
Knowledge Transfer in Neural Networks:

Knowledge-Based Cascade-Correlation

François Rivest

School of Computer Science

McGill University, Montréal

July 2002

A thesis submitted to the

Faculty of Graduate Studies and Research

in partial fulfillment of the requirements of

the degree of Master in Science

© François Rivest, 2002

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothèque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 0-612-85820-0
Our file Notre référence
ISBN: 0-612-85820-0

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

TABLE OF CONTENT

TABLE OF CONTENT 1

ABSTRACT IV

RÉSUMÉ V

ACKNOWLEDGEMENT VI

CONTRIBUTION OF AUTHORS VII

STATEMENT OF ORIGINALITY VIII

INTRODUCTION 1

LITERATURE REVIEW 3

Neural Networks 3

Multilayer Backpropagation Networks 3

Cascade-Correlation Networks 8

Transfer of Knowledge in Neural Networks 12

Representational Transfer of Knowledge: Literal and Non-LiteraI Methods12

Functional Transfer of Knowledge: MTL. 18

Functional Transfer of Knowledge: Other Approaches 21

Symbolic to Neural Network Transfer 24

MANUSCRIPT 1 26

Abstract 27

1. Existing Knowledge and New Learning 28

2. Description ofKBCC 29

2.1 Overview 29

2.2 Networks and Units 29

2.3 Notation 31

2.4 Output Phase 32

2.5 Input Phase 33

2.6 Connection Scheme in KBCC 35

3. Applications ofKBCC 36

4. Finding and Using Relevant Knowledge 38

4.1 Translation 38

4.2 Sizing 43

4.3 Rotation 51

5. Finding and Using Component Knowledge 54

6. Summary of Learning Speed Ups 58

7. Generalization 59

8. Discussion 60

8.1 Overview ofResults 60

8.2 A Note on Irrelevant Source Knowledge 61

8.3 Relation to Previous Work 61

8.4 Advantages ofKBCC 63

8.5 Future Work 66

Author Note 67

References 67

CONNECTING TEXT 71

MANUSCRIPT 2 72

Abstract 73

1Existing Knowledge and New Learning 74

II Previous Work on Knowledge and Learning 75

III Description ofKBCC 76

IV Demonstration ofKBCC: Peterson-Barney Vowel Recognition 78

A. Experimental Setup 79

B. Early Learning Comparison 80

C. Learning Time Comparison 82

D. Learning Quality 83

E. Retention and 3rd Set Generalization 84

V Discussion 84

B. Acknowledgments 85

C. References 85

CONCLUSION 88

KBCC and Other Approaches 88

11

Discussion 89

Future Research 90

APPENDIX 1: KBCC MATHEMATICS 91

Cascade-Correlation Neural Networks 91

Notation 91

Activation 93

Gradient. 93

Hessian 94

Knowledge-Based Cascade-Correlation Neural Networks 95

Notation 95

Activation 97

Gradient 97

Hessian 98

Knowledge-Based Cascade-Correlation Objective Functions 99

Notation 99

Objective Function 99

Gradient 100

REFERENCES 102

Hl

ABSTRACT

Most neural network leaming algorithms cannot use knowledge other than what is

provided in the training data. Initialized using random weights, they cannot use prior

knowledge such as knowledge stored in previously trained networks. This manuscript

thesis addresses this problem. It contains a literature review of the relevant static and

constructive neural network leaming algorithms and of the recent research on transfer of

knowledge across neural networks. Manuscript 1 describes a new algorithm, named

knowledge-based cascade-correlation (KBCC), which extends the cascade-correlation

leaming algorithm to allow it to use prior knowledge. This prior knowledge can be

provided as, but is not limited to, previously trained neural networks. The manuscript also

contains a set of experiments that shows how KBCC is able to reduce its leaming time by

automatically selecting the appropriate prior knowledge to reuse. Manuscript 2 shows

how KBCC speeds up leaming on a realistic large problem of vowel recognition.

IV

RÉSUMÉ

La plupart des algorithmes d'apprentissage des réseaux de neurones ne peuvent

utiliser des connaissances autres que celles contenues dans les données d'entraînement.

Initialisés avec des poids aléatoires, ils ne peuvent utiliser de connaissances préexistantes

telles que celles contenues dans d'autres réseaux entraînés antérieurement. Cette thèse

traite de ce problème. Elle contient une revue de la littérature sur les algorithmes

d'apprentissage des réseaux de neurones statiques et constructifs pertinents et des

recherches récentes sur le transfert des connaissances entre les réseaux de neurones. Le

premier manuscrit décrit un nouvel algorithme, nommé KBCC, qui améliore l'algorithme

d'apprentissage cascade-correlation pour lui permettre d'utiliser des connaissances

préexistantes. Ces connaissances préexistantes peuvent être fournies sous forme de

réseaux de neurones entraînés. Le manuscrit contient aussi un ensemble d'expériences

montrant que KBCC est capable de réduire son temps d'apprentissage en choisissant les

connaissances préexistantes appropriées. Le second manuscrit montre comment KBCC

accélère son apprentissage sur un problème réaliste d'envergure: la reconnaissance de

voyelles.

v

ACKNOWLEDGEMENT

1am especially thankful to Professor Thomas R. Shultz. He gave me the

opportunity to start doing real research when 1was an undergraduate student, and for this,

1can never thank him enough. He gave me the latitude to develop the ideas 1had and that

1believed in, while providing me with the necessary support and feedback to bring those

ideas to life. 1will always be thankful to the trust he showed in my research abilities.

1 am also thankful to Professor Doina Precup for her support and guidance

through my graduate years at McGill. Her broad knowledge of my field allowed for

insightful, constructive supervision.

My work has also profited in one way or another from comments offellow

students David Buckingham, Reza Farivar, Jacques Katz, Sylvain Sirois, and Jean­

Philippe Thivierge. Faculty members Yoshio Takane and Yuriko Oshima-Takane also

contributed useful comments. The manuscripts profited from the comments of a few

anonymous reVlewers.

1was fortunate to be supported by a grant from the Natural Sciences and

Engineering Research Council of Canada and a grant from the Fonds de la Formation de

Chercheurs et l'Aide à la Recherche to Thomas Shultz and by a grant from the Centre de

Recherche Informatiqe de Montréal (CRIM) in collaboration with the Fonds de la

Formation de Chercheurs et l'Aide à la Recherche to me. 1am thankful to M. Pierre

Dumouchel, VP at CRIM, for his useful support and supervision while 1 was there.

Finally, 1would like to thank my parents for their continuous belief in me and

their encouragement in my academic aspirations. They were also always present in the

last year when 1needed a babysitter to be able to complete this work. 1am also thankful

to my wife Marie-Claude Bergeron for her continuous understanding and encouragement.

1would like to dedicate my thesis to my daughter Mélodie and to my next child

who should be bom soon.

VI

CONTRIBUTION OF AUTHORS

Professor Thomas R. Shultz is the first author of the first paper and second author

of the second paper. The original idea ofrecruiting whole, previously learned networks,

in addition to single hidden units, was due to Professor Shultz. l developed the

mathematics for KBCC, and implemented the algorithm, determining its details.

In the first paper, l developed KBCC and conducted the experiments and data

analysis. Design of the experiments was done coHaboratively with Professor Shultz.

In the second paper, professor Shultz contributed as my advisor, providing

feedback and suggestions at aH stages of my work.

vu

STATEMENT OF ORIGINALITY

Knowledge-based cascade-correlation (KBCC) is an original algorithm that l

developed that extends the cascade-correlation algorithm (Fahlman & Lebiere, 1991). It

is a new solution to the prob1em of transferring knowledge in neural networks that has

fewer limitations than previous work and a higher level of automation (see conclusion).

viii

INTRODUCTION

Artificial neural networks reappeared in the 80s after being dismissed for a long

period by the artificial intelligence community. It is only after they gained wide

acceptance as AI tools and cognitive models that the problem oftransfer ofknowledge in

neural networks really appeared as an important issue..

The problem became more important in the early 90s, when a large number of

applications based on neural networks were developed. Considering the huge amount of

time required to train them, any speed improvement that could be gained when training a

second version from a first one would be an asset. Similarly, considering the lengthy

process of gathering data to train a successful network, any generalization that could be

gained from re-using trained neural network knowledge to supplement the training set

would also be an asset. Neural networks were also widely used as models ofhuman

cognitive abilities or development. The fact that these networks start from scratch while

most human learning is based on prior experience (pazzani, 1991, Wisniewski 1995) is a

real-drawback. Moreover, simple re-training of a previously trained network on a new

task showed catastrophic forgetting of the prior knowledge (McCloskey & Cohen, 1989),

which is also inadmissible for any model of the human brain.

The interest in the topic of knowledge transfer in neural networks reached its

apogee in the mid 1990s. At NIPS 1995, there was a workshop organized by Baxter,

Caruana, Mitchell, Pratt, Silver and Thrun on Learning to Learn: Knowledge

Consolidation and Transfer in Inductive Systems.! The following year, there was a

special issue of Connection Science 8(2) on Transfer in Inductive System.

Although a large amount of research took place, many of the problems raised by

transfer ofknowledge in neural systems remain unsolved. Despite some partial success,

most applications and cognitive models are still built from scratch. Few solutions address

the problem of changes in input encoding and output encoding from previously trained

networks to new tasks. None address the unequal complexity of the various tasks a

network may have to learn during its life. And many solutions are heavily restricted in

1 http://www-2.cs.cmu.edll/afs/cs.cmll.edu/user/caruana/pllb/transfer.html

1

INTRODUCTION

how prior knowledge is represented. Finally, much of the knowledge transfer must still

be done by hand; for example, networks must usually be pre-selected to be reused.

This thesis is an attempt to improve knowledge transfer in neural networks by

presenting a novel algorithm called knowledge-based cascade-correlation (KBCC).

KBCC is based on Fahlman and Lebiere's (1991) cascade-correlation (CC) algorithm,

which was shown to model many cognitive development phenomena (Shu1tz & BaIe

2001, Buckingham & Shultz, 2000) as well as being able to dea1 with real applications

(Yang & Honavar, 1998). KBCC inherits many of the useful properties of CC.

Moreover, it has no restrictions in terms ofinput and output encoding of the prior

knowledge. The only restriction on the form of prior knowledge in KBCC is that it be in

the fotm of a function, and most knowledge can be represented in this way. KBCC

automatically searches for relevant knowledge and uses only what is necessary. It also

allows a new type of compositionality in knowledge transfer (see conclusion).

This manuscript thesis begins with a literature review of the existing work on

transfer of knowledge across neural networks. Then, the first manuscript, published in

Connection Science, describes the KBCC algorithm in detail. This description is followed

by a series of experiments showing how KBCC speeds up learning by using prior

knowledge as well as a series of experiments demonstrating KBCC's ability to choose the

most appropriate sources and integrate them to learn a solution to the target task. This

manuscript is fol1owed by manuscript 2, published in the Proceedings ofthe 2002

International Joint Conference on Neural Networks, which documents the ability of

KBCC to transfer knowledge on a large realistic problem. Finally, the conclusion

compares KBCC to other approaches mentioned in the literature review, explains how

KBCC addresses many important issues in knowledge transfer, and discusses further

research.

2

LITERATURE REVIEW

Neural Networks

Artificial Neural Networks encompass a wide range of architectures. This studyof

transfer ofknowledge in neural networks is restricted to the so-called feedforward

architecture. The justification for this choice is that, so far, most of the literature on

transfer ofknowledge in neural networks is on this architecture. Nevertheless, sorne

transfer methods could be ported easily to other architectures, and sorne cases will be

mentioned. Two types of feedforward networks have been studied for transfer of

knowledge: layered feedforward networks, usually trained using the backpropagation

algorithm, and cascaded feedforward networks, most often built and trained using the

cascade-correlation algorithm. The former is probably the most common type of neural

network. The latter is the basis of KBCC, a new algorithm 1 devised for the transfer of

knowledge. KBCC is described in detail in manuscript 1 and improved in manuscript 2.

Multilayer Backpropagation Networks

Often called backpropagation networks, this class of networks can be more

precisely described as multilayer feedforward neural networks trained using

backpropagation of the error signaL This section first describes the architecture of this

type of network, then its general training algorithm, and, finally, sorne of its known

properties.

Multilayer feedforward networks are made of two parts: layers of nodes, and sets

of weights, as shown in Figure 1. Layers are collections of neurons. In this type of

architecture, each layer feeds the next one through a set of weighted connections.

Usually, every unit of a layer feeds every unit of the next layer. But a unit cannot feed

any unit other than those on the next layer. If a unit was feeding a unit on a layer ahead

that is not the next one, this would be a cross-connection. If a unit was feeding a unit on

the same layer or on a previous layer, this would be a recurrent connection. The

multilayered feedforward architecture discussed here contains neither cross-connections

nor recurrent connections.

3

LITERATURE REVIEW

WHKOWIHl
B~

Il@ l:---"\:-----'ll

Im@ l"------,!U Hkl@ LKHkK@ 1'-----"

'--__J

Input Layer Hidden Layer 1 Hidden Layer K Output Layer

Figure 1: Generai muitilayer feedforward neural network topology.

UsuaUy, each layer is fed by the previous layer and by a bias unit, a constant

giving the basic activity (see Table 1). For simplicity, this bias unit is often implemented

as being part of the previous layer as shown in Figure 1. 1 Input uuits are usually linear

functions, i.e. their activation is given by the input pattern. For each non-input unit, its

input is given by the weighted sum of the previous layer activations times the weight

vector connecting the previous layer to the unit. This weighted sum is then passed

through the unit' s activation function to obtain its output, or activation level, that will be

an input for the next layer. The output layer activations corresponding to an input pattern

are the associated output pattern of the network.

Activation functions can have many forms. In the original work on perceptrons

(McCuUoch & Pitts, 1943, Rosenblatt, 1962), which generally had no hidden layers, the

{
OifX<O

activation function was a simple threshold function of the form f(x) = .
1 if x "è:. °

But Minsky and Papert (1969) showed that perceptrons could only solve linearly

separable problems. Two sets of points are linearly separable if and only if there exist a

hyperplane such that aU points of the first set are on one side of it and aU points of the

other set are on the other side of it. Moreover, this function has the disadvantage of not

1 Note that it is equivalent to have aH but the input layer fed by a single bias unit.

4

LITERATURE REVIEW

being differentiable everywhere, and, hence, does not work with gradient descent

optimization algorithms. The threshold function was therefore replaced by the sigmoid

f(x) = 1_ . and the hyperbolic tangent f(x) = tanh(x) functions2
. These functions are

l+e ln

sometimes called soft threshold functions because they are a good differentiable

approximation of the threshold function, as shown in Table 1. This led to a more general

architecture with multiple layers, first invented by Bryson and Ho (1969), and

popularized by Rumelhart et al. (1986) and the PDP Group in the mid-1980s. Many

other functions were also studied, such as the ramp (continuous piece-wise linear), the

augmented ratio of squares and the Gaussian. This last one is most often used in a slightly

different architecture called radial basis networks, or networks of radial basis functions.

Table 1 lists these functions with their mathematical definition and their graph. Note that

an the functions mentioned above can be adjusted to match the desired output range using

an affine transform of the form af(x)+b.

Table 1: Most cornrnon activation functions with their definition and their graph.3

Fundion Name Fundion Definition Function Graph

Bias 1
......._-\-_-_--._.... .- --_... --

os

0.6

DA

0.2

.().2 0.2 OA 0.6 0.6 1

Linear f(x) =x 1//0.5

., .{j.B ·06 ·0.4 -0.3-/ 02 0.41{ 0.6 0.8 1

./
/'

/'/
·0.5/"

/"
/"

",.,.....-'

/ ·1

2 ln the sigmoid function, the a parameter is the so-caHed temperature pararneter, usuaHy set to l in this

architecture

3 This list is based in part from Eberhart, Simpson and Dobbins (1996).

5

LITERATURE REVIEW

Threshold, step, or
f(X)={~ if e 1~-

1

x <
heaviside if :::: e 0.8x

0.6

0.4

0.2

·1 ·0.8 -D.6 -0.4 ·0.2 U 0.2 0.4,0.6 0.8 1

Ramp or continuous

f(X)~{;
if x < a ':1/piece-wise linear if a s x < fJ
if fJ

06

X ::::
1

/~
/ 0.2

/
/

·2 ·1
·TI 1 2,

Sigmoid or logistic
1

1
1 /_.-_...._...........

1

j(x) = 1 -ax 0.8 /+e 1
(

06 1

01

/
//J2

.-'/
·10 -8 ·6 ·4 .2 1J 2 4 , 6 8 10

Hyperbolic tangent j(x) =tanh(x) 1

/0.5

·10 ·8 -6 ·4 ·2
i

2 4 , 6 8 10

1
.01

/
j

--.._._".- ..._.__...__._.........---/ -1

Gaussian (X-,il)2 t·

j(x)=e-~ 1
f8
1
i 0.6

/ 0.4
/
1
1

0.2/
/

·4 ·2 2 , 4

6

LITERA.TURE REVIEW

Augmented ratio of
{ x'

1
/~---

- .-

f(x)= b+ X2 if x ;::: 0 0.6 ;'

(squares l

otherwise 0.6 /
0.4 1

)

!

i
112 /

-4 ·2 2 4 6 ,6 10 12 14

Training a multilayer feedforward neural network can be viewed as a

straightforward optimization problem, where the weights are the parameters to optimize,

and the SUffi squared error of the network on the training set is the objective function.

Most of the time, a simple gradient descent approach, requiring the derivative of the

objective function with respect to the weights, is used. Let Nw :9t IN
H 9t0UT be the

network function with weights W, where IN is the number of inputs and OUT the number

of outputs. Let t} c 9t IN be the set of input patterns and t} c 9t OUT be the

corresponding set of target patterns. If {op =N w(~)} c 9tOUT is the set of corresponding

output patterns produced by the network, then the objective function is given by:

E= III~-opf
p

(1)

where 111711 is the standard Euclidian norm of li . The update mIe for the weights using

gradient descent is then ~I+l) =~t) + A~t), where ~t) are the weights at time t,

A~t) = -1] BE ,and BE is the partial derivative ofE with respect to the weights W.
BW (t) BW (t)

This is usually called the backpropagation algorithm (BP). It is also current practice to

add a momentum term updating the weights with A~t) = -1] BE + a1l~t-l)' Assuming
BW(t)

a baIl in weight space at position Won the error surface E, the gradient gives the direction

and speed with which the ball should roll down from that position, while the momentum

is analog to its current speed and direction. The momentum term makes the baIl roll in a

direction that is in part due to the current form of the error surface and in part due to the

baIl' s current direction.

7

LITERATURE REVIEW

The objective function can also be modified to constrain the weights. By adding

the proper penalty term to the objective function, one can force the weights to be smaH

(add IWI) or as orthogonal as possible (Golden, 1996). The objective function can also be

modified to obtain invariance with respect to translation of the input by adding a penalty

term based on the value of the slope (Mitchell, 1997).Finally, the objective function can

also be the minimization of the cross-entropy of the output patterns (Hinton, 1989). In

that case, and under certain assumptions, the output units are the probability density

function ofthe output values, and the resulting algorithm (that does not need target

patterns) is an unsupervised learner generating an Independent Component Analysis

(ICA) (Comon, 1994) of the inputs. ICA is similar to Principal Component Analysis

(PCA) but on higher order statistics.

FinaUy, the optimization is in no way limited to the gradient descent algorithm.

For instance, Fahlman developed Quickprop, which uses an estimate of the second order

derivative (Fahlman, 1988). One could also use the second order Levenberg-Marquardt

algorithms, Shannon algorithms or general conjugate gradient approach (Golden, 1996).

More distributed algorithms could also be used, like the particle swarm optimization

algorithm (that requires first order derivative) or basic genetic algorithms (which do not

require derivatives and whose objective functions are caUed fitness functions), just to

name a few (Eberhart, Simpson & Dobbins, 1996).

An important known result about sigmoid-based multilayer feedforward networks

is that two layers (one hidden layer of sigmoidal units with an output layer of linear units)

are sufficient to approximate any continuous function to any arbitrary precision

(Cybenko 1989; Hornick et al. 1989). Moreover, three layers (two hidden layers of

sigmoidal units with an output layer of linear units) are sufficient to approximate any

function to any arbitrary precision (Cybenko 1988).

Cascade-Correlation Networks

Multilayer feedforward networks are said to be static, because their structure is

fixed at design time. A different approach is to use a network with a more dynamic

structure, beginning with only a minimal number of units and connections, and letting it

build its structure aH by itself. There are at least two techniques that have been developed

8

LITERATURE REVIEW

to do this, and they appeared around the same time: splitting node networks by Wynne­

Jones (1992) and cascade-correlation networks (CC) by Fahlman and Lebiere (1990).

This review is limited to the cascade-correlation architecture because it is the basis of the

algorithm developed in the manuscripts. Many other constructive algorithms have been

developed on the basis of cascaded networks and other similar architectures, sorne of

which, like CC, are based on the work done original1y by Gallant (1986). However, these

other constructive approaches are more often designed to build c1assifiers rather than

function approximators, which limits their use.

Cascade-correlation networks differ from backpropagation networks in two ways.

First, they do have cross-connections, and second, they construct their architecture

automatically. In order to build the network architecture, CC altemates between two

phases. In one phase, caHed the output phase, the weights feeding the output layer are

trained similarly to backpropagation networks to reduce the error signal. In the other

phase, the input phase, it is the weights feeding candidate units that might be instaHed in

the network that are trained.

A cascade-correlation network begins in output phase with only the bias unit, the

input layer and the output layer. An example of a new network would be given in Figure

2, if only the input and output layers and their connections were considered. The weights

are trained to minimize the sum of squared error as in backpropagation, usuaHy using

Quickprop. When the error stagnates, the network shifts to input phase.

9

LITERATURE REVIEW

Input Layer Output Layer

Figure 2: General cascade network topology.

The tirst step of the input phase is to initialize a pool of candidate umts. Those

units (usuaUy sigmoidor symmetric sigmoid) are fed by aU but the output units. Each

candidate is trained in paraUel to maximize its covariance with the error patterns. If

{ëp =ip - op } cmOUT is the set of error patterns, and {vpte m the set of corresponding

activations for candidate c, then its objective function is given by: 4

is the oth element ofvector ëp .(2)

Therefore, candidate units are biased toward being best at tracking the unresolved portion

of the problem. When their score (the value oftheir objective function) stagnates, the best

4 A generalized mathematical definition of the network topology, derivative and objective function can be

found in Appendix 1: KBCC Mathematics.

10

LITERATURE REVIEW

unit is kept and a set of output weights between the new unit and the output layer is

initialized with the proper sign (based on the sign of the covariance). The other

candidates are discarded. Once a candidate is recruited and installed, the network shifts to

output phase again.

Whenever the network reaches the leaming objective in output phase, the whole

process stops. A final CC network has an the possible cross-connections and looks as

shown in Figure 2. A particularity of tms algorithm is that aH the weights but the output

ones are frozen. Hence, the same network could be used to leam another task without

forgetting its knowledge stored in the hidden units (which are often considered to be

feature detectors).

Although CC in its original configuration has a lot of user defined parameters, in

theory it should need fewer than backpropagation networks. The reason is that CC finds

the right number ofhidden nodes to reach the necessary computational power aU by

itself. Prechelt (1997) found that Rprop, a gradient descent aigorithm using an adaptive

leaming rate and invented by RiedmiUer & Braun (1986), was less sensitive to parameter

variations than Quickprop. A debate still remains about whether hidden nodes shouid be

cascaded or not, but Baluja and Fahiman (1994) have found that having both types of

candidates (sorne that would be appended to the top most layer and sorne that would

create a new layer) seems an excellent tradeoff, leading to compact networks ofvery few

Iayers.

Two important reviews of CC need to be mentioned. Prechelt (1997) has

benchmarked different versions of CC on 42 different problems from the PROBENI

database. Few general results were found. One general finding was that CC was superior

for classification problems to an error minimization version of itself, wmch was superior

on regression problems. AIso, Waugh (1995) studied CC for function approximation,

benchmarking CC, special connection schemes in CC, connections pruning in CC, and

other extensions of CC. He found few positive improvements to CC, especiaHy on phase

stopping criteria and connections pruning. The literature contains more than a hundred

papers on CC or variations of it.

FinaUy, many of the variations discussed on HP learning can aiso be applied to

CC. The type of candidate units can be as diverse as for BP, a penalty term can be added

11

LITERATURE REVIEW

to the objective functions to favor certain properties, and the optimization algorithm is in

no way restricted to Quickprop. There also exists a recurrent version of CC (Fahlman,

1991).

Transfer of Knowledge in Neural Networks

There are different types oftransfer ofknowledge in neural networks. The most

important distinction is representational versusfunctional transfer (Pratt & Jennings

1996, Sîlver 2000). In representational transfer, it is the representation of the knowledge

that is transferred either directly or indirectly. Direct methods are either literaI or not For

example, a trained network can be copied, with (non-literaI) or without (literaI) minor

changes to its weights and structures. It could aiso be transformed into an intermediate

representation between its original and final representation (indirect method). On the

other hand, in functional transfer, the representation is not directly involved. In tms type

oftransfer, the knowledge is used to bias the training instead of the initial state of the

network (Silver 2000)5. The learning may be biased by extra patterns, in one way or

another, or the indirect use of previous learning experience.

This section will deal with both types oftransfer. First, there is a review of the

work on representational transfer, from direct literaI transfer to non-literaI methods. Then,

there is a review of the work on functional transfer ofknowledge. Finally, research on the

transfer of symbolic knowledge into neural networks is reviewed followed by a brief

summary of other related work. The new algorithm developed in this thesis, called

Knowledge-based Cascade-correlation, will not be covered here, because it is described

in detail in manuscript 1. KBCC transfers the knowledge representation, without limiting

that knowledge to any specifie representation. It will he compared with the other methods

presented here in the conclusion.

Representational Transfer of Knowledge: LiteraI and Non-LiteraI Methods

The simplest way to transfer knowledge from a trained network to a new network

learning a task is to literally copy the trained network and train it on the new task as

5 Pratt and Jennings (1996) have a slightly different defmition ofrepresentational and functional transfer.

Although both definitions are not totally incompatible, 1 found Silver's (2000) definition more appropriate.

12

LITERATURE REVIEW

shown in Figure 3. Although tm3 may sometimes accelerate the leaming, it may also slow

it down (Pratt 1993a) and reduce the target network accuracy (Martin, 1988, mentioned

in Pratt 1993b).Moreover, the re-trained network often loses its prior knowledge, a

problem called catastrophic forgetting (McCloslœy & Cohen, 1989). Forcing the hidden

layer to be as orthogonal (i.e., that weight vectors feeding hidden units are orthogonal)

and as distributed as possible seems to help, but it does not always work (French, 1992,

1994).

Trained Source
Network

Copy

Train the
Copy Network

Figure 3: LiteraI transfer of knowledge.

Cascade-correlation is one of the first successful examples of literaI transfer.

Because aIl but its output weights are frozen once trained, only the output weights change

when learning a second task. Hence, even if some new hidden units are added to its

structure, the network can very rapidly recover its prior knowledge by re-adjusting the

output weights properly. This is an example oftransfer through sequentiallearning as

shown in Figure 4.

13

LITERATURE REVIEW

Trained cc
Source Network

Copy

Frozen CC
Network Part Train like a

CC Network

Figure 4: Literai transfer of Imowledge using sequentiallearning on a CC network.

A similar approach was also used by Parekh and Honavar (1998). Using the

knowledge-based artificial neural network (KBANN6
) algorithm (Towell and Shavlik,

1994) to transform symbolic knowledge into a neural network, they used the inputs of the

CUITent task as well as the outputs of the knowledge-based network to generate the inputs

of a constructive algorithm. Note that this technique is not limited to symbolic

knowledge. Any network could be copied and used to generate extra inputs for a new

network to be trained. It is also not limited to constructive algorithms, it suffices that the

new network contains as many inputs as the target task does plus the number of outputs

ofthe prior knowledge as shown in Figure 5.

6 KBANN is discussed in the section on symbolic to neural network transfer.

14

Trained Source
Neïworks

Normal [
Inputs

Use Source .
Neïworks Outputs

~) [
As Extra. Ta.rget
Neïwork Inputs

LITERATURE REVIEW

Target Neïwork

Figure 5: LiteraI transfer of knowledge by using network outputs as extra inputs.

Another approach dose to literaI copying of a backpropagation network aIso

appears to acceIerate the Iearning ofcornplex tasks. Instead of training a large network on

sorne rnulti-output task, the task is fust decornposed into subtasks corresponding to

groups of different outputs. A srnall network is trained for each of these subtasks. The

networks are then integrated into a larger network, as shown in Figure 6. Once that

knowledge is transferred, the large network rnay be supplernented with sorne extra nodes,

wmch are trained on the full task. The whole network rnay then be refined through full

training. This approach, often called task decomposition, was used first used successfully

by Waibel (1989) and then re-evaluated by Pratt (Pratt, Mostow & Kamm, 1991).

15

Trained Source
NelYlorks

LITERATURE REVIEW

Train Glued Copies
With Extra Units

Gluing
NelYlorks

with Shared
Inputs

>

Extra
units

Figure 6: Tnmsfer of knowledge by gluing trained sub-neiworks together.

A similar idea proposed by Hinton7 was to copy the trained networks to initialize

a mixture ofexperts (ME) system (Jacobs, Jordan, Nowlan & Hinton, 1991). In this

model, a number of networks are trained in parallel, each on a subset of the training

patterns. At the output of the networks, there is a gating network that decides which

network output to use for a specifie input pattern. This leads networks to specialize on the

subset of patterns they are best at mapping. This model is shown in Figure 7.

7 Personal discussion at McGiU in February 2002.

16

LITERATURE REVIEW

Net\.vork Trained as an Adaptive
Mixture of Local Experts

Trained Source
Networks

Reuse
Net\.vorks as

Expert Sources
Gating

Net\.vork

Figure 7: Literai transfer of Irnowledge by using networks in a mixture of experts.

When prior knowledge is literally copied ta a new task, some of the hyperplanes8

generated by the first layer of weights can be a bad fit for the new task and hence, may

negatively affect the learning (when compared with a randomly initialized network)

(Pratt, 1993a, 1993b). In arder ta solve this issue, Pratt (l993a, 1993b) devised a new

algorithm called discriminality based transfer (DBT). The idea is ta measure the

discriminality of each hyperplane (unit in the first hidden layer). If a hyperplane is useful

for the new task, its weights are scaled up ta high values ta keep it in place during

learning. If a hyperplane is bad, its weights are reduced or even re-initialized ta random

values, assuming that a random hyperplane is more likely to become useful than a known

bad hyperplane. Once this weight adjustment is accomplished, the network is trained

using standard backpropagation.

8 A sigmoidal unit can he viewed at the extreme as a threshold function where the weighted SUffi at the

input determines a hyperplane. On one side ofthe hyperplane, the threshold unit is ON, on the other side, it

is OFF.

17

LITERATURE REVIEW

Pratt' s work:, the discriminality of a hyperplane is given by the mutual

information measure, as in the construction of sorne decision trees. Discriminality is used

to decide whether or not an existing hyperplane should be kept or changed. The mutual

information is given by:

Ml = ~(t,tx;,) log x;,} -t,x; logx; - t Xj logx; +NlogNl(3)

where N is the number ofpatterns, C the number of classes,} indexes over aH classes, i

indexes over the two sides of the hyperplane and x is the number of patterns in a given

class (x}), or on a given side of the hyperplane (Xi), or both (Xij) (from Mingers 1989 as

referenced by Pratt 1993b). Figure 8 and Figure 9 show examp1es, on a bi-dimensional

input space, of two hyperplanes, one with a poor and one with a good discriminality,

respectively.

x X
0 X

X X
__X X X

0

0 0 0

0 0 X
0 0

Figure 8: Hyperpbme with

poor discriminability.

Figure 9: Hyperplane with

good discriminability.

Pratt's (1993a, 1993b) results suggest that this method has aH the advantages of

literaI transfer without the drawbacks. She also surveyed a few other techniques related to

weight adjustment in knowledge transfer, but they seemed to have less success. She also

surveyed other knowledge transfer techniques (pratt & Jennings 1996), sorne ofwmch

were not included in tm3 thesis.

Functional Transfer of Know1edge: MTL

A different approach is to use only the network functionality rather than its

implementation. In order to do that, Silver (2000) developed a technique based on results

18

LITERATURE REVIEW

for multi-task leaming by Baxter (1996) and Caruana (1995). The key idea is that when

leaming multiple tasks at the same time, the first set ofweights of a two-Iayer neural

network will build up a common representation useful to as many of the tasks as possible.

In psychological terms, knowing about several problems related to the same concept

gives a better grasp ofthat concept.

Baxter's (1996) work was mainly theoretical. He considered a multiple output

network with each output corresponding to a different task and with at least a common

hidden layer leading to aIl outputs. He showed that increasing the number of tasks

reduced the necessary number of training patterns. More precisely, he showed that if

O(a) is the minimum number of patterns necessary to learn a single task, and if O(a +b)

is the minimum number of patterns to learn several tasks independently, then the network

learning the tasks simultaneously requires only O(a +bjn) patterns, where n is the

number of tasks.

Caruana's (1995) work was more empirical, but he provided a few reasons why

learning multiple related tasks should be better than single task learning. The most

important one is the fact that the hidden layer has pressure from aH tasks, and hence,

should find a better hidden representation. His empirical results showed that multi-task

learning networks (MTL) generalized better than single-task learning networks (STL).

Silver (Silver & Mercer, 1998; Silver, 2000) used MTL in conjunction with

pseudo-rehearsing to transfer prior knowledge in new learning. He called this technique

the task rehearsal method (TRM). Given a number of sources ofknowledge for a total of

Sn outputs and a target task of Tnoutputs, let the new network to train have Tn + Sn

outputs, one for each task output, as shown in Figure 10. The input patterns are first

processed through the source networks. Then, the resulting output patterns are

concatenated with the target patterns to generate the training set of the new network. This

process of passing new input patterns through old networks to generate target patterns is

called pseudo-rehearsal, where normal rehearsal would imply using the original patterns

only. The network thus ends up relearning aU the tasks that were part of the source

knowledge at the same time as the new task, while generating at the hidden layer, a set of

features that are likely to be useful for more tasks (a common representation) than if the

network was trained only on the new task.

19

Trained Source
Networks

LITERATURE REVIEW

Multi-Task Network

'--__......1 ,-1__---'

Use Source
Networks to

)
Generate Extra
Output Targets

Common
Representation

Task
Specifie

New Task

]
Source
Tasks

Figure 10: Functional transfer of knowledge tbrougb muUi-task learning.

Silver (2000) has also shown that this procedure could be used on impoverished

training sets, i.e., sets that contain too few patterns for proper learning. By generating

extra input patterns and using them to generate extra outputs, the extra training that the

hidden layers get from training the extra outputs (outputs matching the source networks

outputs) may help the network discover the right internai representation for the target

task.

Silver (Silver & Mercer, 1996, Silver, 2000) also developed a variant ofmulti­

task learning (MTL) called 7JMTL. The idea is to give each extra output a different

leaming rate from the target task. This is justified by the fact that the learning of those

source tasks is not important in itself. What is important is the effect that learning them

has on the internaI representation of the network. The key is to evaluate, as training goes,

how those source outputs relate to the target outputs. The more they relate, the doser

their learning rate can be to the one of the target task. Unrelated tasks should be given

very small learning rates, hence applying less pressure on the internaI representation and

reducing their potential interference. The learning rate 'l7k for task k is given by:

20

- tanh(l/SSEk • 1 J
TJk - TJ di + & RELMIN '

LITERATURE REVIEW

(4)

where, assuming a single target task k = 0, TJ is the target task learning rate, SSEk the sum

squared error of the output k, dk the distance between the weight vector feeding output 0

and output k, E > 0 and RELMIN the parameter controlling the rate of decay.

OveraH, knowledge transfer using pattern generation and llMTL fins two goals,

gaining efficiency (speed oflearning) and effectiveness (accuracy). Silver's work has

acrueved sorne success inboth of these goals.

Functional Transfer ofKnowledge: Other Approaches

Another approach is the idea ofmeta-learning developed by Naik and Mammone

(1992). The general idea is to have a meta-network that learns how to learn as shown in

Figure Il. Here, no direct prior knowledge is available, only traces of prior learning

experiences are present. In the case ofNaik and Mammone (1992), the meta-network

receives as input the CUITent weights of the network under training. Hs output is a

prediction of the fmal weights of the network under training. Predicted final weights and

CUITent weights are used to estimate an optimal weight direction and distance to move in

that direction. This term is added to the standard weight update role of backpropagation.

Naik and Mammone (1992) showed that when the rneta-network was trained on similar

tasks, the algorithm converges faster than normal backpropagation and is less sensitive to

initial weight values.

21

LITERATURE REVIEW

Meta-Learning Netw'ork

\
Expected

W

Figure Il: Functional transfer of knowledge through meta-Iearning.

Another dual network architecture is the idea of self-refreshing memory. The

work of Ans and Rousset (2000) is a recent example of this oIder idea. Their specifie

network architecture is not covered here. Gnly the general scheme is described in this

review. The mode! requires two similar networks, as shown in Figure 12. First, network 1

is trained on a task. Then, random input patterns are generated and processed through

network 1 to generate outputs. These input-output pairs are then used to train network 2.

Hence, network 2 is trained through pseudo-rehearsal of network 1. This process transfers

the knowledge stored in network 1 to network 2. When network 1 needs to be trained on

a new task, its training set is augmented by pseudo-rehearsed patterns from network 2.

This way, network 1 learns the new task as weH as its oid knowledge, which it can

refresh from the 'storage' represented by network 2. The main advantage of this

technique is that it reduces catastrophic forgetting on sequentiallearning.

22

LITERATURE REVIEW

Relearning Nemork 2

Training
Patterns

Pseudo­
Rehearsed '>.

Patternj...~ ~. 1

<...
...........

...........
...........

...........
...........

Learning a;)a l"letea·rning Nemork 1
...........

...........
..........

...........
...........

...........
...........

..."

/"
~

/'
Pseudo­

Rehearsed
Patterns

Figure 12: Fuuctional transfer of lmowledge through self-refreshing memory.

The last approach to functional transfer of knowledge covered here is called

explanation based neural network (EBNN) and was develop by Thrun and Mitchell

(1993). EBNN is a connectionist version of the symbolic explanation based learning

algorithm (EBL). To rnaintain the analogy with EBL, it requires sorne dornain theory and

a standard training set for the new task. The domain theory must take the form of a

differentiable function (as in KBCC, see rnanuscript 1). It could be a previously trained

neural network or a KBANN (see next section) for example. Here, the prior knowledge

will be used to explain the training data and help the target network to leam better.

23

LITERATURE REVIEW

Given a set of input and target patterns (t }and ~}), EBNN first processes the

input patterns through the source network. This gives a set of output patterns ({sp}). Then

it computes the derivative of the source knowledge output with respect to its input

({asp / a~}). These values are the explanation of each target pattern. The target network

is trained to learn the target values (~ }) as well as the source knowledge derivative

values ({asp / a~}) using Tangent prop (Simard, Victorri, LeCun & Denker, 1992), as

shown in Figure 13. Tangent prop is a variation ofbackpropagation that trains a neural

network to fit not only its output to target values, but also its output derivative to target

derivative values. The effect of learning derivatives is to learn existing invariances in the

target function. The learning rate associated with the derivative of each pattern is

determined by the distance between the target value and the source output

(1]p =1-lIsp -""ip 11/c), i.e., by how much the source knowledge explains the data.

Source Network

Use Source
Network to

)
Generate Extra

Derivative Targets

Target Network Trained
Using Tangent Prop

Figure 13: Functional tnmsÏer of knowledge through invariance leaming.

Symbolic to Neural Network Transfer

A slightly different problem is how to transfer symbolic or rule based knowledge

into a new neural network. Pseudo-rehearsing methods partially answer this problem

because, if the symbolic rules can be used as functions to generate target patterns, they

24

LITERATURE REVIEW

can be used with MTL or a dual memory model. But this approach is based on releaming,

which is not necessarily the way one may wish to reuse prior knowledge. Towell and

Shavlik (1994) devised an algorithm specially made to integrate rules into a neural

network named KBANN (knowledge-based artificial neural network). Their goal was to

refine rule-based knowledge using neural networks as an intermediate step. They devised

KBANN to transform rules into a network. The network was then trained on data for

improvement and then rules were re-extracted from it using another algorithm. KBANN

could be use to generate an initial network from which one could transfer knowledge to

some other neural networks using the methods previously mentioned, or even KBCC (see

manuscript 1). The work ofParekh and Honavar (1998) as well as Thrun and Mitchell

(1993) are two examples where this technique could be applied.

25

MANUSCRIPT 1

Knowledge-based Cascade-correlation: Using Knowledge to Speed Learning

Thomas R. Shultz and François Rivest

Laboratory for Natural and Simulated Cognition

Department of Psychology and School of Computer Science

McGill University

http://www.tandf.co.uk. Reprinted, with permission, from:

Shultz, T.R. & Rivest F. (2001) Knowledge-based Cascade-correlation: Using

Knowledge to Speed Learning. Connection Science 13(1):43-72.

26

MANUSCRIPT 1

Abstract

Research with neural networks typicaily ignores the role of knowledge in Iearning

by initializing the network with randomconnection weights. We examine a new

extension of a well-known generative algorithm, cascade-correlation. Ordinary cascade­

correlation constructs its own network topology by recruiting new hidden units as needed

to reduce network error. The extended algorithm, knowledge-based cascade-correlation

(KBCC), recruits previously leamed sub-networks as weil as single hidden units. This

paper describes KBCC and assesses its performance on a series of small, but clear

problems involving discrimination between two classes. The target class is distributed as

a simple geometric figure. Relevant source knowledge consists of various linear

transformations of the target distribution. KBCC is observed to find, adapt, and use its

relevant knowledge to significantly speed leaming.

27

MANUSCRlPT 1

1. Existing Knowledge and New Learning

Learning in neural networks is typically done "from scratch", without the

influence ofprevious knowledge. However, it is clear that people make extensive use of

their existing knowledge in learning (Heit 1994; Keil1987; Murphy 1993; Nakamura

1985; pazzani 1991; Wisniewski 1995). Use ofknowledge is likely responsible for the

ease and speed with which people are able to learn new material, although interesting

interference ofknowledge with learning can also occur. Neural networks fail to use

knowledge in new learning because they begin learning from initially random connection

weights.

Here we examine a connectionist algorithm that uses its existing knowledge to

learn new problems. This algorithm is an extension of cascade-correlation (CC), a

generative leaming algorithm that has proved to be useful in the simulation of cognitive

development (Buckingham & Shultz, 1994; Mareschal & Shultz, 1999; Shultz 1998;

Shultz, Buckingham, & Oshima-Takane, 1994; Shultz, Marescha1, & Schmidt, 1994;

Sirois & Shultz, 1998). Ordinary CC creates a network top010gy by recruiting new

hidden units into a feed-forward network as needed in order to reduce error (Fahlman &

Lebiere, 1990). The extended algorithm, called knowledge-based cascade-correlation

(KBCC), recruits whole sub-networks that it has already learned, in addition to the

untrained hidden units recruited by CC (Shultz & Rivest, 2000a). The extended algorithm

thus adapts old knowledge in the service of new leaming. KBCC trains connection

weights to the inputs of its existing sub-networks to determine whether their outputs

correlate weIl with the network's error on the problem it is currently learning. Consistent

with the conventional terminology of the literatures on analogy and transfer of learning,

we refer to these existing sub-networks as source knowledge and to the current learning

task as a target problem. These previously learned source networks compete with each

other and with conventional untrained candidate hidden units to be recruited into the

target network learning the current problem. As we discuss later, KBCC is similar in

spirit to reecnt neural network research on transfer ofknowledge, multitask leaming,

sequentiallearning, lifelong learning, input re-coding, knowledge insertion, and

28

MANUSCRIPT 1

modularity, but it incorporates these ideas by learning, storing, and searching for

knowledge within a generative network approach.

We first describe the KBCC algorithm, show its learning speed performance on a

number of learning problems that could potentially benefit from prior knowledge, and

then discuss its advantages and limitations in the context of the CUITent literature on

knowledge and learning in neural networks.

2. Description of KBCC

2.1 Overview

Because KBCC is an extension of CC, it uses many of CC's ideas and

mathematics. As we describe KBCC, we note particular differences between the two

algorithms. Both algorithms specify learning in feed-forward networks, adjust weights

based on training examples presented in batch mode, and operate in two phases: output

phase and input phase. In output phases, connection weights going into output units are

adjusted in order to reduce error at the output urnts. In input phases, the input weights

going into recruitment candidates are adjusted in order to maximize a modified

correlation between activation of the candidate and error at the output units. Networks in

both algorithms begin with only input and output units. During learning, networks

alternate between input and output phases, respectively, depending on whether a new

candidate is being recruited or not. We begin with the contrasting features of networks

and units, and proceed to discuss the output phase, input phase, and connection scheme.

2.2 Networks and Dnits

The major new idea in KBCC is to treat previously learned networks just like

candidate hidden units, in that they are aH candidates for recruitment into a target

network A sample KBCC network with two input units and a bias unit is pictured in

Figure 1. This particular network has two hidden units, the first of which is a sub-network

and the second ofwhich is a single unit. Later hidden urnts are installed downstream of

existing hidden urnts.

29

MANUSCRIPT 1

Outout

Q---/' :'\ "--------------------
;' : \ "

;' : " 4ll>..J 1 \ ~
J 1 \

J 1 \
f 1 \

1 1 \
f 1 \

J 1 \
f 1 \

;' l "f 1 \
f 1

1 1
f 1

1 1
1

1
1

1
f

f
1

1

Hidden 2

Hidden 1

Bias Inputs

Figure 1. A KBCC network with two hidden units, the first of which is a previously

learned sub-network and the second a single unit. The network is shown in the third

output phase. Dashed lines represent trainable weights, and solid Unes represent

frozen weights. Thin Unes represent single weights; thick lines represent vectors of

weights entering and exiting the recruited sub-network, which rnay have multiple

inputs and multiple outputs.

A single unit and a network both describe a differentiable function, which is what

is required for leaming in most feed-forward learning algorithms. In the case of a single

unit, such as hidden unit 2 in Figure l, this is a function of one variable, the net input to

the unit. Net input to a unit i is the weighted SUffi of its input from other units, computed

as:

Xi =Iwija j
j

(1)

(2)

30

MANUSCRIPT 1

where x is the net input to the unit. Other activation functions used in CC and KBCC are

the astgmoid (logistic sigmoid) and Gaussian functions, both in the range 0.0 to 1.0.

In the case of an existing sub-network, things are a bit more complicated because,

unlike a single unit, there may be multiple inputs from each upstream unit and multiple

outputs to each downstream unit, as illustrated by hidden unit 1 in Figure 1. For each

such sub-network, the input weights and the output weights are each represented as a

vector of vectors. Because the internaI structure ofa previously trained network is

known, it can be differentiated in order to compute the slopes needed in weight

adjustment, just as is commonly done with single hidden units.

In KBCC, there is a list of CUITent candidate networks, referred to as a parameter

called CandidateNetworksList.

We refer to the weights entering candidate hidden units and candidate networks as

input-side weights. The input-side weights are trained during input phases as explained in

section 2.5.

2.3 Notation

Before presenting the algorithm in detail, it is helpful to describe the notation used

in the various equations.

Wo 0: Weight between output Ou ofunit1 u and output unit o.
u'

WOu';c: Weight between output Ou ofunit u and input te of candidate c.

f:,p : Derivative of the activation function of output unit 0 for pattern p.

Vic focop : Partial derivative of candidate c output Oe with respect to its input ie for

patternp.

Vo,p: Activation of output unit 0 for patternp.

Voe,p: Activation of output De of candidate c for patternp.

Vou,p: Activation of output Ou of unit u for patternp.

To,p : Target value of output 0 for pattern p.

1 We use unit to refer to any of the bias, input, or hidden units except when otherwise stated. Hidden units

include both single units and sub-networks.

31

MANUSCRIPT l

2.4 Output Phase

In the output phase, aH weights entering the output units, called output weights,

are trained in order to reduce error. As in CC networks, KBCC networks begin and end

their learning career in output phase. The weights that fully connect the network at the

start of training are initialized randomly using a uniform distribution with range

[-WeightsRange, WeightsRange]. The default value is WeightsRange = 1.0. A bias unit,

with an activation of 1.0, feeds aIl hidden and output units in the network.

The output weights are trained using the quickprop algorithm (Fahlman 1988).

The quickprop algorithm is significantly faster than standard back-propagation because it

supplements the use of slopes with second-order information on curvature, which it

estimates with the aid of slopes on the previous step. Quickprop has parameters for

learning rate 5, maximum growth factor Ji, and weight decay y. The learning rate

parameter controls the amount of linear gradient descent used in updating output weights.

The maximum growth factor constrains the amount ofweight change. The amount of

decay times the current weight is added to the slope at start of each output phase epoch. 2

This keeps weights from growing too large. The default values for these three parameters

are 5 = 0.175/n, Il = 2.0, and y= 0.0002, respective1y, where n is the number of patterns.

The function to minimize in the output phase is the sum-squared error over aIl

outputs and aH training patterns:

(3)
o p

The partial derivative ofF with respect to the weight w" 0 is given by
",

(4)

The activation function for output units is generally the sigmoid function shown

in Equation 2. Linear activation functions can also he used for output units. When the

sigmoid function is used for output units, a small offset is added to its derivative to avoid

getting stuck at the flat points when the derivative goes to 0 (Fahlman 1988). By default,

this SigmoidOutputPrimeOffset = 0.1.

2 An epoch is a batch presentation of aH ofthe traning patterns.

32

MANUSCRIPT 1

An output phase continues until any of following criteria is satisfied:

1. When a certain nurnber ofepochs pass without solution, there is a shift to the input

phase. By default this nurnber ofepochs MaxOutputEpoch = 100.

2. When error reduction stagnates for few consecutive epochs, there is a shift to the

input phase. Error is measured as in Equation 3, and must change byat least a

particular proportion of its current value to avoid stagnation. By default, this

proportion, called OutputChangeThreshold, is 0.01. The nurnber of consecutive

output phase epochs over which stagnation is measured is caIled OutputPatience and

is 8 by default.

3. When aIl output activations are within sorne range of their target value, that is, when

1Vo,p - To,pl ~ ScoreThreshold for aH 0 outputs and p patterns, victory is declared and

learning ceases. By default, ScoreThreshold = 0.4, which is generally considered

appropriate for units with sigrnoid activation functions (Fahlrnan 1988). The

ScoreThreshold for output units with linear activation functions would need to be set

at the level of precision required in matching target output values.

2.5 Input Phase

In the input phase, a new hidden unit is recruited into the network. This new unit

is selected from a pool of candidates. The candidates receive input from all existing

network units, except output units, and these input weights are trained by trying to

rnaximize the correlation between activation on the candidate and network error. During

this training, aIl other weights in the network are frozen. The candidate that gets recruited

is the one that is best at tracking the network's current error. In KBCC, candidates include

not only single units as in CC, but also networks acquired in past learning.

N is the NumberCandidatesPerType, which is 4 by default. Weights entering N

single-unit candidates are initialized randomly using a uniform distribution with range

[-WeightsRange, WeightsRange] as in the output phase. Again, the default value is

WeightsRange = 1.0. For each network in the CandidateNetworksList, input weights for

N-l instances are also initialized. Each input-side connection ofthese units is initialized

using the same scheme as for the basic network weights, with one exception. The

exception is that one instance ofeach stored network has its weight matrix initialized

33

MANUSCRIPT 1

with weights of 1.0 connecting corresponding inputs of target networks to source

networks and weights of 0.0 elsewhere. This is to enable use of relevant exact knowledge

without much additional training. We caU tms the directly connected version of the

knowledge source. Activation functions of the single units are generallyaH sigmoid,

asigmoid, or Gaussian, with sigmoid being the default.

As in output phases, all ofthese input-side weights are trained with quickprop

(with E = 1. O/nh, 3 where n is the number ofpatterns and h is the number of units feeding

the candidates, f.l = 2.0, and r= 0.0000). The function to maximize is the average

covariance of the activation of each candidate (independently) with the error at each

output, normalized by the sum-squared error. For candidate c, the function is given by

G ~ ~~ ~(v'o' -V,JE,o' -E,j
c #Oc·#O· LLE;,p

o p

(5)

where Eois the mean error at output unit 0, and V Oc is the mean activation output Oc of

candidate c.

The output error at pattern p is

(6)
if RawError =true

otherwise
E = {(v:"p - To,p)

o,P (Vo,p - To,p)f:,p

Ge is standardized by both the number of outputs for the candidate c (#Oe) and the

number of outputs in the main network (#0). By default, RawError = false. 4

The partial derivative of Ge with respect to the weight Wo i between output Ou of
uoc

unit u and input ie of candidate c is given by

3 The lin (output phase) and lInh (input phase) fraction cannot be described as part of the objective

function oftheir respective phases as in standard back-propagation because & is not used in the quadratic

estimation of the curve in quickprop. It is a heuristic from Fahlman (1988) to set & dynamically.

4 The variation of the error function Eo,p, which depends on RawError, comes from Fahlman's (1991) CC

code (ftp://ftp.cs.cmu.edulafs/cs/projectlconnect/code/supported/cascor-vl.2.shar).

34

MANUSCRlPT 1

(7)

where ()0",0 is the sign of the covariance between the output Oc of candidate c and the

activation of output unit o.

An input phase continues until either of foUowing criteria is met:

1. When a certain number of input phase epochs passes without solution, there is a shift

to output phase. By default this MaxlnputEpoch = 100.

2. When at least one correlation reaches a MinimalCorrelation (default value = 0.2) and

correlation maximization stagnates for few consecutive input phase epochs, there is a

shift to output phase. Correlation is measured as in Equation 5, and must change by at

least a particular proportion of its current value to avoid stagnation. By defauit, this

proportion, caUed InputChangeThreshold, is 0.03. The number of consecutive input

phase epochs over which correlation stagnation is measured is called InputPatience

and is 8 by default.

When a criterion for shifting to output phase is reached, a set of weights is added

from the outputs of the best candidate to each output of the network. AIl other candidate

units are discarded, and the newly created weights are initialized with small random

values (between 0.0 and 1.0), with the sign opposite to that in correlation.

2.6 Connection Scheme in KBCC

Figure 2 shows the connection scheme for a sample KBCC network with two

inputs, two outputs, one recruited network, and a recruited hidden unit. The recruited

network, labeled Hl because it was the first recruited hidden unit, has two input units,

two output units, and a single hidden unit, each labeled with a prime (') suffix. The main

network and the recruited sub-network each have their own bias unit. Figure 2 reveals

that the recruited sub-network is treated by the main network as a computationally

encapsulated module, receiving input from the inputs and bias of the main network and

sending output to later hidden units and the output units. Other than that, the main

network has no interaction with the work of the sub-network.

35

MANUSCRlPT l

01 02

H2

I/'
/02'

Â
H1~

/ H1'

12'

12

11

B

Figure 2. Conuection scheme for a sample KBCC uetwork with two inputs, two

outputs, one recruited uetwork, and a recruited hidden unit.

3. Applications ofKBCC

To evaluate the behavior ofKBCC, we applied it to learning in two different

paradigms. One paradigm tests whether KBCC can find and use its relevant knowledge in

the solution of a new problem and whether this relevant knowledge shortens the time it

takes to leam the new problem. A second paradigm tests whether KBCC can find and

combine knowledge of components to learn a new, more complex problem comprised of

these components, and whether use of these knowledge components speeds leaming. In

each paradigm there are two phases, one in which source knowledge is acquired and a

second in which this source knowledge might be recruited to leam a target problem.

These experiments are conducted with toy problems with a well-defined structure so that

we can clearly assess the behavior of the KBCC algorithm. In each problem, networks

36

MANUSCRIPT 1

learn to identify whether a given pattern fans inside a class that has a two-dimensional

uniform distribution. The networks have two linear inputs and one sigmoid output.

two inputs describe two real~valued features; the output indicates whethèr this point is

inside or outside a class of a particular distribution with a given shape, size, and position.

The input space is a square centered at the origin with sides oflength 2. Target outputs

specify that the output should be 0.5 if the point described in the input is inside the

particular class and -0.5 if the point is not in the class. In geometric terms, points inside

the target class faH within a particular geometric figure; points outside of the target class

faH outside ofthis figure. Networks are trained with a set of225 patterns forming a 15 x

15 grid covering the whole input space including the boundary. For each experiment,

there are 200 randomly determined test patterns uniformly distributed over the input

space. These are used to test generalization, and are never used in training. We used this

task to facilitate design and description of problems, variation in knowledge relevance,

and identification of network solutions (by comparing output plots to target shapes).

These problems, although smaH and easy to visualize, are representative of a wide range

of classifier and pattern recognition problems. Knowledge relevance involved differences

in the position and shape of the distribution of patterns that feH within the designated

class (or figure). Degree of relevance was indexed by variation in the amounts of

translation, rotation, and scaling. So-called irrelevant source knowledge involved

learning a class whose distribution has a different geometric shape than the target class.

We ran 20 KBCC networks in each condition of each experiment in order to

assess the statistical reliability of results, with networks differing in initial output and

input weights. Learning speed was measured by epochs to learn. Use of relevant

knowledge was measured by identifying the source ofknowledge that was recruited

during input phases.

In these experiments, networks learning a target task have zero, one, or two

source networks to draw upon in different conditions. In each input phase of single

source experiments, there are always eight candidates, four of them being previously

learned networks and four of them being single unïts. In control conditions without

knowledge (no source networks), aU eight candidates are single units. These control

networks are essentially CC networks. In conditions with two source networks in

37

MANUSCRIPT 1

memory, there are three candidates representing one source network, three candidates

representing the other source network, and three single unit candidates. The reason for

having multiple candidates for each unit and source network is to be able to provide a

variety of initial input weights at the start of the input phase. This enables networks to try

a variety of different mappings of the target task to existing knowledge.

4. Finding and Using Relevant Knowledge

We did two kinds of experiments to assess the impact of source knowledge on

learning a target task. In one kind of experiment, we varied the relevance of the single

source of knowledge the network possessed to determine whether KBCC would learn

faster if it had source knowledge that was more relevant. In a second kind of experiment,

we gave networks two sources of knowledge, varying in relevance to a new target

problem, to discover whether KBCC would opt to use more relevant source knowledge.

To assess the generality of our results, we conducted both types of experiments with three

different sets oflinear transformations of the input space: translation, size changes, and

rotation. In aH of these experiments, KBCC networks acquired source knowledge by

learning one or two problems and then leamed another, target problem for which the

impact of the previously acquired source knowledge could be assessed. We first consider

problems of translation, then sizing, and finally rotation.

4.1 TranslationS

In translation problems, degree ofknowledge relevance was varied by changing

the position of two-dimensional geometric figures. The target figure in the second (or

target) phase oflmowledge-guided learning was a rectangle with width of 0.4 and height

of 1.6 centered at (-417, 0) in the input space. For translation problems, we first consider

the effects of single-source knowledge on learning speed in the target phase and then the

knowledge that is selected when two sources ofknowledge are available.

5 A preliminary version of the translation results were presented in Shultz and Rivest (2000a).

38

MANUSCRIPT 1

4.1.1 Effects of Single-source Knowledge Relevance on Learning Speed

In fuis experiment, networks had to learn a rectangle (named RectL) positioned a

bit to the left of center the input space, after having previously learned a rectangle, or

two rectangles, or a circle at particular positions in the input space. The various

experîmental conditions are shown in Table l, in terms of the name of the condition, a

description of the stimuli that had been previously learned in phase 1, and the relation of

those stimuli to the target rectangle (RectL). Previous, phase-l (or source) learning

created the various knowledge conditions for the new learning of the target rectangle in

the target phase. Conditions included exact knowledge (i.e., identical to the target), exact

but overly complex knowledge, relevant knowledge that was either near to or far from the

target, overly complex knowledge that was far from the target, and irrelevant knowledge.

In a control condition, networks had no knowledge at aH when beginning the target task,

which is equivalent to ordinary CC.

Table 1: Single-source Knowledge Conditions for Translation Experiments

Narne
RectL
2RectLC
RectC
RectR
2RectCR
Grele
None

Description
Rectangle centered at (-4/7, 0)
2 rectangles, centered at (-4/7,0) and (0,0)
Rectangle centered at (0,0)
Rectangle centered at (4/7, 0)
2 rectangles, centered at (0,0) and (4/7,0)
Grele centered at (0, 0) with radius 0.5
No knowledge

Relation to target
Exact
Exact/near, overly complex
Near relevant
Far relevant
Near/far, overly complex
Irrelevant
None

A factorial ANOVA of the epochs required to reach victory yielded a main effect

ofknowledge condition, F(6, 133) = 33,p < .0001. Mean epochs to victory in each

condition, with standard deviation bars and homogeneous subsets, based on the LSD post

hoc comparison method, are shown in Figure 3. Means within a homogeneous subset are

not significantly different from each other. Figure 3 reveals that exact knowledge,

whether alone or embedded in an overly complex structure produced the fastest learning,

followed by relevant knowledge, distant and overly complex knowledge and irrelevant

knowledge, and finally the control condition without any knowledge.

39

2RectlC~]

Rectl -6 1

~ RectC -j==E=3---l1]

'ë RectR j --1

<3 2RectCR ===:::E===t----I
Circle . 1

None -E 1

o 200 400 600

Mean epochs to victory

MANUSCRIPT l

800

Figure 3. Mean epochs to victory in the target phase of the translation experiment,

with standard deviation bars and homogeneous subsets.

Some example output activation diagrams for one representative network from

this simulation are shown in Figure 4. In these plots, white regions of the input space are

classified as being inside the rectangle (network response > 0.1), black regions outside of

the rectangle (network response < -0.1), and gray areas are uncertain, meaning that the

network gives a borderline, unclassifiable response somewhere between -0.1 and 0.1. The

225 target training patterns, forming a 15 x 15 grid covering the whole input space, are

shown as points in each plot. Figure 4a shows the source knowledge learned by this

network in the exact but overly complex condition. The two white regions indicate the

two rectangles constituting the target class for this condition. Such shapes are somewhat

irregular, even if completely correct with respect to the training patterns, because they are

produced by sampling the network on a fine grid of 220 x 220 input patterns.

40

a.

MANUSCRIPT 1

b.

c.

Figure 4. Output activation diagrams showing exact but overly complex source

Irnowledge (a), the target network at the end orthe tirst output phase (b), and the

targe! solution at the end orthe second output phase (c) arter recruiting the source

knowledge in (a).

Figure 4b shows this same KBCC system's output at the end ofthe first output

phase of target training. There are no white regions in tms plot because the network has

learned to classify most of the input patterns as being outside of the target c1ass; the

network is, on our definition, unsure of patterns within the first column of the input

space. Because only 33 of the 225 training patterns faIl witmn the target c1ass, this is the

best that the target network can do without any hidden units. Such behavior was common

for the first output phase of learning a small rectangular target in every condition of every

experiment reported in this paper.

41

MANUSCRIPT 1

Figure 4c shows tms network's final solution at the end of the second output

phase of target training, after having recruited the source knowledge shown in Figure 4a.

In this single-source experiment, exact but overly complex source knowledge was very

effective in speeding up learning, as reported in Figure 3. Comparison of Figures 4a and

4c suggests that KBCC uses the recruited source network only when the input

represented on the x-axis is less than about -3/14; otherwise it uses its direct input-to­

output weights. Examination of the output weights from the bias unît, the x-axis input

unit, and the recruited hidden network confirmed that this is the case. These weights are

such that the recruited hidden network can raise the weighted sum feeding the output unit

above 0.0 only in the region of the target rectangle. Notice how closely the shape of the

final solution in Figure 4c resembles that of the exacdy correct portion of the source

network in Figure 4a.

Because one of the candidate source networks is initialized using direct input

connections (i.e., weights that map input i to source network input i are set to 1.0 and an

others to 0.0), KBCC always recruits that candidate source first in exact knowledge

conditions. For 65% ofthese exact source networks, no further recruitment was

necessary; for the remaining 35%, sorne additional recruitment was necessary to adjust to

a few borderline patterns. A directly connected source candidate network was much less

likely to be recruited in the close (25%) and far (0%) relevant conditions.

4.1.2 Selection ofRelevant Knowledge from Two Sources

In this experiment, networks fust learned two tasks ofvarying relevance to the

target task of learning RectL, the rectangle placed slightly to the left of the origin. The

names of the various knowledge conditions, their relations to the target, and the mean

times each network was recruited during input phases of target learning are shown in

Table II. Descriptions of the figures designated by each condition name were provided in

Table 1. The two recruitment means in each row were compared with a (-test for paired

samples, except in the Exact vs. Relevant condition, where there was no variation in

either variable. In every other case, the mean difference was significant at p < .001, df=

19. The pattern of differences shows that target networks preferred exact knowledge,

even when it was embedded in overly complex knowledge. They also preferred simple

42

MANUSCRIPT 1

exact knowledge to overly complex knowledge that had exact knowledge embedded

within it. Interestingly, a circle source was more often recruited than a source rectangle

positioned at the right. Gnly two single-hidden-units were recruited by the 120 networks

in this experiment.

Table H: Dual-souce Knowledge Conditions and Mean Networks Recruited in

Translation Experiments

Name

RectL, RectR
RectL, 2RectLC
RectL, Circle
RectR, 2RectLC
RectR, Circle
2RectLC, Circle

Relation to target

Exact vs. Relevant
Exact vs. Overly complex
Exact vs. Irrelevant
Relevant vs. Overly complex
Relevant vs. Irrelevant
Overly complex vs. Irrelevant

Mean networks recruited
RectL RectR 2RectLC
1.0 0.0 nia
0.95 nia 0.15
1.05 nia nia
nia 0.15 1.25
nia 1.25 nia
nia nia 1.45

Circle
nia
nia
0.0
nia
2.55
0.15

The results ofthis dual-source experiment make sense given our analysis of the

single-source experiment. Exact source knowledge is preferred over inexact source

knowledge because it makes a nearly perfect match when accessed with direct

connections. Overly complex exact source knowledge is less apt to be recruited than is

simple exact source knowledge because it correlates less well with error in the case of

directly connected sources. Perhaps the circle source knowledge is recruited over the far

source rectangle because the circle is closer to the target rectangle even though it is the

wrong shape.

4.2 Sizing

In sizing problems, knowledge relevance was varied by changing the size of two­

dimensional geometric figures. The target figure in the second phase of knowledge­

guided learning was a rectangle as were the figures in several of the knowledge

conditions. Rectangles were always centered at (0, 0) in the input space and always had a

height of22/14.

4.2.1 Effects of Single-source Knowledge Relevance on Learning Speed

In this experiment, several knowledge conditions varied the width ofthe first­

leamed rectangle. Because scaling the width up and scaling the width down do not

43

MANUSCRIPT 1

produce the same results, we inc1uded conditions with either smaH or large target

rectangles. The various conditions, which also included irrelevant knowledge in the form

of a circle and no knowledge at aH, are shown in Table III.

Table lU: Single-source Knowledge Conditions for Sizing Experiments

Name
RectS
RectM
RectL
Circle
None

Description
Rectangle of width 6/14
Rectangle ofwidth 14114
Rectangle ofwidth 22/14
Center at (0, 0), radius 0.5
No knowledge

Relation to target RectL
Far relevant
Near relevant
Exact
Irrelevant
None

Relation to target RectS
Exact
Near relevant
Far relevant
Irrelevant
None

A factorial ANOVA of the epochs to victory when the small rectangle was the

target yielded a main effect ofknowledge condition, F(4, 95) = 103,p < .0001. The mean

epochs to victory, with standard deviation bars and homogeneous subsets, based on the

LSD post hoc comparison method, are shown in Figure 5. Relevant knowledge,

regardless of distance from the target, produced faster learning than did irrelevant

knowledge and no knowledge. This suggests that scaling down in size is not much

affected by the amount of scaling required. The relatively few epochs required in phase 2

indicates that scaling down in size is relatively easy for these networks to learn.

600500400300200100

Rectl 't=I:=J 1 J
BRectM~
:.g RectS~
8 Circle JCC=t==r--l

None Jt',~=======:E=r----!
------r-'----~-T---·~~--~·-----:

o
Mean epochs to victory

Figure 5. Mean epocbs to victory in the target phase of the sman rectangle condition

of the sizing experiment, with standard deviation bars and homogeneous subsets.

A factorial ANOVA of the epochs to victory when the large rectangle was the

target also yielded a main effect ofknowledge condition, F(4, 95) = 74,p < .0001, but

with a somewhat different pattern ofresults. The mean epochs to victory, with standard

44

MANUSCRIPT 1

deviation bars and homogeneous subsets, based on the LSD post hoc comparison method,

are shown in Figure 6. Exact knowledge yielded the fastest leaming, followed in tum by

near relevant knowledge, far relevant knowledge, and finally by no knowledge and

irrelevant knowledge. This means that scaling up in size gets more difficult with the

amount of scaling required. In this case, irrelevant knowledge did not speed up leaming,

as compared to the no-knowledge control. Examination of phase-l source acquisition

results confirmed that small rectangles were easier to leam than large rectangles, in terms

of both hidden units recruited and epochs to leam.

1000800600400200

RectL

c RectM
0

+:::.a RectSc
0

Ü None

Circie J
0

Mean epochs to victory

Figure 6. Mean epochs to victory in the target phase of the large rectangle condition

of the sizing experiment, with standard deviation bars and homogeneous subsets.

When leaming a small target rectangle, the percent ofnetworks recruiting a

directly connected source network decreased from 100% in the exact source knowledge

condition to 80% in the near relevant source knowledge condition to 45% in the far

relevant source knowledge condition. Figures 7 and 8 present output activation diagrams

for networks learning a small target rectangle, recruiting either near relevant or far

relevant directly connected source knowledge, respectively. Again, in both cases, there is

a striking resemblance between the shape of the source knowledge and that of the final

solution. As with translation experiments, the networks here leam to classify an pattems

as being outside of the target class during the first output phase.

45

a.

MANUSCRIPT 1

b.

Figure 7. Output activation diagrams for a network learning a sman rectangle,

showing near relevant source knowledge (a) and the final target solution at the end

of tbe second output pbase (Il) arter recruiting the knowledge in a.

a. b.

Figure 8. Output activation diagrams for a network learning a !iman rectangle,

showing far relevant source knowledge (a) and the final target solution at the end of

the second output pbase (Il) after recruiting tbe knowledge in a.

However, when learning a large target rectangle, networks do the opposite; that is,

they learn to classify aU patterns as being inside of the target class during the first output

phase. This is because many more of the training patterns (121 of225) faU within the

target class when the target is a large rectangle. The percent ofnetworks recruiting the

directly connected source network when learning a large target rectangle was 100% in the

exact and near source knowledge conditions and 75% in the far relevant source

46

MANUSCRlPT 1

knowledge condition. Figures 9 and 10 show output activation diagrams for networks

learning a large target rectangle, with either near relevant or far relevant source

knowledge, respectively.

a. b.

c. d.

Figure 9. Output activation diagrams for a network learning a large rectangle,

showing near relevant source knowledge (a) and target solutions at the end of the

second (1:», third (c), and fourth and final (d) output phases.

47

a.

c.

MANUSCRIPT l

b.

d.

Figure 10. Output activation diagrams for a network learning a large rectangle,

showing far relevant source knowledge (a) and target solutions at the end of the

second (1)), firth (c), and sixth and final (d) output phases.

Any lingering error during target learning, whether scaling down to a small

rectangle or scaling up to a large rectangle, involves patterns near the four corners of the

target rectangle, such corners being regions of intersecting hyper-planes being learned by

the network. When scaling down to learn a small target rectangle, network recruitment

sharpens these corners, making target learning rather fast. In contrast, when scaling up to

a large target rectangle, network recruitment smoothes these corners, thus prolonging

target learning in order to re-sharpen the corners. When scaling up to a large rectangle,

the amount of corner smoothing and eventual re-sharpening grows with the degree of

scaling. Because no additional sharpening of corners is required when scaling down to a

48

MANUSCRIPT 1

srnaU rectangle, learning speed is rather fast and does not vary with the degree of scaling

required.

Mean input connection weights for the critical x-axis input units learned in the

sizing experiment while recruiting a directly connected source network are plotted in

Figure Il. Because recruiting exact knowledge requires no rescaling of inputs, these

connection weights are about 1, regardless of the size of the target rectangle. With a sman

target rectangle, these weights increase with the amount of scaling required; with a large

target rectangle, these weights decrease with the amount of scaling required. Such trends

make sense because when scaling down to a sman target rectangle, the inputs to the sman

target would need to be scaled up with larger weights in order to effectively use the larger

source network. In contrast, when scaling up to a large target rectangle, the inputs to the

large target would need to be scaled down with srnaHer weights in order to effectively use

the smaller source network. During these recruitments, connection weights for y-axis

input units were always about 1 because rectangle height was constant, and aH other

connection weights were about 0 because they were unimportant.

..-
"É>2-+---
.~

c
ct!

~ 1

o
Small

Target

Large

• Exact

Close

DFar

Figure H. Mean input connection weigMs for x-axis input units learned in the sizing

experiment while recmiting a directly connected source network.

49

MANUSCRIPT 1

4.2.2 Selection ofRelevant Knowledge from Two Sources

In this experiment, networks first learned two tasks of varying relevance to the

target task. The names of the various knowledge conditions, their relations to the target,

and the mean times each network was recrnited during input phases are shown in Table

IV. The descriptions of the figures associated with each condition name were provided in

Table Ill. The two means in each row were compared with a t-test for paired samples.

Results are shown in the last two columns of Table IV. Exact knowledge was preferred

over relevant or irrelevant knowledge. Relevant knowledge was preferred over irrelevant

knowledge only when scaling down to a smaller rectangle. The large number of recrnited

networks in the relevant vs. irrelevant, scaling-up condition reflects the relative difficulty

of learning in this condition. Again, the longer that learning continues the more

recrnitment is required. In this experiment, two of the 120 networks each recrnited 1

single-hidden-unit, and two others recrnited 2 single-hidden-units, for a total of 6. AlI six

of these hidden units recrnited were aIl in the scaling-up conditions of the experiment.

Table IV: Dual-source Knowledge Conditions and Mean Networks Recruited for

Sizing Experiments

Name Relation to target Mean networks t(19) p<
recrnited
RectS RectL Cirele

Target: RectS
RectS, RectL Exact vs. Relevant 1.05 0.60 nia 3.33 .005
RectS, Cirele Exact vs. Irrelevant 1.00 nia 0.45 3.58 .005
RectL, Cirele Relevant vs. Irrelevant nia 1.50 0.45 4.70 .001

Target: RectL
RectL, RectS Exact vs. Relevant 0.15 1.20 nia Il.92 .001
RectL, Cirele Exact vs. Irrelevant nia 1.05 0.0 21.00 .001
RectS, Cirele Relevant vs. Irrelevant 2.65 nia 3.40 1.25 ns

The results ofthis dual-source sizing experiment make sense given our analysis of

the single-source sizing experiment. Exact source knowledge is preferred over inexact

source knowledge because it makes a nearly perfect match when accessed with direct

connections. When scaling down ta a small rectangle, relevant inexact source knowledge

is preferred ta irrelevant source knowledge because the recrnitment sharpens the critical

corners of the target figure, which is rectangular like the relevant sources. In contrast,

50

MANUSCRIPT 1

when scaling up to a large rectangle, there is no advantage for relevant source knowledge

because recruiting smoothes the critical target corners thus requiring additional re­

sharpening through further learning.

4.3 Rotation

In rotation problems, knowledge relevance was varied by rotating a rectangle of

size 1.5 x 0.5 or a cross comprising two such rectangles that were offset 90 degrees. AU

figures were centered at (0, 0). The target figure in the second phase of knowledge­

guided leaming was a vertically oriented rectangle (Rect90).

4.3.1 Effects of Single-source Knowledge Relevance on Learning Speed

In this experiment, networks had to learn a vertical rectangle (Rect90) after

having previously learned a rectangle or a cross or a circle. The various experimental

conditions are shown in Table V.

Table V: Single-source Knowledge Conditions for Rotation Experiments

Name
Rect90
Rect45
RectO
Cross90
Cross45
Circle
None

Description
Vertical rectangle
Diagonal rectangle
Horizontal rectangle
2 superposed rectangles
2 superposed rectangle forming diagonal cross
Circle centered at (0, 0) with radius 0.5
No knowledge

Relation to target
Exact
Near relevant
Far relevant
Exact/far, overly complex
Near, overly complex
Irrelevant
None

A factorial ANOVA of the epochs to victory yielded a main effect ofknowledge

condition, F(6, 133) = 20,p < .0001. The mean epochs to victory, with standard deviation

bars and homogeneous subsets, based on the LSD post hoc comparison method, are

shown in Figure 12. Exact knowledge produced the fastest learning, followed by exact

knowledge embedded in an overly complex structure and irrelevant knowledge, near and

distant relevant knowledge, distant and overly complex knowledge, and finally the

control condition without any knowledge.

51

MANUSCRIPT 1

Rect90 ,...--.--,
~

Cross90]c:: Circle

J
0

:;::;

]:.a Rect45
c::
0
u Recta

Cross45

None
""----' ~_·_·_·~---I

0 100 200 300 400 500 600

Mean epochs to victory

Figure n. Mean epochs to victory in the target phase of the rotation experiment,

with standard deviation bars and homogeneous sl.llbsets.

Figure 13 presents output activation diagrams for a network leaming a vertical

rectangle after recruiting directly connected, exact but overly complex source knowledge.

The target solution is accomplished by graduaHy shrinking the horizontal arms of the

recruited cross via more recruiting and adjusting of direct input-to-output weights. The

top and bottom of the vertical portion of the recruited cross (Figure 13a) resemble those

in the emerging (Figure 13b) and final target solutions (Figure 13c). The directly

connected version of the source knowledge was recruited by 100% of networks in the

exact knowledge condition and by 65% of networks in the exact but overly complex

condition. This explains why these two conditions showed the fastest leaming. In

contrast, most networks in other conditions either failed to recruit the directly connected

version of a knowledge source or failed to develop weights that could make effective use

ofthat recruitment. Nonetheless, an knowledge-Iaden conditions were superior in

leaming speed to the condition without any previous knowledge. It is difficult to pinpoint

the nature of aH of these advantages ofknowledge over no knowledge.

52

a.

MANUSCRIPT 1

b.

c.

Figure 13. Output activation diagrams for a network learning a vertical rectangle

arter recruiting directly connected exact but overly complex source knowledge (a).

Target solutions are shown at the end orthe second (b) and third and final (c)

output phases.

4.3.2 Selection of Relevant Knowledge from Two Sources

In this experiment, networks first leamed two tasks of varying relevance to the

target task of leaming a vertical rectangle (Rect90). The names of the various knowledge

conditions, their relations to the target, and the mean times each network was recruited

during input phases are shown in Table VI. The descriptions of the figures for each

condition were provided in Table V. The two means in each row were compared with a (­

test for paired samples. In each case, except the last, the mean difference was significant,

p < .001, df= 19. Exact knowledge was preferred over relevant, irrelevant, or overly

complex knowledge. Exact knowledge embedded within overly complex knowledge was

53

MANUSCRIPT 1

also preferred over relevant, but inexact knowledge. The nominally irrelevant cirde

networks were recruited more often than relevant, inexact knowledge and as often as

overly complex, but exact knowledge. Only one single-hidden-unit was recruited by the

120 networks in this experiment.

Table VI: Dual-source Knowledge Conditions and Mean Networks Recruited for

R.otation Experiments

Name

Rect90, RectO
Rect90, Cross90
Rect90, Cirde
RectO, Cross90
RectO, Cirde
Cross90, Circle

Relation to target

Exact vs. Relevant
Exact vs. Overly complex
Exact vs. Irrelevant
Relevant vs. Overly complex
Relevant vs. Irrelevant
Overly complex vs. Irrelevant

Mean networks recruited
Rect90 RectO Cross90
1.35 0.25 nia
1.00 nia 0.35
1.25 nia nia
nia 0.35 2.05
nia .60 nia
nia nia 1.25

Grcle
nia
nia
0.25
nia
2.00
1.15

The preference for recruiting exact and exact but overly complex knowledge

sources can be understood in the same terms used to analyze single source experiment on

rotation. Directly connected interpretations of these exact knowledge sources are often

recruited because they predict error very weIl, and once recruited they require very little

further modification.

5. Finding and Using Component Knowledge

In this paradigm, we tested whether KBCC can find and combine source

knowledge of components to leam a new, more complex target problem comprised of

these components, and whether use of these knowledge components speeds leaming. The

main component in these tasks is a 0.5 x 1.5 rectangle. The target task is a cross

(Cross90) formed by two superposed rectangles (RectO and Rect90). The transformation

used to create variation in knowledge relevance is rotation. AlI figures are centered at (0,

0). The various source knowledge conditions are shown in Table VU. Descriptions of the

various source knowledge components were provided in Table V.

Table VII: Source Knowledge Conditions for Component Experiments

Name
Cross90
RectO & Rect90

Relation to target
Exact
Both components

54

MANUSCRIPT 1

RectO
Rect90
Cross45
Rect45 & Rect135
Rect45
Rectl35
Cirde
None

1st component
20d component
Rotated 45 degrees
Both components rotated
1st rotated component
20d rotated component
Irrelevant
No knowledge

A factorial ANOVA of the epochs to victory yielded a main effect ofknowledge

condition, F(9, 190) = 50, p < .0001. The mean epochs to victory, with standard deviation

bars and homogeneous subsets, based on the LSD post hoc comparison method, are

shown in Figure 14. Exact knowledge produced the fastest learning, followed by

knowledge ofthe two exact target components, knowledge of one of the two exact target

components, aH other sorts of knowledge, and finaHy the control condition without any

knowledge.

1000800

]

600400200

Cross90 B---i

RectO & Rect90

RectO

Rect90

Rect45 & Rect135

Rect45

Cross45 1c::c::c::c::c:::E==3-----�
-1

Circle ~I======E3----I
Rect1351~======::E=3---1

l

None fË.--~.~~~~~~~,-;-~~~~~
o

c
o

:;:::;
:.a
c
o
()

Mean epochs to victory

Figure 14. Mean epochs to viciory in the target phase ofthe components

experiment, with standard deviation bars and homogeneous subsets.

Number ofhidden units recruited during the acquisition of source knowledge can

be used as an index of complexîty for single sources. These were subjected to a factorial

ANOVA, yielding a main effect ofknowledge condition, F(6, 133) = 236,p < .0001. The

55

MANUSCRIPT 1

mean number of hidden units recruited in the source acquisition phase, with standard

deviation bars and homogeneous subsets, based on the Scheffe method of post hoc

comparison, are shown in Figure 15. Single rectangles proved to be the simplest,

followed by the circle and the cross at 90 degrees, and finaHy the cross at 45 degrees.

.l::H

..t.T'I

:E-l
-'

~J
-~ .. - ~r 1

RectO l 8-1

Rect90

c Recl45
0
:E

Rect135"'0
c
0

Circle()

Cross90

Cross45

o 5 10 15

Mean hidden units

Figure 15. Mean hidden units recruited in the source-acquisition phase of the

components experiment, with standard deviation bars and homogeneous subseis.

Output activation diagrams are plotted in Figure 16 for a network learning the

cross target by recruiting its two basic components, the vertical and horizontal rectangles.

Figures 15a and 15b show the horizontal and vertical component sources, respectively.

Figures I5c, 15d, and I5e show the target network at the end of the first, second, and

third output phases, respectively. As illustrated in Figure I5c, when learning the cross,

the best solution without any hidden units is to classify aH patterns as being outside of the

target class because the target class contains only 57 of the 225 training patterns. The

third output phase was the final output phase for this network. This network recruited the

horizontal source rectangle first, followed by the vertical source rectangle, each in their

directly connected versions.

56

a.

MANUSCRlPT 1

b.

c. d.

e.

Figure Hi. Output activation diagrams for a network learning a cross target by

recruiting its two components (a and il). Target solutions are shown at the end ofthe

first (c), second (d), and thin.1 (final, e) output phases.

57

MANUSCRIPT 1

More generaHy, 81% of the source networks recruited in this condition were

directly connected versions. AH ofnetworks in the exact (un-rotated cross) knowledge

condition recruited the directly connected source network, and 90% were finished after

this single recruitment. In these recruitments (whether ofindependent source components

or exact source knowledge), the direct input-side connection weights were around 1 for

the x-axis and y-axis input units and around 0 elsewhere. Again, the shapes of the target

solutions closely resembled the shapes of the recruited source knowledge. Networks in

conditions with rotated source components did not, in general, exhibit such

straightforward behavior as did networks with these un-rotated components.

6. Summary of Learning Speed Ups

To compare the amount ofleaming speed up in the various experiments, we

computed several indices of speed up. For each experiment, we divided mean epochs in

the no-knowledge or irrelevant-knowledge condition by mean epochs in either the exact­

knowledge or best-inexact-knowledge condition. 6 Because the results were different for

scaling down to a small rectangle and scaling up to a large rectangle in the sizing

experiment, the indices were computed separately for the two versions of that

experiment. These indices of learning speed up, shown in Figure 17, range from 1.34 in

the irrelevantlbest-inexact measure in the rotation experiment to 15.51 in the none/exact

index in the components experiment. In general, knowledge speeds up learning

substantially everywhere, but there is considerable variation in the size of these effects.

Figure 17 shows tendencies for exact knowledge to be more beneficial than inexact

knowledge and for irrelevant knowledge to be more beneficial than no knowledge at aH.

Across indices and experiments, the overall mean speed-up factor is 5.29.

6 By "best" we mean fastest to learn.

58

18

16 Speed-up index

-+-Irreievantlexact
14

__ None/exact

.... 12 ~ Irrelevantlbest inexact
0
t5 -a-None/best inexact
J!'! 10
Cl.
:::l

1

8"0
li)
li)
Cl.
en 6

4

2

0

MANUSCRIPT 1

Translation Size down Size up

Experiment

Rotation Components

Figure 17. Speed-up factors in the various experiments in terms of mean epochs in

the no-knowledge or irrelevant-knowledge condition divided by mean epochs in

eUher the exact-knowledge or best-inexact-knowledge condition.

7. Generalization

Generalization tests with the 200 randomly determined test patterns are presented

in Table VIII in terms of the mean and standard deviation of percent misclassification by

KBCC networks in each experiment. The mean percent misclassification is 3%, and

never exceeds 7% in any experiment, indicating good generalization performance.

Table VUI: Mean and Standard Deviation of Percent Misciassification Error on

Test Problems

Experiment
Rotation!single
Rotation!dual
Translation!single
Translation! dual
Scale-up/single
Scale-downJsingle
Scale-up/dual
Scale-downJdual
Cross from components

Mean
.027
.025
.030
.023
.040
.031
.035
.020
.070

SD
.009
.010
.013
.012
.012
.015
.018
.011
.018

59

MANUSCRIPT 1

8. Discussion

8.1 Overview of Results

The present results show that KBCC is able to find, adapt, and use hs existing

knowledge in the learning of new problems, significantly shortening the learning time.

When exact knowledge is present, it is recruited for a quick solution. The more relevant

the knowledge is, the more likely it will be recruited for solution of a new problem and

the faster that new learning is likely to be. If KBCC knows the components of its new

task, then it recruits and combines those components into a solution, again with a

significant speed up in learning. These are the sorts of qualities one would expect in a

system that effectively uses its knowledge in new learning.

With a single source ofknowledge in memory, KBCC tends to learn fastest with

knowledge that matches the target exactly, followed by exact but embedded knowledge,

close and relevant knowledge, distant relevant knowledge, irrelevant knowledge, and no

knowledge at aIl. When learning a multi-component target task, KBCC learns faster with

knowledge of both components than knowledge of only one component. With multiple

sources ofknowledge, there is a tendency for KBCC to prefer to recruit sources in this

same order, that is, to recruit the source that allows it to learn faster. Many of these

results were traced to differential tendencies to recruit directly connected source

networks. Such source networks are more likely to be recruited when the knowledge is

exact or embedded, and is likely to speed learning.

Testing KBCC in the different domains of translation, sizing, and rotation

provided evidence on the generality of our conclusions. Although these domains differ in

their overall difficulty and in some aspects of the findings, there was considerable

generality in the results. For example, in learning a small rectangle, recruiting a source

rectangle sharpened the critical corners so that learning was fast and distance of relevant

knowledge was irrelevant to learning speed. However, in the more difficult problem of

scaling up to a larger rectangle, critical corners were smoothed by recruitment and had to

be relearned, thus increasing learning time in relation to distance of the source

60

MANUSCRIPT 1

knowledge. Thus, the patterns of results relating knowledge relevance to leaming speed

may be dampened or enhanced by various manipulations, but they are rarely reversed.

8.2 A Note on Irrelevant Source Knowledge

We had termed learning a circle as an irrelevant source knowledge because a

cirde lacks the critical1y important corners possessed by target and source rectangles. In

single-source experiments, KBCC networks recruiting circular source knowledge were

generaUy slower to learn rectangular targets than those recruiting rectangular source

knowledge. However, recruitment of circular source knowledge was typicaUy favored

over, and was faster than, recruitment of single hidden unÏts. In dual-source experiments,

recruitment of circular source knowledge was less preferred than recruitment ofexact

knowledge, but sometimes more preferred (in translation and rotation experiments) and

sometimes less preferred (in sizing experiments) than relevant knowledge. It is interesting

to speculate about the utility of supposedly irrelevant circular source knowledge in sorne

of these comparisons.

Single hidden units carve up a problem space with uniform hyper-planes, whereas

candidate networks built on circular concepts employa more complex geometry that may

be similar to that of the target concept, thus raising correlation during recruitment phases

and possibly lowering error during output phases. For example, both a rectangle and a

cirde separate inside patterns from outside patterns. When a different-shaped source is in

the same region as the target, it may become a desirable object to recruit because Ït can

correlate quite highly with target error. Such high correlations may lead to recruitment

but the need to sharpen corners to meet the additional requirements of rectangular targets

may prolong leaming, leading to even more recruitments (cf. the multiple numbers of

cirdes recruited in sorne conditions in Tables II, IV, and VI).

8.3 Relation to Previous Work

As noted earlier, the present work on KBCC bears some relation to previous

neural network research on knowledge transfer, multitask leaming, sequentiallearning,

lifelong learning, input re-coding, knowledge insertion, and modularity.

Pratt (1993) developed a technique caUed discriminability-based transfer that uses

the weights from a previously trained network to initialize a new network. This is

61

MANUSCRIPT 1

probably the most obvious and straightforward idea for using knowledge in new learning.

However, because it did not work as weIl as expected, Pratt improved the technique by

re-scaling the previous network's hyper-planes so that useful ones had large weights and

less useful ones had small weights.

Caruana (1993, 1997) pioneered Multitask Learning (MTL) in which he trained a

network on several tasks taken from the sarne domain in parallel, with a single output for

each task. Such networks typically learned a common hidden-unit representation, which

then proved useful for leaming subsequent tasks from the same domain. Baxter (1995)

proved that the nurnber of examples required for learning any one task in an MTL

paradigm decreases as a function of total nurnber of tasks leamed in paraUel.

Silver and Mercer (1996) developed a rnethod of sequentiallearning called task

rehearsal. Here, old tasks are pseudo-rehearsed during new leaming, generating patterns

that can be added to the those of the target task. In pseudo-rehearsal, the network

generates its own target vectors, using its CUITent weights, rather than rnerely accepting

them from the environment (Robins 1995). Separate learning rates for each task are used

to control the impact of each source task, ensuring that the most related tasks have the

most impact on leaming.

Thrun and Mitchell (1993) engineered a technique they called lifelong leaming, in

which a network meta-Ieams the slope of the desired function at each training example.

This is essentially the derivative of the function at an example output with respect to the

input attribute vector. Then, in new leaming, a meta-network makes slope predictions and

estimates its accuracy for each new training example. This technique seems to rely not so

much on knowledge representations as on search knowledge.

Clark and Thornton (1997) discussed the importance ofnetworks being able to re­

code their input in learning difficult, so-called Type-2 problems. Type-1 problems are

those that can be solved by sampling the originally coded input data. In contrast, Type-2

problerns need re-coding in order to use Type-l knowledge. Ability to do this would

require sorne degree of incrementallearning, modularity, and perhaps representational re­

description (Karmiloff-Smith 1992), but no specifie algorithm was proposed.

Shavlik (1994) presented the KBANN algorithm for creating knowledge-based

artificial neural networks. KBANN converts a set of symbolic mIes embodying domain

62

MANUSCRlPT 1

knowledge of a problem into a feed-forward neural network with the final mIe

conclusions as output units and intermediate mIe conclusions as hidden units. Connection

and bias weights are initialized to implement the conjunctive and disjunctive structures of

the rules. Networks thus initialized with knowiedge are then trained with examples to

refine the knowledge. Training is typically faster than with standard networks with

random weights and leads to better generalization. Fol1owing the training, symbolic mIes

can be extracted from the network.

Jordon and Jacobs (1994) proposed the Hierarchical Mixture of Experts (HME)

architecture to decompose a problem into network modules. Distinct network modules

become expert on subtasks, and cooperate on an overaIl solution using gating networks

that leam to weight the modular expert contributions for the different parts of the

problem. HME was found to leam the dynamics of a four-degree-of-freedom robot arm

much faster than a multi-Iayer back-propagation network did.

8.4 Advantages ofKBCC

In contrast to these previous methods for using knowledge in learning, KBCC

uses established techniques from generative learning algorithms (Fahlman & Lebiere,

1990). KBCC recruits existing networks as weIl as single units as it needs them in order

to increase its computational power in the service of error reduction. Treating its existing

networks like untrained single units, KBCC trains weights to the inputs of existing source

networks to determine whether their outputs correlate with the target network's erroI. In

addition, KBCC trains the output weights from a recmited network in order to

incorporate it into a solution of the CUITent problem. This process of adapting old

knowledge to new task allows for further recruitment of either additional networks or

single units. Indeed, the same network could be recmited more than once if this proved to

be desirable for leaming the target task. This adaptation of the outputs of the recruited

source network allows KBCC to use knowledge that is only partIy relevant to the new

task. The ability to adjust both incoming and outgoing weights with respect to a source

network gives KBCC considerable flexibility in its use of knowledge. The fact that units

and sub-networks are installed in a cascade allows KBCC to build its new learning on top

of any recruited knowledge.

63

MANUSCRlPT 1

KBCC may be one way of reducing a complex problem to a simpler, already

known problem, as recommended by Clark and Thornton (1997). When a network is

recruited, this effectively reinterprets a target problem as if it were an instance of a

known problem. Further recruitments and output weight adjustments then craft this

reinterpretation into a solution to the target problem.

During input phases, KBCC searches for the best linear transformation of the

target network's inputs in relation to its source networks. This enables a potentially large

range of input re-coding schemes. AU ofthe linear transformations that were tried in the

present simulations (translations, size-scaling, and rotation) produced satisfactory results

in the sense of faster learning.

A direct comparison on translation problems showed that KBCC was

considerably more effective than MTL in terms of speeding up learning (Shultz & Rivest,

2000b). In contrast to KBCC networks, MTL networks did not show any benefits of

knowledge in terms of increased learning speed. MTL networks had particular difficulty

extracting exact knowledge from an overly complex source network. Moreover, they

often failed to learn their assigned source problem and thus had to be replaced before

proceeding to the target phase. The primary reason that MTL does not speed the learning

of new tasks is that it requires both old and new tasks to be freshly learned in paraUel. In

contrast, KBCC recruits its old knowledge without having to relearn h.

Unlike many of the previous techniques for which both the inputs and outputs of

the source and target task must match precisely, KBCC can potentiaUy recruit any sort of

function to use in a new task. Source network inputs and outputs can be arranged in

different orders, employ different coding methods, and exist in different numbers than

those in the target network. Indeed, the only real constraint on what can be recruited by

KBCC is that it must be possible to find the first derivative for a recruitment object. This

need for the first derivative is due to the use of the quickprop algorithm for weight

adjustment. If numerical estimation or an optimization algorithm that did not require first

derivatives were used, even this restriction would disappear. This extreme flexibility

means that functions created by means other than KBCC hself could be recruited. The

wide range of recruitment objects would appear to offer considerably more power and

flexibility than most knowledge-based learners provide.

64

MANUSCRIPT 1

When a source network is recruited by KBCC, it is thereafter treated as a black

box module. Like the modules discussed by Fodor (1983), KBCCs recruited networks

are computationally encapsulated sub-systems that interact with the rest of the system

onlythrough their inputs and outputs. Although Fodor (1983) proposed that such

modules are innate and operate only in particular specialized areas such as perception and

language processing, it is now recognized that modules can be learned and also operate

within central cognition (Karmiloff-Smith 1992).

In contrast to larger and more homogeneous networks, modular neural networks

restrict complexity to be proportional to problem size, easily incorporate prior

knowledge, generalize effectively, learn multiple tasks, perform robustly, and are easily

extended or modified (Gallinari 1995). The solutions of modular networks should also be

easier to analyze than the solutions of homogeneous networks. Whatever recruited KBCC

modules do with their input would not change from the time of their initial acquisition,

although it still might be challenging to determine their role in the overall solution

reached by the target network. Unlike the HME approach to modularity, the sub-networks

in KBCC are gradually constructed through automatic learning rather than being

designed ahead oftime and being simultaneously present throughout the whole of

learning.

KBCC also implements a natural resistance to the retroactive interference that

often plagues sequentiallearning in neural networks (French 1992). Because each source

network is an unchanged module, it never loses its original functionality, no matter how

many times and ways that it is recruited. There is also no need to relearn old tasks while

learning new ones as in Silver and Mercer's (1996) task rehearsal method and in

Caruana's (1993, 1997) MTL.

KBCC aUows for a combination of learning by either analogy and/or induction.

KBCC learns by analogy to its current knowledge whenever it can and switches to a more

inductive mode if it needs to. Recruiting a network is learning by analogy, whereas

recruiting a single unit is learning by induction. Both processes are seamlessly integrated

in KBCC's approach to a new target task.

65

MANUSCRIPT 1

8.S Future Work

In tms paper, we assessed the speed up in learning that cornes from recruiting

existing relevant knowledge in the KBCC algorithm. KBCC should also be assessed for

the possibility that it could learn a problem more deeply and generalize more effectively

by virtue of recruiting such knowledge. Deeper learning and more effective

generalization was not apparent in the current work because learning was allowed to

proceed to eompletion in every condition.7 Even without any stored knowledge, KBCC,

which is then essentiaIly equivalent to ordinary CC, is powerful enough to learn these

non-linear problems by recruiting individual hidden units as needed. Assessing the

impact of knowledge on the quality of learning would require impoverished training sets

and/or assessments earlier in learning. This issue is the foeus ofwork that is currently

underway in our laboratory.

KBCC has so far been applied to only toy dernonstration problems, albeit

problems that might pose sorne difficulty for other learning algorithms. Use ofthese weIl

understood and easy to visualize problems enables us to explore the properties of KBCC

in sorne detail and with growing confidence that the algorithm is working appropriately.

Nonetheless, it would be interesting and important to try KBCC on real and even more

difficult problems and with a larger and more realistic array of source networks. A

number of realistic problems have already been the focus ofwork on knowledge transfer

in neural networks. These include problems in speech recognition, medical diagnosis,

DNA pattern discovery, and chess (Pratt 1993; Silver & Mereer, 1996). In addition to

exploring such realistic problems, we also plan to apply KBCC to the simulation of

psychologieal data on the use ofknowledge in learning.

A signifieant difficulty could be antieipated as a KBCC system aecumulates

extensive experience. The problem is that searching an extensive knowledge base of

source networks in input (recruitment) phases would become prohibitively expensive

computationally. It seems reasonable in such circumstances to focus that search on source

7 This is not to say that KBCC does not generalize weIL The generalization results in Table VIII show that

mean misclassification error on test problems was only 3%. The point made here is that there is not yet any

demonstration that recruiting existing knowledge by KBCC networks improves depth of leaming, as

indexed by superior generalization.

66

MANUSCRIPT 1

networks that could be expected to be particularly usefuL Focusing these recruitment

searches could perhaps be accomplished with weight-implemented heuristics such as

similarity in inputs and outputs, recency of learning, and externally provided hints about

what existing knowledge might be useful. In addition and perhaps more importantly, past

recruitment of particular source networks for particular problems might be used to

develop a task semantics that could further constrain these searches.

The CUITent version of KBCC is able to find and use its existing knowledge in

learning new tasks. This holds the promise ofbeing able to undertake more realistic

implementations of the kind of knowledge-based learning at which people excel.

AuthorNote

This research was supported by a grant from the Natural Sciences and

Engineering Research Council of Canada. This work has benefited from comments from

David Buckingham, Jacques Katz, Sylvain Sirois, y oshio Takane, and two anonymous

reviewers.

References

Baxter, J. (1995) Learning internaI representations. Proceedings of the Eighth

International Conference on Computational Learning Theory. Santa Cruz, CA:

ACMPress.

Buckingham, D. & Shultz, T. R. (1994) A connectionist model of the development of

velocity, time, and distance concepts. Proceedings of the Sixteenth Annual

Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Caruana, R. (1993) Multitask learning: A knowledge-based source of inductive bias.

Proceedings of the Tenth International Machine Learning Conference. San Mateo,

CA: Morgan Kaufmann.

Caruana, R. (1997) Multitask learning. Machine Learning, 28, 41-75.

Clark, A. & Thornton, C. (1997) Trading spaces: Computation, representation, and the

limits ofuninformed learning. Behavioral and Brain Sciences, 20, 57-97.

67

MANUSCRIPT 1

Fahlman, S. E. (1988) Faster-leaming variations on back-propagation: An empirical

study. In D. S. Touretzky, G. E. Hinton, & T. 1. Sejnowski (Eds.), Proceedings of

the 1988 Connectionist Models Summer School. Los Altos, CA: Morgan

Kaufmann.

Fahlman, S. E. & Lebiere, C. (1990) The cascade-correlation learning architecture. In D.

S. Touretzky (Ed.), Advances in Neural Information Processing Systems 2. Los

Altos, CA: Morgan Kaufmann.

Fodor, J. A. (1983) The Modularity of Mind. Cambridge, MA: MIT Press.

French, R. (1992) Semi-distributed representations and catastrophic forgetting lU

connectionist networks. Connection Science, 4, 365-377.

Gallinari, P. (1995) Training of modular neural net systems. In M. A. Arbib (Ed.), The

Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press.

Heit, E. (1994) Models of the effects ofprior knowledge on category learning. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 20, 1264-1282.

Jordan, M. I. & Jacobs, R. A. (1994) Hierarchical mixtures of experts and the EM

algorithm. Neural Computation, 6, 181-214.

Karmiloff-Smith, A. (1992) Beyond modularity: A Developmental Perspective on

Cognitive Science. Cambridge, MA: MIT Press.

Keil, F. C. (1987) Conceptual development and category structure. In U. Neisser (Ed.),

Concepts and Conceptual Development: Ecological and Intellectual Factors in

Categorization. Cambridge: Cambridge University Press.

Mareschal, D. & Shultz, T. R. (1999) Development of children's seriation: A

connectionist approach. Connection Science, Il, 149-186.

Murphy, G. L. (1993) A rational theory of concepts. The Psychology of Learning and

Motivation, 29, 327-359.

68

MANUSCRIPT 1

Nakamura, G. (1985) Knowledge-based classification of ill-defined categories. Memory

and Cognition, 13,377-384.

Pazzani, M. J. (1991) Influence ofprior knowledge on concept acquisition: Experimental

and computational results. Journal of Experimental Psychology: Leaming,

Memory, and Cognition, 17,416-432.

Pratt, L. Y. (1993) Discriminability-based transfer between neural networks. Advances in

Neural Information Processing Systems 5. San Mateo, CA: Morgan Kaufrnann.

Robins, A. V. (1995) Catastrophic forgetting, rehearsal, and pseudorehearsal. Connection

Science, 7, 123-146.

Shavlik, J. W. (1994) A framework for combining symbolic and neuralleaming. Machine

Learning, 14,321-331.

Shultz, T. R. (1998) A computational analysis of conservation. Developmental Science,

1, 103-126.

Shultz, T. R., Buckingham, D., & Oshima-Takane, Y. (1994) A connectionist model of

the learning of personal pronouns in English. In S. J. Hanson, T. Petsche, M.

Keams, & R. L. Rivest (Eds.), Computational Leaming Theory and Natural

Learning Systems, Vol. 2: Intersection between Theory and Experiment.

Cambridge, MA: MIT Press.

Shultz, T. R., Mareschal, D., & Schmidt, W. C. (1994) Modeling cognitive development

on balance scale phenomena. Machine Learning, 16,57-86.

Shultz, T. R., & Rivest, F. (2000a) Knowledge-based cascade-correlation. Proceedings of

the International Joint Conference on Neural Networks. Los Alamitos, CA: IEEE

Computer Society Press.

Shultz, T. R., & Rivest, F. (2000b) Using knowledge to speed leaming: A comparison of

knowledge-based cascade-correlation and multi-task leaming. Proceedings of the

69

MANUSCRIPT 1

Seventeenth International Conference on Machine Leaming. San Francisco:

Morgan Kaufmann.

Silver, D. & Mercer, R. (1996) The parallel transfer of task knowledge using dynamic

leaming rates based on a measure ofrelatedness. Connection Science, 8, 277-294.

Sirois, S. & Shultz, T. R. (1998) Neural network modeling of developmental effects in

discrimination shifts. Journal of Experimental Child Psychology, 71, 235-274.

Thrun, S. & Mitchell, T. (1993) Integrating inductive neural network leaming and

explanation-based leaming. In R. Bajcsy (Ed.), Proceedings of the Thirteenth

International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan

Kaufmann.

Wisniewski, E. 1. (1995) Prior knowledge and functionally relevant features in concept

learning. Journal of Experimental Psychology: Leaming, Memory, and Cognition,

21,449-468.

70

CONNECTING TEXT

The preceding manuscript introduced a new algorithm for knowledge transfer

caHed KECC. KECC was also evaluated for its ability to find and use relevant

knowledge to speed learning. The problems on which it was tested were oruy toy

problems and a major issue is whether KBCC can also work well on larger, more realistic

problems. The next manuscript attempts to answer this question by using KBCC on a

vowel recognition problem for which results with neural networks and sorne other

knowledge transfer algorithms are already known. The manuscript also presents sorne

improvements to KBCC.

71

MANUSCRlPT 2

Application ofKnowledge-based Cascade-correlation to Vowel Recognition

François Rivest and Thomas R. Shultz

Laboratory for Natural and Simulated Cognition

School of Computer Science and Department of Psychology

McGill University

© 2002 IEEE. Reprinted, with permission, from

Rivest F. & Shultz, T.R. (2002) Application of Knowledge-based Cascade-correlation to

Vowel Recognition. In Proceedings ofthe 2002 International Joint Conference on

Neural Networks, pp. 53-58.

72

MANUSCRIPT 2

Abstract

Neural network algorithms are usually limited in their ability to use prior

knowledge automatically. A recent algorithm, knowledge-based cascade-correlation

(KBCC), extends cascade-correlation by evaluating and recruiting previously leamed

networks in its architecture. In this paper, we describe KBCC and illustrate its

performance on the problem of recognizing vowels.

73

MANUSCRIPT 2

1Existing Knowledge and New Learning

Neural network algorithms rarely allow prior knowledge to be incorporated into

their learning. Most start from scratch and those that do use prior knowledge require that

knowledge to have a specific form, such as having the same architecture [1], being a

symbolic domain theory [2], or being given as hints [3]. However, prior knowledge can

often take the form of sorne existing classifier or function approximator and no algorithm

is flexible enough to permit the integration of such a wide variety of knowledge.

It is clear that humans do not learn from scratch, but make extensive use of their

knowledge in learning [4-6]. Use of prior knowledge in learning can ease and speed

learning and lead to better generalization as well as interference effects. The CUITent

difficulty in using prior knowledge is arguably the major limitation in neural network

modeling ofhuman learning and cognition. In this paper, we describe and test a neural

learning algorithm that implements a general rnechanism of knowledge reuse.

Knowledge-based cascade-correlation (KBCC) is a fundamental extension of

cascade-correlation (CC), a constructive learning algorithm that has been successfully

used in many real applications [7] and in simulations of cognitive development [8-13].

CC builds its own network topology by adding new hidden units to a feedforward

network in cascade fashion, i.e., new units receive inputs from each non-output unit

already in the network [14]. Our KBCC extension recruits previously learned networks in

addition to the untrained hidden units recruited by CC. These recruitable networks could

potentially be any functional form knowledge, although being differentiable is a must.

We refer to existing networks as source knowledge and to the current task to learn as a

target. Previously learned source classifiers or approximators compete with each other

and with standard hidden units to be recruited into the learning network.

In artificial bivariate dichotomous tasks, KBCC successfully recruited networks

representing parts ofa target task, equivalent-knowledge networks, and more complex

networks embedding equivalent knowledge, with substantiallearning speed ups [15].

KBCC was also shown to be superior to multi-task learning (MTL) in these respects [16].

74

MANUSCRIPT 2

II Previous Work on Knowledge and Leaming

K.BCC is similar to recent neural network research on transfer [1], sequential

leaming through multi-task learning [17], and knowledge insertion [2,18]. But KBCC is

more ambitious and principled because it stores and searches for knowledge within a

generative network approach and has no reallimitation in the structure of the recruited

knowledge.

Pratt studied the idea of transferring knowledge from a source neural network

to a target network through copying the network structures and parameters (weights). She

found that lîteraUy copying a network could sometimes slow down the training and

reduce generalization performance compared to random networks. She therefore

developed a technique to re-scale the weight vector feeding hidden units. If a hidden unit

has good discrimination power, its weight vector is scaled up to reduce training effects,

and conversely, if the discrimination hyperplane is bad, its weight vector is scaled down,

or even randomized, in order to avoid copying bad effects. This technique is limited to

discrete output networks where the target task requires a network at least as big as the

source network and where input and output perfectly matches the source network.

Silver and Mercer [17] developed a transfer of knowledge technique based on

Caruana's multi-task learning [19]. The basic idea derives from a proofthat if a network

has multiple relatedtasks to leam, it requires fewer examples to learn them, because the

hidden layer can develop a more general representation. Sîlver and Mercer' s idea is to re­

learn the prior knowledge while leaming the new task, in paraUel, on the same network.

The target network has an output for the target task, and extra outputs to represent each

source network' s outputs. Prior knowledge is used to generate the desired values for these

extra outputs to leam. This can be simply done by processing the input patterns through

the prior knowledge, thus permitting the prior knowledge to be any sort of function. This

still has a major limitation in that target inputs must match source inputs, and the new

network must be big enough to learn the prior knowledge. Moreover, relearning of prior

knowledge is required, which does not seem very efficient.

With a slightly different goal in mind, Towell and Shavlik [2] invented an

algorithm to transform rule-based knowledge into a neural network (K.BANN). The idea

was to refine that knowledge in neural network form and then to later extract improved

75

MANUSCRIPT 2

rules. We believe that this technique couid be used with KBCC, by taking rule-based

knowledge and transforming it into differentiable functionai form.

This kind of idea was also developed by Parekh and Honavar 8], who proposed

to use KBANN in conjunction with constructive algorithms. KBANN was used to create

a neural network that would serve as a basis for a constructive algorithm that could build

on the source knowledge outputs and inputs. Again, tms requires the same encoding for

prior and new knowledge. Moreover, it does not allow composition of prior knowledge

like most other approaches.

nI Description of KBCC

Because KBCC is a generalization of CC, it is quite similar to CC. As in CC,

candidates are installed on top of the network, just below the output; hence new units

receive inputs from every non-output unit already in the network. Unlike CC, KBCC is

not limited to a pool of candidate units that are univariate single-valued functions. KBCC

can recruit any multivariate vector-valued component. The connection scheme in KBCC

as shown below is similar to the CC connection scheme, except that a hidden unit may

have a matrix of weight connections (as opposed to a single vector) at their inputs and

their outputs as shown in figure 1.

76

MANUSCRIPT 2

Figure 1: A KBCC network witb four bidden units. The first one is an existing

classifier, the second one is an existing approximator, and the last two are single

sigmoid units. Dash Rines represent single weigbts, while soHd tbin Hnes represent

weight vectors, and soHd tbick Hnes weight matrices.

KBCC training is composed of two phases: In output phase, only the weights

feeding the output units are trained. In input phase, only the weights feeding the

candidate units (and networks) are trained.

The network begins in output phase with a set of output units fully connected to

the inputs. These weights are trained to minimize the sum squared error:

(1)
o p

Where Vo,p is the network output 0 at pattern p and To,p the corresponding target

value. The training uses QuickPropl [14], a gradient based algorithm that employs the

CUITent and previous gradient to estimate the second order derivative ofthe objective

1 Although training is not limited to QuickProp.

77

MANUSCRIPT 2

function with respect to the weights to be trained. The output phase stops either when it

successfully learns the task, or when the sum squared error stagnates or a maximum

number of epochs is reached, in which case the algorithm goes into input phase.

The input phase begins by initializing a pool ofcandidate units and networks (or

other functional knowledge) with random weights from every non-output unit of the

target network to the candidate inputs. These weights are then trained using QuickProp to

maximize the covariance between the candidate outputs and the target network residual

error:

(2)

o p

Where Eo,p is the error at output unit 0 for pattern p, Ve is the candidate output

patterns, Ethe network error patterns and IIq(the Frobenius norm ofmatrix

C=Cov(Ve,E) defined as:

IlCr =~Ci~)
i,)

(3)

Again, whenever the best score max{Ge} stagnates, or a maximum number of

epochs is reached after a minimal score, the input phase stops and the best candidate is

installed into the target network by adding connections from its outputs to the target

network outputs using small random values and the sign of the covariance. The other

candidates are discarded.

A more detailed description of the KBCC algorithm with aU the default parameter

values can be found in [20].

IV Demonstration ofKBCC: Peterson-Barney Vowel Recognition

We created six transfer scenarios with the Peterson-Barney vowel recognition

problem from the CMU AI repository? The data set can be split into three subsets based

on the speaker type: male, female or child. One scenario was originaUy used by Pratt [1]

and involved training networks on the female data and then using them as sources to train

2 http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/speech/database/pb/pb.tgz

78

MANUSCRIPT 2

target networks on male data. The other scenarios are similar and complete all

permutations of the three subsets.

The data set contains the two middle formants of the speech sound made by 76

speakers saying 10 different vowels twice. The speakers were 33 males, 28 females, and

15 children, aIl speaking English. The inputs were scaled down by 1000 resulting in input

values in the range (0.0, 1.5] and [0.0, 4.0] for the tirst and second formants, respectively.

The outputs were encoded on 10 units (one per vowel) with a value of 1.0 for the correct

vowel and 0.0 for the others. A network was considered to properly classify a pattern if

the output with highest activation corresponded to the target vowel.

The scenarios are constructed using the fol1owing scheme. Starting with the three

subsets (male, female, child), one subset is used to train the source networks, and a

different subset for training the target networks. This scheme generates six scenarios. In

order to compare KBCC with CC without knowledge, we added three more scenarios

where we trained CC nets on one of the subsets without any prior knowledge.

A. Experimental Setup

Pirst, for each subset, we generated 10-fold cross-validation train/test set pairs.

We trained 10 CC networks (for up to 15 hidden units) for each train/test pair for a total

of 100 CC networks per subset. Those represent the three no-knowledge baseline

scenanos.

We found that a good CC source network (similar to Pratt's sources) has about

10 hidden umts. Since each subset is used as source in two scenarios, we have trained 200

CC networks on each of the three subsets for 10 recruitments each.

For each scenario, we have 100 CC networks per source data set. Given a

scenario, for each of the 10 train/test pairs of the target data set, we trained 10 KBCC

networks (for up to 15 hidden units/networks). For each of the 100 resulting KBCC

networks we used a different source network.

During the training of the target networks, we evaluated the network on the data

subset of their source to measure retention and on the third data subset, the one that

wasn't used in their training nor in the training oftheir sources. For example, in the

79

MANUSCRIPT 2

scenario where the source networks are trained on female data and the target networks are

trained on male data, the third subset is the child data.

B. Early Learning Comparison

In one of our scenarios, similar to Pratt, we used the female data (560 patterns) to

train the source networks. We first found that good sources had about 10 hidden uuits, so

we trained 100 CC sources with 10 hidden units each. We then tested these female­

trained sources on the male data and obtained 52%±3% accuracy. This is quite close to

Pratt's result using static back propagation networks.

Then we generated 10-fold cross-validation train/test sets. For each of the 10

train/test set pairs we trained ID CC networks and ID K.BCC networks (each K.BCC

network used a different source) for up to 15 recruitments. We computed the train and

test percentage correct at every epoch and analyzed the resulting leaming curves.

Before the first recruitment, the linear solution scored around 71 % correct on the

train set and 69% on the test set. Before the second recruitment (which happened sooner

in K.BCC than in CC), KBCC reached 86% and 84% on the train and test sets while CC

had only reached 80% and 77% on these same sets. Moreover the peak generalization of

the KBCC-averaged test curves (85.5%) is reached at epoch 438 while that peak on the

CC-averaged test curves (85.8%)3 is reached at epoch 1699. Finally, we looked at the

average number of epochs for each network curve to reach its peak generalization. We

computed a paired sample t-test using the average for each fold. KBCC was significantly

faster, taking an average of 827 epochs to reach its peak generalization while CC took

1279 epochs, with t(9) = 4.418 andp < 0.005. Both average peak values were 89%

correct. Results are plotted in figure 2, also showing that the effect of the first recruitment

is even stronger with child sources.

3 These two peaks are not significantly different in percent correct.

80

MANUSCRIPT 2

100%

SO%

sax

70%

'IS GOX
41...... 60%Q
t.l
~

40%

30%

20%

10%

0%

ChHd sources

~

No prior knowledge

51 101 161

Epochs

201 251

Figure 2: Averaged learning curves for the KBCC networks learning the male data.

The curve reaching the lowest point is averaged over networks without prior

Irnowledge. The one in the middle is averaged over networks using source networks

trained on female data and the highest one represents networks using sources

trained on the child dataset.

Similar results were obtained in the other scenarios. Each row in tables 1 and 2

represents one target situation. For each ofthese, the proportion correct after the first

recruitment is given for every source condition. In an cases, the existence ofprior

knowledge shows a clear advantage in proportion correct after the first recruitment.

Table 1: Train Proportion Correct ACter the First Recruitment

Target

Target

Source

Table 2: Test Proportion Correct ACter the First Recruitment

Source

81

MANUSCRIPT 2

C. Learning Time Comparison

To evaluate the learning time, we simulated early-stopping after training. Since

during training we recorded train and test set proportion correct, we could reconstruct for

every target network the number of epochs it took to reach its highest generalization peak

before over training. Given a target subset, we compared the leaming speed of the three

conditions (for example, given male data as target subset, the three conditions are without

knowledge, using knowledge offemale data and using knowledge of chid data).

Figures 4- 6 show the results grouped by target task. For each ofthose figures, we

ran an ANOVA and looked at the Scheffe post hoc test. For an three targets, the prior

knowledge conditions were significantly faster than the no knowledge condition at the

.051evel.

1400

1200

1000

tII 800.c:
u
0
Q.. 600w

400

200

0
Female Child None

Sources

Figure 4: Mean number of epochs to leam male data in three different source

conditions.

82

MANUSCRIPT 2

1200

1000

800
III.s::.
'" 6000
Do

W

400

200

0
Male Child None

Sources

Figure 5: Mean number of epochs to learn female data in three different source

conditions.

1200

1000

800
III

.s::.
'" 6000
Do

W

400

200

0
Male Female None

Sources

Figure 6: Mean number of epochs to Icarn child data in three different source

conditions.

D. Learning Quality

We also compared the best train and test percent correct reached by our networks.

Results are presented in Table 3. We did an ANOVA to compare the three source

conditions under each target task separately. None of the three ANOVAs yielded

significance at the .05 level on the Scheffe test. Hence, the quality of the final solution

did not seem to be affected by prior knowledge.

83

MANUSCRIPT 2

Tabie 3: Test Proportion Correct at Highest Genendization

E. Retention and 3rd Set Generalization

We compared the retention and third set generalization of the source knowledge

conditions for each target task. Even though in few cases, the prior knowledge condition

had a slightly significant advantage, in others it had a slight disadvantage. In most cases

there was little difference.

V Discussion

These results show that KBCC is able to adapt and use its prior, related

knowledge in the learning of a large and realistic new problem. Moreover, the availability

of relevant knowledge significantly shortens KBCC learning time, without any loss of

accuracy. Effective use ofprior knowledge in new learning is the sort of quality one

would like from both engineering and cognitive modeling viewpoints.

In contrast to previous methods for using knowledge in learning, KBCC has

almost no restrictions on the format of prior knowledge. First, because prior knowledge is

recruited into the network topology instead of being relearned, there is basically no limit

to the internaI complexity of the sources. Second, KBCC automatically searches for the

best way to connect recruited sources in its architecture, removing any necessity for

source inputs and outputs to perfectly match those of the target task.

Moreover, KBCC can use one or multiple sources to build a compositional

solution. Because every candidate receives input from every previously recruited module,

KBCC can combine them in a compositional way, for example, processing input data

first through sorne classifier and then through sorne approximator (as shown in figure 1).

KBCC also seamlessly integrates learning by analogy with learning by induction.

It leams by induction whenever it recruits single hidden units and by analogy when it

recruits a previously trained source network. Finally, KBCC is consistent with the CC

84

MANUSCRIPT 2

algorithm that has been successful in solving many real problems and in simulating many

aspects of cognitive development.

Application ofKBCC to other real problems such as DNAjunction-splicing is

currently being studied in our laboratory. Another area under study is the effect ofprior

knowledge on KBCC in impoverished training environments.

B. Acknowledgments

This work was supported by a grant from the Centre de Recherche Informatiqe de

Montréal to the first author and from the Fonds de la Formation de Chercheurs et l'Aide à

la Recherche to each author. We are grateful for comments on thi3 work from Doina

Precup.

C. References

[1] L. Y. Pratt, "Discriminality-based transfer between neural networks," Advances in

neural information processing systems 5, pp. 204-211. San Mateo, CA: Morgan

Kaufmann, 1993.

[2] G. G. Towell and J. W. Shavlik, "Knowledge-based artificial neural networks,"

Artificial Intelligence 70: 119-165, 1994.

[3] Y. S. Abu-Mostafa, "A method for learning from hints," Advances in Neural

Information Processing Systems 5, pp. 73-80. San Mateo, CA: Morgan

Kaufmann, 1993.

[4] E. Heit, "Models ofthe effects ofprior knowledge on category learning," Journal

of Experimental Psychology: Learning, Memory, and Cognition 20:1264-1282,

1994.

[5] M. 1. Pazzani, "Influence of prior knowledge on concept acquisition:

Experimental and computational results," Journal of Experimental Psychology:

Learning, Memory, and Cognition 17:416-432, 1991.

85

MANUSCRlPT 2

[6] E. J. Wisniewski, "Prior knowledge and functionally relevant features in concept

leaming," Journal of Experimental Psychology: Learning, Memory, and

Cognition 21:449-468, 1995.

[7] J. Yang and V. Honavar, "Experiments with the cascade-correlation algorithm,"

Microcomputers Applications 17:40-46, 1998.

[8] D. Buckingham and T. R. Shultz, "A connectionist model of the development of

velocity, time, and distance concepts," Proceedings of the Sixteenth Annual

Conference of the Cognitive Science Society, pp. 72-77. Hillsdale, NJ: Erlbaum,

1994.

[9] D. Mareschal and T. R. Shultz, "Development of children's seriation: A

connectionist approach," Connection Science 11: 149-186.

[10] T. R. Shultz, "A computational analysis of conservation," Developmental Science

1:103-126, 1998.

[11] T. R. Shultz, D. Buckingham and Y. Oshima-Takane, "A connectionist model of

the learning of personal pronouns in English," Computational learning theory and

naturallearning systems, Vol. 2: Intersection between theory and experiment, pp.

347-362. Cambridge, MA: MIT Press, 1994.

[12] T. R. Shultz, D. Mareschal and W. C. Schmidt, "Modeling cognitive development

on balance scale phenomena," Machine Learning 16:57-86, 1994.

[13] S. Sirois and T. R. Shultz, "Neural network modeling of developmental effects in

discrimination shifts," Journal of Experimental Child Psychology 71:235-274,

1998.

[14] S. E. Fahlman and C. Lebiere, "The cascade-correlation learning architecture,"

Advances in neural information processing systems 2, pp. 524-532. Los Altos,

CA: Morgan Kaufmann, 1990.

86

MANUSCRIPT 2

[15] T. R. Shultz and F. Rivest, "Knowledge~based cascade-correlation," Proceedings

of the International Joint Conference on Neural Networks, Vol. V, pp. 641-646.

Los Alamitos, CA: IEEE Computer Society Press, 2000.

[16] T. R. Shultz and F. Rivest, "Using knowledge to speed leaming: A comparison of

knowledge-based cascade-correlation and multi-task learning," Proceedings ofthe

Seventeenth International Conference on Machine Learning, pp. 871-878. San

Francisco: Morgan Kaufmann, 2000.

[17] D. L. Sïlver and R. E. Mercer, "The task rehearsal method of sequentiallearning,"

Technical Report #517, Department of Computer Science, University of Western

Ontario, 1998.

[18] R. Parekh and V. Honavar, "Constructive theory refinement in knowledge based

neural networks," Proceedings of the International Joint Conference on Neural

Networks. Anchorage, Alaska, 1998.

[19] R. Caruana, "Multitask leaming: A knowledge-based source of inductive bias,"

Proceedings ofthe Tenth International Machine Learning Conference, pp. 41-48.

San Mateo, CA: Morgan Kaufmann, 1992.

[20] T. R. Shultz and F. Rivest, "Knowledge-based cascade-correlation: Using

knowledge to speed learning," Connection Science 13:1-30,2001.

87

CONCLUSION

KBCC and Other Approaches

The Table 2 below summarizes how various neural network knowledge transfer

techniques deal with the important issues in knowledge transfer.

The first two columns contain techniques for knowledge transfer discussed in the

literature review and the names of their authors.

Table 2: Summary of Transfer of Knowledge Methods and Their Properties

Method Author(s) Input Output Architecture Ailows Number of
Restrictions Restrictions Restrictions Comoositionalitv Sources

COpy MES MBS MES No 1
CopyCC Fahlman& MBS MES Source must be a Prior knowledge can Life-Iong.. Lebiere CC network be processed before

~
CI> new knowledge1:1
Ol Copyas Generalization MBS None Sources must be in Parallel composition Asmall..

F< extra inputs ofParekh& functional form number
Oî
1:1 Honavar
0
';l Copyand Waibel MBS None Sources must be Parallel composition Asmall
.!
1:1 glue BP networks and number
'" are included in theCI>

'".. final solutionCl.,

'" CopyinME Hinton, using MBS MBS Sources must be Parallel composition Asmallet:
Jacobs & al. BP networks number

DBT Pratt MBS MBS MBS No 1
MTUTRM Baxter, MBS None Share a common NIA Asmall

Caruana, using hidden layer. New number
Silver & network must be

.. Mercer big enough leam
~ Drior knowledge

CI>

Silver&1:1 llMTUTRM MBS None Share a common NIA Asmall
Ol.. Mercer hidden layer. numberF<

Oî Meta- Naik& MBS MBS MES NIA Life-Iong
1:1 leamer Mammone0
';l

Dual Rousset & MBS MBS MBS NIA Life-Iong'"1:1:= memory Ans as weil as...
model others
EBL Thurn& MES MBS Sources must be in NIA 1

MItchell differentiable
functional form

Rep. IŒCC Slmltz& None None Sources must he Parallel and seriai Asmall
1

Rivest in functional composition number
Corm

The third column indicates restrictions on the number of inputs and their meaning.

MBS means must he the same, that is, the inputs of the sources must contain the same

type of information using the same set ofvalues as in the targe! task. Although target

networks can always have more inputs (initializing the extra weights using random

values), this has never been tried to my knowledge. Sïlver (2000) suggested that sources

88

CONCLUSION

could have extra inputs, but it remains undear what would be the right way to set those

extra input values. When the prior knowledge is a BP network, then those extra inputs

could also be removed together with their weights.

The fourth column indicates restrictions on the number of outputs and their

meaning. Here, MBS has the same meaning as for the inputs, although again, one could

always deIete or add extra outputs. No restrictions are mentioned when it is clear that,

from the architecture viewpoint, the output of the source knowledge and the target task

do not need to match.

The fifth column indicates architectural restrictions, such as whether the source

and target networks must have the same architecture.

The sixth column describes the type of compositionality potentiaUy involved.

ParaUel composition means that the outputs of the prior knowledge could be used, aIl on

the same level, to generate the output of the target system. Single paraUel composition is

the degenerate case when only one source can be used. SeriaI composition meanS that the

output of sorne prior knowledge could be used as the input of sorne other prior

knowledge whose outputs can then be used to generate the output of the target system.

Determining compositionality for functional methods requires a detailed discussion on

compositionality that is outside the scope of this thesis. 1

The last column indicates the number of sources that the system may have. This is

either l, a smaIl number of sources (in paraUel or competing), or life-Iong. Life-Iong

models usuaUy have a single source ofknowledge that contains the experience of many

tasks.

Discussion

Manuscripts l and 2 show that KBCC can speed up leaming by using prior

knowledge. Manuscript 1 also shows that KBCC is able to extract knowledge from more

complicated sources of knowledge as weU as to build complex solutions from multiple

simpler sources ofknowledge. Manuscript 1 also illustrates KBCC's ability to select the

most relevant knowledge. Manuscript 2 shows that KBCC also works on realistic large

tasks and not only on simple toy problems.

J For a discussion on compositionality in connectionist models see Gelder (1990).

89

CONCLUSION

As mentioned in manuscript 1, KBCC also addresses the input-recoding problem

often faced by leamers who have relevant prior knowledge (Clark & Thomton, 1997).

Because of the weights feeding the recruited network, KBCC can re-use functions that

are a linear transformation away from the needed function. These weights, along with the

output weights, also solve the issue of aligning the structure of prior knowledge to the

requirements of the current task (Gentner & Markman, 1993). Moreover, because KBCC

can feed a source network with the output of another source network, it can also change

Clark and Thomton's (1997) type 2 problems to type 1 problems by using a source

network to do the transformation. This ability lets KBCC not only produce outputs that

are the paraUel composition of multiple source functions, but also that are the result of the

seriaI composition (f(g(x))) ofmultiple source functions (f(x) and g(x)).

Future Research

It remains to show that KBCC is not only efficient (in terms of speeding up

leaming), but also effective, that is, that it can improve neural network accuracy by using

prior knowledge. This property is particularly important in the case of impoverished

training sets. Experiments that study KBCC effectiveness in impoverished set conditions

on tasks similar to those in manuscript 1 are currently underway.

It also remains to show that KBCC accurately models human cognitive

development and knowledge transfer. This topic is also currendy investigated in our

Laboratory for Natural and Simulated Cognition at McGill.

Finally, one piece currently missing from KBCC is the ability to accumulate a

huge amount ofknowledge as in the case oflife-Iong learning. Using a meta-network that

leams to select promising source networks from a large number of sources to put in the

pool of candidates seems a good option. As the number or sources increases, sorne

consolidation mechanism like rehearsing may also become useful in maintaining only a

small number of source networks. These remain temporarily open problems.

90

APPENDIX 1: KBCC MATHEMATICS

KBCC requires the derivative of each candidate it has in its pool. The derivative

of simple units like sigmoids are weIl known, but when it cornes to complete networks,

things are more complicated. In order to implement KBCC, I had to find the general

formulas for the type of networks 1wanted to be able to recruit. 1developed these

equations for multilayer feedforward networks, for cascade-correlation networks, and for

knowledge-based cascade-correlation networks. The multilayer feedforward networks

equations are not included here for space and because they are not directly related to

KBCC. However, second order derivatives of CC and KBCC networks are included.

These are necessary for second order optimization algorithms and for pruning methods

like Optimal Brain Damage (LeCun, Denker & Solla, 1990) and Optimal Brain Surgeon

(Hassibi & Stork, 1993).

The following sections develop general formulas to compute the outputs, the

gradients, and the Hessians of CC and KBCC networks. These were originally developed

using basic summations and multiplications without vectors or matrices. 1found an

equivalent form using vector and matrix operations, which is simpler and more elegant.

Second order derivatives are defined using equations on vectors of matrices. Only a high

level sketch of the full development of the formulas is presented here. Those formulas

were implemented 'as is' and their computations were empirically compared to those of

the symbolic mathematics program Maple. Maple was given oruy the symbolic

description of a complex KBCC network (with sub-networks of various number of inputs

and outputs) and asked to compute the first and second order derivative values. Small

weights were used to avoid sigmoid saturations. Maple and my simulator agreed up to at

least 10 digits on every value.

Cascade-Correlation Neural Networks

Notation

Sizes:

IN : Number of inputs.

91

APPENDIXI

OUT: Number of outputs.

K: Number ofhidden units.

Labels:

B : Bias unit.

l : Input layer.

li : th unit of the input layer, 1 :::; i :::; IN.

H k : !th hidden unit, 1 :::; k:::; K.

o : Output layer.

0
0

: oth unit of the output layer, 1 :::; 0 :::; OUT.

Functions:

fu : Activation function of unit u.

f: : Pirst derivative ofthe activation function of unit u.

f:' : Second derivative of the activation function of unit u.

Results:

Vu : Activation of unit u.

vxVu: Gradient of the activation of unit u with respect to the input

variables x of the network.

Hx,;Vu: Hessian of the activation of unit u with respect to the input

variables x of the network.

Weights:

wu: Row vector ofweights feeding unit u.

The input pattern presented to the network is denoted by the column vector:

p=[pj ... PINY'

To simplify the notation, let's add a column vector Pu that is composed of aU the

values (in order) feeding the network unit u. Pu is defined as follows:

- -[V V V IIPHI - B II lIN J '

PHk = [vB VII VIIN VHI ••• VHk_
1
f ' for 1 < k:::; K,

92

... VI
IN

APPENDIXI

... VHK r, for anyoutput °0 ,

Using this notation, the gradient of Pu with respect to the input variables x of the

network is given by:

is the lh component ofvector Pl!.

Similarly, the Hessian of Pl! with respect to the input variables x of the network

is given by:

is the lh component ofvector Pu'

Note here that Hx,xPu is a vector of Hessians, that is, a vector ofmatrices.

Activation

The activations of the network units at pattern pare given by the following

equations:

Vs =1.0

VI = fI (pJ, for 1 :::; i :::; IN
1 1

VHk =IHk(wHk 'PHJ,for 1 :::;k:::;K

VOo = foJwoo .Po)' for 1 :::; 0:::; OUT

Gradient

The gradients of the activations at pattern P with respect to the input variables x
of the network are given by the fol1owing equations:

V'xVs =[0

V' xVI; = lo
0]

o Il (pJ 0 ... oL for 1 :::; i:::; IN

V' xVHk =I~JwHk .PH
k

)·lWHk .V' xPH
k

J, for 1 :::; k:::; K

V' xVoo = j;Jwoo .Po)·lwoo .V'xPo j, for 1 :::; 0 :::; OUT

93

APPENDIXI

Hessian

The Hessians ofthe activations at pattern P with respect to the input variables x
of the network are given by the following equations:

H-VB ~l~
IJ

' the topmost layer of Hi iVH ,for l :::; k:::; Kx,x , k

0

0 0 0 0 0

0 0 0 0 0 , for 1 :::; i :::; IN, each a layer of
"H- -VI = 0 0 f~ (Pi) 0 0

X,X i Hx:xVH ,for 1 :::;k:::;K
0 0 0 0 0 ' "

00000

H- -VH =V' -lV' -VH J
x,x "= V': [fi" (~H" .PHJ· [WH" . V' iPH

k
]

=V'i [f~" (WH" .PH
k

)]. [WHk . V' iPHk]

+ f~k (WH" .PHJ· V'i [WHk . V' iPHJ

=J:" (W .P-). [w .V' P-]r. [w .V' P-]H" H" Hk H" i H" Hk i Hk
+ f~k (WHk .PHJ· [WHk . Hi,iPHJ

, for 1 :::; k:::; K, where

and WHk .Hi,iPH
k
should be computed as a row vector of scalars times a column

vector of matrices. This gives a weighted sum of the matrices in Hi iPH
, k

weighted by scalars in WHk ' i.e., each matrix in Hx,xPHk is multiplied by the

corresponding scalar in WHk ' The resuIting matrices are then summed together

element-wise to get the resulting matrixlwH • Hx:xPH J.
k ' k

94

APPENDIXI

H V - l'" (w .-). [w .v p-]r .[w .v P]x,x 00 -.J 0 0 00 Po 0 0 X 0 00 x 0 fi 1 < <
() []

,or _ 0 _ OUT.
+ f~o wOo • Po . wOo • Hx,xPo

Knowledge-Based Cascade-Correlation Neural Networks

Notation

Sizes:

IN : Number of inputs.

OUT: Number of outputs.

K : Number of hidden units.

INk: Number of inputs of the J!h hidden unit, 1 S k S K.

OUTk: Number of outputs of theJ!h hidden unit, 1 S k S K.

Labels:

B : Bias unit.

1: Input layer.

Ii: lh unit of the input layer, 1 sis IN.

H k,o: Output 0 of the J!h hidden unit, 1 s k s K, 1 sos OUTc •

o : Output layer.

0
0

: dh unit of the output layer, 1 sos OUT.

Functions:

lu : Activation function of non-hidden unit u.

lu: Activation vector-function ofhidden unit u (a column vector).

1: : First derivative of the activation function of non-hidden unit u.

\JIu: Gradient ofthe activation vector-function ofhidden unit u (a

column vector where each row is a gradient).

t:' : Second derivative of the activation function ofnon-hidden unit u.

Hf.,: Hessian of the activation vector-function ofhidden unit u (a

column vector where each layer is an Hessian).

Results:

95

APPENDIXI

v" : Activation of non-hidden unit u.

Vu: Activation vector ofhidden unit u.

V.:Yu: Gradient of the activation of non-hidden unit u with respect to the

input variables x ofthe network.

V:xv,,: Column vector of gradients (one per output) of the activations of

hidden unit u with respect to the input variables x of the network.

H:x,:xVu: Hessian of the activation ofnon-hidden unit u with respect to the

input variables x of the network.

H:x,;Vu: Column vector of Hessians (one per output) of the activations of

hidden unit u with respect to the input variables x of the network

Weights:

wu: Row vector ofweights feeding output unit u.

wu; : Row vector of weights feeding the i'h input ofhidden unit u.

[

WUl]

Wu = w: :Weight matrix that feeds hidden unit u.

Udl/lIlu

The input pattern presented to the network is denoted by the column vector:

P= [Pl ... PIN y.
To simplify the notation, let's add a column vector Pu that is composed of aIl the

values (in order) feeding the network unit u. Pu is defined as foIlow:

PHI =[vB

PHk = lvB ~1

for 1 < k~K,

Po = lvH Vil'" Vhv

for any output 0
0

,

... VH K,l

96

APPENDIXI

Using this notation, the gradient of Pu with respect to the input variables x of the

network is he given by:

Similarly, the Hessian of Pu with respect to the input variables x of the network

is given by:

is the lh component ofvector Pu'

Note here that HxxPu is again a vector of Hessians, that is, a vector ofmatrices.

Activation

The activations of the network units at pattern pare given by the following

equations:

Vs =1.0

~i =!ri (pJ ' for l 5, i 5, IN

VHk = IHk (WHk • PH
k
)' for l 5, k 5, K

VOo = foo(woo . Po)' for l 5, 05, OUT

Gradient

The gradients of the activations at pattern P with respect to the input variables Ji

of the network are given by the following equations:

V,Ys =[0

V,'vIi =lo
0]

o f~ (pJ 0 ... 0J, for l 5, i 5, IN

VXVHk =vlHk (WHk • PHk). WHk • VxPH
k

' for l 5, k 5, K

V jcVoo = f~o (woo . Po)·lwoo .VxPo J, for l 5, 05, OUT

97

APPENDIXI

Hessian

The Hessians of the activations at pattern P with respect to the input variables x
of the network are given by the following equations:

HJB=[I !] , the topmost layer of HnYH ' for 1 ::s; k::S; K, 1 ::s; 0 ::s; OUh
, k.o

0 0 0 0 0

0 0 0 0 0 ' for 1 ::s; i ::s; IN, each a layer of
fi

H- -VI = 0 0 fi, (Pi) 0 0 H:XXVH ,forl::s;k::s;K,
x,x i ' k,o

0 0 0 0 0
1 ::s;o::s;ouh

0 0 0 0 0

, for 1 ::s; k::s; K,

1 ::s; 0 ::s; OUTk, where

H V]X/N'X1 Hk,o
: is a layer,

HXIN,XINVHk,O

and lVJHk,o (wH
k

• PH
k

). WHk j. Hx,iPH
k

should be computed as a row vector of

scalars times a column vector of matrices. This gives a weighted SUffi of the

matrices in Hx,xPHk weighted by scalars in lvlHk,Q (WHk .PHk).WHk j, i.e., each

matrix in Hx,xPH
k

is multiplied by the corresponding scalar in

lVJHk,o (WHk .PHk)'WHk j. The resulting matrices are then summed together

element-wise to get the resulting matrix lVJHko (WHk .PHk).WHk j. HX,XPHk.

98

APPENDIXI

Knowledge-Based Cascade-Correlation Objective Functions

Notation

Use the same notation as in the previous section with few extra symbols.

Sizes:

P : Number ofpatterns

Labels:

C : Candidate unit c.

Co: dh output of candidate unit c, 1 ~ 0 ~ OUTe.

Functions:

Vico: Gradient of the activation function of candidate unit c, output 0,

1::::; 0::::; OUTe.

Results:

To : Target activation for output unit 0, 1 ~ 0 ::::; OUT.

Eo : Error for output unit 0, Eo =VOo - To ' 1 ~ ° ::::; OUT.

Objective Function

KBCC objective functions are given by the following equations:

p OUT

E= LLE0

2

p=l 0=1

(from manuscript 2)

where, Covlvc
oc

,Eo) is given by:

99

APPENDIXI

Gradient

The derivative of the objective function E with respect to the output weights of

the dh output unit is given by:

P a
=""-(v - T \2~ aw

o
0o,P G,p)

o

p av
- "" 2 (v. T) Oo,P- L..J . oo,pO - o,p . ~-:.

p=! uYVoo

p ai: (- -)=2.""E . o. PO,p.woo
L..J o,p a-
P=! Woo

p

=2· IEo,p . /;0 (.vo,p •wOo). Po,p
p=!

The derivative of the objective function Sc for candidate c with respect to the

candidate input weights is given by:

Note that:

100

APPENDIXI

p p

I(vcoc'p - VCoc XEo,p - EJ= I(Vcoc,pEo,p - VCoc Eo,p - Vcoc,pE" +VCoc EJ
p=l p=1

p P

="'v: E -v: "'E~ COe ,p o,p Coc ~ O,p
p=l p=l

P

-EoIVcoc'p +PVCoc Eo
p=1

p

= IVcoc,pEo,p -PVCoc Eo-PVCoc Eo+PVCoc Eo
p=l

P

= IVcoc,pEo,p -PVCoc Eo
p=l

And hence that:

a
(

P J p av: (1 p av, J-- JI: E -PV: E - E COc'P -p _ (oc'p E
aw I. COc'P o,p COC 0 - l o,p aw pI aw °

c p=1 p=l C p=l C

p av: p av:=IE Coc,P - IE Coc,p
p=l o,p awc p=! ° awc
p av:

='" (E - E) COc ,p
~ O,P ° aw
p=l c

Therefore:

101

REFERENCES

Abu-Mostafa, Y. S. (1993). A Method for Learning From Hints. In Advances in Neural

Information Processing Systems 5, Steven Hanson, Jack Cowan, Lee GUes (eds),

Morgan Kaufmann, San Mateo, CA, pp. 73-80.

Ans, B. & Rousset, S. (2000) Neural Networks with a Self-Refreshing Memory:

Knowledge Transfer in Sequential Leaming Tasks Without Catastrophic

Forgetting. Connection Science 12(1):1-19.

Baluja, S. & Fahlman, S.E. (1994). Reducing Network Depth in the Cascade-Correlation

Learning Architecture, Technical Report #CMU-CS-94-209, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA.

Broder, J. (1995). Learning InternaI Representations. In Proceedings of the Eighth

International Conference on Computational Learning Theory. ACM Press, Santa

Cruz, CA.

Baxter, J. (1996). Learning Model Bias. In Advances in Neural Information Processing

Systems 8, David Touretzky, Michael Mozer, Mark Hasselmo (eds), MIT Press,

pp. 169-175.

Buckingham, D. & Shultz, T.R. (1994). A Connectionist Model of the Development of

Velocity, Time, and Distance Concepts. In Proceedings of the Sixteenth Annual

Conference of the Cognitive Science Society. Erlbaum, Hillsdale, NJ.

Buckingham, D. & Shultz, T. R. (2000). The Developmental Course of Distance, Time,

and Velocity Concepts: A Generative Connectionist Model. Journal ofCognition

and Development 1:305-345.

Bryson, A.E. and Ho, Y.-C. (1969). Applied Optimal Control. Blaisdell, New York.

102

REFERENCES

Caruana, R. (1993). Multitask Leaming: A Knowledge-Based Source of Inductive Bias.

In Proceedings ofthe Tenth International Machine Learning Conference. Morgan

Kaufmann, San Mateo, CA, pp. 41-48.

Caruana, R. (1995). Learning Many Related Tasks at the Same Time with

Backpropagation. In Advances in Neural Information Processing Systems 7,

Gerry Tesauro, David Touretzky, Todd Leen (eds), MIT Press, pp. 657-664.

Caruana, R. (1997). Multitask Leaming. Machine Learning 28:41-75.

Clark, A. & Thomton, C. (1997). Trading Spaces: Computation, Representation, and the

Limits ofUninformed Learning. Behavioral and Brain Sciences 20:57-97.

Comon, P. (1994). Independent Component Analysis: A New Concept? Signal

Processing 36:287-314.

Cybenko, G. (1988). Continuous Valued Neural Networks with Two Hidden Layers Are

Sufficient. Technical Report. Department of Computer Science, Tufts University,

Medford, MA.

Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal Function.

Mathematics ofControl, SignaIs, and Systems 2:303-314.

Eberhart, R., Simpson, P. and Dobbins, R. (1996). Computational Intelligence PC Tools.

AP Professional, Boston.

Fahlman, S.E. (1988). Faster-Leaming Variation on Back-Propagation: An Empirical

Study. In Proceedings of 1988 Connectionist Models Summer School, D.

Touretzky, G. Hinton & T. Sejnowski (eds.), Morgan Kaufmann, San Mateo, CA,

pp. 38-51.

Fahlman, S.E. & Lebiere C. (1990). The Cascade-Correlation Leaming Algorithm. In

Advances in Neural Information Processing Systems 2, David Touretzky (ed),

Morgan-Kaufmann, pp. 524-532.

103

REFERENCES

Fahlman, S.E. (1991). The Recurrent Cascade-Correlation Architecture. In Advances in

Neural Information Processing Systems 3, Richard Lippmann, John Moody,

David Touretzky (eds), Morgan-Kaufmann, pp. 190-198.

Fodof, J.A. (1983). The Modularity ofMind. MIT Press, Cambridge, MA.

French, RM. (1992) Semi-Distributed Representations and Catastrophic Forgetting in

Connectionist Networks. Connection Science 4:365-377.

French, RM. (1994). Dynamically Constraining Connectionist Networks to Produce

Distributed, Orthogonal Representations to Reduce Catastrophic Interference. In

Proceedings of the 16th Annual Cognitive Science Society Conference, pp.335­

340.

Gallant, S.I. (1986). Three Constructive Aigorithms for Network Learning. In

Proceedings of the 8th Annual Conference of the Cognitive Science Society, pp.

652-660.

Gallinari, P. (1995). Training of Modular Neural Net Systems. The Handbook of Brain

Theory and Neural Networks, M. A. Arbib (ed.), MIT Press, Cambridge, MA.

Gelder, T.V. (1990). Compositionality: A Connectionist Variation on a Classical Theme.

Cognitive Science 14(3):355-384.

Genter, D. & Markman, A.B. (1993). Analogy - Watershed or Waterloo? Structural

Alignment and Development of Connectionist Models ofAnalogy. In Advances in

Neural Information Processing Systems 5, Steven Hanson, Jack Cowan, Lee Giles

(eds), Morgan Kaufmann, pp. 855-862.

Golden, R.M. (1996). Mathematical Methods for Neural Network Analysis and Design.

MIT Press, Cambridge, Massachusetts.

Hassibi, B. & Stork, D.G. (1993). Second Order Derivatives for Network Pruning:

Optimal Brain Surgeon. In Advances in Neural Information Processing Systems 5,

104

REFERENCES

Steven Hanson, Jack Cowan, Lee Giles (eds), Morgan Kaufinann, San Mateo,

CA, pp. 164-171.

Heit, E. (1994). Models of the Effects ofPrior Knowledge on Category Learning. Journal

o/Experimental Psychology: Learning, Memory, and Cognition 20:1264-1282.

Hertz J., Krogh, A. and Palmer RG. (1991) Introduction to the Theory 0/ Neural

Computation. Addison Wesley, Redwood City, CA.

Hinton, G.E. (1989). Connectionist Learning Procedures. Artifical Intelligence 40:185­

234.

Hornick, K., Stinchcombe, M. and White. H. (1989). Multilayer Feedforward Networks

Are Universal Approximators. Neural Networks 2:359-366.

Jacobs, R.A., Jordan, M.I., Nowlan, S.J. & Hillton, G.E. (1991). Adaptive Mixtures of

Local Experts. Neural Computation 3:79-87.

Jordan, M.I. & Jacobs, RA. (1994). Hierarcrncal Mixtures of Experts and the EM

Algorithm. Neural Computation 6:181-214.

Karmiloff-Smith, A. (1992). Beyond modularity: A Developmental Perspective on

Cognitive Science. MIT Press, Cambridge, MA.

Keil, F.C. (1987). Conceptual Development and Category Structure. Concepts and

Conceptual Development: Ecological and Intellectual Factors in Categorization,

U. Neisser (ed), Cambridge University Press, Cambridge.

Le Cun, Y., Denker, J.S. & Solla, S.A. (1990). Optimal Brain Damage. In Advances in

Neural Information Processing Systems 2, David Touretzky (ed), Morgan­

Kaufmann, pp. 598-605.

Mareschal, D. & Shultz, T.R (1999). Development of Children's Seriation: A

Connectionist Approach. Connection Science 11:149-186.

105

REFERENCES

Martin, G. (1988). The Effects of Old Learning on New in Hopfield and Back­

Propagation Nets. Technical Report ACA-HI-OI9. Microelectronics and

Computer Technology Corporation (MCC).

McCloskey, M. & Cohen, N.J. (1989). Catastrophic Interference in Connectionist

Networks: The Sequential Learning Problem. The Psychology of Learning and

Motivation 24.

McCulloch, W.S. and Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in

Nervous Activity. Bulletin ofMathematical Biophysics 5: 115-137.

Mingers, J. (1989). An Empirical Comparison of Selection Measures for Decision-Tree

Induction. Machine Learning 3(4):319-342.

Minsky M.L. and Papert, S. (1969). Perceptrons: An Introduction to Computational

Geometry. MIT Press, Cambridge, Massachusetts (1 st ed.).

Mitchell, T.M. (1997). Machine Learning. McGraw-HiU, New York.

Murphy, G.L. (1993). A Rational Theory of Concepts. The Psychology ofLearning and

Motivation 29:327-359.

Naik, D.K. & Mammone, R.J. (1992). Meta-Neural Networks that Learn by Learning.

International Joint Conference on Neural Networks 1992, VoL 1, pp. 437-442.

Nakamura, G. (1985). Knowledge-Based Classification of IU-Defined Categories.

Memory and Cognition 13:377-384.

Parekh, R. & Honavar, V. (1998). Constructive Theory Refinement in Knowledge Based

Neural Networks. In Proceedings of the International Conference on Neural

Networks, Anchorage, Alaska, pp. 2318-2323

Pazzani, M.J. (1991). Influence of Prior Knowledge on Concept Acquisition:

Experimental and Computational Results. Journal of Experimental Psychology:

Learning, Memory, and Cognition 17:416-432.

106

REFERENCES

Pratt, L.Y., Mostow, J. & Kamm, C.A. (1991). Direct Transfer of Leamed Information

Among Neural Networks. In Proceedings of the Ninth National Conference on

Artificial Intelligence 1991, Vol. 2, Menlo Park, CA, AAAI Press & MIT Press,

pp. 584-589.

Pratt, L. Y. (1993a). Discriminability-Based Transfer Between Neural Networks. In

Advances in Neural Information Processing Systems 5, Steven Hanson, Jack

Cowan, Lee Giles (eds), Morgan Kaufmann, pp. 204-211.

Pratt, L.Y. (1993b). Transferring Previously Learned Rack-Propagation Neural

Networks to New Learning Tasks, Ph.D. Thesis (Technical Report ML-TR-37),

Rutgers University, Computer Science Department, NJ.

Pratt, L.Y. & Jennings, B. (1996). A Survey of Transfer Between Connectionist

Networks. Connection Science 8(2):163-184.

Precheltz, L. (1997). Investigation of the Cascor Family of Learning Algorithms. Neural

Networks 10(5):885-896.

Riedmiller, M. & Braun, H. (1993). A Direct Adaptive Method for Faster

Backpropagation Leaming: The Rprop Algorithm. In Proceedings of the IEEE

International Conference on Neural Networks, Vol. XX, IEEE, Piscataway, NJ,

pp. 586-591.

Rivest F. & Shultz, T.R. (2002). Application of Knowledge-based Cascade-Correlation to

Vowel Recognition. In Proceedings of the 2002 International Joint Conference

on Neural Networks, pp. 53-58.

Robins, A.V. (1995). Catastrophic Forgetting, Rehearsal, and Pseudorehearsal.

Connection Science 7:123-146.

Rosenblatt, F. (1962). Principles ofNeurodynamics. Spartan, Washington.

Sirois, S. & Shultz, T.R. (1998). Neural Network Modeling of Developmental Effects in

Discrimination Shifts. Journal ofExperimental Child Psychology 71 :235-274.

107

REFERENCES

Shavlik, J. W. (1994). A Framework for Combining Symbolic and Neural Learning.

Machine Learning 14:321-331.

Shultz, T. R. (1998). A Computational Analysis of Conservation. Developmental Science

1:103-126.

Shultz, T.R. & BaIe, A. C. (2001). Neural Network Simulation of Infant Familiarization

to Artificial Sentences: Rule-Like Behavior Without Explidt Rules and Variables.

Infancy 2:501-536.

Shultz, T.R., Buckingham, D., & Oshima-Takane, Y. (1994). A Connectionist Model of

the Leaming of Personal Pronouns in English. In Computational Learning Theory

and Natural Learning Systems, Vol. 2: Intersection between Theory and

Experiment, S.J. Hanson, T. Petsche, M. Kearns, & RL. Rivest (eds.), MIT Press,

Cambridge, MA.

Shultz, T.R., Mareschal, D., & Schmidt, W.C. (1994). Modeling Cognitive Development

on Balance Scale Phenomena. Machine Learning 16:57-86.

Shultz, T.R & Rivest, F. (2000a). Knowledge-Based Cascade-Correlation. In

Proceedings of the International Joint Conference on Neural Networks, Vol. V,

pp. 641-646. IEEE Computer Society Press, Los Alamitos, CA.

Shultz, T.R & Rivest, F. (2000b). Using Knowledge to Speed Leaming: A Comparison

of Knowledge-Based Cascade-Correlation and Multi-Task Leaming. In

Proceedings of the Seventeenth International Conference on Machine Learning,

pp. 871-878. Morgan Kaufmann, San Francisco.

Shultz, T.R. & Rivest, F. (2001) Knowledge-Based Cascade-Correlation: Using

Knowledge to Speed Learning. Connection Science 13:1-30.

Silver, D.L. & Mercer, RE. (1996). The ParaUd Transfer of Task Knowledge Using

Dynamic Learning Rates Based on a Measure of Relatedness. Connection Science

8:277-294.

108

REFERENCES

Silver, D.L. & Mercer, R.E. (1998). The Task Rehearsal Method ofSequential Learning.

Technical Report #517, Department of Computer Science, University of Western

Ontario.

Silver, D. (2000). Selective Transfer ofNeural Network Task Knowledge. Ph.D. Thesis,

University of Western Ontario.

Simard, P, Victorri, B, Le Cun, y & Denker, J (1992). Tangent Prop - A Formalism for

SpecîfYing Selective Invariances in an Adaptive Network. In Advances in Neural

Information Processing Systems 4, John Moody, Steven Hanson, Richard

Lippmann (eds), Morgan Kaufmann, San Mateo, CA, pp. 895-903.

Thrun, S. & Mitchell, T. (1993) Integrating Inductive Neural Network Learning and

Explanation-Based Learning. In Proceedings of the Thirteenth International Joint

Conference on Artificial Intelligence, R. Bajcsy (Ed.), Morgan Kaufmann, San

Mateo, CA.

Towell, G.G. & Shavlik, J. W. (1994). Knowledge-Based Artificial Neural Networks.

Artificial Intelligence 70:119-165.

Waibel, A., Sawai, H. & Shikano, K. (1989). Modularity and Scaling in Large Phonemic

Neural Networks. IEEE Transactions on Acoustics, Speech, and Signal

Processing 37(12):1888-1898.

Waugh, S. (1995). Extending and Benchmarking Cascade-Correlation. Ph.D. Thesis,

Department of Computer Science, University of Tasmania.

Wisniewski, E. J. (1995). Prior Knowledge and Functionally Relevant Features in

Concept Learning. Journal ofExperimental Psychology: Learning, Memory, and

Cognition 21: 449-468.

Wynne-Jones, M. (1992). Node Splitting: A Constructive Algorithm for Feed-Forward

Neural Networks. In Advances in neural information processing systems 4, John

Moody, Steven Hanson, Richard Lippmann (eds). Morgan-Kaufmann, pp. 1074­

1079.

109

REFERENCES

Yang, J & Honavar, V. (1998). Experiments with the Cascade-Correlation Algorithm.

Microcomputers Applications 17:40-46.

110

