
Code Generation from Functional to

Imperative: Combining Destination-Passing

Style and Views

Zhitao Lin

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Science

School of Computer Science
McGill University

Montréal, Québec, Canada

August, 2022

©Zhitao Lin, 2022

Abstract

Programming in low-level imperative languages provides good performance but is error-

prone. In contrast, high-level functional programming is usually free from low-level errors

but performance suffers from costly abstractions. To benefit from both worlds, approaches

like Lift compile from high-level functional programs to high-performance imperative code.

However, problems such as removing high-level abstraction costs and handling lazy opera-

tions are not tackled ideally, which makes such compilation remains an open challenge.

This thesis presents an approach to compiling a high-level array-based functional In-

termediate Representation (IR) into high-performance imperative code. It combines the

existing work on Destination-Passing Style (DPS) with the Lift views system by extending

the notion of view to destinations. Destination views can be seen as lazy operations that

work in reverse and affect how data is being produced into memory, rather than how data

is being consumed.

This approach produces imperative code that existing techniques cannot produce. The

evaluation shows that the code produced outperforms the existing DPS approach on several

real-world workloads when targeting sequential CPU code. The thesis also demonstrates

how destination views can be used to generate high-performance stencil code on Graphics

Processing Units (GPUs), by encoding the 2.5D tiling optimization in a functional style.

i

Abrégé

La programmation dans des langages impératifs de bas niveau offre de bonnes perfor-

mances mais est sujette aux erreurs. En revanche, la programmation fonctionnelle de haut

niveau est généralement exempte d’erreurs de bas niveau, mais les performances souffrent

d’abstractions coûteuses. Pour bénéficier des deux mondes, des approches comme Lift com-

pilent des programmes fonctionnels de haut niveau en code impératif hautes performances.

Cependant, des problèmes tels que la suppression des coûts d’abstraction de haut niveau

et la gestion des opérations paresseuses ne sont pas résolus de manière idéale, ce qui fait

qu’une telle compilation reste un défi ouvert.

Cette thèse présente une approche pour compiler une IR fonctionnelle basée sur un

tableau de haut niveau en code impératif haute performance. Il combine les travaux ex-

istants sur DPS avec le système Lift views en étendant la notion de vue aux destinations.

Les vues de destination peuvent être considérées comme des opérations paresseuses qui

fonctionnent en sens inverse et affectent la manière dont les données sont produites en

mémoire, plutôt que la manière dont les données sont consommées.

Cette approche produit un code impératif que les techniques existantes ne peuvent

produire. L’évaluation montre que le code produit surpasse l’approche DPS existante sur

plusieurs charges de travail réelles lors du ciblage du code CPU séquentiel. La thèse montre

également comment les vues de destination peuvent être utilisées pour générer du code

stencil hautes performances sur les GPUs, en encodant l’optimisation du carrelage 2.5D

dans un style fonctionnel.

ii

Acknowledgements

Words cannot express my gratitude to my supervisor Christophe Dubach. This endeavor

would not have been possible without his enduring patience and invaluable feedback. Thanks

should also go to my labmates for their help and support. Last but not least, I would like

to express my deepest appreciation to my mother and my girlfriend for their support of my

studies over all these years. Their belief is my motivation during this process.

iii

Table of Contents

Abstract . i

Abrégé . ii

Acknowledgements . iii

List of Figures . ix

List of Tables . x

List of Abbreviations . xi

1 Introduction 1

1.1 Challenges . 2

1.2 Goals . 3

1.3 Contributions . 3

1.4 Publication . 4

1.5 Outline . 4

2 Background 6

2.1 Lambda Calculus . 6

2.2 Lift IR . 9

2.3 Destination-passing Style . 12

2.4 Views . 13

3 Related Work 16

3.1 Code Generation from High-level Abstractions 16

iv

3.2 Destination-Passing Style (DPS) . 17

3.3 Intermediate Data Structure . 20

3.4 Summary . 23

4 IR Design with Destination and Views 24

4.1 Overview and Example . 24

4.1.1 Vector Addition . 25

4.1.2 Concatenation . 26

4.2 Functional Level and Views . 28

4.2.1 Core Language . 28

4.2.2 Introduction to Views . 30

4.2.3 Effect Types and Effect System . 31

4.2.4 Functional Primitives . 33

4.2.5 Materialization of View . 35

4.3 Imperative Level . 36

4.4 Summary . 39

5 Lowering to Imperative Level and Code Generation 40

5.1 Explicit Evaluation Order . 40

5.2 DPS Transformation . 43

5.2.1 Revisiting the Vector Addition Example 48

5.3 Handling Destination Views . 48

5.3.1 Lowering Destination View Primitives 49

5.3.2 I Transformation . 49

5.3.3 Revisiting the Array Concatenation Example 54

5.4 Code Generation . 54

5.4.1 A-Normal Form . 54

5.4.2 Passes and Optimizations . 56

v

5.4.3 Imperative Code Generation . 58

5.5 Summary . 58

6 Automatic Exploration 60

6.1 Search Space . 60

6.1.1 Effectless Program . 61

6.1.2 Exploration Starting Point . 61

6.1.3 Defining Search Space . 62

6.1.4 Exploration Rules . 63

6.1.5 Example for the Vector Addition . 64

6.2 Exploration Strategies . 66

6.2.1 Heuristic Strategy . 66

6.2.2 Random Exploration Strategy . 68

6.3 Summary . 69

7 Evaluation 70

7.1 Experimental Methodology . 70

7.2 Experimental Results . 73

7.3 Evaluation Result for Automatic Exploration 78

7.4 Jacobi3D 2.5D Tiling OpenCL Use-case . 79

7.5 Summary . 81

8 Conclusion 83

8.1 Summary of Contributions . 83

8.2 Guidance on Using Views . 84

8.3 Critical Analysis . 85

8.4 Future Work . 86

Appendices 87

vi

A Benchmark Implementations 88

A.1 Bundle Adjustment . 88

A.2 Gaussian Mixture Model . 89

A.3 Hand Track . 90

B Evaluation Data 91

vii

List of Figures

4.1 Overview of the Compilation Process . 25

4.2 Abstract Grammar for the Functional IR . 28

4.3 Subtyping rules of the functional IR . 30

4.4 Typing Rules of the Functional IR . 30

4.5 Main Rules for the Effect System . 32

4.6 Primitives at the Functional Level . 34

4.7 𝑀 (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒) Transformation . 36

5.1 Rewrite Rules to Demonstrate the Explicit Evaluation Order 42

5.2 Rules for Core Functional Constructs in DPS Transformation 44

5.3 DPS Transformation for Eager Primitives . 45

5.4 DPS Transformation for Source View Primitives 46

5.5 Rewrite Rules for Removing Source Views 47

5.6 Rules for I Transformation . 50

5.7 Rewrite Rules for Removing Destination Views 53

5.8 Pesudocode for Deallocation . 56

6.1 Pesudocode for the Performance Model . 66

6.2 Pesudocode for the Heuristic Exploration . 67

6.3 Pesudocode for the Random Exploration . 68

7.1 Evaluation Result in terms of Runtime Performance 72

viii

7.2 Evaluation Result in terms of Memory Consumption 72

7.3 Comparison between Stencil Computation Code Generated by Source Views

and by Destination Views . 75

7.4 Histograms for the Evaluation Result of Random Strategy 79

7.5 Generated OpenCL Code for Jacobi3D . 81

ix

List of Tables

7.1 Evaluation Result for 2.5D Tiling . 81

B.1 Absolute Values for Runtime Performance Evaluation 91

B.2 Absolute Values for Memory Consumption Evaluation 92

x

List of Abbreviations

3Add Three Vectors Addition.

ANF A-Normal Form.

BA Bundle Adjustment.

Cross Cross Product.

DPS Destination-Passing Style.

GMM Gaussian Mixture Model.

GPU Graphics Processing Unit.

HPC High Performance Computing.

HT Hand Track.

IR Intermediate Representation.

MM Matrix Multiplication.

PRE Partial Redundancy Elimination.

xi

Chapter 1

Introduction

With increasing performance and efficiency in computer hardware, compute-intensive ap-

plications such as deep learning have been flourishing in the last decade. Nevertheless,

the rapid growth in the computer hardware performance that Moore’s Law promised may

now come to an end [18]. As a result, it is increasingly important for software develop-

ers to deliver efficient implementations for those compute-intensive workloads. Low-level

imperative languages, such as C and OpenCL, are suitable tools for fulfilling this goal. How-

ever, programming in these languages is error-prone, hard to maintain and requires expert

knowledge due to the intertwining low-level details, such as explicit memory management

and the lack of high-level operations and data structures. The functional approach, on the

other hand, is a more productive way to compose maintainable and efficient programs as

low-level details are abstracted away. But the presence of high-level abstraction may lead

to runtime overheads that slow down the program. Thus, generating low-level imperative

code from a high-level functional IR seems to be a feasible solution for the dilemma between

the functional and the imperative and benefits from both of them [37, 16, 19].

1

1.1 Challenges

This thesis presents a similar approach to Lift [37] for generating low-level imperative code

from a high-level array-based functional IR.

This thesis focuses on three major problems related to compiling functional code to im-

perative code. First, functional programs leave memory allocations and operations implicit,

while they are explicit in low-level languages such as C. Secondly, high-level array-based

functional languages express computations through the composition and nesting of high-

level primitives, such as𝑀𝑎𝑝 and 𝑅𝑒𝑑𝑢𝑐𝑒. For example, 𝑅𝑒𝑑𝑢𝑐𝑒 (+, 0, 𝑎𝑟𝑟) is used for summing

the array 𝑎𝑟𝑟 and corresponds to a for-loop in imperative code. These high-level primitives

must be translated to imperative loops with explicit array indexing operations. Finally, high-

level primitives may result in intermediate data structures and slow down the performance.

The first challenge can bemitigated using DPS [27, 35] to performmemorymanagement

in a functional way. DPS is very common in many imperative languages, where the caller

is responsible for allocating space in the memory for the result of its callee.

The second issue can be resolved by lowering each array operations primitive into an

equivalent for-loop construct with index operations explicit. This approach is taken by

Lift [37] for instance.

Intermediate data structures are a critical concern, and this is where the main contribu-

tion of this thesis lies. This thesis uses the concept of views [37] to address this problem so

that certain primitives, such as Zip or Split, do not directly produce their results in mem-

ory. Instead, they behave as lazy operators, and subsequent operations will have a modified

view of the data. Meanwhile, the coupling of views with DPS offers a unique opportunity:

views can be considered for both source and destination. As we will see, this brings extra

optimization opportunities where concatenation, for instance, can be handled efficiently.

The evaluationas shows the presented approach outperforms the prior work on DPS both

in terms of runtime performance and memory consumption on sequential code. As a GPU

2

use-case, the thesis also shows how 2.5D tiling, a common optimization performed for High

Performance Computing (HPC), can be expressed elegantly in a functional style.

1.2 Goals

This thesis strives to provide a compiler for generating efficient imperative code from the

high-level array-based functional IR. Also, it endeavors to provide a step-by-step formaliza-

tion of the lowering process from the functional to the imperative and to generate efficient

imperative code.Moreover, it aspires to combine the concept of views and DPS to introduce

extra optimization opportunities that the prior works like Lift cannot provide.

1.3 Contributions

In summary, this thesis makes the following contributions:

• It presents a formalized approach that translates an array-based functional IR into

efficient imperative code using a multi-level IRs design that incorporates functional

and imperative details.

• It describes an approach to remove unnecessary intermediate data structures from

array-based functional primitive by combining DPS and views.

• It introduces the concept of destination views by combining DPS and views and offers

extra optimization opportunities for stencil computation.

• It provides a mechanism for automatically exploring the variants of programs at the

function level and trade-off the suitable variants for code generation.

• It shows that the generated C code is competitive against hand-optimized implemen-

tations and outperforms an existing DPS code generator.

3

1.4 Publication

Part of this thesis has been published in:

Zhitao Lin, and Christophe Dubach. "From functional to imperative: combining destination-
passing style and views." Proceedings of the 8th ACM SIGPLAN International Workshop on
Libraries, Languages and Compilers for Array Programming (ARRAY). 2022.

Under the guidance and supervision of Christophe Dubach, Zhitao Lin devised the meth-

ods, implemented the prototype, performed the experiments, andwrote the paper. Christophe

Dubach also edited and polished the paper.

1.5 Outline

The rest of the thesis is organized into the following chapters:

• Chapter 2 - Background: presents an overview of the concepts used in the rest of the

thesis, including lambda calculus, Lift IR and its high-level pattern primitives, DPS,

and Views as a technique for removing intermediate data structures.

• Chapter 3 - Related Work: presents a review of the related work on DPS and inter-

mediate data structures removal, both of which are popular research topics over the

decades and are important components that form the foundation of this thesis.

• Chapter 4 - IR design with Destination and Views: describes the design decisions for

the multi-levels IRs that enable the combination of DPS and views. It first provides

an overview of the entire approach and two motivating examples. Then, it formalizes

the grammar, types, and primitives used in the IRs throughout the thesis.

• Chapter 5 - Lowering to Imperative Level and Code Generation: It first shows a nor-

malization transformation to ensure that the evaluation order is explicit. Then it pro-

ceeds to the transformations for lowering the functional IR to the imperative level IR

4

while providing memory management in DPS and simplifying views. Finally, it covers

the final step for generating imperative code from the imperative level IR.

• Chapter 6 - Automatic Exploration: provides a mechanism for automatically exploring

the variants of programs at the function level and trade-off the suitable variants for

code generation. For that, it defines the search space for programs in the functional

IR, introduces the rewrites rules, and provides two automatic exploration strategies.

• Chapter 7 - Evaluation: focuses on the evaluation of the generated code compared

with the prior work on DPS. It first introduces the experimental setup. Then the focus

shifts to the result from comparing the code generation strategies proposed in this

thesis and the references in 11 real-world benchmarks. Finally, a use-case for the

2.5D tiling optimization is presented to demonstrate the proposed approach can be

used for generating OpenCL code for GPU and encoding optimizations.

• Chapter 8 - Conclusion: The concluding chapter covers the summary of this thesis.

Then, it proceeds to a critical analysis of the work that has been done, and finally,

several avenues where this work can follow in the future.

5

Chapter 2

Background

This section presents an overview of the concepts used in the rest of the thesis, including

lambda calculus, Lift IR and its high-level pattern primitives, DPS, and the concept of views

as a technique for removing intermediate data structures.

2.1 Lambda Calculus

The IRs presented in this thesis are based on lambda calculus. The lambda calculus is a

formalized system introduced in the 1930s by Alonzo Church for expressing calculation via

function abstraction and application. It is universal to express any computable function and

thus is equivalent to any Turing machine. The formalism of lambda calculus lays a strong

foundation for the functional programming language family [26, 28].

Definition The syntax for lambda calculus is defined recursively and consists of expres-

sions:

E := x | 𝜆x.E | E E variables, function abstraction, function application

A function abstraction 𝜆𝑥.𝑒 is a definition of an anonymous function that takes argument 𝑥

as input and returns 𝑒. For example, 𝜆𝑥.𝑥 is the identity function that returns whatever the

6

input is. An application 𝑓 (𝑒) stands for the application of function 𝑓 to input 𝑒. Here, the

brackets is only used to avoid ambiguity in parsing. Function application is evaluated by

substitution of the value of the argument. For example:

(𝜆𝑥 .𝑥) (𝑦) = [𝑦\𝑥]𝑥 = 𝑦

Here, [𝑦\𝑥]𝑒 means substituting variable 𝑦 to variable 𝑥 in 𝑒.

Free and bound variables The function 𝜆𝑥 .𝑡 binds variable 𝑥 in expression 𝑡 , so that 𝑥 can

be used in 𝑡 . Variables introduced along with the function operator 𝜆 are said to be bound

in the scope of the function body. All other variables are described as free. For instance,

𝜆𝑥.𝑥𝑦 has 𝑥 as bound variable and 𝑦 as free variable. Free variables of an expression, 𝐹𝑉 (𝑒),

is defined as follows:

𝐹𝑉 (𝑥) := 𝑥 , where 𝑥 is a variable

𝐹𝑉 (𝜆𝑥 .𝑒) := 𝐹𝑉 (𝑒) − 𝑥

𝐹𝑉 (𝑒 𝑠) := 𝐹𝑉 (𝑒) ∪ 𝐹𝑉 (𝑠)

Typed Lambda Calculus Typed lambda calculus is a typed formalism with lambda ex-

pressions to represent functions and applications [24]. Types are syntactic nature that

attached to expressions like 𝑒 : 𝜏 for expression 𝑒 with type 𝜏 . Typed lambda calculi allow

proving certain program properties to prevent unwanted behaviours, such as memory ac-

cess violations. A simply typed lambda calculus has basic types, such as 𝐼𝑛𝑡𝑇 and 𝐹𝑙𝑜𝑎𝑡𝑇 ,

and only one type constructor → for constructing function types 𝜎 → 𝜏 where 𝜎 and 𝜏

are two types. As a result, the identity function specifically for integers in a simply typed

7

lambda calculus is annotated as:

𝜆𝑥.𝑥 : 𝐼𝑛𝑡𝑇 → 𝐼𝑛𝑡𝑇

System F System F [34, 15] is a more advanced variant of typed lambda calculus. In addi-

tion to the simply typed lambda calculus, System F formalizes parametric polymorphsim [40]

in the language, i.e., a mechanism for using universal quantification over types.

In a simply typed lambda calculus, there are variables ranging over expressions, func-

tions and function applications. Corresponding, in System F, there are type variables ranging

over types, type functions annotated as Λ, and type-function applications.

A type-function type is also introduced in system F, which has the syntax of ∀𝛼.𝜏 , where

𝛼 is a type variable, and 𝜏 is a type where 𝑋 can be used.

Going back to the identity function example, now a more generic identity function is

formalized as:

Λ𝛼.𝜆𝑥𝛼 .𝑥 : ∀𝛼.𝛼 → 𝛼

With a type-function application with an integer type as an argument, the aforementioned

identity function for integer specifically can be retrieved.

For those who are more familiar with imperative programming, Java generic method

is a more intuitive example for the usage of type function. In Java, assuming 𝑇 is a type

variable, an identity function can be defined as:

1 static <T> T Id(T a) {
2 return a;
3 }

System F-sub(F<) The IRs presented by this thesis relied on System F-sub(F<) [6] which

is an extension to System F. In addition to System F, F< combines parametric polymorphism

with subtyping. The support of subtyping is through the introduction of a new type constant

8

𝑇𝑜𝑝, which is the supertype of all types, and subtypes bound on type-function types: ∀(𝛼 <:

𝜏).𝜏′ where 𝛼 is a type variable that should be the subtype of 𝜏 and can be used in 𝜏′.

The benefit of subtyping hierarchies is that the language can now precisely restrict what

subtypes can be used in a particular function. For instance, assuming that 𝐼𝑛𝑡𝑇 and 𝐹𝑙𝑜𝑎𝑡𝑇

are subtypes of 𝑆𝑐𝑎𝑙𝑎𝑟𝑇 , with F< we can have an identity function that only receives an

integer or a float:

∀(𝛼 <: 𝑆𝑐𝑎𝑙𝑎𝑟𝑇).𝜆𝑥𝛼 .𝑥

2.2 Lift IR

The implementation and design of Lift IR [36, 37] greatly influences this thesis. Lift at-

tempts to leverage the benefit of a functional array-based programming language to express

high-performance data-parallel computation in various domains, including OpenCL [37],

stencil computations [17], OpenMP [31] and FFT [22]. Given the generic and expressive-

ness of the high-level primitives from Lift, as we will see, the functional level IR adopted by

thesis shares many common design elements from Lift.

Lift IR is based on system F as introduced in the previous section and consists of the

nesting and combination of high-level primitives. There are two kinds of primitives: al-

gorithmic pattern primitives that represent high-level array-based operations, such as 𝑀𝑎𝑝

and 𝑅𝑒𝑑𝑢𝑐𝑒, and data layout pattern primitives that do not perform any computation but

only reorganize the data layout, such as 𝑆𝑝𝑙𝑖𝑡 and 𝑍𝑖𝑝.

Algorithmic Pattern Primitives 𝑀𝑎𝑝 and 𝑅𝑒𝑑𝑢𝑐𝑒 are two major algorithmic pattern prim-

itives in Lift that perform computation on arrays.

𝑀𝑎𝑝 is a higher-order function that constructs an array by applying the input function

to each element of the input array (𝛼 , 𝛽, 𝑛 and 𝑚 are type variables as used in the rest of

this section):

𝑀𝑎𝑝 : (𝛼 → 𝛽) → [𝛼]𝑛 → [𝛽]𝑛

9

For instance, 𝑀𝑎𝑝 (𝑓 , [𝑥0, 𝑥1, 𝑥2, 𝑥3]) = [𝑓 (𝑥0), 𝑓 (𝑥1), 𝑓 (𝑥2), 𝑓 (𝑥3)] where [𝑥0, .., 𝑥𝑛] is an array

constructor. A common-used example for using𝑀𝑎𝑝 is to obtain the square of every element

in an array:

𝑀𝑎𝑝 (𝜆𝑥.𝑥 ∗ 𝑥, 𝑎𝑟𝑟)

𝑅𝑒𝑑𝑢𝑐𝑒 is a higher-order that takes all the elements from an input array, and combines

them as well as an initial value using a binary operation to produce a single value. It has

the following signature:

𝑅𝑒𝑑𝑢𝑐𝑒 : (𝛽 → 𝛼 → 𝛽) → 𝛽 → [𝛼]𝑛 → 𝛽

The first argument for 𝑅𝑒𝑑𝑢𝑐𝑒 is a function i.e., a binary operation that takes two arguments:

the first is for the current value, and the second is for the accumulated value. The second

argument for 𝑅𝑒𝑑𝑢𝑐𝑒 is an initial value. The third argument for 𝑅𝑒𝑑𝑢𝑐𝑒 is an array. 𝑅𝑒𝑑𝑢𝑐𝑒

applied the input function to the initial value and all elements from the third argument to

produce a single value. For instance, 𝑅𝑒𝑑𝑢𝑐𝑒 (𝑓 , 𝑧, [𝑥0, 𝑥1, 𝑥2, 𝑥3]) = 𝑓 (𝑓 (𝑓 (𝑓 (𝑧, 𝑥0), 𝑥1), 𝑥2), 𝑥3).

A common-used case of 𝑅𝑒𝑑𝑢𝑐𝑒 is to sum up all elements of an array:

𝑅𝑒𝑑𝑢𝑐𝑒 (+, 0, 𝑎𝑟𝑟)

Data Layout Pattern Primitives The data layout pattern primitives are those operations

that only change the data layout of the input but do not perform any computation. Here

goes an overview of the mainly used data layout pattern primitives in Lift:

• 𝑆𝑝𝑙𝑖𝑡 splits an array into multiple sub-arrays with the following signature:

𝑆𝑝𝑙𝑖𝑡 : 𝑚 :𝑁𝑎𝑡 → [𝛼]𝑛 → [𝛼]𝑛/𝑚

10

The first argument𝑚 is a natural number that represents the length of resulted sub-

arrays. The second argument is the array to split. For instance, 𝑆𝑝𝑙𝑖𝑡 (2, [𝑥0, 𝑥1, 𝑥2, 𝑥3]) =

[[𝑥0, 𝑥1], [𝑥2, 𝑥3]].

• 𝐽𝑜𝑖𝑛 has the opposite effect to 𝑆𝑝𝑙𝑖𝑡 by joining sub-arrays into one array:

𝐽𝑜𝑖𝑛 : [[𝛼]𝑛]𝑚 → [𝛼]𝑛∗𝑚

For instance, 𝐽𝑜𝑖𝑛([𝑥0, 𝑥1], [𝑥2, 𝑥3]) = [𝑥0, 𝑥1, 𝑥2, 𝑥3].

• 𝑇𝑢𝑝𝑙𝑒 bundles two inputs together and creates a tuple:

𝑇𝑢𝑝𝑙𝑒 : 𝛼 → 𝛽 → (𝛼, 𝛽)

For instance, 𝑇𝑢𝑝𝑙𝑒 (𝑥0, 𝑥1) = (𝑥0, 𝑥1) where (𝑥0, 𝑥1) represents a tuple.

• 𝑍𝑖𝑝 receives a tuple of arrays and returns an array of tuples by putting the elements

in two arrays together:

𝑍𝑖𝑝 : ([𝛼]𝑛, [𝛽]𝑛) → [(𝛼, 𝛽)]𝑛

For instance, 𝑍𝑖𝑝 (𝑇𝑢𝑝𝑙𝑒 ([𝑥0, 𝑥1], [𝑦0, 𝑦1])) = [(𝑥0, 𝑦0), (𝑥1, 𝑦1)]

• 𝐹𝑠𝑡 and 𝑆𝑛𝑑 projects a component of a tuple:

𝐹𝑠𝑡 : (𝛼, 𝛽) → 𝛼 𝑆𝑛𝑑 : (𝛼, 𝛽) → 𝛽

For instance, 𝐹𝑠𝑡 (𝑥0, 𝑥1) = 𝑥0 and 𝑆𝑛𝑑 (𝑥0, 𝑥1) = 𝑥1.

• 𝐴𝑡 projects a component of an array:

𝐴𝑡 : 𝑚 :𝑁𝑎𝑡 → [𝛼]𝑛 → 𝛼

11

For instance, 𝐴𝑡 (0, [𝑥0, 𝑥1]) = 𝑥0.

• 𝑆𝑙𝑖𝑑𝑒 applies a moving window to the input data and can be used for stencil compu-

tation where m is for window size and k is for step length:

𝑆𝑙𝑖𝑑𝑒 : 𝑚 :𝑁𝑎𝑡 → 𝑘 :𝑁𝑎𝑡 → [𝛼]𝑛 → [[𝛼]𝑚] (𝑛−𝑚+𝑘)/𝑘

For instance, 𝑆𝑙𝑖𝑑𝑒 (3, 1, [𝑥0, 𝑥1, 𝑥2, 𝑥3]) = [[𝑥0, 𝑥1, 𝑥2], [𝑥1, 𝑥2, 𝑥3]] with 3 as the window

size and 1 as the step.

2.3 Destination-passing Style

DPS is commonly used in many imperative programs, where the caller is responsible for the

memory allocation of the result of its callee. By applying this style, a function will receive a

pointer where the function result is stored as one of the parameters. Therefore, the callee

does not need to allocate space for storing its result; instead, the responsibility will be taken

by the caller. For instance, most of C standard library’s functions, e.g., strcpy, follows this

style by receiving a destination for the resulted string:

char* strcpy(const char* source, char* destination);

The usage of strcpy copies the first argument to the second argument. And the first argu-

ment is the source, while the latter is the destination for storing the result.

Code written in DPS would have its return value passed explicitly as an extra argument,

i.e., the destination. For example, a function sum that sums up three input arguments can

be implemented as:

1 int sum(int a, int b) {
2 return a + b;
3 }

In DPS, a destination d is used to storing the function result, and the program becomes:

12

1 void sum(int a, int b, int *d) {
2 *d = a + b;
3 }

Using DPS also provides a formalization for handling the memory management problem

when compiling high-level functional code to low-level imperative code, as we will see in

the rest of the thesis.

2.4 Views

Lift [37], which greatly influences this thesis, introduces the concept of view to remove

intermediate data structures. In Lift, a view is a compiler internal data structure for storing

information of array access. Functions that only change the data layout are lazy and produce

views instead of eagerly materializing the result into memory. In other words, the data

reshaping operations only happen when the data is accessed in a computation.

Two steps are needed to leverage the Lift views to eliminate intermediate data struc-

tures: the view construction and the view consumption.

View Construction In this step, the compiler traverses the IR following the data flow

and constructs a view for each node that influences the array access pattern. For exam-

ple, in the program 𝑀𝑎𝑝 (𝜆𝑥.𝐹𝑠𝑡 (𝑥), 𝑍𝑖𝑝 (𝑎, 𝑏): 𝑍𝑖𝑝 creates a 𝑍𝑖𝑝𝑉𝑖𝑒𝑤 . 𝑀𝑎𝑝 produces an

𝐴𝑟𝑟𝑎𝑦𝐴𝑐𝑐𝑒𝑠𝑠𝑉 𝑖𝑒𝑤 (𝑖) to access each element produced by the 𝑍𝑖𝑝𝑉𝑖𝑒𝑤 , where 𝑖 represents

which element of the array is to be accessed. For the input function of the 𝑀𝑎𝑝, 𝐹𝑠𝑡 is used

to access the first element for the variable 𝑥 , which creates a𝑇𝑢𝑝𝑙𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑉 𝑖𝑒𝑤 (0) for access-

ing the first element of a tuple view. Finally, the variable 𝑎 and 𝑏 also represent two views

13

for the actual memory accessing. The resulted views construction will be:

𝑇𝑢𝑝𝑙𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑉 𝑖𝑒𝑤 (0, 𝐴𝑟𝑟𝑎𝑦𝐴𝑐𝑐𝑒𝑠𝑠𝑉 𝑖𝑒𝑤 (𝑖,

𝑍𝑖𝑝𝑉𝑖𝑒𝑤 (𝑀𝑒𝑚𝑜𝑟𝑦𝑉𝑖𝑒𝑤 (𝑎), 𝑀𝑒𝑚𝑜𝑟𝑦𝑉𝑖𝑒𝑤 (𝑏)))

View Consumption In this step, an array stack for array access patterns and a tuple stack

for tuple access patterns are used for calculating the accumulated effect of views. By exam-

ining the constructed view graph, the patterns will be added to the stacks and then used in

a first-in-last-out manner.

Going back to the previous example: 𝑇𝑢𝑝𝑙𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑉 𝑖𝑒𝑤 (0) pushes 0 to the tuple stack to

represent that there is a tuple access to the first element of a tuple view. 𝐴𝑟𝑟𝑎𝑦𝐴𝑐𝑐𝑒𝑠𝑠𝑉 𝑖𝑒𝑤

pushes 𝑖 to the array stack to represent an array access to the 𝑖th element of an array view.

Then the 𝑍𝑖𝑝𝑉𝑖𝑒𝑤 pops 0 from the tuple stack and use the information to determine which

view should be used next which is𝑀𝑒𝑚𝑜𝑟𝑦𝑉𝑖𝑒𝑤 (𝑎) in this case. Finally, the remaining array

access 𝑖 in the array stack will be used to emit a final index to the memory, which is 𝑎[𝑖].

While the Lift view system is simple and effective in removing most of the intermediate

data structures, it has two drawbacks. First, the Lift view is implemented by internal data

structures in the compiler, and it seems hard for the end-users to control what should be

materialized and what should be considered as a view. Secondly, the Lift view is only limited

to the source view, and there are other kinds of views called destination views that affect

the pattern for writing to memory instead of reading. The destination view is crucial for

expressing certain efficient imperative programs in a functional style that is impossible

when only the source view is available, which is one of the main contributions of this thesis.

This thesis proposes another view system that is inspired by the Lift view. There are

two major improvements compared with the Lift view system. First, this thesis expresses

views at the language level, so end-users have fine-grained control over them. Secondly,

14

this thesis combines views with DPS so that the concept of destination view is introduced

for generating efficient code (more discussion in the rest of the thesis).

15

Chapter 3

Related Work

This chapter reviews the related work on code generation from high-level abstractions,

Destination-Passing Style and removing intermediate data structures, all of which are pop-

ular research topics over the decades and are important components that form the founda-

tion of this thesis.

3.1 Code Generation from High-level Abstractions

Generating low-level imperative code from high-level abstractions allows programs to be

written in high-level abstractions so that the end-users do not need to worry about the

low-level details. At the same time, it provides good performance by generating low-level

imperative code where overheads from high-level abstractions can be eliminated.

The first example is SAC [16] (Single Assignment C), a functional language designed

for array-intensive applications and generates C code with support for parallel execution

on multiprocessor systems. The fundamental idea in the language design is to keep the

language as close as possible to C but still support high-level array-based programming.

SAC treats arrays as first citizens and provides a data-parallel skeleton operationWith-Loop,

which is similar to array comprehension in Haskell. The distinguishing feature of With-Loop

is that it can be used for expressing shape-invariant operations, i.e., operations on arrays

16

whose shape is statically unknown. Optimizations around With-Loop provide the capability

of the fusion between With-Loops and avoid creating intermediate data structures.

Another interesting project is Accelerate [7], a domain-specific high-level embedded

language in Haskell. Since it is an embedded language, the operations do not directly issue

any computation in Haskell. Instead, it builds term trees to represent the computation via

higher-order combinators such as 𝑀𝑎𝑝, 𝐹𝑜𝑙𝑑, 𝑆𝑐𝑎𝑛, etc. Based on the term trees, NVIDIA’s

CUDA code will be generated.

With a very similar idea of using higher-order combinators for expressing computation,

Futhark [19] is a purely functional array-based language that seeks to generate OpenCL

code. Its core language consists of three higher-order parallel combinators: 𝑀𝑎𝑝, 𝑅𝑒𝑑𝑢𝑐𝑒

and 𝑆𝑐𝑎𝑛. One of the main contributions of the Futhark languages is that it supports in-

place updates on arrays and provides a type system that guarantees that in-place update

operations are safe.

The implementation and design of Lift [37] have greatly influenced this thesis. Lift

generates efficient OpenCL code from a functional array-based programming language. It

has been applied in various domains including OpenCL [37], stencil computations [17],

OpenMP [31], FFT [22] and matrix multiplication [38]. As we have seen in section 2.2,

compared with Futhark, Lift IR consists of more fine-grained combinators, including 𝑀𝑎𝑝,

𝑅𝑒𝑑𝑢𝑐𝑒, 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 𝑆𝑙𝑖𝑑𝑒, etc. For lowering and optimization, Lift uses a rewrite rule sys-

tem [36] to derive lower-level constructs from the high-level functional primitives. Lift’s

fundamental ideas and compilation process can be traced back to Lime [10], an embedded

programming language in Java that generates the OpenCL API calls.

3.2 Destination-Passing Style (DPS)

DPS is a programming convenience where the caller is responsible for providing a destina-

tion for the callee.

17

This technique is first applied to remove the dependence constrains on Lisp program for

parallel execution [23]. Especially when a statement in the tail of a recursive function uses

the result of the recursive call, there will be a dependence constraint where the statement

must execute after the subsequence iterations finish. DPS is used to solve this constraint

by creating data structures with holes, i.e., uninitialized fields, to be used as destinations.

Thus, the subsequence iterations can produce and store their result to the destinations.

With a similar idea of using DPS to provide the facilities to transform a non-tail-recursive

function into a tail-recursive function, a formally functional representation [27] of data

structures with a hole has been presented. It includes the introduction of hole abstraction,

hole application and the usage of linear types [47]. Tail-recursive modulo cons [13, 48] is a

special case for transforming those non-tail-recursive functions where the recursive call is

not in the tail position but a part of data constructors, such as 𝑐𝑜𝑛𝑠, into tail-recursive ones.

For that, recently, a modular transformation [5] has been proposed with the usage of DPS

and the formalization of the hole [27].

Differently, 𝐹 (pronounced as F smooth) [35] investigates the application of DPS for

memory management in an array-based functional language. As the main inspiration for

this thesis, 𝐹 has provided a compiler for translating an F#-like language to imperative C

code leveraging the principle of DPS. Nevertheless, its highest level IR consists of relatively

low-level primitives, such as 𝐵𝑢𝑖𝑙𝑑 and 𝐼 𝑓 𝑜𝑙𝑑, which correspond to the imperative level IR

of this thesis. Instead, this thesis uses 𝑀𝑎𝑝, 𝑅𝑒𝑑𝑢𝑐𝑒, and other high-level primitives at the

highest level, which comes with two advantages: first, the high-level primitives introduce an

extra level of abstraction that allows many rewritings to be applied to these primitives, such

as 𝑀𝑎𝑝 (𝑓) ◦𝑀𝑎𝑝 (𝑔) = 𝑀𝑎𝑝 (𝑓 ◦ 𝑔) and 𝑀𝑎𝑝 (𝑓 ,𝐶𝑜𝑛𝑐𝑎𝑡 (𝑎, 𝑏)) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑀𝑎𝑝 (𝑓 , 𝑎), 𝑀𝑎𝑝 (𝑓 , 𝑏)).

Secondly, while lazy primitives can be easily represented by the low-level primitive 𝐵𝑢𝑖𝑙𝑑,

using 𝐵𝑢𝑖𝑙𝑑 directly discards the necessary information to lower those primitives as desti-

nation views that affect where data should be materialized. For example, 𝑍𝑖𝑝 (𝑖𝑛) can be

rewritten as 𝐵𝑢𝑖𝑙𝑑 (𝜆𝑖.𝑇𝑢𝑝𝑙𝑒 (𝑖𝑛.0[𝑖], 𝑖𝑛.1[𝑖])). But when using the latter representation, it is

18

hard for the compiler to detect whether this 𝐵𝑢𝑖𝑙𝑑 is corresponding to the 𝑍𝑖𝑝. As we will

see in section 5.3, the information hidden in the high-level primitives, such as 𝑍𝑖𝑝 or 𝑆𝑝𝑙𝑖𝑡 ,

is needed for lowering them as destination views. 𝐵𝑢𝑖𝑙𝑑, however, is too low-level to retrieve

the required information.

DPS is also comparable to the acceptor-passing translation introduced in DPIA [3] which,

just like this thesis, aims to provide a formalized translation from a functional array-based

language to low-level imperative code. Acceptor in the acceptor-passing translation essen-

tially corresponds to the destination in DPS. Using data layout primitives to change where

to write, as a destination view, is also realized in DPIA through rewrite rules such as (the

semantics of 𝐽𝑜𝑖𝑛 and 𝑆𝑝𝑙𝑖𝑡 have been shown in section 2.2):

𝐴 := 𝑆𝑝𝑙𝑖𝑡 (𝑒) ⇒ 𝑆𝑝𝑙𝑖𝑡𝐴𝑐𝑐 (𝐴) := 𝑒

On the right-hand side of the ⇒, 𝐴 is an acceptor, and := assigns the result from 𝑆𝑝𝑙𝑖𝑡 (𝑒)

to the acceptor 𝐴. On the left-hand side of the⇒, the program writes the result from 𝑒 to

𝑆𝑝𝑙𝑖𝑡𝐴𝑐𝑐 (𝐴) instead. Here, 𝑆𝑝𝑙𝑖𝑡𝐴𝑐𝑐 is actually a 𝐽𝑜𝑖𝑛 so that, instead of splitting the input 𝑒,

it joins the acceptor 𝐴. This process is similar to how destination views are handled, as we

will see in 5.3, but DPIA only discusses such reversed effect for four primitives: 𝑇𝑢𝑝𝑙𝑒, 𝑍𝑖𝑝,

𝑆𝑝𝑙𝑖𝑡 , and 𝐽𝑜𝑖𝑛. This thesis, however, supports more primitives as well as their composition

as destination views. It also provides fine-grained control for whether a primitive should

have such a reverse effect, which is not provided in DPIA.

In summary, rather than being interested in the non-tail-recursive function transforma-

tion or the memory management aspect of DPS, this thesis is more focused on the formal-

ization of using DPS to compile a Lift-like language to the imperative code and explores the

benefit of introducing the concept of destination to the view system to generate efficient

imperative code.

19

3.3 Intermediate Data Structure

The problem of removing intermediate data structures has been well studied over the years.

One of the most prominent techniques is desforestation [46] for eliminating the interme-

diate data structures of a so-called "treeless" form program. Later on, there are more tech-

niques proposed for this very purpose in different contexts. This section provides a thorough

review of these techniques and their influences on the method proposed by this thesis.

Shortcuts to deforestation The shortcut to deforestation [14] provides a considerably

simpler solution for the same purpose by providing a fusion system between the two com-

binators: the list catamorphism 𝑓 𝑜𝑙𝑑𝑟 for consuming lists and the list constructor 𝑏𝑢𝑖𝑙𝑑 for

producing lists. The key of this fusion is the following fusion rule that enables the elimina-

tion of the intermediate lists: ∀𝑓 𝑔 𝑧. 𝑓 𝑜𝑙𝑑𝑟 𝑓 𝑧 (𝑏𝑢𝑖𝑙𝑑 𝑔) = 𝑔 𝑓 𝑧.

Similar to the 𝑓 𝑜𝑙𝑑𝑟/𝑏𝑢𝑖𝑙𝑑 fusion, the 𝑑𝑒𝑠𝑡𝑟𝑜𝑦/𝑢𝑛𝑓 𝑜𝑙𝑑𝑟 fusion system [41] are proposed

with two combinators: 𝑑𝑒𝑠𝑡𝑟𝑜𝑦 and 𝑢𝑛𝑓 𝑜𝑙𝑑𝑟 for production and consumption respectively.

By carefully selecting their implementation, the key of this 𝑑𝑒𝑠𝑡𝑟𝑜𝑦/𝑢𝑛𝑓 𝑜𝑙𝑑𝑟 fusion lies on

the rule: 𝑑𝑒𝑠𝑡𝑟𝑜𝑦 𝑔 (𝑢𝑛𝑓 𝑜𝑙𝑑𝑟 𝑓 𝑒) = 𝑔 𝑓 𝑒. Compared with 𝑓 𝑜𝑙𝑑𝑟/𝑏𝑢𝑖𝑙𝑑, the 𝑑𝑒𝑠𝑡𝑟𝑜𝑦/𝑢𝑛𝑓 𝑜𝑙𝑑𝑟

fusion has the advantage of handling the combinator that involves accumulating parameters

such as 𝑓 𝑜𝑙𝑑𝑙 and zip-like functions. Examples for expressing accumulating parameters and

zip-like functions can be found in the paper [41], which are too lengthy to discuss here.

Stream fusion [8, 9] is proposed to allow the separation of reading, writing, and compu-

tation on each element, which overcomes some shortages of the previous work on handling

zip, concatenation, and nested lists. The term "stream" may seem confusing since it is

sometimes overloaded to represent an infinite sequence, while this term used here is for a

terminating sequence. Data type 𝑆𝑡𝑟𝑒𝑎𝑚 takes a step function for producing the next ele-

ment and an initial state. Given a list, function 𝑠𝑡𝑟𝑒𝑎𝑚 constructs a 𝑆𝑡𝑟𝑒𝑎𝑚 as a result. In

contrast, function 𝑢𝑛𝑠𝑡𝑟𝑒𝑎𝑚 takes an 𝑆𝑡𝑟𝑒𝑎𝑚 as input and returns a list. With these con-

20

structs, the fusion either happens between 𝑆𝑡𝑟𝑒𝑎𝑚𝑠 themselve or is based on the rule of

𝑠𝑡𝑟𝑒𝑎𝑚 (𝑢𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑠) = 𝑠, assuming that 𝑠𝑡𝑟𝑒𝑎𝑚 ◦ 𝑢𝑛𝑠𝑡𝑟𝑒𝑎𝑚 is the identity on 𝑆𝑡𝑟𝑒𝑎𝑚𝑠.

Recently, Strymonas [21] makes a step further to completely remove the overhead, such

as extra function calls or closures, caused by those step functions introduced in the stream

fusion system via staging. Staging is a technique to write programs that generate programs

and to ensure that the generated programs are well-formed, well-scoped and well-typed. It

also supports the combinator 𝑐𝑜𝑛𝑐𝑎𝑡𝑀𝑎𝑝 and the corner cases arising from the composition

of the nested array and zip-like function.

While the aforementioned approaches are effective in removing intermediate data struc-

tures, they pay little attention to the combinators’ effect on the destination, which is one of

the main contributions of this thesis.

View System in Lift Lift [37], greatly influences this work, and introduces the concept

of view to remove the intermediate data structures. The implementation details of view

system in Lift is already discussion in section 2.4. Compared with the prior work, the view

system is a more straightforward way to remove the intermediate data structures in the

Lift-like language because programs in such a language are composed with a concise set of

array-based primitives, such as 𝑀𝑎𝑝, 𝑆𝑝𝑙𝑖𝑡 , and 𝑍𝑖𝑝.

However, unlike the prior work where the fusion process is embedded in language level

and based on rewrite rules, the process of removing the intermediate data structures in

the view system is implemented through the usage of compiler internal data structures.

The reason is that it fails to discover, or at least doesn’t elaborate, the fact that most of the

primitives can be rewritten by 𝐵𝑢𝑖𝑙𝑑. 𝐵𝑢𝑖𝑙𝑑 is an array constructor and is different from the

𝑏𝑢𝑖𝑙𝑑 used in 𝑏𝑢𝑖𝑙𝑑/𝑓 𝑜𝑙𝑑𝑟 fusion [14]. Instead, 𝐵𝑢𝑖𝑙𝑑 has the following signature, where 𝑛

is for the length of the resulted array and (𝐼𝑛𝑡 → 𝑡) is the type of the index function that

takes an index as input and returns an element at the index position:

𝐵𝑢𝑖𝑙𝑑 : ∀𝑛.∀𝑡 .𝑛 → (𝐼𝑛𝑡 → 𝑡) → [𝑡]𝑛

21

Once those primitives are rewritten by 𝐵𝑢𝑖𝑙𝑑, the key rewrite rule for fusion will be:

𝐵𝑢𝑖𝑙𝑑 (𝑛, 𝑓) [𝑖] ⇒ 𝑓 (𝑖)

In addition, the Lift view system doesn’t include the concept of destination views which,

as we will be seen in the result of the thesis, is necessary for generating efficient code.

The 𝑝𝑢𝑙𝑙/𝑝𝑢𝑠ℎ Array Using the source and destination view, presented in this thesis, to

remove intermediate data structures is more synergistic with the pull and push array ap-

proach. A pull array is a delayed representation of an array [11]. It is defined as, which is

essentially identical to the definition of the 𝐵𝑢𝑖𝑙𝑑 mentioned before:

𝑑𝑎𝑡𝑎 𝑃𝑢𝑙𝑙 𝑎 = 𝑃𝑢𝑙𝑙 𝐿𝑒𝑛𝑔𝑡ℎ (𝑖𝑑𝑥 → 𝑎)

The data type 𝑃𝑢𝑙𝑙 first takes a 𝐿𝑒𝑛𝑔𝑡ℎ standing for the length of the array it is going to

produce. And then, it takes an index function for producing the array.

Since it is constructed by an indexing function, the removal of intermediate arrays comes

for free. The guarantee of pull array fusion can be traced back to Feldspar [4] and repa [20].

Differently, a push array contains a function for writing the value into memory, and

is a more efficient way to represent arrays for array concatenation and writing multiple

elements per loop iteration. It is defined as the following in Haskell:

𝑑𝑎𝑡𝑎 𝑃𝑢𝑠ℎ 𝑎 = 𝑃𝑢𝑠ℎ ((𝑖𝑑𝑥 → 𝑎 → 𝐶𝑀 ()) → 𝐶𝑀 ()) 𝐿𝑒𝑛𝑔𝑡ℎ

where 𝐶𝑀 is a compile monad for generating code.

Push array first introduced in Obsidian [43] and is extended in Feldspar [4], Nikola [25],

meta-repa [1] and strymonas [21]. The combination of pull and push arrays by defunction-

22

alizing push arrays [42] suggests the necessity of the coexistence of pull and push arrays in

the same library.

In fact, the notions of the source view and destination view, which will be presented in

detail in chapter 4, are very similar to pull/push array. However, the approach proposed

in this thesis overcomes some of their limitations. First, views are not array-specific but

can be generalized to other data structures, e.g., tuples. Secondly, this thesis focuses on the

compilation of functional code. With the use of DPS, a destination view will be transformed

into a function that returns locations on memory for writing and maintains a direct map-

ping to imperative code. Push arrays, however, remain too abstract for a straightforward

translation to imperative code. Thirdly, expressing nested array operations that involve

high-dimensional arrays via push arrays, such as Split and Transpose, seems complicated.

Nevertheless, as we will see later, destination views can express them without obstacles.

3.4 Summary

This chapter has reviewed the related work on DPS and removing intermediate data struc-

tures. Especially for those prior work on removing intermediate data structures, less at-

tention has been paid to the effect on the destination side. While the push arrays can be

used to express how an array is written into the memory, they cannot be generalized to

other data structures, e.g., tuples, and to express nested array operations easily. The next

chapters will show how the combination of DPS and views, one of the methods for removing

intermediate data structures, can overcome the aforementioned drawbacks and provide a

framework as a whole to generate efficient code from a Lift-like function IR.

23

Chapter 4

IR Design with Destination and Views

This chapter describes the design decisions for the multi-levels IRs that enable the combi-

nation of DPS and views. It first provides an overview of the entire approach as well as two

motivating examples. Then, it formalizes the grammar, types, and primitives that will be

used in the IRs throughout the thesis.

4.1 Overview and Example

Figure 4.1 presents an overview of the proposed approach. The input program is expressed

at the functional level by composing and nesting high-level array-based functional primi-

tives. Then, the functional level IR is lowered to the imperative level using rewriting, where

it is first transformed into a DPS style, followed by the removal of views. As we will see, this

removal of views allows for the elimination of intermediate data structures. Finally, high-

performance imperative code is produced using either a sequential C backend or a parallel

OpenCL backend to target GPUs.

The rest of this section provides two examples, vector addition and concatenation, that

illustrate the compilation process. These examples will show how views are used to remove

intermediate data and produce efficient code.

24

Functional Level IR

Codegen

High-Performance
Imperative code

Rewriting
DPS transformation

Views Removal

C / OpenCL

Imperative Level IRFuntional
Imperative

Figure 4.1: Overview of the compilation process from a functional IR to imperative code.

4.1.1 Vector Addition

At the functional level, vector addition is expressed as:

𝜆𝑎, 𝑏.𝑀𝑎𝑝 (𝜆𝑥.(𝑥 .0 + 𝑥 .1), 𝑍𝑖𝑝 (𝑇𝑢𝑝𝑙𝑒 (𝑎, 𝑏)))

The first issue to consider is how to ensure that no intermediate data structure is created

by𝑍𝑖𝑝 and𝑇𝑢𝑝𝑙𝑒 to generate efficient code. To achieve this, it is expected that𝑍𝑖𝑝 and𝑇𝑢𝑝𝑙𝑒

are removed so that the operands for addition are direct array accesses to 𝑎 and 𝑏.

𝑍𝑖𝑝 and 𝑇𝑢𝑝𝑙𝑒 can be eliminated because they are views in the language (more details

in section 4.2). Views are operations that are lazy where data should not be materialized,

i.e., not written to memory. As we will see later, views are removed automatically during

lowering, preventing the use of intermediate data structures.

After removing 𝑍𝑖𝑝 and𝑇𝑢𝑝𝑙𝑒, the program is still too abstract for generating imperative

code. DPS is used to introduce a destination: a memory location where data can be written

to. With 𝑑 as the destination, after applying a DPS transformation, the program becomes:

𝜆𝑎, 𝑏, 𝑑.𝐵𝑢𝑖𝑙𝑑 (𝑛, 𝜆𝑖.𝐴𝑠𝑠𝑖𝑔𝑛(𝑎[𝑖] + 𝑏 [𝑖], 𝑑 [𝑖]))

25

Here, 𝐵𝑢𝑖𝑙𝑑 takes a length and an index function to build an array that corresponds to

a for-loop in the target C language. As a result, the program now has a straightforward

translation to imperative code:

1 for (int i = 0; i < n; i++)
2 d[i] = a[i] + b[i];

4.1.2 Concatenation

The previous example has shown how the𝑍𝑖𝑝 and𝑇𝑢𝑝𝑙𝑒 simply informwhere the addition(+)

reads its input so that any unnecessary intermediate data structures are eliminated. In the

previous example, these views are called source views, since they only affect where and how

the next operation should read its input. Now the focus lies on a different type of views:

destination views.

To illustrate the concept and necessity for destination views, a simple concatenation

example is used. First, it is expressed using source views (as indicated by the 𝑆 superscript)

and later we will see the advantage of using destination views.

This example concatenates two arrays, 𝑎 and 𝑏, with length 𝑛 and𝑚 respectively. In the

program below, 𝑀𝑎𝑝 (𝐼𝑑) is used to materialize the two concatenated arrays into memory

using the identity function:

𝜆𝑎, 𝑏.𝑀𝑎𝑝 (𝐼𝑑,𝐶𝑜𝑛𝑐𝑎𝑡𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑎, 𝑏)))

After conversion to DPS, the program becomes:

𝜆𝑎, 𝑏, 𝑑.𝐵𝑢𝑖𝑙𝑑 (𝑛 +𝑚, 𝜆𝑖.𝐼 𝑓 (𝑖 < 𝑛,𝐴𝑠𝑠𝑖𝑔𝑛(𝑎[𝑖], 𝑑 [𝑖]), 𝐴𝑠𝑠𝑖𝑔𝑛(𝑏 [𝑖 − 𝑛], 𝑑 [𝑖])))

And a direct translation to imperative code is:

1 for(int i = 0; i < n + m; i++) {
2 if(i < n) d[i] = a[i];
3 else d[i] = b[i - n];}

26

In a single for-loop, arrays 𝑎 and 𝑏 are concatenated and written into destination 𝑑.

However, this code might suffer from bad performance since a test is performed at every

iteration. A more efficient implementation could be:

1 for (int i = 0; i < n; i++) d[i] = a[i];
2 for (int i = 0; i < m; i++) d[i + n] = b[i];

This second implementation, however, can not be directly derived from the functional

expression. The core of the issue is that the location of the writes must be modified, rather

than the location of the read as in the first example. To solve this problem, the concept of

destination view needs to be introduced. A destination view influences, lazily, where an

operation should write its result.

If we use 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐷 superscript) as a destination view, the functional program for con-

catenation becomes:

𝜆𝑎, 𝑏.𝐶𝑜𝑛𝑐𝑎𝑡𝐷 (𝑇𝑢𝑝𝑙𝑒𝐷 (𝑀𝑎𝑝 (𝐼𝑑, 𝑎), 𝑀𝑎𝑝 (𝐼𝑑, 𝑏)))

At the imperative level, two 𝐵𝑢𝑖𝑙𝑑 are produced to represent two for-loops. By employing

DPS and removal of the destination views, which we will see later in the thesis, the arrays

𝑎 and 𝑏 are directly written into the right location:

𝜆𝑎, 𝑏, 𝑑.𝐵𝑢𝑖𝑙𝑑 (𝑛, 𝜆𝑖.𝐴𝑠𝑠𝑖𝑔𝑛(𝑎[𝑖], 𝑑 [𝑖]));

𝐵𝑢𝑖𝑙𝑑 (𝑚, 𝜆𝑖.𝐴𝑠𝑠𝑖𝑔𝑛(𝑏 [𝑖], 𝑑 [𝑖 + 𝑛]))

Here, the semicolon operator ; is a syntatic sugar for a let expression. For example, 𝑒1; 𝑒2

is equivalent to 𝑙𝑒𝑡 𝑡𝑚𝑝 = 𝑒1 𝑖𝑛 𝑒2 where 𝑡𝑚𝑝 is never used in 𝑒2.

The code generator will produce the second C code seen earlier which should lead to

better performance. This example has illustrated the benefit of using destination views.

27

E := x | 0.0 | P | variables, literals, primitives
𝜆x.E | E(E) | function abstraction, application
Λx.tT | E〈T〉 | type-function abstraction, type application
Let x = E in E | x = E; E | let expression

P := Map | Reduce | Tuple | ... primitive identifiers

T := 𝑋 | ValueT | MetaT type variables, value types, meta types
ValueT := DataT | 𝑋 T ↦→ T data types, type-function types

T
EffectT
→ T | function types

DataT := ScalarT | scalar types
[DataT]NatT array types
(DataT, DataT) tuple types

ScalarT := IntT | FloatT | DoubleT |... scalar types

MetaT := NatT | EffectT natural numbers, effect types
EffectT := S | D | E | source view, destination view, eager types

∅ | EffectT 	 EffectT no-effect, composed effect types

Figure 4.2: Abstract Grammar for the Functional IR

4.2 Functional Level and Views

The functional level IR shares many common design elements with Lift [37]. It consists of

the composition and nesting of high-level functional array-based primitives and is optimized

via a set of rewriting rules. One of the main differences with Lift is that the concept of

view is embedded as effect types at the functional level IR, which provides end-users with

fine-grained controls over whether primitives should be materialized or not. This section

presents the expressions, types, primitives available at the function level and the effects

types related to views.

4.2.1 Core Language

Expressions and Types Figure 4.2 describes the grammar for the functional IR, which is

based on typed lambda calculus with subtyping in the style of System F-sub (𝐹<) [6]. F< is

28

discussed in section 2.1 as an extension to System F [34, 15] that supports both parametric

polymorphsim and subtyping which allows for an intuitive type hierarchy.

A set of primitives, such as Map and Reduce, provided by the IR are handled specially

in the later transformations and lowering. They are essentially implemented as pre-defined

type-function abstractions. More details on these primitives will be discussed later.

Data and Function Types are both value types, i.e., they can be used as input for or

returned by a function. While it is extensible, the IR support three kinds of data types

by default; they are scalar types, array types and tuple types. Notation [𝑇]𝑁𝑎𝑡𝑇 stands for

an array with 𝑁𝑎𝑡𝑇 elements of data type 𝑇 where 𝑁𝑎𝑡𝑇 is a meta type. Similarly, (𝑇,𝑈)

represents a tuple with data type 𝑇 and 𝑈 . A function type is written as 𝑇
𝐸𝑓 𝑓 𝑒𝑐𝑡𝑇
→ 𝑇 where

the first 𝑇 is the input type and the second 𝑇 is for the return type, and they are both

subtypes of𝑉𝑎𝑙𝑢𝑒𝑇 . As part of the effect system, which will be explored later, an effect type

is embedded in the function type and placed above the arrow.

Type-function types, as discussed in section 2.1, are used to represent generic functions.

A type-function type is written as𝑋𝑇 ↦→ 𝑇 where the superscript on a type variable indicates

its supertype, e.g., 𝑋𝑇 means 𝑋 must be a subtype of 𝑇 . Also, type variable 𝑋 is expected to

appear in the 𝑉𝑎𝑙𝑢𝑒𝑇 on the right-hand side of ↦→.

MetaT are used to represent meta information. It includes natural numbers and effect

types. Natural numbers are used, for instance, in arrays: an array type takes a natural

number to represent the length of the array. The effect type is a part of the effect system

that will be discussed later.

Typing Rules The following judgments are used in the type system where Γ stands for a

well-formed context:

1. Γ ` 𝜏 𝑡𝑦𝑝𝑒 states that 𝜏 is a type.

2. Γ ` 𝜏′<:𝜏 states that 𝜏′ is a subtype of 𝜏 .

3. Γ ` 𝑥 : 𝜏 states that x has type 𝜏 .

29

𝑋 <: 𝜏 ∈ Γ
Γ ` 𝑋 <: 𝜏 TVar

Γ ` 𝜏 𝑡𝑦𝑝𝑒
Γ ` 𝜏 <:𝜏 Refl

Γ ` 𝜏1<:𝜏2 Γ ` 𝜏2<:𝜏3
Γ ` 𝜏1<:𝜏3 Trans

Γ ` 𝜏′1<:𝜏1 Γ ` 𝜏′2<:𝜏2
Γ ` (𝜏′1 → 𝜏′2)<: (𝜏1 → 𝜏2) SubAbs

Γ ` 𝜏′1<:𝜏1 Γ, 𝑋 <:𝜏′1 ` 𝜏′2<:𝜏2
Γ ` ((𝑋 <:𝜏′1) ↦→ 𝜏′2)<: ((𝑋 <:𝜏1) ↦→ 𝜏2) SubTAbs

Figure 4.3: Subtyping rules of the functional IR

𝑥 : 𝜏 ∈ Γ
Γ ` 𝑥 : 𝜏 Var Γ ` 𝑥 : 𝜏′ Γ ` 𝜏′<:𝜏

Γ ` 𝑥 : 𝜏 Subsumption

Γ, 𝑥 : 𝜏1 ` 𝑒 : 𝜏2
Γ ` 𝜆𝑥 .𝑒 : 𝜏1 → 𝜏2

Abs
Γ ` 𝑒1 : 𝜏2 → 𝜏1 Γ ` 𝑒2 : 𝜏2

Γ ` 𝑒1(𝑒2) : 𝜏1
App

Γ;𝑋 <:𝜏1 ` 𝑒 : 𝜏2
Γ ` Λ(𝑋 <:𝜏1).𝑒 : (𝑋 <:𝜏1) ↦→ 𝜏2

TAbs
Γ ` 𝜏′1<:𝜏1 Γ ` 𝑒 : (𝑋 <:𝜏1) ↦→ 𝜏2

Γ ` 𝑒 〈𝜏1〉 : [𝑋\𝜏′1]𝜏2
TApp

Figure 4.4: Typing Rules of the Functional IR

Figure 4.3 shows the subtyping rules for type system of the functional IR. As we can

see, the subtyping judgment, Γ ` 𝜏 <: 𝜏′, is a reflexive and transitive relation. The SubAbs

and SubTAbs rules define the subtyping rule for function type as well as type-function type.

Figure 4.4 shows the typing rules for the functional IR. Subsumption allows a function to

take an argument of a subtype of its input type. App andAbs are rules for function abstraction

and application. TApp and TAbs are rules for type-function abstraction and application of

System F with the support of subtyping. The typing rule makes sure that all well-formed

expressions in the functional IR are correct.

4.2.2 Introduction to Views

This subsection provides an overview of the concept of views and how we can leverage

it toward efficient code generation. Views provide fine-grained controls to end-users on

whether an intermediate data structure needs to be materialized or not. Most primitives

that only affect data layout, such as 𝐶𝑜𝑛𝑐𝑎𝑡 , are expressed as views. Views are divided

30

into two categories: source and destination views. Source views determine the location for

reading, while destination views alter the location for writing.

In section 4.1, the example of vector addition and array concatenation has been used

to show the necessity of supporting source and destination views at the same time to cater

to the end-users. To provide more intuition behind views and the categorization, let’s now

reconsider the array concatenation example 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑎, 𝑏), and simply assume that 𝑎 is an

array of [𝑥0, 𝑥1], 𝑏 is an array of [𝑥2, 𝑥3] and 𝑥0 to 𝑥3 are integers.

When𝐶𝑜𝑛𝑐𝑎𝑡 is treated as a source view, the result of𝐶𝑜𝑛𝑐𝑎𝑡𝑆 (𝑎, 𝑏), which is [𝑥0, 𝑥1, 𝑥2, 𝑥3],

will never be materialized as it is merely a view, which is guaranteed in the later transfor-

mations. Hence, when the result of 𝐶𝑜𝑛𝑐𝑎𝑡𝑆 (𝑎, 𝑏) is using by other primitives, if the 𝑖-th

element is accessed and 𝑖 < 2, then one of the elements from 𝑎 will be returned. Similarly,

if 𝑖 >= 2, then the element to be returned is from 𝑏.

When 𝐶𝑜𝑛𝑐𝑎𝑡 is treated as a destination view, however, it is expected to alter the desti-

nation of 𝑎 and 𝑏 so that they can be written into a single array directly during evaluation.

Thus, different from a source view, the result of 𝐶𝑜𝑛𝑐𝑎𝑡𝐷 is materialized, i.e., an array of

[𝑥0, 𝑥1, 𝑥2, 𝑥3] will actually be written in the memory. Nevertheless, no intermediate data

structure creation is involved in this process, since 𝑎 and 𝑏 write directly to that array.

4.2.3 Effect Types and Effect System

Effect Types As part of the effect system, the effect types in figure 4.2 are used to indicate

the effect of a function, as they will be embedded in a function type such as 𝑇
𝐸𝑓 𝑓 𝑒𝑐𝑡𝑇
→ 𝑇 .

There are four subtypes of EffectT:

• Source view type (S): represents a function that generates a source view

• Destination view type (D): represents a function generates a destination view

• Eager type (E): represents a function that conducts computation and writes the result

to a given destination.

31

𝑥 : 𝜏 ; 𝜖 ∈ Γ
Γ ` 𝑥 : 𝜏 ; 𝜖 VAR

Γ, 𝑥 : 𝜏1 ` 𝑒 : 𝜏2; 𝜖
Γ ` 𝜆𝑥.𝑒 : 𝜏1

𝜖→ 𝜏2; ∅
ABS

Γ ` 𝑒1 : 𝜏2
𝜖3→ 𝜏1; 𝜖1 Γ ` 𝑒2 : 𝜏2; 𝜖2

Γ ` 𝑒1(𝑒2) : 𝜏1; 𝜖1 	 𝜖2 	 𝜖3
APP

𝜖1 	 𝜖2 =

{
𝑒𝑟𝑟𝑜𝑟 if 𝜖1 = 𝑆 𝑎𝑛𝑑 𝜖2 = 𝐷

𝜖2 otherwise
COMPOSE

Figure 4.5: Main Rules for the Effect System

• No-effect type (∅) is used when a function is not a view and its result will not be

materialized, e.g., a function that returns another function as a result.

Preventing Invalid Programs While the division of source and destination view is ben-

eficial, as motivated in section 4.1, their composition may produce invalid programs. For

instance, 𝑆𝑝𝑙𝑖𝑡𝐷 (𝐽𝑜𝑖𝑛𝑆 (𝑎𝑟𝑟)) is invalid when 𝑆𝑝𝑙𝑖𝑡𝐷 is a destination view and 𝐽𝑜𝑖𝑛𝑆 is a source

view, since 𝑆𝑝𝑙𝑖𝑡𝐷 aims to alter the locationwhere 𝐽𝑜𝑖𝑛𝑆 is written to, but the latter is a source

view and will not be materialized in the first place.

Embedding view information as effect types allows the effect system [30] to prevent

such invalid programs. The typing judgments of the effect system have the form of:

Γ ` 𝑒 : 𝜏 ; 𝜖

stating that expression 𝑒 has type 𝜏 and effect type 𝜖.

Figure 4.5 shows the related rules to forbid invalid programs. The function abstraction

rule (ABS) assigns the effect 𝜖 to the function body and is annotated at the arrow. The

function application rule (App) presents how the information comes together: the effects

from evaluating 𝜖1 and 𝜖2 composed with (via) 𝜖3 obtained from the function type. As

shown in rule COMPOSE in Figure 4.5, 	 is a left-associative and non-commutative operator,

32

propagates the right operand and is used to detect errors. Following these rules, a program

like 𝑆𝑝𝑙𝑖𝑡𝐷 (𝐽𝑜𝑖𝑛𝑆 (𝑎𝑟𝑟)) will be detected invalid since 𝑆 	 𝐷 raises an error.

Left-associativity is an important property for 	. Given how effect types are composed

together in rule App and the fact that primitives are evaluated from innermost to outermost,

effect types composed by 	 should be interpreted from left to right. To better illustrate the

intuition behind this, let’s look at the invalid expression 𝑀𝑎𝑝𝐸 (𝑓 , 𝑆𝑝𝑙𝑖𝑡𝐷 (𝐽𝑜𝑖𝑛𝑆 (𝑎))) with the

effect type of 𝑆 	 𝐷 	 𝐸 as an example. If 	 is right-associative, according to rule COMPOSE,

there will be: (𝑆 	 (𝐷 	 𝐸)) = 𝑆 	 𝐸, which is incorrect since no error can be detected from

the intermediate result 𝑆 	 𝐸. Instead, if 	 is left-associative, the effect type will become:

((𝑆 	𝐷) 	 𝐸) where 𝑆 	𝐷 is encountered and an error is raised. From the perspective of the

evaluation order, 𝐽𝑜𝑖𝑛𝑆 is first evaluated, then 𝑆𝑝𝑙𝑖𝑡𝐷 and finally 𝑀𝑎𝑝𝐸. Therefore, the first

composed effect types to be examined should be 𝑆	𝐷 from 𝑆𝑝𝑙𝑖𝑡𝐷 (𝐽𝑜𝑖𝑛𝑆 (𝑎))) instead of𝐷	𝐸

from 𝑀𝑎𝑝𝐸 (𝑓 , 𝑆𝑝𝑙𝑖𝑡𝐷 (..)). As we can see, only when 	 is left-associative, this examination

order can be fulfilled.

4.2.4 Functional Primitives

The primitives used at the functional IR level are shown in Figure 4.6. Laziness or eagerness

depends on a type parameter provided at construction. For example, if 𝑆𝑝𝑙𝑖𝑡 takes a source

view type, it becomes a source view primitive. It is worth noting that some effects don’t

apply to some primitives. 𝑆𝑝𝑙𝑖𝑡 , for example, can only be a source view or destination view

primitive. Since it only changes the data layout and is inherently lazy, it is unnecessary to

provide an eager 𝑆𝑝𝑙𝑖𝑡 . However, it does not mean that this functional IR cannot have a

𝑆𝑝𝑙𝑖𝑡 that actually splits an array into memory. With the 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 transformation that

will be soon introduced, the end-users can express an eager 𝑆𝑝𝑙𝑖𝑡 .

33

𝐼𝑑 : 𝑡𝑆𝑐𝑎𝑙𝑎𝑟𝑇 ↦→ 𝑡
𝐸→ 𝑡 (4.1)

𝑈𝑛𝑎𝑟𝑦𝑂𝑝 : 𝑡𝑆𝑐𝑎𝑙𝑎𝑟𝑇 ↦→ 𝑡
𝐸→ 𝑡 (4.2)

𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 : 𝑡𝑆𝑐𝑎𝑙𝑎𝑟𝑇 ↦→ 𝑡 → 𝑡
𝐸→ 𝑡 (4.3)

𝑀𝑎𝑝 : 𝑣𝑆 |𝐷 |𝐸
0 ↦→ 𝑣

𝑆 |𝐷 |𝐸
1 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ (𝑡 𝑣1→ 𝑢) → [𝑡]𝑛

𝑣0→ [𝑢]𝑛 (4.4)

𝑅𝑒𝑑𝑢𝑐𝑒 : 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ (𝑢 → 𝑡
𝐸→ 𝑢) → 𝑢 → [𝑡]𝑛 𝐸→ 𝑢 (4.5)

𝑇𝑢𝑝𝑙𝑒 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑡
𝑣→ 𝑢

𝑣→ (𝑡,𝑢) (4.6)

𝑍𝑖𝑝 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ ([𝑡]𝑛, [𝑢]𝑛)
𝑣→ [(𝑡,𝑢)]𝑛 (4.7)

𝑆𝑝𝑙𝑖𝑡 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→𝑚𝑁𝑎𝑡𝑇 ↦→ [𝑡]𝑛
𝑣→ [[𝑡]𝑚]𝑛/𝑚 (4.8)

𝐽𝑜𝑖𝑛 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→𝑚𝑁𝑎𝑡𝑇 ↦→ [[𝑡]𝑚]𝑛
𝑣→ [𝑡]𝑛∗𝑚 (4.9)

𝐶𝑜𝑛𝑐𝑎𝑡 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡 ↦→𝑚𝑁𝑎𝑡 ↦→ ([𝑡]𝑛, [𝑡]𝑚)
𝑣→ [𝑡]𝑛+𝑚 (4.10)

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→𝑚𝑁𝑎𝑡𝑇 ↦→ [[𝑡]𝑚]𝑛
𝑣→ [[𝑡]𝑛]𝑚 (4.11)

𝑃𝑒𝑟𝑚𝑢𝑡𝑒 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ 𝑢𝐼𝑛𝑡𝑇 ↦→ (𝑢 → 𝑢) → [𝑡]𝑛
𝑣→ [𝑡]𝑛 (4.12)

𝐼 𝑓 : 𝑣𝑆 |𝐷 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝐵𝑜𝑜𝑙𝑇 → 𝑢 → 𝑢
𝑣→ 𝑢 (4.13)

𝑆𝑙𝑖𝑑𝑒 : 𝑣𝑆 |𝐸 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→𝑚𝑁𝑎𝑡𝑇 ↦→ 𝑘 𝐼𝑛𝑡𝑇 ↦→ [𝑡]𝑛
𝑣→ [[𝑡]𝑚] (𝑛−𝑚+𝑘)/𝑘 (4.14)

𝑆𝑙𝑖𝑐𝑒 : 𝑣𝑆 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→𝑚𝑁𝑎𝑡𝑇 ↦→ 𝐼𝑛𝑡𝑇 → [𝑡]𝑛
𝑣→ [𝑡]𝑚 (4.15)

𝑅𝑒𝑝𝑒𝑎𝑡 : 𝑣𝑆 |𝐷 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑡
𝑣→ [𝑡]𝑛 (4.16)

𝐴𝑡 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ [𝑡]𝑛 → 𝐼𝑛𝑡𝑇
𝑣→ 𝑡 (4.17)

𝐹𝑠𝑡 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ (𝑡,𝑢) 𝑣→ 𝑡 (4.18)

𝑆𝑛𝑑 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ (𝑡,𝑢) 𝑣→ 𝑢 (4.19)

Figure 4.6: Primitives at the highest, functional level. If a function has a no-effect type ∅,
the arrow is left empty.

34

For convenience, superscripts 𝑆, 𝐷, and 𝐸 are used on the primitive showing its effect.

As a result, for 𝑆𝑝𝑙𝑖𝑡 , the following will hold, where 〈𝑇 〉 stands for a type application:

𝑆𝑝𝑙𝑖𝑡𝑆 = 𝑆𝑝𝑙𝑖𝑡 〈𝑆〉

𝑆𝑝𝑙𝑖𝑡𝐷 = 𝑆𝑝𝑙𝑖𝑡 〈𝐷〉

Syntactic sugars, including 𝑒 [𝑖𝑑𝑥] for 𝐴𝑡 (𝑒, 𝑖𝑑𝑥), .0 for 𝐹𝑠𝑡 and .1 for 𝑆𝑛𝑑, will be used in

the rest of the thesis.

4.2.5 Materialization of View

Lazy primitives generate either source or destination views that will be removed when low-

ering to the imperative level. However, it is sometimes beneficial to materialize their re-

sult to improve data locality. This ability is also provided in Repa [20], with the Manifest

function to materialize arrays. In contract, Lift [37] and 𝐹 [35] remove intermediate data

structures by default, and it may not always be the best option.

In this thesis, the end-user can 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 a view by triggering a transformation shown

in Figure 4.7. If 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 takes an array as input, it will produce a 𝑀𝑎𝑝 that materializes

each element of the array, similar to if it takes a tuple. If it takes a scalar, a call to 𝐼𝑑

is produced. 𝐼𝑑 is an identity function that returns its input. It will be lowered as, for

instance, a C assignment to materialize its input. While 𝐼𝑑 is limited to scalars, combining

with 𝑀𝑎𝑝 and 𝑇𝑢𝑝𝑙𝑒 enables the ability to materialize any data structures supported in this

IR.

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 delivers the eager versions of source view primitives. The following shows

an example for materializing the result from 𝑆𝑝𝑙𝑖𝑡𝑆 and 𝐽𝑜𝑖𝑛𝑆 , where a lambda expression

35

[[𝑒𝑥𝑝𝑟 : 𝐴𝑟𝑟𝑎𝑦𝑇]]𝑀 = 𝑀𝑎𝑝𝐸 (𝜆𝑥.[[𝑥]]𝑀 , 𝑒𝑥𝑝𝑟)
[[𝑒𝑥𝑝𝑟 : 𝑇𝑢𝑝𝑙𝑒𝑇]]𝑀 = 𝑇𝑢𝑝𝑙𝑒𝐷 ([[𝑒𝑥𝑝𝑟 .0]]𝑀 , [[𝑒𝑥𝑝𝑟 .1]]𝑀)
[[𝑒𝑥𝑝𝑟 : 𝑆𝑐𝑎𝑙𝑎𝑟𝑇]]𝑀 = 𝐼𝑑 (𝑒𝑥𝑝𝑟)

Figure 4.7: 𝑀 (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒) Transformation

is used to capture them to provide the corresponding eager version:

𝑆𝑝𝑙𝑖𝑡𝐸 (𝑚) = 𝜆𝑠𝑟𝑐. [[𝑆𝑝𝑙𝑖𝑡𝑆 (𝑚, 𝑠𝑟𝑐)]]𝑀 (4.20)

𝐽𝑜𝑖𝑛𝐸 = 𝜆𝑠𝑟𝑐. [[𝐽𝑜𝑖𝑛𝑆 (𝑠𝑟𝑐)]]𝑀 (4.21)

4.3 Imperative Level

Unlike high-level functional code, low-level imperative code has memory operations and

array accesses explicit, which imposes a challenge for lowering since those concepts are

absent. This section presents the imperative constructs, similar to 𝐹 [35], enabling the

expression of imperative concepts in a functional style. With the imperative constructs, the

goal is to provide a straightforward translation to imperative code.

Types Two types are introduced specifically for the imperative constructs so that the syn-

tax on 4.2 can be extended for the imperative level:

T := ... other types presented in Figure 4.2

LocT[T] Location Type

VoidT Void Type

Location type (𝐿𝑜𝑐𝑇 [𝑇]) is introduced to represent the location of data in memory, sim-

ilar to a pointer in C. As a result, a destination from DPS can be defined as an expression

of a location type, which will be used later for lowering the IR. Also, void type (𝑉𝑜𝑖𝑑𝑇) is

36

introduced to represent the absence of value. As indicated by the name, it is similar to the

void type in C for expressing a function that does not provide a result to its caller via the

return statement.

Primitives There are two significant differences between the functional primitives and

the imperative primitives. First, array accesses are explicit in the latter, which allows for a

straightforward translation to imperative for-loops. Secondly, the latter operates on loca-

tion types, allowing operations on the source and the destination to share the same set of

primitives and be symmetric.

The primitives for memory operations are listed below and should be self-explanatory:

𝐴𝑙𝑙𝑜𝑐 : 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝐿𝑜𝑐𝑇 [𝑡] (4.22)

𝐴𝑠𝑠𝑖𝑔𝑛 : 𝑡𝑆𝑐𝑎𝑙𝑎𝑟𝑇 ↦→ 𝐿𝑜𝑐𝑇 [𝑡] → 𝐿𝑜𝑐𝑇 [𝑡] → 𝑉𝑜𝑖𝑑𝑇 (4.23)

𝐹𝑟𝑒𝑒 : 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝐿𝑜𝑐𝑇 [𝑡] → 𝑉𝑜𝑖𝑑𝑇 (4.24)

𝐿𝑜𝑐𝑂 𝑓 : 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑡 → 𝐿𝑜𝑐𝑇 [𝑡] (4.25)

𝐵𝑢𝑖𝑙𝑑 and 𝐼 𝑓 𝑜𝑙𝑑 expose array accesses explicitly. 𝐵𝑢𝑖𝑙𝑑, similar to pull array [11], takes

a length and an index function. When 𝐵𝑢𝑖𝑙𝑑 is lazy, i.e., the source view primitive 𝐵𝑢𝑖𝑙𝑑𝑆 or

the destination view primitive 𝐵𝑢𝑖𝑙𝑑𝐷 , its signature is:

𝐵𝑢𝑖𝑙𝑑𝑣 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ (𝐼𝑛𝑡𝑇 𝑣→ 𝐿𝑜𝑐𝑇 [𝑡]) 𝑣→ 𝐿𝑜𝑐𝑇 [[𝑡]𝑛] (4.26)

However, when 𝐵𝑢𝑖𝑙𝑑 is eager, written as 𝐵𝑢𝑖𝑙𝑑𝐸, 𝑉𝑜𝑖𝑑𝑇 will be returned since 𝐴𝑠𝑠𝑖𝑔𝑛 is

used within its body to write its result into a destination. Its signature becomes:

𝐵𝑢𝑖𝑙𝑑𝐸 : 𝑛𝑁𝑎𝑡𝑇 ↦→ (𝐼𝑛𝑡𝑇 𝐸→ 𝑉𝑜𝑖𝑑𝑇) 𝐸→ 𝑉𝑜𝑖𝑑𝑇 (4.27)

37

𝐼 𝑓 𝑜𝑙𝑑 is similar to a reduction that accumulates the result into a single value:

𝐼 𝑓 𝑜𝑙𝑑 : 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ (𝐿𝑜𝑐𝑇 [𝑢] → 𝐼𝑛𝑡𝑇
𝐸→ 𝑉𝑜𝑖𝑑𝑇) 𝐸→ 𝐿𝑜𝑐𝑇 [𝑢] → 𝑉𝑜𝑖𝑑𝑇

(4.28)

When translating to imperative code, each 𝐵𝑢𝑖𝑙𝑑𝐸 and 𝐼 𝑓 𝑜𝑙𝑑 will generate a for-loop.

𝐴𝑡 , 𝐹𝑠𝑡 , 𝑆𝑛𝑑, 𝑇𝑢𝑝𝑙𝑒, 𝐼 𝑓 , 𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝, 𝑈𝑛𝑎𝑟𝑦𝑂𝑝 and 𝐼𝑑 from the functional level are all

overloaded to operate on location types.

𝐴𝑡 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ 𝐿𝑜𝑐𝑇 [[𝑡]𝑛] → 𝐼𝑛𝑡𝑇
𝑣→ 𝐿𝑜𝑐𝑇 [𝑡] (4.29)

𝐹𝑠𝑡 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝐿𝑜𝑐𝑇 [(𝑡,𝑢)] 𝑣→ 𝐿𝑜𝑐𝑇 [𝑡] (4.30)

𝑆𝑛𝑑 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝐿𝑜𝑐𝑇 [(𝑡,𝑢)] 𝑣→ 𝐿𝑜𝑐𝑇 [𝑢] (4.31)

𝑇𝑢𝑝𝑙𝑒 : 𝑣𝑆 |𝐷 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝐿𝑜𝑐𝑇 [𝑡] 𝑣→ 𝐿𝑜𝑐𝑇 [𝑢] 𝑣→ 𝐿𝑜𝑐𝑇 [(𝑡,𝑢)] (4.32)

𝐼𝑑 : 𝑡𝑆𝑐𝑎𝑙𝑎𝑟𝑇 ↦→ 𝐿𝑜𝑐𝑇 [𝑡] 𝐸→ 𝐿𝑜𝑐𝑇 [𝑡] (4.33)

𝑈𝑛𝑎𝑟𝑦𝑂𝑝 : 𝑡𝑆𝑐𝑎𝑙𝑎𝑟𝑇 ↦→ 𝐿𝑜𝑐𝑇 [𝑡] 𝐸→ 𝐿𝑜𝑐𝑇 [𝑡] (4.34)

𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 : 𝑡𝑆𝑐𝑎𝑙𝑎𝑟𝑇 ↦→ 𝐿𝑜𝑐𝑇 [𝑡] → 𝐿𝑜𝑐𝑇 [𝑡] 𝐸→ 𝐿𝑜𝑐𝑇 [𝑡] (4.35)

In the rest of this thesis, all these primitives (and their respective syntactic sugar) are over-

loaded. For example, if 𝐴𝑡 is applied to a data type then it is the functional primitive from

figure 4.6. If it is applied to a location type, then it is the imperative one presented above.

The intuition behind such modification lies in the fact that data in imperative code al-

ways have corresponding addresses for their location in memory. Moreover, it allows the

same primitives to be used for manipulating destinations as well. The same syntax [𝐼𝑑𝑥],

.0 and .1 will be overloaded by eq.(4.29), eq.(4.30) and eq.(4.31) respectively.

38

4.4 Summary

This chapter has introduced the multi-levels IRs used in this thesis. The types and primitives

are dedicated to using the concept of destination and views. Due to this particular design,

the imperative level, with exposed indices as well as those memory operators, already has

a very straightforward translation to the imperative code. The remaining puzzle is how to

lower from the functional level IR to the imperative level IR, which will be discussed in the

next chapter.

39

Chapter 5

Lowering to Imperative Level and Code

Generation

In the previous section, the functional and imperative level constructs are presented. How-

ever, for lowering the functional level IR to the imperative level IR there remains a big gap.

To bridge the gap, this chapter first shows a normalization transformation to make sure that

the evaluation order is explicit. Then it introduces the DPS transformation, inspired by 𝐹 ,

to lower the functional IR into the imperative constructs while providing memory manage-

ment and simplifying views at the same time. At the end of this chapter, it covers the final

step for generating imperative code from the imperative level IR.

5.1 Explicit Evaluation Order

At the functional level, programs are written by the nesting and combination of function

primitives with view information embedded. As the first step for lowering to the imperative

level, the program will be normalized based on the given view information to explicitly

reveal the evaluation order.

40

Before diving into the normalization details, let’s have a look at the three vectors addi-

tion program, where the intermediate array from the addition of 𝑣1 and 𝑣2 is desired to be

materialized (just for demonstration purpose):

𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑣0, 𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑣1, 𝑣2))))))

The program is actually equivalent to the following if the inner 𝑀𝑎𝑝𝐸, highlighted in blue,

is taken out by using a let expression and a variable named 𝑡𝑚𝑝:

𝑙𝑒𝑡 𝑡𝑚𝑝 = 𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑣1, 𝑣2))) 𝑖𝑛 𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑣0, 𝑡𝑚𝑝)))

They are equivalent because the result of the inner 𝑀𝑎𝑝𝐸 is expected to be evaluated and

materialized before being used as the input to the outer 𝑀𝑎𝑝𝐸, highlighted in red.

The above example shows the fact that by using let expression, before lowering into the

imperative level, we can make sure that the evaluation order is explicit. It is beneficial since

as we will see when lowering into the imperative level, 𝑀𝑎𝑝 will be lower into 𝐵𝑢𝑖𝑙𝑑. When

the evaluation order is not explicit, 𝐵𝑢𝑖𝑙𝑑 may execute the same code in the loop body in

every iteration. For example, when rewriting the previous example to 𝐵𝑢𝑖𝑙𝑑𝐸 by using the

following rewrite rule, where [𝑥\𝑖𝑛[𝑖]]𝑒 means subtituting 𝑥 to 𝑖𝑛[𝑖] in expression 𝑒:

𝑀𝑎𝑝𝐸 (𝜆𝑥 .𝑒, 𝑖𝑛) ⇒ 𝐵𝑢𝑖𝑙𝑑𝐸 (𝜆𝑖.[𝑥\𝑖𝑛[𝑖]]𝑒)

The three vectors addition program becomes:

𝐵𝑢𝑖𝑙𝑑𝐸 (𝜆𝑖.𝑣0 [𝑖] + 𝐵𝑢𝑖𝑙𝑑𝐸 (𝜆 𝑗 .𝑣1 [𝑗] + 𝑣2 [𝑗]) [𝑖])

Clearly, the 𝐵𝑢𝑖𝑙𝑑𝐸 corresponding to the inner 𝑀𝑎𝑝𝐸 is used in the outer 𝐵𝑢𝑖𝑙𝑑𝐸 loop body

and will be executed redundantly in each iteration. The nesting of one 𝐵𝑢𝑖𝑙𝑑𝐸 may signif-

41

𝑝𝑆 (𝑒0, .., 𝑒𝑛) where ∃𝑘 ∈ [0, 𝑛] . 𝑒𝑘 is a destination view or eager primitive call ⇒ (5.1)

let 𝑡𝑚𝑝 = 𝑒𝑘 in [𝑒𝑘\𝑡𝑚𝑝]𝑝𝑆 (𝑒0, .., 𝑒𝑛)
𝑝𝐸 (𝑒0, .., 𝑒𝑛) where ∃𝑘 ∈ [0, 𝑛] . 𝑒𝑘 is a destination view or eager primitive call ⇒ (5.2)

let 𝑡𝑚𝑝 = 𝑒𝑘 in [𝑒𝑘\𝑡𝑚𝑝]𝑝𝐸 (𝑒0, .., 𝑒𝑛)
𝑝 (𝑒0, .., 𝑒𝑛) where ∃𝑘 ∈ [0, 𝑛] . 𝑒𝑘 match (𝑙𝑒𝑡 𝑝 = 𝑎 𝑖𝑛 𝑏) ⇒ (5.3)

𝑙𝑒𝑡 𝑝 = 𝑎 𝑖𝑛 [𝑒𝑘\𝑏]𝑝 (𝑒0, .., 𝑒𝑛)

Figure 5.1: Rewrite Rules to Demonstrate the Explicit Evaluation Order

icantly slow down the runtime performance because the whole temporary array is being

recomputed for every access.

Rewrite Rules Figure 5.1 shows the rewrite rules to demonstrate the explicit evaluation

order of the functional level programs before feeding them into the later lowering pro-

cess. The metavariable p is used to present a primitive available at the functional level IR.

Similarly, pS is more specific for a source view primitive, while pE is for an eager primitive.

𝑝 (𝑒0, .., 𝑒𝑛) stands for a function call to the primitive 𝑝 with expressions 𝑒0 to 𝑒𝑛 as arguments.

Also, existential quantification is used in the rewrite rules, such as ∃𝑘 ∈ [0, 𝑛] .𝑃 where 𝑃 is

a predicate using 𝑘.

With the definition of the syntax, eq.(5.1) states that given a source view primitive 𝑝𝑆

and expressions 𝑒0 to 𝑒𝑛 as inputs, if there exists a natural number k that belongs to [0, 𝑛] and

an expression 𝑒𝑘 is either a function call to a destination view primitive or an eager primitive,

then 𝑒𝑘 is hoisted in a let expression and forced to be evaluated first. For instance, the vec-

tor addition example 𝑇𝑢𝑝𝑙𝑒𝑆 (𝑣0, 𝑀𝑎𝑝𝐸 (...)) becomes 𝑙𝑒𝑡 𝑡𝑚𝑝 = 𝑀𝑎𝑝𝐸 (...) 𝑖𝑛 𝑇𝑢𝑝𝑙𝑒𝑆 (𝑣0, 𝑡𝑚𝑝).

Similarly, eq.(5.2) hoists function calls to destination view primitives or eager primitives

out of eager primitives. Eq.(5.3) hoists let expressions as input to other primitives upward,

ensuring that let expressions are not nested within other primitives.

42

Revisiting the Vector Addition Example Going back to the previous example again, with

eq.(5.1) applied, the program becomes:

𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑙𝑒𝑡 𝑡𝑚𝑝 = 𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑣1, 𝑣2))) 𝑖𝑛 𝑇𝑢𝑝𝑙𝑒𝑆 (𝑣0, 𝑡𝑚𝑝)))

By applying eq.(5.3) to hoist the let expression, the program has the evaluation order fully

explicit and avoids recomputing the entire temporary array multiple times:

𝑙𝑒𝑡 𝑡𝑚𝑝 = 𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑣1, 𝑣2)) 𝑖𝑛 𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑣0, 𝑡𝑚𝑝)))

Guarantee of Evaluation Order 𝐿𝑒𝑡 expressions are used tomaintain the evaluation order

after rewrite rules in Figure 5.1 are applied. In the rest of the thesis, this explicit evaluation

order formed by 𝐿𝑒𝑡 expressions is guaranteed to be not modified by any other rewrite rule

so that the code generator can generate imperative following this order.

5.2 DPS Transformation

The DPS transformation is introduced to lower the high-level IR into a still functional, but

more imperative, formwhere the imperative constructs will be used. This section focuses on

the source view primitives and eager primitives, while the problem for handling destination

views is left to the section 5.3.

The DPS transformation takes an expression 𝑠 and a destination 𝑑 as input. 𝑠 is the

source and has a data type, while 𝑑 is the destination and has a location type.

[[𝑠, 𝑑]]DPS

Lowering Core Language Figure 5.2 shows the DPS transformation for the core func-

tional constructs.

43

[[𝜆𝑝.𝑏 :𝑡𝐷𝑎𝑡𝑎𝑇),∅]]DPS = 𝜆𝑝.𝜆𝑑 :𝐿𝑜𝑐𝑇 [𝑡] .[[𝑏, 𝑑]]DPS (5.4)
[[𝜆𝑝.𝑏, 𝑑]]DPS = 𝜆𝑝.[[𝑏, 𝑑]]DPS (5.5)
[[𝑝𝐷 (𝑠) :𝑡,∅]]DPS = 𝑑 = 𝐴𝑙𝑙𝑜𝑐 (𝑡); [[𝑝𝐷 (𝑠), 𝑑]]DPS (5.6)
[[𝑝𝐸 (𝑠) :𝑡,∅]]DPS = 𝑑 = 𝐴𝑙𝑙𝑜𝑐 (𝑡); [[𝑝𝐸 (𝑠), 𝑑]]DPS (5.7)
[[𝑝 = 𝑖𝑛𝑖𝑡 ;𝑏, 𝑑]]DPS = 𝑝 = [[𝑖𝑛𝑖𝑡,∅]]DPS ; [[𝑏, 𝑑]]DPS (5.8)
[[𝑃𝑎𝑟𝑎𝑚𝑈𝑠𝑒 (𝑝) : 𝐷𝑎𝑡𝑎𝑇 ,∅]]DPS =𝐿𝑜𝑐𝑂 𝑓 (𝑃𝑎𝑟𝑎𝑚𝑈𝑠𝑒 (𝑝)) (5.9)

Figure 5.2: Rules for core functional constructs in DPS transformation. @ binds the
matched pattern to a variable that can be reused. 𝑎;𝑏 stands for a let expression 𝑥 = 𝑎;𝑏,
where 𝑥 is not used in 𝑏, which happens when, for example, 𝑥 is type of 𝑉𝑜𝑖𝑑𝑇 .

TheDPS transformation starts from the top-level lambdawhich represents the program,

[[𝜆𝑝.𝑏,∅]]DPS. This will immediately trigger eq.(5.4) which will create a destination for the

program. In plain C, starting with the example:

int foo(float* p)

The DPS transformation will turn it into the following where an extra parameter 𝑑 is in-

troduced for storing the function result:

void foo(float* p, int* d)

Eq.(5.5) is used when a destination is already provided or in the case where the lambda

body is not of type 𝐷𝑎𝑡𝑎𝑇 . In eq.(5.6, 5.7), 𝑝𝐷 and 𝑝𝐸 stands for destination view primitives

and eager primitives respectively. When function calls to them are encountered, allocations

will be nested for storing their results. Any let expression is handled by eq.(5.8) which

applies the transformation on the initial value 𝑖𝑛𝑖𝑡 and the body 𝑏 separately. Since the

program is lowered to use imperative constructs that operate on location types, eq.(5.9) is

needed for getting the location of a parameter usage if it is of data type.

44

[[𝐼𝑑 (𝑠, 𝑑)]]DPS = 𝐴𝑠𝑠𝑖𝑔𝑛(𝐼𝑑 ([[𝑠,∅]]DPS), 𝑑) (5.10)

[[𝑈𝑛𝑎𝑟𝑦𝑂𝑝 (𝑜𝑝, 𝑠), 𝑑]]DPS = 𝐴𝑠𝑠𝑖𝑔𝑛(𝑈𝑛𝑎𝑟𝑦𝑂𝑝 (𝑜𝑝, [[𝑠,∅]]DPS), 𝑑) (5.11)

[[𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 (𝑜𝑝, 𝑠0, 𝑠1), 𝑑]]DPS = 𝐴𝑠𝑠𝑖𝑔𝑛(𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 (𝑜𝑝, [[𝑠0,∅]]DPS, [[𝑠1,∅]]DPS), 𝑑) (5.12)

[[𝑀𝑎𝑝𝐸 (𝜆𝑥 .𝑒, 𝑠) : [𝑡]𝑛, 𝑑]]DPS = 𝐵𝑢𝑖𝑙𝑑𝐸 (𝑛, 𝜆𝑖𝑑𝑥 .[[[𝑥\[[𝑠,∅]]DPS [𝑖𝑑𝑥]]𝑒, 𝑑 [𝑖𝑑𝑥]]]DPS) (5.13)

[[𝑅𝑒𝑑𝑢𝑐𝑒 (𝜆𝑎𝑐𝑐.𝜆𝑐𝑢𝑟 .𝑒, 𝑖𝑛𝑖𝑡, 𝑠), 𝑑]]DPS = 𝐼 𝑓 𝑜𝑙𝑑 (𝜆𝑎𝑐𝑐.𝜆𝑖𝑑𝑥 . (5.14)

[[[𝑐𝑢𝑟\[[𝑠,∅]]DPS [𝑖𝑑𝑥]]𝑒, 𝑑]]DPS, [[𝑖𝑛𝑖𝑡, 𝑑]]DPS))
[[𝑆𝑙𝑖𝑑𝑒𝐸 (𝑠𝑖𝑧𝑒, 𝑠𝑡𝑒𝑝, 𝑠𝑟𝑐) : [[𝑡]𝑠𝑖𝑧𝑒]𝑛, 𝑑]]DPS = (5.15)

𝑤𝑑 = 𝐴𝑙𝑙𝑜𝑐 ([𝑡]𝑠𝑖𝑧𝑒);
[[[[𝑆𝑙𝑖𝑑𝑒𝑆 (𝑠𝑖𝑧𝑒, 𝑠𝑡𝑒𝑝, 𝑠𝑟𝑐) [0] [0..𝑠𝑖𝑧𝑒 − 𝑠𝑡𝑒𝑝]]]𝑀 ,𝑤𝑑 [𝑠𝑡𝑒𝑝..𝑠𝑖𝑧𝑒]]]𝐷𝑃𝑆
𝐵𝑢𝑖𝑙𝑑𝐸 ((𝑛 − 𝑠𝑖𝑧𝑒 + 𝑠𝑡𝑒𝑝)/𝑠𝑡𝑒𝑝, 𝜆𝑖 .

[[[[𝑤𝑑 [𝑠𝑡𝑒𝑝..𝑠𝑖𝑧𝑒]]]𝑀 ,𝑤𝑑 [0..𝑠𝑖𝑧𝑒 − 𝑠𝑡𝑒𝑝]]]DPS ;
[[[[𝑆𝑙𝑖𝑑𝑒𝑆 (𝑠𝑖𝑧𝑒, 𝑠𝑡𝑒𝑝, 𝑠𝑟𝑐) [𝑖] [𝑠𝑖𝑧𝑒 − 𝑠𝑡𝑒𝑝..𝑠𝑖𝑧𝑒]]]𝑀 ,𝑤𝑑 [𝑠𝑖𝑧𝑒 − 𝑠𝑡𝑒𝑝..𝑠𝑖𝑧𝑒]]𝐷𝑃𝑆 ;
[[𝑤𝑑,𝑑 [𝑖]]]DPS)

Figure 5.3: DPS transformation for eager primitives. [𝑥\𝑦]𝑒 means substituting 𝑥 by 𝑦 in
the expression 𝑒. [𝑎..𝑏] stands for an array slice.

Lowering Eager Primitives Figure 5.3 shows the rules for handling eager primitives in

theDPS transformation. Eager primitives that operate on scalar types, as shown in eq.(5.10

-5.12), can be directly written into memory using 𝐴𝑠𝑠𝑖𝑔𝑛.

𝑀𝑎𝑝𝐸, is lowered into 𝐵𝑢𝑖𝑙𝑑𝐸 so that a destination 𝑑 [𝑖𝑑𝑥] can be provided to its input

function body, as shown in eq.(5.13). The same applies to 𝑅𝑒𝑑𝑢𝑐𝑒 where an 𝐼 𝑓 𝑜𝑙𝑑 is gen-

erated. Since the DPS transformation is applied recursively, it will eventually produce an

𝐴𝑠𝑠𝑖𝑔𝑛 when traversing the body of a 𝐵𝑢𝑖𝑙𝑑𝐸 or 𝐼 𝑓 𝑜𝑙𝑑.

For 𝑆𝑙𝑖𝑑𝑒𝐸, instead of directly writing its result, a rolling window 𝑤𝑑 is introduced for

the better locality as shown in eq.(5.15). To provide more intuition for this rule, the corre-

sponding C code template for [[𝑆𝑙𝑖𝑑𝑒𝐸 (3, 1, 𝑠𝑟𝑐), 𝑑]]DPS is:

1 int wd[3];
2 wd[1] = src[0]; wd[2] = src[1]; // SlideS

45

[[𝑀𝑎𝑝𝑆 (𝜆𝑖𝑛.𝑒, 𝑠) : [𝑡]𝑛,∅]]DPS = 𝐵𝑢𝑖𝑙𝑑𝑆 (𝑛, 𝜆𝑖𝑑𝑥 .[[[𝑖𝑛\[[𝑠,∅]]DPS [𝑖𝑑𝑥]]𝑒,∅]]DPS) (5.16)

[[𝑇𝑢𝑝𝑙𝑒𝑆 (𝑠0, 𝑠1),∅]]DPS = 𝑇𝑢𝑝𝑙𝑒𝑆 ([[𝑠0,∅]]DPS, [[𝑠1,∅]]DPS) (5.17)

[[𝑍𝑖𝑝𝑆 (𝑠) : [(𝑡,𝑢)]𝑛,∅]]DPS = 𝐵𝑢𝑖𝑙𝑑𝑆 (𝑛, 𝜆𝑖𝑑𝑥 . (5.18)

𝑇𝑢𝑝𝑙𝑒𝑆 ([[𝑠,∅]]DPS .0[𝑖𝑑𝑥], [[𝑠,∅]]DPS .1[𝑖𝑑𝑥]))
[[𝑆𝑝𝑙𝑖𝑡𝑆 (𝑛, 𝑠) : [[𝑡]𝑚]𝑛,∅]]DPS = 𝐵𝑢𝑖𝑙𝑑𝑆 (𝑛, 𝜆𝑖𝑑𝑥0.

𝐵𝑢𝑖𝑙𝑑𝑆 (𝑚, 𝜆𝑖𝑑𝑥1.[[𝑠,∅]]DPS [𝑛 ∗ 𝑖𝑑𝑥0 + 𝑖𝑑𝑥1])) (5.19)

[[𝐽𝑜𝑖𝑛𝑆 (𝑠 : [𝑡]𝑚]𝑛),∅]]DPS = 𝐵𝑢𝑖𝑙𝑑𝑆 (𝑛 ∗𝑚, 𝜆𝑖𝑑𝑥 .[[𝑠,∅]]DPS [𝑖𝑑𝑥/𝑚] [𝑖𝑑𝑥%𝑚]) (5.20)

[[𝐶𝑜𝑛𝑐𝑎𝑡𝑆(𝑠:([𝑡]𝑛,[𝑡]𝑚),∅]]DPS =𝐵𝑢𝑖𝑙𝑑𝑆(n+m, 𝜆𝑖𝑑𝑥 .𝐼 𝑓 𝑆((5.21)

[[𝑖𝑑𝑥 <𝑛,∅]]DPS,[[𝑠 .0[𝑖𝑑𝑥],∅]]DPS, [[𝑠 .1[𝑖𝑑𝑥−𝑛],∅]]DPS))
[[𝑆𝑙𝑖𝑑𝑒𝑆 (𝑠𝑖𝑧𝑒,𝑠𝑡𝑒𝑝,𝑠) : [𝑡]𝑛,∅]]DPS =𝐵𝑢𝑖𝑙𝑑𝑆 (𝑛, 𝜆𝑖𝑑𝑥0.

𝐵𝑢𝑖𝑙𝑑𝑆 (𝑠𝑖𝑧𝑒, 𝜆𝑖𝑑𝑥1.[[𝑠,∅]]DPS [𝑖𝑑𝑥0 ∗ 𝑠𝑡𝑒𝑝 + 𝑖𝑑𝑥1])) (5.22)

[[𝑅𝑒𝑝𝑒𝑎𝑡𝑆(𝑛,𝑠),∅]]DPS =𝐵𝑢𝑖𝑙𝑑𝑆(𝑛,𝜆𝑖𝑑𝑥 .[[𝑠,∅]]DPS [𝑖𝑑𝑥]) (5.23)

[[𝑠 [𝑖𝑑𝑥],∅]]DPS = [[𝑠,∅]]DPS [𝑖𝑑𝑥] (5.24)

[[𝑠 .0,∅]]DPS = [[𝑠,∅]]DPS .0 (5.25)

[[𝑠 .1,∅]]DPS = [[𝑠,∅]]DPS .1 (5.26)

Figure 5.4: DPS transformation for source view primitives. Operations, such as 𝑎 + 𝑏 or
𝑎 < 𝑏, are 𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝𝐸.

3 for(int i = 0; i < n - 2; i++) { // BuildE

4 wd[0] = wd[1]; wd[1] = wd[2];
5 wd[2] = src[i + 2]; // SlideS

6 for(int j = 0; j < 3; j++)
7 d[i][j] = wd[j];}

Since the rolling window 𝑤𝑑 is a small array, the chance is high that it is allocated in reg-

isters. As a result, reusing the elements stored in the rolling window avoids repeatedly

requesting data from the cache or main memory, and thus improves the data locality.

46

𝐵𝑢𝑖𝑙𝑑𝑆 (𝑛, 𝜆𝑖𝑑𝑥 .𝑠) [𝑖𝑑𝑥′] ⇒ [𝑖𝑑𝑥\𝑖𝑑𝑥′]𝑠 (5.27)

𝑇𝑢𝑝𝑙𝑒𝑆 (𝑠0, 𝑠1).0 ⇒ 𝑠0 (5.28)

𝑇𝑢𝑝𝑙𝑒𝑆 (𝑠0, 𝑠1).1 ⇒ 𝑠1 (5.29)

𝐼 𝑓 𝑆 (𝑐𝑜𝑛𝑑, 𝑠0, 𝑠1) [𝑖𝑑𝑥] ⇒ 𝐼 𝑓 𝑆 (𝑐𝑜𝑛𝑑, 𝑠0 [𝑖𝑑𝑥], 𝑠1 [𝑖𝑑𝑥]) (5.30)

𝐼 𝑓 𝑆 (𝑐𝑜𝑛𝑑, 𝑠0, 𝑠1).0 ⇒ 𝐼 𝑓 𝑆 (𝑐𝑜𝑛𝑑, 𝑠0.0, 𝑠1.0) (5.31)

𝐼 𝑓 𝑆 (𝑐𝑜𝑛𝑑, 𝑠0, 𝑠1).1 ⇒ 𝐼 𝑓 𝑆 (𝑐𝑜𝑛𝑑, 𝑠0.1, 𝑠1.1) (5.32)

(𝑝 = 𝑎;𝑏) [𝑖𝑑𝑥] ⇒ 𝑝 = 𝑎;𝑏 [𝑖𝑑𝑥] (5.33)

(𝑝 = 𝑎;𝑏) .0 ⇒ 𝑝 = 𝑎;𝑏.0 (5.34)

(𝑝 = 𝑎;𝑏).1 ⇒ 𝑝 = 𝑎;𝑏.1 (5.35)

Figure 5.5: Rewrite Rules for Removing Source Views

Lowering Source View Primitives The lowering rules for source view primitives are

shown in Figure 5.4. After these rules have been applied, the only primitives that are left

are 𝐵𝑢𝑖𝑙𝑑𝑆 , 𝑇𝑢𝑝𝑙𝑒𝑆 , 𝐼 𝑓 𝑆 , 𝐴𝑡𝑆 , 𝐹𝑠𝑡𝑆 , 𝑆𝑛𝑑𝑆 .

Figure 5.5 shows how it is possible to simplify access to the result of a 𝐵𝑢𝑖𝑙𝑑𝑆 or 𝑇𝑢𝑝𝑙𝑒𝑆

view. In the system presented, user-defined functions always operate on scalars and are ea-

ger. Therefore, any array or tuple views will always be accessed sooner or later. This implies

that there will never be any 𝐵𝑢𝑖𝑙𝑑𝑆 or 𝑇𝑢𝑝𝑙𝑒𝑆 left when applying the DPS transformation

followed by these simplifications rules.

Once the simplifications have been applied, we will only be left with 𝐼 𝑓 𝑆 , 𝐴𝑡𝑆 , 𝐹𝑠𝑡𝑆 ,

𝑆𝑛𝑑𝑆 which can be directly translated to the equivalent C constructs. Therefore, no for-loop

or tuple creation will ever appear for any source view originally presented at the highest

functional level. This property guarantees that no unnecessary intermediate data structures

will be created by source views to slow down the generated code’s performance.

47

5.2.1 Revisiting the Vector Addition Example

Using theDPS transformation, the complete derivation of the vector addition example from

section 4.1 is:

[[𝜆𝑎, 𝑏.𝑀𝑎𝑝𝐸 (𝜆𝑥 .(𝑥 .0 + 𝑥 .1), 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑎, 𝑏))),∅]]DPS
Eq(5.4, 5.5)
===========⇒ 𝜆𝑎, 𝑏, 𝑑.[[𝑀𝑎𝑝𝐸 (𝜆𝑥 .(𝑥 .0 + 𝑥 .1), 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑎, 𝑏))), 𝑑]]DPS
Eq.(5.16)
========⇒ 𝜆𝑎, 𝑏, 𝑑.𝐵𝑢𝑖𝑙𝑑𝐸 (𝑛, 𝜆𝑖.[𝑥\[[𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑎, 𝑏)),∅]]DPS [𝑖]] [[𝑥 .0 + 𝑥 .1, 𝑑 [𝑖]]]DPS)
Eq.(5.17, 5.18)
=============⇒

𝜆𝑎, 𝑏, 𝑑.𝐵𝑢𝑖𝑙𝑑𝐸 (𝑛, 𝜆𝑖.[𝑥\[[𝐵𝑢𝑖𝑙𝑑𝑆 (𝑛, 𝜆 𝑗 .𝑇𝑢𝑝𝑙𝑒𝑆 (𝑎[𝑗], 𝑏 [𝑗])),∅]]DPS [𝑖]] [[𝑥 .0 + 𝑥 .1, 𝑑 [𝑖]]]DPS)
Eq.(5.27, 5.28, 5.29)
==================⇒ 𝜆𝑎,𝑏,𝑑.𝐵𝑢𝑖𝑙𝑑𝐸 (𝑛,𝜆𝑖.[[𝑎[𝑖] + 𝑏 [𝑖], 𝑑 [𝑖]]]DPS)
Eq.(5.12)
========⇒ 𝜆𝑎, 𝑏, 𝑑.𝐵𝑢𝑖𝑙𝑑𝐸 (𝑛, 𝜆𝑖.𝐴𝑠𝑠𝑖𝑔𝑛(𝑎[𝑖] + 𝑏 [𝑖], 𝑑 [𝑖]))

5.3 Handling Destination Views

The previous section has introduced the DPS transformation and how it handles eager and

source view primitives. This section focuses on destination views.

Before diving into any detail, the following example illustrates how a destination view

primitive should be handled by the DPS transformation:

[[𝑆𝑝𝑙𝑖𝑡𝐷 (𝑚, 𝑒) : [[𝑡]𝑚]𝑛, 𝑑]]DPS = [[𝑒, 𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛 ∗𝑚, 𝜆𝑖.𝑑 [𝑖/𝑛] [𝑖%𝑚])]]DPS

On the left side, 𝑒 is split and written into the destination 𝑑. However, since 𝑆𝑝𝑙𝑖𝑡𝐷 , a

destination view primitive, is lazy, the splitting process should not occur. Instead, as shown

on the right side, 𝑒 should be written to the memory as if it is being splitted. But how?

If the result of 𝑒 is, say, a 1D array, then 𝑑 should be a location for a 2D array. The imper-

ative destination constructs, 𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛 ∗𝑚, 𝜆𝑖.𝑑 [𝑖/𝑛] [𝑖%𝑚]), lazily joins a 2D array location

into a 1D array location. By doing so, when writing the result of 𝑒 using the joined 1D array

48

location, it maps to the actual 2D array location. Therefore, to achieve this transformation,

the key is to invert the splitting of the source into a joining on the destination.

5.3.1 Lowering Destination View Primitives

As shown in the above example, when encountering a destination view primitive, DPS

transformation has the following form, where 𝑝𝐷 stands for a destination view primitive:

[[𝑝𝐷 (𝑒), 𝑑]]DPS = [[𝑒, [[𝑝𝐷]]I (𝑑)]]DPS,𝑤ℎ𝑒𝑟𝑒 𝑑 ≠ ∅ (5.36)

While the I transformation has not been presented yet, the above rule provides a taste

of how a destination view primitive is handled. On the right side of the equation, the

first argument becomes 𝑒, which is the operation used as the input to the destination view

primitive. The destination for this operation 𝑒 is modified to take the destination view

into account. The second argument, i.e., the result of the modification, becomes [[𝑝𝐷]]I (𝑑),

where the function returned by [[𝑝𝐷]]I is applied to the original destination 𝑑. The rationale

and rules for I transformation will be discussed shortly.

5.3.2 I Transformation

As explained in the above example, I transformation takes a function, usually a destination

primitive, as input, and returns a lowered inverse function.

Figure 5.6 shows the rules for I transformation, demonstrating how inverse functions

are defined and lowered. In the above example, eq.(5.37) is used to return a function with

the effect of 𝐽𝑜𝑖𝑛 on a destination (using 𝐵𝑢𝑖𝑙𝑑𝐷). Eq.(5.39) uses 𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝐷 as the inverse

function for 𝑅𝑒𝑝𝑒𝑎𝑡𝐷 . Its signature is 𝐿𝑜𝑐𝑇 [[𝑡]𝑛] → 𝐿𝑜𝑐𝑇 [𝑡].

Eq.(5.43, 5.44, 5.45) are used when 𝐴𝑡𝐷 , 𝐹𝑠𝑡𝐷 and 𝑆𝑛𝑑𝐷 are encountered. These prim-

itives take input but only return a part of it. Introducing 𝑁𝑜𝑛𝑒 allows the description of a

destination that only a part of the source can be written into. For instance, when using

49

[[𝑆𝑝𝑙𝑖𝑡𝐷 : [𝑡]𝑛∗𝑚 → [[𝑡]𝑚]𝑛]]I = 𝜆𝑑.𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛 ∗𝑚, 𝜆𝑖.𝑑 [𝑖/𝑚] [𝑖%𝑚]) (5.37)

[[𝐽𝑜𝑖𝑛𝐷 : [[𝑡]𝑚]𝑛 → [𝑡]𝑚∗𝑛]]I = 𝜆𝑑.𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛, 𝜆𝑖.𝐵𝑢𝑖𝑙𝑑 (𝑚, 𝜆 𝑗 .𝑑 [𝑖 ∗𝑚 + 𝑗])) (5.38)

[[𝑅𝑒𝑝𝑒𝑎𝑡𝐷 (𝑛)]]I = 𝜆𝑑.𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝐷 (𝑛,𝑑) (5.39)

[[𝐶𝑜𝑛𝑐𝑎𝑡𝐷 : ([𝑡]𝑛, [𝑡]𝑚) → [𝑡]𝑛+𝑚]]I = (5.40)

𝜆𝑑.𝑇𝑢𝑝𝑙𝑒𝐷 (𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛, 𝜆𝑖.𝑑 [𝑖]), 𝐵𝑢𝑖𝑙𝑑𝐷 (𝑚, 𝜆𝑖.𝑑 [𝑖 + 𝑛]))
[[𝑍𝑖𝑝𝐷 : ([𝑡]𝑛, [𝑢]𝑛) → [(𝑡,𝑢)]𝑛]]I = (5.41)

𝜆𝑑.𝑇𝑢𝑝𝑙𝑒𝐷 (𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛, 𝜆𝑖.𝑑 [𝑖] .0), 𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛, 𝜆𝑖.𝑑 [𝑖] .1))
[[𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝐷 : ([[𝑡]𝑛]𝑚) → [[𝑡]𝑚]𝑛]]I = 𝜆𝑑.𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛, 𝜆𝑖.𝐵𝑢𝑖𝑙𝑑𝐷 (𝑚, 𝜆 𝑗 .𝑑 [𝑗] [𝑖])) (5.42)

[[𝐴𝑡𝐷 (𝑖)]]I = 𝜆𝑑.𝐵𝑢𝑖𝑙𝑑𝐷 (𝜆 𝑗 .𝐼 𝑓 𝐷 (𝑗 == 𝑖, 𝑑, 𝑁𝑜𝑛𝑒)) (5.43)

[[𝐹𝑠𝑡𝐷]]I = 𝜆𝑑.𝑇𝑢𝑝𝑙𝑒𝐷 (𝑑, 𝑁𝑜𝑛𝑒) (5.44)

[[𝑆𝑛𝑑𝐷]]I = 𝜆𝑑.𝑇𝑢𝑝𝑙𝑒𝐷 (𝑁𝑜𝑛𝑒, 𝑑) (5.45)

[[𝑀𝑎𝑝𝐷 (𝜆𝑖𝑛.𝑒) : [𝑡]𝑛 → [𝑢]𝑛]]I = 𝜆𝑑.𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛, 𝜆𝑖.[[𝑒]]I (𝑑 [𝑖])) (5.46)

[[𝑝𝐷0 ◦ 𝑝𝐷1]]I = [[𝑝𝐷1]]I ◦ [[𝑝𝐷0]]I (5.47)

Figure 5.6: Rules for I transformation. ◦ stands for a function composition.

𝑇𝑢𝑝𝑙𝑒𝐷 (𝑑, 𝑁𝑜𝑛𝑒) as the destination where we try to write 𝑇𝑢𝑝𝑙𝑒 (𝑎, 𝑏), only the first element

𝑎 is materialized. This is achieved by making sure that no corresponding code is generated

by any assignment to 𝑁𝑜𝑛𝑒.

Eq.(5.43) also introduces condition check 𝐼 𝑓 𝐷 for 𝐴𝑡𝐷 to ensure that only the i-th ele-

ments from the source can be materialized. This additional condition check can be further

removed using rewrite rules, such as:

𝐵𝑢𝑖𝑙𝑑𝐸 (𝜆 𝑗 .𝐼 𝑓 (𝑗 == 𝑖, 𝐴𝑠𝑠𝑖𝑔𝑛(𝑠 [𝑖], 𝑑), 𝐴𝑠𝑠𝑖𝑔𝑛(𝑠 [𝑗], 𝑁𝑜𝑛𝑒))) ⇒ 𝐴𝑠𝑠𝑖𝑔𝑛(𝑠 [𝑖], 𝑑) (5.48)

This rule is based on the property that𝐴𝑠𝑠𝑖𝑔𝑛(𝑠 [𝑗], 𝑁𝑜𝑛𝑒) is an assignment to 𝑁𝑜𝑛𝑒 and does

not generate any code.

50

Map as Destination View Primitive Combining eq.(5.46) and eq.(5.47) allows the usage

of𝑀𝑎𝑝𝐷 as destination view primitive. Specially, eq.(5.47) handled the cases where function

composition appears in the input function to 𝑀𝑎𝑝𝐷 , such as: 𝑀𝑎𝑝𝐷 (𝜆𝑥.𝑆𝑝𝑙𝑖𝑡𝐷 (𝐽𝑜𝑖𝑛𝐷 (𝑥))).

However, it is impossible to define the inverse function when the input function in a

𝑀𝑎𝑝𝐷 uses free variables since they do not come from the𝑀𝑎𝑝 ’s input array. Normalization

rules that hoist the free variables and constants from a 𝑀𝑎𝑝𝐷 function body can be applied

automatically to remove these cases. For a free variable in 𝜆𝑥 .𝑒 with 𝑛 occurrences in total,

the following normalization rule can be applied to remove these cases:

𝑀𝑎𝑝𝐷 (𝜆𝑥.𝑒, 𝑖𝑛), ∃𝑦.𝑦 ∈ 𝐹𝑉 (𝜆𝑥.𝑒) = (5.49)

𝑀𝑎𝑝𝐷 (𝜆𝑝.[𝑥\𝐹𝑠𝑡𝐷 (𝑝)] [𝑦\𝑆𝑛𝑑𝐷 (𝑝)]𝑒, 𝑍𝑖𝑝𝐷 (𝑇𝑢𝑝𝑙𝑒𝐷 (𝑖𝑛, 𝑅𝑒𝑝𝑒𝑎𝑡𝐷 (𝑛,𝑦))))

In addition, when the effect type of 𝑓 is an 𝐸𝑎𝑔𝑒𝑟𝑇 , i.e., eager primitives are used in

the function body, its inverse function will, again, become impossible to define. Thus, such

𝑀𝑎𝑝𝐷 is handled directly by DPS transformation:

[[𝑀𝑎𝑝𝐷 ((𝜆𝑖𝑛.𝑒) : 𝑡 𝐸→ 𝑢) (𝑠), 𝑑]]DPS = (5.50)

𝐵𝑢𝑖𝑙𝑑𝐸 (𝜆𝑖𝑑𝑥 .[[[𝑖𝑛\𝑠 [𝑖𝑑𝑥]𝐷]𝑒, 𝑑 [𝑖𝑑𝑥]]]DPS),𝑤ℎ𝑒𝑟𝑒 𝑑 ≠ ∅

Here, 𝑀𝑎𝑝𝐷 as a destination view does not affect where an eager primitive to write but

what to write. This special rule will be leveraged by the example in section 7.4.

Tuple as destination view Special consideration must be taken for𝑇𝑢𝑝𝑙𝑒𝐷 when defining

its inverse function since it takes two data inputs. When𝑇𝑢𝑝𝑙𝑒𝐷 is encountered by the DPS

transformation the following rule is used instead of the generic one:

[[𝑇𝑢𝑝𝑙𝑒𝐷 (𝑒0, 𝑒1), 𝑑]]DPS = [[𝑈𝑛𝐹𝑠𝑡𝐷 (𝑒0), 𝑑]]DPS ; [[𝑈𝑛𝑆𝑛𝑑𝐷 (𝑒1), 𝑑]]DPS,𝑤ℎ𝑒𝑟𝑒 𝑑 ≠ ∅ (5.51)

51

Within this rule, 𝑈𝑛𝐹𝑠𝑡𝐷 and 𝑈𝑛𝑆𝑛𝑑𝐷 have the following signatures:

𝑈𝑛𝐹𝑠𝑡𝐷 : 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 → 𝐿𝑜𝑐𝑇 [𝑡] 𝐷→ 𝐿𝑜𝑐𝑇 [(𝑡,𝑢)] (5.52)

𝑈𝑛𝑆𝑛𝑑𝐷 : 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 → 𝐿𝑜𝑐𝑇 [𝑢] 𝐷→ 𝐿𝑜𝑐𝑇 [(𝑡,𝑢)] (5.53)

𝑈𝑛𝐹𝑠𝑡 takes a location type of 𝑡 and returns a location type of a tuple type with 𝑡 as the first

data type. The same applied to 𝑈𝑛𝑆𝑛𝑑, except that the input location type is used for the

second data type of the returned tuple type. As indicated by their names, 𝑈𝑛𝐹𝑠𝑡𝐷 ’s inverse

function is 𝐹𝑠𝑡𝐷 and 𝑈𝑛𝑆𝑛𝑑𝐷 ’s inverse function is 𝐹𝑠𝑡𝐷 :

[[𝑈𝑛𝐹𝑠𝑡𝐷]]I ⇒ 𝜆𝑑.𝐹𝑠𝑡𝐷 (𝑑) (5.54)

[[𝑈𝑛𝑆𝑛𝑑𝐷]]I ⇒ 𝜆𝑑.𝑆𝑛𝑑𝐷 (𝑑) (5.55)

Now, it is not hard to see that eq.(5.51) can be derived into:

[[𝑇𝑢𝑝𝑙𝑒𝐷 (𝑒0,𝑒1), 𝑑]]DPS

= [[𝑈𝑛𝐹𝑠𝑡𝐷 (𝑒0), 𝑑]]DPS ; [[𝑈𝑛𝑆𝑛𝑑𝐷 (𝑒1), 𝑑]]DPS

= [[𝑒0, [[𝑈𝑛𝐹𝑠𝑡𝐷]]I (𝑑)]]DPS ; [[𝑒1, [[𝑈𝑛𝑆𝑛𝑑𝐷]]I (𝑑)]]DPS

= [[𝑒0, 𝐹𝑠𝑡 (𝑑)]]DPS ; [[𝑒1, 𝑆𝑛𝑑 (𝑑)]]DPS,𝑤ℎ𝑒𝑟𝑒 𝑑 ≠ ∅ (5.56)

Since 𝑑 must have a location type of a tuple type, the above rule makes sure that 𝑒0 writes

to 𝑑.0 and 𝑒1 writes to 𝑑.1.

A similar process also needs to be applied when 𝑇𝑢𝑝𝑙𝑒𝐷 is used inside a 𝑀𝑎𝑝𝐷 . Just like

the way howDPS transformation handles𝑇𝑢𝑝𝑙𝑒𝐷 , the first and second input from the tuple

needed to be separated and chained by a let expression. The following normalization rule

52

𝐵𝑢𝑖𝑙𝑑𝐷 (𝜆𝑖𝑑𝑥 .𝑑) [𝑖𝑑𝑥′] ⇒ [𝑖𝑑𝑥\𝑖𝑑𝑥′]𝑑 (5.58)

𝑇𝑢𝑝𝑙𝑒𝐷 (𝑑0, 𝑑1).0 ⇒ 𝑑0 (5.59)

𝑇𝑢𝑝𝑙𝑒𝐷 (𝑑0, 𝑑1).1 ⇒ 𝑑1 (5.60)

𝐼 𝑓 𝐷 (𝑐𝑜𝑛𝑑, 𝑑0, 𝑑1) [𝑖𝑑𝑥]⇒ 𝐼 𝑓 𝐷 (𝑐𝑜𝑛𝑑, 𝑑0 [𝑖𝑑𝑥], 𝑑1 [𝑖𝑑𝑥]) (5.61)

𝐼 𝑓 𝐷 (𝑐𝑜𝑛𝑑, 𝑑0, 𝑑1).0 ⇒ 𝐼 𝑓 𝐷 (𝑐𝑜𝑛𝑑, 𝑑0.0, 𝑑1.0) (5.62)

𝐼 𝑓 𝐷 (𝑐𝑜𝑛𝑑, 𝑑0, 𝑑1).1 ⇒ 𝐼 𝑓 𝐷 (𝑐𝑜𝑛𝑑, 𝑑0.1, 𝑑1.1) (5.63)

𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝐷 (𝑛,𝑑) [𝑖𝑑𝑥] ⇒ 𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝐷 (𝑛, 𝐵𝑢𝑖𝑙𝑑𝐷 (𝜆𝑘.𝑑 [𝑘] [𝑖𝑑𝑥])) (5.64)

𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝐷(𝑛,𝑑).0⇒ 𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝐷 (𝑛, 𝐵𝑢𝑖𝑙𝑑𝐷(𝜆𝑘.𝑑 [𝑘] .0) (5.65)

𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝐷(𝑛,𝑑).𝑟⇒ 𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝐷 (𝑛, 𝐵𝑢𝑖𝑙𝑑𝐷(𝜆𝑘.𝑑 [𝑘] .1) (5.66)

𝐴𝑠𝑠𝑖𝑔𝑛(𝑠,𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝐷 (𝑛,𝑑)) ⇒ (5.67)

𝐴𝑠𝑠𝑖𝑔𝑛(𝑠, 𝑑 [0]);𝐵𝑢𝑖𝑙𝑑𝐸 (𝑛 − 1, 𝜆𝑖 .𝐴𝑠𝑠𝑖𝑔𝑛(𝑑 [0], 𝑑 [𝑖 + 1])
𝐴𝑠𝑠𝑖𝑔𝑛(𝑠, 𝐼 𝑓 𝐷 (𝑐𝑜𝑛𝑑, 𝑑0, 𝑑1)) ⇒ 𝐼 𝑓 𝐷 (𝑐𝑜𝑛𝑑,𝐴𝑠𝑠𝑖𝑔𝑛(𝑠, 𝑑0), 𝐴𝑠𝑠𝑖𝑔𝑛(𝑠, 𝑑1)) (5.68)

𝐴𝑠𝑠𝑖𝑔𝑛(𝑠, 𝑁𝑜𝑛𝑒) ⇒ 𝑃𝑎𝑠𝑠 () (5.69)

Figure 5.7: Rewrite Rules for Removing Destination Views

is needed for the separation:

[[𝑀𝑎𝑝𝐷 (𝜆𝑖𝑛.𝑇𝑢𝑝𝑙𝑒𝐷 (𝑒0, 𝑒1), 𝑠), 𝑑]]DPS = (5.57)

[[𝑀𝑎𝑝𝐷 (𝜆𝑖𝑛.𝑈𝑛𝐹𝑠𝑡𝐷 (𝑒0), 𝑠), 𝑑]]DPS ; [[𝑀𝑎𝑝𝐷 (𝜆𝑖𝑛.𝑈𝑛𝑆𝑛𝑑𝐷 (𝑒1), 𝑠), 𝑑]]DPS

Simplifying Destination Views The destination view primitives have now been lowered

by the I transformation. Figure 5.7 shows how it is possible to simplify the accesses and

assignments to the lowered constructs. Similar to the simplification of the source views,

assignments are set to only operate on scalar, thus, the 𝐵𝑢𝑖𝑙𝑑𝐷 and𝑇𝑢𝑝𝑙𝑒𝐷 will always be ac-

cessed and removed by these rules. Also, combining the rules in eq.(5.64-5.67), 𝑈𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝐷

will be simplified and eventually disappear. After simplification, only 𝐴𝑡𝐷 , 𝐹𝑠𝑡𝐷 and 𝑆𝑛𝑑𝐷

and 𝐼 𝑓 𝐷 will remain, which have direct translations to imperative code.

53

5.3.3 Revisiting the Array Concatenation Example

Using the DPS transformation, the complete derivation of the concatenation example from

section 4.1 is:

[[𝜆𝑎, 𝑏.𝐶𝑜𝑛𝑐𝑎𝑡𝐷 (𝑀𝑎𝑝𝐸 (𝐼𝑑, 𝑎), 𝑀𝑎𝑝𝐸 (𝐼𝑑, 𝑏)),∅]]DPS
Eq.(5.4, 5.5)
===========⇒ 𝜆𝑎, 𝑏, 𝑑.[[𝐶𝑜𝑛𝑐𝑎𝑡𝐷 (𝑇𝑢𝑝𝑙𝑒𝐷 (𝑀𝑎𝑝𝐸 (𝐼𝑑, 𝑎), 𝑀𝑎𝑝𝐸 (𝐼𝑑, 𝑏)), 𝑑]]DPS
Eq.(5.36, 5.40)
=============⇒ 𝜆𝑎, 𝑏, 𝑑.[[𝑇𝑢𝑝𝑙𝑒𝐷 (𝑀𝑎𝑝𝐸 (𝐼𝑑, 𝑎), 𝑀𝑎𝑝𝐸 (𝐼𝑑, 𝑏)),

𝑇𝑢𝑝𝑙𝑒𝐷 (𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛, 𝜆𝑖.𝑑 [𝑖]), 𝐵𝑢𝑖𝑙𝑑𝐷 (𝑚, 𝜆𝑖.𝑑 [𝑖 + 𝑛]))]]DPS
Eq.(5.51, 5.59, 5.60)
==================⇒ 𝜆𝑎, 𝑏, 𝑑.[[𝑀𝑎𝑝𝐸 (𝐼𝑑, 𝑎), 𝐵𝑢𝑖𝑙𝑑𝐷 (𝑛, 𝜆𝑖.𝑑 [𝑖])]]DPS ;

[[𝑀𝑎𝑝𝐸 (𝐼𝑑, 𝑏), 𝐵𝑢𝑖𝑙𝑑𝐷 (𝑚, 𝜆𝑖.𝑑 [𝑖 + 𝑛])]]DPS
Eq.(5.13, 5.58)
=============⇒ 𝜆𝑎, 𝑏, 𝑑.𝐵𝑢𝑖𝑙𝑑𝐸 (𝑛, 𝜆𝑖.[[𝐼𝑑 (𝑎[𝑖]), 𝑑 [𝑖]]]DPS);

𝐵𝑢𝑖𝑙𝑑𝐸 (𝑚, 𝜆𝑖.[[𝐼𝑑 (𝑏 [𝑖]), 𝑑 [𝑖 + 𝑛]]]DPS)
Eq.(5.10)
========⇒ 𝜆𝑎, 𝑏, 𝑑.𝐵𝑢𝑖𝑙𝑑𝐸 (𝑛, 𝜆𝑖.𝐴𝑠𝑠𝑖𝑔𝑛(𝑎[𝑖], 𝑑 [𝑖]));𝐵𝑢𝑖𝑙𝑑𝐸 (𝑚, 𝜆𝑖.𝐴𝑠𝑠𝑖𝑔𝑛(𝑎[𝑖], 𝑑 [𝑖 + 𝑛]))

5.4 Code Generation

Having seen the lowering process, this section now looks at techniques for generating low-

level imperative code such as C and OpenCL code.

5.4.1 A-Normal Form

For code generation, programs from the imperative level are transformed into A-Normal

Form (ANF) [12] to make sure that the evaluation order is explicit in the program by placing

all intermediate results into let bindings.

Here is an example of a program translated into ANF:

𝜆𝑎.𝜆𝑏.𝜆𝑐.𝑎 + 𝑏 + 𝑐 ⇒ 𝜆𝑎.𝜆𝑏.𝜆𝑐.𝑙𝑒𝑡 𝑘 = (𝑏 + 𝑐) 𝑖𝑛 𝑎 + 𝑘

54

Having the program in ANF is useful for generating imperative code. For instance, the

example above can be seen as an imperative program if we consider that the argument

and the body of a let expression always correspond to two statements. By rewriting them

into semicolon expressions, as seen in section 4.1.2, the resulted program is very similar to

targeted imperative code:

𝜆𝑎.𝜆𝑏.𝜆𝑐.𝑘 = 𝑏 + 𝑐;𝑎 + 𝑘

The following shows the rules for performing the A-reduction to transform the impera-

tive level IR into ANF.

𝑙𝑒𝑡 𝑝0 = (𝑙𝑒𝑡 𝑝1 = 𝑎1 𝑖𝑛 𝑏1) 𝑖𝑛 𝑏0 ⇒ 𝑙𝑒𝑡 𝑝1 = 𝑎1 𝑖𝑛 (𝑙𝑒𝑡 𝑝0 = 𝑏1 𝑖𝑛 𝑏0) (5.70)

𝑝 (𝑒0, .., 𝑒𝑛) 𝑤ℎ𝑒𝑟𝑒 𝑒𝑘 (𝑘 ∈ [0, 𝑛]) 𝑖𝑠 𝑎 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑙 ⇒ (5.71)

𝑙𝑒𝑡 𝑥 = 𝑒𝑘 𝑖𝑛 [𝑒𝑘\𝑥]𝑝 (𝑒0, .., 𝑒𝑛)

Eq.(5.70) makes sure that let expressions are not nested in the ANF. In eq.(5.71), 𝑝 (𝑒0, .., 𝑒𝑛)

stands for a primitive invocation with 𝑒0, .., 𝑒𝑛 as its inputs. When any of the input is a

function call, eq.(5.71) will be used to lift the function call to the argument part of the let

expression so that the function call will be evaluated first.

A-reduction for transforming the programs into ANF is similar to the normalization pass

in section 5.1 for exposing the explicit evaluation order at the functional level. However,

the purpose of these two transformations is different. A-reduction is performed at the im-

perative level to make code generation and optimizations easier, as we will see shortly. The

normalization pass in section 5.1 is to avoid redundant computation of temporary arrays

when lowering 𝑀𝑎𝑝 to 𝐵𝑢𝑖𝑙𝑑.

55

1 def deallocate(expr: Expr, variablesToFree: Seq[ParamUse] = Seq()): Expr =
2 expr match {
3 case Let(p, b, a: AllocExpr) => Let(p, deallocate(b, variablesToFree :+ p), a)
4 case Let(p, b, a) => Let(p, deallocate(b, allocs), deallocate(a))
5 case other =>
6 val frees = variablesToFree.maps(Free(_))
7 val init = other.visitAndRebuild(e => deallocate(e))
8 frees.foldRight(init, acc => cur => Let(ParamDef(VoidType()), cur, acc))
9 }

Figure 5.8: Pesudocode for Deallocation

5.4.2 Passes and Optimizations

After the transformation into ANF, the following passes and optimizations are applied:

Memory Deallocation When lowering to the imperative level, allocations are inserted

to provide destinations to eager primitives as seen. However, they need to be deallocated

when the results are no longer needed to prevent memory leaks. It is easy to determine

when a destination is not used at compilation time, given that no complex control flow

exists. The only primitive that creates control flow is 𝐼 𝑓 , but since both branches have the

exact same type, the same allocation will be created regardless of which branch is executed

at runtime. The primitive 𝐹𝑟𝑒𝑒 is defined by eq.(4.24) to release the allocated memory.

𝐴𝑙𝑙𝑜𝑐 is always placed in the argument part of a let expression so that the code in the

let expression body can use the destination provided by 𝐴𝑙𝑙𝑜𝑐. Given this property, the

algorithm for memory deallocation traverses the IR tree, memorizes the 𝐴𝑙𝑙𝑜𝑐s along the

way, and adds 𝐹𝑟𝑒𝑒s to the tail of a let expression chain according to the encountered𝐴𝑙𝑙𝑜𝑐s.

Figure 5.8 shows the implementation of deallocate in a Scala-like pseudocode (the

compiler is implemented in Scala). The input to deallocate is expected to be an expression

in ANF. Line 3 and 4 are for collecting allocations that need to be free along the tree. Line

5 - 8 inserts the Frees to the tail of a chain of let expressions. Line 6 creates a sequence

of Free expressions based on the collected allocations. Since other itself is an expression,

such as a 𝐵𝑢𝑖𝑙𝑑𝐸 or a 𝐼 𝑓 𝑜𝑙𝑑, line 7 continues the deallocation process by using the method

56

visitAndRebuild to traverse and rebuild the expression other and its children based on the

given function e => deallocate(e). Finally, line 8 bundles init and frees together with

foldRight via let expressions.

Loop-Invariant Code Motion is an important subset of Partial Redundancy Elimination

(PRE). It aims to find code in a loop body that produces the same value in every iteration.

At the dataflow level, Ifold and 𝐵𝑢𝑖𝑙𝑑𝐸 generate for-loops which may contain loop-invariant

code. Therefore, in the rest of this paragraph, a loop refers to the input function of 𝐵𝑢𝑖𝑙𝑑𝐸

or 𝐼 𝑓 𝑜𝑙𝑑. An expression is a loop invariant if this value remains the same while running the

loop. Loop invariants can be lifted out of the loop body to avoid redundant computation.

Whether an expression has the same effect in each iteration of a loop body is, unfortu-

nately, undecidable [2]. However, a conservative approximation exists for the IR in ANF. A

loop invariant, rewritten as 𝑖𝑛𝑣 (𝑒) where 𝑒 is an expression, can be described precisely by

the following rules:

𝑐 constant
𝑖𝑛𝑣 (𝑐) Constant

𝑒 only defined outside loop
𝑖𝑛𝑣 (𝑒) Outside

𝑙𝑒𝑡 𝑒 = 𝑖𝑛𝑣 (𝑎) 𝑖𝑛 𝑏

𝑖𝑛𝑣 (𝑒) Let

𝑖𝑛𝑣 (𝑒)
𝑖𝑛𝑣 (𝜆𝑝.𝑒) Abs

𝑝 (𝑖𝑛𝑣 (𝑒0), .., 𝑖𝑛𝑣 (𝑒𝑘)) 𝑝 is not 𝐴𝑙𝑙𝑜𝑐
𝑖𝑛𝑣 (𝑝 (𝑒0, .., 𝑒𝑘))

Primitive App

Rule Constant states that all constants are loop invariants. Rule Outside assures that a

loop invariant 𝑒 does not appear in a let expression like 𝑙𝑒𝑡 𝑒 = 𝑎 𝑖𝑛 𝑏 or an assignment

like 𝐴𝑠𝑠𝑖𝑔𝑛(𝑠, 𝑒) inside the loop body. Rule Let and Abs define loop invariants out of let

expressions and function abstractions. Rule Primitive App allows treating a primitive call as

a loop invariant as long as all arguments are also loop invariants and the primitive 𝑝 is not

an 𝐴𝑙𝑙𝑜𝑐. The reason for precluding primitive calls to 𝐴𝑙𝑙𝑜𝑐 from being loop invariants is

that they have the side-effect of allocating space in the memory, and it is no guarantee that

hoisting them will not affect the semantics of the program.

Once loop invariants are detected, the following rewrite rules can be used to hoist them

out of the loop body:

57

𝐵𝑢𝑖𝑙𝑑𝐸 (𝑛, 𝜆𝑖.𝑒) where inv(a) is used in e ⇒ 𝑙𝑒𝑡 𝑥 = 𝑎 𝑖𝑛 𝐵𝑢𝑖𝑙𝑑𝐸 (𝑛, 𝜆𝑖.[𝑎\𝑥]𝑒)

𝐼 𝑓 𝑜𝑙𝑑 (𝑛, 𝜆𝑎𝑐𝑐.𝜆𝑖 .𝑒) where inv(a) is used in e ⇒ 𝑙𝑒𝑡 𝑥 = 𝑎 𝑖𝑛 𝐼 𝑓 𝑜𝑙𝑑 (𝑛, 𝜆𝑎𝑐𝑐.𝜆𝑖 .[𝑎\𝑥]𝑒)

5.4.3 Imperative Code Generation

C and OpenCL are chosen as the target languages for evaluation. Data types such as tuples

and arrays are mapped into structs and arrays. A struct of two members of type 𝑇 and

𝑈 with the name of DEF_TUPLE_T_U will be created for a tuple of type (𝑇,𝑈). A location

to an array is represented by a pointer. For the C backend, multi-dimensional arrays are

represented as pointers of pointers because it matches the nested array types and is easier

to implement. Another alternative for representing multi-dimensional arrays is through a

flattenedmemory whichmay lead to better performance, but it will be left as future work for

the C backend. However, it is worth mentioning that the flattened memory representation is

already adopted in the OpenCL backend as it is a common practice for writing GPU kernels.

The 𝐼 𝑓 𝑜𝑙𝑑 and 𝐵𝑢𝑖𝑙𝑑 primitives generate for-loops. The 𝐼 𝑓 primitive is turned into an

if-else statement. Since 𝐴𝑠𝑠𝑖𝑔𝑛 is guaranteed to only operate on scalar types in the IR, it

simply turned into a C assignment (=). By default, arrays and tuples are allocated to the

heap via malloc and scalars are allocated to the stack.

When targetting a GPU, OpenCL code is generated instead of plain C code. In this

case, special primitive 𝑀𝑎𝑝𝐺𝑙𝑏 with the same signature as 𝑀𝑎𝑝 will be used for expressing

a for-loop that executes parallelly. And the code templates like get_global_id(0) and

get_global_id(1) will be generated when 𝑀𝑎𝑝𝐺𝑙𝑏 is encountered.

5.5 Summary

This chapter has covered the lowering process from the functional level IR to the imperative

level IR through the DPS transformation as well as the code generation for C and OpenCL.

58

The next chapter presents the automatic exploration techniques for tuning programs at the

functional level for generating code with good performance.

59

Chapter 6

Automatic Exploration

The previous sections have described how views influenced the lowering process in theDPS

transformation and resulted in different generated code. For instance, treating a 𝐶𝑜𝑛𝑐𝑎𝑡 as

a source view or a destination view leads to different imperative code. The functional level

IR in this thesis presents end-users a fine-grained control on the effects of all primitives,

i.e., whether they should be source views, destination views or eager primitives, but one

may find it is hard to make those decisions. Firstly, a single primitive with different effects

may end up with different generated code and has various runtime performances, not to

mention the compositions of several primitives. Secondly, it is error-prone to make these

decisions. For instance, having a source view primitive as an input to a destination view

primitive will lead to an invalid program. Therefore, it is necessary to provide a mechanism

for automatically exploring the variants of programs at the function level and trade-off the

suitable variants for code generation.

6.1 Search Space

Before discussing the exploration strategies adopted in this thesis, let’s first define the search

space. It includes the definition of the input program for the exploration strategies as well

as the rewrite rules to apply.

60

6.1.1 Effectless Program

The input program should consist of primitives without any view information so that deci-

sions can be automated. For convenience, those programs are defined as effectless program.

An effectless program should be written at the functional level IR, but involves no effect

type, i.e., no view information. Primitives for effectless programs can be directly obtained

from figure 4.6 on page 34 by removing the effect types embedded in the function types. As

a result, the effectless program is very similar to the original Lift IR. For example, eq.(6.1)

shows the signature for the 𝑀𝑎𝑝 with effect types, and eq.(6.2) shows the 𝑀𝑎𝑝 without

effect types:

𝑀𝑎𝑝 : 𝑣𝑆 |𝐷 |𝐸
0 ↦→ 𝑣

𝑆 |𝐷 |𝐸
1 ↦→ 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ (𝑡 𝑣1→ 𝑢) → [𝑡]𝑛

𝑣0→ [𝑢]𝑛 (6.1)

𝑀𝑎𝑝 : 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑢𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑛𝑁𝑎𝑡𝑇 ↦→ (𝑡 𝑣1→ 𝑢) → [𝑡]𝑛 → [𝑢]𝑛 (6.2)

6.1.2 Exploration Starting Point

For the automatic exploration, the given effectless program will be first transformed to use

the primitives from figure 4.6 by adding effect types. For example, 𝑀𝑎𝑝 in eq.(6.2) will

become eq.(6.1). However, for most primitives, including 𝑀𝑎𝑝, decisions of whether they

should be views or eager need to be made. At the starting point of the exploration, all

primitives are expected to be eager by default, i.e., to be materialized. This is because,

during the exploration, eager primitives can be turned into views gradually, and finally

terminate at a point where as many primitives as possible become views, as we will see.

The following strategy is used to ensure that all primitives are materialized by default:

• For those eager primitives, e.g., 𝐼𝑑, 𝑈𝑛𝑎𝑟𝑦𝑂𝑝, 𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 and 𝑅𝑒𝑑𝑢𝑐𝑒, there is nothing

to be done.

• For the rest of the primitives, including 𝑀𝑎𝑝 and other lazy primitives, e.g., 𝑆𝑝𝑙𝑖𝑡 and

𝑍𝑖𝑝, they will be first treated as source view primitives and then captured by primitive

61

𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 to provide their eager versions. The primitive𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 has the

signature of 𝑡𝐷𝑎𝑡𝑎𝑇 ↦→ 𝑡
𝐸→ 𝑡 . Once we decide to materialize the input,𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒

can be rewritten by the 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 transformation introduced in section 4.2.5, by

using the rule: 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑖𝑛) ⇒ [[𝑖𝑛]]𝑀

After applying this strategy, the program at the starting point will only consist of primi-

tive 𝑀, eager primitives, and source view primitives. As we will see soon, those primitives

from the starting point program will be rewritten gradually to use more source and desti-

nation views, and all possible variants can be reached at the end.

6.1.3 Defining Search Space

The search space can be explored from the starting point based on the following properties.

For each 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 primitive, there are two options: keeping it so that its input

will be materialized, or removing it should that its input will be treated as a view.

For each source view primitive, there are also two options: turning it to a destination

view or keeping it unchanged. To turn it to a destination view primitive, one just needs to

change the effect type it takes. For example, to change a 𝑆𝑝𝑙𝑖𝑡𝑆 to a destination view, one

just needs to let it take a 𝐷 effect type instead of an 𝑆 effect type. Nevertheless, turning a

source view primitive into an eager primitive is unnecessary because, at the starting point,

any source view primitive is already captured by a 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒.

For primitives that are inherently eager, e.g., 𝐼𝑑, 𝑈𝑛𝑎𝑟𝑦𝑂𝑝, 𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 and 𝑅𝑒𝑑𝑢𝑐𝑒, there

is no option available.

In summary, if 𝑚 is the number of 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 primitives and 𝑠 is the number of

source view primitives, the upper bound of the search space will be 2𝑚+𝑠 . This upper bound,

however, does not exclude those invalid cases where source view primitives are used as

inputs to destination view primitives.

62

6.1.4 Exploration Rules

The following rules show the options for removing a 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 primitive:

𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑝𝐷 (𝑒∗)) ⇒ 𝑝𝐷 (𝑒∗) (6.3)

𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑝𝐸 (𝑒∗)) ⇒ 𝑝𝐸 (𝑒∗) (6.4)

𝑝𝑆 (𝑒0, .., 𝑒𝑛) where ∃𝑘 ∈ [0, 𝑛] . 𝑒𝑘 match 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑒′) ⇒ [𝑒𝑘\𝑒′]𝑝𝑆 (𝑒0, .., 𝑒𝑛) (6.5)

𝑝𝐸 (𝑒0, .., 𝑒𝑛) where ∃𝑘 ∈ [0, 𝑛] . 𝑒𝑘 match 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑒′) ⇒ [𝑒𝑘\𝑒′]𝑝𝐸 (𝑒0, ..𝑒𝑛) (6.6)

Eq.(6.3) and eq.(6.4) allow the removal of 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 primitive when it tries to mate-

rialize an eager or a destination view primitive, given that most of the time this material-

ization is redundent. Eq.(6.5) states that given a function call to a source view primitive 𝑝𝑆

with expressions 𝑒0 to 𝑒𝑛 as arguments, if there exists a natural number 𝑘 belongs to [0, 𝑛]

where the argument 𝑒𝑘 patten matches with 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑒′), 𝑒𝑘 can be subtituted to 𝑒′

in the function call. By doing so, 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 primitive is removed and 𝑒′ will not be

materialized. Eq.(6.6) is similar to eq.(6.5) except it targets eager primitives.

For turning a source view primitive into a destination view primitive, a special function

𝑡𝑜𝐷𝑝 need to be defined first. Function 𝑡𝑜𝐷𝑝 changes a source view primitive to a destination

view primitive by changing the effect type it takes from 𝑆 to 𝐷. For instance, 𝑡𝑜𝐷𝑝 (𝑆𝑝𝑙𝑖𝑡𝑆) =

𝑆𝑝𝑙𝑖𝑡𝐷 . The following rules can be applied:

𝑝𝑆 (𝑒0, .., 𝑒𝑛) where @𝑘 ∈ [0, 𝑛] . 𝑒𝑘 is a source view primitive call ⇒ 𝑡𝑜𝐷𝑝 (𝑝𝑆 (𝑒0, .., 𝑒𝑛)) (6.7)

Eq.(6.5) states that given a function call to a source view primitive 𝑝𝑆 with expressions 𝑒0

to 𝑒𝑛 as arguments, if there does not exist a natural number 𝑘 belongs to [0, 𝑛] where the

argument 𝑒𝑘 is a function call to a source view primitive, 𝑝𝑆 can be turned into a destination

view primitive.

63

Rules in eq.(6.3 - 6.7) are designed specially so that no invalid programs, prevented by

the effect system in section 4.2.3, can be introduced. In other words, no rewrite will produce

a program with a destination view primitive using a source view primitive as input.

Combining the rewriting rules introduced in this subsection allows the exploration be-

gins from the starting point, gradually removes the eager primitives, turns source view

primitives into destination view primitives, and terminates at a point where no more rules

can be applied.

The Termination of the Rewriting The termination of the rewriting are guaranteed by

the rules in eq.(6.3 - 6.7). By applying these rules in any given program, the program will

always reach a point where no more rules can be used. The rules in eq.(6.3 - 6.6) remove

𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒, the rule in eq.(6.7) turns source views into destination views. Therefore,

when no more 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 or source views can be applied to these rules, the rewriting

will terminate. Moreover, one of the important properties of these rules is that no new

𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑒 or new source view will be created. It assures that these rules will not

sabotage each other and prevents the rewriting from never coming to an end.

6.1.5 Example for the Vector Addition

To better understand the concepts proposed in this section, here is an example to show how

the presented rewriting rules are used to explore the variants for a vector addition program.

At the functional level, without any view information, the vector addition program is

implemented as:

𝜆𝑎, 𝑏.𝑀𝑎𝑝 (+, 𝑍𝑖𝑝 (𝑇𝑢𝑝𝑙𝑒 (𝑎, 𝑏))

64

By transforming it into the starting point:

𝜆𝑎, 𝑏.𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑀𝑎𝑝𝑆 (+,

𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑍𝑖𝑝𝑆 (

𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑇𝑢𝑝𝑙𝑒𝑆 (

𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑎), 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑏)))))))

If we apply eq.(6.5) to remove the last four primitives, the program becomes:

𝜆𝑎, 𝑏.𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑀𝑎𝑝𝑆 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑎, 𝑏))))

By rewriting 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 via the 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 transformation presented in section

4.2.5, the program becomes:

𝜆𝑎, 𝑏.𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑎, 𝑏)))

which introduces no intermediate data structure.

There are many other variants that can be explored as well. For example, if we only

remove the last two 𝑀𝑎𝑦𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒, the program will become:

𝜆𝑎, 𝑏.𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝐷 (𝐼𝑑 (𝑎), 𝐼𝑑 (𝑏))))

However, compared with the previous program, this program is less efficient because an

intermediate structure is created by materializing the result from a tuple.

This subsection has shown an example for manually using the rewrite rules from eq.(6.3

- 6.7) to explore the program’s variant. In the next section, searching strategies will be

presented to automate this exploration process.

65

1 def perf(expr: Expr): Double = {
2 expr.visit({
3 case MayMaterialize(Map(f, in, EagerType(), _)) =>
4 in.asInstanceOf[ArrayTypeT].len * perf(f) + perf(in)
5 case Reduce(f, init, in, EagerType(), _) =>
6 in.t.asInstanceOf[ArrayTypeT].len * perf(f) + perf(init) + perf(in)
7 case p@Primitive(_, EagerType(), t) =>
8 perf(t) + p.children.map(perf).sum
9 case other => // do nothing
10 })
11 }
12

13 def perf(t: Type): Double = t match {
14 case ArrayType(et, len) => len.ae.evalInt * perf(et)
15 case tup@TupleType(fst, snd) => perf(fst) + perf(snd)
16 case other => 1 // scalar types
17 }

Figure 6.1: Pesudocode for the Performance Model

6.2 Exploration Strategies

As mentioned, after transforming the program into the starting point, the upper bound of

the search space is 2𝑚+𝑠 where 𝑚 is the number of 𝑀 primitives and 𝑠 is the number of

source view primitives. The search space is exponential, and it is impossible to iterate all

possibilities when 𝑚 and 𝑠 are big. Therefore, for tuning a given program, two strategies

are presented in this section: the heuristic strategy and the random strategy.

6.2.1 Heuristic Strategy

The heuristic strategy is based on a performance model to filter out the variants with po-

tential poor runtime performance so that the search space can be significantly narrowed.

The adopted performance model estimates the runtime performance of a given expression

based on the potential memory allocation.

66

1 def getBestVariants(exprs: Seq[Expr], top: Int): Seq[Expr] =
2 exprs.sortBy(perf).reverse.take(top)
3

4 def heuristicExplore(root: Expr): Seq[Expr] = {
5 val q = Queue()
6 val result = Seq()
7 q.enqueue(root)
8 result.add(q)
9 while(q.isNotEmpty) {
10 val curVariant = q.dequeue()
11 val newVariants = applyRules(curVariant, rules)
12 val bestVariants = getBestVariants(newVariants, top) // narrow down search space
13 q.enqueue(bestVariants)
14 result.add(bestVariants)
15 }
16 return getBestVariants(result, top)
17 }

Figure 6.2: Pesudocode for the Heuristic Exploration

Figure 6.1 shows the implementation of the performance model. 𝑝𝑒𝑟 𝑓 returns a score by

calculating the potential memory allocation. A higher score means more allocation required

and thus worse expected performance. Since𝑀𝑎𝑝 and 𝑅𝑒𝑑𝑢𝑐𝑒 will generate for-loops, line 4

and line 6multiple their lengths with the scores obtained from visiting their input functions.

Line 8 is for any other eager primitives whose scores are based on their types.

Figure 6.2 provides the pesudocode for the heuristic strategy. getBestVariants takes

a sequence of variants as input and returns the best "top" variants according to the per-

formance model. Function heuristicExplore expects a program at the starting point as

input. Line 5 - 8 sets up the data structures before the exploration begins. Line 9 presents a

while-loop that stops when q is empty, and this is also where the exploration ends and re-

turns. Line 10 dequeues an expression as curVariant. Line 11 uses function applyRules to

obtains a sequence of new variants where rules in section 6.1.4 are applied to curVariant.

For instance, if n places in curVariant can be rewritten by the given rules, newVariantswill

be a sequence of n expression. Line 12 narrows the search space by filtering out the vari-

67

1 def randomExplore(root: Expr): Seq[Expr] = {
2 val q = Queue()
3 val result = Seq()
4 q.enqueue(root)
5 result.add(q)
6 while(q.isNotEmpty) {
7 val curVariant = q.dequeue()
8 val newVariants = applyRules(curVariant, rules)
9 val randomVariants = pickRandomly(newVariants, n) //narrow down search space
10 q.enqueue(randomVariants)
11 result.add(randomVariants)
12 }
13 return pickRandomly(result, n)
14 }

Figure 6.3: Pesudocode for the Random Exploration

ants with potentially poor performance. Line 13 enqueue the new founded bestVariants

to continue the exploration. Line 14 adds those best variants as possible results. Finally,

when the exploration ends, line 16 returns the best "top" variants from result.

During the process, we explore the search space by narrowing it down via the perfor-

mance model. Eventually, the search terminates when no more rewrites can be found. And

it is guaranteed that the search will always terminate, as indicated in section 6.1.4. At the

end, the best "top" variants are returned.

6.2.2 Random Exploration Strategy

Another way to deal with the exponential search space is to search randomly. Let’s

assume that function pickRandomly(exprs,n) randomly picks n expressions from the input

exprs. Figure 6.3 shows the implementation of the random exploration. One of the main

differences compared with the heuristic implementation lies in line 9, where pickRandomly

is used to randomly pick k variants in each step to narrow the search space. When the

search process ends, line 13 uses pickRandomly again to randomly pick n expressions as

result to return.

68

6.3 Summary

This section aims to solve the problem of how to automatically attach view information to

the input program, which is an essential component for making this work practical in real-

world production. It has shown the search space, the starting point, and available rules of

searching. Due to the exponential search space, a heuristic and a random strategy have been

presented. The next chapter focuses on evaluating the whole code generation approach we

have discussed so far. It also evaluates the two automatic strategies and compares them

with the hand-tuned strategy.

69

Chapter 7

Evaluation

The previous chapters have introduced the whole lowering process and the automatic ex-

ploration strategies for generating imperative code. This chapter focus on the evaluation of

the generated code compared with the prior work on DPS. It first introduces the experimen-

tal setup. Then, the focus shifts to the result from the comparison between the approaches

proposed in this thesis, including the automatic exploration strategies, and the references in

11 real-world benchmarks. Finally, a use-case for the 2.5D tiling optimization is presented

to demonstrate the proposed approach can be used for generating OpenCL code for GPU

and encoding optimizations.

7.1 Experimental Methodology

Hardware and Operating System The experiment machine is equipped with an AMD

4800H CPU@ 2.9GHz and 16GB DDR4 RAM@ 3200Mhz. The operating system is Ubuntu

21.10. The generated C code is compiled by Clang version 13.0.0. The -O3 optimization is

used for compilation as the main reference 𝐹 [35] also uses this flag in its experiments.

Measurements The evaluation focuses on the runtime performance and memory con-

sumption. For the runtime performance, function clock in the C standard library is used to

70

measure the execution time. For the memory consumption, GNU time 1 is used to obtain

the maximum memory consumption during execution. The average coefficient of variation

(the ratio of the standard deviation to the mean) cross all 11 benchmarks is 2.59% in terms

of runtime performance and 0.00% in terms of memory consumption.

Benchmarks There are 11 benchmarks chosen for the evaluation. There are 5 bench-

marks from [35], including Three Vectors Addition (3Add), Cross Product (Cross), Bundle

Adjustment (BA), Gaussian Mixture Model (GMM) and Hand Track (HT). And 6 bench-

marks from PolyBench [32]: Matrix Multiplication (MM), 2MM, 3MM, jacobi1D, jacobi2D

and seidel2D. These matrix multiplication and stencil workloads are chosen from PolyBench

because they are representative and widely used in many areas such as machine learning

and computer vision.

Approaches Evaluated In this section, the following approaches are compared:

• All-views: This approach tries to use lazy primitives to views to avoid using interme-

diate data structures. All views will be removed eventually, and no intermediate data

structure will be created. However, counter-intuitively, the lack of intermediate data

structures may reduce performance, due to lower data locality.

• Hand-tuned: The hand-tuned approach uses some primitives lazily and others are

turned eager. This is controlled manually by the user to trade off performance and

memory consumption.

• Heuristic: In the heuristic approach, code is generated by the heuristic strategy dis-

cussed in section 6.2. For each benchmark, the top 50 programs considered to have

the best performance by the heuristic strategy are generated and run. The one with

the shortest execution time is chosen for report in Figure 7.1 and 7.2.
1https://ftp.gnu.org/gnu/time/

71

0.0

0.5

1.0

1.5

2.0

MM 2MM 3MM 3Add Cross
Jacobi1D

Jacobi2D
Seidel2D BA GMM HT

Average

S
pe

ed
up

 o
ve

r
C

+
+

All−Views

Hand−Tune

Heuristic−Tune (best of 50)

Random−Tune (best of 1k)

FSmooth

Figure 7.1: Evaluation result in terms of runtime performance. The higher, the better.

0.0

0.5

1.0

1.5

MM 2MM 3MM 3Add Cross
Jacobi1D

Jacobi2D
Seidel2D BA GMM HT

Average

M
em

or
y

 C
on

su
m

pt
io

n
 o

ve
r

C
+

+

All−Views

Hand−Tune

Heuristic−Tune (best of 50)

Random−Tune (best of 1k)

FSmooth

Figure 7.2: Evaluation result in terms of memory consumption. The lower, the better.

• Random: In the random approach, code is generated by the random strategy discussed

in section 6.2. For each benchmark, 1000 programs are generated and run. The one

with the shortest execution time is chosen for report in Figure 7.1 and 7.2.

• 𝐹 [35] introduced the concept of DPS and compiles a high-level functional array-

processing programs to C code. The compiler is downloaded from the authors’ repos-

itory2. The generated C code for 3Add, Cross, BA, GMM, and HT are from the same

repository. With several versions of C code generated by 𝐹 , the most optimized one in

DPS is chosen. For some benchmarks, however, the 𝐹 compiler fails to produce valid

C code due to some bugs when turning on all the optimizations available. In these

cases, we turn down the optimizations until the C code produced is correct.

• Idiomatic C++: The C++ code for 3Add, Cross, BA, GMM, and HT is downloaded

from the same 𝐹 repository, and the rest are implemented by hand.

72

7.2 Experimental Results

Figure 7.1 and figure 7.2 presents the evaluation result for 11 benchmarks on the CPU with

idiomatic C++ as baseline. The absolute values are listed in table B.1 and table B.2. All

reported numbers are obtained by executing the programs 10 times and calculating the

average values.

In terms of runtime performance, compared with the idiomatic C++ approach, the all-

views, hand-tuned, heuristic and random approach achieve an average of 1.11×, 1.18×,

1.07× and 0.65× speedup. 𝐹 achieves 0.88× a speedup over the idiomatic C++ approach.

In terms of memory consumption, compared with the idiomatic C++ approach, the all-

views, hand-tuned, heuristic and random approach require on average of 0.82×, 0.88×,

0.87× and 0.87× space over idiomatic C++. 𝐹 requires 0.85× space over the idiomatic

C++ approach.

The evaluation shows that the hand-tuned approach outperforms 𝐹 and idiomatic C++

code. The comparison between the all-views approach and the hand-tuned approach shows

the advantage of providing the fine-grained controls on the eagerness of view primitive to

the end-users. The evaluation also shows that the heuristic method is effective since it is

on par with the hand-tuned approach and clearly outperforms the random strategy in most

of the benchmarks. More discussion for these two automatic exploration strategies will be

left to section 7.3. We now take a deeper look at the result for each individual benchmark.

MM, 2MM, 3MM These workloads include matrix multiplications and additions on ma-

trices with the size of 1024x1024. Matrix multiplication consists of a matrix transposition

and dot products:
1 MatMul0 = 𝜆 mat0, mat1.MapE(𝜆 row0.MapE(𝜆 row1.DotProd(row0, row1), mat1)) <|
2 TransposeS(mat0)
3 MatMul1 = 𝜆 mat0, mat1.MapE(𝜆 row0.MapE(𝜆 row1.DotProd(row0, row1), mat1)) <|
4 [[TransposeS(mat0)]]M
5 DotProd = 𝜆 row0, row1.Reduce(0, +) <| MapE(*) <| ZipS(TupleS(row0, row1))

2commit adbe1c from http://github.com/awf/Coconut

73

The result from the matrix transposition is materialized in the hand-tuned approach

which is implemented as 𝑀𝑎𝑡𝑀𝑢𝑙1. Compared with the all-view approach, i.e., 𝑀𝑎𝑡𝑀𝑢𝑙0,

and idiomatic C++, where the matrix transposition is treated as a source view, the runtime

performance is increased by about 17% in the hand-tuned approach. The downside is that

it consumes more memory. The flexibility provided by this approach presents opportunities

for more optimization choices. 𝐹 is generally the worst since it fails to generate the C code

with optimizations enabled for these benchmarks.

Jacobi1D, Jacobi2D, Seidel2D A stencil computation updates a multiple-dimension data

grid given a fixed pattern based on the neighboring value. Prior works have shown they can

be represented [17, 39] using primitives 𝑆𝑙𝑖𝑑𝑒 and 𝑃𝑎𝑑. The implementation from this

thesis uses the primitive 𝐶𝑜𝑛𝑐𝑎𝑡 to implement 𝑃𝑎𝑑. Since 𝐶𝑜𝑛𝑐𝑎𝑡 can be used as a source or

destination view primitive, as seen in section 4.1, there are two different implementations.

The focus lies on Seidel2D as an example in the rest of this section. Seidel2D convolves

a 4096x4096 matrix with a 3x3 all-ones matrix. After convolution, the result will have the

shape of 4094x4094. Thus, padding is needed to return a matrix of the same original size.

In the first method, Seidel2D is implemented as follows, where [−1] represents the last

elements of an array, ::𝑆 is syntax sugar for 𝐶𝑜𝑛𝑐𝑎𝑡𝑆 , <| is for application, 𝐶𝑜𝑛𝑣2 is for a 2D

convolution function:

1 PadS = 𝜆 mat.RepeatS(1, mat[0]) ::S mat ::S RepeatS(1, mat[-1])
2 PadS2D = 𝜆 mat.PadS <| MapS(PadS) <| mat
3 Seidel = 𝜆 mat.MapE2(Conv2) <| SlideS2 <|PadS2D(mat)

𝑃𝑎𝑑𝑆2𝐷 produces a source view of the padded matrix. 𝑆𝑙𝑖𝑑𝑒𝑆2 creates a source view of

the neighborhoods is implemented as [17]:

SlideS2 = 𝜆 mat.Map(TransposeS) <| Map(SlideS(1, 3)) <| mat

74

1 if(j<1) {
2 if(i<1) d = mat[0][0];
3 else { if(i-1<4095)
4 d = mat[i-1][0];
5 else d = mat[-1][0];}
6 } else {
7 if(j-1<4095) {
8 if(i<1) d = mat[0][j-1];
9 else { if(i-1<4095)
10 d = mat[i-1][j-1];
11 else d = mat[-1][j-1];}
12 } else {
13 if(i<1) d = mat[0][-1];
14 else { if(i-1<4095)
15 d = mat[i-1][-1];
16 else d = mat[-1][-1];}}}

1d[0][0] = conv_mat[0][0];
2d[0][4095] = conv_mat[0][4093];
3for(int i = 0; i < 4094; i++)
4d[0][i + 1] = conv_mat[0][i]
5for(int i = 0; i < 4094; i++) {
6d[i+1][0] = conv_mat[i][0];
7d[i+1][4095] = conv_mat[i][4093];
8for(int j = 0; j < 4094; j++)
9d[i+1][j+1] = conv_mat[i][j];}
10d[4095][0] = conv_mat[4093][0];
11d[4095][4095] = conv_mat[4093][4093];
12for(int i = 0; i < 4094; i++)
13d[4095][i + 1] = conv_mat[4093][i];

Figure 7.3: Comparison between stencil computation code generated by source views and
by destination views. The left side shows the piece code for 𝑃𝑎𝑑𝑆2𝐷 (𝑚𝑎𝑡) [𝑖] [𝑗] being written
into the destination 𝑑 where if-else statements are used widely. The right side shows the
code for padding with 𝐶𝑜𝑛𝑐𝑎𝑡𝐷 , where a convoluted matrix with the size of 4094x4094 is
written into the destination 𝑑 with the size of 4096x4096.

As seen, these two source views will end up being fused with the operation performed in

the 𝑀𝑎𝑝𝐸 resulting in no intermediate data structures.

However, since 𝐶𝑜𝑛𝑐𝑎𝑡𝑆 is used, this will produce loops with checks for boundary condi-

tions in 2D conditions occurring at every iteration as already seen in themotivation example.

The body of the inner loop is given on the left-side of Figure 7.3 to illustrate the complicated

conditions generated which will have an impact on performance.

The secondmethod, however, leverages destination views to remove the condition checks

in the body of the loop generated:

1 PadD = 𝜆 row.RepeatD(1, row[0]D) ::D row ::D RepeatD(1, row[-1]D)
2 Seidel=𝜆 mat.PadD <| MapE(PadD ◦ MapE(Conv2)) <| SlideS2(mat)

75

Unlike the previous method,𝐶𝑜𝑛𝑐𝑎𝑡𝐷 are destination views so that padding occurs when

its source, a convoluted matrix, writes to memory. The generated code on the right of Figure

7.3 suggests a superior implementation for padding that obviates the need for conditions.

While again the focus of the work has been on exposing control to the user, it is not too

hard to see how one could transform automatically the first version of the program into the

second one to enable the automatic exploration of program variants.

Because the second method will not suffer from time-consuming conditions and has

better runtime performance, it is chosen to report the numbers in Figure 7.1 and 7.2. In

contrast, 𝐹 generates C code following the first approach and is unable to produce code

from the second approach without any if-then-else in the loop. This is due to the lack of

support for a destination view, or lazy destination at the IR level and the impossibility to

express this implementation at the functional level in 𝐹 .

Three Vectors Addition 3Add adds three vectors with 224 elements each into one. Both

hand-tuned and all-viewsmethod have the following implementation that uses source views

to ensure that no intermediate array is produced:

1 3Add = 𝜆 v_0, v_1, v_2. MapE(+) <| ZipS <| TupleS(v_0) <| MapS(+) <|
2 ZipS(TupleS(v_1, v_2))

Correspondingly, 𝐹 also has a ruled-based loop fusion strategy applied to achieve the same

effect. In contrast, the C++ code does not fuse the two vector additions and thus results

in an intermediate array created slowing down the runtime performance.

Cross Cross is used between two vectors with three elements each. The programs for

all-views and hand-tuned are the same as the follows:

1 Cross = 𝜆 v0,v1.ElemWiseVecSub(
2 ElemWiseVecMul(PermuteS(𝜆 i.(i+1)%3, v0), PermuteS(𝜆 i.(i+2)%3, v1)),
3 ElemWiseVecMul(PermuteS(𝜆 i.(i+2)%3, v0), PermuteS(𝜆 i.(i+1)%3, v1)))
4

5 ElemWiseVecSub = 𝜆 v0,v1. MapS(-) <| ZipS(TupleS(v0, v1))

76

6 ElemWiseVecMul = 𝜆 v0,v1. MapS(*) <| ZipS(TupleS(v0, v1))

𝑃𝑒𝑟𝑚𝑢𝑡𝑒 is used for permuting the input vectors and will be removed as a source view.

Therefore, the generated C code by the all-views and hand-tuned strategies produces no

intermediate results. Similarly, 𝐹 uses array comprehension for implementation so that no

intermediate data structures are created. However, the C code generated by 𝐹 maintains a

struct 𝑎𝑟𝑟𝑎𝑦_𝑛𝑢𝑚𝑏𝑒𝑟_𝑡 with a length and a pointer to represent an array, which slows down

the runtime performance.

Hand-Tracking HT [44] is a computer vision task that tracks a real hand and fits the

model into the depth information observed by the depth sensor. One of the main functions

of hand-tracking is used for benchmarking. The implementation for all-views and hand-

tuned strategy is the same and is shown in appendix A.3. Because there is no particular

opportunity to exploit different strategies for the views or for fusing, all approaches have

comparable performance.

Bundle Adjustment BA [45] is an important problem in computer vision. It refines a

visual reconstruction and estimates jointly optimal 3D structure and camera internal pa-

rameters to estimate a projection of a 3D point on a camera. It calculates the projected

coordinates of a 3D point by a camera and a model of the radial distortion of the lens.

Figure 7.1 shows the runtime difference for running the 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 function ten million

times. The implementation of bundle adjustment for both all-views and hand-tuned strat-

egy is attached in appendix A.1. Due to the nature of the benchmark, there is no particular

opportunity to exploit different strategies for the views or for fusing. The 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 func-

tion only has opportunities for removing the source that comes from 𝑆𝑙𝑖𝑐𝑒, 𝑉𝑒𝑐𝑡𝑜𝑟𝐴𝑑𝑑, and

𝑉𝑒𝑐𝑡𝑜𝑟𝑀𝑢𝑙 , which is also provided in 𝐹 and easy to implement in idiomatic C++. Since all-

views and hand-tuned also have the same implementation in these workloads, the runtime

performance for all the approaches is very close.

77

Gaussian Mixture Model GMM [33] is an unsupervised machine learning method com-

monly used in computer vision applications and data clustering tasks. Both idiomatic C++

and 𝐹 can remove all intermediate arrays. Thus, their runtime performance is similar. Ma-

terializing some computation results that are used multiple times from the hand-tuned

method speeds up the code compared with all-view’s one. In the hand-tuned approach, as

shown in appendix A.2, the function call to 𝑄𝑡𝑖𝑚𝑒𝑠𝑣 is materialized so that it speeds up the

runtime performance by around 39% over all-views. This, again, highlights the advantage

of being able to have fine-grained control over the views.

7.3 Evaluation Result for Automatic Exploration

As we have seen earlier in figure 7.1, the heuristic strategy is on par with the hand-tuned

strategy and outperforms the random strategy. For a better understanding of the perfor-

mance distribution when tuning with different combinations of source views, destination

views, and eagernesses, Figure 7.4 shows the runtime performance of the 1000 randomly

generated code for each benchmark. Histograms with kernel density estimation are used

to visualize the distribution of the runtime performance. Since some code generated by the

random approach is extremely inefficient, a 10 seconds timeout is set for MM, 2MM, 3MM,

BA, GMM and HT; a 20 seconds timeout is set for Jacobi2D and Seidel2D. The execution

time for any code that executes beyond the timeout will be treated as 10 or 20 seconds.

As seen in figure 7.4, like looking for a needle in a haystack, only a few variants can

finish within the timeout and be evaluated. By inspecting the generated code, most variants

cannot finish as too many intermediate data structures are being created. It is not surprising

given that the search space is exponential, as mentioned in section 6.1, and the chance is low

for the random strategy to hit those efficient variants with fewer primitives materialized.

While the random strategy cannot always give desirable variants, the red dashed vertical

lines in figure 7.4, representing the runtime performance of the code generated by the

78

2000 4000 6000 8000 10000
0

200

400

600

800
OneMM

2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000
TwoMM

3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000
ThreeMM

0 200 400 600 800 1000 1200
0

20

40

60

80

100
Add3

0 1000 2000 3000 4000
0

20

40

60

80

100

120
Cross

0 500 1000 1500 2000 2500
0

50

100

150

200

Jacobi1D

102 103 104
0

200

400

600

800

1000
Jacobi2D

102 103 104
0

200

400

600

800

1000
Seidel2D

0 2000 4000 6000 8000 10000
0

200

400

600

BA

1042 × 103 3 × 103 4 × 103 6 × 1030

200

400

600

GMM

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

300
HT

Execution Times in Milliseconds

Co
un

t

Figure 7.4: Histograms for the evaluation result of random strategy. The red dashed vertical
line stands for the execution time of the code from the heuristic approach.

heuristic strategy, again indicates the effectiveness of the heuristic strategy compared with

the random strategy.

7.4 Jacobi3D 2.5D Tiling OpenCL Use-case
This use-case targets OpenCL and is here to demonstrate another advantage of using des-

tination views explicitly. A vanilla Jacobi3D without considering padding is (Conv3 is a

function that stands for a 3D convolution):

Jacobi3D = 𝜆 src.MapE3(Conv3,Slide
S
3(size,step,src))

79

2.5D tiling is an optimization for iterative 3D stencils, which iterates over two spatial

dimensions in parallel and sequentially in the third dimension [49, 29]. The sequential

iteration in the third dimension reduces the number of reads from memory since most of

the elements loaded from memory can be reused at the next iteration.

This optimization has been explored and exploited in the context of the Lift compiler

showing that significant performance improvement is possible [17, 39]. However, to support

this optimization, Lift introduced a new primitive 𝑀𝑎𝑝𝑠𝑒𝑞𝑠𝑙𝑖𝑑𝑒 to create a moving window

iterating the third dimension and applying the input function to the window:

1 Jacobi3D = 𝜆 src.MapE2(Mapseqslide(Conv3,size,step)) <| TransposeS <| MapS(TransposeS)
2 <| SlideS2(size,step) <| MapS(TransposeS) <| TransposeS(src)

While this approach works, it is far from being ideal since a new primitive needs to

be introduced. Instead, using the concept of destination view, it is possible to express this

primitive as a combination of the existing primitives:

𝑀𝑎𝑝𝑠𝑒𝑞𝑠𝑙𝑖𝑑𝑒 (𝑓 , 𝑠𝑡𝑒𝑝, 𝑠𝑖𝑧𝑒, 𝑠𝑟𝑐) = 𝑀𝑎𝑝𝐷 (𝑓 , 𝑆𝑙𝑖𝑑𝑒𝐸 (𝑠𝑖𝑧𝑒, 𝑠𝑡𝑒𝑝, 𝑠𝑟𝑐))

In this case, the 𝑆𝑙𝑖𝑑𝑒𝐸 is eager, generating a template C code that contains a rolling

window to reuse elements across iterations, as shown in eq.(5.15). Moreover, the 𝑀𝑎𝑝𝐷 , a

destination view, only affects the way the slide writes to memory.

By applying the rolling windows and using𝑀𝑎𝑝𝐷 as destination view, the corresponding

piece of generated OpenCL code for the Jacobi3D benchmark is shown in Figure 7.5.

Evaluation Jacobi3D7pt, Jacobi3D15pt and Jacobi3D27pt are chosen for evaluation, each

with a different number of neighborhood points. With the input size as 128x128x128 ex-

periments are run on an NVIDIA 940M GPU and use an OpenCL backend where arrays are

represented flattened in memory.

80

1 float wd[3][3][3];
2 int gx = get_global_id(0);
3 int gy = get_global_id(1);
4 for(int i = 0; i < 3; i++) {
5 for(int j = 0; j < 3; j++) {
6 wd[i][j][1] = src[gx+i][gy+j][0];
7 wd[i][j][2] = src[gx+i][gy+j][1]; }}
8 for(z=0; z<126; z++){
9 for(int i = 0; i < 3; i++) {
10 for(int j = 0; j < 3; j++) {
11 wd[i][j][0] = wd[i][j][1];
12 wd[i][j][1] = wd[i][j][2];
13 wd[i][j][2] = src[gx+i][gy+j][z+2]; }}
14 conv3(wd, &d[z]);}

Figure 7.5: Generated OpenCL code for Jacobi3D with rolling windows applied

Neighborhood Points 7pt 15pt 27pt

Speedup 1.07x 1.09x 1.63x

Table 7.1: Evaluation Result for 2.5D Tiling

Table 7.1 shows that using 2.5D tiling results in a speedup of 1.07×, 1.09×, and 1.63× for

the 7pt, 15pt and 27pt workloads respectively, over the implementation without applying

this optimization.

The preliminary result on 2.5D tiling is similar to the prior result [39] that needs to

introduce a specialized primitive for this use-case.

7.5 Summary

This chapter has provided a detailed evaluation of several approaches for generating im-

perative code, which shows that the all-views and hand-tuned strategy outperforms the

idiomatic C++ and the state of the art, which is 𝐹 , thanks to the use of destination views

and the ability to provide a fine-grained control on whether a primitive is eager or a view to

81

end-users. Also, the evaluation result of the heuristic strategy has demonstrated that it can

generate code that is on par with the hand-tuned approaches, and is way better than the

random strategy. Furthermore, as an OpenCL use-case, the section has presented how to

encode the 2.5D titling optimization in a composable way and reach a similar performance

to the prior works.

82

Chapter 8

Conclusion

This thesis has presented an approach to compiling a high-level array-based functional IR

to high-performance imperative code. It has combined the existing techniques on DPS with

the Lift views system by extending the notion of view to destinations. The evaluation has

shown that this approach can generate imperative code comparable with state-of-the-art.

8.1 Summary of Contributions

This thesis first has provided the necessary background knowledge for understanding this

thesis in chapter 2, which includes the discussion of lambda calculus, Lift IR and its high-

level primitives, the definition of DPS and the application of views in Lift. Then, chapter 3

has shown the related works on the functional approaches for generating high-performance

code, the usage of DPS and the removal of intermediate data structures.

Based on the background and the related works, chapter 4 has proposed the functional

level and the imperative level IRs design, including the types, the primitives and the effect

system to carry view information. We have also seen how it is possible to control when an

expression should be materialized in memory directly or should be a view at the functional

level. Following closely, chapter 5 has shown the lowering process from the functional IR to

imperative code step by step, which involves the combination of DPS and views to provide

83

memory management and remove all intermediate data structures. As seen in chapter 6,

two automatic exploration strategies have been provided for searching the efficient pro-

grams automatically.

As seen in chapter 7, introducing destination views is crucial to allow the expression of

programs that result in highly optimized C code. The evaluation has shown that C code

generated by the approaches from this thesis is on par with idiomatic C++ code, and out-

performs the DPS reference work in terms of execution time and memory consumption,

thanks to the introduction of destination views and the ability to provide a fine-grained

control on whether a primitive is eager or a view to end-users. It has also shown the ef-

fectiveness of the heuristic strategy for automatic exploration. Moreover, it has enabled the

expression of optimizations such as 2.5D tiling in a composable manner, leading to high-

performance code on GPUs.

8.2 Guidance on Using Views

As indicated in chapter 6, it is non-trivial to make optimal choices when using views. Thus,

this section aims to provide general insights on properly using views proposed in this thesis

for end-users to develop computation kernel and resolve performance related issues. The

first suggestion is to rely on the automatic exploration approaches provided in chapter 6.

As shown by the experiments, the heuristic-based strategy can provide programs with good

performance most of the time. The second suggestion is to manually implement the pro-

gram with views as the same as how the hand-tuned programs are implemented in chapter

7. Based on the experiment results, it is benefitical for source views to be used as many

as possible to avoid intermediate data structures unless the following two situations hap-

pen: first, when the result of a primitive is used multiple times or locality is critical, the

result should be materialized. Secondly, when the result of a primitive needs to be written

84

into different locations, e.g., array concatenation, destination view should be used to avoid

condition checks.

8.3 Critical Analysis

In hindsight, several deficiencies in this work could be tackled differently. The first problem

is how the view information is embedded in the IR. The method proposed by this thesis

is through an effect system so that primitives take an extra type parameter for an effect

type and embed the effect type in the function type. Therefore, examining the effect types

can determine whether a primitive is eager, source view, or destination view primitive and

prevent invalid programs. However, introducing an effect system increases the complex-

ity of this work, especially for understanding. An alternative approach is embedding the

view information to the data type instead of the function type, which may achieve a sim-

ilar outcome in storing the view information. While the latter approach sounds easier to

understand, it might introduce additional complexity in implementation, especially when

defining the signatures of the primitives used in the IRs, as care must be taken for the pres-

ence of the view information. Having the view information handled by a standalone effect

system is neater and easier in terms of the implementation. Hence, there is a trade-off

between the understandability and the simplicity of the implementation.

The second issue comes from the way destination views are handled in the DPS trans-

formation. This process might be convoluted because it involves the concept of the inverse

function. For every supported destination primitives, one rule needs to be added to the I

transformation. Also, there are some special primitive, such as𝑀𝑎𝑝𝐷 and 𝑇𝑢𝑝𝑙𝑒𝐷 needed to

be handled specially. Nevertheless, with the concept of destination views, it seems there is

no better way to diminish the inherent complexity. An alternative design may resort to the

push array that can be used to express various high-level primitives. While each supported

85

primitive still requires one rule for encoding by push arrays, the lowering of the push array

is uniform without exceptional cases that need special attention.

Thirdly, 𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 and 𝑆𝑖𝑛𝑔𝑙𝑒𝑂𝑝 are always eager primitives, though it is not always an

ideal design decision. For example, the 3Add workload is implemented as:

𝑀𝑎𝑝𝐸 (+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (MapS(+, 𝑍𝑖𝑝𝑆 (𝑇𝑢𝑝𝑙𝑒𝑆 (𝑎, 𝑏))), 𝑐)))

The problem here is that while MapS is a source view so that an intermediate array can be

avoided, its input function is eager, as + is a syntax sugar for the eager primitive 𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝.

It is not intuitive since 𝑀𝑎𝑝 and its input function should always have the same effect type.

The root of this problem is that 𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 and 𝑆𝑖𝑛𝑔𝑙𝑒𝑂𝑝 cannot be used as source view

primitives, which is necessary as long as their results are eventually materialized by 𝐼𝑑.

Therefore, a better design choice is to relax the restriction on 𝐵𝑖𝑛𝑎𝑟𝑦𝑂𝑝 and 𝑆𝑖𝑛𝑔𝑙𝑒𝑂𝑝 so

that they can be source view or even destination view primitives.

8.4 Future Work

Several avenues are open to this work in the future. First, as an improvement, it can have

more exploration on the application of DPS in a parallel environment. It includes the support

for vectorization so that this language’s computation and materialization, i.e., assignment,

should not only center on scalars. When targeting GPU, it also requires the awareness of

the memory hierarchy in the GPU architecture, for which the DPS transformation needs to

decide which memory area allocations should be placed in.

Meanwhile, it will also be interesting if it can support dynamic arrays, which are arrays

with lengths that are only available at runtime. With a proper array size inference algorithm

and more expressive natural number types, dynamic memory allocations can be provided

by DPS. Having dynamic arrays allows more operations that involve arrays with uncertain

sizes at the compile-time, such as 𝐹𝑖𝑙𝑡𝑒𝑟 , and recursive functions with various input sizes at

each function call.

86

Besides, while destination views certainly help achieve better performance for some

workloads, such as the use-case of 𝐶𝑜𝑛𝑐𝑎𝑡 and the stencil computation, it does not always

lead to a better result. In following work, other use-cases can be used for evaluation and

for providing more insights into destination views. Fast Fourier transform is one of the use-

cases that may be worth exploring since it involves a data permutation where computation

results need to be duplicated multiple times. Using destination view allows expressing a

computation that only computes once but is written to multiple locations directly. 𝐹𝑖𝑙𝑡𝑒𝑟

is another use-case that may be interesting, as the computation that is performed on the

filtered result can be encoded by 𝑀𝑎𝑝𝐷 as destination view and eventually fuse with the

for-loop generated 𝐹𝑖𝑙𝑡𝑒𝑟 where the predicate is evaluated.

87

Appendix A

Benchmark Implementations

This appendix shows the implementions of BA, GMM and HT in the functional level IR. The

implementations for other benchmarks are already shown in chapter 7.

A.1 Bundle Adjustment

1 VectorAdd = 𝜆 v0, v1. MapS(+, ZipS(TupleS(v0, v1)))
2 VectorSum = 𝜆 v. Reduce(+, 0, v)
3 VectorMulScalar = 𝜆 v, s. MapE(𝜆 x.x * s, v)
4 SqNorm = 𝜆 v. VectorSum(MapS(𝜆 x.x^2, v))
5 DotProd = 𝜆 v0, v1. VectorSum(MapS(𝜆 x.(x.0 * x.1), ZipS(TupleS(v0, v1)))
6

7 RadialDistort = 𝜆 radParams, proj.
8 let rsq = SqNorm(proj) in
9 VectorMulScalar(proj, radPrams[0] * rsq + 1 + radPrams[1] * rsq * rsq)
10

11 RodriguesRotatePoint = 𝜆 rot, x.
12 let sqtheta = SqNorm(rot) in
13 If(sqtheta == 0,
14 let theta = sqrt(sqtheta) in
15 let costheta = cos(theta) in
16 let sintheta = sin(theta) in
17 let thetaInv = 1 / theta in
18 let w = VectorMulScalar(rot, thetaInv)
19 VectorAdd(
20 VectorAdd(VectorMulScalar(x, costheta), VectorMulScalar(Cross(w, x),

sintheta)),

88

21 VectorMulScalar(w, DotProd(w, x) * 1 - costheta)
22),
23 VectorAdd(x, Cross(rot, x))
24)
25

26 Project = 𝜆 cam, X.
27 let Xcam = RodriguesRotatePoint(cam[0..3], X - cam[3..6]) in
28 let distorted = RadialDistort(cam[9..11], VectorMulScalar(Xcam[0..2],

VectorMulScalar(1 / Xcam[2]))) in
29 VectorAdd(cam[7..9], VectorMulScalar(distorted, cam[6]))
30

31 BundleAdjustment = 𝜆 a, b, cam. Project(cam, RadialDistort(a, b))

A.2 Gaussian Mixture Model

1 VectorPow2 = lambbda v: MapS(𝜆 e. e**2, v)
2 VectorExp = lambbda v: MapS(𝜆 e. exp(e), v)
3 VectorSubScalar = 𝜆 v, s. MapS(𝜆 e. e - s, v)
4 VectorMax = 𝜆 v. Reduce(𝜆 acc, cur. IfD(acc > cur, Id(acc), ID(cur)), -DBLMAX, v)
5 // -DBLMAX is the smallest double literal in the target machine
6

7 LogSumExp = 𝜆 x.
8 let mx = VectorMax(x) in
9 log(VectorSum(VectorExp(VectorSubScalar(x, mx)))) + mx
10

11 Tri = 𝜆 n. (n * (n + 1)) / 2
12

13 Qtimesv = 𝜆 q, l, v.
14 MapE(𝜆 i.
15 Reduce(𝜆 j, acc.
16 let k = j - tri(i - 1) in
17 IfD(k > 0 && k < i, acc + l[j] * v[k], Id(acc)),
18 CounterS(l.length)) + exp(q[i]) * v[i],
19 CounterS(v.length))
20

21 GMM = 𝜆 n, xs, alphas, means, qs, ls.
22 VectorSum(
23 MapS(𝜆 x. LogSumExp(
24 MapS(𝜆 e.
25 e.0 + VectorSum(e.1) - SqNorm(Qtimesv(e.1), e.2, VectorSub(x, e.3)) / 2,
26 ZipS(TupleS(alphas, qs, ls, means)))), xs)
27) - xs.length * LogSumExp(alphas) +

89

28 VectorSum(MapS(𝜆 x. SqNorm(VectorExp(x.0)) + SqNorm(x.1), ZipS(TupleS(qs, ls))))/2

A.3 Hand Track

1 AngleAxisToRotationMatrix = 𝜆 n, angleAxis.
2 IfD(n < 0.001,
3 (RepeatD(1, Id(1)) ::D RepaetD(1, Id(0)) ::D RepeatD(1, Id(0))) ::D

4 (RepeatD(1, Id(0)) ::D RepaetD(1, Id(1)) ::D RepeatD(1, Id(0))) ::D

5 (RepeatD(1, Id(0)) ::D RepaetD(1, Id(0)) ::D RepeatD(1, Id(1)))
6 ,
7 let n = sqrt(SqNorm(angleAxis)) in
8 let x = angleAxis[0] / n in
9 let y = angleAxis[1] / n in
10 let z = angleAxis[2] / n in
11 let s = sin(n) in
12 let c = cos(n) in
13 (RepeatD(1, x * x + (1 - x * x) * c) ::D

14 RepeatD(1, x * y * (1 - c) - z * s) ::D

15 RepeatD(1, x * z * (1 - c) + y * s)) ::D

16 (RepeatD(1, x * y * (1 - c) + z * s) ::D

17 RepeatD(1, y * y * (1 - y * y) * c) ::D

18 RepeatD(1, y * z * (1 - c) - x * s)) ::D

19 (RepeatD(1, x * z * (1 - c) - y * s) ::D

20 RepeatD(1, z * y * (1 - c) + x * s) ::D

21 RepeatD(1, z * z * (1 - z * z)))
22)

90

Appendix B

Evaluation Data

Runtime Performance (milliseconds)

No-Views All-Views Hybrid 𝐹 Heuristic Random C++

BA 14436.22 492.62 492.62 579.67 676.04 853.30 651.69
GMM - 821.82 742.37 1160.02 1461.06 1309.31 1070.79
HT 13173.52 315.98 315.98 320.01 315.98 676.58 304.37
3Add 480.41 56.46 56.46 56.25 56.46 138.60 105.15
Cross 1919.06 58.55 58.55 81.22 58.55 63.63 57.97
MM - 982.15 827.35 1128.18 827.35 1303.76 972.76
2MM - 2044.05 1711.276 2485.62 1874.57 4170.60 2048.52
3MM - 2920.47 2473.8 3582.34 2473.8 3906.92 2910.66
Jacobi1D 1148.08 23.68 23.68 24.09 23.68 65.17 26.148
Jacobi2D - 69.38 69.38 122.32 92.66 142.76 70.28
Seidel2D - 86.56 86.56 165.95 86.56 167.54 86.39

Table B.1: Absolute values for runtime performance evaluation. A dash ’-’ is used when the
execution time is longer than 1 minute. Strategy No-Views, not discussed before, does not
leverage views to remove intermedate data structures, and thus its generated code has bad
performance. Some strategies may end up generating the same code, for which the same
execution time will be reported.

91

Memory Consumption (kbytes)

No-Views All-Views Hybrid 𝐹 Heuristic Random C++

BA 2176 1988 1988 2028 2376 1864.0 3868
GMM - 12268 12296 13420 12360 12356.0 17112
HT 2189608 2140 2140 2112 2140 2024 3872
3Add 1705224 525800 525800 525884 525800 787840 658196
Cross - 1984 1984 1544 1984 1904 3708
MM - 26520 34428 34388 34428 26676 27744
2MM - 75432 91720 75848 75432 84104 51700
3MM - 58920 83480 67600 83592 83544 60016
Jacobi1D 1574612 264044 264044 265356 264148 264144 276876
Jacobi2D - 1050936 1050936 1102812 1050888 1051004 1051944
Seidel2D - 1050984 1050984 1102836 1050972 1051376 1051952

Table B.2: Absolute values for memory consumption evaluation. A dash ’-’ is used when
the execution time is longer than 1 minute and the memory consumption is not available.

92

Bibliography

[1] Ankner, J., and Svenningsson, J. D. An EDSL approach to high performance Haskell

programming. In Proceedings of the 2013 ACM SIGPLAN Symposium onHaskell, Haskell

’13, Association for Computing Machinery, pp. 1–12.

[2] Appel, A. W. Modern Compiler Implementation in C. Cambridge university press.

[3] Atkey, R., Steuwer, M., Lindley, S., and Dubach, C. Data parallel idealised algol.

arXiv:1710.08332.

[4] Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., and

Persson, A. The Design and Implementation of Feldspar: An Embedded Language for

Digital Signal Processing. In Implementation and Application of Functional Languages,

J. Hage and M. T. Morazán, Eds., vol. 6647. Springer Berlin Heidelberg, pp. 121–136.

[5] Bour, F., Clément, B., and Scherer, G. Tail Modulo Cons. arXiv:1312.5602.

[6] Cardelli, L., Martini, S., Mitchell, J. C., and Scedrov, A. An extension of system

F with subtyping. In Information and Computation, Springer-Verlag, pp. 750–770.

[7] Chakravarty, M. M., Keller, G., Lee, S., McDonell, T. L., and Grover, V. Accel-

erating haskell array codes with multicore GPUs. In Proceedings of the Sixth Workshop

on Declarative Aspects of Multicore Programming - DAMP ’11, ACM Press, p. 3.

[8] Coutts, D., Leshchinskiy, R., and Stewart, D. Stream fusion: From lists to streams

to nothing at all. In Proceedings of the 12th ACM SIGPLAN International Conference on

93

Functional Programming, ICFP ’07, Association for Computing Machinery, pp. 315–

326.

[9] Coutts, D., Stewart, D., and Leshchinskiy, R. Rewriting haskell strings. In Inter-

national Symposium on Practical Aspects of Declarative Languages, Springer, pp. 50–64.

[10] Dubach, C., Cheng, P., Rabbah, R., Bacon, D. F., and Fink, S. J. Compiling a high-

level language for GPUs: (via language support for architectures and compilers). In

Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’12, Association for Computing Machinery, pp. 1–12.

[11] ELLIOTT, C., FINNE, S., and DE MOOR, O. Compiling embedded languages. In

Journal of Functional Programming, vol. 13, Cambridge University Press, pp. 455–

481.

[12] Flanagan, C., Sabry, A., Duba, B. F., and Felleisen, M. The essence of compiling

with continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on Program-

ming Language Design and Implementation, pp. 237–247.

[13] Friedman, D. P., and Wise, D. S. Unwinding stylized recursions into iterations. In

Comput. Sci. Dep., Indiana University, Bloomington, IN, Tech. Rep, vol. 19.

[14] Gill, A., Launchbury, J., and Peyton Jones, S. L. A short cut to deforestation.

In Proceedings of the Conference on Functional Programming Languages and Computer

Architecture - FPCA ’93, ACM Press, pp. 223–232.

[15] Girard, J.-Y. The system F of variable types, fifteen years later. In Theoretical Com-

puter Science, vol. 45, Elsevier, pp. 159–192.

[16] Grelck, C., and Scholz, S.-B. SAC—A Functional Array Language for Efficient

Multi-threaded Execution. In International Journal of Parallel Programming, vol. 34,

pp. 383–427.

94

[17] Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., and Dubach, C. High

performance stencil code generation with lift. In Proceedings of the 2018 International

Symposium on Code Generation and Optimization, ACM, pp. 100–112.

[18] Hennessy, J. L., and Patterson, D. A. A new golden age for computer architecture.

In Communications of the ACM, vol. 62, pp. 48–60.

[19] Henriksen, T., Serup, N. G. W., Elsman, M., Henglein, F., and Oancea, C. E.

Futhark: Purely functional GPU-programming with nested parallelism and in-place

array updates. In Proceedings of the 38th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2017, Association for Computing Machin-

ery, pp. 556–571.

[20] Keller, G., Chakravarty, M. M., Leshchinskiy, R., Peyton Jones, S., and Lipp-

meier, B. Regular, shape-polymorphic, parallel arrays in Haskell. In Proceedings of

the 15th ACM SIGPLAN International Conference on Functional Programming, ICFP ’10,

Association for Computing Machinery, pp. 261–272.

[21] Kiselyov, O., Biboudis, A., Palladinos, N., and Smaragdakis, Y. Stream fusion,

to completeness. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages, POPL ’17, Association for Computing Machinery, pp. 285–

299.

[22] Köpcke, B., Steuwer, M., and Gorlatch, S. Generating efficient FFT GPU code

with Lift. In Proceedings of the 8th ACM SIGPLAN International Workshop on Functional

High-Performance and Numerical Computing, FHPNC 2019, Association for Computing

Machinery, pp. 1–13.

[23] Larus, J. R. Restructuring Symbolic Programs for Concurrent Execution on Multipro-

cessors. CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCES.

95

[24] Loader, R. Notes on Simply Typed Lambda Calculus. University of Edinburgh.

[25] Mainland, G., and Morrisett, G. Nikola: Embedding compiled GPU functions in

Haskell. In Proceedings of the Third ACM Haskell Symposium on Haskell, Haskell ’10,

Association for Computing Machinery, pp. 67–78.

[26] Michaelson, G. An Introduction to Functional Programming through Lambda Calculus.

[27] Minamide, Y. A functional representation of data structures with a hole. In Proceedings

of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’98, Association for Computing Machinery, pp. 75–84.

[28] Morris Jr, J. H. Lambda-calculus models of programming languages. PhD Thesis,

Massachusetts Institute of Technology.

[29] Nguyen, A., Satish, N., Chhugani, J., Kim, C., and Dubey, P. 3.5-D Blocking Opti-

mization for Stencil Computations on Modern CPUs and GPUs. In Proceedings of the

2010 ACM/IEEE International Conference for High Performance Computing, Network-

ing, Storage and Analysis, SC ’10, IEEE Computer Society, pp. 1–13.

[30] Nielson, F., Nielson, H. R., and Hankin, C. Type and Effect Systems. In Principles

of Program Analysis. Springer, pp. 283–363.

[31] Pizzuti, F. Implementing an OpenMP backend for the Lift compiler. MSc Thesis, The

University of Edinburgh.

[32] Pouchet, L.-N., and Yuki, T. https://sourceforge.net/projects/polybench/. Poly-

Bench/C.

[33] Reynolds, D. A. Gaussian mixture models. In Encyclopedia of Biometrics, vol. 741,

Berlin, Springer.

[34] Reynolds, J. C. Towards a theory of type structure. In Programming Symposium,

Springer, pp. 408–425.

96

[35] Shaikhha, A., Fitzgibbon, A., Peyton Jones, S., and Vytiniotis, D. Destination-

passing style for efficient memory management. In Proceedings of the 6th ACM SIG-

PLAN International Workshop on Functional High-Performance Computing, FHPC 2017,

Association for Computing Machinery, pp. 12–23.

[36] Steuwer, M., Fensch, C., Lindley, S., and Dubach, C. Generating performance

portable code using rewrite rules: From high-level functional expressions to high-

performance OpenCL code. In Proceedings of the 20th ACM SIGPLAN International

Conference on Functional Programming, ICFP 2015, Association for Computing Ma-

chinery, pp. 205–217.

[37] Steuwer, M., Remmelg, T., and Dubach, C. Lift: A functional data-parallel IR

for high-performance GPU code generation. In Proceedings of the 2017 International

Symposium on Code Generation and Optimization, CGO ’17, IEEE Press, pp. 74–85.

[38] Steuwer, M., Remmelg, T., and Dubach, C. Matrix multiplication beyond auto-

tuning: Rewrite-based GPU code generation. In Proceedings of the International Con-

ference on Compilers, Architectures and Synthesis for Embedded Systems, CASES ’16,

Association for Computing Machinery, pp. 1–10.

[39] Stoltzfus, L., Hagedorn, B., Steuwer, M., Gorlatch, S., and Dubach, C. Tiling

Optimizations for Stencil Computations Using Rewrite Rules in Lift. In ACM Transac-

tions on Architecture and Code Optimization, vol. 16, pp. 52:1–52:25.

[40] Strachey, C. Fundamental Concepts in Programming Languages. In Higher-Order

and Symbolic Computation, vol. 13, pp. 11–49.

[41] Svenningsson, J. Shortcut fusion for accumulating parameters & zip-like functions.

In Proceedings of the Seventh ACM SIGPLAN International Conference on Functional

Programming, ICFP ’02, Association for Computing Machinery, pp. 124–132.

97

[42] Svensson, B. J., and Svenningsson, J. Defunctionalizing push arrays. In Proceedings

of the 3rd ACM SIGPLAN Workshop on Functional High-Performance Computing - FHPC

’14, ACM Press, pp. 43–52.

[43] Svensson, J., Sheeran, M., and Claessen, K. Obsidian: A domain specific em-

bedded language for parallel programming of graphics processors. In Symposium on

Implementation and Application of Functional Languages, Springer, pp. 156–173.

[44] Taylor, J., Stebbing, R., Ramakrishna, V., Keskin, C., Shotton, J., Izadi, S.,

Hertzmann, A., and Fitzgibbon, A. User-specific hand modeling from monocular

depth sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 644–651.

[45] Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. Bundle

adjustment—a modern synthesis. In International Workshop on Vision Algorithms,

Springer, pp. 298–372.

[46] Wadler, P. Deforestation: Transforming programs to eliminate trees. In European

Symposium on Programming, Springer, pp. 344–358.

[47] Wadler, P. Linear types can change the world! In Programming Concepts and Meth-

ods, vol. 3, p. 5.

[48] Wadler, P. Listlessness is better than laziness: Lazy evaluation and garbage collection

at compile-time. In Proceedings of the 1984 ACM Symposium on LISP and Functional

Programming, pp. 45–52.

[49] Zhang, G., and Zhao, Y. Modeling the performance of 2.5 d blocking of 3D stencil

code on GPUs. In IEEE High Performance Extreme Computing Conference, HPEC.

98

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Challenges
	Goals
	Contributions
	Publication
	Outline

	Background
	Lambda Calculus
	Lift IR
	Destination-passing Style
	Views

	Related Work
	Code Generation from High-level Abstractions
	Destination-Passing Style (DPS)
	Intermediate Data Structure
	Summary

	ir Design with Destination and Views
	Overview and Example
	Vector Addition
	Concatenation

	Functional Level and Views
	Core Language
	Introduction to Views
	Effect Types and Effect System
	Functional Primitives
	Materialization of View

	Imperative Level
	Summary

	Lowering to Imperative Level and Code Generation
	Explicit Evaluation Order
	DPS Transformation
	Revisiting the Vector Addition Example

	Handling Destination Views
	Lowering Destination View Primitives
	I Transformation
	Revisiting the Array Concatenation Example

	Code Generation
	A-Normal Form
	Passes and Optimizations
	Imperative Code Generation

	Summary

	Automatic Exploration
	Search Space
	Effectless Program
	Exploration Starting Point
	Defining Search Space
	Exploration Rules
	Example for the Vector Addition

	Exploration Strategies
	Heuristic Strategy
	Random Exploration Strategy

	Summary

	Evaluation
	Experimental Methodology
	Experimental Results
	Evaluation Result for Automatic Exploration
	Jacobi3D 2.5D Tiling OpenCL Use-case
	Summary

	Conclusion
	Summary of Contributions
	Guidance on Using Views
	Critical Analysis
	Future Work

	Appendices
	Benchmark Implementations
	Bundle Adjustment
	Gaussian Mixture Model
	Hand Track

	Evaluation Data

