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Abstract

In this thesis, we are concerned with finite simple graphs. Given a subset S of

{3, 4, . . . , 2n − 1}, the additive graph generated by S has vertex set V = [n] and

edge set E, with (i, j) ∈ E if and only if i + j ∈ S. The focus of this thesis is

the relationship between generating sets S and monotone properties in the corre-

sponding graphs. We make the first known investigation of the Traversal by Prime

Sum Problem, in which the set S is the prime numbers and the property of interest

is a Hamilton cycle. A number of new results are proved concerning both these

graphs and the additive graphs for which the set S is the practical numbers.

For any subset S of {3, 4, . . . , 2n − 1}, we prove that the |S|-closure of the ad-

ditive graph generated by S is the complete graph; this allows for the determina-

tion of tight thresholds for a number of monotone properties in terms of |S| using

results from closure theory. These graphs are shown to be the first known wide-

ranging and representative subclass of graphs with complete k-closure, and they

afford a new and simple construction of minimum graphs with complete k-closure.

Finally, as an example of the number-theoretic interpretations of these graphs and

their properties, we generalize a theorem by Cramer concerning prime numbers to

a number of different sequences.
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Abrégé

Étant donné un sous-ensemble S de {3, 4, . . . , 2n − 1}, le graphe additif engendré

par S a un ensemble de sommets V = [n] et un ensemble d’arrêtes E, telle que

(i, j) ∈ E si et seulement si i+j ∈ S. L’objectif de cette thèse est l’étude des relations

entre l’ensemble S et les propriétés monotones du graphe additif correspondant.

On effectue les premières recherches connue sur le Traversal By Prime Sum Prob-

lem, problème dans lequel l’ensemble S correspond à l’ensemble des nombres pre-

miers et la propriété de graphe recherchée est l’existence d’un cycle hamiltonien.

De nouveaux résultats sont établis pour ce problème ainsi que dans le cas où S est

l’ensemble des entiers pratiques.

Pour un tel S quelconque, on démontre que la |S|-fermeture du graphe additif

engendré par S est un graphe complet. Ainsi, en utilisant les résultats de la théorie

de la fermeture on parvient à déterminer le seuil pour plusieurs propriétés mono-

tones des graphes en terme de |S|. Ces graphes sont les premiers représentant

connus d’une large sous-classe de graphe k-fermés complets. Ils permettent de

donner une construction nouvelle et simple de graphe fermés et complets mini-

maux. Enfin, comme exemple d’interprétation arithmétique de ces graphes et de

leurs propriétés, on généralise un théorème de Cramer sur les nombres premiers à
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d’autres suites d’entiers.
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Chapter 1

Introduction

This thesis is concerned with a natural family of finite simple graphs recently sug-

gested by Vašek Chvátal [8]. Fix any natural number n and any subset S of the

natural numbers. Then the additive graph generated by S, denoted by G(n, S), is the

graph with vertex set V = [n] = {1, 2, . . . , n} and edge set E, with (i, j) ∈ E if and

only if i + j ∈ S. An element s ∈ S induces an edge in G(n, S) if there exist dis-

tinct vertices i and j such that i + j = s. For a fixed n, only elements in the set

{1+2, 1+3, . . . , (n− 1)+n} can induce edges, and hence we will require that S be

a subset of {3, 4, . . . , 2n− 1}. Such a set S is referred to as a generating set. The ad-

ditive graph of order 8 generated by S = {3, 4, 6, 8, 12, 14, 15} is drawn as Figure 1.1.

The motivation for this definition was the Traversal by Prime Sum Problem, a

long-standing open problem that asks whether for every m ≥ 2 there is a Hamilton

cycle in the graph G(2m,P ), where P is the set of prime numbers in {3, 4, . . . , 4m−1}

[50]. In fact, these graphs were first considered briefly by Alladi et al. [1] thirty

years ago in interpreting a result concerning additive partitions of the set of natu-
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Figure 1.1: The additive graph G(8, {3, 4, 6, 8, 12, 14, 15}).

ral numbers. A subclass of these graphs was also considered around this time by

Erdős and Silverman [14], with regard to a conjecture about the chromatic number

of a graph whose vertices are the natural numbers and whose edges are precisely

those pairs of vertices that sum to an r-th power. In both of these cases, the infinite

analogues of the additive graphs defined by Chvátal were actually those of in-

terest. Finite additive graphs were soon after studied by a small group of Russian

mathematicians, but unfortunately only a few of the resulting papers are accessible

and have been translated [21, 22, 23, 35]. Their notion of “arithmetic graphs” arose

from the idea that graphs represented as additive graphs generated by subsets of

the natural numbers require less computer memory for storage. They did not in

general require that V = [n], and they were primarily interested in the minimum

cardinality of a set S needed to generate a given graph.
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Despite their natural construction and the recognized utility of other integer

graphs in number theory [39], the properties of these additive graphs do not appear

to have been extensively studied. Only recently have graph-theoretic properties

such as connectivity been considered in somewhat similar objects entitled addition

Cayley graphs (see [24] and references therein). For a subset S of the abelian group

G, the addition Cayley graph induced by S on G is the graph with vertex set G and

two group members adjacent if their sum is in S. The graphs we are considering

resemble addition Cayley graphs with G = (Zn, +), but devoid of any group struc-

ture our graphs possess very different properties.

This thesis is organized as follows. In Chapter 2, we are concerned with gener-

ating sets produced by infinite sequences. We begin by introducing the Traversal

by Prime Sum Problem and tracing its number theory origins. Using some basic

results from combinatorial number theory, we prove that the members of the sub-

class of additive graphs in question are k-connected for 1 ≤ k ≤ 50 given a sufficient

number of vertices Bk, and that they possess a highly structured 2-factor. Further-

more, via a simple heuristic we confirm that these graphs are hamiltonian when the

number of vertices is less than 100. Comparable results are obtained for a problem

of our own devising entitled the Traversal by Practical Sum Problem. We also briefly

consider other sequences in order to unify the known results in the literature re-

lated to these additive graphs.

In Chapter 3, we extend our focus to arbitrary generating sets. Our main result

of this chapter is that the |S|-closure of G(n, S) is the complete graph. By finding

bounds on the cardinality of the edge set of G(n, S) in terms of |S|, we provide
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a new and simple construction of minimum graphs with n vertices and complete

k-closure for all n and k. Finally, we use the known stability of many monotone

properties to prove thresholds for these properties in this family of graphs. These

graphs are thereby shown to be the first known wide-ranging and representative

subclass of complete k-closure graphs.

In Chapter 4, we cite two alternate proofs of the threshold for connectivity

and we determine the tight threshold for triangles. As an example of the number-

theoretic interpretations of these graphs and their properties, a theorem by Cramer

[11] concerning prime numbers is generalized to a number of different sequences.

We conclude in Chapter 5 by suggesting several avenues for further work, includ-

ing considerations of random generating sets and some algorithmic questions.

Standard terms from graph theory and number theory are italicized upon their

first use, and definitions are provided in the glossary. All graph-theoretic defini-

tions are consistent with those used in the text by Bondy and Murty [4], and all

number-theoretic definitions are consistent with those used in the text by Rosen

[42].
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Chapter 2

Predetermined Sequences as

Generating Sets

In this chapter we are interested in generating sets that are predetermined integer

sequences, such as the sequence of prime numbers and the Fibonacci sequence. We

begin by making the first known rigorous investigation of the Traversal by Prime

Sum Problem, which concerns the existence of Hamilton cycles in the additive

graphs generated by the prime numbers. There are many interesting similarities

between the properties of prime numbers and the properties of practical numbers,

and so we proceed to consider a related problem we dub the Traversal by Prac-

tical Sum Problem. In both cases we show that the additive graphs in question

satisfy several necessary conditions for Hamilton cycles. We then briefly turn our

attention to the Fibonacci sequence, general linear recurrence sequences, and the se-

quences of r-th powers, in order to unify the known results in the literature related

to these additive graphs.
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2.1 Traversal by Prime Sum Problem

The Traversal by Prime Sum Problem has its origins in number theory, but we fo-

cus on its graph-theoretic interpretation concerning a Hamilton cycle in the addi-

tive graph G(2m,P ) generated by the prime numbers. A simple heuristic is stated

that allows us to find by hand a Hamilton cycle in G(2m, P ) for 2m ≤ 100, and

we observe that if the twin prime conjecture1 is true, then G(2m, P ) is hamilto-

nian for infinitely many values of m. Turning to the question of the existence of a

Hamilton cycle in these graphs for all orders, we prove that some necessary con-

ditions for Hamilton cycles are satisfied. These include the existence of a 2-factor,

2-connectedness, and the existence of long cycles.

2.1.1 Problem Formulation and a Cycle Extension Procedure

Antonio Filz [16] defined a prime circle of order 2m to be a circular permutation of

the numbers from 1 to 2m with each adjacent pair summing to a prime number.

A prime circle of order 8 is drawn as Figure 2.1. He posed the question of their

existence for all m ≥ 2. This question has been popularized in the number theory

community by Richard Guy [26], who also asks for an asymptotic estimate of the

number of such circles of a given order. A similar question was posed indepen-

dently several years before this by Henry Larson [31]. A prime chain is defined to

be a sequential arrangement of the integers 1 through n such that the sum of every

pair of adjacent numbers is prime. Larson [31] confirmed that such chains exist

for n ≤ 50 and asked “What is the smallest value of n for which there is no prime

chain?” Note that the existence of prime circles of all even orders would imply the

1There are infinitely many pairs of primes p and p + 2.
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existence of prime chains for all n.

1

2

5

8

3

4

7

6

Figure 2.1: A prime circle of order 8.

An equivalent formulation of this problem in graph-theoretic terms is the fol-

lowing: Define G(2m,P ) to be the graph with vertex set V = [2m] and (i, j) ∈ E if

and only if i+j is prime. Then prime circles and prime chains correspond to Hamil-

ton cycles and Hamilton paths, respectively, and we can ask whether G(2m, P ) is

hamiltonian for m ≥ 2. This question is known in the graph theory community,

seemingly independent of its number theory origins, by Douglas West [50] and

has been termed the Traversal by Prime Sum Problem. This is the formulation that

we focus on herein.

There are almost no known results pertaining to this problem. West [50] ob-

serves that if 2m + 1 and 2m + 3 are both prime, then G(2m,P ) has the Hamilton
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cycle

(1, 2m, 3, 2m− 2, 5, 2m− 4, . . . , 2m− 1, 2, 1),

and thus if the twin prime conjecture is true, then G(2m, P ) is hamiltonian for

infinitely many values of m. However, there is no proof of the existence of any

infinite hamiltonian subfamily of G(2m,P ) graphs.

One procedure for constructing a Hamilton cycle in G(2m, P ) given a Hamilton

cycle in G(2m−2, P ) that we have found works for intermediate values of m is the

following. Note that vertex subscripts are modulo 2m− 2. This procedure applied

to a Hamilton cycle in G(16, P ) is drawn as Figure 2.2.

1 7

7 1 5

1 1

5 3

1 0 4

1 6

2

6

1 2

81 4

1 3

9

11 8

51 7

Figure 2.2: Extending a Hamilton cycle in G(16, P ) to a Hamilton cycle in G(18, P ).

8



• Input a Hamilton cycle C = (v1, v2, . . . , v2m−2, v1) in G(2m− 2, P ).

• If there exist distinct subscripts i and j such that

vi−1 + 2m− 1 ∈ P

vi+1 + 2m− 1 ∈ P

vi + 2m ∈ P

vj + 2m ∈ P

vi + vj+1 ∈ P

then output the Hamilton cycle

(v1, v2, . . . , vi−1, 2m− 1, vi+1, . . . , vj, 2m, vi, vj+1, . . . , v2m−2, v1)

in G(2m,P ).

• Otherwise, if there exist distinct subscripts i and j such that

vi−1 + 2m ∈ P

vi+1 + 2m ∈ P

vi + 2m− 1 ∈ P

vj + 2m− 1 ∈ P

vi + vj+1 ∈ P

then output the Hamilton cycle

(v1, v2, . . . , vi−1, 2m, vi+1, . . . , vj, 2m− 1, vi, vj+1, . . . , v2m−2, v1)

in G(2m,P ).

Using this simple heuristic, we have found Hamilton cycles in G(2m, P ) for all

2m ≤ 100. The success of this method is not surprising when considered from a

probabilistic perspective, under the assumptions that the elements in the Hamil-

ton cycle C are distributed randomly and that the primes in [n] are uniformly dis-

tributed with probability
n

ln n
.
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2.1.2 Properties of G(n, P )

We now consider some necessary conditions for the existence of Hamilton cycles

in G(2m,P ) for all m ≥ 2. Our main result is that G(2m, P ) has a highly structured

2-factor when m is even, which is constructed by taking the union of two disjoint

perfect matchings. As well, we show that G(n, P ) is 2-connected for all n ≥ 6 and

that if the twin prime conjecture is true, then connectivity increases without bound

as a function of n. We begin by making two important remarks about G(n, P )

graphs. Throughout, π(x) is used to denote the prime counting function.

Remark 2.1.1. G(n, P ) is bipartite for all n, as its vertex set can be partitioned into the

set of odd numbers at most n and the set of even numbers at most n.

Remark 2.1.2. The degree of vertex i in G(n, P ) is exactly deg(i) = π(i + n) − π(i).

Then, since

lim
n→∞

π(n)

n/ ln n
= 1

by the prime number theorem, it follows that

deg(i) ∼ n

ln n

in G(n, P ).2 Dirac [12] proved that a graph G with minimum degree δ contains a cycle of

length at least δ + 1. Hence G(n, P ) has a cycle of length Ω
( n

ln n

)
.3

Although there exist a number of sufficient conditions for Hamilton cycles

[17, 18], most are fairly strict degree conditions that are not applicable in light of

Remark 2.1.2. Thus we focus instead on the simpler problem of showing that these

2f(n) ∼ g(n) if limn→∞
f(n)
g(n) = 1.

3f(n) ∈ Ω(g(n)) if ∃N,C > 0 such that |f(n)| > |Cg(n)| ∀ n ≥ N .
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graphs are highly connected and that they contain structured 2-factors.

We adopt the notation used by Anderson and Walker [2]: Let b > a have distinct

parities, and denote the set of “nested pairs”

{(a + k, b− k)| 0 ≤ k ≤ 1
2
(b− a− 1)}

by [a; b]. We refer to such a pairing [a; b] as a brick. A brick matching in a graph

G(2m, S) is then a perfect matching of the form

[k0 + 1; k1] ∪ [k1 + 1; k2] ∪ · · · ∪ [ks−1 + 1; ks]

where k0 = 0, ks = 2m, and ki is even for all i = 1, . . . , s− 1. In other words, a brick

matching is a perfect matching composed of disjoint bricks. A brick matching in

G(18, P ) is drawn as Figure 2.3.

Greenfield and Greenfield [20] showed that Bertrand’s postulate4 is essentially

equivalent to the statement that the first 2m integers can always be arranged into

m disjoint pairs so that the sum of the entries in each pair is prime. We provide a

straightforward generalization of their result.

Theorem 2.1.3. Consider any strictly increasing integer sequence {an}, where a1 ≥ 3.

For a fixed n, let Sa = {ai < 2n}. Then G(2m, Sa) has a brick matching for all m ≥ 1 if

and only if for every m ≥ 1 there is at least one odd ai with 2m < ai < 4m.

Proof. (⇒) Fix any m ≥ 1. Consider the brick containing 2m in a brick matching M

4For every positive integer n with n > 1, there is a prime p such that n < p < 2n.
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3 4

5 6

7 8

9 1 0

1 1 1 2

1 3 1 4

1 2

1 5 1 6

1 7 1 8

Figure 2.3: The brick matching [1; 2] ∪ [3; 10] ∪ [11; 12] ∪ [13; 18] in G(18, P ).

of G(2m, Sa). The neighbour of 2m in this brick must be ai − 2m for some i, where

0 < ai − 2m < 2m. If ai were even, then the vertex 1
2
ai would be unmatched in this

brick and not matched in any other brick, contradicting the fact that M is a perfect

matching.

(⇐) We prove this by strong induction on m. The condition stated in the theorem

implies that a1 = 3, and hence the base case m = 1 is satisfied. Now consider

the graph G(2m, Sa) for some m > 1, and assume the induction hypothesis for all

graphs G(2j, Sa) with 1 ≤ j < m. By assumption there is an odd element in the

generating set, say ai, that lies between 2m and 4m. Hence the brick [ai − 2m; 2m]
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is present in G(2m,Sa). If ai = 2m + 1, then we are done. Otherwise, the induction

hypothesis implies that there is a brick matching M in G(ai − 2m − 1, Sa), and

therefore G(2m, Sa) has the brick matching M ∪ [ai − 2m; 2m].

Corollary 2.1.4. (Theorem 1, [20]) The integers {1, 2, . . . , 2m} can be arranged into m

disjoint pairs so that the sums of the elements in each pair is prime.

We will make repeated use of the following generalization of Bertrand’s postu-

late, which is due to Erdős [13].

Theorem 2.1.5. [13] There exists at least one prime of the form 4k + 1 and at least one

prime of the form 4k′ + 3 between n and 2n for all n > 6.

Theorem 2.1.5, and the correspondence between perfect matchings in G(2m, P )

and Bertrand’s postulate noted by Greenfield and Greenfield [20], immediately

suggests Lemma 2.1.6. The existence of two disjoint brick matchings in G(2m, P )

is of interest because their union gives a 2-factor in this graph.

Lemma 2.1.6. Let G(2m, P4k+1) and G(2m, P4k′+3) be the subgraphs of G(2m,P ) in-

duced by primes of the form 4k + 1 and 4k′ + 3, respectively.

(i) G(2m,P4k′+3) has a brick matching.

(ii) If G(2m, P4k+1) does not have a brick matching, then the addition of either the brick

[1; 2] or the brick [1; 6] will create one.

Proof. Statement (i) is a corollary of Theorem 2.1.3, since by Theorem 2.1.5 there is

at least one prime of the form 4k′ + 3 between 2m and 4m for all m ≥ 1.
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We prove statement (ii) by strong induction on m. The case m = 1 holds since

the addition of [1; 2] gives a brick matching. The case m = 2 holds because of the

brick [1; 4] in G(4, P4k+1). The case m = 3 holds since the addition of [1; 6] gives

a brick matching. Thus assume the induction hypothesis for all values less than

some m > 3.

By Theorem 2.1.5, we know that there exists a prime of the form 4k +1 between

2m and 4m for m > 3. This prime can be written as 2m + 2t + 1 for some t, and

it follows that [2t + 1; 2m] is present in G(2m, P4k+1). If t = 0, then we are done.

Otherwise, by the induction hypothesis, either G(2t, P4k+1) has a brick matching

M or the addition of one of [1; 2] or [1; 6] creates such a brick matching. Clearly

M ∪ [2t + 1; 2m] is a brick matching for G(2m, P4k+1).

Theorem 2.1.7. Suppose that G(2m,P ) does not have a 2-factor that is the union of two

disjoint brick matchings. Then m is odd and G(2m, P ) has two brick matchings that

intersect only in the brick [1; 2].

Proof. We say that a brick [a; b] is even (resp. odd) if it consists of an even (resp. odd)

number of edges. A simple parity argument shows that bricks in G(2m, P4k+1) are

even and that bricks in G(2m, P4k′+3) are odd.

Note that a brick matching in G(2m, P4k+1) and a brick matching in G(2m, P4k′+3)

are necessarily disjoint, and so their union gives a 2-factor in G(2m, P ). By Lemma

2.1.6, G(2m, P4k′+3) has a brick matching for all m ≥ 1. Thus it suffices to consider

when G(2m, P4k+1) has a brick matching.
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Suppose that m is even and that G(2m,P4k+1) does not have a brick matching.

By Lemma 2.1.6, it suffices to add one of the bricks [1; 2] or [1; 6]. Both of these

bricks are odd, which implies that there must be another odd brick in the brick

matching. This is a contradiction, and hence if m is even, then G(2m,P4k+1) has a

brick matching.

Suppose that m is odd, that G(2m,P4k+1) does not have a brick matching, and

that the addition of the brick [1; 6] creates a brick matching. If this brick matching

M and a brick matching M ′ in G(2m, P4k′+3) are not disjoint, then their intersection

is either the brick [3; 4] or the brick [1; 6]. In the former case, we can replace the

section [1; 2]∪ [3; 4] of M ′ with [1; 4]. In the latter case, we can replace the brick [1; 6]

of M ′ with [1; 4] ∪ [5; 6]. Thus there exist two disjoint brick matchings in G(2m,P ),

and G(2m, P ) has a 2-factor.

Hence the only case in which G(2m,P ) may not have a 2-factor is when m

is odd and the addition of the brick [1; 2] is necessary for the creation of a brick

matching M in G(2m, P4k+1). In this instance, a brick matching M ′ in G(2m, P4k′+3)

that is not disjoint from M must contain the brick [1; 2]. Since [1; 2] is the only odd

brick in M , this is exactly the intersection.

This 2-factor in G(2m, P ) (m even) need not be connected. For example, the

union of the brick matching [1; 12] in G(12, P4k+1) and the brick matching [1; 6] ∪

[7; 12] in G(12, P4k′+3) is a 2-factor in G(12, P ) with three cycles.

Since hamiltonian graphs are necessarily 2-connected, we briefly consider the
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connectivity of G(n, P ). Proposition 2.1.8 is a well-known result.

Proposition 2.1.8. (Lemma 9.3, [4]) If G is a k-connected graph and H is a graph obtained

from G by adding a new vertex y with at least k neighbours in G, then H is also k-

connected

Proof. Consider any separating set U of H . If y ∈ U , then U − y is a separating set

of G and hence |U | ≥ k + 1. If y 6∈ U and all of the neighbours of y are in U , then

|U | ≥ k. Otherwise, U is a separating set of G and hence |U | ≥ k.

Theorem 2.1.9. Consider any strictly increasing integer sequence {an}, where a1 ≥ 3.

For a fixed n, recall that Sa = {ai < 2n}. Then G(n, Sa) is k-connected for all n ≥ N if

and only if G(N, Sa) is k-connected and for every n ≥ N there are at least k elements ai

with n < ai < 2n.

Proof. (⇒) G(n, Sa) is k-connected for all n ≥ N implies that deg(n) ≥ k in G(n, Sa)

for all n ≥ N . Since for a fixed n we have that deg(n) = |Sa∩{n+1, n+2, . . . , 2n−1}|,

the claim follows.

(⇐) We proceed by induction on n. The base case n = N is assumed. Consider any

n > N and suppose that G(n− 1, Sa) is k-connected. By assumption, vertex n will

have degree at least k in G(n, Sa). The claim follows by Proposition 2.1.8.

Corollary 2.1.10. G(n, P ) is 2-connected for n = 4 and n ≥ 6.

Proof. G(4, P ) is a 4-cycle C4, G(6, P ) is the (3×2)−grid graph, and by Theorem 2.1.5

there are at least two primes between n and 2n for n > 6.

Ramanujan [40] proved that for any positive integer k, there is a natural num-

ber N(k) such that there are at least k primes between 1
2
n and n for all n ≥ N(k).
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The k-th Ramanujan prime is therefore defined to be the smallest integer Rk such

that π(n) − π(1
2
n) ≥ k for all n ≥ Rk. Equivalently, we have that there are at least

k primes between n and 2n provided n ≥ d1
2
Rke. Denote by Bk the smallest inte-

ger at least d1
2
Rke such that G(Bk, P ) is k-connected. It follows by Theorem 2.1.9

that G(n, P ) is k-connected for all n ≥ Bk, and that this is best possible. The se-

quence {Rk} can be found in the Online Encyclopedia of Integer Sequences [47]

and the sequence {Bk} (k ≤ 50) was determined using the network analysis soft-

ware Ucinet [5]. The results are summarized in Table 2.1 – for example, G(n, P )

is 50-connected for n ≥ 324. It is not known whether there is an alternate way of

determining the sequence {Bk}.

Theorem 2.1.11. If the twin prime conjecture is true, then lim
n→∞

κ(G(n, P )) is unbounded.

Proof. We have investigated the increasing connectivity of G(n, P ) for n ≤ 324.

Now suppose to the contrary that there exists an N and a k such that G(n, P ) is

k-connected but not (k + 1)-connected for all n ≥ N . Choose N to be the small-

est integer with this property. G(N, P ) has a minimal separating set U ⊂ [N ] of

cardinality |U | = k, which when removed separates the graph into two or more

components. We can assume without loss of generality that U is a separating set in

G(n, P ) for all n ≥ N .

Upon removal of U there cannot always be exactly two components consisting

of the odd labeled vertices not in U and the even labeled vertices not in U , as we

can assume that every vertex has degree at least k + 1. Thus there must exist two

vertices i and i + 2 that are in different components. If there exist infinitely many

twin primes, then there exists a pair of prime numbers (x, x+2) with x ≥ N + i+1.
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Table 2.1: Connectivity thresholds for G(n, P ).

k Rk d1
2
Rke Bk k Rk d1

2
Rke Bk

1 2 1 1 26 281 141 150
2 11 6 6 27 307 154 156
3 17 9 10 28 311 156 160
4 29 15 16 29 347 174 174
5 41 21 22 30 349 175 180
6 47 24 24 31 367 184 186
7 59 30 30 32 373 187 190
8 67 34 36 33 401 201 202
9 71 36 40 34 409 205 210

10 97 49 50 35 419 210 220
11 101 51 54 36 431 216 222
12 107 54 58 37 433 217 232
13 127 64 66 38 439 220 234
14 149 75 76 39 461 231 240
15 151 76 78 40 487 244 246
16 167 84 84 41 491 246 250
17 179 90 90 42 503 252 258
18 181 91 96 43 569 285 286
19 227 114 114 44 571 286 288
20 229 115 118 45 587 294 294
21 233 117 120 46 593 297 304
22 239 120 126 47 599 300 310
23 241 121 130 48 601 301 316
24 263 132 138 49 607 304 318
25 269 135 144 50 641 321 324
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It follows that i and i+2 have a common neighbour x− i in G(n, P ) for sufficiently

large n. This implies that x− i > N must be in U , which is a contradiction.

It is questioned whether there is a proof of Theorem 2.1.11 that does not require

assuming the twin prime conjecture.

The results of this section are a first step towards resolving the Traversal by

Prime Sum Problem. Many of our approaches to this problem, including finding

Hamilton cycles for specific graph orders, investigating the existence of long cy-

cles, and taking the union of special disjoint perfect matchings to create 2-factors,

are reminiscent of attempts to solve the notorious middle levels problem5 (see [28]

and references therein). In this case, however, we are dealing with an infinite nested

sequence of graphs. It is therefore possible that a Hamilton cycle can be found in

G(2m, P ) by connecting cycles in the structured 2-factors of G(2k, P ), k even and

2 ≤ k ≤ m.

2.2 Traversal by Practical Sum Problem

In this section we investigate the additive graph generated by the sequence of prac-

tical numbers. A practical number is a natural number n such that all smaller natural

numbers can be represented as sums of distinct divisors of n. For example, 12 is a

practical number because 5 = 2 + 3, 7 = 3 + 4, 8 = 2 + 6, 9 = 3 + 6, 10 = 4 + 6,

and 11 = 1+4+6. It is easy to see that every practical number greater than 1 must

5Let B(k) denote the bipartite graph whose vertices are all of the subsets of {1, . . . , 2k+1} of size
k or k+1, and whose edges represent the inclusion between two such subsets. Is B(k) Hamiltonian
for all k > 1?
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be even, and that every practical number greater than 2 is a multiple of 4 or 6. The

first ten practical numbers are {1, 2, 4, 6, 8, 12, 16, 18, 20, 24}.

One reason for interest in practical numbers is that they have many properties

in common with prime numbers. For example, if p(x) is the enumerating function

for the sequence of practical numbers, then

c1
x

ln x
< p(x) < c2

x

ln x
,

where c1 and c2 are constants [43]. Moreover, theorems analogous to Goldbach’s

conjecture6 [34], the twin prime conjecture [34], Legendre’s conjecture7 [27], and

the conjecture of infinitely many Fibonacci primes [33] are all known to be true for

practical numbers. This unexpected correspondence is particularly interesting be-

cause practical numbers are somewhat more predictable in their distribution. To

demonstrate this, consider the following lemma.

Lemma 2.2.1. (Lemma 1, [34]) Denote the sum of divisors function by σ. If m is a practical

number and n is a natural number such that 1 ≤ n ≤ σ(m) + 1, then mn is a practical

number. In particular, for 1 ≤ n ≤ 2m, mn is practical.

In light of the Traversal by Prime Sum Problem, it is reasonable to consider the

following: Let G(n,P) be the graph with vertex set V = [n] and (i, j) ∈ E if and

only if i + j is a practical number. What properties does this graph possess? This

graph has at least two components for all n > 1, as practical numbers are even

and hence no odd labeled vertex is adjacent to any even labeled vertex. However,

6Every even natural number greater than 2 can be written as the sum of two primes.
7For every natural number n, there exists a prime p with n2 < p < (n + 1)2.
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looking at the components induced by the odd and even labeled vertices yields

some noteworthy results.

Let Go(2m,P) and Ge(2m,P) be the subgraphs of G(2m,P) induced by the odd

and even labeled vertices, respectively. We prove several results comparable to

those proved for the graphs G(n, P ), beginning with the existence of infinite hamil-

tonian subfamilies of both Go(2m,P) graphs and Ge(2m,P) graphs.

Theorem 2.2.2. There are infinitely many m such that Go(2m,P) is hamiltonian and

there are infinitely many m′ such that Ge(2m
′,P) is hamiltonian.

Proof. Melfi [34] proved that there are infinitely many triples (x − 2, x, x + 2) of

practical numbers. Given such a triple (2m−2, 2m, 2m+2), Go(2m,P) contains the

Hamilton cycle

(1, 2m− 1, 3, 2m− 5, 7, . . . , 2m− 7, 5, 2m− 3, 1)

and Ge(2m− 2,P) contains the Hamilton cycle

(2, 2m− 2, 4, 2m− 6, 8, . . . , 2m− 8, 6, 2m− 4, 2).

Before continuing with other results similar to those we obtained regarding the

additive graphs generated by the prime numbers, we use Lemma 2.2.1 to demon-

strate that these additive graphs generated by the practical numbers may be more

easily studied.

Proposition 2.2.3. If Go(2m,P) has a 2-factor with k cycles and Ge(2m,P) has a 2-factor

with k′ cycles, then Ge(4m,P) has a 2-factor with k + k′ cycles.
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Proof. Consider the k cycles in the 2-factor of Go(2m,P). Lemma 2.2.1 implies that

if i + j is practical, then 2i + 2j is practical. By doubling the value of each vertex

label, we arrive at k cycles in Ge(4m,P) that span the vertices i ≡ 2 mod 4. Sim-

ilarly, by doubling the value of each vertex label in the k′ cycles in the 2-factor of

Ge(2m,P), we arrive at k′ cycles in Ge(4m,P) that span the vertices i ≡ 0 mod 4.

Thus Ge(4m,P) has a 2-factor with k + k′ cycles.

Lemma 2.2.4 is motivated by Erdős’ generalization of Bertrand’s postulate (The-

orem 2.1.5), and will be used in much the same way in order to prove the existence

of 2-factors and 2-connectivity.

Lemma 2.2.4. There exists at least one practical number of the form 8k and at least one

practical number of the form 8k′ + 4 between 2m + 2 and 4m for all m ≥ 3.

Proof. We prove that there is at least one practical number of the form 8k between

2m+2 and 4m for all m ≥ 3 by induction on m. In the interval [8, 12], 8 is a practical

number of the form 8k. Thus assume there is a practical number p of this form in

[2(m−1)+2, 4(m−1)] and consider the interval [2m+2, 4m], where m > 3. If p > 2m,

then p is in the interval [2m + 2, 4m − 4]. If p = 2m, then by Lemma 2.2.1 2p = 4m

is practical. In either case, there is a practical number of the form 8k in [2m+2, 4m].

We prove that there is at least one practical number of the form 8k′ + 4 between

2m + 2 and 4m for all m ≥ 3 by strong induction on m. In the intervals [8, 12],

[10, 16], and [12, 20], 12 is a practical number of the form 8k′ + 4. In the intervals

[14, 24], [16, 28], and [18, 32], 20 is a practical number of the form 8k′ + 4. Thus as-

sume that there is at least one practical number of this form in [2j + 2, 4j] for all
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3 ≤ j < m, where m ≥ 9.

By the induction hypothesis, there is a practical number p′ of the form 8k′ + 4

in [2m′ + 2, 4m′], where m′ = b1
3
mc. Then 3p′ is practical by Lemma 2.2.1, and is in

the interval

[2m + 6, 4m]

[2m + 4, 4m− 4]

[2m + 2, 4m− 8]

if m ≡ 0 mod 3;

if m ≡ 1 mod 3;

if m ≡ 2 mod 3.

Since p′ ≡ 4 mod 8, we have that 3p′ ≡ 4 mod 8, and thus the induction claim

is true for m.

Lemma 2.2.5, Theorem 2.2.6, and Corollary 2.2.7 are direct analogues of Lemma

2.1.6, Theorem 2.1.7, and Corollary 2.1.10, respectively, and so we omit the proofs.

Lemma 2.2.5. Let Go(2m,P8k) and Go(2m,P8k′+4) be the subgraphs of Go(2m,P) in-

duced by practical numbers of the form 8k and 8k′ + 4, respectively.

(i) Go(4m,P8k′+4) has a brick matching8.

(ii) If Go(4m,P8k) does not have a brick matching, then the addition of the edge (1, 3)

will create one.

Theorem 2.2.6. Suppose that Go(4m,P) does not have a 2-factor that is the union of two

disjoint brick matchings. Then m is odd and Go(4m,P) has two brick matchings that

intersect only in the edge (1, 3).

Corollary 2.2.7. Go(2m,P) is 2-connected for m ≥ 3.
8In this case, a brick [a; b] is the set of edges {(a + 2k, b− 2k)| 0 ≤ k ≤ 1

4 (b− a− 1)}.
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Remark 2.2.8. For m ≤ 8, Ge(4m,P) does not have two disjoint brick matchings when

m ∈ {1, 2, 3, 4, 5, 8}.

We finish this section by showing that the connectivity of Go(2m,P) increases

without bound as a function of m. This is not surprising given Theorem 2.1.11 and

the fact that there are infinitely many pairs of practical numbers p and p + 2 [34].

Theorem 2.2.9. lim
m→∞

κ(Go(2m,P)) is unbounded.

Proof. Firstly, suppose that Go(2m,P) is k-connected. We claim that Go(2m + 2,P)

is also k-connected. To see this, note that deg(2m − 1) ≥ k in Go(2m,P). Suppose

vertex 1 is adjacent to vertex 2m−1. Then 2m is a practical number, and by Lemma

2.2.1 4m is also a practical number. This implies that vertex 2m + 1 is adjacent to

vertex 2m − 1 in Go(2m + 2,P). Suppose vertex i is adjacent to vertex 2m − 1 and

i ≥ 3. Then vertex 2m + 1 is adjacent to vertex i − 2 in Go(2m + 2,P). Hence

deg(2m + 1) ≥ deg(2m − 1) ≥ k in Go(2m + 2,P). It follows by Proposition 2.1.8

that Go(2m + 2,P) is also k-connected.

Note that Go(2,P) and Go(4,P) are connected. Now suppose to the contrary

that there exists an M and a k such that Go(2m,P) is k-connected but not (k + 1)-

connected for all m ≥ M . Choose M to be the smallest integer with this property.

Go(2M,P) has a minimal separating set U ⊂ [2M ] of cardinality |U | = k, which

when removed separates the graph into two or more components. We can assume

without loss of generality that U is a separating set for all m ≥ M . There must

exist two successive vertices i and i+2 that are in different components. Melfi [34]

proved that there exist infinitely many pairs of practical numbers (x, x + 2), and

hence there exists such a pair with x ≥ 2M + i + 1. It follows that i and i + 2 have
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a common neighbour x − i in Go(2m,P) for sufficiently large m. This implies that

x− i > 2M must be in U , which is a contradiction.

The following is a natural question that we dub the Traversal by Practical Sum

Problem. The answer to this may suggest the correct answer to the Traversal by

Prime Sum Problem.

Question 2.2.10. Is Go(2m,P) hamiltonian for m ≥ 3? Is Ge(2m,P) hamiltonian for

m ≥ 5?

2.3 Other Sequences as Generating Sets

We conclude this chapter by briefly turning our attention to the structure of the

additive graphs generated by the Fibonacci sequence, general linear recurrence se-

quences, and the sequences of r-th powers, in order to unify the known results in

the literature related to these graphs. In particular, the question of when the ad-

ditive graphs generated by linear recurrence sequences are bipartite is well stud-

ied [1, 7, 19], and perfect matchings in additive graphs generated by the sequences

of squares and cubes have been previously investigated [2].

2.3.1 Linear Recurrence Sequences

Given the abundance of research related to the Fibonacci numbers, this integer

sequence is a natural candidate for special consideration. Thus consider the graph

G(n, F ), where F is the set of Fibonacci numbers in {3, 4, . . . , 2n − 1}. The graph

G(35, F ) is drawn as Figure 2.4. We prove some basic results about these additive

graphs, which leads to a concise discussion of the theory of additive partitions.
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Theorem 2.3.1. G(n, F ) is connected for all n.

Proof. Firstly, note that G(1, F ) and G(2, F ) are connected. For n ≥ 3, the sum of

the two largest Fibonacci numbers in the set {3, 4, . . . , n} must be strictly less than

2n. The claim follows by Theorem 2.1.9.

Remark 2.3.2. The condition in Theorem 2.1.3 is necessary only for brick matchings, and

not for perfect matchings in general. However, every third Fibonacci number being even

suggests that not every graph G(2m, F ) has a perfect matching. A minimal counterex-

ample is found by considering the first value of 2m for which there is no odd Fibonacci

number in the interval [2m + 1, 4m − 1], which is 2m = 22. To see that G(22, F ) has no

perfect matching, note that in such a matching vertex 17 must be matched with vertex 4

and vertex 21 must be matched with vertex 13. Since vertex 9 has only vertices 4 and 13

as neighbours, there is no such perfect matching.

Theorem 2.3.3. G(n, F ) has no odd cycles.

Proof. We proceed by induction on n. The base case is trivial, so fix any n > 1 and

assume that G(n− 1, F ) has no odd cycles. It is clear that vertex n can have degree

at most 2 in G(n, F ): If there exist distinct i, j ∈ {1, 2, . . . , n− 1} such that n + i and

n+j are in F , then the next Fibonacci number (n+i)+(n+j) is strictly greater than

2n− 1 and hence does not contribute to the degree of vertex n. If deg(n) = 1, then

no odd cycles have been created and we are finished by the induction hypothesis.

Thus assume that deg(n) = 2. Suppose n + i and n + j are both Fibonacci

numbers, with 1 ≤ i < j ≤ n− 1. Then the sequence of Fibonacci numbers is

{1, 1, 2, 3, . . . , n + 2i− j, j − i, n + i, n + j, . . .},
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and the addition of vertex n simply creates the 4-cycle (n, j, n + i − j, i, n). We

cannot have that vertices i and j are adjacent, as this would imply a triangle in

G(n − 1, F ). It follows that if G(n − 1, F ) has no odd cycles, then G(n, F ) also has

no odd cycles.

Remark 2.3.4. The proof of Theorem 2.3.3 shows that G(n, F ) is never 2-connected: If

deg(n) > 1 in G(n, F ), and i and j are as in the proof, then deg(j − i) = 1 because there

is only one Fibonacci number in the set {j − i + 1, j − i + 2, . . . , j − i + n}. As well, the

proof technique can be used to show that G(n, F ) is planar for all n.
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Figure 2.4: The additive graph G(35, F ) of order 35 generated by the Fibonacci
numbers.

Theorem 2.3.3 was discovered independently by Silverman [46], who proved

that the natural numbers have a division into two disjoint sets with the property
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that a natural number is a Fibonacci number if and only if it is not the sum of

two distinct members of the same set. He also proved that this division is unique.

This work inspired Alladi et al. [1] to study partitions induced by general linear

recurrences. Given a set of natural numbers A ⊆ N, they say that A generates an

additive partition of N if there exists A1, A2 ⊆ N with N = A1∪A2, A1∩A2 = ∅, such

that for any distinct natural numbers a and b with a, b ∈ A1 or a, b ∈ A2 we have

a+b 6∈ A. They proved the following interesting theorem by means of an inductive

construction.

Theorem 2.3.5. (Theorem 2.2, [1]) If U = {un} is a linear recurrence sequence with

un+2 = un+1 + un, n ≥ 1, u1 = 1, and u2 > 1, then U generates a unique additive

partition of N.

Alladi et al. [1] provided a graph-theoretic interpretation of their result, which

led to their consideration of additive graphs generated by a subset of the natural

numbers. They note that a set A ⊆ N generates an additive partition of N if and

only if the infinite additive graph generated by A is bipartite.

Corollary 2.3.6. Suppose that the infinite sequence {an} is defined by a linear recurrence

an+2 = an+1 + an, n ≥ 1, a1 = 1, and a2 > 1. Then G(n, Sa) is bipartite for all n.

In the wake of several generalizations of this result to other specific recurrence

relations, Chow and Long [7] recently established an unexpected connection be-

tween sets that generate additive partitions and the theory of continued fractions.

Some of their results were subsequently enhanced by Grabiner [19]. The following

theorem subsumes much of what was previously known. A brief introduction to

continued fractions can be found in Chapter 12 of the text by Rosen [42].
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Theorem 2.3.7. (i) (Theorem 2, [7]) For any irrational 1 < α < 2, the set of numera-

tors of all convergents of the continued fraction for α generates an additive partition.

(ii) (Theorem 7, [19]) This partition is unique if and only if the continued fraction for α

has infinitely many partial quotients equal to 1.

2.3.2 Sequences of r-th Powers

Another fundamental integer sequence is the sequence of r-th powers {2r, 3r, 4r, . . .}

(r ≥ 2). For a given n, let Sr denote the set {ir < 2n}. Anderson and Walker [2]

considered the question of the existence of perfect matchings in G(2m, S2) and

G(2m, S3). We conclude this chapter by rephrasing some of their results using

our terminology and notation.

Theorem 2.3.8. (Theorem 4, [2]) G(2m, S2) has a perfect matching if and only if 2m 6∈

{2, 4, 6, 10, 12, 20, 22}.

Theorem 2.3.9. [2] G(2m, S3) has a perfect matching if 2m ≥ 238.

In contrast to Remark 2.3.2, Anderson and Walker [2] completely characterized

when the graph G(2m, S2) has a perfect matching but no brick matching.

Theorem 2.3.10. (Theorem 5, [2]) G(2m,S2) has a brick matching if and only if m ≡ 0

mod 4.

The conjecture by Erdős and Silverman [14] mentioned in Chapter 1 also con-

cerns these graphs, and it can be phrased in the following way. This conjecture

was made almost thirty years ago, and was repeated several times by Erdős, but

no results are known.
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Conjecture 2.3.11. [14] lim
n→∞

χ(G(n, Sr)) is unbounded for all r ≥ 2, where χ(G) is the

chromatic number of G.
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Chapter 3

Arbitrary Generating Sets

In this chapter we shift our focus to arbitrary generating sets. We begin by describ-

ing the motivation of our main result, which is that the |S|-closure of G(n, S) is

always the complete graph. By finding bounds on the cardinality of the edge set

of G(n, S) in terms of |S|, we discover a new and simple construction of minimum

(with respect to edge set cardinality) graphs with n vertices and complete k-closure

for all n and k. Finally, we use the known stability or complete stability of many

monotone properties to prove thresholds for these properties in this family of ad-

ditive graphs. These graphs are thereby shown to be the first known wide-ranging

and representative subclass of complete k-closure graphs.

3.1 Motivation

We introduce in this section the important concepts of the k-closure of a graph and

of the stability of a property. Our motivation was the Traversal by Prime Sum Prob-

lem, which was considered in the previous chapter. Specifically, Vašek Chvátal [8]
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posed the following two questions in an attempt to understand whether the pres-

ence or absence of a Hamilton cycle in G(2m, P ) is inevitable given the proportion

of prime numbers in any interval [3, 4m− 1].

Question 3.1.1. What is the maximum cardinality k such that G(n, S) is not hamiltonian

for all |S| = k?

Question 3.1.2. What is the minimum cardinality k such that G(n, S) is hamiltonian for

all |S| = k?

In response to Question 3.1.1, the maximum cardinality k such that G(n, S) is

not hamiltonian for all |S| = k is easily seen to be k = 2. Firstly, note that two

generating set elements can induce at most n − 1 edges in a graph of order n.

Secondly, Remark 3.1.3 contains two of the many examples of generating sets of

size 3 that induce a Hamilton cycle.

Remark 3.1.3. The generating set S = {3, n + 1, n + 3} induces the Hamilton cycle

(1, n, 3, n− 2, 5, n− 4, . . . , n− 3, 4, n− 1, 2, 1)

in G(n, S), while the generating set S ′ = {n − 1, n + 1, 2n − 1} induces the Hamilton

cycle

(n, 1, n− 2, 3, n− 4, 5, . . . , 4, n− 3, 2, n− 1, n)

in G(n, S ′).

The solution to Question 3.1.2 is more involved. We will show that the min-

imum cardinality k such that G(n, S) is hamiltonian for all |S| = k is k = n.

The proof is influenced by the following well-known result due to Bondy and

Chvátal [3], which is a consequence of Ore’s Theorem [37].

32



Theorem 3.1.4. [3] G is hamiltonian if and only if G+(u, v) is hamiltonian, where u and

v are two nonadjacent vertices with deg(u) + deg(v) ≥ n.

The graph obtained by continually adding in edges between vertices with this

property in a graph G results in a well defined graph termed the closure of G. In

particular, since the complete graph has a Hamilton cycle, Theorem 3.1.4 implies

that a graph whose closure is complete is necessarily hamiltonian. It was subse-

quently shown that all of the classic sufficient degree conditions for a Hamilton

cycle imply a complete closure [3].

More generally, let the k-closure of G, denoted by clk(G), be the graph obtained

by continually adding an edge (u, v) for every nonadjacent u, v with deg(u) +

deg(v) ≥ k. Bondy and Chvátal [3] proved that the k-closure is independent of

the order of the addition of the edges.

As well, let P be a property defined on all graphs of order n, and let k be a

non-negative integer. Then P is said to be k-stable if whenever G + (u, v) has prop-

erty P and deg(u) + deg(v) ≥ k, then G itself has property P . The stability s(P ) of

a property P is the smallest integer k such that P is k-stable. Thus Theorem 3.1.4

states that the property of having a Hamilton cycle is n-stable.

The stability of many other important monotone properties were also deter-

mined by Bondy and Chvátal [3], and this concept of the k-closure of a graph

marked the beginning of a new era in the research on Hamilton cycles and other

important graph-theoretic structures. Closure concepts now play an important role
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in results on the existence of cycles, paths, and other subgraphs in graphs [6]. The

body of work inspired by Bondy and Chvátal’s seminal paper has been dubbed

closure theory.

Thus if |S| = n implies that the n-closure of G(n, S) is complete, then any graph

G(n, S) with |S| ≥ n is hamiltonian. In the next section we prove something much

stronger, and in the final sections of this chapter we explore some of the other

implications of this result.

3.2 On the |S|-closure of G(n, S)

The goal of this section is to prove Theorem 3.2.2, which states that the |S|-closure

of G(n, S) is complete (i.e., that cl|S|(G(n, S)) = Kn). For example, a construction of

the 7-closure of the additive graph of order 7 generated by S = {3, 4, 6, 7, 10, 12, 13}

is drawn as Figure 3.1. The proof technique is an induction argument nested within

another induction argument. Lemma 3.2.1 serves as the base case of the outer in-

duction, and its proof is highly suggestive of the proof of the general theorem.

For a fixed n, let the region of i be the set {i + 1, i + 2 . . . , i + n} − {2i}. Denote

this by R(i), and let R denote the set {3, 4, . . . , 2n − 1}. The motivation for this

definition is that s ∈ S ∩R(i) if and only if s contributes to the degree of vertex i in

G(n, S).

Lemma 3.2.1. Let |S| = N . Then in the N -closure of G(n, S), vertices 1 and n are

adjacent to all other vertices.
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Figure 3.1: The 7-closure of G(7, {3, 4, 6, 7, 10, 12, 13}) is the complete graph.

Proof. Fix n and S, where |S| = N . We prove by induction on i that

deg(1) + deg(n− i + 1) ≥ N

for all i = 1, . . . , n−1 in clN(G(n, S)); the proof for vertex n is the mirror argument.

As the base case, consider vertices 1 and n. Every element of S is in R(1) ∪

R(n) = {3, 4, . . . , 2n − 1} = R, and hence contributes to the degree of at least one

of these two vertices. Thus |S| = N ⇒ deg(1) + deg(n) ≥ N . So either n + 1 ∈ S or

the edge (1, n) is present in the N -closure but was not induced by a generating set
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element.

Now suppose that deg(1) + deg(n − i + 1) ≥ N for i < k in clN(G(n, S)), for

some fixed 1 < k ≤ n− 1. The overlap for the regions of vertices 1 and n− k + 1 is

{n− k + 2, . . . , n + 1} if k < 1
2
(n + 1);

{n− k + 2, . . . , n + 1} − {2(n− k + 1)} if k ≥ 1
2
(n + 1).

Suppose k < 1
2
(n+1). Since |R−(R(1)∪R(n−k+1))| = k−1, at least |S|−k+1

elements in the generating set contribute to the degree of at least one of these two

vertices. Hence |S| = N ⇒ deg(1) + deg(n− k + 1) ≥ N − k + 1. Now consider the

elements in R(1)∩R(n−k +1)−{n−k +2}. By the induction hypothesis, for i < k

either (n− i + 1) + 1 ∈ S, in which case this can be counted twice towards the sum

of the degrees of 1 and n− k + 1 because it is in R(1)∩R(n− k + 1), or (1, n− i + 1)

is present in the N -closure and is not yet counted in the sum of the degrees. Thus

we have that

deg(1) + deg(n− k + 1) ≥ (N − k + 1) + |R(1) ∩R(n− k + 1)− {n− k + 2}|

= (N − k + 1) + (k − 1)

= N.

Suppose k ≥ 1
2
(n+1). Since |R−(R(1)∪R(n−k+1))| = k−2, at least |S|−k+2

elements in the generating set contribute to the degree of at least one of these two

vertices. Hence |S| = N ⇒ deg(1) + deg(n − k + 1) ≥ N − k + 2. In this case,

|R(1) ∩R(n− k + 1)− {n− k + 2}| = k − 2. So by similar reasoning as above,
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deg(1) + deg(n− k + 1) ≥ (N − k + 2) + |R(1) ∩R(n− k + 1)− {n− k + 2}|

= (N − k + 2) + (k − 2)

= N.

Therefore, the induction hypothesis is true for i = k. It follows that in the

N -closure of G(n, S), vertex 1 is adjacent to all other vertices.

Theorem 3.2.2. The N -closure of G(n, S) is complete, where N = |S|.

Proof. Fix n and S, where |S| = N . We prove by induction on i, i ≤ d1
2
ne, that

vertices

{1, . . . , i} ∪ {n− i + 1, . . . , n}

have degree n− 1 in the N -closure. The base case i = 1 is proved as Lemma 3.2.1.

Thus assume the induction hypothesis for i = k−1, and consider the set of vertices

{1, . . . , k} ∪ {n− k + 1, . . . , n}.

It suffices to consider vertices k and n−k+1. Note that a proof of the following two

claims will show that vertices k and n− k + 1 have degree n− 1 in the N -closure,

and hence verify the induction hypothesis. Therefore, Theorem 3.2.2 follows from:

Claim 3.2.3. For a fixed k, deg(k) + deg(n− k + 2− j) ≥ N for j = 1, . . . , n− 2k + 1.

Claim 3.2.4. For a fixed k, deg(n−k+1)+deg(k−1+j) ≥ N for j = 1, . . . , n−2k+1.

We will prove Claim 3.2.3 by induction on j. Claim 3.2.4 is proved by a mirror

37



argument. The base case j = 1 is shown by considering vertices k and n − k + 1,

and is proved in much the same way as Lemma 3.2.1. The overlap for the regions

of vertices k and n− k + 1 is

{n− k + 2, . . . , n + k} if k < 1
3
(n + 2);

{n− k + 2, . . . , n + k} − {2k, 2(n− k + 1)} if k ≥ 1
3
(n + 2).

Suppose k < 1
3
(n+2). Since |R−(R(k)∪R(n−k+1))| = 2k−2, at least |S|−2k+2

elements in the generating set contribute to the degree of at least one of these two

vertices. Hence |S| = N ⇒ deg(k)+deg(n− k +1) ≥ N − 2k +2. Now consider the

elements in R(k)∩R(n− k + 1)−{n + 1}. By the induction hypothesis of Theorem

3.2.2, we know that k and n− i+ 1 are adjacent in the N -closure for i < k. Thus for

i < k either (n − i + 1) + k ∈ S, in which case this can be counted twice towards

the sum of the degrees of k and n − k + 1 because it is in R(k) ∩ R(n − k + 1), or

(k, n − i + 1) is present in the N -closure and is as of yet uncounted in the sum of

the degrees. Similarly, we know that i and n − k + 1 are adjacent in the N -closure

for i < k. Thus we have that

deg(k) + deg(n− k + 1) ≥ (N − 2k + 2) + |R(k) ∩R(n− k + 1)− {n + 1}|

= (N − 2k + 2) + (2k − 2)

= N.

Suppose k ≥ 1
3
(n + 2). Since |R − (R(k) ∪ R(n − k + 1))| = 2k − 4, at least

|S| − 2k + 4 elements in the generating set contribute to the degree of at least one

of these two vertices. Hence |S| = N ⇒ deg(k) + deg(n − k + 1) ≥ N − 2k + 4. In
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this case, |R(k)∩R(n−k +1)−{n+1}| = 2k−4. So by similar reasoning as above,

deg(k) + deg(n− k + 1) ≥ (N − 2k + 4) + |R(k) ∩R(n− k + 1)− {n + 1}|

= (N − 2k + 4) + (2k − 4)

= N.

Fix any 1 < ` ≤ n − 2k + 1, assume the induction hypothesis for j < `, and

consider vertices k and n− k + 2− `. The overlap for the regions of vertices k and

n− k + 2− ` is

{n− k + 3− `, . . . , n + k} if k < 1
3
(n + 4− 2`);

{n− k + 3− `, . . . , n + k} − {2k, 2(n− k + 2− `)} if k ≥ 1
3
(n + 3− `);

{n− k + 3− `, . . . , n + k} − {2(n− k + 2− `)} otherwise.

Suppose k < 1
3
(n+4−2`). Since |R−(R(k)∪R(n−k+2−`))| = 2k−3+`, at least

|S|−2k+3−` elements in the generating set contribute to the degree of at least one

of these two vertices. Hence |S| = N ⇒ deg(k)+deg(n−k+2− `) ≥ N−2k+3− `.

Now consider the elements in R(k)∩R(n−k+2−`)−{n+2−`}. By the induction

hypothesis of Claim 3.2.3, for all j < ` either k + (n− k + 2− j) ∈ S, in which case

this can be counted twice towards the sum of the degrees of k and n − k + 2 − `

because it is in R(k)∩R(n−k+2−`), or (k, n−k+2−j) is present in the N -closure

and is as of yet uncounted in the sum of the degrees. In addition, by the induction

hypothesis of Theorem 3.2.2 we have that (i, n − k + 2 − `) and (k, n − i + 1) are
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present in the N -closure for all i < k. Thus we have that

deg(k) + deg(n− k + 2− `) ≥ (N − 2k + 3− `) +

|R(k) ∩R(n− k + 2− `)− {n + 2− `}|

= (N − 2k + 3− `) + (2k − 3 + `)

= N.

Suppose 1
3
(n+4− 2`) ≤ k < 1

3
(n+3− `). Since |R− (R(k)∪R(n−k +2− `))| =

2k − 4 + `, at least |S| − 2k + 4− ` elements in the generating set contribute to the

degree of at least one of these two vertices. Hence |S| = N ⇒ deg(k) + deg(n− k +

2−`) ≥ N−2k+4−`. In this case, |R(k)∩R(n−k+2−`)−{n+2−`}| = 2k−4+`.

So by similar reasoning as above,

deg(k) + deg(n− k + 2− `) ≥ (N − 2k + 4− `) +

|R(k) ∩R(n− k + 2− `)− {n + 2− `}|

= (N − 2k + 4− `) + (2k − 4 + `)

= N.

Lastly, suppose k ≥ 1
3
(n+3−`). Since |R−(R(k)∪R(n−k+2−`))| = 2k−5+`, at

least |S|−2k+5−` elements in the generating set contribute to the degree of at least

one of these two vertices. Hence |S| = N ⇒ deg(k)+deg(n−k+2−`) ≥ N−2k+5−`.

In this case, |R(k) ∩ R(n − k + 2 − `) − {n + 2 − `}| = 2k − 5 + `. So by similar
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reasoning as above,

deg(k) + deg(n− k + 2− `) ≥ (N − 2k + 5− `) +

|R(k) ∩R(n− k + 2− `)− {n + 2− `}|

= (N − 2k + 5− `) + (2k − 5 + `)

= N.

Therefore, the induction hypothesis is true for j = `. Hence Claim 3.2.3 is true,

and the theorem follows.

Theorem 3.2.2 is best possible in the sense that there are many graphs G(n, S)

with |S| = k − 1 whose k-closure is not complete. In addition, this threshold for

complete k-closure in terms of |S| is surprisingly sharp, as shown in Theorem 3.2.5.

Theorem 3.2.5. For any n, and any k with 1 ≤ k ≤ 2n− 3, there exists a generating set

S of cardinality k − 1 such that clk(G(n, S)) = G(n, S).

Proof. If k = 1, then the generating set of cardinality k−1 produces the empty graph.

Otherwise, fix n and 2 ≤ k ≤ 2n− 3, and let

S = {3, 4, . . . , dk−1
2
e+ 2} ∪ {2n− bk−1

2
c, . . . , 2n− 2, 2n− 1}.

Suppose k < 2n − 3. If k is odd, then ∆ = deg(1) = 1
2
(k − 1), where ∆ is the

maximum degree. If k is even, then ∆ = deg(1) = 1
2
k and deg(i) < deg(1) for all

vertices i 6= 1. In either case, it follows that there are no two distinct vertices i and

j with deg(i) + deg(j) ≥ k.

41



Suppose k = 2n − 3. If n is even, then deg(i) = n − 2 for all i. If n is odd,

then ∆ = deg(1
2
(n + 1)) = n − 1 and deg(i) < deg(1

2
(n + 1)) for all vertices i 6=

1
2
(n + 1). It follows that there are no two distinct nonadjacent vertices i and j with

deg(i) + deg(j) ≥ 2n− 3.

Using the main result of this section, we can now easily answer Question 3.1.2.

Corollary 3.2.6. The minimum cardinality k such that G(n, S) is hamiltonian for all

|S| = k is k = n.

Proof. This follows from Theorem 3.1.4, Theorem 3.2.2, and the fact that

S = {3, 4, . . . , n + 1} is a generating set of size n− 1 such that G(n, S) is not hamil-

tonian (deg(n) = 1).

Remark 3.2.7. The k-closure of a graph can be computed in time proportional to the size

of the output [48]. In addition, a Hamilton cycle in the n-closure of a graph can be trans-

formed in time O(n3) into a Hamilton cycle in the original graph [3]. Since finding a

Hamilton cycle in the complete graph is trivial, Corollary 3.2.6 implies that if |S| ≥ n,

then a Hamilton cycle can be found in G(n, S) in polynomial time.

Corollary 3.2.6 does not imply anything about a Hamilton cycle in G(2m,P ),

since there are far less than 2m primes in any interval [3, 4m − 1]. However, it is

useful with regard to the construction of combinatorial Gray codes. Given a finite

set X of combinatorial objects and some relationR on X , a cyclic combinatorial Gray

code for X is a circular permutation of its elements so that adjacent pairs are in

R [44]. Therefore, we can say that given the set X = [n], with the relation (i, j) ∈ R

if and only if i + j ∈ S, there is a cyclic combinatorial Gray code for X if |S| ≥ n.

Moreover, by Remark 3.2.7 this code can be found in polynomial time.
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3.3 Edge Set Cardinality Bounds

In this section we determine tight bounds on the edge set cardinality of G(n, S)

in terms of |S| using a straightforward counting argument. The corresponding

bounds on graph density are plotted as Figure 3.2. Moreover, these bounds imply

a new and simple construction of minimum graphs with n vertices and complete

k-closure for all n and k.

Theorem 3.3.1. If |S| = k and G(n, S) = (V, E), then f(k) ≤ |E| ≤ g(n, k), where

f(k) =

⌊
1

8
(k + 2)2

⌋

and

g(n, k) =

(
n

2

)
−

⌊
1

8
(2n− k − 1)2

⌋
.

Proof. Given a fixed n, let e(i) be the number of edges induced by generating set

element i. The distribution of e(i) is displayed as Table 3.1. As noted by Grigor’yan

[21], it is easily shown that

e(i) =

 b1
2
(i− 1)c if i ≤ n + 1;

b1
2
(2n− i + 1)c if i > n + 1.

If |S| = k induces the minimum number of edges over all possible generating

sets of that cardinality, then

S = {3, 4, . . . , bk
2
c+ 2} ∪ {2n− dk

2
e, . . . , 2n− 2, 2n− 1}
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Table 3.1: Distribution of the number of edges induced by generating set elements.

i ∈ S 3 4 5 6 7 8 9 . . . 2n− 5 2n− 4 2n− 3 2n− 2 2n− 1

e(i) 1 1 2 2 3 3 4 . . . 3 2 2 1 1

and

|E| =
k∑

i=1

⌊
1

4
(i + 3)

⌋
.

Evaluating this sum, we have that

• k ≡ 0 mod 4 ⇒ |E| = 21
4
k 1

4
(k + 4) = 1

8
k(k + 4);

• k ≡ 1 mod 4 ⇒ |E| = 21
4
(k − 1)1

4
(k + 3) + 1

4
(k + 3) = 1

8
(k + 1)(k + 3);

• k ≡ 2 mod 4 ⇒ |E| = 21
4
(k − 2)1

4
(k + 2) + 21

4
(k + 2) = 1

8
(k + 2)2;

• k ≡ 3 mod 4 ⇒ |E| = 21
4
(k − 3)1

4
(k + 1) + 31

4
(k + 1) = 1

8
(k + 3)(k + 1).

Summarizing these results leads to the condensed formula

f(k) :=

⌊
1

8
(k + 2)2

⌋
.

Note the following identity:

f(2n− 3− k) + g(n, k) =

(
n

2

)
.

From this, it follows that

g(n, k) :=

(
n

2

)
−

⌊
1

8
(2n− k − 1)2

⌋
.
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Figure 3.2: Range of graph density as a function of |S|.

It is interesting to note that the function f(k) has no dependence on n. As well,

Clark et al. [10] determined the minimum number of edges necessary for the k-

closure of a graph of order n to be complete. They proved that this lower bound

was best possible via a complicated construction of an infinite family of graphs.

This lower bound function matches our lower bound function f(k), and so we

arrive at a useful corollary that greatly simplifies their construction. In particular,

our construction is not recursive.

Corollary 3.3.2. Fix any n, and any k with 0 ≤ k ≤ 2n− 3. Let

S = {3, 4, . . . , bk
2
c+ 2} ∪ {2n− dk

2
e, . . . , 2n− 2, 2n− 1}.

Then G(n, S) is a minimum graph with complete k-closure.
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3.4 Thresholds for Monotone Properties in G(n, S)

In order to explore some of the implications of Theorem 3.2.2, we can ask when

an additive graph G(n, S) always has a particular monotone property. However,

closure theory is only useful in this respect when the presence or absence of a k-

stable property in the k-closure of a graph is apparent. In the extreme case when

clk(G) = G, no new information is obtained. Because of the ubiquity of proper-

ties present in the complete graph, the case when the k-closure of a graph is the

complete graph is of particular interest. This led Faudree et al. [15] to introduce

the concept of the complete closure number and the concept of complete stability,

which are of special interest to us.

The complete closure number cc(G) of a graph G of order n is defined to be the

maximum integer k ≤ 2n − 3 such that clk(G) = Kn. The complete stability cs(P )

of a property P defined on all graphs of order n and satisfied by Kn is the min-

imum integer k such that any graph G satisfies P when clk(G) is complete. Not

surprisingly, for many properties the value of the complete stability is lower than

the value of the stability [15].

Remark 3.4.1. Theorem 3.2.2 states that cc(G(n, S)) ≥ |S|. Therefore, suppose a property

P has cs(P ) ≤ t. Then G(n, S) is assured of having property P whenever |S| ≥ t.

The goals of this section are twofold. Firstly, we wish to demonstrate that our

family of additive graphs is a wide-ranging and representative subclass of graphs

with complete k-closure. We accomplish this by proving that for many monotone

properties, the thresholds in terms of |S| for their appearances in G(n, S) graphs

that are a consequence of Remark 3.4.1 are tight. Secondly, determining these tight
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thresholds yields some interesting number-theoretic results.

The following mimics the exposition of Section 2.5 in the survey by Broersma

et al. [6]. Every subsection follows a standard format: introduction of an impor-

tant monotone property, citations of the known results concerning its complete

stability, interpretation of these results from the point of view of thresholds in ad-

ditive graphs using Remark 3.4.1, and, if possible, a limit example showing that

this threshold is tight. The limit examples are mostly based on the failure of ob-

vious necessary degree conditions, and so only in the more complicated cases are

they explained in depth. The properties considered in this section are informally

grouped into three categories: properties related to cycles, properties related to

paths, and other well-known graph-theoretic properties.

We determine for the first time the complete stability of two properties1, by us-

ing additive graph limit examples to show that the known stability of the property

matches its complete stability. For the property P : “G has a P4” we determine

the tight threshold in additive graphs, which differs markedly from its complete

stability. Some of the results of this section are summarized in Table 3.2.

1These properties are “G is k-factor-critical” and “G is k-matching-extendable.”
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3.4.1 G contains a cycle Ck

Having previously determined the threshold for a Hamilton cycle, we begin by

determining thresholds for cycles of any length. A simple graph on n vertices is

pancyclic if it contains at least one cycle of length ` for all 3 ≤ ` ≤ n.

Theorem 3.4.2. (Theorem 4.1, [15]) The property P : “G is pancyclic” satisfies cs(P ) =

n + 1 if n is even and n ≤ cs(P ) ≤ n + 1 if n is odd.

Corollary 3.4.3. |S| ≥ n + 1 implies that G(n, S) is pancyclic.

No example is known of an additive graph of order n ≥ 5 with |S| = n that

is not pancyclic. This is reflected in the following conjecture, due to Schelten and

Schiermeyer [45].

Conjecture 3.4.4. [45] The property P : “G is pancyclic” satisfies cs(P ) = n if n is odd.

This conjecture was inspired by the following result.

Theorem 3.4.5. (Theorem 2, [45]) The property P : “G contains a cycle Ck” satisfies

cs(P ) ≤ n for each integer k between 3 and 1
5
(n + 13) if n is odd, n ≥ 32.

We prove a tight threshold for triangles (and hence odd cycles) in these additive

graphs in Section 4.2.

3.4.2 G is k-hamiltonian or k-edge-hamiltonian

There are many important graph-theoretic properties intimately related to a graph

being hamiltonian. For example, a graph G is k-hamiltonian (resp. k-edge-hamiltonian)

if the deletion of at most k vertices (resp. edges) from G results in a hamilto-

nian graph. This is an obvious generalization of k-connectivity (resp. k-edge-

connectivity).
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Theorem 3.4.6. [15] The property P : “G is k-hamiltonian” and the property P ′: “G is

k-edge-hamiltonian” satisfy cs(P ) = cs(P ′) = n + k.

Corollary 3.4.7. |S| ≥ n+k implies that G(n, S) is k-hamiltonian and k-edge-hamiltonian,

and this is best possible.

Limit Example 3.4.8. G(n, S); S = {3, 4, . . . , n + k + 1}

3.4.3 G contains edge-disjoint Hamilton cycles

While a graph with complete n-closure typically possesses many Hamilton cycles,

edge-disjoint Hamilton cycles are less common.

Theorem 3.4.9. (Theorem 4.7, [15]) The property P : “G contains two edge-disjoint Hamil-

ton cycles” satisfies n + 2 ≤ cs(P ) ≤ n + 4.

(Theorem 4.8, [15]) The property P ′: “G is hamiltonian and for every Hamilton cycle C,

there exists another Hamilton cycle C ′ edge-disjoint from C” satisfies n + 3 ≤ cs(P ′) ≤

n + 4.

Corollary 3.4.10. |S| ≥ n+4 implies that for any Hamilton cycle C in G(n, S), the graph

contains a Hamilton cycle edge-disjoint from C.

3.4.4 G is vertex-pancyclic or edge-pancyclic

In 2-connected chordal graphs, which are well-studied, every vertex and every edge

is contained in a triangle. We can extend this concept beyond cycles of length 3,

and say that G is vertex-pancyclic (resp. edge-pancyclic) if each vertex v (resp. edge

e) of G belongs to a cycle of length ` for all 3 ≤ ` ≤ n.
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Theorem 3.4.11. (Theorem 28, [41]) The property P : “G is vertex-pancyclic” satisfies

cs(P ) = d1
3
(4n− 3)e.

Corollary 3.4.12. |S| ≥ d1
3
(4n− 3)e implies that G(n, S) is vertex-pancyclic.

Theorem 3.4.13. (Theorem 30, [41]) The property P : “G is edge-pancyclic” satisfies

cs(P ) = d1
2
(3n− 3)e.

Corollary 3.4.14. |S| ≥ d1
2
(3n − 3)e implies that G(n, S) is edge-pancyclic, and this is

best possible.

Limit Example 3.4.15. G(n, S); S = {3, 4, . . . , n− 1} ∪ {n, n + 2, . . . , 2n− 1} (n odd)

G(n, S); S = {3, 4, . . . , n− 1} ∪ {n, n + 2, . . . , 2n− 2, 2n− 1} (n even)

In the above limit examples, the edge (n − 1, n) is not contained in a trian-

gle. It suffices to note that vertices n − 1 and n have no common neighbours, as

such a neighbour would imply two consecutive generating set elements in {n, n +

1, . . . , 2n− 2}.

3.4.5 G is cycle extendable or fully cycle extendable

If a cycle in a graph is not chordless, then there is a strictly smaller cycle in the

graph on some subset of the vertices spanned by the original cycle. Inverting this

idea, we say that a cycle C in G is extendable if there exists a cycle C ′ in G such that

V (C) ⊂ V (C ′) and |V (C ′)| = |V (C)|+ 1. A graph is cycle extendable if G contains at

least one cycle and every non-Hamilton cycle in G is extendable.

Theorem 3.4.16. [41] The property P : “G is cycle extendable” satisfies cs(P ) = d3
2
ne −

2.
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A graph G is fully cycle extendable if G is cycle extendable and every vertex of G

lies on a triangle of G. The following corollary follows from Theorem 3.4.11 and

Theorem 3.4.16.

Corollary 3.4.17. [41] The property P : “G is fully cycle extendable” satisfies cs(P ) =

d3
2
ne − 2.

Corollary 3.4.18. |S| ≥ d3
2
ne − 2 implies that G(n, S) is fully cycle extendable.

The best-known additive graph limit examples are generated by the sets S =

{3, 5, . . . , n+3}∪{n+5, n+6, . . . , 2n−1} (n even) and S = {3, 5, . . . , n+2}∪{n+5, n+

6, . . . , 2n−1} (n odd). In this case, the generating sets have cardinality d3
2
ne−4 and

the 4-cycle (1, 2, 3, 4, 1) is not extendable in the corresponding graphs. To see this,

note that this is a chordless cycle and hence it is extendable if and only if at least

one of the pairs of vertices {1, 2}, {1, 4}, {3, 2}, {3, 4} have a common neighbour

among {5, 6, . . . , n}. This would imply two consecutive generating elements in

{6, 7, . . . , n + 4}.

3.4.6 G has a hamiltonian prism

The prism of a graph G is the graph obtained from two copies of G by connecting

all the pairs of images of the same vertex by an edge. It was recently shown by

Horák et al. [28] that the prism of the middle-levels graph is hamiltonian.

Theorem 3.4.19. (Theorem 1, [30]) The property P : “G has a hamiltonian prism” satisfies

4
3
n− 5 ≤ s(P ) ≤ 4

3
(n− 1).

Corollary 3.4.20. |S| ≥ 4
3
(n− 1) implies that G(n, S) has a hamiltonian prism.
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3.4.7 G contains a path Pk

Having considered thresholds for cycles of all lengths, it is natural to consider the

threshold for Hamilton paths (and hence paths of all lengths). Recall the question

posed by Larson [31] that asks when the additive graph of order n generated by

the prime numbers has a Hamilton path. Corollary 3.4.22 implies that a Hamilton

path is not inevitable given the proportion of primes in any interval [3, 2n− 1].

Theorem 3.4.21. (Theorem 9.4, [3]) The property P : “G contains a path Pk of length

k − 1” satisfies s(P ) = n− 1 for 4 ≤ k ≤ n.

Corollary 3.4.22. |S| ≥ n− 1 implies that G(n, S) has a Hamilton path, and this is best

possible.

Limit Example 3.4.23. G(n, S); S = {3, 4, . . . , n}

Corollary 3.4.22 is not an obvious consequence of the fact that G(n, S), |S| = n,

is hamiltonian, as the removal of a single generating set element typically results

in the removal of many edges.

Theorem 3.4.24. (Remark 4.10, [15]) The property P : “G contains a P4” satisfies
√

8n + 9−

3 ≤ cs(P ) ≤
√

8n + 26− 3.

This property is one of the sole properties considered for which the complete

stability and the threshold in G(n, S) graphs differs markedly. For n = 4 the thresh-

old is |S| = 3, and for n = 5 the threshold is |S| = 4. This follows from Corollary

3.4.22, and the limit examples G(4, {3, 7}) and G(5, {3, 4, 9}).

Theorem 3.4.25. For n ≥ 6, |S| ≥ 5 implies that G(n, S) has a P4, and this is best

possible.
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Proof. Suppose n ≥ 6 and |S| = 5. Since deg(1) + deg(n) ≥ 5, without loss of

generality deg(1) ≥ 3. Let u, v, and w be three distinct neighbours of vertex 1, with

2 ≤ u < v,w ≤ n. It follows that {u+1, v+1, w+1} ⊂ S. Without loss of generality,

v + 1 6= 2u. Hence G(n, S) contains the P4 (1 + v − u, u, 1, v).

Limit Example 3.4.26. G(n, S); S = {3, 4, 2n− 2, 2n− 1}

3.4.8 G is panconnected

Rather than generalize the notion of connectivity by demanding k > 1 disjoint

paths between every pair of vertices, we can focus on the lengths of the (not nec-

essarily disjoint) paths between every pair of vertices. A graph G is panconnected

if every pair of vertices is connected by a path of length ` for 2 ≤ ` ≤ n − 1. The

following is a simple corollary of Theorem 3.4.13.

Corollary 3.4.27. (Corollary 31, [41]) The property P : “G is panconnected” satisfies

cs(P ) = d1
2
(3n− 3)e.

Corollary 3.4.28. |S| ≥ d1
2
(3n − 3)e implies that G(n, S) is panconnected, and this is

best possible.

Limit Example 3.4.29. G(n, S); S = {3, 4, . . . , n− 1} ∪ {n, n + 2, . . . , 2n− 1} (n odd)

G(n, S); S = {3, 4, . . . , n− 1} ∪ {n, n + 2, . . . , 2n− 2, 2n− 1} (n even)

In the above limit examples, the vertices n − 1 and n are not connected by a

path of length 2.
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3.4.9 G is k-Hamilton-connected

We can generalize the concept of being Hamilton-connected in the same way as we

generalized the concept of hamiltonian to k-hamiltonian. That is, a graph G is k-

Hamilton-connected if the deletion of at most k vertices from G results in a Hamilton-

connected graph.

Theorem 3.4.30. [15] The property P : “G is k-Hamilton-connected” satisfies cs(P ) =

n + k + 1.

Corollary 3.4.31. |S| ≥ n+k+1 implies that G(n, S) is k-Hamilton-connected, and this

is best possible.

Limit Example 3.4.32. G(n, S); S = {n− k, n− k + 1, . . . , 2n− 1}

To see that the above limit example is not k-Hamilton-connected, note the fol-

lowing proposition.

Proposition 3.4.33. (Exercise 18.1.6, [4]) A graph is traceable from a vertex v if it has a

Hamilton path with endpoint v. Let G be a graph and let H be the graph obtained from G

by adding a new vertex x and joining it to every vertex of G.

(i) H is Hamilton-connected if and only if G is traceable from every vertex.

(ii) H is traceable from every vertex if and only if G is traceable from some vertex.

Proof. ((i),⇒) Consider any vertex v in G. There exists a Hamilton path with end-

points v and x in H . Deleting x yields a Hamilton path in G with endpoint v.

((i),⇐) Consider any pair of distinct vertices u, v in H . Suppose neither of these

vertices is vertex x. The vertex v is in G, and hence there exists a Hamilton path P
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with endpoints v and v′. If u′ is the neighbour of u in P closest to the endpoint v,

then P + (u′, x) + (x, v′) − (u′, u) is a Hamilton path in H with endpoints u and v.

Otherwise, without loss of generality u = x. Then P + (v′, x) is a Hamilton path in

H with endpoints u and v.

((ii),⇒) There exists a Hamilton path with endpoint x in H . Deleting x yields a

Hamilton path in G.

((ii),⇐) Consider a Hamilton path P in G with endpoints u and v. It follows that

P + (u, x) + (x, v) is a Hamilton cycle in H .

Thus given G(n, {n−k, n−k +1, . . . , 2n−1}), delete vertices {n−k +1, n−k +

2, . . . , n}. The remaining graph is G(N, {N, N + 1, . . . , 2N − 1}), where N := n− k.

Note that vertices N − 1 and N are connected to all other vertices. By Proposition

3.4.33, it follows that G(N, {N, N + 1, . . . , 2N − 1}) is Hamilton-connected if and

only if G(N−2, {N, N +1, . . . , 2N−5}) is traceable from some vertex. But the latter

graph has no Hamilton path because deg(1) = 0.

3.4.10 G is k-leaf-connected

A Hamilton-connected graph has every pair of vertices as precisely the set of leafs

of a spanning tree. In general, we say that a graph G is k-leaf-connected if k < n and

given any L ⊂ V with |L| = k, G has a spanning tree F such that L is precisely the

set of leafs of F .

Theorem 3.4.34. (Theorem 4, [25]) The property P : “G is k-leaf-connected” satisfies

s(P ) = n + k − 1.
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Corollary 3.4.35. |S| ≥ n + k − 1 (k < n − 1) implies that G is k-leaf-connected, and

this is best possible. |S| = 2n− 3 implies that G is (n− 1)-leaf-connected, and this is best

possible.

Limit Example 3.4.36. G(n, S); S = {3, 4, . . . , n + k} (k < n− 1)

G(n, S); S = {3, 4, . . . , 2n− 2} (k = n− 1)

To see that the first limit example is not k-leaf-connected, suppose k < n − 1

and let L = {1, 2, . . . , k}. Then the set of neighbours of vertex n is precisely the set

L, and any spanning tree with set of leafs exactly L must be a spanning star with

vertex n as its centre. This contradicts the assumption that k 6= n−1. If |S| = 2n−3,

then G(n, S) = Kn, and hence this graph is (n − 1)-leaf-connected. To see that the

second limit example is not (n− 1)-leaf-connected, let L = {1, 2, . . . , n− 1}. There

is no spanning star with vertex n as its centre since n is not adjacent to n − 1, and

hence there is no spanning tree with set of leafs exactly L.

3.4.11 G contains a K2,k

The notion of having a subgraph that is the complete bipartite graph K2,k has an

interesting number-theoretic interpretation that we consider in Section 4.3.

Theorem 3.4.37. (Theorem 4.11, [15]) The property P : “G contains a K2,k” satisfies
√

8n + 9− 4 ≤ cs(P ) ≤
√

8(k − 1)n.

Corollary 3.4.38. |S| ≥
√

8(k − 1)n implies that G(n, S) contains a K2,k.
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3.4.12 G contains a matching of size k

Matchings in additive graphs generated by specific integer sequences were con-

sidered in the previous chapter. We now extend our consideration to arbitrary

generating sets and matchings of any size.

Theorem 3.4.39. [15] The property P : “G contains a matching of size k” satisfies cs(P ) =

2k − 1.

Corollary 3.4.40. |S| ≥ 2k− 1 (2k ≤ n) implies that G(n, S) contains a matching of size

k, and this is best possible.

Limit Example 3.4.41. G(n, S); S = {3, 4, . . . , 2k}

3.4.13 G is k-factor-critical

For some properties, the stability is known but the complete stability is not. For

example, for any nonnegative integer k such that n−k is even, a graph G is said to

be k-factor-critical if, for any set F ⊂ V with |F | = k, the graph G− F has a perfect

matching. Equivalently, every induced subgraph of order n− k of G has a perfect

matching.

Theorem 3.4.42. (Theorem 2, [38]) The property P : “G is k-factor-critical” satisfies

s(P ) ≤ n + k − 1.

Corollary 3.4.43. |S| ≥ n + k − 1 (n− k even) implies that G(n, S) is k-factor-critical,

and this is best possible.

Limit Example 3.4.44. G(n, S); S = {3, 4, . . . , n + k}
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To see that the limit example is not k-factor-critical, let F = {1, 2, . . . , k}. Since

F is precisely the set of neighbours of vertex n, G(n, S)−F has no perfect matching

(deg(n) = 0 in this subgraph).

Corollary 3.4.45. The property P : “G is k-factor-critical” satisfies cs(P ) = n+k−1.

3.4.14 G is k-matching-extendable

For an integer k, 0 ≤ k ≤ 1
2
|V |, a graph G of even order is k-matching-extendable if G

has a matching of size k and every matching of size k can be extended to a perfect

matching of G.

Theorem 3.4.46. (Theorem 3, [38]) The property P : “G is k-matching-extendable” satis-

fies s(P ) ≤ n + 2k − 1.

Corollary 3.4.47. |S| ≥ n+2k−1 (n even) implies that G(n, S) is k-matching-extendable,

and this is best possible.

Limit Example 3.4.48. G(n, S); S = {3, 4, . . . , n−2k}∪{2n−4k, 2n−4k+1, . . . , 2n−

1}

To see that the limit example is not k-matching-extendable, consider the match-

ing M = {(n−2k+1, n−2k+2), . . . , (n−1, n)} of size k on vertices {n−2k+1, n−

2k + 2, . . . , n}. This matching is extendable only if there is a perfect matching on

{1, 2, . . . , n−2k}. There is no such matching, since vertex n−2k has no neighbours

among {1, 2, . . . , n− 2k − 1} in G(n, S).

Corollary 3.4.49. The property P : “G is k-matching-extendable” satisfies cs(P ) = n +

2k − 1.
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3.4.15 G contains a k-factor

Previously, we showed the existence of a 2-factor in G(2m, P ) (m even) by tak-

ing the union of two disjoint perfect matchings. As in the case of Hamilton cy-

cles, Hamilton paths, and perfect matchings, the deterministic threshold for a 2-

factor in general additive graphs is fairly high. Hence this result does not subsume

what was previously proved regarding the additive graphs generated by the prime

numbers.

Theorem 3.4.50. [36] The property P : “G contains a k-factor (1 ≤ k ≤ n− 1, kn even)”

satisfies cs(P ) = n + k − 2 for 1 ≤ k ≤ 3 and n + k − 2 ≤ cs(P ) ≤ n + k − 1 for

k ≥ 4.

Niessen [36] made the following conjecture, which appears to be true for our

family of graphs.

Conjecture 3.4.51. [36] cs(P ) = n + k − 2 for k ≥ 4.

We note that some progress has since been made towards resolving this conjec-

ture.

Theorem 3.4.52. (Theorem 1, [29]) Suppose

n > max

{
1

8
(3k2 + 2k + 3), 2k − 1 +

√
3k2 − 6k + 3

}
. (3.1)

Then the property P : “G contains a k-factor” satisfies cs(P ) = n + k − 2.

Corollary 3.4.53. |S| ≥ n + k − 2 (1 ≤ k ≤ 3 or n satisfies inequality (3.1), kn even)

implies that G(n, S) has a k-factor, and this is best possible. Otherwise, |S| ≥ n + k − 1

(kn even) implies that G(n, S) has a k-factor.
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Limit Example 3.4.54. G(n, S); S = {3, 4, . . . , n + k − 1}

3.4.16 G is k-connected or k-edge-connected

The notions of k-connectivity and k-edge-connectivity are fundamental to the study

of graphs.

Theorem 3.4.55. [15] The property P : “G is k-connected” and the property P ′: “G is

k-edge-connected” satisfy cs(P ) = cs(P ′) = n + k − 2.

Corollary 3.4.56. |S| ≥ n + k − 2 implies that G(n, S) is k-connected and k-edge-

connected, and this is best possible.

Limit Example 3.4.57. G(n, S); S = {3, 4, . . . , n + k − 1}

3.4.17 α(G) ≤ k

The independence number of an additive graph is another important graph-theoretic

property. This is one of the only cases in which we are aware of a simple proof of

the threshold for a property that does not depend on results from closure theory.

Theorem 3.4.58. [15] The property P : “α(G) ≤ k” satisfies cs(P ) = 2n− 2k − 1.

Corollary 3.4.59. |S| ≥ 2n − 2k − 1 implies that α(G(n, S)) ≤ k, and this is best

possible.

Limit Example 3.4.60. G(n, S); S = {3, 4, . . . , 2n− 2k}

Remark 3.4.61. An equivalent statement in additive number theory is that

|{a + b| a, b ∈ A, a 6= b}| ≥ 2|A| − 3
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for any A ⊂ [n], |A| ≥ 2. This is easy to prove by induction.

3.4.18 µ(G) ≤ k

A perfect matching is a set of 1
2
n pairwise disjoint paths that cover all the vertices

of an even order graph, and a Hamilton path is a single path that covers all the

vertices of a graph. Generalizing this idea, let µ(G) denote the smallest number of

pairwise disjoint paths needed to cover all the vertices of a graph G.

Theorem 3.4.62. [15] The property P : “µ(G) ≤ k” satisfies cs(P ) = n− k.

Corollary 3.4.63. |S| ≥ n− k implies that µ(G(n, S)) ≤ k, and this is best possible.

Limit Example 3.4.64. G(n, S); S = {3, 4, . . . , n− k + 1}

3.4.19 G contains a clique Kt

We observe that the complement of an additive graph G(n, S) is the additive graph

generated by S = {3, 4, . . . , 2n− 1}−S. Also, it is easy to see that cliques in a graph

G correspond to independent sets in its complement G. Hence if G(n, S), |S| = k,

has a clique of size t, then there exists a graph G(n, S ′), |S ′| = 2n − 3 − k, with an

independent set of size t.

Theorem 3.4.65. (Theorem 4.5, [15]) The property P : “G contains a clique Kt” satisfies

cs(P ) = 2b t−2
t−1

nc+ 1.

Corollary 3.4.66. |S| ≥ 2b t−2
t−1

nc+ 1 implies that G(n, S) contains a clique Kt.

We show in the next chapter (Theorem 4.2.3) that this is not tight for t = 3.
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3.4.20 G contains every tree on k vertices

We conclude with yet another result by Faudree et al. [15], which generalizes the

property of having a path Pk.

Theorem 3.4.67. (Theorem 4.9, [15]) The property P : “G contains every tree on k ver-

tices” satisfies 2
−1
4

√
(k − 2)n ≤ cs(P ) ≤ 2

√
2(k − 2)n.

Corollary 3.4.68. |S| ≥ 2
√

2(k − 2)n implies that G(n, S) contains every tree on k

vertices.

63



64



Chapter 4

Other Results Concerning Additive

Graphs

We begin this chapter with two alternate proofs of the threshold for connectivity;

one of these proofs has an interesting corollary regarding the diameter of additive

graphs. We also determine the tight threshold for triangles. In contrast to Section

3.4, these results demonstrate some ways in which additive graphs are not fully

representative of general graphs with complete k-closure. As an example of the

number-theoretic interpretations of these graphs and their properties, a theorem

by Cramer [11] concerning prime numbers is generalized to a number of different

sequences.

4.1 Alternate Proofs of the Threshold for Connectivity

In this section, we offer two other proofs of the fact that |S| = n − 1 implies that

G(n, S) is connected. The first is due to Vašek Chvátal [8] and the second is due to
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Nithum Thain [49]. These proofs demonstrate the interesting combinatorial prop-

erties of these graphs, and the utility of the general results of the previous chapter

(i.e., Theorem 3.2.2 and its many corollaries). As well, the proof by Thain implies

a corollary regarding the diameter of G(n, S) when |S| ≥ n− 1.

Theorem 4.1.1. |S| = n− 1 implies that G(n, S) is connected.

Proof. (due to Vašek Chvátal) Note that the statement “|S| = n− 1 implies connec-

tivity” is equivalent to the statement “For every partition of {1, 2, . . . , n} into two

sets A and B, |A + B| ≥ n − 1.” Here A + B refers to the sumset of A and B. This

equivalence follows from the following three observations:

• A graph is connected if and only if there is an edge coming out of every

separating set.

• There is an edge coming out of every separating set in G(n, S) if and only if

for every partition of [n] into two sets A and B, (A + B) ∩ S 6= ∅.

• (A + B) ∩ S 6= ∅ for all A and B if and only if |A + B| > 2n− 3− |S|.

The partition statement follows from an easy induction argument: Remove n from

the partition; Apply the induction hypothesis; Replace n and note that it adds at

least one more item to the sumset.

Proof. (due to Nithum Thain) Fix n and consider a generating set S of cardinality

n − 1. Firstly, assume that there is no path between vertices 1 and n. This implies

that vertices 1 and n are not adjacent and that they have no common neighbours.

Recall that S ⊂ R(1) ∪ R(n) = R, where R(i) = {i + 1, i + 2, . . . , i + n} − {2i} is

the region of vertex i and R = {3, 4, . . . , 2n− 1}, and hence that every element in S
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contributes to the degree of either vertex 1 or vertex n. Thus deg(1)+deg(n) ≥ n−1.

Since neither of these two vertices are counted in the left-hand side of the inequal-

ity and every other vertex is counted at most once, this implies that there are at

least (n − 1) + 2 = n + 1 vertices. This is a contradiction, and hence there exists a

path (of length at most 2) between vertices 1 and n.

Secondly, we show that every other vertex i is connected to at least one of the

vertices 1 and n. Suppose not. Then i is not adjacent to, and has no common

neighbours with, either of these two vertices. Let A := S ∩ {3, 4, . . . , i} and B :=

S ∩{n+ i+1, n+ i+2, . . . , 2n− 1}. Then |A| is the number of neighbours of vertex

1 from among the vertices {2, 3, . . . , i − 1} and |B| is the number of neighbours of

vertex n from among the vertices {i + 1, i + 2, . . . , n− 1}. It follows that

|A|+ |B|+ |R(i) ∩ S| = |S ∩ (R− {2i})|

≥ |S| − 1

= n− 2

as these three sets are disjoint by assumption. Every vertex of the graph is counted

in the left-hand side of the inequality at most once, and clearly none of the vertices

1, i, and n are counted at all. This implies that there are at least (n− 2) + 3 = n + 1

vertices. This is a contradiction, and hence there exists a path (of length at most 2)

between vertex i and at least one of vertices 1 and n. It follows that |S| = n − 1

implies connectivity.

Corollary 4.1.2. |S| ≥ n− 1 implies that G(n, S) has diameter at most 6.
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In fact, currently we have no example in which the diameter is greater than 4

for generating sets in this cardinality range. Clark et al. [9] determined that the

maximum diameter d(n) of all graphs of order n whose n-closure is complete is

bounded by

3.2 log n− 9 ≤ d(n) ≤ 8.3 log n + 16.

This demonstrates an important distinction between our family of graphs and gen-

eral graphs with complete k-closure.

4.2 A Tight Threshold for Odd Cycles

Recall that additive partitions of the natural numbers are related to bipartite ad-

ditive graphs. In this section we answer the following question, which was not

addressed in the previous chapter.

Question 4.2.1. What is the minimum cardinality k such that G(n, S) is not bipartite for

all |S| = k?

There are many generating sets of small size that induce odd cycles; two general

examples are {2i + 1, 2i + 2, 2i + 3} ⊆ {3, 4, . . . , 2n− 1}, which produces a triangle

among vertices i, i + 1, i + 2, and {2i, 2i + 2, 2i + 4} ⊂ {3, 4, . . . , 2n − 1}, which

produces a triangle among vertices i− 1, i + 1, i + 3. Despite this, note that the set

of odd generating set elements S = {3, 5, 7, ..., 2n − 1} has cardinality n − 1 and

produces a graph without an odd cycle (namely Kdn
2
e,bn

2
c). The following theorem

states that for n ≥ 5, |S| = n implies that G(n, S) has an odd cycle, thereby proving

that the minimum cardinality k such that G(n, S) is not bipartite for all |S| = k is

k = n. The statement in the theorem is trivially true for n = 3 and false for n = 4, as
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G(4, {3, 4, 6, 7}) = C4. To reduce the checking of base cases, we use the following

lemma.

Lemma 4.2.2. (Corollary 1, [32]) If G is a hamiltonian graph of order n with ∆ > 1
2
n,

then G contains a triangle.

Theorem 4.2.3. For any n ≥ 5, |S| = n implies that G(n, S) has a triangle.

Proof. We proceed by strong induction on n. As base cases, consider n = 5, n = 6,

and n = 7. By Corollary 3.2.6, Lemma 4.2.2, and the fact that deg(1) + deg(n) ≥ n,

it suffices to check the cases when n = |S| = 6 and deg(1) = deg(6) = 3. In these

cases, 7 6∈ S and hence there are
(
4
3

)(
4
3

)
= 16 choices for S. It is easily confirmed

that these generating sets induce triangles in their corresponding graphs.

For any n > 7, assume the induction hypothesis for n − 1, n − 2, and n − 3.

Below is a simple case analysis.

• If {2n− 2, 2n− 1} 6⊂ S, then delete vertex n and any generating set elements

in S strictly greater than 2n − 3 (there is at most 1). We arrive at a graph

G(n− 1, S ′), where |S ′| ≥ n− 1, and by induction this graph has a triangle.

• Thus assume henceforth that {2n−2, 2n−1} ⊂ S. If 2n−4 6∈ S and 2n−3 6∈ S,

then delete vertices n − 1 and n, as well as the two generating set elements

in S strictly greater than 2n − 5. We arrive at a graph G(n − 2, S ′), where

|S ′| = n− 2, and by induction this graph has a triangle.

• If 2n−3 ∈ S, then G(n, S) contains a triangle among the vertices n−2, n−1, n.

• Thus assume henceforth that 2n − 4 ∈ S and 2n − 3 6∈ S. If 2n − 6 6∈ S

and 2n − 5 6∈ S, then delete vertices n − 2, n − 1, and n, as well as the three
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generating set elements in S strictly greater than 2n− 7. We arrive at a graph

G(n− 3, S ′), where |S ′| = n− 3, and by induction this graph has a triangle.

• If 2n−5 ∈ S, then G(n, S) contains a triangle among the vertices n−4, n−1, n.

• If 2n−6 ∈ S, then G(n, S) contains a triangle among the vertices n−4, n−2, n.

It follows by induction that |S| = n (n ≥ 5) implies that G(n, S) has a triangle.

4.3 A Number Theory Result

To demonstrate the possible number-theoretic interpretations of our results, we

prove a generalization of the following theorem by Cramer. We use one of the

many corollaries of the main result of the previous chapter.

Theorem 4.3.1. [11] For arbitrarily large M > 0, there is an even integer K such that

there are M pairs of primes that differ by K.

Theorem 4.3.2. Let {an} (a1 ≥ 3) be any strictly increasing integer sequence with enu-

merating function E(x) ∈ ω(
√

x).1 For arbitrarily large M > 0, there is an integer K

such that there are M pairs of sequence elements (ai, aj) that differ by K.

Proof. Recall that for a fixed n, Sa = {ai < 2n}. Note that the statement in the the-

orem is equivalent to the statement that for any M > 0, G(n, Sa) contains K2,M for

sufficiently large n. To see this, suppose that G(n, Sa) contains K2,M . The integers

in the first partite set differ by some number K, so that they are x and x + K. Let

1f(n) ∈ ω(g(n)) if ∀C > 0 ∃N such that |f(n)| > |Cg(n)| ∀ n ≥ N .
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the integers in the second partite set be {b1, b2, . . . , bM}, and let a(i) = bi + x. Then

the a(i) are elements in the sequence {an}, and so are the a(i) + K. It follows that

there are M pairs of sequence elements that differ by K.

By Corollary 3.4.38, we have that G(n, Sa) contains K2,M provided |Sa| = E(2n−

1) ≥
√

8(M − 1)n. By the assumption regarding the enumerating function of {an},

this is true for sufficiently large n.

We highlight in Table 4.1 some important integer sequences that satisfy the enu-

merating function condition of Theorem 4.3.2.
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Chapter 5

Conclusion

In this thesis, we have reintroduced a family of graphs with a natural construction

and obvious number-theoretic interpretations. These additive graphs generated

by subsets of the natural numbers were shown to be the first known wide-ranging

and representative subclass of graphs with complete k-closure. These graphs pro-

vide a new and simple construction of minimum graphs with complete k-closure,

and they may be useful in investigating conjectures in the field of closure theory.

We made the first detailed study of the Traversal by Prime Sum Problem, and we

introduced a related problem of our devising termed the Traversal by Practical

Sum Problem. In both cases we showed that the additive graphs in question sat-

isfy several necessary conditions for Hamilton cycles.

Many open questions remain in relation to additive graphs generated by sub-

sets of the natural numbers. First and foremost, both the Traversal by Prime Sum

Problem and the Traversal by Practical Sum Problem remain unsolved. As well,

some of the thresholds for monotone properties considered in Chapter 3 were not
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shown to be tight. Sharpening these thresholds would suggest the complete sta-

bility of these properties in the cases where this has not yet been precisely deter-

mined. For these and other properties, further interpreting our threshold results

from the point of view of additive number theory may yield some interesting con-

clusions.

There has been no consideration of random generating sets. Given the patho-

logical nature of the lower bound threshold examples, it seems likely that thresh-

olds for the appearance of monotone properties in the case of random generating

sets will be significantly lower than the corresponding deterministic thresholds.

In particular, we may ask what is the probabilistic threshold for a Hamilton cycle

when generating set elements are selected uniformly at random from the set of

odd integers {3, 5, . . . , 2n− 1}.

A basic algorithmic question asks for the complexity of the problem of rec-

ognizing an unlabeled graph as G(n, S) for some generating set S. Our results

provide several necessary conditions for a graph G to be an additive graph gener-

ated by a set S of cardinality k; namely, that clk(G) = Kn, cl2n−3−k(G) = Kn, and

f(k) ≤ |E| ≤ g(n, k).

Finally, recall that if |S| ≥ n, then a Hamilton cycle exists in G(n, S) and can be

found in polynomial time. The following question was posed by Vašek Chvátal [8].

Question 5.0.3. Does there exist a graph G(n, S) that is 1-tough but not hamiltonian?

If the answer to this question is no, then there exists a polynomial time algo-
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rithm for determining whether a graph G(n, S) with arbitrary generating set cardi-

nality is hamiltonian. There exist examples of G(n, S) graphs that are 2-connected

but not hamiltonian (e.g., Figure 1.1), but these 2-connected graphs have failed to

be 1-tough (removing vertices 2 and 8 in the previous example separates the graph

into three components).
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Glossary

All graph-theoretic definitions are consistent with those used in the text by Bondy

and Murty [4], and all number-theoretic definitions are consistent with those used

in the text by Rosen [42]. We have restricted the definition of a graph so that graphs

are always undirected and simple.

Adjacent: Vertices that are the endpoints of an edge.

Bipartite graph: A graph whose vertices can be covered by two independent sets.

It is well-known that a graph is bipartite if and only if it has no odd cycles.

Centre: Given a star K1,n−1 with n > 3, the vertex in the partite set of cardinality 1.

Chordal graph: A graph that has no chordless cycles.

Chordless cycle: An induced cycle of length at least 4.

Chromatic number χ(G): The minimum number of colours in a proper colouring

of G.

Clique Kt: A subgraph that is the complete graph Kt.

Complement G: A simple graph with the same vertex set as G, and with (u, v) ∈

E(G) if and only if (u, v) 6∈ E(G).

Complete bipartite graph Kn1,n2 : A bipartite graph in which every pair of vertices

not belonging to the same partite set is adjacent, where the sizes of partite sets are
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n1 and n2.

Complete graph Kn: A simple graph of order n in which every pair of vertices is

adjacent.

Component: A maximal connected subgraph.

Connected: Having a u, v−path for every pair of vertices u, v.

k-connected: Having connectivity at least k.

Connectivity κ(G): The minimum number of vertices whose deletion disconnects

G or reduces it to one vertex.

Cycle: A simple graph whose vertices can be placed on a circle so that vertices are

adjacent if and only if they appear consecutively on the circle.

k-cycle Ck: A cycle of length k.

Degree deg(v): The number of times a vertex v appears as an endpoint of an edge.

Diameter: The maximum of the distance d(u, v) over all pairs of vertices u, v.

Disconnected: A graph with more than one component.

Disjoint: Edge-disjoint.

Distance d(u, v): The minimum length of a u, v−path.

Divisor: Given an integer n, an integer a such that there exists another integer b

with ab = n.

Edge: An unordered pair of vertices.

k-edge-connected: Having edge connectivity at least k.

Edge connectivity: The minimum number of edges whose deletion disconnects G.

Edge-disjoint: Two subgraphs whose edge sets are disjoint.

Edge set E(G): The set of edges of G. If the graph G is clear from the context, it is

simply denoted by E.

Empty graph: A graph having no edges.
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Endpoint: Each member of an edge; the first or last vertex of a path.

Enumerating function E(x): For a particular sequence of integers, the number of

its terms not exceeding x.

k-factor: A spanning k-regular graph.

Fibonacci numbers: The terms of the Fibonacci sequence.

Fibonacci primes: Fibonacci numbers that are also prime numbers.

Fibonacci sequence {fn}: A sequence defined recursively by f1 = 1, f2 = 1, and

fn = fn−1 + fn−2 for n ≥ 3.

Finite graph: A graph with a finite number of vertices and edges.

Graph G: An ordered pair (V (G), E(G)) consisting of a set V (G) of vertices and a

set E(G) of edges.

Graph density: For a simple undirected graph G,
2|E|

|V |(|V | − 1)
.

(m × n)−grid graph: A graph with vertex set V = [m] × [n], and vertex (u1, v1)

adjacent to vertex (u2, v2) if and only if u1 = u2 or v1 = v2.

Hamilton-connected: Every pair of vertices is the set of endpoints of a Hamilton

path.

Hamilton cycle: A spanning cycle.

Hamilton path: A spanning path.

Hamiltonian graph: A graph having a Hamilton cycle.

Independence number α(G): The maximum size of an independent set of vertices

in G.

Independent set: A set of pairwise nonadjacent vertices.

Induced subgraph: The subgraph on a subset A of the vertex set obtained by tak-

ing A and all edges of G having both endpoints in A.

Integer graph: A finite graph whose vertex set is [n]; an infinite graph whose ver-
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tex set is the set of natural numbers.

Isomorphic: Two graphs that are the same up to a labeling of the vertices.

Leaf: A vertex of a tree of degree 1.

Length: The number of edges in a path or cycle.

Linear recurrence: A recurrence equation on a sequence of numbers {xn} express-

ing xn as a first-degree polynomial in xk with k < n.

Matched: A vertex that is an endpoint of an edge in a particular matching.

Matching: A set of edges sharing no endpoints.

Maximum degree ∆(G): The maximum of the vertex degrees. If the graph G is

clear from the context, it is simply denoted by ∆.

Minimum degree δ(G): The minimum of the vertex degrees. If the graph G is clear

from the context, it is simply denoted by δ.

Monotone property: A property that is preserved in a graph when edges are

added.

Natural numbers N: The set {1, 2, 3, . . .}.

Neighbour: Given a vertex v, a vertex adjacent to v.

Nested sequence of graphs: A sequence (Go, G1, . . . , Gk) of graphs such that Gi is

a subgraph of Gi+1 for all 0 ≤ i < k.

Nonadjacent: Two vertices that are not adjacent.

Odd cycle: A cycle of odd length.

Order: The cardinality of the vertex set.

Partite set: One of the sets in a vertex partition into independent sets.

Partition: Given a set X , a collection of disjoint subsets of X whose union is X .

Path: A simple graph whose vertices can be listed so that vertices are adjacent if

and only if they are consecutive in the list.
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k-path Pk: A path of order k and length k − 1.

u, v−path: A path with u and v as its endpoints.

Perfect matching: A matching in which every vertex in G is matched.

Planar graph: A graph that can be drawn in the plane in such a way that edges

meet only at points corresponding to their common endpoints.

Prime counting function π(x): The enumerating function for the sequence of prime

numbers.

Prime number: An integer greater than 1 that is divisible by no positive integers

other than 1 and itself.

Prime number theorem: lim
x→∞

π(x)

x/ ln x
= 1.

Proper colouring: An assignment of colours to vertices such that no two adjacent

vertices are assigned the same colour.

k-regular: Having all vertex degrees equal to k.

Separating set: A set of vertices whose deletion increases the number of compo-

nents.

Spanning tree: A spanning subgraph that is a tree.

Spanning subgraph: Given a graph G, a subgraph containing each vertex of G.

Star graph: The complete bipartite graph K1,n−1.

Strictly increasing: Given a sequence {an} of integers, having the property that

ai < ai+1 for all i.

Subgraph: Given a graph G, a graph whose vertices and edges all belong to G.

Sum of divisors function σ: For a given integer n, σ(n) is defined to be the sum of

all positive divisors of n.

Sumset A + B: Given two subsets A and B of an abelian group, the set {a + b| a ∈

A, b ∈ B}.
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1-tough: A connected graph such that for every S ⊂ V , the number of components

upon deletion of S is at most |S|.

Tree: A connected graph with no cycles.

Triangle: A cycle of length 3.

Unmatched: Not an endpoint of any edge in a particular matching.

Vertex: One of the points on which the graph is defined and which may be con-

nected by graph edges.

Vertex set V (G): The set of vertices of a graph G. If the graph G is clear from the

context, it is simply denoted by V .
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73–83. Dekker, New York, 1993.

[10] L. Clark, R. C. Entringer, and D. E. Jackson. Minimum graphs with complete

k–closure. Discrete Mathematics, 30(2):95–101, 1980.

[11] G. F. Cramer. On differences of pairs of primes. The American Mathematical

Monthly, 46(10):643, 1939.

[12] G. A. Dirac. Some theorems on abstract graphs. Proceedings of the London

Mathematical Society, 3(2):69–81, 1952.
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