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ABSTRACT

Let K be a totally real, quartic, Galois extension of Q whose ring of
integers R is a principal ideal domuin. If there is a prime ideal p of R such
that the unit group waps onto (R/p%)*, then R is a Euclidean domain.
This criterion is generalized to arbitrary Galois extensions,

Let E be an elliptic curve over a numnber field F. Supposc [F: Q] < 4
and F(E[q]) € F for all primes g such that F contains a primitive ¢** root
of unity, then the reduced elliptic curve E‘(Fp) is cyclic infinitely often.
In general, if I" a subgroup of E(F) with the rank of T' sufficiently large,

there are infinitely many prime ideals p of F such that the reduced curve

E(Fp) = I'p, where Iy is the reduction modulo p of T.
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RESUME

Soit &' un extension galoisienne totalement réelle de degré quatre du
corps @, dont 'anncau des entiers R est un anneau a idéaux principaux.
S’il existe un idéal premicr p de R tel que le groupe des unités de R
s'applique surjectivement sur (R/p2)*, alors R est un anneau euclidien.
Nous généralisons ce critere aux extensions galoisiennes quelconques de Q.

Soit E unc courbe elliptique définie sur un corps de nombres F. Si
[F:Q) <4ctsi F(E[g]) € F pour chaque nombre premier ¢ pour lequel F
conitient une racine g-ieme de I'unité, alors le groupe E( Fy) est cyclique pour
unc infinité d’idéaux premicrs de F. En général, si E(F) admet un sous-
groupe I' de rang suffisamment grand, alors il existe une infinité d’idéaux
premiers p de F tels que 'homomorphisme de réduction de E(F) dans

E(Fp) soit surjectif sur I'(mod p).
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number fields using of the results of chapters 1, 2, and 3.
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INTRODUCTION

In Book VII, Proposition 2 of his Elements. Euclid describes the following
procedure for determining the greatest common denominator of two natural
numbers b; > bs. Subtract a multiple of be from b; to yickl a natural
number bz which is smaller than b,. Repcat this step using by and by in
place of b and bs. The procedure terminates when b,y = 0 and yiclkds
ged(b,,by) = b,,.

In modern terminology, Euclid’s algorithin determines a generator for
the ideal (b1,b2) of the ring of rational integers. More generally, let R be

an integral domain. A Euclidean algorithm for R is a map
¢: R\ {0} — No,

the set of nonnegative integers, such that for all a,b € R, b # 0, there exist,
g,r € R with a = ¢gb + r and cither ¢(r}) < ¢(b) or » = (0. An integral
domain equipped with a Euclidean algorithn is called a Euclidean domain.

As might be expected from the example of the rational integers, Eu-
clidean domains have the property that every ideal is principal. Indeed, if
2 is an ideal of R, b a nonzero eclement of A such that $(b) is minimal, and
a an arbitrary element of 2, then there are ¢,r € R with a = ¢gh + r and
either r = 0 or ¢(r) < @(b). Since r € A and ¢(b) is minimal, it follows

that r = 0 so that 2 is generated by b.

1
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In the svecial case A = R, this argument shows that a nonzero clement
1 of R with ¢(u) minimal is a unit of R. An cxample of Samuel [33] shows
that the converse need not be true; namely, that if v is a unit of R, then
@(u) need not be the smallest element of ¢(R \ {0}). Consider R = Z with
d(n) = |n|, for n # =1, and ¢(—1) chosen arbitrarily. However, another

algorithm can be constructed from ¢,

@(r) = uEI!rllli'{l(O) ¢(a),

which does satisfy the converse. To see that this function is a Euclidean
algorithm, choose a,b € R, b # 0. There is ¥’ € R with b = bc' such that
$(b) = (V). Since ¢ is Euclidean, there is r € R such that ¢(r) < &(b")
and a = ¢ +r. Choose ¢ = ¢'c’ so that a = gb+r and ¢(r) < ¢(r) <
Hb') = Bb).

THE FASTEST ALGORITHM

Motzkin [26] constructed a special kind of Euclidean algorithm. Given a

noncmpty collection of Euclidean algorithms ¢, on R, the map defined by
#(r) = min da(r)

is also a Euclidean algorithm on R. To check this, let a,b € R, b £ 0.

Choose an ay such that ¢(b) = ¢4, (b). Since

$(7) < Ga,(7) < @a, (b) = 6(b),

¢ is Euclidean. If the minimum is taken over all the Euclidean algorithms

of the ring R, the resulting algorithm E is called the fastest algorithm.

2
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Let E, = {0}U{r € R: E(r) < n}). Since E = E, Ey is the sct of
units of R. If b € E, 4| and a + Rb is any residue class mod Rb, then
there exist g,» € R with a = gb+ r and » = 0 or E(r) < E(b) so that
r € E,. Thus, E,, — R/Rb is surjective. Conversely, consider b € I such
that E,, — R/Rb is surjective. If E(b) > n+ 1 then a new map E' could
be defined by E’'(r) = E(r), for » # b and E'(b) = n + 1. To sce that
E' is an algorithm it suffices to consider the cases when b oceurs as cither
a divisor or a remainder. Since E,, — R/Rb is surjective, cvery residue
class a + Rb has a representative such that a = gb 4+ », » € £, which
implies E'(r) < n+1 = E'(b). If a = gc + b with E(b) < E(c¢), then
trivially E'(b) < E(b) < E(c) = E'(c). Thus, the scts E,, may be defined
inductively as Ep = {0} U {units}, B, = {r € R: Ey - R/(r) is onto, and
in general E, ;. ={0}U{r€R: E, — R/(r) is onto}.

The importance of the sets E,, is that they can be constructed in any
ring. If
(1) U E,=R,

n>0

then R is Euclidean with algorithm defined by
¢(r) = min{n:r € E,}.

On the other hand, if R is Euclidean then every clement of R is in some

Ey. So the condition (1) is necessary and sufficient for R to be a Euclidean

domain.

The fastest algorithm has several nice propertics.
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Property 1. If ¢ aud b are nonzero clements of R, then E(ab) > E(a).

Proof. If E,, maps onto R/ Rab, then composing with the surjection
R/Rab — R/Ra

shows that E,, maps onto R/ Ra.

Property 2. If a,b,c arc nonzero elements of R, then E(ac) < E(bc) if
and only if E{a) < E(b).

Proof. Suppose E(a) < E(b) but there exists some ¢ with E{ac) > E(bc).
Consider the sct of such clements ¢ with E{ac) — E(bc) as small as possible.
From this set choose one with E(bc) minimal. There is * € R such that
E(br) < E(bc) — 1 and E(b2’) > E(bz) for all bz’ in the coset bz + Rbe.
The coset ax 4+ Rac contains an element ay with F(ay) < E{ac). Since

by € b + Rbe, E(by) > E(be) — 1. If E(by) = E(bc) — 1, then
E(ay) — E(by) < E{ac) — 1 — E(bc) + 1 = E{ac) — E(bc),

which contradicts the choice of ¢ with E(be) minimal. If E(by) > E(bc),

then

E{ay) - E(by) < E(ac) — E(be),

which contradicts the choice of ¢ with F(ac) — E{bc) minimal. Thus,
E(ac) < E(be). For the converse, suppose E(ac) < E(bc). If E(a) > E(b)
then the first part shows that E(ac) > E(bc), which immediately yields a

contradiction, so E(a) < E(b).



Property 3. If a,b are nonzero clements of R, then E(ab) > E(a) + E(b).

Proof. Suppose that for some element b there exist clements o' such that
E(a'd) < E(a’') + E(b). Consider the set of such a' with E(a'b) — E(a')
minimal. From this set choose an element a with E{a) minimal. By prop-
erty 1, a is not a unit. There is a coset ¢ + Ra containing an clement »
with E(z) = E(a) — 1, and E(2') > E(x) for all 2’ € ¢ + Ra. The cosct
cb + Rab contains an element yb such that E(yb) < E(ab) and y € ¢ + Ra.
If E(y) = E(a) — 1, then

E(yb) — E(y) < E(ab) — 1 - (E(a) — 1) = E(ab) — E{a).
Since E(y) < E(a), this contradicts the choice of a. If E(x) > E{a), then
E(zb) — E(x) < E(ab) — E(a),

which again contradicts the choice of a. This proves the claim.

Property 4. If ¢ € R is nonzero, then

E(z) 2 ) vy(x),
where the sum is over all normalized valuations of R.

Proof. If x is a unit, E(z) = 0 and ) v,(z) = 0. Supposc that E(x) >
Y- vp(x) for z such that 3 vp(z) < n. If Y_vp(z') =n+1, 2" =y, for
some prime element p’. By Property 2, E(z') > E(y') > Y v,(y') = n, s0
that E(z') > 3 vp(z').
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Tk EUCLIDEAN ALGORITIM IN ALGEBRAIC NUMBER FIELDS

The Euclidean algorithm on the ring of rational integers which was stud-

ied by Euclid is defined by
N(x) = |z|=|Z/Zz|.

More generally the function N(b) = |R/Rb| is called the norm of R. For
subrings of algebraic number ficlds the only known examples of Euclidean
rings have been Euclidean with the norm as algorithm, though the possi-
hility of constructing rings of S-integers which are not Euclidean for the
norm is implicit in Gupta and R. Murty [15].

For imaginary quadratic fields, Q(v/—d) whose rings of integers are Eu-
clidean, the norm is always a Euclidean algorithm. To see this consider the
construction of the fastest algorithm. If d # 1, 3, the only units in the ring
of integers are 1 and —1. So in this case the construction terminates with
the units unless there are elements z with N(z) < 3. If —d = 1(mod 4),
then the ring of integers of Q(v/—d) is generated by 1 and (1++/—d)/2 over
Z. Since N(a +b(1 + v=d)/2) = (a +b/2)? + d(b/2)? < 3 implies d < 12,
the choices are d = 7, 11, It —d = 2,3(mod 4), then the ring of integers
is generated by 1 and v=d. The inequality N{a + bv—d) = a? +db® < 3
implies d <3 ord =2.

It can be verified that in each of these cases,d = 1, 2, 3, 7, 11, the ring
of integers is Euclidean for the norm. For d = 1, 2, the ring of integers

consists of elements a| +a2v/—d with a,, a; rational integers. If a; +asv/—d

6



’ and by + bov/—d are in the ring of integers. then look at

a, +asv—d _ aby + asbod + v —d (aab, —(“b:)
by + by —d b3 + db3

Pick an element q; + g2/ —d of the ring of integers such that.

l_(il_bl + d(l-_).bg _

2+ db3

agbl - (llbg
b3 + db?

<3
2

1
— {2 5’

then

( +ayV—d - (bl +bz\/——d) (QI +f12\/:7))
<

( ) (b3 + db3)

N(b +b+2v—d

For d =3, 7, 11, the ring of integers consists of clements (@, + azv/—d)/2
with a;, as rational integers cither both even or hoth odd. If the elements

(ay + a2v—d)/2 and (b) + bzv/—d)/2 are in the ring of integers, look at

a) + agv—d a,bl -I-(J.gb),d'f' \/—( ﬂgbl — (l]bz)

by +bov/=d b + dbé

Choose g2 such that
agby —ayby  qu| 1
b? + db2 2 4’

then ¢q; may be chosen with the same parity of ¢, satisfying

arby + dayb, rn’ 1

rdbz 2|

1

b
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Henee,

N (a; +a22\/—_d N (b, +b22\/——d> (ql +q22\/——d))

1 d by + by/—d
< G*E)”(‘*‘“z )

<N(’il_.i-_%'£___ "_d)

So the ring of integers of Q(v/—d) is a Euclidean domain for
d=1, 2,3, 7, 11.

Since it is known that the ring of integers is a principal ideal domain
for d = 19, 43, 67, and 163, these rings give examples of principal ideal
domains which are not Euclidean for any algorithm.

Heilbronn [17] showed that there are only finitely many real quadratic
ficlds which are Euclidean for the norm. Chatland and Davenport [4]

showed that the norm is a Euclidean algorithm for the ring of integers

of Q(V/d) precisely for
d=2, 3,5, 6,7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

Davenport. [7],[8] showed that there are only finitely many fields of degree
three or four with unit groups of rank one which are Euclidean for the
norm.

If the ring contains a unit of infinite order which generates R/Rp for
infinitely many primes p of R, then by analogy to Artin’s Primitive Root

Conjecture, the set £y in the construction of the fastest algorithm would

8



contain these prime ideals. Weinberger [42] made this conncction more
precise. He modified the conditional proof of Artin’s conjecture, due to
Hooley [18], to show that for algebraic number fields containing infinitely
many units, the ring of integers is Euclidean if and only if it is a principal
ideal domain, assuming the Generalized Riemann Hypothesis for Dedekind
zeta functions. The main ideas of his proof arc as follows. First, it is enough
to show that all primes p are in Es. That is, in every nonzero residue class
modulo p there is a unit or a prime from E,. If a unit € is not a primitive
root modulc ¢, then € is a ¢'" power mod q for some ¢|(Ngq —1). This
is equivalent to q splitting completely in Is;'(_Cq,e” 7). So, it is enough to
find a prime ideal g, which does not split completely in any K(C,,€'/?),
in each residue class mod p which does not contain zcro or a unit. Now,
the argument of Hooley can be applied using the Prime Idcal Theorem for
prime ideals in ideal classes with the error term implied by the Generalized

Riemann Hypothesis.

The Euclidean algorithm has been studied for more general types of
subrings of algebraic number fields. Let S be a set of valuations of the ring of
integers of an algebraic number field containing the archimedean valuations.
The ring of S-integers of an algebraic number field is the interscction of the
valuation rings for valuations not in S. Euclidean algorithms on rings of
S-integers have also been studied. O’Meara [31] showed that for every field
there is a set S of valuations such that the ring of S-integers is Euclidean

for the norm. Lenstra [24] extended the result of Weinberger described

9
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above to rings of S-integers with |S| > 2. Utilizing the methods of R.
Gupta and R. Murty [12] on Artin’s primitive root conjecture, R. Gupta,
K. Murty, and R. Murty [15] showed that the assumption of the Generalized
Ricmann Hypothesis could be removed from Lenstra’s result if the number

of clements of S is large enough. More precisely, they proved:

Theorem. Lect K be a Galois extension of Q and let S be a collection of
primes containing the infinite primes such that
(1) |S| > max(5,2[K : Q] — 3),

(2) K has a real embedding or {; € K, where

g=gcd(Np—1: p€ S\ Sx),

then Rgthe ring of S-integers is Euclidean if and only if Rg is a principal

ideal domain.

In the proof of the theorem, the use of the Generalized Riemann Hy-
pothesis is avoided by applying sieve methods and a generalization of the
Bombieri-Vinogradov theorem on rational on primes in arithmetic progres-

sions to algebraic number fields due to K. Murty and R. Murty [29].

INTRODUCTION TO THIS THESIS

For technical reasons the most promising point to try to improve the
Theorem stated aboveis for totally real Galois extensions of Q of degree
four. In chapter 3, the proof in [15] is studied in detail for these fields. It

appeared that by improving the arguments in [15] and, more especially in

10
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[29], it might be possible to prove that the ring of integers of such a field
is Euclidean if, and only if, it is a principal ideal domain. To this end,
the Bombieri-Vinogradov type theorem of [29] is studied in chapter 2. The
proof of this theorem required the use of a generalized form of the Cebotarev
Density Theorem, which is proved in chapter 1. This approach was not
successful and appewrs to require a much more precise understanding of
the distribution of prime ideals.

In chapter 4, the desired result is proved assuming the cxistence of a
prime p of the field such that the unit group maps onto the coprime residue
classes modulo p?, such primes will be called special primes. Special note
should be taken that since the ring of integers is always assumed to be a
principal ideal domain, there will be a certain ambiguity between prime

ideals and prime elements.

Theorem. Let K be a totally real quartic Galois extension of Q. If the
ring of integers R of K contains a prime ideal p such that the unit group
m..ps onto (R/p*)*, then R is a Euclidean domain if and only if it is a

principal ideal domain

A probabilistic argument suggests that special primes oceur frequently.

Let

S(z) ={p: Np <z, U maps onto (R/p®)*}.

Let g™ be the exact power of an odd prime ¢ dividing

|(R/p*)*| = Np(Np —1).

11
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Consider the cyclic factor of (R/p?)* of order ¢". In order for a unit € not
to be a generator of this group, it must land in the ¢g"~! part of the group.
The probability of this occurring is 1/g. For the prime 2, the units &1
always gencrate a subgroup of order 2; otherwise, the same heuristics work.
Since totally recal quartic fields have a rank three unit group, one would
expect that S(z) is asymptotic to

> O (-3)

Npszq]NE!I\;E—II

¢ prime

Buchmann, Ford, Pohst, and von Schmettow [2] [3] computed the inte-
gral bases, discriminants, unit groups, and class numbers of all totally real
ficlds of degree 4 with discriminant less than one million. From their tables,
165 of these fields satisfy the first requirement of the theorem, namely that
the class number is one and the field is Galois over Q. A special prime is
found for each of these fields. Some of these fields are shown not to have
the norm as Buclidean algorithm, providing the first such examples in the
case of algebraic number fields.

In chapter 5 the result of the previous chapter is extended to all finite
Galois extensions K of Q. Since these extensions are Galois, they are
cither totally real or totally complex, that is these extensions have either
ry real embeddings or 2rp complex embeddings, and the unit group has
rank r = r; —1 or » = ry — 1, in the respective cases. In the first step,

scarch for r primes pyy,...,p1, such that the unit group maps onto

(R/p}i---pi)"

12



In the second step, take these primes and the units and find 27 new primes

P21s« ..+ Pacer) such that the group gencrated by the units and pyo,....py,

map onto
(R/Pgl e Pg(ar)) '
Continue this constuction until s = max(4 — », 2[R : Q] — » — 4) primes

Pi1s- .., Pis are found such that the group generated by the units and the

primes produced in the previous step map onto
] ‘ o
(Rfvd--via) -

Theorem. Let K be a Galois extension of Q whose ring of integers is a

principal ideal domain. If the procedure described above produces
s=max(4-nr2[K : Q] —r—4)

primes, then the ring of integers of K is a Euclidcan domain.

Examples are given of the determination of these special primes for qua-
dratic fields, real cubic fields, and totally complex quartic fields.

In the final chapter, the results of chapters 1, 2 and 3 are used to extend
the results of Gupta and R. Murty [14] on cyclicity and generation of elliptic
curves modulo p, p a rational prime, to algebraic number ficlds. Let E be
an elliptic curve over a number field F. For every prime idecal p of F, there

is a reduction map E(F) — E(F,) modulo p.

Theorem. Suppose that [F : Q] < 4. The group E(F,) is cyclic for

infinitely many primes p of F if and only if K, = F(E[q)) € F for all 4|d,

13
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where d is the largest integer such that Q(d) C F. Furthermore, the number
of primes Np < = for which E(F,) is cyclic is greater than 6yz /(log z)?+1/4,

for some positive constant 8q.

Theorem. Let T’ be a free subgroup of E(F) and
Np(z)={p: Np <=zT — E(Fy) is onto}.
Let E be an clliptic curve defined over a number field F. If the rank r of T

satisfics r > 2(2n - 1), then

i H

> Gogapere

where 3 = max(2,d —2) and d is the order of the maximal abelian subgroup

of Gal(F/Q).



CHAPTER 1
GENERALIZED CEBOTAREV DENSITY THEOREM

Lagarias and Odlyzko [21] proved an cffective version of the Cebotarev
Density Theorem. A generalization of their result is required in the next.
chapter. Let K be an algebraic number ficld and define ng = [K : Q] and
dy equal to the absolute value of the discriminant of K. Supposc that L is
a Galois extension of K’ with Galois group G = Gal(L/LK’). If p is a prime
ideal of X which is unramified in L and P is a prime of L lying above
p, then the Frobenius symbol, oy € G, is defined by ogz = 2V (mod B).
Here N is the absolute norm. Let oy be the conjugacy class of G containing
the o with B|p. If the dependence of the Artin symbol on the fields is
important, then the notation (p, L/IK) will be used. If € is a class function

of G, Ig the inertia group of P, and Dy the decomposition group of P,
then let

srnm __L m
§P™) = M& §(r"a),

where 7 is a generator of the cyclic group Dg/Iq. Define
1 N
(2,6 L/K) = 55 - (=~ Nv')" () (log Np).
" Npi<z
Let p be an irreducible representation and 7 its character. Let V' be the
representation space of p. For each prime ideal p of K, chose PBlp and let

15
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VI® he the vector subspace of V of elements fixed by the image of I under

£ Then the Artin L-function is defined as
L{s,n) = Hdet (1- p(aq,;)Np“’IV"‘n)_l
p

and is absolutely convergent for Re(s) > 1. Brauer proved that it extends
to & meromorphic function. If p # 1, Artin conjectured that it extends to
an entire function. Artin did prove a functional equation for L(s,n) of the

formn
L(s,n) = W(n)G(s,n)L(1 — s,7),

where

G(s,1) = A(n)**~! ( )" (cos %)“(")(sm ?)"(")I‘"(s)

(27)*

and n=np =a(lw®yx) +blwe y).
Suppose £ = Z" a7, where the suinmation is over irreducible characters

of G, a,, € C, then the formula

dotico pot+F

(& E,L/I\)————Z n_/ s(s+1) G ds,

a’n—lm

where gy > 1 is a consequence of the following lemma.

Lemma 1. Let k be a positive integer, then

1 aytiT yu-{-k y°'0+k
ﬁ,/ﬂn_ﬂ- s(s+1)--+(s+k) <W’ for0<y<1,
1 out+iT y_.,+k . yao+k
317/_, PRSI P v(y W <Tage Prise.

16
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Proof. For0< y < 1.
uu-}-k

s+ 1)~ (s+ k)

goes to zero as o goes to 400, so that

1 oot+iT y"“*“’
2mi ao—it S(8+1)---(s+ k)dﬁ
1 =T gtk 1 pooHiT o
T 208 Jpgir S(3+1) e (s K s~ o _[,[,+£,,. s(s 1) (s+ L.-)"""

since the integrand has no poles for Re(s) > 1. The absolute vadue of both

of these integrals is

1 ‘l”ﬂ+k
< 5%
= 2xk T*
This proves the first inequality.
Fory > 1,
ys+k

s{ls+1)--{s+ k)’

goes to zero as o goes to —oo, so that

1 oot 'tk ds
21 Jpy_ir 8(s+1)-(s+ k)
Csa 1 —o0—iT "k d 1 /—oo+|"l' s s
21 Jo_ir  S(s+1)--(s+ k) 2mi Joop  s(s+1)-(s+k)

where X is the sum of the residues of the integrand at 0, =1, «-- , =&k, The

two integrals are estimated as above, and

. —+k
M= E - 5_2_.2._____—.__1_ — 11k

giving the second inequality.

17
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Now let & = 3 a,n be the characteristic function of a conjugacy class

C of G, and let

a'g+tl 3+L

e, G =“‘Z""f.,_,, ECER e

where ag > 1, and o > 2. By Lemma 1,

. X 1 T Uu+k
Uile,C\T) — (2, 6c, LIK)| < ~ % {DZ, (—N—p;) long}

1 T ootk
< T i(w) log Np ¢ ,
pJ

where the sum is over the prime power ideals. Choose g =1 + (logz)™!,

then the estimate

agt+k
- e 1 log Np
2. (ij) log Np < 2 Z Npi(aat

p.i
k+1
ket 1 h KZ
&z (0' + k) << Erl
follows from
4
—C—"(a) L nglo—1)""
Ck
Therefore,
k41
) KT
9 A .p — A 1 1 AN0mL
(2) ([!;AJ,E{},L/I\) IL(J1T10)+O((k+1)2Tk)’

forallez>2and T > 1.

Choosc g € C, let H be the cyclic group generated by g, and E the fixed
field of H. Since the L-secries is invariant under induction,
(3)

PSP =/ B o S
Ii(e.C.T) = Gl Z\:'\(g)ﬁ/ﬂ*"“" 8(8+1) GTE) L(s,x)ds,

18



where the sum runs over the characters of the abelian group A = Gal(L/ E).

Next, the integral

T 1 ag+iT w.q-i-k Ll
] = — — (s, \) ds,
(4) Ik(a;, 3X) 27ri j‘;o_ir]v 3(3+1)"'(3+A§) L (" \)‘ L ]

will be evaluated, where x is a character of H, U = j + .-1,-, and 7 is an

integer greater than k. Define

r at+k L

1 i
(2, T\U,x) = — — (s, \) ds,
Ik(m-,n Y) 2"'1_z ]I{,’,'U 8(8+1)"'(3+k) L (“ \)‘ h ]

where Rty is the rectangle with vertices at op £ T, and =U T

The difference between these two integrals

Rk(ms Ts U-: X) = Ik(ms Ts U! X) - Ik(ﬂf, Ts X)

may be divided into three parts

1 /—T m-—U+k+it

Vi(e, T,U, x) = o r (~U+)(=U+1+it)-- (=U + &+ if)

!
X %(—U + it,x)dt,

T 1 -1 ;L,a'+k—i'l'
Hk(ms ’U’X)_._z:\/—U {(O'—lT)(G"'l']."'iT)"‘(a'I"A'_iT)

!

X Zo~iT,x
z‘7+k+l"l'

{o+iT)c+1+iT) (o +k+:T)

Lf
o X -E(a + 1T, x)} do,

o

19
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x0'+k—-iT
{(a—iT)(a+1—iT)---(o—+k—iT)

'

X E—(a — T, x)

1 Ty
21”

Hi(«,T,x)=

1
1

c+k+i'l'
(o +iT) (e +1+iT) (o + k+iT)

Lf
X Z(a + z'T,x)} do

SinceU=j+ 4 and |-U +m+it| > 1 for every integer m,

U4k Lr

L

T
U0 1) (U—-F)
p=U+k
¥ ———T(log A(x) + nglog(T + U)),

—} ok
T (log A(x) + nglog(lo| + 2) + nglog T') do,

Vi@, T,U, x) €

—(=U +1t, x)ld

14

Hy(w, T, U, ) < /

—00
gtk

Tk

< (log A(x) + nglogT),
using Lemma 6.2 of Lagarias and Odlyzko [21]. By Lemma 5.6 of {21},

Hi(x,T,x)

1 oy a‘+L—-1T 1
‘EE/.T{(G-:T)((:H—J) (o +k—iT) ; o—il —p

Iv+7TI<1
TERAT
I oy 1,
(0 +iT) (e +1+iT) - -(0+k+iT) & o+iT~p

|[r+T|L1

< /1 TL+|(1°E»4 (x) + nglogT)do,

phtl
< Tk+1

(log A(x) + nglogT).

20



Lemma 2. Let p = 3+ iy, withy # T, then

a1 LT
!
/_'_:, (a-i-'ifl")(a-!—1+iT‘)---(rf+l-r—i-iT)(rr+-ifl“—p}”r
z (o) — B)
R

<

where |T|>2, 2> 2, and1 <o, <3.

Proof. Suppose v > T. Let B be the rectangle with vertices
o1 +iT, =L +4iT, L +i(T-1), oy +i(T-1).

Cauchy’s Residue Theorem gives

$s+k
/ ds =0,
p s +1) - (a+F)(s~p)
On the sides of the rectangle other than [—"1- +iT, o1 +:7T] the integrand is

ma'|+k
< : ’
(IT| - 1)*+Yo1 - B)

which proves the lemma for ¥ > T. For v < T, use the rectangle with

vertices
—3+iT, o1 +iT, oy +i(T+1), ~L+i(T+1).

The lemma implies that

1 O zcr+k—i'l' 1
'—/ - : - Z — | do
2xi J_1 (0 —iT) (o +1~iT)--(0 + k—1T) o—iT—p

k!
< W(log A(x) +nglogT),

21



for & > 2 and T > 2. The sane estimate holds for the other integral in (5)

h 50 that
s
Therefore,
gkt
Ii(2, T, U, x) — Ii(2, T, x) «W(log Alx) +nglogT)
Tz—U+k
+ U k+1 (log A(x) + nglog(T + U)).

The next goal will be to evaluate Ix(z, T, U, x) using Cauchy’s Residue
Theorem, for T # v for any zero p = 8 + iy of the Artin L-function L. If
Y = X1, the principal character, then L'/L has a simple pole at s = 1 with
residue —1. The residue of the integrand is

xk+l

—5(1’)m

At the nontrivial zeros p of L(s,x), L'/L has a simple pole with residue
equal to the multiplicity of the zero. (Note that since L/E is cyclic, the
Artin L-functions L(s,x) are entire by the reciprocity law.) This con-

tributes a term
otk

plo+1)+{p+k)

for cach zero p = B+ iy with |y| < T, counted according to multiplicity.
At nonpositive integers, L'/ L also has simple poles coming from the trivial

zeros of L(s, x). At odd integers —(2j5 — 1) < —k, L'/L has residue b(x)

and at even integers —2j < —k, L'/L has residue a(x). These contribute

22
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the term
[U+l]
3 _1)k+lu:-2j+l+k

{
b(x) Z (27 —1)(25 —2) - (25— (A + 1))

i={8

[%] ;
4 (_1)k+lu_.—'.!,;+k

*al0 D Sy h

i=14EE]

Note that if : < &,

zs-{-k . w-—i-{-k

s+ 1) (s+k)  (s+D(=i) =i+ 1) (=D)(1)- (=i + &)
+ = log o +
(=i + D (~D(D) -~ (=i + k)

(s + i) (8),

where h(s) is analytic at s = —2, 0 < i < k. Also,

oo

I 1 1 1
>

1 2 —1 .
P +E -y - 2 I+(-"+t)h-2(-"),

where ha(s) is analytic at s = j, So for odd integers —k < —(25 + 1) <0,

L b(x)

'E(Sax) = 51011 +11,5(x) + (8425 + 1)y j(s)

where

rl,j(x)=B(x)—-;-iogA(x)+5(x)( 1 1 )

95 +2 2 +1
—-Z 1 _1 -{-lz'l gy
\2+1+p p g 106
i —1
b(x) {2 1), ax) (", . 1
+2(j7t=]t+2 ARCAEY

23
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For even integers —k < =27 < 0,

I;J( ' X) = alx)

Py + r9,5(x) + (8 + 25)ha ;(s)

where

1 1. 1

+lnblo,f_.,1r+ x )(P’( j+l))+9(—xl(§:—‘7— 3

2 2 r 2 2 o
Finally at s =0,
L a{x)—46
"L"("’s X) = M + TO(X) -+ 3h5(3)5
where
1 1 b(x) 1 ( )I"
wiv) = —=logA =
mix) = Blx) - 5108 AG) + 800 + gnplogm — “X = (3) - TX
Therefore, Cauchy’s theorem gives
Ii (2, T, U, Y) =
ghtk
1n+1)'+ Z P+l (pFF)
I7I<T
+ £*(ro(x) + (a(x) ~ 6(x)) log z)
k+1 [El] g2-1+k
+ (=1 H{b(x) . . .
27 -1(25—-2)--- (25— (k41
jopiayy W -1 =2) 25 = (k+1))
) [ZU: p=2itk
+u X -
jEay 292 = 1) (2J—k)}
(&)

—2.3-H+L

Z (2,]—1)'( 2J+1+k)' (rlv.f(X)+b(X)log$)

[ ¢l p2i+k
+ L @z T 200 a0 loga).

24
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Letting U tend to infinity gives

el s

x
Ik(:l:,T,X)-I-tS(.Y)m_ ; plp+1) - (p+k)

Ivl<T
2* (ro(x) = (a(x) — 8(x)) log )

! el J'.—'.aj-—|+k
— (=1)**1{b(x)

2 (2/ - 102/ = 2)-++ (25 — (A +1))

j=l b

g2tk

B (Y)Z TS CTL

(4]

7

1
(=] YT

¢ (27— DN=2j + 1+ k)]

+ {r1,i(x) + b(x) log »)

—ZJ-H.
2_7 =27+ k)!

k"“ log 2
THRH1

MWM

s (r2,i(x) — a(x) log z)
< (log A(x) + nglogT)

Clearly, r(x) <€ B(x) + log A(x) + nglogk, where »(x) is any of the

subscipted r(x)’s appearing above. By Lemma 5.5 of [21],

1
B(x) + z ;<<10gA(x)+1a;;.

lol<1/2
Hence,
ot aptk ¥ log x
I(z, T, x)+ 6 - -
R FS D M e ey Rl D
l7I<T lpl<1/2
zk+ log x
K log A(x) + nglog(kz) + —T-,;,T-(log Alx) +nplogT)

+ z* log z(log A(x) + nglogk),

* ! logx

~—zzrr—(log Alx) + nglogT) + 2" logz(log A(x) + nglog k).

<4
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)

Therefore by (3) and (4) with T not equal to the imaginary part of any

zero of L{s, x),

ICI ~ gk+! zrtk
Ii(2,C\T) — = b -
I<T
_ Z zk log:c
|ﬂ|<1/2
Cv ,’k'i'l l r ¢
< :—GT: ("'_Tk_:fi(log A(x) + nglog T)+2*log z(log A(x) + ng log ’v‘))
C L+l | A
< :—G—: (—Wfl—é’f(log dy, +ny logT) + 2* logz((logdy)* + ny log k)) ’
using the conductor-discriminant formula and the estimate
~| « (logdy)*.
Iﬂ|<2
Therefore by (2),
c]_«++__ [o] i
(ot = g tigl zx: E plo+1)---(p+k)
['rI<T
C K41 |
< : GII (————TA = (logdy, + ny log T) + z* log 2((log d1)* + ny, log k))
n[;';l:k'H
+ k2Tk -

Theorem 1. There is an effectively computable constant ¢, such that if
x > exp((logdy)?/ny, + log 2logdy + ni(log 2)?),

then
|G| (k+ 1)! |G| Bo(Bo+1)--- (8o + k)
+0(2*H exp(—cin} 2 (log 2)1/?),

Yr(x,€c) = + O(=r

26



where the second term occurs only if (g (s) has an exceptional zero 3.

Proof. If p = B+ iy # By is a nontrivial zero of some L{s.\) with [y < T,

then Lemma 8.1 of [21] shows that

log &
PR o gkt g [ o 9B
|a, | <z cxp( Llog dLT'”-) ’

for some effectively computable constant ¢ and for £, T > 2, The estimate
Nx(T) < log A(x) + nlog(T + 2)

implies that

Z Z 1 l logd;, + ny,
~ S iplp+1)--(p+ k) K
lel21/2
¥IST

for £ > 1 by the conductor-discriminant formula. In addition,

S 3 e
 ptimg, | Ple+ 1) (p+ k)
Ipl<1/.z
<<x1/2+kz Z |
X p#El=ph p(p+1 ot k)
lpl<1/2
24k
Q < T (logdy )
and
z¢logx r o
Z Z & z" loga(logdy)
X pEl=fo
lej<1/2

using Lemmas 8.1 and 8.2 of [21]. Lemma 8.2 of [21] implies that
zk+1-Fo

‘(1 Bo)(2 —Bo) - (k+1— fo)

k+m'm[—-(—)-‘|—7—,,,,l = ,—7'—" ]
< I:' max [c(nL)log,d;,,c.qdl/"'] x 1R g I

27



an
¥ log

1=/

< ¥ log & max [c(n,‘)logdhc:‘dll‘/m.] )

Henee, by (6),

Dol Cf ="

'/)k(‘niEC) IGI (k'l‘ 1)!
IC,'l photk ICI k+1 log z
— 2 %% opd logT

< Gl BalBo + 1)~ (Bo + ) +|G| TRt (logdy + ny logT)
| | K gh+!
+ = |G| log z((logd;)? +nylogk) +np T log z.
Choose

T = exp(n] ' *(logz)'/? — (log d1)/nL)
to obtain the theorem.

A result of Stark [39, p. 148] gives an effective bound for the exceptional

Z0T0.

Lemma 3. The Dedckind zeta function (r(s) has no real zeros for
max [1 — (e(ny)logdy) "1 - (c;;d}/"")"] <A<,

where e(ny) = 4 if L is Galois over @, ¢(ny) = 16 if there is a sequence of

fields Q = Fy € F» C --- C F,, = L with each F; normal over Fj4,.

Theorem 2. There exists cffectively computable constants c;, ¢, such

that for x > cxp((logdy,)?/ny, +log2logdy, + ny(log 2)?),

C .
uns8) = O EE 40 (a4 cxpleun)/ (g 2)'2)
logz ! logz
O [ x*+! g ) (L+1 _ g )
t (J exp(~ c(n;‘)logdf,) +O| =" exp( co(dy)/ne
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Proof. Apply Lemma 3 to estimate the term depending on the exeeptional

zero in the previous theorem.
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CHAPTER 2
AVERAGE DENSITY OF PRIME IDEALS
IN ALGEBRAIC NUMBER FIELDS

Bombiceri [1] and Vinogradov [40] proved an average prime number the-

orem for primes in arithmetic progressions.

Bombieri-Vinogradov Theorem. For every A > 0 there exists B > 0
such that

r

Z max max ‘qb(y;q,a)-— ¢qu)| <

<r =1 A -
4o J(logzyn U= (1 log* =

K. Murty and R. Murty [29] proved a similar result for algebraic number
ficlds. For the application to Euclidean domains in the next chapter, a

more precise cstimate is needed which requires only a slight modification

of their proof.

The notation in this chapter is the same as before. For a conjugacy class

C of G = Gal(L/K), define

acl(z, LK) = > 1

Nyp<=z
p unramified in L
op=C

vole,L/K)= Y (logNp).

Np™ <z
p unramified in L
a,p m=c

If £ 1s a class function of G, define

W, & L/K)= ) (log Np)é(p™).

Npm<z

30



If ¢ = Zna,,n, where the summation is over irreducible characters of

G, a, € C, and L(s,n) is the Artin L-function then
o+ioo LI x
Y(z, &, L/K) = —Z / -—('i 1) — ds,

for Re(o)> 1.
If L= K({;) and R N Q(¢,) = Q, then

Gal(L/Q) = Gal(K'/Q) x Gal(Q((,)/Q)-

Let £(C, g, a) be the characteristic function of C x {a}, where Gal(Q((,)/Q)
is regarded as (Z/qZ)* so that a is a residuc class modulo ¢, then

¥(z,£(C,q,a), K(C)/Q = Y. e(p)logp),

’ m <.r
[ =u(mnd q)

"
where €(p) = 1 for unramified p and e(p) < 1 for ramified p.

The average density result which will be proved is

Theorem. Given A > 0, there is B > 0 such that for

Q = z7(logz)~",

then

E max max (3, §(C'q,4), K(()/Q) = &(Ca,q)y] < -
< (@0=1Y log” x

where n = max(d — 2, 2), with

d= mﬁ}nmgx[G : Hjw(1

31



and where the! indicates summation over ¢ such that KNQ((,) = Q, which
implies 8(C,a,q) = [C|/(¢(q)|G|). The min is taken over subfields M of K
such that L(s,w @ x, K(({,)/M) are holomorphic for all characters x and

the max is over characters of H = Gal(K/M).

If K'/M is abelian then cach L(s,w ® x) is holomorphic, so d is less than
the degree of the largest subfield over which K is abelian. K. Murty and

R. Murty [29] proved this result with z!/7=¢ instead of z!/7/(log z)Z.

REDUCTION TO HOLOMORPHIC L-FUNCTIONS

Let 8 denote the characteristic function of a conjugacy class D in some

group H, then

(7) ép = 1] > _nlgn)n,

where gp is an element of D and the summation is over all irreducible

characters of H. In particular, this relation implies

(e E(C, 0.0 K (G)/Q) = 55 3 X@(a,60 9 x, K (G)/Q)
X

where the x range over characters of Gal(Q((;)/Q). From the previous
chapter,

"t ogx

"n("n (:1.‘,(,0 ® X) <4 Tl

logA(w® x) +nlogT.

Choose T = exp(n'/?(log x)!/? — L log A{w ® x)). Use Lemma. 3.7 to esti-
mate the possible exceptional zero. Since A(w® x) < ¢" where the implied
constant depends only on the field,

Pu(2,w Q x) € nloggz"*! exp(—c(log z)!/2).
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Hence,

IC]
(|G|

Y(e.bc ©1, K(G)/Q) = ¢+ O(x t‘-‘iP(-C"-;"‘L'(log £)%),

where ¢ is some absolute constant and the O constant depends on the field
K. Therefore,

S max max[p(y,£(C,,0), K(G)/Q) — 6(C.a.ghyl
90 (a.q)=1 ¥<

log «

=3 o ) 525 L Wlonfo © KD+ Ot sl

s

)'/‘~’)).

for any real number Ql.
To reduce to a sum involving only primitive characters, observe that if
x(mod ¢q) is induced by x,(mod q,), then
- (
|¢(:B, 60 ® X9 I{(Cq)/Q) - 1/)(33, 66’ ® X1, I\' (Cq)/@)l S Z logf’ << ]()I-',' qi'
1

™ a/g

This implies,

r 1

YRy 16 ’ ’ [/
; #(q) ‘,’,“gle'ﬁ(!f c ®x, K(¢,)/Q)|
q<Gh x#1

< (ogz) ¥ ¢( md.xz [W(y,6¢ @ x, K(C,)/Q)| + O(log? ).

1<)

Let M be a subfield of K such that L(s,w®x, K(¢,)/M) are holomorphic
for all characters x and all characters w of H = Gal(K/M). f S = H x
Gal{(Q(¢,)/Q), then M is also the fixed field of S. If g € H N C then the
conjugacy class of H containing g¢ is denoted by Cy. By the invarianee of

L-series under induction

HI|C
by, 6¢ @ x, K(C)/Q) = |Ic+||c|'|""”’ (6 @ X5, K (C)IM).
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The character relation (7) implies

Py, (66” @ x IS! Cq /M)
6=+ A S atuclwtn.w @ x K(G)/M),

where the w range over irreducible characters of H. Therefore,

Z' tHax nax It,l)(u, (C,q,a), K((y)/Q) — 86(C,a,q)yl

4<Q) {a,q)= 1 v<
C||H r1
<<(10gw)| lgl Inﬁ}x Z 2(q) Hax Z [¥(y,w ® x, K((g) /M)
l<g<
K (log x)(log Q1) %mﬁx“ql Z d> maxz |4(y,w ® x)}|
Q/2<q2Q
ca III R 'loglog Q
< (log x)* 7= max max > o r;lsagcz [ (y,w @ )|
1<q2@
) 2 [ClIH|
< (loglog x)(log x)? o] e pex ;Qamaxz [ (y, w @ x)l,

since ¢(q) > qfloglogq. This reduces the theorem stated above to an

estimate involving holomorphic Artin L-series.

THE L-SERIES IN THE CRITICAL STRIP

The following theorem is useful for estimating functions in a strip.

Phragmen-Lindelof Theorem. Let f(s) be regular and analytic in the

strip
={s€C: a < Re(s) <b}
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such that

|fla+it)] < 4|Q +a +it)|"

|f(b+it)] < BIQ +b+it|”,

with Q +a > 0 and o > 3, then for s in the strip S,

b—e o—a

1£(8)] < (A|Q + s|*)b=a (B|Q + s|?) =+ .

This form of the theorem is due to Rademacher [32).
Since the coefficients of the Dirichlet series L{s,w ® x) satisfy 4,, < n

with n = n{w ® x) = ny(w @ x)(1), it follows that for € > 0,
|L(1 + e +it,w ® x)| < (1 +¢).

Artin L-series have the functional equation

(8) Lis,w®x)=W(w® x)G(s,w® x)L(1 —s,0® x),

where

G(s,w @ x) = Alw ® x)**~! ( 2

n
(W) (COS -‘%r)a(w@x)(sin %)MW""’I‘"(.«;),

and a(w @ x) + b{w @ x) = n. Stirling’s formula in the form
ID(2)| = e~/ [z[*~1/2(2m) 2(1 + O(}2|7'/*)),
with z = z + ty, shows that

|G(2,w @ x)! S A(w @ x)2z—l2n(21r)—nz+l/2|z|!1(2—1/2}(1 + o(lzl_llz)).
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Thercfore,
|L(—€ +it,w o x)| < Alw @ x)FH(Jt] + 2)EHI((1 + €)"

With these two estimates in hand the Phragmen-Lindelof theorem gives the
estimate

(9) |L(s,0 @ )] < C*(1 + e)(A(w ® x)([¢] +2)") =™,

for —e < Re(s) € 1+¢ Now choose € = (log(A4{w @ x)(|t| +2)*))~!, which
gives

1=

|L{7 + it,w @ x)| < (Alw @ x)(Jt| +2)") = (log(A(w @ x)(|t] + 2)"))",

since ((1+¢€) € el
To obtain a similar estimate for L' (s,w ® x), differentiate the functional

cquation (8),
L'(l-sw®x)=-G(w®x)Llis,0@x)~Gs,we x)L'(s,w®x).

Since

’%'(zyl < log(J2] +2),

then
!

G
(8w ®x) < nlog(lt] +2),

which implies
G'(5,w ® x) K n(Aw © X)(It] +2)") ¥~ log(|¢] + 2).
The same argument as above shows

(10)  |L'(s,w @ X)| <€ (Alw ® X)(Jt] + 2)™) =" (log A(J¢] + 2))".
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Proor or THE THEOREM

Suppose that

L M- we e =3 k)
Towey ~ L= woENe™) =5 =5

L' oo o
—(awen =Y A(J);X(J)

=1

and define

i<z J
AlDesv(s
G.=G.lsway) = Y 2L
>z J
M, = M.(s,wex) = 3 X,
iss J

for ¢ > 1 where A denotes von Mangoldt’s function and = > 0.

Since

[(w® x)(P)| £ 1, bym =0 for m > n, |bpm| < (1), and [b;] < 2"M9), where

p(7) is the number of distinct prime divisors of j.

The identity

f

~F(8,0@X) = G.(1~ LM.) + Fo(1 - LM.) - I'M-.

together with the formula

ctico Tn+k

wewox)= g [ e ey

ds,
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vadid for ¢ > 1, yields

Z Z‘ w}k(ma X)I

l<q<@Q x
1+{logz)~ |d8|

] 2 _ 2
<<‘"ZZ[ T LML) e ir o

W<Q X 14-(logx)—14ico

1/24i00 .
+.;I/ZZZ f (1+IF;|2+|M;|2+|F;M3|2+|L|2+|L'|2)
9%Q X 2—ico
[ds
Tl F A fs A

where the line of integration of the second integral has been moved to 1/2.

The Large Sieve inequality in a form due to Gallagher [9] gives good

estimates of most of these terms.

Large Sieve Inequality. If ). |An|* < +oco, then

mX 7n‘)m

dt<< Z[A [*(m + Q).

m=]

a<Q X =

Since |¢;| < n, the Large Sieve Inequality implies

2 |ds]
Z Z _/ IG:I [sl|s + 1|+ ]s+ K

1<q€Q x V¢

< Z Az(.} ICJI + Q2)

J>z

Q2

< (logz)3(1 + —)
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and

Z f /»c+(.‘l+l)s IG.|2 ](i.‘il
@1<9<Q x (G+1)i Jetji Tlslls+ 1] s + K
c+(i+1)i
L+1 Z f |G:|° |ds]

1<9<Q X (G40

(log:L) (1+ -—:-)

For k > 2 summing this inequality over j gives the cstimate

c-Fioco o
ds . 02
Z Z / G [* |3||8+1I|"|'|8+k| < (log:::)"(1+-%— .

1<q<Q X

Observe that

1- LM, ==Y 3 beajy X2 ,3).

i>z e|j
c>z

Since |a;| < T,(J) and b; < 2"P(),

|Zbc“j/c| < Tag(7)2"0),

el
e>z

where Tp4.3(J) is the number of distinct ways of writing j as the product of

n + 1 integers. The Large Sieve Inequality gives

ogz)~ ) 4ico
Z ]H'(l gz)” "+ Il _ LM'I2 |d-“|

I<q<Q x J1+{logz)=!—ico )]s 4+ 1]« |s + K|
I'I. (j 4“?(.’) » 4
<< +l j2)c (J + Qz)

2
& (log z)(»t1)* " (1 4 %— .
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Since |e;| € n,

> /l+m(1+|F|2+|M RS —
DI AP I B P PES  RR P
4"1’(1)
<> Q*)
j<a?

< (Q* + z'*)(logz)"“

The direct estimate of

2 "2 ]d3|
> Z/ (L + I s T T R

1<9<Q x T—'°°

using the Large Sieve inequality is unsatisfactory. However, the Mellin

transform

. ”, 1 2+ico w ot
WY = — T(w)U¥5~" dw,

278 Jo_ioo
provides the relation

o

. 2+4ico
E a;x(y)e™ Vi~ = L/ L(s+ w,w ® x)['(w)U¥ dw.
2

= 278 Jo oo

Moving the line of integration to ¢; = —1/2—1/logV yields
(11)

o

. ) 1 ci+too
Lis,w®y) = Zu,-c"’luj"" - — f L(s + w,w ® x)U"T(w) dw,

= 27t J. _ico

where the L(s,w ® x) comes from the pole of I'(w) at w = 0. By the

functional equation,

Lis+w,wdx)=Gs+w,w®x)ls+w—-1Lw®x)

o0
=Gs+w,w®x)Y_ a;x(i)i+?,
i=1
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¢ 3

for Re(s + w) < 0. Substituting this relation into the integral gives

o0
L{s,w® x) =Za:,\ e~V s

i=1
1 c1+tioe
— % f . G(S +w,w®y) Z &Jill) ,I'.u+w—l U“'F(w) dw
armee i>U
1 ci1+ioco
(12) T 2mi . Gls+w,wox) Z a;x(7)i*T ' UT(w) duw.
ame i<U

Stirling’s inequality implies that
G(s,w ® x) < (A(w® X)(t] +2)")F ™7

If the line of integration of the second integral is moved to —1/logV, then

by Cauchy’s inequality

T
f IL(%+itsw®X)|2dt<<[ IZ“JX -i/U, ""+l!| dt
-T
2

A w ® -2c| o |
' ( ( x ) / f an(J)J 1=1/log V4+i(y+t)
—tisv

x T%(e; +iy)didy
2

2¢cq
+ (A(w®x ) f j Qs X(J)J =1/2=1/logV+i(y+t)
~T iU

x T%(ey + iy) dt dy.

Using this formula, write

> 5[ rirde=5 4545,

1<qsQ x ~T
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i 1

The Large Sieve Incquality with U = V = (Q"T")# implies

T <Y lajfedY 571 (5 + QT

i=1

< (U + Q*T)(logU)™.

a
B < (QTINY. ol i+ o)
J>U
2

2L )10gU)" = (U +QT)(log )™,

L<U(1+

Ty & Z |aj|2j—l—2/IogV(j+Q2T)
isu

& (U + Q*T)(log U)™.

These estimates together show

) f 5+ it x) 2 dt « (AV/2Q"/*T/? + Q*T)(log AQT)™*

9@ X -

so that

>IN / (5 +it, )l dt

9<Q X

T
dt

r=1q2Q X

& (Alf2Qu/2 + Q‘z)(logAQ)"

for & > n/2 + 2. By the Large Sieve Inequality,

JT T th+1

< Tk—n/2
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e

Therefore,

3 Z'/w+/_m|L( ) -
oo T I I |t]*+!

< ka7 3 00 o)

q<Q
& Q"/"Hl%z"(QT)
Tk—n/f2
Hence,
cl-l-:oo ) Id'ql
L{s,w®x)
z X L. APESTpa T
" n/ 242 J un T)
& (AI/JQ"/'Z"‘QJ)(]OQQ) 2 TL-@;:/J(Q
(13) < (A'2Q 2 + Q*)(log Q)"",

choosing T'= @ and k = n,
A similar approach can be used to estimate the term involving L', Dif-

ferentiate (12) to obtain

oo

L(s,w®x) =~ a;x(j)logje/!=
j=1
1 cy+ioo
3 Gls+w,wox)L' (1 —s—w,we x)U"T(w) dw
T [+ —100
1 c1+ioo
(14) ~om G'(s +w,x)L{1 — s — w, x)U"T(w) dw
Tt Jey—ico

The same argument as above except that (14) is used instead of (11) and
(10) instead of (9) shows that
c1+ioe ‘ l(l'ql
L’(.‘!,w @ X) 2
l<q<Q¥ f,—im | | [s]ls + 1]+ |5 + K|
(15) & (Al/'an/'z + Q'z) l()g"("+2, Q,
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Combining the results of (13) and (15) yields

d 2n 2
33 k(o0 @ 0] < slloga) T (14 )
¢<a x

+2'7%(Q% + 2%)(log 2)'7 + 2! 2(log Q)" +2(Q? + Q"/?),

where the implied constant depends on the field K. Choose z = Q(log z)M

with M > (n +1)?2?" + D, then for
(log 2)M < Q < min(z'/2(log z)~@M+1T+D) p1/2=¢ pziz—ey

comes the estimnate

1

=3 3 nle,w @ )] < 2" logz) P,
2ffSQ X

From the previous chapter,

mﬁﬂ'i‘n

Bo(Bo+1):+-(Bo + n)
z"tllogz
Tn-l-l

TJJ,;(LC,LU ® X) <

+ (log A{lw ® x) + nglogT)

+ 2" logz(log A(w ® x) + ng logT).
Choose
T = exp(n~"2(logz)!/? —=n~'log A(w @ x)).

Lemma 3.8 of [29] estimates the term coming from the possible exceptional
zero Jy of L{s,w @ x). Since A{w ® x) < q", where the implied constant

depends only on the field i,

Yu(,w ® X) K n(log g)z"+! exp(—c(log z)'/?)),
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for some absolute coastant ¢. Hence, for @ < (loga)M

A

1 * | .
Q Z z: [¥n(z,w © X)| K &"F (log &)™ exp(--cts. - 17)

9<Q X
& ;!'-"+1(10g:1'-)—’),

for any positive real number D. The final observation is that

' ! p
g;) (nax max lbm (. €(C' q,a)) — 6(C, a,q)(m m 1)!| & o
implies
_

, ™
Z max max I'nbm—l (y$ E(Cs‘ba)) —6(C, ﬂ"“’)J_Il <
120 (@)=l ysz e

log” 2
To see this, let

1 m+1

Ym (:L‘, E(Ca q, a)) = 6(01 a, (I) ] + I'm(:l:, E(C'., q ).

(m+1)

From the relations
(2, €6(C, q,a)) = [ a1 (1, E(Cr s @) dly,
J2

% A¢m—l(ya €(Ca q, a)) dy < "/)m-l(ms f(ca(h a))

1 et A
< 'X./ d)ru—l(ysf(c'a ¢, “))dy

it follows that,

Ym-1(2,£(C,0,)) = 6(C, 0, @) = + rm-1(,€(C' 0,a))

1 Az
=3 (5(0, a,0) - + O(M2™") + O( max, (ru(y, &(C, q,a»))) :
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This nnplics

1
. . m—1 =
l;lgf(v"._u (1,6(C,q,0a))) € 6(C,a,q)Az™™" + Y 2ax (rm(y, €(C,g,0))) .

Now choosing A = z(logz)~#(4+1) | with Q as above, vields

!

Y max max |rm_1(y,£(C,q,a))|

< =
fISQ vsE (“JI) |

_ 1
& Aze™ ! loga: + Xq<le'£:i[A (;1’}33:(1 Irm (y1 E(C& Qaa))l

& .'Bm(l()g m)-—%(/\-l).

Using a decreasing induction on j starting with 7 = n completes the proof

of the theorem.
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CHAPTER 3
THE EUCLIDEAN ALGORITHM IN
TOTALLY REAL QUARTIC FIELDS

SIEVE LEMMAS
Let A be a finite sequence of integers, P a sequence of rational primes,
z a real number greater than 2, and

P(z)= H P

p<s
pe?P

then

S(A,P,z)=|{ae A: (a,P(z)) =1}

is the number of elements of A whose prime factors which belong to P
are all greater than z. The goal of sieve theory is to find upper and lower

estimates for S(A,P, 2).
A simple example of a sieve is B = {1 < n < z}, P the sequence of
primes less than /z, and z = /z, then S(B, P, z) is the number of primes

between /z and z. For the application to Euclidean domains the sequence

C

{p_]-: (paE/Q) CC‘},

needs to be investigated with Py = {ptd(E/Q,C}}, where (p, E/Q) is the
Frobenius symbol and d(E/Q, C) is the largest integer such that Q(¢y) C E

and o|g,) =1, for allo € C.
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For d a square-free integer define
Ar={a€ A: a =0(mod d)}.

Let X be an approximation to |A], the number of elements in A. For each
prime p € P choose w(p) such that (w(p)/p)X is a good approximation to
A, and set w(1) = 1. For square-free integers composed only of primes in
P, define

w(d) = [ wip),

rld

and for other square-free integers set w(d) = 0. The numbers

d
Rd = IAd — E‘-’_%_)_X’

give the error of the approximation. Let

W(z):H( —ﬂ’)).

p<sz P

For B, the obvious choices are X = z and w(p) = 1. The Cebotarev

density theorem suggests that good choices for C are

-_ 1Cl,.
X = —li(z)
|G|
and w(p) = p/(p ~ 1) for p € P;. With these choices,
|R4| € Re(z.d) = max max |ne(y,d,a) — ] ti(y)|-
- i ysr (a,d)=1 IGI¢(d)

The reason for proving the theorem in Chapter 2 was to provide estimates
for the remainder terms Reo(x,d). The appropriate form of that theorem
for estimating this sequence is stated below. Let v(n) be the number of

distinct prime divisors of n,



Lemma 1. Given any positive constant B there exists a positive nmmnber
A such that

£r

' 2 v no 1. v
) p@)3" P Re (e, q) < Toe )™

q<z'/1 [(log 7}

where 1 is defined as in the thcorem in chapter 2, and where the fmplied

constant depends on the field K and on the constant I3,

Proof. Since Re(z,d) € x/d, for 2 > d, Canchy’s incquality implies

>, #Hd3DRo(z,d)
d<zrl/nflog? x

. 2(d v(d) Y
<2y B (‘l)ff, RY*(2,d)
d<zt/n flogh = =
1/2

deet/? d

“2((1)90(:{) 1/2{
<z Y \ Y Re(w,d)

d<eV/n flopg? r
The estimate

2 v(d) 2
1] (d)g _ H ((l| .. '(lg)

d<z dydy<z dy--dy

H]
1 ‘
< (Z ,7) < (loga + 1),

n<ae

and the theorem of the previous chapter imply the result.

In the next section, the proof of the theorem will require the existence
of many primes p such that if ¢|p — 1, ¢ a prime not cqual to 2, then £ is

large. The linear sieve shows that many such primes exist,
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Lemma 2. Assume that

w(p) 1
1< ——<1—-—
- p - Al
w(p) logp z
— .—.———_-l r—<A.
Ls Z p ho&w“ 2

wEpL 2

then for € 2 z there is the lower bound

log &2 L
I%A%ﬂZXWh%f(ﬁi)—Bmaﬁﬁ}-Z:ymmd

ne<g?
n|P(z)
logfz) L } (
)< XW(z B——— “IR.
n|P(z)

This lemma is proved in Iwanicc [19]. The function f is defined by

#lw) = 2 tog(u - 1),

for 2 < u < 4. The function F is defined by

2e”
Flu)= —,
(w) ==
for 0 <u<3.
Lemma 3. There are more than
512/ (logx)?t1/4

rational primes p such that
(1) p< .
(2) (. E/Q) CC,
(3) If (| (p—1), then €| d(E/Q) or € > 2'/*" exp (—(log x)'/4),
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where 8§, > 0, d = d(E/Q) is the largest integer such that Q(d) C E and

n = max(d’ — 2,2), with
' = nii!n max[G : H]w(1)},

and the min is taken over subfields M of K such that L(s,w ® x, N(()/M)

are holomorphic for all characters x and the max is over characters of

H = Gal(K/M).

Proof. Consider the sequence C with P = Py. To apply Lemma 2, the two
conditions must be checked. The first condition is trivial since 2 | d( £/Q, C)
and 0 < 1/(p—1) < 1/2 for p > 3. Since ¥(x) ~ 2, partial sunmation

implies that

> R g2+ o),

-1 w
wsp<gs p

which implies the second condition for £ = 1 since only finitely many primes

divide d(E/Q, C). By Lemma 1,

> IR <o/,

n<z!/" /(log x)"
n(P(z)

for some constant B > 1. Choose z = &'/ exp(~(logx)*/*) and €2 =

z1/7/(logz)Z. Apply Lemma 2 to obtain

log &% L x
S(A% Pyy2) 2 XW(2) {f ( Tox 2 ) - B W} -0 ((](,g,,y) :
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APPLICATION OF CLASS FIELD THEORY

Recall the construction of the fastest algorithm in the Introduction. Sup-
pose that every prime of R is contained in Ey. Consider a residue class
a+ Rb = a'(a" +b"R), where a” +b" R is a coprime residue class of B/ Rb".
If " is not in Ey, then a” 4+ RV contains an element of E; by an extension
to algebraic number fields of Dirichlet’s Theorem on primes in arithmetic
progressions and if b7 is in E,, then a” + Rb” contains an element of E).
So by induction on n; + ny the construction of the fastest algorithm will
reach all clements of R, where n; is the number of prime divisors of b in
E, and n, is the nunber in E,.

The key fact to be proved is that every prime ideal p of K is contained
in Ey. Consider the ray class ficld of K with modulus p. The ray class
ficld F is the maximal abelian extension of K with the conductor of F/K

dividing Rp, with the infinite primes remaining unramified, and with
(16) Gal(F/K) 2 (R/Rp)" [4p(U),

where U is the unit group of R and ¢, is reduction modulo p. This reduces
the proof of the claim to showing that for every residue class a + Rp there
is a primne q of R such that the Frobenius symbol (q, F/K) is mapped onto

(a -+ Rp)¢p (U) under the isomorphism (16) and such that ¥4 maps U onto
(R/Rq)".

Intended Theorem. Let I be a totally real Galois extension of Q of

degree four whose ring of integers R is a principal ideal domain, then R is
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Fuclidean.

Let p be a prime of &' and F the ray class field of modulus p. F is
also totally real since the infinite primes of &' do not ramify in F. Lot

wy, wa, ws be a system of positive fundamental units of &', Consider

L = K (w1, s, /o),

Ly = F . L, and Ly the smallest ficld containing L; which is Galois over
Q. Now, L, L;, and L. are not necessarily totally real because wy, wq, wy
need not be totally positive. Gal{L,/K’) is abelian since it is a subgroup
of Gal(L/K) x Gal(F/XK). Ly is the compositum of all the embeddings,
o Ly,...,omL, of L; into the real numbers. Let 7 be an element of
Gal(Ly/K). Since L, is Galois over K, 7 maps L; to L, and since K
is Galois over Q, 7 maps each o;L, to itsclf. Since cach o;L is abelian over
I{, the compositum is also abelian over i,

Let C' = {o} be the conjugacy class of Gal(F/K) corresponding to (a +
Rp),(U) and

C,={re€QGal(L,/K): r|p=C, 7|1, #1}.
It is not obvious that C, i1s nonempty. If C; were cinpty, then
LCF°={z€F: o(z)=r}.

L/K ramifies only at the primes dividing 2, so only these primes need to

be considered. In this case the characteristic of R/Rp is 2 so

|(R/Rp)"|=2" - 1.
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Since [L : K) divides [F : K], [F : K] divides | (R/Rp)” |, and 2 is the only
prime dividing [L : K], a contradiction results. Therefore, C is nonempty
and LNF = K.

Let Cy be the inverse image of C) in Gal(Ly/K), and C; the smallest
subsct of Gal(Ly/Q) closed under conjugation. Since L, need not be totally
real, there might be additional roots of unity in L. However, the only roots

of unity ¢4 in Ly such that
(17) arl‘@((d) =1

for all o' € Cy are %1, The first claim is that the only roots of unity in L;
satisfying (17) are £1. Let H = Gal(L,/F) and Hy = Gal(L,/L). Suppose
there is an integer d greater than 2 such that (4 € L, and such that the
condition (17) is satisfied for all o' € C. Let J = Gal(L,/K((4)). For any
T € (),

TH\(THﬂHg)gcngnTH.

Thercfore,

\H| ~ | 0 | < | neH| < 5 |H

since [A(Ca) : K] > 2. This implies H N H;| > 1|H|. Note that
HNnH,=H/Ga(L/LNF) =H [|Gal(L/K).

This yields a contradiction since |H N Ha| = 1 and |H| = 8. Therefore,
the first claim is proved. Suppose there is some integer d greater than two

satisfyving (17) for all o' € C». Then a prime q of K can be found which does
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not split completely in K ({y) such that {q, L,/R’) € C,. But this condition
is equivalent to (g, Lo/RK) € Cb, which contradicts the assumption that o
satisfies (17) for all o' € C;. Clearly, from the definition. the only roots of

unity in L. satisfying (17) for all o' € C are +1.

Lemma 4. There are more than 8.2 /(log )21/ primes p of K such that

(1) Ngsop =p < z, p a rational prime,
(2) (0, F/K)=C,
(3) (0, L/K) #1,

(4) If qlp — 1, q a rational prime, then g = 2 or
g>z"exp (—(loga:)'/:’) ,

for some positive constant 6.

Proof. Let p be a rational prime which is unramified in Ly with (p, Lo/Q) C
Cy. If P|p be a prime in Ly, then for some 5 in Gal(Ly/Q), (4By~!, Ly/Q)
is in Cy. Let p be the prime of K lying below Pn=", then Ny gp = p
and (p,L/K) C C). By Lemma 2 there are more than bya:/(logx)?+1/4
primes p < z with (p,L,/Q) C Cy such that if ¢[(p — 1) and ¢ # 2 then
g > z'/* exp (~(logz)'/3).

Lemma 5. The number of primes p of K with [, (U)| < y is O(y'/?).
Proof. The numnber of integer triples (a,, ay,a3) with

(18) las) + laz] + |as) < y'7*

55



#s

is less than -:':—y. If j4,(U)| <y, then

1y — b 52 b

Vwytwy® = w)wy’wy®(mod p),

W)

for some pair of triples satisfying (18), implying that p divides

a;—by ag—by

az—by __
W) Wy : 1.

Wy
The number of primes dividing this element is O(y'/%). Thus the total
number of primes p such that |4,(U)] < y is O(y?/?).

Consider the primes p of K found in Lemma 3. For these primes either

lihp(U)) < 2%/ /(log 2)? or 2 is the only possible divisor of

[(R/Rp)* [¢p(U)].

By Lemma 4 the number of primes satisfying the first condition is
" 1/3
& (a:‘  exp ((log m)l/:’)) = zexp (4/3(log m)'/3) .

This estimate is clearly worse than the trivial estimate. However, if Lemma

4 could be slightly itnproved, then the Intended Theorem could be proved.
Conjecture. For some ¢ > 0 and some 8§, > 0, there are more than
o [(log 2)¥/3— primes p of K such that

(1) Nrsp = p < 2, p a rational prime,

(2) (p. F/K) =C,

(3) (p.L/K)# 1,

(4) If g{(p — 1), q a rational prime, then ¢ = 2 or ¢ > z'/4(log z)2.
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Using the Conjecture, the number of primes satisfying the first condition
is
a/4 2}/ 8/4
< (2 /(log2)?) " = x/(log )",

so that these primes can be disregarded. In the other case, 2 divides

[(R/Rp)* [dp(U)].

This would imply that 2 splits completely in L, contradicting the fact that

(p, L/K) # 1.

This completes the conjectural argument for a proof of the Intended The-

orern.

REMARKS ON THE HOOLEY-WEINBERGER CONDITIONAL Proor

It may be possible to adapt the conditional proof of Hooley [18] and
Weinberger [42] to give unconditional proofs of Artin’s Primitive Root Con-
jecture and the extension of the Intended Theoremn proved in this chapter

to any algebraic number field.
The heuristics are simpler for Artin’s conjecture. Let @ be a square-free
integer and p, g primes. Let R(q,p) denote the condition that ¢|(p —1) and

a is a ¢*" power residue modulo p. Hooley defines

No(z) = |[{p £ z: ais a primitive root mod p}|
No(z,m) = |{p < z: R(q,p) does not hold for any ¢ < n,}|
Mu(z,m,n2) = |{p < z: R(q,p) holds for some 7, < ¢ < 12}
P,(z,k) = |{p < z: R(q,p) holds for every glk}|,
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where & is a square-free integer. Note that

N.(z) < N,,(-’B,T]])
Nn(-":) 2 Nl.l(J:?nl) - Ma(wa MN,T— 1)

M, (rq,e — 1) < My(x,1,102) + Ma(z,72,m3) + Ma(z,n3,2 — 1).

loglogz, ny = z'/2/log? z, n3 = z'/2logz. Hooley shows

Choose 1y = %

that

_ zloglog x
Ma(x, 02, 713) =0 ( log )

M,;(:L', N3y T — 1) =0 ("_m'_") .

log? 2
Note that

Na(z,m) =) u(€)Pa(x, ),
Fidd

where the sum is over positive square-free integers with prime factors not

exceeding 7 and

A/Iu(d:a "h'ﬂ) .<.. Z Pﬂ(m!q)'

n<qsn

Hooley also shows
16, Pa(2, k) = 7(2,Gi) + O(ng, (k) + Olng,a"),

where m(x. G) is the number of prime ideals p of G = Q( ¥/a, +/—1) with

Np < x. By the Cebotarev Density Theorem for & <logz,

T
w(e,Gi) > @.
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Thus,

Nn(x»"l) >>

£ (") £x
log & (Z nG, > loga

Ef

Let Z, = Q(¥/-1), F, = (¥a). Trivially,

w(x, Fy) € q

£
loga”
Lagarias, Montgomery, and Odlyzko [20] show that

&

n(z, Fy) €

logx
for > exp(A(logdr, )(loglog dF, )(logloglog dy, }). Assume the hypothesis

q x

(17) 7(x, Fp) < (ogTogg) ™ Tog s’

for > ¢%(logq)?, then the Brun-Titchmarsh Theorem implies that

q A
m(x,Gy) K (loglog g)1+ loga”
Hence,
r 1
M 2 ¥ <— .
oz, m ) < log z m;’;m (g — 1){loglog g)t+e

By partial sutnmation,

1 1
& .
m§<n, (¢ — 1)(loglogg)'* — (loglogloglog z)'

Under the hypothesis (17), this implies that N, (x) > =/log.
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CHAPTER 4
TOTALLY REAL QUARTIC FIELDS
WITH CLASS NUMBER ONE AND
DISCRIMINANT LESS THAN ONE MILLION

A proof of the conjecture in the last chapter appears to be difficult.
Reconsider the result of R, Gupta, K. Murty, and R. Murty [15]. They

proved the following theoremn.

Theorem. Let K be a Galois extension of Q and let S be a collection of
primes containing the infinite primes such that

(1) |S] > max(5,2[K : Q] — 3),

(2) K has a real embedding or {; € K, where g = ged(Np—1:p €

5\ Seo)s

then Rg, the ring of S-integers is a Euclidean domain if and only if it is a

principal ideal domain.

In this chapter, the theorem stated above will be used to show that a
totally real quartic Galois extension I of the rational numbers whose ring
of integer is a principal ideal domain is Euclidean, assuming the existence
of a special prime in the ficld.

Recall the construction of the fastest algorithm. Previously we tried to

show that all primes were in Ey. Actually much less is required.
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Lemma 1. Let R be a principal ideal domain, assune that for every prime

p there is an integer m such that p € E,,, then R is a Euclidean domain.

Proof. For any element b of R define

ht*(b) = < i : - .
0= (3%, pmdlita (1 7P € Bm) +1

For primes p define

1, if peE,
ht*(p), otherwise.

he(p) = {

By induction on the number of prime divisors of b define

ht(b) = max | ht*(b), qma,x! ht(q:) + ht(q2) | + 1.
1G2=b

(1), (au)# R

Every residue class of R/bR contains an element » with ht(r) < ht(l) and
elements with ht(b) = 1 are in E; so that b € Ej ). This proves that

Un>0En = R. So R is Euclidean.

Lemma 2. Let € be a primitive root modulo p?, with Np = p, a rational

prime, then € is a primitive root modulo p" for cvery n.

Proof. Suppose that € is a primitive root mod p”. Supposc that
¢' = I(mod p**!)
with ¢ the smallest such positive exponent. Since

¢! = 1{mod p),
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p — 1 divides £. Also ¢ divides p™(p — 1), so that ¢ = p*(p — 1) for some
pusitive integer u. By assumption, € is a primitive root modulo p™ and

p"~! 50 that

" =1 = 1{mod p™~!),

e~ =) = 1(mod p"),
so that

GD"—"{p—l) =1+ bpn—l,
where p 1 b, Hence,
fp"—l(p—l) — (1 +bpn—l)l” =1 +bp"(m0d pn-{-l).

Thus € is a primitive root mod p"*! and by induction ¢ is a primitive root

mod p™ for all positive integers m.

Suppose that a special prime p can be found such that the unit group
generates the coprime residue classes modulo p?, then by Lemma 2 the unit
group generates the coprime residue classes modulo p” for every positive
integer n. Taking into account the residue classes are not coprime, then by
induction p” is in E,,. The theorem of R. Gupta, K. Murty, and R. Murty

quoted above can be applied with S = {p} U 5. Since
Rs/qRs = R/qR

for ¢ ¢ S. Lemma 1 implies that for any prime q of the ring of integers

R the residue classes modulo q contain either 0, a unit, a prwer of p, or
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a prime such that cach of its residue classes contains either O, a unit, or a
power of p. Therefore, q is in some E,, which implies that I is a Enclidean

domain. This proves the following theorem.

Theorem. Let K be a totally real quartic Galois extension of Q. If the
ring of integers R of K contaius a prime ideal p such that the unit group
maps onto (R/p*)*, then R is a Euclidcan domain if and only if it is a

principal ideal domain

Note that the argument given above could have been used in conjunction
with a much worse average density estimate than the one given an chapter
2.

Buchmann, Ford, Pohst, and von Schmettow [2] [3] computed integral
basis, discriminant, fundamental units, and class groups for all totally real
quartic fields with discriminant less than one million. The following table
contains a list of those fields with class number one which are Galois over
the rationals. In each case, a prime p can be found such that the unit group
generates the coprime residue classes modulo p?. In the following table the
rational prime occuring under p indicates thar any linear prime of the ficld,
lying above the rational pritne, is a special prime.

A superscript g means that Godwin [11] showed that the field is Eu-
clidean for the norm. A superseript ¢ means that Cohn and Deutsch showed
that the field is Euclidean for the norm. A superscript n means that the
field is not Euclidean for the norm. For the Galois groups, €4 denotes the

cyclic group of order 4, and V4 denotes the Viergruppe, Z[2Z x Z[2Z.
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Some examples of the verification that a field is not Euclidean for the norm

are given at the end of the chapter.



Discriminant.

11259
16009
2000
2048¢
23047
3600
4225
4913
6125
7056
7225
8000
10816
11025
12544
14400
15125
17424
18432
18496
19600
19773
24336
27225
28224
28224
30976
34225
351527
41616
42025
45125
48400
48841
51984
53361
53824
66125
68921
69696
69696
70225
74529
76176
78400
81225
87616

TABRLE oF ToraLly REaL Quanrice Fiktps

Generating Polynomial
A R Py Py |
rt—6r? 41
PR T T O RN
A P
PR PN |
FARE P Py |
V- 0r? 4y
E AR SR LN |
o= - 42 -G+ ]
V= 5rt + 1
- r*+9
T A | F LA PNy B
=23 gt 4 10r - |
£ 132 4 16
P !

- et 4
V= = 108" =~ Hae + 11
ot =Trt 44
- 1227 4+ 18
et=2rd S e+ 120 42
£ = et 41
PP AR | Py i |
V=2t e 12 4 120 =
2 — 228 — 9527 + 26x + 4
£t~ 10z® 41
V=2 1822 M 4 T
- vzt + 1
2t — 212* + 64
T — 132t 413
V=28 182 4 4z =2
#t - 28z% + 81
zt — 2% - 2022 — 212 + 61
o - 322% + 36
- 15zt 4+ 1
21— 112 + 16
=272 + 9
o= 2% — 172 + 18z + 2%
zt = 23 — 342% — 262 4 101
28— 23— 15z¢ — 182 — 4
- 1422 4+ 16
2% =278 — 1922 4 20z + 44
V=28 452+ 12224+ M
172 44
219522 4|
z — 38x% + 81
2t — 31z% + 169
28 =229 — 912% 4 V27 4 47

Prime
)
3l
19
17
o3
il
24
13
1y
37
19
20
17
41
31
19
19
h¥i

47
19
17

163
20
H

17

11
24
13
3!
11
Y
43
5)
17
23
19
23
29
149
29
17
11
I
29

Galvis Group
4
Vi
4
4
Vi
Vi
V4
4
Cq
Vi
V4
O
Vi
VL
Vi
Vi
4
V4
Od
\'L
V4
A1
V4
V4
V4
V4
V4
V'L
A4
V4
'L
4
V4
V4
V4
V4
V4
4
€4
V4
V4
Vi1
V4
V4
V4
\'L|
V4



Discriminant,

92416
%3025
04864
97344
100352

1076537
119025
120125
121104
127444
1324490
135225
135424
138384
140608
142124
144400
148225
159201
166464
179776
181041
193600
197136

207936
207936
21 1600
216225

2195018
226576
231125

231361
233289
235225
238144
242064
243049
26016
247808
265837
6256
276125
283024
284089
207026
304704
304704
7 314721
318096

>

{ienerating Polynomial
rh—uBrt 4+ 45
zh — 3322 + 196
-9z 4+ 1
Vw1 Tr¥ 4 182 4+ 8
ot = 42r% ~ 56z + 46
£ — 2t — Mt - 03+ 29
2V - 2t 5Tx% 4+ 1682 4+ 124
¥ —2® — A4t = 362 + 211
V= ox? — 192 4+ 0z + 13
- 19z + 1
V=2t 195 £ 20249
£V = 2% — 602% + 1672 + 149
w2t 49
& - 29 |
225t — Szt - 46z + 9
ot — 2122 4 16
z* — A8r® + 196
1= 4l + 324
' — 2%~ 262% + 63z - 21
o= 20— 1927 202 — 2
2t — 20 w0t 4 30z + 119
't —23r* 4+ 95
r* = 54x% + 289
ad = 2r8 — 232404233
1 ~ 462 + 16
= 22" — 312t 4+ 32z + 142
Y — 562% 4 324
2 e TR 4 2128 4+ 304
V= 2 U5t 4 G672 =35
at w228 - 912% + 922 42
2V — 2% — 5027 — Bz + 451
£t - 252 + 36
o 2% = 3122 4 76z - 20
a1 =51z 4+ 520
24— 20% = 30?4 Mz + 167
o — 2% 2507 4 26& + 46
L P |
1~ 402* + 121
21— 48x® — 88z + 158
al— 2 = 37 = 352 + Bl
350t + 16
24— % — 642?56z + 551
£ — 1327+ 9
207 449
= 572 4+ 676
YV~ 50e% + 4
ot 2r 3T 380 + 223
' — 2502016
= 37rt + 25

Prime
17
19
19
23
24
29
11
29
13
43
29
19
41
11
23
23
31
19
41
19

17
29
11
29
41
11
11

19
11
53
17
11
1]
23
13
23
23
43
13
19
3!
23
29

17
67
11

Galois Group
V4

V4
V4
V4
C4
1
V4
C4
V4
V4
AL
V4
V4
V4
C4
V4
V4
V4
V4
V4
\L
V4
V4
AL
\'L!
V4
V4
\L
C4
Vi
C4
V4
\L
V4
V4
V4
V4
\L!
C4
C4
V4
C4
V4
V4
V4
V4
V4
V4
V4
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Discriminant

319225
327184
341056
370881
379456
379456
384400
380017
390224n
393129
395641
404496
414736
416025
423801
435125
442225
45587
469225
473344
484416
497025
501264
506944
529984
535824
549081
553536
553536
555025
559504
561123
565504
576081
577600
602176
630125
646416
648025
652864
659344
698896
704969
725904
739328
739600
741321
748225
753424

Generating Polyhonmial
Y= 5907 4 729
s — 48r? 4+
a1~ 200 — 3000 4 40r + 254
= 2507 4 4
= 18r% + 4
£ 208 410?420 + 28T
£ 79?4 676
LR A e X A
2002 4+ 29
& — 4522 4+ 36
=272 4 25
2 — 22 — 4927 + 502 - 11
#1— 152% + 16
1 — 672 4 961
i =412+ 1022 - 12
V= 2% = T92% — Tlz + 911
b — 69:% + 1024
gt - 2% — (9r® — Tr + 49
- Tl + 1089
- 522 4 289
ot = 2% — 9528 4 W6 -5
% — 7322 + 1156
24 = 3122 4+ 196
o= 223 — 475% + 482 + 398
ot - Bzt + 1
1 = 278 o 356?436z + 14)
z =zt — 532% 4 5de — 12
zh - 34z + 196
1 — 229 — 402 4 502 + 439
- 772 + 1206
zh = 22% — 2092 + 30z + 38
g — 23 — 8927 - 81z 4 1201
2% — 4822 + 520
-2V =44z 1N Te + 27
z — 223 — 77z% 4+ 78z + 1331
24— 208 = 512% + 52z + 482
! — 2% — 94z? — 86z + 1361
z% = 3522 + 256
ot ~ 8322 - 1521
%~ 229 = 5322 + B4z + 597
22 = 9T W8~ 7
zt — 1522 + 4
2t — 23 - 33z% -39z 4+ 8
% — 372 + 289
21 — 8Uz? — 152z + 574
% = 22% - 872% 4 8Bz + 1721
2V =81z 4+ 25
Y — 89z + 1764
zh~ 1922 + 36

67

Prime
11
43
2

5

13
7
I
37
UH]
29
47
11
19
29
17
11
1
11
19

2
I
11
17
13
B}
29
19

19
19
7%
17
17
11
41
131
1
19
17
HR]

1
1
17
19
37
29
LB ]

Galois Group
Vi
Vi
Vi
Vil
V4
V4
Vi
4
o
Vi
Vi
Vi
Vi
Vi
Vi
o]
'L
4
V4
\'Z|
\'Z|
V4
Vi
Vi
VA
\'L|
Vi
VA
VA4
V4
Vi
(8]
V4
Vi
VA
V4
4
VA
V4
V4
Vi
V4
A
Vi
A4
4!
V4
\'Z|
\'Z]



Diseriminant Generating Polvnomial Prime Galois Group

T6H0884 Y 257 — 572% + H8x + 623 7 \'Z ]
TROI2H - 2 = 104z% - 96z + 1711 11 C4
TRI225 zh = 9lx? + 1849 11 \'Z|
THER44 -2t =202t L 0z + 3 17 V4
37 ot — £ — 762 + 3162 - 179 103 C4
B10448" 2 - 3750 4+ 3393 11 C4
815409 zh — 2% = T72% = 300z — 300 67 V4
RA6400 1 =27 — 932% 4+ Mz + 1979 41 \'Z
BG5S % — 2%~ 10922 = 101z + 1901 19 C4
801136 - 60c* + 841 17 \'Z
900061 ' —43x2 + 295 23 V4
906304 21 - 229 — 352% 4 Y6z + 86 43 V4
912673 - £ 36z — 91z — 61 43 Cq
915849 1 - 3122+ 1 67 V4
931225 Tt — 992 4 2209 31 V4
038961 £ = 3721+ 100 43 V4
96RLHG et 228 Mt 320 4+ 10 5 V4
974169 21— 1% — 8227 — 3292 — 329 37 \'Z/
976144 2 — 2% — 4327 4 4z + 237 17 V4
92016 £t — 432* + 400 37 V4



The following two examples of totally real quartic Galois extensions i
of Q with class number one are not Euclidean for the norm.

The first example is K, the splitting field of #* — 184 + 4. K has an
integral basis {1, a,a?/2,a"/2}, where a is a root of the polynomial. The

unit group of A is generated by
-9+ 0a%/2, 1 —2a — a*/2, 30 + 630 — 3/20% = 7/2a%.

To determine the prime ideals of X, look at the factorizations of »%—18a2 44

modulo p for p < 7.

2 — 182% + 4 = 2 (mod 2)

(22 + 2+ 2)(2* + 2 + 2)(mod 3)

(22 + 32 + 3)(x* + 2& + 3)(mmod 5)

n

(2 + 3)%(x + 4)*(mod 7)

Using these factorizations, determine the image of the unit group modulo

the prime ideal (7,a + 3).

~9+a%/2=-24+02/2+7/2a = -2+40* = 2420 = -1 (T, + 3)
1-2a—a?/2=1-2a+3’=1-1lla=1—-da=—1 (7,0 +3)

30+630—3/20° —7/20°=2-3/20* =2+ 20° =2+ = -1 (7,0 + 3)

Therefore, the itnage of the unit group is {£1}. There is only one nontrivial
ideal of norm less than 7, namely (2, a) = (a) of normn 4. Only the classes

+1, +:3 modulo (7, a +3) contain clements of norm less than 7. hence, the
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norm is not a Euclidean algorithm for the ring of integers of X', But, since
-9 + /2 = 102(mod (13, + 12)?), and 102 is a primitive root modulo
132, the theorem implics that K is indeed Euclidean.

The second example is K the splitting field of 27 — 2% — 2422 — 222 4 29.
K has an integral basis {1,0, 2%, (=1 + 68 — 682 + 3%)/17}, where 3 is a

root. of the polynomial. A basis for the unit group is given by
4 — B4 7/17, 6458 — B2 ~34/17, 1 -28 +~/17,
where v = —1+4+68—643%+ 3%, Look at the factorizations of the polynomial
of 21 — 23 — 242? — 222 + 29, modulo p for p < 13.
ot — 2% —240% — 222 4+ 20 = 2 + 2° + 1(mod 2)

= (2% + 22 + 2)(2* + 1) (mod 3)
=zt +42° + 22 + 3z +-.(mod 5)
= (2% + 3z +1)%(mod 7)
= 2 + 102* + 922 + 7(mod 11)

(z + 3)*(mod 13)

n

Determine the image of the unit group modulo the prime ideal (13, 8 + 3).

4—f+9/1T=-6-60+58° - 38" = -5 (13,4 +3)
6+54—B°-3y/1T=-3-68-38%-48°=5 (13,5 +3)
1-234+7/1T=4+60+58*-38°= -5 (13,8 +3)
Therefore, the image of the unit group is {1, £5}. There are only two
.‘ nontrivial ideals of norm less than 13, namely (3, 3%2+28+2) = (—8+7/17)
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and (3,8° + 1) = (1 — 28 + 24/17) which both have norm 9. Check the

images of these elements modulo (13. 3 + 3}.

—B4+9/1T=3-68+58" =33 =4 (13,3 +3)
1-28+429/1T=5~-24"-28" =6 (13,3 + 3)
Hence, only the classes £1, £5, 4, £6 modulo (13, 3+ 3) contain clements
of norm less than 13. Therefore, the ring of integers of A is not Euclidean

for the norm. However, 4 — 8 + /17 = 804(mod (29, «v + 1)* and 804 is a

primitive root mod 292, so the theorem implies that & is Euclidean.
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CHAPTER 5
MORE EXAMPLES

The idea introduced in the last chapter can be extended to any fields
which satisfy the assumptions of the theorem of R. Gupta, K. Murty, and
R. Murty. Let A be an algebraic number field which is Galois over (Q,
whose ring of integers R is a principal ideal domain. These extensions have
cither 7y real embeddings or 21y complex embeddings, The unit group of K
has rank » =) — 1 or # = ry — 1, respectively. Suppose that » unramified
linear primes p;, ¢ = 1,...,r can be found such that the unit group of K
maps onto the coprime residue classes modulo p?---p2. An argument by
induetion shows that the unit group maps onto the coprime residue classes
modulo py' ---pir. Suppose this claim has been proved for all products
py'' ee-pitr, such that m; < n; fori =1, ..., s and at least one of the
incqualities strict. Use the inductive assumption to find a unit €; such that
e; = I(mod pi¥) for i = 2, ..., s and € has order p?'~*(p, ~ 1) modulo

p’l‘l =1 p32 “es p:"a‘ where Npl =M. Thcn,

n—3

i < 1 kg,
'u|—2 3 — —_ -—
G’ll (m—=1) =1+ klprlu l(lllOd p;‘l lpg'-‘ von ;")

where py t k. & which implies that €, has order p}'~!(p; — 1) modulo

Py Py ---pi*. Similarly, units €; can be found such that ¢; = 1(mod p;-"' )
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n;—

for j # ¢ and ¢; has order p; Hpi = 1) modulo pyipstee-ple. Then the
multiplicative group gencrated by €. .... €, maps onto the coprime residue

n)

classes modulo py' -« ptr. If > s = max(4d — r.2[K : Q] — r — 1), then

r o

apply the same argument of the previous chapter with
S= SOQU {p].-..,pr}-

to see that R is Euclidean. Otherwise, find 2r primes p} sucl, that the
multiplicative subgroup generated by the units and py,....p,. maps onto
the coprime residue classes modulo p',"’ e 1){3,.2. If 2r > s, then apply the
the argument above., Repeat this step until at least s primes have been

found.
Theorem. Let K be a Galois extension of Q whose ring of integers is a
principal ideal domain. If the procedure described above produces
s =max(4—»2[A : Q] —»—4)
primes, then the ring of integers of I{ is a Euclidean dowmain,

Special note should be taken that it is not sufficient, to take any three
primes pj,...,P, such that the unit group maps onto (R/p3)* for cach i,
The reason is that it need not be true that all residue elasses, say mod pypy

contain units.

EXAMPLLES

Next, the requirements of the theorem are verified for several real qua-

dratic fields, real cubic ficlds, and totally complex quartie fields,
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Real Quadratic Fields. If K = Q(v/14), then R = Z[v14]. The funda-
mental unit of K is 15 + 4v/14.

15 + 4v/14 = —3(mod (5, V14 + 2)?)

Since —3 is a primitive root module 25, the unit group maps onto (R/p?)*.
The generator of (5, V14+42) is 3—v/14. The multiplicative group gencrated

by the units nid 3 — /14 maps onto (R/p?,p3,)* with
pii=(1L,V14+6) pix=(47,V14+22).

The generator of (11, v1446) is 5— /14 and the generator of (47, v14+422)
is 2 — 2/14. The multiplicative subgroup generated by the units 5 — V14
and 3 — 2¢/14 maps onto R/pZ,p3,p3, with

pay = (67, VId+9) pay = (311, V1a +90) pa3 = (479, V14 + 79).

The theorem implies that Z[v/14] is a Euclidean domain.

The following table suninarizes similar computations for other real qua-
dratic ficlds Q(v'D). In the table, « = VD if D = 2 or 3(mod 4), and
o = (14 vD)/2 if D = 1(mod 4). The problem of determining if Z[\/1—4]

is Euclidean was first raised by Samuel [33).
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38

43

47

53

59
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67

69

71

73
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TABLE oF REAL QUADRATIC FIFLDS

Fundamental Unit.
15 + 1o

197 + 420

24 4+ ha

1520 + 273«

37 + 6o

3482 4 631a

18 + Tar

3+

530 + 69«

39 4+ 5o

48842 + 5967«

25 4+ Ja

3480 +113cx

943 + 260

44 a

™

Primes

(b, +2)

(I, o 4 6), (47 a4 22

(67, 4 9), (311, + 90), (479, » + 79)
(13, a4 3)

(20, er 4 15), (167, ex 4 32)

(173, a4 T17), (239, o 4 TU), (263, ¢ 4 228)
(1,4 1)

(13,0 4 7), (23, )

(29, a4 200,179, v 4 24), (191, ev 4 G5)
(D, + 4)

{11,004 8), (167, v + 96)

(173, a + 107), (199, o+ 164), (239, or 4 105)
(1, +4)

(13,00 4 8), (71, e + 40)

(79, + 14), (83, e + T2), (347, ox 4 205)
{7,004+ 6)

(13, e + 1), (T, e + 165)

(109, e 4 32), (151, ex + BB), {263, o 4- 147)
(11, e+ 5)

(23, 4 1), (31, e 4 27)

(43,0 + 2}, (167, cr + 61), (311, ex + 228)
(l,a+ 1)

(29, a + 22), (47,0 + 18)

(59, cr + B), (199, ov + 37), (347, ev + 183)
(5, +2)

{1, x4 9), (A7, a0 + 23)

(67, v + 40), (191, ex + 21), (367, o 4 303)
(5, +4)

(19,0 + 8), (41, r + 33)

(47, & + 12), (107, ex + 37), (131, o + B6)
(7,0 +5)

(29, + 3), (31, 0r + 26)

(37, a0 4 17), (191, ox 4 81), (983, ex 4 800)
(i, +8)

(31, @ +20), (83, o + 30)

(107, + 23}, (137, e + 26), (211, e + 185)
(5, + 4)

(11,0 4+ 7), (47, x + 27)

(109, c + 92), (479, e + 103), (599, cr + 168)
(19,4 11)

(23,0 + 12), (71, e + 29)

(97, 0 4+ 24}, (251, ex 4 134), (359, ex + 278)
(13,4 2)

(17,a+15), (23, 0+ 6)

(41,0 +17), (163, o + 149), (179, x + 81)



»o

Hii

HY

bR

04

a7

101

103

107

109

118

Fundarmental Unit
B2+ Oer

1OA0D 4 112200

447 4 106G

14 + 3o

2143205 + 2210640

5035 + L38a

9 4 o

227528 + 22100

062 + Y30

118 + 2Ho

700 4 1460

J06917 4 282540

Primes

{19,a + 8)

(29, a + 24), (79,0 + 77)

(103, + 17), (107, & + 46), (179, o0 4 21)
(d, x4 1)

(T +3), (059, 0 + 33)

(67,0 + 32), (71, & + 50), (263, &x 4 136)
(11,a+ 10)

(17, + 9),(67, v 4 54)

(7L, + 53), (73, & + 38), (179, a + 159)
{(T,a+35)

(11, + 3), (103, o + 58)

(137, er + 4B), (727, ex + 655), (907, o + 876)
{5, +2)

(13, ex -+ 4), {311, ex + 191)

(317, er + 98), (367, o + 185), (401, 0 4 351)
a4+ 1)

(43, o + 32), (47, ¢ + 29)

(53, x + 18), (103, o + 35), (167, o + G3)
(17,0 +6)

(19,0 + 2),(23, 2+ 1)

{37, 0+ 14), (107, ¢ 4+ 11), (131, 2 + 12}
{1l,a+9)

(29, o + 25), (47, a + 3)

{61, o -1 46), (263, ox + 222), (383, o + 334)
(T.a+3)

(29, + 22), (31, 06 4 13)

{13, 0 + 8), (89,0 + 75), (191, o + 38)
(T,o+2)

(3,0 +17), (83,0 4+ 72)

(89, + 25), (347, a + 130), (439, a + 243)
{T.a)

(1, x4+ 8), (127, 0 + 84)

(131, 0 + 107), (149, 0 + 91}, (227, o + 60)
(23,a47)

(31, & 4+ 26), (47, a + 20)

(101, o + 44), (719, o + 223), (823, a + 781)



R

Real Cubic Fields.

For real cubic ficlds, the theorem requires the existence of two primes p.q
such that the unit group maps onto R/p*q° R. Davenport [6]. Godwin [10],
and J.R. Smith [37] have studied the norm as a Euclidean algorithm in these
fields. In the following table, superscripts d. g, s denotes that Davenport.,
Godwin, or Smith, respectively, showed that this ficld is Euclidean for the
norm. Smith also showed that at most four additional real cubie ficlds with
discriminant less than 10% could be Euclidean for the norm. These fields

are denoted by superseript. p.
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‘TasLE 0F REAL Cusic FiELDs

Discriminant Generating Polynomial
491 -zt -2z 41
814 £ =3z +1
1G9Y Py g |
J61¢ -t -6z 47
91 ezt - 10z +8
1369 - 12211
844 -t Ar—8

3721 ¥ — s — 20z +9
4459° s —rt—2r -5
5329* 2 —p? =2 9T
6241 & — r* w20z — 1]
9400 et — 30+ 79
logogr &=z = Mz + 6]
118817 L | P
13689 = 39 + 26
1G1249" ot — 2 = 4% — 80
19321 = et — A6z — 103
22801 20— 2?50 4+ 123
240G449" o -2 - 52— 64
32761 £ s = 30r + 67
47244 = 1 = Ghr = 143
J9601 = ¥ — 66r — 59
44521 2 - —T0r+ 125

Primes

(13, + 8), (83, & 4 57)
(17, +4),(19,a + 16)
(5, 4 4),(83, a0 + 75)
(Tya), (11,0 4+ 6)

(23, o + 6), (263, 2 + 159)
(1l,a+7),(43,a +4)
(11, ¢ + 5), (47, & + 16)
(11,a +8),(53,a+ 36)
(5,04 3), (43,6 +21)
(T,a + 2), (83, x 4+ 59)
(11, + 16), (179, o + 140)
(19,0 + 17), (47, a + 19)
(23,0 +12),(79, o + 65)
(17,a +5),{19,0 + 1)
(11,0 4+ 9),(59, o + 24)
(19, er + 14), (47, @ + 16)
(23,00 4 15), (5%, o + 23)
(19, + 11}, (29, 0 + 25)
(23, o + 10}, (59, o + 23)
(19,0 + 7), {59, a + 36)
(11, ), (179, x + 10}
(11,a+5),(179. a 4+ 109)
(11, a4+ 9), (107, a + 82)



Totally Complex Quartic Fields.

Uchida [39] found al} totaily complex biquadratic fickls with ¢lass number
one with the possibility of one exception. Montgomery and Weinberger
[25] showed that the exceptional field does not exist. Setzer [35] found all
totally complex cyclic quartic fields with class number one. In the table
below cach of these ficlds is listed together with two rational primes which
split completely into linear primes in the given tield.

Lakein [22] showed that cight of these ficlds are Enclidean for the norm,
This is denoted by superseript I Lenstra [23] showed that one additional

ficld is Euclidean for the norm. This is denoted by superseript e,

(L)
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Discriminant,

125"

144}

a5

256

00

114

16G0

14936

2048

2197

2601

TanLy oF ToTaLLy CoemrLEX Quanric FIELDS

Generating Polynomial

Primes

M +h0 45

48zt 44

P

a6t 1

=8t 4 36

4500 41

£ 0% 4 ]

st 485

b 162 + 36

= Grt 449

£t 24 4 100

L4t 42

w4 132 418

=Tt 425

80

(3lL,a+17)

(61,0 4 25), (431, o + 281)

(1181, 2 4 810), (2111, 0 4+ 1129}, (181, + 98)
(73,00 4 20), (157, + 3), (277, a + 261)
(997, & + 770), (4549, & + 2229), (3541, o + 2570)
(19,0 +7)

(31,2 4+ 7), (229, 0 4 53)

(619, e 4 609),(1279, 06 4 175), (3), 0 + 13)
(97, a0 + 5)

{401, e 4- 278), (1019, o 4 188)

(137, e + 49}, (1553, v 4 1494), (3049, o + 2341)
(41,0 4+ 22)

(269,00 + 61),{29, 0 + 1)

(119, @ + 125), (509, a + 474), (709, a + 437)
(37, e + 18)

(211,45 - 176), (823, o 4 404)

(67, cx + 41), (1303, o -+ 765), (193, a + 158)
(19,0 +9)

(907, + 353), (37483, a 4 9403)

(19, er 4 9), 1051, @ 4 762), (1747, oo + 487)
(70,0 + 23)

(7.}, (313, & + 236)

(223, o + 159}, (727, a + 13), (193, 0 + 117)
(113,00 + 43)

(29, o + 26), (53, x + 47)

(389, a + 70), (653, v 4+ 190), (757, o + 305)
(223, + 213)

(31, 4+ 1), (727, 0 + B15H)

(223, or ++ 89), (1543, a + 1125), (1153, 2 + 371)
(71,0 4 48)

(179, 0+ 51),(29,a + 2)

(239, o + 88), (11,2 + 1), (109, a + 69)

(59, + 31)

(179, + 71),(211,a + 158)

(59, a + 44), (409, & + 185), (131, o + 51)
(101, & + 317)

(37, o -+ 33), (229, a + 148)

(773, a + 690}, (829 + a + 23), (617, 2 + 572)
(7, a +6)

(151, + 42),(103, o + 28)

(23, a + 16), (359, a + 112), (113, @ + 7)
(157, + 133)

(191, a + 92), (53, a -+ 17)

(107, a + 47), (113, a 4- 106), (61, + 17)
(421, o + 106)

(13,0 -+ 2), (151, o + 50}

(859, a + 302), (409, a + 13), (1087, o + 869)



Discriminant Generating Polvnomial Primies

2704 e 196 (29,0 + 22)

(6% o+ 11D),(H3. a0 + 4H)

(29,00 4 27), (173, o  159), (1193, 0 + 926)
3136 o 18r7 425 (13, 0 4 21)

(163, o -+ 130), (137, 0+ B)

(10 e+ 6), (107, 0+ 66), (193, 00 + 1138
3249 e 4 16 (163, 00 4 130)

(283, 00 4 228), (AG3, o 4 164)

(727, 0 4 441), (VORT. v 1797), (6L, 0+ 6)
5776 L A PR B v 2 (H938, 0 + 372)

(oo 8, (10, 0 4 T)

(SO0, o 4 1I8), (108, o - 190), (FO1, 6 -+ 49R)
5929 Y 4ort 4 (37, +15)

(163.er + LN, (Tl + 1T7)

{28, 00 4 5), (191, 00 4 118}, (37, 0 - 342)
744 4 260 4 81 (59, 0 + 3R)

(LiT, 00+ T1L (179, 00 4 3K)

(B8, e - 3R), (419, 00  268), (97, ¢4 4 HB)
744 4 18?4 169 (28,00 + 4)

(181, ee 4 H0), (103, o0 -+ 30)

(28,00 + M) ATV o 4 17), (31,00 4 1])
8281 V= 3r 40 {234 1)

(127,00 4 24), (179, 00 4 139)

(43, 00 4 1B), {2638, o0 - B1), (211, 0¢ - BB)
15129 - 10t ¢ 121 (3. a4 4)

(O3, ex - 102), (139, 00 + T6)

(349, ox + B5), (1579, 0 + 197), (5], 02 4 28)
16641 s 4 2827 4 100 (127, + 106)

(103,06 4-23), (13, 0 + 8)

(643, ov + HTO), (103, on + BH2), (1777, 00+ 4 1)
17689 4 et 4y (1ha+7)

(197, o + 101), (263, 253)

(23, 0 + 22), (137, 0o -+ 1382), (163, v -+ 1133)
21904 ot = T22% 4 1444 (b, o 4382)

(2038, o + 274), {173, v + 53)

(53, o + 274), (31T, 00 + 9), (317, 00 4 2200, (107, v+ 134)
23104 w4222 4 28Y (1), er 4 2)

(283, or 4 211), (347, v + 277)

(239, + 38), (11, v 4 2), (163, 0 4 10])
24389 zt 4 2927 + 29 (28,00 4 17)

(107, ex 4 13), (103, ey 4 6)

(23,00 + 6), (83, cx + 48), (181, e + 24
20584 2 + 88z% + 1764 (41, + 39)

(13,0 + 5), (101, ex + 72)

(53, o + 4%), (197, v + 87), (397, ox + 269)
34969 1~ 322 + 49 (47, o + 10)

(223, ¢ + 134), (353, ex + 185)

(47, ¢ + 40), (103, o + 100),(53, or + 30)

81



Diseriminant

40401

14681

TG

HRL YL

71289

Ti824

9601

118336

L4RRTT

IRZ2Y

226981

o121

2RT2006

425104

HE BT

1301881

Generating Polynotnial

Primes

£ 450t 2506

4 1500 + 4

P e A, (I | Ty

PRV PR

V= 4det + 529

V4 13007 + 43506

#4260 4 81

U o0r? 4 1681

4 653e% + 53

Vet 4 umy

14 3050% + 61

£V 4 B3x? 4 1600

o4 1382 4+ 4225

4 32827 + 26244

V4 3907 + 196

24 4 8527 4 1521

82

(181, + 74)

(103, o + 101}, (37, ox + 31)

(823, or + 178), (223, a4 F11), (151, ex 4+ 83)
(163, o + 17)

{229, o 217), (251, x4 100)

(47,0 4+ 27), (137, + 47), (h, a0 + 4)
(83, + 12)

(71, r 4 20), (137, o + 53)

(83, e + 12}, (53, 0 + 20), (127, x + 115)
(59, er 4 41}

(107, o + 24), (139, & + 136)

(59, &0 4 54), (179, ox + 149), (227, e + 220)
(67, 0 + 42)

(223, 0 4+ 3), (607, v + 446)

(367, ex + 311), (643, o + 352), (673, ex 4+ 234)
(241, 4 231)

(37,00 + 3), (269, 00 + 217)

(149, 0 4 21), {157, o + 131), (557, o + 169)
(1l,a+4)

(197, 00 + 2), (67, a 4+ 19)

(107, o 4 9}, (239, o + 199), (317, v + 66)
(107, o + 68)

(251, 0 + 191),(97, a + 49)

(83, o + 26), (307, 0 + 4), (11,0 + 7)
(47.a + 19)

(307, a + 252), (311, o + 238)

(47, + 28), (227, 0 + 38), (281, a + 96)
(197, o + 90)

(239, o + 5), (109, &x + 61)

(107, o + 96), (113, & + 24), (163.a + 13)
(73, 0+ 43)

(137, @ + 26), (269, o 4+ 50)

(47, e +26), (179,00 4+ 30), (73, v + 6)
(307, 0 + 142)

(367, o + 161), (547, a + 484)

(499, a + 476), (2179, a + 501), (733, o + 240)
(17,0 4+ 11)

(89, a + 32), (163, o + 34)

(59,0 +49), (19,0 + 10), (17, + 9)
(1049, o 4 638)

(173, 4 57}, (97, + 7)

(1109, or + 136), (113, a + 2), (53, a + 37)
(23, a + 16)

(1567, o + 100}, (71, + 51)

(23, o + 16), (269, o + 138), (37, a + 28)
(71, 4+ 37)

(263, a + 13),(53,a + 18)

(179, o + 145}, (347, a + 92),(71,a + 37)



L

3

1

Discriminant Generating Polvnomial Primes
1620529 4307 4 L (23,0 + 13)
(163, 0 4+ L)L (1T, + 1)
(23,0 + 8), (83, v 4 81), (T3, 0 4 30)
3214849 rt 4+ 87r% 4 1 (53, 0 4 165)
(199, 0 + 65), (383, o + 15)
(179 a + 157), (Tl + 62}, (97, 00 -+ 37)
8300161 rt 4 550% 4+ 36 (T19, 0 + 399)
(269,40, (T97, 0+ 399)
(230 + 17), (B3, o+ 52), (17,0 -+ 1)
9591409 4 01 4 1206 (34T, 0 + 311)
(19,00 + 2, (2009, 00 4 174)
(47,0 + 9%, (43, 0 4+ 30), 18980, 00 - 1T3)
49126081 £ 1080 4 900 (A7, o+ 20)
(TRT. v + 300, (1091, 0 -+ 984)
(AT, 00 + 22), (367,00 + T0), (173, 00+ 1IR)
119268241 11502 4576 (1567, o 4 1480)
(743, o - 332), (1388, n 4 213)
(AT, 00+ 3), (71, v 4 A0), (225, o - 85)

%1
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Conclusion,

In all the exiunples which were tested it was possible to show that the ring
of integers contained the desired prime tdeals. It would be nice if a general
proof could be given for the existence of these prime ideals. Nevertheless,
it should be possible to find these ideals in any particular case. It would
certainly be of interest to do this for other classes of fields, in particular for

cyclotomie fields.
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CHAPTER 6
CYCLICITY AND GENERATION MOD p OF ELLIPTIC
CURVES OVER ALGEBRAIC NUMBER FIELDS

Let

E: = +ax+b

be an elliptic curve defined over a number field F. If p is a prime ideal of

F, then

-~

E: yg=;::3+&;r:+ij

is called the reduction of £ modulo the prime ideal p, where @ is the image
of @ in Fy. In analogy to Artin’s Primitive Root Conjecture, Serre [34]
asked how often E(Fp) is cyclic. He showed that for the case F' = @ the
method of Hooley [18] implied the existence of > x/loga primes p < &
such that E‘(IF,,) is cyclic, assuming the Generalized Riemann Hypothesis
where F, is the finite field with p clements. R. Murty [27], [28] gave an
unconditional proof of the cxistence of infinitely many such p for clliptic
curves with CM and in a few other cases. Gupta and R. Murty [14] showed
that E(Fp) is cyclic if and only if E has a non-rational 2-division point and
that the density of such primes is > z/(log z)*.

Another question related to Artin’s conjecture is how often the reduction
of a free subgroup I of the F-rational points of E gencrates E( F). Gupta

and R. Murty considered the case of elliptic curves with CM over F =

55



and showed that if T' has rank at least six, then there are > x/(log z)?

primes such that E(F,,) =, where I, is the reduction of I' modulo p.

Cycrwcrry ofF ELnipric CURVES

Let I, = F(E[n]) for cach positive integer n, where E[n] is the set of

n-division points of £,

Lemma 1. Ifp is a prime of good reduction in F, then E( Fy) is cyclic if

and only if p docs not split completely in K, for any prime q.

Proof. Consider the Frobenius automorphism of Fy, defined by mp(x) =

#¥° This map induces an endomorphism 7 : E — E such that
ker(m, —id) = E(Fp).

E’(Fp)[q] is isomorphic to (Z/qZ)? if q is coprime to Np; otherwise, it is
isomorphic to cither Z/gZ or {O}, sce Silverman [36, p. 89]. Thercfore,
E(Fp) is noncyclic if @y acts trivially on some E(Fp)[q]; that is, p splits

completely in some A,

Lemma 2. The field F((,) is contained in K, for every pusitive intcger

.

Proof. This is Corollary 8.1.1 of Silverman [36]. The Weil pairing on n-
torsion points of E is bilinear and non-degenerate so that all the nt! roots
of unity arc in its innage. The Galois invariance of the pairirg; implies that

th

the ' roots of unity are in I,

BG
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Lemma 3. There are more than 8,0 /(log #)*t'Y primes p of F with the
properties
(1) Npjgp =p < &, p a rational prime,
(2) If €)(p — 1), then cither (|d or ¢ > r'/*Mexp (—(log.r)'/*) | where d
is the largest integer such that Q((4) C F,

(3) p does not split completely in any K, for gfd.

Proof. Choose nontrivial abelian extensions 4, C K, of F for g|d. Let A
be the compositum of all the 4, for g|ld. The conuition that p not split
completely in any K, is satisfied for p such that o, = 7 for some element. 7

of Gal(A/F). Now apply Lemma 3 of the previous chapter,
Suppose that F is a ficld of degree less than or equal to four,

Theorem. The group E(Fp) is cyclic for infinitely many primes p of F if
and only if K, € F for all q|d, furthermore, the number of primes Np <

for which E(Fy) is cyclic is greater than 8,z [(log x)2+'/4,

Proof. Let S(a,z) be the set of primes p of F satisfying the conditions
of the previous lemma with the additional property that ay, = a, where

la] < 2272, If E(Fp) is not cyclic then
(Z/9Z)° C E(F,)

for some rational prime q. The prime p = Np splits completely in K, so p

splits completely in Q((,); that is, ¢ divides p — 1. Since

|E(F,,)|=p+1—a,

B7
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it. follows that ¢%|p + 1 — « and also gla — 2. Since g > z'/*(logz)?® and

|t — 2| < 2212, a determines ¢ for © > 4. The number of p such that
p =a—1{mod ¢%)
is less than 2/¢* + O(1) € ='/%/{log z)". Counting these p for all a gives
L #? flogz)'x'? = 2 [(log )"

primes p such that E‘(Fp) is not cyclic. These primes may be disregarded

to give 3 2 /(log 2)?t1/15 prirmes p such that E(Fp) is cyclic.

GENERATION oF REDUCED ELLIPTIC CURVES

Let E be an clliptic curve defined over an arbitrary field F with complex
multiplication by an order in an imaginary quadiatic field k. Suppose that

I’ is a free subgroup of F—rational points of E.
Lemma 4. There are more than 632 /(log z)2t1/'5 primes p of F with the
propertics

(1) Nysgb =p <, for p a rational prime,
(2) p is supersingular and does not split in K,

(3) If €|(p + 1), then cither € =2 or £ > z/?"exp (—(logz)!/?),

where 1) = max(2, d—2) and d is the order of the maximal abelian subgroup

of Gal{ F/Q).

Proof. Consider the sequence

D= {p+1: pasupersingular prime of E, (p, K/Q) C C}.
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By Lemma 3 of the previous chapter,

£
S(D,Pu,z) 2 b4 (log )2F174"

with z = 2'/27 exp (—(log 2)'/?)

Let Np(2) denote the number of primes p of F with Npgp < i such

that E‘(Fp) =Ty, where T’y is the reduction of I' modulo p.
Lemma 5. The number of primes p such that [Uy] < y is < y'+3/7.

Proof. Let H(P) = (P, P), where {,) is the Weil pairing. Denote the gen-
erators of I' by P, P, ..., P.. First note that the number of integer

solutions to
Hn P+ +n.P) <

is
(mx)"/? —1)/2
_— 0(3:(’ )/ 2+ ,
VRT (5 +1) )
where R = det()P;, Pj(), sce Walfisz [41]. Choose a constant, C such that
(Cﬂ.)r/z

—— >

VI (3)

Consider the set of all r-tuples of integers (n),...,n,) such that

H(n P + - -n.P) < Cy*l™,

The previous remark implies that the number of r-tuples is greater than
y. In addition, since Iy < y, there are two distinct r-tuples ny, ..., n, and
ml,o--,mr With

mPi+--+n.P.=m P+ +m.P.(mod p),

B9
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so that p divides the denominator of the non-zero point
Q=(ny—m )Py +--+(n, —m,.)P.

Let h{P) be the usual logarithmic height on E(F}. The number of p di-
viding the denominator of @ is bounded by h{Q). Since @ is not a torsion

point,
hMQ) < H(Q) < 2Cy*",

which implies that the number of such points  is O(y). Each Q gives rise

to O(y2/7) prime factors, which implies the desired result,

Theorem. Let E be an elliptic curve defined over a number ficld F. If the
rank r of I satisfies r > 2(21p — 1), then

£

N —e,
r(z) > (log z)2+1715

Proof. Consider the primes estimated in Lemima 4. Since these are super-
singular primes of E, ap = 0. If
AE(Fy) : Ty,
then £ > 272" exp(—(log z)'/%). This implies that
ITp| < z'~'727 exp((log =)' /).
Lemma 5 shows that the number of such p is
< (:1:1_1/2" exp((log a:)'/"‘)) i

= gl+2/r=1/2n=1/nr exp((1 + 2/r)(log :::)'/3,

so that these primes may be disregarded.
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