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Abstract 

The dynamics of truss structures, articulated via a specific actuator arrangement, 

is examined in this thesis. The structure is treated as a flexible multi-body system, 

and sub-divided into numerous truss and actuator links. The resulting configuration 

becomes that of a crane-type manipulator. The prismatic actuator is modelled as 

a separate cylinder and piston-rod component, and considered rigid. Frame desig­

nations and kinematic expressions associated with each link-type, are established in 

order to evaluate the motion of the structure. Kinematic loops are introduced by the 

actuator installation, and the orientation angles of links dependent upon the loop are 

solved using the Newton-Raphson method. By virtue of the kinematic arrangement 

considered, only planar motion of truss cranes is examined in this thesis. The base 

of the structure is also considered to be fixed. 

Initially, the equations of motion are formulated for the individual link with La­

grange's equations, and modal discretization is employed to model truss link flexibil­

ity. The finite element method is used to geometrically discretize the truss links, and 

only linear axial deformation of the members is modelled. The eigenvectors obtained 

from the eigenvalue problem of free vibration for each truss link, are employed in 

the modal discretization. The equations of motion for the entire structure are then 

assembled, and the non-working constraint forces between adjacent links are elimi­

nated using the natural orthogonal complement of the velocity constraint matrix. As 

a result, a minimum set of dynamical equations are obtained in terms of the actuator 

extension and elastic (or modal) coordinate variables. 

To address the active vibration control of truss crane manipulators, the singular 
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perturbation method is employed to establish a reduced-order model for the equations 

of motion. The resulting forms allow for the composite control design of the quasi­

static motion and the modal coordinates. In this work, the robotic-based computed 

torque with PD control is applied to maintain the quasi-static motion, and an optimal 

LQR design of a specific configuration of the structure is considered for vibration 

control. Operation characteristics of the actuators are not modelled, and full state 

feedback of the vibration modes are assumed. These simplications allow for the initial 

assessment of this control approach, which was applied in a continuous manner. 

The code GENMAN was developed to perform the dynamic and vibration con­

trol simulations for the planar motion of a N -link truss crane. Initially, inverse 

dynamics are executed using prescribed actuator extensions, in order to obtain the 

corresponding actuation forces. These values are then employed in the simulations 

of the forward dynamics to examine the resulting motion and structural vibrations. 

This thesis presents simulation results obtained for a space crane model of dimensions 

corresponding to that of a NASA concept. 

ll 
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Resume 

Cette these etudie le dynamique des structures en treillis flexibles qui sont articules 

par une installation specifique des actuateurs. La structure est composee de plusieurs 

corps classifies comme treillis ou actuateur. L'actuateur, de type prismatique, se 

compose de deux membres; un cylindre et un piston qui sont consideres rigides. 

Le mouvement de la structure est decrit en utilisant des reperes cartesiens fixes sur 

chaque corps et par les expressions cinematiques attribuees a chaque type de corps. 

L'installation des actuateurs introduit des boucles cinematiques pour lesquelles, il 

faut obtenir les angles d'orientation de ces membres impliques. Celles-ci sont resolues 

par la methode de Newton-Raphson. Seulle mouvement planaire est considere pour 

les structures en treillis etudiees dans cette these. En outre, le base est choisit fixe. 

D'abord, les equations du mouvement sont formulees pour chaque corps individuel, 

en utilisant les equations d'Euler-Lagrange. Premierement, la methode des element 

finis est employee pour la discretisation spatiale des corps en treillis, et seule la 

deformation lineaire le long de ces membres de treillis est consideree. Ensuite, un 

certain nombre de vecteurs propres (eigenvectors), obtenues du probleme des valeurs 

propres pour chaque corps en treillis, est employe pour la discretisation modale. Les 

equations du mouvement du systeme en entier sont ensuites assemblees, et les forces 

et moments de contrainte passifs sont elimines par !'application du complement or­

thogonal naturel. Le resultat est un systeme d'equations d'un ordre minimum, qui 

comporte les variables d'extensions des actuateurs et les variables modales. 

Quant a l'amortissement actif des vibrations, la methode de perturbations sin­

gulieres est employee afin de reduire le degre des equations dynamiques. Le systeme 
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resultant permet !'application de commande individuelle pour la maneuvre de base 

et pour les variables modales. Dans cette etude, la methode de controle "computed 

torque with PD feedback" utilisee pour les robots manipulateurs, est employee pour 

le mouvement de base. Le controle de "state feedback" est utilise pour les modes 

vibratoires. 

Le code GENMAN a ete developpe pour executer les simulations du mouvement 

planaire et pour controler les vibrations de structures en treillis comportant N corps. 

Premierement, le probleme de la "dynamique inverse" est resolu en utilisant des 

extensions d'actuateurs prescrites, afin d'obtenir les forces requises pour le mouve­

ment rigide. Celles-ci sont alors employees en executant la "dynamique directe", afin 

d'observer le mouvement flexible et les vibrations resultantes. Des simulations d'une 

structure spatiale, conc;ue par la NASA, sont finalement presentees dans cette these. 

IV 
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Chapter 1 

INTRODUCTION 

1.1 Background and Motivation 

The concept of truss manipulators originates from two areas of aerospace research. 

The first involves the field of adaptive structures, in which a structural assembly is 

equipped with certain self-sensing-self-actuating devices embedded into the members 

or substituted for entire members. The installation of these elements transforms 

the structure into an active system, allowing for autonomous motion and vibration 

control, [Crawley et al. '87]. As a result, and with proper control design and imple­

mentation of the sensing/ actuation systems, a structure obtains the capability to 

actively vary the geometry or mechanical properties of its members to yield a more 

acceptable configuration in terms of structural integrity or vibration suppression. 

Hence, as variable geometry truss (VGT) arrangements were proposed for the de­

ployment masts of space antennaes, other manipulating truss configurations evolved, 

[Miura'93J, [Chen et al.'90]. 

Truss cranes were also examined for the in-orbit construction of future space­

craft. The requirements associated with interplanetary missions suggested that the 

dimensions and mass of manned spacecraft vehicles will exceed the capabilities of 

any present day launch vehicle. Various examples include Lunar and Mars trans­

fer vehicles that have masses on the order of 190,500 and 862,000 kg, respectively. 

Their representative dimensions are 15.2 m diameter/ 22.8 m length, and 33.5 m 
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diameter/ 51.8 m length, respectively, [Dorsey et aL'92]. More recent concepts of a 

Mars vehicle propose an arrangement with mass and dimensions of larger magnitudes, 

[Sherwood'94]. These figures far exceed the payload capabilities of the present day 

space shuttle, which is of the order of 19,500 kg, and the maximum allowable payload 

shroud size is 4.8 m diameter/18.3 m length, [Dorsey et al.'92]. Hence, it appears 

inevitable that the main assembly of future interplanetary and manned spacecraft 

will be performed on an in-space construction facility (ISCF) located in low-earth 

orbit, illustrated in Figure 1.1. 

The deployment operations for orbiting structures and the future in-space construc­

tion of space vehicles, therefore imply that considerable manipulation capabilities will 

be needed. The ISCF facility would be equipped with various manipulator systems, 

in which three typical arrangements include: 

• remote (telerobotic) manipulator systems (RMS), 

• articulated truss space cranes, Figure 1.2, [Dorsey et al. '92], and 

• variable-geometry truss (VGT) manipulators, also referred to as adaptive truss 

manipulators (ATM), Figure 1.3, [Chen et al.'90J. 

According to conventional terminology, the first two systems are anthropomorphic 

manipulators consisting of "multi-joint-multi-link" configurations, [Chen et al. '90]. 

The joint manipulation is generally independent of the adjacent links. The third 

system is denoted as an adaptive configuration in which a collection or module of 

members vary in unison to effect the overall joint function or geometry change of the 

structure. In general, the joint modules of these systems are typically of octahedral 

assemblies. 

The kinematic, dynamic, and control simulation of serial robotic manipulator sys­

tems receives considerable attention by the research community. Largely employed 

for industrial applications of production and materials handling, these manipulators 

2 
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Figure 1.1: An in-space construction facility, [Chen et al.'90]. 
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Figure 1.2: An articulating truss manipulator (crane), [Dorsey et al.'92]. 
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FACILITY 

Figure 1.3: A variable geometry truss (VGT) manipulator, [Chen et al.'90]. 
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operate ideally for reasonable dimensions of link members which usually possess a 

beam-type geometry. Present space applications of robotic manipulators include the 

renowned space shuttle's CANADARM and the proposed space station's remote ma­

nipulator system (SSRMS). Concepts and analyses of free-flying space robots are also 

under review. 

During the development of adaptive structures, there has been considerable re­

search in the field of VGT's. Efforts by the Japanese community are documented in 

[Miura et al.'85] and [Miura'93], and that of the United States stem from cooperative 

interests between NASA and other groups involved with adaptive structures (such as 

Jet Propulsion Labs, MIT, etc.), [Wada et al.'90J. Canadian involvement in this area 

includes the activities documented in [Hughes et al. '90]. 

In contrast, it appears that the dynamic modelling and vibration control of the 

truss crane arrangements per Fig. 1.2, has not been thoroughly addressed. These 

structures would contain truss-type booms to perform the gross manipulation of mas­

sive components or mobile transporter platforms. The truss geometry possesses a 

high stiffness-to-mass ratio, and provides both structural integrity and function dex­

terity. However, as the actuator and joint configurations become more complex, the 

kinematic dependencies between adjacent links in a truss crane require additional 

treatment when performing kinematic and dynamic analyses. 

The focus of this thesis is to examine the dynamic simulation and vibration con­

trol of the planar motion for truss crane manipulators. A research survey regarding 

the modelling schemes and analyses thus far considered for various manipulating 

truss structures is initially provided in the subsequent section. The following sec­

tions presents a general discussion regarding the formulation methods for multi-body 

dynamics, and the vibration control schemes most applicable to truss-type configu­

rations. This introductory chapter is then concluded with the main scope and orga­

nization of the thesis. 

5 
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1.2 Manipulating Truss Structures 

1.2.1 Articulating Truss Cranes 

The development of the articulating truss crane concept in Fig. 1.2, has been mo­

tivated by NASA activities initiated in the late 1980's. Various joint arrangements 

are documented in [Vail et al.'91], [Sutter et al.'92], and [Wu et al.'92]. A summary 

of this work is provided in [Sutter et al. '90], which focuses upon the criteria used 

to characterize the joint configurations. These include the provisions for maintain­

ing adequate structural stiffness with large joint rotations, and reasonable actuator 

stroke. Corresponding test results are also provided for a specific truss boom assem­

bly, illustrating the rigid joint articulation, actuator load-deflection response, and the 

fundamental frequencies for specific configurations of the structure. 

A form of the dynamical equations of motion for a truss crane were initially pre­

sented in [Das et al. '89], and derived using Hamilton's principle. The resulting equa­

tions are in terms of the angles between adjacent truss sections and in terms of the 

full elastic nodal deflections. A mass lumping scheme was also applied, but a dis­

placement field (between the nodes of an element) was assumed that is inconsistent 

with the linear displacement field employed in the strain energy formulation. The dy­

namic simulations performed in this work, use prescribed link angle trajectories and 

integrate the equations of motion to obtain the resulting nodal deflections. Hence, 

the effect of the elastic motion upon the rigid body motion is essentially ignored. The 

corresponding actuation forces for this "flexible" motion are then computed. The 

structural configurations considered and simulation results provided, do not facilitate 

comparisons with a typical truss crane arrangement. In addition, with the flexible mo­

tion integrated from the prescribed rigid body motion, the high frequency vibration 

components associated with a true forward dynamics simulation are not obtained. As 

a subsequent activity to this work, an actuator compensation scheme that accounts 

for elastic deformations associated with a maneuver, is presented in [Das et al.'90a]. 
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This procedure determines the actuator force correction needed {in addition to that 

calculated from the rigid body inverse dynamics) for tip point adjustment of the flex­

ible structure. Again, these are essentially inverse dynamic simulations where the 

rigid body motion is specified and the corresponding elastic deflections are obtained 

from integrating the equations of motion for the nodes. 

The trajectory planning of slow moving space cranes, for which inertial effects 

are neglected, is presented in [Ramesh et al.'91b] and [Utku et al.'91b]. Forward and 

inverse kinematic relations are derived to determine the corresponding actuation of 

specified members. The governing equations are established from the static response­

excitation relations of truss structures presented in [U tku et al. '91 a]. This N ewtonian­

based approach provides a linear set of equations which satisfy nodal and member 

force equilibrium, geometric compatibility between nodal deformations and member 

elongations, and the constitutive relation between the member force and elastic stiff­

ness balance. The rearrangement of these expressions yields the member actuation 

needed to provide a specified trajectory of certain nodal degrees of freedom. A form 

of the Jacobian matrix relating the incremental change of end effector position due 

to incremental changes in the actuator lengths, is also obtained. The computational 

efficiency of the forward and inverse kinematic scheme is dependent upon the algo­

rithm of [Ramesh et al.'9la] used to update the Jacobian matrix during the iteration 

of the trajectory solution. The justification given for neglecting the structure inertia, 

is that member actuation will occur over long durations of time. As a result, the for­

ward kinematics would be ideally satisfied by the member actuation commanded. For 

this simplified scenario of negligible structural inertia, [U tku et al. '91 b] also present 

an actuator compensation strategy to account for elastic deflections resulting from a 

payload. 

Due to the highly nonlinear equations of motion and the changing vibration charac­

teristics associated with articulating truss cranes, vibration control can be considered 

for final configurations of the maneuver, [Lu et al.'90]. This is achieved by intro-

7 



0 

c 

c 

ducing either passive or active members into the truss-links, which are intended for 

vibration suppression (and not gross manipulation). With the implementation of ac­

tive members, the structure becomes adaptive. The governing equations of motion 

for the truss nodes are now linear and pertain to small deformations about the sta­

tionary configuration. Schemes developed for the vibration control of stationary truss 

structure are now applicable, as will be discussed in Section 1.4.1. 

1.2.2 Adaptive Variable Geometry Trusses 

Although VGT structures are not the topic of this thesis, the various research 

performed for this configuration is reviewed here for completion. 

Two VGT concepts that correspond with the length dimension of the CANADARM 

manipulator, are presented in [Hughes et al.'90]. The resulting forms of the kine­

matic and rigid body dynamic equations of motion for the highly densed member 

topology are presented. Flexible body contributions are not modelled in the "ar­

ticulation" dynamics, however, the modal characteristics of the structure are eval­

uated with N ASTRAN for numerous configurations. The authors mention that a 

proportional-integral-derivative control model for each joint was established to effect 

the commanded trajectories. A laboratory model designated as the Trussarm (Mark 

I) structure was also introduced. 

A general kinematic description for a typical variable geometry truss arrangement 

is presented in [N accarato et al. '91], along with a classification of the various con­

straints associated with the highly densed configuration of members. These efforts 

focus upon the solution to the inverse kinematics problem of obtaining the required ac­

tuator lengths to yield the end-effector trajectory. The conventional scheme (applied 

to redundant robotic manipulators) of solving the pseudo-inverse of the differential 

kinematic Jacobian matrix, is used. In addition, the authors present a method which 

solves the required truss configuration conforming best to a reference curve of the 

desired shape of the structure. The scheme allows for the specification of certain 
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configuration constraints, such as for obstacle avoidance, and employs less compli­

cated kinematic expressions. As a result, this reference curve inverse scheme is more 

computationally efficient, and hence quite promising to real-time applications. 

The application of variable geometry trusses to the docking of a free floating struc­

ture is given by [N atori et al. '92a]. The inverse kinematics is based on the spatial 

description of the base planes of each module (or bay), and the dynamic equations of 

motion are formulated from principles of momentum conservation. The constraints 

governing the docking control equations are addressed, and an experimental demon­

station of the docking operation is provided. Deployement and dexterity scenarios 

for a specific VGT structure are illustrated in [Chen et al. '90]. Many other activities 

regarding VGT arrangements are documented in [Miura'93]. 

1.3 Dynamical Formulation ofMultibody Systems 

The articulating truss manipulator of Fig.1.2 conforms to a consistent arrangement 

of the actuators and corresponding kinematic loops. For this thesis, the structure 

will be modelled as a collection of flexible links, driven by rigid actuated/extending 

members. Hence, it is ideal to select a formalism that facilitates this topology and 

establishes the governing dynamical expressions. Newton-Euler methods of deriving 

the equations of motion are convenient for serial configurations, in which the forces 

and moments transferred to adjacent bodies can be readily identified and treated as 

such. This is the case for serial robotic arrangements considered in (Hollerbach'80], 

but not necessarily for configurations involving kinematic loops. The flexible body 

problem also renders Newton-Euler derivations somewhat cumbersome. 

Kane's method [Kane et al.'65], provides a very efficient formalism from which 

computer algebraic forms of the equations of motion have been developed, 

[Amirouche'92], [Singh et al.'85], [Huston'90]. Each body is modelled as part of the 

entire system, and with the method being an energy based approach, the inter-link 

constraint forces and moments do not appear in the final forms of the equations 
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of motion. As a result, a minimum set is obtained. This methology readily ac­

commodates the consideration for structural flexibility, linearization of the equations 

of motion, and the simulation of constrained motion [Sadigh'95]. Although the fea­

tures associated with Kane's method are most enviable, the Euler-Lagrange equations 

maintain extensive application throughout the various fields of dynamic simulation, 

[Chang et al.'9lb], [Cyril et al.'91], [Chan et al.'90], and [Nagarajan et al.'90]. To ac­

count for structural flexibility, an assumed modes scheme is usually applied with the 

Euler-Lagrange equations. As a result, the partial differential equations of motion 

for the continous system are approximated by ordinary differential equations of a 

discretized system, [Meirovitch'90]. For a system of multibody chains, constraint 

forces and moments between adjacent bodies can either be included in the equations 

of motion with the use of Lagrange multipliers [Park et al. '90], or removed with an 

appropriate transformation of coordinates as obtained with the natural orthogonal 

complement method [Angeles et al. '88a]. The use of Lagrange multipliers introduces 

a larger system of equations to be simulated. Even though hybrid solution schemes 

exist to reduce simulation time [Park et al.'90], it is preferrable to obtain a minimum 

set of equations for (time integration) simplication. 

The dynamic simulations of flexible manipulators and mechanisms employing the 

natural orthogonal complement, have been performed in [Cyril et al. '91], 

[Darcovitch'91], and [Fattah et al.'94]. The assumed modes method can be applied 

to model flexible beam-type members, and Lagrange's equations employed for the 

discretized system. The formulation initially derives the unconstrained equations 

of motion for each body or "link" in terms of the link origin velocity, frame angu­

lar velocity, and rates of the elastic coordinates. By appropriately introducing the 

natural orthogonal complement and the independent coordinates of the system, the 

non-working constraint forces are eliminated and the minimum set of dynamical equa­

tions of motion are obtained. The scheme additionally facilitates the general assembly 

and algorithmic treatment of consistent manipulator arrangements, provided that the 
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kinematic configuration is properly defined for the computation of the natural orthog­

onal complement of the velocity constraint matrix. 

For structures consisting of numerous members, as is the case for the main truss 

booms of a truss crane, the flexible characteristics of each individual link can be 

readily obtained with finite element (FE) discretization. The application of the FE 

method to the dynamics of flexible mechanisms with complex geometries has been ex­

amined in [Sunada et al.'81]. The treament of planar-loop systems and the modelling 

of flexible members with FE modal discretization, is presented in [Fattah et al. '94}. 

The scheme employed in this latter work is most applicable to truss-type links, in 

which the system dimension of the dynamic equations is reduced with the considera­

tion of only a few modes of vibration. 

1.4 Vibration Control Methods 

1.4.1 Vibration Suppression by Conventional Schemes 

There is an extensive collection of research work regarding the vibration control of 

truss-type assemblies. For stationary applications, truss arrangements constitute the 

main support structures for the proposed space station platform, future spacecraft, 

space masts, optical interferometers, and the precision structures of reflectors and 

antennae used in space [Umland et al.'92], [Wada et al.'92], and [Voth et al.'94]. The 

majority of these arrangements consist a single truss, such that there is no articulation 

of adjacent segments. The governing equations of motion for these flexible structures 

are therefore linear differential equations expressed about the nominal configuration, 

obtained either through the finite element method or from the response-excitation 

relations presented in [Utku et al. '91a]. The equations may then be arranged in 

the linear state space form, in order to apply the schemes of independent modal 

space control [Meirovitch et al.'82], [Baruh et al.'92], or direct output feedback con­

trol [Meirovitch'90]. The equations of motion associated with the gross manipulation 
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of truss cranes are, however, nonlinear with time-varying inertial properties. There­

fore, unless the equations can be linearized, or reduced into two separate systems 

consisting of the rigid body motion and linearized flexible body motion, the above 

control strategies are not applicable. 

Damping augmentation or active local vibration control can be obtained by ex­

ploiting the truss geometry and introducing either passive and/or active struts. The 

implementation of these members into the main truss booms of a manipulating truss 

crane, would compensate for insufficient structural damping. The use of simultane­

ous sensing and actuation members would transform the structure into an adaptive 

or "intelligent" one. With the numerous members contained in truss structures, the 

effectiveness of the resulting vibration suppression is dictated by the actuator or 

damper placement. Considerable effort has already been focussed towards the de­

termination of optimal actuator placement in stationary truss configurations and the 

criteria for assessing these. The application of optimal and linear control theory is 

usually employed for such analyses, and various optimal placement strategies have 

been addressed [Das et al. '90b], [Lu et al. '90], [Utku et al. '91a], [Maghami et al. '93], 

[Sener et al. '93], [Lammering et al. '94], and [Tongco et al. '94]. 

Experimental results of actively damping a truss structure are presented in 

[Preumont et al.'90]. A collocated piezoelectric actuator and force transducer is used 

to implement force feedback controL The work performed in [Dunn'92], established a 

control syntheses for different compensators. Details regarding the active and passive 

design methodologies, and implementation into a truss test bed typical of future space 

platforms are documented in [Voth et al.'94]. The active control is provided with the 

use of jet thrusters, hence, according to conventional terminology the structure is not 

adaptive. Viscoelastic struts are also installed for damping augmentation, and their 

placement is initially assessed using a modal strain energy method. It was demon­

strated that proper integration of both active and passive control schemes allow for 

effective vibration suppression of truss arrangements. 

12 



c 

0 

1.4.2 Vibration Suppression by Actuated Motion 

An initial study regarding the vibration control of the truss crane presented in Fig. 

1.2, has been performed in [Reisenauer et al. '92]. The crane was allowed to rotate 

(out-of-plane) about its revolving base joint, and the resulting vibrations associated 

with several fixed orientations of the articulating booms were considered. A reduced­

order FE model of the full structure was used, as obtained by modelling the three 

dimensional truss geometry by a Timoshenko beam. This simplified (beam) model 

reproduced the low frequency vibration characteristics of the full truss. By assuming 

small rotations at the base joint, and since the vibration characteristics of various 

fixed orientations of the truss were considered, then linear forms of the equations of 

motion were obtained. A linear quadratic regulator controller was initially examined 

to suppress the lower vibration modes, and destabilization of the unmodelled modes 

was observed. A compensator scheme using a series of residual mode filters, was then 

implemented and indicated good stabilization performance. The study demonstrated 

the complications involved when designing vibration control for such a complex 3D 

structure. 

The open loop technique of pre-shaped command input can also be implemented 

for the vibration control of truss crane structures, [Dorsey et al. '92]. The maneuver 

actuation is applied so as to minimize the excitation of selected frequencies of vibra­

tion. Hence, the commanded extension rates of the actuators are modified to induce 

small residual motions while effecting the required maneuver. The advantages of this 

control scheme is that it is an open loop system, only the frequencies of vibration 

of the structure are required for its design, and for a specific operation bandwidth it 

can be designed to be insensitive to the physical system characteristics of vibration 

frequencies and damping, [Dorsey et a1.'92]. 

The vibration control for in-plane motion of articulating trusses is addressed in 

this thesis. Since the theory regarding control of linear systems is well established, 
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it would be ideal to obtain the conventional linear state space form of the equations 

of motion. However, by virtue of the multibody system and the kinematic loop 

dependencies associated with the truss manipulators considered here, the governing 

dynamical equations are highly nonlinear. Linearization of the equations about an 

equilibrium state or trajectory, as performed in [Sadigh'95] with Kane's methodology, 

may become numerically unpractical for a specific formulation scheme. This is usually 

the case when the natural orthogonal complement is used to eliminate constraint 

forces of a Lagrangian formulation, and therefore other means of altering or reducing 

the order of the system must be sought. 

One scheme that has been applied in the field of serial robotic manipulators is 

that of the singular perturbation method [Aoustin et al.'93], [Chedmail et al.'91], 

[Lewis et al. '93], [Siciliano et al. '88]. This procedure originates from the analytical 

theory of differential equations and boundary layer problems in fluid dynamics. In 

robotics, the technique establishes a quasi-static form of the equations of motion for 

a flexible structure, by exploiting the property that elastic vibration frequencies are 

usually greater than the frequency content of the rigid body motion trajectory. Hence, 

highly coupled differential equations of motion can be rearranged into two reduced­

order systems, consisting of a "slow" (quasi-static) subsystem, and a "fast" (boundary 

layer) subsystem, for which the latter possesses a much faster time scale. A detailed 

explanation of the singular perturbation technique and its application in control sys­

tems modelling is provided in [Kokotovic'84], [Naidu'88J and [Suzuki'81]. The control 

scheme for each subsystem may then be addressed almost separately, to establish a 

composite control design. The resulting model of the flexible cooridinates becomes 

that of a linear time-varying system, and must be addressed accordingly. Therefore, 

the actuation forces and torques can be used to effect the maneuver while suppressing 

structural vibration. It is essential that the appropriate singular perturbation form 

ensures adequate separation in time scale between the two subsystems, which is fun­

damental when considering small but fast deviations about a nominal state of the 
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singular perturbation method. Then, as for every stable control system design, the 

assessment of controllability and the control strategy, must be addressed. 

1.5 Scope and Organization of the Thesis 

This work examines the simulation of the dynamic motion and vibration control 

of articulating truss cranes, confined to planar motion. The vectorial notation and 

derivations of the thesis are applicable to spatial (3D) motion, and the forms specific 

to in-plane motion will be distinguished. The equations of motion for each link 

are initially derived from application of modal discretization along with the Euler­

Lagrange equations. The corresponding mode shapes of each truss links are obtained 

from finite element discretization. The natural orthogonal complement method is then 

employed to enforce the kinematic constraints between adjacent links, as detailed in 

[Cyril'88] for flexible serial manipulators. The resulting equations of motion are in 

terms of the independent coordinates for the system, which consist of the actuator 

extensions, and the flexible coordinates of the truss links. This scheme was selected 

over a Newton-Euler formulation or Kane's method, since it easily accommodates 

the computational assembly of the individual links defined per the structure topology 

used in the thesis. Hence, any articulating truss crane arrangement can be simulated, 

as long as the joint assembly between neighboring links corresponds with that used 

in constructing the natural orthogonal complement of the system. The actuator 

members are modelled as rigid bodies in this work, however, the formulation will 

allow for their flexibility considerations in future work. 

The objectives of the dynamic simulations of truss manipulators, are those gen­

erally used for robotic manipulators. Firstly, the inverse dynamics problem is 

addressed, which involves the computation of actuator forces associated with the mo­

tion of the rigid system, obtained with prescribed actuator extension histories. These 

actuator forces are then used in the simulations of the forward dynamics of the 

rigid or flexible system, to examine whether the initial structure motion is obtained. 
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The forward dynamics is basically the time integration of the dynamical equations 

of motion, to yield the resulting actuator extension and flexible coordinates profiles. 

By modelling the desired number of flexible modes for each truss link, the resulting 

flexible body motion can be observed. The inverse kinematics problem of determining 

the required actuator extension histories to follow a certain end-effector path, is not 

addressed in this work. 

A procedure for implementing vibration control of truss cranes, is also examined 

from the reduced-order models of the equations of motion, as obtained with the singu­

lar perturbation method. This scheme has been implemented for flexible manipulators 

in [Siciliano et al.'88], and individual control strategies can be designed for the main 

(quasi-static) maneuver and the vibration modes. For the quasi-static motion, the 

method of "computed torque" with proportional-derivative control (denoted as the 

feedforward control method in robotics) is used in this work. The control strategy se­

lected for the flexible modes is that of full state feedback, which employs the optimal 

linear quadratic regulator (LQR) gains computed for only one specific orientation of 

the structure. Full state feedback will not usually be available in practice, therefore 

the implementation of state observers is recommended for future work. Vibration 

control simulations are performed here assuming ideal actuators with no limitations, 

however typical actuator characteristics should be modelled for subsequent activities. 

The thesis is organized as follows: 

• Chapter 2 introduces the structure configuration and topology for the truss 

manipulators considered in this work. 

• Chapter 3 presents the kinematic description employed for arbitrary links. 

• Chapter 4 provides the derivations of the dynamic properties associated with 

each link, namely the mass matrix from the kinetic energy expression, the truss 

stiffness from the potential strain energy, as well as the modal discretization 

and structural damping schemes applicable to the truss links. 
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• Chapter 5 presents the formulation of the equations of motion for each indi­

vidual link, the assembly of the dynamical equations of motion for the entire 

system, and the details regarding the computations of the natural orthogonal 

complement. 

• Chapter 6 presents the vibration control scheme, namely the reduced-order sys­

tems derived from the singular perturbation method, and the control strategies 

applied to the individual rigid and flexible systems. 

• Chapter 7 explains the code GENMAN developed to perform the simulations 

of the dynamic motion and vibration control of truss cranes, and discusses its 

various features and capabilities. 

• Chapter 8 introduces the truss crane model examined in this thesis for the 

simulation of the dynamic motion, and presents the corresponding results and 

discussion. 

• Chapter 9 presents the conclusions established in the thesis and recommenda­

tions for future work. 

• The Bibliography contains the various references. 

• The Appendices include the more detailed formulations and simulation data. 
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Chapter 2 

STRUCTURE DESCRIPTION 

A manipulating truss structure contains certain length adjusting members to effect 

motion of the truss booms, as depicted in Fig. 2.1. The structure may be situated in 

a gravity environment such as for ground usage, or in micro-gravity when installed on 

an orbiting platform. For the work of this thesis, the base upon which the structure 

is attached is assumed to be stationary. However, if this is not the case, then a 

general model of the structure would assign specific generalized coordinates to the 

base frame to reference its orientation and location with respect to an inertial frame. 

For orbiting cases, if the base platform mass is either less than or of the same order 

of magnitude as the truss structure, then momentum principles must be applied to 

define the center of gravity of the entire system as the origin of the orbital frame. 

For the configuration of Fig.2.1, the truss manipulator is modelled as a collection 

of substructures or links consisting of: 

• statically determinate or indeterminate truss booms, 

• prismatic actuators that act as length varying elements to effect the required 

geometry change of the overall structure, and 

• possibly a remote manipulator as the end effector of the truss crane. 

Each truss boom is treated as a separate body or link, and its flexibility is mod­

elled using the finite element (FE) method, such that only axial deformation of its 
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Figure 2.1: The member arrangements of a manipulating truss. 
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members is considered. The prismatic actuators are modelled as separate links, con­

sisting of a cylinder component and an extending piston-rod, which is typical of the 

basic geometry of a hydraulic or servo cylinder actuator. As a result, the cylinder 

component contains inner and outer diameter dimensions, and it is assumed that the 

extending rod possesses the diameter of the inner dimension of the cylinder. In this 

thesis, the actuator members are considered as rigid elements, however their treat­

ment as individual links in the formulations to follow will accommodate flexibility 

considerations for future work. 

The following section presents the variables designating the generalized coordinates 

for an individual link i, and the recursive relations that express the link orientation 

and origin location of the assembled structure. Figure 2.2 illustrates the frame des­

ignation assigned to a typical seven link truss manipulator, and Table 2.1 presents 

the corresponding link definition and connectivity data. This information constitutes 

the topology of the structure, and fully describes the link arrangement. By virtue of 

the actuator installation of Fig.2.2, manipulating truss structures are not of a serial 

configuration, but rather contain multi-kinematic loops. The treatment of these loops 

and the dependent revolute angles associated with them, will also be addressd. 

For the remainder of the thesis, variable N denotes the number of individual links 

contained in a truss manipulator, variable n represents the total number of actuated 

joints, and l is the total number of kinematic loops per the arrangement of Fig.2.2 . 

Many other variables will be defined during the course of the derivations. 
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Figure 2.2: Link frames and structure topology of a seven link manipulating truss. 
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Table 2.1: The link connectivity/structure topology of the seven link truss manipu­
lator. 

Link 
i 

1 
2 
3 
4 
5 

R 

N = 7 (Number of links) 
n = 2 (Number of actuated joints) 
l = 2 (Number of kinematic loops) 

Link Joint Preceeding 
Type Type Link, i- 1 

truss fixed 0 
truss dependent rev. 1 

cylinder dependent rev. 1 
piston-rod prismatic 3 

truss dependent rev. 2 
cylinder dependent rev. 2 

piston-rod prismatic 6 
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Chapter 3 

SYSTEM KINEMATICS 

The manipulating truss structures considered in this work are confined to planar 

(20) motion by virtue of the joint and actuator arrangements considered. However, 

the vector notation and formulations presented in the following sections retain the 

general forms for spatial (3D) motion, unless explicitly noted. The allowance for 

spatial motion (of these structures) will require a more specific definition of the joint 

arrangement between adjacent links, such as to incorporate misalignments of the 

revolute axes. This will also be commented upon in the following section. 

It is equally important to note that all vectors associated with a specific link will 

be expressed within its own frame. This choice provides some convenience during the 

formulation of the kinematic and dynamic equations of motion. In addition, in this 

thesis bold lower case letters represent a vectorial or array quantity, and bold upper 

case letters pertain to a matrix quantity. Variables which are of the standard (i.e. 

non-bold) type-face, generally represent a scalar quantity such as for a material or 

geometric property, or an index. All variables may contain superscripts and subscripts 

to clarify their representation, and will be defined upon presentation. 

3.1 Kinematic Description of the Link Frame 

The spatial position and orientation of an arbitrary link i with respect to an in­

ertial reference system XoY0 Z0 is illustrated in Fig. 3.1. A body-fixed frame XiYiZi 
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is defined on each individual link and situated at its revolute base, and axis Zi corre­

sponds to that axis of rotation. Angle ()i is used to represent the rotation about the 

positive Zi axis, and is the angle from the Xi-l to the Xi axes. The index notation 

i- 1 refers to the link preceeding a given link i per the structure topology, and does 

not necessarily represent the numeric assignment of the links, (see the final column 

of Table 2.1 and configuration of Fig. 2.2 as an example). 

As denoted in Fig.3.1, vector Pi represents the position vector of the origin of 

link frame i from that of the inertial frame. In addition, the prismatic actuation of a 

piston-rod is defined to occur along the rod's Xi axis. This deviates from the modified 

Hartenberg-Denavit (HD) parameters used for serial manipulators in [Cyri1'88], where 

actuation of a prismatic joint is along the link's Zi axis. For future work regarding 

the spatial motion of truss cranes, it is foreseen that the links would require a similar 

HD parameter description, specifically when there are: individual robotic systems on 

the truss crane, angular misalignments between the revolute axes of adjacent links, 

or prismatic joints that incur out of plane motion. 

The angular orientation of link frame i with respect to the inertial frame X 0 Y0 Z0 

is denoted by rotation matrix Qi, which contains the direction cosines of the frame 

i axes. Only three of the nine components in Qi are independent, and the othogo­

nality property of the rotation matrix QfQi = l33 provides six constraint equations. 

When using the Lagrangian method to derive the equations of motion, the angular 

orientation of frame i with respect to the inertial frame must be represented with 

generalized coordinates employing one of the following: 

• three Euler angles of roll, yaw, and pitch, 

• four dimensional vector of Euler parameters which represent the direction of the 

frame's local axis of rotation and corresponding angle of rotation, as discussed 

in [Cyril'88] and [Nikravesh et al. '85], or 

• the four dimensional vector of a linear invariant set, discussed in [Cyril'88]. 
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b) Cylinder link preceeded by a truss link. 

c) Piston-rod link preceeded by a cylinder link. 

Figure 3.1: Kinematic descriptions of an arbitrary link. 
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The use of a four parameter set is preferred, and regardless of the set selected, 

this vector will not appear in the final form of the dynamical equations of motion. 

Denoting the chosen parameters for link frame i as Qi, it is shown in [Cyril'88] 

and [Nikravesh et al. '85] that the following identities between qi and the link's 3-

dimensional angular velocity vector Wi exist, 

(3.1) 

(3.2) 

The algebraic constraint equation associated with the four parameter set is given as, 

(3.3) 

~ ~ 

Matrices Li and Ai represent the transformations from qi to Wi and vice versa, 

respectively, and their components are given in [Cyril'88]. Although these relations 
~ ~ 

are employed in the derivations to follow, matrices Li and Ai will not be present in 

the final form of the equations of motion. 

3.2 Kinematic Description along the Link 

The kinematics of an arbitrary point located on a link may be described using 

the link frame definitions presented in the previous section. As illustrated in Fig. 

3.1, vector si denotes the inertial position of any point on link i, and given the local 

position ri of the point with respect to the link origin we obtain, 

(3.4) 

If the link is modelled as a flexible structure, then r i can be represented in the general 

form of, 

(3.5) 

where r a,i is a 3-dimensional vector denoting the rigid body location of the point 

with respect to the link's origin, and r e,i is the elastic deformation component. The 
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deformation may be discretized using a matrix of shape functions B,, and the corre­

sponding mi-dimensional vector of elastic or flexible coordinates bi(t) denoted such 

as, 

{3.6) 

where, the elastic deformation is expressed by, 

{3.7) 

The shape functions contained in matrix Bi correspond to the deformation modes 

considered. For the case of beam type members of robotic manipulators, [Cyri1'88] 

uses analytical mode shapes for lateral deflections of beams (to model the in- and out­

of-plane deformations), and similarly for the torsional deformation about the longitu­

dinal axis. In this thesis, a finite element (FE) discretization scheme is employed to 

model the in-plane deformation of each truss link. (Out-of-plane deformations would 

also result by virtue of dynamic coupling, and should be modelled in further exten­

sions of this work.) The FE discretization scheme varies somewhat from the analytical 

discretization of [Cyril'88], therefore eq.(3.5) is not directly applicable. Initially, the 

structure is geometrically discretized and interpolation functions are used to express 

elemental deformations in terms of the nodal quantities. Then, subsequent to the as­

sembly of the elemental mass and stiffness matrices for the link, the eigenvectors of the 

corresponding eigenvalue problem are obtained. Only a few of the lower eigenvectors 

are retained to represent the nodal deformations. Therefore, the local deformation of 

any given node j on link i can be denoted as IeJfi• and expressed as, 

(3.8) 

where now B{ is a 3 by mi matrix containing the elements of the eigenvectors corre­

sponding to node j. The exact details of FE discretization will be presented in the 

formulations of Section 4.1. The following section describes the flexible pose and twist 

vectors, as well as the generalized coordinates used in the Lagrangian formulation of 

the equations of motion for each link. 
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3.3 Kinematic and Generalized Coordinates 

The kinematic state of each link may be described using the flexible pose vector 

Qi, defined as, 

(3.9) 

and the flexible twist vector vi containing, 

<
·T T b'T)T 

Vi= Pi Wi i (3.10) 

The dimension of Qi is denoted as Pi, and for general 3D motion is given as, 

(3.11) 

Similarly, p'i is used to represent the dimension of the flexible twist vi, and is equal 

to, 

(3.12) 

Recall that for rigid links, mi = 0, and then the above vectors become more specif­

ically the rigid pose and twist. 

By using eq.'s (3.1) and (3.2), the following relations can be constructed, 

(3.13) 

(3.14) 

where matrices Li and Ai are of the form, 

(3.15) 

Ai = [ ~:: ~: ~:: ] 
Om13 Om,3 l'mimt 

(3.16) 

With the substitution of eq.(3.13) into eq.(3.14), we obtain, 

(3.17) 
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elastic coordinates used to model their flexibility. In addition, if a flexible manipulator 

arm is mounted on the structure and driven at its revolute joint by a torque, then the 

independent coordinates for the manipulator link would contain 1/J I,i =< (Ji bf >T. 

The generalized coordinates for the entire system consist of all the independent 

coordinates for each link. Hence, the generalized vector of independent coordinates 

is represented by 1/J /l and for a general structure arrangement is assembled as, 

T }T 1/J J,N (3.22) 

Note that only links with independent coordinates 1/J 1 i• contribute to the above. 
' 

Therefore, both rigid truss links and cylinder links that are dependent upon a kine­

matic loop, have no contributions to 1/J 1. The total number of elastic coordinates used 

to model the flexibility of the assembled manipulator will be denoted by variable m, 

and is given as the sum of the number of elastic coordinates modelled per link, 

(3.23) 

Therefore, the dimension of 1/J 1 will be denoted by n', and is given as, 

n' = (n +m) (3.24) 

Similarly, the total vector of dependent coordinates can be assembled and denoted 

b:y, 1/J D; 

1/J D = ( 1/J~,l T )T 1/J D,N (3.25) 

and contains only those dependent angles associated with a kinematic loop. For 

the actuator arrangement in the truss manipulator of Fig. 2.2, there exists two 

dependencies per kinematic loop. Therefore, the dimension of 1/J D is (2 x l), where 

recalling from Chapter 2, l is the number of kinematic loops present in the truss 

manipulator. 

In the treatment of the kinematic loops, a nonlinear 2-dimensional constraint equa­

tion is established, and can be expressed in the general form of, 

(3.26) 
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from which the dependent angles 91 for the truss link i, and 9; for cylinder link 

j {associated with the loop under consideration), are obtained. The details of the 

kinematic loop and corresponding derivations are presented in Appendix D. In this 

work, the nonlinear eq.(3.26) is solved using the Newton-Raphson iterative scheme 

per [Nikravesh'88]. The corresponding angular rates are subsequently obtained by 

differentiating the the constraint equation (' with respect to time, to yield linear 

equations that can be written in the general form of, 

1/JD - Nvi(1/Jr,1/JD).fpr 

1/J D N DJ (1/J ll1/J D) tpr + Nv1 (1/J r' 1/J v) 1br 

(3.27) 

(3.28) 

For the derivations of Appendix D, more specific forms of eq. 's (3.27) and (3.28) are 

presented in terms of twist vector components and some of the independent speed 

variables. These pertain to eq.'s (D.37) and (D.44). The construction of the natu­

ral orthogonal complement for the system will also employ these latter relations, as 

discussed in Section 5.3. 

3.4 Recursive Relations 

3.4.1 Frame Orientation Matrix 

The orientation matrix Qi of link frame i presented previously in Section 3.1, is 

obtained by the recursive relation of, 

(3.29) 

where again it is emphasized that the recursion is based upon the link connectivity 

defined for the structure, and notation i - 1 refers to the link preceeding link i. In 

addition, the first rotation matrix R 1 is that corresponding to the first truss link of 

the structure which is fixed, and will be constant for the arrangements considered 

here. 
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For link i being either a truss or a cylinder, and since only planar motion of truss 

manipulators is examined in this work, then Ri has the form of, 

(3.30) 

where matrix Ci accounts for rotation due to the revolute angle at joint i, 

(3.31) 

If the truss i - 1 is modelled as a rigid structure, then D ~- 1 is simply the identity 

matrix. On the other hand, if it is modelled as flexible, D 1 is the rotation matrix 

to account for the deflection slope 5i/i-J(z) at the connection node corresponding to 

joint i, and is given by the complete form of, 

-sin(8i/i-l(z)) 
0

0

1

] 

cos(5i/i-J(z)) 

0 
(3.32) 

Note from Fig. 3.2 that if the deflections are quite small compared to the length 

of the boom, then rotation 8i/i-t(z) is approximately, 

I: r e,i./i-1 (y) Bi* b ( ) 
Ui/i-l(z) = I I = i-l(y) i-1 t 

r o,i/i-1 
(3.33) 

where, 
B~ 

Bi* _ t-l(y) 
i-l(y) -

a ·;· 1 o,t t-

(3.34) 

The one dimensional row matrix BL1(y) represents theY -axis eigenvector components 

of the link i 1 evaluated at the node corresponding to joint i, and ao,i/i-l represents 

the rigid body length of joint i from i- 1, given by the magnitude of its rigid body 

position vector r o,i/i-1, 

ao,i/i-1 = lr o,i/i-11 (3.35) 

Therefore, by differentiating eq. (3.33) with respect to time, the rates associated with 

5i/i-I(z) are given simply as, 

0 . • 

Di/i-t(z) = B~~I(y)bi-1 (t) 
00 

Oi/i-1(z) (3.36) 
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b
~-1 

----,...v-----?<'\2;:----~-~~~. connecting 

Jol .. >1- V __ ~ ·x 
a) Undeformed link i·1 . 1

-
1 

/ 
ro,i/i-1 

b) Deformed link i-1. 

Figure 3.2: Deflection rotation defined for a flexible truss link. 

So for the small deflection assumption, matrix D :_1 can be written as, 

-6i/i-1(z) 0] 
1 0 
0 1 

(3.37) 

Note that if there exists angular misalignments between the revolute axes of ad­

jacent links, or out-of-plane deflection and bending to produce a rotation 6ifi-1(y), 

and/or or torsional deformation that provides a rotation 6i/i-l(x) of the link mem­

bers, then these terms would have to be included in the computation of Ri, as done 

in [Cyril'88J for flexible robotic manipulators. 

For link i being a piston-rod and since the actuator components are modelled as 
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rigid members, we have simply, 

(3.38) 

3.4.2 Frame Origin and Rotational Vectors 

The first link of a truss manipulator will be modelled as a fixed truss per Fig. 2.2. 

Therefore, the inertial position of the origin expressed in the link frame, is given by, 

(3.39) 

where r 1;o represents the vector from the origin of the inertial frame to that of the 

first link frame, in terms of the inertial frame coordinates. Since the base of this truss 

link is fixed, then the velocity and acceleration vectors are simply, 

ih = 03 

and the angular velocity and acceleration are similarly, 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

Now proceeding along the structure, the inertial position of an arbitrary truss or 

cylinder link was illustrated previously in Figures 3.la and 3.lb, and is given by the 

recursive relation, 

Pi = Rf (Pi-1 + ri/i-1) (3.44) 

where, Pi-1 is the inertial position vector of the origin of the preceeding link frame, 

and ri/i- 1 is the local position vector of the end of link i- 1, i.e., the position vector 

of joint i with respect to joint i- 1. By differentiating eq.(3.44), the velocity of the 

origin of the ith frame is, 

. RT (. a ) Pi = i Pi-1 + Wi-1 x ri/i-1 + ri/i-1 (3.45) 
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where, ri/i-t is the local velocity of the joint i relative to frame i- 1. For link i- 1 

being a flexible truss, this is simply the local velocity of the node associated with 

joint i. Similarly, the acceleration of the origin of frame i is given as, 

0 00 ] 

+wi-t xrs/i-1 +2wi-1 xri/i-1 + ri/i-1 (3.46) 

Since only planar motion is considered for the truss manipulators of this work, then 

no transformations between the links are required for the angular velocity and accel­

erations of the frames. Hence, the angular velocity for the truss and cylinder links is 

given as, 

(3.47) 

which may also be written as, 

(3.48) 

0 

where Difi-t(z} is given by eq.(3.36). Similarly, the angular acceleration is, 

00 u 

wi =wi-t + Di/i-l(z)Z + (}iz (3.49) 

or, 

(3.50) 

Note that the unit vector z is common for all links, by virtue of planar motion 

of the truss manipulators considered here. However, as mentioned previously for 

the computation of the frame orientation, if there are misalignments between the 

revolute axes or if bending and torsion of the links are considered, then appropriate 

modifications must be undertaken in the above expressions. 

The vectorial illustration for a piston-rod link was given previously in Fig. 3.1c. 

Since it is preceeded by the cylinder link and Ri laa, then the inertial position of 

the origin of its frame is expressed as, 

(3.51) 
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where, Xi signifies the unit vector of the piston-rod's X axis, Li-l is the length of the 

previous cylinder link, and di is the extended length of the piston rod. The velocity 

and acceleration of the origin of the piston-rod's frame are given by differentiating 

the above, and are respectively, 

Pi (3.52) 

. .. 
+wi-1 x (Li-1 + di)xi 2wi-t x dixi + dixi (3.53) 

Again, since the cylinder and piston-rod links are modelled as rigid members and 

there is no rotation between adjacent cylinder and piston-rod links, then the angular 

velocity and acceleration of the piston-rod frame is simply that of the previous cylinder 

link, i.e., 

(3.54) 

{3.55) 

36 



c 

c 

Chapter 4 

LINK DYNAMIC PROPERTIES 

The following sections present the derivations of the kinetic and potential energy 

terms associated with the individual truss, cylinder, and piston-rod links. These 

quantities are required when deriving the dynamical equations of motion which will 

be presented in Chapter 5. The following formulations apply to general 3D motion, 

and the applicable 2D forms are obtained by simply retaining from the final 3D 

mass and stiffness matrices the components associated with; the X and Y dimensions 

for the origin displacements and elastic deformations, and the Z component of the 

rotational terms. The mathematical properties associated with vectors and their skew 

symmetric cross-product matrices will be used extensively, as presented in Appendix 

A. 

4.1 Truss Links 

4.1.1 Element Details 

The bar members (or elements) of a truss link will be considered as slender, such 

that the diameter is much less than the length dimension, hence the cross-sectional 

contribution to the rotational inertia won't be significant (as is the case for a slender 

rod). To assist in the formulations that follow, several variables which designate the 

nodal and member dimension of a specific truss link will first be defined. Variable h* 

is used to represent the number of nodes contained in a truss link, and h is the number 
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of elements. In addition to these, ,..,* is the total number of nodal degrees of freedom 

(DOF) per link, K is the number of nodal DOF per element, and K' represents the 

number of DOF modelled per node. Therefore, ,..,• is simply given by, ,..,* = K' x h*. 

These variables will be used to define the dimensions of the local truss vectors in the 

subsequent derivations. 

Using the notation defined previously in eq.(3.4), the inertial position si of an 

arbitrary point located on element j of truss i, is expressed as, 

(4.1) 

where Pi is the inertial position of the origin of the link frame, and ri is the local 

position of the point with respect to the link's frame. Vector ri may be expressed per 

eq.(3.5), 

ri = ro,i + re,i (4.2) 

where again vector r o,i is the rigid body position vector, and the elastic deformation 

is represented with r e,i· Using the finite element method, the elastic deformation is 

expressed in terms of, 

(4.3) 

where [a{]j is the K-dimensional element displacement vector expressed with respect 

to the frame of the lh finite element, N{ is a matrix of interpolation functions rep­

resentative of the displacement field, and R{ is the transformation matrix from the 

element frame to the link frame (hence contains the direction cosines of the element 

frame axis with respect to the link). If the element is within the plane of the link 

X Y frame, and angle B{ is defined as illustrated in Fig.4.1, then rotation matrix R1 
is simply given by the form of eq.(3.31) with the substitution of oi by of, 

It is preferrable to express the element displacements with respect to the link frame, 

which will be denoted by a{. This is possible by performing a transformation given 

by, 
. -T. 

[a1 ]· = R1 a1 
e J t e (4.4) 
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where R1 will be defined shortly. Hence, eq.(4.3) becomes, 

. . -.T. 
- R3N 3 R3 3 r e,i - i e i ae (4.5) 

and a{ is a K-dimensional vector of the element DOF with respect to the link frame. 

The rigid body position vector ro,i can be similarly expressed per, 

r ·- Njaj o,,- 0 0 (4.6) 

where matrix N~ contains linear functions for a truss geometry with non-curved mem­

bers, and for the 3D description of a truss, a~ is a 6-dimensional vector containing, 

(4.7) 

Nodal vectors a~. 1 and a~.~ are the rigid body position vectors of the first and second 

nodes of the element, respectively, given in the typical form of, 

( a~,1 (x) 
j 

a o,J (y) 
j )T j - ( j 

ao,l(z) ' ao,~ - ao,~(x) 
j 

ao,2(y) 
. T 

a~,2(z)} (4.8) 

In this thesis, the members of the truss links are modelled as axially deformable 

elements, as illustrated in Fig. 4.1. Therefore matrix N{ is also of linear form and the 

displacement vector a{ is 6-dimensional, and contains simply the linear deformation 

components of the two nodes of the element, 

(4.9) 

where the respective nodal displacement vectors are given by, 

a~,J = ( a~,l (x) 
. T 

a~,2(z)) (4.10) 

Matrices N~ and N{ are therefore equivalent, and will be denoted henceforth by 

Ni 
' 

[ 1' 
0 0 N2 0 0 l Ni = Ni = Ni = N1 0 0 N2 0 (4.11) o e 
0 N1 0 0 N2 
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where, 

deformed element j 
,' --- Undeformed, node 2 (aft node) 

I 

I 
I 

I 
I 

/ aj 
)q e, 1 

~ Undeformed, node 1 (fwd node) 

See element j details above. 
/ ............. , 

' I 

Figure 4.1: Element details of a flexible truss link. 

xi 
1-­

Li' 
(4.12) 

It should be noted that for space frames in which torsion and bending deforma­

tion modes of the elements are to be modelled, higher order functions would be re­

quired in matrix N~, such as that considered in [Necib et al.'89]. Other schemes that 

model the out-of-plane motion of truss frames are presented in [Berry et al. '84] and 

[Karpurapu et al.'93]. With the linear interpolation functions considered in eq.(4.11), 

the transformation matrix R{ of eq.(4.4) takes the form of, 

-.T [R~ o,J r ~ [R{T 033] R~ 03~ RjT 
(4.13) t 

Ri 033 t 
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. -.T 
and the term R{N{R{ in eq.( 4.5) simplifies as follows, 

. . -.T . . -.T 
R~N'R~ - R~N'R~ 

• e • l J 

[N' 0 0 N2 0 0 ] [R{T 033] 
R{ ~ Nt 0 0 N2 0 R~T 

0 Nt 0 0 N2 Oaa l 

R{ [ Ntlaa [R!T 
N2l33] ' 

033 
033] 
R{T 

[ NtR{R{T N2R{Rf] 

[Ntlaa N2laal (4.14) 

Therefore, with the linear interpolation functions we obtain, 

. . -.T . 
R~N3 R~ = N' 

' e l 
(4.15) 

which will provide considerable simplications in the calculations to follow, that would 

have not resulted with higher order interpolation functions for the element deforma­

tion model. 

The velocity of the point on element j, is obtained by differentiating eq. ( 4.1) as, 

(4.16) 

again, where Wf. is the angular velocity of the link frame. By substituting the result 

of eq.(4.15) into eq.(4.5) l the local time derivative ri is given by, 

(4.17) 

Eq.(4.16) may also be expressed as, 

(4.18) 

where ri is the skew symmetric matrix associated with the local position vector ri, 

with its components arranged per eq.(A.2) of Appendix A, 

(4.19) 
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To facilitate further derivations, eq.( 4.16) will be expressed in the form of 

[Fattah et al. '94], 

. E i 
Si= vi (4.20) 

where 

(4.21) 

and the flexible twist vector v{ for element j is given by, 

V~= (p' .T W·T aiT)T 
, t ' e (4.22) 

With these definitions, the kinetic energy of the element and then of the assembled 

link can be established, as described in the following section. 

4.1.2 Kinetic Energy 

The kinetic energy T{ of element j is given by evaluating the expression, 

(4.23) 

where pi and \;/J represents the material density and volume of the element, respec­

tively, and the elemental mass matrix M{ is evaluated from, 

(4.24) 

Subscripts d, r and e represent the displacement of the origin of link frame i, rotation 

of the frame and elastic deformation, respectively. The mass matrix components are 

given by, 

M~ 

M~ 
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Mi ·1~ (4.29) rr - rJ i r i rid'<~ 

Mi -re -rJ fv. i'fNid'rf 
VJ ' 

(4.30) 

M!d - rJ 1i (Ni)T d"t = (M~)T (4.31) 

Mi - -rJ !vi (Ni)T rid'<~= (M!ef (4.32) er 

Mi - rJ li (Ni)T NicN (4.33) ee 

where M i is the total mass of the element. For simulation efficiency, it is desirable 

that the integrations involving the interpolation functions be expanded and performed 

explicitly off-line from the time integration of the dynamic motion. Fortunately, this 

is possible with the linear interpolation functions employed for the truss structures of 

this work. However, if bending of the truss elements is to be modelled for the case of 

space frames, then the integration terms of the mass matrix become quite complex 

and on-line integrations may be required. It is shown in Appendix B.l that eq.'s 

(4.26) to (4.33), expand to the forms of, 

M~r - -rl [( Qia~,I + Q~a~,e) + ( Qia:{,l + Q~a{,e)] 

M~ rJ [ Qi 133 ' QhaaJ 
Mi rr 

rJ [si cj -j )2 sj cj -j )(-j -j ) 
- 11 ao,l + ae,l + 12 ao,l + ae,l ao,2 + ae,£ 

sj cj -j )(-j -j ) si cj -j f] + 12 ao,.l! + ae,2 ao,l + ae,l + 22 ao,2 + ae,2 

Mte rJ [ ( s11a:~,1 + s{2a:~,e), (si -j si -j ) ] 11!ao,1 + 22ao,£ 

+rl [ ( s{J a:~.I + S{sa{,s) , (sj -j 
12ae,1 s~2 a:~.2 )] 

Mi - rJ [ S{1l33, S{s133] 
ee Sj2l33, S~s133 

where the integrals of the interpolation functions are given by, 

s11 
s12 

Qi = fvi N1d'rf -
Q~ = fvi N 2d'V 

fvi (l - xi I Li) d'V 
fvi (xi I Li) d'V 

Sk£ -

fvi (NI)2d'V fvi (1 - x1 I Li)2 d'V 
fvi N1N2d'V = fvi (1- xi I Li) (xi I Li) d'V 
fvi (N2)2d'V - fvi (xi I Li) 2 d'V 
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It should be noted that the mass matrices in eq. 's( 4.35) and ( 4.38) are constants, 

where as in eq. 's (4.34), (4.36) and (4.37), only matrix operations with the nodal 

vectors remain. By further expansion of the M~ components, it is also possible to 

obtain explicit terms involving only the rigid nodal position vectors, and other terms 

involving the elastic deformation vectors (as is the case with M~r and M!.e). Hence, 

the mass matrix components containing only the constant integral values and the 

rigid nodal vectors can be computed once prior to the dynamic simulation, and then 

added to those varying mass components involving the nodal displacement vectors 

(which must be re-computed throughout the flexible body simulation). 

The mass matrix for the total truss link is obtained by assembling the elemental 

matrices, which can be represented using an element-node association matrix tpi, such 

that, 

(4.41) 

where ae is the total nodal deflection vector for the truss link, and is of dimension K.*. 

The element-node association matrix q,i consists of zeros and ones which properly 

associate the element j nodal DOF's to that of the total link nodal DOF vector, and 

is therefore of dimension (K. x K.*). By substituting eq.(4.41) into eq.(4.22) we obtain 

the element twist vector in the form of, 

(4.42) 

from which the link's nodal twist vector vi can be extracted as, 

(4.43) 

Hence, the full kinetic energy of the link is obtained by summing the elemental energies 

of all h elements, 
h 

Ti = I:T{ (4.44) 
i=l 
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where the assembled mass matrix Mi for truss link i is given by, 

( 4.45) 

It should be noted that this mass matrix is in terms of the full number of nodal 

DOF's. In addition to the mass of the elements, there may be concentrated nodal 

masses, which must also be included in the kinetic energy of the truss link. The 

consideration of these additional terms are addressed in Appendix B.2. Given that 

a truss link may consist of numerous nodal degrees of freedom, Section 4.1.4 will 

present the modal discretization operations in which only a few of the lower vibration 

modes of the truss link are used to represent the nodal deformation. By employing 

these, the order of the full mass matrix Mi above is reduced to obtain the modal 

discretized mass matrix M, corresponding to the link flexible twist vector vi' defined 

previously by eq.(3.10). Prior to implementing the modal discretization scheme, the 

stiffness matrix for the link must be established, as presented next by considering the 

potential strain energy of the elements. 

4.1.3 Potential Energy 

The potental strain energy of truss links modelled with linear interpolation func­

tions for the element displacement field, is given in [Cook'81]. The resulting strain 

energy of an element, U{, is simply that due to the axial strain c: along the element, 

da~(x) 
e:=--

dx 
(4.46) 

where a~,(x) represents the deformation along the element's xi axis. Therefore, the 

strain energy for element j is given by, 

(4.47) 
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where Ei is the Young's modulus of the material, Ai is the cross-sectional area, and 

the matrix operator [ 8] is of the form, 

[8] = [~ ~ ~ ~ 
0 0 0 0 

0 0] 0 0 
0 0 

(4.48) 

Substituting in for the matrix Ni from eq.(4.11) yields, 

U{ ~ i[a{JJ ( (::)2 t, Aidx) S[a~J; (4.49) 

where, 
1 0 0 -1 0 0 
0 0 0 0 0 0 

S = (Li)2([tJ]Ni)T([8]Ni) = 0 0 0 0 0 0 
(4.50) 

-1 0 0 1 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

By recalling eq.(4.4), the nodal displacements will be expressed with respect to link 

frame, and eq.(4.49) becomes 

U{ ia~TR{ ( (~;2 J~o A'dx) S R( a{~ HTK{a{ (4.51) 

where the element stiffness matrix K{ with respect to the link frame, is given by, 

. -. ( Ei {I) . ) -.T 
K~ = R{ (Li)2 J=o A1 

dx S R{ (4.52) 

Now, the nodal pose vector q; for link i consists of the total nodal DOF's, i.e., 

(4.53) 

The quadratic form of the strain energy for link i, in terms of the nodal pose vector, 

is expressed as, 

(4.54) 

where the stiffness matrix Ki is in terms of the full nodal DOF and given by, 

[ o,, 034 o~.l K;= 043 044 o4K. (4.55) 
0~~:•3 0~~:•4 K* ee 
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Recall that ,.,* represents the total number of nodal DOF for truss link i. The elas­

tic stiffness matrix K:e is a. square and symmetric matrix of dimension ,.,*, and is 

assembled from eq.(4.52), 
h 

K:e = L:(~)TK{~ (4.56) 
j=l 

The following section will demonstrate that only a few of the vibration modes of the 

truss link will be employed to represent the nodal deflections. Hence, the full matrices 

Mt and Ki will be reduced to the link mass Mi and stiffness Ki matrices used in 

the final equations of motion. 

4.1.4 Modal Discretization 

To reduce the order of the truss mass matrices for the flexible body dynamic 

simulations, and hence the computation time, only a few lower vibration mode shapes 

of the truss link will be considered. These can be obtained by applying the appropriate 

boundary conditions to the eigenvalue problem for free vibration of the truss link, 

established from, 

(4.57) 

By imposing nodal constraints that remove rigid body modes, and since the corre­

sponding mass and stiffness matrices are symmetric, then real orthogonal eigenvectors 

will be obtained. Only those of the lowest mi modes will be retained to establish a 

modal matrix Bi, for which the rth column contains the rth eigenvector. Hence, Bi is 

of dimension ,.,• by mi. The corresponding modal or elastic coordinates are denoted 

by vector bi(t), and the nodal deflections can be modelled by, 

(4.58) 

The truss link mass matrix Mi to appear in the equations of motion, is now obtained 

by transforming eq. ( 4.45} in terms of the elastic coordinates hi, 

[ M~ Mdr M,l.B, l [M~ Mdr M~] Mi = MdrT Mrr M:eBi = MdrT Mrr M re (4.59) 
(MdeBi)T (M;eBif BfM:eBi MdeT MreT Mee 
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Similarly, the stiffness matrix corresponding to the quadratic form of the potential 

energy expressed in terms of the elastic coordinates, is given by, 

(4.60) 

where, 

(4.61) 

Since orthogonal eigenvectors are contained in the modal shape matrix Bi, then the 

forms of Mee and Kee will be diagonal. Hence, the stiffness matrix Kee for link i, can 

be written as, 

... , (4.62) 

This fact will be used in the vibration control scheme presented in Section 6.1. The 

methods by which to consider the structural damping of truss links, will now be 

addressed in the the following section. 

4.1.5 Structural Damping 

The structural damping associated with specific truss structures for space applica­

tions, has been experimentally evaluated in [Voth et al.'94] for NASA's space station 

test model, and in [Soucy et al.'84) for a typical space mast. In these activities, damp­

ing is expressed in terms of modal damping factors corresponding to FE computed 

modes. Since modal discretization is employed in this thesis, then the damping val­

ues observed in [Voth et al.'94) and [Soucy et al.'84] could be examined for the truss 

structures of this work, if a Rayleigh proportional damping model is implemented per 

[Bathe'82] or [Cook'81J. 

There exists yet a more simplified scheme to account for structural damping, and 

IS that of the complex elastic modulus. As discussed in [Nashif et al.'85], struc­

tural damping results from the energy dissipation due to cyclic stress and strain, 

in which the latter lags the former during sinusoidal deformation. In addition, 
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[Kimball et al. '29] demonstrated that damping is proportional to the square of the 

strain amplitude, and is almost unaffected by the frequency of deformation. There­

fore, the stress-strain lag may be modelled per [Jaar'93], by the complex modulus of 

elasticity E*, expressed as, 

(4.63) 

where v will be referred to hereafter as the complex damping ratio. The complex 

modulus of elasticity is substituted for the Young's modulus appearing in the resulting 

elastic force terms of the final equations of motion for the truss link (and not into the 

initial strain energy expression). In addition, if the elements are of different materials 

with different v's, then the proper element summations of the elastic force are required 

to correctly apply the complex damping model. 

If we recall the vibration equation of a single degree of freedom system modelled 

with mass m, viscous damping c, and stiffness k, the conventional damping ratio (is 

defined as, 

(=c/ccr (4.64) 

where Ccr is the critical viscous damping given from Ccr = 2(mk)112. It can be shown 

that the relationship between damping ratio ( and the complex damping ratio v, is 

approximately, 

(4.65) 

where w represents the natural frequency of vibration of the system. Given a complex 

damping ratio v, the above expression can be used to establish a rough order of 

magnitude of the damping ratio ( for the lowest frequency of vibration of a structure. 

4.2 Actuator Links 

As mentioned previously in Chapter 2, the prismatic actuators will be modelled 

as two separate links given by a cylinder component and an extending piston-rod. 

As assumed for the truss members, their cross-sectional diameters will be considered 
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much smaller than that of the length. In addition, the acuator components will be 

considered structurally rigid, hence, kinetic energy contributions will be that of the 

rigid body displacement and rotation, and there will be no potential energy terms 

(since material strain is not modelled). The treatment of the actuators as two separate 

links, will facilitate flexibility considerations, as well as detailled modelling of either 

hydraulic or servo actuator control, for future work. The following sections present the 

evaluation of the kinetic energy for each actuator component, and the corresponding 

link mass matrix. 

4.2.1 Kinetic Energy of Cylinder 

Inertial position si of an arbitrary point along the cylinder component of the actu­

ator can be expressed as done for the truss in eq. ( 4.1), and is illustrated in Fig.3.1 b. 

For this rigid member, the local vector ri of the point is simply that given by, 

ri = ro,i = XXi (4.66) 

where x represents the position along the unit Xi axis of the cylinder link. Hence, as 

done for the truss link, the velocity along the cylinder component may be written as, 

(4.67) 

where, Xi is the skew symmetrix matrix of the unit vector Xi· Eq.(4.67) may also be 

expressed in the form of eq.(4.20), 

(4.68) 

where vi is the rigid twist vector of the cylinder link, 

(4.69) 

and matrix E contains, 

E = [l3a -xxd (4.70) 
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The resulting kinetic energy T i of the cylinder link is therefore given by evaluating 

the expression, 

11 ·T· 1 T Ti =- s,s,p,d'i/ = -
2

vi Mivi 
2 Vi 

(4.71) 

where the link mass matrix M;. consists of, 

(4.72) 

and fv. represents integration over the cylinder volume and p;. the material density . 
• 

More specifically, the Mi components can be evaluated as, 

Mdd - p;, fvtaad'il = Mi133 (4.73) 
v, 

Mdr - -Pi 1 xx,d'il (4.74) 
vi 

Mrr - 1 2-T- d';/ 1 2-2d'i/ Pi x xi x;. = -Pi x xi 
Vi Vi 

(4.75) 

For a cylinder geometry with uniform inner and outer diameters, eq. 's(4.74) and (4. 75) 

reduce to, 

(4.76) 

(4.77) 

where, Mi is the total mass of the cylinder link and Li is the length. Comments 

regarding the derivations of the above, are presented in Appendix B.3. 

4.2.2 Kinetic Energy of Piston-Rod 

For the piston-rod component, the inertial position s;. of an arbitrary point along 

its length can be expressed as done previously for the cylinder. Hence, eq.'s (4.67) 

to (4.75) are applicable. The difference to be noted, is that the origin of the piston 

rod is situated at the aft end of its length. Hence, the integral for the kinetic energy 

expression must be evaluated from the negative of its full length to its origin, (such 
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as f~-LJ For a piston-rod with a uniform diameter, the final forms of the mass 

matrices become 

Mdd = Miha (4.78) 

Mdr ( MiLi)-+ -
2

- Xi (4.79) 

Mrr - _ (M;L1) Xi {4.80) 

where, Mi is the total mass of the piston-rod link and Li is the length. Appendix 

B.4 contains the derivation details, and also presents the additional terms for a con­

centrated mass located at the origin of the piston-rod. The following chapter now 

considers the equations of motion corresponding to a general link i, and the assembly 

procedure required to obtain the dynamical equations for the entire system. 
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Chapter 5 

EQUATIONS OF MOTION 

5.1 Individual Links 

The dynamical equations of motion for an unconstrained link undergoing arbitrary 

spatial motion will now be derived. The procedure employed here for truss manip­

ulators corresponds to that used in [Cyril'88] for robotic manipulators, and will be 

briefly described. 

The equations of motions for an individual link i, can be obtained from the Euler-

Lagrange's equation, 

d (8Ti) 8Ti 8Ui 
dt 8qi - 8qi + 8qi = w i (5.1) 

where w i is the wrench vector accounting for non-conservative forces and moments, 

and represents the sum of the: externally applied components wf, algebraic con­

straint wrench wf, and inter-link kinematic constraint wrench wf. (Note that a 

damping term may also be included here and represented as wf. However, this 

component will not be carried throughout the following derivations.) The potential 

energy due to gravity will be treated in the manner of [Cyril'88], and as suggested by 

[Luh et al. '80], where the inertial frame is assigned an acceleration of p0 = -g, and 

g is the gravitional acceleration vector. 

The kinetic energy expression for link i may be written in the quadratic form of, 

(5.2) 
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where Ii represents the inertia matrix for link i. However, if eq.(3.14) is substituted 

into the above, the kinetic energy may also be expressed in the form previously 

considered for each link, 

(5.3) 

where mass matrix Mi is that already derived in the previous chapter for each link 

type. By substituting eq.(3.14) into eq.(5.2), and comparing the result with eq.(5.3), 

yields the relationship, 

(5.4) 

From the derivations to follow, it will be mass matrix Mi that prevails in the final 

forms of the equations of motion for an individual link. 

The first two terms of eq.(5.1) can be evaluated using eq.(5.2), as 

d (8Ti) .. · . - - =l·q·+l·q· dt 8qi t t t t 

aTi 1 . r a1i . 
-;-- = -2qi -;-qi 
uqi uqi 

(5.5) 

(5.6) 

Substituting these two expressions into eq.(5.1), the equations of motion for link i 

may be written in the form of, 

(5.7) 

where the system wrench wf contains the terms, 

(5.8) 

By recalling eq.(3.13) and differentiating it with respect to time gives, 

(5.9) 

Pre-multiplying the above expression by Ai, rearranging terms, and employing 

eq.(3.17), yields, 

(5.10) 
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Substituting this into eq. (5. 7) provides the form, 

I·A·v· = (I·A·L ·q· · + w~) + w!? + w-:1 + wf:< '11 I'll I I'' 
(5.11) 

Now, as demonstrated [Cyril'88], the algebraic constraint wrench wf may by elim­

inated by pre-multiplying the above by Af. Hence, performing this operation and 

using the relation of eq.(5.4), eq.(5.11) reduces to, 

(5.12) 

where we now denote the transformed wrenches by, 

(5.13) 

(5.14) 

(5.15) 

It is also shown in [Cyril'88] that eq.(5.13) can be written as, 

(5.16) 

For mass matrix Mi of the form, 

(5.17) 

the system wrench f/>i 8 be written more specifically as, 

(5.18) 

(5.19) 
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The following relation is also derived in [Cyri1'88], 

and if the motion is planar, we obtain 

-wi,(z) 

0 
Wi,(y) l 

-wi,(x) 

0 
(5.21) 

{5.22) 

The mass rates Mi required in the system wrench calculations of eq.'s(5.18) to {5.20), 

are derived in Appendix C. The assembly of the individual link equations of motion to 

obtain the full system equations of motion is now addressed in the following section. 

5.2 Assembled System 

The equations of motion for the entire system are given by the forms used in 

[Cyril'88] and [Jaar'93], 

{5.23) 

where according to the definitions of [Cyril'88], the generalized extended mass matrix 

consists of, 

... , (5.24) 

and the generalized extended vectors of acceleration v, system wrench c/>8, external 

wrench c/>E,and kinematic constraint wrench c/>K, are assembled respectively as, 

(5.25) 

These vectors are p'-dimensional, where p1 is given by recalling eq.(3.12), 

(5.26) 

Therefore, eq.(5.23) represents a system of p' equations, for which it is preferred to 

obtain a minimum set in terms of the generalized vector of independent coordinates 

56 



0 

c 

c 

1./J 1• This is performed by establishing the natural orthogonal complement N of the 

velocity constraint matrix for the system. The relationship between the twist vector 

and independent coordinates of the system is given by, 

(5.27) 

It is demonstrated in [Cyril'88] that the kinematic constraint wrench is eliminated 

when it is premultiplied by the transpose of the natural orthogonal complement, i.e., 

(5.28) 

which signifies that the kinematic constraint wrench performs no work. Therefore, 

by premultiplying eq.(5.23) with NT, and substituting in eq.(5.27), yields the n' 

dynamical equations of motion, 

(5.29) 

where the independent system inertia matrix is, 

(5.30) 

The actuator forces associated with the prismatic joints (and the torques of actuated 

revolute joints) are contained in vector T, 

(5.31) 

and the reduced system dynamics vector is, 

(5.32) 

Calculation schemes for the natural orthogonal complement N and the term N 1p 1 are 

presented in the following section. 
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5.3 Orthogonal Complement Calculations 

The natural orthogonal complement N associated with the manipulator sys­

tems considered here, can be computed by two methods. The scheme presented in 

!Darcovitch'91], establishes the natural orthogonal complement by individually com­

puting the system twist vector obtained with the sth independent speed coordinate 

activated with a value of 1.0, while the others are nulled. The resulting twist vector 

corresponds to the sth column of the natural orthogonal complement matrix. This 

method is described by considering the contents of the natural orthogonal comple-

ment, presented in [Darcovitch'91] as, 

vl Nn Nls Nln' '1/JI,l 

Vr Nrl Nrs Nrn' '1/J I,s (5.33) 

VN NN1 NNs NNnt '1/J I,n1 

where the non-bold~ I,s represents the sth component of the independent speed vector 

;p 1. Therefore, the twist vector of the rth link Vn computed with the sth indepen­

dent speed component set to 1.0, yields the column components N rs of the natural 

othogonal complement matrix N. 

For systems consisting of numerous links and modelled with many flexible coordi­

nates, the above procedure may be computationally demanding. A second method 

examined in this work, is that of initially constructing the expressions between the 

system twist vector and both the independent 1/J 1 and dependent 1/J D vectors, to yield 

matrix No, 

(5.34) 

Vector 1/J is the assembly of all the individual link vectors 1/Ji defined in eq.(3.18), and 

therefore contains both the independent and dependent coordinates of the system, 

(5.35) 
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Matrix N 0 is established from the recursive equations that provide the origin velocity 

and angular velocity of the link frame. The kinematic forms associated with planar 

motion of the truss arrangement of Fig. 2.2, will now be used to generate No. 

Initially, the matrix N 0 is zeroed, 

(5.36) 

where p' is the dimension of the system twist vector given in eq.(5.26), and l' it the 

dimension of the vector 1/J obtained from, 

l' = n' + (2 x l) (5.37) 

Recall that l is the total number of kinematic loops in the truss, and there exists two 

dependent angles per loop for the actuator arrangement of Fig. 2.2. 

By commencing with the first link attached to the base, which will be that of a 

truss, its origin is fixed, 

(5.38) 

and the angular velocity is simply, 

Wl(z} 0 (5.39) 

Therefore, with the flexible twist vector for the first link denoted as, 

(5.40) 

the first entries corresponding to the link i = 1 in N 0 consist of, 

(5.41) 

where, per eq.(3.18) ;pi=l = ;;,I,i=t = b 1. We now proceed along the structure to 

consider the following links. For a link i that is either a truss or cylinder preceeded 
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by a flexible truss, eq.{3.45) is used to write the velocity of the frame's origin in the 

matrix form of, 

where, vi_ 1 is the flexible twist of the truss link i- 1, 

(
. T 
Pi-1 Wi-1(z) 

{5.42) 

(5.43) 

Note that matrix G is used to maintain the cross product between the angular velocity 

and local position vector of eq.(3.45), such that, 

(5.44) 

where 

(5.45) 

For the angular velocity of link frame i, we rearrange eq.(3.48) in a similar fashion to 

obtain, 

(5.46) 

where the (kinematic loop dependent) rate iJi is the dependent component i/JD,i of 

coordinate vector ipi. Hence, the rows in matrix No corresponding to link i may now 

be furnished by the proper multiplication of the coefficient matrix of eq. 's(5.42) and 

(5.46), to the corresponding contents contained in the rows for vectors Vi-l· For the 

i.Ji contribution in eq. (5.46) a value of 1.0 will be simply inserted into the respective 

row and column location of Wi(z) and iJi. If link i is a flexible truss, then the identity 

matrix lm;m; is assigned to the rows and columns of N 0 corresponding to the flexible 
. . 

twist and 1/J locations, respectively, for bi. 

If link i is a piston-rod, then we have after rearranging eq.(3.52), 

(5.47) 

and the piston-rod angular velocity is simply that from eq.(3.54), 

Wi(z) Wi-l(z) (5.48) 
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Therefore, we update the rows of N 0 corresponding to Pi, by multiplying the co­

efficient matrix of eq. (5.47) to the contents of the rows of v i-1· In addition, we 

insert a value of 1.0 into the No location corresponding to the X -axis row for Pi and 

the column associated with the piston-rod extension rate contained in 1/J. The row 

corresponding to the angular velocity Wi(z), is simply assigned the contents of Wi-l(z)· 

After considering all the links to complete the construction of matrix N 0 , the nat­

ural orthogonal complement can now be established. Firstly, the reader should note 

that within the actual simulation code, vector index pointers are used to indicate the 

corresponding locations of the independent and dependent speed variables within ma­

trix N 0 • Therefore, the matrix partitioning scheme of the following explanation is not 

exactly that implemented, but effectively describes the fundamental procedure used 

to remove the dependent speeds ip D from matrix N 0 • For symbolic representation 

and clarification, matrix N 0 is partitioned according to, 

No= [Nvi,o NvD,o] (5.49) 

such that eq.(5.34) takes the form of, 

. . . 
V= No'l/J = NvJ,o'l/JI + NvD,o1PD,o (5.50) 

and vectors 1p 1 and 1p D each consist of only the independent and dependent coordi-

nates, respectively, per, 

1/J l = ( 1p~l 

'1/Jv ( 1/J~,l 

·T )T 
'l/J1,N 
. T )T 

'1/JD,N 

(5.51) 

(5.52) 

The dependent coordinates associated with the first kinematic loop will be rep-
. * 

resented as 1/J D,I , and can be expressed in terms of the flexible twist components 

preceeding it v ,1 , and the independent speed vector 1p 1 , 

.. 
1/J D,l N DV,l V ,1 + N DI,I1P l (5.53) 
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Matrix N nv,1 represents the dependence of vector 1p ;,1 upon the preceeding flexible 

twist v,1 components {that are not dependent upon the first loop), and similarly Nn1,1 

contains the dependence of 1p ;,1 upon the coordinates of 1p 1 affecting the loop. The 

contents of N nv,1 and N DI,l , and the corresponding twist and independent speed 

components involved in the formulation of eq.(5.53) for a specific loop, are presented 

in eq.(D.37) of Appendix D. It is emphasized that the components of v,1 are not 

dependent upon the first loop or upon the subsequent components contained in 1/1 v 1 

therefore we can extract from eq.(5.34), 

v 1 = NvlltP 1 ' , (5.54) 

where Nvi,l contains those rows of Nv1,0 associated with the twist components con­

tained in v,l· Substituting eq.(5.54) into eq.(5.53) yields, 

(5.55) 

By rearranging the last term in eq.{5.50), we obtain, 

. . * 
v = Nvi,otPI + Nvn,oltPD,l Nvv,ltPD,l (5.56) 

where vector iJ,D,o of eq.(5.34) contained the components, 

1p = {~;,1} 
D,o 1/J 

D,l 
(5.57) 

and vector 1/1 D,l corresponds to those dependent coordinates of subsequent kinematic 

loops yet to be removed. Substituting eq.{5.55) into (5.56), yields the system twist 

vector in the form of, 
. . 

v Nvi,ltPI + Nvn,ItPv,I (5.58) 

where, 

NVI,I = NVI,o + Nvn,odNnv,INvi,l + NnJ,l] (5.59) 

Note that the subscript (,1) in eq.(5.58) corresponds to the system twist vector, after 

the removal of the dependent coordinates 1p ~. 1 associated with kinematic loop number 
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1, (i.e. the first kinematic loop from the base). Therefore, the above operations can be 

re-performed for the subsequent kinematic loops of the structure topology, hence the 

dependent coordinates of 1p D can be removed from eq.(5.34) in a recursive procedure, 

to yield the natural orthogonal complement N given by, 
l 

N = L [Nvi,(k-1) + NvD,(k-I)(k)Nin,(k)] 
k=l 

{5.60) 

where, 

NiJI,(k) = N DV,(k)N VD,(k) + N DI,(k) {5.61) 

and matrices N DV,(k), N v D,(k) and N DI,(k) correspond to the kth kinematic loop, and 

constructed per the scheme described above for the first kinematic loop. The reader 

is referred to eq.(D.37) of Appendix D for the expressions used to establish matrices 

N DV,(k) and N DI,(k)l (previously defined in eq.(5.53) for the first loop of k = 1 ). 

The procedure to compute the term 'N.fp I required in eq.(5.32), will be that em­

ployed by [Cyril'88] and [Darcovitch'91]. If the relation v = N.fp I is differentiated 

with respect to time, we obtain, 

(5.62) 

We note from the above equation that the system twist vector is comprised of two 
. -

terms, one that's a function of 1/J I and the other a function of 1/J I· This can also be 

expressed as, 

v(1f;I) N'f/JI 

v(-i),I) - N'f/JI 

(5.63) 

(5.64) 

Therefore, eq.(5.63) simply indicates that the term N1;;1 consists of the flexible twist 

vector for the system calculated with zero acceleration of the independent speed vec­

tor. Recalling the definitions of vi and v given in eq.'s (3.10) and (5.25), respectively, 

we obtain, 
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Therefore, for a specific link i we require, 

(5.66) 

For the first truss link being fixed, the corresponding twist term is simply, 

(5.67) 

For the remaining truss and cylinder links, the kinematic equations of eq. 's(3.46) 

and (3.49) are employed with ;pi= On'• 

Pi = Rf [Pi-1 (,j,I) + Wi-1 (,j, I) X { Wi-1 (,j, I) X ri/i-1} 

+wi-1 (,j, I) X ri/i-1 + 2Wi-1 ( ,j, I) X ri/i-1] 

Wi = Wi-1(,j,I) + Oi(,j,[)Zi 

(5.68) 

(5.69) 

Note that the dependent angular rates, jji ( ,j, 1), will not be zero even if the terms for 

;pI = On'. This is by virtue of the kinematic loop dependencies as represented per 

eq.(3.28), and more specifically given in eq.(D.44) of Appendix D. 

For the piston-rod link, eq. 's(3.53) and (3.55) are similarly used, 

Pi = Pi-1(,j,I)+wi-1(,j,I)x {wi-l(,j,r)x(Li-l+di)xi} 

+Wi-1 (,j, I) X (Li-1 + di)Xi + 2wi-1 (,j, I) X diXi 

wi Wi-1(,j,r) 

(5.70) 

(5.71) 

For all flexible truss links, since the elastic coordinates bi are also generalized coor­

dinates, then for the computation of N ,j, I we set, 

(5.72) 

The following chapter presents the control scheme examined for the vibration sup­

pression of the elastic coordinates. 
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Chapter 6 

VIBRATION CONTROL 

The singular perturbation method for reducing the order of a system of equations, 

was introduced in Section 1.4.2. Its application to the general nonlinear equations of 

motion for truss manipulators is presented in the following section, and is similar to 

the scheme developed in [Siciliano et al. '88] for the dynamical equations of flexible 

serial manipulators. This method is applicable when the lowest frequency of vibration 

of all individual links is greater than the highest frequency content of the rigid body 

motion, (such as ~ 10 times). It should be noted that this condition is not necessarily 

the case for spinning flexible spacecraft. 

6.1 The Reduced-Order Model 

For notational convenience, the independent speed vector for the system will be 

partitioned according to, 

tPr={~} (6.1) 

where, vector 81 contains all the n independent joint variables in the structure (i.e. 

all the prismatic extensions, and independent revolute angles of serial manipulators), 

and b contains all the flexible coordinates and is of dimension m. Then, the equations 

of motion given by eq.(5.29), can be rearranged in the form of, 

M(OI,b){~.l}+{co(8I,~I,b,~)}+{ On}={ T} (6.2) b cb(8r, 8r, b, b) Kb Om 
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where c 9 and cb represent the nonlinear terms of the dynamical equations of motion. 

Recall that by using orthogonal shape functions for discretizing the elastic deflections 

in Section 4.1.4, the link stiffness matrix Kee would be diagonal per eq.(4.62). In 

addition, since the flexible coordinates hi have no dependence upon other coordinates 

when constructing the natural orthogonal complement matrix in Section 5.3, then 

matrix K in eq.(6.2) will also be diagonal and written in the form of, 

(6.3) 

It should be noted that K contains the total number of m modal stiffness values 

modelled in the assembled system. 

The mass matrix will be partitioned as, 

(6.4) 

Since it is positive definite, the inverse of M ( 81, b) exists, and for the derivations to 

follow will be represented as, 

(6.5) 

where, H99 is a square matrix of dimension n, H9b of size n x m, HbfJ of size m x n, 

and Hbb is a square matrix of dimension m. Now, eq.(6.2) can be re-written as 

81 = -H99(81, b)c9(8I,ih, b, b)- H9b(8r, b)cb(8r,ilr, b, b) 

-H9b(8r, b)Kb + H99(81, b)'r 

b - -Hb9(81, b)c9(8r, ih, b, b)- Hbb(8r, b)cb(8J, ih, b, b) 

-Hbb(8r, b)Kb + Hb9(81, b)T 

(6.6) 

(6.7) 

It is required to obtain the standard singular perturbation form of [Kokotovic'84J. 

Provided that the modal stiffness components are roughly of the same order of mag­

nitude, we define elastic modal forces per [Siciliano et al. '88], 

A 

f= kKb (6.8) 
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where k is the smallest common modal stiffness of matrix K, and 

K = (1/k)K 

The perturbation parameter for the system is defined as, 

J.L = 1/k 

and premultiplying eq.(6. 7) by K, the perturbation form is given by, 

where, 

8 r = -H99(8r, J.Lf)cB(fh, iJr, J.Lf, J.Lf)- H8b(8r, J.Lf)cb(8r, iJr, p.f, J.Lf) 

-H8b(8r, J.Lf)f + H99(8r, J.Lf)r 

, A I A 

H b8 = KHb8 I H bb = KHbb 

{6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

As J.L -+ 0 and assuming f is a bounded quantity, the system is converted to the 

reduced form, which will be represented with the use of overbars as follows, 

Br = -H88(Br, O)cB(lJr, Or, 0, 0)- H8b(Br, o)cb(Br, Or,O, 0) 

-H9b(lJ r, O)f + H88(Br, O)r 

Om - -H'b8(Br, O)c9(Br, Or, 0, 0)- H'bb(Br, O)cb(Br, Or, 0, 0) 

-H'bb(lJ r, O)f + H' b8 (8 r, O)r 

After rearranging eq.(6.15), the "quasi-static" elastic force f, is given by, 

(6.14) 

(6.15) 

(6.16) 

To establish the two reduced subsystems, eq.(6.11) and (6.12) will be written in 

the state space form. The following state variables are defined per [Siciliano et al.'88J, 

(6.17) 
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where, 

(6.18) 

With these forms, eq.'s (6.11) and (6.12) become, 

(6.19) 

(6.20) 

So as the perturbation E - 0, we obtain the quasi-static or slow subsystem equations 

of motion given by, 

where, 

z1 -Hb~Hb9(x1, O)c9(xll x2, o, o)- cb(x1, x2, o, o) 

+Hb~Hb8 (x1, 0)7'" 

For the fast subsystem, a new time scale t is defined, 

t = tjE 

and implemented into eq.'s (6.19) and (6.20), to obtain, 
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(6.24) 

(6.25) 

Now as E -+ 0, only eq.(6.25) remains, and by defining new variables per 

[Siciliano et al. '88}, 

(6.26) 

the fast or boundary layer subsystem is described by, 

-H'b8(x1, O)c8(x1, x2, 0, 0)- H 1bb(X:t, O)cb(xl! x2, 0, 0) 

-H'bb(xb 0)(171 + Zt) + H'b9(x1> O)r (6.27) 

where, for differentiations with respect to the fast time scale, the quasi-static force 

\'aries slowly, 
dz1 _ 

0 - "' m dt 
(6.28) 

If we substitute z1 from eq.(6.22) into eq.(6.27), the fast subsystem simplifies to the 

linear state space form of, 

(6.29) 

where the control input for the fast subsystem is given by, 

Tf =T-T (6.30) 

Hence, using eq.(6.29) we can establish the control scheme for suppressing the vi­

bration coordinates. The overall composite control strategy for the slow and fast 

subsystems, is now addressed in the following section. 
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6.2 A Composite Control Strategy 

The gross maneuver (i.e. quasi-static motion) of the articulating truss may be con­

trolled using the conventional robotic computed torque schemes [Paul'81 J,[Craig'86]. 

If we consider actuators forces r 0 for a specific maneuver, initia.lly computed from 

the rigid body inverse dynamics (performed off-line from the forward dynamic simu­

lations), then the actuation of the gross maneuver may be commanded according to 

the simple proportional-derivative (PD) scheme of, 

(6.31) 

where Br,d and Or,d are the desired prismatic joint extensions and extension rates 

{or angular values for independent revolute joints}, while Br and iJ1 are the actual 

measured values. Kp and KD are the corresponding gain matrices, and when of 

diagonal form decouples the control between joints. 

Implementing vibration control based on the fast subsystem of eq.(6.29), implies 

that either full state feedback is available or a state observer model be employed to 

provide estimates of the unmeasured states. Of course, both schemes require the 

installation of high performance measurement systems to detect the modal states of 

concern. Assuming these capabilities exist for our simulations, then the selection of 

a control scheme for the linear time-varying system of eq.(6.29) can be addressed. 

In this thesis, vibration control will be applied using the gains computed for a 

specific orientation of the manipulator, hence, the system is treated as linear and 

time-invariant. It will be assumed that measurements for all modes of interest are 

available. In addition, actuator characteristics of sensitivity and response are not 

modelled, therefore no limitations are imposed on their operation. These ideal con­

ditions are intended for the initial examination of vibration control obtained with 

the reduced-order model scheme. {In actuality, however, high operation bandwidths 

of the actuators would be required to suppress the high frequency flexible modes. 

Their operation characteristics must therefore be modelled for a complete assess-
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ment of the stability and performance of the control system in question.) For the 

specific orientation considered, either the conventional pole placement or the linear 

quadratic regulator (LQR) design methods can be applied to the resulting linear 

time-invariant form of eq.(6.29). Therefore, the standard state space representation 

of [Takahashi et al. '70] will be employed per the following, 

(6.32} 

where, 11 = (71[ 11r)T, and is of dimension m*, where m*= 2 x m. The system 

and control matrices are given by, 

A= [ Om;n 
-Hbb 

{6.33) 

and matrix B must assure controllability of the states. If this is satisfied per the 

conditions of [Takahashi et al. '70], then with a state feedback control law given by 

T 1 = -FTJ, the closed-loop system and LQR performance index are given by, 

71 - (A - BF)TJ 

J - laoo TJT (Q + FTRF) 7J dt (6.34} 

where weighting matrices Q and R are symmetric, and Q 2: Om•m• 1 R > Om•m•· 

The optimal stabilizing gain F that minimizes the performance index J, is given per 

[Takahashi et al. '70], 

(6.35) 

where matrix P is the solution to the matrix Ricatti equation, 

(6.36) 

This optimal LQR scheme will be applied in the following control simulations to 

compute the modal control gains F for the specific orientation of the truss manipula­

tor. Figure 6.1 represents the continuous-time, composite-control approach presented. 

Note that the inner loop corresponds to vibration control of the flexible coordinates, 

and the outer loop is that of the computed torque scheme with PD feedback (for 

control of the gross maneuver). 
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Figure 6.1: Block schematic of the composite control scheme. 
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Chapter 7 

SIMULATION CODE 
DESCRIPTION 

The simulation code developed to perform the kinematic and dynamic calculations 

for planar truss manipulators was written in the FO RTRAN77 standard language. 

The resulting execution code was designated as GENMAN (for general manipula­

tor), because in addition to the truss, cylinder and piston-rod links, the corresponding 

dynamic terms for flexible beam type members of serial robotic manipulators were 

also included. The main motive for implementing the beam type links was to assist 

in verifying the simulation scheme used in GENMAN, since numerous simulation re­

sults are available for serial robotic configurations. The mass and stiffness matrix 

derivations for beam links are contained in [Cyri1'88J, and will not be provided in this 

thesis. 

The main operation flow of GENMAN is illustrated in Fig. 7.1, and the correspond­

ing simulation sequence of the inverse and forward dynamics is presented in Figures 

7.2 and 7.3, respectively. It should be noted that the same "SYSTEM DYNAM-

1 CS" block is used for both simulations, and hence, its contents are presented only in 

Fig.7.2. 

Since four different link types are modelled in GENMAN, the code contains nu­

merous identifier arrays to indicate not only the link type, but also the joint type. 

The various joint types consist of independent revolute or prismatic joints, and de-
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pendent revolute joints associated with the kinematic loop considered in this work. 

The forward kinematic computations employ these identifier arrays exensively to dis­

tinguish the appropriate recursive relations for the link under consideration, and the 

instance when a kinematic loop has to be evaluated. Within the routine of the kine­

matic loop, the Newton-Raphson iterative scheme is employed to solve the nonlinear 

equations that provide the dependent angles, and to perform the linear computations 

of the corresponding dependent angular rates (per eq.'s{D.14), (D.37) and (D.44) of 

Appendix D). The inverse and forward dynamic simulations both require that the 

kinematic calculations be performed, since the twist vector components are required 

to evaluate the wrench vector per eq.'s(5.18) to (5.20). 

In addition to the identifier arrays discussed above, vector index pointers are also 

established for the flexible twist, independent and dependent speed vectors. These 

are constructed automatically by the code (prior to commencing the iterative com­

putations of the simulations), for the structure arrangement defined per the input 

file requirements. The vector index pointers are used for the assembly of the global 

mass matrix, dynamic vectors, and in the computations associated with the natural 

orthogonal complement. 

Other features of the code include: 

• The manipulator structure is defined and simulation specifications assigned via 

a user prepared input file. The corresponding joint trajectories of the actuators, 

needed for simulations of the inverse dynamics or gross manuever control, are 

also provided by a user supplied subroutine. If simulations of the forward dy­

namics are to be performed, then the user must provide either the corresponding 

data file or subroutine of the actuator force trajectory. 

• Prior to the simulations of the equations of motion, the finite element solution 

to the eigenvalues and eigenvectors of each truss link are performed. After 

assembly of the nodal mass and stiffness matrices, the eigenvalue problem is 
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solved using routines of the EISPACK library of FORTRAN routines. The 

requested number of modes to be used in the simulation are retained, and 

the correponding eigenvectors ortho-normalized. The nodal mass (M!e) and 

stiffness (K!e) matrices are then reduced to that of the modal mass (Mee) and 

stiffness (Kee) matrices, respectively. 

• Integration of the equations of motion can be performed using either the GEAR 

routine originating from the IMSL library, Adams method, or fourth order 

Runga Kutta. 

• The solution of the matrix Ricatti equation given in eq.(6.36), and of the optimal 

LQR control gain F, are obtained through calls to a routine of the CASCADE 

linear control systems FORTRAN library. The operations of CASCADE also 

rely upon the LINPACK linear algebra and EISPACK eigenvalue systems li­

braries. 

As discussed in the first item above, the input file is used to define the articulating 

truss or robotic manipulator structure, and also specifies the type of simulation to 

perform; i.e. forward kinematics, inverse dynamics, or forward dynamics (with or 

without control). If control is to be performed, then the corresponding maneuver 

gains Kp,i and Kd,i can be specified for each prismatic joint. If vibration control is 

also examined, then either the time(s) at which to perform the vibration control gain 

calculations, or specified values of F can be assigned. Simulation output is stored in 

ASCII data files, and the results consist of: 

• finite element eigenvalues and eigenvectors for each truss link, 

• the trajectories of the inertial position and orientation (and corresponding rates) 

of the link frames, 

• joint states, 

• actuator states, 

• total system energy and work calculations, 
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• modal coordinate or local deformation states, and 

• the LQR gains calculated for the time(s) specified in the input data. 

Simulations performed with GENMAN were executed on 486DX personal comput­

ers. The code was confirmed with the dynamic simulations of planar serial robotic con­

figurations from [Cyri1'88], and the vibration control simulations of [Siciliano et al. '88]. 

The solution of the eigenvalue problem for the truss links were verified with other in­

dependent codes. The following chapter presents various simulations performed for 

a truss crane based on a NASA concept. Calculation checks and observations of the 

results are discussed. 
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Figure 7.1: Main simulation flowchart for GENMAN. 
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0 Figure 7.2: Rigid body inverse dynamics flowchart. 
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Figure 7.3: Forward dynamics flowchart. 
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Chapter 8 

SIMULATIONS AND RESULTS 

Simulations have been performed for the planar truss structure of Fig.S.l, situated 

in a zero-gravity environment and attached to a fixed base. This configuration 

originates from the 3D space crane concept of [Mikulas et al. '88b] and [Wu et al. '92], 

and employs material density and modulus of elasticity properties to reflect the 3D 

structure mass and stiffness. The extended length of the structure is 95 meters, and 

the width is 5 meters. The total mass of the structure is 1106 kg, which includes 300 

kg of additional mass (as a platform and additional hardware) situated along the end 

batten. Such a structure could be intended to manipulate payloads on the order of 

105 kg, which was not modelled in the simulations presented here. 

The crane consists of three articulating truss booms, which are actuated via the 

joint configuration shown in Fig.8.1. This arrangement allows for a robust 90 degree 

planar articulation of each boom, by virtue of the two actuators per joint. The 3-

member truss section located between the actuators of each joint, varies somewhat 

from that of [Mikulas et al.'88b]. The joint was defined here as such, since the work 

of [Wu et al. '92] considered three various arrangements which would require more 

detailed modelling. Appendix E contains the member properties used to model the 

flexibility effects, and the following sections discuss the simulation and calculation 

checks performed, along with the observations. 
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Actuator #1 Actuator #2 Actuator #3 Actuator #4 Actuator #5 Actuator #6 

~ /~~ /~,~ /~ 
Yo~ ~ls:t==~ISVY~~Em 

I· ·+ ~ ·I· ~ ~ ~1 
5 m 30 m 30 m 30 m 

0 

-90 

a) Initial orientation. 
Longeron 
Members 

b) Final orientation. 

Figure 8.1: A space crane modeL 

Batten 
Members 

Diagonal 
Members 

(For more details, refer to Figure E. la of Appendix E) 
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8.1 Fully Articulated Crane 

Inverse dynamics were performed for the structure of Fig. 8.1, to examine the 

actuation forces associated with a 20 second maneuver from the extended orientation 

to the final configuration shown in Fig. 8.1 b. Such a fast maneuver would not be 

recommended for a structure of such dimensions (especially with a massive payload at 

the end), and is only used here to examine the resulting dynamic behaviour. All six 

actuators were activated, hence each attributed a degree of freedom to the motion. 

The resulting dynamic model consists of 19 individual links; 7 trusses, 6 cylinders 

and 6 piston-rods. Initially, each actuator piston-rods have zero extension, however, 

to effect the motion of Fig. 8.1b, the first two actuators are commanded to extend 

during the 20 second maneuver per the following trajectories, 

d(t) - 6d [ T . (21r ) ] T t- 21f sm Tt 

d(t) = ~d [1-cos(~t)] (8.1) 

(i(t) = ~d (~ sin (~ t) J 

where, T = 20 seconds, and 6d = 3.832 meters. The remaining four actuators 

are commanded to have zero extension throughout the maneuver. For times greater 

than 20 seconds, actuators 1 and 2 maintain the extended position of d = 3.832 

meters. It should be noted from the trajectories in eq.(8.1), that actuators 1 and 2 

are specified to yield zero velocity and acceleration at the initial and final maneuver 

times. However, based on the acceleration trajectory, a jerk will be imparted to the 

structure at t = 20 seconds. The final actuator extension of 3.832 meters was simply 

pre-computed based upon the joint geometry of Fig. 8.1, corresponding to the final 

orientation. 

Figure 8.2 illustrates the extension trajectories commanded for actuators 1 and 2. 

The resulting history of the main truss angle is presented in Fig. 8.3, as computed 

when performing the kinematic computations of the rigid body inverse dynamics. 
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These were confirmed by simply considering the basic geometry relations of {the 

triangles formed by) the joint configurations, and then computing the angular rates 

obtained with the extension length and rates of the actuator. The actuator forces 

associated with the maneuver and as obtained from the inverse dynamics, are given in 

Fig. 8.4. For the joint configuration modelled in this space crane, the magnitude of the 

force between adjacent actuators will be similar, namely by virtue of the symmetry of 

their placement and of the small inertia contribution of the three member truss links 

interfacing the actuator pairs. This result is noted in Fig. 8.4 for all actuator pairs, 

i.e. 1 and 2, 3 and 4, and 5 and 6. The force values of actuator 6 were also confirmed 

by performing a manual computation of the free-body dynamic force balance with 

the final truss link. 

The actuator force profiles of Fig. 8.4 would be used to perform the simulations 

of the forward dynamics. However, in an attempt to reduce the computation time 

anticipated with the flexible body forward dynamics, actuators 3 to 6 were replaced 

by non-active members, and assigned values of Young's modulus equivalent to that 

of the longeron truss members. The simulations corresponding to this model, are 

presented in the following section. 

8.2 Reduced Articulated Crane 

For the truss configuration of the previous section, actuators 3 to 6 are substituted 

with static members, to reduce the rigid degrees of freedom of the full truss crane from 

6 to 2. The simulations of the rigid body inverse dynamics were re-performed using the 

same extension trajectories of actuators 1 and 2, given previously in eq. (8.1) and Fig. 

8.2. As expected, the computed actuator forces agreed exactly with those of Fig.8.4, 

since the same mass properties were used. The simulations of the forward dynamics 

can now be performed by using this inverse dynamic actuator data, provided in an 

ASCII file ("look-up table") at a given storage rate, and interpolating linearly between 

the two stored data points (that bound the time of interest). The following sections 
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describe the forward dynamics for both a rigid and flexible structure, respectively. 

8.2.1 Initial Simulation Validations 

As mentioned previously in Chapter 7, simulations of the rigid and flexible body 

dynamics for serial robotic manipulators were used to initially verify the operations 

of GENMAN. Hence, the simulation results presented for the planar configurations 

in [Cyril'88], were duplicated by GENMAN. Vibration control simulations using the 

reduced-order models and as performed by GENMAN, were also validated with those 

presented for the serial manipulator considered in [Siciliano et al. '88]. Free-body dy­

namic force balances were manually computed to verify the inverse dynamics actu­

ation of the multi-loop truss crane arrangements (as described previously in Section 

8.1 for actuator number 6). Other validations performed specifically for truss crane 

structures are addressed in the simulation results of the following sections. 

8.2.2 Rigid Body Simulations 

As mentioned, the rigid body forward dynamics are performed by the linear in­

terpolation (between two data points that bound the specific time of interest) of the 

pre-computed inverse dynamic data file. When this was initially attempted, it was 

observed that the simulations of the forward dynamics became unstable depending 

upon the frequency at which the inverse dynamic force data was previously stored in 

the ASCII file. This instability is illustrated with the extension velocity of the actua­

tors, given in Fig. 8.5. The dotted curve is the forward dynamics using actuator data 

of the inverse dynamics that was stored in an ASCII file every 0.1 seconds. Similarly, 

the dashed line is the forward dynamics using actuator data that was stored in an 

ASCII file every 0.01 seconds. From these curves, we note they diverge in opposite 

directions from the original prescribed trajectory of the solid line. 

To investigate these behaviours, the energy characteristics the simulations were 

examined. Figure 8.6a presents the total kinetic energy associated with the rigid 
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body inverse dynamics. The energy discrepancy due to the numerical calculations, is 

illustrated by the solid line of Fig. 8.6b, which represents the difference between the 

kinetic energy and the work done on the system, divided by the maximum kinetic 

energy. This energy discrepancy increases gradually during the computations of the 

inverse dynamics (as would be expected), and is only of the order of 10-4• The energy 

discrepancies associated with the two unstable simulations of the forward dynamics, 

are given by the dotted and dashed lines in Fig. 8.6b. These correspond with that of 

the inverse dynamics, up until their respective instance of divergence. 

In an attempt to identify the source of these instabilities, numerous aspects of the 

simulation procedure and code were investigated. Firstly, the occurrence of the insta­

bility was observed to be very sensitive not only to the frequency rate at which the 

pre-computed inverse dynamic actuator values were saved to the data file, but also 

to the precision of the data retained. For the simulations presented here, 16 digits 

were used. The implementation of the Adams and Runga-Kutta integrators (instead 

of Gear's integrator) were also attempted, and experienced the same simulation in­

stability. The computation of the natural othogonal complement using the scheme 

given per eq.(5.33) was also performed. The same instability behaviour resulted at 

approximately the same instances, and hence no improvement was obtained. The 

numerical instabilities can also result with a simpler manipulator configuration, but 

do take longer to appear. Therefore, the simulations of inverse dynamics provide the 

required actuator values for a specified maneuver, with an additional small numerical 

error of non-zero mean. This error is larger for more complex systems, and when the 

computed actuator values are integrated in the simulations of the forward dynamics, 

the non-zero mean term produces an unbounded response, and hence the instabilities 

as observed in this work. 

In an attempt to stabilize the simulations of the rigid body forward dynamics (for 

this truss crane arrangement), the computed torque with PD feedback control, was 

implemented. Feedback gains which provide successful execution of the rigid body 
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forward dynamics, consist of K 11 = Kd. 5000 for both actuators. Figure 8. 7 contains 

the resulting additional actuation forces, which are only on the order of 10-6 of the 

nominal forces of the inverse dynamics presented previously in Fig. 8.4. The actuator 

extension trajectories of the original prescribed values were re-duplicated, therefore 

the maneuver control scheme effectively stabilized the integration. 

8.2.3 Flexible Body Simulations 

The flexible body simulations performed for this truss configuration employ the 

ortho-normalized eigenvectors of the main truss boom, presented in Table 8.1. These 

were computed from the FE eigenvalue problem discussed in Section 4.1.4, using 

the boundary conditions illustrated in Fig.8.8. For these nodal constraints, the first 

and second vibration frequencies are 0.531 and 3.893 Hz, respectively. As a matter 

of comparison, a 3D space crane model presented in [Sutter et al. '90] that includes 

specific joint details (such as that of a revolving base joint), indicated a fundamental 

frequency of 0.135 Hz. Therefore, the truss crane model considered in this work 

is considerably stiffer than the detailed model of [Sutter et al. '90]. In addition, the 

frequency of the maneuver examined in these simulations is 0.05 Hz, as obtained from 

eq.(8.1). Therefore, the fundamental frequency of the crane simulated here is over 10 

times that of the nominal rigid body maneuver, as recommended with the application 

of the singular perturbation method for vibration control. Conversely, the structure 

of [Sutter et al.'90] does not satisfy this requirement. But again, the fast maneuver 

examined here is only for simulation demonstration, and not recommended in actual 

practice. 

The simulations of the flexible body dynamics presented here, were performed 

with the same PD feedback gains used for controlling the maneuver of the previous 

rigid body simulations, and no structural damping was modelled. The resulting 

actuator extension profiles are illustrated in Fig.'s 8.9 and 8.10, and the corresponding 

trajectories of flexible modes 1 and 2 are presented in Fig. 8.11. It is observed from 
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this latter figure that the vibration modes are obviously damped, by noting their 

attenuation and the disappearance of the higher vibration frequency components 

which are initially visible at 0 and 20 sec (when maneuver jerks excite the system). 

This damping is attributed to the PD feedback gains employed to stabilize the 

rigid body simulations. This was confirmed by performing :O.exible body simulations 

for the truss boom of Fig. 8.8, modelled to rotate simply about its origin (i.e. node 

1) at the same angular rate of the truss crane, and driven by a torque. (Recall, 

as mentioned previously in Section 8.2.2, for simpler manipulator configurations the 

simulation instabilities of the forward dynamics take longer appear, and hence the 

use of simulation control is not immediately necessary.) Figure 8.12 illustrates these 

results. Fig. 8.12a corresponds to the flexible body simulations of the pivotting truss 

boom without control action, and Fig. 8.12b demonstrates the damping provided 

with the use of computed torque PD control on the driving torque. It should be 

noted that the high frequency components are maintained throughout the maneuver 

in Fig. 8.12a without the use of control. The simulations of the pivotting truss boom 

also confirmed the magnitudes of the vibration modes for the truss crane. 

To additionally verify the modal magnitudes of the simulations of Fig. 8.11, a 

quasi-static loading analysis was performed by fixing the truss boom of Fig. 8.8 at its 

base nodes 1 and 2. Hence, for given maneuver time, the inertial loading distribution 

associated with the angular rotation of the boom was properly assigned to each node 

as a force vector (i.e. the net acceleration vector of each node was computed and 

multiplied by an equivalent lumped mass at the node). The corresponding nodal 

deflections of nodes 38 and 39, obtained from a FE static loading analysis, were 

observed to agree perfectly with that of the flexible body dynamics. As an example, 

for the time of 5 seconds, the magnitudes of modal coordinates 1 and 2 are 4.25 and 

-0.01 meters, respectively (as can be observed from Fig. 8.11). Using the eigenvector 

elements of node 39 from Table 8.1, this results in a nodal deflection of -0.0072 and 

0.1912 meters in the X and Y directions, respectively. The corresponding quasi-static 
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Figure 8.8: Boundary conditions for the main truss boom. 

deflection for the angular rates at this time, suggested deflections for node 39 of 

-0.0073 and 0.1917 meters, respectively. 

8.2.4 Vibration Control Simulations 

The use of the vibration control gains F computed from the LQR solution of the 

reduced-order model for the modal coordinates, are now examined. For the final 

orientation (at the maneuver time of 20 sec), the corresponding gains are given in 

Table 8.2. It is noted from these values that actuator 1 has negligible authority. 

When this control is activated at 20 seconds, the resulting vibration suppression can 

be observed from the flexible mode rates of Fig. 8.13a. The solid line represents 

the controlled vibration and the dotted line corresponds to the original flexible body 

simulations of Fig. 8.11. The control scheme appears to be reasonably effective for 

vibration suppression. The additional control actuation was observed to be quite 

insignificant, as discussed in Section 8.3 for another truss configuration. In addition, 

Fig. 8.13b examines possible control spillover onto the higher modes 3 and 4, which is 

noted to be small. However, more uncontrolled modes should be examined, and recall 

that the presence of the PD feedback control required to stabilize the simulations, 

also provides damping (as observed initially in Section 8.2.3). 

Now, the same flexible control gains were employed to examine the effect of ac­

tivating this control immediately at 0 sec. The corresponding results are provided 
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Table 8.1: Ortho-normalized eigenvectors for the truss boom. 

Mode 1: Eigenvalue 11.139, Freq. = 3.338 rad/s = 0.531 Hz. 
Mode 2: Eigenvalue = 598.182,Freq. = 24.458 rad/s = 3.893 Hz. 

11 N~e I ~dj #l Y I y 11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2.068E-02 
2.068:&.02 
2.396E-02 
2.339:&.02 
2.454E-02 
2.729E-02 
2.728:&.02 
3.071E-02 
3.070E-02 
3.421E-02 

.420E-02 
3.776E-02 
3.775E-02 
4.134:&.02 
4.133E-02 
4.494E-02 
4.493E-02 
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in Fig. 8.14, and illustrate acceptable vibration control. However, it is cautioned 

that this may not always occur, since the controllability and the reduced-order model 

gains of the flexible modes varies with the orientation, as discussed in Section 6.2. 

Simulation results for the truss motion considered later in Section 8.3 will more 

clearly demonstrate the vibration suppression of the reduced-order model vibration 

control, in which the computed torque PD control is not needed to stabilize the 

simulations of the forward dynamics. The following section considers the forward 

dynamics performed in a different manner. 

Table 8.2: Vibration LQR control gains of the singular perturbation reduced model for 
the truss crane. computed at the final orientation (for maneuver time of 20 seconds). 

11 Actuator I Mode # 1 I Mode #2 I 

.. . ~I ~- ~I ~I 
1 -2.2952E-9 -8.8149E-9 -3.2608E-9 
2 9.5 3.6867E-l 1.3638E-1 

8.2.5 Simulations with Prescribed Extension 

As a matter of interest, the simulations of the flexible body forward dynamics 

were performed using prescribed actuator extension trajectories, and integrating 

the equations of motion to obtain the corresponding flexible modes. This in effect, 

assumes that the rigid body motion is not influenced by the flexible system. The 

corresponding flexible body actuation forces were also computed, and are provided in 

Fig. 8.15. The resulting vibrations obtained with the prescribed actuator extensions, 

are given in Fig. 8.16. It is noted that the vibrations persist after the maneuver, as is 

expected without structural damping or control. In addition, the observed vibration 

frequencies do not correspond to those of the true simulations of the forward dynamics 

performed previously, but are basically those of the eigenvalues presented in Table 

8.1. This reflects the significance of the coupling between the rigid body and flexible 

body modes, and indicates the influence the former has upon the resulting flexible 

structure dynamics. 
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8.3 Single Actuated Maneuver 

To demonstrate a truss crane arrangement for which simulation instabilities were 

not observed, and hence the forward dynamics are performed without computed 

torque PD control, only actuator 2 was activated per eq. (8.1) and Fig. 8.2, and 

actuator 1 was treated as a static (non-active) member. Therefore, the resulting 

structure has only one kinematic loop, and the configuration of Fig. 8.1a slews only 

45 degrees clockwise. In addition, only half the angular acceleration and loading of 

the original crane is obtained (since actuator 1 is now inactive). The force of actuator 

2 obtained from the inverse dynamics, is presented in Fig. 8.17a and was stored in an 

ASCII file at a rate of 0.01 seconds for the forward dynamics extrapolation. The sim­

ulations of the forward dynamics were observed to be stable for this case of the single 

kinematic loop, and hence no control of the maneuver was required. The simulation 

results of the flexible body dynamics are presented in the following section. 

8.3.1 Flexible Body Simulations 

Figure 8.18 presents the actuator extension of the flexible body forward dynamics, 

in which the slewing truss boom is again modelled by 2 modes, as contained previously 

in Table 8.1. The resulting vibration is illustrated in Fig. 8.19, in which no damping 

is observed, the high frequencies prevail, and the vibration persists as there is no 

control. Note that since the actuation magnitude of Fig.8.17a is approximately one 

half that of the previous Section 8.2.3, the vibration magnitudes are approximately 

one half those of Fig. 8.11. 

8.3.2 Vibration Control Simulations 

The vibration control simulations were again performed at the final maneuver 

time of 20 seconds. The corresponding LQR control gains for the flexible modes, 

are presented in Table 8.3. Since actuator 1 was given little control authority in the 

previous crane arrangement, it was expected that the control gains for actuator 2 
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should be similar to those of Table 8.2, as can be observed. Figure 8.17b presents the 

additional control force associated with this scheme, which is quite small compared 

to the magnitude of the nominal actuation force of the maneuver of Fig. 8.17a. The 

effectiveness of vibration suppression is illustrated in Fig. 8.20a for the rates of modes 

1 and 2. As an initial control spillover check, Fig. 8.20b presents the rates for the 

uncontrolled modes 3 and 4. These are again suppressed, and destabilizing spillover 

is not observed. 

The use of. the vibration control gains (of the 20 second configuration) immediately 

at the start of the simulation, is examined in Fig. 8.21a. The corresponding actuation 

force is presented in Fig. 8.17c, which is again quite small in comparison to the 

magnitude of the nominal actuation force of the maneuver. However, it should be 

noted that the fast rates and small magnitude of the control force, imply fast response 

and very sensitive actuation. Hence, this vibration suppression scheme proves to be 

very effective, assuming ideal actuators with no operation limitations. 

To examine the resulting vibrations obtained when introducing the computed 

torque PD control, which was needed to stabilize the simulations in Section 8.2, PD 

feedback gains of Kp = Kd = 5000 were implemented for actuator 2. Figure 8.21b 

presents these results, and confirms the vibration suppressing previously observed in 

Fig. 8.11 with this basic control scheme. 

Table 8.3: Vibration LQR control gains of the singular perturbation reduced model 
for the truss crane with only actuator 2 active, computed at the final orientation (for 
maneuver time of 20 seconds). 

Actuator Mode #1 Mode #2 
Fp I Fd Fp I Fd 

11 2 I 9.6015E-2 I 7.3882EO I 3.6861E-1 IL3637E-1 11 
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8.3.3 Structurally Damped Vibrations 

The effect of structural damping was examined by selecting a complex damping 

ratio v as defined in Section 4.1.5. From Fig. 8.19, the lowest vibration frequency is 

noted to be approximately 2.725 Hz {17.12 rad/s). For damping ratios of the order 

( = 0.002 and 0.01 (per that observed in the space truss structures of [Voth et al.'94] 

and [Soucy et al.'84J), the corresponding complex damping ratios are v = 0.00024 

and 0.0012, as computed using eq.(4.65). Figure 8.22 illustrates the vibration sup­

pression obtained with these two structural damping values. It is apparent from these 

results that inherent damping of these magnitudes are very desirable, and additional 

vibration control may not be necessary. 
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Chapter 9 

CLOSURE 

9.1 Conclusions 

The dynamic equations of motion for a specific articulating truss topology, were 

derived in this thesis. For the link connection, actuator installation, and resulting 

kinematic arrangement considered, the motion is confined to a plane. The actuator 

members are modelled as rigid, however, their treatment as individual links by the 

formulation will accommodate flexibility considerations for future work. Truss flexi­

bility is modelled with linear axial deformation of the elements, and modal discretiza­

tion of the corresponding nodal deformations was implemented to reduce the order 

the system. The dynamical formulation consisted of utilizing the modal discretization 

method along with the Euler-Lagrange equations, from which the equations of motion 

for an individual link were initially obtained in terms of its twist vector. By applying 

the natural orthogonal complement to the assembled system, the non-working con­

straint forces were eliminated to provide the minimum set of dynamical equations in 

terms of the actuators' (piston-rod) extensions, and the flexible (modal) coordinates 

of each truss link. If vibration frequencies of the flexible links are considerably greater 

than that of the rigid body motion, then reduced-order models can be obtained by 

applying the singular perturbation method, and a composite control strategy can be 

implemented. In this work, a robotic based computed torque with PD control scheme 

was selected for the main (quasi-static) maneuver, and the optimal LQR control gains 
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determined for a specific orientation of the truss crane was employed for the flexible 

modes. The control schemes were applied in a continuous fashion, hence, a discrete 

control system has not been considered. 

The code GENMAN was developed to contain the simulation algorithm of the 

dynamical equations of motion for truss cranes. Simulations with planar arrange­

ments of robotic manipulators were used to initially verify the results obtained with 

GENMAN. For the multi-loop kinematic arrangement associated with truss cranes, 

manual calculations were performed to verify the kinematic loop computations and 

the computed actuator forces of the simulated inverse dynamics. To simulate the 

forward dynamics, the actuator forces are computed off-line, that is, the inverse dy­

namics are initially performed for a prescribed extension trajectory of the actuators, 

and the computed actuator forces are saved to an ASCII file. The simulations of the 

forward dynamics then interpolate from this ASCII file to obtain the corresponding 

actuator forces. 

Based on the simulations and dicussion presented for the truss crane models con­

sidered here, the following conclusions are presented, 

1. The instabilities observed in simulating the rigid body forward dynamics of 

the multi-loop truss arrangement in Section 8.2, result when the actuator val­

ues computed from the inverse dynamics (which contain a non-zero mean of 

numerical errors) are integrated in the simulations of the forward dynamics 

to produce an unbounded response. This argument is made per the following 

considerations, 

{a) The instability is not an integrator instability since the Gear, Adams, and 

Runga-Kutta schemes experienced the same behaviour. 

(b) The simulations of the forward dynamics experienced opposite divergence 

when using ASCII files, of the off-line computed actuator forces, containing 

different storage rates. 
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(c) The introduction of the computed torque PD control scheme for the ma­

neuver adequately stabilized the simulations, and the additional actuation 

was only of the order of w-a of the original maneuver actuation. 

(d) When using prescribed actuator extension trajectories to perform the sim­

ulations of the flexible mode dynamics, the instabilities did not occur. 

(e) For less complex manipulator arrangements, the numerical instabilities 

take longer to appear. 

2. The introduction of the computed torque PD control scheme intended for the 

main maneuver, also provides damping of the vibration, as observed in the 

flexible body simulations. 

3. The vibration control simulations performed here with the reduced-order mod­

els, did not consider the characteristic of the actuators, and assumed full-state 

feedback of the vibration modes. Therefore, the observed performance cor­

responds to ideal actuators with no limitations on their operation or on the 

feedback loops. {High operation bandwidths of the actuators would actually be 

required to damp the high frequency flexible modes.) In addition, the control 

was applied in a continuous fashion. The simulation results of this initial in­

vestigation indicate favorable vibration suppression. Although no destabilizing 

spillover was observed for the unmodelled modes examined, more unmodelled 

modes should be considered in future work. 

4. When performing dynamic simulations of the flexible modes, in which the pre­

scribed actuator extension trajectories are used directly, we do not observe the 

high vibration frequencies obtained during the simulations of the forward dy­

namics of the coupled rigid and flexible body motion. 

5. Structural damping is most desirable, since it may alleviate the need for complex 

vibration control. 
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6. The code GENMAN is a simulation tool for the dynamic analysis of space 

cranes, confined to planar motion. Its flexibility model is restricted to the linear 

deformation of truss elements, and the structure arrangement must correspond 

to that of the actuator and link connection considered. Although GENMAN 

was executed on 486 PC's, the code is by no means optimal and the formulation 

it employs is computationally demanding. Therefore, such simulations should 

be performed on more powerfull platforms, namely with greater memory and 

processing capacity for large structural systems. 

9.2 Recommendations 

The following recommendations are made for future investigations regarding the 

dynamic simulation and vibration control of truss {crane) structures, 

1. The link joint and inter-link kinematic details be extended to allow for the 

simulation of 3D motion. 

2. Higher order deformation models be examined for the truss elements, to consider 

in-plane and out-of-plane bending and deformation of members. 

3. Flexibility models of the actuator members be developed, especially since the 

dimensions of a truss boom are much greater than that of an individual actuator. 

4. The reduced-order model is only valid when the vibration frequencies are greater 

than the frequency content of the rigid body motion trajectory. If this is not 

the case, then other vibration control schemes should be examined, and the 

installation of passive damping or active members into the local truss links be 

addressed. 

5. Operation characteristics of typical actuators be considered, and digital control 

modelled, in order to fully assess the stability a.nd performance of the control 

system. 
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Appendix A 

Vector and Matrix Operations 

Several mathematical properties regarding vectors, and the use of their skew sym­

metric matrices are provided here. The following relations are those presented in 

[Nikravesh'88]. 

Given 3D vectors a and b, which contain the components, 

(A.l) 

Their skew symmetric forms are denoted by a and b, and constructed as, 

a=[~-~-~] ~=[ ~ -~ -~] 
-ay ax 0 -by bx 0 

(A.2) 

As shown in [Nikravesh'88j, the following properties exist, 

a·b aTb (A.3) 

axb - ab (A.4) 

aT -a (A.S) 

~(ab) 
dt 

ib+ah (A.6) 

a a (A.7) 

(a+ b) a+~ (A.8) 

(ab) - ab- ba (A.9) 

ab baT- aTbl33 (A.lO) 

where l33 is the 3x3 unit matrix. 
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Appendix B 

Link Mass Matrix Details 

B.l Truss Link Elements 

The components of the elemental mass matrix from Section 4.1 for eq.(4.26)­

{4.33), are evaluated in this section. Firstly, the expansion of the skew symmetric 

matrix ri is considered using the vectors of eq.'s (4.7) and (4.9), 

. . . T 
a3 = ( a3 T a3 T) e e,l e,2 (B.l) 

where, a~, 1 and a~,2 are defined in eq.(4.8), and a~, 1 and a~.2 are defined in eq.(4.10). 

Using the linear shape function matrix of eq.(4.11) and the nodal vectors given 

above, we can rewrite eq.(4.2) as, 

r, - ]N1l33 N2l33] ( { :L} + { :L}) 
- N1 (a~,l +a{,t) +N2 (a~,2 +a{,2) (B.2) 

where ls3 is the 3x3 unit matrix. Using the property of eq.(A.8), ri is given as, 

- [N (-i -i ) N (-i -i ) ] rt. = 1 ao,l + ae,1 + 2 ao,2 + ae,2 (B.3) 

where the tilda indicates the skew symmetric matrix of the vector, as defined in 

eq.(A.2). With this result, mass matrix component M~r from eq.(4.26) becomes, 

(B.4) 
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where, 
Qi = fvi N1dV = fvi (1- xi I Li) d'V ex = fvi Nzd'V = fvi (xi I Li) d'V 

(B.5) 

For mass matrix M~, we obtain after expanding the expression of eq.(4.27), 

(B.6) 

Therefore, substituting the integrals evaluated in eq.(B.5) into the above, yields, 

(B.7) 

To evaluate the terms of Mt.r in eq.(4.29), it is necessary to expand rr, which is 

given as, 

i1 = (N1)2(a~. 1 a:{,l )2 + N1Nz(a~,1 + a{,l )(a~.a + a{,a) 

+N1N2(a~,a + a:{,2)(a~.1 + a:{,l) + (N2)2(a~.2 + a:{,a)2 (B.8) 

Therefore, mass matrix component Mt.r becomes, 

M~ = -pi [s11 (a:~,J + a:~.1 )2 + s12(a:~,1 a:~.l )(a:~.a + a:~,2) 

+BJ2(a~.2 + a:~.2)(a~,1 + a:{,1) + s~2(a~,2 + a:~,2) 2] (B.9) 

where the shape function integrals are evaluated as, 

BJ1 
SJe -
S~e 

fv; (N1)2dV - fw (1- xi I Li)
2 dV 

fvi N1N2d'V - fvdl- xi I Li) (xi I Li) d'V 
fvi (N2)2dV fvi (xi I Li)

2 
d'V 

(B.lO) 

Mass matrix component Mte from eq. ( 4.30) will be evaluated by first expanding, 

riN{ - [N1 (a~,l + a{,l) + N2 (a~.a + a{,e) ][ N1l33, N2l33] 

[ ( (Nt)2a~,1 + N1N2a~,2), (N1N2a~,1 + (N2) 2a~,2)] 

+ [ ( (N1)2a{,1 + N1N2a{,2), ( N1N2a{,1 + (N2)2a{,2)] 
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Hence, Mte becomes, 

M~e - r} [ ( si1 a~.l + s11la~,2) , (sill a~. I + S~2a~.2)] 

+ r} [ ( s11 a{,l + s11la{,2) , ( s12a{,l + s~2a{,2)] 

Finally, from the expansion of, 

[Z~~::J [Nils3, N2133] 

[ 
(N1) 2l33, N1N2l33] 
N1N2l33, (N2) 2l33 

the mass component M~e from eq. ( 4.33) becomes, 

B.2 Truss Link Node Masses 

(B.l2) 

(B.l3) 

(B.l4) 

If there are concentrated masses located at each node, or in order to reduce 

computation time, the mass of the truss elements may be simply lumped at the 

nodes. Hence, when considering the expression for the inertial position si of an 

arbitrary node in eq.(4.1), then, the local nodal vector is required for ri eq.(4.2). In 

this case, vectors r o,i and r e,i correspond simply to that of the node k position and 

deflection vectors, designated respectively as, 

r o,i = ao,k = ( ao,k(x) ao,k(y) ao,k(z)) T (B.15) 

r e,i = ae,k = ( ae,k(x) ae,k(y) ae,k(z)) T (B.16) 

The velocity of the node k is obtained as in eq.(4.18), and can be expressed in the 

form of eq.(4.20), 

(B.l7) 

where 

(B.18) 
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and the flexible twist vector vi k for the node k is given by, 
' 

(B.l9) 

Hence, as done with the truss elements in Section 4.1.2, the kinetic energy T i,k of the 

concentrated mass Mi,k is given by, 

(B.20) 

where the concentrated nodal mass matrix Mi,k contains components, 

Mdd,k - Mi,kl33 (B.21) 

Mdr,k - -M·kr· 
~. ' (B.22) 

Mde,k - Mi,kl33 (B.23) 

Mrr,k -=r- M -:::-2 Mi,kri ri = - i,kri (B.24) 

Mre,k - -M·krf 
s, ' - M·kr· t, l (B.25) 

Mee,k = Mi,kl33 (B.26) 

The ri matrix is obtained by the forming the skew symmetric matrix of vector ri = 

ao,k + ae,k' the components of which were given previously in eq. 's (B.l5) and (B.l6). 

To assemble the link mass matrix due to all the concentrated nodal masses, the 

concept of a kth node association matrix ili,k is used, such that, 

(B.27) 

where ae is the total nodal dof vector as presented previously in eq.(4.41), and the kth 

node association matrix ili,k consists of zeros and ones which properly associate the 

node k DOF's to that of the total link nodal DOF vector. Hence, 4i,k is of dimension 

,, x ~;,* (i.e. the number of DOF per node by the total number of nodal DOF per 

link). So by substituting eq.(B.27) into eq.(B.l9) and reforming the kinetic energy 

in terms of the link's nodal twist vector v~, given previously in eq.(4.43), the kinetic 
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energy due to all of the concentrated nodal masses is obtained from the summation 

of Ti k for all nodes h*, 
' 

h* 

T ~T 1 *TM* • 
i,c = L....J i,k = 2V i i,c Vi 

k=l 

(B.28) 

where the assembled concentrated node mass matrix Mic for truss link i is given by, 
' 

h* [ Mdd,k Mdr,k Mde,k4i,k l 
M:,c = L Mdr,kT Mrr,k Mre,k4i,k 

k=l (Mde,k4i,k)T (Mre,k4i,k)T 4i,kTMee,k4i,k 
(B.29) 

Again, it should be noted that this mass matrix is in terms of the full number of 

nodal DOF's, which will replace that of eq.(4.45) if the concentrated node masses 

Mi,k represent lumped values of the elements. However, if the node masses Mi,k are 

additional concentrated values such as to account for the node hardware, then matrix 

M;,c will be added to that of the element mass contribution of eq.(4.45). 

B.3 Rigid Cylinder Link 

The actuator cylinder cross-sectional dimensions were assumed to be considerably 

smaller than that of the length (i.e. such as a slender rod), and will be modelled 

with uniform internal and outer diameters. Hence, the integrals of the mass matrix 

component Mdr of eq.(4.74) can be evaluated as, 

M.,. -p;!.. xX;<N = -p; (!~~ A;x dx) X, = - ( M;L;) X, (B.30) 

where, Mi is the total mass of the cylinder link, Li is the length, and Xi is the unit 

skew symmetric matrix of the Xi axis, 

(B.31) 

Similarly component Mrr of eq.(4.74), becomes, 

{B.32) 
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If the diameters are not uniform, then the appropriate cross-sectional area Ai variation 

over the component length should be included in the integrations performed above. 

However, if their dimensions are again much smaller than the length, then their effect 

on the rotational inertias above would not be significant. 

B.4 Rigid Piston-rod Link 

The piston-rod mass matrix is formulated as done previously for the cylinder in 

equations (B.30) and (B.32), however, the integration must be performed as, 

{B.33) 

and, 

(B.34) 

where, Mi is the total mass of the piston-rod link, Li is the length, and Xi is as given 

in eq.(B.31). The discussion given in the previous section regarding the diameter 

dimension of the cylinder, is also applicable to the piston-rod. 

If a concentrated mass is located at the origin of the frame of the piston-rod, as is 

the case with inter-link assembly hardware, then its contribution to the mass matrices 

is considered by evaluating eq.'s (4.66) to (4.75), with the introduction of x = 0 and 

the integral replaced by the concentrated mass, Mi,c· This correponds to the velocity 

of the concentrated mass being simply that of the link frame origin. Hence, only a 

contribution to the displacement components Mdd is obtained, i.e., 

(B.35) 
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Appendix C 

Mass Matrix Rates 

The mass matrix rates required in eq. 's(5.18) to (5.20), are established in this 

section. These quantities are derived by performing the absolute time derivatives of 

the vectorial contents within the original mass matrices. It is first necessary to recall 

the general expression for the inertial velocity of an arbitary point on a link described 

by eq.(4.16}, 

(C. I) 

where as before Pi is the velocity of the origin of the link frame, wi is the angular 

velocity of the link frame and ri is the local velocity of the point. The local vector ri 

is 3-dimensional and of the form of eq.(3.5), 

(C.2) 

where again r o,i denotes the rigid body location of the point with respect to the origin 

of the link frame, and r e,i is the elastic deformation component. For the derivations 

to follow, the deformation is expressed in the general discretized form of eq.(3.7), 

(C.3) 

where hi is the mi dimensional vector of elastic coordinates per eq.(3.6), and Bi is 

the shape function matrix of dimension 3 by mi. 

By rearranging eq.(C.l) in a form similar to eq.'s (4.18), we obtain, 
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c Now, if we recall the arrangement of eq.(4.20), we can rewrite the above as, 

(C.5) 

where 

E = [l33 (C.6) 

and the flexible twist vector vi for the link is that given by eq.(3.10), i.e., 

( · T T b. T)T 
Vi= Pi Wi i (C.7) 

The kinetic energy of the link T i is obtained by evaluating, 

(C.8) 

where the mass matrix Mi is given by the general form of, 

Mi = 1 ETEpdV = [~= ~= ~=] 
Med Mer Mee 

(C.9) 

c and as before, notation d represents displacement of the origin of link frame i, r 

represents rotation of the the frame, and e is the elastic deformation. The mass 

matrix components consist of, 

Mdd p 1l33dV = Mil33 (C.lO) 

Mdr = -p 1ridv (C.ll) 

M de p 1 Bid\1 (C.12) 

Mrd -p 1f!dV 
V ' 

-MT - dr (C.l3) 

Mrr P 1r'fridv (C.l4) 

M re -p 1 r'[Bid't (C.l5) 

Med p 1BfdV =Mre (C.l6) 

Mer -p 1 BfridV =M;: (C.l7) 

Mee p 1BfBidV (C.l8) 
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In performing the time differentation upon the above matrices, the properties of 

skew symmetric matrices presented in Appendix A will be used considerably. 

Firstly, it should be noted that there is no scalar mass addition or reduction in 

the links considered for the truss manipulator. If this was not the case, then the 

corresponding change in mass associated with each link would have to be included in 

the following expressions. Therefore, to evaluate Mdd, we note from eq.(C.IO) that 

its scalar value yields, 

(C.19) 

The time derivative of Mdr is obtained by considering the absolute rate of the local 

vector r i, given by, 

(C.20) 

According to eq.'s (A. 7) and (A.8), we can write, 

~(r·) = (w ·r·) + ~. dt ' l ~ t 
(C.21) 

Now applying eq.(A.9) to the first term on the right hand side of the above equation 

we have, 

d (-) (- - - - ) - r· = w·r·- r·w· 
dt ' ' ' ' ' 

(C.22) 

Recalling the integral for evaluating eq.(C.ll), we obtain, 

0 

= wiMdr- Mdrwi Mdr (C.23) 

where, 

(C.24) 

Matrix rate Mde, is obtained by noting that the rows of the elastic shape function 

matrix Bi correspond to the local axes of the link frame, which change with time 

by virtue of frame rotation. But since Bi contains only functions of the spacial 
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coordinates of the link, then we require only the cross product term due to the 

angular velocity of the frame, to yield, 

M de - p !v w ,BidV 

= wiMde (C.25) 

The derivative of r? contained in Mrd, is obtained by performing the transpose 

of eq.(C.22), to yield, 

(C.26) 

where, by recalling the symmetry of Mrd = MI,, we can write, 

(C.27) 

and, 

(C.28) 

Matrix Mrr is similarly established by considering the differentiation of, 

- -- (wiri- rtWi ri)Tri + r'[(wiri- riWi + ri) (C.29) 

By using the property of eq.(A.5), then the term r'fwfri + r'fwiri = 033, and Mrr 
becomes, 

- -M +M -T o Wi rr rrWi + Mrr (C.30) 

where again the property wf = -wi is used, and, 

{C.31) 
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The rate of mass matrix Mre is obtained by performing, 

(C.32) 

where the results of eq. 's (C.22) and (A.5) are used. Hence we obtain for Mre1 

Mre - -p l(wir'[Bi + ~fBi)dV 
(C.33) 

where, 

0 

M re (C.34) 

Matrix Med, is evaluated by recalling eq.(C.16) and including the cross product 

term due to the angular velocity of the frame as done in eq.(C.25), 

Med - p l(wiBifdV 

- M -T edWi 

(wiMdef 

'T (C.35) - M de 

To construct Mer, we recall the form of eq.(C.l7) and the corresponding time 

differentiation of eq.(C.22), to obtain, 

~ (BTr·) dt ' t 

(C.36) 

Therefore Mer becomes, 

Mer 
0 

-Merwi +Mer 
_ T o T 

(wiMre) + Mre (C.37) 
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where, 

(C.38) 

Finally, Mee is obtained from eq.(C.18) and by maintaining the vectorial signifi­

cance of the matrix Bi when performing the time differentiation. This results in, 

~t (B[Bi) - (wiBifBi + Bf{wiBi) 

- BfwfBi + BfwtBi 

where the property of eq.(A.5) was employed. Therefore, Mee is simply, 
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Appendix D 

Kinematic Loop Details 

Based on the kinematic loop details illustrated in Fig.D .1, the expressions required 

to generate the solution of the dependent angles ei and ej, and the corresponding rates 

will be derived here. The motion is considered to be planar, hence the positional 

vectors will be two dimensional and contain only the X and Y components. In 

addition, the rotation matrices will be expressed in their 2D forms. Therefore, the 

transformation from link frame i to the frame i- 1 is denoted per eq.(3.30), 

(D.1) 

where, DL 1 is the rotation component due to the deflection of the end of truss link 

i - 1, given previously by eq.(3.32). For planar motion with small deflections, this 

matrix is approximately, 

D!_
1 

= [ 1 -8i/li-1(z)] 
Oiji-1 (z) 

(D.2) 

where 8i/i-J(z) is defined in eq.(3.33) and re-presented here for convenience, 

(D.3) 

Row matrix B~~J(y) is as defined in eq.(3.34), 

B~ Bi* _ t-1 (y) 
i-1(y) -

a ·;· 1 o,t t-
(D.4) 
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where constant ao,ifi-l represents the rigid body distance of the origin of frame i from 

i- 1, given by the magnitude of its rigid body position vector r o,ifi-1, 

ao,i/i-1 = lr o,iji.-1! (D.5) 

Matrix Ci is that given before in eq.(3.31), but here only the components of the XY 

dimensions are retained, 

(D.6) 

And similarly for link frame j we have the rotation relations, 

(D.7) 

where D{_1 has the same form of eq.(D.2) but contains the deflection slope of Djfi-1(z) 1 

corresponding to the node of frame origin j, given by, 

(D.8) 

(D.9) 

where, again B{_1(y) represents the Y axis shape function components of link i- 1 

(corresponding with the node at frame origin j), and constant ao,jfi-I represents the 

rigid body distance of frame origin j from i -1, given by the magnitude its rigid body 

position vector r o,jfi-1, 

aoJ/i-l = lr o,jfi-11 (D.10) 

Matrix Cj accounts for frame j rotation due to dependent angle ()j, and is given as, 

C.= [cos(Bj) -sin(Oi) J 
3 sin(Oi) cos(Bi) 

(D.ll) 

The loop equation can be constructed within frame i-1, according to the following, 

(D.12) 
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Figure D. I: The kinematic loop details. 
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where vector Pi is the inertial vector of the origin of frame i expressed in frame i, 

and r;+l/i is the vector of connection point j + 1 with respect to frame i (and also 

expressed in frame i). Vectors P; and r;+I/i are similarly defined and correspond to 

frame j. As well, inertial positions Pi and P; are given as, 

(D.l3) 

where Pi-1 is the inertial position vector of the origin of frame i- 1, ri/i-1 is the 

position vector of frame origin i with respect to frame origin i- 1, and r;fi-l is the 

position vector of frame origin j with respect to frame origin i- 1; where all these 

vectors are expressed within the frame i- 1. Substituting eq.(D.13) into eq.(D.l2), 

we obtain the loop equation in the form of, 

(D.14) 

where vector r;i/i-t is given by, 

r;ifi-1 = r;fi-1 - ri/i-1 (D.15) 

Now vector ri/i-1 contains, 

ri/i-1 = ro,ifi-1 + re,ifi-1 (D.l6) 

where ro,ifi-1 is the rigid body position vector of frame origin i with respect to i -1, 

and r e,i/i-1 is the elastic deflection given by the components of the shape function 

matrix for node i, 

(D.17) 

Similarly, vector r;/i-l is, 

r;fi-1 = ro,jfi-1 + re,jfi-1 (D.18) 

where r o,jfi- 1 is the rigid position of frame origin j with respect to i- 1, and r eJfi-J 

is the elastic deflection given by the components of the shape function matrix for 

node j, 

(D.l9) 
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Therefore, vector rji/i-1 can be written as, 

rji/i-1 - rj/i-1 - ri/i-1 

(D.20) 

Truss link i vector ri+1/i is also written using the similar notation, 

rj+1/i = ro,j+l/i + re,j+l/i (D.21) 

where again the flexible deformation r e,j+J /i of node j + 1 is modelled using the 

corresponding truss i shape function components, 

(D.22) 

The actuator vector rH1 fj consists of the cylinder link j length denoted as L1, and 

the extended length dj+1 of the piston-rod link j + 1, 

(D.23) 

where x signifies the X axis of link j, and is therefore represented vectorially as, 

(D.24) 

From these detailed descriptions of the vectors contained in the kinematic con-

straint eq.(D.14), the Newton-Raphson iterative scheme outlined in [Nikravesh'88], 

can be applied to obtain the dependent angles ()i and (}j of truss i and cylinder j, 

respectively. 

Now differentiating eq.(D.14) with respect to time, we obtain, 

where, from eq. 's(D.20) to (0.23) we have the following local vector rates, 

0 

(B{_l - BLJ )bi-1 (D.26) rii/i-1 

0 BI+lbi (D.27) rHl /i 

0 

ri+lh dj+JX (D.28) 

147 



0 

c 

Since only planar motion is examined for the truss structures considered in this work, 

then the angular velocities of frames i- 1, i, and j are about a common z axis, and 

can be written as, 

0 • 

Wi = Wi(z)Z = (wi-1(z) + Oifi-1(z) + fJi)z 
0 • 

Wj = Wj(z)Z (wi-l(z) + Ojfi-l(z) + fJj)Z 

(D.29) 

(D.30) 

The cross product operation for planar motion can be expressed in the form of, 

(0.31) 

where, matrix G is given by, 

(D.32) 

By using this operation, and substituting eq.'s (D.29) and (D.30) into eq.(D.25), 

yields, 

. . 
RiGri+l/i(Ji- RJGri+l/J(Ji ( Gr;i/i-1 - ~Gri+1/i + RjGrj+l/i) Wi-l(z} 

0 0 

-(RiGr;+J/i)Oifi-I(z) + (RiGr;+1/J)Ojji-l(z) 

(D.33) 

From the above, we can construct the coefficent matrix [('9] corresponding to the 

dependent angles (Ji and (Jj, given as, 

Substituting eq. 's(D.26) to (D.28), along with, 

Sifi-l(z) = B~~l(y)bi-1 

Sjji-l(z) Btl(y)bi-1 

into eq.(D.33) and premultiplying the result by the inverse of ('1h yields, 

148 

(D.34) 

(D.35) 

(D.36) 



0 

c 

+ [Cor1 
[( -RiGri+t/iBt_t(y) + RJGri+t/iBtt(y)) 

+(BLJ - BLt)] bi-1 

1 '+1 . 1 . -[Cor [RiB~ Jbi +[Cor [Rjx]d;+l (D.37) 

Note, that this is the form required in eq.(5.53) for the construction of the natural 

orthogonal complement for the system. 

The angular acceleration is obtained in a similar manner by differentiating eq.(D.25) 

with respect to time, to obtain in full vector notation, 

= Wi-1 X rji/i-1 Wi-1 X Wi-1 X rji/i-1 + 2Wi-1 X rji/i-1 + rji/i-1 (D.38) 

where the local vector accelerations are given by, 

00 

(BLt - BLJ )bi-1 (D.39) r Ji/i-1 -
00 '+1'' 

(D.40) r j+I fi B~ b· t t 

00 

dj+tX (D.41) r i+l/J = 

Therefore, substituting into eq.(D.38) the forms of frame angular accelerations for 

planer motion, given by, 

00 .. 

Wi = Wi(z)Z = (wi-1 (z) + 6 i/i-1 {z) + Bi)z 
00 .. 

Wj = Wj(z)Z = (wi-l(z) + Ojfi-1(z) + OJ)Z 

(D.42) 

(D.43) 

and using the planar cross product notation of eq.(D.31), yields for the dependent 

angular acceleration rates, 

[Grji/i-I - RiGri+t/i + RjGri+t!J]wi-J(z) 

+[G2
rji/i-t]Wi-1(z)

2
- [RiG2

rj+1/i]wi(z/ + [RjG2
ri+1/j]Wj(z)

2 

(D.44) 
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Note that the above equation is in terms of the angular velocities Wi(z) and Wj(z)• 

which are obtained by substituting the solution of eq.(D.37) into eq.'s (D.29) and 

(D.30). 
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Appendix E 

Truss Model 

The truss structure of Figure E.l originates from the 3D truss crane of 

[Mikulas et al. '88b]. The joint arrangement is modelled with an intermediate 3 mem­

ber truss section, mainly for simplification since the joint concepts of the original space 

crane would require more detailed modelling. The specific truss member designations 

of longeron, diameter, and batten, and the structure dimensions , are illustrated in 

Fig. 8.1 of Chapter 8. 

The actual members are of a tube geometry with 5.08 cm (2 inch) outer diameter 

and 0.15 cm (.06 inch) wall thickness. The material is a graphite epoxy with Young's 

modulus of 275 GPa (40 x 106 psi) and density of 1744 kgjm3 (0.063 lbm/in3). To 

establish an approximate 2D model of the 3D geometry, the material density and 

Young's modulus were scaled to account for the true number of truss members con­

tained within the structure. The Young's modulus was additionally scaled by 3/4 

inorder to examine a more flexible configuration. Hence, the following properties 

were used for the dynamic simulations presented in this thesis. 

The material density presented in the above Table for the end-batten also accounts 

for the mass distribution of a 300 kg platform mass. The cylinder and piston-rod 

components of the actuators were modelled with the same density as the diagonal 

members. The cylinder maintained the original tube outer diameter {5.08 cm) and 

wall thickness (0.15 cm), and it was assumed that the piston-rod diameter was the 
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Table E.1: Model properties of the planar truss crane. 

Member type Density Young's modulus Cross-sect. Area 
{kg/m3

) (Gpa) (m2) 

longeron 8000 412.5 2.3592 X 10 "4 

diagonal 4000 412.5 2.3592 X 10 "4 

batten 12000 618.7 2.3592 X 10 -4 

end-batten 8.49 X 106 618.7 2.3592 X 10 -4 

corresponding inner diameter of the cylinder. For the flexible link model of Section 

8.2.3, actuators 3 to 6 were modelled as static members with a Young's modulus of the 

longerons (but maintained the same dimensions of the actuator components). The 

element numbering configuration of Figure E.1 b pertains to the FE model presented 

in Figure 8.8. 
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