
A Visual Servoing System
for an Amphibious Legged Robot

Junaed Sattar

Master of Science

School of Computer Science

McGill University

Montréal, Québec

August 2005

A Thesis submitted to McGill University
in partial fulfilment of the

requirements for the degree of
Masters of Science

@Junaed Sattar, MMV

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-24792-1
Our file Notre référence
ISBN: 978-0-494-24792-1

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

DEDICATION

This thesis is dedicated to Rafa, for tuming my life around.

ii

ACKNOWLEDGEMENTS

This thesis has been made possible because of the inspiration and support of a won­

derful group of people, and it would be greatly unfair not to acknowledge their invaluable

input. First and foremost 1 am thankful to my research supervisor, Professor Gregory

Dudek, for being a patient and steadfast guide and helping this research along across more

than a few difficult hurdles, for inspiring me through difficult times by his friendly de­

meanor and his endless enthusiasm for research.

My gratitude goes out to my fellow researchers in the Centre for Intelligent Machines,

particularly those in the Mobile Robotics and Mechatronics Locomotion Lab. 1 would

especially like to thank Philippe Giguère for lending a big hand before the first AQUA

servoing field trials in Barbados; Chris Prahacs and Shane Saunderson for working tire­

lessly behind the AQUA robot and giving me such a wonderfully reliable platform for my

research; Paul Di Marco, Dimitri Marinakis, Matthew Garden, David Meger, Derek Johns

and Daniel Burfoot for their invaluable suggestions; loannis Rekleitis and Eric Bourque

for showing me the way around the lab in my early days; and Michelle Théberge for vol­

unteering to carry the target during the sea trials. A special thanks goes out to Michel

Langlois for translating the abstract to French.

Finally, 1 would like to thank my family for being so supportive and for encouraging me

to embark on my endeavors.

iii

ABSTRACT

We present a visual servoing system for an amphibious legged robot. That is, a

monocular-vision based servoing mechanism that enables the robot to track and follow

a target both underwater and on the ground. We used three different tracking algorithms to

track and localize the target in the image, with color being the tracked feature. Tracking is

performed based on the object's color, color distribution and color distribution with a prob­

abilistic kernel. Output from the tracker is channe1ed to a proportional-integral-derivative

controller, which generates steering commands for the robot controller. The robot con­

troller in tum takes the steering commands and generates motor commands for the six legs

of the robot. A large c1ass of significant applications can be addressed by allowing such a

robot to follow a diver or sorne other moving target. The system has been evaluated in the

open water and under naturallighting conditions, and has successfully performed tracking

and following of a wide variety of target objects.

iv

r--.
1 .

ABRÉGÉ

Nous présentons un système d'asservissement visuel pour un robot amphibie muni de

jambes. Il s'agit d'un mécanisme de vision monoculaire qui permet au robot de dépister

et suivre une cible mouvante sous l'eau et sur la terre. Nous avons utilisé trois algorithmes

différents pour dépister et localiser la cible dans l'image, la couleur étant la caractéristique

examinée. Le trajet à suivre est déterminé par les couleurs de l'objet, la distribution de ces

couleurs et la distribution des couleurs avec un kemel probabiliste. La sortie du traqueur

est envoyée à un contrôleur de PID, qui génère des commandes directives. Ces commandes

sont transmises au contrôleur du robot, qui relaie pour sa part des commandes motrices aux

six jambes du robot. Permettre à un tel robot de suivre un plongeur ou une quelconque

autre cible mouvante pourra aider à solutionner de nombreuses applications significatives.

Le système a été évalué en eau libre et dans des conditions d'éclairage normales, et a suivi

avec succès une grande variété d'objets-cibles.

v

DEDICATION

ACKNOWLEDGEMENTS .

ABSTRACT.

ABRÉGÉ ..

LIST OF TABLES

LIST OF FIGURES .

1 Introduction . .

1.1 Problem Statement
1.2 Approach..
1.3 Applications.
1.4 Outline .

2 Previous Work .

2.1 Visual Tracking
2.2 Control.....
2.3 Visual Servoing

TABLE OF CONTENTS

2.4 Underwater Robotics

3

2.5 Robot Software Architectures .
2.5.1 Higher-level Architectures
2.5.2 Dual-mode Architectures: Simulators and Operators .
2.5.3 Low-Level Operation al Software

System Architecture ...

3.1 The AQUA Robot
3.1.1 Hardware
3.1.2 Software.

vi

ii

iii

iv

v

ix

x

1

2
4
6
7

9

9
12
13
14
18
18
19
19

21

21
21
25

3.1.3 The System Environment 30

4 Visual Tracking and Control 34

4.1 U nderwater Light and Vision 34
4.2 The Visible Color Space . 36

4.2.1 RGB Color Space 38
4.2.2 HSV Color Space 39

4.3 Color Blob Tracking. . . 40
4.4 Color Histogram-based Tracking 42

4.4.1 Measuring Similarity between histograms 44
4.5 Mean-shift Tracking 48
4.6 A Comparlson 49
4.7 Preliminary Control Theory . 51

4.7.1 Definitions 51
4.7.2 Proportion al-Integral-Derivative Control 52
4.7.3 PID Controller Tuning . 53
4.7.4 PID Controller Issues 54
4.7.5 Filters ••••••••• 1 •••• 54
4.7.6 Infinite-Impulse Response Filters 55

~~,

-- 5 Visual Servoing System Implementation 56

5.1 Visual Servoing 1 •••••• 56
5.1.1 Image-based servoing 58

5.2 Tracker Implementation . 59
5.2.1 Preprocessing ... 59
5.2.2 Blob Tracker 60
5.2.3 Histogram Tracker . 62
5.2.4 Mean-shiftTracker 63

5.3 Controller Design 63
5.4 Software System . 66

6 Experimental Results .. 68

6.1 Tracking Performance . 68
6.1.1 Color Blob Tracker 68
6.1.2 Color Histogram Tracker 70
6.1.3 Mean-shift Tracker 72

6.2 PID Controller. 75

vii

,~

6.3 Open-Water Trials ..

7 Discussions and Conclusion

7.1 Overview......
7.2 Tracking and Underwater Vision
7.3 Vision-based Vehicle Control
7.4 Future Work

Appendix A: The Epanechnikov Kernel

REFERENCES

KEY TO ABBREVIATIONS .

viii

76

79

79
79
80
80

82

83

88

LIST OF TABLES
Table

4-1 Tracker comparison table.

6-1 Color blob tracker thresholds for a yellow target underwater. .

6-2 Bhattacharyya measures.

6-3 Pitch and yaw servo controller parameters.

IX

~

50

69

72

75

LIST OF FIGURES
Figure ~

1-1 AQUA visual servoing hardware. 3

1-2 AQUA tracking subsystem ... 8

1-3 Controlloops in AQUA visual servoing. 8

2-1 Sample color image with its color histogram .. 11

2-2 Open-Ioop control. 13

2-3 Closed-Ioop control. . 13

2-4 AQUA pitch-roll-yaw axes. 16

2-5 The MIT RoboTuna underwater robot. @MIT RoboTuna project. . 17

3-1 AQUA in different environments. . 22

3-2 AQUA hardware components.. . . 26

3-3 Screenshots of the VGUITracker application .. 28

3-4 AQUA operator graphical user interface. 29

3-5 Vision command data structure. . . 30

3-6 Visual servoing software structure. 33

4-1 Phenomena effecting light underwater. 37

4-2 The RGB color space. 38

4-3 The HSV color space. 39

4-4 A color blob tracker tracking a red-colored object. 41

4-5 Rectangular search windows. 44

x
~-

~,

4-6 Comparison between histograms of different subwindows in an input frame. 45

4-7 A simple feedback loop .. 51

5-1 Types of visual servoing. 57

5-2 A raw frame from the camera .. 60

5-3 Bayer coded frames. . . . 61

5-4 Normalized color frame. 61

5-5 AQUA servo loops. ... 65

5-6 Complete software architecture block diagram. . 67

6-1 Yellow target during tuning 69

6-2 Result of Segmentation for the yellow baIl. . 70

6-3 Checkerboard object for tracking 71

6-4 Color blob tracking. Centroid of target at the crosshair. 71

6-5 Effect of surface reflection. 72

6-6 Histogram tracking results. 73

6-7 Histogram tracking output, with target at crosshair. 74

6-8 Mean-shift tracking output, with target at crosshair. 74

6-9 Response of yaw to visual servoing. 77

6-10 Response of pitch to visual servoing. 78

Xl

CHAPTERI
Introduction

We describe the vision-based servo control of a swirnming aquatic robot. We have

developed and deployed a swimnùng robot that uses legged motion to swim and navigate

underwater and which depends on vision as its primary sensing modality. While sonar is

the predominant sens or used by underwater vehic1es, vision has the potential to be highly

effective underwater as it is on land. In this thesis, we examine the use of visual feedback

to accomplish navigation tasks in an open water environment. This is accompli shed by

using a visual feedback mechanism to modify the swimming gaits of our underwater robot

as it follows a moving target. A large c1ass of significant applications can be leveraged

by allowing such a robot to follow a diver or sorne other moving target. Performing these

tasks underwater is complicated by the variable lighting and visibility in the water. In

addition, the undulating motion of our vehic1e and the exogenously driven motion of the

vehic1e in the open sea further complicate the process. In this thesis we describe the system

architecture and approach to vehic1e control, with discussions of the relevant the ory behind

the servoing mechanism.

Underwater robotics appears to be an application domain of rapidly increasing signif­

icance, rife with challenges of both scientific and pragmatic importance. While computer

vision has matured enormously in the last few decades, the peculiarities of underwater

(sub-sea) vision have been largely ignored, presumably due to the enormous logistic and

pragmatic overhead in examining them. It is akin to the manner in which the topography

1

---1

I~'

and zoology of the sub-sea environment has been ignored relative to the terres trial analogs.

In fact, vision can be as valuable a sensing medium underwater, and perhaps even more so

than on land. Simple inspection of marina fauna demonstrates the ubiquity of eyes, and

other optical sensors, in the marine environment and thus suggests its potential utility.

In our application we are particularly interested in tracking a diver as he swims either

along the surface or under water using scuba apparatus. In this case we need a tracking

technology that imposes a very limited cognitive load on the driver, which operates despite

variations in lighting due to refractive effects and/or waves, which is immune to nearby

wave action and which operates over a moderate range of distances.

In our applications, vision has the advantage of being a passive sensing medium and

it is thus both non-intrusive as weIl as energy efficient. These are both important consider­

ations (in contrast to sonar) in a range of applications ranging from environ mental assays

to security surveillance. Alternative sensing media such as sonar also suffer from several

deficiencies which make them difficult to use for trac king moving targets at close range in

potentially turbulent water.

1.1 Problem Statement

The task we want the robot to perform is that of following a particular moving object,

either artificial or natural, under water and in an open water environment, thus achieving

sorne degree of autonomy.

2

Visual Servoing Hardware

processor: a PentlUm M
,..-------ICF'U on a PCl04/PlUs l'orm

runnlng I.!nux

proœssor: a Pentlum
on a PCl04/Plus form

________ -tU:EE1394 (Flrewlre) Digital
Camera, 640)(480 resolutlon

Figure 1-1: AQUA visual servoing hardware.

The robot hou ses three cameras, two in front and one in the back, as can be seen

from Fig. 1-1. We use a color camera to track the target and utilize the tracking output to

control the robot's trajectory in a c1osed-Ioop fashion. We require that the robot follows the

target's trajectory as c10sely as possible. The robot must be able to maintain track in spite

of change in lighting conditions and strong currents and other underwater forces that affect

its hydrodynamics. One might even imagine the need for the robot to re-acquire the target

in case of presence of false targets or a temporary failure in tracking. The robot should be

trained with respect to the target (and its color properties) only once, and to rely only on

that prior information to track. We also seek to utilize the servoing system to maneuver

the robot in ways that would not be possible by using human input alone. In view of the

real-time operating constraints, the entire mechanism of tracking, steering feedback and

trajectory control needs to be fast as weIl as accurate. Evaluating the performance of the

system quantitatively is quite a challenge; nevertheless we evaluate the servoing system

3

in terms of the correctness and efficiency of their individual components - the tracker and

the PID controller. Performance of the three different tracking methods used is discussed

in detail, and the responsiveness of the controller given the tracking output is presented as

weIl. This thesis focuses mostly on the experimental results, with the theory behind the

different approaches being discussed to explain and justify their relevance. Complexity

of the system is discussed both in terms of computation as weIl as the time required by

the robot to perform the commands generated by the system. The results of the open­

and closed-water trials are presented to show the success of the system and also to clearly

establish directions for future work.

1.2 Approach

Our approach to servoing is two-fold: we use color cues to detect and track the target

and use the tracking information in a feedback controller to generate commands for the

robot's legs. Three different approaches are implemented for color tracking. In this work,

target location is defined in image space, i. e. no pose estimation of the target is performed.

We do not estimate the robot's pose either, but that information is available via an on­

board inertial measurement unit. The robot "learns" the target color parameters at the

start of the servoing fUn. This tuning step can be performed both on land or underwater,

and is performed once. This is the only preprocessing step in the entire process. The

tracking subsystem detects the target in the image coordinates and passes them on to the

controller. The controller acts as a low-pass filter. We use a manually-tuned PID controller

to eliminate oscillations and increase the responsiveness of the system. The PID controller

has two controlloops, one each for the yaw and pitch axes. The roll axis is not affected by

servoing. An outline of the method is as follows:

4

• Preprocessing Stage

i The tracker is tuned by placing the target at the center of the camera frame.

ii The target color parameters are extracted. Depending of the tracker being used,

RGB thresholds, histograms or histogram distributions are saved.

• Tracking

i The target is tracked using one of three following approaches:

a Color Segment or "Blob" Tracking, where image segmentation is applied

to localize the target.

b Color Histogram Tracker, where a model color histogram of the target is

matched to other candidate histograms to detect target location.

• Control

c Kemel-based Feature Tracker, where we use a radially symmetric mono­

tonically decreasing kemel to extract target features. Candidate locations

are generated by using a mean-shift tracking mechanism.

i The goal of the controller is to minimize an error function, which we define as

the Euclidean distance between the centroid of the target and center of the im­

age frame. At each iteration, pitch and yaw commands are generated with the

aim of reducing this error function. The gains described below are manually­

tuned.

a The proportional gain Kp contributes to the error correction amount since

it is multiplied with the error signal (hence the name proportional gain).

b The integral gain Ki contributes to the error correction amount since it is

multiplied with the error accumulated over a period of time.

5

c The derivative gain Kd contributes to the error correction amount since it

is multiplied with the derivative of error signal.

ii The pitch and yaw commands are sent to the robot gait controller. The gait

controller generates commands for the robot's six legs and achieves the desired

change in motion.

The loop continues, with every change in the target's position generating a (possible)

change in the robot's pose. Figures 1-2 and 1-3 show outlines of the entire process.

1.3 Applications

Even mundane activities underwater pose problems for humans in terms of logistics,

cost, efficiency and safety. As such, underwater environments represent a substantial area

in which robotics can make a natural contribution. A range of applications can be identi­

fied for which simple inspection even in moderately shallow water can prove useful. These

applications inc1ude underwater search and rescue, coral health monitoring, monitoring of

underwater establishments (e.g. oil pipelines, communication. cables) and many more.

Specifically, we are interested in environmental assessment tasks in which visual mea­

surements of a marine ecosystem must be taken on a regular basis. While automatically

selecting regions of interest is beyond the scope of present technologies, once a biologist

identifies areas of interest we believe a robot may be capable of collecting supplementary

data or even independently executing inspection tours. It is in this context that the present

work is framed.

6

1.4 Outline

This thesis discusses an approach to visual servoing an underwater legged robot. We

discuss theoretical and practical aspects of this work and the problem in general. In Chap­

ter 2, previous work in the area and individual problems associated with servoing are

discussed, with an emphasis to those that relate to this particular work. We de scribe the

overall system architecture in Chapter 3. Chapters 4 discusses tracking algorithms and

control methods. The implementation details of the tracking and control systems are dis­

cussed in Chapter 5. We present sorne experimental results obtained from the system as

a whole, as weIl as the performance results from the trackers used in Chapter 6. We con­

clude in Chapter 7 by discussing the results, and also identifying areas for improvement in

future work.

7

r-'

Target in

image space

•

0.0

0.0 +

'. '. " . .
Firewire
Camera

r-+ 1 Tracking Subsystem

+ ~

Color Color
Siob Histogram

Tracker Tracker

~ V

1

~

Kemel
based

Tracker

~

Figure 1-2: Tracker subsystem in AQUA visual servoing.

Y-E--

'------x

Pitch Axis Gains

Yaw Axis Gains

Visual

Tracker

Pitch

Yaw

Robot Gait

Controller

FireWire

Camera

Figure 1-3: Controlloops in AQUA visual servoing.

8

~

r---+

target x
coordinate

targety
coordinate

Robot

Pose

CHAPTER2
Previous Work

This chapter surveys past work in the field of visual servoing and underwater robotics.

Visual servoing is a complex task, involving a multitude of other disciplines; computer

vision, image processing, control and tracking being the primary ones. Visual tracking is

an important mainstay of servoing, and we discuss several different trac king methods used

in the field. For an embedded platform like AQUA, real-time performance is of paramount

importance, therefore we keep the focus on algorithms that have performed reasonably

well within limited time and computational resources. In the end, we discuss AQUA

visual servoing software architecture to put everything together and compare it with sorne

other software architectures used in real robots over the years.

2.1 Visual Tracking

In computer vision, visual tracking is the process of repeatedly detecting a feature or

sets of features in a sequence of input images. Choosing features to track can be a cdm-

plicated problem, since noise in the sensor (i.e. camera), lighting and visibility changes,

refraction and appearance of multiple similar objects in the image frame, among others,

can create unforeseen problems. Since tracking is primarily an online, real-time applica­

tion of vision, a tracking algorithm must be fast, as well as accurate. A tracker also needs

to be robust, so that effects of false targets and occlusions are minimized.

Choosing a feature to track is an important step in tracking algorithm design, as al­

ready stated above. Over the years, a large amount of work has been done on tracking

9

algorithms that track features ranging from shape and motion to color and grayscale in­

tensities. The following are examples of approaches that have been proven to work best

among these algorithms.

Techmer [43] uses object contours to detect motion and hence track targets. Freedman

and Brandstein [13] have investigated detecting object contours in cluttered environments.

Isard and Blake [23, 24] introduced the "condensation" or Condition al Density Propaga­

tion algorithm for stochastically tracking curves or contour shapes in a clutter. This is also

known as Tracking using Particle Filters. Tracking contours usually involves an iterative

scheme that converges to the shape being tracked after a finite number of iterations, and

uses a probabilistic approach to converge to the best solution at the instant. While they

can be quite accurate, contour trackers rely heavily on a clear view of the target that shows

object boundaries distinctly compared to the background.

Tracking objects by their col or has been extensively studied in the past. Col or blob

tracking is one of the simplest approaches. Color-based segmentation or "blobs" have been

applied to not only tracking but also object recognition [19] and image retrieval [18]. Color

blob trackers segment out sections of the image that match a threshold level for the given

target[25] and based on the segmentation output, tracks the shape, size or centroid of the

blob, among other features. The color space chosen for segmentation has a major impact

on the performance of the algorithm. A detailed discussion of different col or spaces and

their impact on tracking can be found in [27]. We discuss the RGB and HSV col or space~ ,

briefly in Chapter 4, since these two spaces are used in our approach.

Color histograms are a measure of color distribution over an image, and are n-dimensional

histograms over a neighborhood. The range of the possible color values depends on the

10

color space used in the histogram algorithm. The possible color ranges are subdivided

into a discrete number of 'buckets' or 'bins'. Each bin holds the number of pixels that has

color values which fall between the upper and lower limit of the bin. An image and its

corresponding 32-bin histogram is shown in Fig. 2-1.

(a) Sarnple Color Image (b) Sample Color Histogram

Figure 2-1: Sample col or image with its color histogram.

Color histograms have been applied in color-based image retrieval applications and

video indexing [14] by matching histograms of the source image with candidate images

in a database. Swain and Ballard [39] demonstrate the use of histograms in their land­

mark paper. The same concept of histogram matching has been used in detecting and

tracking targets in computer vision. Rubner and Tomasi [37] discuss different approaches

to histogram based image retrieval, with a focus on a variety of methods for measuring

distances between histograms. In their work, they introduce a measure called the Earth

11

Mover's Distance or EMD for histogram similarity measurement. Other measures for his­

togram distances exists and are widely used for histogram matching. We discuss more

about these different methods in Chapter 4.

Sorne of the ab ove methods of tracking are combined with statistical methods to pro­

vide more accurate results, albeit at the cost of increased processing time. Particle filters

and Kalman filters are widely used statistical approaches to tracking. In recent work, the

mean-shift process [6] has been successfully used for tracking in conjunction with color

cues. Mean-shift tracking algorithms attempt to maximize the statistical correlation be­

tween two distributions. where the correlation between the two distributions are measured

using the Bhattacharyya Distance [44]. Statistical distributions can be built using any

characteristic discriminating to a particular object of interest. A general model might use

color, or texture or include both. Zivkovic and others [48] have used machine leaming ap­

proaches with col or histograms for target tracking. Xu et al. [47] discusses a robust mean

shift tracking algorithm by applying fast color thresholding. A more detailed discussion

about mean-shift tracking and similarity measures can be found in Chapter 4.

2.2 Control

For every change in the target's position, a corresponding change in the robots pose

may or may not be required. Responding to every change in tracking output will result

in a very unstable and ill-behaving robot. Thus, a mechanism is required for relating the

changes in target position to changes in actuator input in a stable and smooth manner.

Control theory defines the laws by which this can be achieved. To achieve stable control,

the output of a system is related to the input via a Transfer Function. In Open-Loop

Systems, the input to the system does not rely on any feedback from the output, as shown

12

in Fig. 2-2. In Closed-Loop Systems, the input of the system depends on the CUITent state

of the output as weIl as the new input; i.e. the system relies on feedback of the output. An

outline of a c1osed-Ioop control system is shown in Fig. 2-3. A brief tutorial on the basics

of control theory can be found in [34]. In Chapter 4, we briefly define sorne concepts of

control theory that relates to this work.

Input--)~I C'"~,,, H __ p_,an_,_:-~)~OutPut
Figure 2-2: Open-Ioop control.

Inp
+ t<::>.

Controller ~ System
ut .zr- Output

+

Feedback

Figure 2-3: Closed-Ioop control.

2.3 Visual Servoing

A substantial amount of work has been done on visual servoing over the past fifteen

years. Hutchinson, Corke and Hager's seminal paper [22] outlines many of the methods

used in practice today as weIl as the basic foundations of servoing. This paper is an excel­

lent tutorial on visual servo control methods for robotic manipulators. The authors c1assify

13

servo methods based on the hierarchy of the control system and the domain of the error

signal. Based on control hierarchy, servo systems are of two classes; namely, direct visual

servo and dynamic look-and-move systems. In dynamic look-and-move, a hierarchical

control system uses vision to to provide set-point inputs to the joint-level controller to in­

ternally stabilize the system. In direct visual servoing, a visual servo controller computes

joint inputs directly instead of an intermediate joint controller. Again, based on the domain

of error signaIs (i.e. if its is in image or task space) , the servo systems can be classified as

position-based servo and image-based servoing systems. In image-based systems, control

values are computed from the features in the images directly, whereas in position-based

servo, image features and geometric model of the target is used to generate control values.

A variety of approaches has been adopted for visual servoing in the recent past.

Cowan and Koditschek [8] show that visual servoing can be approached as a robot nav­

igation problem. Hager discusses the use of stereo vision for robust positioning in [20].

Planning camera motion is an important aspect of visual servoing, specially in image­

based servoing since target locations are specified in image coordinates. An image-based

servo mechanism has to take into account issues like maintaining the target in the field of

view and obstacle avoidance, among others, A treatment of such issues can be found in

Marchand and Hager [32].

2.4 Underwater Robotics

Underwater robotics research has been one of the more challenging domains of robotics

science. The underwater domain poses certain unique challenges that render a lot of the

principles of terrestrial roboties problematic. An underwater robot has six degrees of free­

dom, and maneuvering with six degrees of freedom creates serious complications. The

14

three axes of control for the AQVA robot can be seen in Fig. 2-4. A computationally

straightforward task of pose maintenance on land becomes far more challenging under

water, because of strong currents in marine environments. Infra-red sensors lose sorne of

their effectiveness in water as well. Wireless radio communications are also impossible

over a large distance in water compared to ground based control. AlI these issues make

underwater robotics problems more difficult than terres trial robotics. To a degree, inter­

planetary space rovers like the Mars rovers Spirit and Opportunity [28] face a less daunting

computational task than an underwater autonomous vehicle.

In spite of all the hindrances, substantial progress has been made in designing the

hardware and algorithms for underwater robots, and much of the research is directed in

creating an autonomous underwater vehicle (AVV) for operator-independent exploration

of underwater environments. Robotics researchers have taken a number of approaches in

creating underwater robots. The traditional approach to propel undersea vehicles is by

using propellers or thrusters. Although simple by design, these vehicles lack the maneu­

verability and agility seen in fish and other marine species. For an AVV, efficient energy

consumption is critical, and thrusters are not an energy efficient approach to station keep­

ing underwater [16]. Among other efforts to proper underwater vehicles, the RoboTuna

project at Massachusetts Institute of Technology (MIT) is well known. The RoboTuna

project [42] attempted to create a fish-like underwater vehicle, with a propulsion system

mimicking those found in fish, hence creating an example of Biomemetic Robotics applied

in underwater environments. Figure 2-5 shows the RoboTuna shell and the skeleton.

The MIT Sea-Grant Program has an extensive program to create new underwater

platforms for deep ocean explorations, including AVVs. The flapping-foil fish robot [29]

15

/~

AQUA: Top View

AQUA: Side View

AQUA: Front View

, , , ,
,

, , , , ,

, , , ,
,

,

,

,
, , , ,

.. ·::(aw

, , , ,

, '

.-€J' .~~ . <~'~ Pitch _~ ~

, ~

: l''~
~

Roll

·o···~··o , ,

~
~
~
~
~

Figure 2-4: AQUA pitch-roll-yaw axes.

~
~
~
~
~
~

is an ex ample of an experimental, high-maneuverability robot created by the Tow Tank

Lab under the Sea Grant Project.

16

Figure 2-5: The MIT RoboTuna underwater robot. @MIT RoboTuna project.

Vision in underwater environments is an attractive sensing platform, due to its pas­

sive and unobtrusive features; but it has been examined rarely due to the complications

involved. One of the newer applications of vision sensors is in Simultaneous Localiza­

tion and Mapping or SLAM problems, which is referred to as Visual-SLAM or VSLAM

[9]. Underwater vehic1es have a potential to be used for underwater terrain mapping and

surveying, and applying VSLAM methods is an attractive approach. VSLAM has been

applied to map underwater reef environments at the Great Barrier Reef in Australia [46].

Another notable use of vision for mapping is the inspection of the wreckage of HMS

Titanic[ll], where visual data was bolstered with information from an inertial sensor,

thereby increasing reliability of the VSLAM process. Apart from mapping, vision-based

vehic1e navigation and station keeping have also been attempted. Hamel and Mahony[21]

use an image-based approach for visual servoing an "eye-in-hand" robot configuration un­

derwater. An approach to underwater station keeping using visual servoing can be found

17

in [30], where feature point extraction from unmarked objects are used to maintain the

robot's pose and station underwater.

2.5 Robot Software Architectures

Most robots in existence today are made up of complex hardware architectures, con­

trolled by somewhat equally complex systems of software [7], that provide the robot

with low- and high-Ievel behaviors and commands. Traditionally, each robot or family of

robots have been operated by a particular software system architecture, instead of having

a generic architecture suitable for all robots. Two and three layers of software abstractions

[15] are seen in robotics systems. The software system is dictated by the hardware archi­

tecture and the demands of real-time operation, which a generic architecture is unable to

provide. This is evident in several robot architectures seen commercially or in academic

and scientific projects. We discuss a few of the more prominent robot architectures in the

subsections below.

2.5.1 Higher-Ievel Architectures

One of the earliest works in robot software architecture was Brooks' Subsumption ar­

chitecture [5] where multiple layers of control can coexist, with higher priority behaviors

'subsuming' or taking over lower priority tasks at different layers. A related architecture to

Subsumption is Parker's ALLIANCE [36], a fault-tolerant architecture designed for multi­

robot cooperation. The SAPHIRA architecture [26] is a client-server architecture aimed

at achieving autonomous behavior and capable of interfacing with visual and speech sen­

sors, mapping and task-based operation. Architectures like the CAMPOUT [35] (Control

Architecture for Multi-robot Planetary Outposts) and CLARAty[45] (Coupled Layer Ar­

chitecture for Robotic Autonomy) have been developed with multi-robot exploration being

18

the primary concern. These two architectures were developed by NASA as a control sys­

tem for their interplanetary rovers, which have different hardware architectures.

2.5.2 Dual-mode Architectures: Simulators and Operators

Certain software tools have been developed to work as both a simulation platform and

a robot interface through robot software "drivers". These toolkits allow for software sim­

ulation of new concepts and algorithms, as weIl as driving real robots instead of the simu­

lator just by replacing the 'back-end' with the proper robot hardware interface code. Tools

like Player/Stage/Gazebo [17] and the Carnegie Mellon Navigation Toolkit (CARMEN)

[33] fall under this category. The RoboDaemon package [10] provides an interface for

point-and-click robot navigation for real and simulated robots, as well as an API for pro­

gramming higher level behaviors for real robots. It is a part of the Mc Gill Mobile Robotics

Architecture (MM RA) package. The ORCA suite is one of the newer dual-mode software

packages to appear in the field. Developed at the Royal Institute Technology in Swe­

den, University of Technology at Sydney and The Australian Centre for Field Robotics,

ORCA[4] is an open-source framework for creating component based robotic systems, and

is closely related to the Player/Stage/Gazebo architecture.

2.5.3 Low-Level Operational Software

Low level software architectures provide the lower levels of robot control, without

sophisticated behaviors. The RoboDevel[38] library is an example of such a system. Ro­

boDevel (formerly known as RHexLib) is the operating library for the RHex[l] family of

hexapod robots. The library is written in C++ and has method caUs for directly access­

ing the robot's actuators and other hardware. RoboDevel implements inter-process and

19

inter-module communication by maintaining a central database or "blackboard" where aIl

modules store information that are considered public.

In the next chapter, we discuss the system architecture of the AQUA robot in sorne

details. We present the RoboDevel software system and software control of AQUA in

greater detail in Chapters 3 and 5.

20

CHAPTER3
System Architecture

We describe in this chapter the overall hardware and software systems layout put in

place for visual servoing with the AQUA robot. The hardware design of the AQUA robot

is introduced, with emphasis on the electronics rather than the mechanical design. The

software for visually guiding AQUA is split into two logically different sections: one for

visual tracking of the target and generating robot commands, the other for taking those

commands and transforming them to actuator commands. We describe both software sys­

tems in detail.

3.1 The AQUA Robot

The AQUA robot [16] is designed as an aquatic swimming robot that is capable of

operating both on land as weIl as under water. A direct descendant of the RHex hexa­

pod robot [1], AQUA was built with underwater applications in mind, one of which was

monitoring of marine life (i.e. coral reef, fish population). The robot has a waterproof

aluminum shell inside which the electronics and sensors are housed. Figure 3-1 shows

the AQUA robot underwater, on land and on snow, demonstrating its ability to operate in

different environments and different terrain conditions.

3.1.1 Hardware

Propulsion

The AQUA robot uses six legs or paddles to swim underwater or walk on the ground.

These legs give the robot the ability to tum sideways (yaw), change depth (pitch) and rotate

21

(a) On land (b) On snow

(c) Underwater

Figure 3-1: AQUA in different environments.

22

on its horizontal axis (roll). There is only one actuator per leg, significantly reducing power

required for operating the legs. For our purposes, each leg has three main controllable

parameters associated with it: leg amplitude, offset and phase. The amplitude parameter

governs the distance the legs sweep along the spherical arch during each cycle. Offset

dictates the relative starting orientation of the legs to each other at the beginning of the

cycle. Direction of the leg motion is controlled by the phase parameters of each leg.

The legs generate thrust by moving according to preset gaits. Gaits are a combination of

leg parameters that generate a fixed motion for a fixed set of parameters. Depending on

whether the robot is swimming or walking, there are several different table-driven gaits that

can be used to drive the robot forward. Different gaits have different power consumption

rates, and also effect the stability of the robot in different ways. For operation on land and

in water, different sets of legs are usually used, although a new compliant design is being

tested that can be used equally well in both environments.

Sensing

AQUA is primarily a submerged vision platform, with three cameras being the princi­

pal sensing devices on the robot. An Inertial Measurement Unit (IMU) has been installed

on board for orientation and acceleration sensing. Two cameras are mounted in the front

and one in the back. One of the front cameras is a IEEE 1394 (aka FireWire) digital camera

from Point Grey Research conforming to the Industrial and Instrumentation Digital Cam­

era (IIDC) standard, and it interfaces with the vision processor for visual servoing. The

other two cameras are analog, and pro vide strearning video for remote operator control.

There are internaI sensors for monitoring the CUITent state of robot health; these include

battery power and power consumption levels for the leg motors.

23

Power

AQUA is a self-sustaining robot, powered internally by two NiMH batteries. These

batteries can power the robot continuously for over three and a haIf hours.

Computing

AQUA has two computers on board, one for gait control and the other for vision­

related processing. Both computers are of the PC1041PIus form factor, due to the space

restrictions inside the robot. These two computers, along with the additional port and

interface circuit boards stacked on top of each other, connect via the ISA and PCI buses.

As such, these will be referred to as the control stack and vision stack throughout this

dissertation.

The control stack has a Pentium III processor, 256MB of RAM and a 256MB Com­

pactFlash card for secondary storage. Due to its real-time requirements, It runs on the

QNX real-time operating system (RTOS). The control stack is tasked with controlling

robot motion by manipulating the leg actuators in real-time.

The vision stack is responsible for processing visuaI data. Currently it is being used

for visuaI servoing only, but future goals are to use this processor for underwater stereo

algorithms and VSLAM with AQUA. It is powered by a Intel Pentium-M processor with

a maximum c10ck speed of 1.4 GHz. The board has 2MB of on-chip cache memory

and 1GB of RAM, which contributes to faster vision processing. A 512MB Compact­

Flash card is being used as secondary storage. We are using a custom-built version of the

Linux operating system on the vision stack. The servoing code executes under this envi­

ronment. Taking advantage of advanced power management features of the Pentium-M

processor, we designed the vision stack operating environment to be capable of scaling the

24

CPU dock frequency to preserve battery power. This particular mode! of the Pentium-M

processor can be scaled from 1.4GHz down to 150MHz. During idle periods, the CPU

slowly scales down to the lowest dock setting, but jumps to the highest speed instantly

on-demand. A PC104/Plus FireWire interface board enables the vision stack to interface

with the FireWire cameras.

Both the control and vision stacks have on-board seriaI and Ethemet ports. These

ports are used for the IMU and communication between the stacks, respectively. Power to

the boards are supplied using a custom-designed hardware controller board known as the

RHIO card (RHex Input/Output).

Communication

There are several communication channels in the AQUA robot. Communication from

the camera to the vision processor is over the Fire Wire bus, as already stated in the previous

section. The vision stack communicates with the control stack via the Ethemet ports,

utilizing the UDP protocol. Outputs from the two analog cameras, IMU readings. robot

control and logged data are communicated from the robot to the operator platform on the

surface over a tiber optic tether. The Operator Control Unit (OCU) is connected to this

tiber and provides the operator with the visual data required for teleoperation.

A cut-away section of the robot with interior components are shown in Fig. 3-2. The

hardware and software systems are explained in detail in the following two subsections.

3.1.2 Software

The task of visually guiding the AQUA robot is a two stage software process. The

tirst stage is performed in the vision stack, where the target is tracked and robot pitch and

yaw commands are generated. The second stage accepts these yaw and pitch commands

25

Computation
AQUA operates with a Pentlum
CPU on a PC/104 stack. and relay.s
command and sensor Information via a
liber optlc tether.

14cml
Tall

\{ision

2 front board cameras and 1 rear allow for
remote operation of the robot. Future work
will allow for visual servolng and stereoscopic
3D terrain mapping

propulsion

pOwer
Two MIL-spec NiMH batteries allow
AQUA to operate for over 5 hours
underwater. Tool-less battery replacement
allows qulck and easy swaps for rapld
redeployment.

Shell
Rugged shell design provldes ample
seal for up to 20m water depth and
heavy impact protection.

Multiple Iterations and tests have brought
the blologlcally Insplred flippers to generate
optimal thrust. Experimentation with new
swimming gaits has allowed for further
Improvement of AQUA's underwater performance.

1 mass = 18.5kg (ballasted for salt water,1

Figure 3-2: AQUA hardware components.

and generates leg actuator commands that actually enables the robot to perfonn the re-

quested maneuver. In both stages, the software is written in C++, with the emphasis on

small footprint and fast-executing binaries suitable for an embedded system. The software

system of these two stages are discussed in the following two sections.

Visual Servoing Software

The vision software based on an open-source vision library called VXL (Vision "some­

thing" Libraries)l . VXL is a suite of packages designed for creating efficient and fast

programs for computer vision related applications. VXL includes libraries for numerical

1 www.sourceforge.netlprojects/vxl

26

algorithms, image processing, coordinate systems, camera geometry, stereo, video ma­

nipulation, structure recovery from motion, probability modelling, GUI design, classifica­

tion, robust estimation, feature tracking, topology, structure manipulation and 3d imaging,

among others. VXL also provides system-independent toolkits for cross-compiler com­

patibility.

We looked at creating a modular, extensible software base so that enhancements and

integration of advanced features in the future wou Id be significantly easier. The object in­

heritance capabilities of the C++ programming language provided us with tools for achiev­

ing that goal. From a functional point of view, the code base is made up of visualization

and user-interface code for development and testing of algorithms offiine, off the robot.

A subset of that code is compiled and installed into the robot before actual visu al servo­

ing runs. This model allows for shorter develop-test-deploy cycles. Screenshots of the

tracking testbed running with full graphical user interface can be seen in Fig. 3-3.

More details about the visual servoing software and experimental setup will be given

in chapters 5 and 6.

Control Software

Control of robot motion is supervised by code running in the control stack. In all

robots derived from the original RHex, control software is written using a library called

RHexLib (RHex Library). As the number of RHex derived robots increased, the RHexLib

library grew into a package of robot-independent and robot-dependent code, with code

specific to each robot having their separate space, unrelated to other robot codes. This

package is known as the RoboDevel suite. AQUA control code has been derived from the

27

(a) Main Interface

· 1\In .. HistPQram Traeker: .
ÂUn Co!or Hi.togram 1tacker crrf+s

ltmo Meanshift ·itacker Ctrl+6

Àùn Meanshilt Tl'!lcker

(b) The Tracker Control Menu

Figure 3-3: Screenshots of the VGUITracker application.

RHex codebase, but a large number of enhancements as well as newer innovations have

been made in the AQUA code that distinguish it from the original RHex software.

The structure of control code in AQUA is similar to a client-server architecture, with

the robot running the RoboDevel "supervisor" code, and the robot control machine run­

ning the "operator" code. RoboDevel also cornes with a simulator for RHex robot visu-

alization, called SimSect. In case where the real robot is being operated, the supervisor

communicates at a very low-Ievel to the robot hardware; legs, inertial sensors and health

monitors. The operator communicates with the supervisor using a point-to-point protocol

over a seriallink that runs through the fiber optic tether. A full-featured graphical user

interface is available at the operator terminal for easy access to aIl the robot control pa­

rameters as weIl as health and system monitors. The control GUI can also be operated via

a wireless gamepad to assist the robot driver. A screenshot of the GUI during a simulated

28

underwater operation of the robot is shown in Fig. 3-4 below. Note the displays for visual

servoing commands in the middle, the IMU readings and controls on top and the gait con­

troIs at the bottom right, among other things. The drawing of the robot to the right is an

output from SimSect, via the Geomview2 too1.

Figure 3-4: AQUA operator graphical user interface.

The robot supervisor and the visual servoing software communicate via the UDP

protocol, using a custom communication class. Communication between the two software

2 http://www.geomview.org

29

VisionCommand
+Vis Pitch Command: float
+Vis Yaw Command: float - -
+Vis_Speed_Command: float

Figure 3-5: Vision command data structure.

modules are uni-directional, with the servoing software sending pitch, yaw and speed com-

mands to the robot supervisor. The structure of the vision command packet is shown in

Fig. 3-5.

We opted for the the UDP protocol, since for TCP connections, there is an added

overhead of connection setup, because of its state-oriented nature. UDP, on the other

,-/'""'., hand, is stateless and provides no guarantee of packet delivery, but at a high rate of packet

transmission over a short distance, there is virtually no packet loss. Our application is

robust enough to remain stable in case a packet or two fails to reach the control stack.

The vision stack cornrnand packets are sent at the rate each frame is processed from the

camera. We currently use a rate of 15 frames/second from the FireWire camera.

The diagram in Fig. 3-6 shows a UML class diagram for the software components

residing in the vision stack that perforrns tracking and robot cornrnand generation. The

complete software architecture is demonstrated in Chapter 5, in Fig. 5-6.

3.1.3 The System Environment

For the vision stack we did not require hard real-time capabilities, hence a custom-

tailored version of the Linux Operating System is used as the environment for the visual

30

servoing code. We built the OS from the source, compiling aIl the binaries for the target

PC 104/Plus platform to optimize runtime performance and reduce size of the executables.

Sorne salient features of this OS are listed below.

• Storage: The storage medium is a 512 megabyte CompactFlash card, with very

little power requirement as compared to micro-size hard drives. The resistance to

shock impact and vibration is also far greater for CompactFlash cards (20000's for

CF against 120's for MicroDrives). The downside is the limited number of write

cycles that can be performed on a CompactFlash cardo To extend the working life of

the CF card, we stored aIl the temporary system logs and cache files on RAM disks

created during the Linux bootup. The entire storage space was partitioned into two

sections; one read-only for the operating system of roughly 100 MB and the other

around 400MB, for storing images and video from the Fire Wire camera.

• Kernel A monolithic kernel (version 2.6.11, latest at the time of the experiments) is

used, with aIl device drivers and modules built right into the kernel, to reduce the

latency in activating devices. This increased the kernel size, but reduction of module

files and other unnecessary components more than compensated for that increase.

• Startup To ensure a fast and responsive system startup, we start a very smaIl number

of services (or daemons), The boot partition is mounted read-only, so we dis able

file system checks at the startup. AlI system logs and temporary files are stored in

the memory, in temporary RAM Disks , which aIlows us to use a read-only boot

partition.

• Network The vision stack uses Ethemet connection to communicate with the control

stack, which is setup with a static IP address. We also have provisions for Ethernet

31

over FireWire, which enables the use of Ethernet protocol over a FireWire link. The

vision stack also supports both SSH and Telnet connections for remote logins.

In the next chapter, we discuss the tracking algorithms we used in our problem. The

theory behind each of these algorithms are explained, as weIl as the advantages and disad­

vantages of each method, as relevant to our application. The application of these methods

in the AQUA visual servoing application is discussed in detail in Chapter 5.

32

)

'"Ij
~
~
w
~
$
r:n
~ e.
r:n

~
::s

O'Q
r:n o
::P
~

~
r:n

8 o
;::
~

c.;

"1

UVis2RHex
+SendMessage()
+Recei veMfssage()

1

VisionCommand
+Vis_Pitch_Conmand: float ~ +Vis_Yaw_Conmand: float
+Vis Speed conmand: float

î \
)

AquaServo
#fwcam

#AquaCotml

#PItchYawServo

+5tartBlobTrack()
+StartHistoTrack ()
+StartMeanShi ftTrack()

1
, '1

1 ColorSegmentTracker ~ ~ r---;:> .,. MeanShiftTI'acker HistoTI'acker

l-monnalizelmageO: void 1 +MeanShift: void #ColorHistogram[binSizel: int
+GetBhattacharyyaMeasure(): float -+NormalizeHi.togram(J: void

1 \'1
probabilistics Servo

+EpanechnikovKernel (): float +K_Pitch: float
+CalculatePDF (): double +K_ Ya,,: float

+K_Speed: float

4> Tracker +CalculateConmand (): float +F il te rTimeConstant () : float
+Camera: FirewireCameraType
#Image: vil_image view<vxl_byte>

+ProcessFrame (J

1 + TunePa rams ()

F' . rh Ty ~ Settings t 1
.rewlreCa era pe FireWire Camera S";cific Settings

+GetF rame (): void
+SetF rameRat. (): int
+BayerDecode(): void \J

1 CameraType 1
l+FrameDimensions 1

/~,

CHAPTER4
Visual Tracking and Control

We discuss the theory behind the tracking methods used in our work in this chapter.

AIl our tracking algorithms are based on color cues; hence we focus on color space and im-

pacts of lighting on color. The three tracking methods used have increasing computational

co st and complexity. We justify the need for using three tracking methods and point out

the advantages and disadvantages of each. The chapter concludes with a comparative dis­

cussion of the three approaches. Implementation details for these tracking algorithms are

explained thoroughly in the following chapter. We begin, however, with a short discussion

of the physics of light in underwater environment.

4.1 Underwater Light and Vision

In underwater environments, illumination depends on depth, refraction, scatter and

absorption of the water medium. Of aIl the sunlight reaching the surface, only 18 % reaches

a depth of 18 meters, and 1 % reaches 100 meters [41]. The most important reason for re-

duced visibility underwater is the small difference between refractive indices of the human

eye and the water medium. On air, refraction index of light is almost close to 1, and that of

the human eye is 1.38. This difference is sufficient to form images on the retina. In water,

the refractive index is 1.34, reducing the difference greatly and forming images far beyond

the retina. Divers tend to use masks or goggles to form a layer of air between the eye and

the water outside to ensure visibility is not hampered due to this lack of refraction.

34

/' ...

The three phenomenon effecting light underwater are briefty described below, and are

illustrated in Fig. 4-1.

• Refraction: Refraction is the effect which causes light rays to bend while passing

from one medium to another. This effect happens when light passes from water

to the camera or human eye underwater. Refraction can change the perception of

distance of objects underwater, making objects appear at three-fourths the distance

than they actually are. At greater distance this effect might be reversed; causing

objects to appear further away than they are. The more turbid the water, the less

the distance at which this effect or over- or underestimation of distance can happen.

Again, when light passes from air into the water through the surface, the water

causes rays to enter at various angles due to waves, and also through the water

column due to variable levels of salinity.

• Scatter : Scatter occurs when individual photons of light are deftected or diverted

when they encounter suspended partic1es in the water. Although scattering also oc­

curs in air, it is of much greater concem under water because light is diffused and

scattered not only by the water molecules themselves, but also by aIl kinds of partic­

ulate matter held in suspension in the water, and by transparent biological organisms.

NormaIly, scatter interferes with vision because it reduces the contrast between the

object and its background, which is why vision is so much more restricted in water

than iIi air; for the same reason even large objects can be invisible at short viewing

distances. Even more problematic is the fact that this scattering can be wavelength

dependent and non-uniform, affecting transmission of color hues. In addition, acuity

or perception of small details is generally much poorer in water than in air, despite

35

the fact that the optical image of an object under water is magnified by refraction.

The deterioration increases greatly with the distance the light travels through the

water, largely because the image-forming light is further interfered with as it passes

through the nearly transparent bodies of the biomass, which is composed of organ­

isms ranging from bacteria to jellyfish.

• Absorption: Light is absorbed as it passes through the water, and much of it is lost

in the process. In addition, the spectral components of light, the wavelengths that

give rise to our perception of color, are differentially absorbed. Transmission of light

through air does not appreciably change its spectral composition, but transmitting

light through water, even through the clearest water, does, and this can change the

resulting color appearance beyond recognition. In clearest water, long wavelength or

red light is lost first, being absorbed at relatively shallow depths. Orange is filtered

out next, followed by yellow, green, and then blue. Other waters, particularly coastal

waters, contain silt, decomposing plant and animal material, and plankton and a

variety of possible pollutants, which add their specific absorptions to that of the

water.

4.2 The Visible Color Space

Using color features in visual tracking is an attractive option because ofits simplicity

and robustness under partial occlusion, depth and scale changes. Tracking color cues

helps one avoid using complicated and computationally expensive feature trackers that

may weIl be infeasible in real-time applications. In spite of the apparent advantages of

color tracking, there exists sorne significant problems that need to be addressed to design

a robust and accurate color tracker. The biggest problem existing with color cues is color

36

Refraction Scatter Absorption

Figure 4-1: Phenomena effecting light underwater.

constancy [12]. Color constancy is defined as the removal of color bias due to effect of

illumination. Issues like shadows, change in illumination and camera characteristics effect

the phenomenon of color constancy. Keeping in mind the real-time performance demands

from the tracker, we seek a robust and efficient representation of the object colors, resulting

in faster and accurate computation.

In the following subsection, we first describe the RGB color space, which is a basic

color space widely used to represent color images in image processing systems. We show

the properties of the RGB space and the shortcomings, which influenced our decision to

move to the more robust HSV color space for our tracking applications. Both color spaces

are presented briefly, as a precursor to understanding the application of the three tracking

algorithms we used in AQUA.

37

4.2.1 RGB Color Space

The Red-Green-Blue or the RGB color space represents the basic approach in repre­

senting color digitaIly. The RGB space uses a Cartesian coordinate system and forms a

unit cube as shown in Fig. 4-2.

G

G

c

Figure 4-2: The RGB color space.

Each corner of the cube lying on an axis represents the point where the color repre­

sented by the axis is maximum, with other colors absent. The origin represents black, as

aIl color amounts are zero. The diagonal emanating from the origin to the top-right corner

of the cube (representing white) is the locus of points with equal amounts of each color.

This is also referred to as the gray diagonal. Viewed from top, with the white-corner in

the center, the cube on the left can be seen as a two-dimensional equilateral hexagon, with

the white-corner overlaying the black.

38

4.2.2 HSV Col or Space

The Hue-Saturation-Value or HSV model was suggested to capture the artistic ideas

of hue, tint, shade and tone. Also referred to as the hexcone model, as shown in Fig. 4-

3,the HSV model uses hue, saturation and value or brightness as the three dimensions for

describing color, instead of RGB values.

G v

J-----~y

C l--'"---IC R

~_+~_+-~~--+R

B

---~s

Figure 4-3: The HSV color space.

Briefly, hue is the dimension on which the principal color points lie. Saturation mea­

sures the distance of a color point from the white or gray value, also known as the aehro­

matie. Value, on the other hand, measures the distance of color from the color black.

The relationship between the RGB model and the HSV model can be seen from fig­

ures 4-2 and 4-3. The orthogonal projection of the top surface of the RGB cube along the

39

gray diagonal from white to blue corresponds to a plane in the HSV hexcone with constant

V.

4.3 Color Blob Tracking

The simplest approach to color based tracking is using a segmentation algorithm to

detect objects of interest using their color features. The output of the segmentation algo­

rithm is (possibly disconnected) regions in a binary image that match the color properties

being tracked. These regions are termed 'blobs', and hence the approach is known as col or

blob tracking. We attempt to form these blobs through a thresholding process. By thresh­

olding, we refer to the operation where pixels are tumed 'on' if and only if their color

values faU within a certain range and tumed 'off' otherwise.

The basic color blob tracker is a straightforward algorithm. The tracker is initialized

with the target's color properties; in case of the RGB space, the tracker has to be aware

of the red, green and blue color values of the tracked object. Next, sequential scanning

is performed on the image, pixel-by-pixel. The pixel falling within the threshold of the

color values of the target are tumed on in the output image, and other pixels are tumed off.

Figure 4-4 below shows the segmentation output of tracking a red object. The target is

framed by a yellow rectangle for c1arity.

The tracker was tuned beforehand to the red rectangular target in Fig. 4-4(a). The

segmentation produced the image in Fig. 4-4(b). The tracking algorithm detects this blob

in the binary image in every frame, and calculates its centroid. This centroid is taken as

the new target location. This process iterates over every frame, and the target is localized

in the image frame.

40

(a) Tracking red (b) Segmented output showing the blob

Figure 4-4: A col or blob tracker tracking a red-colored object.

The obvious downside to using a naive color blob tracker as explained above, is the

presence of duplicate targets. For example, in Fig. 4-4(a) above, if any other red colored

object appears in the scene, the segmentation process will generate another blob for that

object. This second blob will effect the calculation of the center of mass for the tracker;

the effect will be more prominent if the two generated blobs are disconnected; i.e. further

away in the image frame. Therefore, the tracker works only accurately when there are no

similarly-colored object in the camera's field-of-view.

Several approaches to address this problem have been suggested. One way to avoid

tracker confusion in the presence of duplicate objects is to use shape cues to identify the

proper object. This, of course works only when the 'faIse' target is of a different shape

from the 'real' one. AIso, incorporating shape detection is a computationally expensive

process, and shape trackers can be confused by lighting variations, and lock on the wrong

target.

41

Another way of making a a blob tracker more robust is to use a statistical approach to

choose the proper blob to track, for example by using Monte-Carlo based methods like the

Partic1e Filter. Partic1e filters have been extensively used in computer vision and tracking

applications, first introduced as the Condensation algorithm by Isard and Blake [23]. The

Condensation algorithm works weIl with contours and blob-trackers, but it is an iterative

process, which would increase computationalload significantly.

In the following subsection we look at a more robust approach than the naive color

blob tracker, which applies color distribution matching instead of a single color range.

4.4 Color Histogram-based Tracking

A color histogram represents the distribution of color in an image or a region of an

image. Color histograms are useful for characterizing the color content of a given image

or image sub-window, and have been applied for image retrieval applications as weIl as

video indexing and lookup. FormaIly, a histogram hi is a mapping from a d-dimensional

integer vector i to the set of non-negative reals. These vectors can be thought of as 'bins';

each bin represent the center of a region in a fixed partitioning of the underlying feature

space. For a grayscale image, the histogram is one dimensional, i. e d = 1. Similarly for a

color image represented using the RGB space, the histogram would be 3 dimensional. In

both cases, the set of possible color values for each dimension is split up into N equaIly­

spaced partitions. hi contains the number of pixels that has color values which fall between

the interval specified by the index i. ComputationaIly, the color histogram is formed by

discretizing the colors within an image and counting the number of pixels of each color.

The size (and number) of the bins and the range of values the histogram counts are

important parameters since these control the effectiveness of the histogram in representing

42

the color distribution of the underlying space. A coarse histogram has lesser number of

bins than afine histogram. Coarse histograms are not a good choice when the underlying

image has a multitude of hues. On the other hand, for an image with a few colors, a fine

histogram would be an over-representation, and would also lead to waste of storage as

most of the bins would be empty.

The color histogram tracker works as follows. First, a histogram of the target to be

tracked is created. This histogram is stored as the target model histogram. This is the

preprocessing stage. During the tracking stage, every incoming frame from the camera is

divided into rectangular regions and their histograms are calculated. The similarities be­

tween the new candidate histogram and the target model histogram is calculated following

one of several possible distance measures (to be discussed below). The subwindow with

the highest match is chosen as the probable subwindow containing the target. The pattern

of scanning the image for the target can be done sequentially,or in a spiral pattern starting

from the location of target found in the previous frame. Depending on the application, the

size and shape of the subwindow can also be made to change dynamically, although that

makes the tracker computationally slightly expensive.

The following sequences of images in Fig. 4-6 shows the operation of a histogram

tracker. The target to be tracked is the show in Fig. 4-6(a). A one-dimensional col or

histogram of the target is shown in Fig. 4-6 (d).

Figure 4-5 shows the tracking stage, with fixed size subwindows and sequential re­

gion search. The window where the tracker detects the target is shown in Fig. 4-6(b)

and its histogram is in Fig. 4-6(e). A subwindow not containing the target and its color

43

Figure 4-5: Rectangular search windows.

histograrn are shown in Figures 4-6(c) and 4-6(t) respectively, for comparison with the

target histogram shown in Fig. 4-6(d).

4.4.1 Measuring Similarity between histograms

At the heart of the histogram-based tracker lies the similarity measurement metric for

comparing two histograms. The similarity measure is a function of the two histograms

that retums a scalar value indicating the amount of similarity between the two histograms.

Based on the way the bins are compared, these measures are of two fundamental types.

One approach is to only compare corresponding bins in the two histograms, in a 'bin-by­

bin' fashion. The other method does not limit the comparison between similar bins in

the two histograms, but extends the comparison in a 'cross-bin' approach. We discuss a

few of the measures available among many; the ones discussed have been used on board

the AQUA robot for visual tracking with color histograms. One important point to note

44

(a) A Target region

(d) Target region histogram

'7999

0000

.W

~~

l ,:I!»O

,2<100

,...

/i.

(b) Selected target re­
gion

~.t'9Q ,

$l\\

2<iOç

J lOOQ

.,Ooli

(c) Region without
target

(e) Selected target region histogram

(f) Non-target region histogram

Figure 4-6: Comparison between histograms of different subwindows in an input frame.

45

is among the similarity measures discussed, there is not one which is c1early superior;

instead, we stress the fact that the selection of the measure is very much application de-

pendant.

The following subsections discuss the issue of measuring similarities between two

histograms H and K, both having the same number ofbins, N. These measurements only

compare the corresponding bins of both histograms; i. e. they compare hi and kj for i = j,

where hi and kj are the i-th bins of histograms H and K respectively ..

Histogram Intersection Measure

The histogram intersection similarity measurement is calculated using the following

formula:

(4.1)

This measurement has been proven useful in comparing histograms of different sizes [37].

The X2 (Chi-Squared) Measure

The X2 (chi-squared) metric is a measurement of the probability that one distribution

was drawn from the other. The X2 measure is calculated by:

(4.2)

where,

The X2 metric does not permit the data in the underlying distributions to be percentages;

they must be raw data. AIso, the measured values have to be independent and observed

frequencies must not be too small.

46

The Bhattacharyya Distance Measure

The Bhattacharyya coefficient has a direct geometric interpretation with respect to

two distributions; for two m-dimensional unit vectors p and q, it is equal to the cosine

of the angle between them. The Bhattacharyya distance between two histograms can be

found using the following expression:

Jeffrey's Divergence

m

PBhattacharyya(H, K) = LVkihi
i=l

(4.3)

Jeffrey's Divergence has been derived from the Kullback-Leibler (K-L) divergence.

The KL divergence measure is an information theoretic measure that can be interpreted as

the inefficiency of transforming one distribution to the other using a code book. The KL

measure, however is sensitive to quantization effects in the histogram computation (i.e bin

size). Jeffrey's divergence is an empirically derived divergence that is numerically stable,

insensitive to histogram binning and also robust in the presence of noise. The Jeffrey's

divergence measure of similarity is calculated as follows:

(4.4)

where

(4.5)

47

4.5 Mean-shift Tracking

Mean-shift tracking performs visual tracking by attempting to maximize the correla­

tion between two statistical distributions. The correlation between the two distributions is

expressed as a measurement derived from the Bhattacharyya coefficient described in the

preceding section. Mean-shift trackers have been used to track objects based on color or

texture, by building a statistical distribution of the feature being tracked. We introduce the

basic concepts behind mean-shift tracking in the next paragraphs.

For any density function, the mean x of a set of samples x tend to be biased towards

a local mode, i.e. a local maxima. The mean-shift vector, x - x points towards this local

maxima. Based on this mean-shift property, tracking is performed as described in the

following steps:

1 A probability distribution model of the target T is built, based on color, texture or

any other feature. We caU this model p. This model is overlayed with an isotropic

kemel with a convex and monotonically decreasing kemel profile. This step assigns

weights to each pixel in the target region, with center pixels having more weights

than those on the periphery. This distribution of weights increases robustness against

occlusion, since the pixels on the boundary do not have large weights assigned.

II Starting from the previous location ko of the target, a new model of the target is

generated at the same location. This candidate model at location ko we denote as

q(ko).

III The weights, as described in step l, are calculated.as described in step 1

IV The new location k1 of the target is calculated recursively, using the mean-shift

procedure.

48

V If the shift amount between the new and old locations is smaller than an arbitrary

small constant E, the algorithm stops. Otherwise, we assign ko +- k1 and iterate

from step III.

4.6 A Comparison

Each of the three trackers in the system have desirable features, as well as sorne poten­

tials caveats, as we will discuss in detail in Chapter 6. The color blob tracker is inherently

simple, easy to implement, and has a running time directly proportional to the frame size.

This running time emerges from the need to raster scan the image pixel-by-pixel to check

for color matches with the target object. For a high frame-rate and a large frame size,

the computational costs increase significantly, although we have used medium resolution

(i.e. 640 x 480) size frames at 15 frames/second to keep the computational overhead low.

Intensity normalization of the input frame also reduces the effect of lighting changes. The

appearance of a similar-colored object in the camera field of view can confuse the color

blob tracker.

The color histogram tracker, unlike the blob tracker, is suitable for tracking multi­

hued objects. We use fixed bin sizes for histograms, and compare the target region with

fixed size windowed regions in the image. The advantage of the histogram tracker over

the color blob tracker is in the ability to track a variety of colored objects, both multi and

single colored. The algorithm also has a runtime proportional to the frame size.

We use normalized histograms for our application, which reduces the effect of bright­

ness changes on color matching. The tracker is more robust to tracking in the presence of

multiple objects, since two objects has to have the same distribution of color to confuse

the tracker. The computational cost, although linear, is significantly more than that of the

49

Table 4-1: Tracker comparison table.

Tracker

Color Blob

Computational
Cost

Low

Color Histogram Moderate

Mean Shift High

Target Color Properties

Single color only

Effect of Lighting
Variations

Moderate

Single and Wide range of col- Moderate
ors

Single and Wide range of col- Low
ors

color blob tracker. This cost is incurred due to the computation of col or histograms of

every rectangular region we scan for the occurrence of the object.

The mean-shift tracker is the most computationally expensive of the three trackers.

It is also the most robust. The mean-shift vector tracks changes in underlying color dis­

tribution and follows the target in successive frames. The process is localized, in a small

region of the image, and no raster scan of the image is performed. However, the color

distribution of the target and candidate regions have to be computed, as is their probability

density functions. These computations increase the overall running time for the algorithm.

On the other hand, the mean-shift tracker is more robust to changes in lighting and ap­

pearance of duplicate objects in the frame. We have found this tracker to work well under

partial occlusion and cluttered environments as weIl. We discuss the performances of each

in detail in Chapter 6.

Table 4-1 presents a summary of the three tracking algorithms, comparing the degree

of main desirable and undesirable features.

50

4.7 Preliminary Control Theory

This section introduces several key concepts relating to Control Theory. Control the­

ory deals with the behavior of dynamical systems over time, i. e. systems that change

properties over time. When one or more output variables of a system requires to be set

at a certain value, the Controller attempts to manipulate the input of the system to adjust

the output to the desired value. Visual servoing of the AQUA robot qualifies the system

as a dynamic system, since continuous visual tracking of a target attempts to control the

motion of the robot. We present sorne fundamental definitions to aid understanding of the

control process of the AQUA visual servoing system. A couple of the following sections

briefly discuss filters and PID control, with relevance to the CUITent work.

4.7.1 Definitions

We present sorne definitions to begin the chapter. These are common terms in Control

Theory literature, and are only presented here to familiarize the reader with the basic

concepts.

s o
c p

f

Figure 4-7: A simple feedback loop.

• The Reference Variable is the final output variable of the system.

• The Plant is the system being controlled.

• The Controller is responsible for manipulating the Plant.

51

• The Setpoint is the target value of the reference variable which the controller at­

tempts to maintain at aIl times.

• In Open-Loop Control, the Controller has no feedback from the Plant as it attempts

to control the reference variables. Open-Ioop systems have no sensitivity to the

dynamics of the system being controlled.

• In Closed-Loop Control, the problem of the Open-Ioop control described above

is reduced by introducing feedback from the Plant output. The Controller receives

as input both the reference value s and the output feedback f. It measures the

difference between the reference and current output as the error e and changes the

input i to the Plant accordingly, as shown in Fig. 4-7.

• Stability refers to the fact that for any bounded (i.e finite) input to the Plant, the

output of the Plant is also bounded. Stability is essential for a well-controlled dy­

namical system. This is also referred to as the Bounded-Input-Bounded-Output or

BIBO stability.

4.7.2 Proportional-Integral-Derivative Control

A Proportional-Integral-Derivative (or PID) Controller is a standard closed-Ioop

control that tries to control one or more reference variable of a plant by "sensing" the

output at a given time and adjusting the plant input accordingly. The error signal at time t

is the difference between the setpoint and the output of the system at time t. The controller

treats the error signal with three different multiplication constants or gains, as described

below, justifies its name.

a The Proportional Gain, K p is a negative terrn, which is multiplied with the error

signal and the result is sent to the output. The proportional gain dictates the band

52

over which the output of the controller is proportional to the error signal. This gain

is responsible for making the controller react to the current value of the error signal.

b The Integral Gain, KI is multiplied with the integral of the error signal over a

(usually short) period of time, and added to the proportional output. KI denotes the

steady state error of the system, and attempts to remove errors that have persisted in

the system over a period of time.

c The Derivative Gain, K D is used to adjust the response of the controller to the

changes in the system. The rate of change of the error signal (i.e. first derivative) is

multiplied with K D and added to the sum of the two outputs above. The larger the

derivative gain, the faster the controller responds to changes in the plant.

Equation 4.6 below shows the form of a PID controller.

Output = KpEt + KI J Etdt + K D ! Et

Here, Et is the time-averaged error signal value at time t.

4.7.3 PID Controller Thning

(4.6)

Tuning of a PID controller refers to finding the values for the proportional, integral

and differential gains. Depending on whether the system can be taken offline or not, there

are several standard approaches to tuning a PID controlloop. In one approach, the system

taken offline and is subjected to step changes in input and the output is measured as a

function of time. The response of the system is used to find the optimal value of the

parameters. If, on the other hand, the system cannot be taken offline, the values of KI and

K D can be set to zero and the value of K p is increased until the output loop oscillates.

At this point, K p is fixed and then KI is adjusted to stop or substantially reduce the

53

oscillation. Finally, the derivative gain K D is used to reduce the response time of the

system.

4.7.4 PID Controller Issues

In theory, a PID controller is robust and easy to tune for controlling a dynamical

system. In practice, the algorithm suffers from a few drawbacks, which arise from the real­

life imperfections of the systems being controlled, the model and environmental factors.

One common problem a PID loop suffers from is the delay in getting the output of the

system to ramp up to the desired setpoint. This is referred to as the Integral Windup

phenomenon. Using a large initial value for the differential gain or preloading the system

with a certain output value sometimes can reduce this effect.

A frequently changing controller output is not always desirable, as it might lead to

mechanical wear or unstable vehic1e control. A deadband value is introduced in PID con­

trollers to prevent the controller from responding to small changes in the plant output. The

deadband defines the range of change in output for which the controller will not respond

at aIl. In effect, this allows the controller to respond to major changes in system output.

The differential gain can cause the controller to change its output by a large amount in

the presence of a small amount of noise in the system. Passing the measurements through

a low-pass filter helps reduce the effect of noise in measured values. In sorne systems, the

differential gain is not used at all, resulting in a PI controlloop.

4.7.5 Filters

Frequency domain filters are used in signal processing to block signaIs of certain

frequencies from passing through. A certain type of filter allows only a certain band of

signaIs to pass, e.g. low-pass filters only allow components with Iow frequency to pass

54

through, blocking high frequency signaIs. Filters can be analog or digital, depending on

the application domain. Digital filters can be used to implement any mathematical filtering

application that can be expressed as an algorithm. We cons train our focus to digital filters

in this section.

4.7.6 Infinite-Impulse Response Filters

Infinite-Impulse Response filters are digital counterparts of analog filters. When sub­

jected to an impulse function, UR filters produce a response which is non-zero over an

infinite time period. UR filters use feedback from the output to create a form of recursive

filtering that results in an unending impulse response. The response is either exponentially

decaying, growing or sinusoidal.

The next Chapter introduces the theory behind visual servoing and de scribes the sys­

tem implementation specifics in details. The tracker and controller implementations as

weIl as the systems environment components are explained in greater detail.

55

CHAPTERS
Visual Servoing System Implementation

This chapter describes the implementation details of the visual servoing system in

AQUA. We discuss in detail the tracker implementations, control loop design and the

entire system with the communication between the vision and control stacks. The Linux

operating environment for the vision code was built from the scratch for faster execution

times and small memory requirements. Salient features of the Linux environment are

described in this chapter as well.

5.1 Visual Servoing

Vision is an excellent sensing medium for robotic applications due to its passive prop-

erty and very little power requirement. In a real time robotic system, vision can be applied

to provide a closed-Ioop control of the robot manipulator or the entire robot as a whole.

In context to our work, Visual Servoing refers to the task of controlling the robot's pose

by using feedback from a vision sensor. Visual servoing has been used extensively in

the manufacturing industry [31, 2] as well as vision-assisted vehicle control. Rutchinson,

Rager and Corke [22] has an extensive discussion about the theories behind visual ser­

voing and the classification of visual servoing methods. Based on whether the tracking is

performed in image or task space, and the hierarchy of control mechanism, visual servoing

approaches can be classified in four major categories. Figure 5-1 shows the major classes

of visual servoing approaches as mentioned in [22].

56

Visu al Servoing

1

Tracking Space Control Hierarchy

Image-based Position-based Dynamic Direct
Visual Servoing Visual Servoing Look-and-move Visual Servoing

Figure 5-1: Types of visual servoing, as described in [22].

To elaborate further, servoing mechanism can be designed with an intermediate robot

command generator that accepts feedback from the vision sensors and outputs robot motor

control commands for controlling robot pose. These systems are known as Dynamic Laak­

and-Mave systems. The systems where motor input commands are generated by the servo

system directly are called Direct Visual Serva systems. In AQUA, the vision stack sends

yaw and pitch commands to the control stack, which in turn generates motor commands for

each of the six legs, effectively working as a dynamic look-and-move system. Our tracking

and target detection is performed in image coordinates, which makes it an image-based

servo system. In the following subsection we discuss a brief background of image-based

visual servoing.

57

5.1.1 Image-based servoing

In image-based visual servoing, as discussed earlier in the section, the target object is

tracked in image coordinates. The position of the object in each image frame is expressed

in terms of image-space coordinates, not real-world or task-space locations. In our case

we localize the centroid of the target in two-dimensional Cartesian coordinates, not three

dimensional real-world coordinates. The error function c, in this case is defined in R2 , as

the Euc1idean distance between the center of the frame and the center of mass of the target.

The goal is to reduce c such that c ---7 0, as time t ---7 00.

In spite of defining the error function in image space, the motor commands are spec­

ified in task space coordinates; i.e. the yaw and pitch commands are the same when

the robot would be tele-operated by a remote controller. This necessitates a mapping

of changes in the image coordinates to changes in the position of the robot. The image

Jacobian is used to perform these changes.

Let f be a feature vector in the image space, r a vector of robot translational and

rotational velocities, and r is the rate of change of these velocities. If k is the number of

dimension of the image space and m is the number of dimensions of the task space, then

the image Jacobian is defined as follows:

8fI(r)
8rm

(5.1)

8fk(r) 8fk(r)
8rl 8rm

The image Jacobian relates changes in the image space vector f to changes in the

velocity vector r. The velocity vector r is also commonly referred to as the velocity screw

58

in visual servoing literature. The mapping from changes in image-space to task-space is

expressed by the following expression:

(5.2)

In image-based visual servoing, the interest is in finding the robot velocity r given the

rate of change in image features f. Hutchinson et al. shows [22] how to solve Eq. 5.2 to

determine the velocity screw r to achieve a desired state of the image feature vector f.

5.2 Tracker Implementation

We discussed the theory behind the tracking algorithms used in AQUA in the previous

chapter. This section and the included subsections explain in detail the implementation

specifie issues of each of these trackers.

5.2.1 Preprocessing

The color space chosen for blob tracking was the normalized RGB space, which is

in effect an over-represented hue space. We chose the normalized RGB colorspace since

the effect of lighting changes were minimum, and conversion from RGB to normalized

RGB was not computationally expensive. The color frames obtained from the camera

were 640 x 480 with 8-bits per pixel, with Bayer-encoded color information. The Bayer

encoding scheme is a method of interpolating color information of a pixel using col or

values from the neighboring pixels, by using only 8-bits per pixel instead of 8-bits per red,

green and blue channels. Bayer encoding reduces the overall data size by one-thirds, since

only 8-bits per pixel are used, instead of 24, with a concomitant loss of color resolution.

The Bayer pattern is specifie to each camera and its CCD(Charge-Coupled Deviee, whieh

is the equivalent of film in a 'traditional' camera). To retrieve color data, a conversion is

59

required from the monochrome 8-bit Bayer-encoded image to a three-plane RGB image.

This RGB color image is normalized by dividing each pixels RGB values with the sum

of the RGB values. Examples of a Bayer-encoded frame, the RGB color image and a

normalized RGB frame can be seen in images 5-2.

Figure 5-2: A raw frame from the camera.

These preprocessing steps are common to aIl the trac king methods described below.

5.2.2 Blob Tracker

The tracker is built on the principle of a Region of Interest operator. As discussed

in the previous subsection, the RGB image is converted to a normalized RGB format.

addition, a thresholding is performed on the absolute value. This is done in order to prevent

the darker areas of the image from contributing to the region of interest. The parameters

for finding the region of interest with the target color is given in normalized RGB values

60

Figure 5-3: Bayer coded frames.

Figure 5-4: Normalized color frame.

61

as weIl (i.e hue). These values are manually tuned prior to the experiments. The image

is then segmented and only those pixels who se ROB values fall within the thresholds

are retained. To remove high-frequency (or shotlsalt-and-pepper) noise[3], the median

filtering algorithm[40] is used over the segmented image with either 5-by-5 or 7-by-7

pixel grids, with typical threshold values of 30%-40%. The center of mass of the blob is

then calculated and the total mass of the blob is used as a confidence factor. If it is below

a certain threshold (set a priori based on the object being tracked and lighting conditions),

the measurement is ignored. Finally, the error signal is computed using the Euc1idean

distance between the centroid of the blob and the center of the image frame. Two error

signaIs are used for pitch and yaw, and both these signaIs are then propagated to the PID

controller.

5.2.3 Histogram Tracker

The histogram tracker compares rectangular regions of the input frame with the target

region by comparing their corresponding color histograms. The target color distribution

is stored by calculating a normalized histogram of a fixed number of bins, over the hue

space. We used either 32 or 64 bins for histograms, depending on the target and the size

of the image frame. The histograms are one-dimensional vectors that combine the multi­

hue channel data. Similar histograms are computed for the searched sub windows. The

subwindows have either one-eighth or one-sixteenth the dimension of the image frame.

Similarity between histograms are computed by the measures discussed in the previous

chapter. Since the histograms are normaIized, the measures retum values ranging from 0

to 1; higher values indicating higher degree of similarity. The minimum similarity measure

is taken as 0.5; any measure below this threshold is not accepted as a valid target region.

62

The center of the chosen window is taken as the new target location. As in the case of the

blob tracker, these coordinates are used by the PID controller to generate pitch and yaw

commands.

5.2.4 Mean-shift Tracker

Color histograms are used as the underlying distribution in the mean-shift tracker.

The histograms are three-dimensional arrays in this case, one each for the three ROB

channels. We use 16 bins per channel for the mean-shift tracker. The target histogram are

computed in a square window of sides equaling 100 pixels. The color model probabil­

ity density function for the target is calculated by overlaying the subwindow by a kernel

having the Epanechnikov profile. The weights for the mean-shift vector are calculated

using the Epanechnikov kernel (See Appendix A). The tracker is initialized with the last

known location of the target and the target PDF model. In each successive tracking step,

the candidate window is created at the location of the last known target position, the can-

di date PDF model is ca1culated and the weights for pixel are ca1culated, leading to a new

candidate position. We use 10 iteration steps for the mean-shift process to choose a new

target location. AIso, the target and the candidate window sizes are the same as weIl. The

Bhattacharyya distance between the candidate PDF model and the target PDF model is cal­

culated to quantify the similarity between the target and the new candidate location. The

location with the minimum Bhattacharyya distance is chosen as the new target location.

The method is based on that ofComaniciu, Ramesh and Meer [6].

5.3 Controller Design

The trackers are able to track the target at almost 15 frames/second, and therefore

without filtering the control stack would be receiving possibly 15 different pitch and yaw

63

~ ..

command pairs from the visual tracker. Changing commands sent to the leg motors at such

a high rate would yield a highly uns table swimming behavior. A PID controller is used to

take these target locations and produce pitch and yaw commands at a rate to ensure stable

behavior of the robot. The controller takes the error signaIs from the tracker and generates

pitch and yaw commands for the gait controller. Given the input from the tracker at any

instant, and the previous tracker inputs, the controller generates commands based on the

following controllaw:

~ = KpEt + KI J Etdt + K D ! Et (5.3)

where Et is the time-averaged error signal at time t and is defined recursively as:

Et = Et + ')'Et-l (5.4)

Et is the error signal at time t, K p, KI and KD are respectively the proportional, integral

and differential gains and ')' is the error propagation constant.

We use two PID controllers for the pitch and yaw axes. Accordingly, there are two sets

of gains for each of the three multiplication constants (proportional, integral and deriva­

tive). These gains are adjusted manually before visual servoing runs. The closed-Ioop

control architecture of the visual servoing system is seen in Fig. 5-5. The servo control

loops indicate the two different PID controllers for pitch and yaw as weIl as the different

controller gains, denoted K p for the pitch axis and Ky for the yaw.

64

+
0.0

+
0.0

x

y

Kp

Ky

Visu al
Tracker

FireWire
Camera

Gait
Controller

Figure 5-5: Closed-Ioops servo control.

Robot
Pose

For each of the pitch and yaw axes, the controlloops work identically as follows. The

controller acts as a low-pass filter, smoothing out fast changing pitch and yaw commands

by averaging them over a period of time. The servo module implements a PID controller

with a first-order UR filter. We define a time constant for the low-pass filter for each

PID controller. The controller gains are input manually, as mentioned earlier, with limits

to truncate the gains. Each axis has a deadband limit applied to the error signal. This

prevents the controller output from changing too frequently, by ignoring small changes

in the error signal. We also introduce a sleep time between each iteration in servoing to

reduce command overhead of the control stack.

65

5.4 Software System

As mentioned before in Chapter 3, the visual servoing code is based mostly on the

VXL library. In particular, we have used VXL to provide the fundamental image pro­

cessing algorithms and data structures, and our algorithms are implemented with these as

the building blocks. The FireWire camera code uses another open-source library called

CamWire i , by Johann Schoonees. CamWire encapsulates the low-Ievel camera control

code provided by the libdc1394 Linux library, making it easier to write and organize cam­

era code. The tracking software has two modes of operation. During development and

testing, we use a graphical user interface to interact with the trackers in real-time and ex­

periment with the output. The GUI library significantly increases the size of the executable

and is not suitable for deployment in the robot. The version on the robot has no GUI, but

uses the Linux shell to interact in a command line environment. This reduces the size of

the executable and speeds up execution. The tracking algorithms on both cases are same,

the only change being the user interface.

The overall software architecture for the visual servoing task is shown below in Fig.

5-6 as a block diagram.

In the next chapter we present the results of the system we described so far. Servoing

test results of the AQUA robot is discussed. We also look into the performance of the

tracking algorithms, and how the choice of targets effect the trackers.

1 http://kauri.auck.irl.cri.nz/johanns/camwire/

66

')

0\
-....)

"Tl
(JQ
t:
(il
VI

~
(j
o .g
(D -CD
V> o
::+>
~

~

~
8" n
Ë
(il
Ci .-o
~
0-
~.

~

Control Stack Software

QNX Operatîng System

RoboDevel/RHexLlb
Control Software

Leg Motors

)

UDP A
CoInmunlcation y

Vision Stack Software

Linux Operatlng Sy

Vlsual Servolng
& Tracking Software

r--- ---1

VXL
Vision Llbrary

CamWlre Digital
Camera Llbrary

(f
FireWire
Camera

)

CHAPTER6
Experimental Results

We present the results of the visuaI servoing system described so far in this chap­

ter. We evaluate the performance of the tracking approaches in terms of the accuracy and

robustness, and also discuss types of targets each tracker is suitable for tracking. Perfor­

mance of the PID controller is presented, while tracking an object travelling in a straight

line during open-water trials. To gather ground truth data from underwater servoing ex­

periments is an extremely complicated, if not impossible, task, given the unavailability

of measurements that are standard for surface environments. This inability prevents us

from presenting quantitative measurements of success for a target-following task, but we

present results that demonstrate qualitatively the effectiveness of our system.

6.1 Tracking Performance

The three tracking aIgorithms are optimized for tracking objects with different col or

features, as discussed in Chapter 4. In this section we show the accuracy and robustness of

each of the trackers while tracking different target objects. Situations which cause these

trackers to fail to successfully track are aIso demonstrated.

6.1.1 Color Blob Tracker

As discussed in the previous chapter, the col or blob tracker we used worked in the

normalized-RGB color space. The blob tracker uses previously computed normalized

RGB thresholds of the target object to segment out regions of an input frame in an attempt

to locate the target. The following sequence of images demonstrate the operation of the

68

~

Table 6-1: Color blob tracker thresholds for a yellow target underwater.

Color Channel Low High
Red 0.398129 0.438129

Green 0.371813 0.411813
Blue 0.170058 0.210058

Selecting pixel (58, 129). Color R:143 G: 134 B:65

Figure 6-1: Yellow target during tuning.

color blob tracker during the tuning and tracking phases. The tuning operation and the

resulting norrnalized RGB threshold values are shown in Fig. 6-1 and Table 6-1.

The result of the segmentation algorithm on this image produces Fig. 6-4(a) below.

The crosshair in the middle indicates the centroid of the blob as calculated by the tracker.

As is clearly evident from figures 6-1 and 6-4(a), the color blob tracker perforrns as

expected in localizing the target, based on the initial color thresholds tuned out.

The problems with the color blob tracker become evident when targets to be tracked

have complex color characteristics. The sequence of figures in Fig. 6-4 demonstrates the

blob tracker outputs for the checkerboard pattemed object and clearly demonstrates its

limits.

69

Figure 6-2: Result of Segmentation for the yellow baIl.

Another of the major problems that we encounter with the color blob tracker, is the

presence of duplicate targets. As seen in Fig. 6-5, even a surface refiection of the object

creates a mirror image of the target object, which is sufficient distraction enough to confuse

the tracker. The tracker, in such cases, calculates two blobs and the overall centroid is

located on a line connecting the centers of masses of the two blobs. The tracker finds the

location closer to the larger bob in such cases.

The case above demonstrates the need for using an object with very different color

characteristics from the surrounding environment. We found yellow to be a color which is

sufficiently unique, and also the hue transmitted for yellow underwater was much greater

than any other single color we used.

6.1.2 Color Histogram Tracker

The color histogram tracker is a more enhanced tracking algorithm than the naive blob

tracker. Using the target's color distribution as the feature to track, it achieves robustness

compared to the blob tracker which easily fails in the presence of a duplicate target. As

70

Figure 6-3: Checkerboard object for tracking.

(a) Frame 1 (b) Frame 2 (c) Frame 3

Figure 6-4: Color blob tracking. Centroid of target at the crosshair.

such, the histogram tracker is suitable for tracking objects that have a variety of color, not

just one. The operation of the histogram tracker during tuning and tracking is shown in

the sequence of images in Fig. 6-7. We use one-dimensional histograms with 64 fixed­

size bins, and each window is roughly 1~ (one-sixteenth) the width and height of the input

image frame. Figure 6-6 shows the histogram distribution for the target shown in Fig. 6-6

with the target rectangle shown inside of a yellow border. The output of the tracker in

another frame is the region outlined in red. For comparison with a region not containing

71

Ca) Target with surface reflection Cb) Segmented output, with the red circ1e
indicating centroid

Figure 6-5: Effect of surface reflection.

the target (e.g. the one outlined in white), we show the three histograms in Figures 6-6(b),

6-6(c) and 6-6(d) respectively, of the actual target, the tracker output and the non target

/~ area. The measured similarity value using the Bhattacharyya measure is given in table

6-2.

Table 6-2: Bhattacharyya measures.

Target and Chosen Target and Non-target
0.989718 0.192324

6.1.3 Mean-shift Tracker

Robust as it is, the histogram tracker is accurate only as far as the size of the sub­

windows in which it operates; that is, the center of the target will be located at the center

of the rectangular search window, which may not be the actual centroid of the target. To

achieve higher accuracy without sacrificing the robustness of the histogram tracking, the

72

Non target area

Chosen target area

Actual target area

(a) Input frame with regions

~_hlll._

'.n "" .,.

j
. .,. ijlL AHTlfll,

" .. 1" ~ ..
(b) Target Histogram (c) Chosen Histogram (d) Non-target Histogram

Figure 6-6: Histogram tracking results.

mean-shift tracker is used. Building on the color histogram property of the target ob­

ject, the mean-shift tracker localizes the target using the direction of mean-shift vector as

73

(a) Frame 1 (b) Frame 2 (c) Frame 3

Figure 6-7: Histogram trac king output, with target at crosshair.

(a) Frame 1 (b) Frame 2 (c) Frame 3

Figure 6-8: Mean-shift tracking output, with target at crosshair.

a pointer to the next probable target location. The accuracy provided by the mean-shift

tracker, however, does not come without the. extra computational cost. This algorithm is

the slowest of the three we used in AQUA, and assumes that the target does not change

location by a large margin between consecutive frames. With this reasonable assumption,

we present the results of the mean-shift tracker in operation in the sequence of images

shown in Fig. 6-8.

74

Table 6-3: Pitch and yaw servo controller parameters; see Section 5.3.

Axis K p KI KD Limitp LimitI LimitL Deadband Time Command
Constant Limit

Pitch 1.0 0.0 0.0 1.0 0.3 1.0 0.2 0.35 1.0
Yaw 1.0 0.0 0.0 1.0 0.3 1.0 0.2 0.05 1.0

6.2 PID Controller

To tune a PID controller (i.e. adjust K p, KI and KD) to ensure smooth, non­

oscillating performance, the step response of the system has to be measured. For this

work, we do not have the step response data available from the robot. This hampers our

ability to tune the PID controller properly. Nevertheless, the use of the proportional gain

alone has been sufficient to ensure periodic and bounded response from the servo system,

as found from the open-water trials, discussed in the next section. For the servo trials, the

PID gains were adjusted using empirical values, observing the robot's response to a change

in the PID gains. A typical set of parameters for the yaw and pitch servo controllers are

presented in table 6.2.

We observed a direct improvement in the yaw response as the yaw axis filter-time con­

stant was reduced below 0.1 seconds. An IIR fiIter present on the control stack smoothed

out oscillations in input roll, yaw and pitch commands from the operator, as well as the

pitch and yaw commands coming from the vision stack. In our tests, reducing the filter­

time constant to as low as 0.05 seconds had no adverse effect on the robot's stability.

The next section presents some quantitative results acquired from the open-water tri-

aIs held at the BeIlairs Research Centre of McGill University, at Barbados. The results

from these tests demonstrate the success of the system, in spite of aIl the unknown param-

eters affecting the robot in an open-water environment.

75

6.3 Open-Water Trials

For the open-water trials at Barbados, a 15 centimeters diameter yeHow ball was

held by a swimmer in front of the robot at a distance of approximately 2 meters. The

diver swam in a roughly straight line at a pace consistent with the robot's speed. (In

fact, the robot could outpace the diver at full speed.) A sequence of successful trials was

completed each for duration of roughly 100 seconds over a distance of 27 meters, giving

the robot an average ground speed of approximately 0.3 meters/second. The tests were

concluded when the robot reached the end of its fiber-optic telemetry cable. The frame rate

used by the visual tracker was one frame per second, consistent with the low-pass control

loop mandated by the oscillating swimming gait. During this trial, the color segmentation

algorithm successfully found the target in aH but one image. This gives a success rate of

99% for the visual tracker. Other trials had slightly less successful detection rate, but aH

were above 90%. Figures 6-9 and 6-10 show the relative tracked positions of the target

for the x-axis (yaw) and the y-axis (pitch) over the duration of one trial. A value of zero

indicates a centered target, whereas a value of + 1.0 or -1.0 indicates the target has reached

the boundary of the camera's field of view. Since only a proportional gain was used in

the experiment, the command sent to the robot's gait controller was simply proportional

to this relative position. The bounded periodic nature of the signal indicate that the tracker

and controlloop are functioning in a stable operating mode.

In order to maintain the target in the center of the camera' s field of view, two feedback

loops are necessary as shown in Fig. 5-5. Yaw commands are used to correct error in the

image's x-axis, and pitch commands in the y-axis. Note that in the current experiment,

the roll axis was left uncorrected. This would have required either using sorne form of

76

1.00

0.50
g
~ 1 0.00 +--f---t.I-r-----'IL--'l---J----1---I---I,.--f~,____+--

cS
~ >! -0.50

-1.00 -'----------------------

o 20 40 60 80 100

Time (seconds)

Figure 6-9: Response of yaw to visual servoing.

shape recognition and an asymmetric target, or to be able to establish the direction of

the vertical axis by using an Inertial Measurement Unit. Provisions have been made to

integrate such a device in future experiments. However, since no robot response data (such

as step response) was available, the transfer function as weIl as the frequency response

of the robot for each axis was unknown. It was therefore not possible to fully tune the

PD controller beforehand. This limited our ability to find the optimal parameters for the

controllers. See Fig. 6-9.

The average value for the yaw axis relative position was important (0.15), especially

compared to the pitch axis' average position value (0.00095). This can be explained by the

77

1.00

î:l
<il 0.50
>-

l 0.00

u
"'" ,g -0.50
a..

-1.00

0 20 4G 80 80 100

Time (seconds)

Figure 6-10: Response of pitch to visual servoing.

presence of a side-cuITent in the open water condition. Since the diver holding the target

was attempting to follow a straight line using visual cues from the substrate, a bias was

needed to compensate for the side-cuITent dynamics. No such bias was needed in the pitch

direction.

In both figures an oscillation with a period of approximately 10 seconds can be noted.

These are coming from the sub-optimal behavior of the proportional controller in the pres­

ence of the low-pass filter of the robot's gait controller, and to a minor extent to the inertia

of the robot. The full use of a properly tuned PID controller as well as further refinement

of the gait controller would help reduce and possibly eliminate those oscillations. Nev­

ertheless, this sub-optimal tuning proves the feasibility of on-board visual servoing using

AQUA's six flippers motion actuation.

78

7.1 Overview

CHAPTER 7
Discussions and Conclusion

This thesis presented a visual servoing system for an aquatic legged robot called

AQUA. The approach to servo control is based on simple color tracking coupled with

a controlloop whose low-pass properties are tuned to eliminate the natural undulations

caused by the robot's swimming gait. We discussed the underlying hardware and software

components of the system and presented the data collected during open and closed-water

trails of the system. The system is inherently simple and enables AQUA to achieve sorne

degree of autonomy in navigating underwater. The recent sea trials of the system have

proven to be very successful, and presents exciting new directions for future work.

7.2 Tracking and Underwater Vision

We have chosen tracking algorithms that have been shown to be successful in terres-

trial, non-underwater vision, and applied them in the underwater vision domain to achieve

a high degree of success. As mentioned earlier in this thesis, the marine environment poses

unique challenges for vision systems to work effectively, as a number of assumptions that

can be made for non-underwater systems are no longer realistic in this domain. The un-

successful tracking trials have helped to reveal the limitations of these algorithms applied

"as-is" in the underwater domain. We have investigated the effect of lighting variations on

the underwater vision system as weIl. We hope the experiments will inspire future work

in developing algorithms particularly designed for underwater vision.

79

7.3 Vision-based Vehicle Control

The main contribution of this work is not in any one of the individual components,

but instead in demonstrating the applicability of vision in autonomous underwater vehic1e

control. The advantage of using vision to achieve autonomous navigation lies in the pas­

siveness and low power consumption property of vision sensors. A simple PID controller

has been shown to be sufficient to produce bounded motion of the robot during servoing.

The nature of motion of an aquatic vehic1e is complex, and whether or not to mimic bio­

logical motion is a question that needs to be investigated thoroughly before a satisfactory

answer can be given. We have implemented a Linux-based environment for the vision

processor in a limited storage that is also power conservative and robust to system failures.

Each of these system components have played a vital role in the overall performance of

the system.

7.4 Future Work

The visual servoing system described here has been proven to work in the real world,

but there is room for many more enhancements and new provisions. Improvements can

be made to the tracker as well as the overall control system, to build a more robust and

stable visual servoing mechanism. To date, the tracker only looks for an object of a certain

color or color distribution, without looking for an object of predefined shape. We plan

to integrate shape and pattern matching with the tracker in the near future. AIso, from

the size of the tracked object on screen, the speed of the robot can be controlled; so that

the robot can catch up with the moving target when it is about to lose track. N either the

tracker or the controller incorporates any learning scheme at the present time. All gains and

parameters are tuned manually with the aid of data from previous trials. A probabilistic

80

learning scheme incorporated with the servoing could greatly increase the robustness as

weIl as provide for automatic object recognition and training of parameters and gains. An

Inertial Measurement Unit (IMU) has been used as a stability augmentation system. We

aim for tighter integration of the IMU with the vision system, making for a semi-dynamic

look-and-move servoing architecture. Currently, the servo system has no control over the

roll command of the robot. U sing feedforward control, we can also compensate for the

coupling between the axis controls.

It appears that a more flexible learning-based scheme for target acquisition and track­

ing wou Id permit the system to operate more robustly. While we have not experienced

serious tracking failures where illuminations prevents the target from being acquired, one

might expect this to occur in the absence of on-line auto-calibration. More important, it

appears that the tracking system can be "fooled" by distracting objects whose coloration

matches the target of interest. While using supplementary shape-based cues would be a

natural improvement to the tracker, the computing overhead, particularly in the robot's

smaIl forrn-factor make this a challenge. Under poor visibility conditions the range of

available hues transmitted through the water is very limited. A particularly attractive op­

tion is the use of a tracker that explicitly models the motion of the target (for example

the undulation of the diver being followed). This suggests several interesting avenues for

future work.

81

Appendix A: The Epanechnikov Kernel

The Epanechnikov kernel has the following form:

t ~(1 - u2
); -1 < u < 1

0; otherwise.

(7.1)

(7.2)

Here, u = xhx;, where h is the window width and Xi are the values of the independent

variable in the data, and X is the value of the scalar independent variable for which one

seeks an estimate.

AIso, the profile of a kernel K is defined as a function k : [0, 00) ~ R such that K (x) =

k(JJXJJ2).

82

REFERENCES

[1] R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, H.B. Brown Jr., D. McMordie,
U. Saranli, R. Full, and D. E. Koditschek. RHex: A biologically inspired hexapod
runner. Autonomous Robots, 11:207-2l3, 2001.

[2] K. Arbter, J. Langwald, G. Hirzinger, G. Wei, and P. Wunsch. Proven techniques for
robust visual servo control. In IEEE International Conference on Robotics and Au­
tomation, Workshop WS2, Robust Vision for Vision-Based Control of Motion, pages
1-l3,1998.

[3] Alan C. Bovik, editor. Handbook of Image and Video Processing. Academie Press,
2000.

[4] Alex Brooks, Tobias Kaupp, Alex Makarenko, Anders Orebck, and Stefan Williams.
Towards component-based robotics. In IEEE/RSJ Conference on Intelligent Robots
and Systems (IROS), Edmonton, Canada, 2005.

[5] Rodney Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 2(1):24-30, March 1986.

[6] Dorin Comaniciu and Peter Meer. Mean Shift: A robust approach toward feature
space analysis. IEEE Transactions On Pattern Analysis And Machine Intelligence,
24(5):603-619, May 2002.

[7] Eve Coste-Maniere and Ried Simmons. Architecture, the backbone of robotics sys­
tems. In IEEE International Conference on Robotics and Automation, pages 67-72,
April 2000.

[8] Noah J. Cowan and Daniel E. Koditschek. Planar image based visual servoing as a
navigation problem. In IEEE International Conference on Robotics and Automation,
volume 1, pages 611-617, Detroit, Michigan, USA, 1999. IEEE.

[9] Gregory Dudek and Michael Jenkin. Computational Princip les of Mobile Robotics.
Cambridge University Press, April 2000.

83

84

[10] Gregory Dudek and Robert Sim. RoboDaemon - a device independent, network­
oriented, modular mobile robot controller. In IEEE International Conference on
Robotics and Automation (ICRA), Taipei, Taiwan, volume 3, pages 3434-3440,
Taipei, Taiwan, October 2003. IEEE Press.

[11] Ryan Eustice, Hanumant Singh, John Leonard, Matthew Walter, and Robert Ballard.
Visually navigating the RMS Titanic with SLAM information filters. In Robotics
Science and Systems, June 2005.

[12] Graham. D. Finlayson. Computational color constancy. In International Confer­
ence on Pattern Recognition, volume 1, pages 191-196, Barcelona, Spain, Septem­
ber 2000.

[13] Freedman and M. Brandstein. Contour tracking in clutter: a subset approach. Inter­
national Journal of Computer Vision, 38(2): 173-186, 2000 ..

[14] U. Gargi and R. Kasturi. An evaluation of color histogram based methods in video.

[15] Erann Gat. Artificial Intelligence and Mobile Robots, Editors D. Kortenkamp, R. P.
Bonnasso and R. Murphy, chapter On three-Iayer architectures. AAAI Press, 1997.

[16] Christina Georgiades, Andrew German, Andrew Hogue, Hui Liu, Chris Prahacs, Ar­
lene Ripsman, Robert Sim, Luiz Abril Torres-Mendez, Pifu Zhang, Martin Buehler,
Gregory Dudek, Michael Jenkin, and Evangelos Milios. AQUA: An aquatic walk­
ing robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 4, pages 3525-3531, Sendai, Japan, September 2004. IEEE, IEEE Press.

[17] B. Gerkey, R. Vaughan, and A. Howard. The Player/Stage project: Tools for multi­
robot and distributed sensor systems. In Proceedings of the International Conference
on Advanced Robotics (ICAR), pages 317-323, Coimbra, Portugal, June 30 - July 3
2003.

[18] J. Geusebroek, D. Koelma, A. Smeulders, and T. Gevers. Image retrieval and seg­
mentation based on color invariants. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 784-785, Hilton Head Island, South Carolina,
June 2000.

[19] Theo Gevers and Arnold W. M. Smeulders. Color based object recognition. In
International Conference on Image Analysis and Processing, pages 319-326, 1997.

85

[20] Gregory D. Hager. A modular system for robust positioning using feedback from
stereo vision. IEEE Transactions on Robotics and Automation, 13(4):582-595, Au­
gust 1997.

[21] T. Hamel and R. Mahony. Visual servoing of an under-actuated dynamic rigid-body
system: an image-based approach. IEEE Transactions on Robotics and Automation,
18(2):187-198, April 2002.

[22] S. A. Hutchinson, G. D. Hager, and P. 1. Corke. A tutorial on visual servo control.
IEEE Transactions on Robotics and Automation, 12(5):651-670, October 1996.

[23] Matthew Isard and Andrew Blake. Condensation - conditional density propagation
for visual tracking. International Journal of Computer Vision, 1(29):5-28, 1998.

[24] Michael Isard and Andrew Blake. Contour tracking by stochastic propagation of
conditional density. In European Conference on Computer Vision, volume 1, pages
343-356, Cambridge, UK, 1996.

[25] Xu Jie and Shi Peng-fei. Natural color image segmentation. In International Con­
ference on Image Processing, volume 1, pages 973-976, September 2003.

[26] K. Konolige, K. L. Myers, E. H. Ruspini, and A. Saffiotti. The Saphira architecture:
A design for autonomy. Journal of Experimental & Theoretical Artificial Intelli­
gence: JETAI, 9(1):215-235, 1997.

[27] Vladimir Kravtchenko. Tracking color objects in real time. Master's thesis, Univer­
sity of British Columbia, Vancouver, British Columbia, November 1999.

[28] NASA Jet Propulsion Laboratory. Mars exploration rover mission.
http://marsrovers.jpl.nasa.gov /home/index.html, June 2005.

[29] Stephen Licht, Victor Polidoro, Melissa Flores, Franz Hover, and Michael S. Tri­
antafyllou. Design and projected performance of a fiapping foil AUV. IEEE Journal
OfOceanic Engineering, 29(3):786-794, July 2004.

[30] J-F. Lots, D. M. Lane, E. Trucco, and F. Chaumette. A 2-D visual servoing for
underwater vehic1e station keeping. In IEEE International Conference on Robotics
and Automation, pages 2767-2772, Seoul, South Korea, May 2001.

[31] Yi Ma, Jana Kosecka, and Shankar Sastry. Vision guided navigation for a nonholo­
nomic mobile robot. In IEEE Conference on Decision and Control, 1997.

86

[32] Eric Marchand and Gregory Hager. Dynamic sens or planning in visual servoing.
In IEEE International Conference on Robotics and Automation, pages 1988-1993,
Leven, Belgium, May 1998.

[33] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardization in mobile
robot programming: The Carnegie Mellon Navigation (CARMEN) Toolkit. In Pro­
ceedings of the Conference on Intelligent Robots and Systems (IROS), 2003.

[34] Regents of the University of Michigan. Control tutorials for Matlab.

[35] A. Trebi-Ollennu H. Aghazarian H. Das S. Joshi P. Pirjanian, T. Huntsberger and
P. Schenker. CAMPO UT: A control architecture for multirobot planetary outposts.
In Proceedings of SPIE Conference. Sensor Fusion and Decentralized Control in
Robotic Systems III, Boston, MA, November 2000.

[36] Lynn E. Parker. ALLIANCE: An architecture for fault-tolerant multi-robot coopera­
tion. IEEE Transactions on Robotics and Automation, 14(2):220-240,1998.

[37] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The Earth Mover's Distance
as a metric for image retrieval. Technical report, Stanford University, Stanford, CA,
USA,1998.

[38] Uluc Saranli and Eric Kavins. Object oriented state machines. Embedded Systems
Programming, May 2002.

[39] Michael J. Swain and Dana H. Ballard. Color indexing. International Journal of
Computer Vision, 7(1):11-32, November 1990.

[40] G. J. Yang T. S. Huang and G. Y. Tang. Fast two-dimensional median filtering algo­
rithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979.

[41] The ThinkQuest Team. The physics of diving: Light and vision.
http://library.thinkquest.org/28170/35.html.

[42] Alexandra H. Techet, Franz S. Hover, and Michael S. Triantafyllou. Separation and
turbulence control in biomimetic ftows. Flow, Turbulence and Combustion, 71:105-
118, October 2003.

[43] Axel Techmer. Contour-based motion estimation and object tracking for real-time
applications. In International Conference on Image Processing, volume 3, pages
648-651, Thessaloniki, Greece, October 2001.

87

[44] G. T. Toussaint and B. K. Bhattacharya. Optimal algorithms for computing the min­
imum distance between two finite planar sets. Pattern Recognition Letters, 2:79-82,
1983.

[45] R. VoIpe, 1. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. The CLARATY
architecture for robotic autonomy. In Proceedings of the 2001 IEEE Aerospace Con­
ference, Big Sky, Montana, March 2001.

[46] S. B. Williams and 1. Mahon. Simultaneous Iocalization and mapping on the Great
Barrier Reef. In IEEE International Conference on Robotics and Automation, New
Orleans, USA, April 2004. IEEE.

[47] Richard Y. D. Xu, John G. Allen, and Jesse S. Jin. Robust mean-shift tracking with
extended fast colour threshoiding. In International Symposium on Intelligent Multi­
media, Video Speech Processing (ISIMP2004), pages 542-545, Hong Kong, October
2004.

[48] Zoran Zivkovic and Ben Krose. An EM-like aigorithm for color-histogram-based
object tracking. In IEEE Conference on Computer Vision and Pattern Recognition,
Washington D.C., June 2004. IEEE, IEEE Press.

KEY TO ABBREVIATIONS

BIBO: Bounded Input Bounded Output

HSV: Hue-Saturation-Value

IEEE: Institute of Eleetrieal and Eleetronies Engineers, Ine.

nDC: Instrumentation and Industrial Digital Camera standard

IMU: Inertial Measurement Unit

PID: Proportional-Integral-Derivative

RAM: Random Aeeess Memory

ROB: Red-Oreen-Blue

TCP/IP: Transmission Control Protoeol/lntemet Protoeol

UDP: User Datagram Protoeol

UML: Unified Modelling Language

88

