. Translate instruction sequence to binary (Pascal: 8 byte; Ampere: 16 byte).

87



Assembler

Metadata is used for NVIDIA-specific sections of the assembled ELF file, directing
the runtime. Note that for Ampere, an additional two registers are required per
thread for the program counter3. The assembled example program used throughout
the chapter is shown in Figure 5.23, with each instruction associated with its address
and binary format. Blank lines correspond to SCHI directives, while an additional
padding multiple shows the format of NOP instructions.

// Parameters: 0x8 bytes

// Registers: 5

// Barriers: 0

// S2R CTAID Offsets: 0x0008

// EXIT Offsets: 0x0070

/* 0x0000 */ /* 0x009fc400ea400751 */

/* 0x0008 */ S2R R4, SR_CTAID_X; /* 0xf0c8000002570004 */

/* 0x0010 */ S2R R2, SR_TID_X; /* 0xf0c8000002170002 */

/* 0x0018 */ XMAD.MRG R3 , R4 , c[0x0][0x8].H1, RZ; /* 0x4f107f8000270403 */

/* 0x0020 */ /* 0x001fd800fec007f6 */

/* 0x0028 */ XMAD R2 , R4 , c[0x0][0x8], R2; /* 0x4e00010000270402 */

/* 0x0030 */ XMAD.PSL.CBCC R4, R4.H1 , R3.H1 , R2; /* 0x5b30011800370404 */

/* 0x0038 */ IADD R2.CC, R4 , c[0x0][0 x140]; /* 0x4c10800005070402 */

/* 0x0040 */ /* 0x003fc800a24007f2 */

/* 0x0048 */ IADD.X R3, RZ, c[0x0][0 x144]; /* 0x4c1008000517ff03 */

/* 0x0050 */ LDG.E.U8 R4 , [R2]; /* 0xeed0200000070204 */

/* 0x0058 */ IADD32I R6, R4 , 0x1; /* 0x1c00000000170406 */

/* 0x0060 */ /* 0x001ffc20fea005f4 */

/* 0x0068 */ STG.E.U8 [R2], R6; /* 0xeed8200000070206 */

/* 0x0070 */ EXIT; /* 0xe30000000007000f */

/* 0x0078 */ BRA `(_END) [0 x0078]; /* 0xe2400fffff87000f */

/* 0x0080 */ /* 0x001f8000fc0007e0 */

/* 0x0088 */ NOP; /* 0x50b0000000070f00 */

/* 0x0090 */ NOP; /* 0x50b0000000070f00 */

/* 0x0098 */ NOP; /* 0x50b0000000070f00 */

/* 0x00a0 */ /* 0x001f8000fc0007e0 */

/* 0x00a8 */ NOP; /* 0x50b0000000070f00 */

/* 0x00b0 */ NOP; /* 0x50b0000000070f00 */

/* 0x00b8 */ NOP; /* 0x50b0000000070f00 */

Figure 5.23 – Assembled SASS program for Pascal.

3https://stackoverflow.com/questions/47535903/register-consumption-of-per-
thread-program-counters-in-volta

88

https://stackoverflow.com/questions/47535903/register-consumption-of-per-thread-program-counters-in-volta
https://stackoverflow.com/questions/47535903/register-consumption-of-per-thread-program-counters-in-volta


5.5. Binary Generation

5.5.2 ELF Files

The CUDA runtime can load relocatable ELF files, allowing further linking against
system libraries like libdevice. We construct a CUDA-compliant ELF file directly in
memory using an open source library, ELFIO [126]. Each section is reverse-engineered
from microbenchmarks using NVIDIA binary tools [162], varying program properties
to determine the expected result. Existing open-source assemblers like MaxAs and
TuringAs [83, 239] were also used as guides but proved too limited for a complete
implementation (e.g. relocations, global variables). Sections include the header and
global variables as well as function-specific sections for code, constants, metadata,
shared variables and relocations. We provide a high-level description of each section
below, translating from the assembled binary and metadata to executable form.

Header

A CUDA-compliant ELF file targets the NVIDIA architecture, specified in the header
section. Shown in Table 5.5 are the required properties in addition to the standard
ELF attributes not pictured. We include the target streaming multiprocessor version
(SM) as the instruction format is architecture dependent and required for execution.

Table 5.5 – Header section properties.

Attribute Value

OS ABI ELFOSABI_NVIDIA

ABI Version ELFABI_NVIDIA_VERSION

Version ELF_CUDA_VERSION

Machine EM_CUDA

Flags EF_CUDA_VIRTUAL_SM EF_CUDA_SM EF_CUDA_TEXMODE_UNIFIED EF_CUDA_64BIT_ADDRESS

.nv.global

Global variables accessible by all functions are defined in a single section large enough
for all allocations. Each variable is entered into the symbol table as a global CUDA
object, specified with their size and offset in the section. For natural alignment of
the offset, we sort variables by decreasing data size.

89



Assembler

.nvinfo

Function metadata is split between two sections: a global .nvinfo section and a fur-
ther function-specific section. The rational behind the division remains unclear. Each
attribute specifies an execution property or memory allocation. Execution properties
include thread block dimensions and addresses of EXIT instructions, while memory al-
locations specify the number of registers and the layout of the kernel parameter space.
The complete list of supported properties is listed in Table 5.6, divided between the
global and function-specific sections. We additionally support suspected compatibil-
ity/versioning attributes that vary between architectures: EIATTR_SW2393858_WAR

and EIATTR_SW1850030_WAR for Pascal, EIATTR_SW2861232_WAR for Ampere.

Table 5.6 – Function metadata sections.

Attribute Description

EIATTR_REGCOUNT Number of registers allocated per thread

EIATTR_MAX_STACK_SIZE Unused (0x0)

EIATTR_MIN_STACK_SIZE Unused (0x0)

EIATTR_FRAME_SIZE Unused (0x0)

(a) .nvinfo section properties.

Attribute Description

EIATTR_CUDA_API_VERSION ELF_CUDA_VERSION

EIATTR_PARAM_CBANK Layout of kernel parameters space

EIATTR_CBANK_PARAM_SIZE Size of user-defined kernel parameters

EIATTR_KPARAM_INFO Layout of user-defined kernel parameters, one per parameter

EIATTR_MAXREG_COUNT Maximum registers per thread (may be different than allocated registers)

EIATTR_INDIRECT_BRANCH_TARGETS Addresses and targets of indirect branch SSY instructions (Pascal only)

EIATTR_S2RCTAID_INSTR_OFFSETS Addresses of S2R instructions accessing CTAID thread block dimension

EIATTR_EXIT_INSTR_OFFSETS Addresses of EXIT instructions

EIATTR_COOP_GROUP_INSTR_OFFSETS Addresses of SHFL instructions

EIATTR_REQNTID Required thread dimensions

EIATTR_MAX_THREADS Maximum thread dimensions

EIATTR_CTAIDZ_USED CTAID thread block Z dimension accessed

EIATTR_CRS_STACK_SIZE Size of divergence stack (Pascal only)

(b) .nvinfo.function section properties.

90



5.5. Binary Generation

.text.function

A typical .text section gives the assembled function body, each instruction repre-
sented in binary as either 8-byte for Pascal or 16-byte in Ampere. We include two
section attributes for resource allocation:

• Flag SHF_BARRIERS: Number of synchronization barriers; and

• Info SHI_REGISTERS: Number of registers (duplicated in metadata).

A new record is added to the symbol table serving as a CUDA runtime entry point.

.nv.constant0.function

Kernel parameters are specified in the metadata and allocated as a zero-initialized
section. Its size is given by architecture-specific system parameters and the signature.

.nv.constant2.function

Constant values too large for the instruction format are concatenated into a constants
pad during code generation, one per function, included directly in the ELF file.

.nv.shared.function

Each function contains a shared section, large enough to contain all shared variables.
Variables are entered into the symbol table as a shared CUDA object and the offset
computed by the linker (unlike global variables which pre-compute their offset).

.rel.text.function

Global and shared variables are loaded from relocatable addresses using MOV instruc-
tions from code generation. Relocations indicate each such instruction to the linker
along with the required patching once the variable is allocated. Note that relocations
are architecture specific as they depend on the instruction format. We show each kind
of relocation in Table 5.7. Note that global addresses are 64-bit and thus split into
two components: low bits and high bits. The format of each relocation is as follows:

91



Assembler

R_CUDA_ABS{size}_{position}

Size indicates the number of bits used for the address (possibly with LO or HI quali-
fiers), and position is the offset within the patched instruction.

Table 5.7 – .rel.text.function section address relocations.

Address Pascal Ampere

Global variable R_CUDA_ABS32_LO_20 / R_CUDA_ABS32_HI_20 R_CUDA_ABS32_LO_32 / R_CUDA_ABS32_HI_32

Shared variable R_CUDA_ABS24_20 R_CUDA_ABS32_32

5.6 Summary

The assembler, or backend compiler, translates intermediate PTX code to the tar-
get architecture instruction set. Presenting the first detailed look at an end-to-end
compilation pipeline for NVIDIA GPUs, we define a balanced approach suitable for
short-running queries by trading minor execution slowdowns for major compilation
speedups. Our approach allocates registers, generates machine instructions, and per-
forms limited optimizations including instruction scheduling and peephole optimiza-
tion. The resulting binary is compatible with the CUDA runtime – the details of
which are presented in Chapter 6.

92



Chapter 6

Runtime

The runtime system is responsible for query execution, taking the CPU control-
code and assembled CUDA binary as input. It loads information from the database,
performs the computation and returns the result to the user. We formalize the nec-
essary components that support efficient execution of compiled queries on the GPU,
including the interpreter, SQL library and GPU engine in Section 6.1 followed by
the supporting CUDA runtime and associated libraries in Section 6.2. Lastly, we
discuss efficient data management techniques in Section 6.3, covering representation,
allocation, transfer and optimizations, before summarizing in Section 6.4.

Interpreter
GPU Engine

SQL Library

CUDA 
Runtime

GPU

Data 
Registry

DB

External 
Library

LLVM

CPU 
Code

.cubin 
Binary

Figure 6.1 – rNdN runtime architecture.

93



Runtime

6.1 Interpreter

Query programs are split between the CPU and GPU, the former reserved for func-
tions like string manipulation and data layout, and the latter for outlined kernels. We
implement a simple interpreter, executing HorseIR functions in a virtual environment
and storing immutable data for each variable. CPU functions are evaluated directly,
while GPU kernels and libraries are passed to their execution engines. We describe
library functions in Section 6.1.1 and the GPU execution engine in Section 6.1.2.

6.1.1 SQL Library

Library function calls reference a set of nested functions, executed using custom
control-flow and data allocations not present in HorseIR. We highlight the following
examples, but also support @unique by sorting and @member by hash tables.

Sort: Sorting is implemented via bitonic mergesort described in Section 4.3.4, itera-
tively sorting the data in-place into bitonic sequences of increasing size. Each
library call provides both global and shared memory variants, and the runtime
selects the implementation. Shared memory is preferred where possible due to
its efficiency. The complete algorithm is as follows:

1. Pad input data size to a power-of-2 (required by bitonic sort);

2. Iteratively sort in-place; and

3. Resize output data to remove padding.

Group: Grouping builds a key-value dictionary, collecting data with common at-
tributes into bins. Extending the sort library, input data is first sorted before
determining unique elements with a further nested kernel. The output dictio-
nary is constructed using a pre-compiled system provided library kernel and
optimized storage layout discussed in Section 6.3.1.

Join: Following the typical 3-step process described during code generation, each
join library call references two nested kernels: one for computing the size and a

94



6.1. Interpreter

second for the actual join. Allocations occur automatically before invoking the
second kernel using the GPU execution engine. The selection of hash vs. join
is done at compile time as it depends on the join predicate - a static property.

Like: String data is represented as an index into a string pad, with each entry a
unique value. We first update the GPU string cache using a special vector-
loading kernel that pulls only required data, and then execute the like operation.
Both kernels are pre-compiled by the runtime as they are type and data agnostic.

6.1.2 GPU Engine

The GPU execution engine initializes and invokes GPU kernels, setting up input and
output data buffers along with thread layouts. We follow a 6-step process, used for
both outlined kernels and previously described nested library functions:

1. Compute runtime geometry;

2. Transfer input buffers;

3. Initialize return buffers;

4. Execute kernel; and

5. Resize return buffers.

The runtime thread geometry is computed by shape and geometry analyses described
in Chapter 4. However, we can now use exact values rather than symbolic representa-
tions for buffer sizes. Input buffers are transferred, while return buffers are allocated
and initialized as required. Buffer initialization may either set an initial value (e.g.
the null value for reductions), or copy existing data when only modifying a subset
(e.g. scatter/indexed write). For compressed output buffers we conservatively al-
locate their maximum size and resize after execution. In most cases, resizing only
updates the size property of the buffer as the cost of reallocating and copying data
is prohibitively expensive. Note that this strategy is not possible for join outputs,
as the required buffer size is the product of the input sizes and would be excessively
large. Kernels may be launched with dynamic shared memory if needed.

95



Runtime

Thread Layouts

Given the abstract kernel geometry, we compute the exact size of each thread block
and the number of blocks required to compute the entire result. Note that since each
thread block must have identical size (required by CUDA), unused threads are dis-
abled by bounds checking in the generated code. Each kernel has also a set of thread
block size constraints that must be satisfied, determined by its parallel strategies. We
support the following constraints, with compatibility guaranteed by code generation:

1. Exact number of threads;

2. Multiple of n; or

3. Power-of-2.

Given the kernel geometry and constraints, we determine the best size for each thread
block and extrapolate the number of blocks according to the following formula:

Blocks = d Size
Block Sizee

The number of blocks is thus the quantity required for the complete computation.
Note that some threads may therefore be inactive and require bounds checking. We
discuss the selection of thread block size for each GPU-capable geometry below.

Vector: Determined by the resource usage (e.g. registers), each kernel has an upper
bound on the number of threads per block. For vector geometries we therefore
select the maximum thread block size that obeys both the constraints and the
kernel limits. Shown in Figure 6.2 are example thread layouts for a vector
geometry of size 4096 under each of the above constraints (with no kernel limit).

Block Size = 768

Blocks = 6

(a) Exact size = 768.

Block Size = 1000

Blocks = 5

(b) Multiple size = 100.

Block Size = 1024

Blocks = 4

(c) Power-of-2 size.

Block Size = 1024

Blocks = 4

(d) Unconstrained.

Figure 6.2 – Thread block layouts for vector geometry with runtime size 4096.

96



6.2. CUDA Runtime

List: List kernels specify constraints on the number of threads per cell, rather than
the thread block. Each thread block thus uses the maximum size supported
by the kernel, and the generated code assigns threads to each cell as needed.
Cells may therefore be split unevenly across multiple blocks, or multiple cells
assigned to a single block. We show examples of both layouts in in Figure 6.3.
If the cell size is unconstrained, we use the average of runtime sizes and execute
larger cells using the strategy shown in Chapter 4. The number of thread blocks
is given by the total number of threads required to execute all cells.

Block 1

Cell 1

Block 2

Cell 2 Cell 3 Cell 4

(a) Multiple cells in each block.

Cell 1

Block 1 Block 2

Cell 2

Block 3

(b) Cells span across multiple blocks.

Figure 6.3 – Thread block layouts for list geometry.

6.2 CUDA Runtime

We build a wrapper for the CUDA runtime [165] and driver [163] environments,
providing a unified interface for managing data and executing kernels that require
varying high and low-level access. In particular, we implement the following:

• Devices and contexts;

• Events and errors;

• Data buffers and constants;

• Kernels and invocations;

• Compiler and linker; and

• Internal and external libraries.

97



Runtime

Most elements are simple wrappers, with the exception of compilation, linking and
libraries described in Sections 6.2.1 and 6.2.2 respectively. We discuss data buffers,
allocations and transfers in Section 6.3.

6.2.1 Compiler and Linker

The compiler and linker wrappers are key components in our pipeline, producing
a linked CUDA binary from sources of varying formats. Architecture-independent
PTX code is either compiled by our own assembler, or nvPTXCompiler, a newer
NVIDIA library for runtime compilation equivalent to ptxas [169]. We use our own
assembler for query compilation due to its low cost, and NVIDIA’s for offline or
cached compilation as the extra overhead is inconsequential. We specify the following
compilation options to nxPTXCompiler:

• Compute capability for the current device;

• Optimization level (default -O3, supports -O0/-O1/-O2);

• Allow expensive optimizations, trading increased compilation time for (possibly)
better performance; and

• Compile only, generating a relocatable binary.

The resulting binary is passed to the CUDA linker along with external libraries de-
scribed below. The fully linked executable is compatible with the CUDA runtime.

6.2.2 Libraries

Complex math functions like @sin and @cos require extensive optimization and test-
ing beyond the scope of this thesis on SQL queries. We therefore rely on external
libraries for their support, namely libdevice, a low-level library distributed as part
of CUDA [166]. Represented in generic LLVM bytecode [127], we must therefore first
generate an architecture-specific binary using the LLVM and CUDA toolchains as
done in various GPU projects [150, 184, 218, 3, 4] which were used as guidance.

98



6.3. Data Management

We use the NVPTX LLVM backend [186], translating from bytecode to PTX and
performing necessary -O3 optimization. Note that the supplied bytecode is missing
the target triple and data layout required by LLVM backends and must therefore
be set before compilation [184]. As the complete library is extensive, we extract
necessary functions by linking a dummy module shown in Figure 6.4 and keeping
only those which match. This reduces the system initialization time and produces a
smaller binary. The resulting PTX code is assembled to a relocatable ELF file using
NVIDIA’s backend compiler and cached during start-up. If required by the query,
external libraries can be linked when generating the final executable.

declare float @__nv_cosf(float)

declare double @__nv_cos(double)

declare float @__nv_sinf(float)

declare double @__nv_sin(double)

[...]

Figure 6.4 – Dummy LLVM module for quickly extracting necessary functions.

We also implement an optimized internal library in PTX for data initialization
(e.g. min, max) of various types, nested kernels for the @like library, and @group

dictionary construction. Compiled and linked using NVIDIA’s pipeline, we cache the
binary on start-up and execute kernels as needed by the runtime. Note that we do not
use our own assembler as the compilation occurs during system initialization and not
when executing the query. We thus benefit from additional optimizations provided
by NVIDIA without any execution overhead. Unlike external libraries, we maintain
a separate CUDA binary as the functions are never linked or called by other kernels.

6.3 Data Management

Data buffers store program values of varying types, either on the CPU and/or GPU.
Each buffer is associated with its HorseIR type and shape, and if GPU-capable, an
associated size buffer. Note that even though certain containers may not be GPU-
capable, their nested contents may be. We list each kind of data buffer in Table 6.1.

99



Runtime

Table 6.1 – Data buffer properties.

Kind GPU Description

Constant 3 Scalar values (size not stored).

Vector 3 Array values, stored contiguously.

List 3 Ordered collection of cells, typically vectors or enumerations.

Enumeration 7 Foreign keys, storing a values vector, a pointer to the foreign vector,
and a cached indexes vector.

Dictionary 7 Key-value mapping, stored as a vector of keys and one vector per bin.

Table 7 List of columns, either vectors or enumerations.

As GPU data buffers are more complex, we discuss their allocation in Section 6.3.1,
transferring in Section 6.3.2, and optimizations for both.

6.3.1 Buffer Allocation

GPU buffers provide data storage as well as attributes required for thread manage-
ment. Each buffer thus consists of a data allocation, and a separate size buffer. We
chose this separation due to simplicity, as buffers can be nested in higher-level repre-
sentations (e.g. vectors grouped to form a list). We present each type-specific GPU
buffer layout and an optimization strategy to reduce allocation cost.

Vector: Vector data is contiguous, storing an array of values. Each buffer consists
of a single data segment and an associated 4-byte size buffer that is used for
bounds checking and resizing. We show the vector buffer layout in Figure 6.5.

Data Size
4-byte

Figure 6.5 – Vector buffer GPU layout.

List: Lists are represented as a vector of pointers, referred to as the header, each
element pointing to cell data. An identical structure is used for the associated
size buffer, with a header pointing to each cell size. We allocate list buffers
according to the following schemes, optimized for different applications:

100



6.3. Data Management

(a) Cell: Each cell buffer is allocated separately, as shown in Figure 6.6a. For
lists with a small number of cells constructed from independent vectors
this proves sufficient, but is ineffective for larger lists typical of grouping.

(b) Contiguous: When allocating lists with numerous cells (typical for
@group), the cost becomes significant. An alternative strategy thus al-
locates all cells in a single contiguous vector as shown in Figure 6.6b. The
header then points to each cell within the allocation as in the previous
strategy, and the allocation cost is reduced.

Cell 1 Cell 2 Cell 3

Header

Data

(a) Individual cell-based storage.

Contiguous

Header

Data

(b) Optimized contiguous-cell storage.

Figure 6.6 – List buffer GPU layouts. (Adapted, © 2021 IEEE [125])

The generated code is unchanged regardless of the scheme, as it depends solely
on the presence of a header and cells. Note that lists may be formed for inde-
pendent vectors, requiring cell-based allocation to avoid copying.

Pre-allocation

Repeated buffer allocation is expensive, requiring numerous calls to the CUDA run-
time. We reduce this cost significantly by pre-allocating pages before execution and
managing the allocations manually using an sbrk-style approach. Each allocation in-
crements a pointer, aligned to a multiple of 16-bytes. This guarantees data alignment
for all types, including vectors used for string caching. The entire page can also be
freed after execution in one step, simplifying cleanup. A similar strategy is used in
both BlazingSQL [103] and OmniSci [150], other GPU database systems.

101



Runtime

6.3.2 Buffer Transfers

Data buffers are transferred as needed, avoiding excess copying over the PCI-e bus.
To do so, we maintain the state of each buffer on the CPU and GPU, similar to the
idea behind cache coherence [49]. The runtime then requests a read or write copy for
a particular target, and the data is transferred only if necessary. Shown in Figure 6.7
is the equivalent state diagram for our system. We include 4 states:

1. Empty: Unallocated buffer.

2. CPU-only: Exclusive copy of the data on the CPU.

3. GPU-only: Exclusive copy of the data on the GPU.

4. Shared: Shared copy of the data, up-to-date on both targets.

RGPU

WGPU

CPU-
only

WCPU

RCPU

GPU-
only

WCPU WGPU

Shared

WCPU WGPU
Empty

Figure 6.7 – Buffer states and transitions. Bold transitions indicate a data transfer.

Each transition represents the new state when requesting a read or write copy, hiding
self-transitions and capturing data transfers in bold. If the target has not yet been
initialized, a new buffer is allocated before transfer. We note that reading requires
either a shared or exclusive copy, while writing requires an exclusive copy. Transi-
tioning out of an exclusive state triggers a transfer, as the data on the other target
is stale. Note that requesting a read copy of an empty buffer is invalid as there is no
data and indicates an error in the runtime system.

102



6.4. Summary

Pinned Memory

Data transfers between the CPU and GPU are costly, especially for the large buffers
required by input tables. This is heightened by CPU memory allocations, which are
typically page-swappable and unable to be directly copied to the GPU without an
intermediate copy. We therefore use pinned memory, allowing the system to transfer
data directly over the PCIe bus [87]. As the primary data type, vectors are allocated
on pinned pages using a custom allocator1, optimizing their transfer.

6.4 Summary

The runtime system executes the query and returns the result to the user, invoking the
output of earlier compilation phases. CPU control code is interpreted directly at low
cost, while fully assembled parallel kernels are offloaded to the GPU for acceleration.
As the primary runtime overheads, we optimize data transfers by copying data only
when necessary, and minimize the allocation cost by combining buffers into contiguous
structures and pre-allocating pages.

1https://en.cppreference.com/w/cpp/named_req/Allocator

103

https://en.cppreference.com/w/cpp/named_req/Allocator


Runtime

104



Chapter 7

Evaluation

In this chapter we present an evaluation of our system, analyzing the impact of
each phase and comparing against the current state-of-the-art. Our aim is a com-
piled query GPU database that operates without the usual compilation overhead for
competitive end-to-end performance on short queries. We begin by describing our
methodology and comparison systems in Section 7.1, followed by the motivation for
our approach in Section 7.2. Next, we show compilation and execution breakdowns for
each query in Section 7.3. We then compare our performance against other modern,
open-source GPU and CPU database systems on multiple use cases in Section 7.4.
Lastly, we evaluate our optimizations for execution and compilation in Section 7.5
and summarize our results in Section 7.6.

7.1 Methodology

We collect results on a single machine described below, averaging each value over 10
consecutive runs and dropping the highest and lowest timings. To account for initial-
ization costs (e.g. cache, filesystem), 5 warm-up iterations are discarded beforehand.

• OS: Ubuntu 20.04 LTS (docker)

• CPU/RAM: Intel i7-8700K @ 3.7GHz, 32GB DDR4

105



Evaluation

• GPUs: NVIDIA GeForce GTX 1080 Ti, NVIDIA GeForce RTX 3080

• CUDA: 11.4.3 and graphics driver 470.94

To demonstrate portability of our approach across platforms, we experiment and show
results for both GPU targets. Note that despite multiple PCI-e 16x slots being present
on the motherboard, our CPU supports only 16 lanes1. We therefore swap the GPUs
between experiments as sharing bandwidth greatly degrades performance. Addition-
ally, we use nvidia-persistenced [159] to keep the GPU and driver initialized, as
we previously experienced crashes when collecting data over long periods2.

Comparison Systems

We select the latest version of 4 recent and open-source comparison systems shown
in Table 7.1. This set of comparison points covers a variety of execution strategies,
compiled and interpreted on both the CPU (single threaded) and GPU, allowing us
to evaluate the effectiveness of our low-overhead approach. Note that BlazingSQL is
built on an open-source library, RAPIDS.AI, which provides parallel implementations
of key functions. For rNdN, we also differentiate between our complete pipeline and
that which uses NVIDIA’s ptxas backend in lieu of our simplified assembler. To
account for the impact of optimization, we measure at both -O0 and -O3.

Table 7.1 – Comparison systems.

System Version Device Execution

rNdN Jan 2022 GPU Compiled

rNdN + ptxas (-O0/-O3) Jan 2022 GPU Compiled

OmniSci [150] 5.10.0 (Jan 2022) GPU Compiled

BlazingSQL [103] 21.08.02 (July 2021) GPU RAPIDS.AI

MonetDB [101] 11.41.13 (July 2021) CPU Interpreted

HorsePower [38] August 2020 CPU Compiled

1https://ark.intel.com/content/www/us/en/ark/products/126686/intel-core-i78700-
processor-12m-cache-up-to-4-60-ghz.html

2https://forums.developer.nvidia.com/t/nvrm-rminitadapter-failed/125897

106

https://ark.intel.com/content/www/us/en/ark/products/126686/intel-core-i78700-processor-12m-cache-up-to-4-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/126686/intel-core-i78700-processor-12m-cache-up-to-4-60-ghz.html
https://forums.developer.nvidia.com/t/nvrm-rminitadapter-failed/125897


7.2. Motivation

TPC-H Benchmark

We evaluate our approach on the TPC-H benchmark suite, a collection of 22 queries
designed for performance evaluation of relational database systems [221] and fre-
quently used in research. Each query tests a variety of SQL operators for a business
context varying from simple to complex. We use scale factor 1, comprising 1 GB
combined input data across all tables, as it fits within GPU device memory yet is still
significant. Most systems support the entire benchmark suite, with the exception of
OmniSci (q14, q20, q21, q22) and BlazingSQL (q11, q15, q21, q22). In addition, we
modify some queries for BlazingSQL as they are unsupported by the parsing engine3.

7.2 Motivation

Before presenting the complete rNdN system, we motivate our focus on minimizing
compile time by considering the performance under NVIDIA’s optimizing assembler
(ptxas -O3). Shown in Figure 7.1 are high-level execution and compilation break-
downs for both architectures. Execution time is divided into input data caching (e.g.
TPC-H and string pad), intermediate data management (e.g. transfer, initialization,
resizing), CPU execution, GPU kernels and runtime analyses, and overhead. Com-
pilation is partitioned into compiler and assembler, corresponding to phase 1 and 2
of the pipeline, with binary loading included in the latter. We therefore evaluate the
execution strategies described in Chapter 4 (Frontend and Compiler) and Chapter 6
(Runtime), paired with the proprietary assembler. Times are presented in millisec-
onds, with the compilation scale 3x that of execution due to its high cost. Bars which
exceed the plotted region are annotated with their value.

Measured on the TPC-H benchmark, compilation dwarfs execution in all queries
(n.b. scale difference), and is the largest and limiting factor for end-to-end perfor-
mance. This is especially relevant for short-running queries as any speedup from
compilation is offset by its overhead. Moreover, the compilation cost is nearly en-
tirely in the second phase that generates the CUDA binary from intermediate PTX

3https://github.com/BlazingDB/blazingsql/pull/785

107

https://github.com/BlazingDB/blazingsql/pull/785


Evaluation

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0

30

60

90

120

150

180

210

Co
m

pi
la

tio
n 

tim
e 

(m
s)

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n 
tim

e 
(m

s)

NVIDIA Pascal (1080 Ti)
TPC-H query breakdown (ptxas -O3)

Overhead
GPU
CPU
Data transfer
Data cache

Overhead
Compile
Assemble
 

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0

30

60

90

120

150

180

210

Co
m

pi
la

tio
n 

tim
e 

(m
s)

 219 
 232 

 234 
 226 

 240 
 241 

 231 
 244 

 245 

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n 
tim

e 
(m

s)

NVIDIA Ampere (3080)
TPC-H query breakdown (ptxas -O3)

Overhead
GPU
CPU
Data transfer
Data cache

Overhead
Compile
Assemble
 

Figure 7.1 – rNdN execution and compilation breakdown with ptxas -O3 backend for
both Pascal (1080 Ti) and Ampere (3080) architectures. Execution is shown in the
left bar (left scale) and compilation in the right bar (right scale; 3x execution).

code. It is thus a crucial bottleneck, though further investigation is extremely limited
due to its closed-source implementation. This formed the basis of our approach, de-
veloping a runtime-suitable replacement assembler that exploits a greatly simplified
pipeline without excessively slowing execution. Interestingly, the compilation cost is
higher on Ampere, possibly due to target-specific optimizations or code generation
strategies. On the other hand, GPU execution time is markedly lower. Note that
data transfers are primarily limited by the PCI-e bus and are therefore unchanged.

108



7.2. Motivation

As an obvious solution to high compilation times, we also evaluated the perfor-
mance of the proprietary backend without optimizations (-O0, allow expensive opti-
mizations false4). Shown in Figure 7.2 is the equivalent execution breakdown under
this scheme using the same split scale (compilation 3x execution). Unfortunately,
despite a substantial decrease in compilation time, execution time has been severely
degraded on both architectures. Optimization is thus essential to high performance
using NVIDIA’s assembler, although it comes at a high cost.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0

30

60

90

120

150

180

210

Co
m

pi
la

tio
n 

tim
e 

(m
s)

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n 
tim

e 
(m

s)

NVIDIA Pascal (1080 Ti)

 357 
 177  73 

 135 
 319  85 

 358 
 178  74 

 136 
 321  86 

TPC-H query breakdown (ptxas -O0)
Overhead
GPU
CPU
Data transfer
Data cache

Overhead
Compile
Assemble
 

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0

30

60

90

120

150

180

210

Co
m

pi
la

tio
n 

tim
e 

(m
s)

 213 
 218 

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n 
tim

e 
(m

s)

NVIDIA Ampere (3080)

 83  83 

TPC-H query breakdown (ptxas -O0)
Overhead
GPU
CPU
Data transfer
Data cache

Overhead
Compile
Assemble
 

Figure 7.2 – rNdN execution and compilation breakdown with ptxas -O0 backend for
both Pascal (1080 Ti) and Ampere (3080) architectures. Execution is shown in the
left bar (left scale) and compilation in the right bar (right scale; 3x execution).

4Preliminary experiments showed no significant impact from this flag.

109



Evaluation

7.3 Execution Breakdown

We next present the equivalent execution and compilation breakdowns for our com-
plete end-to-end rNdN system, shown in Figure 7.3, measuring the time spent in each
phase for both architectures. As in the motivation, execution is divided into input
data caching, intermediate data management, CPU execution, GPU kernels and run-
time analyses, and overhead. Compilation is partitioned into compiler and assembler.
Times are presented in milliseconds, with both bars using the same scale. A further
decomposition of kernels and compilation are presented in Sections 7.3.1 and 7.3.2.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0

10

20

30

40

50

60

70

Co
m

pi
la

tio
n 

tim
e 

(m
s)

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n 
tim

e 
(m

s)

NVIDIA Pascal (1080 Ti)
TPC-H query breakdown (rNdN)

Overhead
GPU
CPU
Data transfer
Data cache

Overhead
Compile
Assemble
 

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0

10

20

30

40

50

60

70

Co
m

pi
la

tio
n 

tim
e 

(m
s)

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n 
tim

e 
(m

s)

NVIDIA Ampere (3080)
TPC-H query breakdown (rNdN)

Overhead
GPU
CPU
Data transfer
Data cache

Overhead
Compile
Assemble
 

Figure 7.3 – rNdN execution (left bar) and compilation (right bar) breakdown for
both Pascal (1080 Ti) and Ampere (3080) architectures.

110



7.3. Execution Breakdown

Overall, query execution is dominated by data caching, with TPC-H input ta-
bles representing the primary cost for many queries. This confirms prior work that
data costs must be considered for GPU benchmarking [84], and demonstrates the
importance of effective caching and transfer strategies. Intermediate data transfers
and management (e.g. resizing and initialization) are insignificant in comparison. In
terms of computation, most of the execution is GPU-based, with exception of string
operations @substring (q22) and @order (q16). In both cases, we assessed the cost
of implementation too high for their limited use, although optimization is possible
in future work. Our code generation approaches are thus sufficient to parallelize a
wide variety of queries. The remaining execution time is deemed overhead (e.g. in-
terpretation) and negligible in our evaluation. While examined in more detail in the
following section, we note that queries with high GPU-execution times (q1, q3, q18)
typically group large amounts of data. In these cases input data is relatively less
costly, though we believe that further optimization of the library function is possible
and would again show the importance of data management.

Compilation time is still heavily skewed towards the backend compiler (assembler),
with the frontend significantly faster. This is intuitively due to the simplicity of the
frontend representation (HorseIR), which utilizes high-level constructs for complex
operations and contains no explicit control-flow. Data-flow analyses that typically
dominate compilation are thus simplified and more efficient. In comparison, the as-
sembler operates on a quasi machine-level IR (PTX) where complex operations are
decomposed into sequences of basic instructions and typically contain branching and
loops. Expensive fixed-point analyses are thus required; the effect of which is espe-
cially pronounced in queries with larger programs (q2, q7, q8, q10). By comparison,
short and simple queries (q6, q14) are much faster to compile both in the frontend and
backend. Compilation time thus remains an important factor in query performance,
and while it is usually less costly than execution, still merits significant optimization.
This is especially true for the phase 2 assembler pipeline.

Comparing both architectures, we see an identical trend throughout the entire
benchmark, with improvements in Ampere over Pascal derived from faster GPU ex-
ecution. Other execution costs remain essentially unchanged as the host system was

111



Evaluation

identical. In particular, data transfers are likely limited by the PCIe bandwidth – a
host property – making improvements in GPU design inconsequential for transfers.
As kernel performance continue to improve, data management therefore becomes in-
creasingly important and requires newer PCIe versions to optimize transfers. Compile
time is likewise unchanged, as we use equivalent strategies for both systems.

Our system is also well-suited for runtime use, demonstrating execution compara-
ble to ptxas -O3 with compilation time significantly lower than -O0. We thus match
or exceed the best case of each measure. Additionally, we note that execution is only
marginally worse on Ampere than Pascal relative to NVIDIA’s optimizing compiler.
This hints at low payoff in ptxas, as their Ampere compilation pipeline is signifi-
cantly slower than Pascal while ours remains constant. We do, however, follow a
similar trend in compilation cost, with complex queries taking longer to compile and
the second phase remaining the most expensive.

7.3.1 GPU Execution

We further breakdown the execution time on the GPU, showing the proportion of time
spent in the main outlined kernels and library functions in Figure 7.4. In nearly all
cases, library functions represent a significant part of query execution – in only a few
exceptions (q4, q6, q10, q12, q14, q15, q19) do outlined kernels represent the majority.
This is unsurprising, as most non-library functions are simple-to-execute element-wise
unary and binary operations, and their intermediate data cost is eliminated through
outlining (see Section 7.5.2). Library functions are therefore important optimization
targets, with particular emphasis on @group and @join_index. While sorting may
seem a significant cost for some queries, its high proportion comes from the sort
required for grouping. Sorting for non-grouping purposes on the GPU is negligible and
is typically used to order output data (always in our benchmarks). Joins vary in cost
depending on the query, with some more expensive than others, although remaining
an important optimization target. Other library operations are for the most part
negligible, with the exception of @like in q13 and @member in q22. With respect to
architecture differences, a similar trend is present throughout the benchmark. We

112



7.3. Execution Breakdown

evaluate the impact of library optimizations in Section 7.5.1.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0

20

40

60

80

100

Ex
ec

ut
io

n 
pe

rc
en

ta
ge

NVIDIA Pascal (1080 Ti)
TPC-H execution breakdown

Like
Member
Join
Group
Sort
Main

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0

20

40

60

80

100

Ex
ec

ut
io

n 
pe

rc
en

ta
ge

NVIDIA Ampere (3080)
TPC-H execution breakdown

Like
Member
Join
Group
Sort
Main

Figure 7.4 – rNdN GPU kernel execution breakdown.

7.3.2 Compilation

Lastly, we analyze the compilation time, describing the proportion of each phase
in our pipeline. Presented in Figure 7.5 are the compiler and a detailed view of
the assembler. We include the frontend, outliner, and PTX code generation for the
first phase, and control-flow structuring, register allocation, SASS code generation,
instruction scheduling, peephole optimization and binary generation for the backend.
Overhead is excluded as it is a negligible part of compilation; CUDA binary loading
and assembly are included in binary generation.

As shown in the overview, translating from HorseIR to PTX represents only a
small part of the compilation time for nearly all queries, owing to the efficient rep-
resentation. Code generation is the primary cost, followed by outlining and then
the negligible frontend. A notable exception, q6, spends a considerable proportion
of time in the frontend compiler as it is relatively simplistic. In all other queries,
the backend compiler phases are much more expensive due to the large amount of

113



Evaluation

PTX code generated from HorseIR. Additionally, fixed-point analyses are used for
structuring (dominators and post-dominators) and register allocation (live variables).
Register allocation is in fact the most costly part of the backend pipeline proportion-
ally speaking (the absolute value is small). On the other hand, scheduling requires
only a basic dependency analysis as it operates at the basic block level, though it
remains costly. Together, these backend phases represent a significant part of the
overall pipeline and were extensively optimized for runtime use. This highlights the
importance of our design choice, selecting fast compilation techniques for expensive
operations over those with more precise results. Peephole optimization and binary
generation are both extremely fast, as is SASS code generation.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0

20

40

60

80

100

Co
m

pi
la

tio
n 

pe
rc

en
ta

ge

NVIDIA Pascal (1080 Ti)
TPC-H compilation breakdown

Frontend
Outliner
PTX codegen
Structuring
Register alloc.
SASS codegen
Scheduler
Optimizer
Binary gen.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0

20

40

60

80

100

Co
m

pi
la

tio
n 

pe
rc

en
ta

ge

NVIDIA Ampere (3080)
TPC-H compilation breakdown

Frontend
Outliner
PTX codegen
Structuring
Register alloc.
SASS codegen
Scheduler
Optimizer
Binary gen.

Figure 7.5 – rNdN compilation breakdown.

7.4 Performance Comparison

We evaluate our performance against the comparison systems from Section 7.1 using
4 metrics, corresponding to different use-cases. Our selected metrics include:

1. Compilation Time: Compilation time before execution, measuring the added
cost of query compilation (Section 7.4.1);

114



7.4. Performance Comparison

2. Cached Execution: Pre-compiled queries and GPU-resident data, for repeat-
edly executed analytics queries with data already loaded (Section 7.4.2);

3. Uncached Execution: Pre-compiled queries but data stored on the CPU,
considering applications with fresh data (Section 7.4.3); and

4. Total Execution: End-to-end performance, a key comparison point for evalu-
ating trade-offs between execution engines and targets (Section 7.4.4).

Performance is measured by speedup, with values greater than 1 showing better results
on our system and values less than 1 demonstrating slowdown. If a comparison system
does not support a query, it is indicated by ‘x’. Note that we use a non-linear speedup
axis to highlight the important range and extract meaningful data.

7.4.1 Compilation Time

As query compilation is central to our approach, we begin by analyzing compile time
performance compared to other compiled databases: HorseIR on the CPU and Om-
niSci on the GPU. In addition, we include rNdN with NVIDIA’s backend at optimiza-
tion levels -O0 and -O3, measuring the impact of our runtime-optimized assembler.
For OmniSci, note that hash table building for joins is performed partly at compile
time (referred to as “reify”). We therefore subtract buildJoinLoops from the compi-
lation time for fairness of comparison, and later include it with uncached execution.
Due to its integration with code generation, this is imperfect but more representative.
For HorsePower, we use the gcc compilation time once the C program is generated,
excluding translation from HorseIR as the built-in profiling is limited. Our system
measures the compilation cost from input HorseIR program to assembled and loaded
CUDA binary. Shown in Figure 7.6 is the speedup graph for the compilation time for
the entire benchmark. Encouragingly, we see significant performance improvement
compared to all other systems and geomeans exceeding 5x on both platforms.

Compared to NVIDIA’s backend compiler, we see significant performance im-
provement both with optimizations enabled and disabled, despite the expected qual-
ity difference of generated code. This hints that their infrastructure requires extensive

115



Evaluation

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0
1Sp

ee
du

p

x x x xx x x xx x x x

3
6
9

12
220

 NVIDIA Pascal (1080 Ti) 
ptxas -O0
ptxas -O3

OmniSci
HorsePower

TPC-H compilation speedup

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0
1Sp

ee
du

p

x x x xx x x xx x x x

3
6
9

12
230

   NVIDIA Ampere (3080)  
ptxas -O0
ptxas -O3

OmniSci
HorsePower

TPC-H compilation speedup

Figure 7.6 – Compilation speedup of rNdN (compiled systems only). Note the
non-linear axis below 1 and above 12 that highlights the important region.

work to translate code regardless of optimization level. In fact, compiling an empty
module with no code still has considerable cost, likely due to initialization overhead
or binary generation. In addition, as noted in the execution breakdown, their com-
pilation on the newer architecture is significantly more expensive while we maintain
parity. Our approach is thus much more suitable for runtime systems than the pro-
prietary pipeline, provided that our execution is sufficiently strong. We evaluate the
impact on execution in Section 7.4.2 and the overall trade-off in Section 7.4.4.

OmniSci utilizes the LLVM compiler framework for its compilation pipeline [215].
They first generate LLVM IR, translate to PTX, and assemble a CUDA binary using
the GPU driver API – the same kind of backend used in the ptxas comparison points.
We therefore see significant speedups in all queries, as their system is limited by
the same slow backend compiler provided by NVIDIA. Their compilation time also
exceeds our system with NVIDIA’s backend in nearly all cases, due to the added cost
of the LLVM compiler infrastructure. Perhaps unsurprisingly, as HorsePower employs

116



7.4. Performance Comparison

gcc, an ahead-of-time compiler, we see similar performance improvements. Note that
q6 is very simple and gives an extreme speedup that we do not expect in most cases.

7.4.2 Cached Execution

Cached execution measures the query performance excluding compilation and input
data transfers, allowing for all types of caching (including pre-computation of hash
tables in OmniSci). It therefore represents cases where a query is repeatedly executed
on unchanging data that fits in GPU memory, isolating our algorithmic and runtime
design. Shown in Figure 7.7 are the speedups in relation to all comparison systems
from Table 7.1, both on the CPU and GPU, compiled and interpreted.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0
1Sp

ee
du

p

x x x xx x x xx x x xx x x xx x x xx x x x

3
6
9

12
100

NVIDIA Pascal (1080 Ti)
ptxas -O0
ptxas -O3

OmniSci
BlazingSQL

MonetDB
HorsePower

TPC-H cached speedup

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0
1Sp

ee
du

p

x x x xx x x xx x x xx x x xx x x xx x x x

3
6
9

12
290

NVIDIA Ampere (3080)
ptxas -O0
ptxas -O3

OmniSci
BlazingSQL

MonetDB
HorsePower

TPC-H cached speedup

Figure 7.7 – Cached speedup of rNdN, excludes input transfer and compilation.

With the exception of NVIDIA’s optimizing backend, we see performance improve-
ments on a variety of queries with geometric mean speedup. Most importantly, we
outperform ptxas baseline with -O0 and only see small degradation (<6% geomean)
compared to the optimizing -O3 variant. This indicates that our simplistic approach

117



Evaluation

is effective at extracting high performance from queries, especially considering the
significantly improved compilation time. This emphasizes the novelty of our design,
demonstrating that only basic optimizations are required for fast execution of SQL
queries on the GPU. Moreover, our design is portable across architectures, with only a
small geomean reduction in performance compared to NVIDIA’s optimizing backend
on both GPUs (Ampere: 0.97x; Pascal: 0.95x). Interestingly, their non-optimizing
backend produces higher performance code for Ampere than Pascal. The performance
change in the optimizing backend is much less pronounced between architectures.

For CPU systems MonetDB and HorsePower, we show speedup in nearly all cases,
with notable geometric means. This holds true on both architectures despite Pascal
not being as powerful. The most obvious speedup exception, q17, requires additional
investigation of our join library implementation. Compared to GPU systems Om-
niSci and BlazingSQL, we see significant performance improvements and geometric
mean speedup. BlazingSQL has slower execution in all queries, and the exceptions
with OmniSci are typically due to our grouping implementation (q1, q3). As previ-
ously discussed, we implement group by sorting input data and finding unique keys.
This is effective for small data, but requires a more efficient approach as data sizes
grow. Encouragingly, we are able to support the entire benchmark suite, whereas the
more mature GPU databases are both incomplete. While we are not the first GPU
implementation to achieve this feat, it is nevertheless challenging.

7.4.3 Uncached Execution

Uncached execution corresponds to scenarios where input data is not yet stored on
the GPU but the query itself is unchanging and pre-compiled. GPU database sys-
tems thus have additional cost compared to those based on the CPU, as they need
to transfer input tables over the PCIe bus. As shown in Section 7.3, this represents
a significant overhead for most queries. Note that due to limitations of BlazingSQL
logging and control over transfers and its unrealistically high cost, we exclude data
caching from its evaluation and only include the computation. For OmniSci and
rNdN, each query is evaluated on an uninitialized system with an empty data cache

118



7.4. Performance Comparison

(database restarted between iterations) and the compilation time excluded. As men-
tioned previously, we include the cost of building join hash tables for OmniSci as it
represents data computation rather than compilation. Shown in Figure 7.8 are the
uncached speedups of our system on the complete TPC-H benchmark suite.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0
1Sp

ee
du

p

x x x xx x x xx x x xx x x xx x x xx x x x

3
6
9

12
80

NVIDIA Pascal (1080 Ti)
ptxas -O0
ptxas -O3

OmniSci
BlazingSQL

MonetDB
HorsePower

TPC-H uncached speedup

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0
1Sp

ee
du

p

x x x xx x x xx x x xx x x xx x x xx x x x

3
6
9

12
90

 NVIDIA Ampere (3080) 
ptxas -O0
ptxas -O3

OmniSci
BlazingSQL

MonetDB
HorsePower

TPC-H uncached speedup

Figure 7.8 – Uncached speedup of rNdN, excludes compilation.

Overall, we maintain geometric mean speedups over all comparison systems in
both architectures with exception of NVIDIA’s optimizing assembler. However, as
the data transfer cost for rNdN is independent of the kernels, the gap is smaller than
in the cached evaluation. For other GPU database systems, the performance depends
on the data management strategy. OmniSci shows substantial slowdown due to its
design for clusters and large data sizes, whereas we target single node machines and
do not consider partitioning. Interestingly, we maintain speedup on all queries com-
pared to BlazingSQL despite excluding their (extremely costly) input data transfers.
Compared to CPU databases, our performance has substantially decreased in relation
to cached results due to the cost of data caching. Efficient buffer management is thus
essential for highest performance, although we maintain geometric mean speedups

119



Evaluation

compared to both HorseIR and MonetDB. Data management is especially important
for multiple GPU systems and as the data scales.

7.4.4 Total Execution

Lastly, we evaluate the end-to-end performance, including both compilation and data
caching. This represents cold-start scenarios, or those where the query and data are
frequently changing. It thus allows us to analyze the cost-benefit of query compila-
tion over interpretation for both GPU and CPU systems. We also evaluate the key
property of our assembler, trading between compilation and execution for competitive
end-to-end performance. Shown in Figure 7.9 are the total speedups for both GPUs.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0
1Sp

ee
du

p

x x x xx x x xx x x xx x x xx x x xx x x x

3
6
9

12
50

NVIDIA Pascal (1080 Ti)
ptxas -O0
ptxas -O3

OmniSci
BlazingSQL

MonetDB
HorsePower

TPC-H total speedup

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0
1Sp

ee
du

p

x x x xx x x xx x x xx x x xx x x xx x x x

3
6
9

12
60

NVIDIA Ampere (3080)
ptxas -O0
ptxas -O3

OmniSci
BlazingSQL

MonetDB
HorsePower

TPC-H total speedup

Figure 7.9 – Total speedup of rNdN, representing a cold-start.

Compiled database systems typically use compilers designed primarily for ahead-
of-time use, as discussed in the compilation comparison. We thus see significant
speedups compared to both OmniSci and HorsePower, even for queries that may ex-
ecute slower in our implementation. A runtime-suitable compiler is thus essential for

120



7.5. Optimization

end-to-end performance when compiling database queries. With respect to NVIDIA’s
backend compiler, our approach shows improvement across the board, exploiting a
simplified compilation pipeline that still generates high performance code. This re-
mains true for both optimization levels, demonstrating high payoff from rNdN’s lim-
ited optimizations and success for our trade-off strategy. We also see comparable
results for both architectures, showing the portability of our approach.

Compared to interpreted systems, we still see overall performance increases, al-
though unsurprisingly much less than cached scenarios due to the compilation cost.
Note that this is a reversal from our initial system design which used NVIDIA’s back-
end for assembly. In the prior design, while we achieved high cached performance, our
system was unable to compete on end-to-end performance. Indeed, we show signifi-
cantly higher relative speedup over MonetDB and BlazingSQL than do either ptxas
results (which show slowdown). Of the exceptions where MonetDB performs better
than our approach, we observe either that compilation greatly outweighs execution
(q2, q11), our cached performance was already worse (q17), or the combined over-
head with data and compilation was too large. Additionally, both other compiled
databases show slowdown compared to interpreted systems, owing to their compila-
tion strategies. Interestingly, a BlazingSQL developer has stated that interpretation
was preferred over compilation in their implementation due to cost, instead using
an optimized library5. Our work challenges this notion, and demonstrates that a
runtime-targeted compiler for GPU databases is effective at offsetting compilation
overhead and data transfers with improvements in execution. Their application can
thus extend beyond cached use cases and into end-to-end scenarios.

7.5 Optimization

Our approach exploits key optimizations for performance, split between execution and
compilation strategies. We discuss library and data optimizations in Section 7.5.1 and
compilation and assembly techniques in Section 7.5.2.

5https://news.ycombinator.com/item?id=19197133

121

https://news.ycombinator.com/item?id=19197133


Evaluation

7.5.1 Execution

Library functions: sort, join, group

As discussed in Section 7.3.1, library functions represent a significant portion of ex-
ecution for most queries with our implementation strategies having great impact on
performance. Shown in Figure 7.10 are the speedups of 3 optimized library func-
tions, sort, group and join, over our naive baseline implementations. We measure
the impact on cached query performance and not the isolated operation as it better
captures their influence. Higher bars indicate better performance for our optimized
implementation, while queries that do not utilize the algorithm are noted with ‘x’.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean

1

10

100

1000

Sp
ee

du
p

x x xx x x x x x xx x x

   NVIDIA Pascal (1080 Ti)   Sort Join Group
TPC-H algorithm speedup (log)

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean

1

10

100

1000

Sp
ee

du
p

x x xx x x x x x xx x x

     NVIDIA Ampere (3080)    Sort Join Group
TPC-H algorithm speedup (log)

Figure 7.10 – Query speedup from algorithmic and data layout optimizations.

Beginning with sort, we implement two variations of in-place bitonic sort: an
optimized implementation with shared memory and a naive device memory-only ap-
proach. Recall that as an iterative algorithm, data is sorted into sequences of increas-
ing length. We can therefore cache data in shared memory for some steps, reducing
the use of slower device memory. Results show a modest improvement, mostly due to
its use in grouping, although we found that power-of-2 bitwise operations discussed

122



7.5. Optimization

in Section 4.3.5 were more impactful. Sorting for non-group purposes is already suf-
ficiently quick and thus optimization has little impact on the overall query.

Furthering our sort optimization, we implement an efficient buffer allocation strat-
egy for group output. Once the data is sorted, a key-value store (dictionary) is con-
structed, with each key pointing to a vector of data indexes representing elements in
the group. For dictionaries with a small number of keys we can individually instanti-
ate vectors, but this is not scalable to larger results. We therefore implement a buffer
optimization, storing data for all groups in a single contiguous (compressed) vector as
discussed in Section 4.3.4. This yields substantial improvements for dictionaries with
numerous keys (q3, q18), but as expected has little impact on smaller results (q1).
Further optimization is required to compete with other GPU database systems on all
queries, likely moving to a non-sorting approach [114], but is left as future work.

Joining is well known as an expensive operation with significant impact on per-
formance. Our initial implementation was simplistic, computing the result through
a general approach equivalent to nested loops. While supporting all join predicates,
it proved much too computationally expensive for good performance, even with ex-
tensive optimization. We therefore implemented an optimized hash join for any join
predicate which contained at least one equality, with fallback only if necessary. Perfor-
mance unsurprisingly increased across the entire set of queries, yielding competitive
performance with other comparison systems. This holds even for imperfect hashing
cases (q17, q20, q21) which only hash on equality attributes. No fallback was present
in the current benchmark, and so such cases are left as future work.

Library functions: like

Strings are represented as offsets into a larger structure (dictionary encoding), effi-
ciently supporting equality on the GPU without the need for string contents. While
this is sufficient for most queries, those that evaluate restricted regular expressions
(notably wildcards) using @like are limited in performance. We thus provide an
optimized strategy that selectively transfers string data and parallelizes evaluation
of the pattern. Importantly, this caching kernel allows us to circumvent bandwidth

123



Evaluation

limitations of the PCI-e bus while maintaining hash values used for fast equality. For
comparison, we evaluate the performance against a pure CPU implementation, and
an unoptimized GPU strategy that transfers the string pad for the entire database
rather than a subset (referred to as “uncached”). Shown in Figure 7.11 are the cached
execution speedups of our fully optimized approach over the alternatives when includ-
ing the string data transfer cost (a slight difference to the previously discussed cached
scenario). Note that this is not a perfect comparison as queries evaluate @like on a
subset of TPC-H input data that must also be transferred to the GPU. We chose this
comparison over a fully uncached interpretation to isolate the impact of string data.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0.0

1.5

3.0

4.5

6.0

Sp
ee

du
p

x x x x x x x x x x x x x x x xx x x x x x x x x x x x x x x x

  NVIDIA Pascal (1080 Ti)   

 7.2 

CPU GPU (uncached)
TPC-H algorithm like speedup

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0.0

1.5

3.0

4.5

6.0

Sp
ee

du
p

x x x x x x x x x x x x x x x xx x x x x x x x x x x x x x x x

    NVIDIA Ampere (3080)    

 10.7 

CPU GPU (uncached)
TPC-H algorithm like speedup

Figure 7.11 – Cached query speedup from @like optimization over CPU and naive
GPU approaches. Only queries which execute @like are measured.

Selective caching improves performance over transferring the entire string pad
in all cases, effectively exploiting the PCI-e bus bandwidth. In fact, the cost of
transferring unfiltered string data mostly outweighs the benefits – GPU uncached
performs worse than a pure CPU approach in all but one query. Compared to the

124



7.5. Optimization

CPU implementation, selective caching achieves geomean speedup, though individ-
ual performance depends both on the data size and the complexity of the pattern.
Some queries show significant improvement and others slight degradation. Listed in
Table 7.2 are the patterns for each query, with all queries except q13 and one @like
of q16 operating on string data in the part table.

Table 7.2 – @like match patterns for TPC-H queries (% is a wildcard).

Query Pattern TPC-H Table

2 %BRASS part

9 %green% part

13 %special%requests% orders

14 PROMO% part

16
%Customer%Complaints% supplier

MEDIUM POLISHED% part

20 forest% part

In terms of performance, we observe that the CPU implementation is effective
for cases ending with a wildcard, as matching begins from the first character. The
increased parallelism on the GPU tends to help cases that begin with a wildcard, as
matching is more expensive and we can offset the transfer cost. We also note that
q13 is efficient on the GPU as operates on a large table and its pattern begins, ends,
and contains an intermediate wildcard. Heuristics for selecting the execution engine
based on the nature of the matching expression are an interesting future direction.

Data Allocation

Lastly, we evaluate the impact of our GPU buffer allocation strategy described in
Section 6.3.1, using pre-allocated pages instead of calling CUDA for each individual
buffer. Shown in Figure 7.12 are the uncached query speedups including the cost of
input data allocation. As expected, using a simple pre-allocation strategy with little
overhead greatly increases performance for both Pascal and Ampere. Although not a
direct relationship, queries with fewer allocations tend to benefit less (q6) than those
with more (q2). However, this relationship is more complex as there are numerous
exceptions, and also relates to the sizes of each allocation. We observed in preliminary

125



Evaluation

experiments that larger data took correspondingly longer to allocate in CUDA, likely
pointing to initialization cost or time to locate a suitable segment. As our pages
are pre-allocated and we increment a simple pointer for each new buffer, we avoid
any relationship with size and leave initialization to the runtime system as required.
Comparing between architectures, we see no significant difference in cost and a similar
trend throughout.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0.75

1.00

1.25

1.50

1.75

Sp
ee

du
p

   NVIDIA Pascal (1080 Ti)   
TPC-H data allocation speedup

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0.75

1.00

1.25

1.50

1.75

Sp
ee

du
p

     NVIDIA Ampere (3080)    
TPC-H data allocation speedup

Figure 7.12 – Query speedup from data allocation optimization.

7.5.2 Compiler and Assembler

Outliner

Outlining is divided into two phases, a first pass that merges data-dependent kernels
of identical geometry, and a second pass that allows for compressed geometries and
shared input data. Shown in Figure 7.13 are the speedups for each query, evaluating
the performance over a naive baseline that uses a distinct kernel for each operation.
We evaluate the impact of the first pass in isolation (Flow), the complete optimizing
outliner (Full), and the relative speedup from the second pass (Flow/Full).

126



7.5. Optimization

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean

1

10

100

1000

Sp
ee

du
p

x x x

  NVIDIA Pascal (1080 Ti)  Flow Full Flow/Full
TPC-H outline speedup (log)

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean

1

10

100

1000

Sp
ee

du
p

x x x

    NVIDIA Ampere (3080)   Flow Full Flow/Full
TPC-H outline speedup (log)

Figure 7.13 – Query speedup from outliner (flow: 1st pass; full: 1st + 2nd pass;
flow/full: relative speedup from 2nd pass), compared to an unoptimized baseline
with distinct kernels for each operation. Note the logarithmic scale.

The initial outlining phase targets kernels with consistent intermediate data size,
removing the need for intermediate data materialization. In addition, we optimize
list cell reductions by merging the subsequent @raze and producing a vector output.
Initialization cost is thus significantly lower as the data is contiguous; a similar feel to
the @group optimization. Together these effects significantly improve performance,
especially the latter (e.g. q2, q3). Note that q16 does not support the naive or flow
outlining as it requires computing a prefix sum on list cell data – unimplemented in
our code generation. The full outliner produces kernels which avoid this step.

Outline optimization targets queries that reduce compressed output (q6, q19), as
it avoids computation of the prefix sum. In addition, kernels which share input data
are merged, more efficiently exploiting limited memory bandwidth. The speedup is
less impressive than the first phase due to the oversize influence of data management,
but still significant overall (˜1.5 geomean). Despite being a greedy approach, we

127



Evaluation

observe no performance degradation on any supported query and the performance
gains are also architecture independent. This does not hold in general, however, as
the performance improvements from eliminating the memory accesses and prefix sum
may be offset by decreased parallelism from compression. While it does not currently
occur on our benchmarks, we observed this effect in earlier testing.

The impact of outlining is present both in execution and compilation, reducing the
complexity and cost of the generated code. Shown in Figure 7.14, we note a significant
decrease in compilation time from merging compatible kernels, further improving end-
to-end performance. While the outliner does increase costs with each optimization
level, the resulting kernels are notably fewer and much simpler to analyze and compile
in subsequent steps. Further analyzed in Table 7.3, we present the number of outlined
kernels for each query and outline mode (none, flow, and full), demonstrating the
effectiveness of each phase at identifying compatible operations. Recall that q16
requires the full outliner to generate code.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean

1

2

3

4

Sp
ee

du
p

x x

     NVIDIA Pascal (1080 Ti)     Flow Full
TPC-H outline compilation speedup

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean

1

2

3

4

Sp
ee

du
p

x x

       NVIDIA Ampere (3080)      Flow Full
TPC-H outline compilation speedup

Figure 7.14 – Compilation speedup from outliner (flow: 1st pass; full: 1st + 2nd pass;
flow/full: relative speedup from 2nd pass), compared to an unoptimized baseline with
distinct kernels for each operation.

128



7.5. Optimization

Table 7.3 – Number of kernels in each outliner phase, excluding libraries.

Q None Flow Full

1 57 38 5

2 49 44 18

3 34 27 9

4 15 11 9

5 35 27 13

6 13 4 1

7 63 51 19

8 56 39 17

9 39 29 11

10 54 47 9

11 26 15 9

Q None Flow Full

12 36 13 4

13 19 12 10

14 21 10 4

15 25 20 8

16 N/A N/A 8

17 25 13 10

18 35 29 10

19 46 12 3

20 27 20 10

21 33 28 15

22 25 19 6

Performance improvements from outlining are query dependent, with the number
of kernels not directly related. For example, despite only a minimal decrease in the
number of kernels in phase 1 for queries q2 and q3 (see Table 7.3), its impact on
performance is substantial (see Figure 7.13). As previously explored, this is due to
the initialization required for list reductions, which can either operate on individual
cells (unoptimized) or a contiguous buffer (optimized). The inverse is true for other
queries (q6), where the second optimization pass has limited effect on the number of
kernels but large impact on the execution. For these queries, sharing input data or
removing compression is essential for performance. Further exploration of outlining
must therefore consider factors beyond the number of kernels and consider data ini-
tialization, algorithmic impacts, and compilation time. In addition, for systems which
consider GPU clusters and data scalability, we must account for data partitioning.

Register Allocation

Translating from intermediate representation with unlimited virtual registers to real
machine code requires a register allocation scheme. We evaluate our approach de-
scribed in Section 5.2.2, linear scan, by comparing the number of registers allocated
against NVIDIA’s assembler for the same kernels and at both optimization levels.
Shown in Figure 7.15 are the relative number of registers used in the best and worst
kernels, and geometric mean for the entire query. Values higher than 1 indicate we

129



Evaluation

use more registers, whereas values less than one show we use less.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean

0.5

1.0

1.5

2.0

Re
gi

st
er

 u
sa

ge

       NVIDIA Pascal (1080 Ti)       
Best -O0
Best -O3

Worst -O0
Worst -O3

Geomean -O0
Geomean -O3

TPC-H register allocation (vs. ptxas)

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean

0.5

1.0

1.5

Re
gi

st
er

 u
sa

ge

         NVIDIA Ampere (3080)        
Best -O0
Best -O3

Worst -O0
Worst -O3

Geomean -O0
Geomean -O3

TPC-H register allocation (vs. ptxas)

Figure 7.15 – Comparison of registers allocated by rNdN vs. ptxas. Values greater
than 1 indicate more registers used by rNdN.

On average we allocate more registers than NVIDIA’s optimizing backend, likely
owing to the simplistic allocation strategy. We do, however, have comparable results
to -O0 on Pascal, and significant improvement on Ampere compared to their unop-
timized assembler. In fact, our strategy is notably more competitive on the newer
architecture with optimizations both enabled and disabled. Their allocation scheme
for Ampere is thus not as efficient as Pascal, perhaps due to the philosophy of using
“necessary” registers (see Section 5.2.2). Comparing the best cases, we see fewer reg-
isters in numerous kernels, while in the worst case our allocation is always within a
factor of ˜2. As register allocation algorithms are all heuristics, results naturally vary
with the kernel and also depend on the code generation patterns and optimization
strategies. The latter two may impact temporaries and live ranges. Interestingly,
despite using more registers on average, our performance is only slightly lower than
their optimizing backend, indicating that registers are unlikely to be the primary

130



7.5. Optimization

bottleneck. This is despite the potential impact of register allocation on occupancy
and parallelism. When considered with compilation time, we confirm that linear scan
may not produce optimal allocations, but is an appropriate strategy for runtime use.

Scheduler

Instruction scheduling is our primary backend optimization, selecting an efficient in-
struction sequence and managing both fixed and variable-cycle dependencies. Shown
in Figure 7.16, we measure the impact of list scheduling on kernel performance (ex-
cluding other execution time) and its implication for compile time and end-to-end
execution. For comparison, we implemented a naive linear scheduler which does not
reorder or pipeline instructions, waiting until completion before the next dispatch.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0.8

1.0

1.2

1.4

Sp
ee

du
p

NVIDIA Pascal (1080 Ti) Compilation Kernel Total
TPC-H scheduler speedup

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 Geomean
0.8

1.0

1.2

1.4

Sp
ee

du
p

  NVIDIA Ampere (3080) Compilation Kernel Total
TPC-H scheduler speedup

Figure 7.16 – Speedup of list scheduling compared to a naive implementation.

Compilation is unsurprisingly slowed using list scheduling, as it requires a basic
block dependency analysis in addition to tracking availability of each instruction.
Execution also follows the expected path, with kernels executing significantly faster
over the naive approach. However, when considering end-to-end performance, we

131



Evaluation

found that the benefits to execution are outweighed by slowdowns in compilation in
nearly all cases (e.g. q1). This holds for both architectures, which follow similar
trends throughout, despite their differences in barrier implementation (recall that we
do not exploit scoreboard registers in Ampere). Instruction scheduling may thus be
appropriate for only cached scenarios, and requires further exploration to balance
with compilation and end-to-end cost.

7.6 Summary

GPUs are an effective strategy for improving query performance, exploiting high de-
grees of parallelism to accelerate computation. They are, however, limited in end-to-
end evaluation due to compilation and data overheads. We overcome these challenges
through: (1) a balanced approach that trades minor slowdowns in execution for major
speedups in compilation; and (2) optimized data management strategies.

Our evaluation shows significant improvements over both interpreted and compiled
database systems on both CPUs and GPUs, with great performance on a variety of use
cases. Importantly, we observe substantial speedup on end-to-end evaluations while
still outperforming most cached comparison points. Further illustrating the balance
of our approach, we see comparable cached results to NVIDIA’s optimizing compiler
with significantly less compilation overhead than the non-optimizing variant. Addi-
tionally, while data overheads are significant, they are sufficiently offset by speedups
in computation and minimized by our allocation and transfer strategies. Lastly, we
demonstrate how algorithmic optimizations for each operator and compiler techniques
such as outlining improve query performance. Our detailed evaluation thus enables
reasoned optimization in future systems, and supports the use of GPU databases in
both cached and end-to-end scenarios.

132



Chapter 8

Related Work

Query compilation has long existed as a technique for improving the performance
of database systems, while the use of accelerators like GPUs is a newer development.
Our work combines and furthers these approaches, designing a system suitable for
runtime compilation and execution of SQL queries on the GPU. It addresses over-
heads from data management and compilation by generating kernels with minimal
materialization and maximum parallelism and translating to machine code with a
purpose-built compilation pipeline – all while maintaining simplicity. We explore ex-
isting techniques for query compilation and GPU database systems in Section 8.1, and
approaches for GPU compilation and assembly in Sections 8.2 and 8.3 respectively.

8.1 Databases

Database systems are the primary context and motivation for our work, with numer-
ous optimizations proposed by the database community. rNdN is a compiler-driven
approach that merges two key areas: (1) efficient query compilation discussed in
Section 8.1.1; and (2) GPU database systems outlined in Section 8.1.2.

133



Related Work

8.1.1 Query Compilation

Query compilation has long existed as an approach for improving performance in
relational databases, avoiding the interpretation overhead. Ranging from high-level
to machine code, the chosen target language trades between compilation times and
implementation complexity. High-level languages are simple but slow, whereas low-
level targets are complex but offer better performance. Although it seems clear that
compilation can improve performance, its performance is not guaranteed in all cases
(e.g. due to compilation overhead) [116].

Compiling queries to a high-level language is relatively simple, typically generat-
ing code for each operation in the query plan [121]. LegoBase takes this idea further
by implementing the database itself in Scala metaprogramming to optimize the query
in combination with its surrounding constructs [121]. This outperforms approaches
which target queries directly or rely on general-purpose compilers, although overheads
are measured in hundreds of milliseconds – a prohibitive cost for runtime compilation.
Another high-level approach, Kernel IR from Red Fox, has been proposed as an inter-
mediary between queries (LogiQL) and parameterized CUDA code templates [233].
While not explored in their work, compilation thus depends on the NVIDIA pipeline
and would be a significant performance bottleneck. Voodoo has also been proposed as
vector-based approach to target various architectures, generating OpenCL code [183].
As OpenCL is a high-level language similar to CUDA, we suspect compilation over-
head is significant although not directly evaluated.

LLVM IR is a popular low-level target language [127], allowing faster compila-
tion than traditional user-level programming languages while maintaining platform
independence. Neumann extended the HyPer database system with LLVM code gen-
eration, generating simple operations directly and inserting calls to a pre-compiled
C++ library for those that are more involved [152]. Compilation overhead is thus
significantly reduced over high-level languages as it bypasses the frontend compiler
and produces less code. Kohn et al. have also investigated the use of an interpreter
for an LLVM IR inspired representation, executing each operator in a virtual machine
and compiling and/or optimizing only when deemed “beneficial” [122]. An NVIDIA

134



8.1. Databases

variant of LLVM IR (NVVM IR [173]) has also been adopted by OmniSci in their
GPU database [215]. Compiled to PTX at runtime and then assembled and loaded
by the CUDA driver, compilation time is minimized compared to higher-level CUDA
code, especially when combined with caching. Our initial design followed a similar
idea, generating query programs in the PTX intermediate representation and bypass-
ing heavy frontend compilers. In practice this proved insufficient, as it still depended
on the proprietary assembler for binary generation. Our final approach thus employs
an end-to-end, runtime-suitable pipeline with minimal compilation overhead.

Additional intermediate representations have also been proposed for database sys-
tems, extending existing languages ideas with database-specific constructs. HorseIR
is one such approach, building on the principles of array-based languages to enable
traditional compiler techniques on database queries [38, 37]. Also supporting MAT-
LAB, this enables merging user-defined code into the query itself. Our approach is
derived from HorseIR, extending the use of array-based languages to GPU databases.
Although HorsePower does support GPU code through OpenACC directives (similar
to OpenMP, see Section 8.2.4), its performance is limited by data transfers on the
selected benchmarks – a concern not present in this work as we parallelize (nearly) the
entire computation and have few intermediate transfers. Additionally, as the GPU is
the primary execution unit, our approach optimizes kernels beyond simple directives
and exploits additional control over parallelism.

On the lower-level, Flounder IR omits complex operations present in LLVM IR in
favour of quality-of-life features to more easily support and optimize SQL queries with
low overhead [69]. It has also been implemented in research database ReSQL [71].
Furthering the idea, Umbra IR is an low-level representation that captures the “intent”
of database operations [117]. Implemented in the Umbra database system, it allows
efficient translation from the execution plan and requires minimal optimization when
lowering to machine code. Our approach is most similar to these systems, generating
machine code without heavy compilers and using only necessary optimizations to
reduce overhead. We extend this idea to GPU databases and PTX code, a previously
unexplored field due to the closed-specification. Another recent runtime-optimized
compilation approach uses binary stencils for efficiency [237].

135



Related Work

8.1.2 GPU Databases

Since the introduction of general-purpose GPUs and the CUDA/OpenCL platforms,
numerous GPU databases have been proposed. Prior to this, attempts at offloading
database workloads required use of the programmable pipeline [82]. An early survey
by Breß et al. (2014) provides an overview of the initial implementation techniques
and identifies key areas for further research (e.g. data management, GPU-specific
optimizations) [22]. More recently, several GPU database systems were found to
have incomplete support for various SQL queries (e.g. some of TPC-H) and difficulty
scaling to larger data sizes [45]. We begin by discussing existing database implemen-
tations, before exploring algorithmic optimization, heterogeneous processing, data
management, operator pipelining, and miscellaneous extensions.

Seminal work by He et al. on GPUQP (also called GDB) implemented the first
complete GPU database system in CUDA, with prior work focused on offloading
specific operators [91, 92]. Each operator was built from efficient primitives that
maximized parallelism and optimized memory accesses. Similar to our approach,
strings are represented as indexes into a separate array. Existing database systems
have also adopted GPU support, either porting each operator (e.g. PG-Strom for
PostgreSQL [217]) or implementing a generalized parallelism strategy. In particular,
Ocelot implements hardware-oblivious OpenCL operators for MonetDB, supporting
both CPU and GPU parallelism [97]. Similarly, OmniDB (unrelated to OmniSci)
uses kernel abstractions to decouple operator implementations from the hardware
and reduce duplicate code [250]. Other work on GPU databases has explored porting
the virtual machine to execute on the GPU itself [17], and the roles of data, hardware
and operators on performance [245]. Our approach is unique in GPU database space
in that we are compiler-first, database-second. We focus our attention on the design
and implementation of an efficient compiler framework to exploit GPU parallelism,
and rely on HorseIR for efficient expression of database queries. Compared to other
work, we can therefore achieve significantly lower compilation overhead while other
systems rely on comparatively heavy pipelines. rNdN is also designed to support
general HorseIR programs beyond database queries and is not limited to SQL.

136



8.1. Databases

GPU databases have also progressed into commercial products, demonstrating
their interest beyond research. As previously discussed, OmniSci exploits query com-
pilation for performance on both CPU and GPU systems, with optimizations to re-
duce data transfers and support clusters [150]. On the other hand, BlazingSQL relies
on an optimized library, RAPIDS.AI, for each component of the query plan [103].
They thus take two opposing strategies, similar to the divergence in CPU databases.
Research has also explored the properties of a robust implementation [129], and the
extension of an existing commercial database, DB2, to support GPUs [146].

Algorithms

Algorithm design is a notable area in GPU databases, with extensive research on the
optimization of heavy operators. In particular we observe a focus on join, group/ag-
gregation, sort and selection as they are most likely to benefit from acceleration.

Initial work on join translated algorithms originally designed for the CPU (e.g.
sort-merge, hash), reusing optimized GPU primitives in each approach [92]. Subse-
quent research has explored the impact of more recent hardware [196, 198], extension
to multi-GPU systems [179, 197], optimizations for data management [109, 206], and
performance across hardware, algorithms and data [238]. Grouping and aggregation
have also been explored, with hash aggregation preferable for most cases and group by
sorting suitable only when the number of output groups is large and the data fits on
the GPU [114]. Further exploration has concerned heterogeneous systems [220], and
optimization across architectures [192]. Optimizations for selection have considered
the impact of divergence [207], and numerous sorting algorithms have been designed
or ported to the GPU [205, 81, 32]. There is thus significant potential for GPU-
specific optimizations that remains unexplored in our work. In our system design
we opted for a simplified hash join, group by sorting, and bitonic sort – all of which
were selected with simplicity in mind. Optimizations focused on major sources of
performance, including use of the memory hierarchy (e.g. shared memory), strength
reduction (e.g. bitwise operations) and buffer management. Tuning for query and
architecture properties like data sizes and cache was omitted for simplicity.

137



Related Work

Heterogeneous Architectures

Although not considered in our approach, heterogeneous processing has been a recent
area of interest, exploring whether a balanced co-processing approach yields better
performance. While it seems obvious that using multiple processors can improve
performance, other research has shown that data transfer costs can render it imprac-
tical [202]. Optimizing data transfers, effectively using each processor, and minimiz-
ing development overhead remain challenging problems [191]. Coupled architectures,
where the GPU and CPU are “combined”1, have also been of some interest due to the
elimination of transfer cost. They have successfully optimized cache usage [95] and
enabled a more granular decomposition and execution of each operator [94].

Query plans are traditionally optimized for CPU architectures, with only limited
research on GPU systems [9]. Heterogeneous environments are more demanding, re-
quiring balance between data transfers and relative operator performance. Multiple
approaches have been proposed, each presenting a heuristic cost model that optimizes
query plans to exploit multiple devices [25, 113]. One such query plan optimizer,
HyPE [25], has been adopted in Ocelot [23] and CoGaDB [20]; the former being a
GPU extension for MonetDB and the latter a purpose-built GPU implementation.
Heuristics can either independently select the execution unit of each operator at run-
time, or optimize across the entire plan [111]. A hybrid approach partitions query
plans into subgraphs that allow reliable data size estimates, and optimizes each sub-
graph at runtime [112]. Other techniques for heterogeneous query planning include
prioritizing data locations over operator performance and scheduling operators whose
data dependencies are satisfied (i.e. topologically) [21].

Further research on HAPE [44] and HetExchange [43] has explored the use of
architecture-specific operator implementations and a query plan extended with data
management and device context switching. Code is JIT compiled for both CPU and
GPU architectures using the LLVM framework and Proteus database system [115].
Other work on code generation in Hawk has proposed training an optimization frame-
work for architecture-specific specialization of general-purpose implementations [24].

1https://en.wikipedia.org/wiki/AMD_Accelerated_Processing_Unit

138

https://en.wikipedia.org/wiki/AMD_Accelerated_Processing_Unit


8.1. Databases

Data Management

As a significant bottleneck, data transfers over the PCIe bus are important opti-
mization targets. Data compression is one solution, reducing the size of data trans-
ferred [61, 194]. In heterogeneous systems, approximate results can also be computed
on compressed data transferred to the GPU that is then refined on the CPU [182]. Al-
ternatives approaches explore methods for keeping data in host memory until accessed
by the GPU kernel using Unified Virtual Addressing (UVA [89]), and eliminating re-
peat transfers of identical data [189]. Newer hardware features like NVLink have
also been shown to dramatically improve performance, although not available on our
system [140]. Our approach transfers uncompressed data between the CPU and GPU
as required, focusing instead on keeping data GPU-resident as much as possible. Ex-
ceptionally, string data uses dictionary encoding and is cached on the GPU device
memory using a specialized kernel over UVA – a mixed approach.

String representation is also challenging on the GPU, as the traditional pointer ap-
proach requires a shared address space on both devices [17]. The Virginian database
stores table data in one-or-more tablets where strings are represented as relative ad-
dresses into an associated pad [16]. This is extremely similar to our dictionary en-
coding approach (i.e. an index), although we use a global structure for all string
data as it enables efficient cross-table equality. OmniSci likewise supports dictionary
encoding [150]. Other work reorganizes characters between strings (called pivoting)
to coalesce memory accesses, and evaluates porting and optimizing CPU algorithms
for the GPU [208].

Pipelining

Pipelining operators is essential to best performance, eliminating the cost of inter-
mediate data materialization [188]. This strategy is employed by the HyPer CPU
database, accumulating operations between pipeline breakers that require materi-
alization [152]. The analogous optimization on the GPU, kernel fusion, combines
individual kernels into a larger pipeline and reduces expensive device memory ac-
cesses. GPU databases either match pre-defined patterns on the query plan (e.g.

139



Related Work

HippogriffDB [135, 68], PG-Strom [217]), employ pipeline breakers from HyPer (e.g.
HetExchange [43]), or use other compiler driven techniques like Kernel Weaver (e.g.
OmniSci [215], Red Fox mentions the possibility [233]). Kernel Weaver was intro-
duced as a heuristic-aided approach to effectively fuse data-dependent kernels in a
database system provided that they have identical thread layout and inter-thread
dependencies can be satisfied [232]. Wu et al. also considered its interaction with
kernel fission [234], an approach similar to tiling under which the working set is split
and data may be transferred at the same time as computation [88].

Also in database systems, Funke et al. proposed fusion operators to pipeline com-
patible query steps, each of which is compiled to a separate compound kernel [68].
Basic queries are handled automatically, but more complex cases require user di-
rection. Further approaches to general kernel fusion have included combinatorial
approaches [227], graph algorithms like minimum cut [187], and its application to
nested queries [63]. An alternative strategy in GPL uses more recent OpenCL fea-
tures (note that this work refers to channels though they are typically called pipes in
OpenCL2) to efficiently transfer data between concurrent kernels [178].

Our implementation is built on HorseIR, benefiting from an array-based repre-
sentation that allows us to easily identify data dependencies, synchronization, and
parallelism. An existing shape analysis-based technique for loop-based fusion in Hor-
seIR was proposed for CPU implementations [39], and we extend its application to
GPUs. In particular, we consider the impact of limited synchronization, the parallel
programming paradigm, and the mapping to threads and blocks. Compared to other
kernel fusion techniques, we exploit an abstract representation (i.e. geometries) rather
than thread layouts, and generalize beyond database applications and query plans.
We also consider compatible kernels rather than exact matches, and support general
fusion without the use of compiler hints. Our approach is also greedy, compared to
the heuristic-driven approach of Kernel Weaver.

While pipelining may improve performance by reducing intermediate data mate-
rialization, fused kernels are more frequently impacted by thread divergence due to

2https://www.youtube.com/watch?v=_0RtAKeRl00

140

https://www.youtube.com/watch?v=_0RtAKeRl00


8.2. Compilers

their increased branching complexity [70, 177]. Pyper [177] and DogQC [70] mitigate
this effect through careful (possibly dynamic) mapping of data to each thread. Pyper
also explores trading fusion for occupancy, while we note DogQC targets performance
by efficiently pipelining simple operators [70] – the same as in our approach.

Miscellaneous

Our work focuses on the compilation and execution of individual analytical queries,
but GPU databases have been extended to other contexts. In particular, we note
exploration of concurrent queries [229, 249, 189], transactions (OLTP) [93], nested
query evaluation [63], query plan optimization (i.e. accelerating the optimization
itself) [96], and SSD storage [249]. Additionally, FPGAs have been explored as a
possible execution platform [60].

8.2 Compilers

Due to the inherent complexity of GPU programming, automatically generating ef-
ficient parallel code from a higher-level representation has been the focus of much
research. We discuss approaches to automatically detecting parallel algorithms in
Section 8.2.1, purpose-built languages and intermediate representations for parallel
programs in Section 8.2.2, language extensions and frameworks in Section 8.2.3, and
directives-based approaches in Section 8.2.4. We lastly discuss some existing ap-
proaches to lower-level GPU compilers in Section 8.2.5.

8.2.1 Automatic Parallelism

Automatic parallelism is widely accepted as a challenging problem, although it is
possible in constrained environments. In the GPU space, approaches typically identify
known sources of parallelism using patterns or rules [134, 77, 209], are restricted
to well-defined subsets of a programming language [65], or use polyhedral [119] or
traditional [105] loop parallelization strategies. The latter is adopted in the ALPyNA
Python framework which detects loops free of data-dependencies both statically and

141



Related Work

dynamically [105]. Compiler analyses can also be used to annotate source programs
that are subsequently compiled using templates (referred to as skeletons in some
work) [156, 157]. There has also been exploration of speculative approaches, where
possibly-data-parallel kernels are offloaded and their execution verified [199].

Our approach to automatic parallelism is most similar to either pattern-based work
(a pattern of size 1), or those which target restricted subsets of a language. As HorseIR
provides a well-defined set of built-in functions, we can decide on each parallelism
strategy ahead-of-time and implement the necessary code generation templates in our
compiler. This is ideal for runtime compilation as it requires no expensive analyses
(e.g. data-dependence) to determine parallel viability.

8.2.2 Languages and Intermediate Representations

Programming languages and intermediate representations have also been designed
to support parallel computation. LIFT is one such approach, generating OpenCL
code by translating from a high-level to a low-level functional representation using
rewrite rules [212, 213]. Automated rewrite tuning and semantic information in the
IR yield portable and efficient code. Array-based intermediate forms like VRIR have
also been explored, supporting runtime shape analyses and outlining of potentially
interesting regions of loop and vector operations [73]. It is also used as the interme-
diate representation for Velociraptor, an embedded compiler that generates parallel
code for outlined regions at runtime, possibly targeting the GPU [74]. Intermedi-
ate representations have also been designed for distributed environments [27], and as
building blocks to parallelize domain-specific languages [28]. We elected to use an
array-based intermediate representation due to its implicit parallelism and similarity
to vector processing, inspired by the use of outlined regions and the accompanying
shape analysis in Velociraptor. Our work extends both ideas by proposing an ahead-
of-time approach to define efficient kernels in arbitrary array-based programs through
symbolic shape analysis.

142



8.2. Compilers

8.2.3 Language Extensions and Frameworks

Existing languages have also been augmented with GPU-suitable parallelism con-
structs. An extension to Java, the Lime language [15] is a general approach to support
multiple architectures, enabling easy generation of optimized OpenCL for GPUs [58].
Liquid Metal takes the idea further and compiles each operation for multiple archi-
tectures, selecting the exact device at runtime [14]. C and C++ have also been
extended to support common parallel programming patterns either through low-level
primitives [137] or skeletons [200]. The latter may fuse skeletons within a basic block
and duplicate computation to avoid intermediate results.

Numerous projects have also extended GPU support to Python. Parakeet provides
a library of parallel functions that operate on NumPy arrays, using pattern-based
fusion and PTX code generation for efficient compilation and execution [195]. On
the other hand, PyCUDA and PyOpenCL embed kernel definitions in the code and
may benefit from runtime information [120], while Copperhead is a Python subset
augmented with parallel primitives and optimized using fusion [31]. Similar to our
approach, operations may be fused according to data dependencies and completion
requirements (analogous to synchronization). Other higher-level languages like Ruby
have also been extended, using skeletons for supported operations and fusion for
element-wise computation [142, 210, 211]. Alternately, a Haskell-based approach
employed an array-based representation to expose GPU parallelism [35]. Notably,
their runtime reduces compilation and data transfer overheads through asynchronous
transfers. Compilers for StreamIt (stream programming) [99] and LINQ (.NET) [193]
have also been proposed, both of which support fusion.

Parallel programming frameworks have also been proposed, implementing a vari-
ety of GPU algorithms. Thrust [174] and CUB [172] from NVIDIA are two such solu-
tions, with the former possessing a C++ interface and the latter exploiting CUDA fea-
tures. Alternatively, CuPy is “drop-in replacement” for NumPy that uses libraries and
user-defined kernels to offload computation [175]. DelayRepay also targets NumPy,
using delayed execution to build an AST with each function call and compiling/exe-
cuting only when required [149]. Fusion may thus be applied during code generation.

143



Related Work

8.2.4 Directives

A complement to automatic translation, user-provided directives indicate paral-
lel regions to the compiler and remove the need for complex analyses. As a
well known implementation for CPUs, OpenMP has been adapted in multiple
projects [131, 130, 56, 155, 230, 100], each defining an equivalent GPU parallel pattern.
A GPU-supporting standard, OpenACC, has also been developed and implemented
for the specific needs of accelerators (e.g. data transfers) [176, 132]. hiCUDA takes
a similar approach, exposing GPU programming details like kernels and data trans-
fers for CUDA [86]. Directives have also been included in the PGI compiler [231],
Python-based solutions [72], stream programming [144], and can also be introduced
automatically by compiler analyses for certain kinds of parallelism [145, 11, 157].

8.2.5 Lower-Level Compilers

Lower-level compilers have also been explored, particularly those handling interme-
diate representations. gpucc from Google is an open-source alternative to the CUDA
frontend compiler, generating optimized PTX code [236]. They describe an opti-
mization pipeline that increases performance over the NVIDIA compiler with lower
compilation overhead. Also open source, the Ocelot project (distinct from Ocelot
database) is a low-level compiler that translates PTX code for execution on multi-
core CPUs [51]. It has been extended in Caracal [54] to support generation of AMD’s
low-level representation, the Compute Abstraction Layer [5]. A similar project to
Ocelot, Twin Peaks, has explored OpenCL translation for CPUs [85]. Our approach
to low-level compilation is most similar to gpucc, in that we target PTX in our fron-
tend compiler. However, we start from a more constrained representation (HorseIR),
and thus do not need to perform significant optimization to achieve reasonably ef-
ficient code. In fact, our PTX code is generated from templates which are already
optimized for our context.

144



8.3. Assembler

8.2.6 Optimization

GPU optimization is a significant topic in compiler research, with techniques typi-
cally addressing memory accesses and parallel mappings [242]. We also note research
on runtime-optimized kernels [148], and the combination of static annotation with
dynamic optimization for PTX code [128]. Although optimization is limited in our
approach, opting instead for efficient templates, it remains interesting future work.

8.3 Assembler

Backend GPU compilers or assemblers have typically been closed-source implementa-
tions developed by the hardware manufacturers themselves. This trend has recently
been reversed, with AMD [7, 8], Intel [36] and Apple [141] all releasing varying degrees
of information on their LLVM extensions. Our solution targets NVIDIA hardware,
which is comparatively opaque besides reverse-engineering efforts. We present exist-
ing work on GPU assemblers in the following sections and decompose the open-source
manufacturer pipelines into their components. In particular, we focus on binary gen-
eration for NVIDIA architectures in Section 8.3.1, register allocation in Section 8.3.2,
instruction scheduling in Section 8.3.3, and control-flow structuring in Section 8.3.4.

8.3.1 NVIDIA Architecture

As a tightly guarded secret, NVIDIA does not currently discuss the instruction set be-
yond mnemonics and disassembly tools [162]. Much of the existing research has there-
fore focused on reverse-engineering, laying the groundwork required for our project.
In comparison, AMD has release significant architecture details and the complete
instruction sets on their GPUOpen website [8].

Multiple open-source assemblers targeting NVIDIA architectures have been devel-
oped in recent years, each supporting a collection of compatible GPU families. Binary
and instruction formats are reverse-engineered, providing a convenient method for
modifying existing CUDA binaries or writing low-level programs directly in SASS. In

145



Related Work

order of architecture recency3, implementations include: Decuda for G80 [224], as-
fermi for Fermi [246], KeplerAs for Kepler [251], MaxAs for Pascal and Maxwell [83],
and TuringAs for Turing, Volta and Ampere [239]. While manual reverse-engineering
is viable for individual architectures, more extensible approaches include differen-
tial analysis (e.g. KeplerAs [251], DecodingCUDA [90]) and constraint solving using
matrices of instruction variations (e.g. CuAssembler [46]). CuAssembler in particu-
lar presents a comprehensive implementation of binary generation across platforms,
although instruction support depends on the completeness of the solver input [46].
Despite their success, assemblers are limited to the SASS realm, perform little opti-
mization besides MaxAs [83] (discussed in later sections), and may be designed for
specific contexts or individual kernels (e.g. TuringAs for convolutions [239]).

Our solution builds on these prior works, extending their principles to query com-
pilation and execution. Based on MaxAs [83], we develop, formalize and evaluate
a complete PTX to SASS translation pipeline that allocates registers, performs in-
struction scheduling, structures control-flow, and generates a relocatable binary. Ad-
ditionally, we support multiple distinct architectures and instruction sets and keep
compilation overhead low enough for use in runtime systems – a unique goal. Concur-
rently developed, Yan et al. have also proposed a preliminary, open-source, LLVM-
based implementation for compiling LLVM IR to SASS (supporting Volta, Turing,
and Ampere) without the use of NVIDIA’s proprietary pipeline [240]. Similar to our
approach, they implement instruction scheduling and control-flow flattening to im-
prove performance, although we focus on runtime efficiency for just-in-time use and
sidestep ahead-of-time frameworks due to their cost.

Other research on GPUs reveals low-level architecture details on memory and
caches [107, 106], branching implementations [124, 143], instruction latencies [107,
106, 13], or low-level tools for interacting with NVIDIA hardware (including as-
sembly/disassembly and instruction formats) [123]. Simulators for both AMD and
NVIDIA architectures have also been developed [118, 223], and a translation layer

3https://nouveau.freedesktop.org/CodeNames.html

146

https://nouveau.freedesktop.org/CodeNames.html


8.3. Assembler

from Maxwell SASS to other machine code is implemented in a Nintendo Switch emu-
lator [247]4 (the Nintendo Switch uses the Maxwell architecture [216]). Of particular
note is the Nouveau driver in the Mesa project, which implements a complete com-
pilation pipeline (including register allocation, scheduling, and optimization) from
its own intermediate representations to SASS [64]. This is equivalent to our work,
although we target compute applications through PTX rather than graphics.

8.3.2 Register Allocation

GPU-specific register allocation algorithms are typically designed with both vector
and scalar registers in mind, as serialized execution from divergent branches intro-
duces additional scalar dependencies not caught by liveness analysis [110, 42]. Con-
sequently, Kalra proposed a graph colouring approach for AMD GPUs that sepa-
rately allocates scalar values using additional control edges [110]. Similarly, the Intel
production compiler uses an augmentation analysis to add additional constraints to
the interference graph [42]. Their approach also minimizes bank conflicts and false
dependencies, with variables contained within a basic block allocated using linear
scan and the remaining global variables relegated to graph colouring. As our imple-
mentation allocates vector registers, we can safely ignore these dependencies. For
embedded GPUs with limited register resources, efficient allocation is essential. You
and Chen introduce an extension to linear scan, element-based register allocation,
that independently considers the live range of each component (i.e. x, y) for vector
allocations [243]. This approach allows more efficient register usage as some vector
components may be reused before others.

MaxAs, an assembler for NVIDIA Pascal and Maxwell GPUs, implements a basic
register allocator for code without control-flow [83]. It focuses on efficient use of
register banks, reducing conflicts through its assignment policy and use of register
caching. Our register allocator is based on linear scan [185], computing live intervals
for the complete control-flow and adapting the allocation to support register-pairs

4https://www.reddit.com/r/hardware/comments/bsmjpe/ptx_instruction_latencies_
across_nvidia/

147

https://www.reddit.com/r/hardware/comments/bsmjpe/ptx_instruction_latencies_across_nvidia/
https://www.reddit.com/r/hardware/comments/bsmjpe/ptx_instruction_latencies_across_nvidia/


Related Work

and alignment (similar to what is done in Intel’s graph colouring approach [42]). We
therefore support general GPU code, but ignore low-level allocation details like bank
conflicts due to the compilation overhead. Other production compilers like Apple’s
have discussed the importance of balancing register pressure and occupancy in their
approach, while minimizing costly spills [141]. Although no absolute timings are
presented, they indicate that instruction selection is heavier than register allocation
– the opposite of our pipeline. Note that other approximations for live variables have
been proposed for CPU databases, achieving near linear complexity [122, 153]. The
Nouveau allocation scheme is based mainly on interference graphs and is unlikely to
be suitable for runtime use [64].

8.3.3 Instruction Scheduling

Efficient instruction scheduling requires collaboration between both software and
hardware, balancing resource usage with increased parallelism.

Software

Software instruction scheduling produces an efficient ordering, possibly encoding
metadata for hardware use (NVIDIA architecture). MaxAs implements list schedul-
ing [75] for Pascal and Maxwell architectures, optimizing user-defined schedulable
sections. Their heuristic is based on (in order): fixed stall counts, dual issue capa-
bility, mixing functional units, and the number of dependencies [83]. Our approach
builds on and formalizes this work, systematically supporting multiple architectures
and general control-flow. Additionally, we automatically insert variable-cycle de-
pendency barriers (possibly using scoreboard registers) and use a tuned heuristic
that prioritizes the expected stall. The latter is important for our context given the
prominence of high-latency memory accesses in database queries. Additionally, while
MaxAs supports dual issue and register reuse flags, we omit these optimizations to
improve compile time. Note that MaxAs allocates registers after scheduling, whereas
we implement the opposite – an arbitrary choice given their cyclic dependency.

148



8.3. Assembler

The Nouveau driver scheduler is likewise derived from MaxAs5, although it does
not consider instruction reordering or throughputs [64]. Scheduling is on a per-block
basis, tracking dependencies and computing stall counts by recording the available
time for each register rather than using an explicit dependency graph. Barriers are
inserted automatically (no scoreboarding), and they consider interactions between
basic blocks. TuringAs has explored manual optimization using the yield flag and
high-latency instruction placement [239]. Our use of the yield flag corresponds to their
“natural yield strategy”, although we chose this approach primarily for simplicity.

Gong et al. propose TwinKernels, a compile-time scheduling approach that pro-
duces two distinct instruction schedules for each kernel [78]. Warps are assigned to
either of the two implementations during execution, reducing contention from high-
latency operations. Compile-time trace scheduling has also been investigated, using
speculation to move (high-latency) instructions to earlier basic blocks and minimize
divergent execution [104]. Synchronization instructions preclude certain reorderings,
similar to our idea of schedulable sections. Additionally, the authors note that predi-
cation may produce longer traces, an approach used in our work to expose additional
reordering possibilities, though they rely on NVIDIA’s pipeline for this optimization.

Other instruction schedulers merge the problem with register allocation, balancing
register pressure and increased ILP. Goodman and Hsu proposed both an adaptive so-
lution that uses multiple scheduling heuristics and a DAG-based register allocator that
reduces false dependencies [80]. Shobaki et al. employ a branch-and-bound algorithm,
prioritizing occupancy and register usage before selecting the instruction order [204];
a technique augmented with graph transformations to reduce the search space [203].
Occupancy is also used in the LLVM list scheduler for AMD GPUs, amongst other
GPU properties [7, 204]. Similarly, Intel selects their scheduling heuristic based on
register pressure and ILP thresholds [36], and Apple uses “standard scheduling” that
balances register pressure and ILP [141]. Other approaches include modified interfer-
ence graphs [181], or the combined interaction with loop unrolling [53].

5https://gitlab.freedesktop.org/mesa/mesa/-/commit/f519c47f7d47d88ecf3b5e8f28fdffaa12f684d3

149

https://gitlab.freedesktop.org/mesa/mesa/-/commit/f519c47f7d47d88ecf3b5e8f28fdffaa12f684d3


Related Work

Hardware Support

Hardware approaches to warp scheduling are also important for performance, reducing
stalls and avoiding divergence. Yu et al. propose Stall-Aware Warp Scheduling, re-
scheduling frequently stalled warps for later execution and allowing others to execute
without contention [244]. Gong et al. have also explored using compiler hints to hide
high-latency operations using out-of-order execution [79]. This improves performance
over compile-time only approaches as the hardware can schedule based on actual stall
counts rather than static estimates. Dynamic assignment of threads to warps may
also improve performance by reducing divergent execution [67, 66]. Alternatives to
round-robin warp scheduling that increase parallelism have also been explored [41].
As a software-only system, we rely on existing hardware properties for performance.

8.3.4 Control-Flow Structuring

Unstructured control-flow is challenging for compiler writers, from performance to
hardware support. Structuring control-flow can simplify code generation and expose
optimization opportunities, but is a complex process in itself. Zhang and D’Hollander
introduced hammock graphs, “single-entry, single-exit regions” for structuring control-
flow using a set of transformations [248]. This work has been extended to GPU con-
texts, some of which require structured control-flow (e.g. AMD IL [6]) [55]. Similarly,
Wu et al. have proposed a transformation-based approach to structuring, analyzing its
performance on real programs and reinforcing the importance of the reconvergence
point [235]. Reissmann et al. demonstrated that re-execution of code duplicated
during structuring can be avoided by producing tail-controlled loops and well-nested
control-flow [190]. Linearization has also been proposed, reducing code expansion by
structuring control-flow as “if-then statements” of predicated basic blocks [10].

While powerful, structured control-flow is often inefficient for unstructured pro-
grams. Diamos et al. introduce thread frontiers to manage the execution of divergent
threads, eagerly reconverging when divergent paths coincide at the same basic block
and avoiding repeated execution [50]. Less stringent approaches to structuring like re-
convergence CFGs also reduce code duplication, allowing for unstructured branching

150



8.3. Assembler

where “one of the successors is a post-dominator” (i.e. the reconvergence point) [228].
Other approaches like melding reduce thread divergence by restructuring branches
that share common elements [201].

Our approach to control-flow structuring is much more limited, requiring a well-
structured graph from the code generation stage. We thus proposed a greedy algo-
rithm for recovering typical loops (including break), and if-else control-flows without
any code duplication and reconverging at the immediate post-dominator. This dif-
fers from Apple’s approach which supports unstructured control-flow through basic
structuring and typical basic block duplication [141]. They also support flattening
of branch structures to expose additional scheduling opportunities, similar to branch
inlining used in our work. The Nouveau driver also uses flattening, replacing explicit
branch instructions with predication [64].

151



Related Work

152



Chapter 9

Conclusion and Future Work

Query compilation for GPUs has traditionally been limited by hardware capa-
bilities, the design of parallel friendly algorithms, and the high cost of compilation.
We propose a new GPU database system, rNdN, that challenges this status quo
through a compiler-first design. Our approach extracts parallelism from an array-
based query representation, outlines efficient kernels that minimize data materializa-
tion, and translates through multiple levels of intermediate representation to produce
an assembled binary. By adopting simplistic yet efficient algorithms for each database
operator and performing only necessary optimization, we significantly increase per-
formance over the existing approaches in end-to-end evaluation without overly sacri-
ficing the computation itself. This balanced approach is a unique characteristic in the
GPU database space, with prior work depending on expensive manufacturer devel-
oped compilers. We can thus outperform comparison systems on both the CPU and
GPU, interpreted and compiled, in contexts that frequently change data or queries,
or are short running. This addresses two key limitations of previous approaches,
data transfers and compilation, evaluated on a variety of queries. Further research
on GPU databases can thus extend our runtime-optimized compiler and execution
engine to other contexts, with limitations and future work discussed in more detail
in Sections 9.1 and 9.2 respectively.

153



Conclusion and Future Work

9.1 Limitations

As a GPU database rNdN has great performance potential, but its generality to
other forms of computation and applicability to other platforms remains unknown.
We identify 4 key limitations of our approach:

Algorithmic: As a guiding principle of our implementation, we opted for general-
purpose and intuitive algorithms over intensive optimization. On the selected
benchmark suite this was effective, but the success of each database operator
implementation is well known to be data-dependent (e.g. hash vs. sort group-
ing). Widespread adoption is thus limited by our selected implementations.

Database oriented: Our approach is database-specific, targeting short-running
queries and improving performance through reduced compilation overhead. It
remains to be seen if the selected optimizations are sufficient for more general
contexts or if further components are required. In particular, we suspect that
our approach is more well-suited for data-intensive rather than computation
heavy applications (e.g. scientific computation).

Hardware specific: Computation is accelerated on consumer-grade GPUs, relying
on their widespread access for impact. As the adoption of other specialized
devices (e.g. TPUs1, FPGAs) increases, or as GPUs evolve or are replaced, we
are unsure if the compilation techniques we selected will be as successful.

Data scalability: As a simplifying assumption, we supported data sizes that fit
within the confines of GPU device memory. As data continues to scale and
memory sizes increase, the impact of runtime compilation techniques is unclear.
In particular, the overhead of ahead-of-time systems may become negligible and
negate the usefulness of our approach, or further optimizations may be required
to handle memory constraints.

1https://cloud.google.com/tpu/docs/tpus

154

https://cloud.google.com/tpu/docs/tpus


9.2. Future Work

9.2 Future Work

rNdN follows a pragmatic design, focusing on reasonably effective techniques at every
step rather than intense optimizations. Key future work could therefore investigate
further optimization of query compilation and execution, support for more general
scientific computation, and extension to scaling data size and clusters.

Query optimization: Our approach uses CPU query plans from the HyPer
database [152], translated to HorseIR by the HorsePower project [37]. Their
effectiveness for different architectures is unclear, and from preliminary evalu-
ation we suspect GPU-specific plans may better exploit the parallel paradigm
and hardware characteristics.

Library functions: Library functions are currently considered as opaque boxes, lim-
iting their interaction with other operations in the query. Further exploration
could therefore investigate complete or partial pipelining in the outliner design,
removing unnecessary materialization. As data sizes also impact the perfor-
mance and resource usage of outlined kernels, heuristics for compatibility may
also be beneficial (e.g. Kernel Weaver [232]).

Algorithmic optimization: The performance of certain operators depends on
query characteristics and data sizes, requiring further investigation to select the
best option. In particular, group by sorting is known to be inefficient for some
queries, and may be replaced by other algorithms like hash aggregation [114].

GPU optimization: Optimization was a secondary concern in our design, instead
implementing intuitive approaches that applied across architectures. Finer-
grained GPU characteristics are thus largely ignored and require further con-
sideration. In particular, we note the possibility of bank-aware register allo-
cation [42, 83] and scheduling [83], caches and shared memory, and the use of
scalar (i.e. uniform) operations and registers. In addition, the integration of
occupancy into our heuristics may yield better performance, which may require
reordering or combining the scheduling and register allocation phases.

155



Conclusion and Future Work

JIT compilation: Currently, our system pre-compiles all kernels before execution,
limiting the amount of runtime information. This was initially due to the high
fixed-cost of NVIDIA’s assembler for each invocation; a cost that we eliminated
in our design. We therefore propose adapting our pipeline into a true JIT com-
piler that uses runtime information to produce (or re-compile) higher performing
code. Additionally, it is now possible to hide our compilation time with data
transfers, an approach taken in a Haskell extension for GPU programming [35].

General-purpose computation: Scientific computation is of significant interest,
particularly with the support of MATLAB translation to HorseIR [37]. We
could therefore extend our approach to more general programs, and consider
the suitability of our limited optimization pipeline to other domains.

General-purpose PTX: Our assembler is currently limited to the code generation
patterns of the frontend compiler, and by extension HorseIR. Extending its use
to a more complete set of PTX programs is intriguing, as we can evaluate the
impact of our approach on GPU programs beyond array-language built-in func-
tions. Further implementation and evaluation of code generation templates,
register allocation (possibly requiring spilling), and scheduling would be re-
quired, as is support for unstructured control-flow. rNdN would therefore be a
complete drop-in replacement for runtime contexts beyond database queries.

Data scalability: Our approach addresses compilation time for short queries, specif-
ically those whose data fits on device memory. Its impact is therefore relatively
significant, as the data transfer and computation costs are reasonably low. How-
ever, as data sizes increase and execution becomes correspondingly longer, our
approach has less relevance – though we still produce high performance code
that is comparable to the proprietary alternative. Additionally, we must con-
tend with different growth rates of data vs. device memory, which may require
partitioning strategies to compute the full output. Future work could therefore
evaluate the effectiveness of rNdN on varying data and device memory sizes (e.g.
TPC-H scale factors), or apply further tuning to achieve on-par performance

156



9.2. Future Work

to NVIDIA’s optimizing compiler. The latter is particularly interesting, as we
could improve performance of both short and long queries. Preliminary exper-
iments show the increasing importance of data transfers as the input scales.

Multi-GPU support: GPU clusters are prevalent in high-performance computing,
though we targeted consumer devices in our approach. It is therefore inter-
esting to consider multi-GPU systems, partitioning the data and computation.
Adapting the outliner to support multiple targets is one conceivable approach,
using heuristics to select the best placement.

157



Conclusion and Future Work

158



Bibliography

[1] Bison - GNU Project - Free Software Foundation, December 2021. URL: https:
//gnu.org/software/bison/.

[2] GitHub - westes/flex, December 2021. URL: https://github.com/westes/
flex.

[3] GitHub - tensorflow/tensorflow, February 2022. URL: https://github.com/
tensorflow/tensorflow/.

[4] GitHub - terralang/terra, February 2022. URL: https://github.com/

terralang/terra/.

[5] Advanced Micro Devices, Inc. Compute Abstraction Layer (CAL), Dec
2010. URL: https://developer.amd.com/wordpress/media/2012/10/AMD_
CAL_Programming_Guide_v2.0.pdf.

[6] Advanced Micro Devices, Inc. AMD Intermediate Language (IL), Oct
2011. URL: http://developer.amd.com/wordpress/media/2012/10/AMD_

Intermediate_Language_(IL)_Specification_v2.pdf.

[7] Advanced Micro Devices, Inc. GCN native ISA LLVM code generator — ROCm
documentation 1.0.0 documentation, Aug 2021. URL: https://rocmdocs.amd.
com/en/latest/ROCm_Compiler_SDK/ROCm-Native-ISA.html.

159

https://gnu.org/software/bison/
https://gnu.org/software/bison/
https://github.com/westes/flex
https://github.com/westes/flex
https://github.com/tensorflow/tensorflow/
https://github.com/tensorflow/tensorflow/
https://github.com/terralang/terra/
https://github.com/terralang/terra/
https://developer.amd.com/wordpress/media/2012/10/AMD_CAL_Programming_Guide_v2.0.pdf
https://developer.amd.com/wordpress/media/2012/10/AMD_CAL_Programming_Guide_v2.0.pdf
http://developer.amd.com/wordpress/media/2012/10/AMD_Intermediate_Language_(IL)_Specification_v2.pdf
http://developer.amd.com/wordpress/media/2012/10/AMD_Intermediate_Language_(IL)_Specification_v2.pdf
https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Native-ISA.html
https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Native-ISA.html


Bibliography

[8] Advanced Micro Devices, Inc. Let’s build everything - GPUOpen, Feb 2022.
URL: https://gpuopen.com/.

[9] Adnan Agbaria, David Minor, Natan Peterfreund, Eyal Rozenberg, and Ofer
Rosenberg. Overtaking CPU DBMSes with a GPU in whole-query analytic
processing with parallelism-friendly execution plan optimization. In ADM-
S/IMDM@VLDB, 09 2016. doi:10.1007/978-3-319-56111-0_4.

[10] Jayvant Anantpur and Govindarajan R. Taming control divergence in GPUs
through control flow linearization. In Albert Cohen, editor, Compiler Construc-
tion, pages 133–153, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[11] José Andión, Manuel Arenaz, François Bodin, Gabriel Rodríguez, and
Juan Touriño. Locality-aware automatic parallelization for GPGPU with
OpenHMPP directives. International Journal of Parallel Programming,
44(3):620–643, Jun 2016. doi:10.1007/s10766-015-0362-9.

[12] Austin Appleby. GitHub - aappleby/smhasher, Jan 2016. URL: https://
github.com/aappleby/smhasher.

[13] Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore
Santhi, and Stephan J. Eidenbenz. Instructions’ latencies characterization for
NVIDIA GPGPUs. CoRR, abs/1905.08778, 2019. URL: http://arxiv.org/
abs/1905.08778, arXiv:1905.08778.

[14] Joshua Auerbach, David F. Bacon, Ioana Burcea, Perry Cheng, Stephen J. Fink,
Rodric Rabbah, and Sunil Shukla. A compiler and runtime for heterogeneous
computing. In Proceedings of the 49th Annual Design Automation Conference,
DAC ’12, page 271–276, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2228360.2228411.

[15] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah. Lime:
A Java-compatible and synthesizable language for heterogeneous architec-
tures. In Proceedings of the ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications, OOPSLA ’10, page

160

https://gpuopen.com/
https://doi.org/10.1007/978-3-319-56111-0_4
https://doi.org/10.1007/s10766-015-0362-9
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
http://arxiv.org/abs/1905.08778
http://arxiv.org/abs/1905.08778
http://arxiv.org/abs/1905.08778
https://doi.org/10.1145/2228360.2228411


Bibliography

89–108, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1869459.1869469.

[16] Peter Bakkum and Srimat T. Chakradhar. Efficient data management for GPU
databases. Technical report, NEC Laboratories America, 2012.

[17] Peter Bakkum and Kevin Skadron. Accelerating SQL database operations
on a GPU with CUDA. In Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, GPGPU-3, page 94–103,
New York, NY, USA, 2010. Association for Computing Machinery. doi:

10.1145/1735688.1735706.

[18] K. E. Batcher. Sorting networks and their applications. In Proceedings of the
April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring),
page 307–314, New York, NY, USA, 1968. Association for Computing Machin-
ery. doi:10.1145/1468075.1468121.

[19] Piotr Bialas and Adam Strzelecki. Benchmarking the cost of thread divergence
in CUDA. In Roman Wyrzykowski, Ewa Deelman, Jack Dongarra, Konrad
Karczewski, Jacek Kitowski, and Kazimierz Wiatr, editors, Parallel Processing
and Applied Mathematics, pages 570–579. Springer International Publishing,
2016.

[20] Sebastian Breß. The design and implementation of CoGaDB: a column-oriented
GPU-accelerated DBMS. Datenbank-Spektrum, 14:199–209, 11 2014. doi:10.

1007/s13222-014-0164-z.

[21] Sebastian Breß, Henning Funke, and Jens Teubner. Robust query process-
ing in co-processor-accelerated databases. In Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD ’16, page 1891–1906,
New York, NY, USA, 2016. Association for Computing Machinery. doi:

10.1145/2882903.2882936.

161

https://doi.org/10.1145/1869459.1869469
https://doi.org/10.1145/1735688.1735706
https://doi.org/10.1145/1735688.1735706
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1007/s13222-014-0164-z
https://doi.org/10.1007/s13222-014-0164-z
https://doi.org/10.1145/2882903.2882936
https://doi.org/10.1145/2882903.2882936


Bibliography

[22] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter
Saake. GPU-Accelerated Database Systems: Survey and Open Challenges, vol-
ume 8920, pages 1–35. Springer Berlin Heidelberg, 12 2014. doi:10.1007/978-
3-662-45761-0_1.

[23] Sebastian Breß, Bastian Köcher, Max Heimel, Volker Markl, Michael Saecker,
and Gunter Saake. Ocelot/HyPE: Optimized data processing on heterogeneous
hardware. Proc. VLDB Endow., 7(13):1609–1612, August 2014. doi:10.14778/
2733004.2733042.

[24] Sebastian Breß, Bastian Köcher, Henning Funke, Tilmann Rabl, and Volker
Markl. Generating custom code for efficient query execution on heterogeneous
processors. The VLDB Journal, 27(6), 09 2017. doi:10.1007/s00778-018-

0512-y.

[25] Sebastian Breß and Gunter Saake. Why it is time for a HyPE: A hybrid query
processing engine for efficient GPU coprocessing in DBMS. Proc. VLDB En-
dow., 6(12):1398–1403, aug 2013. doi:10.14778/2536274.2536325.

[26] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph
coloring register allocation. ACM Trans. Program. Lang. Syst., 16(3):428–455,
May 1994. doi:10.1145/177492.177575.

[27] Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Arvind K. Sujeeth, Christo-
pher De Sa, Christopher Aberger, and Kunle Olukotun. Have abstraction and
eat performance, too: Optimized heterogeneous computing with parallel pat-
terns. In Proceedings of the 2016 International Symposium on Code Generation
and Optimization, CGO ’16, page 194–205, New York, NY, USA, 2016. Associ-
ation for Computing Machinery. doi:10.1145/2854038.2854042.

[28] Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf, Has-
san Chafi, Martin Odersky, and Kunle Olukotun. A heterogeneous parallel
framework for domain-specific languages. In 2011 International Conference

162

https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.14778/2733004.2733042
https://doi.org/10.14778/2733004.2733042
https://doi.org/10.1007/s00778-018-0512-y
https://doi.org/10.1007/s00778-018-0512-y
https://doi.org/10.14778/2536274.2536325
https://doi.org/10.1145/177492.177575
https://doi.org/10.1145/2854038.2854042


Bibliography

on Parallel Architectures and Compilation Techniques, pages 89–100, 2011.
doi:10.1109/PACT.2011.15.

[29] John Burgess. RTX on – the NVIDIA Turing GPU, Aug 2019. URL: https:
//old.hotchips.org/hc31/HC31_2.12_NVIDIA_final.pdf.

[30] John Burgess. RTX on — the NVIDIA Turing GPU. IEEE Micro, 40(2):36–44,
2020. doi:10.1109/MM.2020.2971677.

[31] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: Com-
piling an embedded data parallel language. In Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, PPoPP ’11,
page 47–56, New York, NY, USA, 2011. Association for Computing Machinery.
doi:10.1145/1941553.1941562.

[32] Daniel Cederman and Philippas Tsigas. GPU-Quicksort: A practical quicksort
algorithm for graphics processors. ACM J. Exp. Algorithmics, 14, jan 2010.
doi:10.1145/1498698.1564500.

[33] Stefano Ceri and Georg Gottlob. Translating SQL into relational algebra: Op-
timization, semantics, and equivalence of SQL queries. IEEE Transactions on
Software Engineering, 11(4):324–345, 1985. doi:10.1109/TSE.1985.232223.

[34] G. J. Chaitin. Register allocation & spilling via graph coloring. In Proceedings
of the 1982 SIGPLAN Symposium on Compiler Construction, SIGPLAN ’82,
page 98–105, New York, NY, USA, 1982. Association for Computing Machinery.
doi:10.1145/800230.806984.

[35] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and
Vinod Grover. Accelerating Haskell array codes with multicore GPUs. In
Proceedings of the Sixth Workshop on Declarative Aspects of Multicore Pro-
gramming, DAMP ’11, page 3–14, New York, NY, USA, 2011. Association for
Computing Machinery. doi:10.1145/1926354.1926358.

163

https://doi.org/10.1109/PACT.2011.15
https://old.hotchips.org/hc31/HC31_2.12_NVIDIA_final.pdf
https://old.hotchips.org/hc31/HC31_2.12_NVIDIA_final.pdf
https://doi.org/10.1109/MM.2020.2971677
https://doi.org/10.1145/1941553.1941562
https://doi.org/10.1145/1498698.1564500
https://doi.org/10.1109/TSE.1985.232223
https://doi.org/10.1145/800230.806984
https://doi.org/10.1145/1926354.1926358


Bibliography

[36] Anupama Chandrasekhar, Gang Chen, Po-Yu Chen, Wei-Yu Chen, Junjie Gu,
Peng Guo, Shruthi Hebbur Prasanna Kumar, Guei-Yuan Lueh, Pankaj Mistry,
Wei Pan, Thomas Raoux, and Konrad Trifunovic. IGC: The open source Intel
graphics compiler. In Proceedings of the 2019 IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO 2019, page 254–265. IEEE
Press, 2019. doi:10.1109/CGO.2019.8661189.

[37] Hanfeng Chen. HorsePower: An Array-based Optimization Framework for
Query Processing and Data Analytics. PhD thesis, McGill University, Feb 2021.
URL: https://escholarship.mcgill.ca/concern/theses/2j62s947s.

[38] Hanfeng Chen, Joseph Vinish D’silva, Hongji Chen, Bettina Kemme, and Lau-
rie Hendren. HorseIR: Bringing array programming languages together with
database query processing. In Proceedings of the 14th ACM SIGPLAN In-
ternational Symposium on Dynamic Languages, DLS 2018, page 37–49, New
York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/

3276945.3276951.

[39] Hanfeng Chen, Alexander Krolik, Bettina Kemme, Clark Verbrugge, and Laurie
Hendren. Improving database query performance with automatic fusion. In
Proceedings of the 29th International Conference on Compiler Construction,
CC 2020, page 63–73, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3377555.3377892.

[40] Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren. Automatic
vectorization for MATLAB. In Chen Ding, John Criswell, and PengWu, editors,
Languages and Compilers for Parallel Computing, pages 171–187, Cham, 2017.
Springer International Publishing. doi:10.1007/978-3-319-52709-3_14.

[41] Jianmin Chen, Xi Tao, Zhen Yang, Jih-Kwon Peir, Xiaoyuan Li, and Shih-Lien
Lu. Guided region-based GPU scheduling: Utilizing multi-thread parallelism to
hide memory latency. In 2013 IEEE 27th International Symposium on Parallel

164

https://doi.org/10.1109/CGO.2019.8661189
https://escholarship.mcgill.ca/concern/theses/2j62s947s
https://doi.org/10.1145/3276945.3276951
https://doi.org/10.1145/3276945.3276951
https://doi.org/10.1145/3377555.3377892
https://doi.org/10.1007/978-3-319-52709-3_14


Bibliography

and Distributed Processing, pages 441–451, 2013. doi:10.1109/IPDPS.2013.

95.

[42] Wei-Yu Chen, Guei-Yuan Lueh, Pratik Ashar, Kaiyu Chen, and Buqi Cheng.
Register allocation for Intel processor graphics. In Proceedings of the 2018 Inter-
national Symposium on Code Generation and Optimization, CGO 2018, page
352–364, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3168806.

[43] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia
Ailamaki. HetExchange: Encapsulating heterogeneous CPU-GPU parallelism
in JIT compiled engines. Proc. VLDB Endow., 12(5):544–556, jan 2019. doi:

10.14778/3303753.3303760.

[44] Periklis Chrysogelos, Panagiotis Sioulas, and Anastasia Ailamaki. Hardware-
conscious query processing in GPU-accelerated analytical engines. In CIDR,
2019.

[45] Hawon Chu, Seounghyun Kim, Joo-Young Lee, and Young-Kyoon Suh. Em-
pirical evaluation across multiple GPU-accelerated DBMSes. In Proceedings of
the 16th International Workshop on Data Management on New Hardware, Da-
MoN ’20, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3399666.3399907.

[46] cloudcores. GitHub - cloudcores/CuAssembler, May 2021. URL: https://
github.com/cloudcores/CuAssembler/.

[47] Brett W. Coon, John Erik Lindholm, Peter C. Mills, and John R. Nickolls.
Processing an indirect branch instruction in a SIMD architecture, July 2010.
URL: https://patents.google.com/patent/US7761697B1/en.

[48] Brett W. Coon, John R. Nickolls, Lars Nyland, Peter C. Mills, and John Erik
Lindholm. Indirect function call instructions in a synchronous parallel thread
processor, November 2012. URL: https://patents.google.com/patent/

US8312254B2/en.

165

https://doi.org/10.1109/IPDPS.2013.95
https://doi.org/10.1109/IPDPS.2013.95
https://doi.org/10.1145/3168806
https://doi.org/10.14778/3303753.3303760
https://doi.org/10.14778/3303753.3303760
https://doi.org/10.1145/3399666.3399907
https://github.com/cloudcores/CuAssembler/
https://github.com/cloudcores/CuAssembler/
https://patents.google.com/patent/US7761697B1/en
https://patents.google.com/patent/US8312254B2/en
https://patents.google.com/patent/US8312254B2/en


Bibliography

[49] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer Ar-
chitecture: A Hardware/Software Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1998.

[50] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew Kerr,
Haicheng Wu, and Sudhakar Yalamanchili. SIMD re-convergence at thread fron-
tiers. In 2011 44th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 477–488, 2011. doi:10.1145/2155620.2155676.

[51] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and
Nathan Clark. Ocelot: A dynamic optimization framework for bulk-synchronous
applications in heterogeneous systems. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’10,
page 353–364, New York, NY, USA, 2010. Association for Computing Machin-
ery. doi:10.1145/1854273.1854318.

[52] Jesse Doherty and Laurie Hendren. McSAF: A static analysis framework for
MATLAB. In Proceedings of the 26th European Conference on Object-Oriented
Programming, ECOOP’12, page 132–155, Berlin, Heidelberg, 2012. Springer-
Verlag. doi:10.1007/978-3-642-31057-7_7.

[53] Łukasz Domagała, Duco van Amstel, Fabrice Rastello, and P. Sadayappan.
Register allocation and promotion through combined instruction scheduling and
loop unrolling. In Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, page 143–151, New York, NY, USA, 2016. Association
for Computing Machinery. doi:10.1145/2892208.2892219.

[54] Rodrigo Domínguez, Dana Schaa, and David Kaeli. Caracal: Dynamic trans-
lation of runtime environments for GPUs. In Proceedings of the Fourth Work-
shop on General Purpose Processing on Graphics Processing Units, GPGPU-
4, New York, NY, USA, 2011. Association for Computing Machinery. doi:

10.1145/1964179.1964186.

166

https://doi.org/10.1145/2155620.2155676
https://doi.org/10.1145/1854273.1854318
https://doi.org/10.1007/978-3-642-31057-7_7
https://doi.org/10.1145/2892208.2892219
https://doi.org/10.1145/1964179.1964186
https://doi.org/10.1145/1964179.1964186


Bibliography

[55] Rodrigo Domínguez and David R. Kaeli. Unstructured control flow in GPGPU.
In 2013 IEEE International Symposium on Parallel Distributed Processing,
Workshops and Phd Forum, pages 1194–1202, 2013. doi:10.1109/IPDPSW.

2013.247.

[56] Georg Dotzler, Ronald Veldema, and Michael Klemm. JCudaMP: OpenMP/-
Java on CUDA. In Proceedings of the 3rd International Workshop on Multicore
Software Engineering, IWMSE ’10, page 10–17, New York, NY, USA, 2010.
Association for Computing Machinery. doi:10.1145/1808954.1808959.

[57] Michiel du Toit. A C# LIKE implementation that mimics SQL LIKE - Code-
Project, Jun 2013. URL: https://www.codeproject.com/Tips/608266/A-
Csharp-LIKE-implementation-that-mimics-SQL-LIKE.

[58] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and
Stephen J. Fink. Compiling a high-level language for GPUs: (via language
support for architectures and compilers). In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, page 1–12, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2254064.2254066.

[59] Niall Emmart, Justin Luitjens, Charles Weems, and Cliff Woolley. Opti-
mizing modular multiplication for NVIDIA’s Maxwell GPUs. In 2016 IEEE
23nd Symposium on Computer Arithmetic (ARITH), pages 47–54, 2016. doi:
10.1109/ARITH.2016.21.

[60] Jian Fang, Yvo T. B. Mulder, Jan Hidders, Jinho Lee, and H. Peter Hofstee.
In-memory database acceleration on FPGAs: a survey. The VLDB Journal,
29:33–59, jan 2020. doi:10.1007/s00778-019-00581-w.

[61] Wenbin Fang, Bingsheng He, and Qiong Luo. Database compression on graphics
processors. Proc. VLDB Endow., 3(1–2):670–680, sep 2010. doi:10.14778/

1920841.1920927.

167

https://doi.org/10.1109/IPDPSW.2013.247
https://doi.org/10.1109/IPDPSW.2013.247
https://doi.org/10.1145/1808954.1808959
https://www.codeproject.com/Tips/608266/A-Csharp-LIKE-implementation-that-mimics-SQL-LIKE
https://www.codeproject.com/Tips/608266/A-Csharp-LIKE-implementation-that-mimics-SQL-LIKE
https://doi.org/10.1145/2254064.2254066
https://doi.org/10.1109/ARITH.2016.21
https://doi.org/10.1109/ARITH.2016.21
https://doi.org/10.1007/s00778-019-00581-w
https://doi.org/10.14778/1920841.1920927
https://doi.org/10.14778/1920841.1920927


Bibliography

[62] David Farrell. GitHub - nosferalatu/SimpleGPUHashTable, Mar 2020. URL:
https://github.com/nosferalatu/SimpleGPUHashTable.

[63] Sofoklis Floratos, Mengbai Xiao, Hao Wang, Chengxin Guo, Yuan Yuan, Rubao
Lee, and Xiaodong Zhang. NestGPU: Nested query processing on GPU. In 2021
IEEE 37th International Conference on Data Engineering (ICDE), pages 1008–
1019, 2021. doi:10.1109/ICDE51399.2021.00092.

[64] freedesktop.org. Mesa / mesa · GitLab, Feb 2022. URL: https://gitlab.
freedesktop.org/mesa/mesa.

[65] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach. Just-in-
time GPU compilation for interpreted languages with partial evaluation. SIG-
PLAN Not., 52(7):60–73, apr 2017. doi:10.1145/3140607.3050761.

[66] Wilson W. L. Fung and Tor M. Aamodt. Thread block compaction for effi-
cient SIMT control flow. In 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, pages 25–36, 2011. doi:10.1109/HPCA.

2011.5749714.

[67] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic
warp formation and scheduling for efficient GPU control flow. In Proceedings
of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 40, page 407–420, USA, 2007. IEEE Computer Society. doi:10.1109/
MICRO.2007.12.

[68] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.
Pipelined query processing in coprocessor environments. In Proceedings of the
2018 International Conference on Management of Data, SIGMOD ’18, page
1603–1618, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3183713.3183734.

[69] Henning Funke, Jan Mühlig, and Jens Teubner. Efficient generation of machine
code for query compilers. In Proceedings of the 16th International Workshop on

168

https://github.com/nosferalatu/SimpleGPUHashTable
https://doi.org/10.1109/ICDE51399.2021.00092
https://gitlab.freedesktop.org/mesa/mesa
https://gitlab.freedesktop.org/mesa/mesa
https://doi.org/10.1145/3140607.3050761
https://doi.org/10.1109/HPCA.2011.5749714
https://doi.org/10.1109/HPCA.2011.5749714
https://doi.org/10.1109/MICRO.2007.12
https://doi.org/10.1109/MICRO.2007.12
https://doi.org/10.1145/3183713.3183734


Bibliography

Data Management on New Hardware, DaMoN ’20, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3399666.3399925.

[70] Henning Funke and Jens Teubner. Data-parallel query processing on non-
uniform data. Proc. VLDB Endow., 13(6):884–897, feb 2020. doi:10.14778/

3380750.3380758.

[71] Henning Funke and Jens Teubner. Low-latency compilation of SQL queries
to machine code. Proc. VLDB Endow., 14(12):2691–2694, jul 2021. doi:10.

14778/3476311.3476321.

[72] Rahul Garg and José Nelson Amaral. Compiling Python to a hybrid execution
environment. In Proceedings of the 3rd Workshop on General-Purpose Compu-
tation on Graphics Processing Units, GPGPU-3, page 19–30, New York, NY,
USA, 2010. Association for Computing Machinery. doi:10.1145/1735688.

1735695.

[73] Rahul Garg and Laurie Hendren. Just-in-time shape inference for array-based
languages. In Proceedings of ACM SIGPLAN International Workshop on Li-
braries, Languages, and Compilers for Array Programming, ARRAY’14, page
50–55, New York, NY, USA, 2014. Association for Computing Machinery.
doi:10.1145/2627373.2627382.

[74] Rahul Garg, Sameer Jagdale, and Laurie Hendren. Velociraptor: A compiler
toolkit for array-based languages targeting CPUs and GPUs. In Proceedings of
the 2nd ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming, ARRAY 2015, page 19–24, New York, NY,
USA, 2015. Association for Computing Machinery. doi:10.1145/2774959.

2774967.

[75] Philip B. Gibbons and Steven S. Muchnick. Efficient instruction scheduling for
a pipelined architecture. In Proceedings of the 1986 SIGPLAN Symposium on
Compiler Construction, SIGPLAN ’86, page 11–16, New York, NY, USA, 1986.
Association for Computing Machinery. doi:10.1145/12276.13312.

169

https://doi.org/10.1145/3399666.3399925
https://doi.org/10.14778/3380750.3380758
https://doi.org/10.14778/3380750.3380758
https://doi.org/10.14778/3476311.3476321
https://doi.org/10.14778/3476311.3476321
https://doi.org/10.1145/1735688.1735695
https://doi.org/10.1145/1735688.1735695
https://doi.org/10.1145/2627373.2627382
https://doi.org/10.1145/2774959.2774967
https://doi.org/10.1145/2774959.2774967
https://doi.org/10.1145/12276.13312


Bibliography

[76] Mike Giles. Lecture notes in CUDA programming, July 2019. URL: https:
//people.maths.ox.ac.uk/gilesm/cuda/.

[77] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin, Christophe
Dubach, and Michael F. P. O’Boyle. Automatic matching of legacy code to
heterogeneous APIs: An idiomatic approach. SIGPLAN Not., 53(2):139–153,
mar 2018. doi:10.1145/3296957.3173182.

[78] Xiang Gong, Zhongliang Chen, Amir Kavyan Ziabari, Rafael Ubal, and David
Kaeli. TwinKernels: An execution model to improve GPU hardware scheduling
at compile time. In 2017 IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO), pages 39–49, 2017. doi:10.1109/CGO.2017.
7863727.

[79] Xun Gong, Xiang Gong, Leiming Yu, and David Kaeli. HAWS: Accelerating
GPU wavefront execution through selective out-of-order execution. ACM Trans.
Archit. Code Optim., 16(2), April 2019. doi:10.1145/3291050.

[80] J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation in
large basic blocks. In ACM International Conference on Supercomputing 25th
Anniversary Volume, page 88–98, New York, NY, USA, 1988. Association for
Computing Machinery. doi:10.1145/2591635.2667158.

[81] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. GPUTera-
Sort: High performance graphics co-processor sorting for large database man-
agement. In Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’06, page 325–336, New York, NY, USA,
2006. Association for Computing Machinery. doi:10.1145/1142473.1142511.

[82] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh
Manocha. Fast computation of database operations using graphics processors.
In Proceedings of the 2004 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’04, page 215–226, New York, NY, USA, 2004.
Association for Computing Machinery. doi:10.1145/1007568.1007594.

170

https://people.maths.ox.ac.uk/gilesm/cuda/
https://people.maths.ox.ac.uk/gilesm/cuda/
https://doi.org/10.1145/3296957.3173182
https://doi.org/10.1109/CGO.2017.7863727
https://doi.org/10.1109/CGO.2017.7863727
https://doi.org/10.1145/3291050
https://doi.org/10.1145/2591635.2667158
https://doi.org/10.1145/1142473.1142511
https://doi.org/10.1145/1007568.1007594


Bibliography

[83] Scott Gray. GitHub - NervanaSystems/maxas, Jun 2016. URL: https://
github.com/NervanaSystems/maxas.

[84] C. Gregg and K. Hazelwood. Where is the data? why you cannot debate
CPU vs. GPU performance without the answer. In (IEEE ISPASS) IEEE
International Symposium on Performance Analysis of Systems and Software,
pages 134–144, 2011. doi:10.1109/ISPASS.2011.5762730.

[85] Jayanth Gummaraju, Laurent Morichetti, Michael Houston, Ben Sander, Bene-
dict R. Gaster, and Bixia Zheng. Twin Peaks: A software platform for hetero-
geneous computing on general-purpose and graphics processors. In Proceedings
of the 19th International Conference on Parallel Architectures and Compilation
Techniques, PACT ’10, page 205–216, New York, NY, USA, 2010. Association
for Computing Machinery. doi:10.1145/1854273.1854302.

[86] Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: High-level GPGPU
programming. IEEE Transactions on Parallel and Distributed Systems,
22(1):78–90, 2011. doi:10.1109/TPDS.2010.62.

[87] Mark Harris. How to optimize data transfers in CUDA C/C++ | NVIDIA
developer blog, Dec 2012. URL: https://developer.nvidia.com/blog/how-
optimize-data-transfers-cuda-cc/.

[88] Mark Harris. How to overlap data transfers in CUDA C/C++ | NVIDIA
technical blog, Dec 2012. URL: https://developer.nvidia.com/blog/how-
overlap-data-transfers-cuda-cc/.

[89] Mark Harris. Unified memory for CUDA beginners | NVIDIA technical blog,
Jun 2017. URL: https://developer.nvidia.com/blog/unified-memory-

cuda-beginners/.

[90] Ari B. Hayes, Fei Hua, Jin Huang, Yanhao Chen, and Eddy Z. Zhang. Decoding
CUDA binary. In Proceedings of the 2019 IEEE/ACM International Symposium
on Code Generation and Optimization, CGO 2019, page 229–241. IEEE Press,
2019. doi:10.1109/CGO.2019.8661186.

171

https://github.com/NervanaSystems/maxas
https://github.com/NervanaSystems/maxas
https://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.1145/1854273.1854302
https://doi.org/10.1109/TPDS.2010.62
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://doi.org/10.1109/CGO.2019.8661186


Bibliography

[91] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo,
and Pedro V. Sander. Relational query coprocessing on graphics processors.
ACM Trans. Database Syst., 34(4), December 2009. doi:10.1145/1620585.

1620588.

[92] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo,
and Pedro Sander. Relational joins on graphics processors. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’08, page 511–524, New York, NY, USA, 2008. Association for Computing
Machinery. doi:10.1145/1376616.1376670.

[93] Bingsheng He and Jeffrey Xu Yu. High-throughput transaction executions on
graphics processors. Proc. VLDB Endow., 4(5):314–325, feb 2011. doi:10.

14778/1952376.1952381.

[94] Jiong He, Mian Lu, and Bingsheng He. Revisiting co-processing for hash joins
on the coupled CPU-GPU architecture. Proc. VLDB Endow., 6(10):889–900,
aug 2013. doi:10.14778/2536206.2536216.

[95] Jiong He, Shuhao Zhang, and Bingsheng He. In-cache query co-processing on
coupled CPU-GPU architectures. Proc. VLDB Endow., 8(4):329–340, dec 2014.
doi:10.14778/2735496.2735497.

[96] Max Heimel and Volker Markl. A first step towards GPU-assisted query opti-
mization. In Rajesh Bordawekar and Christian A. Lang, editors, International
Workshop on Accelerating Data Management Systems Using Modern Processor
and Storage Architectures - ADMS 2012, Istanbul, Turkey, August 27, 2012,
pages 33–44, 2012. URL: http://www.adms-conf.org/heimel_adms12.pdf.

[97] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.
Hardware-oblivious parallelism for in-memory column-stores. Proc. VLDB En-
dow., 6(9):709–720, jul 2013. doi:10.14778/2536360.2536370.

172

https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1376616.1376670
https://doi.org/10.14778/1952376.1952381
https://doi.org/10.14778/1952376.1952381
https://doi.org/10.14778/2536206.2536216
https://doi.org/10.14778/2735496.2735497
http://www.adms-conf.org/heimel_adms12.pdf
https://doi.org/10.14778/2536360.2536370


Bibliography

[98] Laurie Hendren. Lecture notes in COMP 621: Program analysis and trans-
formations, September 2015. URL: http://www.sable.mcgill.ca/~hendren/
621/.

[99] Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and Scott
Mahlke. Sponge: Portable stream programming on graphics engines. In
Proceedings of the Sixteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS XVI, page
381–392, New York, NY, USA, 2011. Association for Computing Machinery.
doi:10.1145/1950365.1950409.

[100] Joseph Huber, Melanie Cornelius, Giorgis Georgakoudis, Shilei Tian, Jose
M Monsalve Diaz, Kuter Dinel, Barbara Chapman, and Johannes Doerfert.
Efficient execution of openmp on gpus. In 2022 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 41–52, 2022.
doi:10.1109/CGO53902.2022.9741290.

[101] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullender,
and Martin Kersten. MonetDB: Two decades of research in column-oriented
database architectures. IEEE Data Eng. Bull., 35(1):40–45, 2012.

[102] IEEE and The Open Group. The Base Specifications Issue 7, 2018. URL:
https://pubs.opengroup.org/onlinepubs/9699919799/mindex.html.

[103] BlazingSQL Inc. BlazingSQL | high performance SQL engine on RAPIDS AI,
2022. URL: https://blazingsql.com/.

[104] James A. Jablin, Thomas B. Jablin, Onur Mutlu, and Maurice Herlihy.
Warp-aware trace scheduling for GPUs. In Proceedings of the 23rd Interna-
tional Conference on Parallel Architectures and Compilation, PACT ’14, page
163–174, New York, NY, USA, 2014. Association for Computing Machinery.
doi:10.1145/2628071.2628101.

[105] Dejice Jacob, Phil Trinder, and Jeremy Singer. Python programmers have GPUs
too: Automatic Python loop parallelization with staged dependence analysis. In

173

http://www.sable.mcgill.ca/~hendren/621/
http://www.sable.mcgill.ca/~hendren/621/
https://doi.org/10.1145/1950365.1950409
https://doi.org/10.1109/CGO53902.2022.9741290
https://pubs.opengroup.org/onlinepubs/9699919799/mindex.html
https://blazingsql.com/
https://doi.org/10.1145/2628071.2628101


Bibliography

Proceedings of the 15th ACM SIGPLAN International Symposium on Dynamic
Languages, DLS 2019, page 42–54, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3359619.3359743.

[106] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Scarpazza. Dissecting
the NVidia Turing T4 GPU via microbenchmarking, 03 2019. URL: https:
//arxiv.org/abs/1903.07486.

[107] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele Paolo Scarpazza. Dis-
secting the NVIDIA Volta GPU architecture via microbenchmarking, 04 2018.
URL: http://arxiv.org/abs/1804.06826.

[108] Robert Ohannessian Jr, Michael Alan Fetterman, Olivier Giroux, Jack H.
Choquette, Xiaogang Qiu, Shirish Gadre, and Meenaradchagan Vishnu. Sys-
tem, method, and computer program product for implementing software-based
scoreboarding, August 2015. URL: https://patents.google.com/patent/
US20150220341A1/en.

[109] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. GPU join pro-
cessing revisited. In Proceedings of the Eighth International Workshop on Data
Management on New Hardware, DaMoN ’12, page 55–62, New York, NY, USA,
2012. Association for Computing Machinery. doi:10.1145/2236584.2236592.

[110] Charu Kalra. Design and evaluation of register allocation on GPUs. Master’s
thesis, Northeastern University, 2015.

[111] T. Karnagel, Dirk Habich, and Wolfgang Lehner. Local vs. global optimization:
Operator placement strategies in heterogeneous environments. CEUR Workshop
Proceedings, 1330:48–55, 01 2015.

[112] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. Adaptive work place-
ment for query processing on heterogeneous computing resources. Proc. VLDB
Endow., 10(7):733–744, mar 2017. doi:10.14778/3067421.3067423.

174

https://doi.org/10.1145/3359619.3359743
https://arxiv.org/abs/1903.07486
https://arxiv.org/abs/1903.07486
http://arxiv.org/abs/1804.06826
https://patents.google.com/patent/US20150220341A1/en
https://patents.google.com/patent/US20150220341A1/en
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.14778/3067421.3067423


Bibliography

[113] Tomas Karnagel, Dirk Habich, Benjamin Schlegel, and Wolfgang Lehner.
Heterogeneity-aware operator placement in column-store DBMS. Datenbank-
Spektrum, 14:211–221, 11 2014. doi:10.1007/s13222-014-0167-9.

[114] Tomas Karnagel, René Müller, and Guy M. Lohman. Optimizing GPU-
accelerated group-by and aggregation. In ADMS@VLDB, pages 13–24, 2015.

[115] Manos Karpathiotakis, Ioannis Alagiannis, and Anastasia Ailamaki. Fast
queries over heterogeneous data through engine customization. Proc. VLDB
Endow., 9(12):972–983, aug 2016. doi:10.14778/2994509.2994516.

[116] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew
Pavlo, and Peter Boncz. Everything you always wanted to know about com-
piled and vectorized queries but were afraid to ask. Proc. VLDB Endow.,
11(13):2209–2222, sep 2018. doi:10.14778/3275366.3284966.

[117] Timo Kersten, Viktor Leis, and Thomas Neumann. Tidy Tuples and Flying
Start: Fast compilation and fast execution of relational queries in Umbra. VLDB
J., 30:883–905, 2021.

[118] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers.
Accel-Sim: An extensible simulation framework for validated GPU modeling. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 473–486, 2020. doi:10.1109/ISCA45697.2020.00047.

[119] Malik Khan, Protonu Basu, Gabe Rudy, Mary Hall, Chun Chen, and Jacque-
line Chame. A script-based autotuning compiler system to generate high-
performance CUDA code. ACM Trans. Archit. Code Optim., 9(4), jan 2013.
doi:10.1145/2400682.2400690.

[120] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov,
and Ahmed Fasih. PyCUDA and PyOpenCL: A scripting-based approach to
GPU run-time code generation. Parallel Comput., 38(3):157–174, mar 2012.
doi:10.1016/j.parco.2011.09.001.

175

https://doi.org/10.1007/s13222-014-0167-9
https://doi.org/10.14778/2994509.2994516
https://doi.org/10.14778/3275366.3284966
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1145/2400682.2400690
https://doi.org/10.1016/j.parco.2011.09.001


Bibliography

[121] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. Build-
ing efficient query engines in a high-level language. Proc. VLDB Endow.,
7(10):853–864, jun 2014. doi:10.14778/2732951.2732959.

[122] André Kohn, Viktor Leis, and Thomas Neumann. Adaptive execution of com-
piled queries. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pages 197–208, 2018. doi:10.1109/ICDE.2018.00027.

[123] Marcelina Kościelnicka, Ben Skeggs, Martin Peres, Maarten Lankhorst, Roy
Spliet, Christoph Bumiller, Marcin Ślusarz, Emil Velikov, and Francisco
Jerez. GitHub - envytools/envytools, May 2021. URL: https://github.com/
envytools/envytools.

[124] Mayank Kothiya. Understanding the ISA impact on GPU architecture. Master’s
thesis, North Carolina State University, 2014.

[125] Alexander Krolik, Clark Verbrugge, and Laurie Hendren. r3d3: Optimized
query compilation on GPUs. In 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 277–288, 2021. doi:10.

1109/CGO51591.2021.9370323.

[126] Serge Lamikhov-Center. GitHub - serge1/ELFIO, Sep 2020. URL: https:
//github.com/serge1/ELFIO.

[127] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International Sym-
posium on Code Generation and Optimization: Feedback-Directed and Run-
time Optimization, CGO ’04, page 75, USA, 2004. IEEE Computer Society.
doi:10.1109/CGO.2004.1281665.

[128] Andrew S. D. Lee and Tarek S. Abdelrahman. Launch-time optimization of
OpenCL GPU kernels. In Proceedings of the General Purpose GPUs, GPGPU-
10, page 32–41, New York, NY, USA, 2017. Association for Computing Ma-
chinery. doi:10.1145/3038228.3038236.

176

https://doi.org/10.14778/2732951.2732959
https://doi.org/10.1109/ICDE.2018.00027
https://github.com/envytools/envytools
https://github.com/envytools/envytools
https://doi.org/10.1109/CGO51591.2021.9370323
https://doi.org/10.1109/CGO51591.2021.9370323
https://github.com/serge1/ELFIO
https://github.com/serge1/ELFIO
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3038228.3038236


Bibliography

[129] Rubao Lee, Minghong Zhou, Chi Li, Shenggang Hu, Jianping Teng, Dongyang
Li, and Xiaodong Zhang. The art of balance: A RateupDB™ experience
of building a CPU/GPU hybrid database product. Proc. VLDB Endow.,
14(12):2999–3013, jul 2021. doi:10.14778/3476311.3476378.

[130] Seyong Lee and Rudolf Eigenmann. OpenMPC: Extended OpenMP pro-
gramming and tuning for GPUs. In Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’10, page 1–11, USA, 2010. IEEE Computer Society.
doi:10.1109/SC.2010.36.

[131] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: A
compiler framework for automatic translation and optimization. In Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’09, page 101–110, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. doi:10.1145/1504176.1504194.

[132] Seyong Lee and Jeffrey S. Vetter. OpenARC: Open accelerator research compiler
for directive-based, efficient heterogeneous computing. In Proceedings of the
23rd International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’14, page 115–120, New York, NY, USA, 2014. Association
for Computing Machinery. doi:10.1145/2600212.2600704.

[133] Martin Leitner-Ankerl. GitHub - martinus/robin-hood-hashing, May 2021.
URL: https://github.com/martinus/robin-hood-hashing.

[134] Alan Leung, Ondřej Lhoták, and Ghulam Lashari. Automatic parallelization
for graphics processing units. In Proceedings of the 7th International Conference
on Principles and Practice of Programming in Java, PPPJ ’09, page 91–100,
New York, NY, USA, 2009. Association for Computing Machinery. doi:10.

1145/1596655.1596670.

177

https://doi.org/10.14778/3476311.3476378
https://doi.org/10.1109/SC.2010.36
https://doi.org/10.1145/1504176.1504194
https://doi.org/10.1145/2600212.2600704
https://github.com/martinus/robin-hood-hashing
https://doi.org/10.1145/1596655.1596670
https://doi.org/10.1145/1596655.1596670


Bibliography

[135] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. HippogriffDB: Balancing I/O and gpu bandwidth in big data analyt-
ics. Proc. VLDB Endow., 9(14):1647–1658, oct 2016. doi:10.14778/3007328.
3007331.

[136] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA
Tesla: A unified graphics and computing architecture. IEEE Micro,
28(2):39–55, March 2008. doi:10.1109/MM.2008.31.

[137] Guei-Yuan Lueh, Kaiyu Chen, Gang Chen, Joel Fuentes, Wei-Yu Chen, Fang-
wen Fu, Hong Jiang, Hongzheng Li, and Daniel Rhee. C-for-Metal: High Per-
formance SIMD Programming on Intel GPUs, page 289–300. IEEE Press, 2021.
URL: https://doi.org/10.1109/CGO51591.2021.9370324.

[138] Justin Luitjens. Faster parallel reductions on Kepler | NVIDIA developer blog,
Feb 2012. URL: https://developer.nvidia.com/blog/faster-parallel-
reductions-kepler/.

[139] Mark Harris Luke Durant, Olivier Giroux and Nick Stam. Inside Volta: The
world’s most advanced data center GPU | NVIDIA developer blog, May 2017.
URL: https://developer.nvidia.com/blog/inside-volta/.

[140] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
Pump up the volume: Processing large data on GPUs with fast interconnects.
In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’20, page 1633–1649, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3318464.3389705.

[141] Marcello Maggioni and Charu Chandrasekaran. Apple LLVM GPU compiler:
Embedded dragons, 2017. US LLVM Developers’ Meeting.

[142] Hidehiko Masuhara and Yusuke Nishiguchi. A data-parallel extension to Ruby
for GPGPU: Toward a framework for implementing domain-specific optimiza-
tions. In Proceedings of the 9th ECOOP Workshop on Reflection, AOP, and

178

https://doi.org/10.14778/3007328.3007331
https://doi.org/10.14778/3007328.3007331
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/CGO51591.2021.9370324
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/inside-volta/
https://doi.org/10.1145/3318464.3389705


Bibliography

Meta-Data for Software Evolution, RAM-SE ’12, page 3–6, New York, NY,
USA, 2012. Association for Computing Machinery. doi:10.1145/2237887.

2237888.

[143] Kothiya Mayank, Hongwen Dai, Jizeng Wei, and Huiyang Zhou. Analyzing
graphics processor unit (GPU) instruction set architectures. In 2015 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 155–156, 2015. doi:10.1109/ISPASS.2015.7095794.

[144] Suejb Memeti and Sabri Pllana. HSTREAM: A directive-based language exten-
sion for heterogeneous stream computing. In 2018 IEEE International Confer-
ence on Computational Science and Engineering (CSE), pages 138–145, 2018.
doi:10.1109/CSE.2018.00026.

[145] Gleison Mendonça, Breno Guimarães, Péricles Alves, Márcio Pereira, Guido
Araújo, and Fernando Magno Quintão Pereira. DawnCC: Automatic annotation
for data parallelism and offloading. ACM Trans. Archit. Code Optim., 14(2),
may 2017. doi:10.1145/3084540.

[146] Sina Meraji, Berni Schiefer, Lan Pham, Lee Chu, Peter Kokosielis, Adam Storm,
Wayne Young, Chang Ge, Geoffrey Ng, and Kajan Kanagaratnam. Towards
a hybrid design for fast query processing in DB2 with BLU acceleration using
graphical processing units: A technology demonstration. In Proceedings of the
2016 International Conference on Management of Data, SIGMOD ’16, page
1951–1960, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2882903.2903735.

[147] Duane Merrill and Michael Garland. Single-pass parallel prefix scan with de-
coupled lookback. Technical report, NVIDIA, 2016.

[148] Nicholas Moore, Miriam Leeser, and Laurie Smith King. Kernel specializa-
tion for improved adaptability and performance on graphics processing units
(GPUs). In 2013 IEEE 27th International Symposium on Parallel and Dis-
tributed Processing, pages 1037–1048, 2013. doi:10.1109/IPDPS.2013.31.

179

https://doi.org/10.1145/2237887.2237888
https://doi.org/10.1145/2237887.2237888
https://doi.org/10.1109/ISPASS.2015.7095794
https://doi.org/10.1109/CSE.2018.00026
https://doi.org/10.1145/3084540
https://doi.org/10.1145/2882903.2903735
https://doi.org/10.1109/IPDPS.2013.31


Bibliography

[149] John Magnus Morton, Kuba Kaszyk, Lu Li, Jiawen Sun, Christophe Dubach,
Michel Steuwer, Murray Cole, and Michael F. P. O’Boyle. DelayRepay: De-
layed execution for kernel fusion in Python. In Proceedings of the 16th ACM
SIGPLAN International Symposium on Dynamic Languages, DLS 2020, page
43–56, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3426422.3426980.

[150] Todd Mostak. An overview of MapD (Massively Parallel Database), Sep
2014. URL: http://www.smallake.kr/wp-content/uploads/2014/09/mapd_
overview.pdf.

[151] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[152] Thomas Neumann. Efficiently compiling efficient query plans for modern hard-
ware. Proc. VLDB Endow., 4(9):539–550, June 2011. doi:10.14778/2002938.
2002940.

[153] Thomas Neumann. Database architects: Linear time liveness analysis, Apr
2020. URL: http://databasearchitects.blogspot.com/2020/04/linear-
time-liveness-analysis.html.

[154] John R. Nickolls, Richard Craig Johnson, Robert Steven Glanville, and
Guillermo Juan Rozas. Unanimous branch instructions in a parallel
thread processor, March 2011. URL: https://patents.google.com/patent/
US20110072248/en.

[155] Gabriel Noaje, Christophe Jaillet, and Michaël Krajecki. Source-to-source
code translator: OpenMP C to CUDA. In Proceedings of the 2011 IEEE
International Conference on High Performance Computing and Communica-
tions, HPCC ’11, page 512–519, USA, 2011. IEEE Computer Society. doi:

10.1109/HPCC.2011.73.

[156] Cedric Nugteren and Henk Corporaal. Introducing ‘Bones’: A parallelizing
source-to-source compiler based on algorithmic skeletons. In Proceedings of the

180

https://doi.org/10.1145/3426422.3426980
http://www.smallake.kr/wp-content/uploads/2014/09/mapd_overview.pdf
http://www.smallake.kr/wp-content/uploads/2014/09/mapd_overview.pdf
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
http://databasearchitects.blogspot.com/2020/04/linear-time-liveness-analysis.html
http://databasearchitects.blogspot.com/2020/04/linear-time-liveness-analysis.html
https://patents.google.com/patent/US20110072248/en
https://patents.google.com/patent/US20110072248/en
https://doi.org/10.1109/HPCC.2011.73
https://doi.org/10.1109/HPCC.2011.73


Bibliography

5th Annual Workshop on General Purpose Processing with Graphics Process-
ing Units, GPGPU-5, page 1–10, New York, NY, USA, 2012. Association for
Computing Machinery. doi:10.1145/2159430.2159431.

[157] Cedric Nugteren and Henk Corporaal. Bones: An automatic skeleton-based
C-to-CUDA compiler for GPUs. ACM Trans. Archit. Code Optim., 11(4), dec
2014. doi:10.1145/2665079.

[158] NVIDIA. GeForce GTX 1080 whitepaper, 2016. URL: http:

//international.download.nvidia.com/geforce-com/international/

pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf.

[159] NVIDIA. Driver persistence :: GPU deployment and management doc-
umentation, Jun 2020. URL: https://docs.nvidia.com/deploy/driver-

persistence/index.html.

[160] NVIDIA. NVIDIA Ampere GA102 GPU architecture, 2020. URL:
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/

pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf.

[161] NVIDIA. Best practices guide :: CUDA Toolkit documentation, Nov
2021. URL: https://docs.nvidia.com/cuda/cuda-c-best-practices-

guide/index.html.

[162] NVIDIA. CUDA binary utilities :: CUDA Toolkit documentation, Aug
2021. URL: https://docs.nvidia.com/cuda/cuda-binary-utilities/

index.html.

[163] NVIDIA. CUDA driver API :: CUDA Toolkit documentation, Nov 2021. URL:
https://docs.nvidia.com/cuda/cuda-driver-api/index.html.

[164] NVIDIA. CUDA occupancy calculator :: CUDA Toolkit documentation, Nov
2021. URL: https://docs.nvidia.com/cuda/cuda-occupancy-calculator/
index.html.

181

https://doi.org/10.1145/2159430.2159431
https://doi.org/10.1145/2665079
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://docs.nvidia.com/deploy/driver-persistence/index.html
https://docs.nvidia.com/deploy/driver-persistence/index.html
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
https://docs.nvidia.com/cuda/cuda-driver-api/index.html
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html


Bibliography

[165] NVIDIA. CUDA runtime API :: CUDA Toolkit documentation, Nov 2021.
URL: https://docs.nvidia.com/cuda/cuda-runtime-api/index.html.

[166] NVIDIA. libdevice user’s guide :: CUDA Toolkit documentation, Nov
2021. URL: https://docs.nvidia.com/cuda/libdevice-users-guide/

index.html.

[167] NVIDIA. NVCC :: CUDA Toolkit documentation, Oct 2021. URL: https:
//docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html.

[168] NVIDIA. Programming guide :: CUDA Toolkit documentation, Nov 2021.
URL: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html.

[169] NVIDIA. PTX compiler APIs :: CUDA Toolkit documentation, Nov 2021.
URL: https://docs.nvidia.com/cuda/ptx-compiler-api/index.html.

[170] NVIDIA. PTX ISA :: CUDA Toolkit documentation, Aug 2021. URL: https:
//docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[171] NVIDIA. Volta tuning guide :: CUDA Toolkit documentation, Nov 2021. URL:
https://docs.nvidia.com/cuda/volta-tuning-guide/index.html.

[172] NVIDIA. CUB: Main page, Jan 2022. URL: https://nvlabs.github.io/
cub/.

[173] NVIDIA. NVVM IR :: CUDA Toolkit documentation, Jan 2022. URL: https:
//docs.nvidia.com/cuda/nvvm-ir-spec/index.html.

[174] NVIDIA. Thrust :: CUDA Toolkit documentation, Jan 2022. URL: https:
//docs.nvidia.com/cuda/thrust/index.html.

[175] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman
Loomis. CuPy: A NumPy-compatible library for NVIDIA GPU calculations.
In Proceedings of Workshop on Machine Learning Systems (LearningSys) in

182

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/libdevice-users-guide/index.html
https://docs.nvidia.com/cuda/libdevice-users-guide/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/ptx-compiler-api/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/volta-tuning-guide/index.html
https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/thrust/index.html
https://docs.nvidia.com/cuda/thrust/index.html


Bibliography

The Thirty-first Annual Conference on Neural Information Processing Sys-
tems (NIPS), 2017. URL: http://learningsys.org/nips17/assets/papers/
paper_16.pdf.

[176] openacc standard.org. OpenACC programming and best practices guide,
May 2021. URL: https://www.openacc.org/sites/default/files/inline-
files/OpenACC_Programming_Guide_0_0.pdf.

[177] Johns Paul, Bingsheng He, Shengliang Lu, and Chiew Tong Lau. Improving ex-
ecution efficiency of just-in-time compilation based query processing on GPUs.
Proc. VLDB Endow., 14(2):202–214, October 2020. doi:10.14778/3425879.

3425890.

[178] Johns Paul, Jiong He, and Bingsheng He. GPL: A GPU-based pipelined query
processing engine. In Proceedings of the 2016 International Conference on Man-
agement of Data, SIGMOD ’16, page 1935–1950, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2882903.2915224.

[179] Johns Paul, Shengliang Lu, Bingsheng He, and Chiew Tong Lau. MG-Join: A
Scalable Join for Massively Parallel Multi-GPU Architectures, page 1413–1425.
Association for Computing Machinery, New York, NY, USA, 2021. URL:
https://doi.org/10.1145/3448016.3457254.

[180] Fernando Magno Quintão Pereira. Lecture notes in DCC888: Program
analysis and optimization (worklist algorithms), January 2020. URL:
https://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/

slides/WorkList.pdf.

[181] Shlomit S. Pinter. Register allocation with instruction scheduling. In Pro-
ceedings of the ACM SIGPLAN 1993 Conference on Programming Language
Design and Implementation, PLDI ’93, page 248–257, New York, NY, USA,
1993. Association for Computing Machinery. doi:10.1145/155090.155114.

183

http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://doi.org/10.14778/3425879.3425890
https://doi.org/10.14778/3425879.3425890
https://doi.org/10.1145/2882903.2915224
https://doi.org/10.1145/3448016.3457254
https://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/WorkList.pdf
https://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/WorkList.pdf
https://doi.org/10.1145/155090.155114


Bibliography

[182] Holger Pirk, Stefan Manegold, and Martin Kersten. Waste not... efficient co-
processing of relational data. In 2014 IEEE 30th International Conference on
Data Engineering, pages 508–519, 2014. doi:10.1109/ICDE.2014.6816677.

[183] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. Voodoo - a vector
algebra for portable database performance on modern hardware. Proc. VLDB
Endow., 9(14):1707–1718, October 2016. doi:10.14778/3007328.3007336.

[184] pocl developers. GitHub - pocl/pocl, Jan 2022. URL: https://github.com/
pocl/pocl/.

[185] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM
Trans. Program. Lang. Syst., 21(5):895–913, September 1999. doi:10.1145/

330249.330250.

[186] LLVM Project. User guide for NVPTX back-end — LLVM 13 documentation,
Jan 2022. URL: https://llvm.org/docs/NVPTXUsage.html.

[187] Bo Qiao, Oliver Reiche, Frank Hannig, and Jïrgen Teich. From loop fusion
to kernel fusion: A domain-specific approach to locality optimization. In 2019
IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 242–253, 2019. doi:10.1109/CGO.2019.8661176.

[188] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill, Inc., USA, 3rd edition, 2002.

[189] Syed Mohammad Aunn Raza, Periklis Chrysogelos, Panagiotis Sioulas,
Vladimir Indjic, Angelos Christos Anadiotis, and Anastasia Ailamaki. GPU-
accelerated data management under the test of time. In Online proceedings of
the 10th Conference on Innovative Data Systems Research (CIDR), page 11,
2020. This article is published under a Creative Commons Attribution License
3.0. URL: http://infoscience.epfl.ch/record/277001.

[190] Nico Reissmann, Thomas L. Falch, Benjamin A. Bjørnseth, Helge Bahmann,
Jan Christian Meyer, and Magnus Jahre. Efficient control flow restructuring

184

https://doi.org/10.1109/ICDE.2014.6816677
https://doi.org/10.14778/3007328.3007336
https://github.com/pocl/pocl/
https://github.com/pocl/pocl/
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/330249.330250
https://llvm.org/docs/NVPTXUsage.html
https://doi.org/10.1109/CGO.2019.8661176
http://infoscience.epfl.ch/record/277001


Bibliography

for GPUs. In 2016 International Conference on High Performance Computing
Simulation (HPCS), pages 48–57, 2016. doi:10.1109/HPCSim.2016.7568315.

[191] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. Query processing on
heterogeneous CPU/GPU systems. ACM Comput. Surv., 55(1), jan 2022.
doi:10.1145/3485126.

[192] Viktor Rosenfeld, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker
Markl. Performance analysis and automatic tuning of hash aggregation on
GPUs. In Proceedings of the 15th International Workshop on Data Management
on New Hardware, DaMoN’19, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3329785.3329922.

[193] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and
Dennis Fetterly. Dandelion: A compiler and runtime for heterogeneous systems.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, page 49–68, New York, NY, USA, 2013. Association for
Computing Machinery. doi:10.1145/2517349.2522715.

[194] Eyal Rozenberg and Peter Boncz. Faster across the PCIe bus: A GPU library for
lightweight decompression: Including support for patched compression schemes.
In Proceedings of the 13th International Workshop on Data Management on New
Hardware, DAMON ’17, New York, NY, USA, 2017. Association for Computing
Machinery. doi:10.1145/3076113.3076122.

[195] Alex Rubinsteyn, Eric Hielscher, Nathaniel Weinman, and Dennis Shasha. Para-
keet: A just-in-time parallel accelerator for Python. In Proceedings of the 4th
USENIX Conference on Hot Topics in Parallelism, HotPar’12, page 14, USA,
2012. USENIX Association.

[196] Ran Rui, Hao Li, and Yi-Cheng Tu. Join algorithms on GPUs: A revisit after
seven years. In 2015 IEEE International Conference on Big Data (Big Data),
pages 2541–2550, 2015. doi:10.1109/BigData.2015.7364051.

185

https://doi.org/10.1109/HPCSim.2016.7568315
https://doi.org/10.1145/3485126
https://doi.org/10.1145/3329785.3329922
https://doi.org/10.1145/2517349.2522715
https://doi.org/10.1145/3076113.3076122
https://doi.org/10.1109/BigData.2015.7364051


Bibliography

[197] Ran Rui, Hao Li, and Yi-Cheng Tu. Efficient join algorithms for large database
tables in a multi-GPU environment. Proc. VLDB Endow., 14(4):708–720, dec
2020. doi:10.14778/3436905.3436927.

[198] Ran Rui and Yi-Cheng Tu. Fast equi-join algorithms on GPUs: Design and
implementation. In Proceedings of the 29th International Conference on Scien-
tific and Statistical Database Management, SSDBM ’17, New York, NY, USA,
2017. Association for Computing Machinery. doi:10.1145/3085504.3085521.

[199] Mehrzad Samadi, Amir Hormati, Janghaeng Lee, and Scott Mahlke. Paragon:
Collaborative speculative loop execution on GPU and CPU. In Proceedings of
the 5th Annual Workshop on General Purpose Processing with Graphics Pro-
cessing Units, GPGPU-5, page 64–73, New York, NY, USA, 2012. Association
for Computing Machinery. doi:10.1145/2159430.2159438.

[200] Shigeyuki Sato and Hideya Iwasaki. A skeletal parallel framework with fusion
optimizer for GPGPU programming. In Proceedings of the 7th Asian Sympo-
sium on Programming Languages and Systems, APLAS ’09, page 79–94, Berlin,
Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-10672-9_8.

[201] Charitha Saumya, Kirshanthan Sundararajah, and Milind Kulkarni. Darm:
Control-flow melding for simt thread divergence reduction. In 2022 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
1–13, 2022. doi:10.1109/CGO53902.2022.9741285.

[202] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. A study of the fundamental
performance characteristics of GPUs and CPUs for database analytics. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’20, page 1617–1632, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3318464.3380595.

186

https://doi.org/10.14778/3436905.3436927
https://doi.org/10.1145/3085504.3085521
https://doi.org/10.1145/2159430.2159438
https://doi.org/10.1007/978-3-642-10672-9_8
https://doi.org/10.1109/CGO53902.2022.9741285
https://doi.org/10.1145/3318464.3380595


Bibliography

[203] Ghassan Shobaki, Justin Bassett, Mark Heffernan, and Austin Kerbow. Graph
transformations for register-pressure-aware instruction scheduling. In Proceed-
ings of the 31st ACM SIGPLAN International Conference on Compiler Con-
struction, CC 2022, page 41–53, New York, NY, USA, 2022. Association for
Computing Machinery. doi:10.1145/3497776.3517771.

[204] Ghassan Shobaki, Austin Kerbow, and Stanislav Mekhanoshin. Optimizing oc-
cupancy and ILP on the GPU using a combinatorial approach. In Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation and Op-
timization, CGO 2020, page 133–144, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3368826.3377918.

[205] Dhirendra Singh, Ishan Joshi, and Jaytrilok Choudhary. Survey of GPU based
sorting algorithms. International Journal of Parallel Programming, 46, 04 2017.
doi:10.1007/s10766-017-0502-5.

[206] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ail-
amaki. Hardware-conscious hash-joins on GPUs. In 2019 IEEE 35th In-
ternational Conference on Data Engineering (ICDE), pages 698–709, 2019.
doi:10.1109/ICDE.2019.00068.

[207] Evangelia A. Sitaridi and Kenneth A. Ross. Optimizing select conditions on
GPUs. In Proceedings of the Ninth International Workshop on Data Manage-
ment on New Hardware, DaMoN ’13, New York, NY, USA, 2013. Association
for Computing Machinery. doi:10.1145/2485278.2485282.

[208] Evangelia A. Sitaridi and Kenneth A. Ross. GPU-accelerated string matching
for database applications. The VLDB Journal, 25(5):719–740, oct 2016. doi:

10.1007/s00778-015-0409-y.

[209] Rafael Sotomayor, Luis Miguel Sanchez, Javier Garcia Blas, Javier Fernandez,
and J. Daniel Garcia. Automatic CPU/GPU generation of multi-versioned
OpenCL kernels for C++ scientific applications. Int. J. Parallel Program.,
45(2):262–282, apr 2017. doi:10.1007/s10766-016-0425-6.

187

https://doi.org/10.1145/3497776.3517771
https://doi.org/10.1145/3368826.3377918
https://doi.org/10.1007/s10766-017-0502-5
https://doi.org/10.1109/ICDE.2019.00068
https://doi.org/10.1145/2485278.2485282
https://doi.org/10.1007/s00778-015-0409-y
https://doi.org/10.1007/s00778-015-0409-y
https://doi.org/10.1007/s10766-016-0425-6


Bibliography

[210] Matthias Springer and Hidehiko Masuhara. Object support in an array-based
GPGPU extension for Ruby. In Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on Libraries, Languages, and Compilers for Array Program-
ming, ARRAY 2016, page 25–31, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2935323.2935327.

[211] Matthias Springer, Peter Wauligmann, and Hidehiko Masuhara. Modular array-
based GPU computing in a dynamically-typed language. In Proceedings of
the 4th ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming, ARRAY 2017, page 48–55, New York, NY,
USA, 2017. Association for Computing Machinery. doi:10.1145/3091966.

3091974.

[212] M. Steuwer, T. Remmelg, and C. Dubach. LIFT: A functional data-parallel IR
for high-performance GPU code generation. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 74–85, 2017.
doi:10.1109/CGO.2017.7863730.

[213] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. Gener-
ating performance portable code using rewrite rules: From high-level functional
expressions to high-performance OpenCL code. In Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2015,
page 205–217, New York, NY, USA, 2015. Association for Computing Machin-
ery. doi:10.1145/2784731.2784754.

[214] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth
O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-Store: A
column-oriented DBMS. In Proceedings of the 31st International Conference
on Very Large Data Bases, VLDB ’05, page 553–564. VLDB Endowment, 2005.

188

https://doi.org/10.1145/2935323.2935327
https://doi.org/10.1145/3091966.3091974
https://doi.org/10.1145/3091966.3091974
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1145/2784731.2784754


Bibliography

[215] Alex Suhan. Massive throughput database queries with LLVM on GPUs,
Apr 2016. URL: https://www.omnisci.com/blog/massive-throughput-

database-queries-with-llvm-on-gpus.

[216] Dean Takahashi. Nintendo Switch specs: less powerful than PlayStation 4,
Dec 2016. URL: https://venturebeat.com/2016/12/14/nintendo-switch-
specs-less-powerful-than-playstation-4/.

[217] PG-Strom Development Team. Home - PG-Strom manual, Apr 2020. URL:
https://heterodb.github.io/pg-strom/.

[218] The Halide team. GitHub - halide/Halide, Jan 2022. URL: https://github.
com/halide/Halide/.

[219] Andrew Tolmach. Lecture notes in CS322: Languages and compiler design II,
April 2012. URL: https://web.cecs.pdx.edu/~apt/cs322/.

[220] Diego G. Tomé, Tim Gubner, Mark Raasveldt, Eyal Rozenberg, and Peter A.
Boncz. Optimizing group-by and aggregation using GPU-CPU co-processing.
In ADMS@VLDB, 2018.

[221] Transaction Processing Performance Council. TPC Benchmark H, 2017.

[222] Damien Triolet. GP104 : 7.2 milliards de transistors en 16 nm - Nvidia
GeForce GTX 1080, le premier GPU 16nm en test ! - HardWare.fr,
May 2016. URL: https://www.hardware.fr/articles/948-2/gp104-7-2-
milliards-transistors-16-nm.html.

[223] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
Multi2Sim: A simulation framework for CPU-GPU computing. In Proceedings
of the 21st International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, page 335–344, New York, NY, USA, 2012. Association
for Computing Machinery. doi:10.1145/2370816.2370865.

[224] Wladimir J. van der Laan. GitHub - laanwj/decuda, Jun 2010. URL: https:
//github.com/laanwj/decuda.

189

https://www.omnisci.com/blog/massive-throughput-database-queries-with-llvm-on-gpus
https://www.omnisci.com/blog/massive-throughput-database-queries-with-llvm-on-gpus
https://venturebeat.com/2016/12/14/nintendo-switch-specs-less-powerful-than-playstation-4/
https://venturebeat.com/2016/12/14/nintendo-switch-specs-less-powerful-than-playstation-4/
https://heterodb.github.io/pg-strom/
https://github.com/halide/Halide/
https://github.com/halide/Halide/
https://web.cecs.pdx.edu/~apt/cs322/
https://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html
https://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html
https://doi.org/10.1145/2370816.2370865
https://github.com/laanwj/decuda
https://github.com/laanwj/decuda


Bibliography

[225] Clark Verbrugge. Lecture notes on compiler optimization, May 2021. URL:
http://www.sable.mcgill.ca/~clump/compileropt/.

[226] Clark Verbrugge, Christopher J. F. Pickett, Alexander Krolik, and Allan Kiel-
stra. Exhaustive analysis of thread-level speculation. In Proceedings of the 3rd
International Workshop on Software Engineering for Parallel Systems, SEPS
2016, page 25–34, New York, NY, USA, 2016. Association for Computing Ma-
chinery. doi:10.1145/3002125.3002127.

[227] Mohamed Wahib and Naoya Maruyama. Scalable kernel fusion for memory-
bound GPU applications. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’14, page
191–202. IEEE Press, 2014. doi:10.1109/SC.2014.21.

[228] Fabian Wahlster. Implementing SPMD control flow in LLVM using recon-
verging CFGs, 2019. European LLVM Developers’ Meeting. URL: https:
//llvm.org/devmtg/2019-04/slides/Poster-Wahlster-Implementing_

SPMD_control_flow_in_LLVM_using_reconverging_CFG.pdf.

[229] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning Ding,
and Xiaodong Zhang. Concurrent analytical query processing with GPUs. Proc.
VLDB Endow., 7(11):1011–1022, jul 2014. doi:10.14778/2732967.2732976.

[230] Zheng Wang, Dominik Grewe, and Michael F. P. O’boyle. Automatic and
portable mapping of data parallel programs to OpenCL for GPU-based het-
erogeneous systems. ACM Trans. Archit. Code Optim., 11(4), dec 2014.
doi:10.1145/2677036.

[231] Michael Wolfe. Implementing the PGI accelerator model. In Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing Units,
GPGPU-3, page 43–50, New York, NY, USA, 2010. Association for Computing
Machinery. doi:10.1145/1735688.1735697.

[232] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. Kernel Weaver: Auto-
matically fusing database primitives for efficient GPU computation. In 2012

190

http://www.sable.mcgill.ca/~clump/compileropt/
https://doi.org/10.1145/3002125.3002127
https://doi.org/10.1109/SC.2014.21
https://llvm.org/devmtg/2019-04/slides/Poster-Wahlster-Implementing_SPMD_control_flow_in_LLVM_using_reconverging_CFG.pdf
https://llvm.org/devmtg/2019-04/slides/Poster-Wahlster-Implementing_SPMD_control_flow_in_LLVM_using_reconverging_CFG.pdf
https://llvm.org/devmtg/2019-04/slides/Poster-Wahlster-Implementing_SPMD_control_flow_in_LLVM_using_reconverging_CFG.pdf
https://doi.org/10.14778/2732967.2732976
https://doi.org/10.1145/2677036
https://doi.org/10.1145/1735688.1735697


Bibliography

45th Annual IEEE/ACM International Symposium on Microarchitecture, pages
107–118, 2012. doi:10.1109/MICRO.2012.19.

[233] Haicheng Wu, Gregory Diamos, Tim Sheard, Molham Aref, Sean Baxter,
Michael Garland, and Sudhakar Yalamanchili. Red Fox: An execution envi-
ronment for relational query processing on GPUs. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
CGO ’14, page 44–54, New York, NY, USA, 2014. Association for Computing
Machinery. doi:10.1145/2544137.2544166.

[234] Haicheng Wu, Gregory Diamos, Jin Wang, Srihari Cadambi, Sudhakar Yala-
manchili, and Srimat Chakradhar. Optimizing data warehousing applications
for GPUs using kernel fusion/fission. In Proceedings of the 2012 IEEE 26th In-
ternational Parallel and Distributed Processing Symposium Workshops & PhD
Forum, IPDPSW ’12, page 2433–2442, USA, 2012. IEEE Computer Society.
doi:10.1109/IPDPSW.2012.300.

[235] Haicheng Wu, Gregory Diamos, Jin Wang, Si Li, and Sudhakar Yalaman-
chili. Characterization and transformation of unstructured control flow in
bulk synchronous GPU applications. Int. J. High Perform. Comput. Appl.,
26(2):170–185, may 2012. doi:10.1177/1094342011434814.

[236] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary,
Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, and Robert
Hundt. gpucc: An open-source GPGPU compiler. In Proceedings of the 2016 In-
ternational Symposium on Code Generation and Optimization, CGO ’16, page
105–116, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2854038.2854041.

[237] Haoran Xu and Fredrik Kjolstad. Copy-and-patch compilation: A fast compi-
lation algorithm for high-level languages and bytecode. Proc. ACM Program.
Lang., 5(OOPSLA), oct 2021. doi:10.1145/3485513.

191

https://doi.org/10.1109/MICRO.2012.19
https://doi.org/10.1145/2544137.2544166
https://doi.org/10.1109/IPDPSW.2012.300
https://doi.org/10.1177/1094342011434814
https://doi.org/10.1145/2854038.2854041
https://doi.org/10.1145/3485513


Bibliography

[238] Makoto Yabuta, Anh Nguyen, Shinpei Kato, Masato Edahiro, and Hideyuki
Kawashima. Relational joins on GPUs: A closer look. IEEE Transactions on
Parallel and Distributed Systems, 28(9):2663–2673, 2017. doi:10.1109/TPDS.

2017.2677451.

[239] Da Yan, Wei Wang, and Xiaowen Chu. Optimizing batched winograd con-
volution on GPUs. In 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’20), San Diego, CA, USA, 2020.
ACM. doi:10.1145/3332466.3374520.

[240] Da Yan, Wei Wang, and Xiaowen Chu. An llvm-based open-source compiler
for nvidia gpus. In Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’22, page 448–449,
New York, NY, USA, 2022. Association for Computing Machinery. doi:10.

1145/3503221.3508428.

[241] Shengen Yan, Guoping Long, and Yunquan Zhang. StreamScan: Fast scan al-
gorithms for GPUs without global barrier synchronization. In Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’13, page 229–238, New York, NY, USA, 2013. Association
for Computing Machinery. doi:10.1145/2442516.2442539.

[242] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A GPGPU compiler
for memory optimization and parallelism management. In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’10, page 86–97, New York, NY, USA, 2010. Association
for Computing Machinery. doi:10.1145/1806596.1806606.

[243] Yi-Ping You and Szu-Chieh Chen. Vector-aware register allocation for GPU
shader processors. In 2015 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), pages 99–108, 2015. doi:10.

1109/CASES.2015.7324550.

192

https://doi.org/10.1109/TPDS.2017.2677451
https://doi.org/10.1109/TPDS.2017.2677451
https://doi.org/10.1145/3332466.3374520
https://doi.org/10.1145/3503221.3508428
https://doi.org/10.1145/3503221.3508428
https://doi.org/10.1145/2442516.2442539
https://doi.org/10.1145/1806596.1806606
https://doi.org/10.1109/CASES.2015.7324550
https://doi.org/10.1109/CASES.2015.7324550


Bibliography

[244] Yulong Yu, Weijun Xiao, Xubin He, He Guo, Yuxin Wang, and Xin Chen. A
stall-aware warp scheduling for dynamically optimizing thread-level parallelism
in GPGPUs. In Proceedings of the 29th ACM on International Conference on
Supercomputing, ICS ’15, page 15–24, New York, NY, USA, 2015. Association
for Computing Machinery. doi:10.1145/2751205.2751234.

[245] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. The yin and yang of processing
data warehousing queries on GPU devices. Proc. VLDB Endow., 6(10):817–828,
aug 2013. doi:10.14778/2536206.2536210.

[246] Hou Yunqing. GitHub - hyqneuron/asfermi, Mar 2015. URL: https://github.
com/hyqneuron/asfermi/.

[247] yuzu emulator team. GitHub - yuzu-emu/yuzu: Nintendo Switch Emulator,
Feb 2022. URL: https://github.com/yuzu-emu/yuzu.

[248] F. Zhang and E.H. D’Hollander. Using hammock graphs to structure programs.
IEEE Transactions on Software Engineering, 30(4):231–245, 2004. doi:10.

1109/TSE.2004.1274043.

[249] Kai Zhang, Feng Chen, Xiaoning Ding, Yin Huai, Rubao Lee, Tian Luo, Kaibo
Wang, Yuan Yuan, and Xiaodong Zhang. Hetero-DB: Next generation high-
performance database systems by best utilizing heterogeneous computing and
storage resources. J. Comput. Sci. Technol., 30(4):657–678, 2015. doi:10.

1007/s11390-015-1553-y.

[250] Shuhao Zhang, Jiong He, Bingsheng He, and Mian Lu. OmniDB: Towards
portable and efficient query processing on parallel CPU/GPU architectures.
Proc. VLDB Endow., 6(12):1374–1377, August 2013. doi:10.14778/2536274.
2536319.

[251] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou, and
Mingyu Chen. Understanding the GPU microarchitecture to achieve bare-metal
performance tuning. In Proceedings of the 22nd ACM SIGPLAN Symposium

193

https://doi.org/10.1145/2751205.2751234
https://doi.org/10.14778/2536206.2536210
https://github.com/hyqneuron/asfermi/
https://github.com/hyqneuron/asfermi/
https://github.com/yuzu-emu/yuzu
https://doi.org/10.1109/TSE.2004.1274043
https://doi.org/10.1109/TSE.2004.1274043
https://doi.org/10.1007/s11390-015-1553-y
https://doi.org/10.1007/s11390-015-1553-y
https://doi.org/10.14778/2536274.2536319
https://doi.org/10.14778/2536274.2536319


Bibliography

on Principles and Practice of Parallel Programming, PPoPP ’17, page 31–43,
New York, NY, USA, 2017. Association for Computing Machinery. doi:10.

1145/3018743.3018755.

194

https://doi.org/10.1145/3018743.3018755
https://doi.org/10.1145/3018743.3018755

	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Challenges
	Contributions
	Publications
	Roadmap

	Background
	Databases
	SQL
	Execution

	HorseIR
	GPUs
	Abstract Architecture
	Real Architecture
	Compilation Pipeline


	Overview
	Frontend and Compiler
	Assembler
	Runtime

	Frontend and Compiler
	Frontend
	Outliner
	Framework
	Program Representation
	Shape Analysis
	Geometry Analysis
	Compatibility Analysis
	Builder

	Code Generation
	Target Language: PTX
	Thread Layout
	Templates
	Library
	Optimization

	Summary

	Assembler
	Framework
	Register Allocation
	GPUs
	Linear Scan

	Code Generation
	Target Language: SASS
	Memory Hierarchy
	Structured Control-Flow
	Branch Inlining
	Templates
	Optimization

	Scheduler
	SCHI Directives
	Instruction Classes
	Scheduler Properties
	Scheduler Algorithm
	Barriers

	Binary Generation
	Assembly
	ELF Files

	Summary

	Runtime
	Interpreter
	SQL Library
	GPU Engine

	CUDA Runtime
	Compiler and Linker
	Libraries

	Data Management
	Buffer Allocation
	Buffer Transfers

	Summary

	Evaluation
	Methodology
	Motivation
	Execution Breakdown
	GPU Execution
	Compilation

	Performance Comparison
	Compilation Time
	Cached Execution
	Uncached Execution
	Total Execution

	Optimization
	Execution
	Compiler and Assembler

	Summary

	Related Work
	Databases
	Query Compilation
	GPU Databases

	Compilers
	Automatic Parallelism
	Languages and Intermediate Representations
	Language Extensions and Frameworks
	Directives
	Lower-Level Compilers
	Optimization

	Assembler
	NVIDIA Architecture
	Register Allocation
	Instruction Scheduling
	Control-Flow Structuring


	Conclusion and Future Work
	Limitations
	Future Work


