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Abstract 

 

With significant growth in wind generation in the recent years, addressing the challenges 

related to integration of wind into power systems has become an important area of research. In 

power systems, generation and demand must always balance. There must also be enough reserve 

generation capacity to meet fluctuations in load and renewable sources. Based on the 24 hour 

demand and wind forecasts, system operators schedule the generation and reserve by solving a 

day ahead Unit Commitment (UC). During operations, the generators must respect the trajectory 

limits set by UC. While having too much reserve is expensive, having less of it is risky since 

increased load shedding or wind curtailment may occur. Moreover, due to high penetration levels 

of renewables, thermal generators (Natural gas/ coal/ combined cycle plants) experience frequent 

‘cycling’ (ramp up or down of their power outputs) rather than operating at stable levels. The 

increased cycling has detrimental effects on the long term operational costs (order of millions) 

due to thermal stress and fatigue.  

While several recent studies address the above mentioned challenges, the focus has mainly 

been on hourly to daily operations, primarily since the UC traditionally deals with hourly time 

steps. However, at high penetration of renewables, several issues may arise in the sub-hourly 

time frame, mostly due to large wind ramps and increased sub-hourly ramping needs from 

thermal generators. Therefore, the thesis deals with the sub-hourly issues by addressing three 

main areas: (1) A detailed characterization of intra-hour wind behavior, (2) revisiting the sub-

hourly ramp behavior and associated costs of the thermal generators, and (3) Incorporating the 
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sub-hourly wind and thermal generator ramp behavior in the mixed integer linear formulation of 

the UC. 

To characterize wind variability in the intra-hour time frame, a general methodology is 

presented and its use is demonstrated on 5-minute interval wind power datasets from utilities. We 

noticed how wind distributions vary depending on generation levels and find the best fit 

distributions. Since balancing wind could call for significant cycling operations from thermal 

generators, we also consider the sub-hourly ramping characteristics of generators. To analyze the 

cost of cycling, a detailed review of findings from operational experiences and research studies 

has been presented. 

Finally, the thesis presents how the sub-hourly ramp characteristics of wind and thermal 

generators should be incorporated into power systems scheduling applications so that enough 

flexible capacity is allocated to deal with wind variability. Several implications of these sub-

hourly modeling inside UC, such as avoiding dependence on stochastic programming and having 

access to intra-hour flexible capacity limits, are demonstrated through case studies.  
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Résumé 

 

En raison de la croissance de la production d'énergie éolienne au cours des dernières années, 

la recherche sur la façon d'intégrer cette énergie dans les grands réseaux électriques est devenue 

très importante. Dans les réseaux électriques classiques, la production et la demande doivent 

toujours être en équilibre. Étant donné l’incertitude et la variabilité dans le niveau de production 

éolienne découlant des changements d’intensité des vents, l’opération des réseaux à forte 

pénétration éolienne représente un défi. En amont de l’opération du réseau, on doit planifier 

suffisamment de capacité de production ayant les caractéristiques dynamiques adéquates pour 

équilibrer les fluctuations de l'énergie éolienne. 

Avec des prévisions horaires de la demande et l'énergie éolienne, le gestionnaire de réseau 

effectue une planification de l’arrêt-démarrage (PAD) des unités de production classiques 

(thermales et hydrauliques). Le tout se fait afin de répondre aux niveaux de charge nette 

(demande moins production éolienne) prévus et à d’autres critères de fiabilité tel que les niveaux 

de réserves opérationnelles.  Lors des opérations en temps réel, les unités de production reçoivent 

leurs consignes de production. Celles-ci doivent respecter les limites de trajectoires fixées par la 

PAD. De plus, avec les niveaux élevés de production éolienne, les unités de production 

thermiques peuvent être fortement sollicités afin d’équilibrer les variations de la charge nette. On 

s’attend ainsi à des variations fréquentes des niveaux de production tant vers le haut que vers le 

bas. La fréquence et l’amplitude de ces variations ont des effets néfastes sur les coûts 

opérationnels à long terme en raison des stress thermiques accrus associés aux variations de 

niveau de production. 
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Cette thèse adresse les défis associés aux variations de puissance de la charge nette et leur 

intégration dans les problèmes de PAD.  On y introduit des contraintes et décisions afin de 

refléter l’importance des variations intra-horaire de la charge nette, généralement négligées dans 

les problèmes de PAD en présence d’une forte pénétration d’énergie éolienne. Spécifiquement, 

cette thèse aborde :  

(1) Une caractérisation détaillée de la variabilité de l'énergie éolienne intra-horaire, 

(2) Le comportement des rampes de production intra-horaire et l’analyse des effets sur les unités 

de production thermiques, et 

(3) L’intégration des variations intra-horaires de l'énergie éolienne et les rampes de production 

thermique dans la formulation mathématique des problèmes de PAD. 

Nous caractérisons la variabilité de la production éolienne dans le temps à l’aide de données 

empiriques. Nous remarquons que les distributions de la variabilité de l'énergie éolienne varient 

en fonction des niveaux de production. Nous considérons également les caractéristiques de rampe 

intra-horaire nécessaires de la part des unités de production thermique. 

Enfin, la thèse présente comment les caractéristiques de variabilité intra-horaire de l'énergie 

éolienne et des limites dynamiques des unités de production thermiques devraient être 

incorporées dans les PAD. Ainsi, nous optimisons la capacité de production flexible pour faire 

face à la variabilité dans l'énergie éolienne. Nous présentons plusieurs exemples pour démontrer 

notre méthodologie. 
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Chapter I     Introduction 

I.A.  Context and Motivation  

Wind power has experienced tremendous growth over recent years and is expected to continue 

to grow. This rapid growth can mainly be attributed to clean energy mandates to reduce 

emissions and the cost-effectiveness compared to other forms of fossil fuel based electricity 

generation sources.   

Worldwide wind power capacity has reached 336 GW in June 2014 (Compared to 47.6 GW in 

2004), and wind energy production was around 4% of global electricity usage, and growing 

rapidly. China (91,412 MW), USA (61,091 MW), Germany (34,250 MW), and Spain (34,250 

MW) are currently among the leading countries by cumulative capacity installed. In Canada, this 

amounts to 7803 MW [1].  

 

Figure 1.  Wind installed pie chart by countries [1]. 
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In Europe, several countries, such as Denmark, Portugal, Spain, the Republic of Ireland and 

Germany have reached high penetration levels of wind. On an annual basis, in 2014, 39% of 

Denmark’s annual energy was produced by wind. On a daily basis, wind power can often 

contribute to more than 50% of the instantaneous power in several systems that have integrated 

high wind capacity.  

While these high penetration levels are encouraging, many studies are being carried out to 

quantify the impact of high wind power generation on power systems, as well as to addressing 

challenges associated anywhere from 10% to 50% penetration levels [2]-[5]. Because 

instantaneous electrical generation and consumption must remain in balance, uncertainty and 

variability associated with renewable sources such as wind can present substantial challenges to 

incorporating large amounts of wind power into a grid system. System operators need to schedule 

enough of the appropriate dispatchable resources—essentially controllable generation, storage 

and demand response—ready to counteract the unexpected and variable nature of wind at any 

time during real time operation [2], [6]. For managing uncertainty and variability, modeling of 

wind behavior has therefore become an important task for system operators and other 

stakeholders.  

I.B.  Need for Intra-hour Wind Variability Modeling 

While several studies focus on hour-to-hour analysis of wind power behavior, wind generation 

is not just random from hour-to-hour [7]. Deployment of available reserve capacity during 

respective frequency regulation phases (primary, secondary and tertiary) are sub-hourly events 

and hence the importance of sub-hourly analysis of wind plays a critical role [6].  

The authors in [2] described a typical wind farm indicating ramp rates of up to 4.4% of total 

capacity per second implying a large burden on fast deployment reserves. In fact, an empirical 
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analysis of increasing wind penetration in the Pacific Northwest area of the United States 

demonstrated that reserve requirements increased with the square of installed wind capacity, and 

the need for total reserve capacity doubled after just 2500 MW of installed wind capacity. 

Another recent study for the Public Service of Colorado (PSCO) [7] area shows that there are 

more occurrences of up-ramps compared to down-ramps. The more strict the ramp definition 

(i.e., the larger the threshold), the higher the percentage of up-ramps compared to down-ramps. 

For the case of variability observed over a 60-minute interval, the percentage up-ramps versus 

down-ramps were at 58%, 69%, and 87%, respectively. The results also indicate that a ramp 

greater than 25% of total generation in PSCO is likely to occur almost once per day, and when it 

occurs it may happen very rapidly and then potentially have a large impact on intra-hour 

operations. For example in the BPA (Bonneville Power Administration, USA) system, upward 

ramps of up to 53% of total wind generation capacity (and downward ramps of 42%) within 60 

minutes were observed in 2009 [8]. These observations warrant a rigorous analysis to 

characterize intra-hour wind power variability is essential.  

While it is widely agreed that probabilistic models for wind power variability would be 

immensely useful, the main challenge in the detailed analysis of wind power characteristics 

remains in the availability of wind power time series data with the appropriate sampling rates and 

required durations [6], [9]. Moreover, most power systems have limited years of operational 

experience with large wind capacity. This limiting factor led to many studies of wind power 

uncertainty and variability being confined in the analysis of hour-to-hour variations [2], [7]. 

Without modeling of intra-hour wind variability, system operators have to base their decisions 

regarding short term regulation, time and duration of ramp requirements on their judgments or 

other assertions, which may then lead to sub-optimal planning in the form of higher costs of 



19 

 

operations and increased wind curtailment [6], [11]. A study by Greenpeace [12] points out that 

if used to its full potential, more accurate forecasting could slash the associated system balancing 

costs significantly (by nearly 30% for Germany). These forecasts can be improved with 

improved availability of historical data and better forecasting methods. 

I.C.  Need for Incorporating Generator Flexibility in Planning Tools 

 

  Figure 2.  Projected load and generation behavior in 2020, also known as the ‘duck curve’ [10] 

  Figure 2 [10] shows a forecasted scenario of the daily behavior of wind, solar and load in 

2020 in California Independent System Operator (CAISO) to demonstrate how large penetration 

of renewables may require significant flexibility from the rest of the generation mix. With high 

penetration of renewable resources, the net load (red curve) is the trajectory conventional 

resources would have to follow. It comprises of a series of ramps of significant magnitude and 

short duration. It should also be noted that neither wind nor solar peak production coincides with 

the system peak load. As wind penetration levels reach 10% to 50% of total installed generation 

capacity, rapid ramps in wind power output can become of significant importance. Generators 

that are capable of providing such rapid ramps to shadow the wind power variability in the very 
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short term may be called to be highly flexible [6], [13]. But such flexibility comes at a cost. 

Typically, generators have to go through increased cycling which can have detrimental 

mechanical strain effects. In turn, it is reasonable for such flexible assets to seek appropriate 

compensation. Moreover, from a generation planning perspective, system operators have to 

ensure that enough flexible plants with the appropriate dynamic characteristics (over a spectrum 

of time intervals) will be in service when large amounts of wind power are operational. 

Therefore, the quantification of intra-hour wind variability is also crucial for valuation of such 

flexibility and for making sure there is enough of it [6].  

I.D.  Organization and Contribution of the Thesis  

To address the above-mentioned challenges, this thesis aims to: (1) Quantify the intra-hour 

wind variability envelope, (2) Revisit the generator ramp (change of power output levels) 

characteristics in the sub-hourly time frame, and (3) Integrate the above two models into a power 

systems scheduling application in a computationally-efficient manner. 

Chapter II presents a detailed literature review. Then, in Chapter III, a methodology is 

presented to analyze intra-hour wind power behavior both time and frequency domains. This 

analysis leads to a systematic characterization of this variability. Our work goes beyond most of 

the published literature on wind power variability which generally concerns itself only with hour-

to-hour variations. As a second step, we attempt to establish best fit models and corresponding 

parameters in both domains. In the time domain, since the mean, variance, skewness and kurtosis 

of time series all convey important messages regarding the average, spread, shape and 

peakedness of a distribution, we attempt to fit probability density functions (PDF) that can take 

all these into account and best fit empirical data. In [11], we find that the skew-Laplace 

distribution, which is a more generalized form of the Laplace distribution, can be used most 
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effectively to describe wind variability over given sub-hourly time intervals. We present this 

finding based on the year-long 2009, 5-minute sampled, wind power data from BPA [8]. We 

notice that skewness in that 2009 BPA data showed dependence on time duration, well as on time 

of day and season of the year. In the frequency domain, we show from the Power Spectral 

Density (PSD) estimate of the 2009 BPA wind data that the average estimated wind power 

variability falls as 2.4f   over the range of frequencies corresponding to 10 minutes up to several 

hours.  

Afterwards, we present a systematic characterization of sub-hourly wind behavior from 

operational data rather than from capturing only the absolute changes in magnitudes, standard 

deviations and ramp durations. Such characterization should help with designing better intra-hour 

operational protocols and practices in systems with large wind power penetrations. In turn, 

system operators should be in a better position to increase the likelihood of successfully 

integrating large amounts of wind energy without significantly increasing system costs associated 

with scheduling of extra reserve, more frequent cycling of traditional generators and its 

associated thermal fatigue effects, as well as potentially higher emissions [6], [14].   

Unit commitment (UC) is known as the key day-ahead power systems planning tool whose 

goal is to schedule enough electricity generation and reserve capacity to meet demand reliably 

and economically [15], [16]. Chapter II provides a detailed review of a number of adaptations of 

the Unit Commitment that have been proposed to deal with the uncertainty and the variability of 

wind. However, due to its usual hourly time steps, intra-hour phenomena are not modeled 

explicitly and hence may lead to sub-optimal decision in the real-time operation. Therefore, we 

identify additional intra-hour constraints that need to be incorporated in the UC to capture sub-

hourly wind and generation ramp behavior, modeling of which has been detailed in Chapter III. 
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Additionally, these constraints are integrated in the mixed integer linear formulation of the unit 

commitment with minimal additional complexity.  

Chapter IV presents detailed case study results using BPA data and a three generator test 

system. Finally, Chapter V presents conclusions and suggestions for future extensions. 

  



23 

 

Chapter II  Literature Review  

II.A.  Probabilistic Modeling of Wind Behavior 

While wind power variability is often assumed to follow a normal distribution by invoking the 

central limit theorem [5], [17], recent studies show that this assertion is not necessarily true and 

hour-to-hour wind power variability can be modeled much better with a Laplace distribution 

[18].  This is understandable since invoking the central limit theorem would be justifiable only if 

the aggregate wind output levels were very high and wind farms were not located diversely 

across a large geographic area. But instead in most cases, wind farms cannot be placed in such a 

random manner and thus outputs have high degree of correlation. In the BPA system, for 

example, this is obvious. Moreover, at times when the variations are low either due to generation 

output levels being low or due to considering change within a very short time duration, invoking 

central limit theorem cannot be justifiable.  

In [18], the author employed parametric and non-parametric evaluation techniques on several 

probability distributions to determine their suitability as models of hourly variability. Using the 

Bonneville Power Administration (BPA), the Electric Reliability Council of Texas (ERCOT) and 

the Midcontinent Independent System Operator (MISO) wind power output data, the author 

carried out his analysis for hourly timeframes and showed that beta distributions are the most 

appropriate probabilistic models for aggregate wind power outputs, while Laplace distributions 

are the most appropriate probabilistic models for wind power variability.  

In Chapter III of this thesis, we present a methodology for analyzing the intra-hour variability 

and subsequently in Chapter IV we present results on empirical data from BPA.  
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II.B.  Unit Commitment with Significant Wind Power Generation  

Several approaches to address the challenges in integrating significant wind is presented in 

recent literature – a detailed literature review is available in [22]. Broadly, the formulations can 

be classified either as deterministic or stochastic. In [23], generator outages, load, and wind 

forecasting errors are taken into consideration when determining the required amount of system 

reserves in a deterministic setting. A reliability target is defined before calculating the reserve 

requirement for the system. However, pre-defining a reliability target may be difficult and may 

differ for different systems. A rolling-horizon commitment method is used to schedule the 

thermal units in [26] to incorporate the possibility of trajectory revisions due to updated 

forecasts. 

Ortega-Vazquez and Kirschen [24] proposed a Monte Carlo simulation based method to 

calculate the optimal amount of spinning reserve requirements. The method is based on the 

cost/benefit analysis method proposed in the authors’ previous work [25]. The authors concluded 

that an increased wind power penetration does not necessarily require larger amounts of spinning 

reserve. However, this conclusion cannot be generalized since it depends heavily on the 

assumptions of the study, its underlying models, as well as the generation portfolio and load 

profiles.  

 Bouffard and Galiana [17] proposed a stochastic unit commitment model to integrate 

significant wind power generation while maintaining the security of the system. The wind 

uncertainty is modeled by a scenario tree provided that the wind forecasting error is subject to a 

normal distribution. The reserve requirements are determined implicitly by simulating the wind 

power realization in the scenarios rather than being pre-defined. Wind curtailment and load 

shedding are also allowed as last resort potential control actions. The authors acknowledged in 
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their paper that the problem is prone to dimensionality issues when large systems and multiple 

scenarios need to be considered.  

Ruiz et al. also [27] also proposed a stochastic formulation to manage uncertainty in the unit 

commitment problem. The stochastic alternative to the traditional deterministic approach can 

capture sources of uncertainty and define the system reserve requirement in the scenarios. In [28] 

authors analyze the economic valuation of reserves by considering network constraints and 

realistic scenarios. However, most of these work on UC with wind rely on modeling wind 

forecasting errors as a normal distribution, and not incorporating the intra-hour wind variability 

characteristics. Another important aspect that is not considered in all this work is the detailed 

treatment of the intra-hour ramping behavior of wind and thermal generators, which can have 

important implications on the hourly and daily generation scheduling and dispatch decisions.  

II.C.  Ramp Rates and Cycling Costs 

While traditional UC assumes linear ramping from generators during sub-hourly intervals, 

Figure 3 shows a range of sub-hourly start-up ramp profiles for the same generator [29]. It shows 

how a combined cycle power plant is capable of cycling and can follow many different 

trajectories in the sub-hourly time frame and offer higher flexibility compared to conventional 

thermal power plants. However, following a fast ramping trajectory needs to be backed by 

sufficient incentives since it can lead to increased wear and tear of the generation equipment 

[31], [32], [33].  
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Figure 3.  Range of generator ramp profiles during start up [29] 

II.C.1.  Exposure to Increased Thermal Stress: 

When thermal generators ramp up, they reach very high temperatures (above 400 oC ) and 

pressure levels, which go through fast gradients. Similarly temperature drops rapidly (at specific 

ranges) during the ramp down process. Typical start-up and shut-down curves from generator 

operational data are shown in Figure 3 [30]. Mechanical stress is induced in a body when some 

or all of its parts are not free to expand or contract in response to changes in temperature. In most 

continuous bodies, thermal expansion or contraction cannot occur freely in all directions due to 

geometry, external constraints, or the existence of temperature gradients, and so stresses are 

produced.  
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Figure 4.  Generator temperature and pressure curves during start up and shut down [30] 

II.C.2.  Exposure to Cyclic Fatigue: 

By far the most common problem experienced as a result of cycling is thermal fatigue damage 

[31]. Fatigue is the structural damage that occurs when a material is subjected to cyclic loading, 

i.e. repeated heating and cooling. If the loads are above a certain threshold, microscopic cracks 

will begin to form at the metal surface of the generator equipment. Eventually a crack will reach 

a critical size, and the structure may suddenly fracture. The shape of the structure will 

significantly affect the fatigue life. Thermal stress below elastic limits will not lead to fatigue 

effects but macroscopic cracks may appear on the turbine rotor surface if the elastic limits are 

violated frequently [31], [32]. Therefore, it is well understood that thermal generators providing 

frequent cycling can experience cyclic fatigue.  

II.C.3.  Damage due to Cycling 

Increased ‘cycling’, i.e. starting up or shutting down and varying output in response to change 

in load levels, of generating units leads to increased costs due to maintenance, heat rate 

degradation, and higher probabilities of forced outages.  For example, due to cycling in combined 

cycle power plants, heat recovery steam generators (HRSG), steam pipes, turbines and auxiliary 

components go through significant thermal and pressure stresses, which can cause structural 
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damages and significantly reduce the life of components. Thus, generators incur additional 

maintenance costs due to wear and tear damage, unit replacement cost and increased forced 

outages [31], [33]. The opportunity cost of unforeseen forced outages is huge. Since thermal 

stress and ramp rates are directly correlated, to maximize plant value, a cost benefit analysis for 

providing any extra MW of ramping must be carried out carefully by the plant operators. 

A detailed study from EPRI [31] finds that the major cost implications of two-shift operations 

start to appear at approximately three years after changing from baseload. After this time, the 

cyclic effects of two-shifting begin to cause significant damage to components – a list of 

components most prone to damages due to cycling is presented in Table I. The report shows that 

repair and replacement costs of items such as superheater headers and other critical plant 

components can be extremely high (in the order of millions of dollars). 

Table I  Plant Equipment Failure due to Increased Cycling 

Component Percentage of Failures 

due to Cycling 

Boiler tubes 33 

Headers 83 

Superheater tubes 19 

Reheater tubes 40 

Condenser 38 

High pressure heater 70 

Low pressure heater 33 
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II.D.  Unit Commitment with Cycling Costs  

Overall, a change to operating under cycling conditions should capture the following: 

 Increased capital spending for component replacement and unit life shortening 

 Increased routine O&M cost from higher wear and tear 

 Lower availability as a result of increased failure rate and outage time 

 Increased fuel cost from reduced efficiency and non-optimum heat rate 

However, the difficulty lies in establishing the degree to which each of these factors is 

applicable to any specific plant. The plant specific factors can be very influential in modeling the 

accurate cycling costs. Since these factors are not publicly disclosed by plant operators and 

manufacturers, system operators might not be able to optimize over these parameters explicitly. 

As an alternative, in a study by Delson [34], the ramping of thermal generators was scheduled by 

considering thermal stress equations. It showed how generators can be scheduled to perform 

stress-limited ramping which would not incur cycling costs. Control techniques that incorporate 

stress monitoring are available to power plant operators as well [35]. 

UC formulations incorporating ramping costs and rotor fatigue effects were proposed in [36], 

[37]. In [44], authors proposed a profit maximization dispatch strategy where a generator chooses 

from different ramp profiles considering the ramping costs associated with each profile. 

However, these studies, [36], [37] and [44], do not present a general methodology for 

establishing such ramping costs. The authors of [14] and [33] analyzed the impacts of wind 

power on thermal generation unit commitment and dispatch. More recently, [38] presented a UC 

model where dynamic ramping costs can be taken into account. However, since most of these 

studies focus on hourly scheduling, more research is needed to capture issues that might arise due 

to frequent cycling in the sub-hourly time frame.    
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Chapter III  Modeling and Methodology 

III.A.  Analysis of Wind Variability in the Time and the Frequency Domains  

For analyzing short-term wind power variability, we developed a methodology combining 

with a number of standard tools. Figure 5 presents the tools and flow of data while carrying out 

the method. 

 

Figure 5.  Wind power variability analysis and incorporation into unit commitment 

III.B.  Data Consideration 

For probabilistic modeling of wind characteristics, we test our techniques based on actual field 

data. BPA has made available through its web page aggregate wind power with five-minute time 
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resolution backing to 1998 [8]. Such sampling frequency of aggregate wind power data is 

appropriate for our purposes. Following the techniques presented here, one may attempt to 

reproduce similar results for other systems worldwide.  

Specifically, in the analysis that is to follow, we used the 2009 complete year wind power 

dataset. These have a resolution of 5 minutes, and all data are for aggregated total real wind 

power output in the BPA balancing area. There were few missing values which were carefully 

omitted resulting in a grand total number of samples of 105,108. Individual wind farm data was 

not available and was not required for this study since we are interested in the aggregate 

variability that the system operator could experience and its impacts on system behavior. 

However, our methods can be readily extended to farm or turbine specific analysis if such data 

are provided. 

 

Figure 6.  BPA wind variability histograms 
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The BPA data shows at 01/01/2009 total wind nameplate capacity of 1671 MW, whereas by 

several additions of 30 through 250 MW size farms, total capacity reached 2617 MW as of 

12/16/2009. We normalized the data samples according to the nameplate capacities at 

corresponding dates so that the variability magnitudes are consistently in per unit.   

Data before 2009 was not considered due to insignificant capacity and missing values. 

Moreover, we assume that the 2009 data has not been affected severely by exogenous factors 

such as curtailment due to transmission constraints (unlike in ERCOT). In 2010-2013, BPA data 

shows yet higher wind output; however, it is impossible to assert whether or not recorded wind 

power levels were affected by transmission-driven curtailment orders. In the case when power 

data is affected due to curtailments, one could alternatively estimate wind power levels from 

wind speed data. 

III.C.  Data Preparation 

To analyze the wind power variability over different time intervals, τ = 5, 10, 30, 45, 60 

minutes, we need the historical variability corresponding to each τ.  These can be obtained from 

the BPA 5 minute resolution time-series of the aggregate wind output power [8].  

Let  x t  be the recorded aggregate wind output power, where t represents the time index with 

5 minute resolution.  P t  is obtained after normalizing the samples based on aggregate installed 

capacity at time t,  C t . 

 
 

 

x t
P t

C t
            (1) 

To obtain the wind power variability, ( )P t , over the specified time duration τ, we use (2); 
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 min( ) ( ) /P t P t P t t              (2) 

where tmin = 5 minutes for the BPA case. 

Next, the histograms for τ = 5, 10, 30, 45 and 60-minute wind variability are obtained and are 

shown in Figure 6. These histograms also convey the probabilistic interpretation of variability. 

Each histogram is formed using 50 by 50 grids (with different bin widths), and all those have 

been overlaid for ease of visual comparison. It is worth noting the increasing variance in the 

empirical histograms as the time intervals become longer. 

III.D.  Distributions Considered for Fitting the Empirical Data 

Mean, µ and variance, σ2 are the primary parameters that describe a normal distribution. 

Additionally, skewness and kurtosis are important descriptors of the shape of a distribution. 

Skewness, as defined in (3) is the measure of lack of symmetry of a distribution, and kurtosis, as 

defined in (4), indicates the degree of peakedness of a distribution 

3

3/2

2





    (3) 

4

2

2





    (4) 

where µi is the i-th central moment of the distribution.  

The histograms in Figure 6 are not exactly symmetric about the variability axis. Moreover, the 

histograms for smaller time durations are very peaky. As normal density functions cannot capture 

such characteristics very well, we need to consider other PDF besides normal.  While the 

symmetric double exponential, i.e. the Laplace distribution, could be a potential match (to 
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capture the peakedness of the data), we need a more generalized model of the Laplace 

distribution to properly capture the asymmetry of the observations [21]. 

III.D.1.  The Skew-Laplace Distribution 

The PDF of a skew-Laplace distribution of a random variable x is described by equation (5) 

using the parameters µ, α and β [20], [21]. 

 

exp ,
1

; , ,

exp ,

x
x

g x
x

x





  

  




  
 

 
 

      

            (5) 

The use of the α and β parameters enables the skewness in this modified form of the double 

exponential distribution whereas µ serves as the locational (centering) parameter. Formulae for 

cumulative distribution function (CDF) and maximum likelihood estimates (MLE) for the 

parameters of a SKL RV are available in the Appendix A. 

III.E.  Goodness of Fit 

Besides comparing the fitted distribution with the histograms graphically, we can compare the 

CDFs to test the goodness of fits [20]. Once we obtain the MLE from the dataset, we can 

generate a CDF and visually compare it with the empirical CDF obtained using the ECDF 

function in MATLAB which applies the Kaplan-Meier estimate of the CDF [39]. 

III.F.  Power Spectral Density Estimation 

The PSD of aggregated wind turbine outputs provides information on the characteristic of 

fluctuations in the output [40], [41], [42], [43]. One method to estimate the PSD is through the 

computation of the periodogram [40], which we have followed in our work. One of the attributes 
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of the power spectrum estimation through periodograms is that increasing number of samples 

does not reduce the variance of the estimate. Instead a segmenting and averaging technique 

should be used instead. The overall dataset can be partitioned into k segments, while the Fourier 

transform of each segment is taken and a periodogram estimate is constructed for the limited-

duration segment. The actual periodogram is obtained by averaging the k sub-PSD at each 

frequency. This technique (i.e. the use of a window function) helps reduce the variance of the 

final estimate by a factor of k [40]. As argued by Apt in [40], the PSD estimate of wind power 

provides an estimate of the average wind power variability over time intervals 1/f. We need to 

underline, however, that the PSD estimates the absolute value of the wind power variability.  

In the following section, the results of the estimation techniques will be incorporated in the 

Unit Commitment. Primarily, the α and β parameters of the SKL distribution provide the 

standard deviations of the wind power variability and hence typically three standard deviations 

will be used to set the ramp requirements.  

III.G.  Modified Unit Commitment with Wind    

After establishing the parameters to represent intra-hour wind behavior, here we revisit the 

standard unit commitment [15], [16] to incorporate the developed sub-hourly features. Since UC 

involves hourly scheduling, with t = 1, 2, 3,…, 24, we want to incorporate intra-hour variability 

and ramp behavior inside UC. Thus, indices corresponding to intra-hour segments need to be 

included. In Figure 7, the indices of intra-hour segments,  = 1, 2, …, 6 represent durations, 

10,20,30,40,50,60   minutes respectively. 
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Figure 7.  Hourly and sub-hourly time indices for unit commitment  

III.H.  Sub-hourly Wind Behavior in UC 

First, assuming time-stationarity property which implies that the parameters of the wind 

variability PDFs are time invariant, the mean of 5-minute up-ward variability, var 5minup

tw
  , can be 

used to  obtain the upward variability for sub-hourly intervals in the following manner, 

 var var 5min/ 5up up

t tw w       (6) 

Here, var 5minup

tw
   can be set to three standard deviations of the wind variability PDF fitted by 

SKL distribution using techniques detailed in the previous sections. Similarly, downward 

variability for sub-hourly intervals   with 10, 20, 30, 40, 50, 60   can obtained using the 5-

min downward variability, var 5mindn

tw

  , from the following equation,  

 var var 5min/ 5dn dn

t tw w       (7) 

Without considering time-stationarity, we can directly use the parameters obtained for 

variability over each time intervals, var up

tw

  and var dn

tw

 . Note that we need to take into account 

that upward wind variability cannot exceed the installed wind capacity, therefore the parameter 

need to be adjusted accordingly for use in UC.  

 var var

max tmin ,up f up

t tw w w w 

     (8) 
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Similarly, downward variability is restricted by the difference in forecasted output and the 

minimum,  

 var var

min tmin ,up f dn

t tw w w w 

     (9) 

III.I.  Ramp Characteristics in UC 

Given the generator upward ramp rate limit, up rate

ir
 , in MW/min, a generator is expected to 

ramp linearly up to up rate

ir 
 MW over 

  duration during the hour. Many fast ramping generators 

are able to reach full capacity before the end of the hour [29]. Therefore, the ramp up capacity 

during the hour at intervals   with 10,20,30,40,50,60  , can be obtained by,  

 max minmin ,up up rate

i i i iR g g r 
    (10) 

Similarly, the down ramp capability can be obtained from the following expressions,  

 max minmin ,dn dn rate

i i i iR g g r 
    (11) 

The generators must be able to provide enough sub-hourly flexible capacity to meet the sub-

hourly variability in wind. Therefore, the sum of the up (down) reserve capacities up to sub-

hourly interval must at least exceed the upward (downward) variability for the same interval.   

varup up

it t
i

r w 

   (12) 

vardn dn

it t
i

r w 

   (13) 

Next to incorporate the sub-hourly ramp limits, we first analyze the hourly case. In a UC with 

hourly time resolution generation and up reserve is limited by hourly constraints detailed in 

Appendix B.    



38 

 

Figure 8 illustrates the hourly availabilities of ramp capacities of a generator. For example, the 

generator with capacity, max

ig  = 100 MW, is set at 
( 0)i tg 

 = 40 MW at hour t = 0 and 
( 1)i tg 

= 70 

MW and t = 1. With hourly ramp limit of 60 MW/hour, 60MWup

iR  ,  the generator output can 

reach max 100ig  MW at hour t=1.  Therefore, it can provide upward capacity of up to 

max

( 1)i i tg g  = 30 MW.  On the contrary, it can provide 70 MW of downward capacity. However, 

this representation does not explicitly incorporate the intra-hour behavior of the generator, which 

will be explained next.  

 

Figure 8.  Hourly generation levels with up and downward capabilities 

For comparison, in Figure 9, the sub-hourly behavior is shown. Here, we assume a linear 

ramping process for the generator (ramp rate 1 MW/min or equivalently 60 MW/h). Besides the 

hourly output levels, the output levels are shown also at every 30-min intervals. While generation 

commitment decisions are taken only at hourly intervals, the sub-hourly output levels, s

itg 
,  are 
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needed at different intra-hour durations so that the intra-hour upward and downward capabilities 

can be computed.  

 

Figure 9.  Sub-hourly generation levels with up and downward ramp limits and available 

flexible ramp capacities  

At 60  minutes, s

itg 
must be equal to 

itg . Moreover, since a generator ramps at the rate, 

( 1)

60

i t itg g 
 MW/min, at 

 minutes, it must be 
( 1)

60

i t itg g



 
  
 

 higher (or lower if this quantity is 

negative) than 
( 1)i tg 

 . Therefore,  
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( 1)

( 1)
60

it i ts

it i t

g g
g g 





 
    

 

   (14) 

Next, we let up

iR 
 be the up ramp limit of generator i for sub-hourly interval   with duration 



. Then, the generators total output at duration 
 must be limited by 

( 1)

up

i t ig R   when ramping 

up and by 
( 1)

dn

i t ig R   when ramping down. Therefore, the combined sub-hourly generation, 

( 1)

s

i tg 
, and upward reserve, 

( 1)

up

i tr 
, must respect (15).  

( 1) ( 1) ( 1)

s up up

i t i t i t ig r g R          (15) 

Similarly, the sub-hourly generation levels, 
( 1)

s

i tg 
, less the downward reserve, 

( 1)

up

i tr 
, must 

respect (15).  

( 1) ( 1) ( 1)

s dn dn

i t i t i t ig r g R          (16) 

Finally to ensure that the generation maximum and minimum capacity limits are not violated 

at any time, we must also include constraints (17) and (18).  

max

( 1) ( 1)

s up

i t i t i itg r g u       (17) 

( 1) ( 1) ( 1) ( 1)

s dn

i t i t i t i tg r g u         (18) 

As seen from Figure 9, if a generator is already in an upward ramp trajectory due to an hourly 

set point change then up reserve potential during the sub-hourly interval reduces, while the down 

ramp potential increases.  

Overall, the following constraints have been added to the standard formation presented in 

Appendix B. 
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In the next Chapter, first we present the results related to sub-hourly characterization of wind 

behavior. Next, these results will be incorporated into the UC model. Finally, several Unit 

Commitment case studies will be presented to analyze the impacts on power systems operations 

and planning.    
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Chapter IV  Results and Analyses 

IV.A.   Analysis in the Time Domain 

The time series of the 5-minute variability of the BPA wind data is shown in Figure 10. The 

Mean of positive changes was at 0.0059 p.u. and the mean of negative changes was at -.0055 p.u. 

The standard deviation of positive changes was at 0.0070 in p.u. and the standard deviation of 

negative changes was at 0.0063 pu. 

 

Figure 10.  Time series of 5 minute variability 

IV.A.1.  Generation Level Dependency of Variability: 

The mean generation level was at 0.2873 p.u. Next, we partitioned the 5-minute wind 

variability data based on the generation levels, i.e. the variability observed when wind level was 

above and below mean. These 5-minute changes are defined as Δw_high and Δw_low. These changes 
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are plotted in Figure 11. Similarly, 60-min changes, conditioned on generation levels, were 

obtained. Table II presents the mean and standard deviation of these 5-min and 60-min changes.  

 

Figure 11.  Generation level versus 5 min changes 

Table II  Mean and standard deviation of changes based on generation levels 

 

Intervals 

Mean Δw_low 

(p.u.) 

Std  Δw_low 

(p.u.) 

Mean Δw_high 

(p.u.) 

Std  Δw_high 

(p.u.) 

5-min 0.0001 0.0052 -0.0001 0.0114 

60-min 0.0039 0.0424 -0.0060 0.0753 

 

As shown in Table II, the mean of changes from ‘high’ generation levels have a downward 

tendency (stronger for the 60 minute case) whereas the mean of changes from ‘low’ states have 

an upward tendency. This matches our intuition that when wind power output is already at a high 

level, the room for upward changes is much smaller than what it could be when the output level 

is low. Moreover, for changes from high levels, variability can be described using a normal 
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distribution which is due to the fact that when wind output levels are high, the 60 minute 

fluctuations have less probability of being distributed only tightly around the mean. But for other 

cases, especially for short duration intra hour variations, these are tightly centered around the 

mean. Thus, we need to analyze the performance of Laplace distributions compared to normal for 

those. 

IV.A.2.  Time Duration Dependency of Variability: 

Table I shows the maximum positive and negative changes (in p.u.) for time durations, τ = 5, 

10, 30, 45 and 60 minutes. For τ = 5 and 10 minutes negative changes (down ramps) were larger 

whereas in the other cases positive changes were larger. Also, the kurtosis, which captures the 

peakedness, is highest for 5 minute intervals and as time duration increases, kurtosis decreases. 

Table III  Maximum Positive and Negative Changes 

Time Duration (minutes) (–) Δ (+) Δ Kurtosis 

5 –0.2237 0.1238 29.89 

10 –0.2369 0.2086 18.69 

30 –0.2727 0.3955 10.99 

45 –0.3525 0.4627 9.66 

60 –0.4152 0.5354 8.91 

 

As shown in the previous section, wind distribution parameters vary for low and high wind. 

Since with larger time intervals, wind has higher possibility to change regime and move from a 

low to a high state or vice versa, the wind distribution parameters must also be dependent of time 

intervals.  
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Table IV  Best Fit Parameters 

Time Duration 

(minutes) 

Normal Skew-Laplace 

 μ σ μ α β 

5 0 0.008 0 0.0050 0.0050 

10 0 0.0144 0 0.0087 0.0087 

30 0 0.0345 0 0.0214 0.0213 

45 0 0.0469 0 0.0293 0.0292 

60 0 0.0579 0 0.0364 0.0363 

 

In Figure 12-Figure 15, we present the empirical histograms of normalized wind power 

variability for time duration, τ = 5, 10, 30, and 60 minutes. The dotted lines overlaid on top of the 

histograms represent the skew-Laplace (SKL) best fits whereas the dashed lines represent the 

normal distribution fits. The maximum likelihood estimates (MLEs) for the parameters of normal 

and SKL are shown in Table IV. 
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Figure 12.  Curve fitting (PDF) for 5 minute variability  

 

Figure 13.  Curve fitting (PDF) for 10 minute variability  

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

10

20

30

40

50

60

70

80

90

Five minute variability (in p.u.)

D
e

n
s
it
y

 

 

Data

SKL fit

Normal fit

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

10

20

30

40

50

Ten minute variability (in p.u.)

D
e

n
s
it
y

 

 

Data

Normal fit

SKL fit



47 

 

 

Figure 14.  Curve fitting (PDF) for 30 minute variability 

 

Figure 15.  Curve fitting (PDF) for 60 minute variability  

IV.A.3.  Goodness of Fit: 
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dotted lines the SKL and the dashed lines the normally-distributed fits with estimated best fit 

parameters computed from the data samples.  

 

Figure 16.  Goodness of fit test for 5 minute variability  

Only the plots for the 5-minute variations are shown since the other cases show similar 
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SKL fit. It clearly demonstrates the benefit of using SKL over Laplace when the histogram lacks 

symmetry about the distribution peak. 

 

Figure 17.  Curve fitting for May-August, nighttime, 60 minute variability 
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default the algorithm uses iteratively a reweighted least squares with bi-square weighting 

functions [39]. 

 

Figure 18.  Power spectrum of aggregate wind data from the BPA control area sampled at 5 

min resolution from January 1, 2009 to December 31, 2009. 

 

Figure 19.  Linear region of the PSD fitted by an exponential function of the frequency   
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Since the PSD follows a fairly predictable shape even though wind behavior is random, the 

availability of best fit parameters for the PSD can be used to improve forecasting techniques. 

Moreover, it could be useful to generate stochastic profiles for different intervals of wind which 

will respect the PSD of the true random process. 

One approach to generate the synthetic profiles is by forming a Markov chain representation 

of wind power (or wind speed) [45]. The output levels can be discretized and a state transition 

matrix can be formed to describe how the outputs change given the current and past states. In a 

first-order Markov process the future states can be predicted only from the current state and is 

thus independent of any past states, whereas, an n-th order Markov model would require the 

current as well as (n – 1) past states. The Markovian representation is appealing since it 

incorporates temporal correlation unlike the simplistic Monte Carlo-based approaches and 

therefore have been examined by several studies [45]-[48]. In [46], authors use a first order 

model with an 8 by 8 transition matrix for hourly time step and they state that higher order 

models will be investigated in their future work for a more accurate representation. Authors in 

[48] provide a formal proof that a first order Markov will be able to reproduce the correct 

probability distribution function, however, the matching of the autocorrelation will depend on the 

number of states, the order of the chain and the time step being considered. The lack of matching 

of the autocorrelation was also observed in the first and second order models presented in [47]. 

Therefore the generation of synthetic profiles must consider the autocorrelation or the PSD as an 

important model validation measure when considering Markovian representations. 
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IV.C.  Unit Commitment Case Studies 

IV.C.1.  Generator data 

We consider a three-generator power system with a total generation capacity of 250 MW. 

Table V defines the generator capacities (Max/Min), incremental costs (IC), shutdown and start-

up costs (SDC/SUC), incremental costs of providing ramping (RIC), and minimum up and down 

times (MUT/MDT).  

Generators produce power at constant incremental costs in $/MWh with negligible fixed costs. 

Reserve incremental costs apply to generator-supplied spinning reserve scheduled to respond to 

potential imbalances. Ramp limits are set to 60%, 60% and 100% of the generators’ capacities, 

G1, G2, G3, respectively. Generator 3 (G3) represents a flexible fast-ramping generator, 

whereas, G2 is mid-merit and G1 is baseload with longer minimum up and down time than the 

other two generators.  

Table V Generator Data 

 Max/Min 

(MW) 

IC 

($/MWh) 

SUC/SDC 

($) 

RIC 

($/MWh) 

MUT/MDT 

(h) 

G1 100/0 30 200 10 6/6 

G2 100/0 50 200 5 2/2 

G3 50/0 90 100 5 2/2 

 

IV.C.2.  Wind and Demand data 

Figure 20 shows the hourly forecasts of demand and wind power over 24 hours. The demand 

peaks at 330 MW (at 8 am), whereas the wind peaks around 190 MW (at 11 am). Note that 
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during the night (0h - 6h) the high availability of wind power can supply over 60% of the hourly 

demand.  However, here wind power dies down in the evening and reaches 115 MW. While the 

high penetration of wind can supply a significant portion of the demand, we are interested to 

analyze the impact on the rest of the generators that need to supply the residual demand as well 

as to supply reserve to balance imbalances caused by wind variations during operations.   

 

Figure 20.  Demand and wind profile 

IV.C.3.  Results  

The UC formulation developed in this thesis was programmed as a mixed integer linear 

program in GAMS software environment and solved via CPLEX. Results were analyzed by 
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generator can provide limited upward capability since it is already operating near its maximum 

capacity. Figure 22 shows the downward ramp capacity set for G1 by the UC to contribute to 

meeting the wind variability mitigation requirements, as per (13).  

 

Figure 21.  G1 generation and sub-hourly available capacity for up and down ramping 

 

Figure 22.  G1 generation and scheduled up and down ramp capacity  
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generation. Therefore, later in the evening when the wind dies down, generator-2 (G2) ramps up 

to full capacity to make up for the reduced output from wind.  

 

Figure 23.  G2 generation and sub-hourly available capacity for up and down ramping 

Generator-2’s intra-hour scheduled ramp capacity, set by the UC, is shown in Figure 24. 

Except in the first hour, the UC prefers to ask only for down ramp capacity from G2.   

 

Figure 24.  G2 generation and scheduled up and down ramp capacity 
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The output of the generator-3 (G3) is shown in Figure 25. The UC also turns the generator on 

for all hours, however, mostly at zero generation output. The generator upward ramp capacity is 

required by the UC to cover the wind variability ramping requirement (12). G3’s generation and 

ramp capacity scheduled by the UC are shown in Figure 26. 

 

Figure 25.  G3 generation and sub-hourly available capacity for up and down ramping 

 

Figure 26.  G3 generation and scheduled up and down ramp capacity  
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Figure 27.  Aggregate available intra-hour up ramp capacity 

 

Figure 28.  Aggregate available intra-hour down ramp capacity 
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generate at limited output, while the significant amount of wind might require a lot of stand by 

reserve from thermal generators.   

The output of the generator-1 is shown in Figure 29. We see that the generator ramps up to 

full capacity in late evening when the wind dies down. Figure 30 shows the scheduled outputs 

from G2.  In this case, it was not required to have G3 online.  

 

Figure 29.  G1 output and sub-hourly available capacity for up and down ramping 

 

Figure 30.  G2 output and sub-hourly available capacity for up and down ramping 
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The aggregate available up and down sub-hourly capacities can be obtained as before. Notice 

that in this case the upward flexibility is higher since generators are generating at a lower 

operating level than in Case 1 where the demand was higher.  

IV.C.5.  Comparison of Sub-hourly Offer Curves with the Hourly Case 

In this section, we compare the behavior in the above case study (with 250 MW peak demand) 

with the standard Unit Commitment where only hourly reserve requirements are imposed.  

 

Figure 31.  G1 generation and hourly scheduled capacity for up and down ramping 

 

Figure 32.  G1 output and sub-hourly scheduled capacity for up and down ramping 
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Figure 31 shows the behavior of the G1’s ramping offers, where it is set by the UC to provide 

down ramp capability. The UC does not impose any intra-hour capacity constraints. We compare 

this with Figure 32, which shows the capacities set by UC by taking into account the proposed 

intra-hour constraints. Similarly, Figure 33 and Figure 34 show the behavior of G2’s scheduled 

ramping capacity, without and with intra-hour constraints. 

 

Figure 33.  G2 generation and hourly scheduled capacity for up and down ramping 

 

Figure 34.  G2 output and sub-hourly scheduled capacity for up and down ramping 
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We see that, with intra-hour constraints, G2 does not operate at zero output, but rather at 

around 20 MW, so that it can provide both up and down ramp capability. Since G2 has lower 

incremental cost of ramping, it is preferable for to obtain ramping from G2, but at certain intra-

hour segments, as found optimal, the UC requests for some ramp capability from G1 (Figure 32). 

This is not possible in the hourly case (Figure 31) due to not considering the intra-hour 

constraints inside the UC. 

IV.C.6.  Unit Commitment Case 3 

Next, we simulate 30 different wind and demand profiles, as shown in Figure 35. The wind 

profiles randomly generated and are within two standard deviations of the original profile 

considered in the previous cases, whereas the demand is within 1% of the original. With these 

profiles, the expected day-ahead UC cost is at 56100 $/day and the expected wind curtailment is 

6.9 MW (mostly at hours 3-6 and 14-16) with a maximum of 29.7 MW. Here, we required to 

cover three standard deviation of the wind variability. With two standard deviations, the expected 

day-ahead UC cost is at 49090 $/day, with almost identical curtailment.  

 

Figure 35.  Test on 30 profiles of demand and wind 
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Another set of wind profiles were simulated and we obtained an expected cost of 87010 $/day 

when ramp requirements were set to cover three standard deviations of wind variability and 

82460 $/day when set for two standard deviations. 

 

Figure 36.  Test on 30 profiles of demand and wind 
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be able to avoid the turning on of G3 while meeting the total ramp requirements for the system, 

UC finds it economical to allow minor oscillations in the output of G2 while it meets the ramp 

requirements.   

Finally, in section IV.C.6. we also compared the performance of our model with stochastic 

profiles of wind and demand while considering different standard deviations of the wind power 

variability in section. We also tested on two different sets of wind profiles. When the ramp 

requirements were increased from two standard deviations to three standard deviations of the 

wind variability, we noted that the day-ahead cost increased by 14% in the first case and 5.5% in 

the second case, which is due to the fact that in the first case the amount of wind was much 

higher than the second one. Furthermore note that, even with increase in ramp requirements, in 

both cases there was no noticeable increase in wind curtailment which indicates there is adequate 

ramping capacities from generators in this test system. However, the UC plays the important role 

of allocating those capacities in the most economical way.  
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Chapter V  Conclusions 

With increasing wind power capacity, utilities, ISOs, regulatory bodies and researchers are 

trying to understand the impacts of the stochastic nature of wind power on system operations. 

Undoubtedly, forecasting plays an increasingly important role in improving operational 

efficiency, as forecasting algorithms learn from more historical data, and as they integrate the 

aspects inherent to wind power variability [19]. 

While load fluctuations are generally slow and predictable, wind ramp events are fast and 

unexpected and need to be managed efficiently through flexible capacity offers from supporting 

generators [6]. As discussed in detail in this thesis, hourly planning cannot lead to adequate 

reserve allocation in the presence of large wind since significantly large ramp events can occur 

much before the end of the hour. Both time and rate of wind ramp need to be matched optimally 

by generators providing operating reserve or ramp capabilities so that base and mid-load units 

face less cycling stress. 

Through an analysis of the Bonneville Power Administration (BPA) wind power output data 

for 2009, we have demonstrated the need for better understanding and probabilistic modeling 

tools for intra-hour operations under large wind power penetrations. We noticed that histograms 

of wind power variability for various time intervals can be skewed and warrant the use of a more 

generalized probability density function, the skew-Laplace distribution, to represent this 

skewness. It was shown that the skew-Laplace distribution is superior to Laplace and normal 

distributions in expressing wind power variability characteristics, especially for intra-hour time 

frames. Time interval dependency, seasonal dependency and wind generation level dependency 
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were observed for skewness in wind power variability. Moreover, since the power spectral 

density of wind output data contains valuable information regarding the wind power fluctuations, 

we analyzed the frequency spectrum of wind power and confirmed that variability increases in 

proportion to (t)2.4. Since the PSD follows a fairly predictable shape even though wind behavior 

is random, the availability of best fit parameters for the PSD can be used to improve variability 

magnitude forecasting techniques. Moreover, it could allow for the generation of stochastic wind 

profiles for different time intervals of wind, where the PSD of the generated profiles should 

match the historical PSD. The analysis techniques used here, along with the findings regarding 

the short-term wind characteristics, can serve as fundamental building blocks in the analysis of 

intra-hour operations for systems with significant wind power capacity. Furthermore, since wind 

PDFs were shown to be conditional on generation levels and on time durations, the simplified 

stationary assumption commonly invoked in unit commitment literature (with hourly resolution) 

needs to be revisited.   

In this thesis, we incorporated the explicit intra-hour wind and generation ramp constraints into 

the mixed integer linear formulation of the UC. Enforcing these constraints have an important 

impact on the UC results, since it provides access to flexible up and down ramp capacities and 

harnessing these capacities in the most economical way. Thus, it can ensure secure and economic 

operations by taking into consideration both the wind and the thermal generator behavior in the 

intra-hour time frame.  

Extensions of this work could include a thorough analysis of the cost-benefits through 

economic dispatch and Monte Carlo simulations. Detailed treatment of cycling costs, given the 

relevant plant operational data is accessible, and the development of flexibility metrics is also of 
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considerable interest. How flexible generators would compete or prefer to be paid for their 

capabilities is also have important area of research.   

With proper quantification of intra-hour wind variability, valuation of flexible capacity offers 

by other generators can be modeled more effectively. For a transmission system operator, it is 

important to know how much the power from large wind farms is fluctuating. Our systematic 

wind behavior characterization can be extended to analyze local wind farm output characteristics, 

provided that such data is available. Optimal generation scheduling considering farm specific 

intra-hour wind characteristics could provide significant benefit in relieving network congestions 

and reducing the dependence on the curtailment of free wind energy. 



Appendix A     The Skew-Laplace Distribution  

 

Skew-Laplace random variables have the PDF shown in (5) while their CDF is given by 
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To obtain the maximum likelihood estimation of the parameters of a skew-Laplace, we follow 

the method described in [20]. For a formal proof, we refer the reader to [20], [21]. We define: 
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Appendix B     The Standard Unit Commitment Formulation 

 

B.1. Objective and Cost Functions 

The total cost of generation for generator i can be obtained by summing the generator’s 

production, start up and shut down costs, as shown in (24). 

it

SU SD

g it i i it it itC u A B g C C       (24) 

A generator incurs start-up cost when turning on from an off state, and similarly incurs shut 

down costs when a generator shuts down from an on state. Start-up and shut-down costs are 

limited by associated parameters,
iSUC  and 

iSDC  and can be expressed as follow by (25)-(26).  

. ( 1)( )SU
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( 1)( )SD

it i i t itC SDC u u     (26) 

The total cost for all generators is obtained by summing over all generators and time periods,  

,

( )
itg

i t

C C   

Then, the objective function is to minimize the cost of total generation.  

B.2. Minimum Up- and Down-Time Constraints 

The required parameters are as follows: 

0iu   Generator i commitment state during period 0  

0iUT  Cumulative up-time of generator i at the end of period 0 
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0iDT  Cumulative down-time of generator i at the end of period 0 

iMUT  Minimum up-time of generator i  

iMDT  Minimum up-time of generator i 

Additionally, we define  0 0min ,( )i i i iM T MUT UT u   to specify the number of hours a unit 

must stay on starting following period 0. Then, the up-time constraints can be expressed as 

follows [16], 
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Similarly, for the down-time constraints, first we define  0 0min ,( )i i i iQ T MUT UT u   to 

specify the number of hours a unit must stay off following period 0. Then, the up-time 

constraints can be expressed as follows [16], 
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B.3. Hourly Generation and Ramp Constraints  

0iu   Generator i commitment state during period 0  

0ig  Power output of generator i during period 0 

up

iR  Hourly ramp up limit of generator i  

dn

iR  Hourly ramp down limit of generator i 

SU

iR  Start-up ramp limit of generator i  

SDN

iR  Shut-down ramp limit of generator i  

The bounds on generation level from generator i at time t are,  

min max

, ; 1,...,i it it i i tg u g g u t T      (29) 

The ramp up limits are as follows [14], 

   

   

max

( 1) ( 1) ( 1)

max

0 0 0)

1 ; 2,...,

1 ; 1

up SU

it i t i i t i it i t i it

up SU

it i i i i it i i it

g g R u R u u g u t T

g g R u R u u g u t

        

      
  (30) 

The ramp down limits are as follows [16],  

   

   

max

( 1) ( 1) ( 1)

max

0 0 0

1 ; 2,...,

1 ; 1

up SDN

it i t i it i i t it i i t

up SDN

it i i it i i it i i

g g R u R u u g u t T

g g R u R u u g u t

        

      
  (31) 

B.4. Demand and Generation Balance  

Supple must meet the total demand minus the wind forecast, 

g

it t t
i

g d w     (32) 

Where the generated wind is the net of forecasted wind, 
gw  minus the curtailed wind, 

gw   
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      g f s

t t tw w w                  (33) 

There must also be enough reserve to meet up and down imbalances, 

up up

it it t t t
i i

up up

it it t t t
i i

g r d w err

g r d w err

    

    
   (34) 

Generation plus reserve must not exceed the maximum or minimum ramp capacity, 

 

_ max

_ max

0

0

up up

it it it

dn dn

it it it

r r u

r r u

 

 
   (35) 
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