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ABSTRACT

Rockbursts may cause damages to underground openings and to equipmen~ and

constitute a major hazard to the safety of mine workers. One method that can be used to

evaluate if there is a rockburst potential is to compare the stiffitess of the failed rock with

that of the surrounding rock masse This method bas been applied successfully in the past

to rockbursts involving fracturing of the rock masse

This thesis deals with the development of a similar approach for rockbursts involving a

violent slip along major geological discontinuities. To evaluate the post-peak shear

stiffness of a discontinuity, a new non-linear constitutive model for rock joint was

developed. This model is based on two exponential fonnulations expressing the two

phenomena taking part in the shearing process: friction resistance along surfaces and

shearing of asperities. Compared with test results, the model showed a correlation factor

(R2) of 0.90. The model was then implemented in an existing boundary element code to

evaluate the interaction between underground openings and nearby geological

discontinuities. Verification of the implementation was done by reproducing direct shear

tests on a discontinuity. Parametric analyses were performed on the new model that

highlighted the most important parameters. Methods to obtain the different stiffhesses

involved in the violent slip process were developed. Examples ofapplications were given

to ilIustrate the proposed methods.

Finally, an alternative method to evaluate the fault-slip rockburst potential was

developed. This new method relies on a linear analysis and the calculation of a new

index called the Out-of-Balance Index or OBI. The OBI showed some agreement with

the stiffness approach.
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RÉsUMÉ

Les coups de terrain causent des dommages aux excavations souterraines et aux

équipements, en plus de représenter une grave menace pour la sécurité des travailleurs.

Une méthode pouvant être utilisée pour évaluer s'il existe un potentiel de coups de terrain

est de comparer la rigidité post-pic du massif instable avec celle du massif rocheux autour

de l'instabilité. Par le passé, cette approche a été utilisée avec succès pour des coups de

terrain impliquant la rupture du massif rocheux.

Cette thèse traite du développement d'une approche similaire pour les coups de terrain

impliquant un glissement violent le long d'une discontinuité géologique. Pour évaluer la

rigidité post-pic d'une discontinuité, un nouveau modèle constitutif non-linéaire pour les

discontinuités structurales a été développé. Ce modèle repose sur deux fonnulations

exponentielles représentant les deux processus agissant lors du cisaillement: la résistance

en friction et le cisaillement des aspérités. Comparé à plusieurs essais de laboratoire, le

modèle proposé a montré un facteur de corrélation (R2
) de 0.90. Le nouveau modèle a

ensuite été intégré dans un code d'éléments frontières existant afin d'évaluer l'interaction

entre des excavations souterraines près de discontinuités géologiques. Une vérification

de l'intégration a été effectuée en reproduisant des essais de cisaillement direct sur des

discontinuités. Des analyses paramétriques ont ensuite été réalisées à l'aide du modèle, ce

qui a permis d'identifier les paramètres les plus importants. Des méthodes pour obtenir

les différentes rigidités impliquées à l'aide des outils créés ont été détaillées. Des

exemples d'application ont permis d'illustrer l'utilisation des méthodes proposées.

Finalement, une autre méthode pour évaluer le potentiel de glissements violents le long

de discontinuités a également été développée. Cette nouvelle approche est basée sur

l'utilisation d'un nouvel index appelé OBI (pour "Out-of-Balance Index") lors d'une
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analyse linéaire. Cette approche a mené à des résultats concordant avec l'approche basée

sur la comparaison des rigidités.
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CHAPTERI

INTRODUCfION

The rockburst problem in underground mines bas been around since the beginning of the

century. As technology a1lows for the exploitation ofdeeper orebodies mined with higher

extraction ratios, the mining engineer will most probably have to deal with this problem

more often. Moreover, mines in Canada are most likely to operate at greater depth in the

near future. Due to the "unpredictability" and the recurrence nature of the phenomenon,

rockbursts might just he the biggest challenge facing rock mechanics engineers in hard

rock mines.

Although rockbursts can occur in every types of rock and al any depth (Blake, 1972), they

constitute a problem mainly for deep underground hard rock mines where the extraction

ratio is large (Blake, 1984).

The tirst reports about rockbursts seem to have emerged from the Kolar Gold Field in

India at the end of the 19th century, when the mining depth was still below 500 m

(Morrison, 1942; Blake, 1972). A few years later, the problem appeared in the

Witwatersrand mines in South Africa (Cook et aL, 1966). Russia and other East

European countries also had to deal with the problem (petukhov, 1987, 1990), and so did

China CTan, 1986; Mei and Lu, 1987a, 1987b).

In the United States, the first rockburst seems to have occurred in 1904 at the Atlantic

mine in the copper district in Michigan (Bolstad, 1990). In Canada, Morrison (1942)

reported that the problem existed in Ontario at the end of the 1920's, in the Kirldand Lake

region, and then, in the Sudbury region some years laler. More recently, large rockbursts
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have occurred in the Elliot Lake region~ Ontario, in the potash mines in Saskatchewan, in

Bathurst~New Brunswic~and at the Springhill Colliery in Nova Scotia (Hedley~ 1992).

The history of rockburst in the Québec province is not weil documented. However~ the

problem exists (at least) since the 1960's (Gill and Aubertin, 1988). The East Malartic

mine in the NorthWest part of the province, which closed in 1979 because of serious

rockburst problems, is a good example. In recent years, severa! Québec mi.,es had to face

this problem, especially in the Abitibi region (Rocte~ 1980; AMMQ, 1988; Falmagne,

1991; Hedley, 1992; Mottahed. 1992; Gill et al., 1993; Plouffe et al., 1993; Harvey et al.~

1996). Table 1.1 lists mines where rockbursts have occurred in Canada.

Table 1.1. Canadian mmes where rockbursts or arge selsrmc events have occurred
Québec Ontario Rest of Canada

Central Canada Potash, Sask.
Elk River, BC
KI & K2 Mines~ Sask.
McGillivray, Al.
Patience Lake Mine. Sask.
PCS Mining Cory, Sask.
Springhill #2, NS

Lake Shore
Levack
Lockerby
Macassa
Onaping
Quirke
Stobie
Strathcona
Wright-Hargreaves

Copper Cliff
Creighton
Denison
Dickenson
Falconbridge
Fraser
Frood-Stobie
Garson
Golden Giant
Kerr Addison

Agnico-Eagle Campbell Kidd Creek Brunswick Mining, NB
Mine
Ansil
Camflo
Chimo
Copper Rand
East-Malartic
Lac Shortt
Nonnétal
Opemiska
Sigma

•

With the persistence and (sometimes) growth of the problem~ research efforts were made

worldwide and principally in the region touched by rockbursts. Gill and Aubertin (1988)

noted that before the 1960's, the approaches used were mostly empirical or

phenomenological. Canada was amongst the pioneers in this field with the work of

2
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Morrison (1942. 1976), of Hodgson and Jouhgin (1967) and of Coates and Dickout

(1970).

However, it is the analytical studies from South Africa that set the pace on subsequent

rockburst research. The post-failure studies on rocks, and the energy approach in the

unstable equilibrium analysis (Coo~ 1965a; Diest, 1965; Cook et al., 1966; Salamon

1970, 1974) are important notions still used in present research works.

Many countries are presently working on this problem. Canada in panicular has put a lot

of effort over the last few years to better comprehend the problem (Roctest, 1980; Hedley

et al., 1984, 1985; Whiteway, 1985; Udd and Hedley, 1985; Singh, 1986, 1987, 1989;

Musial, 1987; Scoble et al., 1987; Gill and Aubertin, 1988; Mitri et al., 1988, 1993;

Hedley, 1991,1992; Gill et al., 1993; Kaiser, 1993; Chen et al., 1995; Vasak and Kaiser,

1995; Kaiser et al., 1996; Simon et al., 1998).

Although rockbursts do not occur in the majority of Québec underground mines, it is a

problem that presents a high risk of fatalities in mines where the problem exists. Even if

research in this field has not been a major priority in Québec, as it has been in South

Africa or even in Ontario, some efforts have been initiated over the last decade (e.g., Gill

et Aubertin, 1988; Mitri et al., 1988, 1993; McCreary et al., 1993; Plouffe et al.• 1993a.b;

Mitri, 1996a; Aubertin et al., 1997; Simon et al., 1998) to provide tools to help rock

mechanics engineers to assess the rockburst potential of their openings.

On that matter, Gill and Aubenin (1988; see also Aubertin et al., 1992; Gill et al., 1993;

Simon et al.• 1998) proposed a methodology that makes use of standard rock mechanics

tools. which attempts to evaluate rockburst potential of rock structures. This

methodology, called the ERP method, is based on the stiffness comparison between the

3
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failed rock and the sUlTounding rock mass 9 as was proposed initially by Cook (1965b).

However9 this comparison could ooly be established for instabilities involving the

fracturing of the rock masse Thus it was not possible ta distinguish between graduai and

violent failure for instabilities involving slip on pre-existing discontinuities (the second

type of rockbursts). This research project focuses on this type of rockburst and aims at

developing a method ta evaluate the stiffness in question9 to make comparisons possible.

This method uses numerical modeling tools such as the boundary element method (and in

particular a modified version of the software SATURN originally created by Fotoohi9

1993) and a new constitutive model for joint behavior partially based on the one proposed

by Saeb and Amadei (1989, 1990, 1992).

This brief introduction is followed by a chapter on the rockburst problem and a review of

existing methods for the evaluation of the rockbW'St potential. Chapter 3 presents a

literature review on the behavior of joints and describes in details Saeb and Amadei's

constitutive model. Chapter 4 reviews the foundation of the boundary element method

(BEM) for rock mechanics. Chapter 5 describes the development and implementation of

a new constitutive model for rock joint into the SATURN software. Chapter 6 presents

analyses of parametric cases and analysis of an actual mine situation. Then follow a

discussion and conclusions.

4
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CHAPTER2

EVALUATION OF ROCKBURST POTENTIAL

2.1 ROCKBVRST PHENOMENA

Rockbursts May cause damage to underground openings and to equipment~and constitute

a major hazard to the safety of mine workers. This results in a cost increase and a loss of

productivity for the operator. Bléiha (1990) reponed that the production costs in coai

mines in the Ostrava-Karvina region in Poland increased by 100010 when the mined area

became burst-prone. On the safety Ievel, Saiamon (1983) noted that in 1979, 62% of

fatalities in South African mines could he attributed to rockburst and rockfalls. He aIso

reported that even though the total number of fatalities has drastically decreased in the

last fifty years~ the number of fatalities per year associated with rockbursts bas not

changed. In the first half of 1996 onIy~ there were more than 3S fatalities associated with

rockbursts in South African mines (Ryman-Lipinsky and Bakker, 1997). Rockburst is a

worldwide problem that is not expected to decrease. since the depth and size of openings

seern to keep on increasing.

This chapter stans with a definition of the rockburst phenomenon. The problem is then

classified according to the mechanism involved. Finally, existing methods for the

evaluation of rockburst potential are presented.
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2.1.1 DermitioD

A rockburst is generally defined as a sudden rock failure characterized by the breaking up

and expulsion of rock trom its surroundings, accompanied by a violent release of energy

(Blake, 1972). Although the definition of rockburst differs from one author to another,

the common ground of these definitions is the sudden release of energy in the form of a

violent expulsion of rock (McMaho~ 1988). Brown (1984) suggests that a rockburst

should he considered as a particular manifestation of seismic events that are induced by

mining activities. In fac!, the sudden failure that characterizes a rockburst can he, in

itself, the source of the seismic event, or May have been triggered by a distant seismic

event or trom a load transfer due to the latter (Gill and Aubertin, 1988).

The released seismic energy during a rockburst can range in magnitude from 0.5 to over

5.0 on the Richter scale (Jaeger and Cook, 1979). Usually, damages (or rockbursts) occur

when the magnitude of the seismic event is larger than 0.5 (McMahon, 1988). It is

important to note that although every rockburst is a seismic event, not ail seismic events

are rockbursts. In this document, a seismic event is considered a rockburst when damage

reaches the mine openings.

The necessary conditions to produce a seismic event are (Salamon., 1983):

- A region in the rock mass must he on the brink of unstable equilibrium either because

of:

a) the presence ofan appropriately loaded pre-existing geologicaI weakness such as

ajoint, fault, dyke or bedding plane; or because

b) the changing stresses are driving a volume of rock towards sudden failure; or

because
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c) sorne support system approaches a state in which its unstable coIIapse is

imminent.

- Sorne induced stresses must affect the region in question and the magnitude of these

stress changes, however smaIl, must he sufficiendy large to trigger off the instability.

- Sudden stress change ofsizable amplitude must take place at the locus of instability to

initiate the propagation ofseismic waves.

- Substantial amount of energy must he stored in the rock around the iostability to

provide the source ofkinetic or seismic energy. The origin of this stored strain energy

is work done by:

a) gravitational forces and/or

b) tectonic forces and/or

c) stresses induced by mining.

Three sources cao produce these energy releases:

- the stored strain energy in the rock mass;

- the changes in the POtentiaI energy of the rock mass;

- the slip aIong a weakness plane.

The changes in potential energy occur during mining and a portion of this energy cao he

stored in the surrounding rock masSe These changes brought by mining may trigger latent

seismic events that derive mainly from the strain energy produced by geological

differences in the state of stress (Cook, 1983).
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2.1.2 Classifieation of roekbunts

Rockbursts and other seismic events that May occur within rock masses influenced by

mining and other activities are associated with unstable equilibrium states that may

involve (Brown~ 1984):

- slip on pre-existing discontinuities; or

- fracturing of intact rock.

This leads to the definition oftwo broad categories of rockbursts:

i) Fault-slip rockbursts resulting from the first unstable equilibrium state mentioned

above;

ii) Strain rockbursts (including pillar burst) resulting tram the second unstable

equilibrium state mentioned above.

Il is important ta note that several case studies (Morrison and Coates~ 1957; Ortlepp,

1984) seem ta demonstrate that a non-violent failure of a portion of the rock mass can

trigger a fault-slip, and vice versa. Figure 2.1 shows the different situations that may

induce either strainbursts or fault-slip.

2.1.3 Rockburst mechanism

Rockburst is essentially a failure phenomenon, and the largest step to understand its

mechanism is to study the failure mechanism. Rockbursts can then be explained by using

classical rock mechanics principles.
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Creating a new underground opening modifies the in situ stresses in the rock mass and

induces a new stress field. Usually, the modification in the pre-mining stress field is

limited to a region known as zone of influence. Figure 2.2 shows a schematic

representation of a typical zone of influence for a drift. When the drift face advances, the

zone of influence, where the stress field bas changed, moves with the drift. This zone of

influence cao pass through a geological discontinuity and cao provoke a violent slip along

the discontinuity (events SI and SÛ. In the same manner, if this zone passes through a

weak zone, a failure process cm he induced (event S3) creating a new fracture in the rock

mass. Also, a portion of the rock mass cao fail violently (events CI and Cû, when the

opening crosses the discontinuity f-f, a dyke in the Figure 2.2.

It was proposed in the USSR by Petukhov (1957) - and later in South Africa by Cook

(1965b) and Diest (1965) - that the violent failure of a rock sample under uniaxial

compression in a low stiffness loading system represents, on a smaller scale, the dynamic

fracturation of rock during a rockburst. In this contex!, the rock mass that is brought ta

failure around the opening is associated with the rock sample, and the rock mass

surrounding the failed rock represents the loading system.

Figure 2.3 presents schematically this analogy using the load-displacement curve. ln this

figure, kr represents the stifthess of the rock in its pre-failure state (elastic behavior), ~d

kls represents the loading system stiffness. On Figure 2.3a, point A represents the stan of

microcracking; point B represents the peak resistance; and point C cao he identified as the

limit of the stable equilibrium of the system (Salamon, 1970, 1974). Figure 2.3b shows

the evolution of the rock stiffness with the displacement.

As we cao see on Figure 2.4a, when the loading system stiffness is smaller (in absolute

values) than k'r (the rock post-peak stiffness), the amount of stored strain energy in the
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system (rock and loading system) exceeds the work that the rock can do in its post-peak

phase, and the failure will he violent. Otherwise, if kls is larger than k'r (in absolute

values), then the failure will he graduai and can he controlled (Figure 2.4b).

Pininska and Lukaszewski (1991) observed that laboratory results seem to indicate that

rocks with a lesser strength show greater post-peak strains and vice-versa: the greater the

strength, the fastest is its fmal failure. This phenomenon, although not being an absolute

law, has been confinned by a compilation of test results made by Aubertin et al. (l994a,

1994b).

Even if the analogy described above is simple, it remains nonetheless true for the rock

mass (Gill and Aubertin, 1988). The strength and the deformability of a rock sample are

controlled by the intragranular bonds while the essential forces in a rock mass act

principally on the surfaces of geomechanical discontinuities (Pininska and Lukaszewski,

1991). The transposition to the rock mass of this analogy must however consider the fact

that the stress field in rock structures is not necessarily uniaxial. With this end in view,

Gill and Aubertin (1988) proposed the notion of equivalent stiffness that will be detailed

in section 2.3.

Salamon (1974) extended this analogy to explain fault-slip rockbursts. Figure 2.5 shows

two diagrams shear stress-tangential displacement obtained from direct shear tests on a

structural plane with a low normal stress. In this figure, kp is the pre-peak stiffness of the

plane and kls is the loading system stiffness. Point A on Figure 2.5b represents the

ultimate (peak) shear strength of the plane, and loading beyond this point leads to the

residual strength. A comparison between the stiffness of the loading system kls and the

post-peak stiffness of the plane k'p shows that the equilibrium of the system loading­

structural plane is stable and the evolution of the post-peak behavior is graduai since
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Iklsl>lk'pl. However, on Figure 2.S~ the evolution toward the residual strength is violent

for Iklsl < Ik'pl since the stored energy can not he totally dissipated through straining.

Of course, the transposition of this model to the rock mass must also consider that the

normal stress to the discontinuities is not necessarily low nor constant.

2.2 METHODS FOR THE EVALUATION OF ROCKBURST POTENTIAL

The techniques or methods to evaIuate the rockburst potential in underground mines are

numerous. However, due to the complex nature of the phenomeno~ no technique can yet

predict each and every single event. Existing techniques can he divided ïnto two broad

categories:

i) Methods based on indices derived from rock propenies;

ii) Methods based on in situ conditions.

The goal of this literature review is not to present an exhaustive list of every technique

available but rather to provide a brief summary of the different tools available for the

evaluation of rockburst potential in underground mines.

2.2.1 Metbods based on indices derived from rock properties

Usually, these techniques are used the same way. First, the index is calibrated for the

mine or the mine district by linking the value of the index with the number of events.

The index can then he used to evaluate the potential of a new zone by calculating its

index value.
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Most of these indices are closely related ta the behavior of rock under uniaxial

compression. Hence, a brief review of this behavior is useful.

2.2.1.1 Behavior oChard racles under uniax;a[ compression

Figure 2.6 shows schematically a typical stress-strain relationship for a rock specimen

submitted to uniaxial compression. Sorne phase boundaries are also added. The first phase

(phase 1), curved upward, is 8SSOCiated with the reversible closure of microcracks; in dense

rocks with very low porosity, this first phase is almost non~xistent. Then follows a linear

phase (phase 2) due to the elastic response of the rock, which extends up to the

microfracturing threshold where stable crack propagation starlS. The onset of microcrack

growth (phase 3), which precedes the peak strength, commonly begins above about 500A. of

the ultimate load, as shown by studies on volumetric measurements, acoustic emissions,

wave velocity, etc. (e.g., Paterso~ 1978; Hakami, 1988; Cox and Meredith, 1993). When

approaching the peak stren~ the size and density ofcracks increase, and cracks interaction

becomes more important, and unstable crack propagation cao he initiated (phase 4).

Damage accumulation during crack propagation (phase 4) leads to a rapid increase in

dilation and eventually to strain localisation. Il is known that, for brittle materials such as

rocks, localisation associated with a loss of homogeneity of the strain field, usually occurs

in the vicinity of the peak load (e.g., Wawersik et al., 1990). In the post-peak phase (phase

5), localisation phenomena become more important, and usually produce a graduaI

reduction of the sample cohesion with increasing inelastic strain. This causes a pronounced

softening of the material, which is a progressive decrease ofstrength as strain accumulates.
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One important aspect of the rock behavior, used with severa! indices, is that inelastic

strain can develop in the pre·peak regime and can dissipate energy by microcracking.

2.2.1.2 Indices basedon energy

A) Relative violence at failure

Proposed by Denkhaus et al. (1958), this index measures the rebound of the loading

system at failure during a uniaxial compression test with a non·stiff loading system. The

hypothesis ofthis index is that the rebound is proportional to the violence (seismïc energy

released, volume of rock fragments, etc.) at failure.

B) Indices based on stored elastic strain

Several indices are based on the elastic energy recovered in a 10ading·unIoading test.

Among these is the Bursting Liability Index or WeI Index proPOsed by Neyman et al.

(1972) for coal mines. This index is detennined with a uniaxial compression test by:

ER
W =- (2.1)

et Eo

where ER is the elastic energy recovered during unIoading which cao he caicuJated by the

area under the unIoading curve, and Eo is the energy dissipated in the cycle which can he

calculated by the area between the loading and unloading curves (Figure 2.7). The load

during the test must attain between 80% and 90% of the uniaxial compressive strength.

The larger the value of the index, the less the rock can dissipate energy via stable

propagation and the larger is the rockhurst potential. Stewarski (1987) aIso proposed the

Rock Dynamic Index that is determined by the same ratio but for a loading test on a

Hopkin's bar.

13
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BIM Bursting liabilities

between 1.00 and 1.20 high

between 1.20 and 1.50 moderate

above 1.50 low
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However, to achieve 80% to 90% of the strength with the Wet index is a problem since

this strength can be known, a priori, ooly in a probabilistic manner. Moreover, the size of

the hysterisis and the value of the index are directly influenced by the relative value of the

10ad attained (Hueckel, 1987). To eliminate this problem, Aubertin and Gill (1988)

proposed the Brittleness Index Modified (BIM). To calculate the value of this index, a

uniaxial compression test is canied out up to failure. The area under the loading curve

(A2) is easy to evaluate (Figure 2.8). A2 is then compared to the area under the curve

corresponding to the defonnation modulus of the rock (AI) taken at 50% of the peak

strength. The value ofthis index is then determined by (Aubertin and Gill, 1988):

BIM = A 2 ~ 1.0 (2.2)
AI

The smaller the value of the BIM. the higher is the rockburst potential. Aubenin et al.

(1994a, 1994b) also proposed a classification of the proneness of the rock for

rockbursting:

Table 2.1 Indicative values of BIM as related to bursting Iiabilities (after Aubenin
et al., 1

The BIM has also been related to the ratio of pre-peak modulus to the post-Peak modulus

and can be used to find the post-peak modulus when it was not detennined in laboratory

testing.

One last index based on a somewhat similar principle is the Burst-efficiency Ratio

proposed by Motyczha (see Kidybinski, 1981) given by:
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B =.!L
CI" '0

where ~l is the energy of particle ejected at failure in a uniaxial compression tes~ and '0

is the maximum energy stored in loading and gjven by (also, Mitri, 1996b):

(Jc;Er
~ --o - 2

where (Je is the uniaxial compressive strength, and Er is the defonnation at failure.

C) Index of released energy

Proposed by Singh (1988a), this index measures, with a seismograph, the sum of

maximum speeds of vibrations produced in the loading system during a uniaxial

compression test. This sum would he a measure of the released energy at failure.

D) Failure duration index (Dt)

Wu and Zhang (1997) proposed to monitor the time of failure (Dt) ofcoal samples during

a uniaxial compression test (stress rate between 0.5 to 1.0 MPa/s). The Dt index is the

lime between peak strength and complete break down. The authors proposed the

following values ofproneness:

Table 2.2 Indicative values for the Dt index (after Wu and Zhang, 1997)

Dt value Bursting proneness

lower than 50 ms strong

between 50 and 500 ms medium

larger than 500 ms no
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2.2.1.3 Brittleness

The brittleness of rocks is sometimes evaluated from two different empirical (and more or

less arbitrary) concepts such as (Hucka and Das, 1974):

(2.5)

•

8 2 = sin, (2.6)

where cre is the uniaxial compressive strength, <rt is the uniaxial tensile strength, and • is

the shear angle taken from the failure surface in Mohr's diagram. Rockburst potential

seems to increase with larger brittleness values.

2.2.1.4 Decrease Modulus Index

This index is obtained from the ratio of the pre-peak deformation modulus over the post­

peak deformation modulus (Homand et a1.~ 1990). The pre-peak modulus corresponds to

the slope of the linear part of the pre-peak curve and the post-peak modulus is given by

the sIope of the post-peak portion of the curve. The rockburst potential increases with a

lower value of the index.

2.2.1.5 Elastic stra;n energy factor

Hou and lia (1988) presented this factor that combines drilling observations with in situ

stresses. The Mean length of drilling core is associated to the in situ stress and then

c1assified. The rockburst potential is evaluated from this class.
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2.2.1.6 Energv-Band fài/ure index fcrilerionJ

Mitri (1996b) suggested the calculation of pillar skin strainburst using an index based on

strain energy which is given by:

S.L.= e4 (2.7)
ec;

where e4 is the mining-induced strain energy calculated at the boundary of the opening

(pillar skin) and ec: is the critical strain energy given by equation 2.4.

2.2.1.7 Concluding remar/cs

Using indices presented in this section implies that a mine or a mining zone had already a

certain number of rockbursts to establish the ditTerent zone boundaries as to: no risk;

moderate risk; high risk. Altough these indices cao easily he obtained~ they ooly indicate

the prooeness of the rock to fail violently, and they do not provide a tool that can be easily

integrated into routine mine design. They can~ however, indicate mine zones where rock

structure might he al higher risk.

2.2.2 Methods based on in situ conditions

Due to the problems of integrating the use of indices based on rock properties into routine

mining engineering, many researchers tumed to an in situ approach to predict, a priori~

the rockburst potential of openings. These methods emerged principally with a better

understanding of the rockburst phenomenon.
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2.2.2. J Rock mass electric resistance

The continuous monitoring of the electric resistance changes in the rock mass bas been

used to predict the frequency of rockbursting (Stopinski and Dmows~ 1984). This

monitoring facilitates the observation of the effects of tectonic stresses and mining

induced stresses. These observations cao also indicate the location and necessity for

applying a destressing technique ta the rock mass (Sin~ 1989).

2.2.2.2 Seismic velocities

Krawiec and Stanislaw (1977) showed that the seismic velocities could he related to the

stress level in the rock mass~ the velocity value being proponional to the stress leveI.

Changes in velocity values can then he used to monitor stress changes in the rock mass

and then prevent failure and rockburst situations.

2.2.2.3 Energy balance

This approach is essentially the elaboration of the balance of stored energy in a rock mass

and the energy that can be dissipated when a change (geometrical and/or in stress level)

occurs in the rock mass. This balance is used to caJculate the energy available for

rockbursting. This approach was reviewed in detail by Salamon (1970, 1974, 1983,

1984), Walsh (1977), Budavari (1983), Brady and Brown (1985)~ McMahon (1988), and

Hedley (1992).

Since 1960, Many measurements of rock displacement have heen performed and they

suggest that the rock mass mechanical behavior in rockburst situations is essentially of

elastic nature (Onlepp~ 1983). Then~ the energy balance is usually performed using
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elastic laws. It could also he shown that using elastic laws to evaluate the energy

available for rockbursting is a conservative approach since the energy dissipated by

fracturing is neglected, hence, the stress concentration around opening is overestimated.

When an opening is created or modified, the stored strain energy equilibrium is changed

(Cook et al., 1966). Let stage 1 he the initial situation before the creation of the opening;

the stage following the creation (or modification) of the opening will he called stage II.

The energy balance is concemed with the transition hetween stage 1and stage II.

When an opening is created, energy becomes available and is provided from two sources.

The tirst one is the work W (or the variation of potential energy in the system) done by

the shifting of extemal and gravitational forces working on the convergence and

defonnation of the rock masse The second source is the stored strain energy Um in the

mined rock. The sum of these energies (W + Um) is the total energy available when

passing from stage 1to stage II.

This energy cao he dissipated in two ways. A portion of this energy will he dissipated

with an increase in the strain energy Ue: stored in the rock mass surrounding the

excavation. It is also possible that the pressure on support elements surrounding the

opening increases; this work Ws is the second way ofenergy dissipation.

If the rock mass is considered as an ideal elastic continuum, then no energy is dissipated

through fracturing or inelastic deformation of the rock. With this simplification in mind.

the sum (Ue: + Ws) is the total energy dissipated during the mining of the opening.
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It is obvious that the total energy dissipated cannot he larger tban the energy available

(W+Um). Considering that the stored strain energy in stage 1 in the mined rock (Dm) is

not available anymore9 then:

W ~ Uc +~ (2.8)

and since Um > 09then

W + Um > lic + Ws (2.9)

This inequality implies the existence of an excess ofenergy that must he dissipated when

passing from stage 1 to stage U. This energy is referred to as the released energy Wr.

Then9 one cao write:

and

(2.10)

(2.11 )

The amount of released energy Wr9 when larger than the stored strain energy in the mined

rock (Um) in stage 1. produces a wave (kinetic energy) that propagates from the new limits

of the opening. The vibrations produced by the wave will he damped by minor flaws in

the rock mass (the latter not heing perfectly elastic). This kinetÎC energy Wk will he

dissipated by the damping process.

•

Since there is no other way to dissipate the energy9 then:

Wr=Um+Wk

and Wk=W-(UC+~)~O

Then the final equation of the energy balance is given by:

Wr = W -[( Uc - U m ) + "':]
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The evaluation of the released energy of an opening is relatively easy for any geometry

(Gill and Aubertin~ 1988) and the Boundary Element Method (BEM) is weIl adapted to

make such evaluation (Brady and Brown, 1981).

It is obvious that the amount of released energy is proportional to the depth of the

excavation (or the pre-mining stress) and its dimensions (Gill and Aubertin, 1988).

2.2.2.4 Energy Re/ease Rate (ERR)

Based on the energy balance, an incremental approach can he used to follow the changes

due to mining. The mining of an underground orebody usually implies the widening of

excavations by increments. This leads to an energy release rate by unit surface (dW,IdS),

used when the opening geometry is regular, or a volumetric energy release rate (dW,1dV),

used for irregular geometry openings.

Stacey and Page (1986) provide a way to evaluate, in a preliminary manner, this energy

release rate (the symbol ERR is commonly used in the literature) with the equation:

ERR V.. 1 = tcn; (2.15)

where G is the stress on the unit volume before mining, and & is the convergence resulting

from the opening.

This ERR has become a rockburst prediction tool in South African mines. SPOttiswoode

(1990) notes that ERR is one of the most used parameters for stope design in deep

underground South African mines. A correlation between the ERR and rockburst hazards

was established for longwall mining (Cook, 1978) as seen on Figure 2.9.
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2.2.2.5 Strain energy approach

Based aIso on the energy balance concep~ Mitri and Suriyachat (1990; see also Mitri et

al., 1993; Momoh et al., 1996) developed a 2D finite element program that cao calcuJate

mining induced strain densities around mine openings. The idea is based on the

assumption that rockburst can he attributed ta total strain energy stored at this moment as

weil as the energy release rate (same as the ERR) caused by the past mining steps.

Figure 2.10 explains the calculation of energy. From the initial mining step (before the

excavation) to mining step 1, where we go from (0, 0'0) to (&1, (f.) the total stored strain

energy is given by area ABCD. The mining induced strain energy density is given by area

ABE and the energy stored or lost by the pre-mining stresses is the area AECD. When

portion 2 of the excavation is mined, the total stored strain energy is given by area

AHGD, the mining induced strain energy density is given by area BH] and the energy

stored or lost by the pre-mining stresses is the area BIGC. These energy densities are

calcuJated, using linear elasticity. at every integration point within each element in the

mesh of the finite element model.

This software cao he a useful tool to help detennine the less burst-prone mining sequence

of openings. However, it requires caIibrating with actual rockburst case histories in order

to give values for the strain energy level ta assess the risk of rockbursting in Canadian

underground mines.

2.2.2.6 Excess Shear Stress ŒSS)

The South African experience showed that the notion of energy release rate (ERR) was

very limited for fault-slip type rockbursts. Ryder (1987) proposed a similar criterion, the
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excess shear stress criterion (ESS), that couJd he applied to this type of rockbursts. This

criterion is based on the energy avaiJable when passing from static resistance (before slip

movement) to the dynamic resistance (during the slip).

The statie resistance Ts of the discontinuity can he estimated with a Mohr-CouJomb type

criterion such as:

t s = c+Jlsan (2.16)

~th • 2Ils =tan" 5 ( .(7)

where c is the cohesion, ~ is the static friction factor, an is the normal stress at the

slipping point, and +5 is the static friction angle. Once the motion has started, the value of

the ESS is given by:

ESS =te =Itl- t d (2.18)

where te is the net shear stress avaiJable to produce a seismic event once failure has

started, t is the shear stress at the initiation point. and td is the dynamic resistance at this

point and given by:

\\-1th f.1 = tan~

(2.19)

(2.20)

•

where Jl is the dynamic friction factor, and +is the dynamic friction angle. Ryder (1987)

has suggested these average values of te to produce significative seismic events:

te =:: 5 - 10 MPa for an unstable movement along a pre-existing
discontinuity;

Le =:: 20 MPa for a shear failure of intact rock.

In theory, the larger ESS value brought by the progression of the opening towards the

discontinuity, the larger surface of the discontinuity would he involved, and the larger

would be the seismic event produced. In practice however, back analyses performed

showed that not ail positive ESS situation yielded seismic events. This could he due to
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Iack of accuracy on the data and/or stress involved (Ryder, 1987). Gill and Aubertin

(1988) note that this absence of rockbursts for positive ESS confirms the fact that the

discontinuity post-peak stiffuess and the rock mass stifthess on both sides of the

discontinuity may play a major role in the process, or maybe 'te should not he assumed;

rather it should be assessed by laboratory testing.

2.2.2.7 Activitv index

Tao (1988) proposed an index that considers the uniaxial compressive sttength Ge and the

major principal stress al in the region of the opening. His experience in Chinese mines

led to the following c1ass of risk:

Table 2.3: Rockburst potentiaI classes (after Tao, 1988)

Class a/Cf1 Bursting activity Comments

1 > 13.5 no activity no acoustic emission

2 13.5 - 5.5 low activity weak acoustic emissions

3 5.5 - 2.5 average activity loud acoustic emissions

4 < 2.5 high activity very loud acoustic emissions

2.2.2.8 Microseismic activ;tv

Rockburst research has focused basically on two fields - prediction and control. The first

studies on prediction focused on acoustic and microseismic emission monitoring.

Relation between microseismic emission rate and stress state was first verified in 1938 in

the United States (Boistad, 1990). However, it is with the work of Ohen and Duvall in

the 1940's (see Qbert and Duvall. 1967) that this technique really started.
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ln a stable elastic homogeneous and isotropie domain~ no acoustic or microseismic

emission should theoreticaIly occur. Daihua and Miller (1987) note that there is little

acoustic emission in a uniaxial compression test until the load reaches a certain level, that

is 75% to 80% of the peak strength (50% for Paterson~ 1978)~ which shows that the rock

specimen bas an elastie behavior. However, heterogeneities and anisotropy in rock

masses will create sorne local instabilities (Salamon~ 1974; Jaeger and Cook~ 1979).

Mine microseismicity is highJy influenced by local geology and tectonic - i.e., by

heterogeneities and discontinuities, and the interaction between gravitational~ tectonic and

induced stresses at a local and regional scale (Gibowic~ 1990). Il is usually assumed (see

for example Blake, 1982) that at the scale of rock masses, one tinds the same phenomena

as in laboratory tests.

Microseismic events can he recorded by sensors strategically located in a mining region

and connected to a computer. During an event, the computer locates its position and its

amplitude by analyzing arrivai times at each sensor. ft is then possible to loeate regions

where there is microseismic activity. These regions are then considered as burst-prone

regions (Blake, 1972).

Microseismic monitoring cao aIso he used for other purposes than localization.

Experience showed that microseismic activity could be related to the ERR and bursting

activity; an increase in ERR will usually produce an increase in microseismic activity

(Gay et al., 1982), and in periods preceding rockbursts, there is often a high increase of

the nwnber of seismic events (Jaeger and Cook, 1979). For example, a 17 month

experiment in a South African mine where a w~-ning was issued for an increased in

seismic activity showed a 80% success in predicting rockbursts (Glazer~ 1997). However,
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half of these rockbursts occurred more than 4 days after the waming was issued (only

27% occurred within 24 hours).

Microseismic monitoring in the mining industry bas been used widely in Canada and

worldwide. Canada in particular bas spent a lot of efforts in that field (e.g., Rocte~

1980; Calder et al., 1986; Daihua and Miller, 1987; Hedley and Udd, 1987; Hasegawa el

al., 1989, 1990; Young et al., 1989, 1990; Hedley, 1991, 1992; Plouffe et al, 1993;

BeghouJ et al., 1996).

Nevertheless, the relative high cost for the purchase, installatio~ maintenance and use of

this technique makes il a tool that is not easily available for small mines including severa!

mines in the province of Québec. Moreover, it is bardly a predictive method but rather a

monitoring too1.

2.2.2.9 Rockburst hazard based on 3D stress field analvsis

Tajdus et al. (1997) proposed severa! rockbursts indicators for the evaluation of the

rockburst potential for Polish underground coal mines:

- Coefficient of vertical stress concentration:

(2.21)

where C1z (x,y,z) is the vertical stress in the elementary volume, Pz is the initial vertical

stress in the elementary volume.

- Coefficient ofenergy concentration:

•
~= Vc

VI
C
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where Ve is the strain energy of the rock mass in the elementary volume and Vçi is the

initial strain energy of the rock mass in the elementary volume, with:

(2.23)

where Va is the strain energy ofvolume change given by:

and V p is the strain energy ofdistortion given by:

Vp = 1
6
+;[(0". -O"yf +(Gy-o"zy +(O"z -O"llY +6 (t~ +T~ +'t~)J

The initial elementary strain energy of the rock mass can he obtained by:

V' = p;(1-v-2v
2

)

c 2 E (l-v)

where E is the elastic modulus and v is the Poisson's ratio.

- Ratio of effective stress to rock strength

(2.24)

(2.25)

(2.26)

(2.27)

where cro is the mean applied stress, (Je is the uniaxial compressive strength and crt is the

uniaxial tensile strength.

- Energetic rockburst indicator

T = El(
e EO

Je

(2.28)

(2.29)

•
where EK is the energy accumulated in the rock mass and E~ is the energy necessary for

initiating rockbursting. Based on the energy balance, EK is given by:

El( =Vc+Eo-LZN
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where Vc is the elastic energy accumulated in the broken rock mass during rockburs~

which is a sum of initial and induced stresses, Eo is the energy generated by the tremor in

the rock mass and LZN is the work used for breaking and crushing rock mass volume

discharged to an opening. The minimum energy necessary for initiating a rockburst E~

can he estimated by:

(2.30)

(2.31 )

•

where PST is the average density of broken rock mass (assumed to he 2,5 t/m3
) and Vo is

the average velocity of broken rock mass ejected to an opening during rockburst

(estimated at 10 mis by Filcek, 1980). Thus, E~ = 1,25 • lOs J/m3
• Then, the energetic

rockburst indicator is given by:

T = Vc +Eo -LZN

e EO
K

If Te < 1, then the rock mass is not capable of rockbursting; if Tc ~ 1, then a rockburst is

possible (the probability of occurrence increases with the value of Te). From their

experience in polish coal mines. Tajdus et al. (1997) have combined the preceding indices

to provide the following limits:

when in a given region the following conditions are fuJfilled: a. ~ 1,5; Il ~ 1.5;

rock mass is close to failure Wb =: 1 and Tc < 1, then the probability of rock

tremors occurrence is very high.

If the following conditions are fulfilled: a. ~ 2; Il ~ 3; rock mass is close to

failure Wb =: 1 and Tc ~ 1, then there is a probability ofrockburst occurrence.
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2.2.2. JO Ana/ytica/ bump criteria

Kleczek and Zorycha (1991, 1993) developed a criterion for Polish coal mines to evaluate

if a rockburst cao occur at the roof of a large excavation. Based on the bending

conditions, the condition for fracturing (W) is given by:

1.32S[Ra ]2 F
W = p~ Es

h h·-+_1
E, E j

2.3 THE STIFFNESS APPROACH

An analogy based on stiffness difference between the rock and the loading system was

presented in section 2.1.3 to explain the rockburst mechanism. This analogy bas been

integrated in the local mine stiffness coefficient approach for predicting stability of mine

pillars (e.g., Starfield and Fairhurst, 1968; Starfield and Wawersik. 1968; Salamon,

1970; Zipf. 1996).

It has also been used to develop a methodology to evaluate the rockburst potential of

Wlderground excavations, starting from routine mining and ground control engineering.

Convinced that proper engineering design of rock structures should include the evaluation

of its rockburst potential, Gill and Aubertin (1988) - see also Aubertin et al. (1992) and Gill

et al. (1993) - have extended a methodology presented in Gillis (1982) lecture notes. As

shawn in the diagram of Figure 2.11, it includes up to four steps: zoning, identification of

vulnerable rock structures, stability anaIysis and a stiffitess comparison when a strain or

pillar burst is expected. This methodology is briefly described in the following.
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2.3.1 Zoning

It consists in dividing the rock mass into different sectors in whieh a specifie meehanical

behaviour is foreseen (rock mass defonnabilityy stren~ etc.). It includes the detennination

of the location.. boundaries and general properties of the different zones. The initial zoning

is usually based on geological data. It should he thereafter confinned by geomechanical

classifications. The RMR system (Bieniawski.. 1973, 1984) or the Q system (Banon et aI.,

1974) are the most commonly used in the northwestem Québec underground mines. Ali the

major geological discontinuities (that are frequently delineating the different zones) must

aIso he identified and located at this stage.

2.3.2 Identifieation of vulnerable rock structures

The methodology considers three broad categories of potentiaIly vulnerable rock structures,

namely:

i) An excavation that approaches a major geological discontinuity, as shown in Figure

2. 12a. Here. the stress changes induced by the excavation can increase the shear

stress and/or reduce the nonnal stress aIong the discontinuity. Any of these can

provoke a type 1(fault-slip) rockburst;

ii) An excavation that goes through a major geological discontinuity or through a zone

boundary; this case is ilIustrated in Figure 2.12b. If part of the rock mass.. located

close to both the zone and the excavation boundaries in one ofthe zones.. is brought to

its failure state, a sudden and violent failure is possible depending on the

defonnationaI properties of the rock mass of the other zone. This can then lead to a

type n(strain burst) rockburst;

iii) An excavation that follows a major geological discontinuity or a zone boundary. A

typical example of this case is a mine pillar, as sho\W in Figure 2.12c. If the pillar
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(zone C) fails, its failure cao he violent (type fi rockburst) if the defonnation

properties of zones A and/or B satisfy cenain requirements. This category includes

any isolated structure that May present sorne differences in mechanical properties due

to local heterogeneities in the rock mass; it also includes isolated structures that May

show pronounced geometrical irregularities.

2.3.3 Stability analysis

In routine mining engineering, stress analyses are usually performed using an elastic

constitutive model for the rock mass; this bas been proven to he an adequate approach for

rockburst situation (e.g., Ortlepp, 1983). Rock properties are generally obtained through

standard laboratory tests conducted on specimens prepared from appropriate rock samples.

Rock mass properties are extrapolated from rock properties by using various relationships

that take into account the mechanical effects of geological discontinuities; relationships

based on geomechanical classification ratings are often used for that purpose (Hoek and

Brown, 1980; Bieniawski, 1984). The knowledge of the pre-mining state of stress results

from in situ measurements or from empirical relationships such as those proposed by Herget

(1987; AIjang and Herge~ 1997) for the Canadian Shield underground mines or Arjang

( 1996) or Corthésy et al. (1997) for the Abitibi mining district.

A) Fault-slip type rockburst

This type of rockburst has been defmed as a sudden slip on a pre-existing discontinuity.

Unfortunately, up until now, very littIe information on post-peak hehavior of geologicai

discontinuities was available. In addition, there seemed to he no recognized method to

evaluate the equivalent local stiffiless of the rock mass on both sides of the discontinuity.
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This was why the proposed methodology recommended (at this stage of its development)

that if the stress conditions are such that a slip on the discontinuity is plssible~ then it should

he considered that the equilibriwn state is unstable and that there is a POtential for

rockbursting. However~ it should also be considered that if the normal stress is approaching

the uniaxial compressive strength of either one of the rock masses bordering the

discontinuity, the failure should he graduaI.

To model the peak shear strength of the discontinuity~ Gill and Aubertin (1988) suggested

using Barton's equation (Banon and Choubey, 1977; Bandis et al., 1983)~ for its relative

simplicity and broad applicability.

B) Strain and pillar burst type rockburst

This type of rockburst bas been defined as the brittle failure of a certain volume of rock.

Unlike the situation described above, il is possible~ here~ ta he more specific about whether

the failure is violent or graduai.

If, while perfonning the stability anaIysis~ expressing the rock mass strength through its

uniaxial compressive strength is not adequate, the authors suggested using the well-known

Hoek and Brown (1980, 1988) failure criterion.

With mine piIlars~ bath size and shape effects should he considered; these affect the peak

strength as weIl as the pre-peak and the post-peak parts of the stress-strain relationship.

Such effects can he inttoduced iota the stress-strain relationship through geomechanical

classification ratings (e.g.• Sar~ 1984), empirical fonnulas (e.g., Bieniawski. 1975;

Barron and Yang, 1992) or confined core concept (e.g.~ Wilson~ 1972).
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2.3.4 Stiffness comparisoD

Before the results that will he presented in the following chapters~ this final step only

applied to strain and pillar burst type rockbursts. Two different situations are dealt with

here: (i) mine pillars; (ii) other rock structures.

i) Mine pillars: Let us consider a mine pillar which is axially loaded~ as it is postuJated

with the tributary area theory (Brady and Brown~ 1985) or with the pillar loading

theory proposed by Coates (1965). It cao he shown that the pre-peak stiffuess

coefficien~ kp" for a "long" pillar (plane strain conditions), considering a unit

thickness and idealizing the stress-sb'aÏn relationship, is given for a unit length of

pillar by:

(2.33)

•

where En, is the pre-peak rock mass elastic moduIus, v is the Poisson ratio, B is the

pillar width, and H is the pillar height. The post·peak stiffitess coefficien~ k~ is

obtained by substituting E'm, the post·peak rock mass elastic modulus, Înto equation

(2.33). Il should he noted that stiffi1ess coefficients are expressed here as a force per

unit length (e.g., pounds per inch or meganewtons per metre) as it is the case in most

publications.

If the post-peak modulus of the rock mass involved is unkno~ empirical

relationships that have been proposed for rocks cao he used, such as the relationship

proposed by Brady et Brown (1981) for instance or by using the BIM described in

section 2.2.1.2. Ta account for scale effects, it was proposed by Gill and Aubertin

(1988; see a1so Aubertin et al., 1997; Simon et a1.~ 1998) ta use similar relationships
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as the ones used for estimating the elastic modulus of the rock mass (using

geomechanical classification for instance).

On the other han<L the stiffuess coefficient of the country rock mass, kc, cao he

determined in a number of ways. The analytical models proposed by Starfield and

Wawersik (1968) and by Salamon (1970) could he used as such or implemented into

a variety ofnumerical stress anaIysis methods. Gill and Aubertin (1988) rather favor

a simpler approach that is easier to incorporate ioto routine engineering. It consists

io perfonning numerical stress analyses foUowing the process described by Hoek

and Brown (1980) for obtaining ground characteristic lines with the convergence·

confinement method as applied to pillar design. To illustrate this approac~ let us

consider the schematic single symmetrical pillar model shown in Figure 2.13a. A

unifonnly distributed stress (Tp is applied at the pillar location over a strip of width B

and the relative displacement â of points A and AI along the pilJar axis (or the

relative average displacement a10ng the pillar.countty rock interfaces) is computed

using any two~imensional numerical code. This analysis is repeated for different

values of op and the results are plotted on a BO'p (Joad) versus L\ (displacement)

diagram (Figure 2.13b). It can be shown that the slope of the line so obtained is the

local mine stiffitess coefficient ke for the pillar under investigation, as defined by

Starfield and Fairhurst (1968) for instance.

For pillars with fmite cross-sectional dimensions., plane stress conditions have to he

asswned and it cao he demonstrated, for an idealized stress-strain relationship., that

their pre-peak stiffhess coefficient., kpr, is:

EA
k = - (2.34)

pr H
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In this equatio~ E is the pre-peak rock mass modulus and A.. the cross-sectional

area of the pillar. Again, the post-peak stiffitess coefficient k~ can he obtained by

substituting E', the post-peak rock mass elastic modulus.. into equation (2.34).

The detennination of local mine stiffuess coefficients Ckc) cao he done as suggested

above (Figure 2. 13a), using instead a three-dimensional stress analysis code. For a

given pillar.. the results are plotted on a AGp vs d diagram; the slope of the line 50

obtained is the local rt'ine stiffiJess coefficient for that pillar. If no 3D code is

available, a correction factor cao he applied to a 2D anaIysis (Simon et al... 1998) to

obtain ke.

It is recalled that if the pillar should fail. and if k~ is larger than kc (in absolute

values). then the failure would he sudden and violent. leading to a pillar burst type

rockburst. This comparison is usually done on what bas been called force­

convergence diagram by Starfield and Fairhurst (1968). These diagrams cao he used

to evaluate the rockburst potential as ilIustrated in Figure 2.13b. Curve (i) in this

figure is an idealized reaction curve for a pillar which should fail and potentially

burst while in the case of the pillar with reaction curve (ii).. the failure should he

graduaI; curve (iH) stands for a pillar that should not fail.

Other rock structures: An approach similar to that descrihed for mine pillars is

suggested for other rock structures. The local mine stiffitess of the surrounding rock

mass can he estimated by replacing the failed rock by fictitious forces Pi applied to

the surfaces as shown on Figure 2.14a., and then by measuring the convergence 6

between points A-A'. The anaIysis is repeated for different values of Pj, and the

local mine stiffuess is given by the slope ofthe graph B·Pj vs ~.
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It bas been recognized, when the rock mass is assumed to be linear elastic and

homogeneous, that the stresses known to trigger the failure of any unsupported

underground excavation are those at the boundary of the opening. In routine mining

engineering work, failure criteria generally~ when perfonning stability analyses,

involve only the two extreme principal stresses (al and 0'3); it is then postulated that

the average principal stress (0'2) bas no effect on the failure process. At the

boundary of the excavation the value of the minor principal stress 0'3 is nil; at the

limits of the failure zone, it is sufficiently low (in first approximation) to he

neglected. With these simplifications in mind, the portion of the rock mass near the

excavation that is brought to its failure state cao be considered as a structural

element submitted to a uniaxial state of stress (Figure 2.14). The~ the post-peak

stiffness ofthe failed rock mass cao he estimated with equation (2.33).

As usual, if it is found that failure can occur and if the value of 1k~1 is larger than

Ik e 1 then a type n rockburst cao occur.

Severa! back-analysis of actual rockburst cases have been presented, using this

methodology, in Simon (1992); Aubertin et al. (1992. 1997), Simon et al. (1993), Gill et al.

(1993), Simon et al. (1995), and Simon et al. (1998).

On the other band, because several uncertainties exist when estimating the different

stiffuesses, it might he useful to compare them in a relative manner. Then a Bursting

Potential Ratio (BPR) cao he defined as the post-peak stiffness of the failed zone over the

local mine stiffness (Simon et al.• 1995):

k~
BPR = - (2.35)

k e
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If the value of BPR in a first analysis is much larger than unity (1.0), this would indicate a

clear rockburst potential, but a value near 1.0 might require further investigation (1ike the

detennination in laboratory of the post-peak modulus, or a better approximation of the

dimensions ofthe failed zone for example).
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Figure 2.1 a: Typical situations that may lead to strainburst type of rockbursts.
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Figure 2.1 b: Typical situations that May lead to fault-slip type of rockbursts.
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Figure 2.2: Schematic representation of the zone of influence ofa drift and localization of
potential seismic events (after Ryder, 1987, 1988).
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•
Figure 2.3: a) Schematic load-displacement curve of a rock sample in a uniaxial

compression test. b) Evolution of the rock stiffiless with the displacement
(after Salamon7 1974).
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Figure 2.4: Influence of the relative stiffness of the loading system and the loaded
material. a) Unstable and violent failure. b) Stable and controlled failure
(after Cook~ 1965b).
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Figure 2.5 Influence of the relative stiffness of the loading system and of the discontinuity
in a direct shear test. a) Violent failure. b) GraduaI failure (after Salamon,
1974).
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Figure 2.6: Schematic stress-strain curve of low porosity7 brittle rocks under uniaxial
compression (after Bieniawski. 1967. and Paterson7 1978).
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Figure 2.7: Calculation of the Wei index from a uniaxial compression stress-strain curve
(after Kidibinski7 1981).
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Figure 2.8: A schematical representation of the BIM value determination from a uniaxial

compression test result (after Aubertin and Gill~ 1988).
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Figure 2.9: Empirical relationship between the energy release rate (ERR)~ the incidence of
rockbursts and the risk level. A: negligible; B: slight; C: moderate; D:
severe; E: extreme (after Cook~ 1978).

• 45



• Chopter 2 Evaluation orthe rocJcburst potenlial

al

" e
L 4 ~

~~ ~,<1.

:2
~' ~

before after
excal:atlOn excal:atlOn

Figure 2.10: The energy densities caIculation as a result of mining sequence (after Mitri
and Rizkalla. 1995).
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Figure 2.11: Diagram showing the methodology to evaIuate the rockburst potential (after

Gill and Aubertin. 1988).
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Figure 2.12: Vulnerable rock structures: a) Excavation that cornes near a major geological
discontinuity - potential for a type 1 rockburst; b) Excavation that goes
through a major geological discontinuity or zone boundary - potential for a
type II rockburst; c) Excavation that follows major geological discontinuities
or zone boundaries - potential for a type II rockburst (after Gill and Aubenin,
1988).
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Figure 2.13: a) Model used to evaluate the equivalent local mine stiffness of the rock
mass surrounding a pillar (after Hoek and Brown, 1980; b) Force ­
convergence diagram usually used to state on the nature of pillar failure; (i):
violent failure; (H): graduai failure; (iii): no failure (after Starfield and
Fairhurst, 1968).
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Figure 2.14: a) Madel used ta estimate the local mine stiffness of the surrounding rock

mass (after Aubertin et al.~ 1997). b) Structural element in a uoiaxiaI state of
stress (after Simon et al., 1995).
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MECHANICAL BEHAVIOR OF JOINTS

3.1 INTRODUCTION

To better understand the fault-slip rockburst mechanism, one must fU'St understand the

behavior of geological discontinuities. The term discontinuity is widely used in rock

engineering to describe any measurable interruption of a rock mass (Farmer, 1983).

Figure 3.1 shows different types of discontinuities encountered in rock masses. These

discontinuities cao either he persistent or interrupted by rock bridging; opened, c10sed or

filled. Systematic discontinuities in rock masses are usually referred to as joints. A joint

is a break of geological origin in the continuity of a body of rock along which there has

been no visible displacement (Brown, 1993). They frequently form parallel to bedding

planes, foliation and cleavage (Brown, 1981). Sorne joints are assumed to he formed by

tensile stresses caused by contraction resulting from cooling of magma and of lava flows

(Jumikis, 1979). In the following, the geomechanical behavior of joints is presented in

sorne detail.

3.2 JOINT BEHAVIOR

One important aspect of joint behavior is its deformability (or its stress-displacement

relationship). Joint deformability can be better explained with its stress-displacement

cu.rves. On these curves, the normal stiffness of the joint (knn) is described as the rate of

change of normal stress (Cfn) with respect to nonnal displacements (v), and the shear

stiffness (kss) as the rate of change of shear stress ("t) with respect to shear displacement
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(u) (Goodman et al., 1968). These two types ofbehavior (nonnal and shear) are treated in

the following.

3.2.1 Joint normal deformalion

As the normal stress on a joint increases, closure of the joint occurs. This closure

depends on severa! factors including the relative position of both sides of the joints

(mated or unmated position) and the presence of filling. Figure 3.2 shows the normal

stress behavior as a function of normal displacement for a joint. This curve is mostly

hyperbolic and becomes asymptotic to a vertical Hne when v = -Vm, which corresponds

ta the maximum joint closure ûoint separation being positive). Amadei to describe this

nonnalload-displacement behavior was proposed by Bandis et al. (1983):

or (3.1)

where joint opening and compressive stress are positive.. v is the normal displacement

(dosure), Vm is the maximum closure (usually smaller than initial starting aperture) and

kni is the initial normal stiffness of the joint. According to this model, at any normal

stress level .. the joint tangent normal stiffuess knn is equal to:

(3.2)

•
which means that the curve starts with a slope ofkni (at Cfn -+ 0) and ends with an infinite

slope (at crn -+ ex') •
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Empiricai functions have been suggested to describe kni and Vm (Bandis et al., 1983):

( JCS)
k ni = o.02l-;;)+ 1.75 1RC -7 (3.3)

Vm = {1~Sr (3.4)

where 1RC is the joint roughness coefficient (which cao he estimated from the joint

profile), JeS is the joint waIl compressive strength, aj is the initiaI joint aperture, C and D

are constants having suggested values of 8.57 and -0.68 respectively for rock joints.

Several experimental studies have shown that the normal load-defonnation of a joint

under mated and unmated conditions are different (e.g., Goodman, 1976; Bandis et aL

1983). In general, an unmated joint is more deformable than a mated one, and the

maximum closure of an unmated joint is larger. Figure 3.3 shows the different nonnaI

laad-axial displacement curve for a rock, a mated and an unmated joint. The measured

axial displacement is dependent of the defonnation properties of both the joint and the

surrounding rock. The closure of the joint can then he calculated by subtracting the

defonnation of the rock (curve A) from the measured displacement (curve B or Cl.

Several authors proposed models to describe the behavior of unmated joints; Goodman

(1976) proposed a hyperbolic relation, Bandis et al. (1983) proposed a semi-Iogarithmic

function; so did Sun et al. (1985). However, these models did not correlate the normal

deformability of the unmated joint to that of the mated joint. Saeb and Amadei (1989,

1990) proposed a graphical method and a mathernatical model to obtain the curve of

wunated joint from direct shear test under constant nonnal stress on a mated joint. This

method relates the behavior of the unmated joint ta the behavior of a mated joint after

being sheared by a certain quantity. This method will be described in the next section.
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During unIoadingy joint behavior shows an hysterisis and inelastic behaviory the

unloading curve also resembling a hyperbola. Under repeated load cyclingyjoints display

stiffening behavior, whether in interlocked or dislocated positions, and the behavior after

severalloading cycles remains typically non-linear (e.g.yBandis et al.y1983).

3.2.2 Joint sbear bebavior and strength

The shear behavior ofa joint is complex and depends on severa! factors like the boundary

conditions (e.g., initial normal stress, load path), material deformational properties,

properties of filling (deformationy strengthy thickness), surfaces of the joint (roughnessy

aperture, strength), size of the joint (area, length)y and the presence of water. The shear

stress versus shear displacement curve typically shows a quick rise of shear stress to a

maximum value (tp), followed by a graduai decline to a residual value ('tr) after a large

shear displacement. Usually, joints exhibit non-linear behavior, to a greater or lesser

extent (Bandis et al., 1983).

The literature on rock joint deformation is abundant (e.g.yBarton and Stephansson, 1990).

Ta assess the behavior of rock joints, a number of experimental studies have been

perfonned on natura! and artificial joints. Notable among these are the work of Patton

(1966), Goodman (1970), Ladanyi and Archambault (1970)y Banon and Choubey (1977),

Bandis et al. (1981)y Sun et al. (1985), Yoshinaka and Yamabe (1986), and Huang et al.

(1993).

The shear behavior of joints can be divided in two imponant aspects: strength and

defonnation behavior. These aspects are treated separately in the followings.
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A) Shear strength

Ta estimate the peak shear strength9 several criteria have been proposed. In that matter9

one should mention the early work of Newland and Allely (1957), laeger (1957),

Krsmanovic and Langof (1964), Patton (1966), Goldstein et al. (1966) and Byerlee

(1968). Following, these early studies on rock and rock joints9 many authors have

developed criteria to estimate the peak shear strength. Banon (1976) and Priest (1993)

provide a good review of the failure criteria that have heen proposed over the years.

Among these, the criteria proposed by Patton (1966), Ladanyi and Archambault (1970),

laeger (1971), and Barton (1973, 1976) are the best known.

- Barton and co-workers' model

Sarton (1973) proposed an empirical relationship to estimate peak strength of rock joints:

( (les)"
't p = (Jn tanl1RC loi\.~ + 'b)

where 1RC is the joint roughness coefficient (which cao he estimated from the joint

profile)9 lCS is the joint wall compressive strength9 and fb is the basic friction angle

(which is approximately equal to fr, the residual friction angle). For intact rockjoint9lCS

value is the same as Co (the uniaxial compressive strength) while its value can go as low

as O.25Co when weathered. Barton and Choubey (1977) proposed typical profiles ofjoint

surfaces giving 1RC values ranging between 0 (for planar9smooth joints) to 20 (for rough

and irregular surfaces).

To account for scale effec~ Bandis et al. (1981) proposed the following relationships:
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(3.6)

(3.7)

where 1Ren, leSn are the values for the natura! block size, JRCo, lCSo are the values for

the nominal size sample, Ln is the natural black size and Lo is the laboratory size joint

samples (nominal 100 mm). ft, (or +r) is assumed oot to he seale depeodent.

- Ladanyi-Arcbambault's model

Ladanyi and Archambault (1970) proposed a criterioo, referred to as LADAR to estimate

peak shear strengtb ofjoints. This curvilinear semi-empirical model for peak strength is

given by:

(Jn (1- aJ (v + tan4Pu) + as sr

't
p

= 1- (l-aJ V tan4Pu
(3.8)

(3.9)

•

where as is the shear area ratio (ratio of the sum of areas of failed asperities to the total

sample area), v is the rate of dilation al the instant of peak shear strength, q.u is the angle

of friction, and Sr is the shear strength of intact rock. At very low normal stress, when no

asperity faiIure occurs (as-,O) and v -+ tanio ' equation (3.8) reduces to the Patton (1966)

model which is defmed by:

't p = (Jn tan(,u + io)

where io is the angle of asperities (or for natural joints, the average of the tirst order

roughness of the surface). At high nonnai stress, all asperities will he sheared off (as-+ 1)
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To evaJuate the rock stren~ the authors suggested using the equation proposed by

Fairhurst (1964):

= C .JO + N) - 1(1 + N crn )112
Sr 0 N C

o

where Co is the uniaxial compressive strength of the rock and N is the ratio of

compressive over tensile strength ICorrol.

The as and v values can he estimated based on empirical relationships derived from tests

on surfaces with artificial roughness by:

v=(1-:J' tan i,

(3.12)

(3.13)

where CfT is the brittle-ductile transition pressure and k l and k2 are detennined by testing.

The authors suggested values of k l = 1.5 and k2 = 4 for rough rock surfaces. Goodman

(1976) recommended using Co for an estimate of CfT. This model was later re-examined

by Saeb (1990) and the following relation was proposed:

t p = crn (1 - aJ tan( i + ~J + as sr

where

(3.14)

•

Assuming a Mohr-Coulomb criterion for the shear strength of asperities (sr), the total

shear strength can he calcuJated as:

~ = (Jn (1- aJ tan(i +4»J + as (~+ (Jn tan 4»0) (3.15)
CJT (JT (JT CfT
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where So is the cohesion and epo is the friction angle of the rock. Saeb (1990) showed that

this formulation of the criterion seems to capture the two modes of failure (shearing and

sliding). This formulation also plots very close to the original model of LADAR.

B) Shear deformation behavior

To describe the behavior ofjoints, many authors have proposed constitutive equations to

model the stress.displacement relation. The models most often used in mining

engineering are the Goodman model (Goodman et al., 1968; Goodman, 1976) and the

Barton-Bandis model (Barton, 1973; Barton and Choubey, 1977; Bandis, 1980; Bandis et

al., 1983). Nevertheless, numerous other models have been proposed for different

applications, based on different ~echanisms. For example, models were proposed for

sail-rock interaction (e.g., Carter and Goi, 1988; Desai et al., 1991), for black sliding

(e.g., Andreaus, 1989; Li et al., 1990; Leong and Randolph, 1991), for faults (e.g.,

Dieterich, 1978, 1979; Ohnaka and Yamashita, 1989; Kato et al., 1993) and for

earthquakes (e.g., Rice, 1983). Sorne of these models are based on cracks behavior (e.g.,

Wittke, 1990; Divakar and Fafitis, 1990), on micro-mechanics (e.g., Dong and Pan,

1996), on plasticity (e.g., Pande, 1985; Cundall and Lemus, 1990; Desai and Fishman,

1991) or on elasto-viscoplasticity (e.g., Olofson, 1985). Sorne of the models were

proposed to take into account certain conditions like lime dependency (e.g., Howing and

Kutter, 1985), progressive damage (e.g., Desai et al., 1989), temperature effects (e.g.,

Bilgin and Pasamehmetoglu, 1990), dynamic effects (e.g., Rice and Tse, 1986; Bro,

1992), filling properties (e.g., Perei~ 1990; Phien.wej et al., 1990; Papaliangas et aL,

1993), anisotropy (e.g., Jing et al., 1992, 1994), scale effects (e.g., Pinto da Cunh~ 1991;

Muralha and Pinto da Cunha, 1992) and cyclic loading (e.g., Jing et al., 1993; Qiu et al.,

1993; Souley et al., 1995).
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3.3 BARTON-OANDIS' MODEL

In this model~ the shear behavior of the joint depends on severa! parameters~ including the

peak shear angle (..,)~ the basic friction angle (~)~ the peak dilation angle (d~), the

residual friction angle (+r), shear stiffness (ks) and joint parameters (IRC and leS). The

peak shear angle is given by the relationship (Banon and Choubey~ 1977):

<Pp =«Pb + d~ (3.16)

The basic friction angle can he found from tilt test. Typical values can he found in

Richards (1975) and Barton and Choubey (1977). The peak dilation angle is given by

(Barton and Chouhey~ 1977):

d~ = 1Re IOge~S) (3.17)

The residual angle for joint can he estimated from the relationship (Barton and ehoubey~

1977):

cP r = (cP b - 20° ) + ( 20 )
r/R

where r is the Schmidt rebound on wet joint surfaces and R is the Schmidt rebound on dry

unweathered sawn surfaces.

The shear stiffness of the joint can he considered as Iinear and can be estimated from

(Barton and Choubey~ 1977; Bandis et al., 1983):

(3.19)

•
This model was later modified by Barton et al. (1985) to take into account the stress

dependency of the shear strength. The stress and displacement histories of a rock
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discontinuity are considered by using a mobilized joint roughness coefficient (JRem).

The failure condition for shear fallure is then given by:

(3.20)

where

(3.21)

(3.23)

(3.22)

•

The test data can then he expressed in tenns of a dimensionless ratio JRCmlJRCp (where

JRCp is the joint roughness coefficient at peak strength) as follows:

JRem arctan(Tm/Gnt -.~
=

JRCp +p -+~

where ol>. = arctan(:'J

From these, one cao use Table 3.1 that relates the shear displacement ratio (u/up) to the

ratio of JRC.

Table 3.1 Rounded values for joints (after Barton et al., 1985)

u/Up JRCmlJRCp

0 -(+rli)

0.3 0

0.6 0.75

1.0 1.00

2.0 0.85

4.0 0.70

10 0.50

100 0.00
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(Jes]
i =JRCp log~ (3.24)

•

3.4 SAEB-AMADEI'S MODEL

Saeb and Amadei (1989, 1990, 1992) developed a constitutive model for joints. This

model can he seen as a generalization of the models of Goodman (1976) and Barton­

Bandis. This model can he given in a graphical or a mathematical forme

As mentioned in the previous section, this model cao relate the normal behavior of

unmated joints ta the behavior ofa joint when sheared bya displacement equal to Uj. To

do 50, the method makes use of a series of idealized joint response curves such as those

proposed by Goodman and Boyle (1985). The method is presented in Figure 3Aa to 3.4d.

Figure 3Aa shows a hyperbolic joint closure versus the normal stress as defined by

equation (3.1). Figure 3.4b shows a series of idealized shear stress versus shear

displacement curves for a mated joint tested under constant normal stresses ranging

between A and 20A, where A is an arbitrary number. Note that these curves are vaIid for

a constant displacement model, meaning that the peak and residual shear displacement

values are constants, thus independent of the applied nonnaI stress. Figure 3.4c shows

the dilatancy curves for the shear tests of Figure 3Ab. These curves show a decrease in

dilatancy as the normal stresses increase from A ta 20A. In these figures, the peak shear

displacement is identified as Ut and there is no change in normal displacement once Ut

has been reached (v =constant for u > Ut).

Figure 3.4a to 3Ac can then be used to construct the curves of nonnal stress versus

normal displacement for unmatedjoint as shown in Figure 3.S. Each curve (U=Ui; i = 0,4)
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corresponds to the normal displacement curve of the joint when a shear displacement of

Uj has been done. The curves are constructed by using the values of O'n and v al the points

of intersection between each line u = Ui and the nonnal displacement versus shear

displacement curves in Figure 3.4c. Severa! aspects cao he pointed out regarding Figure

3.5 (Saeb and Amadei, 1992):

- The curve U = \Jo which represents the joint onder mated conditions is identical to

the joint closure vs. normal stress curve of Figure 3.4a.

- Each curve U = Uj represents the behavior of the joint under normal loading after

being mismatched by a shear displacement equal to Ui.

- For the joint response shown in Figure 3.4c, for which there is no further

dilatancy for values of U larger than \14, ail curves U = Uj (i > 4) coincide with the

curve U914, hence, the joint response is admissible if it is contained in the

domain limited by the curves U = \Jo and U =04.

- AlI curves U = Uj (i = 1,4) become closer to the curve U = Uo as O'n increases since

joint dilatancy decreases as the joint normal stress increases.

Figures 3.5 and 3.4b can then he used to predict the behavior of the joint for any loading

paths. In Figure 3.5, four different loading paths are identified. These paths originate

from point A assuming that an initial normal stress (J'nO = 4A was tirst applied without

shearing. Under constant applied nonnal stiffness ~ the joint follows the path AFGHI.

Under constant normal stress (K = 0), it follows the path ABCDE. When no change in

joint normal displacement is allowed (no dilatancy; K = 00), it follows the path AJKLM.

Path ANPQR corresponds to a joint in a rock mass with an increasing applied nonnal

stiffness. By using the values of O'n and U at the point of intersection of each path with the

curves u = Uj and using Figures 3.4b-c, the shear stress vs shear displacement curves for

O'nO =4A can be constructed for the path mentioned above. These curves are identified in
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Figure 3.4a to 3.4c by dashed lines. Figure 3.4d shows the nonnal stress versus shear

displacement curves that are constructed from the sarne results.

From these results~ several observations can he made:

- the highest peak strength (point M on Figure 3Ab) corresponds ta the constant

normal displacement path due to the most increase in joint nonnal stress;

- the Iowest peak strength (point E) corresponds to the constant nonnal stress path;

- the two other path leads to intermediate peak strengths (point 1and R).

These observations have been partly confinned by several experimental studies, that have

shawn that shear test under constant nonnal stiffness Ieads ta higher peak strength than

tests under constant nonnal stress, and that the constant normal stiffitess hehavior can he

predicted from constant Dormal stress values (e.g., Leichnitz, 1985; Fortin et al., 1988;

Archambault et al.~ 1990). This is consistent with the physical process of shearing since

normal stress increases with dilatancy, and peak strength increases with Donnal stress.

The model cao also he expressed mathematically. In the model, the dilatancy rate av/au
(which plays an important role) is described by the formulation of Goodman and St John

(1977):

: = tan i =(1-~r tan i. when u 5: u, and an < Gr (3.25)

and

av
-=0au (3.26)

•
When equation (3.25) is integrated~ it leads to:
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(3.27)

Sïnce this equation must also represent the joint behavior under a mated condition (u =
0), it follows that f(O'n) is defined by the normalload-displacement equations (eq. 3.1) sa:

v = U(1- ~Tn Jk
1

tan io + an Vm (3.28)
>,,1. km VrJl -ail

When u > Ur (the displacement at the onset of residual strength) and O'niGT < 1, the joint

ceases to dilate and v is equal to its value obtained by substituting u = Ur in the last

equation. When anlO'T ~ 1, the frrst term of the equation vanishes and no dilatation is

possible during shearing. If this fust term is called w, then:

( J
k%

an .
w = u 1- a

T
tan la

or

(3.29)

(3.30)

•

In this fonnulation, w represents the increase in joint aperture that is created due to

shearing. If it is assumed that the maximum closure Vm is a reasonable estimate of the

initial aperture of the joint in its mated position, then the value of w at an = 0 (i.e. w = u

tan io) represents the additional initial aperture of the unmated joint created through

dilatancy. The maximum additional aperture occurs when U = Ur and is equal ta Ur tan io.

Note that equation (3.30) represents a mathematicaI expression for the curves u = Uj

(i=1,4). If the joint is non-dilatant (tan io = 0), then w in equation (3.30) vanishes and the

nonnaI stress-displacement behavior is the same for aIl values of the shear displacement,

as expected.
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An incremental formulation of the model is also possible and is given by (Saeb and

Amadei, 1992):

(
O'n )k2

• U k 2( O'n )It~-\. k ai V~dv= 1-- tan 10 du - -- 1-- tan 10 dO'n + ( )2 dan
O'T a T O'T k . V - cr

ft! m n

or

(3.32)

Since crn depends on v and u, equation (3.32) cao be rewritten in a more compact form as:

dan = knn dv+kns du

where knn and kns are two nonnal stiffness coefficients such that:

k = oon =__~__-:-:---:- _
on av -u k2 (1 <:1n )It: -\ .

-- tan 10
<:1T <:1T

and

(3.33)

(3.34)

(3.35)

•

Note that equation (3.34) provides an analytical expression for the joint tangent nonnal

stiffness when the joint has been sheared by an amount equal to u, and it reduces to

equation (3.2) when u = 0, that is when the joint is in its mated position. Equations (3.31­

3.35) are valid when u ::S; Ur and O'r/GT < 1. On the other hand, when u > Ur and O'n/aT < 1,
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kns vanishes and kM is equal to its value at u = ur. Finally, when arlaT ~ l, kns aIso

vanishes but knn is given by equation (3.2).

An equation sunilar to equation (3.33) cao he expressed for the shear stress 't since the

latter depends in general on v and u. Then:

d't =km dv+kudu (3.36)

where ksn = ôt/ôv and kss = Ô't/ôu are two shear stiffness coefficients. In the literature, it

has been common practice to assume that ksn = 0 and kss = ks , the unit shear stiffness of

the pre-peak region of the shear stress-displacement corvee However, this assomption is

not necessary and closed-form solutions can he derived. This part of the Saeb and

Amadei model was proposed for the two types ofassomptions made by Goodman (1976),

which are the constant displacement model and the constant stiffness model.

Constant displacement model

This model assumes that the peak and residual displacement (up and ur) are material

constants and independent of nonnai stress. The model of Saeb and Amadei is then given

by:

•

• for u < up:

ôt u Otpk =-=-k ­
sn ôv u

p
M Gan

• for up :::;: U ~ Ur and an < crT:
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ksn = àr = knn {ÔT. (u-u,)+(u. -uf ÔT. (Ba + I-Bo(J'n)+~(I-Bo)J}
àv U p - ur OOn t000 (J'T (J'T

(3.39)

k ss = ôu
ât = 't

p
-'t

r + k ns {ôtp (U-Ur)+(U p -ufôtp (Ba + I-Bo(J'n)+~(I-Bo)J}
up-u r up-u r ÔO'n toon O'T O'T

(3.40)

• for u > Ur and (J'n < (J'T:

(3.41)

(3.42)

Constant stiffness model

This model implies that the shear stiffness is a constant and independent of normal stress.

• for U < up:

•

Ô't
k =-=0

sn àv
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• for up $ u $ Ur and an < aT:

(3.45)

(3.46)

• for u > Ur and an < O'T:

ksn and kss are similar to the constant displacement model and are given by:

(3.41)

(3.42)

•

In aIl these equations, 'tp is the peak shear strength, 'tr is the residual shear strength, aT is

the transitional DonnaI stress, and Bo is the ratio of residual to peak strength at zero (or

very low) nonnal stress (with 0 $ Bo $ 1).

When an ~ O'T, kns in equations (3.38), (3.40) and (3.46) vanishes and equations (3.39)

and (3.40) or (3.45), (3.46) are replaced by equations (3.41) and (3.42) with Bo = 1 and

knn equals to its value at U = 0 for all shear displacement u ~ up = Ur.

In view of these equations, the following relations can he \\TÏtten between the normal and

shear stiffness coefficient for both constant stiffness and displacement models:
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when u < U p (3.47)

when u > Ur

(3.48)

(3.49)

As we can see, 'tp, 'th Ô'tplOOn depend on the selected peak shear strength criterion. If the

modified LADAR criterion is used with a Mohr-Coulomb criterion for the intact rock

strength Sr = So + an tan+o , 'tp is given byequation (3.13), 'tr is obtained by substituting

equation (3.13) into the model of Goodman (1976) for the variation of residual shear

strength with nonnaI stress, and given by:

(3.50)

•

This leads to:

(3.51)

Cornbining equations (3.33) and (3.36), a differential fonnulation cao be written for the

rock joint defonnability:

(3.52)
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The (2 x 2) lnatrix is the material tangent stiffness and is~ in general~ non-symmetric.

Then~ the shear response of a rock joint under applied constant or variable nonnal

stiffuess boundary conditions cao he predicted by \\TÏting that during shearing, dan aod dv

must be related as follows:

dO"o = K dv (3.53)

where K is the applied stiffness which cao he constant or also vary with an. Substituting

equation (3.53) into equation (3.33) gives two relations that change in normal stress~

nonnaI displacement and shear displacement must satisfy for the path with applied

stiffness K:

dO" = Kk ll5 du
n K-k

nn

and

k
dv = os du

K-k nn

(3.55)

Similarly, using equation (3.36)~ the changes in shear stress and stress displacement are

related as follows:

(3.56)

•

Note that if the joint is non-dilatant, i.e. tan i = 0, kns vanishes. Therefore dO"n = dv = 0

and d't = kss du with~ according to equations (3.47-3.49), kss = -rplup when u < up~

kss = ('tp - 'tr)/(up - ur) when up =:;; u $ Ur and kss = 0 when u > U p • This means that a non­

dilatant joint has a shear displacement response that is independent of the applied

stiffness K~ as expected.
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Lets consider two special cases: First when the applied stiffness K vanishes

(corresponding to a joint under constant nonnal stress boundary conditions) dan = 0 and

equation (3.55) reduces to dv = -(knsfknn) du. Secondly, when K = 00 (corresponding to

constant displacement boundary conditions) dv = 0, it follows from equations (3.54) and

(3.56) that dan = kns du and dT = kss du.

This model can he implemented in numerical code to obtain the response of

discontinuities in rock masses (Saeb, 1989; Saeb and Amadei, 1990). Finally, it should

he noted that this model is limited to monotonic loading. However, Souley et al. (1995)

proposed a modified version of the Saeb and Amadei model that cao consider cyclic

loading.

3.5 FORTIN AND Co.WORKERS' MODEL

One difficulty of using graphicai methods is that a limited number of points are available

for the construction of the complete shear stress-shear displacement curve of the

discontinuity. To help construct these curves in a more accurate manner, Fortin et al.

(1988, 1990; Archambault et al., 1990) proposed an a1gorithm to predict the effect of a

variable normal stiffness on shear strength of discontinuities. To use this aIgorithm, the

constant nonnai stress direct shear test results must cover the entire field of variation of

the different variables (a, 't, u, v). This method is also ooly valid for progressive loading,

when the shear and normal stresses are independent of the stress path. This method is

described in the following.

The data required for applying the aIgorithm are:
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- Results from direct shear tests at different constant nonnal stresses9 including

entire

('t9 u) and (v9 u) curves

- The in situ stiffuess of the rock mass; This stiffness cao he normal stress

dependent.

- The value of the nonnal stress prior to any shear displacement (initial normal

stress).

This algorithm makes use of the method suggested by Goodman (1980) and of a

computing method developed by Gill (1971) which relies on arrays of the compiled

addressed values taken at different available experimental curves and an interpolation

procedure of polynomial nature. Figure 3.6 shows the interdependence of the parameters

on the behavior of the joint. The method proposed by Fortin et al. (1988) is illustrated in

Figure 3.7.

In the algorithm9 the shear displacement is imposed step by step. For each ofthese steps,

the corresponding normal displacement and normal stress are determined. They must

satisfy both the dilatancy and rock mass stiffness requirements. If the in situ stiffness is

not considered as infmite, then an iterative process allows for the adjustment of the

dilatancy and of the normal stress. The variation of the shear stress is then calculated.

One important aspect of the method is that it is able to haodle different rock mass

stiffnesses whether they are constant, hardening or softening. A multi-linear

approximation of the rock mass (v, 0') curve cao he used, as shown in Figure 3.8.
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Figure 3.9 shows a logical diagram of the algorithme This algorithm was used to write a

code in FORTRAN language and bas been implemented on a persona! computer (Fortin

et al., 1988). This algorithm has been validated by making comparisons with direct shear

test results under constant normal stiffi1ess (Fortin et al., 1988; Archambault et al., 1990).

The method showed good agreement with test results.

3.6 BEHAVIOR OF JOINTS AND THE PHENOMENON OF ROCKBURSTING

As it was outlined in section 2.1.4, Salamon (1974) explained the fault-slip bursts by a

difference of stiffuess between the loading system and the post-peak stiffness of the fault.

üther evidences of the role of stiffness in the rockburst phenomenon can be found in the

mechanics of stick-slip widely studied in geophysics research on earthquakes (e.g.,

Dieterich, 1972, 1978; Scholz et al., 1972, Rice, 1983; Li, 1987). Observations on rock

friction have shown that three characteristics will affect the stick-slip behavior (Dieterich,

1978):

- Normal stress

- Stiffness of the testing system

- Surface finish effects

It was widely reported that the transition between stick-slip and stable sliding is

dependent of normal stress and that a stable slip cao become unstable (stick-slip) at a

higher normal stress. Severa! studies have rePQrted the minimum normal stress needed to

obtain a stick-slip (e.g., Byerlee and Brace, 1968; Byerlee, 1970; Engelder and Scholz,

1976). However, results obtained showed a great difference depending on the authors.

For Westerly granite, for example, Scholz et al. (1972) obtained a value of 1 MPa while
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Byerlee and Brace (1968) reported a value of 122 MPa. This leads to the conclusion that

ather factors May be involved. Ohnaka (1973) reports that increased loading stiffness

decreases the tendency for stick-slip as observed in metals. When Dieterich (1978)

looked at the stiffitess of the loading systems of the experiment of Scholz et al. (1972)

and Byerlee and Brace (1968), he found values of7,S and 1003 GPa/m respectively. The

two arder of magnitude difference in stiffness may expIain the two order of magnitude

found in the value of the minimum normal stress needed to produce a stick-slip. In fact,

when one divides the normal stress by the stiffuess, results obtained are quite similar (7.5

and 8.2 m).

Several authors have also observed that surface finish and the presence of gouge have

sorne effect on the stability of slip (Hom and Deere, 1962; Byerlee, 1967; Hoskins et al.,

1968; Jaeger and Rosengren, 1969; Dieterich, 1972; Scholz et al., 1972; Ohnak~ 1973).

Results from these studies suggest that the greater the surface roughness, the lesser the

tendency for stick-slip (Scholz et al., 1972), and aIso, thicker layers of gouge have less

tendency for stick-slip than thin layers (Byerlee and Summers, 1976). Figure 3.10 shows

the results of Dieterich (1978) that shows the effect of the three characteristics (normal

stress, stiffness and surface) on the transition between stable and stick slip for Westerly

granite. From this experiment, stick-slip c1early arises from an interaction of the

mechanical properties of the slip surface with the sample/machine system that exerts the

stress on the surface (Dieterich, 1978).

These studies clearly show that, for a given set of conditions (normal and shear stresses,

surface roughness), an unstable slip will become stable when the loading system stiffness

becomes large enough.
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An explanation ofthis phenomenon is given by Li (1987) in Figure 3.11. Figure 3.lla

shows a single degree of freedom spring-block model, with loading through imposed

displacement Ua, and load transmitted through a spring of stiffness k. The block is

assurned to be rigid and the sliding surface of the block is govem by a slip-weakening

relation sho\\1l in Figure 3.11 b. The block is loaded through a spring which is pulled

forward by the amount 110. The normal stress acting on the block, as weil as the

temperature of the sliding surface, are assumed to remain constant during the sliding

process. The force equilibrium goveming the system cao he written as:

T = 't (3.57)

where T is the spring force. The load and load point displacement are related by:

T =k(u o - u) (3.58)

where Uo is the displacement in front of the spring and u is the displacement of the block.

Combining these two equations gives:

't=kuo -ku (3.59)

which expresses the equilibrium of the system on any point of the unIoading line.

However, for each unIoading Hne shown, only its intercept with the 't-u curve can he the

true equilibriurn point since the sliding is govemed by this constitutive relation. Thus a

series of equilibrium points A, B, C, D may he traced as Ua is increased. The block

displacement (UA, Ua, Uc, Uo...), will accelerate faster than \10. For the 't-u relationship

and spring stiffness k shown in Figure 3.11 b, equilibrium can he maintained only up to

point E (when the post-peak slope of the block become larger in absolute values than k).

Instability sets in at E, when equilibrium can not he maintained, followed by slip

acceleration and rapid stress drop rate approaching infinity, as illustrated in Figure 3.1Ic.

Reestablishment of equilibrium can he at any of the points F, G or H. These points are

constrained by the fact that unloading of the spring must follow the unIoading line EE' at

instability. Furthermore, the energy loss from the spring must he converted into work of

the sliding surface, which implies that:
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t('t E + 'tH) (U H - UE ) =r
E

H 't(u) du (3.60)

which is how the point H is defmed. However, if the energy is partially lost through

seismic radiation (for example), then the fmal resting position may he at F or G. For a

stiffer spring (where the stifIness of the spring is always larger than the slope of the

black) and the same slip-weakening relationship (Figure 3.IId), the unloading Iines are

steeper and no dynamic instability occurs. The stress may drop and the slip may

accelerate as in Figure 3.IIe, but their time rate of change do not approach infinity and

the slip is stable.
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a)

d)

...

;..-

b)

e)

c)

f)

•

Figure 3.1: The nature of discontinuities. a) persistent discontinuity, planar, smooth or
rough, closed; b) persistent discontinuity, planar, rough, not folly closed; c)
persistent discontinuity, uneven, closed or not folly closed; d) persistent
discontinuity, filled; e) discontinuities interrupted by rock bridging, closed;
f) discontinuities intenupted by rock bridging, opened or filled (after Wittke,
1990).
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Figure 3.2: NonnaI stress vs nonnaI displacement curve for a joint (after Saeb and
Amadei, 1989).
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Figure 3.3: Comparison of joint nonnaI behavior under mated and unmated conditions
(after Goodman~ 1976).
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• 78



•

-""m

Chapler 3 Mechanica/ behavior oOoinlS

• l'armaI
• stress

an

...;.... 20A
!

~ 18A

CI05.ng Openan'l

•

Figure 3.5: Normal stress vs. normal displacement curves at different shear displacement
levels (after Saeb and Amadei, 1989).
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Figure 3.6a: Tridimensional surface describing the shear stress-shear displacement
relationship of a dilatant discontinuity as a function of the normal stress,
f(t,u,cr) = 0 (after Fortin et al., 1990).
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•
Figure 3.6b: Tridimensional surface describing the normal displacement-shear

displacement relationship of a dilatant discontinuity as a functioD of the
Donnal stress, g(v,u,cr) =9 (after Fortin et al., 1990).
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Figure 3.7: Construction of the data file from constant nonnal stress direct shear test
results Cafter Fortin et al., 1988).
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Figure 3.8: Multi-linear approximation of a non-linear rock mass stiffness and
construction of the related part of the data file (after Fortin et al., 1988).
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Figure 3.9: Simplified logical diagram of the algorithm (after Fortin et al., 1988).
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Figure 3.10: Transition from stable sliding to stick-slip as a function of normal stress~

stiffness and surface fmish for Westerly granite (after Dieterich~ 1978).
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Figure 3. Il : a) Single degree of freedom spring-block model, with loading through
imposed displacement \10, and load transmitted through a spring of stiffness k.
b) Trace of equilibrium load and corresponding slips. c) Illustration of the
stress-displacement curve as transmitted by the spring (unstable slip). d)
Same situation with a stiffer spring. e) Illustration of the stress-displacement
curve as transmitted by the spring (stable slip). (after Li, 1987).
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BOUNDARYELEMENTMETHODS

4.1 INTRODUCTION

In many engineering problems~ it is necessary to assess sorne design conditions such as

stresses, displacements~ groundwater flow, etc. To evaluate these, one cao use analytical

solutions or~ when the problem is more complex, numerical methods. There are three

broad categories of numerical methods to evaluate the response of a continuum to

loading: the finite element method (FEM), the discrete element method (DEM) and the

boundary element method (BEM). In the FEM and the DEM, the domain must he

defined (by a mesh or by elements) over a certain volume (or area) while with the BEM,

ooly the damain boundaries need to he defined. Figure 4.1 a shows the classification of

numerical methods used to solve geomechanical problems. The relative advantages (and

disadvantages) ofeach method are presented in Table 4.1 .
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Table 4.1: Relative strengths and weaknesses of numerical methods (after Hoek et al.,
1991)

Advantages Disadvantages

Boundary element Far-field conditions inherently Coefficient matrix fully populated
method represented

Solution time increases exponentially
Only boundaries require discretization with number ofelements used

Finite-element and Material heterogeneity easily handled Entire volume must be discretized
fmite-difference
methods Matenal and geometric non-linearity Far-field boundary conditions must be

handled efficiendy with explicit approximated
solution techniques

For linear problems. explicit solutions
Matrices are banded with implicit techniques are relatively slow
solution techniques

Solution time increases exponentially
When explicit solution techniques are with number of elements used for
used. less skill is required trom user implicit solution techniques

Discrete-element Data structures weil suited to model Solution time seem much slower than
method systems with high degree ofnon- for linear problems

linearity from multiple intersecting
joints Results can be sensitive to assumed

values of modeling parameters
Very general constitutive relations may
be used with linle penalty in terms of
computational efforts

Solution lime increases only linearly
with number ofelements used

4.1.1 Finite Element and Finite Difference Methods

From a practical point of view, these two methods are similar. The difference relies in

the way of solving the set of equations. Figure 4.1 b shows the process that led to the

present-day finite element method with interesting references. In these methods, the

physicaI problem is modeled numerically by discretizing the problem region (i.e. dividing

the domain in smaIl elements). These methods are weIl suited to solve problems
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involving heterogeneous or non-linear materials hecause each element explicitly models

the response of its contained material. However, since the domain must he modeled

entirely, these techniques are not perfectIy adapted to handie problems with infinite

boundaries such as excavations in rock masses.

The fmite element method has hecome very popular in many fields of engineering (the

tenn "finite element" appears to have been tirst proposed by Clough, 1960). Numerous

computer codes (2D and 3D) are available and have proven their reliability. The

literature on the subject is extremely abundant and many books have been published. The

interested reader is referred to the work of Zienkiewicz (1971, 1977; Zienkiewicz and

Taylor, 1989), Bathe (1982), and Reddy (1993).

4.1.2 The discrete element methods

These methods were developed to properly model ground conditions that are often

referred as "blocky" (that is where the spacing ofjoints is of the same order of magnitude

as the dimension of the excavation). Since the joints are much more deformable than the

blocks, then individual blocks may he regarded as rigid bodies. Table 4.2 presents a

surnmary of the development of the methods.

88



• Chapler 4 Boundary e/emenl melhods

thodfd'T bl 42 Da e eve ODment a lscrete e ement me s
References

Distinct elements CundalI. 1971, 1974
Voegele et al., 1978
Cundall and Strack. 1979

Discontinuous deformation Shi, 1988
analysis Shi and Goodman, 1989

Lin et al.• 1994

Rigid body spring Kawai.1980

Modified virtual stress Hamajima. 1993
Hamajima et al., 1994

Although discrete element methods have been used most extensively in academic

environment, it is finding its way in consultant offices and mine pIanners and designers as

weIl (Hoek et al., 1991). These techniques have become a usefuI tool for analysis in

blocky ground, especially in open pits.

4.1.3 The Boundary Element Methods

•

The BEM have been used in mining engineering and geomechanics for the past 20 years or

so. Over the years, the boundary element methods have become a useful tool for ground

control, mine planning and stress analysis of underground excavations in the rock mass.

This technique has been used to assist the engineer in Many different applications such as:

the design of underground openings (e.g., Meek, 1985); pillar size detennination and pillar

stability (e.g., Huang et aI., 1985); evaluation of rock slope stability (e.g., Tomlin and

Butterfield, 1974); evaluation of the rockburst potential of underground opcnings (e.g.,

Simon et al., 1993); and the modelling of cracks and faults (e.g., Peirce, 1991). It has aIso
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been used to resolve problems such as: the effect of mining sequences on the redistribution

of stresses (e.g., Grant et al., 1993); the influence ofgeological discontinuities on the stress

distribution around openings (e.g., Wiles and Nicholls, 1993; Fotoohi and Mitri, 1996); the

behaviour ofnon-linear materials (e.g., Zip( 1993); the behaviour ofbackfill materia! (e.g.,

Brechtel et al., 1989); the rate-dependent behaviour of a jointed rock mass (e.g., Crawford

and Curran, 1983); the plasticity of rock masses (e.g., Mukherjee and Chan~ 1985);

dynamic effects (e.g.. Crouch and Ti~ 1988); drainage problems in geomechanics (e.g.,

Tomlin, 1973); and hydraulic fracturing (e.g., Vandamme and Wawrzynek, 1988).

The BEM can he divided in two categories, the direct method and the indirect Methode

Both methods require solving an integral equation over a boundary surface. Table 4.3

shows pertinent references of the development of the BEM.
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Table 4.3: Development ofboundary element methods in solid mechanics.
References

Direct formulation Shaw, 1966, 1969
Rizzo, 1967
Cruze, 1969, 1972, 1974
Cruze and Rizzo, 1968, 1975
Lachat, 1975
Lachat and Watson, 1975, 1976
Rizzo and Shippy, 1977, 1979
Brebbia and Dominguez, 1977
Brebbia, 1978
Brebbia and Ferrante, 1978
Brebbia and Butterfield, 1978
Telles, 1983
Henry, 1987

Indirect formulation Chen and Schweikert, 1963
Hess and Smith, 1964, 1966
Massonet~ 1965
Oliviera, 1968
Butterfield and Banerjee, 1971
Watson, 1973
Hess, 1974, 1975
Tomlin and Butterfield, 1974
Banerjee. 1971, 1976
Crouch, 19763, 1976b, 1979
Banerjee and Butterfield, 1976
Banerjee and Driscoll, 1976
Jaswon and Symm, 1977
Crouch and Starfield, 1983

More general reviews on the BEM can be found in Banerjee and Butterfield (1981),

Crouch and Starfield (1983) and Banerjee (1994).

In this report, particular emphasis is given to the indirect method for its usefulness in non­

linear modeling.
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4.1.4 Hybrid approacbes

The main objective of a hybrid method is to combine the above methods 50 as to

eliminate as Many of the undesirable characteristics as possible while retaining as Many

of their advantages as possible (Hoek et al., 1991). In this way, the rock mass

surrounding the openings may he modeled with finite or discrete elements while

modeling the elastic far·field conditions with boundary elements. Even though the idea

of coupling two numerical methods May have started with the work of Wood (1976), the

hybrid approach really developed with the work of Zienkiewicz et al. (1977; Kelly et al.,

1979), Brebbia and Georgiou (1979), Beer and Meek (1981), Brady and Wassyng (1981)

and Lorig and Brady (1984). More examples of these coupling methods can he found in

Atluri et al. (1983) and Zienkiewicz and Taylor (1989).

4.2 LINEAR ELASTICITY

It is important to state the fundamental solutions used in geomechanics. The simplest

form is linear elasticity. Stresses in a rock mass in static equilibrium must satisfy these

three differential equations (e.g., Timoshenko and Goodier, 1970):

(4.1)
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where O'ij are the stress components and Jli are the body forces acting in the i direction.

Furthermore, the strain tensor can he defined as:

ÔU x ôu y ÔU zEu = ôx. Eyy = ày Ezz = ôz

E,y =~(~> a;;) E,~ =Mc:: + ~z) Eu = ~(a;; + ~:) (4.2)

where Ui is the displacement in the i direction; the nonnaI strains Ejj represent the change

of Iength per unit length in the i direction; the shear strains &ij (i ~ j) represent haIf the

change ofright angle originally parallel to the ; andj axis.

1
Eu = 2G O'u

The strain and stress can be related by the generalized Hooke's law:

Eu = ~ [cru - v (O')~ + O'zz)]

E)). = ~ [cry~ - v (cr~,< + O'~.J]

Eu = ~ [cru - v( crn +O'u)]
1 1

E xy = 2G crxy Eyz = 2G cr)'Z

with

E
G = -2-(I-+-v-)

(4.3)

(4.4)

•

where G is the shear modulus. E is the Young modulus and v is the Poisson's ratio. From

Equations 4.3 and 4.4. stresses cao be expressed as a function of strains:
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cru = 1~~V[(I -vh;xx +V(Eyy + Ezz )]

crY)' = 1~~V[(I - V)E yy +V(Eu + Ezz}]

crzz = ~[(I - v) Ezz + v (EY)' + ElU!)]
1-2v

crxy =2GEx~ O'yz =2GEyz crxz =2GExz

(4.5)

It is easier to write these equations with an index notation where the following two

conventions are used: (i) a repeated literaI index in any term of an expression implies

summation; (ii) a comma preceding an index denotes partial differential with respect to

the variable represented by that index. This example will help clarify the notation:

(J.. n = ~ cr n = 0'[ nI + (J., n, +0"3 n)
IJ; ~ Il; 1 1.. 1

;=1

ÔU i a2u
1

u i j = -..- U'.JI.; = ax..ax.
'ox; J k

_ a2
U

1
,a~Ui a2u.

U',li - ax2 '"T"' &2 + ax 2
• 1 2 3

•

Then, Equation (4.1) can he rewriuen as:

(Jji,J + PI = 0

and the strain tensor as:

E jJ = t( u'.J + U J'I)

The stress-strain relations can he wrîuen as:

where oij is the Kronecker delta, which is defined by:
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{
l if i = j

Ôjj = 0 if i ~ j

4.3 THE FICTITIOl'S STRESS METHOD CFSMl

(4.10)

The fictitious stress method is considered as an indirect method of boundary elements.

This method uses the solution of Kelvin's problem for plane strain. Sections 4.3 to 4.5

are largely taken from Crouch and Starfield (1983).

4.3.1 Kelvin's problem for plane strain

Figure 4.2 illustrates the problem that was solved by the Scottish physicist William

Thompson (who later became Lord Kelvin) in 1848 (Davis and Selvadurai~ 1993). A

force Fi = (Fx, F~) is applied along the z axis in an infinite elastic solid. The components

Fx > 0 and Fy > 0 have dimensions of force/length (e.g.~ N/m). The solution to this

problem can be expressed in terms ofa function g(XS), defined by:

•

and the displacements can be written as:

u =~[(~-4v)g-xg ]+~[-yg ]
lt 2G - ... .:< 20 .lt

uy =:ü [-Xgsl + :~ [(3-4v)g- ygsl

In the same manner. stresses are given by:
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au = Fil [2( I-v)g.x - xg.xx] + Fy[2vg,y - yg,xx]

a yy = Fx[2 vg.x - xg,yy] + Fy[2( I-v)g.y - yg.yy]

a xy = Fx[ (1-2v)g,y - xg,xy] +Fy [ (1-2v)g.x -yg.XY]

The derivatives ofg(x,y) are found from (4.11) and are given by:

-1 x
g.x = 41[(1 _ v) x 2 + yZ

-1 y
g.y = 41[(1- v) XZ + y2

1 2xy
g.xy = 41t(I _ v) (x2 + yZ)Z

1 x 2 _ y2

g.u =-g.n = 47t(l _ v) (x2 + yZ)2

(4.13)

(4.14)

Note however that the displacements in this solution are unbounded at large distances

from the ongin due to the logarithmic function in g(x,y).

4.3.2 Constant tractions over a line segment

By integration of Kelvin's problem, one can solve the problem ofconstant traction tx = Px

and t)" = Py applied to the line segment Ixl ~ a, y = 0 in an infinite elastic solide If the

line segment is divided into elements of length d; (as sho~ in Figure 4.3), the resultant

force (per unit length perpendicular to the x, y plane) on the element centered at point

x =ç, y = 0 is then:
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where i represents either x or y. The solution cao he found by substituting forces Fx (ç)

and Fy (ç) into Equation (4.12) and (4.13), replacing x by x-ç and integrating the resulting

expressions with respect to ç between -0 and +0. If a functionj(x,y) is defined as:

then:

and

f(x, y) = f g(x - ç,y)dç
-a

u = ~[(3-4V)f+vf ] +~[-yf ]lt_ 2G ".)' 2G .Jl

u = ~[-yf ] +~[(3-4V)f-yf ]
y 2G .x 2G .Y

cru = Px [ (3 - 2v) f.x + yf.lty] + Py[2vf.y + yf.n]

crn = Px [-(1- 2V)f.~ - yf.Xy] + py[2( I-v)f.y - yf,n]

crxy = Plt [2(1- v) f.y + yf.n] + Py[ (1- 2 v) f.x - yf'Xy]

(4.16)

(4.17)

(4.18)

•

The integral in Equation (4.16) can then he evaluated by:

-1 r (arct (-y)-arct (-!-))-(x-a)In~[(x-a)'+y'Jl
f(x,y) = l' aIl(x-a ~x+a 1(4.19)

41t(I - v) l J
+ (x + a)In ~[(x + a) 2 + y 2 ]

The derivatives of f(x,y) are then given by:
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(4.20)

•

Here again, the displacements are unbounded al large distances from the origin, because

of the logarithmic terms in f(x,y). Hence, the displacements are specified only in a

relative sense, meaning that in any particular problem, a reference point will he selected

and the displacement will be measured with respect to this point.

4.3.3 Numerical procedure for tbe FSM in geomecbanics

The solutions presented in section 4.3.1 and 4.3.2 can be used to solve numerically

general rnixed boundary value problems in elasticity. A stress boundary value problem is

shawn in Figure 4.4a. The cavity is assumed to be long so the analysis can be considered

as plane strain. The local coordinates n and s are respectively perpendicular and tangent

ta the boundary C: therefore, they vary from one point to the other. Suppose that the wall

of the cavity is subjected ta a uniform normal stress crn = -p (negative = compression)

with no shear stress (crs = 0). What needs to he determined is the displacements and

stresses in the body due ta that loading.

Ta solve this problem, we can proceed as follows. The boundary C is approximated by N

straight line segments. joined end to end as shown in Figure 4.4. The length of a typical
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(4.21)for i = 1 to N

i

boundary element ; is denoted as 2a. When the elements are small enough~ the

approximation of C will he close. It then May he considered that each element is

subjected to a normal stress Cfn = -p along its entire length and that Cfs = O. The boundary

conditions hecome:

i i
Cfn =-p~ Cfs = 0

The problem can then be solved numerically using the model shown in Figure 4.4b. The

dashed curve C' has the same shape as C used to define the boundary. However~ C' does

not represent a boundary but marks the locations of line segments that are coincident with

the boundary elements of Figure 4.4a. Then the constant resultant nonnal and shear

stresses are applied to each element along CI. For elementj, the shear stress and normal
J j

stress applied to this segment are denoted as Ps and Pn •

The notation P is used instead of u to point out that the stresses applied are not the actual

stresses aIong CI.

Using the solution found in section 4.3.2, and accounting for the orientations of the line
1 i

segments~ the actual stresses Cfs and Cfn at the midpoint ofeach element ofcurve C' can be

computed, for i = 1 to N. The results cao he written as:

i ~ Ij J ~ ij J 1
G.5 = f:rA ss Ps + ~A51I Pn 1

~ i = 1 to N (4 22)
1 ~ ij j ~ ij J J .
crn = f:tA ns Ps + ~Ann Pn

IJ

where Ass etc.~ are the boundary stress influence coefficients for the problem. The

•
ij

coefficient Asn , for example, gives the actuaI shear stress at the midpoint of the ;lh

i -th j
segment (crs) due to a constant unit nonnal stress applied to the] segment (Pn =1).
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j J 1

If one can find the applied stresses P5 and Pn for j = 1 to N sucb that the actual stresses 0'5

i

and O'n in Equation (4.22) have the values specified in (4.21), then the pbysical problem is

solved in an approximate manner. Combining the last two equations, then:

(4.23)

•

J

which is a system of 2N simultaneous linear equations with as Many unknowns. Ps and

J

Pn are fictitious quantities introduced to fmd the numerical solution of the problem and

have no physical meaning. Once (4.23) bas been solved. the displacements and stresses

at any point in the body can be found.

The method to solve the problem consists of five separate steps, namely:

(1) Define the locations of aIl boundary elements and specify displacement or stress

boundary conditions for each one.

(2) Compute the boundary influence coefficients, and set up the appropriate system of

simultaneous linear equations by considering the boundary conditions at each

e1ement.

(3) Solve the system of equations from step 2.

(4) Compute the displacements and stresses at each boundary element.

(5) Compute the influence coefficients for specified points within the region of

interest, and hence compute the displacements and stresses at these points.
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4.4 THE DISPLACEMENT DISCONTINUITY METHOD mOM)

In many rock mechanics problems, thin, slit-like openings or cracks are involved.

Because of the effects of elements placed along one crack surface are indistinguishable

from the effect of elements placed aIong the other side, the fictitious stress method cao

not he used to solve this kind of problem. Another method, the displacement

discontinuity method (DDM), was developed to solve this type of problem. This method

is based on the analytical solution to the problem ofa constant discontinuity displacement

over a finite segment in the x, y plane ofan infinite elastic solid.

4.4.1 Displacement discontinuity in an infinite solid

The problem of a constant displacement discontinuity over a finite line segment in the x, y

plane of an infinite elastic solid is specified by the condition that the displacements must

be continuous everywhere except over the fine segment in question. The line segment

may be chosen to occupy a certain portion of the x axis, such as Ixl ~ a, y = O. If this

segment is considered as a crack, the two surfaces cao be distinguished as one being on

the positive side of y = 0 (y = 0+), and the other on the negative side (y = 0_). From one

side to the other. the displacements undergo a constant specified change in vaIue

DI = ( Dx' Dy). The displacement discontinuity Di can he deflned as the difference in

displacement between the two sides of the segment such as:

(4.24)

•
or
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Dx =ux(x, OJ-ux(x, 0.. )

Dy = uy(x, OJ - uy(x, 0.)
(4.25)

Since u" and uy are positive in the positive x and y coordinate directions, D" and Dy are

positive as shown in Figure 4.5. It should he noted that with this formulation, there can

be an overlap ofsurface (Dy > 0) which is physically impossible.

The solution to the problem was given by Crouch (1976a, b). The displacements and

stresses can be written as:

and

U x == Dx [ 2(1- v)~y - ~xx] + Dy[-(l- 2v)~x - ~xy]

uy == Dx[(I - 2v)(~ - ~Xy] + Dy[2(I - v)~y - ~»']

cru == 2G(Dl( [2f.xy + yf,x))' ] + Dy [f,))' + yf.m'])

cryy == 2G( 0 x [ -yf_~yy ] + Dy [f,yy - yf'm' ])

crxy == 2G( Dx[(no + yf.m'] + Dy [-yf.xyy ])

(4.26)

(4,27)

•

where f(x, y) is the same as in Equation (4.19):

-1 r (arc' (-y)-arc' (-y))-(x-a)ln~[(x-a)2+y2Jl
f(x,y) = l '- ~x-a ~x+a 1

41t(l - v)l ~ ~ J+ (x + a)In [(x + a)- + y2]

The derivatives of the function are given by Equation (4.20). The third-order derivatives

are:
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(4.28)

4.4.2 Numerical procedure for the DOM

The numerical procedure for the DDM is illustrated in Figure 4.6. The crack presented

here is curved~ but it is assumed that it cao he represented with sufficient accuracy by N

straight line segments, joined end to end. If the crack surfaces are subjected to stress,

there will be a relative displacement from one face to the other. The DOM is a way of

finding a discrete approximation to the smooth distribution of the real relative

displacement. Each subdivision in Figure 4.6a is a boundary element and represents an

elemental displacement discontinuity. Each element is defmed with respect to local

coordinates s and n. Figure 4.6b shows a single elemental displacement discontinuity at

J J

the J-Ut segment of the crack. The discontinuity components are denoted Ds and Dn and

are defined by:

j j J

D s = U s- - u/
J J _ J +

D n = Un - Un

(4.29)

•

J J -dt
where Us and Un are the shear and normal displacement of the} segment of the crack,

with reference to the positive and negative crack surfaces. These local displacements are

the two components of a vector, and they are positive in the positive direction of s and n.
J j

Theo, Dn is positive if the crack surfaces displace toward one another (c1osure). Ds is

positive if the positive surface moves to the left (or s negative) with respect to the
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negative surface. These are best illustrated on Figure 4.6b, where the displacements are

positive.

The shear and normal stresses at midpoint of the ,-th element in Figure 4.6b can he

expressed in tenns of displacement discontinuity components at the J-th element as

follows:

i =1 to N (4.30)

(4.31)

•

ij

where A ss etc., are the boundary stress influence coefficients for the problem. The

Ij

coefficient A os, for example, gives the normal stress at the midpoint of the ,-th segment

1 J

(crn ) due to a constant unit shear displacement discontinuity over the J-ch segment (Ds =1).

When the stress values are specified for each element of the cracks, then Equations (4.30)

are a system of 2N simultaneous linear equations with 2N unknowns, namely the
1 i

elemental displacement discontinuity components D s and Dn for i = 1 to N. When the

equations above have been solved, the displacements and stresses at designated points in

the body can be found by using the principle of superPOsition. The displacements along

the cracks in Figure 4.6a are given by:

i N Ij J N IJ J l
u.s = ~Bss Ds+ ~Bsn Dn 1

~ i = 1 to N
1 N Ij J N Ji J J
Un = LBns D s + LBnn D n

J~1 J-l

ij

where B ss etc., are the boundary displacement influence coefficients for the problem.
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4.5 ApPLICATION OF THE REM TO ROCK MECHANles

Problems in rock mechanics usually imply bodies that are subjected to an initial state of

stress, contrary to Most problems in applied mechanics. Before an excavation is created,

the rock mass is subjected to initial stress due to the gravity, the Poisson effect, and

tectonics. When an opening is created, the initial stress state is disturbed. The total

stresses Oij at any point in the rock mass can then be represented as the sum of the initial

stresses (Oij)O and the induced stresses o'ij due to the opening:

o = (o.. ) +<r.
IJ IJ 0 IJ

The displacements can also be represented in the same manner:

(4.32)

(4.33)

•

Usually the initial displacements (Ui)O are considered nil, so the total and induced

displacements are the same.

This kind of problems involving underground excavations in rock masses can be solved

in three steps:

(1) Postulate the initial state of stress;

(2) Define and solve the induced stress boundary value problem;

(3) Add the induced stresses to the initial stresses to find the total stresses in the rock.

This method of superposition is valid when the material is linear elastic. The definition

of the induced stress boundary value problem is eased by the introduction of the concepts

of initial tractions (tj)o, induced tractions tli and total tractions ti. For a plane with outward

normal ni' the relationships between tractions and stresses are:
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then:

and

(t.) = (0-) n-
1 0 JI 0 J

t' =<T-n·1 JI J

t· =(t) +t'
1 1 0 1

e = t- -(t.)
1 1 1 0

Chapler 4 Boundary e/emenl methods

(4.34)

(4.35)

(4.36)

•

Equation (4.36) is used to specify traction boundary conditions for the induced stress

problem. Once the boundary conditions have heen defmed, the induced stress problem

can be solved.

4.5.1 Elastic joint elements

For modeling purposes, a joint can be considered as a long, thin crack with a

compressible filling. A segment of the joint can then he modeled as an elemental

displacement discontinuity whose opposite surfaces are connected by a spring, with the

normal and shear stiffnesses of the spring chosen to be representative of the properties of

the joint-filling material. The values of the displacement discontinuity components at a

joint element will then be related to the normal and shear stresses acting on the element.

This method assumes that the element obeys simple one-dimensional stress-strain

relations for compression and shear. These relations are illustrated on Figure 4.7. A

single joint element is represented with two degrees of freedom, and its thickness h is

considered small compared to its length. Stresses sho"Tl here are total stresses, and
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(4.38)

(4.39)

•

•

Chapler -1 Boundary element melhods

hence, the deformations of the joint must he considered in two parts, initial and induced.

If it is assumed that the initial deformations are zero and that the joint element deforms

only in response to the induced stresses cTyy and ~Y' then the induced nonnal and shear

strain are given from Equation (4.2):

ôu~
E' =--'

»' ôy

e;y =~ (:; +~)
If it is assumed that the element is compressed by a constant amount aJong the x direction,

then au ~ /ôx =0 and the equation can he rewritten:

u~(x,h/2) - u~(x,-h/2)
E' =--'-----------

YY h

u~(x,h/2) - u~(x,-h/2)
E~y = 2h

When h is small, the numerators of (4.37) are equivalent to displacement discontinuity

components -D~. and - D~ so that the displacements are given by:

D~

E~'Y =-h
D'

E~y = - 2~

If the joint filling behaves in a linear elastic fashion with Young's modulus Eo and shear

modulus Go, then the induced normal and shear stresses and strain are related as follows:

D'y
~'Y = EoE~'Y = -E o h

D'
,.J -?G e-' - G _li
UllY -... O~llY - - 0 h

which can be written in function of the n and s coordinate system:
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D'
~ = -Eo h

R

D'
~ =-G _5

5 0 h

or

where kn and ks are the normal and shear stiffnesses of the spring of Figure 4.7.

4.5.2 Numerical procedure for rock mecbanics problems

(4.40)

(4.41)

The previous results cao he used to model problems in rock mechanics. For example,

consider the problem of an underground excavation intersected by a joint. The

excavation boundary cao he modeled by fictitious stress elements and the joint by the

special compressible displacement discontinuity elements. If there are N elements

altogether. with M fictitious stress elements and N-M displacement discontinuity

elements, then the induced stresses al any element are given by:

i M ij j îj J N ij J IJ J

crs=~(A~Ps+AsnPn)+ ~(A~D's+AsnD'n)
J=I j=M+1

i M IJ J Ij J /II ij J IJ J

cr' n = ~ (A ns P s + A nn P n) + L (A ns D's + A nn D'R )

)=1 J:M+I

(4.42)

•

1)

where A~, etc., are the boundary influence coefficients. The total stresses at element i

are obtained by adding the initial stresses and the induced stresses. The first 2M

equations in the system are then given by:
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i N ij j ij J

-(O's)o =L(Ass Xs +Asn Xn)
J=I

i N ij j li J

-(O'n)o =L(Ans Xs +Ann X n)
j=1

l:5i:5M (4.43)

and the remaining 2(N-M) equations are given by combining (4.41) and (4.42):

liN rj j ij J

0= ks X s+ L(Au X s +Asn X n)
J.. I

i i N ij J li J

0= kn X n+ L(Ans Xs +A nn X n)
j=1

M+l$i:5N (4.44)

J J
Xn =p

where n
J J

Xn = D'n

J j

and Xs=Ps

J J

and X s = O's

for 1 $ j $ M

for M + 1 S j s N

(4.45)

These equations can be solved by standard numerical methods.

In the precedent equations, it was assumed that no deformations occurred on the joint

before the creation of the excavation. However. the initial stress field May have been

distorted before the creation of the opening, due to deformation of the joint (or fault) in

geological time under the action of the far-field stresses. Assuming that this possibility

exists, then the initial stress would include induced components due to initial fault

deformations. Then:

(4.46)

where (O'li)~ are the far-field stresses and (cr:j)o are the initial induced stresses. Similarly,

the initial dispIacements are given by:

(u, )0 = (u. )~ + (u~)o (4.47)

•
where (u;)o are the initial induced displacements due to initial fault or joint

deforrnations, and (u.)~ are assumed to be zero.
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The total initial stresses at element i are then given by:

1 i 1

(O's)o =-ks{Ds)o

i i i

(O'n)o =-kn(Dn)o

and the initial induced stresses at element ; are given by:

(~s)o =t[Ass(Ds)o +Asn(Dn)ol
1"'\

(~n)o = t[Ans(Ds)o +Aoo(On)o]
pol

Combining these last equations leads to:

i 1 i N ij 1 ij i

-(O's)~ = ks(Ds)o + L[Ass(Ds)o +Asn(Dn)oJ
J~I

i liN ij 1 ij 1

-(O'n)~ = kn(Ds}o+= L[Ans(Ds)o +AM(Dn)ol
}=I

(4.48)

(4.49)

for i = 1 to N (4.50)

•

. .
1 1

The stresses (crs)~ and (O'n); are known, or postuJated so this brings a system of 2N

equations to find the joint defonnations. The initial induced stresses and displacements at

any point in the rock mass can be computed in the usual way, and Equations (4.46) and

(4.47) are used to specify the values of (crij)a and (Ui)O at these points.

4.5.3 Mohr-Coulomb elements

It was assumed in the previous section that the filling is behaving as linear elastic. In

reality, joints often behave inelastically. To include inelastic defonnations, one can

impose a constraint such as:
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i 1 1

Icrsl $ c + (-crn)tanep (4.51)

•

1 i

where c and cp are the cohesion and angle of friction of the fill material. A joint element

subjected to such a constraint is called a Mohr-Coulomb element. This type of element

will behave like a joint element but the total shear stress can not exceed the value

specified by Equation (4.51). This means that elements are allowed to undergo a certain

amount of inelastic deformations or pennanent slip.

As it was shown in Chapter 3. slip aIong a Jornt is a non-linear, path-dependent

phenomenon. Thus, it must be modeled by an incremental process. One problem arises

however, because, in rock mechanics, the load does not start from zero toward the final

load value, but rather starts from a certain value and then reaches its final value. One way

to take this into account. is to model the creation of the excavation by incrementally

relaxing the boundary tractions from their initial value to zero.
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Methods of solution

Analytical or
closed form

! Boundary Element
~felhods

~ ~--_. r-,-..... "

\umencal methods

finite Element and
F'inite Difference

\lethods

Emplrical based
on expenence

;Discrete Element
~fethods

-=:;:::C :::::::',,' s:: ....... ::- .

•

Figure 4.1 a: Solution ofgeotechnical problem by numerical methods (adapted trom Desai
and Christian, 1977)
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Figure 4.1 b: Process of evolution which led to the present-day concepts of finite element
analysis (after Zienkiewicz and Taylor" 1989).

• 113



•

•

Chapte,. 4 Boundary eJement methods

/

Figure 4.2: Kelvin's problem ofa force Fi applied in an infinite elastic solid in plane strain
(after Crouch and Starfield. 1983).
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Figure 4.3: Integration of Kelvin's solution (after Crouch and Starfield, 1983).

114



•
(a)

Chapler -1 Boundary e/emenl melhods

(b)
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•

Figure 4.4: The boundary element method for a cavity problem. (a) Physical problem;
(b) Numerical model (after Crouch and Starfield9 1983).
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Figure 4.5: The constant displacement discontinuity components Dx and Dy (after Crouch
and Starfield9 1983).
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(b)
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Figure 4.6: Representation of a crack by N elemental displacement discontinuities (after
Crouch and Starfield~ 1983).
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•
Figure 4.7: Representation ofajoint element (a) compression; (b) shear (after Crouch and

Starfield. 1983).
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CHAPTER5

DEVELOPMENT OF A NON-LINEAR CONSTITUTIVE MODEL FOR ROCK

JOINTS AND FAULTS

S.1 INTRODUCTION

As it was shown in section 3.6, the fault-slip phenomenon can he explained by comparing

the post-peak behavior of the joint and the stiffness of the loading system. Thus, it is

essential for the constitutive model used to foIIow as closely as possible the post-peak

behavior of the joint. A good progress in that domain was given with the model of Saeb­

Amadei presented in Chapter 3. However, in cases of strain softening, this model cannot

aIways follow the non-linear behavior of the joint, especially when the nonnal stress is

constant. Figure 5.1 illustrates the limitations of the Saeb-Amadei model in situations of

strain softening.

From Figure 5.1 a. one can see that the Saeb-Amadei becomes a linear model when the

nonnal stress stays constant. Since it is the strain softening behavior that may cause

unstable slip along a discontinuity, there was a need to develop a model that could foIIow

the non-lïnear behavior of the joint.
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S.2 DEVELOPMENT OF A NEW NON-LiNEAR CONSTITUTIVE MODEL

5.2.1 Shear stress-shear displacement relationship

To obtain a non-linear relation~ severaJ fonnulations could he used. The fonnulation

chosen here has the general fonn of:

F(u) ='t =a + bexp(- cu)- d exp(- eu) (5.1 )

where 't is the shear stress in MP~ U is the shear displacement in mm and a to e are the

model parameter with the condition of c < e (~b, c, d, e >0). A mathernatically similar

stress fonnulation was proposed by Chapuis (1990) for granular rnaterials. This

formulation is based on a statistical approach to relate defonnation to the transformation

of the internaI structure (Chapuis. 1990). Figure 5.2 shows the type of curve that cao be

obtained frorn Equation 5.1.

From Equation 5.1, sorne conclusions can he drawn. At u=O, the shear stress must he nil,

50 one cao write:

or

F(0) = a + bexp(- c • 0) - d exp(- e • 0) =0

a+b=d

(5.2)

(5.3)

(5.4)

(5.5)

At large displacement u» 0, the residual strength ('tr) must he attained and Equation 5.1

leads to:

F(u » 0) = 't r == a

thus

•
Moreover, since a = Lr. we must have at Ur:

F(u r ) = a + bexp(-c. ur)-dexp(- e. ur) = 't r
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then bexp(-cur)-dexp(-euJ= 'tr -a = 0 (5.7)

To properly capture the 't-u curve. one must impose that c<e, so the exponentiaJ of(-e ur)

will tend toward zero much faster than the exponential of (-C ur). From severaJ curves

shown in Appendix. it appears that 0.07 cao he considered a small enough vaJue of the

exponential (in a tirst approximation) to be considered negligible. then we obtain:

exp(-cu r ) == 0.07

and

The general equation can then be rewritten by:

't = a+ b exp(-cu)-d exp(-eu)

='t, +[d - 't,] ex{- ~~)-d exp(-eu)

= 't,[t-ex{- ~~ )] + d[ex{- ~~) -exp(-e u)]

(5.8)

(5.9)

(5.10)

At the peak displacement up, we have a maximum of the function (peak strength). The

derivative ofF(u) is given by:

8F(u) 5 ( ) (su) ()--=-- d-'t r exp -- +deexp-eu
au ur Ur

(5.11)

Ifwe have a maximum of the function at up. then the derivative must equal zero and:

•

8F(U)1 5 ) { 5Up ) ( )-- =--(d-'tr ex -- +deexp-eup =0
au u=u ur Ur

p
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At peak displacement, F(up) must he equal to the peak strength "tp:

F(u p ) =a + b exp(- c • u p ) - d exp(- e • u p ) = t p

(5.14)

(5.15)

(5.16)

thus

or

Tp=T.[t-exp(-5:,p )]+d[ex{_5:: )-exP(-eup)]

Tp-T.[t-ex{-5:,p )]-+x{_5:: )-exP(-eup)]=o

d=--:---=Tp-T,[:.-l-exp(_~5::)]
ex{-5:: )-exp(-eup)

(5.17)

(5.18)

(5.19)

•

We then have wo non-linear equations (5.15 and 5.18) to solve to find the unknown

parameters d and e. This set of non-linear equations cao be soIved by standard iterative

methods (e.g., Gerald and WheatIey, 1989). However, proper care must be takeo when

solving Equation 5.15 because it has two roots of e, one being lower than c. Theo one

root violates the initial condition (c < e). Figure 5.3 shows Equation 5.15 given as a

function F(e).
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To solve Equations 5.15 and 5.18, the Newton method can he used (e.g., Gerald and

Wheadey, 1989). First. an initial value of d (dinil) is obtained by the following procedure.

Ife» c, then Equation 5.17 can he reduced to:

"t p - a[l- exp(- cU p )] - d[exp(- cU p )]::: 0 (5.20)

then
"tp - a[1 - exp(- cU p )]

d .. = ()
IJIJI exp - cU

p

(5.21 )

(5.23)

•

which leads to a first approximation of d. This approximation is then used to solve

Equation 5.15. The Ne-wton's method to solve non-Iinear equations is given by (Gerald

and Wheatley, 1989):

f(x
l

)

Xi.' = Xi - f'(x,) (5.22)

where Xi+1 is the value of the next step and Xi is the value obtained for the previous step.

This method is known to converge rapidly, once an initial value is given ta stan the

process. It could be shawn that the root to which the method will converge depends of

the initial value of x. As we cao see on Figure 5.3, F(e) passes through a maximum

before getting to the wanted root (the larger one). Then, if the initiaJ value used for e is

larger than the value of e at the maximum, the method will always converge towards the

larger root. Hence. the initial value ofe (let it be einit) must he larger than ep, the value at

the maximum of F(e). We know that the derivative of F(e) at ep will equal zero, then

from Equation 5.14 we get:

aF(e) =~ -U
p

exp[up(e-c)]=O
ae be

The solution leads to ep :
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(5.24)

Since einit must be larger than ep, if we add one unit to ep, we get an initial value that will

always converge towards the wanted root:

In(_dÎ
bcu p )

e ini, = + e + 1
u p

Then, using Equation 5.22. we get:

de, ! be - exp[u p (e j - cl]

e i
+

1 =e j
- d/be-u

p
exp[up(e

j
-cl]

The model can also be expressed in an incremental formulation with

k ss = Ô't == de exp(- eu) - be exp(- cu)
au

k =Ô't=O
sn av

(5.25)

(5.26)

(5.27)

(5.28)

Then d't = k d,· + k du = k dusn ss 55 (S.29)

•

The different terms of the model are summarized in Table S.1.
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Table 5 l' Parameters terms ofthe new model..
Parameter Value Condition

a Lr

b d-a

c 5/ur c<e

Non-Iinear equations ta he solved

[ {5U. )]'t - 't 1- ex - --

d=
't

p
-a[l-exp(-cu p )] p r ur

exp(-cu.)-exp(-eu.r { 5U.) ( )
ex --- -exp-euu p

r

with d mn =
't p - a[l- exp(- cU p )]

T. -T.[l-ex{_5:: )]
exp(- cU p)

= { 5U.)ex -~

:: -exp[up(e - c)]= 0

( d Jln --

with e imt

bcu p
+c+1

u p

•

As it can be seen in Table 5.1, all the model parameters can he detennined from four joint

parameters easily determined in laboratory, which are the peak and residual strength ('tp,

'tr) and the peak and residual displacement (up, Ur). The peak strength can he determined

from any peak strength criterion such as the Ladanyi-Archambault model as modified by

Saeb (1990) and given by Equation 3.15. The residual strength is then given by Equation

3.50. Both peak and residual displacements are considered to he constants for a given

joint. The residual displacement is considered to he the displacement al which the
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dilatancy level remains constant. If Equations 3.15 and 3.s0 are used to derme the

strengths, then the model parameters are defined from these joint physical parameters:

Bo: ratio of the residual to peak strength at very low nonnal stress (0 ~ Bo:S 1)

io: average angle of the asperities

So: cohesion of the rock walls (using a Mohr-Coulomb criterion)

up : displacement at peak strength

Ut: displacement at residual strength (displacement at which dilatancy stops)

4>0: friction angle of the rock walls (using a Mohr-Coulomb criterion)

~u: friction angle of the joint

0'n: applied nonnal stress

O'T: brittle-ductile transition stress for the asperities (usuaJly taken as the uniaxial

compressive strength)

Finally, the model can be expressed by:

T = T, + [d -T,] exp( - ~~ ) -dexp(-eu) (5.30)

•

Figure 5.4 shows the comparison between the model and a few laboratory test results

under constant normal stress. As it cao he seen on Figure 5.4, the model shows a good

correlation with the data. In all, 27 curves were plotted to evaluate the correlation with

data taken from literature (other curves are given in the appendix). These comparisons

showed a correlation factor (R2) of 0.900 (a factor of 1.0 gives an exact correlation).

Moreover, the Saeb-Amadei model gave a correlation factor of 0.739, which

demonstrates c1early that the new model can follow more closely the behavior of the joint

under constant nonnai stress. especially in the post-peak region.
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5.2.2 Normal displacement - sbear displacement relationship

An exponential fonnulation can also he used to descrihe the nonnal displacement (v) ­

shear displacement (u) relationship. This relationship cao he given in the form:

v = Pl + 132 exp(- J33 U)- 134 exp(- Psu) (5.31)

where v is the nonnal displacement, u is the shear displacement and 131 10 J3s are model

parameters. Figure 5.5 shows the type of curve that can he obtained with such a

fonnulation as weIl as the curve obtained from the Saeb-Amadei model (Equation 3.28).

However, it is sometimes difficult to relate ail the parameters of Equation (5.31) to

physical parameters that cao he easily obtained through standard laboratory tests. For

such reason, a simpler fonn of the relation is adopted (neglecting initial closure ofjoints):

v =131 - ~2 exp(- P3 U) (5.32)

The parameters Pl to 133 can be determined from the following. From this formulation,

we gel at u = 0 (no shear displacement):

v = Pl - 13 2 exp(- 133 • 0)

=131 - 132

The normal displacement at u = 0 must then be a function of the nonnal stress ta reflect

the normal behavior of the joint. If the model proposed by Bandis et al. (1983) is used

(Equation 3.1), then at u = 0, we aIso have:

where crn is the normal stress. Vm is the maximum cl0 sure of the joint and kni is the initial

normal stiffness of the joint. Combining the last equations leads to:

n _Il _ an Vm
Pl P2-

km Vm-<Jn
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(5.35)

From Equation 5.32, it cao he seen that at large displacement (u » 0), the nonnai

displacement will he equai to III (which will represent the maximum normal displacement

V m). If we consider that the Saeb-Amadei model gives a good approximation of this

maximum normal displacement, then we can use the Saeb-Amadei fonnulation to

evaluate 13.. The maximum nonnai displacement with the Saeb-Amadei formulation is

given by using Equation 3.28 at u = Ur (where the dilatancy level remaios constant). Then

we get:

Il. = Ur (1- 0'0 )k: tanio + 0'0 Vm (5.36)
O'T km Vm-0'0

where io is the angle of asperities of the joint and k2 is the constant of the Ladanyi­

Archambault peak strength model (and considered to he equal to 4).

The last parameter (133) can be related to the residual displacement (Ur). Based on several

test results obtained from literature, it was found that Jh cao he given by:

(5.37)

•

Figure 5.6 shows the comparison of Equation 5.37 with the value obtained by curve

fitting on 15 tests found in literature (these curves are given in appendix).

Combining Equations 5.35 to 5.37 into Equation 5.32, we get:

126



• Chapter 5 Deve/opment 0[0 non-/inear constitutive mode/jOr roclcjoints and raults

An incremental formulation can also he given by:

dC1 n =kandv+ksndu

with

and

(5.38)

(5.39)

(5.40)

•

k = oon
os au

I.5(k.,Ym -cr.(1-~J[(k.,Ym -cr'lU,(I-~rtanio- v] +".Vm] (5.41)

= u,[k,[Vmcr. -v(k.'ym-cr.)]-(Vm+ vXk,,vm -cr. (1- ::)]

5.3 EVALUATION OF FAULT-SLIP ROCKBURSTS POTENTIAL

As it was mentioned in the presentation of the relative stiffness approach (section 2.3), to

establish if failure will be violent or graduai, one needs to compare the post-peak stiffness

of the failed element with the stiffness of the material surrounding this failed element.

Thus, in cases where a slip along a discontinuity is anticipated, the stiffnesses that need to
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be detennined are the shear post-peak stiffness of the discontinuity and the shear stiffness

of the surrounding rock mass. A proposed method to obtain these stiffnesses is detailed

in this section.

5.3.1 Shear post-peak stiffness of a discontiDuity k'p

Lets consider a direct shear test on a rock discontinuity as illustrated in Figure 5.7a. As it

was shown in the previous section9 the model developed can reproduce fairly weIl the

behavior of the discontinuity for this situation (Figure 5.Th). Thus9 the model cao he used

to evaluate the post peak stiffness of the discontinuity. The value that needs to be used

for the comparison will of course he the largest value possible (in absolute value) of the

slope in its post-peak phase9 or the smallest value since the slope is negative in the post­

peak phase. In the case where the nonnal stress stays constant9 the value of the slope is

given by Equation 5.27:

k ss = deexp(-e u)- bcexp(-c u)

The smallest value cao then be determined by the derivative of the slope and given by:

akss = bc2 exp(- c u)- de2 exp(- e u) = 0 (5.42)
au

Solving this equation willlead to the critical displacement Uerit where the slope will be the

smallest:

(5.43)

•

It couId be shown that since the maximum slope given by the formulation of the model is

at the origin (u = 0)9 that the critical displacement obtained by Equation 5.43 is always a

minimum. Then9 computing the value of the slope at Uerit will lead to the srnallest value

of the slope given by:
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(5.44)

•

Special attention must he given to the uoits used. The value obtained with Equation 5.44

is in MPaimm or GPaim. It should he noted that stiflhess coefficients should he expressed

in poWlds per inch or meganewtons per metre as it is in MOst publications. Then, the value

obtained with Equation 5.44 should he multiplied by the area of the sample perpendicular to

the nonnalload.

In the case where the nonnal load is not constan~ then the parameters a,b,d and e will vary

and Equations 5.43 and 5.44 cannot he used. In this case, the stiffuess can he calculated by

plotting the slope (using a spreadsheet) and finding the smallest value.

To extend this concept at the rock mass level, numerical modeling is mandatory. The use

of a non-Iïnear approach is needed to he able to model the hehavior of the joint near

openings where normal and shear stresses are not constant throughout the rock mass.

Thus, the model developed in section 5.2 was introduced in a boundary element code

named SATURN that was originally developed at McGill University by Fotoohi (1993).

A description of SATURN and of the implementation of the new model is given in the

following sections.

The stiffness of the fault cao then be computed using the results provided by the

SATURN output. Each segment of the fault that has failed cao then be analyzed to obtain

its post·peak behavior. The value of the post-peak shear stiffness k'p will he given by the

largest value of the slope (in absolute values). Examples of application are given in

chapter 6.
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5.3.2 Shear stiffness of the surrounding rock mass ~

The shear stiffness of the surrounding rock mass cao he estimated through a process

similar as the one proposed for fracturing of the rock mass (section 2.3.4). It consists of

replacing the fault elements that failed with fictitious shear stresses. Then~ the shear

displacements along these elements are computed. A graph of O's·L vs u (where O's is the

resultant shear stress, L is the length of the fault that failed and u is the shear

displacement) is plotted. The slope of this graph represents the shear stiffness kc of the

surrounding rock mass. Examples ofapplication are given in Chapter 6.

5.3.3 Burst-potential ratio for joints (BPRj )

To evaIuate if there is a fault-slip rockburst potential~ one must compare the post-peak

shear stiffness of the failed fauIt elements with that of the surrounding rock mass. If the

post-peak stiffness of the failed element is larger (in absolute values) than that of the

surrounding rock mass, there is a fault-slip rockburst potential. Otherwise, the failure

will be graduai.

For comparison purpose, it might be easier to compare the stiffiless in a relative manner.

Then a Bursting Potential Ratio for joints, or BPRj~ cao he used (similar to the one

defined for rock mass failure in section 2.3.4). This index is then given by:

k'
BPR = _P (5.45)

J k
e
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A BPRj value weIl above unity would indicate a c1ear potential of rockbursting while a

value near unity might require further investigation (like more laboratory testing to get

more accurate values for the fault model).

5.4 THE PROGRAM SATURN

The SATURN software system was developed by Fotoohi (1993) in a Ph.D. thesis.

SATURN (for Stress Analysis of Tunnels and Underground Rock excavation with Non­

linear discontinuities) consists in three modules, the pre-processor (DRAW), the main

program (SATURN) and the post-processor (SHOW).

Program SATURN uses a combination of fictitious stress and displacement discontinuity

methods (BEM) that are used for stress analysis of rock masses containing major faults.

The program employs the indirect boundary element method with a technique of

incremental relaxation of the boundary tractions representing the mining induced stress

relief at the boundary of mine openings. The equilibrium of the system for each

increment step is achieved by iterations. SATURN can also take advantage of symmetry

ta reduce the computing effort. Two models ofjoint behavior were available: the Mohr­

Coulomb model and the Barton-Bandis model.

5.4.1 Non-linear analysis

The non-linear analysis performed by SATURN uses an incremental iteration technique.

The creation of the excavation is modeled by incremental relaxation of the fictitious

boundary tractions for the fictitious stress elements. The size of the load step increment
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is determined by dividing the initial boundary stresses into L equal segments. The

displacement discontinuity elements cao follow either the Mohr-Coulomb or the Barton­

Bandis models to calculate the shear stress-displacement relation along a fauIt. The

Mohr-Coulomb model assumes that both the shear and normal stiffness are constant

during the incremental loading analysis, whereas the Barton-Bandis model uses non­

linear relationships for both normal and shear stresses so their corresPOnding stiffness is

not constant.

A system of 2N algebraic equations based on Equations (4.43) and (4.44) is obtained.

The system of algebraic equation of iteration j from load increment k for i = 1, N can he

written as follows:

(5.46)

•

ij

where the matrix [A] is a full asymmetric known matrix that represents parameters Au,

etc. from Equation (4.43) and (4.44), the vector {X} is unknown and represents the

J J.

parameters P 5 and D 5 ' etc. from these equations, and vector {B} represents the left end

side ofthese equations. Each ofvector {X} and {D} has 2N entries.

5.4.2 SATURN algorithm

The structure of SATURN cao be resumed in 5 steps as shown in Figure 5.8. First, the

geometry of boundary and physical property of the domain are generated. Then, the

traction vectors on boundary are constructed. The third step is the calculation of

influence coefficients of traction vectors over all elements and the set up of the system of

equations. Then, the system of equations to determine the unknown fictitious stresses or

displacement discontinuities is solved. Finally, the stresses and displacements at any
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point inside the domain (using superposition of fictitious stresses or displacement

discontinuities) are calculated.

Particular interest is given to step 2 to 4 in Figure s.s. The generation of traction vectors

(step 2) consists in constructing {D}. The traction vector for all fictitious stress elements

is calculated from in situ (or pre-mining) stresses. The traction vector for aH

displacement discontinuity elements (ODE) is set equal to zero. However, the real

traction vector for DDE are equaI to ki * Di (i = n or s) which are moved into matrix [A]

in step 3. In step 3. the influence coefficients of every element are calculated and the

matrix [A] is assembled. In step 4, the system of aIgebraic equation [A]{X} = {D} is

solved and the unknown vector of fictitious stresses or displacement discontinuities is

determined. The solution procedure uses the Gauss elimination method. Finally, the

stresses and displacement at any point around the openings are calculated (step 5) by

superposition of fictitious stresses or displacement discontinuity parameters. The number

of calculation of influence coefficients for each point is equal to 2*N where N is the total

number ofelements.

5.4.3 Implementation of the new model into SATURN

For the non-linear analysis, the numerical algorithm used in SATURN is based on

incremental relaxation of the boundary tractions. The initial tractions are divided into L

equal increments and are applied step by step. After each step, the characteristics of the

fault are updated using either Barton-Bandis' or the proposed model. Figure 5.9 shows

the flowchart for the incrementaI procedure. The computation steps are repeated L times

from step 2 to step 4 (of Figure S.S). For each iteration, the traction vector {B} is

calculated before step 2, which is based on kil of total tractions. The parameter ki*Di are
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included in the matrix [Al after step 3 for displacement discontinuity elements. After

step 4, the normal and shear displacements and stresses are calculated for all elements

along opening boundaries and faults. Then, the calcuJation of the limiting stress using a

faiJure criterion for each displacement discontinuity element is performed and compared

with the shear stress of that eJement. Finally, the element stiffness knn and kss are

modified appropriately. If the convergence criterion is satisfied, then the next load step is

considered. Otherwise, the iteration restarts from step 2.

Figure 5.10 and 5.11 show the flowcharts for the set up ofmatrix [AI and vector {D}. For

the proposed model, the procedure is identical as that of the Barton-Bandis model. Figure

5.12 shows the flowchart for the failure criteria of each joint model available in

SATURN. First, the maximum shear stress 'tm is calculated for the model used. Figure

5.13 shows how the maximum shear stress is calcuJated for the proposed model. As it

was mentioned in section 5.2, an iterative procedure is used to determine parameters d

and e of Equation (5.1). First, the peak and residual stress are evaluated with the

modified Ladanyi-Archambault model (Equations 3.15 and 3.50 respectively). Then,

Newton's method is used to solve d and e. Finally, the maximum shear stress is

calculated using Equation (5.30). Figure 5.14 shows how the shear stiffness is modified

for the proposed model. [fthe resultant shear displacement Vx(l) is smaller than the peak

displacement up, then Kss is given by:

(5.47)

•

A linear relation is used before the peak because the proposed model was developed for

monotonous loading. This implies that the shear stress allowed by the model at u=O is

nil. However, in the rock mass, in situ normal and shear stresses usually exist even if the
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displacement is nil. Since the allowed shear stress for the model is nil at u=O, then no

stress could be transferred to the joint because SATURN uses a secant stiffness approach.

If the resultant displacement is larger than the peak displacement, then the resultant shear

stress crs is compared with the calculated maximum shear stress 'tm• If crs exceeds 'tm, then

a Kodfal value of 3 is anributed, meaning that the program must proceed to another

iteration. The shear stiffness is then given by:

K = "t'm

ss Vx(I)
(5.48)

This procedure is repeated until the resultant shear stress does not exceed 'tm• Figure 5.15

shows schematically how the program will converge towards the joint hehavior by

"relaxing" the shear stiffness.

For the normal stiffness, the Saeb-Amadei model is used for its simplicity. For that

model, the normal-shear displacement relationship is given by Equation (3.28):

Then, the secant normal stiffness is given by:

(5.49)

•

5.5 OUT-Of-BALANCE INDEX OBI

The stiffness comparison is a method that cao he used to evaIuate the fault-slip rockburst

potential but it is not the ooly avenue that can be explored. A second approach is
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illustrated on Figure 5.16. Figure 5.16a shows an excavation near a geological

discontinuity. As the mining progress towards the discontïnuity, the stress state along the

discontinuity will he modified. In the situation shown here, one can expect, at point A, an

increase in shear stress and a decrease in normal stress. Figure S.16b shows the evolution

of shear strength and applied shear stress at point A at each mining step. The shear

strength gets lower at each mining step because of the decrease in nonnal stress. As the

mining steps are achieved, the shear stress applied along the discontinuity increases. If

the applied stress becomes larger than the strength, the equilibrium becomes out of

balance. One can then define an "Out-of-Balance Index" (OBI) given by:

Fob
OBI =- (S.50)

Fres

where Fob is the applied shear stress minus the shear strength and Fres is the shear strength.

The larger this OBI value will he, the larger the rockburst potential should he. This is

based on the hypothesis that ifat one moment in time, the OBI value is large enough (and

positive), then there will be enough energy to produce a seismic event. The program

SATURN was modified to make this calculation. However, to allow for the stress to he

larger than the strength, the shear stiffness Ku stays constant and is at every step given by

Equation 5.47.

5.6 VERIFICATION OF THE IMPLEMENTATION

T0 insure that the pro8l'aJll SATURN works efficiently and that the implementation was

done correctIy, sorne verifications are mandatory. The hest way to verify that the

implementation was done correctly is to reproduce direct shear tests. SATURN cao

model either extemal (e.g. openings) or internaI (e.g. direct shear tests) problems.

Fotoohi (1993) made some verifications for extemai problems for simple openings such
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as circuIar, elliptical and square (with rounded corners) openings. SATURN showed

good agreement for such shapes of openings. However, no verifications were made for

internal problems or for extemal problems involving faults. Thus, four kind of

verifications are made here: FUst, a thick-waIl cylinder in compression is analyzed (to

verify the vaIidity of internai problems); Secondly, cases ofa circular opening near a fault

in an elastic field are analyzed (to verify the accuracy of DO elements); Then, direct shear

tests are reproduced under either constant normaI stress or constant nonnal stiffness (to

verify the implementation of the proposed model).

5.6.1 Tbick-waU cyliDder

Lamé (1852) developed an analytical solution for a thick wall cylinder submitted to

unifonn internai (Pi) and extemal (Pc) pressures, as illustrated on Figure S.17. The

analytical solution ofLamé is given by:

cr = b 2pc -a2
pi (Pc -Pi)l2b 2

r b2_ a 2 r 2{b2_ a 2)

b 2 p _a 2p (P _p.\...2b 2

cr = c • + c .Id
1 b2 _a2 r2{b2 _a 2 )

where crr is the radial stress, Gt is the tangential stress, a and b are the internai and extemal

radius, r is the radius at the point of interest, and Pi and pc are the internai and external

pressures (compression is positive). The parameters for the case anaIyzed are:

b = S; a = l, pc = 10; Pi = O.

Figure 5.18 shows the comparison between the anaIytical solution and the results from

SATURN. As it can he seen, SATURN compares weIl with the analyticaI solution. It

can then be concluded that SATURN cao model correctly such internai problems.
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5.6.2 Circular opening near a rault (elastic analysis)

To evaluate if SATURN can accurately calculate stresses on DD elements, two cases of a

circular opening near a fault are analyzed. The first case analyzed is a circular opening

intersected by a plane of weakness at an angle of 45° as shawn on Figure 5.19 (details of

the analytical solution of this situation cao he found in Brady and Brown, 1993, p. 202).

Components p and O.5p define the far field stresses. The nonnal (O'n) and shear (t) stress

components along the plane, based on Kirsch (1898) solution, are given by (Brady and

Brown, 1993):

0'n = p • 1.5(1 + a~ )2 r~

p (2a2
3a~)or =-·0.5 1+-----

2 r 2 r~

where a is the radius of the opening and r is the radius along the plane of weakness. The

variation of the ratio T/rsn is plotted on Figure 5.20. As it can he seen, SATURN's results

compare weil with the analytical solution. However, there is sorne discrepancy of the

results near the opening. This could be explained by the fact that the opening is modeled

in SATURN by straight segments and not by a real circle. This affects the accuracy of the

results near the opening.

The second case analyzed is a circular opening close but not intersecting the plane of

weakness, as shown on Figure 5.21 (details of the analytical solution ofthis situation can

be found in Brady and Brown, 1993, p. 203). The far-field stress is taken as hydrostatic.

The normal and shear stresses, also based on Kirsch (1898) solution, are given by (Brady

and Brown, 1993):

138



• Chapler 5 Deve/opment ofa non-linear constitlltive mode/{or racle joims and[au/IS

(5.53)

•

The variation of the ratio 'tIan is plotted on Figure 5.22. Here again~ SATURN resuIts

show good agreements with the anaIytical solution.

5.6.3 Direct shear tests under constant Dormal stress

To evaluate if the implementation of the proposed model bas been done correctly,

reproduction of direct shear tests were performed. Figure 5.23a to 5.23d show the resuIts

obtained from SATURN, along with the proposed model and the test data taken from

literature (more details on the test data cao he found in appendix). As it cao he seen from

these figures, the implementation is adequate since the results obtained by SATURN

follow closely the hehavior of the proposed model obtained from the mathematical

fonnulation. However, sorne differences can he observed at certain points on several

curves. This can he explained by the fact that a difference of 10% between the resultant

shear stress (as) and the maximum allowed shear stress (tm) is allowed to ease the

convergence process.

5.6.4 Direct shear tests under constant normal stiffness

The results of section 5.6.3 have shown that SATURN cao efficiently reproduce the shear

behavior of joints as given by the proposed mode!. To verify that the nonnal joint

behavior is also modeled correctly, direct shear tests under constant normal stiffness were

modeled. However, it is not possible to impose two normal boundary conditions in
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SATURN (to impose the stiffness and the initial normal stress). So SATURN was

madified ta make possible the modeling of such a situation. After each iteration, the

applied normal stress was given by:

(aa)i = (aa). +K·(vi_1-vO) (5.54)

where (an)i is the applied normal stress at the iteration i, (an)ini is the initial Donnai stress,

K is the applied nonnal stitIness, Vi-I is the Donnai displacement at iteration ;-1 and Vo is

the initial normal displacement (at u = 0). Figure 5.24 shows the result obtained for tests

under different constant normal stitInesses. Figure 5.25 shows the results for severa! tests

taken from literature. Here again, results from SATURN compare weil with the

mathematical fonnulation of the proposed model.

Thus, based on ail the verifications perfonned, it can he considered that the

implementation of the proposed model was done adequately and that SATURN cao he

used in arder to model openings near faults. In the next chapter, it will he shown how

SATURN can he used to evaluate the fault-slip rockburst potential.
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Figure S.l Comparison of the Saef>.Amadei model with typical joint behavior. a) Shear
test under constant normal load (data from Flamand et al., 1994). b) Shear test under
constant normal stiffitess (data from Skinas et al., 1990).
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Figure 5.2 Typical shear stress·shear displacement curve obtained from Equation S.l
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Figure 5.3: Graph of the function F(e) given by Equation 5.15 for typical values.
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Figure 5.4a: Comparison between the proposed model and actual shear test result for rock
joint replica made of cement mortar onder different constant normal stresses (data taken
from Flamand et al., 1994).
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from Leichnitz, (985).
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Figure 5.5: Typical normal displacement - shear displacement curve of a direct shear test
on a rock joint under constant normal stress showing the Saeb-Amadei model and the
proposed model (data from Bertrand, 1989).
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Appendix A).

• 144



• Chapter 5 Developmenl o[Q non-Iinear constillllÏ1le model[or rock joints andfallits

Normal
Load

1
~

Shear
Load

Shear
dlsplacemenl

"- '" "-
"- "- , ,

Shear di.placement (mm)

a)

JO

2S

-ca
4- 20:E-Cft
Cft

! 15-fi)..
ca
m 10
~
fi)

5

0
0 05

b)

• data

--Madel;

15 2 2.5 3 3.5 5

•

Figure 5.7 a) Direct shear test under constant normalload. b) TypicaI shear stress - shear
displacement curve obtained with the proposed model (data from Flamand et
al., 1994).
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Figure 5.8: General flowchan ofSATURN (after Fotoohi, 1993).
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Figure 5.9: General flowchart of the incremental technique (after Fotoohi, 1993).
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Figure 5.10: The flowchart of modification ofvector {BI (adapted from Fotoohi~ 1993).
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Figure 5.12: The flowchart offailure criteria for DD elements (adapted from Fotoohi,

1993).
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Figure 5.13: The flowchart ofcalculating parameters d and e and the determination of Tm

for the proposed model.
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Figure 5.14: The flowchart ofmodification of stiffness parameters for the proposed
model.
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Figure 5.15: Schematic representation of the iterative process ofmodifying Kss for the
proposed model starting from iterationj and converging at iterationj+n.
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Figure 5.16: a) Mining of a stope near a geological discontinuity. b) Shear strength and

applied shear stress at point A at each mining step.
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Figure 5.17: Hollow cylinder of internaI radius a and externaI radius b under internai (Pi)
and externaI (Pe) pressures.
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Figure 5.18: Comparison oftangential (cri) and radial (O'r) stress results between an

analytical solution and SATURN for a hollow cylinder under internaI and
external pressures.
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Figure 5.19: An inclined~ radially oriented plane of weakness intersecting a circular

excavation (after Brady and Brown~ 1993).
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Figure 5.20: Comparison of the ratio ofshear stress over normal stress between SATURN

and an analytical solution.
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Figure 5.23a: Comparison ofresults obtained from SATURN and the proPOsed model for
direct shear tests under different constant normal stresses (data taken from
Skinas et al.~ 1990).
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Figure 5.23b: Comparison ofresults obtained from SATURN and the proposed model for

direct shear tests under different constant normal stresses (data taken from
Flamand et al., 1994).
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Figure 5.24a: Shear stress - shear displacement curves for direct shear test under different
constant nonnal stiffness K.
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Figure S.24b: Nonnal displacement - shear displacement curves for direct shear test under

different constant normal stiffness K.
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• CHAPTER6

PARAMETRIC ANALYSES AND SIMPLE CASE STUDIES

To demonstrate how the tools developed in Chapter 5 can he used ta evaluate the fault­

slip rockburst potential of underground openings, severa! cases are presented in the

second section of this chapter. In the first sectio~ a sensitivity analysis of the proposed

model is performed ta evaluate which parameters of the model have more influence on

the joint behavior.

6.1 SENSITIVITY ANALYSIS OF THE PROPOSED MODEL

As it was shawn in Chapter 5, the proposed constitutive model for rock joints can be

studied from two separate relationships: the shear stress-shear displacement relationship

and the nonnal to shear displacement relationships. Hence, these tapies are treated

separately in the following.

6.1.1 Shear stress· shear displacement relationsbip

For all the cases that are studied, the model parameters value are given in Table 6.1

(except for the studied parameter).

1 .d· thTable 6.1: Parameters value use ln e sensltlvlty analysis
crn up Ur Bo O'T io 4»u 4»0 80

(MPa) (mm) (mm) (MPa) CO) (-~ M (MPa)
10 1 5 0.5 100 10 40 40 5
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Figure 6.1 shows the influence of the nonnal stress on the shear stress curve. As the

Donnai stress increases, the strength of the joint increases also, leading to a higher peak

strength. The stress drop from the peak strength to the residual strength also increases as

the normal stress increases. This leads to a larger post-peak stiffness at higher nonnaI

stress.

Figure 6.2 and 6.3 show the influence of the peak and residual displacement. As could he

expected, the closer these displacements are to each other, the larger the post-peak

stiffness is (the region where the stress drop must take place heing reduced). These

graphs reveal that these parameters are very impottant values to he determined in the

assessment of the fault-slip rockburst potential. Another important parameter is the peak

to residual strength ratio (Bo), as shown in Figure 6.4. This parameter controls (in part)

the stress drop that is occurring after the peak, hence having a direct impact on the post­

peak shear stiffness of the joint.

Figure 6.5 presents the control of the stress ratio (crn/crT) on the shear stress-displacement

curve. As it can he seen in that figure, a stress ratio increase leads to a larger peak

strength but does not increase the post-peak stiffness. ln fact, the post-peak stiffness is

smaIler as the residual strength is increasing in a larger fashion than the peak strength.

Finally, Figure 6.6 to 6.9 shows the influence of the initial angle of asperities, friction

angle of the joint and the failure parameters of the rock walls (cohesion and angle of

friction). These parameters ail have an effect on the peak strength of the joint, the most

influent being the angle of asperities and the friction angle of the joint.
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6.1.2 Normal displacement. sbear displacement relatioDship

For all the cases that are studied7the model parameters value are the same as in Table 6.1

plus the values in Table 6.2. From Equation (5.38), which formulate the relation between

the normal and shear displacements7the parameters that affect the dilatancy curve are the

normal stress7the residual displacemen~ the stress ratio, the initial angle of asperities7the

initial nonnal stiffuess and the maximum closure. Ail the other parameters used in the

model (Up7 Bo, S07 cPu, cPo> have no effect on the dilatancy curve.

d· ther parameters value use m e sensitivity analysls
kni Vm

(MPa/mm) (mm)

1000 10

Table 6.2 Oth

Figure 6.10 presents the influence of the nonnal stress on the dilatancy curve. As it can

be seen (and as one would expeet)7 any increase of nonnal stress limits the dilataney of

the joint. Thus7in situations of constant nonnal stiffness, this leads to a maximum rate of

inerease of normal stress in the beginning of the shearing proeess that diminishes as the

dilataney rate is lowered by the increase of nonnal stress.

Figure 6.11 shows the influence of the residual displacement on the dilatancy curve. At

small displaeemen~ this parameter has minimal effeet on the eurve. Moreover, if the

residual displacement is large eompared to the peak displaeement (as it is often the case;

see Appendix A), Ur will have no effect on the curve hefore the peak displacement.

•
Figure 6.12 presents the influence of the stress ratio (aJC'T). As can he seen, this ratio

has a great effeet on the dilataney of the joint. As the ratio inereases7 the dilatancy rate

decreases considerably. This could he explained by the fact that as the nonnal stress
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approaches the strength of the rock asperities, a larger portion of these asperities are

sheared, hence limiting the dilatancy. Another parameter that bas the same kind of effect

is the initial angle of asperities, as shown in Figure 6.13. Evidently, if this angle is nil,

there is no dilatancy at ail. Then, when this angle increases, not only the peak strength

increases but also does the dilatancy, even for small differences in the angle value.

Figure 6.14 shows the effect of the initial normal stiffiless on the curve. What can he

observed by varying this parameter is that the shape of the curve is not affected by this

parameter. Only the initial value of normal displacement is affected by this parameter.

Hence, this does not affect the rate of dilatancy or the increase in normal stress due to

di1atancy.

Finally, the last parameter that influence dilatancy is the maximum closure. In the same

fashion as the initial nonnal stiffness, this parameter bas no effect on the rate of dilatancy

as shown in Figures 6.15a and 6.15b for different values of kni. Moreover, as the initial

nonnal stiffuess increases (Figure 6.15b), the effect of the maximum closure becomes

negligible.

In conclusion of ail these sensitivity analyses, it appears that sorne parameters have more

influence on the model and should he detennined more carefully. These parameters are

the peak and residual displacements (up, ur), the residual ta peak strength ratio (Bo), the

initial angle of asperities (io), the friction angle of the joint (<<Pu) and the transitional stress

( <1T) that detennines the stress ratio.
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6.2 EXAMPLES OF APPLICATION

To illustrate how one can use the tools that were developed to evaluate the possibility of a

violent slip along a fault near a mine opening, a few fictitious cases are presented here.

6.2.1 Mine stope .pproachiag a fault

Figure 6.16 shows a lypical cut..and-fill stope mined in severa! steps that cornes in the

vicinity of a major geological discontinuity. For this hypothetical case, the far field or in

situ stresses are:

Horizontal stress: Gh = 60 MPa

Vertical stress: G y =25 MPa

These bring a ratio of horizontal over vertical stress of 2.4, a situation that cao he

encountered in a few Canadiao underground mines. The elastic properties of the rock

mass are:

Elastic modulus: Em = 50 GPa

Poisson's ratio: v = 0.30

The characteristics of the fault used in this analysis are given in Table 6.3.

al .d· thfth fi 1e . : aractenstlcs 0 e au t use m e an IYSIS

Up Ur Bo GT 10 tu 4to So kni Vm
(mm) (mm) (MPa) CO) CO) CO) (MPa) (MPa/mm) (mm)

1 20 0.75 50 4 30 50 9.1 1000 10

Tabl 63 Ch

•
The analyses performed at each step shows that at step 5, failure occurs on the fault on the

right side of the stope (Figure 6.17). Figure 6.18 shows the major and minor principal
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stress induced by the stope. As we can see on Figure 6.17, failure occW'S on the length of

5 meters (element 47-48).

To evaluate if the failure will he stable or violen~ a stiffuess comparison must he made.

Figure 6.19 shows the shear behavior of element 47 and 48 at each load step of the fmal

stage of mining. We can then calculate the maximum slope (in absolute values) of each

element after the peak displacement is reached. Multiplying the siope by the element

length brings the post.peak shear stiffness of the failed element. These values are

compiled in Table 6.4.

Table 6.4: Post-peak shear stiffuess k'D of the failed elements (in MPa)

1 -~:4 [ -1::12 1

To obtain the shear stiffness of the surrounding rock mass kc, the method is to replace the

failed elements by fictitious shear stresses (O's) and to compute the displacement along

these elements. The slope of the graph of Gs*L (shear stress times the length of failed

elements) versus the shear displacement (at mid-distance of the failed zone) is plotted.

Figure 6.20 shows the results of this process. The value of the slope obtained is -15243

MPa.

Ta evaluate if there is a risk of violent failure, we can then calculate the Bursting

Patential Ratio for joints (BPRj) given by:

BPR. = k~ =14512 =0.95
J ke 15243
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This indicates that the failure would he graduaI in this case since the value of BPRj is

lower than unity. However, since the value obtained is very close to 1.0, it might he

judicious (in a real situation) to perfonn more parametric analyses to evaluate if

variability in the fault parameter's values would induce a violent failure.

As it was described in Chapter 5, another method that was investigated to evaluate the

fault-slip rockburst potential was tbrough the Out-of-Balance Index (OB1). The same

case was analyzed to evaluate this OBI. Figure 6.21 shows the values obtained at the last

mining stage. As we cao see, there are two elements on the right side that have a positive

value of OBI (meaning that the peak strength was exceeded). Figure 6.22 shows the

progression of the OBI value for elements 47 and 48 after each mining stage. The largest

value obtained is 0.31 for element 47. However, at this poin~ it is impossible to give

values of OBI that would indicate a fault-slip rockburst potential.

6.2.2 Mine opening intenecting a fault

Figure 6.23 shows a mine opening intersected by a major geological discontinuity. For

this hypothetical case, the far field or in situ stresses are:

Horizontal stress: O'h = 60 MPa

Vertical stress: O'v = 25 MPa

The elastic properties of the rock mass are:

Elastic modulus: Em = 50 GPa

Poisson's ratio: v = 0.30

The characteristics of the fault used in this analysis are given in Table 6.5 .
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d' th al't'sti fth fi ule . : arac en cso e a tuse m e an lYSlS
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0.5 20 0.75 60 4 30 50 9.1 1000 10

Tabl 65 Ch

This case is analyzed in ooly one mining step since the opening is perpendicular to the

discontinuity. Figure 6.24 shows the results of the analysis. There is failure on the right

side fauft on a length of 1.8 m. Figure 6.25 shows the behavior of the failed fault element

at each loading $lep. As we can see on this figure~ this situation is not of an increasing

shear stress that leads to faHure but rather a relaxing process. When the opening is

created, the stresses on the fault start from the in situ stress field to a situation where the

shear stress is less than before. The fact is that the normal stress is reduced considerably

when the opening is created~ which in tums leads to a failure (as the peak strength is

lowered). From this graph~ we cao also evaluate the post-peak shear stiffness of the failed

portion. Multiplying the slope by length of the failed elemen~ we get:

k' = -1671 MPap

The shear stiffness of the surrounding rock mass is given by replacing the failed portion

by fictitious shear stresses and by plotting the graph of G s*L (shear stress times the length

of failed elements) versus the shear displacement. Figure 6.26 shows the graph obtained.

The value oflee is then -9190 MPa

Then, the Bursting Potential Ratio for joint is given by:

BPR
j
= k~ = 1671 =0.18

kc 9190

•
This value indicates that the failure would he graduaI.
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The OBI was also evaluated for this case. Figure 6.27 shows the OBI values obtained

aIong the fault. The OBI value obtained for the portion that failed is 0.22. Here again, it

is impossible to give values ofOBI that would indicate a fault-slip rockburst potential.

6.3 CASE STUDY

To illustrate furthermore how the developed tools can he used in actual mine situation, a

case study that was performed by Fotoohi (1993) is re-analyzed here with the proposed

model. Figure 6.28 shows the situation of mining stopes approaching 2 faults (plan

view). First, stope A is mined, then 8 and 50 on. The stopes are relatively high

compared with their plan dimensions so the case was analYzed in plan view. To analyzed

this case, Fotoohi (1993) bas used these parameters:

•

North-South horizontal stress:

East-West horizontal stress:

Rock mass elastic modulus:

Poisson's ratio:

For the faults, these parameters were used:

kni: 13000 MPa/m

Vm 9mm

up 9mm

4»u 330

O'T = (Je: 160 MPa

39MPa

52MPa

67GPa

0.28
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The other parameters were not determined since they are not used with the Barton-Bandis

mode!. Hence, they are estimated here:

Ba = 0.75

Sa = 9 MPa

«Po = 60°

ur =90mm

Îo = 50

Figure 6.29 shows the major and minor principal stress after the last stage. These stresses

compare fairly well with the results obtained by Fotoohi (1993). However, there are

major differences in the displacement results. Fotoohi (1993) recalls obtaining shear

displacement of more than 108 mm on the fault nearest to the stopes. In this analysis,

results show a maximum of 4.5 mm on the same fault. This analysis also shows no signs

offailure since the displacements obtained are below the peak displacement of9 mm. To

insure that no mistake was done in the analysis, another analysis was perfonned using

Barton-Bandis model and using the data rePOrted by Fotoohi (1993). The results of this

analysis showed no failure and a maximum shear displacement on the fault of 2.6 mm. In

addition, when analyzing the results reported by Fotoohi (1993), these results showed on

an element a shear stress of 16 MPa for a nonnal stress of 47 MP~ leading to a friction

angle of 200 while the residual friction angle was 33°. It is then in the author's opinion

that sorne mistake May have occurred while preparing the data file that May have led to

these results.

Since no failure occurs for the data used, there are evidently no fault-slip rockburst

potential in this case (for the data used). The OBI values were also calculated and the

results for the Most critical element are presented in Figure 6.30. Figure 6.31 shows the
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OBI values along the faults for the last mining stage. These results show that there is no

[ault-slip rockburst potential since the OBI values are negative.
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Figure 6.1: Influence of Donnai stress (crn) on the shear stress - shear displacement curve
of the proposed model.
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Figure 6.2: Influence of peak displacement (up) on the shear stress - shear displacement

curve of the proposed model.
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Figure 6.4: Influence ofresidual to peak strength ratio (Bo) on the shear stress - shear

displacement curve of the proposed model.
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Figure 6.6: Influence of initial angle ofasperities (io) on the shear stress - shear

displacement curve of the proposed model.
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Figure 6.8: Influence of the rock walls cohesion (So; using a Mohr·Coulomb criterion) on
the shear stress· shear displacement curve of the proposed model.•
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Figure 6.9: Influence of rock walls friction angle (epo; using a Mohr-Coulomb criterion) on
the shear stress - shear displacement curve of the proposed model.
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Figure 6.11: Influence ofresidual displacement (ur) on the normal displacement - shear
displacement curve of the proposed model.
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displacement curve of the proposed Madel.
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- shear displacement curve ofthe proposed model (kni = 25 MPa/mm).
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Figure 6.16: Cut-and-fill stope approaching a major geological discontinuity.
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Figure 6.17: Results from the analysis for Case 6.2.1. Grey area on the fault indicate

failure.
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Figure 6.18b: Minor principal stress (0'3) obtained with SATURN.
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Figure 6.23: Opening intersecting a major geological discontinuity.

Figure 6.24: Results from the analysis for Case 6.2.2. Grey area on the fault indicate
failure.
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Figure 6.27: OBI values along the fault.

Figure 6.28: Stopes mined in sequence near faults in plan view (after Fotoohi, 1993).
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Figure 6.29a: Major principal stress (0'1) after stope 0 has been mined.
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Figure 6.29b: Minor principal stress (al) after stope 0 bas been mined.
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CHAPTER7

DISCUSSION

In the preceding chapters of this thesis, it was shown how certain tools could he used to

evaluate the rockburst potential when geological discontinuities are involved. In this

chapter, some aspects of the proposed methodology and of the tools developed are further

discussed.

7.1 CONSTITUTIVE MODEL FOR ROCK JOINTS

As it was mentioned before, existing constitutive model for rock joints are not always

adequate in the modeling of the post-peak hehavior of rock joints. Even models like the

one proposed by Saeb and Amadei (1989, 1990, 1992), although very representative in

constant normal stifihess (CNS) tests, does not follow closely the real behavior of the

joint in constant nonnal stress (CNL) tests where a stress drop can he observed. CNL

situations are of panicuJar interest when investigating rockburst situation since this May

lead to a violent failure along a discontinuity generated by the energy Iiberated by the

stress drop. The proposed constitutive model, as it was shown, can follow, in a very close

way, the stress drop behavior of tests under CNL conditions. The correlation factor

obtained for several curves (R2 = 0.90) proves that this new model can he very

representative of the shear stress-shear displacement behavior of rock joints. This model

relies on four parameters: the peak and residual strength ('tp, 'tr) and the peak and residual

displacement (up, Ur). This model can he related to two different phenomena occurring in

a shear test: shearing ofasperities and friction. Ifwe start from Equation (S.30):

or = or, +[d-or,]ex{- ~: )-dexP(-eu)
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Rearranging this equation leads tO:

(7.1)

or

with

F. = T, [l-ex{-~:)]

F2 = d[ex{-~:)-exp(- eu)]

(7.2)

(7.3)

•

Figure 7.1 shows how these functions vary with shear displacement. Fonction fI can he

seen as the friction component while F2 represents the shearing of asperities. At small

shear displacement, the deformation of asperities plays a major role in the rnobilization of

shear resistance while stiding along surfaces (Le. friction) is minimal. As sorne asperities

are being sheared off: the friction along surfaces increases (replacing in part the

deformation of asperities). When most asperities have heen sheared off (which seems to

occur just before peak displacement), the shearing component decreases rapidlyand the

friction component represents the larger part of shear resistance. Finally, when all

asperities have been sheared off (when residual displacement is attained), only friction is

accountable for the shear resistance. Then, FI and F2 cao he regarded as being statistical

functions describing the transfonnation of shear resistance of asperities into friction along

sheared surfaces.

A constitutive model was also proposed for the dilatant behavior of joint (v-u). This

model was mostly inspired by the equations proposed in the Saeb-Amadei modeI. Both

models have two points in common, the beginning of the curve (u=O) and the residual
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value (u=ur). In the Saeb-Amadei model, the behavior between these two points is linear

while the proposed model follows an exponential shape. Here again, the proposed model

relies on physical basis to explain the dilatancy corvee At the stan of the shearing

process, aIl asperities are intact. Thus, this should lead to a maximum dilatancy rate

(dv/du) in the beginning of the process (Figure 7.2). Then, as some asperities are being

sheared, the dilatancy rate slows down and becomes zero when ail asperities have been

sheared (at u=ur). The proposed model reflects this phenomenoD.

Although very promising, the proposed constitutive model has aIso some tlaws and

limitations. The frrst problem with the proposed model is that at least a few direct shear

tests must be performed to obtain aIl the parameters. It is no secret that very few mines

(if none) investigate the mechanical behavior of their discontinuity in laboratory. The

biggest advantage of the Barton-Bandis model is that the fault characteristics cao he

approximated through very simple tests and observations that cao he performed on site at

very low eosts.

Sinee the proposed model (al least for the shear stress - shear displaeement hehavior) cao

be detennined strietly from four parameters ('tp, 'tr, UP' Ur), any strength eriterion could he

used. The reason behind the ehoice of the Ladanyi-Archambault strength criterion is that

it relies on parameters that are aIso used in the dilatancy fonnulation.

Also, as can he seen on Figure 6.3, when the peak and residual displaeements values (up,

ur) are close to one another (ur ~ 3 up), the model no longer goes through the peak

strength ('tp) at up when the stress drop is large. However, from the test results compiled

in this thesis, it appears that Ur is usually larger than 8 times up •
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The proposed model bas proven its efficiency in describing tests onder constant nonnal

load. However, in situation of tests under constant nonnal stiffness (see Figure 5.25 for

instance), the model presents sometimes a stress drop after the peak displacement that is

not always corroborated by the data.

The principal limitations of the proposed model are:

• it is a 2D model; rock joints and faults are planes ofweakness which means that they

are 3D structwes. Several studies (e.g. Huang and Doong, 1990; Jing et al., 1992,

1994) have shown that rock joints usually present some degree ofanisotropy;

- it has heen develop for monotonous loading; rock joints and faults in a rock mass are

already loaded before oearby openings will he created. It is not clear if the model

can accurately ref1ect the hehavior ofjoints onder these conditions;

- the model does not account for directional shearing; experimentation (e.g., Jing et

al., 1994) have shown that rock joints do oot always show the same hehavior when

tested back and forth along the same axis. This phenomenon is caused by the fact

that asperities are usually not symmetric and thus, the average initial angle of

asperities might not he the same in the x+ than in the Je direction;

- peak and residual displacement (up, ur) are considered as material constant. As it

can be observed in severa! direct shear test series (see Figure A2a and ASa for

example)~ these parameters are not a1ways constant for a given joint. However, like

with any other rocklike material, one will often fmd sorne variability in mechanical

pararneters. This is the reason why good engineering practice will always

recommend to perform sorne parametric analyses. The same reasoning applies here;

• the model is ooly va1id for an ~ O'T; when the nonnal stress becomes larger than the

rock strength, rock failure will occur and the model is no longer valid as another

type of behavior will occur;
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- scale effects; another aspect that was not addressed in this research is the scale effect

on discontinuity behavior and how the proposed model could he adapted ta take into

account such situations. For the momen~ it is presumed that the parameters entered

in the model reflect the behavior ofthe discontinuity al the scale of the problem.

The purametric analyses showed that sorne parameters of the model have more impact on

the behavior of the joinL In regards of the rockburst potential~ the most imponant

parameters are of course the peak and residual displacements (up, Ur) and the residual to

peak strength ratio (Ba). The displacements parameters affect the length (of

displacement) along which the stress drop will occur while the strength ratio affects the

value of the stress drop. Hence, a smaller value of Bo and/or of the displacement ratio

(defined here as the residual over the peak displacement u,lup) increases the value of the

post-peak shear stiffness of the joint. This in tum increases the fault-slip rockburst

potential.

7.2 THE SATURN PROGRAM

The proposed constitutive model has been implemented successfully into SATORN a

boundary element code that uses both the fictitious stress method and the displacement

discontinuity method. Severa! reproductions of direct shear tests under either constant

nonnal load or constant nonnal stiffitess have shown that the implementation is adequate.

However, SATORN has al the moment several limitations. First of ail, it is a 2D program

and 2D analyses are not always appropriate to evaluate actual complex mine situations.

Moreover, although SATURN can model different rock mass materials, it would he

extremely difficult ta a non-familiar user to model more than one material. Ta do so, the

user must adapt the data file "manually" as no options allows this in the DRAW module.
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Also, in SATURN, the rock mass is considered to present a linear elastic behavior.

Although this assumption is usually considered as adequate for hard rock mining, it is not

always appropriate for certain categories of rock masses.

But the most important limitation of SATURN at the moment is that it nms only in DOS

mode. With the implementation of the new model, the program size bas increased

dramatically. This poses a problem because the live memory in DOS mode is very

limited. In fact, at the moment, only 15 fault elements can be modeled when using the

new fault model. This limits the complexity of problems that can he analyzed and the

accuracy of the results.

If the goal of any research on the rockburst problem is to provide mine engineers with

useful tools and techniques in the alleviation of rockburst hazards, then these aspects

should be addressed in the near future.

7.3 EVALUATION OF ROCKBURST POTENTIAL

Gill and Aubertin (1988) developed a methodology to evaluate the rockburst potential of

existing and future underground excavations. Until now, this methodology was of limited

interest for rockburst involving a slip along a geological discontinuity because it was

impossible to evaluate if the slip would he violent or graduai. The constitutive model and

the lools associated allow to complete this methodology, as shawn in Figure 7.3.

The process ta obtain the different stiffness was described in Chapter 5 and examples of

applications were presented in Chapter 6. It should be noted however, that the cases

presented are hypothetical. While performing these analyses, no parametric studies where
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perfonned. Nonetheless, in real analyses of rockburst, these parametric studies should he

perfonned to evaluate the influence of the fault characteristics on the rockburst potential.

These analyses were not perfonned here since the cases were presented only to illustrate

the methodology.

Furthennore, before one can consider the methodology validated, back-analyses of actual

rockbursts situations involving fault-slip must he performed. However, these back­

analyses could he difficult to acbieve because of extremely limited data of fault

characteristics in actual mines or to the complexity of the geology at band.

Nevertheless, a methodology to evaluate a priori if there is a risk of fault-slip

rockbursting is now available to mine engineers. Still, as it was mentioned in the

preceding section, the tools necessary to evaluate this type of rockburst potential is not at

the moment reatly accessible to mine engineers as SATURN is not a software often used

in Canadian underground mines. Nonetheless, the work perfonned in this research could

lead ta a more user-friendly version of SATURN or to the implementation of the

proposed model into existing commercial codes.

The Out-of Balance Index (OBI) is another tool that was also developed for the

evaluation of rockburst potential involving discontinuities. The OBI is a very simple tool

that can he easily implemented in any type of numerical modeling code with a minimum

effort. It was shown that the OBI values show a great increase when failure is near. At

this moment, it is not possible to give boundary values to state what is a critical value for

this index. To get these values, case studies should he perfonned. However, although it

is a simple tool, the OBI index could in the future prove to he very useful in the

evaluation of rockburst potential.
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Finally, it should he noted that a violent failure on a fault will produce a seismic event but

not necessarily a rockburst. A rockburst was defined in Coopter 2 as being a seismic

event that produce damages in mine openings. It is nonetheless conservative to conclude

on a rockburst potential if it is evaluated that there is a possibility of violent failure.

Damages in opening will depend on severa! factors like the energy generated by the

failure, the distance from the opening, the stress state around the opening and the strength

ofÙle rock mass.
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CONCLUSIONS

8.1 SUMMARV AND CONCLUSIONS

For more than a century, rockbursts have been a problem for many underground mines.

As deeper orebodies are mined with higher extraction ratio, mining engjneers will MOst

probably have to deal with this problem more often. Moreover, mines in Canada are most

likely to operate at greater depth in the near future. Due to the "unpredictability" and the

recurrence nature of the phenomenon, rockbursts might just he the biggest challenge

facing rock mechanics engineers in hard rock mines.

Although rockbursts do not occur in the majority of Québec underground mines, it is a

problem that presents a high risk of fatalities in mines where the problem exists. In that

regard, sorne efforts have heen initiated over the last decade to provide tools to help rock

mechanics engineers to assess the rockburst potential of their openings. On that matter,

Gill and Aubertin (1988; see also Aubertin et al., 1992; Gill et al., 1993; Simon et al.,

1998) proposed a methodology that makes use of standard rock mechanics lools, which

attempts to evaluate rockburst potential of rock structures. This methodology, called the

ERP method, is based on the stiffitess comparison between the failed rock and the

surrounding rock mass, as was proposed initially by Cook (1965b). However, this

comparison could ooly he established for instabilities involving the fracturing of the rock

mass. To make this comparison possible for instabilities involving slip on pre-existing

disconlinuities (the second type of rockbursts) severa! tools were developed and a

methodology was proposed.
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First, a new constitutive model for rock joints was developed. This new model allows to

follow the post-peak shear behavior of rock joint in a relatively close manner. This

model relies on four basic parameters such as the peak and residual strength, and the peak

and residual displacement. To evaluate the peak strength, it was proposed to use the

well-known Ladanyi-Archambault criterion as modified by Saeb (1990). Compared with

test results from literature, the model showed a correlation factor R2 of 0.90. A new

fonnulation for the dilatancy behavior of joint was also proposed based on the

formulation that was developed by Saeb and Amadei (1992). Parametric analyses were

performed on the model which showed that the most intluential parameters (in relation

with the post-peak shear stiffness) were the peak and residual displacement and the

residuai to peak strength ratio.

The new model was implemented into a boundary element code called SATURN, which

was originally developed by Fotoohi (1993). Verifications were made and showed that

SATURN could reproduce direct shear tests and foUow adequately the behavior of the

proposed model.

A methodology was then elaborated to evaluate the post-peak shear stiffness of failed

segment on a fault and the shear stiffness of the surrounding rock masse Similarly to

strainbursts piIIar bursts, an index was proposed, called the Bursting Potential Ratio for

joints BPRj , to compare these stiffnesses. The BPRj index was defmed as the post-peak

shear stiffness of the failed segment over the shear stiffness of the surrounding rock masse

If the BPRj index is larger than unity, this indicates a potential of fault-slip.

Examples of application of the methodology and of the developed tools were given to

better illustrate how to use them. Detailed fictitious and real cases were presented.

201



•

•

Chapter 8 Conclusions

Concurrently, another approach on the evaluation of rockburst led to the development of

another index called the Out-of-Balance Index. This index represents the ratio of the

exceeding stress over the strength. It is postulated that the larger this value is, the larger

the rockburst potential. This index was also implemented into SATURN. The same

cases were analyzed and showed some correlation with the stiffitess comparison

approach.

8.2 RECOMMENDATIONS FOR FURTRER RESEARCH

The research work presented in this thesis cao he further extended in the following

directions:

1- Transformation of SATURN ioto a WINDOWS based software. This would allow to

make use of the full computer memory available and the analyses of cases requiring a

larger number of elements. The proposed model could also he implemented in more

popular numerical modeling codes like MAP3D or PHASE2
• These commercial

softwares are used more frequently in the mining industIy than SATURN.

2- Development of a non-linear approach for the rock mass in SATURN ta take into

account rock masses that present this type of behavior.

3- Investigation on the scale effects on the proposed Madel. This would allow a better

representation of the parameters used in analyses ofactual mine openings.

4- Development of fonnulation of the model for other peak strength criteria such as the

well-known Barton-Bandis modeL
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5- Development ofa 3D formulation for the model.

6- Validation of the approach developed through back-analyses of actual rockburst cases

involving fault-slip.

7- Uses of the new model to predict the post-peak behavior of intact rock in uniaxial

compression tests. The failure plane of the sample could then he modeled as a rock

joint and its post-peak behavior analyzed consequently. This would allow an

estimation of the post-peak modulus when its detennination in laboratory is

impossible.
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STATEMENT OF CONTRIBUTION

A method to evaluate the rockburst potential of situations involving a possible slip along

major geological discontinuities was developed. This method is based on the comparison

of the post-peak shear stiffiless of the fault with the shear stifthess of the surrounding

rock masse To evaluate the post-peak shear stiffness of a discontinuity, a new non-lïnear

constitutive model for rock joint was developed. This model is based on two exponential

formulations expressing the two phenomena taking part in the shearing process: friction

resistance along surfaces and shearing of asperities. The model was then implemented in

an existing boundary element code to evaluate the interaction between underground

openings and nearby geological discontinuities. Verification of the implementation was

done by reproducing direct shear tests on a discontinuity. Methods to obtain the different

stiffnesses involved in the violent slip process were developed. Examples of applications

were given to illustrate the proposed methodology. In addition, an alternative method to

evaluate the fault-slip rockburst potential was developed. This new method relies on a

linear analysis and the calculation ofa new index called the Out-of-Balance Index or OBI.

These methods will allow mine engineers to perform an evaluation of the risk of having a

fault-slip rockburst near existing underground excavations and for future ones.
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APPENDIXA

TEST RESULTS ON JOINTS

As it was rnentioned in Chapter 5, severa! test results on rock joints (or similar materiaIs)

were compiled to validate the proposed model. These test results were taken from

literature and included direct shear tests under constant nonnaI stress. These tests are

presented in the following figures. In these figures, the test data are represented by

symbols, the Saeb-Amadei model is represented by a straight Hne and the proposed model

is represented by a dashed line. Finally, a correlation table for bath models is presented at

the end.

TEST RESULTS FROM LEfCHNITZ Cl98S)

Materia!: ArtificiaI fracture on a sandstone rock split by brazilian test

Figure: Al

Model parameters:

io Up Ur Vm kni Bo cPo So cPu O'T
0 mm mm mm MPaimm 0 MPa 0 MPa

Il 0.4 20 10 1000 0.53 40 2.8 40 15

TEST RESULTS FROM FLAMAND ET AL.119941

Material: Rock joint replica ofcement mortar

Figure: Al

Model pararneters:

io Up Ur Vm kni Bo cPo SO 'U O'T
0 mm mm mm MPaimm 0 MPa 0 MPa

12 0.55 4 10 1000 0.55 40 23 40 100
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Appendix A: Test results on joints

TEST RESULTS FROM SKiNAS ET AL. (1990)

Materia!: Anificial joint replica ofsand-barytes cement mixture

Figure: A3

Model parameters:

io Up Ur V m kni Bo ~o So fu GT
0 mm mm mm MPa/mm 0 MPa 0 MPa

3 1.2 20 0.1 100 0.74 40 4 38 20

TEST RESULTS FROM BERTRAND (1989)

Materia!: Artificial joint replica of limestone

Figure: A4

Model parameters:

la Up Ur Vm k ni Bo <-0 So -Pu OT
0 mm mm MPa/mm 0 MPa 0 MPamm

18 0.375 2.5 2 9.8 0.32 40 7 38 12

TEST RESULTS FROM BANOIS ET AL. (1981)

Material: Artificia! rock joint replica of plaster

Figure: AS

Model parameters:

io Up Ur Vm kni Bo -Po So .u OT
0 mm MPa/mm 0 MPa 0 MPamm mm

5.5 1 4 2 10 0.75 40 1.4 30 2
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Aependiz A: Test resu/ts onjoints

TEST RESULTS FROM SCHNEIDER (1976>

Material: Artificial plaster joint replica of smooth granite

Figure: A6

Model parameters:

io Up Ur Vm kni Bo +0 So +u GT
0 mm mm mm MPalmm 0 MPa 0 MPa

4 5 55 2 10 0.88 46 1.1 28 5

Material: Artificial plaster joint replica of rough and indented granite joint

Figure: A7

Model pararneters:

10 Up Ur Vm kni Bo +0 So +u GT
0 mm mm mm MPalmm 0 MPa 0 MPa

7 2 30 2 1000 0.74 38 1.2 38 5

Material: Artificial plaster joint replica of rough sandstone with large asperities

Figure: A8

Model parameters:

io Up Ur Vm kni Bo +0 So +u GT
0 mm mm mm MPa/mm 0 MPa 0 MPa

7 5 50 2 100 0.65 38 1.5 40 5
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Figure A 1a: Shear stress ·shear displacement curve for direct shear tests under different
normal constant stresses (data from Leichni~ 1985).
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Figure AI b: Normal displacement -shear displacement curve for direct shear tests under
different normal constant stresses (data from Leichni~ 1985).
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Figure A2a: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Flamand et al.~ 1994).
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Figure A2b: Normal displacement -shear displacement curve for direct shear tests under
different normal constant stresses (data from Flamand et al.~ 1994).
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Figure A3a: Shear stress -shear displacement curve for direct shear tests under different
nonnal constant stresses (data from Skinas et al., 1990).
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Figure A3b: Nonnal displacement -shear displacement curve for direct shear test under
Donnai constant stress (data from Skinas et al., 1990).
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Figure A4a: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Benrand, 1989).
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Figure A4b: Normal displacement -shear displacement curve for direct shear tests under
different normal constant stresses (data from Bertrand, 1989).

240



• Appendix Â: Test results on ioints

0.1. r-------------------------------,

3.5

• ID ...

• 3D .....
• '0 .....

; ........

2 2-5 3

S....r ll'.p1KllMnt (.....,

15

. ----....•........._.........•.........

.'

0.5

! •.

0..-----------------------------.......o

012

0.02

01

l
~ 0.08

i•
=ooe
1
."

Figure A5a: Shear stress -shear displacement curve for direct shear tests onder different
nonnal constant stresses (data from Bandis et aI.~ 1981).
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Figure A5b: Nonnal displacement -shear displacement curve for direct shear test under
nonnaI constant stress (data from Bandis et al., 1981).
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Figure A6a: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Schneider, 1976),
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Figure A7a: Shear stress -shear displacement curve for direct shear tests under different
nonnal constant stresses (data from Schneider, 1976).
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Figure A7b: Nonnal displacement -shear displacement curve for direct shear test under
Donnai constant stress (data from Schneider, 1976).
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Figure A8a: Shear stress -shear displacement curve for direct shear tests under different
Donnai constant stresses (data from Schneider, 1976).
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Figure A8b: NonnaI displacement -shear displacement curve for direct shear test under
DonnaI constant stress (data from Schneider, 1976).
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• Appenda Â: Test ,esuJts on joints

mo e or s ear stress - s ear 151'1 acement curves
Correlation factor R"

Figure Nonna! stress Saeb-Amadei Proposed model
(MPa)

Al 5.38 0.939 0.990
1.8 0.926 0.975

0.36 0.880 0.977
Mean value 0.915 0.981

A2 7 0.529 0.942
14 0.837 0.932
21 0.934 0.893

MeaD value 0.767 0.922
A3 5 0.931 0.861

2 0.833 0.944
1 0.191 0.610

Mean value 0.652 0.805
A4 1.035 0.546 0.901

1.035 0.192 0.430
3.103 0.904 0.968

6.2 0.719 0.985
MeaD value 0.590 0.821

AS 0.09 0.911 0.944
0.03 0.889 0.978
0.01 0.861 0.974

MeaD value 0.887 0.965
A6 1.64 0.514 0.925

1.28 0.731 0.984
0.61 0.797 0.977
0.33 0.634 0.965

Mean value 0.669 0.963
A7 1.77 0.932 0.789

1.38 0.665 0.985
0.69 0.914 0.978
0.34 0.965 0.724

MeaD value 0.869 0.869
A8 1.29 0.532 0.929

0.93 0.383 0.829
0.32 0.855 0.903

MeaD value 0.590 0.887
AIl curves MeaD value 0.739 0.900

Table AI: Comparison of correlation factors between the Saeb-Amadei and the proposed
d 1 fi h h d· 1
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