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Abstract

Periodic micro and nano-structured surfaces in nature are responsible for func-

tionalities including structural colour, superhydrophobicity, where wrinkling

plays a significant role. The Bouligand architecture of fibrous composites such

as insect exoskeleton and plant cell walls has been shown to generate uniax-

ial single and multiscale nanowrinkling through the chiral capillarity effect due

to anisotropic surface tension and the helical fibre arrangement. The helical

arrangement in Bouligand structures is a solid analogue of a cholesteric liquid

crystal, which is an intermediate stage in the self-assembly formation process of

fibrous composites. We extend uniaxial wrinkling predictions to biaxial wrin-

kling and show, using the liquid crystal shape equation, how and why egg carton

surfaces with orthogonal patterning arise, since a planar helix tangential to a

surface is unstable to oblique wrinkling modes. Taken together this work con-

tributes to novel surface pattern formation and engineering principles to study

surfaces of biological materials.

Keywords: chiral liquid crystals, liquid crystal shape equation, helicoidal
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1. Introduction

Bulk and surface pattern formation is an active area of material research [1,

2], and in this paper the pattern of interest and investigation is the ideal egg car-
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ton surface [2]; it is noted that a universal egg carton surface nomenclature does

not exist at the moment and different disciplines refer to it as concave/convex5

surfaces [3], sinusoidal surfaces [1] and so-on. Many biological, geological and

man-made materials display the egg carton architecture. For example, ampho-

tericin B/deoxycholate on multilamellar vesicles affects the DPPC/cholesterol

system, shows egg carton surfaces (the scale is around 50 nm) [3]. A similar egg

carton surface structure is found in the didodecanoyl-(PG-LPG) mixture [4].10

Egg caron surface also appears on electropolished zirconium (Fig. 1(A)) [5],

(Fig. 1(B)) [1], the papillae of red rose petal (Fig. 1(D)) displays a related egg

carton [6], even rocks (Fig. 1(E)) [7] subjected to erosion-driven shaping shows

cm-scale macroscopic egg cartons. Clearly, shape-functionality relations are ex-

pected to be rich and to generate numerous optimal properties, as the egg carton15

geometry is abundant in the spherical, saddle, and cylindrical patches, leverag-

ing geometric diversity across space, without joining and gluing operations.

Theoretical research on those surfaces was previously performed by using the

elastic energy [8] or mean-field theory [9]. In our paper, we proposed a novel

linear mechanism for generating egg carton surfaces credit to the minimization of20

the surface anchoring. Any cholesteric LC compound satisfying our assumption

should be able to do such egg carton surface. To practically generate such

surfaces, we need to generate a uniform helix structure. The common methods

include cooling liquid crystal from the isotropic phase under electric field or

mechanical sheering, or with the help of the polymer network in the bulk for25

stabilization [10], even with the presence of UV light [11].

Biological fibrous composites, such as cellulose in plant cell walls, chitin in

arthropods cuticles, and collagen in human compact bones, use Bouligand’s

twisted plywood architecture, known as liquid crystal analogue which is similar

to that of cholesteric liquid crystal (CLC), shown in Figure 2(a) [12, 13, 14, 15,30

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. The structure of a CLC is defined by

the helix axis Ĉ (unit vector), the pitch length P0 required for a 2π rotation, and

handedness (sign of P0), and the average fibre orientation or director n which is

normal to Ĉ. Since n is a unit vector, its gradient is normal to n (n · ∇n = 0)
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Figure 1: A schematic summarizing the ubiquitous egg carton structures exhibiting in dif-

ferent materials: (A) AFM image of the egg carton surface of zirconium electropolished at

70 V. Adapted from [5], with the permission of AIP Publishing (©1999 AIP Publishing).

(B) Differential interference contrast image of the dactyl club from Odontodactylus scyllarus.

Adapted from [1], with the permission of John Wiley & Sons (©2016 John Wiley & Sons). (C)

Herringbone-Bouligand structure in (B) and the equation used to capture the surface proper-

ties. Adapted from [2], with the permission from Elsevier (©2020 Elsevier). (D) SEM image

of a red rose petal surface. Adapted with permission from [6] (©2008 American Chemical

Society). (E) The egg carton surface of the organosedimentary structure of stromatolites [7].

Adapted from [7], with the permission from Springer Nature (©2020 Springer Nature).

but for a chiral cholesteric its helicity B = n ·∇×n = 2π/P0 6= 0 [13]. Directed35

chiral nematic liquid crystal (CLC) self-assembly is the formation mechanism of

these biological structures, as demonstrated through defect generation phenom-

ena [28, 29, 30, 31]. Discussions of the intimate correspondence between LCs and

biological plywoods [13] show that LC theories offer a route for biomimetic pro-

cess engineering of advanced materials [13] and also can shed light on biological40

processes such as morphogenesis [32], and the optimal material functionalities

such as structural colour [33], super-hydrophobicity, tribology, drag reduction,

self-healing and more [12, 13, 34, 35, 36]. More recently validated modeling
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Figure 2: (a) 3-D schematic of a cholesteric fibre architecture, where the rods denote the av-

erage fibre orientation; moving along “x” the rods rotate continuously, say clockwise, defining

the pitch P0 = 2π/q0 or distance for a full 2π rotation of the average fibre orientation n (unit

vector or director); here q0 is the cholesteric wave-vector. (b) The director n is a constant

on each (y, z)-slices, showing the layered organization of cholesterics. (c) 2-D planar view

((x, y)-plane) of the cholesteric helix whose chiral axis Ĉ is along the x-direction and δ̂z is the

outward surface unit normal along the z-direction. For a uniform planar helix Ĉ · δ̂z = 0.

based on LC physics for material synthesis and processing of cholesteric collagen

shows that aqueous lyotropic cholesterics offer efficient pathways for engineering45

biomimetics [37, 38, 39].

A significant issue in LC-based biomimetic engineering is whether liquid

crystal self-assembly is capable to generate surface architectures with micron

and nanoscale features as found in many natural materials. At the simplest

geometric level, folding, wrinkling and creasing are three fundamental surface50

features, recognized as building blocks for various functionalities [40, 41, 42]. In

particular single and dual scale wrinkling has been shown to generate structural

colours. The petals of many floral plants have remarkable optical properties,

such as iridescence and a striking metallic appearance. Structural colour in

flowers, such as the iridescence exhibited by Hibiscus trionum and Tulipa kauf-55

manniana petals is determined by surface diffraction gratings that consist of
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ordered striations or ridges that form on the epidermal cells [43]. These uni-

axial wrinkling generate so-called cylindrical surfaces, since they only display

curvature in a single direction. Many other examples from nature indicate bi-

axial wrinkling as in the egg carton surface where there are two orthogonal60

wrinkling wave-vector creating peaks and valleys in two directions, which are

expected to enhanced properties through more additional symmetry breaking.

Mechanisms for surface pattern formation in membranes and surfaces are

usually classified into elastic and/or anchoring instabilities [40, 42]. The elastic

mechanism usually involve applied compressional stress and material property

mismatch between surface and substrate. Anchoring is a surface pattern for-

mation mechanism arising only from anisotropic surface tension and is found in

both crystals and liquid crystals [44]. The relation between crystal and liquid

crystal surface pattern formation mechanisms has been established by consid-

ering the capillary vector and notably LCs usually display another mode called

the director capillary pressure because n is a variable on the surface and is not

a fixed structural feature [44, 45, 46]. LC surface anchoring has been shown to

generate the same wrinkling and creasing patterns without the application of

compressive external stress. This intrinsic LC mechanism only depends on the

anisotropic contribution W (n(x) · k)2/2 to the space-dependent surface tension

γ(x) [44]:

γ(x) = γ0 +
W

2
(n(x) · k)2 (1)

were γ0 is the isotropic surface tension, W is the chemical composition/temperature

dependent anchoring constant and k is the surface unit normal. Since for most

known cases |W |/γ0 � 1 anchoring creates wrinkles of nanoscale amplitude and65

since the spatial scale of n is the pitch P0, the wave-length of the wrinkles is in

the micron-range. The sign of W determines the minimum energy of anchor-

ing: W > 0 is for tangential orientation and W < 0 for perpendicular and only

controls the up-down orientation of peaks and valleys; symmetry relations are

discussed in [47]. Higher order terms such as (n · k)4 are important to generate70

more surface symmetry breaking and secondary surface wrinkling [47, 48, 49].
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Since n represents the structure and k the geometry, the surface energy is tun-

able (spatial increase or decrease) by changing the fibre orientation n, changing

the surface orientation k, changing the surface area or all the above, capable of

generating a rich surface pattern formation landscape. For uniaxial wrinkling it75

was found that director capillary pressure (∝ ∇sn) is the driving force and the

Laplace pressure (∝ ∇s · k) due to curvature is the resistance; here ∇s is the

surface gradient operator. It is noted that the anchoring mechanism was used

to describe the LC Plateau-Rayleigh fibre instability in achiral nematic LCs,

which includes surface wrinkling and twisting modes observed experimentally80

in collagen solutions. Consistency of the anchoring driven surface patterning

predictions with experimental observations [50, 51, 52, 53, 54] of surface pat-

tern formation include: (1) scaling laws for single wrinkling in cholesteric sur-

faces [47]; (2) scaling laws for two scale wrinkling in cholesteric surfaces [48, 49];

(3) tribological enhancement as a function of surface patterns’ moments [47];85

(4) optical gratings from chiral anchoring [33].

All these previous predictions [33, 47, 48, 49] and observations focus on uni-

axial wrinkling in LCs, with one single wrinkling wave vector and for cases

where the helix is uncoiled; in this paper the helix is intact and undeformed.

The important issue considered in this paper is whether this well-established90

mechanism of chiral anchoring instabilities is able to capture biaxial wrinkling

as in egg carton surfaces [55, 56, 57] without the complexity of high order elastic

membrane models [56, 57] used to capture these biaxially wrinkled surfaces. Un-

derstanding this pattern and their modifications can be used to explain nature’s

more complex surfaces and generate surface structures with biaxial functional-95

ity, beyond the simple single wrinkling. Hence we start this investigation of

multiple wave-vector wrinkling using the simplest possible linear model with

minimal assumptions and focus solely on the egg carton geometry with biaxial

wrinkling of an initially uniformly aligned cholesteric LCs, known as uniformly

aligned helix (ULH) parallel to the surface [58, 59, 60], as shown in Figure 3.100

The issue is whether and how a flat surface with a uniform tangentially aligned

helix decays into an egg carton surface and what is the most likely orientation
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Figure 3: Schematic of the key question addressed in this paper: is the initial flat surface

layer (a) of a uniform cholesteric liquid crystal of pitch P0 unstable to director pressure due

to chiral anchoring such that the instability produces the symmetric ideal egg carton surface

(b) with equi-biaxial wrinkling?

of the wrinkling frame with respect to the Ĉ axis.

The particular objectives of this paper are:

1. Establish the mechanism of biaxial wrinkling that leads to egg carton105

surfaces in undeformed ideal cholesteric liquid crystals;

2. Characterize the egg carton surfaces in terms of amplitude/wave-length

relations;

3. Identify the role of anchoring constant and cholesteric pitch in biaxial

wrinkling.110

2. Methodology

To achieve these objectives this paper focuses on principles and mechanisms

and physical predictions and only presents the necessary and sufficient math-

ematical details. We briefly rationalize our assumptions and give quantitative

estimates of the relative importance of neglected effects, as follows.115

1. Bulk flow is neglected because we consider interfacial patterns formation

in a cholesteric liquid crystalline polymer and as such the relevant dimen-

sionless number that governs the ratio of flow to elastic effects, known as

the Ericksen number E is essentially negligible:

Ericksen number: E =
Flow Effect

Bulk Elasticity Effect
=
ηḊP 2

0

K
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where η is a characteristic viscosity, Ḋ is a deformation rate, P0 is the

pitch, and K is the Frank elastic constant (see for example, [61, 12, 62,

26]). In the present process, there is no imposed external flow, and the

deformation rate Ḋ can only arise from weak back-flow effects, that is

internal re-orientation driven relaxation. Using typical quantities (see for

example, [63, 12])

η ≈ 100Pas, Ḋ ≈ 10−3s−1, P0 ∼ 10−6m, K ∼ 10−11N→ E ∼ 10−2 � 1

To observe significant flow effects the E number should be grated than

10-100 and for that one need imposed external flows. Another important

fact that diminishes the presence of flow effects during the egg carton

formation is the presence of ultra-high viscosity permeation flow (see for

example, [64, 65]). In cholesteric liquid crystals, flow along or close to120

the helix axis is essentially blocked by the presence of ultra high viscosity;

the only “liquid-like” low viscosity directions are along the normal planes

to the helix and since in our case the potential flow has to be tangential

to the surface and along the helix axis, we conclude that its magnitude

will be essentially negligible. In partial summary, nematorheology [62],125

provides a foundation to make the insignificant bulk-flow assumption.

2. Bulk elasticity: The complete shape equation is the projection of normal

stress interfacial jump (see for example, [44]). The liquid crystal shape

equation includes the bulk elasticity (Frank elasticity) contribution arising

from orientation gradients at the interface and this effect is known as

the “elastic correction”. The relative importance of the bulk elasticity

compared to the isotropic surface tension effects is the elasticity ratio R:

Elastic Ration: R =
Bulk Elastic Effect

Surface Tension Effect
=

K

P0γ0

Using characteristic values (see for example, [12, 66]) we estimate that

R� 1:

γ0 ∼ 5× 10−2N/m, P0 ∼ 10−6m, K ∼ 10−11N→ R ∼ 10−4 � 1
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The essentially insignificant “eleastic correction” (R � 1) was discussed

in [33].

3. Transport effects: We consider isothermal conditions with no tempera-

ture gradients. We consider a stable thermodynamic lyotropic cholesteric130

liquid crystalline phase far from any biphasic gap in the phase diagram

(see for example, [67]). This thermodynamic stable condition is achiev-

able by sufficiently high concentration such that the Onsager liquid crysal

transition concentration (see for example, [12]) is achieved. For long rods

this is easily achievable and that is why we observed these anisotropic135

phases when molecular anisotropy (molecular persistence length/effective

molecular diameter) is high.

4. Marangoni flow: Tangential (to the surface) Marangoni flows in nematic

liquid crystals can arise not only from thermal and/or concentration gradi-

ents (not present in our case) but also from gradents in director orientation140

and gradients in molecular order parameters (see for example, [68]). As

explained in 1., the tangential flows are blocked by the permeation effect

and hence tangential Marangoni flow can not play a significant effect in

egg carton formation.

5. Complex anchoring models: In this paper we use the simplest quadratic145

anchoring model (Eqn. (1)), consistent with the objectives of this work.

Fourth and higher order models were explored in our previous work [47]

and are expected to introduce complex variants in the ideal egg carton,

such as multiscale egg cartons. These will be explored in the future.

6. Spatial pitch gradients: These may arise when there are externally im-150

posed concentration gradients or under phase separation. In this work

there are no externally imposed concentration gradients (no diffusional

Marangoni flow) and only a stable single phase liquid crystal. The net im-

pact of a concentration gradient is to change the pitch length and if that

would be present then the egg carton peak-to-peak distance may change155

as well as its amplitude, since larger pitch leads to a larger amplitude in

surface distortions. These effects were explored in [33], in the context of
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single wrinkling.

7. Transient modes: This paper concentrates on statics and the instability

mechanism that leads to time-independent egg cartons shapes. As such160

time evolution is not part of the model and the temporal evolution is not

in the scope of this work. To capture the transient evolution the dynamic

versions of the shape equation coupled with the interfacial and bulk torque

and momentum balance equations need to be considered. Steady state,

static, and equilibrium pattern formation models provide information on165

instability mechanisms and driving forces.

In this paper we analyze nano-wrinkling of homogeneous cholesteric liquid

crystals whose chiral axis Ĉ = δ̂x is aligned parallel to an initially flat surface

with a unit normal k0 = δ̂z in rectangular coordinates (x, y, z), with chiral vector

q = qδ̂x, pitch P0, and director field n(q ·r) =
[
0 sin θ cos θ

]T
, director angle

θ = q·r = qx, q = 2π/P0, q = qδ̂x, r = xδ̂x+yδ̂y+xδ̂z. The LC shape equation,

under zero bulk stress jump condition is a balance of three pressures [44, 46, 47]:

0 = γ0(κ1 + κ2)︸ ︷︷ ︸
Laplace pressure

+W
(
((n · e1)2 − (n · k)2)κ1 + ((n · e2)2 − (n · k)2)κ2

)︸ ︷︷ ︸
Helfrich pressure

−W ((n · k)∇s · n + kn : ∇sn)︸ ︷︷ ︸
Director pressure

(2)

Here κ1 and κ2 are the principal curvatures, e1 and e2 are the principal direc-

tions. Using standard asymptotic expansion with respect to the small parameter

ε = W/γ0, all quantities read:

γ = γ0+εγ1+. . . ; k = k0+εk1+. . . ; ∇s = ∇0
s+ε∇1

s+. . . ; κ = κ0+εκ1+. . .

The zero order of all geometric quantities are independent of curvature, such

that k0 = δ̂z, ∇0
s = δ̂x

∂
∂x + δ̂y

∂
∂y and so on. The second term (area rotation) in

Eqn. (2) is proportional to − ∂
∂k (Is · ∂γ∂k ) : ∇sk, which vanishes under the first

order approximation k = k0. The linear shape equation now reads:

κ01 + κ02 = ε
(
(n · k0)∇0

sn + k0n : ∇0
sn
)

(3)
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Eqn. (3) shows that the stationary average curvature will be nonzero (κ01 +

κ02)/2 6= 0 if the director pressure is not zero, ε
(
(n · k0)∇0

sn + k0n : ∇0
sn
)
6= 0,

a condition easily found under surface orientation gradients.

To achieve the objectives mentioned above we implement the following se-170

quential procedure:

1. (Sec. 3.1) to start we find surface relief h+(x′) solutions along an arbitrary

wrinkling wave vector w(α) in the direction x′, of angle 0 ≤ α ≤ π/2 (or

equivalently π ≤ α ≤ 3π/2) with respect to the x-axis;

2. (Sec. 3.2) use symmetry to find the corresponding surface relief solution175

h−(y′) corresponding to an orthogonal wave vector w(α− π/2);

3. (Sec. 3.3) use superposition to find biaxial wrinkling hB(α, x′, y′) = h+(x′)+

h−(y′);

4. (Sec. 3.4) set α = ±π/4 and find the symmetric egg carton equi-biaxial

solution: hEC = hB(α = π/4, x′, y′). To avoid redundant repetitions180

we only emphasize equivalent structures (say w and −w) obtained from

simple π rotations around the z-axis when necessary. The expected up-

down symmetry of the surface profiles with respect to the sign of the

anchoring W and the sign of the pitch was discussed in previous work [47]

and will not be discussed in this paper.185

3. Results and Discussion

Next we follow the scheme 1–4 specified above, first establishing the wrin-

kling mechanism and then predicting egg carton surfaces.

3.1. Chiral anchoring uniaxial wrinkling mechanism and surface relief

We first seek wrinkling solutions along an arbitrary direction x′, at an angle190

α from the x-axis; this wrinkling solutions are plane-wave solutions to the shape

Eqn. (3). Figure 4(a) shows the orthogonal (x′, y′)-axes (wrinkling coordinates)

and its relation to the (x, y)-axes (cholesteric material coordinates).
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Figure 4: (a) Relations between the cholesteric material coordinates (x, y, z) and the wrinkling

coordinates (x′, y′, z). The angle α defines the wrinkling direction. In material coordinates the

director is a pure twist (nx = 0) and is a two component vector but in wrinkling coordinates

the director has three components (nx′, ny′, nz). This follows from a simple clockwise rotation:

[x′, y′] = R(α)[x, y], where R(α) is the rotation matrix. (b) Scaled energy transfer function

T̃ (x′ = 0) = sinα and scaled energy input Ẽ; see Eqn. (5). Since curvature is given by

κ = T · E, its magnitude at x′ = 0 is maximal at α = +π/4. This result applies for any x′.

The x′ = x/ cosα direction corresponds to the wrinkling wave vector w(α)

and the x = x′ cosα direction corresponds to the chiral axis. In material coor-195

dinates the director is a pure twist (nx = 0) and is a two component vector but

in wrinkling coordinates the director has three components (nx′ , ny′ , nz′). The

orientation periodicity in wrinkling coordinates has expanded to P0/ cosα.

In wrinkling (x′, y′) coordinates the phase angle θ, director n′, and wave-

vector w read:

x = x′ cosα, w = q cosα, θ =

(
2π cosα

P0

)
x′ = wx′

w = wδ̂x′ , n′(x′) = − sinα sin θδ̂x′ + cosα sin θδ̂y′ + cos θδ̂z′ (4)

and the shape Eqn. (3) in terms of the surface relief h+(x′) (where first order

term is neglected due to small wrinkling effect) for uniaxial wrinkling in the

x′-direction is:

κ01 = h+x′x′ = −εw sinα cos 2wx′ = − sinα cos 2wx′︸ ︷︷ ︸
T (x′,α)

εq cosα︸ ︷︷ ︸
E(α)

(5)
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where T (x′, α) is the energy transfer function and E(α) is the scaled chiral

energy input. Hence to produce wrinkling both T and E must be non-zero.200

When α = 0 the transferable chiral energy content E along x-axis is maximal

(full twist along x) and when α = π/2 it is zero since θ is a constant (achiral

direction, and no twist along y-axis; see also Fig. 2(b)). Correspondingly, the

energy transfer function T (x′, α) is zero and maximal at those two angles.

Figure 4(b) shows the scaled T (x′ = 0, sinα) and E(cosα) as a function of205

α that explains why we observe anchoring driven wrinkling for α 6= 0, ±π/2,

±π. Since the curvature is the product of T · E, its magnitude is maximal at

α = π/4 and zero at α = 0, ±π/2, ±π, since T is a function of sinα and E is a

function of cosα.

Integrating twice the curvature Eqn. (5), the surface relief h+(x′) is

h+(x′) =
ε

4w
sinα cos 2wx′ = K+

sinα

γ0w

(
W

2
cos2 wx′

)
, K = − ε

4q
tanα (6)

where K is an unimportant vertical shift. Eqn. (6) is rewritten as a transparent

energy balance:

γ0h
+(x′)w︸ ︷︷ ︸

wrinkling capillary energy

= γ0h
+(x′)q cosα

=

(
W

2
cos2 wx′

)
sinα = γan sinα︸ ︷︷ ︸

transferable anchoring energy

(7)

In any direction x′, the transferable anchoring energy γan sinα is converted to

the wrinkling capillary energy γ0h(x′)w. The scaling law for wrinkle amplitude

A(α) and wrinkle-wave-length λ′(α) is:

A(α) =
ε

2w
sinα =

(
ε sinα

4π

)
λ′, λ′ =

P0

cosα
(8)

For a given direction the amplitude A is linear function of the wrinkling wave-

length λ′ > P0, which is larger than the pitch. The former is consistent with

our previous results [47, 48, 49] based on uncoiled helices at the surface. In the

material coordinate system (x, y, z) the surface profile (Eqn. (6)) now reads:

h+(x, y, α) =
ε tanα

4q
cos(2q cosα(x cosα+ y sinα)) (9)
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Figure 5: (a) Oblique dimensionless uniaxial wrinkling 4qh+(x, y, α = π/4)/ε in the (x, y)-

plane and (b) contour plot (a set of lines such that x+ y = constant).

Since uniaxial wrinkling is a plane wave it obeys the Helmholtz equation: ∇2
sh

+ =

−(2q cosα)2h+, with eigenvalue (2q cosα)2. Hence the wave number of this

equation is 2q cosα = 2π/(P0 secα) (Fig. 4(a)). Eqn. (9) is also invariant to

the sign of a π-rotation (α→ α− π) such that solutions for the I and III quad-

rants give the same result. For the maximal wrinkling curvature conditions at

α = ±π/4, applicable for both I and III quadrant, we finally find from Eqn. (9)

a surface relief in material coordinates:

h+(x, y) =
ε

4q
cos(q(x+ y)) =

ε

4q
(nz cos qy − ny sin qy) (10)

which gives the relation between h+(x, y) and n; for y = 0, h+(x, y = 0) =210

(ε/4q)nz(x) and for x = 0, h+(x = 0, y) = (ε/4q) cos qy.

Figure 5 shows 4qh+(x, y, α = π/4)/ε as a function of (x, y) for q = 1. The

oblique folding to the chiral direction has a periodicity and amplitude described

by Eqn. (8).

3.2. Uniaxial wrinkling for orthogonal wave-vectors215

Here we describe surface patterning for a wrinkling wave vector that is or-

thogonal to the case in Sec. 3.1. Using an identical procedure as in Sec. 3.1,

simple symmetry rules, and α → α − π/2 for a direction corresponding to −y′

(see Fig. 4(a); IV quadrant), the uniaxial wrinkling in material coordinates for

14



Figure 6: Wrinkling diagram as a function of wrinkling wave vector angle α. The x- and

y-axes correspond to flat surfaces and the α = ±π/4 lines corresponds to maximal wrinkling

curvatures. By symmetry α and α± π give same wrinkling patterns.

this direction reads:

h−(x, y) = −ε cotα

4q
cos(2q sinα(x sinα− y cosα)) (11)

Eq. (11) is also invariant to a π-rotation (α → α − π) and again the II and

IV quadrants give same result. Comparing the results between Eqn. (11) and

Eqn. (10) we see that an orthogonal wrinkle in the IVth quadrant only inter-

changes sines and cosines. Again, maximal curvature wrinkles in y′ direction

give:

h−(x, y) = − ε

4q
cos(q(x− y)) = − ε

4q
(nz cos qy + ny sin qy) (12)

Figure 6 shows a schematic of the uniaxial wrinkled surfaces h± as a function of

wrinkling wave-vector directions. The x- and y-axes correspond to flat surfaces

where both solutions are equal to zero. For wrinkling wave vectors away from

the flat surfaces axes, wrinkling sets in in the (I, III) and (II, IV) quadrants.
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3.3. Biaxial wrinkling by superposition orthogonal wave-vectors220

To find biaxial wrinkling reliefs hB(x, y) we use the superposition of the two

orthogonal uniaxial wrinkling modes (Eqn. (9) and Eqn. (11)) and obtain:

hB(x, y) = h+(x, y) + h−(x, y)

=
ε tanα

4q
cos(2q cosα(x cosα+ y sinα))

− ε cotα

4q
cos(2q sinα(x sinα− y cosα)) (13)

Again, maximal curvatures are obtained at α = ±π/4 but choosing other angles

gives rise to more complex wrinkling bidirectional patterns of different wave-

lengths and amplitudes. Also the sign of the superposition can only shift the

structure in the (x, y)-plane and for convenience we pick plus in Eqn. (13).

3.4. Egg carton surfaces and equi-biaxial wrinkling225

Finally, to obtain the classical, symmetric equi-biaxial egg carton surfaces

hEC(x, y) we specify α = ±π/4 in hB(x, y) (Eqn. (13)) and get

hEC = h+ +h− =
ε

4q
cos(q(x+ y))− ε

4q
cos(q(x− y)) = − ε

2q
sin qx sin qy (14)

Equi-biaxial wrinkling also follows the Helmholtz equation for superposed or-

thogonal planar waves: ∇2
sh
EC + (

√
2q)2hEC = 0.

A schematic of the superposition hEC(x, y) = h+(x, y)+h−(x, y) is shown in

Figure 7; since π rotations do not change wrinkling, the sign of the superposition

is immaterial.230

Fig. 8 shows in detail the egg carton surface relief hEC(x, y) where the lines

of zero curvature or straight lines are x = y = 0. The Gaussian curvature K

and the mean curvature H of this egg carton surface are:

H = − qε3

16g3/2
sin qx sin qy

(
cos2 qx+ cos2 qy +

8

ε2

)
K = − (εq)2

4g2
cos(q(x− y)) cos(q(x+ y)) (15)

where the surface metric g = 1 + ε2(1− cos 2qx cos 2qy)/8. For small wrinkling

(h � P0) we have g ≈ 1. The deviatoric curvature D is computed by D =

16



Figure 7: Superposition of orthogonal uniaxial wrinkling leads to a surface with biaxial wrin-

kling.

Figure 8: Superposition of two uniaxial wrinkling surfaces at gives the classical egg carton

surface (a): 2qhEC/ε = sin qx sin qy. (b) Contour plot of (a) showing a rich periodicity in

saddles and spherical points.
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Figure 9: The special patches follow certain patterns on the egg carton surface. (a) The

locations of special surface patches mapping on the egg carton surface and (b) is the top view

of (a).

√
H2 −K. Eqn. (15) shows that the mean curvature and Gaussian curvature

distributions are related to both dimensionless anchoring coefficient ε and helix

pitch P0 = 2π/q. The local spherical points (D = 0) on the egg carton are235

located along the half-integer π values of dimensionless coordinates (qx, qy), the

saddles (H = 0) are located at integer values of π, and the cylinders are along

characteristic lines q(x− y) or q(x+ y) equal to half-integer values of π. These

important results are summarized as follows (n and m are integers):

1. Saddle: vanishing mean curvature (H = 0) at qx = nπ or qy = mπ;240

2. Cylinder: vanishing Gaussian curvature (K = 0) at q(x±y) = (n+1/2)π;

3. Sphere: vanishing deviatoric curvature (D = 0) at qx = (n + 1/2)π and

qy = (m+ 1/2)π.

Again the amplitude and wave length follow Eqn. (8); stronger anchoring in-

creases linearly the amplitude. And the summary is visualized in Fig. 9, where245

the cylinder patches, sphere patches and saddle patches are represented by cyan,

yellow and magenta curves or points. The egg carton surface generates rich

geometric curvature distribution, thus it is promising to create novel multifunc-

tionalities.
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4. Conclusions250

In summary, in this paper we have predicted and characterized equi-biaxial

wrinkling (egg carton surface) in cholesteric surfaces when the helix axis is ini-

tially tangential to the interface. The novel mechanism is due to chiral anchoring

of an initially tangentially aligned helix. The previous predictions on the gen-

eration of egg carton surface are based on a highly nonlinear elastic model,255

the Landau-Ginzburg dynamics equations [69] or inclusions with an anisotropic

spontaneous curvature [70]. In this paper, we have shown that a simple chi-

ral anchoring-driven surface instability leads to egg carton surfaces with biaxial

wrinkling and periodic saddles, which shows a universality for the appearance

of the egg carton surface without introducing highly nonlinear elasticity or dy-260

namics. Wrinkling wave vector obliquely aligned to the cholesteric axis can

transform anchoring energy into capillary wrinkling. The maximal curvatures

of the wrinkles are observed at α = ±π/4 from the chiral axis. The wrinkle’s

amplitude is proportional to the pitch of the helix and to the anchoring constant.

The wrinkle’s wave-length is proportional to the chiral pitch and to the secant of265

the wave vector angle. Symmetry principles show that two orthogonal wrinkles

with maximal curvature interact to produces the classical egg carton surface.

The novel linear mechanism presented here augments previous predictions on

generation of egg carton surfaces based on highly nonlinear elastic models [56].

In summary we have shown that a simple chiral anchoring driven surface insta-270

bility leads to egg carton surfaces with biaxial wrinkling and periodic saddles.

These results contribute to the development of new routes of biomimetic sur-

face engineering by using chiral anisotropic soft matter precursors materials that

exhibit the ubiquitous Bouligand architecture found throughout nature.
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