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ABSTRACT

Rockbursts may cause damages to underground openings and to equipment, and
constitute a major hazard to the safety of mine workers. One method that can be used to
evaluate if there is a rockburst potential is to compare the stiffness of the failed rock with
that of the surrounding rock mass. This method has been applied successfully in the past

to rockbursts involving fracturing of the rock mass.

This thesis deals with the development of a similar approach for rockbursts involving a
violent slip along major geological discontinuities. To evaluate the post-peak shear
stiffness of a discontinuity, a new non-linear constitutive model for rock joint was
developed. This model is based on two exponential formulations expressing the two
phenomena taking part in the shearing process: friction resistance along surfaces and
shearing of asperities. Compared with test results, the model showed a correlation factor
(R?) of 0.90. The model was then implemented in an existing boundary element code to
evaluate the interaction between underground openings and nearby geological
discontinuities. Verification of the implementation was done by reproducing direct shear
tests on a discontinuity. Parametric analyses were performed on the new model that
highlighted the most important parameters. Methods to obtain the different stiffnesses
involved in the violent slip process were developed. Examples of applications were given

to illustrate the proposed methods.

Finally, an alternative method to evaluate the fault-slip rockburst potential was
developed. This new method relies on a linear analysis and the calculation of a new

index called the Out-of-Balance Index or OBI. The OBI showed some agreement with
the stiffness approach.
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RESUME

Les coups de terrain causent des dommages aux excavations souterraines et aux
équipements, en plus de représenter une grave menace pour la sécurité des travailleurs.
Une méthode pouvant étre utilisée pour évaluer s'il existe un potentiel de coups de terrain
est de comparer la rigidité post-pic du massif instable avec celle du massif rocheux autour
de l'instabilité. Par le passé, cette approche a été utilisée avec succés pour des coups de

terrain impliquant la rupture du massif rocheux.

Cette thése traite du développement d'une approche similaire pour les coups de terrain
impliquant un glissement violent le long d'une discontinuité géologique. Pour évaluer la
rigidité post-pic d'une discontinuité, un nouveau modéle constitutif non-linéaire pour les
discontinuités structurales a été développé. Ce modéle repose sur deux formulations
exponentielles représentant les deux processus agissant lors du cisaillement: la résistance
en friction et le cisaillement des aspérités. Comparé a plusieurs essais de laboratoire, le
modéle proposé a montré un facteur de corrélation (R?) de 0.90. Le nouveau modéle a
ensuite été intégré dans un code d'éléments frontiéres existant afin d'évaluer l'interaction
entre des excavations souterraines prés de discontinuités géologiques. Une vérification
de l'intégration a été effectuée en reproduisant des essais de cisaillement direct sur des
discontinuités. Des analyses paramétriques ont ensuite été réalisées a l'aide du modéle, ce
qui a permis d'identifier les paramétres les plus importants. Des méthodes pour obtenir
les différentes rigidités impliquées a l'aide des outils créés ont été détaillées. Des

exemples d'application ont permis d'illustrer l'utilisation des méthodes proposées.

Finalement, une autre méthode pour évaluer le potentiel de glissements violents le long
de discontinuités a également été développée. Cette nouvelle approche est basée sur

l'utilisation d'un nouvel index appelé OBI (pour "Out-of-Balance Index") lors d'une
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analyse linéaire. Cette approche a mené a des résultats concordant avec I'approche basée

sur la comparaison des rigidités.
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CHAPTER 1
INTRODUCTION

The rockburst problem in underground mines has been around since the beginning of the
century. As technology allows for the exploitation of deeper orebodies mined with higher
extraction ratios, the mining engineer will most probably have to deal with this problem
more often. Moreover, mines in Canada are most likely to operate at greater depth in the
near future. Due to the "unpredictability” and the recurrence nature of the phenomenon,
rockbursts might just be the biggest challenge facing rock mechanics engineers in hard

rock mines.

Although rockbursts can occur in every types of rock and at any depth (Blake, 1972), they
constitute a problem mainly for deep underground hard rock mines where the extraction

ratio is large (Blake, 1984).

The first reports about rockbursts seem to have emerged from the Kolar Gold Field in
India at the end of the 19™ century, when the mining depth was still below 500 m
(Morrison, 1942; Blake, 1972). A few years later, the problem appeared in the
Witwatersrand mines in South Africa (Cook et al.,, 1966). Russia and other East
European countries also had to deal with the problem (Petukhov, 1987, 1990), and so did
China (Tan, 1986; Mei and Lu, 1987a, 1987b).

In the United States, the first rockburst seems to have occurred in 1904 at the Atlantic
mine in the copper district in Michigan (Bolstad, 1990). In Canada, Morrison (1942)
reported that the problem existed in Ontario at the end of the 1920's, in the Kirkland Lake

region, and then, in the Sudbury region some years later. More recently, large rockbursts
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have occurred in the Elliot Lake region, Ontario, in the potash mines in Saskatchewan, in
Bathurst, New Brunswick, and at the Springhill Colliery in Nova Scotia (Hedley, 1992).

The history of rockburst in the Québec province is not well documented. However, the
problem exists (at least) since the 1960's (Gill and Aubertin, 1988). The East Malartic
mine in the NorthWest part of the province, which closed in 1979 because of serious
rockburst problems, is a good example. In recent years, several Québec mines had to face
this problem, especially in the Abitibi region (Roctest, 1980; AMMQ, 1988; Falmagne,
1991; Hediey, 1992; Mottahed, 1992; Gill et al., 1993; Plouffe et al., 1993; Harvey et al.,
1996). Table 1.1 lists mines where rockbursts have occurred in Canada.

Table 1.1: Canadian mines where rockbursts or large seismic events have occurred

Québec Ontario Rest of Canada
Agnico-Eagle Campbell Kidd Creek Brunswick Mining, NB
Mine
Ansil Copper Cliff | Lake Shore Central Canada Potash, Sask.
Camflo Creighton Levack Elk River, BC
Chimo Denison Lockerby K1 & K2 Mines, Sask.
Copper Rand Dickenson Macassa McGillivray, Al.
East-Malartic Falconbridge |Onaping Patience Lake Mine. Sask.
Lac Shortt Fraser Quirke PCS Mining Cory, Sask.
Normétal Frood-Stobie | Stobie Springhill #2, NS
Opemiska Garson Strathcona
Sigma Golden Giant | Wright-Hargreaves

Kerr Addison

With the persistence and (sometimes) growth of the problem, research efforts were made
worldwide and principally in the region touched by rockbursts. Gill and Aubertin (1988)
noted that before the 1960's, the approaches used were mostly empirical or

phenomenological. Canada was amongst the pioneers in this field with the work of
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Morrison (1942, 1976), of Hodgson and Jouhgin (1967) and of Coates and Dickout
(1970).

However, it is the analytical studies from South Africa that set the pace on subsequent
rockburst research. The post-failure studies on rocks, and the energy approach in the
unstable equilibrium analysis (Cook, 1965a; Diest, 1965; Cook et al., 1966; Salamon
1970, 1974) are important notions still used in present research works.

Many countries are presently working on this problem. Canada in particular has put a lot
of effort over the last few years to better comprehend the problem (Roctest, 1980; Hedley
et al., 1984, 1985; Whiteway, 1985; Udd and Hedley, 1985; Singh, 1986, 1987, 1989;
Musial, 1987; Scoble et al., 1987; Gill and Aubertin, 1988; Mitri et al., 1988, 1993;
Hedley, 1991, 1992; Gill et al., 1993; Kaiser, 1993; Chen et al., 1995; Vasak and Kaiser,
1995; Kaiser et al., 1996; Simon et al., 1998).

Although rockbursts do not occur in the majority of Québec underground mines, it is a
problem that presents a high risk of fatalities in mines where the problem exists. Even if
research in this field has not been a major priority in Québec, as it has been in South
Africa or even in Ontario, some efforts have been initiated over the last decade (e.g., Gill
et Aubertin, 1988; Mitri et al., 1988, 1993; McCreary et al., 1993; Plouffe et al., 1993a.b;
Mitri, 1996a; Aubertin et al., 1997; Simon et al.,, 1998) to provide tools to help rock

mechanics engineers to assess the rockburst potential of their openings.

On that matter, Gill and Aubertin (1988; see also Aubertin et al., 1992; Gill et al., 1993;
Simon et al., 1998) proposed a methodology that makes use of standard rock mechanics
tools, which attempts to evaluate rockburst potential of rock structures. This
methodology, called the ERP method, is based on the stiffness comparison between the

3
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failed rock and the surrounding rock mass, as was proposed initially by Cook (1965b).
However, this comparison could only be established for instabilities involving the
fracturing of the rock mass. Thus it was not possible to distinguish between gradual and
violent failure for instabilities involving slip on pre-existing discontinuities (the second
type of rockbursts). This research project focuses on this type of rockburst and aims at
developing a method to evaluate the stiffness in question, to make comparisons possible.
This method uses numerical modeling tools such as the boundary element method (and in
particular a modified version of the software SATURN originally created by Fotoohi,
1993) and a new constitutive model for joint behavior partially based on the one proposed
by Saeb and Amadei (1989, 1990, 1992).

This brief introduction is followed by a chapter on the rockburst problem and a review of
existing methods for the evaluation of the rockburst potential. Chapter 3 presents a
literature review on the behavior of joints and describes in details Saeb and Amadei's
constitutive model. Chapter 4 reviews the foundation of the boundary element method
(BEM) for rock mechanics. Chapter 5 describes the development and implementation of
a new constitutive model for rock joint into the SATURN software. Chapter 6 presents
analyses of parametric cases and analysis of an actual mine situation. Then follow a

discussion and conclusions.



CHAPTER 2
EVALUATION OF ROCKBURST POTENTIAL

2.1 ROCKBURST PHENOMENA

Rockbursts may cause damage to underground openings and to equipment, and constitute
a major hazard to the safety of mine workers. This results in a cost increase and a loss of
productivity for the operator. Blaha (1990) reported that the production costs in coal
mines in the Ostrava-Karvina region in Poland increased by 100% when the mined area
became burst-prone. On the safety level, Salamon (1983) noted that in 1979, 62% of
fatalities in South African mines could be attributed to rockburst and rockfalls. He also
reported that even though the total number of fatalities has drastically decreased in the
last fifty years, the number of fatalities per year associated with rockbursts has not
changed. In the first half of 1996 only, there were more than 35 fatalities associated with
rockbursts in South African mines (Ryman-Lipinsky and Bakker, 1997). Rockburst is a
worldwide problem that is not expected to decrease. since the depth and size of openings

seem to keep on increasing.

This chapter starts with a definition of the rockburst phenomenon. The problem is then
classified according to the mechanism involved. Finally, existing methods for the

evaluation of rockburst potential are presented.
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2.1.1 Definition

A rockburst is generally defined as a sudden rock failure characterized by the breaking up
and expulsion of rock from its surroundings, accompanied by a violent release of energy
(Blake, 1972). Although the definition of rockburst differs from one author to another,
the common ground of these definitions is the sudden release of energy in the form of a
violent expulsion of rock (McMahon, 1988). Brown (1984) suggests that a rockburst
should be considered as a particular manifestation of seismic events that are induced by
mining activities. In fact, the sudden failure that characterizes a rockburst can be, in
itself, the source of the seismic event, or may have been triggered by a distant seismic

event or from a load transfer due to the latter (Gill and Aubertin, 1988).

The released seismic energy during a rockburst can range in magnitude from 0.5 to over
5.0 on the Richter scale (Jaeger and Cook, 1979). Usually, damages (or rockbursts) occur
when the magnitude of the seismic event is larger than 0.5 (McMahon, 1988). It is
important to note that although every rockburst is a seismic event, not all seismic events
are rockbursts. In this document, a seismic event is considered a rockburst when damage

reaches the mine openings.

The necessary conditions to produce a seismic event are (Salamon, 1983):
- A region in the rock mass must be on the brink of unstable equilibrium either because
of:
a) the presence of an appropriately loaded pre-existing geological weakness such as
a joint, fault, dyke or bedding plane; or because

b) the changing stresses are driving a volume of rock towards sudden failure; or

because



Chapter 2 Evaluation of the rockburst potential

¢) some support system approaches a state in which its unstable collapse is
imminent.

- Some induced stresses must affect the region in question and the magnitude of these
stress changes, however small, must be sufficiently large to trigger off the instability.

- Sudden stress change of sizable amplitude must take place at the locus of instability to
initiate the propagation of seismic waves.

- Substantial amount of energy must be stored in the rock around the instability to
provide the source of kinetic or seismic energy. The origin of this stored strain energy
is work done by:

a) gravitational forces and/or
b) tectonic forces and/or
¢) stresses induced by mining.
Three sources can produce these energy releases:
- the stored strain energy in the rock mass;
- the changes in the potential energy of the rock mass;

- the slip along a weakness plane.

The changes in potential energy occur during mining and a portion of this energy can be
stored in the surrounding rock mass. These changes brought by mining may trigger latent
seismic events that derive mainly from the strain energy produced by geological

differences in the state of stress (Cook, 1983).
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2.1.2 Classification of rockbursts

Rockbursts and other seismic events that may occur within rock masses influenced by
mining and other activities are associated with unstable equilibrium states that may
involve (Brown, 1984):

- slip on pre-existing discontinuities; or

- fracturing of intact rock.

This leads to the definition of two broad categories of rockbursts:
i) Fault-slip rockbursts resulting from the first unstable equilibrium state mentioned

above;
ii) Strain rockbursts (including pillar burst) resulting from the second unstable

equilibrium state mentioned above.

It is important to note that several case studies (Morrison and Coates, 1957; Ortlepp,
1984) seem to demonstrate that a non-violent failure of a portion of the rock mass can
trigger a fault-slip, and vice versa. Figure 2.1 shows the different situations that may

induce either strainbursts or fault-slip.

2.1.3 Rockburst mechanism

Rockburst is essentially a failure phenomenon, and the largest step to understand its
mechanism is to study the failure mechanism. Rockbursts can then be explained by using

classical rock mechanics principles.
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Creating a new underground opening modifies the in situ stresses in the rock mass and
induces a new stress field. Usually, the modification in the pre-mining stress field is
limited to a region known as zone of influence. Figure 2.2 shows a schematic
representation of a typical zone of influence for a drift. When the drift face advances, the
zone of influence, where the stress field has changed, moves with the drift. This zone of
influence can pass through a geological discontinuity and can provoke a violent slip along
the discontinuity (events S; and S;). In the same manner, if this zone passes through a
weak zone, a failure process can be induced (event S;) creating a new fracture in the rock
mass. Also, a portion of the rock mass can fail violently (events C, and C;), when the

opening crosses the discontinuity f-f, a dyke in the Figure 2.2.

It was proposed in the USSR by Petukhov (1957) - and later in South Africa by Cook
(1965b) and Diest (1965) - that the violent failure of a rock sample under uniaxial
compression in a low stiffness loading system represents, on a smaller scale, the dynamic
fracturation of rock during a rockburst. In this context, the rock mass that is brought to
failure around the opening is associated with the rock sample, and the rock mass

surrounding the failed rock represents the loading system.

Figure 2.3 presents schematically this analogy using the load-displacement curve. In this
figure, k, represents the stiffness of the rock in its pre-failure state (elastic behavior), and
kis represents the loading system stiffness. On Figure 2.3a, point A represents the start of
microcracking; point B represents the peak resistance; and point C can be identified as the
limit of the stable equilibrium of the system (Salamon, 1970, 1974). Figure 2.3b shows

the evolution of the rock stiffness with the displacement.

As we can see on Figure 2.4a, when the loading system stiffness is smaller (in absolute

values) than k', (the rock post-peak stiffness), the amount of stored strain energy in the



Chapter 2 Evaluation of the rockburst potential

system (rock and loading system) exceeds the work that the rock can do in its post-peak
phase, and the failure will be violent. Otherwise, if ks is larger than k'; (in absolute
values), then the failure will be gradual and can be controlled (Figure 2.4b).

Pininska and Lukaszewski (1991) observed that laboratory results seem to indicate that
rocks with a lesser strength show greater post-peak strains and vice-versa: the greater the
strength, the fastest is its final failure. This phenomenon, although not being an absolute
law, has been confirmed by a compilation of test results made by Aubertin et al. (1994a,
1994b).

Even if the analogy described above is simple, it remains nonetheless true for the rock
mass (Gill and Aubertin, 1988). The strength and the deformability of a rock sample are
controlled by the intragranular bonds while the essential forces in a rock mass act
principally on the surfaces of geomechanical discontinuities (Pininska and Lukaszewski,
1991). The transposition to the rock mass of this analogy must however consider the fact
that the stress field in rock structures is not necessarily uniaxial. With this end in view,
Gill and Aubertin (1988) proposed the notion of equivalent stiffness that will be detailed

in section 2.3.

Salamon (1974) extended this analogy to explain fault-slip rockbursts. Figure 2.5 shows
two diagrams shear stress-tangential displacement obtained from direct shear tests on a
structural plane with a low normal stress. In this figure, k, is the pre-peak stiffness of the
plane and k;; is the loading system stiffness. Point A on Figure 2.5b represents the
ultimate (peak) shear strength of the plane, and loading beyond this point leads to the
residual strength. A comparison between the stiffness of the loading system ks and the
post-peak stiffness of the plane k', shows that the equilibrium of the system loading-

structural plane is stable and the evolution of the post-peak behavior is gradual since

10
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lkis/>k'pl. However, on Figure 2.5a, the evolution toward the residual strength is violent
for |kis| < [k'p| since the stored energy can not be totally dissipated through straining.

Of course, the transposition of this model to the rock mass must also consider that the

normal stress to the discontinuities is not necessarily low nor constant.

2.2 METHODS FOR THE EVALUATION OF ROCKBURST POTENTIAL

The techniques or methods to evaluate the rockburst potential in underground mines are
numerous. However, due to the complex nature of the phenomenon, no technique can yet

predict each and every single event. Existing techniques can be divided into two broad

categories:

1) Methods based on indices derived from rock properties;

ii) Methods based on in situ conditions.

The goal of this literature review is not to present an exhaustive list of every technique
available but rather to provide a brief summary of the different tools available for the

evaluation of rockburst potential in underground mines.
2.2.1 Methods based on indices derived from rock properties

Usually, these techniques are used the same way. First, the index is calibrated for the
mine or the mine district by linking the value of the index with the number of events.
The index can then be used to evaluate the potential of a new zone by calculating its

index value.

11
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Most of these indices are closely related to the behavior of rock under uniaxial

compression. Hence, a brief review of this behavior is useful.

2.2.1. 1 Behavior of hard rocks under uniaxial compression

Figure 2.6 shows schematically a typical stress-strain relationship for a rock specimen
submitted to uniaxial compression. Some phase boundaries are also added. The first phase
(phase 1), curved upward, is associated with the reversible closure of microcracks; in dense
rocks with very low porosity, this first phase is almost non-existent. Then follows a linear
phase (phase 2) due to the elastic response of the rock, which extends up to the
microfracturing threshold where stable crack propagation starts. The onset of microcrack
growth (phase 3), which precedes the peak strength, commonly begins above about 50% of
the ultimate load, as shown by studies on volumetric measurements, acoustic emissions,
wave velocity, etc. (e.g., Paterson, 1978; Hakami, 1988; Cox and Meredith, 1993). When
approaching the peak strength, the size and density of cracks increase, and cracks interaction

becomes more important, and unstable crack propagation can be initiated (phase 4).

Damage accumulation during crack propagation (phase 4) leads to a rapid increase in
dilation and eventually to strain localisation. It is known that, for brittle materials such as
rocks, localisation associated with a loss of homogeneity of the strain field, usually occurs
in the vicinity of the peak load (e.g., Wawersik et al., 1990). In the post-peak phase (phase
5), localisation phenomena become more important, and usually produce a gradual
reduction of the sample cohesion with increasing inelastic strain. This causes a pronounced

softening of the material, which is a progressive decrease of strength as strain accumulates.

12
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One important aspect of the rock behavior, used with several indices, is that inelastic
strain can develop in the pre-peak regime and can dissipate energy by microcracking.

2.2.1.2 Indices based on energy

A) Relative violence at failure

Proposed by Denkhaus et al. (1958), this index measures the rebound of the loading
system at failure during a uniaxial compression test with a non-stiff loading system. The
hypothesis of this index is that the rebound is proportional to the violence (seismic energy

released, volume of rock fragments, etc.) at failure.
B) Indices based on stored elastic strain

Several indices are based on the elastic energy recovered in a loading-unloading test.
Among these is the Bursting Liability Index or W, Index proposed by Neyman et al.
(1972) for coal mines. This index is determined with a uniaxial compression test by:

W, = Ef 2.1)
where Eg is the elastic energy recovered during unloading which can be calculated by the
area under the unloading curve, and Ep is the energy dissipated in the cycle which can be
calculated by the area between the loading and unloading curves (Figure 2.7). The load
during the test must attain between 80% and 90% of the uniaxial compressive strength.
The larger the value of the index, the less the rock can dissipate energy via stable
propagation and the larger is the rockburst potential. Stewarski (1987) also proposed the
Rock Dynamic Index that is determined by the same ratio but for a loading test on a

Hopkin's bar.

13
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However, to achieve 80% to 90% of the strength with the W, index is a problem since
this strength can be known, a priori, only in a probabilistic manner. Moreover, the size of
the hysterisis and the value of the index are directly influenced by the relative value of the
load attained (Hueckel, 1987). To eliminate this problem, Aubertin and Gill (1988)
proposed the Brittleness Index Modified (BIM). To calculate the value of this index, a
uniaxial compression test is carried out up to failure. The area under the loading curve
(Az) is easy to evaluate (Figure 2.8). A; is then compared to the area under the curve
corresponding to the deformation modulus of the rock (A,) taken at 50% of the peak
strength. The value of this index is then determined by (Aubertin and Gill, 1988):
BIM = %2- >1.0 2.2)

4
The smaller the value of the BIM, the higher is the rockburst potential. Aubertin et al.
(1994a, 1994b) also proposed a classification of the proneness of the rock for

rockbursting:

Table 2.1 Indicative values of BIM as related to bursting liabilities (after Aubertin
et al., 1994a, 1994b).

BIM Bursting liabilities
between 1.00 and 1.20 high
between 1.20 and 1.50 moderate

above 1.50 low

The BIM has also been related to the ratio of pre-peak modulus to the post-peak modulus

and can be used to find the post-peak modulus when it was not determined in laboratory

testing.

One last index based on a somewhat similar principle is the Burst-efficiency Ratio

proposed by Motyczha (see Kidybinski, 1981) given by:

14
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B, = LY 2.3)
[}
where ¢, is the energy of particle ejected at failure in a uniaxial compression test, and ¢,
is the maximum energy stored in loading and given by (also, Mitri, 1996b):

C.E,

¢0 ~ 2 (2 '4)

where o, is the uniaxial compressive strength, and &, is the deformation at failure.

C) Index of released energy

Proposed by Singh (1988a), this index measures, with a seismograph, the sum of
maximum speeds of vibrations produced in the loading system during a uniaxial

compression test. This sum would be a measure of the released energy at failure.

D) Failure duration index (Dt)

Wu and Zhang (1997) proposed to monitor the time of failure (Dt) of coal samples during
a uniaxial compression test (stress rate between 0.5 to 1.0 MPa/s). The Dt index is the
time between peak strength and complete break down. The authors proposed the

following values of proneness:

Table 2.2 Indicative values for the Dt index (after Wu and Zhang, 1997)

Dt value Bursting proneness
lower than 50 ms strong
between 50 and 500 ms medium
larger than 500 ms no
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2.2.1.3 Brittleness

The brittleness of rocks is sometimes evaluated from two different empirical (and more or
less arbitrary) concepts such as (Hucka and Das, 1974):
o -6
C. +G,

B, = sin¢ (2.6)

where o is the uniaxial compressive strength, o, is the uniaxial tensile strength, and ¢ is

(2.5)

the shear angle taken from the failure surface in Mohr's diagram. Rockburst potential

seems to increase with larger brittleness values.
2.2.1.4 Decrease Modulus Index

This index is obtained from the ratio of the pre-peak deformation modulus over the post-
peak deformation modulus (Homand et al., 1990). The pre-peak modulus corresponds to
the slope of the linear part of the pre-peak curve and the post-peak modulus is given by
the slope of the post-peak portion of the curve. The rockburst potential increases with a

lower value of the index.

2.2.1.5 Elastic strain energy factor

Hou and Jia (1988) presented this factor that combines drilling observations with in situ
stresses. The mean length of drilling core is associated to the in situ stress and then

classified. The rockburst potential is evaluated from this class.
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2.2. 1.6 Energy-Band failure index (criterion

Mitri (1996b) suggested the calculation of pillar skin strainburst using an index based on
strain energy which is given by:

_&
S.L= 2.7)

c

where e4 is the mining-induced strain energy calculated at the boundary of the opening
(pillar skin) and e, is the critical strain energy given by equation 2.4.

2.2.1.7 Concluding remarks

Using indices presented in this section implies that a mine or a mining zone had already a
certain number of rockbursts to establish the different zone boundaries as to: no risk;
moderate risk; high risk. Altough these indices can easily be obtained, they only indicate
the proneness of the rock to fail violently, and they do not provide a tool that can be easily
integrated into routine mine design. They can, however, indicate mine zones where rock

structure might be at higher risk.

2.2.2 Methods based on in situ conditions

Due to the problems of integrating the use of indices based on rock properties into routine
mining engineering, many researchers turned to an in situ approach to predict, a priori,
the rockburst potential of openings. These methods emerged principally with a better

understanding of the rockburst phenomenon.
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2.2.2.] Rock mass electric resistance

The continuous monitoring of the electric resistance changes in the rock mass has been
used to predict the frequency of rockbursting (Stopinski and Dmowska, 1984). This
monitoring facilitates the observation of the effects of tectonic stresses and mining
induced stresses. These observations can also indicate the location and necessity for

applying a destressing technique to the rock mass (Singh, 1989).
2.2.2.2 Seismic velocities

Krawiec and Stanislaw (1977) showed that the seismic velocities could be related to the
stress level in the rock mass, the velocity value being proportional to the stress level.
Changes in velocity values can then be used to monitor stress changes in the rock mass

and then prevent failure and rockburst situations.

2.2.2.3 Energy balance

This approach is essentially the elaboration of the balance of stored energy in a rock mass
and the energy that can be dissipated when a change (geometrical and/or in stress level)
occurs in the rock mass. This balance is used to calculate the energy available for
rockbursting. This approach was reviewed in detail by Salamon (1970, 1974, 1983,
1984), Walsh (1977), Budavari (1983), Brady and Brown (1985), McMahon (1988), and

Hedley (1992).

Since 1960, many measurements of rock displacement have been performed and they
suggest that the rock mass mechanical behavior in rockburst situations is essentially of

elastic nature (Ortlepp, 1983). Then, the energy balance is usually performed using
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elastic laws. It could also be shown that using elastic laws to evaluate the energy
available for rockbursting is a conservative approach since the energy dissipated by

fracturing is neglected, hence, the stress concentration around opening is overestimated.

When an opening is created or modified, the stored strain energy equilibrium is changed
(Cook et al., 1966). Let stage I be the initial situation before the creation of the opening;
the stage following the creation (or modification) of the opening will be called stage II.
The energy balance is concerned with the transition between stage I and stage II.

When an opening is created, energy becomes available and is provided from two sources.
The first one is the work W (or the variation of potential energy in the system) done by
the shifting of external and gravitational forces working on the convergence and
deformation of the rock mass. The second source is the stored strain energy Uy, in the
mined rock. The sum of these energies (W + Up,) is the total energy available when

passing from stage I to stage II.

This energy can be dissipated in two ways. A portion of this energy will be dissipated
with an increase in the strain energy U. stored in the rock mass surrounding the
excavation. It is also possibie that the pressure on support elements surrounding the

opening increases; this work W; is the second way of energy dissipation.
If the rock mass is considered as an ideal elastic continuum, then no energy is dissipated

through fracturing or inelastic deformation of the rock. With this simplification in mind.

the sum (U + Wy) is the total energy dissipated during the mining of the opening.
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It is obvious that the total energy dissipated cannot be larger than the energy available
(W+Upy). Considering that the stored strain energy in stage I in the mined rock (Up,) is
not available anymore, then:

W2U_+W, (2.8)
and since Uy > 0, then

W+U_>U_+W, (2.9)
This inequality implies the existence of an excess of energy that must be dissipated when
passing from stage I to stage II. This energy is referred to as the released energy W..
Then, one can write:

w=(W+U_)-(U . +W)>0 (2.10)
and W, 2U_ >0 2.11)

The amount of released energy W,, when larger than the stored strain energy in the mined
rock (Un) in stage I, produces a wave (kinetic energy) that propagates from the new limits
of the opening. The vibrations produced by the wave will be damped by minor flaws in
the rock mass (the latter not being perfectly elastic). This kinetic energy Wi will be

dissipated by the damping process.

Since there is no other way to dissipate the energy, then:

W =U_+W (2.12)
and W, =W-(U +W,)20 (2.13)
Then the final equation of the energy balance is given by:

W, =w-[(u -u,)+W] (2.14)
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The evaluation of the released energy of an opening is relatively easy for any geometry
(Gill and Aubertin, 1988) and the Boundary Element Method (BEM) is well adapted to
make such evaluation (Brady and Brown, 1981).

It is obvious that the amount of released energy is proportional to the depth of the

excavation (or the pre-mining stress) and its dimensions (Gill and Aubertin, 1988).

2.2.2.4 Energy Release Rate (ERR)

Based on the energy balance, an incremental approach can be used to follow the changes
due to mining. The mining of an underground orebody usually implies the widening of
excavations by increments. This leads to an energy release rate by unit surface (dW,/dS),
used when the opening geometry is regular, or a volumetric energy release rate (dW,/dV),

used for irregular geometry openings.

Stacey and Page (1986) provide a way to evaluate, in a preliminary manner, this energy

release rate (the symbol ERR is commonly used in the literature) with the equation:
ERR,_, =3o¢ (2.15)

where 6 is the stress on the unit volume before mining, and € is the convergence resulting

from the opening.

This ERR has become a rockburst prediction tool in South African mines. Spottiswoode
(1990) notes that ERR is one of the most used pa}ameters for stope design in deep
underground South African mines. A correlation between the ERR and rockburst hazards

was established for longwall mining (Cook, 1978) as seen on Figure 2.9.
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2.2.2.5 Strain energy approach

Based also on the energy balance concept, Mitri and Suriyachat (1990; see also Mitri et
al., 1993; Momoh et al., 1996) developed a 2D finite element program that can calculate
mining induced strain densities around mine openings. The idea is based on the
assumption that rockburst can be attributed to total strain energy stored at this moment as

well as the energy release rate (same as the ERR) caused by the past mining steps.

Figure 2.10 explains the calculation of energy. From the initial mining step (before the
excavation) to mining step 1, where we go from (0, o) to (€, o) the total stored strain
energy is given by area ABCD. The mining induced strain energy density is given by area
ABE and the energy stored or lost by the pre-mining stresses is the area AECD. When
portion 2 of the excavation is mined, the total stored strain energy is given by area
AHGD, the mining induced strain energy density is given by area BHJ and the energy
stored or lost by the pre-mining stresses is the area BIGC. These energy densities are
calculated, using linear elasticity, at every integration point within each element in the

mesh of the finite element model.

This software can be a useful tool to help determine the less burst-prone mining sequence
of openings. However, it requires calibrating with actual rockburst case histories in order

to give values for the strain energy level to assess the risk of rockbursting in Canadian

underground mines.

2.2.2.6 Excess Shear Stress (ESS)

The South African experience showed that the notion of energy release rate (ERR) was

very limited for fault-slip type rockbursts. Ryder (1987) proposed a similar criterion, the
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excess shear stress criterion (ESS), that could be applied to this type of rockbursts. This
criterion is based on the energy available when passing from static resistance (before slip

movement) to the dynamic resistance (during the slip).

The static resistance ts of the discontinuity can be estimated with a Mohr-Coulomb type
criterion such as:

T, =C+U0, (2.16)
with u, =tan¢, 2.17)
where c is the cohesion, ps is the static friction factor, o, is the normal stress at the
slipping point, and ¢; is the static friction angle. Once the motion has started, the value of
the ESS is given by:

ESS=1_=ltl-1, (2.18)
where 1. is the net shear stress available to produce a seismic event once failure has
started, t is the shear stress at the initiation point, and tq4 is the dynamic resistance at this
point and given by:

T4 = UO, (2.19)
with p=tané (2.20)
where u is the dynamic friction factor, and ¢ is the dynamic friction angle. Ryder (1987)

has suggested these average values of 1. to produce significative seismic events:

T.x=5-10MPa for an unstable movement along a pre-existing
discontinuity;
T ~ 20 MPa for a shear failure of intact rock.

In theory, the larger ESS value brought by the progression of the opening towards the
discontinuity, the larger surface of the discontinuity would be involved, and the larger
would be the seismic event produced. In practice however, back analyses performed

showed that not all positive ESS situation yielded seismic events. This could be due to
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lack of accuracy on the data and/or stress involved (Ryder, 1987). Gill and Aubertin
(1988) note that this absence of rockbursts for positive ESS confirms the fact that the
discontinuity post-peak stiffness and the rock mass stiffness on both sides of the
discontinuity may play a major role in the process, or maybe 1. should not be assumed;

rather it should be assessed by laboratory testing.

2.2. 2.7 Activity index

Tao (1988) proposed an index that considers the uniaxial compressive strength 6. and the
major principal stress &, in the region of the opening. His experience in Chinese mines

led to the following class of risk:

Table 2.3: Rockburst potential classes (after Tao, 1988)

Class o./o) Bursting activity Comments
| >13.5 no activity no acoustic emission
2 13.5-5.5 low activity weak acoustic emissions
3 55-25 average activity loud acoustic emissions
4 <25 high activity very loud acoustic emissions

2.2.2.8 Microseismic activity

Rockburst research has focused basically on two fields - prediction and control. The first
studies on prediction focused on acoustic and microseismic emission monitoring.
Relation between microseismic emission rate and stress state was first verified in 1938 in
the United States (Bolstad, 1990). However, it is with the work of Obert and Duvall in
the 1940's (see Obert and Duvall, 1967) that this technique really started.
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In a stable elastic homogeneous and isotropic domain, no acoustic or microseismic
emission should theoretically occur. Daihua and Miller (1987) note that there is little
acoustic emission in a uniaxial compression test until the load reaches a certain level, that
is 75% to 80% of the peak strength (50% for Paterson, 1978), which shows that the rock
specimen has an elastic behavior. However, heterogeneities and anisotropy in rock

masses will create some local instabilities (Salamon, 1974; Jaeger and Cook, 1979).

Mine microseismicity is highly influenced by local geology and tectonic - i.e., by
heterogeneities and discontinuities, and the interaction between gravitational, tectonic and
induced stresses at a local and regional scale (Gibowicz, 1990). It is usually assumed (see

for example Blake, 1982) that at the scale of rock masses, one finds the same phenomena

as in laboratory tests.

Microseismic events can be recorded by sensors strategically located in a mining region
and connected to a computer. During an event, the computer locates its position and its
amplitude by analyzing arrival times at each sensor. It is then possible to locate regions
where there is microseismic activity. These regions are then considered as burst-prone

regions (Blake, 1972).

Microseismic monitoring can also be used for other purposes than localization.
Experience showed that microseismic activity could be related to the ERR and bursting
activity; an increase in ERR will usually produce an increase in microseismic activity
(Gay et al., 1982), and in periods preceding rockbursts, there is often a high increase of
the number of seismic events (Jaeger and Cook, 1979). For example, a 17 month
experiment in a South African mine where a waming was issued for an increased in

seismic activity showed a 80% success in predicting rockbursts (Glazer, 1997). However,
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half of these rockbursts occurred more than 4 days after the warning was issued (only
27% occurred within 24 hours).

Microseismic monitoring in the mining industry has been used widely in Canada and
worldwide. Canada in particular has spent a lot of efforts in that field (e.g., Roctest,
1980; Calder et al., 1986; Daihua and Miller, 1987; Hedley and Udd, 1987; Hasegawa et
al., 1989, 1990; Young et al., 1989, 1990; Hedley, 1991, 1992; Plouffe et al, 1993;

Beghoul et al., 1996).

Nevertheless, the relative high cost for the purchase, installation, maintenance and use of
this technique makes it a tool that is not easily available for small mines including several

mines in the province of Québec. Moreover, it is hardly a predictive method but rather a

monitoring tool.

2.2.2.9 Rockburst hazard based on 3D stress field analysis

Tajdus et al. (1997) proposed several rockbursts indicators for the evaluation of the
rockburst potential for Polish underground coal mines:

- Coefficient of vertical stress concentration:

o o S:x:y.2) 221
P.

where o, (x,y,2) is the vertical stress in the elementary volume, p; is the initial vertical

stress in the elementary volume.

- Coefficient of energy concentration:

B = (2.22)
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where V. is the strain energy of the rock mass in the elementary volume and V.' is the

initial strain energy of the rock mass in the elementary volume, with:

V.=V, +V, (2.23)
where V, is the strain energy of volume change given by:
V, = ]gév [cf +0? +0? +2,0, +0,0, +0,0, )] (2.24)

and V,, is the strain energy of distortion given by:

vp = '16+_Ev[(cx -o’y)z +(Gy —0’1)2 +(oz -0, )2 +6 (1; +t§¢ +t2ﬂ )] (2°25)

The initial elementary strain energy of the rock mass can be obtained by:

2 2
. pii-v-2v?)
Vie 2.26
¢ 2E(1-v) (2.26)

where E is the elastic modulus and v is the Poisson's ratio.

- Ratio of effective stress to rock strength

W, = —20 (2.27)
G, or G,

where G, is the mean applied stress, o, is the uniaxial compressive strength and o, is the

uniaxial tensile strength.

- Energetic rockburst indicator

T, Ec (2.28)

e ro
Ex

where Ex is the energy accumulated in the rock mass and Eg is the energy necessary for

initiating rockbursting. Based on the energy balance, Ex is given by:

E, =V.+E,-Lg (2.29)
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where V¢ is the elastic energy accumulated in the broken rock mass during rockburst,
which is a sum of initial and induced stresses, Ep is the energy generated by the tremor in
the rock mass and Lz is the work used for breaking and crushing rock mass volume

discharged to an opening. The minimum energy necessary for initiating a rockburst E}

can be estimated by:

Ep =ip, V] (2.30)
where p;, is the average density of broken rock mass (assumed to be 2,5 t/m?) and v, is
the average velocity of broken rock mass ejected to an opening during rockburst
(estimated at 10 m/s by Filcek, 1980). Thus, EX = 1,25 « 10° J/m>. Then, the energetic

rockburst indicator is given by:

< E:

(2.31)

If T, < 1, then the rock mass is not capable of rockbursting; if T. = 1, then a rockburst is
possible (the probability of occurrence increases with the value of T.). From their
experience in polish coal mines. Tajdus et al. (1997) have combined the preceding indices
to provide the following limits:

when in a given region the following conditions are fulfilled: a > 1,5; B > 1.,5;

rock mass is close to failure W, = 1 and T, < 1, then the probability of rock

tremors occurrence is very high.

If the following conditions are fulfilled: a > 2; B = 3; rock mass is close to

failure Wy = 1 and T, = 1, then there is a probability of rockburst occurrence.
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2.2.2.10 Analytical bump criteria

Kleczek and Zorycha (1991, 1993) developed a criterion for Polish coal mines to evaluate
if a rockburst can occur at the roof of a large excavation. Based on the bending

conditions, the condition for fracturing (W) is given by:

R 2
1.325[—'} EF_
W= P. s (2.32)

h h

LY

E, E,

2.3 THE STIFFNESS APPROACH

An analogy based on stiffness difference between the rock and the loading system was
presented in section 2.1.3 to explain the rockburst mechanism. This analogy has been
integrated in the local mine stiffness coefficient approach for predicting stability of mine
pillars (e.g., Starfield and Fairhurst, 1968; Starfield and Wawersik, 1968; Salamon,
1970; Zipf, 1996).

It has also been used to develop a methodology to evaluate the rockburst potential of
underground excavations, starting from routine mining and ground control engineering.
Convinced that proper engineering design of rock structures should include the evaluation
of its rockburst potential, Gill and Aubertin (1988) - see also Aubertin et al. (1992) and Gill
et al. (1993) - have extended a methodology presented in Gill's (1982) lecture notes. As
shown in the diagram of Figure 2.11, it includes up to four steps: zoning, identification of
vulnerable rock structures, stability analysis and a stiffness comparison when a strain or
pillar burst is expected. This methodology is briefly described in the following.
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2.3.1 Zoning

It consists in dividing the rock mass into different sectors in which a specific mechanical
behaviour is foreseen (rock mass deformability, strength, etc.). It includes the determination
of the location, boundaries and general properties of the different zones. The initial zoning
is usually based on geological data. It should be thereafter confirmed by geomechanical
classifications. The RMR system (Bieniawski, 1973, 1984) or the Q system (Barton et al.,
1974) are the most commonly used in the northwestermn Québec underground mines. All the
major geological discontinuities (that are frequently delineating the different zones) must
also be identified and located at this stage.

2.3.2 Identification of vulnerable rock structures

The methodology considers three broad categories of potentially vulnerable rock structures,
namely:

i) An excavation that approaches a major geological discontinuity, as shown in Figure
2.12a. Here, the stress changes induced by the excavation can increase the shear
stress and/or reduce the normal stress along the discontinuity. Any of these can
provoke a type I (fault-slip) rockburst;

ii) An excavation that goes through a major geological discontinuity or through a zone
boundary; this case is illustrated in Figure 2.12b. If part of the rock mass, located
close to both the zone and the excavation boundaries in one of the zones, is brought to
its failure state, a sudden and violent failure is possible depending on the
deformational properties of the rock mass of the other zone. This can then lead to a
type Il (strain burst) rockburst;

iii) An excavation that follows a major geological discontinuity or a zone boundary. A
typical example of this case is a mine pillar, as shown in Figure 2.12c. If the pillar
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(zone C) fails, its failure can be violent (type II rockburst) if the deformation
properties of zones A and/or B satisfy certain requirements. This category includes
any isolated structure that may present some differences in mechanical properties due
to local heterogeneities in the rock mass; it also includes isolated structures that may

show pronounced geometrical irregularities.

2.3.3 Stability analysis

In routine mining engineering, stress analyses are usually performed using an elastic
constitutive model for the rock mass; this has been proven to be an adequate approach for
rockburst situation (e.g., Ortlepp, 1983). Rock properties are generally obtained through
standard laboratory tests conducted on specimens prepared from appropriate rock samples.
Rock mass properties are extrapolated from rock properties by using various relationships
that take into account the mechanical effects of geological discontinuities; relationships
based on geomechanical classification ratings are often used for that purpose (Hoek and
Brown, 1980; Bieniawski, 1984). The knowledge of the pre-mining state of stress results
from in situ measurements or from empirical relationships such as those proposed by Herget
(1987; Arjang and Herget, 1997) for the Canadian Shield underground mines or Arjang
(1996) or Corthésy et al. (1997) for the Abitibi mining district.

A) Fault-slip type rockburst

This type of rockburst has been defined as a sudden slip on a pre-existing discontinuity.
Unfortunately, up until now, very little information on post-peak behavior of geological
discontinuities was available. In addition, there seemed to be no recognized method to

evaluate the equivalent local stiffness of the rock mass on both sides of the discontinuity.
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This was why the proposed methodology recommended (at this stage of its development)
that if the stress conditions are such that a slip on the discontinuity is possible, then it should
be considered that the equilibrium state is unstable and that there is a potential for
rockbursting. However, it should also be considered that if the normal stress is approaching
the uniaxial compressive strength of either one of the rock masses bordering the
discontinuity, the failure should be gradual.

To model the peak shear strength of the discontinuity, Gill and Aubertin (1988) suggested
using Barton's equation (Barton and Choubey, 1977; Bandis et al., 1983), for its relative
simpilicity and broad applicability.

B) Strain and pillar burst type rockburst

This type of rockburst has been defined as the brittle failure of a certain volume of rock.
Unlike the situation described above, it is possible, here, to be more specific about whether
the failure is violent or gradual.

If, while performing the stability analysis, expressing the rock mass strength through its
uniaxial compressive strength is not adequate, the authors suggested using the well-known

Hoek and Brown (1980, 1988) failure criterion.

With mine pillars, both size and shape effects should be considered; these affect the peak
strength as well as the pre-peak and the post-peak parts of the stress-strain relationship.
Such effects can be introduced into the stress-strain relationship through geomechanical
classification ratings (e.g., Sarkkd, 1984), empirical formulas (e.g., Bieniawski, 1975;
Barron and Yang, 1992) or confined core concept (e.g., Wilson, 1972).
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2.3.4 Stiffness comparison

Before the results that will be presented in the following chapters, this final step only
applied to strain and pillar burst type rockbursts. Two different situations are dealt with

here: (i) mine pillars; (ii) other rock structures.

i)

Mine pillars: Let us consider a mine pillar which is axially loaded, as it is postulated
with the tributary area theory (Brady and Brown, 1985) or with the pillar loading
theory proposed by Coates (1965). It can be shown that the pre-peak stiffness
coefficient, ko, for a "long" pillar (plane strain conditions), considering a unit
thickness and idealizing the stress-strain relationship, is given for a unit length of
pillar by:

k, = % (2.33)
where Ey, is the pre-peak rock mass elastic modulus, v is the Poisson ratio, B is the
pillar width, and H is the pillar height. The post-peak stiffness coefficient, k'pr is
obtained by substituting E'n, the post-peak rock mass elastic modulus, into equation
(2.33). It should be noted that stiffness coefficients are expressed here as a force per
unit length (e.g., pounds per inch or meganewtons per metre) as it is the case in most

publications.

If the post-peak modulus of the rock mass involved is unknown, empirical
relationships that have been proposed for rocks can be used, such as the relationship
proposed by Brady et Brown (1981) for instance or by using the BIM described in
section 2.2.1.2. To account for scale effects, it was proposed by Gill and Aubertin
(1988; see also Aubertin et al., 1997; Simon et al., 1998) to use similar relationships
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as the ones used for estimating the elastic modulus of the rock mass (using
geomechanical classification for instance).

On the other hand, the stiffness coefficient of the country rock mass, k., can be
determined in a number of ways. The analytical models proposed by Starfield and
Wawersik (1968) and by Salamon (1970) could be used as such or implemented into
a variety of numerical stress analysis methods. Gill and Aubertin (1988) rather favor
a simpler approach that is easier to incorporate into routine engineering. It consists
in performing numerical stress analyses following the process described by Hoek
and Brown (1980) for obtaining ground characteristic lines with the convergence-
confinement method as applied to pillar design. To illustrate this approach, let us
consider the schematic single symmetrical pillar model shown in Figure 2.13a. A
uniformly distributed stress o, is applied at the pillar location over a strip of width B
and the relative displacement A of points A and A' along the pillar axis (or the
relative average displacement along the pillar-country rock interfaces) is computed
using any two-dimensional numerical code. This analysis is repeated for different
values of o, and the results are plotted on a Bo, (load) versus A (displacement)
diagram (Figure 2.13b). It can be shown that the slope of the line so obtained is the
local mine stiffness coefficient k. for the pillar under investigation, as defined by
Starfield and Fairhurst (1968) for instance.

For pillars with finite cross-sectional dimensions, plane stress conditions have to be
assumed and it can be demonstrated, for an idealized stress-strain relationship, that
their pre-peak stiffness coefficient, ky, is:

EA
kpr = F (2.34)
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ii)

In this equation, E is the pre-peak rock mass modulus and A, the cross-sectional
area of the pillar. Again, the post-peak stiffness coefficient k',, can be obtained by

substituting E', the post-peak rock mass elastic modulus, into equation (2.34).

The determination of local mine stiffness coefficients (k¢) can be done as suggested
above (Figure 2.13a), using instead a three-dimensional stress analysis code. For a
given pillar, the results are plotted on a Ac,, vs A diagram; the slope of the line so
obtained is the local mine stiffness coefficient for that pillar. If no 3D code is
available, a correction factor can be applied to a 2D analysis (Simon et al., 1998) to

obtain k..

It is recalled that if the pillar should fail, and if k',,, is larger than k. (in absolute

values), then the failure would be sudden and violent, leading to a pillar burst type
rockburst. This comparison is usually done on what has been called force-
convergence diagram by Starfield and Fairhurst (1968). These diagrams can be used
to evaluate the rockburst potential as illustrated in Figure 2.13b. Curve (i) in this
figure is an idealized reaction curve for a pillar which should fail and potentially
burst while in the case of the pillar with reaction curve (ii), the failure should be

gradual; curve (iii) stands for a pillar that should not fail.

Other rock structures: An approach similar to that described for mine pillars is
suggested for other rock structures. The local mine stiffness of the surrounding rock
mass can be estimated by replacing the failed rock by fictitious forces P; applied to
the surfaces as shown on Figure 2.14a, and then by measuring the convergence A
between points A-A'. The analysis is repeated for different values of P;, and the
local mine stiffness is given by the slope of the graph B*P; vs A.
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Chapter 2 Evaluation of the rockburst potential

It has been recognized, when the rock mass is assumed to be linear elastic and
homogeneous, that the stresses known to trigger the failure of any unsupported
underground excavation are those at the boundary of the opening. In routine mining
engineering work, failure criteria generally used, when performing stability analyses,
involve only the two extreme principal stresses (o, and o3); it is then postulated that
the average principal stress (c:) has no effect on the failure process. At the
boundary of the excavation the value of the minor principal stress g3 is nil; at the
limits of the failure zone, it is sufficiently low (in first approximation) to be
neglected. With these simplifications in mind, the portion of the rock mass near the
excavation that is brought to its failure state can be considered as a structural
element submitted to a uniaxial state of stress (Figure 2.14). Then, the post-peak
stiffness of the failed rock mass can be estimated with equation (2.33).

As usual, if it is found that failure can occur and if the value of lk;'l is larger than

k.| then a type II rockburst can occur.

Several back-analysis of actual rockburst cases have been presented, using this
methodology, in Simon (1992); Aubertin et al. (1992, 1997), Simon et al. (1993), Gill et al.
(1993), Simon et al. (1995), and Simon et al. (1998).

On the other hand, because several uncertainties exist when estimating the different
stiffnesses, it might be useful to compare them in a relative manner. Then a Bursting
Potential Ratio (BPR) can be defined as the post-peak stiffness of the failed zone over the

local mine stiffness (Simon et al., 1995):

.3

BPR = ” (2.35)

e
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Chapter 2 Evaluation of the rockburst potential

If the value of BPR in a first analysis is much larger than unity (1.0), this would indicate a
clear rockburst potential, but a value near 1.0 might require further investigation (like the
determination in laboratory of the post-peak modulus, or a better approximation of the

dimensions of the failed zone for example).
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Figure 2.3: a) Schematic load-displacement curve of a rock sample in a uniaxial
compression test. b) Evolution of the rock stiffness with the displacement
(after Salamon, 1974).
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Figure 2.8: A schematical representation of the BIM value determination from a uniaxial
compression test result (after Aubertin and Gill, 1988).
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Figure 2.9: Empirical relationship between the energy release rate (ERR), the incidence of
rockbursts and the risk level. A: negligible; B: slight; C: moderate; D:
severe; E: extreme (after Cook, 1978).
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Figure 2.11: Diagram showing the methodology to evaluate the rockburst potential (after
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Figure 2.12: Vulnerable rock structures: a) Excavation that comes near a major geological
discontinuity - potential for a type I rockburst; b) Excavation that goes
through a major geological discontinuity or zone boundary - potential for a
type Il rockburst; c) Excavation that follows major geological discontinuities
or zone boundaries - potential for a type II rockburst (after Gill and Aubertin,
1988).
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Figure 2.13: a) Model used to evaluate the equivalent local mine stiffness of the rock
mass surrounding a pillar (after Hoek and Brown, 1980; b) Force -
convergence diagram usually used to state on the nature of pillar failure; (i):
violent failure; (ii): gradual failure; (iii): no failure (after Starfield and
Fairhurst, 1968).
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Figure 2.14: a) Model used to estimate the local mine stiffness of the surrounding rock
mass (after Aubertin et al., 1997). b) Structural element in a uniaxial state of
stress (after Simon et al., 1995).
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CHAPTER3
MECHANICAL BEHAVIOR OF JOINTS

3.1 INTRODUCTION

To better understand the fault-slip rockburst mechanism, one must first understand the
behavior of geological discontinuities. The term discontinuity is widely used in rock
engineering to describe any measurable interruption of a rock mass (Farmer, 1983).
Figure 3.1 shows different types of discontinuities encountered in rock masses. These
discontinuities can either be persistent or interrupted by rock bridging; opened, closed or
filled. Systematic discontinuities in rock masses are usually referred to as joints. A joint
is a break of geological origin in the continuity of a body of rock along which there has
been no visible displacement (Brown, 1993). They frequently form parallel to bedding
planes, foliation and cleavage (Brown, 1981). Some joints are assumed to be formed by
tensile stresses caused by contraction resulting from cooling of magma and of lava flows
(Jumikis, 1979). In the following, the geomechanical behavior of joints is presented in

some detail.

3.2 JOINT BEHAVIOR

One important aspect of joint behavior is its deformability (or its stress-displacement
relationship). Joint deformability can be better explained with its stress-displacement
curves. On these curves, the normal stiffness of the joint (k) is described as the rate of
change of normal stress (6,) with respect to normal displacements (v), and the shear

stiffness (kss) as the rate of change of shear stress (1) with respect to shear displacement
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(u) (Goodman et al., 1968). These two types of behavior (normal and shear) are treated in

the following.

3.2.1 Joint normal deformation

As the normal stress on a joint increases, closure of the joint occurs. This closure
depends on several factors including the relative position of both sides of the joints
(mated or unmated position) and the presence of filling. Figure 3.2 shows the normal
stress behavior as a function of normal displacement for a joint. This curve is mostly
hyperbolic and becomes asymptotic to a vertical line when v = -V, which corresponds
to the maximum joint closure (joint separation being positive). A model to describe this

normal load-displacement behavior was proposed by Bandis et al. (1983):

vk, V., _ 6.V, 3.1
% = vm+v or v—kni Vm—cn ( ) )

where joint opening and compressive stress are positive, v is the normal displacement
(closure), Vp, is the maximum closure (usually smaller than initial starting aperture) and
kni is the initial normal stiffness of the joint. According to this model, at any normal

stress level, the joint tangent normal stiffness kg, is equal to:

ac)-n km' Vm — 0, i
knn = av - km ( km' vm J (3.2)

which means that the curve starts with a slope of ky; (at 6, —» 0) and ends with an infinite

slope (at 6, = ).
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Empirical functions have been suggested to describe kg and V, (Bandis et al., 1983):

(5cs)
k, =002 Lf—SJ +175JRC-7 (3.3)
( D
vV, = stj (3.4)

where JRC is the joint roughness coefficient (which can be estimated from the joint
profile), JCS is the joint wall compressive strength, a; is the initial joint aperture, C and D

are constants having suggested values of 8.57 and -0.68 respectively for rock joints.

Several experimental studies have shown that the normal load-deformation of a joint
under mated and unmated conditions are different (e.g., Goodman, 1976; Bandis et al.,
1983). In general, an unmated joint is more deformable than a mated one, and the
maximum closure of an unmated joint is larger. Figure 3.3 shows the different normal
load-axial displacement curve for a rock, a mated and an unmated joint. The measured
axial displacement is dependent of the deformation properties of both the joint and the
surrounding rock. The closure of the joint can then be calculated by subtracting the

deformation of the rock (curve A) from the measured displacement (curve B or C).

Several authors proposed models to describe the behavior of unmated joints; Goodman
(1976) proposed a hyperbolic relation, Bandis et al. (1983) proposed a semi-logarithmic
function; so did Sun et al. (1985). However, these models did not correlate the normal
deformability of the unmated joint to that of the mated joint. Saeb and Amadei (1989,
1990) proposed a graphical method and a mathematical model to obtain the curve of
unmated joint from direct shear test under constant normal stress on a mated joint. This
method relates the behavior of the unmated joint to the behavior of a mated joint after

being sheared by a certain quantity. This method will be described in the next section.
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During unloading, joint behavior shows an hysterisis and inelastic behavior, the
unloading curve also resembling a hyperbola. Under repeated load cycling, joints display
stiffening behavior, whether in interlocked or dislocated positions, and the behavior after

several loading cycles remains typically non-linear (e.g., Bandis et al., 1983).

3.2.2 Joint shear behavior and strength

The shear behavior of a joint is complex and depends on several factors like the boundary
conditions (e.g., initial normal stress, load path), material deformational properties,
properties of filling (deformation, strength, thickness), surfaces of the joint (roughness,
aperture, strength), size of the joint (area, length), and the presence of water. The shear
stress versus shear displacement curve typically shows a quick rise of shear stress to a
maximum value (tp), followed by a gradual decline to a residual value (z) after a large
shear displacement. Usually, joints exhibit non-linear behavior, to a greater or lesser

extent (Bandis et al., 1983).

The literature on rock joint deformation is abundant (e.g., Barton and Stephansson, 1990).
To assess the behavior of rock joints, a number of experimental studies have been
performed on natural and artificial joints. Notable among these are the work of Patton
(1966). Goodman (1970), Ladanyi and Archambault (1970), Barton and Choubey (1977),
Bandis et al. (1981), Sun et al. (1985), Yoshinaka and Yamabe (1986), and Huang et al.

(1993).

The shear behavior of joints can be divided in two important aspects: strength and

deformation behavior. These aspects are treated separately in the followings.
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A) Shear strength

To estimate the peak shear strength, several criteria have been proposed. In that matter,
one should mention the early work of Newland and Allely (1957), Jaeger (1957),
Krsmanovic and Langof (1964), Patton (1966), Goldstein et al. (1966) and Byerlee
(1968). Following, these early studies on rock and rock joints, many authors have
developed criteria to estimate the peak shear strength. Barton (1976) and Priest (1993)
provide a good review of the failure criteria that have been proposed over the years.
Among these, the criteria proposed by Patton (1966), Ladanyi and Archambault (1970),
Jaeger (1971), and Barton (1973, 1976) are the best known.

- Barton and co-workers' model

Barton (1973) proposed an empirical relationship to estimate peak strength of rock joints:

JCS

( )
T, =G, tanLJRC log{ J+¢bJ (3-5)

where JRC is the joint roughness coefficient (which can be estimated from the joint

profile), JCS is the joint wall compressive strength, and ¢ is the basic friction angle
(which is approximately equal to ¢, the residual friction angle). For intact rock joint, JCS
value is the same as Cy (the uniaxial compressive strength) while its value can go as low
as 0.25C, when weathered. Barton and Choubey (1977) proposed typical profiles of joint
surfaces giving JRC values ranging between 0 (for planar, smooth joints) to 20 (for rough

and irregular surfaces).

To account for scale effect, Bandis et al. (1981) proposed the following relationships:
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r Ln -I.o.oz JRC,
JRC, = JRC(,l_L—o J (3.6)
.03JRC,
JCS, = JcsnLL—° J (3.7)
[1]

where JRC,, JCS, are the values for the natural block size, JRCy, JCSy are the values for
the nominal size sample, L, is the natural block size and L, is the laboratory size joint

samples (nominal 100 mm). ¢y (or ¢) is assumed not to be scale dependent.
- Ladanyi-Archambault's model

Ladanyi and Archambault (1970) proposed a criterion, referred to as LADAR to estimate
peak shear strength of joints. This curvilinear semi-empirical model for peak strength is
given by:

o, (l—a,) (w‘/+ tan¢“) +a,s,

=T 1 (1-a,)  tane, -8)

where as is the shear area ratio (ratio of the sum of areas of failed asperities to the total
sample area), v is the rate of dilation at the instant of peak shear strength, ¢, is the angle
of friction, and s, is the shear strength of intact rock. At very low normal stress, when no
asperity failure occurs (a;—0) and v — tani,, equation (3.8) reduces to the Patton (1966)
model which is defined by:
1, =o,tan(¢, +i,) (3.9)

where ig is the angle of asperities (or for natural joints, the average of the first order
roughness of the surface). At high normal stress, all asperities will be sheared off (a;—1)

and t,—>sr.
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To evaluate the rock strength, the authors suggested using the equation proposed by
Fairhurst (1964):

TGy 172

=Gy C,

where C, is the uniaxial compressive strength of the rock and N is the ratio of

compressive over tensile strength [Co/Ty|.

The a; and v values can be estimated based on empirical relationships derived from tests

on surfaces with artificial roughness by:

c
v=(l-;:) tan i, (3.11)
s |
as=1-(1—;) (.12)

where o is the brittle-ductile transition pressure and k; and k; are determined by testing.
The authors suggested values of k; = 1.5 and k; = 4 for rough rock surfaces. Goodman
(1976) recommended using Cy for an estimate of or. This model was later re-examined

by Saeb (1990) and the following relation was proposed:

t, =0, (1-a) tan(i+¢,) +a,s, (3.13)
where
r s e 1
i=tan' v=tan" [(l-—“] tan iOJ (3.149)
Or

Assuming a Mohr-Coulomb criterion for the shear strength of asperities (s), the total
shear strength can be calculated as:
T

P o’n : S_o c_"
oo 1-a)anlive,) + a, (6T+0Ttan¢o) (3.15)
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where Sg is the cohesion and ¢y is the friction angle of the rock. Saeb (1990) showed that
this formulation of the criterion seems to capture the two modes of failure (shearing and

sliding). This formulation also plots very close to the original model of LADAR.

B) Shear deformation behavior

To describe the behavior of joints, many authors have proposed constitutive equations to
model the stress-displacement relation. The models most often used in mining
engineering are the Goodman model (Goodman et al., 1968; Goodman, 1976) and the
Barton-Bandis model (Barton, 1973; Barton and Choubey, 1977; Bandis, 1980; Bandis et
al., 1983). Nevertheless, numerous other models have been proposed for different
applications, based on different mechanisms. For example, models were proposed for
soil-rock interaction (e.g., Carter and Ooi, 1988; Desai et al., 1991), for block sliding
(e.g., Andreaus, 1989; Li et al., 1990; Leong and Randolph, 1991), for faults (e.g.,
Dieterich, 1978, 1979; Ohnaka and Yamashita, 1989; Kato et al., 1993) and for
earthquakes (e.g., Rice, 1983). Some of these models are based on cracks behavior (e.g.,
Wittke, 1990; Divakar and Fafitis, 1990), on micro-mechanics (e.g., Dong and Pan,
1996), on plasticity (e.g., Pande, 1985; Cundall and Lemus, 1990; Desai and Fishman,
1991) or on elasto-viscoplasticity (e.g., Olofson, 1985). Some of the models were
proposed to take into account certain conditions like time dependency (e.g., Howing and
Kutter, 1985), progressive damage (e.g., Desai et al.,, 1989), temperature effects (e.g.,
Bilgin and Pasamehmetoglu, 1990), dynamic effects (e.g., Rice and Tse, 1986; Bro,
1992), filling properties (e.g., Pereira, 1990; Phien-wej et al., 1990; Papaliangas et al.,
1993), anisotropy (e.g., Jing et al., 1992, 1994), scale effects (e.g., Pinto da Cunha, 1991;
Muralha and Pinto da Cunha, 1992) and cyclic loading (e.g., Jing et al., 1993; Qiu et al.,
1993; Souley et al., 1995).
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3.3 BARTON-BANDIS' MODEL

In this model, the shear behavior of the joint depends on several parameters, including the
peak shear angle (¢p), the basic friction angle (¢»), the peak dilation angle (d?), the
residual friction angle (¢r), shear stiffness (k;) and joint parameters (JRC and JCS). The
peak shear angle is given by the relationship (Barton and Choubey, 1977):
¢, =0, +d, (3.16)

The basic friction angle can be found from tilt test. Typical values can be found in
Richards (1975) and Barton and Choubey (1977). The peak dilation angle is given by
(Barton and Choubey, 1977):

Ics
d? =JRC log(cc ) G.17)

The residual angle for joint can be estimated from the relationship (Barton and Choubey,

1977):
20
= —20°) + ——

where r is the Schmidt rebound on wet joint surfaces and R is the Schmidt rebound on dry

(3.18)

unweathered sawn surfaces.

The shear stiffness of the joint can be considered as linear and can be estimated from

(Barton and Choubey, 1977; Bandis et al., 1983):
T JCS
ks=—£=°—"m.[JRc log( )+¢,} (3.19)
u, u, G,

This model was later modified by Barton et al. (1985) to take into account the stress

dependency of the shear strength. The stress and displacement histories of a rock
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discontinuity are considered by using a mobilized joint roughness coefficient (JRCp,).

The failure condition for shear failure is then given by:
)
JCS
1, =0, w{mcm log(ﬁ] +¢,J (3.20)
Gﬂ

_ arctan(t,/0,)’ —¢°
" log(JCS/a,)

where

JRC (3.2

The test data can then be expressed in terms of a dimensionless ratio JRC/JRC, (where
JRC, is the joint roughness coefficient at peak strength) as follows:

JRCm - arcmn(‘m/on)o -¢2
JRC, = o, —8° 3.22)
where ¢, = a:ctan(;—") (3.23)

n

From these, one can use Table 3.1 that relates the shear displacement ratio (w/u;) to the

ratio of JRC.
Table 3.1 Rounded values for joints (after Barton et al., 1985)

wu, JRC/JRC,
0 -(¢/1)
0.3 0
0.6 0.75
1.0 1.00
2.0 0.85
4.0 0.70
10 0.50
100 0.00
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JCS) (3.24)

O,

with i=JRC, log(

3.4 SAEB-AMADEI'S MODEL

Saeb and Amadei (1989, 1990, 1992) developed a constitutive model for joints. This
model can be seen as a generalization of the models of Goodman (1976) and Barton-

Bandis. This model can be given in a graphical or a mathematical form.

As mentioned in the previous section, this model can relate the normal behavior of
unmated joints to the behavior of a joint when sheared by a displacement equal to u;. To
do so, the method makes use of a series of idealized joint response curves such as those
proposed by Goodman and Boyle (1985). The method is presented in Figure 3.4a to 3.4d.
Figure 3.4a shows a hyperbolic joint closure versus the normal stress as defined by
equation (3.1). Figure 3.4b shows a series of idealized shear stress versus shear
displacement curves for a mated joint tested under constant normal stresses ranging
between A and 20A, where A is an arbitrary number. Note that these curves are valid for
a constant displacement model, meaning that the peak and residual shear displacement
values are constants, thus independent of the applied normal stress. Figure 3.4c shows
the dilatancy curves for the shear tests of Figure 3.4b. These curves show a decrease in
dilatancy as the normal stresses increase from A to 20A. In these figures, the peak shear
displacement is identified as us and there is no change in normal displacement once uy

has been reached (v = constant for u > us).

Figure 3.4a to 3.4c can then be used to construct the curves of normal stress versus

normal displacement for unmated joint as shown in Figure 3.5. Each curve (u=u;; i = 0,4)
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corresponds to the normal displacement curve of the joint when a shear displacement of
u; has been done. The curves are constructed by using the values of o, and v at the points
of intersection between each line u = u; and the normal displacement versus shear
displacement curves in Figure 3.4c. Several aspects can be pointed out regarding Figure
3.5 (Saeb and Amadei, 1992):

- The curve u = uy which represents the joint under mated conditions is identical to
the joint closure vs. normal stress curve of Figure 3.4a.

- Each curve u = y; represents the behavior of the joint under normal loading after
being mismatched by a shear displacement equal to u;.

- For the joint response shown in Figure 3.4c, for which there is no further
dilatancy for values of u larger than uy, all curves u = u; (i > 4) coincide with the
curve u=uy, hence, the joint response is admissible if it is contained in the
domain limited by the curves u = ug and u = u,.

- All curves u=u; (i = 1, 4) become closer to the curve u = uj as &, increases since

joint dilatancy decreases as the joint normal stress increases.

Figures 3.5 and 3.4b can then be used to predict the behavior of the joint for any loading
paths. In Figure 3.5, four different loading paths are identified. These paths originate
from point A assuming that an initial normal stress o0 = 4A was first applied without
shearing. Under constant applied normal stiffness K, the joint follows the path AFGHI.
Under constant normal stress (K = 0), it follows the path ABCDE. When no change in
joint normal displacement is allowed (no dilatancy; K = o), it follows the path AJKLM.
Path ANPQR corresponds to a joint in a rock mass with an increasing applied normal
stiffness. By using the values of 6, and u at the point of intersection of each path with the
curves u = u; and using Figures 3.4b-c, the shear stress vs shear displacement curves for

Gno = 4A can be constructed for the path mentioned above. These curves are identified in
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Figure 3.4a to 3.4c by dashed lines. Figure 3.4d shows the normal stress versus shear

displacement curves that are constructed from the same results.

From these results, several observations can be made:
- the highest peak strength (point M on Figure 3.4b) corresponds to the constant
normal displacement path due to the most increase in joint normal stress;
- the lowest peak strength (point E) corresponds to the constant normal stress path;
- the two other path leads to intermediate peak strengths (point I and R).

These observations have been partly confirmed by several experimental studies, that have
shown that shear test under constant normal stiffness leads to higher peak strength than
tests under constant normal stress, and that the constant normal stiffness behavior can be
predicted from constant normal stress values (e.g., Leichnitz, 1985; Fortin et al., 1988;
Archambault et al., 1990). This is consistent with the physical process of shearing since

normal stress increases with dilatancy, and peak strength increases with normal stress.

The model can also be expressed mathematically. In the model, the dilatancy rate v/du
(which plays an important role) is described by the formulation of Goodman and St John

(1977):

kZ
=tani=( —%] tani, when u<u, and o, <o; (3.25)

2|

and

when u>u, or ¢, 20, (3.26)

|2
!

When equation (3.25) is integrated, it leads to:
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k;
v=u(l—°—"J tani, + f(o,) (327)

Cr

Since this equation must also represent the joint behavior under a mated condition (u =

0), it follows that f (5,) is defined by the normal load-displacement equations (eq. 3.1) so:

L3
_ [I_G_n) i, Ve (328
v Or o ky Vo —0, 2%

When u > u, (the displacement at the onset of residual strength) and o,/or1 < 1, the joint
ceases to dilate and v is equal to its value obtained by substituting u = u, in the last
equation. When cy/oT 2 1, the first term of the equation vanishes and no dilatation is

possible during shearing. If this first term is called w, then:

k;
o
w=u(l——°) tan i, (3.29)
Or
__.P.’IL _(V"W) kni vm 3.30
VY k V.~s, U TTV i(v-w) (3.30)

In this formulation, w represents the increase in joint aperture that is created due to
shearing. If it is assumed that the maximum closure Vy, is a reasonabie estimate of the
initial aperture of the joint in its mated position, then the value of wat o, =0 (i.e. w=u
tan ig) represents the additional initial aperture of the unmated joint created through
dilatancy. The maximum additional aperture occurs when u = u, and is equal to u, tan i,.
Note that equation (3.30) represents a mathematical expression for the curves u = y;
(i=1,4). If the joint is non-dilatant (tan ip = 0), then w in equation (3.30) vanishes and the
normal stress-displacement behavior is the same for all values of the shear displacement,

as expected.
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An incremental formulation of the model is also possible and is given by (Saeb and
Amadei, 1992):

k k,-1
: k G, | k, V2
dv=(1—°°) tan i, du — — 2(1-—") tani, do, + —=2—"—do.  (3.31)

Or Or Or (km- Vv, —O’n)
or
k3
dv-[l—:—:) tan i, du
do, = - 3.32
—u kv( G, )kz l . Koi Va @32
—1-— tani, + 3
Or St (km vm —Cn)

Since o, depends on v and u, equation (3.32) can be rewritten in a more compact form as:
do, =k, dv+k,du (3.33)

where k., and kqs are two normal stiffness coefficients such that:
oo, 1

Ky == -
™ ov —ukz( cn)"" , k, V2
l-— tani, +

Or Ot

kl
o] .
{l - ) tani,
(e}
s (3.35)

R —uk,( o] ok, V2
—2|1-=2|  tani+ _
Cr Cr (km Vm -C, )‘

Note that equation (3.34) provides an analytical expression for the joint tangent normal

(3.349)

and

stiffness when the joint has been sheared by an amount equal to u, and it reduces to
equation (3.2) when u = 0, that is when the joint is in its mated position. Equations (3.31-

3.35) are valid when u < u, and ¢,/o1r < 1. On the other hand, when u > u,; and o,/01 < 1,
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kqs vanishes and kg, is equal to its value at u = u,. Finally, when o, /o1 2 1, ks also

vanishes but kg, is given by equation (3.2).

An equation similar to equation (3.33) can be expressed for the shear stress t since the
latter depends in general on v and u. Then:
dr=k,dv+k, du (3.36)

where kg, = 0t/0v and ks = 0t/du are two shear stiffness coefficients. In the literature, it
has been common practice to assume that ks, = 0 and kg = K , the unit shear stiffness of
the pre-peak region of the shear stress-displacement curve. However, this assumption is
not necessary and closed-form solutions can be derived. This part of the Saeb and
Amadei model was proposed for the two types of assumptions made by Goodman (1976),
which are the constant displacement model and the constant stiffness model.

Constant displacement model

This model assumes that the peak and residual displacement (u, and u,) are material

constants and independent of normal stress. The model of Saeb and Amadei is then given

by:

e foru<up:

k,, =%=;u—km 60" (3.37)
P n
ot
k= AR Nl S (3.38)
ou u, o6, u,

e for u,<u<u;and G, <or:
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oo,
(3.39)

ot T,-T, k, ot ot 1-B T
k === P + t{ "(u-u,)-«»(u‘,—u{aﬁp (Bo-i- S °cn)+c—i-(l—Bo)]}

= u,-u, u,-u, |do, . .
(3.40)

e foru>uy,and 6, <OT:
k, =%=km{:;: (Bo+':° onJ+;—"r(1-Bo)} (.41)
k., =g—=km{§:: (Bo+];?° cn)+§°:(1-30)}=o (3.42)

Constant stiffness model

This model implies that the shear stiffness is a constant and independent of normal stress.

e foru<u:
(3.43)

(3.44)
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e for uy<u<u,and o, <or:

k =E=k ot L UpTe U Ty (3.45)
Toav "éo, T, u, -u, '

koo _ % Ot, 1[u,t, —ur, (3.46)
* 4 u,-u, oo, t,| u,-u, )

e foru>u;and 6, < OT:

ksn and ks are similar to the constant displacement model and are given by:

ot ot 1-B T
k, =—=k B 2 -2 (1-B 3.41
sn 8v m{a n[ O+ GT GHJ+CT( 0)} ( )
o ot 1-B T
k. =—= —2|B, + 9 L2 (1-B =0 3.42
ss 5\.1 ns{a n( 0 O_T cYn]'(bo_.r( 0)} ( )

In all these equations, T, is the peak shear strength, 1. is the residual shear strength, o7 is
the transitional normal stress, and By is the ratio of residual to peak strength at zero (or

very low) normal stress (with 0 < By < 1).
When o, = or, ks in equations (3.38), (3.40) and (3.46) vanishes and equations (3.39)
and (3.40) or (3.45), (3.46) are replaced by equations (3.41) and (3.42) with B = 1 and

kan equals to its value at u = O for all shear displacement u > u, = u,.

In view of these equations, the following relations can be written between the normal and

shear stiffness coefficient for both constant stiffness and displacement models:
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T
k, = KooK +-= whenu <u, (3.47)
k. u,
T, -1
k, = Ko kes | Tp =T whenu, <usu, (3.48)
Ko u,—u,
k, = k:k"‘ whenu >u, (3.49)

As we can see, Tp, Tr, Otp/0on depend on the selected peak shear strength criterion. If the
modified LADAR criterion is used with a Mohr-Coulomb criterion for the intact rock
strength s, = s, + o, tan¢, , T, is given by equation (3.13), t, is obtained by substituting
equation (3.13) into the model of Goodman (1976) for the variation of residual shear

strength with normal stress, and given by:

1-B

T, = -cp[B0 + - 2 crn) when o, <o, (3.50)
This leads to:
Fop’ o (1-a)k, 1 k!
R R W (Y
o, Or cOos (¢u + 1) . ( cn) ). Or

- tan-
+ s, ig
3.51)

k-1 k-1
c G s c
- if1—— —k|I-—+ tan
S k, tan(¢u+l)(l ) + ,[ p- J +a tand,

T Ot Ot T

Combining equations (3.33) and (3.36), a differential formulation can be written for the

rock joint deformability:
do k k dv

S m 3.52

{dr} [k,, k,s:Hdu} (3.52)
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The (2 x 2) matrix is the material tangent stiffness and is, in general, non-symmetric.

Then, the shear response of a rock joint under applied constant or variable normal
stiffness boundary conditions can be predicted by writing that during shearing, do, and dv
must be related as follows:

do, =K dv (3.53)
where K is the applied stiffness which can be constant or also vary with ,. Substituting
equation (3.53) into equation (3.33) gives two relations that change in normal stress,
normal displacement and shear displacement must satisfy for the path with applied

stiffness K:

do, = KK du (3.54)
K-k,
and
dv= K gy (3.55)
K-k

Similarly, using equation (3.36), the changes in shear stress and stress displacement are

related as follows:
dr] KoK Ly gy (3.56)
K-k,

Note that if the joint is non-dilatant, i.e. tan i = 0, k,s vanishes. Therefore do, =dv =0
and dt = ks du with, according to equations (3.47-3.49), ks = tp/u, when u <u,

kss = (Tp - Tr)/(up - ur) when u, < u < u, and kss = 0 when u > up. This means that a non-
dilatant joint has a shear displacement response that is independent of the applied

stiffness K, as expected.
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Lets consider two special cases: First when the applied stiffness K vanishes
(corresponding to a joint under constant normal stress boundary conditions) do, = 0 and
equation (3.55) reduces to dv = -(kns/knn) du. Secondly, when K = o« (corresponding to
constant displacement boundary conditions) dv = 0, it follows from equations (3.54) and

(3.56) that do, = kns du and dt =k, du.

This model can be implemented in numerical code to obtain the response of
discontinuities in rock masses (Saeb, 1989; Saeb and Amadei, 1990). Finally, it should
be noted that this model is limited to monotonic loading. However, Souley et al. (1995)

proposed a modified version of the Saeb and Amadei model that can consider cyclic

loading.

3.S FORTIN AND CO-WORKERS' MODEL

One difficulty of using graphical methods is that a limited number of points are available
for the construction of the complete shear stress-shear displacement curve of the
discontinuity. To help construct these curves in a more accurate manner, Fortin et al.
(1988, 1990; Archambault et al., 1990) proposed an algorithm to predict the effect of a
variable normal stiffness on shear strength of discontinuities. To use this algorithm, the
constant normal stress direct shear test results must cover the entire field of variation of
the different variables (o, T, u, v). This method is also only valid for progressive loading,
when the shear and normal stresses are independent of the stress path. This method is

described in the following.

The data required for applying the aigorithm are:
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- Results from direct shear tests at different constant normal stresses, including
entire
(1, u) and (v, u) curves

- The in situ stiffness of the rock mass; This stiffness can be normal stress
dependent.

- The value of the normal stress prior to any shear displacement (initial normal

stress).

This algorithm makes use of the method suggested by Goodman (1980) and of a
computing method developed by Gill (1971) which relies on arrays of the compiled
addressed values taken at different available experimental curves and an interpolation
procedure of polynomial nature. Figure 3.6 shows the interdependence of the parameters
on the behavior of the joint. The method proposed by Fortin et al. (1988) is illustrated in

Figure 3.7.

In the algorithm, the shear displacement is imposed step by step. For each of these steps,
the corresponding normal displacement and normal stress are determined. They must
satisfy both the dilatancy and rock mass stiffness requirements. If the in situ stiffness is
not considered as infinite, then an iterative process allows for the adjustment of the

dilatancy and of the normal stress. The variation of the shear stress is then calculated.
One important aspect of the method is that it is able to handle different rock mass

stiffnesses whether they are constant, hardening or softening. @ A multi-linear

approximation of the rock mass (v, &) curve can be used, as shown in Figure 3.8.
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Figure 3.9 shows a logical diagram of the algorithm. This algorithm was used to write a
code in FORTRAN language and has been implemented on a personal computer (Fortin
et al., 1988). This algorithm has been validated by making comparisons with direct shear
test results under constant normal stiffness (Fortin et al., 1988; Archambault et al., 1990).

The method showed good agreement with test results.

3.6 BEHAVIOR OF JOINTS AND THE PHENOMENON OF ROCKBURSTING

As it was outlined in section 2.1.4, Salamon (1974) explained the fault-slip bursts by a
difference of stiffness between the loading system and the post-peak stiffness of the fault.
Other evidences of the role of stiffness in the rockburst phenomenon can be found in the
mechanics of stick-slip widely studied in geophysics research on earthquakes (e.g.,
Dieterich, 1972, 1978; Scholz et al., 1972, Rice, 1983; Li, 1987). Observations on rock
friction have shown that three characteristics will affect the stick-slip behavior (Dieterich,
1978):

- Normal stress
- Stiffness of the testing system
- Surface finish effects

It was widely reported that the transition between stick-slip and stable sliding is
dependent of normal stress and that a stable slip can become unstable (stick-slip) at a
higher normal stress. Several studies have reported the minimum normal stress needed to
obtain a stick-slip (e.g., Byerlee and Brace, 1968; Byerlee, 1970; Engelder and Scholz,
1976). However, results obtained showed a great difference depending on the authors.
For Westerly granite, for example, Scholz et al. (1972) obtained a value of 1 MPa while
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Byerlee and Brace (1968) reported a value of 122 MPa. This leads to the conclusion that
other factors may be involved. Ohnaka (1973) reports that increased loading stiffness
decreases the tendency for stick-slip as observed in metals. When Dieterich (1978)
looked at the stiffness of the loading systems of the experiment of Scholz et al. (1972)
and Byerlee and Brace (1968), he found values of 7,5 and 1003 GPa/m respectively. The
two order of magnitude difference in stiffness may explain the two order of magnitude
found in the value of the minimum normal stress needed to produce a stick-slip. In fact,

when one divides the normal stress by the stiffness, results obtained are quite similar (7.5

and 8.2 m).

Several authors have also observed that surface finish and the presence of gouge have
some effect on the stability of slip (Hom and Deere, 1962; Byerlee, 1967; Hoskins et al.,
1968; Jaeger and Rosengren, 1969; Dieterich, 1972; Scholz et al., 1972; Ohnaka, 1973).
Results from these studies suggest that the greater the surface roughness, the lesser the
tendency for stick-slip (Scholz et al., 1972), and also, thicker layers of gouge have less
tendency for stick-slip than thin layers (Byerlee and Summers, 1976). Figure 3.10 shows
the results of Dieterich (1978) that shows the effect of the three characteristics (normal
stress, stiffness and surface) on the transition between stable and stick slip for Westerly
granite. From this experiment, stick-slip clearly arises from an interaction of the
mechanical properties of the slip surface with the sample/machine system that exerts the
stress on the surface (Dieterich, 1978).

These studies clearly show that, for a given set of conditions (normal and shear stresses,
surface roughness), an unstable slip will become stable when the loading system stiffness

becomes large enough.
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An explanation of this phenomenon is given by Li (1987) in Figure 3.11. Figure 3.11a
shows a single degree of freedom spring-block model, with loading through imposed
displacement u,, and load transmitted through a spring of stiffness k. The block is
assumed to be rigid and the sliding surface of the block is govern by a slip-weakening
relation shown in Figure 3.11b. The block is loaded through a spring which is pulled
forward by the amount u,. The normal stress acting on the block, as well as the
temperature of the sliding surface, are assumed to remain constant during the sliding

process. The force equilibrium governing the system can be written as:

T=1 (3.57)
where T is the spring force. The load and load point displacement are related by:
T =k(u, —u) (3.58)

where u, is the displacement in front of the spring and u is the displacement of the block.
Combining these two equations gives:
t=ku, -ku (3.59)

which expresses the equilibrium of the system on any point of the unloading line.
However, for each unloading line shown, only its intercept with the t-u curve can be the
true equilibrium point since the sliding is governed by this constitutive relation. Thus a
series of equilibrium points A, B, C, D may be traced as u, is increased. The block
displacement (ua, ug, uc, up...), will accelerate faster than u,. For the t-u relationship
and spring stiffness k shown in Figure 3.11b, equilibrium can be maintained only up to
point E (when the post-peak slope of the block become larger in absolute values than k).
Instability sets in at E, when equilibrium can not be maintained, followed by slip
acceleration and rapid stress drop rate approaching infinity, as illustrated in Figure 3.11c.
Reestablishment of equilibrium can be at any of the points F, G or H. These points are
constrained by the fact that unloading of the spring must follow the unloading line EE' at
instability. Furthermore, the energy loss from the spring must be converted into work of

the sliding surface, which implies that:
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%(Ts +1y)(uy —ug)= _[.: t(u) du (3.60)

which is how the point H is defined. However, if the energy is partially lost through
seismic radiation (for example), then the final resting position may be at F or G. For a
stiffer spring (where the stiffness of the spring is always larger than the slope of the
block) and the same slip-weakening relationship (Figure 3.11d), the unloading lines are
steeper and no dynamic instability occurs. The stress may drop and the slip may
accelerate as in Figure 3.11e, but their time rate of change do not approach infinity and

the slip is stable.
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d)

;/\.vﬁ———
b) c)
1On Ty
¢ T . T

e)

)

Figure 3.1: The nature of discontinuities. a) persistent discontinuity, planar, smooth or
rough, closed; b) persistent discontinuity, planar, rough, not fully closed; c)
persistent discontinuity, uneven, closed or not fully closed; d) persistent
discontinuity, filled; e) discontinuities interrupted by rock bridging, closed;
f) discontinuities interrupted by rock bridging, opened or filled (after Wittke,

1990).
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Figure 3.2: Normal stress vs normal displacement curve for a joint (after Saeb and

Amadei, 1989).
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Figure 3.3: Comparison of joint normal behavior under mated and unmated conditions
(after Goodman, 1976).
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Goodman and Boyle, 1985, and Saeb and Amadei, 1989).
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Figure 3.5: Normal stress vs. normal displacement curves at different shear displacement
levels (after Saeb and Amadei, 1989).
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Figure 3.6a: Tridimensional surface describing the shear stress-shear displacement
relationship of a dilatant discontinuity as a function of the normal stress,
f(t,u,0) = 0 (after Fortin et al., 1990).

Figure 3.6b: Tridimensional surface describing the normal displacement-shear
displacement relationship of a dilatant discontinuity as a function of the
normal stress, g(v,u,5) = 0 (after Fortin et al., 1990).
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Figure 3.7:

Construction of the data file from constant normal stress direct shear test
results (after Fortin et al., 1988).
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Figure 3.8: Multi-linear approximation of a non-linear rock mass stiffness and
construction of the related part of the data file (after Fortin et al., 1988).
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Figure 3.9: Simplified logical diagram of the algorithm (after Fortin et al., 1988).
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Figure 3.10: Transition from stable sliding to stick-slip as a function of normal stress,
stiffness and surface finish for Westerly granite (after Dieterich, 1978).
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e)

Figure 3.11: a) Single degree of freedom spring-block model, with loading through
imposed displacement u,, and load transmitted through a spring of stiffness k.
b) Trace of equilibrium load and corresponding slips. c) Illustration of the
stress-displacement curve as transmitted by the spring (unstable slip). d)
Same situation with a stiffer spring. e) Illustration of the stress-displacement
curve as transmitted by the spring (stable slip). (after Li, 1987).
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CHAPTER 4
BOUNDARY ELEMENT METHODS

4.1 INTRODUCTION

In many engineering problems, it is necessary to assess some design conditions such as
stresses, displacements, groundwater flow, etc. To evaluate these, one can use analytical
solutions or, when the problem is more complex, numerical methods. There are three
broad categories of numerical methods to evaluate the response of a continuum to
loading: the finite element method (FEM), the discrete element method (DEM) and the
boundary element method (BEM). In the FEM and the DEM, the domain must be
defined (by a mesh or by elements) over a certain volume (or area) while with the BEM,
only the domain boundaries need to be defined. Figure 4.1a shows the classification of
numerical methods used to solve geomechanical problems. The relative advantages (and

disadvantages) of each method are presented in Table 4.1.
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Table 4.1: Relative strengths and weaknesses of numerical methods (after Hoek et al.,

1991)
Advantages Disadvantages
Boundary element Far-field conditions inherently Coefficient matrix fully populated
method represented
Solution time increases exponentially
Only boundaries require discretization | with number of elements used
Finite-element and Material heterogeneity easily handled | Entire volume must be discretized
finite-difference
methods Material and geometric non-linearity Far-field boundary conditions must be
handled efficiently with explicit approximated
solution techniques
. For linear problems, explicit solutions
Matrices are banded with implicit techniques are relatively slow
solution techniques
Solution time increases exponentially
When explicit solution techniques are | with number of elements used for
used, less skill is required from user implicit solution techniques
Discrete-element Data structures well suited to model Solution time seem much slower than
method systems with high degree of non- for linear problems
linearity from multiple intersecting
joints Results can be sensitive to assumed
values of modeling parameters
Very general constitutive relations may
be used with little penalty in terms of
computational efforts
Solution time increases only linearly
with number of elements used

4.1.1 Finite Element and Finite Difference Methods

From a practical point of view, these two methods are similar. The difference relies in
the way of solving the set of equations. Figure 4.1b shows the process that led to the
present-day finite element method with interesting references. In these methods, the
physical problem is modeled numerically by discretizing the problem region (i.e. dividing

the domain in small elements). These methods are well suited to solve problems
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involving heterogeneous or non-linear materials because each element explicitly models
the response of its contained material. However, since the domain must be modeled
entirely, these techniques are not perfectly adapted to handle problems with infinite

boundaries such as excavations in rock masses.

The finite element method has become very popular in many fields of engineering (the
term "finite element” appears to have been first proposed by Clough, 1960). Numerous
computer codes (2D and 3D) are available and have proven their reliability. The
literature on the subject is extremely abundant and many books have been published. The
interested reader is referred to the work of Zienkiewicz (1971, 1977; Zienkiewicz and

Taylor, 1989), Bathe (1982), and Reddy (1993).

4.1.2 The discrete element methods

These methods were developed to properly model ground conditions that are often
referred as "blocky" (that is where the spacing of joints is of the same order of magnitude
as the dimension of the excavation). Since the joints are much more deformable than the
blocks, then individual blocks may be regarded as rigid bodies. Table 4.2 presents a

summary of the development of the methods.
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Table 4.2: Development of discrete element methods
References

Distinct elements Cundall, 1971, 1974
Voegele et al., 1978
Cundall and Strack, 1979

Discontinuous deformation | Shi, 1988
analysis Shi and Goodman, 1989
Lin et al., 1994

Rigid body spring Kawai, 1980

Modified virtual stress Hamajima, 1993
Hamajima et al., 1994

Although discrete element methods have been used most extensively in academic
environment, it is finding its way in consultant offices and mine planners and designers as
well (Hoek et al., 1991). These techniques have become a useful tool for analysis in

blocky ground, especially in open pits.

4.1.3 The Boundary Element Methods

The BEM have been used in mining engineering and geomechanics for the past 20 years or
so. Over the years, the boundary element methods have become a useful tool for ground
control, mine planning and stress analysis of underground excavations in the rock mass.
This technique has been used to assist the engineer in many different applications such as:
the design of underground openings (e.g., Meek, 1985); pillar size determination and pillar
stability (e.g., Huang et al., 1985); evaluation of rock slope stability (e.g., Tomlin and
Butterfield, 1974); evaluation of the rockburst potential of underground openings (e.g.,
Simon et al., 1993); and the modelling of cracks and faults (e.g., Peirce, 1991). It has also
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been used to resolve problems such as: the effect of mining sequences on the redistribution
of stresses (e.g., Grant et al., 1993); the influence of geological discontinuities on the stress
distribution around openings (e.g., Wiles and Nicholls, 1993; Fotoohi and Mitri, 1996); the
behaviour of non-linear materials (e.g., Zipf, 1993); the behaviour of backfill material (e.g.,
Brechtel et al., 1989); the rate-dependent behaviour of a jointed rock mass (e.g., Crawford
and Curran, 1983); the plasticity of rock masses (e.g., Mukherjee and Chandra, 1985);
dynamic effects (e.g.. Crouch and Tian, 1988); drainage problems in geomechanics (e.g.,
Tomlin, 1973); and hydraulic fracturing (e.g., Vandamme and Wawrzynek, 1988).

The BEM can be divided in two categories, the direct method and the indirect method.

Both methods require solving an integral equation over a boundary surface. Table 4.3

shows pertinent references of the development of the BEM.
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Table 4.3: Development of boundary element methods in solid mechanics.
References

Direct formulation Shaw, 1966, 1969

Rizzo, 1967

Cruze, 1969, 1972, 1974
Cruze and Rizzo, 1968, 1975
Lachat, 1975

Lachat and Watson, 1975, 1976
Rizzo and Shippy, 1977, 1979
Brebbia and Dominguez, 1977
Brebbia, 1978

Brebbia and Ferrante, 1978
Brebbia and Butterfield, 1978
Telles, 1983

Henry, 1987

Indirect formulation Chen and Schweikert, 1963
Hess and Smith, 1964, 1966
Massonet. 1965

Oliviera, 1968

Butterfield and Banerjee, 1971
Watson, 1973

Hess, 1974, 1975

Tomlin and Butterfield, 1974
Banerjee, 1971, 1976

Crouch, 1976a, 1976b, 1979
Banerjee and Butterfield, 1976
Banerjee and Driscoll, 1976
Jaswon and Symm, 1977
Crouch and Starfield, 1983

More general reviews on the BEM can be found in Banerjee and Butterfield (1981),
Crouch and Starfield (1983) and Banerjee (1994).

[n this report, particular emphasis is given to the indirect method for its usefulness in non-

linear modeling.
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4.1.4 Hybrid approaches

The main objective of a hybrid method is to combine the above methods so as to
eliminate as many of the undesirable characteristics as possible while retaining as many
of their advantages as possible (Hoek et al, 1991). In this way, the rock mass
surrounding the openings may be modeled with finite or discrete elements while
modeling the elastic far-field conditions with boundary elements. Even though the idea
of coupling two numerical methods may have started with the work of Wood (1976), the
hybrid approach really developed with the work of Zienkiewicz et al. (1977; Kelly et al.,
1979), Brebbia and Georgiou (1979), Beer and Meek (1981), Brady and Wassyng (1981)
and Lorig and Brady (1984). More examples of these coupling methods can be found in
Atluri et al. (1983) and Zienkiewicz and Taylor (1989).

4.2 LINEAR ELASTICITY

It is important to state the fundamental solutions used in geomechanics. The simplest
form is linear elasticity. Stresses in a rock mass in static equilibrium must satisfy these

three differential equations (e.g., Timoshenko and Goodier, 1970):

ds,, 9,

XX A + X =0
do,, Oc, do, o al
x T oy T T &
éo,, 0G0, &

e e h
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where o;; are the stress components and fB; are the body forces acting in the i direction.

Furthermore, the strain tensor can be defined as:

_aux __au)' _auz
€ =5 Ew = oy €z =5
l aux au!’) 1(5\1, auz) l(aux auz)
8"'_2(6_\'+8x 8’1-2 az+ay eu-z az+ax 4.2)
€x =€,y €5 =E, £, =F,

where u; is the displacement in the i direction; the normal strains €;; represent the change
of length per unit length in the i direction; the shear strains €;; (i # j) represent half the
change of right angle originally parallel to the i and j axis.
The strain and stress can be related by the generalized Hooke's law:
1
€, = E[c“ --v(crW +o,z)]

€, = é[ﬁn -V(G“ +°zz)]

1 (4.3)
e = Lou ~vloy +0.]

1 1 1
exy =.2—60’xy Eﬂ = EE yz €z ™ E x2

with
E
= - 4.4

G 2(1+V) 44

where G is the shear modulus, E is the Young modulus and v is the Poisson's ratio. From

Equations 4.3 and 4.4. stresses can be expressed as a function of strains:
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T 12_ 2v ve.. +v(€” +8n)]

Oy = I?-CZ}V[(I B V)EW +v(€“ +£n)] (4.5)
2G

o, = Y:-z—v[(l Ve +v(s:yy +8,,)]

It is easier to write these equations with an index notation where the following two
conventions are used: (i) a repeated literal index in any term of an expression implies
summation; (ii) a comma preceding an index denotes partial differential with respect to

the variable represented by that index. This example will help clarify the notation:

o;n, = chlnj =0;n, +0,Nn, +0;;Nn;

axl
Then, Equation (4.1) can be rewritten as:

o, +B, =0 (4.6)
and the strain tensor as:

€; = '}(uhJ + u“) 4.7

The stress-strain relations can be written as:

g = —15[ M au] 4.8)
[ v 1
2G[s, + ud, | (4.9)

where §;; is the Kronecker delta, which is defined by:
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s {1 if =]
5700 if i ] 4.10)

.3 THE FICTITIOUS STRESS METHOD (FSM)

The fictitious stress method is considered as an indirect method of boundary elements.
This method uses the solution of Kelvin's problem for plane strain. Sections 4.3 to 4.5

are largely taken from Crouch and Starfield (1983).

4.3.1 Kelvin's problem for plane strain

Figure 4.2 illustrates the problem that was solved by the Scottish physicist William
Thompson (who later became Lord Kelvin) in 1848 (Davis and Selvadurai, 1993). A
force F; = (Fx, F\) is applied along the z axis in an infinite elastic solid. The components
Fx > 0 and F, > 0 have dimensions of force/length (e.g., N/m). The solution to this

problem can be expressed in terms of a function g(x,y), defined by:

g(x,y)=r_t(_Tl_—\—,)-ln(\/x2+y3) “.11)

and the displacements can be written as:

F
" = ZF‘G [(3-4v)g-xe. ]+ 5&]-ve.] 4.12)
u, = 5%[_\'3.:'] +2_z}. (3_4V)g_yg'y]

In the same manner. stresses are given by:
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o, =F, [2(1 -v)g.x - xgx‘] + Fy[ng‘y - yg.“]
c, = F,[2vg‘x - xg.yy] + FY[Z(] —v)g_y —yg_”] (4.13)

Oy = Fx[(l-zv)g.y -xg.xy] +Fy[(l—2v)g" _yg.xy]

The derivatives of g(x,y) are found from (4.11) and are given by:

-1 X
Bx = 4n(1-v) x° +y?

-1 y
By = an(l-v) X3 +y’

1 2xy (4.14)
Bxy = an(1-v) (xl +y2)z
1 x® —y?

g_xx =—g~}:"

= 47[(]—\/) (xz +y2)2

Note however that the displacements in this solution are unbounded at large distances

from the origin due to the logarithmic function in g(x,y).

4.3.2 Constant tractions over a line segment

By integration of Kelvin's problem, one can solve the problem of constant traction t, = Py

and t, = P, applied to the line segment [x| <a, y =0 in an infinite elastic solid. If the

line segment is divided into elements of length d& (as shown in Figure 4.3), the resultant

force (per unit length perpendicular to the x, y plane) on the element centered at point

x=§ y=0 isthen:
F(9=Pd (4.15)
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where i represents either x or y. The solution can be found by substituting forces Fy (§)
and Fy (&) into Equation (4.12) and (4.13), replacing x by x-£ and integrating the resulting

expressions with respect to £ between -a and +a. If a function f{Xx,y) is defined as:

fx,y) = | gx-gy)de .16)
then:
P,
u,‘=2G[( f+vf]+ [yf]
P p “4.17)
uy=2é[—yfx]+§y6(3—4v)f—yfy]
and

« =P[(3-29f, +yf, |+ P [2ve, +¥f, ]
o, =P [(1-2v)f, -yf, |+ P,[2(1-V)f, - ¥f, ] (4.18)
o, =P [2(1-V)f, +yf, ] +P,[(1-2V)f, - yf, ]

The integral in Equation (4.16) can then be evaluated by:

ry{arctan(x a) arct )) (x- a)ln\/[(x a)2+y]|

— | (4.19)
4n (l )L+(x+a)an[(x+a) +y]

f(x,y) =

The derivatives of f(x.y) are then given by:
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RN e I

-1
£, = 4n(1-v)

y
Larctan ————arctan

Xx—a X+a
LTy y ] (4.20)
£ T an(1-v) (x-a)’ +y?  (x+a)’ +y’
f oeof = 1 l— X-a X+a ]
=TT T an(1-vl(x—a)? +y?  (x+a) +y?

Here again, the displacements are unbounded at large distances from the origin, because
of the logarithmic terms in f(x,y). Hence, the displacements are specified only in a
relative sense, meaning that in any particular problem, a reference point will be selected

and the displacement will be measured with respect to this point.

4.3.3 Numerical procedure for the FSM in geomechanics

The solutions presented in section 4.3.1 and 4.3.2 can be used to solve numerically
general mixed boundary value problems in elasticity. A stress boundary value problem is
shown in Figure 4.4a. The cavity is assumed to be long so the analysis can be considered
as plane strain. The local coordinates n and s are respectively perpendicular and tangent
to the boundary C: therefore, they vary from one point to the other. Suppose that the wall
of the cavity is subjected to a uniform normal stress o, = -p (negative = compression)
with no shear stress (o, = 0). What needs to be determined is the displacements and

stresses in the body due to that loading.

To solve this problem, we can proceed as follows. The boundary C is approximated by N

straight line segments. joined end to end as shown in Figure 4.4. The length of a typical
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boundary element i is denoted as 2;. When the elements are small enough, the
approximation of C will be close. It then may be considered that each element is
subjected to a normal stress o, = -p along its entire length and that 6; = 0. The boundary
conditions become:

clr., =-p. tl:l', =0 for i=1toN (4.21)
The problem can then be solved numerically using the model shown in Figure 4.4b. The
dashed curve C' has the same shape as C used to define the boundary. However, C' does
not represent a boundary but marks the locations of line segments that are coincident with
the boundary elements of Figure 4.4a. Then the constant resultant normal and shear

stresses are applied to each element along C'. For element j, the shear stress and normal

J j
stress applied to this segment are denoted as P, and P,.

The notation P is used instead of & to point out that the stresses applied are not the actual

stresses along C'.

Using the solution found in section 4.3.2, and accounting for the orientations of the line

1 1
segments, the actual stresses o; and G, at the midpoint of each element of curve C' can be

computed, fori = 1 to N. The results can be written as:

; i o)

G, = iAjs I;s + AJsn Pjn L
S f i=lN (4.22)

i:A P + A . P J

i
where A etc., are the boundary stress influence coefficients for the problem. The
i
coefficient A_, for example, gives the actual shear stress at the midpoint of the i"
i J
segment (o) due to a constant unit normal stress applied to the f" segment (P, =1).
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j J
If one can find the applied stresses lj’, and P, forj =1 to N such that the actual stresses o,

and clr.. in Equation (4.22) have the values specified in (4.21), then the physical problem is
solved in an approximate manner. Combining the last two equations, then:

0= ZA B+ A P,
j=1 .
« s, wy ,f i=lw©N (4.23)
—p=ZAnsPs+zAnnpn
j=1
j >
. Ps and

i=1
which is a system of 2N simultaneous linear equations with as many unknowns

J

P, are fictitious quantities introduced to find the numerical solution of the problem and
have no physical meaning. Once (4.23) has been solved, the displacements and stresses

at any point in the body can be found.

The method to solve the problem consists of five separate steps, namely

(1) Define the locations of all boundary elements and specify displacement or stress

boundary conditions for each one.
(2) Compute the boundary influence coefficients, and set up the appropriate system of

simultaneous linear equations by considering the boundary conditions at each

element.
(3) Solve the system of equations from step 2
(4) Compute the displacements and stresses at each boundary element

(5) Compute the influence coefficients for specified points within the region of

interest, and hence compute the displacements and stresses at these points
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4.4 THE DISPLACEMENT DISCONTINUITY METHOD (DDM)

In many rock mechanics problems, thin, slit-like openings or cracks are involved.
Because of the effects of elements placed along one crack surface are indistinguishable
from the effect of elements placed along the other side, the fictitious stress method can
nct be used to solve this kind of problem. Another method, the displacement
discontinuity method (DDM), was developed to solve this type of problem. This method
is based on the analytical solution to the problem of a constant discontinuity displacement

over a finite segment in the x, y plane of an infinite elastic solid.

4.4.1 Displacement discontinuity in an infinite solid

The problem of a constant displacement discontinuity over a finite line segment in the x, y
plane of an infinite elastic solid is specified by the condition that the displacements must
be continuous everywhere except over the line segment in question. The line segment
may be chosen to occupy a certain portion of the x axis, such as |[x| <a, y =0. Ifthis
segment is considered as a crack, the two surfaces can be distinguished as one being on
the positive side of y = 0 (y = 0.), and the other on the negative side (y = 0.). From one

side to the other. the displacements undergo a constant specified change in value
D, = (Dx, D_v). The displacement discontinuity D; can be defined as the difference in

displacement between the two sides of the segment such as:

D = ui(xl’ 0-) - u'(x,, 0,) (4.24)

or
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(x,0.)~u,(x,0,)
(x, O_)— uy(x, 0‘)

i

DX uK
(4.25)
DY u)’

Since uy and u, are positive in the positive x and y coordinate directions, Dy and D, are
positive as shown in Figure 4.5. It should be noted that with this formulation, there can

be an overlap of surface (Dy > 0) which is physically impossible.

The solution to the problem was given by Crouch (1976a, b). The displacements and

stresses can be written as:
u, =D,[21- V), - yE,. |+ D,[-(1- 29, - ¥£,,
(4.26)
l.ly = D,‘[(I - zv)f.x - yf.xy] + Dy[z(l - V)f.y - yf)‘y]

and
6w =2G(D,[2f,, +¥1,,,]+D,[f,, +1,,])
6,y = 26(D, [~y | + D, [, - ¥, ]) @27)
o, =26(D,[f,, +¥f,,]+ D, [y, ])

where f(x, y) is the same as in Equation (4.19):

r ]
oot |l - ) T
4"(1—V)L+(X+a)l"\ﬁ(X+a)2+y3] J

The derivatives of the function are given by Equation (4.20). The third-order derivatives

are.
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B h

¢ e L x-al-y'  (x+a)-y?
xyy Xxx 43(1_V)_{(x—a)2+)’2}2 {(x+a)2+y2}2-
: - (4.28)
] . _ 2y X-—2a _ X+a
o xxy 4“(I—V)_{(x—a)z+y2}2 {(x+a)2+y1}2J

4.4.2 Numerical procedure for the DDM

The numerical procedure for the DDM is illustrated in Figure 4.6. The crack presented
here is curved, but it is assumed that it can be represented with sufficient accuracy by N
straight line segments, joined end to end. If the crack surfaces are subjected to stress,
there will be a relative displacement from one face to the other. The DDM is a way of
finding a discrete approximation to the smooth distribution of the real relative
displacement. Each subdivision in Figure 4.6a is a boundary element and represents an
elemental displacement discontinuity. Each element is defined with respect to local

coordinates s and n. Figure 4.6b shows a single elemental displacement discontinuity at

the /" segment of the crack. The discontinuity components are denoted lj)s and IJ),, and

are defined by:

6 I J
s= U Tl (4.29)

J J
where u; and u, are the shear and normal displacement of the fh segment of the crack,
with reference to the positive and negative crack surfaces. These local displacements are

the two components of a vector, and they are positive in the positive direction of s and n.

j i
Then, D, is positive if the crack surfaces displace toward one another (closure). D is

positive if the positive surface moves to the left (or s negative) with respect to the
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negative surface. These are best illustrated on Figure 4.6b, where the displacements are

positive.

The shear and normal stresses at midpoint of the i/ element in Figure 4.6b can be

expressed in terms of displacement discontinuity components at the ™ element as

follows:

= i&s D, + ZA,.. D, L
-z 6.,J

;-I

i=1toN (4.30)

i
where A etc., are the boundary stress influence coefficients for the problem. The
i
coefficient A .., for example, gives the normal stress at the midpoint of the /* segment

1 . . )
(o) due to a constant unit shear displacement discontinuity over the j/* segment (D = 1).

When the stress values are specified for each element of the cracks, then Equations (4.30)

are a system of 2N simultaneous linear equations with 2N unknowns, namely the

elemental displacement discontinuity components Il), and b,, fori=1toN. When the
equations above have been solved, the displacements and stresses at designated points in
the body can be found by using the principle of superposition. The displacements along
the cracks in Figure 4.6a are given by:

i g
s+ ZBm L

j-l

= Zan D, + Zﬁun DnJ

J=1 =1

i=1toN (4.31)

y . . .
where B.. etc., are the boundary displacement influence coefficients for the problem.
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4.5 APPLICATION OF THE BEM TO ROCK MECHANICS

Problems in rock mechanics usually imply bodies that are subjected to an initial state of
stress, contrary to most problems in applied mechanics. Before an excavation is created,
the rock mass is subjected to initial stress due to the gravity, the Poisson effect, and
tectonics. When an opening is created, the initial stress state is disturbed. The total

stresses ©j; at any point in the rock mass can then be represented as the sum of the initial

stresses (aij)o and the induced stresses o';; due to the opening:

o, =(o,), +e; “.32)
The displacements can also be represented in the same manner:
u, =(u,), +u (4.33)

Usually the initial displacements (u;)o are considered nil, so the total and induced

displacements are the same.

This kind of problems involving underground excavations in rock masses can be solved
in three steps:

(1) Postulate the initial state of stress;

(2) Define and solve the induced stress boundary value problem;

(3) Add the induced stresses to the initial stresses to find the total stresses in the rock.

This method of superposition is valid when the material is linear elastic. The definition
of the induced stress boundary value problem is eased by the introduction of the concepts
of initial tractions (t;)o, induced tractions t'; and total tractions t;. For a plane with outward

normal #,, the relationships between tractions and stresses are:
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t,=o;n,
(v, =(°ji)o“j (4.34)
t; =o;n;
then:
t=(t), +t. (4.35)
and
ty=t,—(t,), (4.36)

Equation (4.36) is used to specify traction boundary conditions for the induced stress
problem. Once the boundary conditions have been defined, the induced stress problem

can be solved.

4.5.1 Elastic joint elements

For modeling purposes, a joint can be considered as a long, thin crack with a
compressible filling. A segment of the joint can then be modeled as an elemental
displacement discontinuity whose opposite surfaces are connected by a spring, with the
normal and shear stiffnesses of the spring chosen to be representative of the properties of
the joint-filling material. The values of the displacement discontinuity components at a

joint element will then be related to the normal and shear stresses acting on the element.

This method assumes that the element obeys simple one-dimensional stress-strain
relations for compression and shear. These relations are illustrated on Figure 4.7. A
single joint element is represented with two degrees of freedom, and its thickness 4 is

considered small compared to its length. Stresses shown here are total stresses, and

106



Chapter 4 Boundary element methods

hence, the deformations of the joint must be considered in two parts, initial and induced.
If it is assumed that the initial deformations are zero and that the joint element deforms

only in response to the induced stresses o, and o) , then the induced normal and shear

xy?
strain are given from Equation (4.2):
ou;
€, = P
. 1{du, du}
=23y " x

If it is assumed that the element is compressed by a constant amount along the x direction,

then du’, /dx = 0 and the equation can be rewritten:

o uy(x,hy2) - uy(x.~b/2)
b2 4 = h
437
wlon2) - ulxow2) @3
Bar = 2h

When h is small, the numerators of (4.37) are equivalent to displacement discontinuity

components —D/, and — D', so that the displacements are given by:

Di
€ == h
4.38
b (4.38)
Fx T Top

If the joint filling behaves in a linear elastic fashion with Young's modulus Eq and shear

modulus Gy, then the induced normal and shear stresses and strain are related as follows:

G;'y = EOS;y =-E, Ty
D’ (4.39)
o, =2G.g;, = -G, h‘

which can be written in function of the » and s coordinate system:
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D,
G:l - EO h
D! (4.40)
=G
or
o) =-k,D,
(4.41)
O'; = _kles

where k, and k; are the normal and shear stiffnesses of the spring of Figure 4.7.

4.5.2 Numerical procedure for rock mechanics problems

The previous results can be used to model problems in rock mechanics. For example,
consider the problem of an underground excavation intersected by a joint. The
excavation boundary can be modeled by fictitious stress elements and the joint by the
special compressible displacement discontinuity elements. If there are N elements
altogether, with M fictitious stress elements and N-M displacement discontinuity

elements, then the induced stresses at any element are given by:
i Mo i Ny uo
=D (AxPi+AnP.)+ D (AxD's+An D)
. o e (4.42)
1 Moy T Noj 3 y i
crln=Z(4AlnsPs + A Pn)+ Z(Ans D'. +Anm D'n)
= =M+l
where /U\ss, etc., are the boundary influence coefficients. The total stresses at element i
are obtained by adding the initial stresses and the induced stresses. The first 2M

equations in the system are then given by:
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i N i
-(Cs)o =Z(Ass *s +Am kn)
. e 1<isM (4.43)

1 N i i
—(Cn)o = Z(Ans X:s+Anm Xn)

=l

and the remaining 2(N-M) equations are given by combining (4.41) and (4.42):

' 1 N g J ] J

0=ks X,+ D (As X, +Au X,)
T _ M+1<is<N (4.44)
1 ' U] J y )

0=ka X,+ 2 (As X

-

X. =P and X.=P. for 1<j<M

where (4.45)

X. =D and X.=D'. for M+l<j<N
These equations can be solved by standard numerical methods.

In the precedent equations, it was assumed that no deformations occurred on the joint
before the creation of the excavation. However, the initial stress field may have been
distorted before the creation of the opening, due to deformation of the joint (or fault) in
geological time under the action of the far-field stresses. Assuming that this possibility
exists, then the initial stress would include induced components due to initial fault
deformations. Then:
(0;) =(0;)s +(5})0 (4.46)

where (g, ); are the far-field stresses and (o7 ), are the initial induced stresses. Similarly,

the initial displacements are given by:
(U)o =(u,)g +(uj), 4.47)

where (u;), are the initial induced displacements due to initiali fault or joint

deformations, and (u,); are assumed to be zero.
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The total initial stresses at element / are then given by:

(6+)0 = —ks(Ds),

1 i (4.48)
(©n)o =—ka(Dn),
and the initial induced stresses at element i are given by:
t N,y ij :
(0's)o = Z[Au(Ds)o +Aan(Da),]
. (4.49)

i N, i ij i
(@2)0 = 2[Au(D)o + Am(Da)o]

Combining these last equations leads to:
1 v N i i
—(05)5 =k,(Ds)y + D_[As(Ds)y + Aw(Dn),]
, = - ) fori=1toN (4.50)
t 1 1 t U] 1
—(©n)s =k, (Ds)o+ =D [Aws(Ds)g + Am(Da),]
j=I
i i
The stresses (o;), and (o,), are known, or postulated so this brings a system of 2N
equations to find the joint deformations. The initial induced stresses and displacements at
any point in the rock mass can be computed in the usual way, and Equations (4.46) and

(4.47) are used to specify the values of (oij)o and (u;)o at these points.

4.5.3 Mohr-Coulomb elements

It was assumed in the previous section that the filling is behaving as linear elastic. In
reality, joints often behave inelastically. To include inelastic deformations, one can

impose a constraint such as:

110



Chapter 4 Boundary element methods

Icirsi sc+ (-<i:u)tan$ (4.51)

where ¢ and dla are the cohesion and angle of friction of the fill material. A joint element
subjected to such a constraint is called a Mohr-Coulomb element. This type of element
will behave like a joint element but the total shear stress can not exceed the value
specified by Equation (4.51). This means that elements are allowed to undergo a certain

amount of inelastic deformations or permanent slip.

As it was shown in Chapter 3, slip along a joint is a non-linear, path-dependent
phenomenon. Thus, it must be modeled by an incremental process. One problem arises
however, because, in rock mechanics, the load does not start from zero toward the final
load value, but rather starts from a certain value and then reaches its final value. One way
to take this into account, is to model the creation of the excavation by incrementally

relaxing the boundary tractions from their initial value to zero.
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Figure 4.1b: Process of evolution which led to the present-day concepts of finite element
analysis (after Zienkiewicz and Taylor, 1989).
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Figure 4.2: Kelvin's problem of a force F; applied in an infinite elastic solid in plane strain
(after Crouch and Starfield, 1983).
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Figure 4.3: Integration of Kelvin's solution (after Crouch and Starfield, 1983).
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Figure 4.4: The boundary element method for a cavity problem. (a) Physical problem;
(b) Numerical model (after Crouch and Starfield, 1983).
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Figure 4.5: The constant displacement discontinuity components Dy and Dy (after Crouch
and Starfield, 1983).
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Figure 4.6: Representation of a crack by N elemental displacement discontinuities (after
Crouch and Starfield, 1983).
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Figure 4.7: Representation of a joint element (a) compression; (b) shear (after Crouch and
Starfield, 1983).

116



CHAPTER S
DEVELOPMENT OF A NON-LINEAR CONSTITUTIVE MODEL FOR ROCK
JOINTS AND FAULTS

5.1 INTRODUCTION

As it was shown in section 3.6, the fault-slip phenomenon can be explained by comparing
the post-peak behavior of the joint and the stiffness of the loading system. Thus, it is
essential for the constitutive model used to follow as closely as possible the post-peak
behavior of the joint. A good progress in that domain was given with the model of Saeb-
Amadei presented in Chapter 3. However, in cases of strain softening, this model cannot
always follow the non-linear behavior of the joint, especially when the normal stress is
constant. Figure 5.1 illustrates the limitations of the Saecb-Amadei model in situations of

strain softening.

From Figure 5.1a. one can see that the Saeb-Amadei becomes a linear model when the
normal stress stays constant. Since it is the strain softening behavior that may cause
unstable slip along a discontinuity, there was a need to develop a model that could follow

the non-linear behavior of the joint.
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5.2 DEVELOPMENT OF A NEW NON-LINEAR CONSTITUTIVE MODEL
5.2.1 Shear stress-shear displacement relationship

To obtain a non-linear relation, several formulations could be used. The formulation
chosen here has the general form of:

F(u)=t=a+bexp(-cu)-dexp(-e u) (5.1)
where t is the shear stress in MPa, u is the shear displacement in mm and a to e are the
model parameter with the condition of ¢ <e (a, b, ¢, d, e >0). A mathematically similar
stress formulation was proposed by Chapuis (1990) for granular materials. This
formulation is based on a statistical approach to relate deformation to the transformation
of the internal structure (Chapuis, 1990). Figure 5.2 shows the type of curve that can be

obtained from Equation 5.1.

From Equation 5.1, some conclusions can be drawn. At u=0, the shear stress must be nil,
SO one can write:

F(0)=a+bexp(—ce0)—dexp(~ce0)=0 (5.2)
or a+b=d (5.3)

At large displacement u >> 0, the residual strength (z;) must be attained and Equation 5.1
leads to:

Flu>>0)=1, =a (5.4)
thus a=r, (5.5

Moreover, since a = 1,. we must have at u,:

F(u,)=a+bexp(-cou,)~dexp(-eou,)=1, (5.6)
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then bexp(-cu, )-dexp(-eu, )=t -a=0 (5.7)

To properly capture the t-u curve, one must impose that c<e, so the exponential of (-e u;)

will tend toward zero much faster than the exponential of (-c u;). From several curves

shown in Appendix. it appears that 0.07 can be considered a small enough value of the

exponential (in a first approximation) to be considered negligible, then we obtain:
exp(-cu, ) = 0.07 (5.8)

and c=5/u, 5.9

The general equation can then be rewritten by:
= a+b exp(— cu)—d exp(-eu)
Su

=1, +[d-1,] ex[:{- U—J —d exp(-eu) (5-10)

- rr[l - exp[— i—“)] +rd[exp(— —SJU-J —exp(-e U)]

At the peak displacement u,, we have a maximum of the function (peak strength). The

derivative of F(u) is given by:

£(u)=——D—(d—1:,)exp(—-S—Ll)+dee>q:>(—e u) (5.11)
Ju u, u,
If we have a maximum of the function at up, then the derivative must equal zero and:
5 5
9F(u) =-i(d—t,)ex 2t +deexp(-e up)=0 (5.12)
au u-u, ul’ ul’
Su
i(d—t,)exp(— —") =deexp(-e up) (5.13)
ul’ uf
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( Su

d . 5

eu

r = r = —_— 5.14
5(d-t,) expl-eu,) exp[up(e u, )] 14)
deu, 5

m;—;:——exp{u{e—:]il:O (5.15)

At peak displacement, F(up) must be equal to the peak strength tp:
F(u,,)=a«l»bexp(—coup)-dexp(—eou',)=1:p (5.16)

Su Su
T, = r,[l —exp(— d J:I + dl:exp(— " 2 J - exp(— eu, ):I (5.17)
uf T
Su Su
thus 1, —t,[l —exp(—- -—"—}J - d[exp(-— " 2 ]—exp(- eup)] =0 (5.18)
uf 4
{ [ 5u, H
T, - T |l—exp -
ul’
(5.19)

p( _Sﬁ]_exp(_eu,, )
u

\ T

or d=

We then have two non-linear equations (5.15 and 5.18) to solve to find the unknown
parameters d and e. This set of non-linear equations can be solved by standard iterative
methods (e.g., Gerald and Wheatley, 1989). However, proper care must be taken when
solving Equation 5.15 because it has two roots of e, one being lower than c. Then one
root violates the initial condition (c < e). Figure 5.3 shows Equation 5.15 given as a

function F(e).
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To solve Equations 5.15 and 5.18, the Newton method can be used (e.g., Gerald and
Wheatley, 1989). First. an initial value of d (dini;) is obtained by the following procedure.
If e >> ¢, then Equation 5.17 can be reduced to:

T, - a[l - exp(— cu, )] - d[exp(- cu, )] =0 (5.20)

T - 1- _ SuP

d. = T ~ a[I ‘CXP(— cu, )] ) p T ex _ur
init e-‘(p(- CUP ) ex‘{- —532')

u

r

then (5.21)

which leads to a first approximation of d. This approximation is then used to solve
Equation 5.15. The Newton's method to solve non-linear equations is given by (Gerald
and Wheatley, 1989):

f(x,)
xi»l =x| -
f'(x,)

(5.22)

where x;. is the value of the next step and x; is the value obtained for the previous step.
This method is known to converge rapidly, once an initial value is given to start the
process. It could be shown that the root to which the method will converge depends of
the initial value of x. As we can see on Figure 5.3, F(e) passes through a maximum
before getting to the wanted root (the larger one). Then, if the initial value used for e is
larger than the value of e at the maximum, the method will always converge towards the
larger root. Hence. the initial value of e (let it be ej,;1) must be larger than e, the value at
the maximum of F(e). We know that the derivative of F(e) at e, will equal zero, then
from Equation 5.14 we get:

OFE)_d | o —o)l=
~ "o U e.\p[up(e c)] 0 (5.23)

The solution leads to ej:
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e.=—— "7 ,¢ (5.24)

Since ey must be larger than e, if we add one unit to e,, we get an initial value that will

always converge towards the wanted root:

ln( d )
bcup}
e =———>+cCc+1 (5.25)

u,

Then, using Equation 5.22. we get:

de, /bc - exp[u o (e,- - c)]

=e. — 5.26
Cin =5 d/be—u, explu, (e, —c)| (>.26)
The model can also be expressed in an incremental formulation with
k., =%= deexp(-e u)- bcexp(-c u) (5.27)
ot
k =-—=0 5.28
- =Sy (5.28)
Then dr=k,dv+k_ du=k_du (5.29)

The different terms of the model are summarized in Table 5.1.
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Table 5.1: Parameters terms of the new model

Parameter Value Condition
a T
b d-a
c 5/u, c<e

Non-linear equations to be solved

o, —afi~explcu,)] “{' '°"'{' L)J

d= -
exp(— cu, ) - exp(— eup) ex;{'— El) - exp(— €u )
p
1. -1 .ll—-ex _5up
. v, —afl—expl-cu,)] * .
WIth dll’lll = =
exp('- cup ) exp — Sup
ul’
d
% explu, (e )]0
In d
(bcupJ
with e, =———=+c+l

As it can be seen in Table 5.1, all the model parameters can be determined from four joint
parameters easily determined in laboratory, which are the peak and residual strength (z;,
1,) and the peak and residual displacement (u,, u;). The peak strength can be determined
from any peak strength criterion such as the Ladanyi-Archambault model as modified by
Saeb (1990) and given by Equation 3.15. The residual strength is then given by Equation
3.50. Both peak and residual displacements are considered to be constants for a given

joint. The residual displacement is considered to be the displacement at which the
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dilatancy level remains constant. If Equations 3.15 and 3.50 are used to define the
strengths, then the model parameters are defined from these joint physical parameters:

Bo: ratio of the residual to peak strength at very low normal stress (0 <Bg< 1)

io: average angle of the asperities

So: cohesion of the rock walls (using a Mohr-Coulomb criterion)

up: displacement at peak strength

u,: displacement at residual strength (displacement at which dilatancy stops)

¢o: friction angle of the rock walls (using a Mohr-Coulomb criterion)

¢,: friction angle of the joint

o,: applied normal stress

or: brittle-ductile transition stress for the asperities (usually taken as the uniaxial

compressive strength)

Finally, the model can be expressed by:

=1 +[d-1] exp{—b—uJ—dexp(— eu) (5.30)
ul’

Figure 5.4 shows the comparison between the model and a few laboratory test results
under constant normal stress. As it can be seen on Figure 5.4, the model shows a good
correlation with the data. In all, 27 curves were plotted to evaluate the correlation with
data taken from literature (other curves are given in the appendix). These comparisons
showed a correlation factor (R?) of 0.900 (a factor of 1.0 gives an exact correlation).
Moreover, the Saeb-Amadei model gave a correlation factor of 0.739, which
demonstrates clearly that the new model can follow more closely the behavior of the joint

under constant normal stress. especially in the post-peak region.
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5.2.2 Normal displacement - shear displacement relationship

An exponential formulation can also be used to describe the normal displacement (v) -
shear displacement (u) relationship. This relationship can be given in the form:
v=p+B, exP(- Bzu)‘B4 exP(‘ Bsu) (5.31)

where v is the normal displacement, u is the shear displacement and 3, to Bs are model
parameters. Figure 5.5 shows the type of curve that can be obtained with such a
formulation as well as the curve obtained from the Saeb-Amadei model (Equation 3.28).
However, it is sometimes difficult to relate all the parameters of Equation (5.31) to
physical parameters that can be easily obtained through standard laboratory tests. For
such reason, a simpler form of the relation is adopted (neglecting initial closure of joints):

v=p, -B, exp(- ﬂsu) (5.32)

The parameters B to B3 can be determined from the following. From this formulation,

we get at u = 0 (no shear displacement):

v=_,, -BzexP(—Bs *O)
=B, - B,

The normal displacement at u = 0 must then be a function of the normal stress to reflect
the normal behavior of the joint. If the model proposed by Bandis et al. (1983) is used
(Equation 3.1), then at u = 0, we also have:
G, V,
y=—=_m
km vm - ol‘l
where 6, is the normal stress. V, is the maximum closure of the joint and k; is the initial

normal stiffness of the joint. Combining the last equations leads to:

By —P, =—=—m (5.34)
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and fB,=8, —FG—\'}—_'_"? (5.35)

From Equation 5.32, it can be seen that at large displacement (u >> 0), the normal
displacement will be equal to 3; (which will represent the maximum normal displacement
Vm). If we consider that the Saeb-Amadei model gives a good approximation of this
maximum normal displacement, then we can use the Saeb-Amadei formulation to
evaluate ;. The maximum normal displacement with the Saeb-Amadei formulation is

given by using Equation 3.28 at u = u, (where the dilatancy level remains constant). Then

we get:
k,
: \Y
B, = u, (1- ""] tani, + —o = (5.36)
o; k, V,-oc,

where iy is the angle of asperities of the joint and k; is the constant of the Ladanyi-

Archambault peak strength model (and considered to be equal to 4).

The last parameter (3) can be related to the residual displacement (u;). Based on several
test results obtained from literature, it was found that B3 can be given by:

Bz (5.37)

r

Figure 5.6 shows the comparison of Equation 5.37 with the value obtained by curve

fitting on 15 tests found in literature (these curves are given in appendix).

Combining Equations 5.35 to 5.37 into Equation 5.32, we get:
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k>
v=iu, l-c.n tanio+_°"_v'"_ 1 —ex _15u + Gy Va ex _L5u
o k,V, -0, u, k,V, -o, u,
| - 1.5 \
=[ur(1 ~Za ) tanio}[l —exp(- : ")]+ %o Vm (5.38)
O u, km'vm -c,

An incremental formulation can also be given by:

do, =k, ,dv+k_du (5.39)
with
oc
k, = L= o 1 (5.40)
aV k2ur( n J ’ kniv:l
1- tani, + 3
o.T cYT (knivm o'n)
and
k, = oo,
du
ky
c G .
I.S(kniVrn —cn{]_ n J{(k,,vm —cn{u,[ -_") tani, —v}ﬂanmJ (5.41)
Lo g Cr

g

o Ko lVa, vk Ve = - + He, Vs -1 |

5.3 EVALUATION OF FAULT-SLIP ROCKBURSTS POTENTIAL

As it was mentioned in the presentation of the relative stiffness approach (section 2.3), to
establish if failure will be violent or gradual, one needs to compare the post-peak stiffness
of the failed element with the stiffness of the material surrounding this failed element.

Thus, in cases where a slip along a discontinuity is anticipated, the stiffnesses that need to
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be determined are the shear post-peak stiffness of the discontinuity and the shear stiffness
of the surrounding rock mass. A proposed method to obtain these stiffnesses is detailed

in this section.

5.3.1 Shear post-peak stiffness of a discontinuity k',

Lets consider a direct shear test on a rock discontinuity as illustrated in Figure 5.7a. As it
was shown in the previous section, the model developed can reproduce fairly well the
behavior of the discontinuity for this situation (Figure 5.7b). Thus, the model can be used
to evaluate the post peak stiffness of the discontinuity. The value that needs to be used
for the comparison will of course be the largest value possible (in absolute value) of the
slope in its post-peak phase, or the smallest value since the slope is negative in the post-
peak phase. In the case where the normal stress stays constant, the value of the slope is
given by Equation 5.27:
k. =deexp(-e u)-bcexp(-c u)

The smallest value can then be determined by the derivative of the slope and given by:

% = bc? exp(~c u)—de’exp(-e u) =0 (5.42)
Solving this equation will lead to the critical displacement u.i; where the slope will be the
smallest:

2/ 2
o = Inlde*/bc) 5.43)
(e-c)

It could be shown that since the maximum slope given by the formulation of the model is
at the origin (u = 0), that the critical displacement obtained by Equation 5.43 is always a
minimum. Then, computing the value of the slope at u.; will lead to the smallest value

of the slope given by:
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(ki ). =k, =deexp(-e u,,)-becexp(-cu,,) (5.44)

Special attention must be given to the units used. The value obtained with Equation 5.44
is in MPa/mm or GPa/m. It should be noted that stiffness coefficients should be expressed
in pounds per inch or meganewtons per metre as it is in most publications. Then, the value
obtained with Equation 5.44 should be multiplied by the area of the sample perpendicular to

the normal load.

In the case where the normal load is not constant, then the parameters a,b,d and e will vary
and Equations 5.43 and 5.44 cannot be used. In this case, the stiffness can be calculated by
plotting the slope (using a spreadsheet) and finding the smallest value.

To extend this concept at the rock mass level, numerical modeling is mandatory. The use
of a non-linear approach is needed to be able to model the behavior of the joint near
openings where normal and shear stresses are not constant throughout the rock mass.
Thus, the model developed in section 5.2 was introduced in a boundary element code
named SATURN that was originally developed at McGill University by Fotoohi (1993).
A description of SATURN and of the implementation of the new model is given in the

following sections.

The stiffness of the fault can then be computed using the results provided by the
SATURN output. Each segment of the fault that has failed can then be analyzed to obtain
its post-peak behavior. The value of the post-peak shear stiffness k', will be given by the
largest value of the slope (in absolute values). Examples of application are given in

chapter 6.
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5.3.2 Shear stiffness of the surrounding rock mass k.

The shear stiffness of the surrounding rock mass can be estimated through a process
similar as the one proposed for fracturing of the rock mass (section 2.3.4). It consists of
replacing the fault elements that failed with fictitious shear stresses. Then, the shear
displacements along these elements are computed. A graph of o*L vs u (where o; is the
resultant shear stress, L is the length of the fault that failed and u is the shear
displacement) is plotted. The slope of this graph represents the shear stiffness k. of the

surrounding rock mass. Examples of application are given in Chapter 6.

5.3.3 Burst-potential ratio for joints (BPR;)

To evaluate if there is a fault-slip rockburst potential, one must compare the post-peak
shear stiffness of the failed fault elements with that of the surrounding rock mass. If the
post-peak stiffness of the failed element is larger (in absolute values) than that of the
surrounding rock mass, there is a fault-slip rockburst potential. Otherwise, the failure

will be gradual.

For comparison purpose, it might be easier to compare the stiffness in a relative manner.
Then a Bursting Potential Ratio for joints. or BPR;, can be used (similar to the one

defined for rock mass failure in section 2.3.4). This index is then given by:

K,

BPR, = (5.45)

[
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A BPR; value well above unity would indicate a clear potential of rockbursting while a
value near unity might require further investigation (like more laboratory testing to get

more accurate values for the fault model).

5.4 THE PROGRAM SATURN

The SATURN software system was developed by Fotoohi (1993) in a Ph.D. thesis.
SATURN (for Stress Analysis of Tunnels and Underground Rock excavation with Non-
linear discontinuities) consists in three modules, the pre-processor (DRAW), the main

program (SATURN) and the post-processor (SHOW).

Program SATURN uses a combination of fictitious stress and displacement discontinuity
methods (BEM) that are used for stress analysis of rock masses containing major faults.
The program employs the indirect boundary element method with a technique of
incremental relaxation of the boundary tractions representing the mining induced stress
relief at the boundary of mine openings. The equilibrium of the system for each
increment step is achieved by iterations. SATURN can also take advantage of symmetry
to reduce the computing effort. Two models of joint behavior were available: the Mohr-

Coulomb model and the Barton-Bandis model.

5.4.1 Non-linear analysis

The non-linear analysis performed by SATURN uses an incremental iteration technique.
The creation of the excavation is modeled by incremental relaxation of the fictitious

boundary tractions for the fictitious stress elements. The size of the load step increment
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is determined by dividing the initial boundary stresses into L equal segments. The
displacement discontinuity elements can follow either the Mohr-Coulomb or the Barton-
Bandis models to calculate the shear stress-displacement relation along a fault. The
Mohr-Coulomb model assumes that both the shear and normal stiffness are constant
during the incremental loading analysis, whereas the Barton-Bandis model uses non-
linear relationships for both normal and shear stresses so their corresponding stiffness is

not constant.

A system of 2N algebraic equations based on Equations (4.43) and (4.44) is obtained.
The system of algebraic equation of iteration j from load increment & for i = 1, N can be

written as follows:

(al]{xi}={B,} (5.46)

where the matrix [A] is a full asymmetric known matrix that represents parameters A“,
etc. from Equation (4.43) and (4.44), the vector {X} is unknown and represents the

J ). .
parameters P, and D, etc. from these equations, and vector {B} represents the left end

side of these equations. Each of vector {X} and {B} has 2N entries.

5.4.2 SATURN algorithm

The structure of SATURN can be resumed in 5 steps as shown in Figure 5.8. First, the
geometry of boundary and physical property of the domain are generated. Then, the
traction vectors on boundary are constructed. The third step is the calculation of
influence coefficients of traction vectors over all elements and the set up of the system of
equations. Then, the system of equations to determine the unknown fictitious stresses or

displacement discontinuities is solved. Finally, the stresses and displacements at any
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point inside the domain (using superposition of fictitious stresses or displacement

discontinuities) are calculated.

Particular interest is given to step 2 to 4 in Figure 5.8. The generation of traction vectors
(step 2) consists in constructing {B}. The traction vector for all fictitious stress elements
is calculated from in situ (or pre-mining) stresses. The traction vector for all
displacement discontinuity elements (DDE) is set equal to zero. However, the real
traction vector for DDE are equal to k; * D; (i = n or s) which are moved into matrix [A]
in step 3. In step 3. the influence coefficients of every element are calculated and the
matrix [A] is assembled. In step 4, the system of algebraic equation [A}{X} = {B} is
solved and the unknown vector of fictitious stresses or displacement discontinuities is
determined. The solution procedure uses the Gauss elimination method. Finally, the
stresses and displacement at any point around the openings are calculated (step 5) by
superposition of fictitious stresses or displacement discontinuity parameters. The number
of calculation of influence coefficients for each point is equal to 2*N where N is the total

number of elements.

5.4.3 Implementation of the new model into SATURN

For the non-linear analysis, the numerical algorithm used in SATURN is based on
incremental relaxation of the boundary tractions. The initial tractions are divided into L
equal increments and are applied step by step. After each step, the characteristics of the
fault are updated using either Barton-Bandis’ or the proposed model. Figure 5.9 shows
the flowchart for the incremental procedure. The computation steps are repeated L times
from step 2 to step 4 (of Figure 5.8). For each iteration, the traction vector {B} is

calculated before step 2, which is based on &/L of total tractions. The parameter k;*D; are
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included in the matrix [A] after step 3 for displacement discontinuity elements. After
step 4, the normal and shear displacements and stresses are calculated for all elements
along opening boundaries and faults. Then, the calculation of the limiting stress using a
failure criterion for each displacement discontinuity element is performed and compared
with the shear stress of that element. Finally, the element stiffness kn, and ks are
modified appropriately. If the convergence criterion is satisfied, then the next load step is

considered. Otherwise, the iteration restarts from step 2.

Figure 5.10 and 5.11 show the flowcharts for the set up of matrix [A] and vector {B}. For
the proposed model, the procedure is identical as that of the Barton-Bandis model. Figure
5.12 shows the flowchart for the failure criteria of each joint model available in
SATURN. First, the maximum shear stress ty, is calculated for the model used. Figure
5.13 shows how the maximum shear stress is calculated for the proposed model. As it
was mentioned in section 5.2, an iterative procedure is used to determine parameters d
and e of Equation (5.1). First, the peak and residual stress are evaluated with the
modified Ladanyi-Archambault model (Equations 3.15 and 3.50 respectively). Then,
Newton's method is used to solve d and e. Finally, the maximum shear stress is
calculated using Equation (5.30). Figure 5.14 shows how the shear stiffness is modified
for the proposed model. If the resultant shear displacement Vx(I) is smaller than the peak

displacement up, then K is given by:

ss

4
K =-% (547)
u,

A linear relation is used before the peak because the proposed model was developed for
monotonous loading. This implies that the shear stress allowed by the model at u=0 is

nil. However, in the rock mass, in situ normal and shear stresses usually exist even if the
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displacement is nil. Since the allowed shear stress for the model is nil at u=0, then no

stress could be transferred to the joint because SATURN uses a secant stiffness approach.

If the resultant displacement is larger than the peak displacement, then the resultant shear
stress O is compared with the calculated maximum shear stress ty. If o5 exceeds 1, then
a Kodfal value of 3 is attributed, meaning that the program must proceed to another

iteration. The shear stiffness is then given by:

rﬂl
=~ Vx() (5:48)

This procedure is repeated until the resultant shear stress does not exceed t,,. Figure 5.15
shows schematically how the program will converge towards the joint behavior by

"relaxing” the shear stiffness.

For the normal stiffness, the Saeb-Amadei model is used for its simplicity. For that
model, the normal-shear displacement relationship is given by Equation (3.28):
v= u[l—o—“)k: tani, + %V
(o 28 k, V,-o,
Then, the secant normal stiffness is given by:

K =Z=_ s (5.49)

v [ o, )k’ . A
ul 1- tani, +———"—
knl vm _cn

5.5 OUT-OF-BALANCE INDEX OBI

The stiffness comparison is a method that can be used to evaluate the fault-slip rockburst

potential but it is not the only avenue that can be explored. A second approach is
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illustrated on Figure 5.16. Figure 5.16a shows an excavation near a geological
discontinuity. As the mining progress towards the discontinuity, the stress state along the
discontinuity will be modified. In the situation shown here, one can expect, at point A, an
increase in shear stress and a decrease in normal stress. Figure 5.16b shows the evolution
of shear strength and applied shear stress at point A at each mining step. The shear
strength gets lower at each mining step because of the decrease in normal stress. As the
mining steps are achieved, the shear stress applied along the discontinuity increases. If
the applied stress becomes larger than the strength, the equilibrium becomes out of
balance. One can then define an "QOut-of-Balance Index" (OBI) given by:

OBI = ;;"’ (5.50)

where F,, is the applied shear stress minus the shear strength and F. is the shear strength.
The larger this OBI value will be, the larger the rockburst potential should be. This is
based on the hypothesis that if at one moment in time, the OBI value is large enough (and
positive), then there will be enough energy to produce a seismic event. The program
SATURN was modified to make this calculation. However, to allow for the stress to be
larger than the strength, the shear stiffness K, stays constant and is at every step given by
Equation 5.47.

5.6 VERIFICATION OF THE IMPLEMENTATION

To insure that the program SATURN works efficiently and that the implementation was
done correctly, some verifications are mandatory. The best way to verify that the
implementation was done correctly is to reproduce direct shear tests. SATURN can
model either external (e.g. openings) or internal (e.g. direct shear tests) problems.

Fotoohi (1993) made some verifications for external problems for simple openings such
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as circular, elliptical and square (with rounded corners) openings. SATURN showed
good agreement for such shapes of openings. However, no verifications were made for
internal problems or for external problems involving faults. Thus, four kind of
verifications are made here: First, a thick-wall cylinder in compression is analyzed (to
verify the validity of internal problems); Secondly, cases of a circular opening near a fault
in an elastic field are analyzed (to verify the accuracy of DD elements); Then, direct shear
tests are reproduced under either constant normal stress or constant normal stiffness (to

verify the implementation of the proposed model).

5.6.1 Thick-wall cylinder

Lamé (1852) developed an analytical solution for a thick wall cylinder submitted to
uniform internal (p;) and external (p.) pressures, as illustrated on Figure 5.17. The
analytical solution of Lamé is given by:
_b’p.-a’p, _(p.-p;)a’b’
r b2 —a? r:(bz_az)
b’p. —a’p,  (p. —p:R’b’

G, = R I T o R
b° -a r2(b? -a j

where o, is the radial stress, &, is the tangential stress, a and b are the internal and external

(5.51)

radius, r is the radius at the point of interest, and p; and p. are the internal and external

pressures (compression is positive). The parameters for the case analyzed are:

b=5a=1,p.=10; pi=0.
Figure 5.18 shows the comparison between the analytical solution and the results from
SATURN. As it can be seen, SATURN compares well with the analytical solution. It

can then be concluded that SATURN can model correctly such internal problems.
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5.6.2 Circular opening near a fault (elastic analysis)

To evaluate if SATURN can accurately calculate stresses on DD elements, two cases of a
circular opening near a fault are analyzed. The first case analyzed is a circular opening
intersected by a plane of weakness at an angle of 45° as shown on Figure 5.19 (details of
the analytical solution of this situation can be found in Brady and Brown, 1993, p. 202).
Components p and 0.5p define the far field stresses. The normal (o,) and shear (t) stress
components along the plane, based on Kirsch (1898) solution, are given by (Brady and
Brown, 1993):

c, = 5‘1.5[14-%)

r
2 4
t=-%0.5 l+~2-a~-3a‘
2 r r

(5.52)

where a is the radius of the opening and r is the radius along the plane of weakness. The
variation of the ratio 1/o, is plotted on Figure 5.20. As it can be seen, SATURN's results
compare well with the analytical solution. However, there is some discrepancy of the
results near the opening. This could be explained by the fact that the opening is modeled
in SATURN by straight segments and not by a real circle. This affects the accuracy of the

results near the opening.

The second case analyzed is a circular opening close but not intersecting the plane of
weakness, as shown on Figure 5.21 (details of the analytical solution of this situation can
be found in Brady and Brown, 1993, p. 203). The far-field stress is taken as hydrostatic.
The normal and shear stresses, also based on Kirsch (1898) solution, are given by (Brady
and Brown, 1993):
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2
6, = p(l - a—zcos 2(1)
d (5.53)

a2
T=p—-sin2a
)

The variation of the ratio t/a, is plotted on Figure 5.22. Here again, SATURN results
show good agreements with the analytical solution.

5.6.3 Direct shear tests under constant normal stress

To evaluate if the implementation of the proposed model has been done correctly,
reproduction of direct shear tests were performed. Figure 5.23a to 5.23d show the results
obtained from SATURN, along with the proposed model and the test data taken from
literature (more details on the test data can be found in appendix). As it can be seen from
these figures, the implementation is adequate since the results obtained by SATURN
follow closely the behavior of the proposed model obtained from the mathematical
formulation. However, some differences can be observed at certain points on several
curves. This can be explained by the fact that a difference of 10% between the resultant
shear stress (o) and the maximum allowed shear stress (tm) is allowed to ease the

convergence process.

5.6.4 Direct shear tests under constant normal stiffness

The results of section 5.6.3 have shown that SATURN can efficiently reproduce the shear

behavior of joints as given by the proposed model. To verify that the normal joint

behavior is also modeled correctly, direct shear tests under constant normal stiffness were

modeled. However, it is not possible to impose two normal boundary conditions in
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SATURN (to impose the stiffness and the initial normal stress). So SATURN was
modified to make possible the modeling of such a situation. After each iteration, the
applied normal stress was given by:

(0,) = )u +K*(vii - v,) (5.54)
where (o,); is the applied normal stress at the iteration i, (6,)ini is the initial normal stress,
K is the applied normal stiffness, v;.; is the normal displacement at iteration i-/ and vy is
the initial normal displacement (at u = 0). Figuré 5.24 shows the result obtained for tests
under different constant normal stiffnesses. Figure 5.25 shows the results for several tests
taken from literature. Here again, results from SATURN compare well with the

mathematical formulation of the proposed model.

Thus, based on all the verifications performed, it can be considered that the
implementation of the proposed model was done adequately and that SATURN can be
used in order to model openings near faults. In the next chapter, it will be shown how

SATURN can be used to evaluate the fault-slip rockburst potential.
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Figure 5.1 Comparison of the Saeb-Amadei model with typical joint behavior. a) Shear
test under constant normal load (data from Flamand et al., 1994). b) Shear test under
constant normal stiffness (data from Skinas et al., 1990).
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Figure 5.2 Typical shear stress-shear displacement curve obtained from Equation 5.1
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Figure 5.3: Graph of the function F(e) given by Equation 5.15 for typical values.
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Figure 5.4a: Comparison between the proposed model and actual shear test result for rock
joint replica made of cement mortar under different constant normal stresses (data taken

from Flamand et al., 1994).
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Figure 5.4b: Comparison between the proposed model and actual shear test result for an
artificial fracture on a sandstone rock under different constant normal stresses (data taken
from Leichnitz, 1985).
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Figure 5.5: Typical normal displacement - shear displacement curve of a direct shear test
on a rock joint under constant normal stress showing the Saeb-Amadei model and the
proposed model (data from Bertrand, 1989).
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Figure 5.6: Correlation of parameter B3 with Equation 5.37 (data from curves given in
Appendix A).
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Figure 5.7 a) Direct shear test under constant normal load. b) Typical shear stress - shear
displacement curve obtained with the proposed model (data from Flamand et
al., 1994).
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Figure 5.8: General flowchart of SATURN (after Fotoohi, 1993).
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Figure 5.16: a) Mining of a stope near a geological discontinuity. b) Shear strength and
. applied shear stress at point A at each mining step.
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Figure 5.17: Hollow cylinder of internal radius a and external radius b under internal (p;)
and external (p,) pressures.
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Figure 5.18: Comparison of tangential (o,) and radial (o) stress results between an
analytical solution and SATURN for a hollow cylinder under internal and
external pressures.
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Figure 5.19: An inclined, radially oriented plane of weakness intersecting a circular
excavation (after Brady and Brown, 1993).
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Figure 5.20: Comparison of the ratio of shear stress over normal stress between SATURN
and an analytical solution.

156



Chapter 5 Development of a non-linear constitutive model for rock joints and faults

d
E : P plane of
i : / weakness
& ~a /
- ; /
— E / // \ m—
j | \
— { ‘. P
NG
\ N2 '
t—— i —

Figure 5.21: Plane of weakness close to, but not intersecting, a circular excavation (after
Brady and Brown, 1993).
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Figure 5.22: Comparison of results from SATURN and an analytical solution for a
circular opening close to a plane of weakness.
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Figure 5.23a: Comparison of results obtained from SATURN and the proposed model for
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Figure 5.23b: Comparison of results obtained from SATURN and the proposed model for
direct shear tests under different constant normal stresses (data taken from
Flamand et al., 1994).
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Figure 5.23c: Comparison of results obtained from SATURN and the proposed model for
direct shear tests under different constant normal stresses (data taken from

Leichnitz, 1985).
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Figure 5.23d: Comparison of results obtained from SATURN and the proposed model for
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Figure 5.24a: Shear stress - shear displacement curves for direct shear test under different
constant normal stiffness K.
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Figure 5.24b: Normal displacement - shear displacement curves for direct shear test under
different constant normal stiffness K.
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Figure 5.25: Comparison of results obtained from SATURN and the proposed model with
direct shear tests under different constant normal stiffness with an initial
normal stress of 1 MPa (data taken from Skinas et al., 1990).
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CHAPTER 6
PARAMETRIC ANALYSES AND SIMPLE CASE STUDIES

To demonstrate how the tools developed in Chapter S can be used to evaluate the fault-
slip rockburst potential of underground openings, several cases are presented in the
second section of this chapter. In the first section, a sensitivity analysis of the proposed
model is performed to evaluate which parameters of the model have more influence on

the joint behavior.

6.1 SENSITIVITY ANALYSIS OF THE PROPOSED MODEL

As it was shown in Chapter 5, the proposed constitutive model for rock joints can be
studied from two separate relationships: the shear stress-shear displacement relationship
and the normal to shear displacement relationships. Hence, these topics are treated

separately in the following.

6.1.1 Shear stress - shear displacement relationship

For all the cases that are studied, the model parameters value are given in Table 6.1

(except for the studied parameter).

Table 6.1: Parameters value used in the sensitivity analysis

Gn up ur Bo or i bu do So
(MPa) | (mm) | (mm) (MPa) @) ) ) (MPa)
10 I 5 0.5 100 10 40 40 5
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Figure 6.1 shows the influence of the normal stress on the shear stress curve. As the
normal stress increases, the strength of the joint increases also, leading to a higher peak
strength. The stress drop from the peak strength to the residual strength also increases as
the normal stress increases. This leads to a larger post-peak stiffness at higher normal

stress.

Figure 6.2 and 6.3 show the influence of the peak and residual displacement. As could be
expected, the closer these displacements are to each other, the larger the post-peak
stiffness is (the region where the stress drop must take place being reduced). These
graphs reveal that these parameters are very important values to be determined in the
assessment of the fault-slip rockburst potential. Another important parameter is the peak
to residual strength ratio (By), as shown in Figure 6.4. This parameter controls (in part)
the stress drop that is occurring after the peak, hence having a direct impact on the post-

peak shear stiffness of the joint.

Figure 6.5 presents the control of the stress ratio (on/cT) on the shear stress-displacement
curve. As it can be seen in that figure, a stress ratio increase leads to a larger peak
strength but does not increase the post-peak stiffness. In fact, the post-peak stiffness is
smaller as the residual strength is increasing in a larger fashion than the peak strength.

Finally, Figure 6.6 to 6.9 shows the influence of the initial angle of asperities, friction
angle of the joint and the failure parameters of the rock walls (cohesion and angle of
friction). These parameters all have an effect on the peak strength of the joint, the most
influent being the angle of asperities and the friction angle of the joint.
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6.1.2 Normal displacement - shear displacement relationship

For all the cases that are studied, the model parameters value are the same as in Table 6.1
plus the values in Table 6.2. From Equation (5.38), which formulate the relation between
the normal and shear displacements, the parameters that affect the dilatancy curve are the
normal stress, the residual displacement, the stress ratio, the initial angle of asperities, the
initial normal stiffness and the maximum closure. All the other parameters used in the

model (up, Bg, So, $u, $o) have no effect on the dilatancy curve.

Table 6.2 Other parameters value used in the sensitivity analysis

kni vm
(MPa/mm) (mm)
1000 10

Figure 6.10 presents the influence of the normal stress on the dilatancy curve. As it can
be seen (and as one would expect), any increase of normal stress limits the dilatancy of
the joint. Thus, in situations of constant normal stiffness, this leads to a maximum rate of
increase of norma! stress in the beginning of the shearing process that diminishes as the

dilatancy rate is lowered by the increase of normal stress.

Figure 6.11 shows the influence of the residual displacement on the dilatancy curve. At
small displacement, this parameter has minimal effect on the curve. Moreover, if the
residual displacement is large compared to the peak displacement (as it is often the case;

see Appendix A), u, will have no effect on the curve before the peak displacement.

Figure 6.12 presents the influence of the stress ratio (o./671). As can be seen, this ratio
has a great effect on the dilatancy of the joint. As the ratio increases, the dilatancy rate
decreases considerably. This could be explained by the fact that as the normal stress
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approaches the strength of the rock asperities, a larger portion of these asperities are
sheared, hence limiting the dilatancy. Another parameter that has the same kind of effect
is the initial angle of asperities, as shown in Figure 6.13. Evidently, if this angle is nil,
there is no dilatancy at all. Then, when this angle increases, not only the peak strength

increases but also does the dilatancy, even for small differences in the angle value.

Figure 6.14 shows the effect of the initial normal stiffness on the curve. What can be
observed by varying this parameter is that the shape of the curve is not affected by this
parameter. Only the initial value of normal displacement is affected by this parameter.
Hence, this does not affect the rate of dilatancy or the increase in normal stress due to

dilatancy.

Finally, the last parameter that influence dilatancy is the maximum closure. In the same
fashion as the initial normal stiffness, this parameter has no effect on the rate of dilatancy
as shown in Figures 6.15a and 6.15b for different values of k,;. Moreover, as the initial

normal stiffness increases (Figure 6.15b), the effect of the maximum closure becomes

negligible.

In conclusion of all these sensitivity analyses, it appears that some parameters have more
influence on the model and should be determined more carefully. These parameters are
the peak and residual displacements (up, u;), the residual to peak strength ratio (Bo), the
initial angle of asperities (i,), the friction angle of the joint (¢,) and the transitional stress

(o) that determines the stress ratio.
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6.2 EXAMPLES OF APPLICATION

To illustrate how one can use the tools that were developed to evaluate the possibility of a

violent slip along a fault near a mine opening, a few fictitious cases are presented here.

6.2.1 Mine stope approaching a fault

Figure 6.16 shows a typical cut-and-fill stope mined in several steps that comes in the
vicinity of a major geological discontinuity. For this hypothetical case, the far field or in
situ stresses are:

Horizontal stress: oy = 60 MPa

Vertical stress: o, =25 MPa
These bring a ratio of horizontal over vertical stress of 2.4, a situation that can be
encountered in a few Canadian underground mines. The elastic properties of the rock
mass are:

Elastic modulus: Eyn = 50 GPa

Poisson'sratio: v =0.30

The characteristics of the fault used in this analysis are given in Table 6.3.

Table 6.3: Characteristics of the fault used in the analysis

Up U Bo or io bu o So Kni Vm
(mm) | (mm) (MPa) | (©) ® ® | (MPa) | (MPa/mm) | (mm)
1 20 [ 0.75 50 4 30 50 9.1 1000 10

The analyses performed at each step shows that at step S, failure occurs on the fault on the

right side of the stope (Figure 6.17). Figure 6.18 shows the major and minor principal
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stress induced by the stope. As we can see on Figure 6.17, failure occurs on the length of

S meters (element 47-48).

To evaluate if the failure will be stable or violent, a stiffness comparison must be made.
Figure 6.19 shows the shear behavior of element 47 and 48 at each load step of the final
stage of mining. We can then calculate the maximum slope (in absolute values) of each
element after the peak displacement is reached. Multiplying the slope by the element
length brings the post-peak shear stiffness of the failed element. These values are
compiled in Table 6.4.

Table 6.4: Post-peak shear stiffness k'p of the failed elements (in MPa)
47 48

-9034 -14512

To obtain the shear stiffness of the surrounding rock mass k., the method is to replace the
failed elements by fictitious shear stresses (o) and to compute the displacement along
these elements. The slope of the graph of o*L (shear stress times the length of failed
elements) versus the shear displacement (at mid-distance of the failed zone) is plotted.
Figure 6.20 shows the results of this process. The value of the slope obtained is -15243
MPa.

To evaluate if there is a risk of violent failure, we can then calculate the Bursting

Potential Ratio for joints (BPR;) given by:

k 14512
BPR =| 2 |=—==0095
'l k, 15243
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This indicates that the failure would be gradual in this case since the value of BPR; is
lower than unity. However, since the value obtained is very close to 1.0, it might be
judicious (in a real situation) to perform more parametric analyses to evaluate if

variability in the fault parameter’s values would induce a violent failure.

As it was described in Chapter 5, another method that was investigated to evaluate the
fault-slip rockburst potential was through the Out-of-Balance Index (OBI). The same
case was analyzed to evaluate this OBI. Figure 6.21 shows the values obtained at the last
mining stage. As we can see, there are two elements on the right side that have a positive
value of OBI (meaning that the peak strength was exceeded). Figure 6.22 shows the
progression of the OBI value for elements 47 and 48 after each mining stage. The largest
value obtained is 0.31 for element 47. However, at this point, it is impossible to give
values of OBI that would indicate a fault-slip rockburst potential.

6.2.2 Mine opening intersecting a fault

Figure 6.23 shows a mine opening intersected by a major geological discontinuity. For
this hypothetical case, the far field or in situ stresses are:

Horizontal stress: o, =60 MPa

Vertical stress: o, =25 MPa

The elastic properties of the rock mass are:
Elastic modulus: Ey, = 50 GPa

Poisson's ratio: v =0.30

The characteristics of the fault used in this analysis are given in Table 6.5.
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Table 6.5: Characteristics of the fault used in the analysis

Up Ur Bo or lo bu do So Kni Vi
(mm) | (mm) MPa) | ) | O | O |(MPa)| (MPamm) | (mm)
05 | 20 [ 075 60 4 30 | S0 9.1 1000 10

This case is analyzed in only one mining step since the opening is perpendicular to the
discontinuity. Figure 6.24 shows the results of the analysis. There is failure on the right
side fault on a length of 1.8 m. Figure 6.25 shows the behavior of the failed fault element
at each loading step. As we can see on this figure, this situation is not of an increasing
shear stress that leads to failure but rather a relaxing process. When the opening is
created, the stresses on the fault start from the in situ stress field to a situation where the
shear stress is less than before. The fact is that the normal stress is reduced considerably
when the opening is created, which in turns leads to a failure (as the peak strength is
lowered). From this graph, we can also evaluate the post-peak shear stiffness of the failed
portion. Multiplying the slope by length of the failed element, we get:
k'p =-1671 MPa

The shear stiffness of the surrounding rock mass is given by replacing the failed portion
by fictitious shear stresses and by plotting the graph of o,*L (shear stress times the length
of failed elements) versus the shear displacement. Figure 6.26 shows the graph obtained.
The value of k. is then -9190 MPa

Then, the Bursting Potential Ratio for joint is given by:

.
BPR, =| =2 =871 18
k.| 9190

This value indicates that the failure would be gradual.
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The OBI was also evaluated for this case. Figure 6.27 shows the OBI values obtained
along the fault. The OBI value obtained for the portion that failed is 0.22. Here again, it
is impossible to give values of OBI that would indicate a fault-slip rockburst potential.

6.3 CASE STUDY

To illustrate furthermore how the developed tools can be used in actual mine situation, a
case study that was performed by Fotoohi (1993) is re-analyzed here with the proposed
model. Figure 6.28 shows the situation of mining stopes approaching 2 faults (plan
view). First, stope A is mined, then B and so on. The stopes are relatively high
compared with their plan dimensions so the case was analyzed in plan view. To analyzed

this case, Fotoohi (1993) has used these parameters:

North-South horizontal stress: 39 MPa
East-West horizontal stress: 52 MPa
Rock mass elastic modulus: 67 GPa
Poisson's ratio: 0.28

For the faults, these parameters were used:

Kni: 13000 MPa/m
Vm 9 mm

up 9 mm

bu 33°

OT = O¢: 160 MPa
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The other parameters were not determined since they are not used with the Barton-Bandis
model. Hence, they are estimated here:

Bo=0.75

So=9 MPa

do = 60°

u, = 90 mm

io = 5°

Figure 6.29 shows the major and minor principal stress after the last stage. These stresses
compare fairly well with the results obtained by Fotoohi (1993). However, there are
major differences in the displacement results. Fotoohi (1993) recalls obtaining shear
displacement of more than 108 mm on the fault nearest to the stopes. In this analysis,
results show a maximum of 4.5 mm on the same fault. This analysis also shows no signs
of failure since the displacements obtained are below the peak displacement of 9 mm. To
insure that no mistake was done in the analysis, another analysis was performed using
Barton-Bandis model and using the data reported by Fotoohi (1993). The results of this
analysis showed no failure and a maximum shear displacement on the fault of 2.6 mm. In
addition, when analyzing the results reported by Fotoohi (1993), these results showed on
an element a shear stress of 16 MPa for a normat stress of 47 MPa, leading to a friction
angle of 20° while the residual friction angle was 33°. It is then in the author's opinion
that some mistake may have occurred while preparing the data file that may have led to

these results.

Since no failure occurs for the data used, there are evidently no fault-slip rockburst
potential in this case (for the data used). The OBI values were also calculated and the
results for the most critical element are presented in Figure 6.30. Figure 6.31 shows the
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OBI values along the faults for the last mining stage. These results show that there is no
fault-slip rockburst potential since the OBI values are negative.
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Figure 6.1: Influence of normal stress (o,) on the shear stress - shear displacement curve
of the proposed model.
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Figure 6.2: Influence of peak displacement (up) on the shear stress - shear displacement
curve of the proposed model.
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Figure 6.3: Influence of residual displacement (u,) on the shear stress - shear displacement
curve of the proposed model.
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Figure 6.4: Influence of residual to peak strength ratio (Bo) on the shear stress - shear
displacement curve of the proposed model.
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Figure 6.6: Influence of initial angle of asperities (i,) on the shear stress - shear
displacement curve of the proposed model.
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Figure 6.7: Influence of the friction angle of the joint (¢,) on the shear stress - shear
displacement curve of the proposed model.
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Figure 6.8: Influence of the rock walls cohesion (So; using a Mohr-Coulomb criterion) on
the shear stress - shear displacement curve of the proposed model.
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Figure 6.9: Influence of rock walls friction angle (¢o; using a Mohr-Coulomb criterion) on
the shear stress - shear displacement curve of the proposed model.
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Figure 6.10: Influence of normal stress (c,) on the normal displacement - shear
displacement curve of the proposed model.
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Figure 6.11: Influence of residual displacement (u,) on the normal displacement - shear
displacement curve of the proposed model.
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Figure 6.12: Influence of the stress ratio (cp,/oT) on the normal displacement - shear
displacement curve of the proposed model.
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Figure 6.13: Influence of the initial angle of asperities (i,) on the normal displacement -
shear displacement curve of the proposed model.
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Figure 6.14: Influence of the initial normal stiffness (ki) on the normal displacement -
shear displacement curve of the proposed model.
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Figure 6.15b: Influence of maximum closure of the joint (V) on the normal displacement
- shear displacement curve of the proposed model (kn = 1000 MPa/mm).
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Figure 6.16: Cut-and-fill stope approaching a major geological discontinuity.
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Figure 6.18b: Minor principal stress (o3) obtained with SATURN.
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Figure 6.19: Shear behavior of failed elements after each load step of mining stage 5.
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Figure 6.20: Graph of o,*L versus the displacement. The slope gives the surrounding

rock mass stiffness k..
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Figure 6.21: OBI values along the fault for mining stage 5.
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Figure 6.22: OBI values for two elements after each mining stage.
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Figure 6.23: Opening intersecting a major geological discontinuity.

Figure 6.24: Results from the analysis for Case 6.2.2. Grey area on the fault indicate
failure.
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Figure 6.25: Shear behavior of the failed element after each load step.
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Figure 6.27: OBI values along the fault.

Figure 6.28: Stopes mined in sequence near faults in plan view (after Fotoohi, 1993).
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Figure 6.29a: Major principal stress (o)) after stope D has been mined.
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Figure 6.29b: Minor principal stress (o3) after stope D has been mined.
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Figure 6.31: OBI values along the fault after the last stope is mined.
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CHAPTER 7
DISCUSSION

In the preceding chapters of this thesis, it was shown how certain tools could be used to
evaluate the rockburst potential when geological discontinuities are involved. In this
chapter, some aspects of the proposed methodology and of the tools developed are further

discussed.

7.1 CONSTITUTIVE MODEL FOR ROCK JOINTS

As it was mentioned before, existing constitutive model for rock joints are not always
adequate in the modeling of the post-peak behavior of rock joints. Even models like the
one propésed by Saeb and Amadei (1989, 1990, 1992), although very representative in
constant normal stiffness (CNS) tests, does not follow closely the real behavior of the
joint in constant normal stress (CNL) tests where a stress drop can be observed. CNL
situations are of particular interest when investigating rockburst situation since this may
lead to a violent failure along a discontinuity generated by the energy liberated by the
stress drop. The proposed constitutive model, as it was shown, can follow, in a very close
way, the stress drop behavior of tests under CNL conditions. The correlation factor
obtained for several curves (R2 = 0.90) proves that this new model can be very
representative of the shear stress-shear displacement behavior of rock joints. This model
relies on four parameters: the peak and residual strength (7, t;) and the peak and residual
displacement (up, u;). This model can be related to two different phenomena occurring in
a shear test: shearing of asperities and friction. If we start from Equation (5.30):

t=1,+[d-1,] ex;{— éﬂ) —dexp(-eu)
u

4



Chapter 7 Discussion

Rearranging this equation leads to:
T=T1, [1 - exp(- EEH + d[exp[— 5—“) —exp(- eu):I (7.1)
ul’ ul

t=F +F (7.2)
with

oo 2
F, = d[exp(— i—“J —exp(- eu)J

Figure 7.1 shows how these functions vary with shear displacement. Function F, can be

or

(7.3)

seen as the friction component while F; represents the shearing of asperities. At small
shear displacement, the deformation of asperities plays a major role in the mobilization of
shear resistance while sliding along surfaces (i.e. friction) is minimal. As some asperities
are being sheared off, the friction along surfaces increases (replacing in part the
deformation of asperities). When most asperities have been sheared off (which seems to
occur just before peak displacement), the shearing component decreases rapidly and the
friction component represents the larger part of shear resistance. Finally, when all
asperities have been sheared off (when residual displacement is attained), only friction is
accountable for the shear resistance. Then, F; and F, can be regarded as being statistical
functions describing the transformation of shear resistance of asperities into friction along

sheared surfaces.

A constitutive model was also proposed for the dilatant behavior of joint (v-u). This
model was mostly inspired by the equations proposed in the Saeb-Amadei model. Both

models have two points in common, the beginning of the curve (u=0) and the residual
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value (u=u,). In the Saeb-Amadei model, the behavior between these two points is linear
while the proposed model follows an exponential shape. Here again, the proposed model
relies on physical basis to explain the dilatancy curve. At the start of the shearing
process, all asperities are intact. Thus, this should lead to a maximum dilatancy rate
(dv/du) in the beginning of the process (Figure 7.2). Then, as some asperities are being
sheared, the dilatancy rate slows down and becomes zero when all asperities have been

sheared (at u=u,). The proposed model reflects this phenomenon.

Although very promising, the proposed constitutive model has also some flaws and
limitations. The first problem with the proposed model is that at least a few direct shear
tests must be performed to obtain all the parameters. It is no secret that very few mines
(if none) investigate the mechanical behavior of their discontinuity in laboratory. The
biggest advantage of the Barton-Bandis model is that the fault characteristics can be
approximated through very simple tests and observations that can be performed on site at

very low costs.

Since the proposed model (at least for the shear stress - shear displacement behavior) can
be determined strictly from four parameters (1, 1, Up, U;), any strength criterion could be
used. The reason behind the choice of the Ladanyi-Archambault strength criterion is that

it relies on parameters that are also used in the dilatancy formulation.

Also, as can be seen on Figure 6.3, when the peak and residual displacements values (u,,
u;) are close to one another (u; < 3 up), the model no longer goes through the peak
strength (tp) at up when the stress drop is large. However, from the test results compiled

in this thesis, it appears that u, is usually larger than 8 times u,.
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The proposed model has proven its efficiency in describing tests under constant normal
load. However, in situation of tests under constant normal stiffness (see Figure 5.25 for
instance), the model presents sometimes a stress drop after the peak displacement that is
not always corroborated by the data.

The principal limitations of the proposed model are:

- it is a 2D model; rock joints and faults are planes of weakness which means that they
are 3D structures. Several studies (e.g. Huang and Doong, 1990; Jing et al., 1992,
1994) have shown that rock joints usually present some degree of anisotropy;

- it has been develop for monotonous loading; rock joints and faults in a rock mass are
already loaded before nearby openings will be created. It is not clear if the model
can accurately reflect the behavior of joints under these conditions;

- the model does not account for directional shearing; experimentation (e.g., Jing et
al., 1994) have shown that rock joints do not always show the same behavior when
tested back and forth along the same axis. This phenomenon is caused by the fact
that asperities are usually not symmetric and thus, the average initial angle of
asperities might not be the same in the X than in the X" direction;

- peak and residual displacement (up, u,) are considered as material constant. As it
can be observed in several direct shear test series (see Figure A2a and AS5a for
example), these parameters are not always constant for a given joint. However, like
with any other rocklike material, one will often find some variability in mechanical
parameters. This is the reason why good engineering practice will always
recommend to perform some parametric analyses. The same reasoning applies here;

- the model is only valid for 6, < oT; when the normal stress becomes larger than the
rock strength, rock failure will occur and the model is no longer valid as another

type of behavior will occur;
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- scale effects; another aspect that was not addressed in this research is the scale effect
on discontinuity behavior and how the proposed model could be adapted to take into
account such situations. For the moment, it is presumed that the parameters entered

in the model reflect the behavior of the discontinuity at the scale of the problem.

The parametric analyses showed that some parameters of the model have more impact on
the behavior of the joint. In regards of the rockburst potential, the most important
parameters are of course the peak and residual displacements (up, u,) and the residual to
peak strength ratio (Bo). The displacements parameters affect the length (of
displacement) along which the stress drop will occur while the strength ratio affects the
value of the stress drop. Hence, a smaller value of By and/or of the displacement ratio
(defined here as the residual over the peak displacement u,/u;) increases the value of the
post-peak shear stiffness of the joint. This in turn increases the fault-slip rockburst

potential.

7.2 THE SATURN PROGRAM

The proposed constitutive model has been implemented successfully into SATURN a
boundary element code that uses both the fictitious stress method and the displacement
discontinuity method. Several reproductions of direct shear tests under either constant
normal load or constant normal stiffness have shown that the implementation is adequate.
However, SATURN has at the moment several limitations. First of all, it is a 2D program
and 2D analyses are not always appropriate to evaluate actual complex mine situations.
Moreover, although SATURN can model different rock mass materials, it would be
extremely difficult to a non-familiar user to model more than one material. To do so, the

user must adapt the data file "manually” as no options allows this in the DRAW module.
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Also, in SATURN, the rock mass is considered to present a linear elastic behavior.
Although this assumption is usually considered as adequate for hard rock mining, it is not

always appropriate for certain categories of rock masses.

But the most important limitation of SATURN at the moment is that it runs only in DOS
mode. With the implementation of the new model, the program size has increased
dramatically. This poses a problem because the live memory in DOS mode is very
limited. In fact, at the moment, only 15 fault elements can be modeled when using the
new fault model. This limits the complexity of problems that can be analyzed and the

accuracy of the results.

If the goal of any research on the rockburst problem is to provide mine engineers with
useful tools and techniques in the alleviation of rockburst hazards, then these aspects
should be addressed in the near future.

7.3 EVALUATION OF ROCKBURST POTENTIAL

Gill and Aubertin (1988) developed a methodology to evaluate the rockburst potential of
existing and future underground excavations. Until now, this methodology was of limited
interest for rockburst involving a slip along a geological discontinuity because it was
impossible to evaluate if the slip would be violent or gradual. The constitutive model and

the tools associated allow to complete this methodology, as shown in Figure 7.3.

The process to obtain the different stiffness was described in Chapter S and examples of
applications were presented in Chapter 6. It should be noted however, that the cases

presented are hypothetical. While performing these analyses, no parametric studies where
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performed. Nonetheless, in real analyses of rockburst, these parametric studies should be
performed to evaluate the influence of the fault characteristics on the rockburst potential.
These analyses were not performed here since the cases were presented only to illustrate

the methodology.

Furthermore, before one can consider the methodology validated, back-analyses of actual
rockbursts situations involving fault-slip must be performed. However, these back-
analyses could be difficult to achieve because of extremely limited data of fault

characteristics in actual mines or to the complexity of the geology at hand.

Nevertheless, a methodology to evaluate a priori if there is a risk of fault-slip
rockbursting is now available to mine engineers. Still, as it was mentioned in the
preceding section, the tools necessary to evaluate this type of rockburst potential is not at
the moment really accessible to mine engineers as SATURN is not a software often used
in Canadian underground mines. Nonetheless, the work performed in this research could
lead to a more user-friendly version of SATURN or to the implementation of the

proposed model into existing commercial codes.

The Out-of Balance Index (OBI) is another tool that was also developed for the
evaluation of rockburst potential involving discontinuities. The OBI is a very simple tool
that can be easily implemented in any type of numerical modeling code with a minimum
effort. It was shown that the OBI values show a great increase when failure is near. At
this moment, it is not possible to give boundary values to state what is a critical value for
this index. To get these values, case studies should be performed. However, although it
is a simple tool, the OBI index could in the future prove to be very useful in the

evaluation of rockburst potential.
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Finally, it should be noted that a violent failure on a fault will produce a seismic event but
not necessarily a rockburst. A rockburst was defined in Chapter 2 as being a seismic
event that produce damages in mine openings. It is nonetheless conservative to conclude
on a rockburst potential if it is evaluated that there is a possibility of violent failure.
Damages in opening will depend on several factors like the energy generated by the
failure, the distance from the opening, the stress state around the opening and the strength

of the rock mass.
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CHAPTER 8
CONCLUSIONS

8.1 SUMMARY AND CONCLUSIONS

For more than a century, rockbursts have been a problem for many underground mines.
As deeper orebodies are mined with higher extraction ratio, mining engineers will most
probably have to deal with this problem more often. Moreover, mines in Canada are most
likely to operate at greater depth in the near future. Due to the "unpredictability”" and the
recurrence nature of the phenomenon, rockbursts might just be the biggest challenge

facing rock mechanics engineers in hard rock mines.

Although rockbursts do not occur in the majority of Québec underground mines, it is a
problem that presents a high risk of fatalities in mines where the problem exists. In that
regard, some efforts have been initiated over the last decade to provide tools to help rock
mechanics engineers to assess the rockburst potential of their openings. On that matter,
Gill and Aubertin (1988; see also Aubertin et al., 1992; Gill et al., 1993; Simon et al.,
1998) proposed a methodology that makes use of standard rock mechanics tools, which
attempts to evaluate rockburst potential of rock structures. This methodology, called the
ERP method, is based on the stiffness comparison between the failed rock and the
surrounding rock mass, as was proposed initially by Cook (1965b). However, this
comparison could only be established for instabilities involving the fracturing of the rock
mass. To make this comparison possible for instabilities involving slip on pre-existing
discontinuities (the second type of rockbursts) several tools were developed and a

methodology was proposed.



Chapter 8 Conclusions

First, a new constitutive model for rock joints was developed. This new model allows to
follow the post-peak shear behavior of rock joint in a relatively close manner. This
model relies on four basic parameters such as the peak and residual strength, and the peak
and residual displacement. To evaluate the peak strength, it was proposed to use the
well-known Ladanyi-Archambault criterion as modified by Saeb (1990). Compared with
test results from literature, the model showed a correlation factor R? of 0.90. A new
formulation for the dilatancy behavior of joint was also proposed based on the
formulation that was developed by Saeb and Amadei (1992). Parametric analyses were
performed on the model which showed that the most influential parameters (in relation
with the post-peak shear stiffness) were the peak and residual displacement and the
residual to peak strength ratio.

The new model was implemented into a boundary element code called SATURN, which
was originally developed by Fotoohi (1993). Verifications were made and showed that
SATURN could reproduce direct shear tests and follow adequately the behavior of the

proposed model.

A methodology was then elaborated to evaluate the post-peak shear stiffness of failed
segment on a fault and the shear stiffness of the surrounding rock mass. Similarly to
strainbursts pillar bursts, an index was proposed, called the Bursting Potential Ratio for
joints BPRj, to compare these stiffnesses. The BPR; index was defined as the post-peak
shear stiffness of the failed segment over the shear stiffness of the surrounding rock mass.

If the BPR; index is larger than unity, this indicates a potential of fault-slip.

Examples of application of the methodology and of the developed tools were given to

better illustrate how to use them. Detailed fictitious and real cases were presented.
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Concurrently, another approach on the evaluation of rockburst led to the development of
another index called the Out-of-Balance Index. This index represents the ratio of the
exceeding stress over the strength. It is postulated that the larger this value is, the larger
the rockburst potential. This index was also implemented into SATURN. The same
cases were analyzed and showed some correlation with the stiffness comparison

approach.

8.2 RECOMMENDATIONS FOR FURTHER RESEARCH

The research work presented in this thesis can be further extended in the following

directions:

1- Transformation of SATURN into a WINDOWS based software. This would allow to
make use of the full computer memory available and the analyses of cases requiring a
larger number of elements. The proposed model could also be implemented in more
popular numerical modeling codes like MAP3D or PHASE2. These commercial
softwares are used more frequently in the mining industry than SATURN.

2- Development of a non-linear approach for the rock mass in SATURN to take into

account rock masses that present this type of behavior.

3- Investigation on the scale effects on the proposed model. This would allow a better
representation of the parameters used in analyses of actual mine openings.

4- Development of formulation of the model for other peak strength criteria such as the

well-known Barton-Bandis model.
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5- Development of a 3D formulation for the model.

6- Validation of the approach developed through back-analyses of actual rockburst cases

involving fault-slip.

7- Uses of the new model to predict the post-peak behavior of intact rock in uniaxial
compression tests. The failure plane of the sample could then be modeled as a rock
joint and its post-peak behavior analyzed consequently. This would allow an
estimation of the post-peak modulus when its determination in laboratory is

impossible.
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STATEMENT OF CONTRIBUTION

A method to evaluate the rockburst potential of situations involving a possible slip along
major geological discontinuities was developed. This method is based on the comparison
of the post-peak shear stiffness of the fault with the shear stiffness of the surrounding
rock mass. To evaluate the post-peak shear stiffness of a discontinuity, a new non-linear
constitutive model for rock joint was developed. This model is based on two exponential
formulations expressing the two phenomena taking part in the shearing process: friction
resistance along surfaces and shearing of asperities. The model was then implemented in
an existing boundary element code to evaluate the interaction between underground
openings and nearby geological discontinuities. Verification of the implementation was
done by reproducing direct shear tests on a discontinuity. Methods to obtain the different
stiffnesses involved in the violent slip process were developed. Examples of applications
were given to illustrate the proposed methodology. In addition, an alternative method to
evaluate the fault-slip rockburst potential was developed. This new method relies on a
linear analysis and the calculation of a new index called the Out-of-Balance Index or OBI.
These methods will allow mine engineers to perform an evaluation of the risk of having a

fault-slip rockburst near existing underground excavations and for future ones.
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APPENDIX A
TEST RESULTS ON JOINTS

As it was mentioned in Chapter 5, several test results on rock joints (or similar materials)
were compiled to validate the proposed model. These test results were taken from
literature and included direct shear tests under constant normal stress. These tests are
presented in the following figures. In these figures, the test data are represented by
symbols, the Saeb-Amadei model is represented by a straight line and the proposed model
is represented by a dashed line. Finally, a correlation table for both models is presented at

the end.

TEST RESULTS FROM LEICHNITZ (1985)

Material: Artificial fracture on a sandstone rock split by brazilian test

Figure: Al

Model parameters:
io Up U, Vm Kni Bo do So bu oT
° mm mm | MPa/mm ° MPa ° MPa
11! 04 20 10 1000 0.53 40 2.8 40 15

TEST RESULTS FROM FLAMAND ET AL. (1994)

Material: Rock joint replica of cement mortar

Figure: A2

Model parameters:
io up Uy Vm Kni Bo $o So du o1
° | mm | mm mm | MPa/mm ° MPa ° MPa

12 | 0.55 4 10 1000 0.55 40 23 40 100




Appendix A: Test results on joints

TEST RESULTS FROM SKINASET AL. (1990)

Material: Artificial joint replica of sand-barytes cement mixture

Figure: A3
Model parameters:
io up ur Vm Kai Bo b0 So du oT
° mm mm |MPa/mm ° MPa ° MPa
3 1.2 20 0.1 100 0.74 40 4 38 20
TEST RESULTS FROM BERTRAND (1989)
Material: Artificial joint replica of limestone
Figure: A4
Model parameters:
o up U Vam Kni Bo o So du oT
° | mm | mm mm | MPa/mm ° MPa ° MPa
18 10375] 2.5 2 9.8 0.32 40 7 38 12
TEST RESULTS FROM BANDIS ET AL. (1981)
Material: Artificial rock joint replica of plaster
Figure: AS
Model parameters:
ig Up ur Vm Kni Bo bo So bu or
° | mm | mm mm |MPa/mm ° MPa ° MPa
5.5 1 4 2 10 0.75 40 1.4 30 2
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Appendix A: Test results on joints

TEST RESULTS FROM SCHNEIDER (1976)

Material: Artificial plaster joint replica of smooth granite

Figure: A6

Model parameters:

io Up ur Vm i Bo do So bu ST
° | mm | mm mm |MPa/mm ° MPa ° MPa
4 5 55 2 10 0.88 46 1.1 28 5
Material: Artificial plaster joint replica of rough and indented granite joint
Figure: A7
Model parameters:
io Up Ur AL Kai Bo %o So du oT
° | mm | mm mm | MPa/mm ° MPa ° MPa
7 2 30 2 1000 0.74 38 1.2 38 5
Material: Artificial plaster joint replica of rough sandstone with large asperities
Figure: A8
Model parameters:
io up ur Vm Kai Bo do So du or
° | mm | mm mm | MPa/mm ° MPa ° MPa
7 5 50 2 100 0.65 38 1.5 40 5

236




Appendix A: Test results on joints

Shear stress (MPa)

25 0

Sheasr displacement (mm)

Figure Ala: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Leichnitz, 1985).
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Figure A1b: Normal displacement -shear displacement curve for direct shear tests under
different normal constant stresses (data from Leichnitz, 1985).
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Appendix A: Test results on joints

8

Shear stress (MPa)
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Figure A2a: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Flamand et al., 1994).
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Figure A2b: Normal displacement -shear displacement curve for direct shear tests under
different normal constant stresses (data from Flamand et al., 1994).
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Appendix A: Test results on joints
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Figure A3a: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Skinas et al., 1990).
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Figure A3b: Normal displacement -shear displacement curve for direct shear test under
normal constant stress (data from Skinas et al., 1990).
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‘ Appendix A: Test results on joints

Shear stress (MPe)

Shear displacement (mm)

Figure Ada: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Bertrand, 1989).
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Figure A4b: Normal displacement -shear displacement curve for direct shear tests under
different normal constant stresses (data from Bertrand, 1989).
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. Appendix A: Test results on joints
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Figure A5a: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Bandis et al., 1981).
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Figure A5b: Normal displacement -shear displacement curve for direct shear test under
normal constant stress (data from Bandis et al., 1981).
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Figure A6a: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Schneider, 1976).

25
[
20 ST
- ".'.
E 15 i
E ."a L ]
£ o
E ’ e 061MPs
g . e e Propossd model
a ——— Sasb-Amade: madel
-
G -
g - *
g 05 -
F3 . .
o P
10 20 0 « %0 (] 70 ] %0 190
0.5
Shear displacement (mm)

Figure A6b: Normal displacement -shear displacement curve for direct shear test under
normal constant stress (data from Schneider, 1976).
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Figure A7a: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Schneider, 1976).
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Figure A7b: Normal displacement -shear displacement curve for direct shear test under
normal constant stress (data from Schneider, 1976).
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Figure A8a: Shear stress -shear displacement curve for direct shear tests under different
normal constant stresses (data from Schneider, 1976).
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Figure A8b: Normal displacement -shear displacement curve for direct shear test under
normal constant stress (data from Schneider, 1976).
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Table Al: Comparison of correlation factors between the Saeb-Amadei and the proposed
model for shear stress - shear displacement curves

Correlation factor R
Figure Normal stress Saeb-Amadei Proposed model

(MPa)

Al 5.38 0.939 0.990

1.8 0.926 0.975

0.36 0.880 0.977

Mean value 0.915 0.981

A2 7 0.529 0.942

14 0.837 0.932

21 0.934 0.893

Mean value 0.767 0.922

A3 5 0.931 0.861

2 0.833 0.944

1 0.191 0.610

Mean value 0.652 0.805

A4 1.035 0.546 0.901

1.035 0.192 0.430

3.103 0.904 0.968

6.2 0.719 0.985

Mean value 0.590 0.821

AS 0.09 0.911 0.944

0.03 0.889 0.978

0.01 0.861 0.974

Mean value 0.887 0.965

A6 1.64 0514 0.925

1.28 0.731 0.984

0.61 0.797 0.977

0.33 0.634 0.965

Mean value 0.669 0.963

A7 1.77 0.932 0.789

1.38 0.665 0.985

0.69 0914 0.978

0.34 0.965 0.724

Mean value 0.869 0.869

A8 1.29 0.532 0.929

0.93 0.383 0.829

0.32 0.855 0.903

Mean value 0.590 0.887

Q All curves | Mean value 0.739 0.900
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