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ABSTRACT 

We present a visual servoing system for an amphibious legged robot. That is, a 

monocular-vision based servoing mechanism that enables the robot to track and follow 

a target both underwater and on the ground. We used three different tracking algorithms to 

track and localize the target in the image, with color being the tracked feature. Tracking is 

performed based on the object's color, color distribution and color distribution with a prob­

abilistic kernel. Output from the tracker is channe1ed to a proportional-integral-derivative 

controller, which generates steering commands for the robot controller. The robot con­

troller in tum takes the steering commands and generates motor commands for the six legs 

of the robot. A large c1ass of significant applications can be addressed by allowing such a 

robot to follow a diver or sorne other moving target. The system has been evaluated in the 

open water and under naturallighting conditions, and has successfully performed tracking 

and following of a wide variety of target objects. 
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ABRÉGÉ 

Nous présentons un système d'asservissement visuel pour un robot amphibie muni de 

jambes. Il s'agit d'un mécanisme de vision monoculaire qui permet au robot de dépister 

et suivre une cible mouvante sous l'eau et sur la terre. Nous avons utilisé trois algorithmes 

différents pour dépister et localiser la cible dans l'image, la couleur étant la caractéristique 

examinée. Le trajet à suivre est déterminé par les couleurs de l'objet, la distribution de ces 

couleurs et la distribution des couleurs avec un kemel probabiliste. La sortie du traqueur 

est envoyée à un contrôleur de PID, qui génère des commandes directives. Ces commandes 

sont transmises au contrôleur du robot, qui relaie pour sa part des commandes motrices aux 

six jambes du robot. Permettre à un tel robot de suivre un plongeur ou une quelconque 

autre cible mouvante pourra aider à solutionner de nombreuses applications significatives. 

Le système a été évalué en eau libre et dans des conditions d'éclairage normales, et a suivi 

avec succès une grande variété d'objets-cibles. 
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CHAPTERI 
Introduction 

We describe the vision-based servo control of a swirnming aquatic robot. We have 

developed and deployed a swimnùng robot that uses legged motion to swim and navigate 

underwater and which depends on vision as its primary sensing modality. While sonar is 

the predominant sens or used by underwater vehic1es, vision has the potential to be highly 

effective underwater as it is on land. In this thesis, we examine the use of visual feedback 

to accomplish navigation tasks in an open water environment. This is accompli shed by 

using a visual feedback mechanism to modify the swimming gaits of our underwater robot 

as it follows a moving target. A large c1ass of significant applications can be leveraged 

by allowing such a robot to follow a diver or sorne other moving target. Performing these 

tasks underwater is complicated by the variable lighting and visibility in the water. In 

addition, the undulating motion of our vehic1e and the exogenously driven motion of the 

vehic1e in the open sea further complicate the process. In this thesis we describe the system 

architecture and approach to vehic1e control, with discussions of the relevant the ory behind 

the servoing mechanism. 

Underwater robotics appears to be an application domain of rapidly increasing signif­

icance, rife with challenges of both scientific and pragmatic importance. While computer 

vision has matured enormously in the last few decades, the peculiarities of underwater 

(sub-sea) vision have been largely ignored, presumably due to the enormous logistic and 

pragmatic overhead in examining them. It is akin to the manner in which the topography 
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and zoology of the sub-sea environment has been ignored relative to the terres trial analogs. 

In fact, vision can be as valuable a sensing medium underwater, and perhaps even more so 

than on land. Simple inspection of marina fauna demonstrates the ubiquity of eyes, and 

other optical sensors, in the marine environment and thus suggests its potential utility. 

In our application we are particularly interested in tracking a diver as he swims either 

along the surface or under water using scuba apparatus. In this case we need a tracking 

technology that imposes a very limited cognitive load on the driver, which operates despite 

variations in lighting due to refractive effects and/or waves, which is immune to nearby 

wave action and which operates over a moderate range of distances. 

In our applications, vision has the advantage of being a passive sensing medium and 

it is thus both non-intrusive as weIl as energy efficient. These are both important consider­

ations (in contrast to sonar) in a range of applications ranging from environ mental assays 

to security surveillance. Alternative sensing media such as sonar also suffer from several 

deficiencies which make them difficult to use for trac king moving targets at close range in 

potentially turbulent water. 

1.1 Problem Statement 

The task we want the robot to perform is that of following a particular moving object, 

either artificial or natural, under water and in an open water environment, thus achieving 

sorne degree of autonomy. 

2 



Visual Servoing Hardware 

processor: a PentlUm M 
,..-------ICF'U on a PCl04/PlUs l'orm 

runnlng I.!nux 

proœssor: a Pentlum 
on a PCl04/Plus form 

________ -tU:EE1394 (Flrewlre) Digital 
Camera, 640)(480 resolutlon 

Figure 1-1: AQUA visual servoing hardware. 

The robot hou ses three cameras, two in front and one in the back, as can be seen 

from Fig. 1-1. We use a color camera to track the target and utilize the tracking output to 

control the robot's trajectory in a c1osed-Ioop fashion. We require that the robot follows the 

target's trajectory as c10sely as possible. The robot must be able to maintain track in spite 

of change in lighting conditions and strong currents and other underwater forces that affect 

its hydrodynamics. One might even imagine the need for the robot to re-acquire the target 

in case of presence of false targets or a temporary failure in tracking. The robot should be 

trained with respect to the target (and its color properties) only once, and to rely only on 

that prior information to track. We also seek to utilize the servoing system to maneuver 

the robot in ways that would not be possible by using human input alone. In view of the 

real-time operating constraints, the entire mechanism of tracking, steering feedback and 

trajectory control needs to be fast as weIl as accurate. Evaluating the performance of the 

system quantitatively is quite a challenge; nevertheless we evaluate the servoing system 
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in terms of the correctness and efficiency of their individual components - the tracker and 

the PID controller. Performance of the three different tracking methods used is discussed 

in detail, and the responsiveness of the controller given the tracking output is presented as 

weIl. This thesis focuses mostly on the experimental results, with the theory behind the 

different approaches being discussed to explain and justify their relevance. Complexity 

of the system is discussed both in terms of computation as weIl as the time required by 

the robot to perform the commands generated by the system. The results of the open­

and closed-water trials are presented to show the success of the system and also to clearly 

establish directions for future work. 

1.2 Approach 

Our approach to servoing is two-fold: we use color cues to detect and track the target 

and use the tracking information in a feedback controller to generate commands for the 

robot's legs. Three different approaches are implemented for color tracking. In this work, 

target location is defined in image space, i. e. no pose estimation of the target is performed. 

We do not estimate the robot's pose either, but that information is available via an on­

board inertial measurement unit. The robot "learns" the target color parameters at the 

start of the servoing fUn. This tuning step can be performed both on land or underwater, 

and is performed once. This is the only preprocessing step in the entire process. The 

tracking subsystem detects the target in the image coordinates and passes them on to the 

controller. The controller acts as a low-pass filter. We use a manually-tuned PID controller 

to eliminate oscillations and increase the responsiveness of the system. The PID controller 

has two controlloops, one each for the yaw and pitch axes. The roll axis is not affected by 

servoing. An outline of the method is as follows: 
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• Preprocessing Stage 

i The tracker is tuned by placing the target at the center of the camera frame. 

ii The target color parameters are extracted. Depending of the tracker being used, 

RGB thresholds, histograms or histogram distributions are saved. 

• Tracking 

i The target is tracked using one of three following approaches: 

a Color Segment or "Blob" Tracking, where image segmentation is applied 

to localize the target. 

b Color Histogram Tracker, where a model color histogram of the target is 

matched to other candidate histograms to detect target location. 

• Control 

c Kemel-based Feature Tracker, where we use a radially symmetric mono­

tonically decreasing kemel to extract target features. Candidate locations 

are generated by using a mean-shift tracking mechanism. 

i The goal of the controller is to minimize an error function, which we define as 

the Euclidean distance between the centroid of the target and center of the im­

age frame. At each iteration, pitch and yaw commands are generated with the 

aim of reducing this error function. The gains described below are manually­

tuned. 

a The proportional gain Kp contributes to the error correction amount since 

it is multiplied with the error signal (hence the name proportional gain). 

b The integral gain Ki contributes to the error correction amount since it is 

multiplied with the error accumulated over a period of time. 
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c The derivative gain Kd contributes to the error correction amount since it 

is multiplied with the derivative of error signal. 

ii The pitch and yaw commands are sent to the robot gait controller. The gait 

controller generates commands for the robot's six legs and achieves the desired 

change in motion. 

The loop continues, with every change in the target's position generating a (possible) 

change in the robot's pose. Figures 1-2 and 1-3 show outlines of the entire process. 

1.3 Applications 

Even mundane activities underwater pose problems for humans in terms of logistics, 

cost, efficiency and safety. As such, underwater environments represent a substantial area 

in which robotics can make a natural contribution. A range of applications can be identi­

fied for which simple inspection even in moderately shallow water can prove useful. These 

applications inc1ude underwater search and rescue, coral health monitoring, monitoring of 

underwater establishments (e.g. oil pipelines, communication. cables) and many more. 

Specifically, we are interested in environmental assessment tasks in which visual mea­

surements of a marine ecosystem must be taken on a regular basis. While automatically 

selecting regions of interest is beyond the scope of present technologies, once a biologist 

identifies areas of interest we believe a robot may be capable of collecting supplementary 

data or even independently executing inspection tours. It is in this context that the present 

work is framed. 
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1.4 Outline 

This thesis discusses an approach to visual servoing an underwater legged robot. We 

discuss theoretical and practical aspects of this work and the problem in general. In Chap­

ter 2, previous work in the area and individual problems associated with servoing are 

discussed, with an emphasis to those that relate to this particular work. We de scribe the 

overall system architecture in Chapter 3. Chapters 4 discusses tracking algorithms and 

control methods. The implementation details of the tracking and control systems are dis­

cussed in Chapter 5. We present sorne experimental results obtained from the system as 

a whole, as weIl as the performance results from the trackers used in Chapter 6. We con­

clude in Chapter 7 by discussing the results, and also identifying areas for improvement in 

future work. 
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CHAPTER2 
Previous Work 

This chapter surveys past work in the field of visual servoing and underwater robotics. 

Visual servoing is a complex task, involving a multitude of other disciplines; computer 

vision, image processing, control and tracking being the primary ones. Visual tracking is 

an important mainstay of servoing, and we discuss several different trac king methods used 

in the field. For an embedded platform like AQUA, real-time performance is of paramount 

importance, therefore we keep the focus on algorithms that have performed reasonably 

well within limited time and computational resources. In the end, we discuss AQUA 

visual servoing software architecture to put everything together and compare it with sorne 

other software architectures used in real robots over the years. 

2.1 Visual Tracking 

In computer vision, visual tracking is the process of repeatedly detecting a feature or 

sets of features in a sequence of input images. Choosing features to track can be a cdm-

plicated problem, since noise in the sensor (i.e. camera), lighting and visibility changes, 

refraction and appearance of multiple similar objects in the image frame, among others, 

can create unforeseen problems. Since tracking is primarily an online, real-time applica­

tion of vision, a tracking algorithm must be fast, as well as accurate. A tracker also needs 

to be robust, so that effects of false targets and occlusions are minimized. 

Choosing a feature to track is an important step in tracking algorithm design, as al­

ready stated above. Over the years, a large amount of work has been done on tracking 
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algorithms that track features ranging from shape and motion to color and grayscale in­

tensities. The following are examples of approaches that have been proven to work best 

among these algorithms. 

Techmer [43] uses object contours to detect motion and hence track targets. Freedman 

and Brandstein [13] have investigated detecting object contours in cluttered environments. 

Isard and Blake [23, 24] introduced the "condensation" or Condition al Density Propaga­

tion algorithm for stochastically tracking curves or contour shapes in a clutter. This is also 

known as Tracking using Particle Filters. Tracking contours usually involves an iterative 

scheme that converges to the shape being tracked after a finite number of iterations, and 

uses a probabilistic approach to converge to the best solution at the instant. While they 

can be quite accurate, contour trackers rely heavily on a clear view of the target that shows 

object boundaries distinctly compared to the background. 

Tracking objects by their col or has been extensively studied in the past. Col or blob 

tracking is one of the simplest approaches. Color-based segmentation or "blobs" have been 

applied to not only tracking but also object recognition [19] and image retrieval [18]. Color 

blob trackers segment out sections of the image that match a threshold level for the given 

target[25] and based on the segmentation output, tracks the shape, size or centroid of the 

blob, among other features. The color space chosen for segmentation has a major impact 

on the performance of the algorithm. A detailed discussion of different col or spaces and 

their impact on tracking can be found in [27]. We discuss the RGB and HSV col or space~ , 

briefly in Chapter 4, since these two spaces are used in our approach. 

Color histograms are a measure of color distribution over an image, and are n-dimensional 

histograms over a neighborhood. The range of the possible color values depends on the 
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color space used in the histogram algorithm. The possible color ranges are subdivided 

into a discrete number of 'buckets' or 'bins'. Each bin holds the number of pixels that has 

color values which fall between the upper and lower limit of the bin. An image and its 

corresponding 32-bin histogram is shown in Fig. 2-1. 

(a) Sarnple Color Image (b) Sample Color Histogram 

Figure 2-1: Sample col or image with its color histogram. 

Color histograms have been applied in color-based image retrieval applications and 

video indexing [14] by matching histograms of the source image with candidate images 

in a database. Swain and Ballard [39] demonstrate the use of histograms in their land­

mark paper. The same concept of histogram matching has been used in detecting and 

tracking targets in computer vision. Rubner and Tomasi [37] discuss different approaches 

to histogram based image retrieval, with a focus on a variety of methods for measuring 

distances between histograms. In their work, they introduce a measure called the Earth 
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Mover's Distance or EMD for histogram similarity measurement. Other measures for his­

togram distances exists and are widely used for histogram matching. We discuss more 

about these different methods in Chapter 4. 

Sorne of the ab ove methods of tracking are combined with statistical methods to pro­

vide more accurate results, albeit at the cost of increased processing time. Particle filters 

and Kalman filters are widely used statistical approaches to tracking. In recent work, the 

mean-shift process [6] has been successfully used for tracking in conjunction with color 

cues. Mean-shift tracking algorithms attempt to maximize the statistical correlation be­

tween two distributions. where the correlation between the two distributions are measured 

using the Bhattacharyya Distance [44]. Statistical distributions can be built using any 

characteristic discriminating to a particular object of interest. A general model might use 

color, or texture or include both. Zivkovic and others [48] have used machine leaming ap­

proaches with col or histograms for target tracking. Xu et al. [47] discusses a robust mean 

shift tracking algorithm by applying fast color thresholding. A more detailed discussion 

about mean-shift tracking and similarity measures can be found in Chapter 4. 

2.2 Control 

For every change in the target's position, a corresponding change in the robots pose 

may or may not be required. Responding to every change in tracking output will result 

in a very unstable and ill-behaving robot. Thus, a mechanism is required for relating the 

changes in target position to changes in actuator input in a stable and smooth manner. 

Control theory defines the laws by which this can be achieved. To achieve stable control, 

the output of a system is related to the input via a Transfer Function. In Open-Loop 

Systems, the input to the system does not rely on any feedback from the output, as shown 
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in Fig. 2-2. In Closed-Loop Systems, the input of the system depends on the CUITent state 

of the output as weIl as the new input; i.e. the system relies on feedback of the output. An 

outline of a c1osed-Ioop control system is shown in Fig. 2-3. A brief tutorial on the basics 

of control theory can be found in [34]. In Chapter 4, we briefly define sorne concepts of 

control theory that relates to this work. 

Input--)~I C'"~,,, H .... __ p_,an_,_:-~)~OutPut 
Figure 2-2: Open-Ioop control. 

Inp 
+ t<::>. 

Controller ~ System 
ut .zr- Output 

+ 

Feedback 

Figure 2-3: Closed-Ioop control. 

2.3 Visual Servoing 

A substantial amount of work has been done on visual servoing over the past fifteen 

years. Hutchinson, Corke and Hager's seminal paper [22] outlines many of the methods 

used in practice today as weIl as the basic foundations of servoing. This paper is an excel­

lent tutorial on visual servo control methods for robotic manipulators. The authors c1assify 
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servo methods based on the hierarchy of the control system and the domain of the error 

signal. Based on control hierarchy, servo systems are of two classes; namely, direct visual 

servo and dynamic look-and-move systems. In dynamic look-and-move, a hierarchical 

control system uses vision to to provide set-point inputs to the joint-level controller to in­

ternally stabilize the system. In direct visual servoing, a visual servo controller computes 

joint inputs directly instead of an intermediate joint controller. Again, based on the domain 

of error signaIs (i.e. if its is in image or task space) , the servo systems can be classified as 

position-based servo and image-based servoing systems. In image-based systems, control 

values are computed from the features in the images directly, whereas in position-based 

servo, image features and geometric model of the target is used to generate control values. 

A variety of approaches has been adopted for visual servoing in the recent past. 

Cowan and Koditschek [8] show that visual servoing can be approached as a robot nav­

igation problem. Hager discusses the use of stereo vision for robust positioning in [20]. 

Planning camera motion is an important aspect of visual servoing, specially in image­

based servoing since target locations are specified in image coordinates. An image-based 

servo mechanism has to take into account issues like maintaining the target in the field of 

view and obstacle avoidance, among others, A treatment of such issues can be found in 

Marchand and Hager [32]. 

2.4 Underwater Robotics 

Underwater robotics research has been one of the more challenging domains of robotics 

science. The underwater domain poses certain unique challenges that render a lot of the 

principles of terrestrial roboties problematic. An underwater robot has six degrees of free­

dom, and maneuvering with six degrees of freedom creates serious complications. The 
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three axes of control for the AQVA robot can be seen in Fig. 2-4. A computationally 

straightforward task of pose maintenance on land becomes far more challenging under 

water, because of strong currents in marine environments. Infra-red sensors lose sorne of 

their effectiveness in water as well. Wireless radio communications are also impossible 

over a large distance in water compared to ground based control. AlI these issues make 

underwater robotics problems more difficult than terres trial robotics. To a degree, inter­

planetary space rovers like the Mars rovers Spirit and Opportunity [28] face a less daunting 

computational task than an underwater autonomous vehicle. 

In spite of all the hindrances, substantial progress has been made in designing the 

hardware and algorithms for underwater robots, and much of the research is directed in 

creating an autonomous underwater vehicle (AVV) for operator-independent exploration 

of underwater environments. Robotics researchers have taken a number of approaches in 

creating underwater robots. The traditional approach to propel undersea vehicles is by 

using propellers or thrusters. Although simple by design, these vehicles lack the maneu­

verability and agility seen in fish and other marine species. For an AVV, efficient energy 

consumption is critical, and thrusters are not an energy efficient approach to station keep­

ing underwater [16]. Among other efforts to proper underwater vehicles, the RoboTuna 

project at Massachusetts Institute of Technology (MIT) is well known. The RoboTuna 

project [42] attempted to create a fish-like underwater vehicle, with a propulsion system 

mimicking those found in fish, hence creating an example of Biomemetic Robotics applied 

in underwater environments. Figure 2-5 shows the RoboTuna shell and the skeleton. 

The MIT Sea-Grant Program has an extensive program to create new underwater 

platforms for deep ocean explorations, including AVVs. The flapping-foil fish robot [29] 
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is an ex ample of an experimental, high-maneuverability robot created by the Tow Tank 

Lab under the Sea Grant Project. 
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Figure 2-5: The MIT RoboTuna underwater robot. @MIT RoboTuna project. 

Vision in underwater environments is an attractive sensing platform, due to its pas­

sive and unobtrusive features; but it has been examined rarely due to the complications 

involved. One of the newer applications of vision sensors is in Simultaneous Localiza­

tion and Mapping or SLAM problems, which is referred to as Visual-SLAM or VSLAM 

[9]. Underwater vehic1es have a potential to be used for underwater terrain mapping and 

surveying, and applying VSLAM methods is an attractive approach. VSLAM has been 

applied to map underwater reef environments at the Great Barrier Reef in Australia [46]. 

Another notable use of vision for mapping is the inspection of the wreckage of HMS 

Titanic[ll], where visual data was bolstered with information from an inertial sensor, 

thereby increasing reliability of the VSLAM process. Apart from mapping, vision-based 

vehic1e navigation and station keeping have also been attempted. Hamel and Mahony[21] 

use an image-based approach for visual servoing an "eye-in-hand" robot configuration un­

derwater. An approach to underwater station keeping using visual servoing can be found 
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in [30], where feature point extraction from unmarked objects are used to maintain the 

robot's pose and station underwater. 

2.5 Robot Software Architectures 

Most robots in existence today are made up of complex hardware architectures, con­

trolled by somewhat equally complex systems of software [7], that provide the robot 

with low- and high-Ievel behaviors and commands. Traditionally, each robot or family of 

robots have been operated by a particular software system architecture, instead of having 

a generic architecture suitable for all robots. Two and three layers of software abstractions 

[15] are seen in robotics systems. The software system is dictated by the hardware archi­

tecture and the demands of real-time operation, which a generic architecture is unable to 

provide. This is evident in several robot architectures seen commercially or in academic 

and scientific projects. We discuss a few of the more prominent robot architectures in the 

subsections below. 

2.5.1 Higher-Ievel Architectures 

One of the earliest works in robot software architecture was Brooks' Subsumption ar­

chitecture [5] where multiple layers of control can coexist, with higher priority behaviors 

'subsuming' or taking over lower priority tasks at different layers. A related architecture to 

Subsumption is Parker's ALLIANCE [36], a fault-tolerant architecture designed for multi­

robot cooperation. The SAPHIRA architecture [26] is a client-server architecture aimed 

at achieving autonomous behavior and capable of interfacing with visual and speech sen­

sors, mapping and task-based operation. Architectures like the CAMPOUT [35] (Control 

Architecture for Multi-robot Planetary Outposts) and CLARAty[45] (Coupled Layer Ar­

chitecture for Robotic Autonomy) have been developed with multi-robot exploration being 
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the primary concern. These two architectures were developed by NASA as a control sys­

tem for their interplanetary rovers, which have different hardware architectures. 

2.5.2 Dual-mode Architectures: Simulators and Operators 

Certain software tools have been developed to work as both a simulation platform and 

a robot interface through robot software "drivers". These toolkits allow for software sim­

ulation of new concepts and algorithms, as weIl as driving real robots instead of the simu­

lator just by replacing the 'back-end' with the proper robot hardware interface code. Tools 

like Player/Stage/Gazebo [17] and the Carnegie Mellon Navigation Toolkit (CARMEN) 

[33] fall under this category. The RoboDaemon package [10] provides an interface for 

point-and-click robot navigation for real and simulated robots, as well as an API for pro­

gramming higher level behaviors for real robots. It is a part of the Mc Gill Mobile Robotics 

Architecture (MM RA) package. The ORCA suite is one of the newer dual-mode software 

packages to appear in the field. Developed at the Royal Institute Technology in Swe­

den, University of Technology at Sydney and The Australian Centre for Field Robotics, 

ORCA[ 4] is an open-source framework for creating component based robotic systems, and 

is closely related to the Player/Stage/Gazebo architecture. 

2.5.3 Low-Level Operational Software 

Low level software architectures provide the lower levels of robot control, without 

sophisticated behaviors. The RoboDevel[38] library is an example of such a system. Ro­

boDevel (formerly known as RHexLib) is the operating library for the RHex[l] family of 

hexapod robots. The library is written in C++ and has method caUs for directly access­

ing the robot's actuators and other hardware. RoboDevel implements inter-process and 
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inter-module communication by maintaining a central database or "blackboard" where aIl 

modules store information that are considered public. 

In the next chapter, we discuss the system architecture of the AQUA robot in sorne 

details. We present the RoboDevel software system and software control of AQUA in 

greater detail in Chapters 3 and 5. 
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CHAPTER3 
System Architecture 

We describe in this chapter the overall hardware and software systems layout put in 

place for visual servoing with the AQUA robot. The hardware design of the AQUA robot 

is introduced, with emphasis on the electronics rather than the mechanical design. The 

software for visually guiding AQUA is split into two logically different sections: one for 

visual tracking of the target and generating robot commands, the other for taking those 

commands and transforming them to actuator commands. We describe both software sys­

tems in detail. 

3.1 The AQUA Robot 

The AQUA robot [16] is designed as an aquatic swimming robot that is capable of 

operating both on land as weIl as under water. A direct descendant of the RHex hexa­

pod robot [1], AQUA was built with underwater applications in mind, one of which was 

monitoring of marine life (i.e. coral reef, fish population). The robot has a waterproof 

aluminum shell inside which the electronics and sensors are housed. Figure 3-1 shows 

the AQUA robot underwater, on land and on snow, demonstrating its ability to operate in 

different environments and different terrain conditions. 

3.1.1 Hardware 

Propulsion 

The AQUA robot uses six legs or paddles to swim underwater or walk on the ground. 

These legs give the robot the ability to tum sideways (yaw), change depth (pitch) and rotate 
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(a) On land (b) On snow 

(c) Underwater 

Figure 3-1: AQUA in different environments. 
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on its horizontal axis (roll). There is only one actuator per leg, significantly reducing power 

required for operating the legs. For our purposes, each leg has three main controllable 

parameters associated with it: leg amplitude, offset and phase. The amplitude parameter 

governs the distance the legs sweep along the spherical arch during each cycle. Offset 

dictates the relative starting orientation of the legs to each other at the beginning of the 

cycle. Direction of the leg motion is controlled by the phase parameters of each leg. 

The legs generate thrust by moving according to preset gaits. Gaits are a combination of 

leg parameters that generate a fixed motion for a fixed set of parameters. Depending on 

whether the robot is swimming or walking, there are several different table-driven gaits that 

can be used to drive the robot forward. Different gaits have different power consumption 

rates, and also effect the stability of the robot in different ways. For operation on land and 

in water, different sets of legs are usually used, although a new compliant design is being 

tested that can be used equally well in both environments. 

Sensing 

AQUA is primarily a submerged vision platform, with three cameras being the princi­

pal sensing devices on the robot. An Inertial Measurement Unit (IMU) has been installed 

on board for orientation and acceleration sensing. Two cameras are mounted in the front 

and one in the back. One of the front cameras is a IEEE 1394 (aka FireWire) digital camera 

from Point Grey Research conforming to the Industrial and Instrumentation Digital Cam­

era (IIDC) standard, and it interfaces with the vision processor for visual servoing. The 

other two cameras are analog, and pro vide strearning video for remote operator control. 

There are internaI sensors for monitoring the CUITent state of robot health; these include 

battery power and power consumption levels for the leg motors. 
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Power 

AQUA is a self-sustaining robot, powered internally by two NiMH batteries. These 

batteries can power the robot continuously for over three and a haIf hours. 

Computing 

AQUA has two computers on board, one for gait control and the other for vision­

related processing. Both computers are of the PC1041PIus form factor, due to the space 

restrictions inside the robot. These two computers, along with the additional port and 

interface circuit boards stacked on top of each other, connect via the ISA and PCI buses. 

As such, these will be referred to as the control stack and vision stack throughout this 

dissertation. 

The control stack has a Pentium III processor, 256MB of RAM and a 256MB Com­

pactFlash card for secondary storage. Due to its real-time requirements, It runs on the 

QNX real-time operating system (RTOS). The control stack is tasked with controlling 

robot motion by manipulating the leg actuators in real-time. 

The vision stack is responsible for processing visuaI data. Currently it is being used 

for visuaI servoing only, but future goals are to use this processor for underwater stereo 

algorithms and VSLAM with AQUA. It is powered by a Intel Pentium-M processor with 

a maximum c10ck speed of 1.4 GHz. The board has 2MB of on-chip cache memory 

and 1GB of RAM, which contributes to faster vision processing. A 512MB Compact­

Flash card is being used as secondary storage. We are using a custom-built version of the 

Linux operating system on the vision stack. The servoing code executes under this envi­

ronment. Taking advantage of advanced power management features of the Pentium-M 

processor, we designed the vision stack operating environment to be capable of scaling the 
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CPU dock frequency to preserve battery power. This particular mode! of the Pentium-M 

processor can be scaled from 1.4GHz down to 150MHz. During idle periods, the CPU 

slowly scales down to the lowest dock setting, but jumps to the highest speed instantly 

on-demand. A PC104/Plus FireWire interface board enables the vision stack to interface 

with the FireWire cameras. 

Both the control and vision stacks have on-board seriaI and Ethemet ports. These 

ports are used for the IMU and communication between the stacks, respectively. Power to 

the boards are supplied using a custom-designed hardware controller board known as the 

RHIO card (RHex Input/Output). 

Communication 

There are several communication channels in the AQUA robot. Communication from 

the camera to the vision processor is over the Fire Wire bus, as already stated in the previous 

section. The vision stack communicates with the control stack via the Ethemet ports, 

utilizing the UDP protocol. Outputs from the two analog cameras, IMU readings. robot 

control and logged data are communicated from the robot to the operator platform on the 

surface over a tiber optic tether. The Operator Control Unit (OCU) is connected to this 

tiber and provides the operator with the visual data required for teleoperation. 

A cut-away section of the robot with interior components are shown in Fig. 3-2. The 

hardware and software systems are explained in detail in the following two subsections. 

3.1.2 Software 

The task of visually guiding the AQUA robot is a two stage software process. The 

tirst stage is performed in the vision stack, where the target is tracked and robot pitch and 

yaw commands are generated. The second stage accepts these yaw and pitch commands 
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Figure 3-2: AQUA hardware components. 

and generates leg actuator commands that actually enables the robot to perfonn the re-

quested maneuver. In both stages, the software is written in C++, with the emphasis on 

small footprint and fast-executing binaries suitable for an embedded system. The software 

system of these two stages are discussed in the following two sections. 

Visual Servoing Software 

The vision software based on an open-source vision library called VXL (Vision "some­

thing" Libraries)l . VXL is a suite of packages designed for creating efficient and fast 

programs for computer vision related applications. VXL includes libraries for numerical 

1 www.sourceforge.netlprojects/vxl 
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algorithms, image processing, coordinate systems, camera geometry, stereo, video ma­

nipulation, structure recovery from motion, probability modelling, GUI design, classifica­

tion, robust estimation, feature tracking, topology, structure manipulation and 3d imaging, 

among others. VXL also provides system-independent toolkits for cross-compiler com­

patibility. 

We looked at creating a modular, extensible software base so that enhancements and 

integration of advanced features in the future wou Id be significantly easier. The object in­

heritance capabilities of the C++ programming language provided us with tools for achiev­

ing that goal. From a functional point of view, the code base is made up of visualization 

and user-interface code for development and testing of algorithms offiine, off the robot. 

A subset of that code is compiled and installed into the robot before actual visu al servo­

ing runs. This model allows for shorter develop-test-deploy cycles. Screenshots of the 

tracking testbed running with full graphical user interface can be seen in Fig. 3-3. 

More details about the visual servoing software and experimental setup will be given 

in chapters 5 and 6. 

Control Software 

Control of robot motion is supervised by code running in the control stack. In all 

robots derived from the original RHex, control software is written using a library called 

RHexLib (RHex Library). As the number of RHex derived robots increased, the RHexLib 

library grew into a package of robot-independent and robot-dependent code, with code 

specific to each robot having their separate space, unrelated to other robot codes. This 

package is known as the RoboDevel suite. AQUA control code has been derived from the 
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Figure 3-3: Screenshots of the VGUITracker application. 

RHex codebase, but a large number of enhancements as well as newer innovations have 

been made in the AQUA code that distinguish it from the original RHex software. 

The structure of control code in AQUA is similar to a client-server architecture, with 

the robot running the RoboDevel "supervisor" code, and the robot control machine run­

ning the "operator" code. RoboDevel also cornes with a simulator for RHex robot visu-

alization, called SimSect. In case where the real robot is being operated, the supervisor 

communicates at a very low-Ievel to the robot hardware; legs, inertial sensors and health 

monitors. The operator communicates with the supervisor using a point-to-point protocol 

over a seriallink that runs through the fiber optic tether. A full-featured graphical user 

interface is available at the operator terminal for easy access to aIl the robot control pa­

rameters as weIl as health and system monitors. The control GUI can also be operated via 

a wireless gamepad to assist the robot driver. A screenshot of the GUI during a simulated 
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underwater operation of the robot is shown in Fig. 3-4 below. Note the displays for visual 

servoing commands in the middle, the IMU readings and controls on top and the gait con­

troIs at the bottom right, among other things. The drawing of the robot to the right is an 

output from SimSect, via the Geomview2 too1. 

Figure 3-4: AQUA operator graphical user interface. 

The robot supervisor and the visual servoing software communicate via the UDP 

protocol, using a custom communication class. Communication between the two software 

2 http://www.geomview.org 
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VisionCommand 
+Vis Pitch Command: float 
+Vis Yaw Command: float - -
+Vis_Speed_Command: float 

Figure 3-5: Vision command data structure. 

modules are uni-directional, with the servoing software sending pitch, yaw and speed com-

mands to the robot supervisor. The structure of the vision command packet is shown in 

Fig. 3-5. 

We opted for the the UDP protocol, since for TCP connections, there is an added 

overhead of connection setup, because of its state-oriented nature. UDP, on the other 

,-/'""'., hand, is stateless and provides no guarantee of packet delivery, but at a high rate of packet 

transmission over a short distance, there is virtually no packet loss. Our application is 

robust enough to remain stable in case a packet or two fails to reach the control stack. 

The vision stack cornrnand packets are sent at the rate each frame is processed from the 

camera. We currently use a rate of 15 frames/second from the FireWire camera. 

The diagram in Fig. 3-6 shows a UML class diagram for the software components 

residing in the vision stack that perforrns tracking and robot cornrnand generation. The 

complete software architecture is demonstrated in Chapter 5, in Fig. 5-6. 

3.1.3 The System Environment 

For the vision stack we did not require hard real-time capabilities, hence a custom-

tailored version of the Linux Operating System is used as the environment for the visual 
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servoing code. We built the OS from the source, compiling aIl the binaries for the target 

PC 104/Plus platform to optimize runtime performance and reduce size of the executables. 

Sorne salient features of this OS are listed below. 

• Storage: The storage medium is a 512 megabyte CompactFlash card, with very 

little power requirement as compared to micro-size hard drives. The resistance to 

shock impact and vibration is also far greater for CompactFlash cards (20000's for 

CF against 120's for MicroDrives). The downside is the limited number of write 

cycles that can be performed on a CompactFlash cardo To extend the working life of 

the CF card, we stored aIl the temporary system logs and cache files on RAM disks 

created during the Linux bootup. The entire storage space was partitioned into two 

sections; one read-only for the operating system of roughly 100 MB and the other 

around 400MB, for storing images and video from the Fire Wire camera. 

• Kernel A monolithic kernel (version 2.6.11, latest at the time of the experiments) is 

used, with aIl device drivers and modules built right into the kernel, to reduce the 

latency in activating devices. This increased the kernel size, but reduction of module 

files and other unnecessary components more than compensated for that increase. 

• Startup To ensure a fast and responsive system startup, we start a very smaIl number 

of services (or daemons), The boot partition is mounted read-only, so we dis able 

file system checks at the startup. AlI system logs and temporary files are stored in 

the memory, in temporary RAM Disks , which aIlows us to use a read-only boot 

partition. 

• Network The vision stack uses Ethemet connection to communicate with the control 

stack, which is setup with a static IP address. We also have provisions for Ethernet 
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over FireWire, which enables the use of Ethernet protocol over a FireWire link. The 

vision stack also supports both SSH and Telnet connections for remote logins. 

In the next chapter, we discuss the tracking algorithms we used in our problem. The 

theory behind each of these algorithms are explained, as weIl as the advantages and disad­

vantages of each method, as relevant to our application. The application of these methods 

in the AQUA visual servoing application is discussed in detail in Chapter 5. 
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CHAPTER4 
Visual Tracking and Control 

We discuss the theory behind the tracking methods used in our work in this chapter. 

AIl our tracking algorithms are based on color cues; hence we focus on color space and im-

pacts of lighting on color. The three tracking methods used have increasing computational 

co st and complexity. We justify the need for using three tracking methods and point out 

the advantages and disadvantages of each. The chapter concludes with a comparative dis­

cussion of the three approaches. Implementation details for these tracking algorithms are 

explained thoroughly in the following chapter. We begin, however, with a short discussion 

of the physics of light in underwater environment. 

4.1 Underwater Light and Vision 

In underwater environments, illumination depends on depth, refraction, scatter and 

absorption of the water medium. Of aIl the sunlight reaching the surface, only 18 % reaches 

a depth of 18 meters, and 1 % reaches 100 meters [41]. The most important reason for re-

duced visibility underwater is the small difference between refractive indices of the human 

eye and the water medium. On air, refraction index of light is almost close to 1, and that of 

the human eye is 1.38. This difference is sufficient to form images on the retina. In water, 

the refractive index is 1.34, reducing the difference greatly and forming images far beyond 

the retina. Divers tend to use masks or goggles to form a layer of air between the eye and 

the water outside to ensure visibility is not hampered due to this lack of refraction. 

34 



/' ... 

The three phenomenon effecting light underwater are briefty described below, and are 

illustrated in Fig. 4-1. 

• Refraction: Refraction is the effect which causes light rays to bend while passing 

from one medium to another. This effect happens when light passes from water 

to the camera or human eye underwater. Refraction can change the perception of 

distance of objects underwater, making objects appear at three-fourths the distance 

than they actually are. At greater distance this effect might be reversed; causing 

objects to appear further away than they are. The more turbid the water, the less 

the distance at which this effect or over- or underestimation of distance can happen. 

Again, when light passes from air into the water through the surface, the water 

causes rays to enter at various angles due to waves, and also through the water 

column due to variable levels of salinity. 

• Scatter : Scatter occurs when individual photons of light are deftected or diverted 

when they encounter suspended partic1es in the water. Although scattering also oc­

curs in air, it is of much greater concem under water because light is diffused and 

scattered not only by the water molecules themselves, but also by aIl kinds of partic­

ulate matter held in suspension in the water, and by transparent biological organisms. 

NormaIly, scatter interferes with vision because it reduces the contrast between the 

object and its background, which is why vision is so much more restricted in water 

than iIi air; for the same reason even large objects can be invisible at short viewing 

distances. Even more problematic is the fact that this scattering can be wavelength 

dependent and non-uniform, affecting transmission of color hues. In addition, acuity 

or perception of small details is generally much poorer in water than in air, despite 
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the fact that the optical image of an object under water is magnified by refraction. 

The deterioration increases greatly with the distance the light travels through the 

water, largely because the image-forming light is further interfered with as it passes 

through the nearly transparent bodies of the biomass, which is composed of organ­

isms ranging from bacteria to jellyfish. 

• Absorption: Light is absorbed as it passes through the water, and much of it is lost 

in the process. In addition, the spectral components of light, the wavelengths that 

give rise to our perception of color, are differentially absorbed. Transmission of light 

through air does not appreciably change its spectral composition, but transmitting 

light through water, even through the clearest water, does, and this can change the 

resulting color appearance beyond recognition. In clearest water, long wavelength or 

red light is lost first, being absorbed at relatively shallow depths. Orange is filtered 

out next, followed by yellow, green, and then blue. Other waters, particularly coastal 

waters, contain silt, decomposing plant and animal material, and plankton and a 

variety of possible pollutants, which add their specific absorptions to that of the 

water. 

4.2 The Visible Color Space 

Using color features in visual tracking is an attractive option because ofits simplicity 

and robustness under partial occlusion, depth and scale changes. Tracking color cues 

helps one avoid using complicated and computationally expensive feature trackers that 

may weIl be infeasible in real-time applications. In spite of the apparent advantages of 

color tracking, there exists sorne significant problems that need to be addressed to design 

a robust and accurate color tracker. The biggest problem existing with color cues is color 
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Refraction Scatter Absorption 

Figure 4-1: Phenomena effecting light underwater. 

constancy [12]. Color constancy is defined as the removal of color bias due to effect of 

illumination. Issues like shadows, change in illumination and camera characteristics effect 

the phenomenon of color constancy. Keeping in mind the real-time performance demands 

from the tracker, we seek a robust and efficient representation of the object colors, resulting 

in faster and accurate computation. 

In the following subsection, we first describe the RGB color space, which is a basic 

color space widely used to represent color images in image processing systems. We show 

the properties of the RGB space and the shortcomings, which influenced our decision to 

move to the more robust HSV color space for our tracking applications. Both color spaces 

are presented briefly, as a precursor to understanding the application of the three tracking 

algorithms we used in AQUA. 
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4.2.1 RGB Color Space 

The Red-Green-Blue or the RGB color space represents the basic approach in repre­

senting color digitaIly. The RGB space uses a Cartesian coordinate system and forms a 

unit cube as shown in Fig. 4-2. 

G 

G 

c 

Figure 4-2: The RGB color space. 

Each corner of the cube lying on an axis represents the point where the color repre­

sented by the axis is maximum, with other colors absent. The origin represents black, as 

aIl color amounts are zero. The diagonal emanating from the origin to the top-right corner 

of the cube (representing white) is the locus of points with equal amounts of each color. 

This is also referred to as the gray diagonal. Viewed from top, with the white-corner in 

the center, the cube on the left can be seen as a two-dimensional equilateral hexagon, with 

the white-corner overlaying the black. 
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4.2.2 HSV Col or Space 

The Hue-Saturation-Value or HSV model was suggested to capture the artistic ideas 

of hue, tint, shade and tone. Also referred to as the hexcone model, as shown in Fig. 4-

3,the HSV model uses hue, saturation and value or brightness as the three dimensions for 

describing color, instead of RGB values. 
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Figure 4-3: The HSV color space. 

Briefly, hue is the dimension on which the principal color points lie. Saturation mea­

sures the distance of a color point from the white or gray value, also known as the aehro­

matie. Value, on the other hand, measures the distance of color from the color black. 

The relationship between the RGB model and the HSV model can be seen from fig­

ures 4-2 and 4-3. The orthogonal projection of the top surface of the RGB cube along the 
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gray diagonal from white to blue corresponds to a plane in the HSV hexcone with constant 

V. 

4.3 Color Blob Tracking 

The simplest approach to color based tracking is using a segmentation algorithm to 

detect objects of interest using their color features. The output of the segmentation algo­

rithm is (possibly disconnected) regions in a binary image that match the color properties 

being tracked. These regions are termed 'blobs', and hence the approach is known as col or 

blob tracking. We attempt to form these blobs through a thresholding process. By thresh­

olding, we refer to the operation where pixels are tumed 'on' if and only if their color 

values faU within a certain range and tumed 'off' otherwise. 

The basic color blob tracker is a straightforward algorithm. The tracker is initialized 

with the target's color properties; in case of the RGB space, the tracker has to be aware 

of the red, green and blue color values of the tracked object. Next, sequential scanning 

is performed on the image, pixel-by-pixel. The pixel falling within the threshold of the 

color values of the target are tumed on in the output image, and other pixels are tumed off. 

Figure 4-4 below shows the segmentation output of tracking a red object. The target is 

framed by a yellow rectangle for c1arity. 

The tracker was tuned beforehand to the red rectangular target in Fig. 4-4(a). The 

segmentation produced the image in Fig. 4-4(b). The tracking algorithm detects this blob 

in the binary image in every frame, and calculates its centroid. This centroid is taken as 

the new target location. This process iterates over every frame, and the target is localized 

in the image frame. 
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(a) Tracking red (b) Segmented output showing the blob 

Figure 4-4: A col or blob tracker tracking a red-colored object. 

The obvious downside to using a naive color blob tracker as explained above, is the 

presence of duplicate targets. For example, in Fig. 4-4(a) above, if any other red colored 

object appears in the scene, the segmentation process will generate another blob for that 

object. This second blob will effect the calculation of the center of mass for the tracker; 

the effect will be more prominent if the two generated blobs are disconnected; i.e. further 

away in the image frame. Therefore, the tracker works only accurately when there are no 

similarly-colored object in the camera's field-of-view. 

Several approaches to address this problem have been suggested. One way to avoid 

tracker confusion in the presence of duplicate objects is to use shape cues to identify the 

proper object. This, of course works only when the 'faIse' target is of a different shape 

from the 'real' one. AIso, incorporating shape detection is a computationally expensive 

process, and shape trackers can be confused by lighting variations, and lock on the wrong 

target. 
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Another way of making a a blob tracker more robust is to use a statistical approach to 

choose the proper blob to track, for example by using Monte-Carlo based methods like the 

Partic1e Filter. Partic1e filters have been extensively used in computer vision and tracking 

applications, first introduced as the Condensation algorithm by Isard and Blake [23]. The 

Condensation algorithm works weIl with contours and blob-trackers, but it is an iterative 

process, which would increase computationalload significantly. 

In the following subsection we look at a more robust approach than the naive color 

blob tracker, which applies color distribution matching instead of a single color range. 

4.4 Color Histogram-based Tracking 

A color histogram represents the distribution of color in an image or a region of an 

image. Color histograms are useful for characterizing the color content of a given image 

or image sub-window, and have been applied for image retrieval applications as weIl as 

video indexing and lookup. FormaIly, a histogram hi is a mapping from a d-dimensional 

integer vector i to the set of non-negative reals. These vectors can be thought of as 'bins'; 

each bin represent the center of a region in a fixed partitioning of the underlying feature 

space. For a grayscale image, the histogram is one dimensional, i. e d = 1. Similarly for a 

color image represented using the RGB space, the histogram would be 3 dimensional. In 

both cases, the set of possible color values for each dimension is split up into N equaIly­

spaced partitions. hi contains the number of pixels that has color values which fall between 

the interval specified by the index i. ComputationaIly, the color histogram is formed by 

discretizing the colors within an image and counting the number of pixels of each color. 

The size (and number) of the bins and the range of values the histogram counts are 

important parameters since these control the effectiveness of the histogram in representing 
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the color distribution of the underlying space. A coarse histogram has lesser number of 

bins than afine histogram. Coarse histograms are not a good choice when the underlying 

image has a multitude of hues. On the other hand, for an image with a few colors, a fine 

histogram would be an over-representation, and would also lead to waste of storage as 

most of the bins would be empty. 

The color histogram tracker works as follows. First, a histogram of the target to be 

tracked is created. This histogram is stored as the target model histogram. This is the 

preprocessing stage. During the tracking stage, every incoming frame from the camera is 

divided into rectangular regions and their histograms are calculated. The similarities be­

tween the new candidate histogram and the target model histogram is calculated following 

one of several possible distance measures (to be discussed below). The subwindow with 

the highest match is chosen as the probable subwindow containing the target. The pattern 

of scanning the image for the target can be done sequentially,or in a spiral pattern starting 

from the location of target found in the previous frame. Depending on the application, the 

size and shape of the subwindow can also be made to change dynamically, although that 

makes the tracker computationally slightly expensive. 

The following sequences of images in Fig. 4-6 shows the operation of a histogram 

tracker. The target to be tracked is the show in Fig. 4-6(a). A one-dimensional col or 

histogram of the target is shown in Fig. 4-6 ( d). 

Figure 4-5 shows the tracking stage, with fixed size subwindows and sequential re­

gion search. The window where the tracker detects the target is shown in Fig. 4-6(b) 

and its histogram is in Fig. 4-6(e). A subwindow not containing the target and its color 
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Figure 4-5: Rectangular search windows. 

histograrn are shown in Figures 4-6( c) and 4-6(t) respectively, for comparison with the 

target histogram shown in Fig. 4-6( d). 

4.4.1 Measuring Similarity between histograms 

At the heart of the histogram-based tracker lies the similarity measurement metric for 

comparing two histograms. The similarity measure is a function of the two histograms 

that retums a scalar value indicating the amount of similarity between the two histograms. 

Based on the way the bins are compared, these measures are of two fundamental types. 

One approach is to only compare corresponding bins in the two histograms, in a 'bin-by­

bin' fashion. The other method does not limit the comparison between similar bins in 

the two histograms, but extends the comparison in a 'cross-bin' approach. We discuss a 

few of the measures available among many; the ones discussed have been used on board 

the AQUA robot for visual tracking with color histograms. One important point to note 
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(a) A Target region 

(d) Target region histogram 
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Figure 4-6: Comparison between histograms of different subwindows in an input frame. 
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is among the similarity measures discussed, there is not one which is c1early superior; 

instead, we stress the fact that the selection of the measure is very much application de-

pendant. 

The following subsections discuss the issue of measuring similarities between two 

histograms H and K, both having the same number ofbins, N. These measurements only 

compare the corresponding bins of both histograms; i. e. they compare hi and kj for i = j, 

where hi and kj are the i-th bins of histograms H and K respectively .. 

Histogram Intersection Measure 

The histogram intersection similarity measurement is calculated using the following 

formula: 

(4.1) 

This measurement has been proven useful in comparing histograms of different sizes [37]. 

The X2 (Chi-Squared) Measure 

The X2 (chi-squared) metric is a measurement of the probability that one distribution 

was drawn from the other. The X2 measure is calculated by: 

(4.2) 

where, 

The X2 metric does not permit the data in the underlying distributions to be percentages; 

they must be raw data. AIso, the measured values have to be independent and observed 

frequencies must not be too small. 
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The Bhattacharyya Distance Measure 

The Bhattacharyya coefficient has a direct geometric interpretation with respect to 

two distributions; for two m-dimensional unit vectors p and q, it is equal to the cosine 

of the angle between them. The Bhattacharyya distance between two histograms can be 

found using the following expression: 

Jeffrey's Divergence 

m 

PBhattacharyya(H, K) = LVkihi 
i=l 

(4.3) 

Jeffrey's Divergence has been derived from the Kullback-Leibler (K-L) divergence. 

The KL divergence measure is an information theoretic measure that can be interpreted as 

the inefficiency of transforming one distribution to the other using a code book. The KL 

measure, however is sensitive to quantization effects in the histogram computation (i.e bin 

size). Jeffrey's divergence is an empirically derived divergence that is numerically stable, 

insensitive to histogram binning and also robust in the presence of noise. The Jeffrey's 

divergence measure of similarity is calculated as follows: 

(4.4) 

where 

(4.5) 
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4.5 Mean-shift Tracking 

Mean-shift tracking performs visual tracking by attempting to maximize the correla­

tion between two statistical distributions. The correlation between the two distributions is 

expressed as a measurement derived from the Bhattacharyya coefficient described in the 

preceding section. Mean-shift trackers have been used to track objects based on color or 

texture, by building a statistical distribution of the feature being tracked. We introduce the 

basic concepts behind mean-shift tracking in the next paragraphs. 

For any density function, the mean x of a set of samples x tend to be biased towards 

a local mode, i.e. a local maxima. The mean-shift vector, x - x points towards this local 

maxima. Based on this mean-shift property, tracking is performed as described in the 

following steps: 

1 A probability distribution model of the target T is built, based on color, texture or 

any other feature. We caU this model p. This model is overlayed with an isotropic 

kemel with a convex and monotonically decreasing kemel profile. This step assigns 

weights to each pixel in the target region, with center pixels having more weights 

than those on the periphery. This distribution of weights increases robustness against 

occlusion, since the pixels on the boundary do not have large weights assigned. 

II Starting from the previous location ko of the target, a new model of the target is 

generated at the same location. This candidate model at location ko we denote as 

q(ko). 

III The weights, as described in step l, are calculated.as described in step 1 

IV The new location k1 of the target is calculated recursively, using the mean-shift 

procedure. 
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V If the shift amount between the new and old locations is smaller than an arbitrary 

small constant E, the algorithm stops. Otherwise, we assign ko +- k1 and iterate 

from step III. 

4.6 A Comparison 

Each of the three trackers in the system have desirable features, as well as sorne poten­

tials caveats, as we will discuss in detail in Chapter 6. The color blob tracker is inherently 

simple, easy to implement, and has a running time directly proportional to the frame size. 

This running time emerges from the need to raster scan the image pixel-by-pixel to check 

for color matches with the target object. For a high frame-rate and a large frame size, 

the computational costs increase significantly, although we have used medium resolution 

(i.e. 640 x 480) size frames at 15 frames/second to keep the computational overhead low. 

Intensity normalization of the input frame also reduces the effect of lighting changes. The 

appearance of a similar-colored object in the camera field of view can confuse the color 

blob tracker. 

The color histogram tracker, unlike the blob tracker, is suitable for tracking multi­

hued objects. We use fixed bin sizes for histograms, and compare the target region with 

fixed size windowed regions in the image. The advantage of the histogram tracker over 

the color blob tracker is in the ability to track a variety of colored objects, both multi and 

single colored. The algorithm also has a runtime proportional to the frame size. 

We use normalized histograms for our application, which reduces the effect of bright­

ness changes on color matching. The tracker is more robust to tracking in the presence of 

multiple objects, since two objects has to have the same distribution of color to confuse 

the tracker. The computational cost, although linear, is significantly more than that of the 
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Table 4-1: Tracker comparison table. 

Tracker 

Color Blob 

Computational 
Cost 

Low 

Color Histogram Moderate 

Mean Shift High 

Target Color Properties 

Single color only 

Effect of Lighting 
Variations 

Moderate 

Single and Wide range of col- Moderate 
ors 

Single and Wide range of col- Low 
ors 

color blob tracker. This cost is incurred due to the computation of col or histograms of 

every rectangular region we scan for the occurrence of the object. 

The mean-shift tracker is the most computationally expensive of the three trackers. 

It is also the most robust. The mean-shift vector tracks changes in underlying color dis­

tribution and follows the target in successive frames. The process is localized, in a small 

region of the image, and no raster scan of the image is performed. However, the color 

distribution of the target and candidate regions have to be computed, as is their probability 

density functions. These computations increase the overall running time for the algorithm. 

On the other hand, the mean-shift tracker is more robust to changes in lighting and ap­

pearance of duplicate objects in the frame. We have found this tracker to work well under 

partial occlusion and cluttered environments as weIl. We discuss the performances of each 

in detail in Chapter 6. 

Table 4-1 presents a summary of the three tracking algorithms, comparing the degree 

of main desirable and undesirable features. 
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4.7 Preliminary Control Theory 

This section introduces several key concepts relating to Control Theory. Control the­

ory deals with the behavior of dynamical systems over time, i. e. systems that change 

properties over time. When one or more output variables of a system requires to be set 

at a certain value, the Controller attempts to manipulate the input of the system to adjust 

the output to the desired value. Visual servoing of the AQUA robot qualifies the system 

as a dynamic system, since continuous visual tracking of a target attempts to control the 

motion of the robot. We present sorne fundamental definitions to aid understanding of the 

control process of the AQUA visual servoing system. A couple of the following sections 

briefly discuss filters and PID control, with relevance to the CUITent work. 

4.7.1 Definitions 

We present sorne definitions to begin the chapter. These are common terms in Control 

Theory literature, and are only presented here to familiarize the reader with the basic 

concepts. 

s o 
c p 

f 

Figure 4-7: A simple feedback loop. 

• The Reference Variable is the final output variable of the system. 

• The Plant is the system being controlled. 

• The Controller is responsible for manipulating the Plant. 
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• The Setpoint is the target value of the reference variable which the controller at­

tempts to maintain at aIl times. 

• In Open-Loop Control, the Controller has no feedback from the Plant as it attempts 

to control the reference variables. Open-Ioop systems have no sensitivity to the 

dynamics of the system being controlled. 

• In Closed-Loop Control, the problem of the Open-Ioop control described above 

is reduced by introducing feedback from the Plant output. The Controller receives 

as input both the reference value s and the output feedback f. It measures the 

difference between the reference and current output as the error e and changes the 

input i to the Plant accordingly, as shown in Fig. 4-7. 

• Stability refers to the fact that for any bounded (i.e finite) input to the Plant, the 

output of the Plant is also bounded. Stability is essential for a well-controlled dy­

namical system. This is also referred to as the Bounded-Input-Bounded-Output or 

BIBO stability. 

4.7.2 Proportional-Integral-Derivative Control 

A Proportional-Integral-Derivative (or PID) Controller is a standard closed-Ioop 

control that tries to control one or more reference variable of a plant by "sensing" the 

output at a given time and adjusting the plant input accordingly. The error signal at time t 

is the difference between the setpoint and the output of the system at time t. The controller 

treats the error signal with three different multiplication constants or gains, as described 

below, justifies its name. 

a The Proportional Gain, K p is a negative terrn, which is multiplied with the error 

signal and the result is sent to the output. The proportional gain dictates the band 
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over which the output of the controller is proportional to the error signal. This gain 

is responsible for making the controller react to the current value of the error signal. 

b The Integral Gain, KI is multiplied with the integral of the error signal over a 

(usually short) period of time, and added to the proportional output. KI denotes the 

steady state error of the system, and attempts to remove errors that have persisted in 

the system over a period of time. 

c The Derivative Gain, K D is used to adjust the response of the controller to the 

changes in the system. The rate of change of the error signal (i.e. first derivative) is 

multiplied with K D and added to the sum of the two outputs above. The larger the 

derivative gain, the faster the controller responds to changes in the plant. 

Equation 4.6 below shows the form of a PID controller. 

Output = KpEt + KI J Etdt + K D ! Et 

Here, Et is the time-averaged error signal value at time t. 

4.7.3 PID Controller Thning 

(4.6) 

Tuning of a PID controller refers to finding the values for the proportional, integral 

and differential gains. Depending on whether the system can be taken offline or not, there 

are several standard approaches to tuning a PID controlloop. In one approach, the system 

taken offline and is subjected to step changes in input and the output is measured as a 

function of time. The response of the system is used to find the optimal value of the 

parameters. If, on the other hand, the system cannot be taken offline, the values of KI and 

K D can be set to zero and the value of K p is increased until the output loop oscillates. 

At this point, K p is fixed and then KI is adjusted to stop or substantially reduce the 
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oscillation. Finally, the derivative gain K D is used to reduce the response time of the 

system. 

4.7.4 PID Controller Issues 

In theory, a PID controller is robust and easy to tune for controlling a dynamical 

system. In practice, the algorithm suffers from a few drawbacks, which arise from the real­

life imperfections of the systems being controlled, the model and environmental factors. 

One common problem a PID loop suffers from is the delay in getting the output of the 

system to ramp up to the desired setpoint. This is referred to as the Integral Windup 

phenomenon. Using a large initial value for the differential gain or preloading the system 

with a certain output value sometimes can reduce this effect. 

A frequently changing controller output is not always desirable, as it might lead to 

mechanical wear or unstable vehic1e control. A deadband value is introduced in PID con­

trollers to prevent the controller from responding to small changes in the plant output. The 

deadband defines the range of change in output for which the controller will not respond 

at aIl. In effect, this allows the controller to respond to major changes in system output. 

The differential gain can cause the controller to change its output by a large amount in 

the presence of a small amount of noise in the system. Passing the measurements through 

a low-pass filter helps reduce the effect of noise in measured values. In sorne systems, the 

differential gain is not used at all, resulting in a PI controlloop. 

4.7.5 Filters 

Frequency domain filters are used in signal processing to block signaIs of certain 

frequencies from passing through. A certain type of filter allows only a certain band of 

signaIs to pass, e.g. low-pass filters only allow components with Iow frequency to pass 
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through, blocking high frequency signaIs. Filters can be analog or digital, depending on 

the application domain. Digital filters can be used to implement any mathematical filtering 

application that can be expressed as an algorithm. We cons train our focus to digital filters 

in this section. 

4.7.6 Infinite-Impulse Response Filters 

Infinite-Impulse Response filters are digital counterparts of analog filters. When sub­

jected to an impulse function, UR filters produce a response which is non-zero over an 

infinite time period. UR filters use feedback from the output to create a form of recursive 

filtering that results in an unending impulse response. The response is either exponentially 

decaying, growing or sinusoidal. 

The next Chapter introduces the theory behind visual servoing and de scribes the sys­

tem implementation specifics in details. The tracker and controller implementations as 

weIl as the systems environment components are explained in greater detail. 
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CHAPTERS 
Visual Servoing System Implementation 

This chapter describes the implementation details of the visual servoing system in 

AQUA. We discuss in detail the tracker implementations, control loop design and the 

entire system with the communication between the vision and control stacks. The Linux 

operating environment for the vision code was built from the scratch for faster execution 

times and small memory requirements. Salient features of the Linux environment are 

described in this chapter as well. 

5.1 Visual Servoing 

Vision is an excellent sensing medium for robotic applications due to its passive prop-

erty and very little power requirement. In a real time robotic system, vision can be applied 

to provide a closed-Ioop control of the robot manipulator or the entire robot as a whole. 

In context to our work, Visual Servoing refers to the task of controlling the robot's pose 

by using feedback from a vision sensor. Visual servoing has been used extensively in 

the manufacturing industry [31, 2] as well as vision-assisted vehicle control. Rutchinson, 

Rager and Corke [22] has an extensive discussion about the theories behind visual ser­

voing and the classification of visual servoing methods. Based on whether the tracking is 

performed in image or task space, and the hierarchy of control mechanism, visual servoing 

approaches can be classified in four major categories. Figure 5-1 shows the major classes 

of visual servoing approaches as mentioned in [22]. 
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Visu al Servoing 

1 

Tracking Space Control Hierarchy 

Image-based Position-based Dynamic Direct 
Visual Servoing Visual Servoing Look-and-move Visual Servoing 

Figure 5-1: Types of visual servoing, as described in [22]. 

To elaborate further, servoing mechanism can be designed with an intermediate robot 

command generator that accepts feedback from the vision sensors and outputs robot motor 

control commands for controlling robot pose. These systems are known as Dynamic Laak­

and-Mave systems. The systems where motor input commands are generated by the servo 

system directly are called Direct Visual Serva systems. In AQUA, the vision stack sends 

yaw and pitch commands to the control stack, which in turn generates motor commands for 

each of the six legs, effectively working as a dynamic look-and-move system. Our tracking 

and target detection is performed in image coordinates, which makes it an image-based 

servo system. In the following subsection we discuss a brief background of image-based 

visual servoing. 
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5.1.1 Image-based servoing 

In image-based visual servoing, as discussed earlier in the section, the target object is 

tracked in image coordinates. The position of the object in each image frame is expressed 

in terms of image-space coordinates, not real-world or task-space locations. In our case 

we localize the centroid of the target in two-dimensional Cartesian coordinates, not three 

dimensional real-world coordinates. The error function c, in this case is defined in R2 , as 

the Euc1idean distance between the center of the frame and the center of mass of the target. 

The goal is to reduce c such that c ---7 0, as time t ---7 00. 

In spite of defining the error function in image space, the motor commands are spec­

ified in task space coordinates; i.e. the yaw and pitch commands are the same when 

the robot would be tele-operated by a remote controller. This necessitates a mapping 

of changes in the image coordinates to changes in the position of the robot. The image 

Jacobian is used to perform these changes. 

Let f be a feature vector in the image space, r a vector of robot translational and 

rotational velocities, and r is the rate of change of these velocities. If k is the number of 

dimension of the image space and m is the number of dimensions of the task space, then 

the image Jacobian is defined as follows: 

8fI(r) 
8rm 

(5.1) 

8fk(r) 8fk(r) 
8rl 8rm 

The image Jacobian relates changes in the image space vector f to changes in the 

velocity vector r. The velocity vector r is also commonly referred to as the velocity screw 
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in visual servoing literature. The mapping from changes in image-space to task-space is 

expressed by the following expression: 

(5.2) 

In image-based visual servoing, the interest is in finding the robot velocity r given the 

rate of change in image features f. Hutchinson et al. shows [22] how to solve Eq. 5.2 to 

determine the velocity screw r to achieve a desired state of the image feature vector f. 

5.2 Tracker Implementation 

We discussed the theory behind the tracking algorithms used in AQUA in the previous 

chapter. This section and the included subsections explain in detail the implementation 

specifie issues of each of these trackers. 

5.2.1 Preprocessing 

The color space chosen for blob tracking was the normalized RGB space, which is 

in effect an over-represented hue space. We chose the normalized RGB colorspace since 

the effect of lighting changes were minimum, and conversion from RGB to normalized 

RGB was not computationally expensive. The color frames obtained from the camera 

were 640 x 480 with 8-bits per pixel, with Bayer-encoded color information. The Bayer 

encoding scheme is a method of interpolating color information of a pixel using col or 

values from the neighboring pixels, by using only 8-bits per pixel instead of 8-bits per red, 

green and blue channels. Bayer encoding reduces the overall data size by one-thirds, since 

only 8-bits per pixel are used, instead of 24, with a concomitant loss of color resolution. 

The Bayer pattern is specifie to each camera and its CCD(Charge-Coupled Deviee, whieh 

is the equivalent of film in a 'traditional' camera). To retrieve color data, a conversion is 
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required from the monochrome 8-bit Bayer-encoded image to a three-plane RGB image. 

This RGB color image is normalized by dividing each pixels RGB values with the sum 

of the RGB values. Examples of a Bayer-encoded frame, the RGB color image and a 

normalized RGB frame can be seen in images 5-2. 

Figure 5-2: A raw frame from the camera. 

These preprocessing steps are common to aIl the trac king methods described below. 

5.2.2 Blob Tracker 

The tracker is built on the principle of a Region of Interest operator. As discussed 

in the previous subsection, the RGB image is converted to a normalized RGB format. 

addition, a thresholding is performed on the absolute value. This is done in order to prevent 

the darker areas of the image from contributing to the region of interest. The parameters 

for finding the region of interest with the target color is given in normalized RGB values 
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Figure 5-3: Bayer coded frames. 

Figure 5-4: Normalized color frame. 
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as weIl (i.e hue). These values are manually tuned prior to the experiments. The image 

is then segmented and only those pixels who se ROB values fall within the thresholds 

are retained. To remove high-frequency (or shotlsalt-and-pepper) noise[3], the median 

filtering algorithm[40] is used over the segmented image with either 5-by-5 or 7-by-7 

pixel grids, with typical threshold values of 30%-40%. The center of mass of the blob is 

then calculated and the total mass of the blob is used as a confidence factor. If it is below 

a certain threshold (set a priori based on the object being tracked and lighting conditions), 

the measurement is ignored. Finally, the error signal is computed using the Euc1idean 

distance between the centroid of the blob and the center of the image frame. Two error 

signaIs are used for pitch and yaw, and both these signaIs are then propagated to the PID 

controller. 

5.2.3 Histogram Tracker 

The histogram tracker compares rectangular regions of the input frame with the target 

region by comparing their corresponding color histograms. The target color distribution 

is stored by calculating a normalized histogram of a fixed number of bins, over the hue 

space. We used either 32 or 64 bins for histograms, depending on the target and the size 

of the image frame. The histograms are one-dimensional vectors that combine the multi­

hue channel data. Similar histograms are computed for the searched sub windows. The 

subwindows have either one-eighth or one-sixteenth the dimension of the image frame. 

Similarity between histograms are computed by the measures discussed in the previous 

chapter. Since the histograms are normaIized, the measures retum values ranging from 0 

to 1; higher values indicating higher degree of similarity. The minimum similarity measure 

is taken as 0.5; any measure below this threshold is not accepted as a valid target region. 
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The center of the chosen window is taken as the new target location. As in the case of the 

blob tracker, these coordinates are used by the PID controller to generate pitch and yaw 

commands. 

5.2.4 Mean-shift Tracker 

Color histograms are used as the underlying distribution in the mean-shift tracker. 

The histograms are three-dimensional arrays in this case, one each for the three ROB 

channels. We use 16 bins per channel for the mean-shift tracker. The target histogram are 

computed in a square window of sides equaling 100 pixels. The color model probabil­

ity density function for the target is calculated by overlaying the subwindow by a kernel 

having the Epanechnikov profile. The weights for the mean-shift vector are calculated 

using the Epanechnikov kernel (See Appendix A). The tracker is initialized with the last 

known location of the target and the target PDF model. In each successive tracking step, 

the candidate window is created at the location of the last known target position, the can-

di date PDF model is ca1culated and the weights for pixel are ca1culated, leading to a new 

candidate position. We use 10 iteration steps for the mean-shift process to choose a new 

target location. AIso, the target and the candidate window sizes are the same as weIl. The 

Bhattacharyya distance between the candidate PDF model and the target PDF model is cal­

culated to quantify the similarity between the target and the new candidate location. The 

location with the minimum Bhattacharyya distance is chosen as the new target location. 

The method is based on that ofComaniciu, Ramesh and Meer [6]. 

5.3 Controller Design 

The trackers are able to track the target at almost 15 frames/second, and therefore 

without filtering the control stack would be receiving possibly 15 different pitch and yaw 
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command pairs from the visual tracker. Changing commands sent to the leg motors at such 

a high rate would yield a highly uns table swimming behavior. A PID controller is used to 

take these target locations and produce pitch and yaw commands at a rate to ensure stable 

behavior of the robot. The controller takes the error signaIs from the tracker and generates 

pitch and yaw commands for the gait controller. Given the input from the tracker at any 

instant, and the previous tracker inputs, the controller generates commands based on the 

following controllaw: 

~ = KpEt + KI J Etdt + K D ! Et (5.3) 

where Et is the time-averaged error signal at time t and is defined recursively as: 

Et = Et + ')'Et-l (5.4) 

Et is the error signal at time t, K p, KI and KD are respectively the proportional, integral 

and differential gains and ')' is the error propagation constant. 

We use two PID controllers for the pitch and yaw axes. Accordingly, there are two sets 

of gains for each of the three multiplication constants (proportional, integral and deriva­

tive). These gains are adjusted manually before visual servoing runs. The closed-Ioop 

control architecture of the visual servoing system is seen in Fig. 5-5. The servo control 

loops indicate the two different PID controllers for pitch and yaw as weIl as the different 

controller gains, denoted K p for the pitch axis and Ky for the yaw. 
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For each of the pitch and yaw axes, the controlloops work identically as follows. The 

controller acts as a low-pass filter, smoothing out fast changing pitch and yaw commands 

by averaging them over a period of time. The servo module implements a PID controller 

with a first-order UR filter. We define a time constant for the low-pass filter for each 

PID controller. The controller gains are input manually, as mentioned earlier, with limits 

to truncate the gains. Each axis has a deadband limit applied to the error signal. This 

prevents the controller output from changing too frequently, by ignoring small changes 

in the error signal. We also introduce a sleep time between each iteration in servoing to 

reduce command overhead of the control stack. 
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5.4 Software System 

As mentioned before in Chapter 3, the visual servoing code is based mostly on the 

VXL library. In particular, we have used VXL to provide the fundamental image pro­

cessing algorithms and data structures, and our algorithms are implemented with these as 

the building blocks. The FireWire camera code uses another open-source library called 

CamWire i , by Johann Schoonees. CamWire encapsulates the low-Ievel camera control 

code provided by the libdc1394 Linux library, making it easier to write and organize cam­

era code. The tracking software has two modes of operation. During development and 

testing, we use a graphical user interface to interact with the trackers in real-time and ex­

periment with the output. The GUI library significantly increases the size of the executable 

and is not suitable for deployment in the robot. The version on the robot has no GUI, but 

uses the Linux shell to interact in a command line environment. This reduces the size of 

the executable and speeds up execution. The tracking algorithms on both cases are same, 

the only change being the user interface. 

The overall software architecture for the visual servoing task is shown below in Fig. 

5-6 as a block diagram. 

In the next chapter we present the results of the system we described so far. Servoing 

test results of the AQUA robot is discussed. We also look into the performance of the 

tracking algorithms, and how the choice of targets effect the trackers. 

1 http://kauri.auck.irl.cri.nz/johanns/camwire/ 
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CHAPTER6 
Experimental Results 

We present the results of the visuaI servoing system described so far in this chap­

ter. We evaluate the performance of the tracking approaches in terms of the accuracy and 

robustness, and also discuss types of targets each tracker is suitable for tracking. Perfor­

mance of the PID controller is presented, while tracking an object travelling in a straight 

line during open-water trials. To gather ground truth data from underwater servoing ex­

periments is an extremely complicated, if not impossible, task, given the unavailability 

of measurements that are standard for surface environments. This inability prevents us 

from presenting quantitative measurements of success for a target-following task, but we 

present results that demonstrate qualitatively the effectiveness of our system. 

6.1 Tracking Performance 

The three tracking aIgorithms are optimized for tracking objects with different col or 

features, as discussed in Chapter 4. In this section we show the accuracy and robustness of 

each of the trackers while tracking different target objects. Situations which cause these 

trackers to fail to successfully track are aIso demonstrated. 

6.1.1 Color Blob Tracker 

As discussed in the previous chapter, the col or blob tracker we used worked in the 

normalized-RGB color space. The blob tracker uses previously computed normalized 

RGB thresholds of the target object to segment out regions of an input frame in an attempt 

to locate the target. The following sequence of images demonstrate the operation of the 
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Table 6-1: Color blob tracker thresholds for a yellow target underwater. 

Color Channel Low High 
Red 0.398129 0.438129 

Green 0.371813 0.411813 
Blue 0.170058 0.210058 

Selecting pixel (58, 129). Color R:143 G: 134 B:65 

Figure 6-1: Yellow target during tuning. 

color blob tracker during the tuning and tracking phases. The tuning operation and the 

resulting norrnalized RGB threshold values are shown in Fig. 6-1 and Table 6-1. 

The result of the segmentation algorithm on this image produces Fig. 6-4(a) below. 

The crosshair in the middle indicates the centroid of the blob as calculated by the tracker. 

As is clearly evident from figures 6-1 and 6-4(a), the color blob tracker perforrns as 

expected in localizing the target, based on the initial color thresholds tuned out. 

The problems with the color blob tracker become evident when targets to be tracked 

have complex color characteristics. The sequence of figures in Fig. 6-4 demonstrates the 

blob tracker outputs for the checkerboard pattemed object and clearly demonstrates its 

limits. 
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Figure 6-2: Result of Segmentation for the yellow baIl. 

Another of the major problems that we encounter with the color blob tracker, is the 

presence of duplicate targets. As seen in Fig. 6-5, even a surface refiection of the object 

creates a mirror image of the target object, which is sufficient distraction enough to confuse 

the tracker. The tracker, in such cases, calculates two blobs and the overall centroid is 

located on a line connecting the centers of masses of the two blobs. The tracker finds the 

location closer to the larger bob in such cases. 

The case above demonstrates the need for using an object with very different color 

characteristics from the surrounding environment. We found yellow to be a color which is 

sufficiently unique, and also the hue transmitted for yellow underwater was much greater 

than any other single color we used. 

6.1.2 Color Histogram Tracker 

The color histogram tracker is a more enhanced tracking algorithm than the naive blob 

tracker. Using the target's color distribution as the feature to track, it achieves robustness 

compared to the blob tracker which easily fails in the presence of a duplicate target. As 
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Figure 6-3: Checkerboard object for tracking. 

(a) Frame 1 (b) Frame 2 (c) Frame 3 

Figure 6-4: Color blob tracking. Centroid of target at the crosshair. 

such, the histogram tracker is suitable for tracking objects that have a variety of color, not 

just one. The operation of the histogram tracker during tuning and tracking is shown in 

the sequence of images in Fig. 6-7. We use one-dimensional histograms with 64 fixed­

size bins, and each window is roughly 1~ (one-sixteenth) the width and height of the input 

image frame. Figure 6-6 shows the histogram distribution for the target shown in Fig. 6-6 

with the target rectangle shown inside of a yellow border. The output of the tracker in 

another frame is the region outlined in red. For comparison with a region not containing 
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Ca) Target with surface reflection Cb) Segmented output, with the red circ1e 
indicating centroid 

Figure 6-5: Effect of surface reflection. 

the target (e.g. the one outlined in white), we show the three histograms in Figures 6-6(b), 

6-6( c) and 6-6( d) respectively, of the actual target, the tracker output and the non target 

/~ area. The measured similarity value using the Bhattacharyya measure is given in table 

6-2. 

Table 6-2: Bhattacharyya measures. 

Target and Chosen Target and Non-target 
0.989718 0.192324 

6.1.3 Mean-shift Tracker 

Robust as it is, the histogram tracker is accurate only as far as the size of the sub­

windows in which it operates; that is, the center of the target will be located at the center 

of the rectangular search window, which may not be the actual centroid of the target. To 

achieve higher accuracy without sacrificing the robustness of the histogram tracking, the 
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Figure 6-6: Histogram tracking results. 

mean-shift tracker is used. Building on the color histogram property of the target ob­

ject, the mean-shift tracker localizes the target using the direction of mean-shift vector as 
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(a) Frame 1 (b) Frame 2 (c) Frame 3 

Figure 6-7: Histogram trac king output, with target at crosshair. 

(a) Frame 1 (b) Frame 2 (c) Frame 3 

Figure 6-8: Mean-shift tracking output, with target at crosshair. 

a pointer to the next probable target location. The accuracy provided by the mean-shift 

tracker, however, does not come without the. extra computational cost. This algorithm is 

the slowest of the three we used in AQUA, and assumes that the target does not change 

location by a large margin between consecutive frames. With this reasonable assumption, 

we present the results of the mean-shift tracker in operation in the sequence of images 

shown in Fig. 6-8. 
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Table 6-3: Pitch and yaw servo controller parameters; see Section 5.3. 

Axis K p KI KD Limitp LimitI LimitL Deadband Time Command 
Constant Limit 

Pitch 1.0 0.0 0.0 1.0 0.3 1.0 0.2 0.35 1.0 
Yaw 1.0 0.0 0.0 1.0 0.3 1.0 0.2 0.05 1.0 

6.2 PID Controller 

To tune a PID controller (i.e. adjust K p, KI and KD ) to ensure smooth, non­

oscillating performance, the step response of the system has to be measured. For this 

work, we do not have the step response data available from the robot. This hampers our 

ability to tune the PID controller properly. Nevertheless, the use of the proportional gain 

alone has been sufficient to ensure periodic and bounded response from the servo system, 

as found from the open-water trials, discussed in the next section. For the servo trials, the 

PID gains were adjusted using empirical values, observing the robot's response to a change 

in the PID gains. A typical set of parameters for the yaw and pitch servo controllers are 

presented in table 6.2. 

We observed a direct improvement in the yaw response as the yaw axis filter-time con­

stant was reduced below 0.1 seconds. An IIR fiIter present on the control stack smoothed 

out oscillations in input roll, yaw and pitch commands from the operator, as well as the 

pitch and yaw commands coming from the vision stack. In our tests, reducing the filter­

time constant to as low as 0.05 seconds had no adverse effect on the robot's stability. 

The next section presents some quantitative results acquired from the open-water tri-

aIs held at the BeIlairs Research Centre of McGill University, at Barbados. The results 

from these tests demonstrate the success of the system, in spite of aIl the unknown param-

eters affecting the robot in an open-water environment. 
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6.3 Open-Water Trials 

For the open-water trials at Barbados, a 15 centimeters diameter yeHow ball was 

held by a swimmer in front of the robot at a distance of approximately 2 meters. The 

diver swam in a roughly straight line at a pace consistent with the robot's speed. (In 

fact, the robot could outpace the diver at full speed.) A sequence of successful trials was 

completed each for duration of roughly 100 seconds over a distance of 27 meters, giving 

the robot an average ground speed of approximately 0.3 meters/second. The tests were 

concluded when the robot reached the end of its fiber-optic telemetry cable. The frame rate 

used by the visual tracker was one frame per second, consistent with the low-pass control 

loop mandated by the oscillating swimming gait. During this trial, the color segmentation 

algorithm successfully found the target in aH but one image. This gives a success rate of 

99% for the visual tracker. Other trials had slightly less successful detection rate, but aH 

were above 90%. Figures 6-9 and 6-10 show the relative tracked positions of the target 

for the x-axis (yaw) and the y-axis (pitch) over the duration of one trial. A value of zero 

indicates a centered target, whereas a value of + 1.0 or -1.0 indicates the target has reached 

the boundary of the camera's field of view. Since only a proportional gain was used in 

the experiment, the command sent to the robot's gait controller was simply proportional 

to this relative position. The bounded periodic nature of the signal indicate that the tracker 

and controlloop are functioning in a stable operating mode. 

In order to maintain the target in the center of the camera' s field of view, two feedback 

loops are necessary as shown in Fig. 5-5. Yaw commands are used to correct error in the 

image's x-axis, and pitch commands in the y-axis. Note that in the current experiment, 

the roll axis was left uncorrected. This would have required either using sorne form of 
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Figure 6-9: Response of yaw to visual servoing. 

shape recognition and an asymmetric target, or to be able to establish the direction of 

the vertical axis by using an Inertial Measurement Unit. Provisions have been made to 

integrate such a device in future experiments. However, since no robot response data (such 

as step response) was available, the transfer function as weIl as the frequency response 

of the robot for each axis was unknown. It was therefore not possible to fully tune the 

PD controller beforehand. This limited our ability to find the optimal parameters for the 

controllers. See Fig. 6-9. 

The average value for the yaw axis relative position was important (0.15), especially 

compared to the pitch axis' average position value (0.00095). This can be explained by the 
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Figure 6-10: Response of pitch to visual servoing. 

presence of a side-cuITent in the open water condition. Since the diver holding the target 

was attempting to follow a straight line using visual cues from the substrate, a bias was 

needed to compensate for the side-cuITent dynamics. No such bias was needed in the pitch 

direction. 

In both figures an oscillation with a period of approximately 10 seconds can be noted. 

These are coming from the sub-optimal behavior of the proportional controller in the pres­

ence of the low-pass filter of the robot's gait controller, and to a minor extent to the inertia 

of the robot. The full use of a properly tuned PID controller as well as further refinement 

of the gait controller would help reduce and possibly eliminate those oscillations. Nev­

ertheless, this sub-optimal tuning proves the feasibility of on-board visual servoing using 

AQUA's six flippers motion actuation. 
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7.1 Overview 

CHAPTER 7 
Discussions and Conclusion 

This thesis presented a visual servoing system for an aquatic legged robot called 

AQUA. The approach to servo control is based on simple color tracking coupled with 

a controlloop whose low-pass properties are tuned to eliminate the natural undulations 

caused by the robot's swimming gait. We discussed the underlying hardware and software 

components of the system and presented the data collected during open and closed-water 

trails of the system. The system is inherently simple and enables AQUA to achieve sorne 

degree of autonomy in navigating underwater. The recent sea trials of the system have 

proven to be very successful, and presents exciting new directions for future work. 

7.2 Tracking and Underwater Vision 

We have chosen tracking algorithms that have been shown to be successful in terres-

trial, non-underwater vision, and applied them in the underwater vision domain to achieve 

a high degree of success. As mentioned earlier in this thesis, the marine environment poses 

unique challenges for vision systems to work effectively, as a number of assumptions that 

can be made for non-underwater systems are no longer realistic in this domain. The un-

successful tracking trials have helped to reveal the limitations of these algorithms applied 

"as-is" in the underwater domain. We have investigated the effect of lighting variations on 

the underwater vision system as weIl. We hope the experiments will inspire future work 

in developing algorithms particularly designed for underwater vision. 
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7.3 Vision-based Vehicle Control 

The main contribution of this work is not in any one of the individual components, 

but instead in demonstrating the applicability of vision in autonomous underwater vehic1e 

control. The advantage of using vision to achieve autonomous navigation lies in the pas­

siveness and low power consumption property of vision sensors. A simple PID controller 

has been shown to be sufficient to produce bounded motion of the robot during servoing. 

The nature of motion of an aquatic vehic1e is complex, and whether or not to mimic bio­

logical motion is a question that needs to be investigated thoroughly before a satisfactory 

answer can be given. We have implemented a Linux-based environment for the vision 

processor in a limited storage that is also power conservative and robust to system failures. 

Each of these system components have played a vital role in the overall performance of 

the system. 

7.4 Future Work 

The visual servoing system described here has been proven to work in the real world, 

but there is room for many more enhancements and new provisions. Improvements can 

be made to the tracker as well as the overall control system, to build a more robust and 

stable visual servoing mechanism. To date, the tracker only looks for an object of a certain 

color or color distribution, without looking for an object of predefined shape. We plan 

to integrate shape and pattern matching with the tracker in the near future. AIso, from 

the size of the tracked object on screen, the speed of the robot can be controlled; so that 

the robot can catch up with the moving target when it is about to lose track. N either the 

tracker or the controller incorporates any learning scheme at the present time. All gains and 

parameters are tuned manually with the aid of data from previous trials. A probabilistic 
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learning scheme incorporated with the servoing could greatly increase the robustness as 

weIl as provide for automatic object recognition and training of parameters and gains. An 

Inertial Measurement Unit (IMU) has been used as a stability augmentation system. We 

aim for tighter integration of the IMU with the vision system, making for a semi-dynamic 

look-and-move servoing architecture. Currently, the servo system has no control over the 

roll command of the robot. U sing feedforward control, we can also compensate for the 

coupling between the axis controls. 

It appears that a more flexible learning-based scheme for target acquisition and track­

ing wou Id permit the system to operate more robustly. While we have not experienced 

serious tracking failures where illuminations prevents the target from being acquired, one 

might expect this to occur in the absence of on-line auto-calibration. More important, it 

appears that the tracking system can be "fooled" by distracting objects whose coloration 

matches the target of interest. While using supplementary shape-based cues would be a 

natural improvement to the tracker, the computing overhead, particularly in the robot's 

smaIl forrn-factor make this a challenge. Under poor visibility conditions the range of 

available hues transmitted through the water is very limited. A particularly attractive op­

tion is the use of a tracker that explicitly models the motion of the target (for example 

the undulation of the diver being followed). This suggests several interesting avenues for 

future work. 

81 



Appendix A: The Epanechnikov Kernel 

The Epanechnikov kernel has the following form: 

t ~(1 - u2
); -1 < u < 1 

0; otherwise. 

(7.1) 

(7.2) 

Here, u = xhx;, where h is the window width and Xi are the values of the independent 

variable in the data, and X is the value of the scalar independent variable for which one 

seeks an estimate. 

AIso, the profile of a kernel K is defined as a function k : [0, 00) ~ R such that K (x) = 

k(JJXJJ2). 
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KEY TO ABBREVIATIONS 

BIBO: Bounded Input Bounded Output 

HSV: Hue-Saturation-Value 

IEEE: Institute of Eleetrieal and Eleetronies Engineers, Ine. 

nDC: Instrumentation and Industrial Digital Camera standard 

IMU: Inertial Measurement Unit 

PID: Proportional-Integral-Derivative 

RAM: Random Aeeess Memory 

ROB: Red-Oreen-Blue 

TCP/IP: Transmission Control Protoeol/lntemet Protoeol 

UDP: User Datagram Protoeol 

UML: Unified Modelling Language 
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