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Abstract

This thesis describes the design and implementation of a human head motion
monitoring system based on an inertial measurement unit. The system is to be used by
physicians to characterize the head motion when engaging in day-to-day activities
before and after corrective surgery is performed on the vestibular system. This system is
also to be used by personnel in sports medicine to compare performance between

athletes and by coaches to help athletes improve their techniques.

The design is implemented using an inertial measurement unit with an accelerometer, a
gyroscope, and a magnetometer. Data can be logged on an onboard micro-SD card while
transmitting data and receiving commands wirelessly. In doing so, several signal
processing techniques such as finite impulse response filters and sensor fusion using
Kalman filters are presented. All sensors are calibrated to ensure accuracy and reliability.
In addition, this thesis focuses on pattern recognition techniques based on the Bayesian

classification method to distinguish different daily activities of users.



Résumeé

Cette these décrit la conception et le développement d’une systéme d’enregistrement
des mouvements de la téte reposant sur une unité de mesure inertielle. Le systeme doit
étre utilisé par des médecins pour caractériser les mouvements de téte avant et aprés
une chirurgie correctrice effectuée sur le systeme vestibulaire alors que le patient est
engagé dans ses activités journalieres. Ce systeme doit également étre utilise en
médecine du sport afin de comparer les performances entre athlétes et les entraineurs

pour aider les athletes a améliorer leurs techniques.

Le systéme comprend une unité de mesure inertielle avec un accélérometre trois axes, un
gyroscope et un magnétometre. Les données peuvent étre enregistrées sur une carte
micro-SD lors de la transmission de données et recevoir des commandes sans fil. Ce
faisant, plusieurs techniques de traitement du signal tels que des filtres a réponse
impulsionnelle finie et la fusion de signaux en utilisant des filtres de Kalman sont
présentés. Tous les capteurs sont étalonnés pour garantir I'exactitude absolue. De plus,
cette thése se concentre sur les techniques de reconnaissance de forme basée sur la
méthode de classification Bayesienne pour distinguer les différents activités

guotidiennes des utilisateurs.
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1 Introduction

1.1 Motivation

1.1.1 Vestibular System

The vestibular system in the inner ear is the natural human sensory mechanism that
detects linear and rotational motion that the head experiences [1]. Not only that, it is
also the driving force behind clear vision. In order to maintain the focus on an object,
the eyes need to be fixed with respect to the target, and the vestibular system provides
precise measurements that allow the muscles that control the eye movement to
stabilize the image [2]. Distinct features in vestibular signals observed when people
engage in various daily activities are used to design distinct pattern recognition systems
that are unique to those activities. Furthermore, neck and head injuries resulting in
concussions can affect athletes’ spatial perceptions, and the ability to accurately capture
head-motion data assists physicians during the rehabilitation process. A cross section of

the ear is shown in Figure 1.1, and the vestibular system is marked with a red square.



Figure 1.1: The location of the vestibular system in the ear — available on [2]

Head motion displays six degrees of freedom with translations and rotations about each
of the three axes in three dimensional space. Translations are sensed by the saccule and
utricle organs, and they sense the magnitude and the direction of gravity in a similar
fashion to an accelerometer. The semicircular canals contain hair cells that are similar to
the ones used for hearing, and when the head rotates, the fluids in these canals gain
momentum and stimulate these hair cells with the response being proportional to the
rate of rotation [2]. These organs are illustrated in Figure 1.2, and PC, SC, and HC refer to

posterior, superior, and horizontal canals respectively [3].
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Figure 1.2: Structure of the vestibular system — open source on [3]

In order to make vestibular signals easier to analyze, the coordinate system shown in

Figure 1.3 is used.
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Figure 1.3: Roll, pitch, and yaw planes of motion with respect to human head [1]



1.1.2 Human Motion Monitoring

The functionality of the vestibular system can be affected by external influences such as
head trauma when people are involved in automobile or sports accidents. Many patients
need to undergo corrective surgery to regain the full control of their spatial perceptions.
The ability to compare vestibular signals before and after surgery greatly assists

physicians during the rehabilitation process [1].

Furthermore, the analysis of head motion can be used in sports medicine. Knowing
which head motions are associated with the best performance in activities such as
running, speed skating and skiing can help athletes and coaches improve their

performance.

Generally, camera based motion capturing systems are used to monitor head motion.
However, such laboratory based monitoring significantly reduces the distance a person
can walk and the length of time the tests can be conducted [4]. Furthermore, camera
based systems pose significant challenges when they are deployed to monitor outdoor
sports such as skiing. Tracking speed skaters using multiple camera systems has been
proposed in literature [5]. However, these camera-based systems are associated with

high costs and arduous set-ups.

The need for a simpler vestibular signal replication system arises, and wearable sensors
offer a good solution. Since the vestibular system detects linear and rotational motion,
inertial measurement units with accelerometers and gyroscopes can be used to monitor

the head motion of both patients and athletes.



1.2 Design Requirements

In order to replicate vestibular signals, it is necessary to obtain precise accelerometer
and gyroscope measurements at high sampling rates. The device needs to have a small
form factor and light weight allowing it to be worn on the head for long periods of time.
It is also important that the device has long battery life to maximize the time patients
and athletes can be monitored before recharging the device. In doing so, data should be
stored on an onboard memory module such as a Secure Digital (SD) card. In order to
allow the physicians to monitor patients in a clinical environment, wireless streaming of

sensory information becomes very useful.

1.3 Thesis Contributions and Organization

1.3.1 Contributions

The work undertaken for this thesis can be summarized by the following problem

statement and the contributions.

Problem Statement:

The objective of this thesis is to implement a standalone inertial measurement system
that researchers and physicians in physiology and sports medicine can use to monitor

patients and athletes.



Contributions:

1. This thesis implements firmware for the iINEMO inertial measurement unit and
the STM32W wireless module and optimizes them to be used to replicate
vestibular signals. A sensor calibration scheme is included in the firmware to
ensure reliability and accuracy.

2. An investigation of how head motion can be used to distinguish daily activities is
presented, and an activity recognition scheme based on the Bayesian
classification technique is developed. The system is to be used by physicians to
characterize the head motion when engaging in day-to-day activities before and
after corrective surgery is performed on the vestibular system. Studies of this
nature have not been performed in literature to the best of the author’s
knowledge.

3. Atool to assist Speed Skaters is implemented, which includes:

a. Monitoring the head motion of athletes

b. Estimation of speeds

c. A graphical tool to compare inertial data of each lap
In doing so, Kalman filters are used for sensor fusion and for speed estimation.
Knowing which head motions are associated with the best performance can help
athletes improve their performance. The use of head motion data based on
inertial measurements to track speed skaters is not found in literature to the best

of the author’s knowledge.



1.3.2 Thesis Organization

The work presented in this thesis has two major branches; namely, firmware
development and applications. Firmware development includes the configuration of
accelerometers, gyroscopes, and magnetometers; implementation of a sensor
calibration scheme; real-time operating system based task organization; and the
implementation of data storage and wireless connectivity. The application development
focuses on the study of head motion related to day-to-day activities and the
implementation of a graphical user interface as a tool for speed skaters to analyze their

head motion statistics.

Given the design requirements, this thesis is organized as follows. Chapter 2 performs a
thorough analysis of recent developments on sensor modules that can be worn on
different parts of the body and their applications. This chapter also compares several
commercially available body motion monitors and assesses their strengths and
shortcomings. The last section of the chapter inspects hardware platforms that can be
used to develop the head motion monitoring system and compares their specifications.
Wireless transceivers that can be used to establish wireless sensor networks are also

evaluated.

Chapter 3 provides an overview of the design platform along with the high-level design
tasks. Furthermore, details of the existing firmware employed to make the design
process smoother are presented. These include the firmware for data storage, wireless

connectivity, and the real-time operating system.



Chapter 4 presents the details of design implementation. First, a calibration scheme for
accelerometers, gyroscopes, and magnetometers is presented. Next, the results of
driver implementation and task organization are presented. The next section dedicated
to low-level software development, which includes signal processing using finite impulse

response filters, complimentary filters, and Kalman filters.

Chapter 5 focuses on applications of the head motion monitor, and it presents an
activity recognition scheme based on head motion data. The device is also to be used to
track the head motion of speed skaters, and such data is analyzed in this chapter to

provide useful feedback to physicians, coaches, and athletes.

Chapter 6 presents a summary of the thesis and proposes future extensions to the

project.



2 Background

In order to provide background to the work done on this project, a review of recent
research and development in human body motion monitoring and related applications is
presented in this chapter. Also included in this section is an overview of which
microcontroller was to be used, as well as an evaluation of possible inertial
measurement units (IMU) and wireless transceivers considered during the design
process. Section 2.3 introduces the theoretical background that is used throughout this
thesis. An overview of the least square method, finite impulse response filters, Kalman
filters, and tilt angle compensation methods is presented. Section 2.4 presents

background information about statistical analysis of head motion tracking data.

2.1 Related Work

The review of related work is performed in two parts. First, an overview of
developments found in academic research is presented. Applications such as the use of
IMUs to monitor core body motion and to analyze walking are commonly found in
literature. Next, commercially available body motion monitors are compared, and it is
shown that most of them are used to monitor core body and limb motion. The use of
IMUs to monitor head motion during sports such as speed skating is not found in

literature to the best of the author’s knowledge.
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2.1.1 Recent Research and Development

Monitoring human body motion has been of great interest to people of various
disciplines over the past few years. Research has been directed towards applications in
healthcare, entertainment, and education [4]. Body area sensor networks (BASN) and
wireless sensor networks (WSN) provide non-invasive methods to track the physical
behavior of people while using low-power radios to receive and transmit data. Barth et
al. [6] have proposed a body area sensor platform called “TEMPQO” (Technology Enabled
Medical Precision Observation) that measures linear acceleration and rate of rotation
about three axes. “TEMPO” is used by many research groups, but one of the
shortcomings is that all collected data needs to be transferred wirelessly to a host
machine in order to be stored. This can be a limiting factor when the head motion

tracking device is to be worn throughout the day while engaging in day-to-day activities.

Wearable sensor modules can be used for gait analysis, and Chen et al. [4] have
proposed a gait evaluation system called “LEGSys” (Locomotion Evaluation and Gait
system), which uses 9-degree-of-freedom inertial sensors to analyze leg movement. The
advantage of this system is that it allows gait analysis experiments to be conducted
outside of laboratory environments in order to capture natural gait patterns. Najafi et
al. [7] have used the LEGSys device to provide experimental results and to analyze the
reliability of the system. The accelerometers used in the LEGSys system have a maximum
range of +/- 2g, and more notably, the weight of the system is nearly 200g where the

sensor, the data unit, and the battery weigh 10g, 80g, and 104g respectively. While such



11

weight is not a concern for a device that is worn on legs, the weight is one of the major

design constraints when the device is to be worn on a person’s head.

Another aspect of gait analysis is estimating walking speed. Vathsanam et al. have
proposed such speed estimation by using a Gaussian Process-based Regression (GPR)
technique and have compared the performance with Bayesian Linear Regression (BLR)
and Least Squares Regression (LSR) [8]. The limitation here is that experiments were
performed in a laboratory, so the resemblance to natural behavior has been removed
from the results they have presented. Neural network based speed estimation from tri-
axial accelerometer data has been proposed by Yoonseon et al. where they use an
accelerometer with a range of +/- 3g [9]. Although the sensor module is only 23g, there
is an additional data collection device that must be worn on a belt as well. S. Chen et al.
have proposed a TEMPO based gait analysis technique in [10] and [11]. These works of

literature draw attention to the study of gait analysis focusing on knee joints angle.

Activity and gesture recognition is another common application of wearable sensors.
Ravi et al. [12] have analyzed several classification methods for accelerometer based
activity recognition, and some of these include decision trees, decision tables, k-nearest
neighbors, and naive Bayes. Suutala et al. have presented a daily activity recognition

system based on support vector machines (SVM) [13].

Accelerometer-based athlete monitoring is presented in [14] — particularly for swimmers
and rovers. The periodic nature of these activities was used to characterize

performance. Accelerometers were also used in boxing gloves to analyze punch forces,
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speed, and the number of punches [15]. These results were used to predict fight

outcomes in real-time.

Monitoring athletes such as speed skaters using a camera-based technique has been
proposed by Liu et. al [5]. However, these camera-based systems are associated with
high costs and arduous set-up. Furthermore, camera-based systems pose significant
challenges when they are deployed to monitor outdoor sports such as skiing. Inertial
measurement units (IMUs) with accelerometers and gyroscopes provide a low-cost
alternative to camera-based methods for monitoring athletes. Estimating translational
speeds is a significantly more challenging task for speed skating. In general, IMU speed
predictions, obtained using integration methods, are fused with the speeds obtained
from GPS data [16]. However, GPS data is not available for indoor use, which is the case

with speed skaters.

2.1.2 Commercial Body Motion Monitors

There are several body motion monitors on the market today, each characterized by a
number of strengths and weaknesses. One of the most notable devices is the Opal body
motion monitor by APDM. This lightweight inertial measurement device is sold in the
form factor of a wrist watch and is capable of detecting high speed rotations, but the
input range of the accelerometer is limited to only +/- 6g, and these devices cost nearly

$2400 [17].
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Xsens MTw devices have excellent input ranges for both accelerometers and gyroscopes,
but the noise coming from the accelerometer readings is very high. The biggest
drawback of Xsens MTw is that it only allows wireless streaming of data [18]. As per one
of the requirements of observing natural statistics of head motion, data storage is of

utmost importance.

Motion Node Bus has similar sensor specifications to that of Opal and provides both
data logging and wireless streaming. The downside is that the complete system, which
includes a sensor module, a controller, and a battery pack, has a total weight of 270g
[19]. The weight of the system is what keeps the Motion Node Bus from being used by
physicians extensively. The Mensense Nano IMU also comes with good sensors, but it

can only be used with a wired connection to a portable computer to collect data [20].

KinetiSense by Cleveland Medical Devices Inc. is a good choice of body motion device,
but just like Opal, its accelerometer has a small input range. Also, the input noise is very

high [21].

Table 2.1 summarizes the main features the commercially available body motion sensors

described in this section.



Table 2.1: Comparison of commercial body motion monitors

14

Motion

Memsens

Device Opal [17] )l\(/T'(::vS[18] Node e Nano Kn;e[t;Slt]ens
Bus [19] | [20]
Dimensions 48.5x36x1 | 34.5x57.8 | 35x35x | 46.5x13.8
. 2mm x 14.5 15 x22.8
Physical 10+ 80
Weight (g) 22 27 +180 * 20 + 30
sample Rate 128 100 100 50 128
(Hz)
Resolution
. 14 14 12
Acceleromete | (bits)
' Range (+/- 6 16 6 10 5
8)
Noise (
128 305.8 150 210 1341.64
ug/VHz)
Sample Rate 128 100 100 50 128
(Hz)
Rgsolut|on 14 14 12
(bits)
Gyroscope Range
g 1500 1200 2000 1200 1100
(deg/s)
Noise 0.07 -
(deg/s/VHz) 0.126 0.05 0.56 0.58
(IVIGeBr)nory 8 none 4 none
Data storage Equivalent
.q 28 days 30 hours
time
Data logger 16 0 4.75-7 none 15
. (hours)
Battery life -
Wireless 8 35 3
(hours) )
LA 10 20-50 100 30
range (m)
Wireless Wireless
data rate 57.6
(kbps)

* sensor + controller + battery
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2.2 Overview of Hardware to be Used

This section presents an evaluation of hardware that can be used to develop the head
motion monitoring system and how the design decisions were made to meet the
requirements presented in section 1.2. In doing so, the characteristics of
microcontrollers based on the Cortex-M3 architecture are described in section 2.2.1.
Several IMUs and wireless transceiver modules are compared in sections 2.2.2 and 2.2.3

respectively.

2.2.1 Microcontroller

ARM Holdings plc’s Cortex family 32-bit microprocessor architecture is used industry
wide due to its high performance and low power consumption. Microcontrollers based
on the ARM architecture are used extensively in consumer electronic devices such as

mobile phones, televisions, ebook readers, and tablets [23].

One of the attractive features of Cortex processors is that they are supplied with a
vendor independent hardware abstraction layer (HAL) called Cortex Microcontroller
Software Interface Standard (CMSIS). CMSIS governs how vendors should design their
microcontrollers based on the processor core, and as a result, moving firmware from
one vendor’s microcontroller to another becomes easier. In addition, CMSIS provides
support for real-time operating systems (RTOS), which can maximize the processor

performance [23].
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Interrupt-based firmware development is highly encouraged in embedded systems, and
Cortex-M processors are equipped with a nested vectored interrupt controller (NVIC) to
enhance the processor’s interrupt handling capabilities. As the name suggests, the
address of the function to be executed (also known as the interrupt handler) is stored in
a vector table, and the processor refers to the table when an interrupt has taken place

[23].

2.2.2 Inertial Measurement Unit (IMU)

There are various inertial measurement development units/modules on the market, and
it is important to choose a unit that has a small form factor and that has uncompromised
performance. Analysis of head movement requires accelerometers and gyroscopes, and
it is also important to note that gyroscopes require an order of magnitude more power
than accelerometers [6]. Interfaces to connect a wireless transceiver and a micro SD card

are essential to meet the needs described in section 1.2.

ST Microelectronic’s STEVAL-MKIO62V?2: iNErtial MOdule, also known as the iINEMO,
provides a viable option as the main development unit for this project. The embedded
processor is an ARM Cortex-M3 architecture based STM32F103 microcontroller. This
unit also includes a LSM303DLH geomagnetic module that provides accelerometer data
in an input range of +/-8g with 14-bit fixed point accuracy [24]. Roll and pitch
measurements are provided by an LPR430AL gyroscope while yaw axis data are provided

by an LPR430AH gyroscope. The roll and pitch gyroscope is capable of detecting
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rotations up to 1200%/sec while the yaw axis gyroscope can detect rotations up to
300%/sec [24]. One of the major advantages of the iNEMO is the availability of a micro SD
card slot, which is connected to the microprocessor via the SDIO interface. In addition,
STMicroelectronics provides a lot of example code and drivers to access the
accelerometer, the gyroscope, and the SD card, which can be used as a base for
firmware development. Figure 2.1 shows the INEMO along with a Canadian 10 cents coin

for size comparison.

Figure 2.1: A photograph of the ST Microelectronic’s INEMO platform

The next generation of the iINEMO, which is yet to be released to the market, is
presented in [25]. The IMM board is a surface mount device (SMD) with a very small
form factor. Although accelerometer and gyroscope measurement ranges have both
been improved, the lack of a micro SD card slot and a debugging interface such as a JTAG

connector give rise to the need for a custom PCB.
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SEN-08726 from Sparkfun and ADIS16400 from Analog devices offer inertial
measurement units with respectable accelerometers and gyroscopes; however, both

units lack a micro SD slot, which is a design requirement for this project. Table 2.2

summarizes the specifications of the inertial measurement units considered for the

human head motion monitoring system.

Table 2.2: Inertial measurement platforms comparison

. Analog
STINEMO STIMM SEN - 08726
Device ADIS16400
[24] [25] [26] 27]
Processor ARM CM-3 ARM3CM' ARM 7 BF 533
Clock (MHz) 72 72 60 600
RAM (kB) 64 64 32 128
Hardware Dimensions
(mm) 30x40x 15 20x17x5 45 x 51 x 25 23x23x23
Weight (g) 20 27 16
Programming | JTAG /SWD n/a UART
Sample Rate 50, 100, 400,
(H2) 1000 100 150 330
Accelerometer Rgsolutlon 14 14 14 14
(bits)
Range (+/- g) 8 16 6 18
Sample Rate 100 100 140 330
(Hz)
Resolution 14 14 14 14
(bits)
Gyroscope Range
(deg/s) [Yaw] 300 2000 500 300
Range
(deg/s) 1200 2000 500 300
[Pitch/Roll]
Data storage SD card slot yes none none none
and
- Interface for |, \pr/spy UART UART spI
transmission wireless
Price ($) 281.49 n/a 299.95 437.85
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Comparing the IMUs presented in this section, it is evident that the INEMO and ST IMM
are both great choices. The lack of an SD card slot and the fact that the ST IMM device is
yet to be released to the market makes its use limited. On the other hand, INEMOQO’s
accelerometer and gyroscope sensing ranges are adequate for human head motion
monitoring [1], and the availability of a micro SD card slot, along with an interface for a

wireless transceiver makes the iINEMO the best choice IMU for this project.

2.2.3 Wireless Transceiver

In a clinical environment, it is beneficial for physicians to see the precise head
movement of patients. It is also of equal importance to start recording data
simultaneously when multiple devices are used. Wireless transceivers are required to
facilitate such operation of the head motion monitor. The characteristics of several
wireless transceivers are compared in order to determine the best fit wireless

transceiver to be used with the iNEMO.

STM32W wireless transceivers offer a low power solution to both data streaming and
providing commands to the motion monitor. The advantage is that the transceiver is
supplemented by an onboard Cortex-M3 microprocessor, which can be used to reduce
the computations that the main processor on the motion monitor needs to carry out. In
addition, ST Microelectronics provides libraries that handle a lot of error corrections
associated with wireless transmission [28]. The other advantage of STM32W is that it is

bundled with an evaluation board that assists firmware development. Once all software
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is tested, a stamp module of the size 25x20x3mm can be removed and placed with the
motion monitor. The STM32W-EXT evaluation board and the stamp module are shown

in the following figure along with a Canadian 10 cents coin for size comparison.

Figure 2.2: A photograph of the (a) stamp module, (b) STM32W-EXT evaluation board

XBee ZB is an extensively used wireless transceiver that provides users with the
opportunity to configure the device with the use of a graphical user interface (GUI). The
downside to its simplicity and low cost is that it draws more current than other devices

that offer the same transmission distance [29].

EcoMote is the smallest and the lightest device evaluated, and it provides a data rate of
1Mbps, which is four times as high as the data rate of STM32W and XBee [30]. The
drawback is that the cost of a unit is $2000, which is the highest hurdle in developing a

low cost head motion monitor. Xtreme OEM from Digi International Inc. is capable of
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long-distance transmission; however, the data rate is very low and the current
consumption is high. The transmission current of Xtreme OEM is 150mA whereas the

SM32W uses just 24mA for transmission [28], [31].

The next best contender for the wireless transceiver solution is Texas Instruments’
CC2500 based MSP430 Wireless Development Tool (MSP430 WDT). Similar to the
STM32W kit, the MSP430 WDT kit is comprised of an onboard microcontroller, which

can be used to perform computations that are necessary for wireless transmission [32].

A comparison of the wireless transceivers evaluated is tabulated in Table 2.3.

Table 2.3: Wireless transceiver comparison

TI
STM32W XBee ZB EcoMote Xstream
Devi 2
evice [28] [29] [30] | OEm[31] | ©¢2°00
[32]
Protocol ZigBee ZigBee ZigBee
Frequency 0.900 and
(GH2) 2.4 2.4 2.4 54 2.4
Data rate 250 250 1000 19.2 500
. (kbps)
Radio Rx current
20 38 21 50 16.6
(mA)
Tx current 24 35 10 150 21
(mA)
Range (m) 40 40 10 450 40
STM32
Model Cortex-M3 n/a 8052 n/a MSP 430
Microprocessor | Frequency
(MHz) 24 n/a 16 n/a 16
Bits 32 n/a n/a 16
Dimensions 70x55x15
(mm) (*stamp at 32x22x3 13x11x7 40x71x9
Physical 25x20x3)
ysica Weight (g) 15 20 1.8 24 40
external 40mAh external 2xAAA or
Battery 2XAAA 3V LiPoly 5V external
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The analysis of the features of the wireless transceivers presented in the above table
suggests that STM32W and Tl CC2500 are the best two choices. The STM32W device
holds the advantage because it uses a Cortex-M3 32-bit microprocessor, which is also
used in the INEMO. This reduces the time spent on firmware development, so the
STM32W device was chosen as the wireless transceiver for the head motion monitoring

system.

2.3 Calibration and Signal Processing

The objective of this section is to present the theoretical background used for sensor
integration. First, the least square method used to calibrate the INEMO sensors is
described. Then, basic theory behind the implementation of finite impulse response
(FIR) filters and Kalman filters is discussed. FIR filters are required to filter out the high
frequency noise of accelerometers and magnetometers and the low frequency drifts of
gyroscopes. Kalman filters are used to fuse readings from multiple sensors in order to
obtain meaningful outputs such as orientation angles and translational speeds. Next,
equations used to compute orientation angles of the IMU and rotation matrices used to

transform the coordinate system of IMU data are presented.

2.3.1 The Least Square Method for Sensor Calibration

The INEMO-based head motion monitor can improve the quality of life of many people,

and sensor reliability is of utmost importance when it is used in medical applications
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[33]. The sensitivity of sensors can degrade over time, and usually the factory
calibration varies from device to device. Therefore, it is necessary to calibrate and re-
calibrate sensors periodically [33]. The least square method is commonly used to
estimate parameters and to fit a function to a data set using an over-determined system
of equations [34]. The optimum parameters found by the least squares method
minimize the sum of residuals, which is given by,

§ = Xt —x)? (1)
Where y; and x; refer to the i value of the known fitting function and the data set
respectively [34]. Data points y; and x; can be placed in matrices, and a matrix B can be
defined to contain the parameters that need to be estimated. The matrix relationship
can simply be stated as:

Y=X"B (2)

The calibration parameter matrix denoted by X can be computed as

B=[XT-X]"*- XT-Y (3)

Equation (3) can be used to determine calibration parameters for the accelerometer and
the gyroscope. In the case of the accelerometer, the compensated values are related to

the raw measurements as seen below [35]:

Anl| [ACC, ACC,, ACCs1 [Ax]  [ACC,
Ayl = ACCZI ACC22 ACC23 Ay + ACCZO (4)
4| laccs, accs, Accsl |a,|  laccs,

A1, Ay1, and A, are the known acceleration values while A, A, and A, are the raw
measurements and ACC,o are the bias values. The entries on the diagonal (ACC;1, ACCy,,

ACCas3) are the gain values of each of the axes, and the off diagonal entries refer to the
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amount of crosstalk between axes. As suggested in [35], the above relationship can be

rearranged to be more suitable for least square computation as follows:

ACC,, ACC,, ACCs,
ACCi,  ACC,  ACCy |
ACC,s ACCys  ACCsy
ACC,, ACCyy,  ACCs

Ay Ay Ap]=[4, A

The relationship described by eq. (5) can also be used to calibrate the gyroscope and the

magnetometer on the iNEMO.

2.3.2 FIR Filter

The accelerometer and the gyroscope in the iINEMO are micro electro-mechanical
systems (MEMS) based devices. Often, sensor readouts are corrupted by noise inherent
to MEMS processes, as well as by noise caused by external influences such as
mechanical vibrations [36]. In order to ensure the reliability of recorded data, it becomes
necessary to filter out the high frequency noise of accelerometers and magnetometers
and the low frequency drifts of gyroscopes. These filters need to be stable and have
linear phase. Therefore, finite impulse response (FIR) filters based on the Kaiser

Windowing technique are to be implemented [37].

The order of the FIR filter can be approximated by [37],

M ~ (A—7.95)/(14.36 Af) (6)
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Where A refers to the maximum sideband ripple and Af is the normalized transition

band defined by,

Af = (fe = 1)/ (s/2) (7)

fe .f» and f; refer to cutoff, first stop band, and sampling frequency respcectively. The

parameter 8 used to define the shape of the Kaiser window is defined as [37]

B = 0.1102(A — 8.7) (8)

2.3.3 Sensor Fusion using Complimentary and Kalman Filters

Complimentary Filter

In order to obtain the correct orientation at any given point, it is necessary to effectively
fuse the measurements of the accelerometer, gyroscope, and the magnetometer. A
complimentary filter combines the angle estimates obtained using accelerometers and
integrating gyroscope readings by weighing them based on the dynamics of the system.
Accelerometer based angles are filtered using a low pass filter, and gyroscope based
angles are filtered using a high pass filter before summing the two angle estimates [39].

The structure of the complimentary filter is illustrated in Figure 2.3.
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Accelerometer and

magnetometer

P Compute angle P Low pass filter —l
TN
( \ Angle
.

Gyroscope
Numerical
» _ »  High pass filter
= integration = £n pass Tiite

Figure 2.3: The structure of the complimentary filter

Kalman Filter

A standard Kalman filter estimates the states of a discrete-time process described by the

following equations [40]:

X1 = ApX + Brug + wy (9)

Vi = Hyxe + vy (10)

Where,

A, B, and H are state transition, input, and output matrices respectively

e x¢and yiare the state vector and the output at the k" time step respectively
® uiis the known control signal (input)

e w s the process noise with covariance matrix Q

e visthe measurement noise with covariance matrix R

The Kalman algorithm is described in Figure 2.4



27

Predict — time update

1. Project the state ahead
58]: = Ajc\k_l + BUk_l
2. Project the error covariance

Py = AP AT + Q

Correct — measurement update

1. Kalman gain
K, = P HT(HP;HT + R)™!
2. Error of the estimated state
X = X + K (Ve — HX)
3. Update the error covariance

Py = (I — KgH)Py,

Figure 2.4: The Kalman filter algorithm — adapted from [40]

The Kalman filter can be used to fuse gyroscope, accelerometer, and magnetometer
measurements to estimate the orientation angles. In addition, the Kalman algorithm can
be used to estimate the speeds of speed skaters by fusing lateral and forward

acceleration measurements as described in section 5.3.3.

2.3.4 Tilt Angle Compensation

The iINEMO-based human motion tracking device is to be used by persons of various

disciplines; therefore, it is not easy to guarantee that they will always align the device
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perfectly with the global x, y, and z coordinates. As such device should be intelligent
enough to compute the initial orientation using data from the first few seconds of
measurement and adjust subsequent measurements accordingly. It is assumed that the
device is stationary when the device is turned on. Therefore, the orientation angles can
be estimated using the accelerometer readings as shown by the following equations

[36]. The roll and pitch angle axes are as defined in Figure 1.3.

Roll= a = tan™! | —2&— (11)

/Ay2+ Ag?

Pitch= B = tan™! S (12)

/Ax2+ Az

The heading angle, defined as the rotation from the magnetic north, cannot be

computed using only accelerometer data, and therefore, magnetometer data are also

used [36].
M; = Mycos(a) — Mysin(f)sin(a) + M,cos(B)sin(a) (13)
M;, = M,cos(f) + M,sin(a) (14)
y= 90— tan~?! (Z—i),when My, >0 (15)
y= 270 — tan™! <Z—;),When M;, <0 (16)

The following rotation matrices can then be used to project the sensor readings onto the

global coordinate system for further processing [10].



[1 0 0

R,(a) =|0 cosa —sina
[0 sina cosa
rcosf 0 sinf

R, (B) = 0 1 0 ]
[—sinff 0 cospf
[cosy —siny 0

R,(») =|siny cosy O]
L 0 0 1

2.4 Statistical Analysis
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(17)

(18)

(19)

Head motion data collected using the iINEMO during different day-to-day activities is

used to analyze the characteristics of vestibular signals. Statistical analysis is the basis for

activity recognition, gait analysis, and comparing head motion data from one person to

another. Similarly, statistical analysis can be used to differentiate the head motion of

patients before and after corrective surgery. The theoretical background used for

activity recognition is presented in this section.

2.4.1 Pattern Recognition

One of the major concepts of activity recogntion is pattern recognition [48], and this

process involves three major steps as seen in Figure 2.5.

Feature

¥

Observation

-‘/ Activity

h -f;

extraction

Classification

i ey
—»{ Classes (c) |

b e

Figure 2.5: Pattern recognition process — adapted from [48]
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Once data has been collected, patterns need to be observed, and distinguishing features
of each of the activities need to be extracted. The simplest method to identify a given
task is to use the naive Bayes classifier. The algorithm assumes that features that make
up a class are independent, which makes computation simple and effective, and the
algorithm performs very well even with dependent features [48]. The sample data set is

referred to as evidence (E), and the probability of E being in class c is given by

(E|c)
p(c|E) = HESEO (20)
E is classified as class c if
_ p(c|E) >
fo®) = B25 > 1 (21)

Where f,(E) is called a Bayesian classifier and ¢ is the complement of class ¢ [48]. The

probabilities based on all features of the evidence sample can be computed as follows:

p(Elc) =1} p(xi|c) (22)

Where p(x;/c) refers to the probability of each feature given the class. The probability
desnity function for normal distribution can be used to compute each of the total

probabilities in a matrix sense as follows.

1 _
—E(X—Mx)TZ (X —px) (23)

1
p(X) - (27.[)71/2 [det ) e

Where,

® L, isthe mean vector of the features
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e ' isthe variance-covariance matrix

e nisthe number of elements in the feature vector

2.4.2 Training Algorithm

The classification model used to define Gaussian parameters up to this point is called
supervised training. Classification was done based on the knowledge that a particular
training set belonged to a particular class, and this knowledge is known as a priori.
However, the long term goal is for the INEMO should be able to identify head motions of
different users autonomously. If the available training data is not labelled, it should still
be possible to separate data into classes , and this method is called unsupervised
training [49]. An expectation maximization (EM) algorithms can be used to iteratively

classify training data to facilitate unsupervised training.

The EM algorithm used in this project is based on the algorithm proposed by X. Guorong
et al. in [50]. Given that there are M classes, the prior probabilities of all classes are
assumed to be equal such that P(c,,) = 1/M. There are two main steps that are
repeated until a stable solution is reached. Namely, the estimation and the maximization

steps.

The estimation step computes the probability that each data point x; belongs to class ¢,
with the parameter set A. Each class is assumed to have a mean vector of u, and a

covariance matrix of 2;,, and the — and + signs refer to the old and the new values.
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The maximization step involves updating the mean vector, the covariance matrix, and

the prior probabilities.

Estimation

P(cpnl A7) - p (x|, 20)
Y P(T 1) o (xilny, )

P(cplxi, A7) =

Maximization

1. Update mean:

1o _ Ztax Pl )
™ TR Pl )

2. Update covariance:

_ Zlivi1 Pleplxn, A7) - (O — wh) - (x; — ll;rn)T
?il P(C;llxl', ﬂ'_)

Zn
3. Update prior probabilities:

1 M _
P(ehl?) = 37 ). Plenlxi )
L=

Figure 2.6: The expectation maximization (EM) algorithm [50]

2.4.3 Other Pattern Recognition Algorithms

Several other pattern recognition algorithms are found in literature. Some of them
include: support vector machines (SVM), logistic regression, k-means, and k-nearest

neighbors. The SVM algorithm allows non-probabilistic classification, but one of the
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short-comings is that training has to be supervised [13]. Since one of the long-term
objectives of the design is to autonomously identify the head motion of different users,
it is necessary to use an algorithm that supports unsupervised training. Logistic
regression uses an iterative method to determine the maximum likelihood of regression
coefficients, which results in a lack of convergence in some cases [51]. The k-means
algorithm is initialized by randomly assigning input data into ‘k” classes. The means of
each class are first computed. Next, each data sample is assigned to the class with the
nearest mean [52]. The disadvantage of this method is that different initial classes can
result in different final classes, and the process needs to be repeated to ensure reliable
classification. Therefore, the Bayesian classfication method along with the expectation

maximization algorithm due to their simple, yet accurate implementation.
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3 Overview of the Design Platform

The objective of this chapter is to present the high-level design of the iINEMO-based
head motion monitor and to introduce existing firmware that was used to implement
the system. First, the drivers needed to implement data storage and wireless
connectivity are introduced. Next, an overview of the real-time operating system used in
this project is presented.

The software development for the INEMO and the STM32W wireless module was
conducted using the Keil uVision 4 and IAR Embedded Workbench 6.21 Integrated
Development Environments (IDE). Low-level drivers to access microcontroller
peripherals such as 12C, ADC, DMA, SDIO, and UART were included with the installations

of the IDEs, and these drivers were used to make the code as readable as possible.

3.1 High-level Design

The design of the INEMO-based head motion monitor platform was performed in several
levels of abstraction. Figure 3.1 illustrates how the overall design is organized. The areas
highlighted in dark grey (also marked with *) are the main contributions of this thesis,
and these are presented in Chapter 4. The areas highlighted in light grey (also marked
with +) are the tasks that needed to be implemented with the aid of existing firmware to
enable the seamless operation of the overall system, and these are presented in the

remainder of Chapter 3.



Level of abstraction

High-level * oy Speed skater
Activity B
Software g speed estimation
recognition
(Applications) (Kalman filter)
*
Eilters Sensor fusion
(Kalman filter)
Low-level
Software
RTOS
+ Mi SD Wirel
Drivers icro- ireless
(SDIO) (UART)
Sensor calibration
Hardware
(INEMO)
Accelerometer Gyroscope Magnetometer

Figure 3.1: Levels of abstraction of the design platform

LSM303DLH
6 axis
accelerometer
and
magnetometer

12C

LED, button

GPIO

Serial connector

Figure 3.2: Block diagram of the INEMO module — adapted from [24]

UART

STM32F103RE

illustrates its block diagram. Only the peripherals used in this project are shown.
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GPIO / Extended
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The platform designed in this thesis is based on the iINEMO, and the following figure
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The sensors on the INEMO need to be calibrated to ensure data accuracy and reliability,
especially since the head motion monitor is to be used for medical applications. The
calibration scheme is implemented in section 4.1. This platform is to be used for long-
term head motion monitoring as well as for real-time monitoring in clinical
environments. Therefore, driver-level implantations of data storage and wireless
connectivity are presented in sections 3.2, 4.2, and 4.3. Significant amount of signal
processing is required to draw useful conclusions from acquired data; therefore, filter
design and sensor fusion are discussed. High-level application development to monitor
patients and athletes, presented in Chapter 5, uses aforementioned tasks as its

foundation.

3.2 Drivers

3.2.1 Data Storage

Flash Memory

The STM32F103RE microcontroller found on the INEMO module is equipped with 512kB
of flash memory, which is generally used to store program code. However, space unused
by program code can be used to store sensor data and processed information. The
maximum space available in memory-bank 1 is from address 0x08008000 to Ox807FFFF,

which results in 491519-bytes of available space [43].
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SD-Card Interface

The SDIO (secure digital input output) peripheral found in the STM32F103RE is wired to
a micro-SD slot on the INEMO module. Figure 3.3 illustrates the pin-out of the micro-SD

card and the SDIO interface of the STM32F103RE microcontroller.

DAT2 (1) }— sDCard_D2

CD/DAT3 (2) — SDCard_D3 sSDCard_CMD ———(54) pPD2

CMD (3) — SDCard_CMD e Vi

: ard_ 1
micro SO card ELD:} E;; :SDCard CLK SDCard_D3 —(52) pcCi1 STM32F103RE

V55 (6) |— - SDCard_D2 —1{51) pcC10

DATO (7) |— SDCard_DO sDCard_D1 ~ ——(40) PC

DAT1 (8) — SDCard_D1 SDCard_DO —1(39) PCB

Figure 3.3: The micro-SD card and STM32F10RE pin out — adapted from [24]

The signals are prefixed with “SDCard_" for easier identification, and each device’s pins
are presented within parentheses. The figure also suggests that GPIO C pins 8 to 12 are
to be used to send data to the micro-SD card while GPIO D 2 pin is to be used to send

commands.

The motion measurement system was designed with physicians, patients, and athletes
being the intended end-users; therefore, data collection should be made as easy as
possible. With this design requirement in mind, a file system was employed to store data
on the micro SD card, and as a result, the user can simply insert the card into their

computer to get required data files.
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The two file systems, the Keil Flash File System (FFS) [44] and the FatFs library by ChaN
[45], were considered for this project. The Keil FFS can be used to create Windows-
compatible FAT8, FAT16, and FAT32 file systems, and is provided with MDK

(Microcontroller Development Kit) Professional IDE distributions [44].

The open-source FatFs library is a module that is independent of the disk input-output
layer, which made it an ideal candidate for this project [45]. Figure 3.4 illustrates the

layers of software involved in implementing the FatFs module.

Application

FatFS module

Disk input/
output Real
time
SDIO peripheral clock
interface

Figure 3.4: Fat FS layers — adapted from [45]

File input-output operations of the FatFs module are defined in a similar manner to
those of standard C, and the following functions were used to store sensor information

on the micro SD card.



Table 3.1: Functions used from the FatFs module [45]
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Function | Description
f_mkfs Create a FAT file system on the logical drive
Open a file object with mode flags such as FA_READ, FA_WRITE,
f open | FA_OPEN_ALWAYS, FA_CREATE_NEW
f close Close afile
f_write | Write data in a buffer to a file object
f_printf | Write strings to a file object
f putc Write a character to a file
f sync Flush cached information of file write commands

3.2.2 Wireless Connectivity

The iINEMO based human motion tracking device is required to transmit data wirelessly

to a host PC when it is used in a clinical environment. In addition, a wireless sensor

network can be established, and data from multiple body parts can be collected. In

doing so, it is imperative that devices can synchronize with each other. The host

computer should be able to send wireless commands to each sensor node, so they may

perform actions such as streaming or logging data or both, recognizing human activities,

and evaluating orientations.
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Figure 3.5 illustrates the DMA block diagram configured for wireless transmission using

the USART peripheral.

CcM3
¢ ) APB 2
>
= Bridge 2
m
E
3 Bridge 1
@ APB 1
DMA 1 ( )
USART2 GPIO
Ch. 6
| UART Rx A3
ch.7
DMA Request UART _Tx A2

Figure 3.5: DMA block diagram — adapted from [43]

As shown in the figure, DMA channel 6 was connected to the UART_Rx pin and GPIO A3
pin while DMA channel 7 was connected to UART_Tx pin and GPIO A2 pin. The USART
and the GPIO peripherals are wired to advanced peripheral bus (APB) 1 and 2, so the

respective reset and clock control (RCC) drivers needed to be enabled as well.

3.3 Lowe-level Software - Real-time Operating System

Many simple embedded systems execute using the super-loop concept [41]. All
functions are executed in a predetermined order within an infinite loop, and real-time

requirements are achieved using interrupts. However, in complex projects, only using
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interrupts to meet timing requirements can lead to complex interrupt service routines
(ISRs), and if interrupts are nested, it becomes even more challenging. In addition,
memory management and the development of fault-tolerant procedures can become

very tedious, and as a result, the scalability of the project decreases [42].

A real-time operating system (RTOS) assists firmware development by handling all the
resource management, so the developer can dedicate more time to application
development. Furthermore, RTOS-based task scheduling results in optimum program

flow and facilitates task concurrency [41].

Two RTOSs, FreeRTOS and Keil’s RTX RTOS, were considered for this project; however,

due to its open source nature, FreeRTOS was used.
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4 Design Implementation

As mentioned in Chapter 3, the overall platform was designed in several layers of
abstraction. Chapter 4 presents the details of the design implementations of the
contributions illustrated in Figure 3.1 on page 35. At the hardware level, a sensor
calibration scheme to ensure the accuracy of collected data is presented. Next, the
implementation and the test results of driver-level tasks to implement data storage and
wireless connectivity are presented. The low-level software development such as RTOS-
based task management and filter design are presented. Last, the implementation of

sensor fusion using Kalman filters is discussed.

4.1 Sensor Integration and Calibration

The first step in implementing the platform described in Figure 3.1 was to configure the
sensors on the iINEMO. Absolute sensor data is a design requirement imposed by the
physicians and researchers in physiology, and as a result, it is vital that the
accelerometer, the gyroscopes, and the magnetometer on the iINEMO are properly
calibrated [33]. Sensor calibration was performed using the least square method

introduced in section 2.3.1.
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4.1.1 Accelerometer

Based on the set-up introduced in section 2.3.1, a least square problem was defined to
compute calibration parameters that handle misalignment, sensitivity, and bias [8]. The
acceleration readings from six positions were used to construct the ‘known’ matrix used
in the least squares method. These positions were x-axis up/down, y-axis up/down, and

z-axis up/down.

The INEMO was placed in a plastic case along with a lithium ion battery in order to
facilitate the calibration process and to place on the helmets of Speed Skaters. The latter
is discussed in section 5.3. The vertices of the box were machined to be 90° and the
iNEMO was precisely aligned with the box’s straight edges with the aid of a caliper. The
box was placed on a level surface, verified using an engineer’s spirit level, and data
samples for positions related to the x-axis and the z-axis were recorded. The following

figure illustrates the device in the protective case.

Figure 4.1: INEMO module in protective case
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Collecting data for the y-axis up and down positions was challenged by the presence of
the switch and the protrusion on the back side. However, the clamp seen in Figure 4.3
and an engineer’s spirit level was used to ensure the y-axis of the iINEMO properly
aligned with the earth’s gravity vector.

For each accelerometer position, 3000 data samples at 100Hz were collected, and a least
square parameter estimation problem was set up according to the description in section
2.3.1. The system was solved using Matlab, and the following parameter matrices were

obtained.

ACC,, ACCy, ACCys
ACC,, ACC,, ACCys
ACC3; ACCs, ACCas

0.0487  0.9624 0.0068
—0.0046 —-0.0149 0.9607

[ 0.9593 0.0044  0.005 ]

ACCyy —0.0178
ACCyy|l = | 0.0118
ACCs, 0.0203

The above calibration parameters apply to accelerometer readings in g. The validity of
the calibration parameters was verified by applying them to a new set of measurements
with known accelerations of -707, -707, and 0 mg in x, y, and z directions respectively.
To do so, the box shown in Figure 4.1 was mounted at an angle of 45° using the clamp
shown in Figure 4.3, and this angle was verified using a set square. The following is a
histogram of the calibrated data set, and it should be noted that these values were
sampled at 100Hz and filtered using a low pass FIR filter with a cut-off frequency of

20Hz.
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Figure 4.2: Histogram of the accelerometer readings after calibration

The preceding figure suggests that accelerometer readings exhibit a near Gaussian

distribution, which will be further discussed in section 4.1.4. The mean values of the

readings are tabulated below:

Table 4.1: Mean values of acceleration data in mg

Axis X Y 4
Pre-calibration -722.9606 -720.5112 -13.0563
Post-calibration -709.5025 -711.8439 3.8047
Error (%) 0.39 0.69 n/a
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It is evident that the least square calibration method gives parameters that result in
accelerometer readings that are within less than 1% of the expected mean values. The
computed calibration parameters were included in the firmware, so the end user does
not have to recalibrate the device prior to using it to collect head motion data. However,
it should be noted that these calibration parameters are valid only for the INEMO used
in this experiment and that any time a new device is used, a new set of calibration

parameters is required.

4.1.2 Gyroscope

A turntable that can provide oscillations up to 10Hz with a maximum angular rate of
100dps was used to calibrate the three-axis gyroscope. Figure 4.3 shows the placement
of the INEMO on the turntable with the aid of a clamp, so the measurements from each

of the three axes could be obtained.
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INEMO

Figure 4.3: Turntable used to calibrate the gyroscope

Similar to section 4.1.1, the relationship between the calibration parameters that need

to be determined, measurements, and the known values is as follows.
Gyroy;  Gyropy  Gyroz

Gyro,, Gyro,, Gyros,
= 17 -
(G Gyl Ga] = [6x Gy Gz ] Gyro;z3  Gyroys Gyross (24)

Gyroyg  Gyroyy  Gyrosg
Gx1, Gy1, and G;; are the known acceleration values while G, Gy, and G, are the raw
measurements and Gyro,g are bias values.
Figure 4.4 illustrates the comparison between the iINEMO measurement values about
the x-axis and the expected values obtained using a precise optical gyroscope. The
turntable was oscillated at 1Hz, 2Hz, and 10Hz with amplitudes of 38dps, 35dps, and

90dps respectively. The experiment was repeated for both the y-axis and the z-axis in
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order to generate the required matrices for the least square parameter estimation

problem.

1':":' T T T T ] T

a0

R I

-4l

Angular rate [dps]

-100

Expected value
--------- # axis Measurement

-140

| | | | |
1] 1000 2000 3000 4000 5000 G000
Time elapsed [ms]

Figure 4.4: Comparison of the expected gyroscope readings and the measurements
values about the x-axis

The computed set of gyroscope calibration parameters is as follows:

Gyroy, Gyroi; Gyro;z] [ 09451 0.0197 0.0003
Gyroy, Gyroy; Gyrops| = |—0.0082 0.9304 —0.0097]
Gyroz; Gyros, Gyrossl L 0.02 0.0427 1.0017

Gyroqo] | 5.5561

[G}’T'Ozo = —12.8228]

Gyros | —0.1553
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Similar to the case with the accelerometer, the computed calibration parameters were
used in firmware development, and the end user does not have to perform additional

calibration prior to using the device.

4.1.3 Magnetometer

The magnetometer on the iINEMO is the least reliable of the sensors since external
magnetic fields can easily interfere with the earth’s magnetic field. Regardless,
gravitational forces alone cannot be used to determine the heading angle, and it is
therefore essential to use magnetometer measurements combined with gyroscopic
measurements to compute the heading angle. In order to compute calibration
parameters for the magnetometer, the INEMO was rotated about the z-axis, and the

heading angle was compared with the angle computed from the gyroscope.

Locating a reliable reference that provided raw magnetometer measurements in Gauss
was deemed a challenging task. However, the gyroscope was calibrated in the preceding
section, allowing its results to be used as a reference to calibrate the magnetometer.
Therefore, the heading angles computed using equations (13) to (16) in section 2.3.4
were compared with the angles computed using the gyroscope. Figure 4.5 illustrates the
comparison of heading angles computed using raw and calibrated magnetometer and
gyroscope data. The starting position of rotation was determined to be 130° using a
handheld compass. The device was turned 300° clockwise, 600° counterclockwise, and

300° clockwise to return to the starting position.
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Figure 4.5: Comparison of the yaw angle computation using raw and calibrated
magnetometer data and gyroscope data

4.1.4 Sensor Noise Distribution

Once all sensors were calibrated, the kurtosis values of the sensor data were compared.
Kurtosis is the measure of peakedness of a distribution, and any Gaussian distribution is
defined as having a value of 3 [38]. Kurtosis values lower than 3 refer to distributions
that have flatter shapes than that of Gaussian distributions. The readout distribution of
an ideal sensor is an impulse with a mean at the expected value [33]. Therefore, higher
kurtosis values can be associated with more reliable sensors. Table 4.2 shows the

kurtosis values of sensors based on 50 000 samples at 100Hz for each sensor axis.
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Table 4.2: Kurtosis values of sensor noise

Sensor axis X Y Z

Accelerometer 67.6616 29.1857 8.8683
Gyroscope 1240 5199 146.7
Magnetometer 4.3924 3.117 3.131

Table 4.2 suggests that all sensor readings have kurtosis values that are higher than 3.
Very high kurtosis values observed in gyroscope noise data suggest that they are very
reliable in the short term. Long term drift issues associated with gyroscopes were not
addressed in this experiment. The magnetometer readings have flatter distributions,

which confirm the less reliable measurements.

4.2 Drivers - Data Storage

As mentioned before, storing sensor data is of utmost importance for offline analysis.
Two storage methods were evaluated: the microcontroller’s flash memory and a FAT file
system implemented SD card. The performance and the ease of use of each of the two
methods were analyzed, and the implementation of a FAT file system was deemed the

best data storage option.

4.2.1 Flash Memory

Configuring the iINEMO to store sensor data on the flash memory was a straightforward

task using the drivers provided with the Keil IDE. The more challenging task involving the
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use of flash memory was that of recovering stored data. Since it was not possible to
simply plug the device into a PC to read the flash memory, the INEMO was configured so
that stored data could be sent out using the UART peripheral. The UART peripheral was
selected because it allows for the simplest form of communication with a PC. In addition
to the configurations of the microcontroller, it was also necessary to develop a program
to run on a PC that decoded the data stream received via the computer’s USB port. A

Python script was developed to implement this task.

Accelerometer, gyroscope, and magnetometer measurements are read as signed 16-bit
values (2 bytes). Considering that each sensor has three axes (a total of nine 16-bit
values), 18 bytes are required for each sample. The desired sampling frequency is 100Hz;
therefore, the time before memory runs out is calculated as follows:

1 sample 1s

tmax = 491519 bytes * =273s

18 bytes *100 samples

This is a mere four and a half minutes of data recording, hence it was necessary to
explore data compression techniques to optimize the amount of data stored on flash

memory.

4.2.2 SD Card

The SDIO interface was configured using the code listings found in Appendix A. The NVIC
was configured to handle interrupts from the SDIO interface, and prior to initializing the
SDIO peripheral, GPIO pins needed to be mapped and the AHB (AMBA high performance

bus) and DMAZ2 clocks were initialized.
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Once initialized, information related to micro-SD cards connected to the interface was

read. Figure 4.6 shows the watch window of the Keil IDE when SD cards of different sizes

were connected.

Hame Value
=% sDCardinfo 020001 2F4
# “i§ SD_csa 0x200012F4
® “if sD_cid 0x20001320
' CardCapacity 0x3B598000
¥ CardBlockSize Q0000200

@ RCA OxE624

¥ CardType 0ud2 T

<Enter expression»

Value
020001 2F4
0w 20001 2F4
020001320
003 BE0000
QD000 200
0uE368
0x00

Type

struct <untagged=>
struct <untagged>
struct <untagged>
unsigned int
unsigned int
unsigned short
unsigned char

Figure 4.6: Accessing the micro SD card via the SDIO interface

The first column indicates that the card capacity was 0x3B598000, which is 995 721 216

bytes or 1GB. A second micro-SD card was also tested, and the second column indicates

that its size was 0xO3BEOOOO, which is 62 783 488 bytes or 64MB.

As with flash memory storage, retrieving data stored on a raw SD card was challenging

since operating systems such as Windows are not equipped with programs to access raw

SD cards. As a result, it was necessary to develop code that could save data in a file

format that PC users can easily access. The FatFS file system was used to resolve this

issue. The functions provided in the FatFS module, summarized in Table 3.1, were used

to create data files with extensions such as .dat and .txt on the micro-SD card.
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4.3 Drivers - Wireless Connectivity

In order to ensure efficient data transfer while allowing the system to be immune to
packet losses, a packet structure with a synchronization word (sync word), the length of
payload, a command, the payload, and a checksum was defined. The sync word was
chosen to two bytes (16 bits) in order to ensure the receiver can easily recognize the
start of the data sequence of the transmitted wireless packet. Longer sync words reduce
data corruption; however, they reduce the throughput. This structure can be easily

visualized from the following figure.

= pkt_t_buffar  <struct:

HEsvno
e 0] to {0=00)
- [1] oY {0=00)
..... length ot (0=00%
- cmd CHD_STOP_RECORD
{ <=truct:
<ztruct:
0.0
: 0.0
P L z 0.0
P T <=truct:
b rall 0.0
------ pitch 0.0
- = 0.0
------ checksum 0

Figure 4.7: Packet structure for wireless transmission

It may be possible to define a more sophisticated data packet protocol to handle error
detection and correction; however, the current structure is sufficient for the project in

discussion. The enum type commands can be seen in Listing 4.1.
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typedef enum {

CMD_STOP_RECORD = 0x0,
CMD_START RECORD = 0x1,
CMD_STOP_TRANSMIT = 0x2,
CMD_START TRANSMIT = 0x3,
CMD_COMPUTE_ORIENTATION = 0x4,
CMD_ERROR = OxF

} user command;

Listing 4.1: User commands

Moving data from one memory location to another is a processor intensive task;
therefore, it is more efficient to use general purpose DMA (direct memory access)
controllers on STM32F103 processors [43]. DMA and USART peripherals were configured

using the code listings in Appendix A.

An RTOS task was created to initiate the data transfer from the main memory to the
USAR peripheral. This task waits on a semaphore given by the DMA1_Channel7 interrupt

handler once the DMA controller completes transferring the previous set of data.

The use of DMA reduces the number of actions the processor needs to perform, and the
DMA controller takes over the data transfer once it is enabled. On the other hand, if the
processor were to handle all the data transfers, data needs to be transferred one byte at

a time to the USART port.

The STM32W wireless transceiver was connected to the INEMO module using header J4,
which is hard-wired to the USART 2 peripheral. Figure 4.8 illustrates the connections the

author had to make between the iINEMO and the wireless module. Although both
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devices use STM32 processors, their peripherals are slightly different, so care was taken

when porting firmware developed for one device to the other.

Antenna
STM32F10RE
STM32W
PB1  (15)| UART Tx UARTZRx | (17) Pa3
PB2  (16)| UART Rx UART2 Tx (16) PA2

Figure 4.8: Connections between the STM32W (wireless module) and the STM32F10E
(iINEMO) micro-controllers

4.4 RTOS-based Task Organization
4.4.1 Task Organization and Real-time Behaviour

With the aid of the RTOS, the main program tasks such as configuring sensors and

peripherals, processing sensor data, and wireless connectivity were organized as seen in

Configure sensors
and peripherals
|

Idle Data process Wireless Tx Wireless Rx
(1) (3) (2) (4)

Figure 4.9.

Figure 4.9: Top-level task organization
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The priorities of each of these tasks are provided in parentheses. The wireless Rx task
has the highest priority since it needs to decode any command such as start or stop
recording or data streaming needs to be handled immediately. The wireless Tx task has
lower priority than the data process task since reading sensor data should not be

interrupted by wireless transmission.

In order to verify that the system can correctly be scheduled, its real-time behavior
needs to be analyzed. The system is identified as a mixed soft and firm real-time system
since tasks that do not execute to completion before their deadlines do not cause
system failures. The failure of the data process task to complete before its deadline can
degrade the quality of the collected measurements. The worst case scenario for the data
process task is failing to store all sensor data at a particular time stamp, and since data
acquisition is performed at 100Hz, the system can afford to miss data points
sporadically. Therefore, the task period is set to 9ms. The wireless transmission task is
invoked at 10Hz, and all memory management is handled by the DMA controller. It was
experimentally verified that the processor only requires 8us to initiate the DMA
controller, so the deadline for this task is very relaxed. The wireless receive task, on the
other hand, imposes stricter deadlines. For instance, if the received command is
intended to stop the data transmission, any failure to meet the timing deadline renders
the command futile. Furthermore, since wireless receive is the highest priority task, it is
necessary to limit the task period in order to prevent unnecessary wait times incurred by

the processor. In order to ensure high priority tasks can use the computing resources
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when they need them the most, a pre-emptive scheduling policy is followed in this

design [42].

4.4.2 Task Implementation

Each task has its own internal states, and different tasks can be in different states at a

given time due to concurrency.

When the iNEMO is powered on, the sensors and the peripherals are configured, and
the idle task is initiated. The idle task consists of four states where the signal Record (the

compliment of which is Record) is used to start or stop data logging as illustrated in the

following figure.

Start

Start/Stop
data logging

Check Rx
flag

Record

Figure 4.10: The state diagram of the /dle task

The data process task consists of three states. The signal CO (compute orientation)
dictates whether the accelerometer and gyroscope measurements are directly stored on

the micro-SD card or whether the measurements are used to estimate the orientation
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angles of the head, which are later used by application-level software. Figure 4.11

illustrates the state diagram of the data process task.

co

Start

Compute
orientation

Store data /
results

Figure 4.11: The state diagram of the Data process task

The wireless transmission task consists of only two states since the DMA controller is
configured to handle all memory access tasks. The state diagram is illustrated in Figure
4.12. The signal Tx and its compliment Tx are used to initiate the transfer of either
measurement data or computed orientation data depending on the state the data

process task is in.

Tx

Start ‘ I

Send via
DMA

Figure 4.12: The state diagram of the Wireless transmission task

The state diagram of the wireless receive task is illustrated in Figure 4.13. The signal RxStart

(the complement is RxStart )is asserted using a semaphore given by DMA, and the state machine
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makes the transition to the wait state until the reception is complete or the allocated time runs
out. If the reception is complete, the incoming message is processed to reveal the command

that it contains.

RxStart

RxStart
Start

Time out

Process RxDone

message

Figure 4.13: The state diagram of the Wireless receive task

4.5 Filter Design

The filter theories described in section 2.3.2 were implemented to remove sensor noise
as well as to fuse them to get orientation information, which is used in application

development presented in chapter 5.

4.5.1 FIR Filter

It is necessary to filter raw sensor data when they are used directly to compare head

motion during different activities [36]. Accelerometer and magnetometer signals were
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sampled at 100Hz, and the low pass filter was designed based on the technique

described in section 2.3.2.

The FIR filter was designed to have a maximum sideband ripple (-A) of -50dB, cutoff (f.)
and first stop band (f;.) frequencies of 6Hz and 11Hz. The order (M) and the parameter
[ were determined to be 29.8 and 4.55 respectively. These parameters were adjusted
with the aid of the Matlab filter design toolbox, and the final values were M=28 and 8 =
4.11. The CMSIS DSP library was used to implement the filter, and Figure 4.14 illustrates
input and output signals of the FIR filter as seen on the logic analyzer window of the Keil

IDE, and it shows a delay of 140ms in the output signal.

Logic Analyzer o @
ISetup I Load ... Min Time Max Time: Grid Zoom Code Setup Min/Mazx Update Screen| Transition [ Signalinfo [ Ampliude

1345.300049

Save ... Os 131.8377 s 05s | Show | Auto || Undo | | Stop | [~ Show Cycles ¥ Cursor

filterin

|

|
-
1 A=140
-404 399994 ;

1178.319824

filterOut

I
|
|
|
||
||
||
-335.651672 ! !

Figure 4.14: Keil logic analyzer signals

4.5.2 Sensor Fusion

In application development, it is necessary to combine the measurements of multiple

sensors to obtain useful information. In order to compute the orientation of the INEMO,
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a Kalman filter was designed as described in 2.3.3. The Kalman filter states included
orientation angles as well as gyroscope bias values [40], allowing the gyroscope to be

periodically recalibrated. The angle about the x-axis was updated as follows:
0% = -1 + (o, — bias,) * At (25)

Where 6% and w, refer to the angle and the angular rate at the k™ time step

respectively.
The state vector was defined as:
x = [0, bias, 6, bias, 6, bias,]T (26)

The prediction stage of the Kalman filter was implemented using only the gyroscope
readings. The fusion of accelerometer and magnetometer readings was implemented in
the correction stage. A detailed implementation of the Kalman filter is presented in

Appendix B

An additional Kalman filter was used to compute the travelling speeds of speed skaters,
and the two sensory data sets fused in that case were the x-axis and the y-axis of the

accelerometer. This will be further discussed in section 5.3.3

4.6 Chapter Summary

The implementation details of the design platform presented in Figure 3.1 were

presented in this chapter. The sensor calibration scheme improved the accuracy of all
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the accelerometer, the gyroscope, and the magnetometer on the iNEMO. The drivers for
data storage and wireless transmission were used to make the iNEMO-based head
motion monitoring system user-friendly. RTOS-based task management and low-level
software development, which includes filter implementations, were used to make the

application development easier.
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5 Applications

The iINEMO-based head motion monitoring system can be used for various applications.
Since one of its features is to compute orientation angles while wirelessly streaming
data to a host computer, the head motion can be replicated on a screen in real-time.
This capability was exploited to develop a DizzyFIX assistant. In addition, the
accelerometer, gyroscope, and magnetometer measurements were used to characterize
vestibular signals resulting from various day-to-day activities. The Bayesian classification
method was used to classify activities based on inertial data. Furthermore, head motion
data was used to develop a training tool for speed skaters. Metrics such as traveling

speeds were computed with the aid of Kalman filters.

5.1 DizzyFIX Assistant

DizzyFIX is a treatment provided by Clearwater Clinical Ltd. for vertigo and dizziness.
People suffering from dizziness are asked to perform a series of head movements to
help treat the main cause of dizziness called Benign Paroxysmal Positional Vertigo

(BPPV) [46].

DizzyFIX works by forcing the semicircular canals in the vestibular system to experience
a systematic sequence of movements. The iINEMO-based head movement tracking
device is designed to replicate the stimuli experienced by the vestibular system, so it can

easily be adapted for use with DizzyFIX. Both patients and physicians benefit from seeing
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head motion data in real time; therefore, the motion is replicated on a computer screen
with the use of the 3D animation engine, Panda 3D, in addition to providing raw data
[47]. The Python script used to read input from a serial port and to set roll, pitch, and

yaw angles can be found in Appendix C.

5.2 Activity Recognition

The iINEMO-based head motion tracking device was used to collect inertial data from
eight healthy individuals engaging in various activities such as biking, driving a car,
jumping, walking, running, and sprinting. First, it was necessary to investigate whether
head motion data shows distinct characteristics depending on the activities people
engage in. This knowledge can be extended to differentiate the head motion of healthy

people from that of patients who have a compromised vestibular system.

5.2.1 Classification

Accelerometer readings for different activities are shown in Figure 5.1, and distinct
patterns can be observed for each of the activities. These measurements were adjusted
according to the tilt angles to correct for the mounting errors. The acceleration resulting

from gravity was also removed.
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Figure 5.1: Accelerometer readings in mg for different activities

Figure 5.2 illustrates the profile of the gravity-compensated vertical acceleration profile
when a subject is engaged in walking and running. Running can be distinguished from
walking by the presence of two closely situated acceleration extrema. The first extreme
point occurs when the heel strikes the ground and the second extreme point occurs

when the foot pushes off the ground. The magintude of the acceleration spikes and the
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time difference between these spikes were characterized to develop an activity

recognition scheme.
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Figure 5.2: Local minima observed in vertical acceleration

Observations such as the ones shown in Figure 5.2 were used to define classes as
suggested in section 0. Gaussian parameters such as mean, variance, and covariance of
features were computed directly from the available data sets to perform supervised
training. In addition, the expectation maximization (EM) algorithm described in section
2.4.2 was implemented in Matlab since one of the objectives was to automate the

classification process by means of unsupervised training. The EM algorithm was tested
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with training data from the eight individuals, and the results were comparable to what

was obtained using supervised training as seen in Table 5.1.

Table 5.1: Statistical characteristics of supervised and unsupervised training

Walk Run
Activity . . . .
Supervised | Unsupervised | Supervised | Unsupervised
369.3 368.36 1043.1 1043.7

Acceleration \I\//Ie?n (me)
peak ariance 10460 9632.8 12431 12205

(mg’)

Mean (ms) 263.58 263.59 356.3 356.3
Period i

Variance 931 917.5 1040 1057

(ms’)
Covariance (mg ms) -521 -527.1 -213 -251

The collected data samples are illustrated in Figure 5.3, where Gaussian contours
corresponding to means, standard deviations, and covariances of walking and running

are shown.
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The following is a sample set of evidence in a two-second interval taken from an

individual whose data was not used as a training set.

Table 5.2: Sample data set to be classified

Acceleration | . - <359 | 537.332 | 661.9986 | 605.5914 | 547.5217 | 650.6915
peak[mg]
Period [ms] 470 400 480 570 550 430
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The mean values are 604.95mg and 483.3ms. The probability densities were computed

using equations (17) to (20), and the naive Bayesian classifier was set up as follows:

p(E|run)  2.0039e — 11
= = 3.9327e7 >1

B = lwalk) = 5.0956e =19

The data sample was then classified as belonging to a running event. The experiment
was repeated with 30 data sets belonging to running and walking events to give
statistical significance to the test. Only one of the samples was incorrectly classified,

resulting in a false acceptance rate of 0.03.

5.2.3 Patient Monitoring

One of the challenges associated with testing the iINEMO-based head motion monitor
was locating patients who had undergone vestibular surgery. Data collected from
healthy individuals presented in section 5.2.1 form a solid base, upon which further
improvements to the head motion monitoring system can be built. The differences
between patterns of healthy individuals and patients engaging in the same activity are
not expected to be as distinct as the case with the comparison of running and walking.
Therefore, it is necessary to explore classification algorithms beyond naive Bayes, and

such a task will be an excellent future extension to this thesis.
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5.3 Speed Skater Tracking

Another application of the INEMO-based head motion monitoring system is the study of
athletes. Knowing which head motions are associated with the best performance in
speed skating can help athletes and coaches improve their performance. In this case, the

main objective is to assist competitive sporting persons to improve their performance by
understanding where the physical movement was not optimized for the best performance. The
differences between training for short and long track competitive events also need to be

established and taken into account in order to achieve usability for all speed skaters. Testing of
the device was conducted in partnership with the Canadian national women’s speed
skating team. Data samples were collected from six athletes training for the 500m short
track event. The dimensions of a speed skating track, which is the size of an ice hockey

rink, are presented in the following figure.
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Figure 5.4: Speed skating track (not to scale) [53]
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5.3.1 Data Acquisition

The plastic box fabricated to aid sensor calibration was also used to mount the iINEMO-
based head motion monitor on the helmets of athletes. A plastic flap was attached to
the underside of the case to allow the device to be attached to a helmet using masking
tape, and Figure 5.5 shows speed skaters wearing the device. The skater motion was

captured on video, against which the results obtained using the INEMO were compared.

Figure 5.5: Speed skaters wearing the iINEMO

Efforts were put in to make sure that the device axes were aligned with global x, y, z
axes. However, the analysis was not affected by the initial position because the
measurements were easily rotated to the global coordinate system using the rotation

matrices described in section 2.3.4.
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Figure 5.6 shows the measurements of one skater after completing four laps, and the
results shown were transformed using rotation matrices and filtered using the filter

designed in section 4.5.1. In addition, the measurements were corrected for gravity

based on the initial head position.
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Figure 5.6: Accelerometer readings of four laps in mg

Figure 5.6a suggests that the lateral head movement (x-axis) is very periodic, and the

local minima are identified as the events when skaters transfer their weight to the
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outside of the track and straighten their heads when they are on the lines marked with
red in Figure 5.4. This is also the position on the track that results in the lowest

centripetal force acting on the skaters. It can also be concluded from y-axis data that

the skaters tilt their heads forward while engaging in fast skating.

Figure 5.7 illustrates the angular rates of motion in each of the pitch, roll, and yaw axes

as defined in section 1.1.1.
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Figure 5.7: Gyroscope readings of four laps
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It is interesting to note that there is a significant amount of periodic roll and yaw
rotations when the athletes are skating around the track. Although the angular rates are
high, they only correspond to very small amplitudes of actual head movement, and a

camera based motion tracking system is likely to miss these events.

5.3.2 Head Orientation Estimation

The complimentary and Kalman filters designed in section 4.5.2 were used to estimate
the orientation of each of the athletes’ heads. The orientation estimate was then used
to project the acceleration vector recorded by the accelerometer to the forward
direction in order to be used for speed estimation. The pitch and roll angle computations

provided satisfactory results as seen in Figure 5.8.
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Kalman Filter

‘W
Up-down [degrees]

=
Left-right [degrees]

Time elapsed [5]
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Figure 5.8: Head orientation estimation

Figure 5.9 shows a magnified version of the head orientation estimation, from which it is
evident that the Kalman-based orientation estimation yields smoother results than that

of the complimentary filter.
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Figure 5.9: Head orientation estimation (magnified)

The up-down angles (pitch) plot in Figure 5.8a shows that the skaters start the run with
their heads straight, but once they gain the cruising speed, they tend to lean forward
and tilt their heads down. The left-right (roll) angles plot shows remarkable periodicity
similar to what is seen in Figure 5.6. The figure suggests that, as is the case in reality, the

skater leans towards the centre of the curves when traveling around them. The local
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minima points again refer to events where the skaters push forward while straightening

their heads as they pass the lines marked with red in Figure 5.4.

5.3.3 Speed Estimation

Estimating translational speeds was a significantly more challenging task. In general,
IMU speed predictions, obtained using integration methods, are fused with the speeds
obtained from GPS data in applications such as automotives. However, GPS data is not
available for indoor use, which is the case with speed skaters. The pedometer approach
can be used to estimate running speed, where the time difference between acceleration
minima observed in the vertical direction, as seen in Figure 5.2, along with average
stride lengths are used to compute the speed [4]. However, such periodic events cannot
be observed during speed skating since the very nature of the sport dictates that

athletes slide forward.

Furthermore, simply integrating the forward component of the acceleration vector is
prone to multiple sources of error. The orientation of the IMU needs to be determined
with extreme precision to ensure the accuracy of the acceleration. Even a small error
such as 25mg in acceleration can result in an error more than 3.6m/s within 15s. Given
that the average speed of speed skating is less than 10m/s, the error is prohibitively

large.
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However, the average speed per half lap could be computed using the time difference
between the acceleration minima shown in Figure 5.6 along with the knowledge of the
length of a speed skating track, which is 111.1m [53]. Figure 5.10 shows the comparison
of the speed of three different skaters as they complete four laps on the speed skating

track.
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Figure 5.10: Speed in each half lap

The skaters-in-action were captured on video in order to validate the speeds computed
using the iINEMO. Table 5.3 summarizes the speeds and the errors of skaters 4 and 5.
The percent errors in speed estimation are illustrated in Figure 5.11 for easier
visualization. It is evident that the maximum error is less than 12% and that the mean of

the absolute error in all cases is 4%.

Table 5.3: Comparison of speeds (in m/s)

Skater 4 Skater 5
Half lap — - - -
Video iNEMO Error %Error Video iNEMO Error %Error
1 6.194 5.955 -0.239 -3.860 5.917 6.605 0.688 11.622
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2 6.187 5.922 -0.265 -4.284 6.568 7.149 0.581 8.850
3 6.126 6.078 -0.048 -0.786 6.599 6.653 0.053 0.809
4 6.553 6.799 0.247 3.766 6.999 6.850 -0.149 -2.131
5 6.560 6.551 -0.010 -0.146 6.793 7.032 0.238 3.510
6 6.446 6.207 -0.239 -3.712 6.912 7.131 0.219 3.173
7 6.687 7.348 0.661 9.888 6.727 6.944 0.216 3.217
8 6.491 6.417 -0.075 -1.148 6.655 6.392 -0.262 -3.941
15 . . . .
Skater 4
— — —Skater
2
T
=

Figure 5.11: Percent error in speed estimation

Half lap

The Kalman filter algorithm described in 2.3.3 can be used to fuse the average speed

shown in Figure 5.10 and the instantaneous speeds obtained by integrating the

acceleration. The resulting speed is shown in Figure 5.12.
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Time (sec)

Figure 5.12: Speed as a function of time — improved using the Kalman filter

Kalman filtering allows the contribution from less reliable inputs to be minimized, and in
this case, the less reliable input was the speed computed by integrating the acceleration.
Since the speed estimated using the periodic behavior is more reliable, more weight was

given to it.

One of the challenges associated with this technique is that the average speed can only
be estimated once skaters travel at least half a lap, which is 55.55m. Also, the speed
obtained via integrating the forward component of acceleration accumulates very
quickly. Considering how skaters take approximately 8-9 seconds to travel half a lap, the
rate at which this data is available is less than 0.2Hz. Therefore, the real-time operation

of this technique needs further improvement.
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5.3.4 Performance Comparison

Once the traveling speeds are known, the athletes find it useful to compare the head
motion associated with slow and fast laps. Knowing which head motions are associated
with best performance can help athletes to improve their techniques. Figure 5.13
illustrates a comparison of the lateral acceleration the head experiences during half-lap
5 and 7 in the case of skater 3. The respective average speeds are 9.44m/s and 8.58m/s.
The magnitude of acceleration in half-lap 7 is slightly smaller than that of half-lap 5, and
this observation is the result of skaters tilting their heads less in the latter. Less head-
tilting occurs when skaters travel slower during the curved segment of the track.

Instantaneous speeds during each half lap are also readily compared using this tool.
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Figure 5.13: Comparing the head motion in two half laps
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5.3.5 Graphical User Interface

A graphical user interface (GUI) was developed to make the system user-friendly. The
results presented in sections 5.3.1 to 5.3.3 are made available to skaters and their
coaches the moment they complete their runs, so they can examine the profile of head
motion to identify the causes for slowing down on a particular lap. Figure 5.14 shows the

acceleration at each position on the track using the GUI.
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Figure 5.14: GUI showing the acceleration as a function of position on the skating track
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The GUI usage is very simple. Once the data file is loaded, accelerometer and gyroscope
measurements can be plotted. The sliders labeled “Interval start” and “Interval stop”
can be used to adjust the start and the end points of lap data. Once the laps are
identified, the speeds can be plotted, and the list box lists the available half laps that can
be superimposed to compare head motion. The buttons “Plot half laps” and “Plot laps
3D” can be used to plot the acceleration data of multiple laps in 2D and 3D, and the
slider at the bottom right corner can be used to move the skater’s position, indicated by

ared dot in Figure 5.14, around the track.
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6 Conclusions and Future Work

6.1 Conclusion

A human head motion monitoring system based on the iNEMO inertial measurement
unit and the STM32W wireless module was implemented in this thesis. Firmware
implementation details on sensor integration, data storage, and wireless transmission
were presented. A sensor calibration scheme to ensure sensor reliability, which is

essential in medical applications, was presented.

The INEMO-based head motion monitoring system was used to develop an activity
recognition scheme that can help physicians characterize head motion of their patients
when they engage in day-to-day activities both prior to and following vestibular surgery.
In doing so, the head-motion characteristics of several day-to-day activities such as
running, walking, jumping, and biking were studied. The activity classification scheme

that was developed was based on the Bayesian classification model.

A graphics user interface (GUI) was developed to provide Speed Skaters and their
coaches with head motion data after their training is complete. Kalman filter based
sensor fusion techniques were used to estimate their traveling speeds. Also, design

challenges associated with monitoring such sports were identified.
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6.2 Future work

In future, a custom IMU will be designed to have multiple accelerometers and
gyroscopes to obtain a fault-tolerant design. Multiple IMUs placed on the core body can
supplement the readouts from the head worn IMU for closer tracking of the limb
movement, which can contribute to further athletic performance improvements.
Furthermore, it is beneficial to have the wireless radio on the same PCB to make the

overall device smaller.

The activity recognition scheme can be improved by analyzing head motion data of
patients with compromised vestibular systems and using more sophisticated classifiers
than naive Bayes. Although the objective of this thesis was to use human head motion
measurements for activity recognition, additional sensor modules placed on the core
body and on legs can be used to improve the pattern recognition process. Ultra-sound
transmitters and receivers can be used to estimate the position of speed skaters, and

these results can be fused with IMU results to improve speed skater tracking.

This platform is also used to be used to collect data associated with athletes colliding
and falling. Collecting such data in an un-simulated setting is an extremely difficult task.
However, the availability of such data can be used to develop a system that can notify
athletes the levels of trauma and concussions they experience when they collide with

other athletes or the fence of the skating rink.

Furthermore, this platform will be expanded to multiprocessor implementations of

embedded systems [54], [55]. Special attention will be paid to arithmetic optimization
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[56], [57], [58] and verification [59], including the spectral methods for incompletely
specified functions [60]. Moreover, the debug effort [61], dependable implementation
[62], [63], and designs containing efficient serial interfaces for improve communication
[64] will also be objectives of future implementations. Improvements to sensor fusion,
with the help of techniques such as the ones presented in [65], will be a major extension

of this work in order to enhance activity classification.



Appendix A

1. Data Storage

The most important configurations used to communicate with the SDIO interface:
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NVIC InitStructure.NVIC IRQChannel = SDIO_ IRQn;

NVIC InitStructure.NVIC IRQChannelPreemptionPriority = 11;
NVIC InitStructure.NVIC IRQChannelSubPriority = 0;

NVIC InitStructure.NVIC IRQChannelCmd = ENABLE;

NVIC Init (&NVIC InitStructure) ;

SDIO InStruct.SDIO ClockDiv = SDIO TRANSFER CLK DIV;

SDIO InStruct.SDIO ClockEdge = SDIO ClockEdge Rising;

SDIO_InStruct.SDIO ClockBypass = SDIO ClockBypass Disable;

SDIO InStruct.SDIO ClockPowerSave =SDIO ClockPowerSave Disable;

SDIO InStruct.SDIO BusWide = SDIO BusWide 1b;

SDIO InStruct.SDIO HardwareFlowControl =
SDIO_HardwareFlowControl Disable;

SDIO Init (&SDIO InStruct) ;

Listing 1: SDIO interface configuration [24]

Function calls used to perform read and write operations on the SD card:

// Single block read/write

SD WriteBlock (u32Address, s Buffer Block Tx, BlockSize);
SD ReadBlock (u32Address, s Buffer Block Rx, BlockSize);

// Multiple block read/write

SD_WriteMultiBlocks (u32Address, s_Buffer MultiBlock Tx,
BlockSize, NumberOfBlocks) ;

SD ReadMultiBlocks (u32Address, s Buffer MultiBlock Rx,
BlockSize, NumberOfBlocks) ;

Listing 2: Read and write operations [24]

The preceding function definitions are included with Keil IDE installations.
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2. Wireless Interface

Key statements used to configure the DMA controller to communicate with the USART

peripheral to transmit data:

RCC_APBlPeriphClockCmd( RCC APBlPeriph USART2, ENABLE ) ;

DMA InitStructure.DMA PeripheralBaseAddr = (u32)&USART2->DR;
DMA InitStructure.DMA MemoryBaseAddr = ((u32)&pkt_ tx buffer);

DMA InitStructure.DMA Priority = DMA Priority High;

DMA DelInit (DMAl Channel?7) ;
DMA Init (DMAl_Channel7, &DMA InitStructure) ;

Listing 3: DMA configuration for wireless transmission

pkt tx buffer isan instance of the packet structure described in Figure 4.7, and it

contains data that needs to be transmitted.

Wireless transmission task using DMA:

pkt tx buffer.sync[0] = 0x55; // Synchronization bytes
pkt tx buffer.sync[l] = 0xOE;
DMAl Channel7->CMAR = (uint32 t)& pkt tx buffer;

DMA Cmd (DMA1 Channel7, ENABLE) ;

Listing 4: Wireless transmission task



89

Appendix B

1 Kalman Filter

This appendix summarizes the state and noise definitions used for orientation
estimation using the Kalman filter. These definitions were modified when the travelling
speed of speed skaters were computed using the Kalman filter. The state transition and

the input matrices, based on eq. 26 (pg. 57), are as follows.

1 -4t 0 0 0 0 7
o 1 0 0 o0 o0

A= 0 O 1 -4 0 O
o o O 1 o0 o0
o o0 O 0 1 -—at
0 0 O 0 0 1
At 0 07
0O 0 0

_ |0 4t 0

B=10 0o o
0 0 4t
L0 0 O

The output matrix:

1 0 0 0 0 O

H=10 0 1 0 0 O
0 00010

The covariance matrix of process noise is defined using the noise variance observed for
the accelerometer and the gyroscope during calibration. The process noise model

presented below emphasizes the noise only on individual axes because the
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accelerometer and gyroscope calibration scheme introduced in section 4.1.1 and 4.1.2

minimizes cross axes effects.

[aX gX=*A4t> 0 0 0 0
0 gXx 0 0 0 0
_|o 0 ay gYs=At? 0 0
Q=1yo 0 0 g¥ 0 0
0 0 0 0 aZ gZ * At?
o 0 0 0 o gz |

aX, a¥, and aZ refer to noise variance of each of the three axes of the accelerometer,

and gX, gV, and gZ refer to noise variance of each of the three axes of the gyroscope.

The covariance matrix of measurement noise is constructed using the variance observed

for the angles computed using the accelerometer and magnetometer during calibration.

accAngleNoise 0 0
R = 0 accAngleNoise 1
0 0 magAngleNoise
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Appendix C

1.  Python script to interface with Panda3D

The following script was developed based on the example code provided with the
Panda3D engine [47]. The script reads serial data and unpacks them into roll, pitch, and

yaw values.

from struct import unpack from
import sys

#serial port
import serial
import io

from direct.showbase.ShowBase import ShowBase

from direct.task import Task

from direct.actor.Actor import Actor

from direct.interval.IntervalGlobal import Sequence
from panda3d.core import Point3

class RotateApp (ShowBase) :
def init (self):

ShowBase. init (self)

# Load the environment model.

self.environ = self.loader.loadModel ("models/environment™)
# Reparent the model to render.
self.environ.reparentTo(self.render)

# Apply scale and position transforms on the model.
self.environ.setScale(0.25, 0.25, 0.25)
self.environ.setPos (-8, 42, 0)

# Add CameraTask and Spin procedures to the task manager.
self.taskMgr.add(self.CameraTask, "CameraTask")
self.taskMgr.add(self.DizzyFix, "DizzyFix'")

# load and transform the panda actor
self.spinActor = Actor("models/DizzyFixActor", {"DizzyFix
"models/DizzyFixActorl"})

self.spinActor.setScale (0.3, 0.3, 0.3)
self.spinActor.reparentTo(self.render)



# Define a procedure to move the camera.
def CameraTask(self, task):
self.camera.setPos (0, =20, 3)
return Task.cont

# Define a procedure to read serial data and set roll, pitch, yaw
def DizzyFixTask(self, task):

s = serial.Serial('coml0',9600, timeout=0.03)

buff = s.read(20000000)

rf packets = []
for i1 in range(len(buff)/4):
rf packets.append(unpack from("f",buff,i*4)[0])

# each rf packet is 16 bytes:

# first 4 bytes -- preamble and commands

# next 12 bytes -- (float) roll, pitch, yaw
i=0

collect =

0
rpy = [0, 0, 0] # vector to hold roll, pitch, yaw
for item in rf packets:

# first item is 1.1062e-39 as it contains bits for
synchronization and commands
if item > 1.1062186389011544e-40 and item <
1.1062186389011544e-38:
collect =1
else:
if collect ==
rpy[i] = item
1 = i+l
if i ==
i=0

collect = 0

# set pitch, roll, and yaw
self.spinActor.setHpr (rpy[2], rpy[ll, rpy[0])

return Task.cont

app = DizzyFixApp ()
app.run ()

92
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