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Abstract

Today’s telecommunications infrastructure is increasingly reliant upon complex material in-

teractions with the electromagnetic field. For instance, effects such as dispersion, in which

a material’s response to an applied field depends on its frequency, and nonlinearity, where

the response is a complex function of field strength, form the cornerstones of fields such as

nonlinear fibre optics. In consequence, efficient, accurate, and reliable numerical simulation

tools capable of modeling these complex interactions are increasingly in demand, as cost

effective alternatives to physical experimentation and prototyping.

In this thesis, a family of Finite-Element Time-Domain (FETD) based numerical methods

for the simulation of electromagnetic problems containing electrically complex material inter-

actions is presented. Making use of both the mixed and vector wave equation formulations,

the derived methods are capable of modeling very general combinations of linear disper-

sion, instantaneous nonlinearity, and dispersive nonlinearity within the nonlinear Maxwell’s

Equations, free from any simplifying assumptions about the nature of the field solutions. In

contrast to existing methods, these techniques permit increased geometric freedom, improved

stability, and are capable of handling arbitrarily high nonlinear and dispersive orders.

This thesis also presents several additional tools and methods to increase the effectiveness

and versatility of these techniques. For instance, a Perfectly Matched Layer (PML) is derived

which is compatible with nonlinear dispersive media, permitting the emulation of infinite

domains as well as the truncation of finite systems within the nonlinear FETD method.

More specifically, by utilizing the stretched coordinate formulation of the PML, the resulting

technique not only saves computational resources, but does so without significantly altering
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Abstract

the original underlying algorithms.

Furthermore, while the derived techniques permit a much more accurate and general so-

lution to Maxwell’s Equations for complex media, they unfortunately do so with a significant

added computational burden. To mitigate this fact, this thesis also presents an analysis and

breakdown of the computational overhead and bottlenecks associated with these methods.

Building upon this analysis, a scheme is then presented by which these algorithms may be

accelerated via parallelism and implemented on Graphics Processing Units (GPUs) to help

alleviate some of the burden they pose.

Lastly, in each case the FETD, PML, and GPU algorithms proposed in this dissertation

are tested via numerical studies to verify their proper functioning, convergence, and accuracy.

These include convergence studies as well as the demonstration of several well-known and

physically significant nonlinear phenomena, such as spatial solitons, temporal solitons, and

supercontinuum generation. Moreover, a parallel GPU implementation of the nonlinear

algorithm is benchmarked against an equivalent traditional serial Central Processing Unit

(CPU) version, and is shown to perform up to 150 times faster, significantly increasing the

applicability and usefulness of these algorithms.
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Résumé

L’infrastructure des télécommunications d’aujourd’hui dépend de plus en plus des interac-

tions complexes entre les matériaux et les champs électromagnétiques. Par exemple, des

effets tels que la dispersion, où la réponse d’un matériel à un champ appliqué dépend de sa

fréquence, et la non-linéarité, où la réponse est une fonction complexe de l’ampleur du champ,

forment la base de plusieurs domaines d’études tels que les fibres optiques non-linéaires. En

conséquence, la demande d’outils de simulation numérique capables de modéliser ces inter-

actions complexes d’une manière efficace, précise et fiable augmente en tant d’alternatives

abordables à l’expérimentation et au prototypage.

Dans cette thèse, une famille de méthodes numériques basées sur la méthode des éléments

finis au domaine temporel (FETD) est proposée pour la simulation des problèmes électromag-

nétiques contenant des interactions matérielles complexes. En utilisant à la fois une formu-

lation mixte et une formulation de l’équation d’ondes vectorielles, les méthodes présentées

sont capables de modéliser des combinaisons très générales de dispersion linéaire, de non-

linéarité instantanée et de non-linéarité dispersive dans les équations de Maxwell d’une

manière complète et libre de toute hypothèse simplificatrice sur la nature des solutions.

Contrairement aux méthodes existantes, ces techniques permettent une liberté géométrique

accrue, une stabilité améliorée et sont capables de gérer des ordres dispersifs et non-linéaire

arbitrairement élevés.

Cette thèse présente également plusieurs outils et méthodes supplémentaires pour aug-

menter l’efficacité et la polyvalence de ces techniques. Par exemple, une couche absorbante
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parfaitement adaptée (PML) compatible avec les milieux dispersifs et non-linéaire est dérivée,

permettant l’émulation des domaines infinies ainsi que la troncature de systèmes finis au sein

de la méthode FETD non-linéaire. Plus précisément, en utilisant la formulation de coor-

données étirées du PML, la technique qui résulte permet non seulement d’économiser des

ressources, mais fait ceci sans altérer de manière significative les algorithmes originaux sous-

jacents.

De plus, bien que les techniques dérivées permettent une solution beaucoup plus précise

et générale aux équations de Maxwell aux milieux complexes, elles le font malheureusement

avec une charge de calcul supplémentaire importante. Pour mitiger ce fait, cette thèse

présente également une analyse des goulots d’étranglement associés à ces méthodes. Sur la

base de cette analyse, un schéma est ensuite présenté par lequel les algorithmes proposés

peuvent être parallélisés et mis en oeuvre sur des processeurs graphiques (GPU), apaisant

largement le fardeau qu’ils posent.

Dernièrement, en chaque cas, les algorithmes FETD, PML et GPU proposés dans cette

thèse sont évalués via des études numériques pour vérifier leurs bons fonctionnements, leur

convergence et leur précision. Celles-ci incluent des études de convergence ainsi que la

démonstration de plusieurs phénomènes non-linéaires bien connus et significatifs, tels que les

solitons spatiaux, les solitons temporels et la génération de supercontinuum. De plus, une

mise en oeuvre parallèle sur GPU de l’algorithme non-linéaire est comparée à une version

traditionnelle exécutée en série sur un processeur central (CPU), et démontre un temps

d’exécution 150 fois plus rapide, ce qui augmente considérablement l’application et l’utilité

de ces algorithmes.
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Chapter 1

Introduction

1.1 Motivation

Classical electromagnetic theory as it is known today was largely developed over the course of

the 19th century. A collective work by many physicists such as Faraday, Ampère, Helmholtz,

and Hertz, their work began to demystify and explain many electromagnetic phenomena,

some of which had been known since antiquity. However, it was not until the contributions

of Maxwell that electromagnetic theory fully began to take form, providing a unified and

consistent picture of electric and magnetic phenomena.

Despite these triumphs of mathematics and physics, these scientists were often pessimistic

about the utility of their work. After his discovery of electromagnetic waves, Hertz is reputed

to have remarked, “It is of no use whatsoever” [1]. Of course, in hindsight, this assessment

proved inaccurate to say the least. In the over one hundred years since the synthesis of

Maxwell’s Equations, electromagnetic theory has become a dominant and ubiquitous force

within society. From electronics, computers, and magnetic machines, to telecommunications,

radio, fibre optics, and medical imaging, there are few aspects of modern life that do not

leverage electromagnetic theory in some way.

As a natural consequence, the design and manufacture of electromagnetic devices plays

a critical part in many commercial and industrial enterprises. Being able to accurately

predict how a given device or system will interact with or generate electromagnetic fields

and waves is often paramount to the design process. However, with the immense complexity
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inherent in most problems in electromagnetics, closed-form exact solutions of Maxwell’s

Equations are often unrealistic or impossible to obtain. This leaves simulations and numerical

methods as the only viable cost-effective alternatives to expensive physical experimentation

and prototyping. Unsurprisingly, this has lead to the development of several numerical

techniques for simulating electromagnetic phenomena. In particular, techniques such as the

Finite-Difference and Finite-Element methods are among the most popular, having borne a

wealth of scientific literature and commercial software packages over the years.

While electromagnetic problems in general can prove to be quite nuanced and complex,

simplifying assumptions may often be made about the systems and materials being studied,

to ease their analysis. In particular, assuming symmetry, time-independence, the presence of

only a single frequency component (time-harmonic form), or that materials respond linearly

and instantaneously to any applied fields all significantly reduce the complexity of the under-

lying equations. It is no surprise, therefore, that the first electromagnetic Finite-Difference

and Finite-Element algorithms operated in these idealistic regimes.

Unfortunately, for many problems such simplifications may be invalid or result in unac-

ceptable losses in accuracy. For instance, material dispersion, in which a medium’s response

to electromagnetic waves is not instantaneous but rather depends on the frequency, is a

ubiquitous phenomena in nature [2]. While negligible under certain circumstances, disper-

sion can significantly impact the shape and structure of electromagnetic signals in others.

As a result, being able to effectively model these frequency-dependent interactions can have

far-reaching impacts, such as in the study of dispersive biological tissue samples in medi-

cal imaging [3, 4], dispersive environmental elements in radar applications [5, 6], and pulse

broadening and distortion in fibre optic cables [7, 8].

Moreover, nonlinear effects, in which the medium’s response can be a complicated func-

tion of the applied field strength, can also significantly increase complexity. In particular,

the nonlinear response can be immediate, known as an instantaneous nonlinearity, or depend

on the frequency of the applied field, known as a dispersive nonlinearity. This nonlinear be-
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haviour is most commonly encountered when materials are subjected to very large field

strengths, inducing a myriad of complex behaviours. Modeling these nonlinear interactions

can thus have important implications for fields such as nonlinear optics, in which very high

intensity laser light is routinely encountered. Such techniques could therefore be used, for

example, in the design and investigation of photonic crystals [9, 10] and soliton formation

and interaction [11, 12]. Moreover, it has been theoretically and empirically demonstrated

that biological tissues, in addition to being dispersive, can also produce nonlinear effects

[13, 14, 15]. Modeling such behaviour thus has the potential not only to increase accuracy

in medical imaging but also to detect malignancies. For instance, it has been shown that

mitochondria with metabolic disorders generally have suppressed harmonic generation as

compared to their healthy counterparts when excited by a single frequency source [16].

In fact, the need for more general numerical methods to model complex material in-

teractions such as these will only continue to grow as our ability to precisely design and

engineer materials improves. Indeed, new materials and structures with properties unseen

in nature can now be fabricated, such as so-called negative and zero-index metamaterials

[17, 18]. Moreover, as technology advances, existing materials can be further exposed to

extreme operating conditions, causing effects usually deemed negligible to manifest more

often. As a consequence of these existing and emerging media and their applications, there

is a clear and growing need for numerical methods that are able to accurately simulate very

general and complex material interactions with electromagnetic fields, and that are free of

inaccurate simplifying assumptions.

Fortunately, over the past decades many of the original electromagnetic numerical meth-

ods and techniques have evolved to address some of these new challenges in material model-

ing. For instance, generalizations such as the Finite-Difference Time-Domain (FDTD) [19]

and Finite-Element Time-Domain (FETD) [20] methods have permitted the full broadband

treatment of wave phenomena containing multiple frequency components all in one simula-

tion. Moreover, these FDTD and FETD methods have both been successfully adapted to
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treat dispersive media, using a number of different techniques. The analysis of nonlinear

problems, in contrast, has proven more problematic. While FDTD methods have been de-

vised in which linear dispersion, instantaneous nonlinearity, and dispersive nonlinearity are

all included, many of them impose stability constraints, geometric constraints, or constraints

on the classes of nonlinear materials which may be treated, among others. As a result, these

and other considerations can significantly reduce their applicability and versatility.

Some of these shortcomings can be alleviated by the use of FETD-based methods. Nat-

urally, as mentioned earlier, several FETD methods have therefore already successfully been

implemented for the treatment of linear dispersive media. However, despite their potential

advantages, to date very few if any FETD-based methods have been devised that are capable

of including the treatment of electrical nonlinearity.

The goal of this thesis, therefore, is to facilitate the study of complex electromagnetic

material interactions via the development and refinement of novel numerical techniques for

the treatment of electric nonlinearity in materials. In particular, this thesis aims to develop a

family of FETD-based methods capable of modeling arbitrary combinations of linear disper-

sion, instantaneous nonlinearity, and dispersive nonlinearity, free from the aforementioned

drawbacks and simplifying assumptions present in current methods. Furthermore, additional

tools and techniques for these methods will also be developed, such as artificial absorbing per-

fectly matched layers, to increase their utility and applicability. Lastly, while FETD-based

methods are advantageous in many ways, they tend to be more computationally demanding.

In consequence, this thesis will also consider a method by which the derived algorithms can

be optimized and refined to reduce their computational burden. Most notably, the use of

Graphics Processing Units (GPUs) will be investigated to develop parallel implementations

of these new algorithms. In this way, this thesis intends to provide accurate, wide-reaching,

and general numerical methods for electrically complex media, whose efficient implementa-

tion permits detailed and accurate analyses of complicated electromagnetic devices, without

debilitating overhead.
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The remainder of this chapter provides an overview of the main types of material inter-

actions of interest, with an emphasis on how they complicate the mathematical treatment

of electromagnetic phenomena. A detailed look at some of the existing literature, methods,

and techniques for these materials will then be provided, with an analysis of the benefits

and drawbacks of each. Lastly, an overview of the approach and contributions of this thesis

will be provided, as well as a brief outline of the chapters to follow.

1.2 Background

1.2.1 Electrically Complex Materials

When an electromagnetic wave propagates through a medium it naturally interacts with and

exerts forces on the charged particles that constitute the material. Generally, these forces

result in each constituent atom or molecule stretching or deforming and thus acquiring an

electric dipole moment. Macroscopically, this polarization of the material can be described

via a polarization density vector P⃗ , such that the resulting displacement field D⃗ is related

to the electric field E⃗ via the constitutive equation [2]:

D⃗ = ϵ0E⃗ + P⃗ (1.1)

where ϵ0 is the permittivity of free space.

For many materials, the polarization density is approximately linearly proportional to

the applied electric field, such that:

P⃗ = ϵ0χeE⃗ (1.2)

where the constant χe is the electric susceptibility. With this assumption, the relation

between D⃗ and E⃗ can also be written as:

D⃗ = ϵ0(1 + χe)E⃗ = ϵ0ϵrE⃗ = ϵE⃗ (1.3)
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where ϵr = 1+χe is the relative permittivity, and ϵ = ϵrϵ0 is simply known as the permittivity.

One important consequence of equation (1.2) is that a change in the applied electric

field results in an instantaneous change in the polarization state. While approximately valid

for many materials, such a relationship is usually non-physical. In reality, a given material

is unable to react instantaneously to changes in the applied field [21], with the current

polarization state thus depending on not only the material’s characteristics but also past

history of interaction with the field [2]. The material’s ability to respond to an applied field

will thus depend on how rapidly the field is changing, and as a consequence, the permittivity

can effectively be considered a function of frequency, such that in the Fourier domain:

D⃗(ω) = ϵ(ω)E⃗(ω) (1.4)

where ω is the angular frequency and ϵ(ω) now describes a dispersive medium. As a result,

should a signal of interest contain multiple spectral components, each will experience a

different propagation velocity according to their respective frequencies. An initial signal can

thus become distorted or broadened as it propagates, a phenomena most often characterized

by a quantity known as the Group Velocity Dispersion (GVD) [21].

It is worth noting that the permittivity so defined cannot be an arbitrary function, but

must instead satisfy a set of equations known as the Kramers-Kronig relations [2]. These

equations fundamentally arise from the requirement that the material’s response be causal,

providing a link between the frequency variation and energy losses within the dielectric

medium. Transforming equation (1.4) from the frequency-domain to the time-domain (via

an inverse Fourier transform), it is evident that dispersion results in a time-dependent per-

mittivity, as well as a convolution in time between the permittivity and the applied field:

D⃗(t) = ϵ(t) ∗ E⃗(t) (1.5)

where ∗ denotes the convolution. While equation (1.5) is manifestly more complex than
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(1.3) due to the dispersion, it is important to note that it remains linear in E⃗, due to the

linearity property of the convolution operator [22].

In contrast, when exposed to high field strengths, a given material may no longer respond

linearly to the applied field. In the most general case, rather than being directly proportional,

the polarization density can instead be an arbitrary function of the electric field, such that:

D⃗ = ϵ0E⃗ + P⃗ (E⃗). (1.6)

To simplify the analysis of such nonlinear interactions, it is usually customary to expand

the polarization density as a power series in the electric field. While such an expansion would

in the most general case involve susceptibility tensors, for many isotropic material models

an adequate expansion is instead given by [23]:

P⃗ = ϵ0χ
(1)E⃗ + ϵ0χ

(2)EE⃗ + ϵ0χ
(3)E2E⃗ (1.7)

where χ(n) is the nth-order susceptibility, and E is the magnitude of the electric field. While

a third-order approximation is often sufficient, in principle higher order terms could equally

be included in the above expansion. Moreover, for many materials, symmetry within the

crystal lattice structure of the medium precludes the existence of the χ(2) term, a phenomena

known as inversion symmetry [23]. As mentioned earlier, this nonlinear polarization can

result in numerous additional and unique phenomena, such as the Kerr effect, frequency

doubling, self-phase modulation, solitons, four-wave mixing, and supercontinuum generation

[23, 24, 25].

The nonlinear polarization in (1.7) represents an instantaneous nonlinearity, as changes in

the applied field are reflected immediately in the polarization. However, just as in the linear

case, this is not necessarily a physical result and the nonlinear response can also be a function

of frequency, thereby representing a dispersive nonlinearity. Much as in the linear case,

this nonlinear dispersion corresponds to the introduction of additional convolutions into the

7
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nonlinear model of (1.7) and gives rise to additional phenomena such as stimulated Raman

scattering [23, 26]. As a result, incorporating linear dispersion, instantaneous nonlinearity,

as well as dispersive nonlinearity into a single model for the polarization density can be

accomplished quite accurately via the following expression for P⃗ [27, 28]:

P⃗ = ϵ0χ
(1)(t) ∗ E⃗ + ϵ0χ

(3)
(︂
αE2 + (1− α)g(t) ∗ E2

)︂
E⃗ (1.8)

in which the susceptibility χ(1) models the linear dispersion, the susceptibility χ(3) an instan-

taneous (Kerr) and/or dispersive (Raman) nonlinearity (with the α term controlling their

relative strengths), and g(t) being a causal response function characterizing the nonlinear

dispersion. The polarization in (1.8) represents a very general model capable of including a

wide variety of material interactions and phenomena, and will form the basis for the inclusion

of these effects within Maxwell’s Equations in this thesis.

It is worth noting, however, that while very general, there are still materials for which

equation (1.8) may not be adequate. Effects such as anisotropy, ferroelectricity, and electric

hysteresis can all add additional complexity to the polarization models described above.

Moreover, the discussion presented thus far has neglected the magnetic properties of the

materials in question. In like manner to the electric case, the magnetization state of the

medium can be characterized by a magnetization density M⃗ and permeability µ, and can thus

equally exhibit phenomena such as magnetic dispersion, nonlinearity, and ferromagnetism.

However, since one of the main intended applications of this thesis is within the realm

of nonlinear optics, where the effects mentioned above are often negligible or absent en-

tirely, this thesis will focus principally on those materials whose polarization state is ade-

quately described by equation (1.8). In addition, given their immense practical use, many

numerical methods have already been devised for the treatment of dispersive and nonlinear

magnetic materials within both Finite-Difference and Finite-Element-based methods (see

Section 1.2.3). Thus, to simplify the following analysis, it will be assumed that the materi-
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als in question have a linear and instantaneous response to an applied magnetic field, such

that the permeability µ is a simple scalar constant. Any future references to nonlinearity

in this thesis will thus refer implicitly to electrical nonlinearity. Despite these simplifying

assumptions, the methods proposed in this thesis nonetheless represent a powerful tool for

modeling very general material interactions and will help lay the framework for even more

general methods which combine these techniques, thus allowing all of the above phenomena

to be treated simultaneously.

1.2.2 The Nonlinear Wave Equation

For an electrically complex material whose polarization state is adequately described by

equation (1.8), the underlying electromagnetic theory remains Maxwell’s Equations:

∇ · D⃗ = ρv (1.9)

∇ · B⃗ = 0 (1.10)

∇× E⃗ = −∂B⃗
∂t

(1.11)

∇× H⃗ = J⃗v +
∂D⃗

∂t
(1.12)

where ρv is a volume charge density, J⃗v is a volume current density, B⃗ = µH⃗ is the magnetic

flux density, and as mentioned previously, D⃗ = ϵ0E⃗ + P⃗ [21].

In a source-free region, the above Maxwell’s Equations, along with the expression for the

polarization in equation (1.8), can be combined to yield a governing nonlinear vector wave

equation for the electric field [29]:

∇2E⃗ − µϵL ∗ ∂
2E⃗

∂t2
= µ

∂2P⃗NL

∂t2
(1.13)

in which ϵL is the linear dispersive term (related to χ(1)) and P⃗NL is the nonlinear part

of equation (1.8), related to χ(3). In general, solving this nonlinear wave equation can be
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immensely difficult, if not impossible, in closed form. In consequence, most techniques tend

to apply simplifying assumptions to equation (1.13) in order to ease the analysis and obtain

approximate solutions.

One of the most popular approximative techniques is the Slowly Varying Envelope Ap-

proximation (SVEA). As evident in the name, SVEA assumes that the amplitude or envelope

of the electromagnetic wave varies slowly in time and space as compared to the period or

wavelength. As a consequence, when expanding the wave equation in (1.13), higher order

derivatives can be neglected, such that [29, 30]:

⃓⃓⃓⃓
∂2E

∂z2

⃓⃓⃓⃓
≪
⃓⃓⃓⃓
β
∂E

∂z

⃓⃓⃓⃓
(1.14)

⃓⃓⃓⃓
∂2E

∂t2

⃓⃓⃓⃓
≪
⃓⃓⃓⃓
ω
∂E

∂t

⃓⃓⃓⃓
(1.15)

with z denoting the direction of propagation, β the wavenumber, and ω the angular frequency.

This results in a significantly simplified analysis.

The SVEA also forms the basis for a number of additional methods, each of which builds

upon it by adding additional constraints, assumptions, or approximations. For instance, the

Beam Propagation Method (BPM) [31, 32] not only assumes the signal envelope to be slowly

varying, but also treats the problem in time-harmonic form, with the material parameters

varying slowly in the direction of propagation, and with the wave assumed to be paraxial,

or confined to a relatively small angular area.

Alternatively, by assuming the time-harmonic form of a single mode waveguide whose

transverse solution is known, a formulation known as the Nonlinear Schrödinger Equation

(NLSE) can be derived [29]. The NLSE governs how a wave’s amplitude A(z, t) changes over

time and distance when propagating in a nonlinear medium:

j
∂A

∂z
− 1

2
β2
∂2A

∂τ 2
+ γ|A|2A = 0 (1.16)

10



1.2 - Background Chapter 1 - Introduction

in which β2 is the Group Velocity Dispersion (GVD) (related to the linear dispersive term),

τ represents a shifted time, γ is the nonlinear coefficient (related to the nonlinear term),

and j is the imaginary unit. The NLSE represents one of the most important, popular,

and widespread mathematical models for the inclusion of dispersion and nonlinearity in

electromagnetic wave propagation and is ubiquitous in the field of nonlinear optics.

While simpler than solving the full nonlinear wave equation (where the full field solution

must be found, as opposed to just its amplitude), techniques such as the NLSE nonetheless

remain mathematically challenging, with exact solutions known only for a few special cases.

As a result, a panoply of numerical methods for solving the NLSE have also been devised.

In particular, the Split-Step Fourier method [33, 34] is among the most prominent, in which

the linear and nonlinear components in (1.16) are independently and alternately advanced

in time.

However, despite the wide-ranging success of these methods, they remain fundamentally

built upon approximations to the underlying physical systems. It is thus imperative that

prior to using a method such as BPM or NLSE that the assumptions underpinning these

methods are verified to be true for the system being studied. Of course, it is nevertheless pos-

sible for a given system to deviate from the basic assumptions adopted in these methods. For

example, multi-mode propagation, higher order nonlinearities, high order dispersion, quickly

varying structures, quickly varying material parameters, and unguided or free propagation

can all significantly hamper the accuracy of these methods, if not render them completely

ineffective [27, 30, 35, 36].

For these reasons, often only a full solution of the non-approximative nonlinear wave

equation in (1.13) or Maxwell’s Equations in (1.12) can yield the complete and accurate

behaviour of a given physical system. Further emphasizing this point, Joseph & Taflove

notably found several instances in which the NLSE disagreed with a method which solved

(1.12) and (1.13) directly [11]. It is thus essential that numerical methods be devised which

are capable of solving (1.12) and (1.13) in full, directly in the time-domain, such as those
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presented in the next section.

1.2.3 Numerical Methods for the Nonlinear Maxwell’s Equations

Given some of the potential shortcomings identified with the approximative methods of the

previous section, the best way to ensure that the full dispersive and nonlinear response of an

electrically complex material is captured is via a method which solves Maxwell’s Equations

(or the vector wave equation) directly. With this in mind, a summary of current methods

which have been adapted for dispersive and nonlinear materials will be presented. However,

it is worth noting that many more techniques beyond those mentioned here have equally

been devised for phenomena not considered in this thesis, such as anisotropy. For a more

comprehensive review of such techniques, the reader is encouraged to consult the expansive

review paper in [37].

One of the first algorithms adapted to solve equations (1.9) - (1.12) and (1.13) belonged

to the Finite-Difference (FD) family of methods. Popular due to their accuracy and relative

simplicity, Finite-Difference methods operate by discretizing the relevant differential opera-

tors via appropriate Taylor series expansions [38]. However, given the nonlinear nature of

equation (1.8) linear superposition is no longer valid, precluding the use of time-harmonic

analysis when multiple frequencies are present. Thus, in order to capture the full interaction

of multiple frequency components, a method must be used which operates directly in the

time-domain, meaning both spatial and temporal derivatives are discretized. As mentioned

earlier, such a family of techniques known as Finite-Difference Time-Domain (FDTD) meth-

ods [19] had already been developed for broadband linear problems, with the most popular

variant being the so-called “leap-frog” method, in which the coupled first-order Maxwell’s

Equations are solved by alternately advancing the electric and magnetic fields in time [39].

The FDTD method would thus form one of the starting points for treating complex media.

The first challenge in adapting FDTD methods to complex media came in including the

effects of dispersion. In particular, over the years three distinct techniques have emerged
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for the incorporation of frequency-dependent permittivities within time-domain methods:

Recursive Convolution (RC), Auxiliary Differential Equation (ADE), and z-transform. Given

that many polarization models can be described by constant-coefficient differential equations,

it is often found that the permittivity is expressible as a rational function in the frequency-

domain, a fact exploited by all three methods. Specifically, the Recursive Convolution (RC)

method uses this observation to derive a recursion relation which permits the convolution

between the permittivity and the electric field to be marched forward in time [40, 41].

Similarly, the Auxiliary Differential Equation (ADE) method uses the Fourier transform

to convert the frequency-dependent rational permittivity back into an equivalent differential

equation for the convolution [37, 42]. This auxiliary equation is then also discretized and

solved along with the original, yielding the convolution value at each time step. Lastly, the

z-transform method exploits the rational nature of the permittivity’s frequency dependence,

as well as the properties of the discrete z-transform, to yield a series of update equations

for the convolution [43, 44]. While each of these methods has known notable success, the

RC and ADE methods tend to produce formulations which rapidly increase in complexity

and become intractable as the dispersive order of the materials is increased. In contrast,

z-transform-based methods tend to produce relatively simpler update schemes, which have

a tendency to remain so for higher dispersive orders [45].

As for the treatment of nonlinearity, several extensions to the base FDTD method were

derived in which, generally speaking, nonlinear update equations were solved via iterative

root finding methods [46, 47]. By converting back and forth between the D⃗ and E⃗ fields at

each grid point, these methods were able to successfully capture the nonlinear polarization

of the materials being studied, permitting the investigation of uniquely nonlinear phenom-

ena. When combined with the dispersive theory described above, this led to exceedingly

general FDTD methods capable of including each of the linearly dispersive, instantaneous

nonlinear, and dispersive nonlinear terms present in (1.8) [27, 48, 49]. The generality and

accuracy of these methods thus permitted additional insight to be gained into the behaviour
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of wave propagation within nonlinear media, as well as the interactions between nonlinear

and dispersive phenomena in general [11].

Despite the numerous successes of FDTD-based methods in capturing the full nonlinear,

dispersive, and wide-band response of electrically complex materials within a single compu-

tation, there are nevertheless certain drawbacks associated with these methods. Difficulties

in modeling curved interfaces, boundaries, and complex geometries have traditionally caused

issues for FDTD methods, which generally operate on fixed regular grids, resulting in stair-

casing errors [50, 51]. Moreover, sharp material discontinuities or abrupt changes in material

parameters can significantly weaken the accuracy of the underlying Taylor approximations,

if not render them useless. Lastly, the most popular FDTD algorithms tend to be explicit

in time and as a result may incur reduced stability [52, 53]. While mitigating strategies

are available for each of these issues (such as parameter smoothing [54], Correction Func-

tion Methods [55], and implicit temporal discretizations [56]), they inevitably increase the

complexity of the underlying method and may not be able to fully counterbalance these

weaknesses.

An alternative to FDTD, which also operates in the time-domain and alleviates many of

these concerns (at the cost of some added computational complexity), is the Finite-Element

Time-Domain (FETD) method [20]. In many respects, FETD is very similar to FDTD (with

some hybrid methods even having been developed [57]); however rather than discretizing the

differential operators themselves, FETD discretizes the problem domain into sub-regions

known as elements. The unknown field is then approximated as a linear combination of a

set of known basis functions within each element, which are then stitched together via a

global minimization to form the solution. Due to the nature of this spatial discretization or

meshing of elements, FETD methods are more aptly suited for complex domain geometries,

as well as material discontinuities [20].

Given the similarity between the two methods, it is unsurprising that attempts to gen-

eralize the original FETD schemes to complex media followed roughly the same process and
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utilized many of the same techniques as in FDTD. For instance, the inclusion of dispersion

within FETD has similarly been accomplished via Recursive Convolution [20, 58], Auxiliary

Differential Equation [59, 60], and z-transform techniques [45, 61]. Unfortunately, however,

progress in the development of nonlinear FETD methods for electrically complex media has

not seen as widespread development, implementation, or documentation.

As mentioned previously, FETD methods have already been devised for problems con-

taining complex magnetic materials exhibiting nonlinear permeability and hysteresis [62, 63].

These methods have been used extensively in the study of magnetic machines, such as elec-

tric motors; however the permittivity is generally assumed linear and constant. In addition,

problems involving nonlinear conductivity and dielectric breakdown have also received at-

tention, however here the nonlinearity is introduced via the conductivity σ and thus the

permittivity and permeability are again both assumed linear and constant [64, 65].

In regards to an instantaneous nonlinear permittivity, the parametric quadratic pro-

gramming method presented in [66] has been developed for the treatment of piecewise linear

permittivity models. By approximating the permittivity in a piecewise linear fashion, the

method can simulate instantaneous nonlinear phenomena, such as the Kerr effect, by trans-

forming the equations into a complementarity problem, solvable by a number of optimization

algorithms. At present, this is one of few FETD methods capable of including an instanta-

neous nonlinearity; however it remains limited due to the piecewise approximate nature of

the permittivity.

In like manner, to date the treatment of dispersive nonlinearities within FETD has also

received very little attention. In fact, the only method which currently addresses both in-

stantaneous and dispersive nonlinearities within FETD is that presented by Fisher, White,

and Rodrigue in [67]. Their method makes use of explicit time-stepping, the ADE formula-

tion for dispersion, and hexahedral elements, resulting in an efficient, high-order, and general

algorithm. Nevertheless, there remains some room for improvement. For instance, the use

of the ADE technique leads to increased complexity as the dispersive order of the materials
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is increased. Moreover, since explicit time-stepping is used, the scheme may prove to be

less stable. Indeed, the authors reported that in many cases, time steps of at most half

the Courant-Friedrichs-Lewy (CFL) condition were required for numerical stability. Lastly,

the method’s efficiency relies in part on the use of hexahedral elements to increase sparsity,

rather than the more popular triangular and tetrahedral elements. It is some of these short-

comings, as well as the notable lack of general dispersive nonlinear methods in the literature,

that this thesis aims to address.

1.3 Contributions and Overview

As detailed in the previous sections, there is a clear need for numerical methods capable of

modeling complex material interactions. However, many of the existing methods either rely

on approximations to the underlying governing equations, or impose geometric, stability,

or accuracy constraints, limiting their use in many cases. The methods proposed in this

thesis, in contrast, deal with electrically complex materials within the framework of FETD

simulations in a versatile, accurate, and easily generalizable way. Both instantaneous and

dispersive nonlinear algorithms are derived for various forms of electromagnetic FETD, of-

fering hitherto unseen capabilities such as increased geometric freedom, triangular elements,

increased scalability, ease of implementation, and significantly improved stability. The re-

sulting family of methods is among the first to comprehensively model linear dispersion,

instantaneous nonlinearity, and dispersive nonlinearities, all within a single FETD simula-

tion. Moreover, this thesis not only derives these algorithms, but also proposes additional

currently nonexistent tools and techniques to make their application more efficient and use-

ful. For instance, for the first time, a perfectly matched layer for dispersive nonlinear FETD

is presented, permitting the emulation of a wider class of problems, including those with

infinite or semi-infinite domains.

The resulting family of methods are also analyzed in terms of efficiency and imple-
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mentability. Bottlenecks in the execution of the derived algorithms are identified, and

attempts made to minimize their impact. Specifically, given the computational burden

generally imposed by these materials, this thesis also analyzes the use of massively par-

allel architectures, such as Graphics Processing Units (GPUs), to accelerate their execution.

Thus, not only do the proposed algorithms offer new capabilities, but do so at a substantially

reduced computational cost.

The following presents an overview of the various chapters and topics covered in this

thesis:

Chapter 1 - Provided an overview of the motivations, applications, theory, and litera-

ture associated with electrically complex materials and their simulation.

Chapter 2 - Derives a family of dispersive nonlinear FETD methods for the treatment

of electrically complex materials.

Chapter 3 - Discusses details regarding the implementation and characteristics of the

algorithms presented in the previous chapter, including numerical charac-

teristics, optimizations, and stability.

Chapter 4 - Reviews the theory and practice of Perfectly Matched Layers (PML) and

derives an extension of the PML to nonlinear dispersive FETD.

Chapter 5 - Analyzes how parallelism can be used to minimize the computational bur-

den imposed by electrically complex materials, with emphasis on imple-

mentation on GPUs.

Chapter 6 - Provides a concluding overview of the salient details and contributions of

this thesis, as well as some suggestions for future areas of study.

Lastly, the author of this thesis is the principle contributor of all its contents. This work

therefore reflects the author’s novel contributions to the field, with any co-authors reported

in the List of Publications acting in a supervisory capacity.
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Chapter 2

FETD Methods for Nonlinear

Dispersive Media

2.1 Introduction

In this chapter, a novel family of FETD algorithms will be derived for the treatment of

linear dispersion, instantaneous nonlinearity, and dispersive nonlinearity in electromagnetic

wave simulations. In particular, these algorithms will belong to one of two main variants of

the FETD method commonly in use: the mixed formulation and the Vector Wave Equation

(VWE) formulation.

Mixed FETD formulations solve the coupled first-order Maxwell’s Equations, obtaining

both the electric and magnetic field at each time step [37, 68]. In contrast, VWE-based

methods solve the second-order vector wave equation, obtaining just the electric field at

each time step [20]. Even though VWE formulations are more popular due to the simplicity

of having a single unknown working variable of interest, mixed approaches do have some

advantages. For instance, it can be shown that the discretized VWE supports non-trivial
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and potentially non-physical solutions of the form [69]:

E⃗(x⃗, t) = −(at+ b)∇ϕ (2.1)

where a and b are constants and ϕ is a time-independent scalar function. In theory, a and

b can be set to zero via appropriate boundary conditions, however due to finite machine

precision this cannot be guaranteed in practice [45]. As a result, the term proportional to a

can cause the solution to drift linearly in time, resulting in so-called late-time growth [70].

Thus, if very long simulation times are required, mitigating strategies need to be adopted

for VWE-based methods, whereas mixed methods do not suffer this issue.

Due to the relative strengths and weaknesses of each method, both will be developed in

the following sections, allowing the freedom to choose the technique which best matches the

requirements of the problem under study. While the two methods do have some notable

differences, it is equally important to note that they also share a very similar underlying

structure. In fact, when appropriate temporal discretizations are applied to each method,

they can be shown to be homologous, meaning many of the fundamental matrices and update

equations are identical. In consequence, by starting with the derivation of the mixed method,

the VWE version will be shown to follow logically, with many of the derived expressions

carrying over unchanged.

In the following section the traditional mixed FETD method will first be reviewed for

regular linear non-dispersive media. This will then be followed by a review of the inclusion of

linear dispersion via the z-transform method. With this underlying theory in hand, the novel

instantaneous and dispersive nonlinear methods will then be derived. Lastly, knowledge of

the mixed algorithms will then be leveraged to derive the equivalent new VWE formulations.
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2.2 Mixed FETD

2.2.1 Linear Non-Dispersive Media

In this section, the fundamentals of the mixed FETD method will be presented for linear

non-dispersive media, to serve as a base for the derivations to follow. To begin, Faraday and

Ampère’s Laws are expressed for linear non-dispersive media as follows [2]:

∇× E⃗ = −∂B⃗
∂t

(2.2)

∇× B⃗

µ
= J⃗v + ϵ

∂E⃗

∂t
. (2.3)

The Finite-Element method proceeds by discretizing or meshing the problem domain into

sub-domains known as elements. These elements are most commonly simplicial, resulting in

a triangular meshing in two dimensions and a tetrahedral meshing in three. The key idea is

to then choose a set of interpolary vector basis functions within each element, such that the

unknown solution of interest may be represented as linear combinations of these functions

within each triangle or tetrahedron [20]. In the case of a mixed method, such expressions

are required for both the electric and magnetic fields:

E⃗ =
le∑︂
i=1

e
(e)
i W⃗

(1)(e)

i (2.4)

B⃗ =
me∑︂
j=1

b
(e)
j W⃗

(2)(e)

j (2.5)

where e
(e)
i and b

(e)
j are the time-dependent interpolation weights and W⃗

(1)(e)

i and W⃗
(2)(e)

j are,

respectively, the time-independent electric and magnetic basis functions within the element

(e).

The choice of basis functions in (2.4) and (2.5) is an important one, as many of the

properties of the resulting method will be dictated by the class of functions used. For
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instance, it is crucial that the basis functions be constructed in such a way as to guarantee

inter-element continuity of the fields, as well as satisfy the requisite interface conditions.

More explicitly, this means ensuring the continuity of the tangential component of the electric

field and the normal component of the magnetic flux density across element boundaries [20].

Equally important, however, are the divergence and curl characteristics of the basis functions.

In particular, failing to enforce the divergenceless property of the fields in charge-free regions

can lead to corrupting artifacts known as spurious solutions [71].

The most common choice of basis functions, which both enforce continuity and are diver-

genceless, are the Whitney forms [72, 73, 74]. Whitney 1-forms, also known as edge elements,

are used to represent the electric field. These edge elements are so named since the degrees

of freedom e
(e)
i are associated with the edges of the simplices. More specifically, in the case

of mixed FETD, the basis functions are unnormalized such that the weights e
(e)
i represent

the tangential component of the field on that edge, scaled by the edge length, whereas in the

VWE FETD to follow, they are normalized such that the weights represent the tangential

field values themselves. Similarly, Whitney 2-forms, also known as face elements, are used

to represent the magnetic flux density. The face elements are so named since the degrees of

freedom b
(e)
j are this time associated with the faces of the simplices, representing the normal

field component scaled by the face area.

Having selected appropriate basis functions, attention is now turned toward discretizing

equations (2.2) and (2.3). For Faraday’s Law, the expansions in (2.4) and (2.5) can be

substituted in directly, yielding:

∇×
le∑︂
i=1

e
(e)
i W⃗

(1)(e)

i = − ∂

∂t

me∑︂
j=1

b
(e)
j W⃗

(2)(e)

j . (2.6)

However, one additional benefit of these particular basis functions is that the curl of the

Whitney 1-forms is a subset of the 2-forms. In other words, the curl of any given 1-form

within an element can be written as a linear combination of that element’s 2-forms, in which
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the weights are either +1, −1, or 0 [75]. Denoting the coefficient of the jth 2-form associated

with the curl of the ith 1-form within an element (e) as C
(e)
ij , this can be written as:

∇× W⃗
(1)(e)

i =
me∑︂
j=1

C
(e)
ij W⃗

(2)(e)

j (2.7)

which when substituted into equation (2.6) yields:

le∑︂
i=1

me∑︂
j=1

e
(e)
i C

(e)
ij W⃗

(2)(e)

j = − ∂

∂t

me∑︂
j=1

b
(e)
j W⃗

(2)(e)

j . (2.8)

By performing a term-by-term comparison of the 2-form coefficients in (2.8), a relation-

ship between the electric and magnetic weights can be established:

le∑︂
i=1

C
(e)
ij e

(e)
i = −

∂b
(e)
j

∂t
(2.9)

which can be more succinctly written by making use of matrix-vector notation:

[C(e)]T{e(e)} = −∂{b
(e)}
∂t

(2.10)

where in this thesis, braces {·} will denote a column vector, square brackets [·] will denote

a matrix, and a superscript T denotes the transpose. Equation (2.10) now represents a

semi-discrete version of Faraday’s Law within each element.

As for the discretization of Ampère’s Law, the procedure is unfortunately not as straight-

forward. Here, a Galerkin procedure [20] is adopted in which the dot product of equation

(2.3) is taken with the 1-form basis functions, and the result integrated over each element:

∫︂
Ωe

(︄
∇× B⃗

µ

)︄
· W⃗

(1)(e)

j dΩ =

∫︂
Ωe

J⃗v · W⃗
(1)(e)

j dΩ +

∫︂
Ωe

ϵ
∂E⃗

∂t
· W⃗

(1)(e)

j dΩ. (2.11)
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Applying the vector identity

B⃗ · ∇ × A⃗ = ∇ · (A⃗× B⃗) + A⃗ · ∇ × B⃗ (2.12)

to the term on the left-hand side, equation (2.11) can also be expressed as:

∫︂
Ωe

∇ ·

(︄
B⃗

µ
× W⃗

(1)(e)

j

)︄
dΩ +

∫︂
Ωe

B⃗

µ
·
(︂
∇× W⃗

(1)(e)

j

)︂
dΩ

=

∫︂
Ωe

J⃗v · W⃗
(1)(e)

j dΩ +

∫︂
Ωe

ϵ
∂E⃗

∂t
· W⃗

(1)(e)

j dΩ. (2.13)

Lastly, this can then be further refined by an application of the divergence theorem to the

first term on the left-hand side, from which the final expression is obtained:

∫︂
Ωe

B⃗

µ
·
(︂
∇× W⃗

(1)(e)

j

)︂
dΩ =

∫︂
Ωe

J⃗v · W⃗
(1)(e)

j dΩ

+

∫︂
Ωe

ϵ
∂E⃗

∂t
· W⃗

(1)(e)

j dΩ−
∫︂
∂Ωe

1

µ

(︂
B⃗ × W⃗

(1)(e)

j

)︂
· dS⃗. (2.14)

The first and third integrals on the right-hand side of equation (2.14) essentially act as

source terms, with the first representing a volume current source and the third being useful

for the imposition of special boundary conditions on the element boundary ∂Ω. Moreover,

both sources may be combined and written more compactly by defining an elemental source

vector {f (e)}, whose jth component is given by:

{f (e)}j =
∫︂
Ωe

J⃗v · W⃗
(1)(e)

j dΩ−
∫︂
∂Ωe

1

µ

(︂
B⃗ × W⃗

(1)(e)

j

)︂
· dS⃗ (2.15)

such that equation (2.14) can be more simply expressed as:

∫︂
Ωe

B⃗

µ
·
(︂
∇× W⃗

(1)(e)

j

)︂
dΩ =

∫︂
Ωe

ϵ
∂E⃗

∂t
· W⃗

(1)(e)

j dΩ + {f (e)}j. (2.16)
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As for the remaining two terms in (2.16), the expansions in (2.4) and (2.5) can be sub-

stituted in place of the electric and magnetic fields. For the magnetic term on the left-hand

side of (2.16), this results in:

∫︂
Ωe

B⃗

µ
·
(︂
∇× W⃗

(1)(e)

j

)︂
dΩ =

∫︂
Ωe

1

µ

me∑︂
i=1

b
(e)
i W⃗

(2)(e)

i ·
(︂
∇× W⃗

(1)(e)

j

)︂
dΩ (2.17)

=
me∑︂
i=1

me∑︂
k=1

∫︂
Ωe

1

µ
b
(e)
i W⃗

(2)(e)

i · C(e)
jk W⃗

(2)(e)

k dΩ (2.18)

where the curl property of equation (2.7) has been used in (2.18). This equation may also

be simplified by defining a new [M
(e)
f ] matrix, whose entry at the ith row and jth column is

given by:

[M
(e)
f ]ij =

∫︂
Ωe

1

µ
W⃗

(2)(e)

i · W⃗
(2)(e)

j dΩ (2.19)

from which (2.18) becomes:

∫︂
Ωe

B⃗

µ
·
(︂
∇× W⃗

(1)(e)

j

)︂
dΩ =

(︂
[C(e)][M

(e)
f ]{b(e)}

)︂
j
. (2.20)

Following a similar procedure for the electric field term results in:

∫︂
Ωe

ϵ
∂E⃗

∂t
· W⃗

(1)(e)

j dΩ =
le∑︂
i=1

∫︂
Ωe

ϵ
∂e

(e)
i

∂t
W⃗

(1)(e)

i · W⃗
(1)(e)

j dΩ (2.21)

for which if a new [M (e)] matrix is defined:

[M (e)]ij =

∫︂
Ωe

ϵ W⃗
(1)(e)

i · W⃗
(1)(e)

j dΩ (2.22)

can instead be written as:

∫︂
Ωe

ϵ
∂E⃗

∂t
· W⃗

(1)(e)

j dΩ =

(︃
[M (e)]

∂{e(e)}
∂t

)︃
j

. (2.23)
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Combining all of these terms, as well as the previously derived semi-discrete Faraday’s

Law, the spatially discretized Maxwell’s Equations are at last obtained in matrix form:

[C(e)]T{e(e)} = −∂{b
(e)}
∂t

(2.24)

[C(e)][M
(e)
f ]{b(e)} = [M (e)]

∂{e(e)}
∂t

+ {f (e)}. (2.25)

Recall, however, that so far the above equations have only been defined within each

individual element, as indicated by the superscript (e). In order to obtain the global solution,

these elemental matrices and equations must be added and combined into equivalent global

matrices according to their connectivity:

[M ] =
∑︂
(e)

[M ′(e)] [Mf ] =
∑︂
(e)

[M ′
f
(e)
] [C] =

∑︂
(e)

[C ′(e)] {f} =
∑︂
(e)

{f ′(e)} (2.26)

where terms without a superscript (e) represent global quantities and a prime denotes the

item has been expanded according to the global variable numbering (for a more detailed

description of the matrix assembly process, see Appendix A). The resulting global matrix

equations are identical to those in (2.24) and (2.25):

[C]T{e} = −∂{b}
∂t

(2.27)

[C][Mf ]{b} = [M ]
∂{e}
∂t

+ {f} (2.28)

except the global matrices themselves are now large and sparse. In particular, the dimensions

of these global matrices and vectors are given in Table 2.1.

At this point the equations have been spatially discretized, however they are still con-

tinuous in time. As a result, a temporal discretization must now be applied such that the

solution can be found at discrete time steps. While many such temporal discretizations are

possible, one popular variant uses central differences to approximate the temporal deriva-
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Table 2.1: Semi-discrete Maxwell’s Equations matrices and vectors.

Component Dimension Sparsity

[M ] l × l Sparse

[Mf ] m×m Sparse

[C] l ×m Sparse

{e} l × 1 Dense

{b} m× 1 Dense
1 l is the number of distinct edges in the global mesh
2 m is the number of distinct faces in the global mesh

tives, yielding an explicit algorithm very similar to the FDTD method. While such a method

could easily be used here, the resulting algorithm is unfortunately only conditionally stable

[68]. Alternatively, another possibility is the use of the Crank-Nicolson method [76], which

is not only implicit but has recently been posited to be unconditionally stable when used in

linear mixed FETD [45, 77].

Given a first-order ordinary differential equation such as:

du

dt
= f(u, t) (2.29)

the Crank-Nicolson method approximates the temporal derivative via a finite-difference for-

mula:

du

dt
≈ un+1 − un

∆t
(2.30)

where superscripts denote the discrete temporal step number and ∆t is the size of the

discretized time step, such that t = n∆t. Moreover, rather than equating this approximation

to the source term at time n (which would result in forward Euler) or time n + 1 (which

would result in backward Euler), Crank-Nicolson uses a combination of the two, such that
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the discretized form of equation (2.29) is [20]:

un+1 − un

∆t
=

1

2

(︁
fn + fn+1

)︁
. (2.31)

Applying this to the spatially discretized form of Faraday and Ampère’s Laws in (2.27)

and (2.28) results in:

{b}n+1 − {b}n

∆t
= −1

2
[C]T

(︂
{e}n + {e}n+1

)︂
(2.32)

[M ]
{e}n+1 − {e}n

∆t
=

1

2
[C][Mf ]

(︂
{b}n + {b}n+1

)︂
+

1

2

(︂
fn + fn+1

)︂
. (2.33)

By using (2.32) to eliminate {b}n+1 from (2.33), two fully discretized update equations can

be obtained for the electric and magnetic fields:

(︃
[M ] +

∆t2

4
[C][Mf ][C]

T

)︃
{e}n+1 =

(︃
[M ]− ∆t2

4
[C][Mf ][C]

T

)︃
{e}n

+∆t[C][Mf ]{b}n +
∆t

2

(︂
fn + fn+1

)︂
(2.34)

{b}n+1 = {b}n − ∆t

2
[C]T

(︂
{e}n + {e}n+1

)︂
. (2.35)

With these two update equations in hand, the solution procedure in traditional linear

non-dispersive media is thus as follows:

1. Using (2.34) and known quantities from the current and previous time steps, solve for

{e}n+1.

2. With {e}n+1 known, use equation (2.35) to solve for {b}n+1.

3. Repeat until the desired end time.

27



2.2 - Mixed FETD Chapter 2 - FETD Methods for Nonlinear Dispersive Media

2.2.2 Dispersive Media

As detailed earlier in Subsection 1.2.3 a well-developed literature exists surrounding the

treatment of linear dispersion within computational electromagnetics. Recursive Convolu-

tion, Auxiliary Differential Equation, and z-transform techniques have all been developed

for FETD-based methods with much success. However, as has been noted, the z-transform

approach in particular tends to have a simpler overall implementation [45]. In particular,

when dealing with higher-order dispersion, the convolution expressions in RC and the dif-

ferential equations in ADE can become very large intractable expressions, hampering their

effectiveness and ease of use. The z-transform update equations, in contrast, remain rela-

tively straightforward to implement. Moreover, given the importance of the z-transform in

signal processing, implementing dispersion in this way can be facilitated by drawing on the

immense existing signal processing literature. As a result, this thesis will exclusively employ

the z-transform method to model dispersion in all of the algorithms to come. In view of this,

an overview of the dispersive z-transform theory originally derived in [45] and [61] will now

be presented.

As was outlined in Subsection 1.2.1, having an electrically dispersive medium implies

that the permittivity is now a function of time, requiring the computation of a convolution:

D⃗(t) = ϵ0E⃗(t) + ϵ0χ
(1)(t) ∗ E⃗(t) (2.36)

= ϵ0

(︂
δ(t) + χ(1)(t)

)︂
∗ E⃗(t) (2.37)

= ϵL(t) ∗ E⃗(t) (2.38)

where δ(t) is the Dirac delta function. Under these conditions, Faraday’s Law is unchanged,

however Ampère’s Law becomes:

∇× B⃗

µ
= J⃗v +

∂

∂t

(︂
ϵL ∗ E⃗

)︂
. (2.39)
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Assuming that the permittivity is constant in space within each element, the exact same

spatial discretization procedure as in the last section can be applied and yields a similar

semi-discrete system of equations:

[C]T{e} = −∂{b}
∂t

(2.40)

[C][Mf ]{b} = [M̃ ]
∂

∂t

(︂
ϵL ∗ {e}

)︂
+ {f} (2.41)

where the [M̃ ] matrix differs from the previous [M ] matrix in that the permittivity is absent:

[M̃
(e)
]ij =

∫︂
Ωe

W⃗
(1)(e)

i · W⃗
(1)(e)

j dΩ. (2.42)

In applying the Crank-Nicolson method to equations (2.40) and (2.41) it is evident that

the value of the convolution:

{L}(t) ≜ ϵL(t) ∗ [M̃ ]{e}(t) (2.43)

will be required at times n and n+1. It will thus be necessary to derive an update equation

for the convolution, such that it can be advanced in time along with the solution vectors.

To alleviate this burden, the z-transform approach will be adopted in which the convolu-

tion is instead converted into a series of multiplications. To that end, the Laplace transform

of equation (2.43) can be taken, which due to the convolution property, is converted into a

multiplication in the s-domain [22]:

L(s) = ϵL(s)[M̃ ]{e}(s). (2.44)

However, as mentioned previously, due to the constraints imposed by causality and the

Kramers-Kronig relations, the permittivity cannot be an arbitrary function of frequency.

Moreover, for many materials the polarization can be modeled by a constant coefficient
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differential equation, and so it is commonly found that the permittivity is expressible as the

quotient of two s-dependent polynomials in the Laplace domain:

ϵL(s) =
cps

p + . . .+ c0
dpsp + . . .+ d0

(2.45)

where p represents the dispersive order of the medium. This rational permittivity is thus

either the result of a theoretical model, such as in Lorentz and Debye dispersion [19], or else

of curve fitting of empirical permittivity data by rational functions, such as in the well-known

Sellmeier equation [78]. As a result, for most dispersive materials of practical interest, the

permittivity may be expressed as in equation (2.45), such that (2.44) becomes:

{L}(s) = cps
p + . . .+ c0

dpsp + . . .+ d0
[M̃ ]{e}(s). (2.46)

The goal now is to move from the continuous frequency variable s to the discretized

frequency space of the z-transform. If the Laplace transform of a discrete-time signal sampled

at intervals t = n∆t is taken, the result can be shown to be equivalent to the evaluation of

the z-transform of the signal if [22]:

z = es∆t (2.47)

or alternatively:

s =
1

∆t
ln(z). (2.48)

By expanding the natural logarithm in (2.48) in terms of a bilinear series, an approxi-

mation to this mapping can be obtained in terms of a Möbius transform [79]:
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s =
1

∆t
ln(z) (2.49)

=
2

∆t

(︄
z − 1

z + 1
+

1

3

(︃
z − 1

z + 1

)︃3

+
1

5

(︃
z − 1

z + 1

)︃5

+ · · ·

)︄
(2.50)

≈ 2

∆t

z − 1

z + 1
(2.51)

=
2

∆t

1− z−1

1 + z−1
. (2.52)

This approximation thus permits the mapping from the continuous s-domain to the discrete

z-domain, while importantly preserving the rational nature of the permittivity.

Applying this transformation to (2.46), normalizing the coefficients by the first term in

the denominator of the permittivity, and cross multiplying yields:

(1 + . . .+ bpz
−p){L}(z) = (a0 + . . .+ apz

−p)[M̃ ]{e}(z). (2.53)

Lastly, by leveraging the time shifting property of the inverse z-transform [22], (2.53) can

be transformed back to the time-domain, yielding an update equation for the convolution:

{L}n = a0[M̃ ]{e}n + . . .+ ap[M̃ ]{e}n−p − b1{L}n−1 − . . .− bp{L}n−p. (2.54)

While equation (2.54) can be straightforwardly implemented as shown, more efficient

update strategies are possible. Indeed, as mentioned earlier, one of the key advantages of

the z-transform method is the ability to draw upon the signal processing literature. In

particular, rather than using the explicit update equation in (2.54), which requires 2p + 1

past field and convolution values to be stored, these values can instead be accumulated into

auxiliary variables as time stepping progresses. More specifically, by using the Transposed

Direct Form II implementation, as originally suggested in [45, 61], the update equation for
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the convolution can alternatively be expressed as:

{Wα}n = aα[M̃ ]{e}n − bα{L}n + {Wα+1}n−1 α < p (2.55)

{Wα}n = aα[M̃ ]{e}n − bα{L}n α = p (2.56)

{L}n = a0[M̃ ]{e}n + {W1}n−1 (2.57)

where {Wα} are the auxiliary variables in question, of which only p are needed.

The expression for the convolution in (2.57) can now be inserted into the temporal dis-

cretization obtained via Crank-Nicolson, resulting in a modified form of the update equation

for the electric field in (2.34):

(︃
a0[M̃ ] +

∆t2

4
[C][Mf ][C]

T

)︃
{e}n+1 =(︃

a0[M̃ ]− ∆t2

4
[C][Mf ][C]

T

)︃
{e}n +∆t[C][Mf ]{b}n

− {W1}n + {W1}n−1 − ∆t

2

(︂
{f}n + {f}n+1

)︂
. (2.58)

The solution procedure for linear dispersive media is now quite similar to before, with

the exception of the need to update the auxiliary variables at each time step:

1. Using (2.58) and all known values from previous time steps, obtain {e}n+1.

2. Using this result, obtain {b}n+1 using equation (2.35), which remains unchanged from

the non-dispersive case.

3. Advance each of the auxiliary variables and the convolution to n + 1 in order, using

equations (2.55) - (2.57).

4. Repeat until the desired end time.
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2.2.3 Instantaneous Nonlinearity

With a review of linear dispersive theory complete, attention is now turned toward one of

the first key contributions of this thesis, the development of implicit mixed nonlinear FETD

methods for electrically complex media. Indeed, as mentioned earlier, to date the only ex-

isting mixed nonlinear FETD algorithm [67] is explicit in time, and as such the algorithms

derived from this point forward represent the first time instantaneous and dispersive nonlin-

earity has been incorporated within implicit mixed FETD methods. As detailed further in

Chapter 3, this will have important consequences for the stability of the method. Here, the

linear mixed FETD theory of Subsection 2.2.1 will be modified to accommodate an instan-

taneous nonlinearity, with the further generalization to dispersive nonlinearities provided in

the following subsection.

In the case of an instantaneous nonlinearity convolutions are absent, however the per-

mittivity now depends on the electric field strength (α = 1):

D⃗ = ϵ0(1 + χ(1) + χ(3)E2)⏞ ⏟⏟ ⏞
ϵ

E⃗. (2.59)

Applying a spatial discretization procedure to the now nonlinear Ampère’s Law proceeds in

much the same way as it did in Subsection 2.2.1. The main exception of course is that the

corresponding [M ] matrix is no longer constant due to its dependence on the electric field

magnitude E:

[M (e)]ij =

∫︂
Ωe

ϵ(E)W⃗
(1)(e)

i · W⃗
(1)(e)

j dΩ (2.60)

=

∫︂
Ωe

ϵ0(1 + χ(1) + χ(3)E2)W⃗
(1)(e)

i · W⃗
(1)(e)

j dΩ (2.61)
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and thus must remain within the temporal derivative:

[C]T{e} = −∂{b}
∂t

(2.62)

[C][Mf ]{b} =
∂

∂t

(︂
[M ]{e}

)︂
+ {f}. (2.63)

As a result, the Crank-Nicolson temporal discretization must now be applied to the entire

matrix-vector product, such that the temporal derivative in (2.63) is instead approximated

as:

∂

∂t

(︂
[M ]{e}

)︂
≈ [M ]n+1{e}n+1 − [M ]n{e}n

∆t
. (2.64)

Keeping this in mind, the derivation of the required update equations for the E⃗ and B⃗ fields

follows a similar procedure to that presented previously, yielding the following:

(︃
[M ]n+1 +

∆t2

4
[C][Mf ][C]

T

)︃
{e}n+1 =

(︃
[M ]n − ∆t2

4
[C][Mf ][C]

T

)︃
{e}n

+∆t[C][Mf ]{b}n +
∆t

2

(︂
{f}n + {f}n+1

)︂
(2.65)

{b}n+1 = {b}n − ∆t

2
[C]T

(︂
{e}n + {e}n+1

)︂
. (2.66)

While deceptively similar to the update equations derived for linear media, the solution

of the above system of equations is manifestly more complex due to the dependence of

the [M ] matrix on the solution vector {e}. As a result, the above system must be solved

using an iterative root finding method, rather than a straightforward linear solver. While

many techniques exist for solving such systems, here the Newton-Raphson technique will be

adopted due to its ubiquity, seminal nature, and fast rate of convergence [80].

In the Newton-Raphson method, a system of nonlinear equations of the form {F} = 0,

dependent on a set of unknown variables {x}, may be solved by iterating in the following

manner:

{x}(k+1) = {x}(k) − [J ]−1
(k){F}(k) (2.67)
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in which the bracketed subscript (k) is the iteration number, and [J ] is the Jacobian matrix

defined as:

[J ]ij =
∂{F}i
∂{x}j

. (2.68)

By moving all terms of equation (2.65) to one side, the Newton-Raphson method can

easily be applied, assuming the Jacobian can be found. Thus, attention is now turned toward

determining an appropriate expression for the Jacobian associated with (2.65). Notably, the

derivation of the Jacobian to follow is similar to that derived in [62] for nonlinear magnetic

materials in the VWE formulation, and produces comparable expressions.

In equation (2.65) the unknown variable of interest is the vector {e}n+1, and so the

Jacobian will only take derivatives with respect to this quantity. As a result, only the

left-hand side of (2.65) will have a non-zero contribution to the Jacobian. To facilitate

the analysis further, the matrix-vector product on the left-hand side of equation (2.65) is

explicitly expressed as a sum, whose derivative with respect to {e}n+1
j is subsequently taken:

[J ]n+1
ij =

∂{F}i
∂{e}n+1

j

=
∂

∂{e}n+1
j

l∑︂
k=1

(︃
[M ]n+1

ik +
∆t2

4
[C][Mf ][C]

T
ik

)︃
{e}n+1

k . (2.69)

Distributing the derivative into the sum and applying the product rule results in:

[J ]n+1
ij =

l∑︂
k=1

(︃
[M ]n+1

ik +
∆t2

4
[C][Mf ][C]

T
ik

)︃
∂{e}n+1

k

∂{e}n+1
j

+
l∑︂

k=1

∂

∂{e}n+1
j

(︃
[M ]n+1

ik +
∆t2

4
[C][Mf ][C]

T
ik

)︃
{e}n+1

k . (2.70)

Due to the independence of each of the unknown variables, it can be shown that:

∂{e}n+1
k

∂{e}n+1
j

=

⎧⎪⎪⎨⎪⎪⎩
1 for j = k

0 for j ̸= k

(2.71)

which indicates that the only contribution from the first term will occur when j = k. More-
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over, since the [C] and [Mf ] matrices are constant, their derivatives vanish. With these two

results, (2.70) simplifies considerably:

[J ]n+1
ij = [M ]n+1

ij +
∆t2

4
[C][Mf ][C]

T
ij +

l∑︂
k=1

∂[M ]n+1
ik

∂{e}n+1
j

{e}n+1
k . (2.72)

The last term in (2.72) can be further refined by returning to the definition of the elemen-

tal [M (e)] matrices from which the global [M ] matrix is built, and bringing the derivative,

sum, and unknown vector inside the integral:

le∑︂
k=1

∂[M (e)]n+1
ik

∂{e(e)}n+1
j

{e(e)}n+1
k =

∫︂
Ωe

∂ϵn+1

∂{e(e)}n+1
j

W⃗
(1)(e)

i ·
le∑︂

k=1

W⃗
(1)(e)

k {e(e)}n+1
k dΩ (2.73)

where it is noticed that the sum in the above is exactly the interpolated representation of

the electric field within each element from (2.4):

le∑︂
k=1

∂[M (e)]n+1
ik

∂{e(e)}n+1
j

{e(e)}n+1
k =

∫︂
Ωe

∂ϵn+1

∂{e(e)}n+1
j

W⃗
(1)(e)

i · E⃗
n+1

dΩ. (2.74)

Furthermore, using the chain rule, the derivative of the permittivity may be recast in a

form dependent on the field strength E:

∫︂
Ωe

∂ϵn+1

∂{e(e)}n+1
j

W⃗
(1)(e)

i · E⃗
n+1

dΩ =

∫︂
Ωe

∂ϵn+1

∂En+1

∂En+1

∂{e(e)}n+1
j

W⃗
(1)(e)

i · E⃗
n+1

dΩ. (2.75)

Here, one last simplification is possible by analyzing the dependence of E on the unknown

vector {e(e)}. In particular, it can be shown through straightforward analysis that:

∂En+1

∂{e(e)}n+1
j

=
E⃗

n+1

En+1
· W⃗

(1)(e)

j . (2.76)

Making this final substitution into equation (2.75) and returning to the full expression
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in (2.72) at last produces the desired simplified elemental Jacobian:

[J (e)]n+1
ij = [M (e)]n+1

ij +
∆t2

4
[C(e)][M

(e)
f ][C(e)]Tij

+

∫︂
Ωe

1

En+1

∂ϵn+1

∂En+1

(︁
W⃗

(1)(e)

i · E⃗
n+1)︁(︁

W⃗
(1)(e)

j · E⃗
n+1)︁

dΩ (2.77)

where in the present case, using the permittivity in (2.59), the derivative reduces to:

∂ϵn+1

∂En+1
= 2ϵ0χ

(3)En+1 (2.78)

and the global Jacobian is assembled from the elemental Jacobians as before. Lastly, it

is important to note that in the limiting case of a linear problem, in which χ(3) = 0, the

Jacobian above reduces exactly to the left-hand side matrix of Subsection 2.2.1, as required.

With this result, the solution may now be found in a straightforward, albeit computa-

tionally intensive, manner. In general, the Jacobian in (2.77) will change not only during

each time step, but also each iteration of (2.67), as will the [M ] matrix in (2.61). They will

therefore need to be locally recomputed within each nonlinear element and reassembled into

their global counterparts multiple times within each time step.

The general solution procedure for an instantaneous nonlinearity is thus as follows:

1. Iterate (2.65) using (2.67) and (2.77), recomputing and assembling [J ] and [M ] each

time, until {e}n+1 converges to the desired tolerance.

2. Compute {b}n+1 using (2.66) and the computed {e}n+1.

3. Repeat the process until the desired end time.

2.2.4 Dispersive Nonlinearity

In this section, for the first time within an implicit mixed FETD formulation, the most

general form of the permittivity will be used, including linear dispersion, instantaneous non-
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linearity, and dispersive nonlinearity. The resulting scheme is thus highly versatile, capable

of modeling a wide variety of material properties.

Recall that for such a general material, its permittivity may be expressed as:

D⃗ = ϵL ∗ E⃗ + ϵ0χ
(3)
(︂
αE2 + (1− α)g(t) ∗ E2

)︂
E⃗. (2.79)

Inserting this expression into Ampère’s Law and applying the same spatial discretization

procedure used previously produces the following semi-discrete system:

[C]T{e} = −∂{b}
∂t

(2.80)

[C][Mf ]{b} = [M̃ ]
∂

∂t

(︂
ϵL ∗ {e}

)︂
+
∂

∂t

(︂
[M̂ ]{e}

)︂
+ {f} (2.81)

where [M̃ ] is the same as that seen in equation (2.42), and [M̂ ] contains the nonlinear

contribution defined by:

[M̂
(e)
]ij =

∫︂
Ωe

ϵ0χ
(3)
(︁
αE2 + (1− α)g(t) ∗ E2

)︁
W⃗

(1)(e)

i · W⃗
(1)(e)

j dΩ. (2.82)

The first term on the right-hand side of equation (2.81) is identical to that seen previously

for linear dispersion. Likewise, the second term on the right-hand side is clearly of the same

form as that studied for instantaneous nonlinearities in the previous section. The required

update equations are thus readily derived by combining both methods. In fact, substituting

the linear convolution update equation from (2.57), {L} = a0[M̃ ]+{W1}, as well as observing

the time-dependence of the [M̂ ] matrix, yields the full set of update equations:

(︃
a0[M̃ ] + [M̂ ]n+1 +

∆t2

4
[C][Mf ][C]

T

)︃
{e}n+1 =(︃

a0[M̃ ] + [M̂ ]n − ∆t2

4
[C][Mf ][C]

T

)︃
{e}n +∆t[C][Mf ]{b}n

− {W1}n + {W1}n−1 − ∆t

2
({f}n + {f}n+1) (2.83)
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{b}n+1 = {b}n − ∆t

2
[C]T ({e}n + {e}n+1). (2.84)

Equation (2.83) can be more compactly written by defining a new [K] matrix:

[K]ij = a0[M̃ ]ij + [M̂ ]ij (2.85)

or equivalently:

[K(e)]ij =

∫︂
Ωe

(︁
a0 + ϵ0χ

(3)E2 + (1− α)ϵ0χ
(3)g(t) ∗ E2

)︁
W⃗

(1)(e)

i · W⃗
(1)(e)

j dΩ (2.86)

such that the global update equation for the electric field becomes:

(︃
[K]n+1 +

∆t2

4
[C][Mf ][C]

T

)︃
{e}n+1 =(︃

[K]n − ∆t2

4
[C][Mf ][C]

T

)︃
{e}n +∆t[C][Mf ]{b}n

− {W1}n + {W1}n−1 − ∆t

2

(︂
{f}n + {f}n+1

)︂
. (2.87)

Despite equation (2.87) having a conspicuous similarity to that derived for instantaneous

nonlinearity, there is one fundamental difference that has yet to be addressed: the convolution

within the [K(e)] matrices. Thus, the main remaining obstacle is to now derive an update

equation for this convolution:

B(t) ≜ g(t) ∗ E2(t). (2.88)

Luckily, the z-transform theory developed for the linear dispersive case can also be

adapted to the present convolution without much complication. Indeed, in some sense the

nonlinear convolution above is actually simpler than that for linear dispersion, as the con-

volution is a scalar rather than vector entity.

Since the nonlinear dispersive kernel g(t) is often likewise the result of a constant-

coefficient differential equation model, its Laplace transform can also commonly be expressed
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as a rational function in frequency space:

g(s) =
rps

p + . . .+ r0
wpsp + . . .+ w0

(2.89)

such that, in the Laplace domain, the convolution becomes:

B(s) = rps
p + . . .+ r0

wpsp + . . .+ w0

E2(s). (2.90)

Applying the same bilinear Möbius transform as for linear dispersion, the above equation

can similarly be mapped to the z-domain:

B(z) = h0 + . . .+ hpz
−p

1 + . . .+ qpz−p
E2(z) (2.91)

and thus, upon applying the inverse z-transform, yields an update equation for the nonlinear

convolution:

Bn = h0(E
2)n + . . .+ hp(E

2)n−p − q1Bn−1 − . . .− qpBn−p. (2.92)

Furthermore, just as in the linear case, this update process can be made more efficient

by the introduction of auxiliary variables. In view of this, the update equation above can be

recast as:

Gn
α = hα(E

2)n − qαBn + Gn−1
α+1 α < p (2.93)

Gn
α = hα(E

2)n − qαBn α = p (2.94)

B = h0(E
2)n + Gn−1

1 (2.95)

where Gα are the associated new auxiliary variables.

Making the substitution of equation (2.95) for the convolution B into the definition of
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the [K(e)] matrix yields its final required form:

[K(e)]n+1
ij =

∫︂
Ωe

(︂
a0 + ϵ0αχ

(3)(E2)n+1 + (1− α)ϵ0χ
(3)
(︁
h0(E

2)n+1 + Gn
1

)︁)︂
W⃗

(1)(e)

i · W⃗
(1)(e)

j dΩ.

(2.96)

With this result, the final requirement to be able to solve the nonlinear update equation

for the electric field in (2.87) is to derive the associated Jacobian matrix. Luckily, due to

the similarity between the update equation in (2.87) and that for instantaneous nonlinear

media, the derivation of the Jacobian proceeds in much the same way, producing:

[J (e)]n+1
ij = [K(e)]n+1

ij +
∆t2

4
[C(e)][M

(e)
f ][C(e)]Tij

+

∫︂
Ωe

1

En+1

∂ϵn+1

∂En+1

(︁
W⃗

(1)(e)

i · E⃗
n+1)︁(︁

W⃗
(1)(e)

j · E⃗
n+1)︁

dΩ (2.97)

with the exception that the derivative of the permittivity is now given by:

∂ϵn+1

∂En+1
= 2ϵ0χ

(3)En+1
(︂
α + (1− α)h0

)︂
. (2.98)

The general solution procedure for a medium exhibiting linear dispersion, instantaneous

nonlinearity, and dispersive nonlinearity is now as follows:

1. Iterate equation (2.87), using (2.67) and (2.97), re-computing and assembling the [J ]

and [K] matrices each time, until {e}n+1 converges to the desired tolerance.

2. Compute {b}n+1 using (2.84).

3. Update each of the linear auxiliary variables and the linear convolution, using (2.55)

to (2.57), to time n+ 1.

4. Update the nonlinear auxiliary variables and the nonlinear convolution, using (2.93)

to (2.95), to time n+ 1.

5. Repeat the process until the desired end time.
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2.3 VWE FETD

As mentioned earlier, an alternative to the mixed FETD method is the vector wave equation

(VWE) method, which combines Maxwell’s Equations into a second-order differential equa-

tion rather than treating them as a coupled first-order system. The VWE formulation of the

FETD method is generally more popular than mixed methods due to its relative simplicity,

however despite this to date there are no reported VWE FETD implementations of disper-

sive dielectric nonlinearity in the literature. As such, the VWE FETD methods presented

in the second half of this section are novel in the generality of materials they can model.

As with the mixed FETD method, this section will begin with a brief overview of linear

VWE FETD as a foundation for the nonlinear and dispersive algorithms to follow. These

generalizations will then be derived, where the remarkable similarities alluded to earlier

between the mixed and VWE implementations will be exploited.

2.3.1 Linear Non-Dispersive Media

In many numerical studies, the main variable of interest is the electric field, for which the

VWE can be obtained by eliminating the magnetic field. To do so, Faraday’s law can be

multiplied by the reciprocal of the permeability and the curl of both sides taken:

∇× 1

µ
∇× E⃗ = − ∂

∂t

(︄
∇× B⃗

µ

)︄
. (2.99)

Substituting the curl on the right-hand side with the electric field expression from Ampère’s

Law then results in the second-order vector wave equation:

∇× 1

µ
∇× E⃗ + ϵ

∂2E⃗

∂t2
= −∂J⃗

∂t
. (2.100)

Applying the FETD formulation to this equation proceeds in much the same way as

it did for the coupled mixed problem. However, since this equation is only in terms of
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the electric field E⃗, only the Whitney 1-forms or edge elements are required. Applying a

Galerkin procedure to the above VWE, the dot product is taken with the 1-forms and the

result integrated over each element [20]:

∫︂
Ωe

(︃
∇× 1

µ
∇× E⃗

)︃
· W⃗

(1)(e)

j dΩ +
∂2

∂t2

∫︂
Ωe

ϵ E⃗ · W⃗
(1)(e)

j dΩ = −
∫︂
Ωe

∂J⃗

∂t
· W⃗

(1)(e)

j dΩ. (2.101)

Using the same vector identity (2.12) as before, in addition to the divergence theorem, the

final weak-form of the VWE above is obtained:

∫︂
Ωe

1

µ

(︂
∇× E⃗

)︂
·
(︂
∇× W⃗

(1)(e)

j

)︂
dΩ +

∂2

∂t2

∫︂
Ωe

ϵ E⃗ · W⃗
(1)(e)

j dΩ

= −
∫︂
Ωe

∂J⃗

∂t
· W⃗

(1)(e)

j dΩ−
∫︂
∂Ωe

1

µ

(︂
∇× E⃗

)︂
× W⃗

(1)(e)

j · dS⃗. (2.102)

As with the mixed method, the first term on the right-hand side represents a volume

current source with the second term being useful for the imposition of special boundary

conditions. Moreover, both of these terms can again be written more compactly by the use

of vector notation, such that if the source vector {f (e)} is defined as:

{f (e)}j =
∫︂
Ωe

∂J⃗

∂t
· W⃗

(1)(e)

j dΩ +

∫︂
∂Ωe

1

µ

(︂
∇× E⃗

)︂
× W⃗

(1)(e)

j · dS⃗ (2.103)

then equation (2.102) can also be written as:

∫︂
Ωe

1

µ

(︂
∇× E⃗

)︂
·
(︂
∇× W⃗

(1)(e)

j

)︂
dΩ +

∂2

∂t2

∫︂
Ωe

ϵE⃗ · W⃗
(1)(e)

j dΩ = −{f (e)}j. (2.104)

The electric field can then be replaced in the left-hand side terms with its basis function

representation of (2.4):

∫︂
Ωe

1

µ

(︄
∇×

le∑︂
i=1

eiW⃗
(1)(e)

i

)︄
·
(︂
∇× W⃗

(1)(e)

j

)︂
dΩ+

∂2

∂t2

∫︂
Ωe

ϵ

le∑︂
i=1

eiW⃗
(1)(e)

i ·W⃗
(1)(e)

j dΩ = −{f (e)}j.

(2.105)
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This can be more succinctly written by defining the [T (e)] and [S(e)] matrices as follows:

[T (e)]ij =

∫︂
Ωe

ϵ W⃗
(1)(e)

i · W⃗
(1)(e)

j dΩ (2.106)

[S(e)]ij =

∫︂
Ωe

1

µ
(∇× W⃗

(1)(e)

i ) · (∇× W⃗
(1)(e)

j )dΩ (2.107)

from which the global spatially discretized VWE becomes:

[T ]
d2{e}
dt2

+ [S]{e}+ {f} = 0 (2.108)

where the quantities [T ], [S], and {f} have been assembled from their local counterparts.

The last step is to now apply a temporal discretization to the above system to obtain

a complete update equation for the electric field. In contrast to the mixed method of the

previous section in which Crank-Nicolson was used, here a method must be applied which

can discretize a second-order derivative in time. One of the most popular choices for this

task is the Newmark method [81], in which a function of interest u(t) and its first temporal

derivative du/dt are approximated as:

(︃
du

dt

)︃n+1

=

(︃
du

dt

)︃n

+∆t(1− γ)

(︃
d2u

dt2

)︃n

+∆tγ

(︃
d2u

dt2

)︃n+1

(2.109)

un+1 = un +∆t

(︃
du

dt

)︃n

+
∆t2

2
(1− 2β)

(︃
d2y

dt2

)︃n

+∆t2β

(︃
d2u

dt2

)︃n+1

(2.110)

where the parameters γ and β can in general be selected to yield different update schemes.

For instance, selecting γ = 1
2
yields the most common family of methods known as Newmark-

β. As for the parameter β, it can be shown that setting β = 0 amounts to the central

difference method, whereas β = 1
4
amounts to the trapezoidal rule. Of particular importance,

however, is the result that for β ≥ 1
4
Newmark-β can be shown to be unconditionally stable

for linear FETD [20]. As a result, in the following analyses the Newmark-β method will be

used with β = 1
4
.
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By using the semi-discrete equation (2.108) to obtain an expression for the second tem-

poral derivative in (2.110), and using (2.109) to eliminate the first temporal derivative, the

final fully discretized update equation for the electric field can be obtained:

(︃
[T ] +

∆t2

4
[S]

)︃
{e}n+1 = 2

(︃
[T ]− ∆t2

4
[S]

)︃
{e}n −

(︃
[T ] +

∆t2

4
[S]

)︃
{e}n−1

− ∆t2

4

(︂
{f}n+1 + 2{f}n + {f}n−1

)︂
. (2.111)

Interestingly, comparing equation (2.111) to that obtained for the mixed Crank-Nicolson

method in (2.34) reveals a wealth of similarity. Most notably, owing to the relationship

between the curl of the 1-forms and the 2-forms in equation (2.7), it can be shown that:

[T ] = [M ] (2.112)

[S] = [C][Mf ][C]
T (2.113)

such that the matrices multiplying the {e} terms are identical between the two methods.

This remarkable homology between the two implementations has been previously noted in

[45] and may help explain the posited unconditional stability of the mixed Crank-Nicolson

method. By the same token, this striking similarity between the two will prove useful in the

derivation of the dispersive and nonlinear algorithms to follow, as much of the theory derived

in the previous section for the mixed method will carry forward to the VWE formulation.

2.3.2 Dispersive Media

The inclusion of linear dispersion within the Newmark-β VWE formulation follows precisely

the same steps as those outlined for the mixed method. Under the effects of linear dispersion,

convolutions are introduced such that the VWE becomes:

∇× 1

µ
∇× E⃗ +

∂2

∂t2

(︂
ϵL ∗ E⃗

)︂
= −∂J⃗

∂t
. (2.114)
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Applying the same discretization procedure as in the previous subsection, it is found that

the convolution which must now be advanced in time is of the form:

{L} ≜ ϵL ∗ [T̃ ]{e} (2.115)

in which the [T̃ ] matrix is identical to the [M̃ ] matrix in equation (2.42).

Adopting the same z-transform and auxiliary variable updating schemes as in the mixed

method, the update equations for the convolution become:

{Wα}n = aα[T̃ ]{e}n − bα{L}n + {Wα+1}n−1 α < p (2.116)

{Wα}n = aα[T̃ ]{e}n − bα{L}n α = p (2.117)

{L}n = a0[T̃ ]{e}n + {W1}n−1. (2.118)

The final update equation for the electric field within the VWE treatment of linear dispersive

materials is then obtained by the substitution of equation (2.118) into Newmark-β anywhere

the convolution (2.115) is encountered:

(︃
a0[T̃ ] +

∆t2

4

)︃
{e}n+1 = 2

(︃
a0[T̃ ]−

∆t2

4
[S]

)︃
{e}n −

(︃
a0[T̃ ] +

∆t2

4
[S]

)︃
{e}n−1

−
(︂
{W1}n − 2{W1}n−1 + {W1}n−2

)︂
− ∆t2

4

(︂
{f}n+1 + 2{f}n + {f}n−1

)︂
(2.119)

with the general solution procedure being the same as that reported for the mixed method,

with the exception of no longer needing to advance the magnetic flux density in time.

2.3.3 Instantaneous Nonlinearity

In the case of an instantaneous nonlinearity (α = 1), the spatial discretization procedure is

the same as in the linear case, except that it must be noted that the [T ] matrix is now a

function of time due to the dependence of ϵ on E, requiring it be kept within the temporal
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derivative:

∂2

∂t2

(︂
[T ]{e}

)︂
+ [S]{e}+ {f} = 0. (2.120)

As a result, the Newmark-β expressions in equations (2.109) and (2.110) must be applied to

the matrix-vector product [T ]{e} as a whole, resulting in the following update equation:

(︃
[T ]n+1 +

∆t2

4
[S]

)︃
{e}n+1 = 2

(︃
[T ]n − ∆t2

4
[S]

)︃
{e}n −

(︃
[T ]n−1 +

∆t2

4
[S]

)︃
{e}n−1

− ∆t2

4

(︂
{f}n+1 + 2{f}n + {f}n−1

)︂
. (2.121)

As before, the above equation bears a striking similarity to its linear counterpart, but is

now nonlinear and must be solved iteratively. Luckily, as noted earlier, the left-hand side of

the above equation is identical to that found in mixed Crank-Nicolson. Given that this is

the only term which contributes to the Jacobian, it follows that the expression for the VWE

Jacobian is precisely the same as that obtained earlier for the mixed method:

[J (e)]n+1
ij = [T (e)]n+1

ij +
∆t2

4
[S(e)]ij +

∫︂
Ωe

1

En+1

∂ϵn+1

∂En+1

(︂
W⃗

(1)(e)

i · E⃗
n+1
)︂(︂

W⃗
(1)(e)

j · E⃗
n+1
)︂
dΩ

(2.122)

where once again, for an instantaneous nonlinearity:

∂ϵn+1

∂En+1
= 2ϵ0χ

(3)En+1. (2.123)

The solution procedure thus again follows that for the mixed method, but without the need

to update the magnetic flux density at each time step.

2.3.4 Dispersive Nonlinearity

Lastly, for the most general case of linear dispersion, instantaneous nonlinearity, and disper-

sive nonlinearity, the procedure is, unsurprisingly, similar to that previously derived for the

mixed method. Indeed, applying the spatial discretization procedure detailed earlier results
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in the following semi-discrete system:

[T̃ ]
∂2

∂t2

(︂
ϵL ∗ {e}

)︂
+
∂2

∂t2

(︂
[T̂ ]{e}

)︂
+ [S]{e}+ {f} = 0 (2.124)

where the [T̃ ] matrix is the same as that seen earlier for linear dispersion, and [T̂ ] is identical

to the [M̂ ] matrix seen previously with the mixed method in equation (2.82).

Applying the Newmark-β method to the semi-discrete equation in (2.124), borrowing the

dispersive update equations from Subsection 2.2.2, and keeping in mind the time dependence

of the [T̂ ] matrix, the following update equation for the electric field may be derived:

(︃
[K]n+1 +

∆t2

4
[S]

)︃
{e}n+1 = 2

(︃
[K]n − ∆t2

4
[S]

)︃
{e}n −

(︃
[K]n−1 +

∆t2

4
[S]

)︃
{e}n−1

−
(︂
{W1}n − 2{W1}n−1 + {W1}n−2

)︂
− ∆t2

4

(︂
{f}n+1 + 2{f}n + {f}n−1

)︂
(2.125)

where the [K] matrix is precisely the same as that seen previously in (2.85):

[K] = a0[T̃ ] + [T̂ ] = a0[M̃ ] + [M̂ ]. (2.126)

Since the [K] matrix above is identical to that seen previously, both the nonlinear disper-

sive z-transform theory and the Jacobian derived for the mixed FETD method in Subsection

2.2.4 remain largely unchanged:

[J (e)]n+1
ij = [K(e)]n+1

ij +
∆t2

4
[S(e)]ij +

∫︂
Ωe

1

En+1

∂ϵn+1

∂En+1

(︂
W⃗

(1)(e)

i · E⃗
n+1
)︂(︂

W⃗
(1)(e)

j · E⃗
n+1
)︂
dΩ

(2.127)

in which again it is noted that, for a dispersive nonlinearity:

∂ϵn+1

∂En+1
= 2ϵ0χ

(3)En+1
(︁
α + (1− α)h0

)︁
. (2.128)

Lastly, once more the update procedure for the electric field mirrors that in the mixed
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method, with the exception of no longer needing to advance the value of the magnetic flux

density in time.

2.4 Convergence Studies

In this section the nonlinear dispersive FETD methods derived in this chapter will be bench-

marked to verify their convergence and accuracy. Unfortunately, as was pointed out earlier in

Chapter 1, exact solutions to the nonlinear wave equation are in general exceedingly difficult

to obtain in closed form. In consequence, without a known test case, it can prove challenging

to judge the accuracy and convergence of a new numerical method. For this reason, here

a different approach was adopted in which an exact solution was artificially manufactured

instead.

Specifically, rather than find a function that satisfies the nonlinear wave equation exactly

in some domain, a function is simply selected to be the exact solution instead. Of course, since

this function is essentially arbitrary, when the differential equation of interest is applied to

this solution there will naturally be a residual. However, if the source term of the differential

equation is selected to exactly equal this residual, then the selected function will become

the exact solution. A numerical simulation can then be run with this source term and the

computed solution compared with the selected, now exact, solution, yielding accuracy and

convergence data.

Since linear dispersion has already been tested and well established in the literature, in

this section the focus will be solely on testing the novel nonlinear aspects of the algorithms

in both the instantaneous and dispersive nonlinear regimes. As a result, in each of the

scenarios tested in this section, the linear susceptibility χ(1) is a simple scalar constant.

Moreover, unless otherwise stated, all of the algorithms below were implemented and tested

in MATLAB R2018a [82].
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2.4.1 Instantaneous Nonlinearity

To test the modeling of instantaneous nonlinear media, the following permittivity model was

selected:

ϵ = ϵ0
(︁
1 + χ(1) + χ(2)E + χ(3)E2

)︁
(2.129)

with χ(1) = 2.2, χ(2) = 3.1 m/V , and χ(3) = 4.3 m2/V 2. Note that here, in contrast to equa-

tion (1.8), the χ(2) term has been kept to provide a more general test case. Moreover, these

values for the susceptibilities, as well as all those used in this chapter unless otherwise noted,

were chosen either to facilitate the computation of the required source term or to enhance

nonlinear effects such that they are more readily observed within the selected computational

domains, and do not necessarily reflect any particular existing material. Specifically, the

values of χ(2) and χ(3) above are far, far, larger than any which would naturally occur, and

are meant to test the method.

With this in mind, the simulation domain was selected to be a unit square in two spatial

dimensions, Ω = [0, 1] × [0, 1], in which Perfect Electric Conductor (PEC) boundary condi-

tions were applied at each of the four domain edges. Triangular first-order elements were

used to mesh the area, and the manufactured exact solutions for the E⃗ and B⃗ fields were

selected as follows:

E⃗ = A sin(2πx)2 sin(2πc1t)
2ây (V/m)

B⃗ = −A
c1

sin(2πx) cos(2πx)
(︂
2πc1t− cos(2πc1t) sin(2πc1t)

)︂
âz (Wb/m2)

(2.130)

where A = 1 V/m and c1 = 1/
√︁
ϵ0(1 + χ(1))µ0. Running this solution through the nonlinear

Maxwell Equations results in the following source term being required:

J⃗v = −4πc1ϵ0 cos(2πc1t) sin(2πc1t)
3 sin(2πx)4

(︂
2χ(2) + 3χ(3) sin(2πc1t)

2 sin(2πx)2
)︂

− 2πc1ϵ0(1 + χ(1))
(︂
2πc1t+ cos(2πc1t) sin(2πc1t)− 4πc1t cos(2πx)

2
)︂
ây (A/m2). (2.131)
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With these parameters, the accuracy and convergence of the method were obtained by

performing several computations on progressively refined spatial grids with the temporal

time step size held fixed at ∆t = h/c, where c is the speed of light in vacuum and h is the

average element edge length in the mesh. The stop criteria for the Newton-Raphson iteration

was set to a relative change in solution of 10−6, and the error was measured in terms of the

L2 and L∞ norms, defined here as:

L2 =
1√
Nt

(︄
Nt∑︂
n=1

∫︂
Ω

⃓⃓⃓
E⃗

n
− E⃗

n

ex

⃓⃓⃓2
dΩ

)︄1/2

(2.132)

L∞ = max
t,x,y

⃓⃓⃓
E⃗ − E⃗ex

⃓⃓⃓
(2.133)

where E⃗ is the computed solution, E⃗ex is the exact solution, and Nt is the total number of

time steps taken in the simulation. Figure 2.1 contains a log-log plot of the error in the L2

and L∞ norms for the mixed Crank-Nicolson method for both the electric and magnetic fields

(note that the magnetic field has been scaled by c1 in order to facilitate the comparison). In

contrast, Figure 2.2 contains the same error data but for the vector wave equation Newmark-

β method, in which only the electric field is computed. Looking at both figures it is evident

that for each method all of the errors are converging to first order in the mesh size h (and thus

also in the time step size ∆t). Despite the Crank-Nicolson and Newmark-β methods being

both second -order in time, since only first-order spatial basis functions were used the overall

convergence rate is expected to fall to first-order, which is precisely the observed trend.

Comparing the error in the electric field between the mixed and VWE formulations in both

norms, meanwhile, shows that they are roughly equal, meaning both methods demonstrate

a similar level of accuracy and comparable solutions.

Lastly, it is worth noting that in Figure 2.1 the error in the magnetic field is approximately

one order of magnitude larger than that for the electric field in both norms. This is largely

due to the fact that the reported errors are absolute and not relative, meaning the extra

error is simply due to the scaled magnetic field being slightly larger than the electric field
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Figure 2.1: Convergence of the mixed Crank-Nicolson FETD method for an instantaneous nonlinearity.
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

Figure 2.2: Convergence of the VWE Newmark-β FETD method for an instantaneous nonlinearity.
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and does not represent an issue with the magnetic field modeling itself.

2.4.2 Dispersive Nonlinearity

With the convergence of the methods having been verified for instantaneous nonlinearities,

here a similar procedure is now repeated for dispersive nonlinearities. To that end, this time

the following permittivity model was used:

ϵ = ϵ0
(︁
1 + χ(1) + χ(3)g(t) ∗ E2

)︁
(2.134)

where χ(1) = 2.2, χ(3) = 4.1 m2/V 2 and g(t) was chosen to mimic a first-order Debye-like

dispersion:

g(t) =
1

τe
e−t/τeu(t) (2.135)

with τe = 10−9 s and u(t) representing the Heaviside step function.

The same domain, boundary, and mesh parameters were used as in the previous instan-

taneous nonlinear case, except this time the exact solutions were chosen to be:

E⃗ =

⎧⎪⎪⎨⎪⎪⎩
−A sin(2πx)

3∑︁
n=1

ann sin(nωt)ây 0 ≤ t ≤ T

0 otherwise

(V/m) (2.136)

B⃗ =

⎧⎪⎪⎨⎪⎪⎩
−2π

ω
A cos(2πx)

3∑︁
n=0

an cos(nωt)âz 0 ≤ t ≤ T

0 otherwise

(Wb/m2) (2.137)

where:

a0 =
3179

9000
a1 = −4392

9000
a2 =

1305

9000
a3 = − 92

9000
, (2.138)

A = 1 V/m, T = 5.97 × 10−9 s, and ω = 1.053 × 109 rad/s, such that the temporal shape

of the E⃗ and B⃗ fields were the Differentiated Blackman-Harris and Blackman-Harris pulses,

respectively.
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As before, these solutions were run through Maxwell’s Equations to obtain the required

source term for the convergence study. However, while this source term was obtained in

exact closed form, due to the convolution it is a large and intractable expression and has

thus been omitted here for clarity.

Figure 2.3 shows the resulting error for the mixed Crank-Nicolson method over a series of

refined meshes as again measured in the L2 and L∞ norms of equations (2.132) and (2.133),

respectively. The magnetic field was once again scaled by a factor of c1 to facilitate the

analysis and comparison. Figure 2.4, meanwhile, shows the same data but this time as

measured for the vector wave equation Newmark-β implementation. Looking at both figures

it is once again evident that all fields across both methods are converging to the expected

first-order accuracy in both norms. Furthermore, a comparison between the electric field

errors of the two methods shows that, once again, the mixed and VWE methods yield similar

levels of accuracy. The results of these convergence studies thus not only demonstrate the

appropriate degree of convergence, but also indicate that the mixed Crank-Nicolson and

VWE Newmark-β methods are very similar in terms of their overall accuracy and results.

This is both expected and encouraging, considering the extensive homology of the methods

discussed in Subsection 2.3.1. Overall, these convergence studies thus strongly corroborate

that the methods introduced in this thesis are not only correctly modeling complex material

behaviour, but doing so in an accurate and predictable way.

2.5 Numerical Examples

In the previous section the accuracy and convergence of the nonlinear dispersive FETD

methods was evaluated through the use of fabricated non-physical solutions. In contrast,

this section will more prominently demonstrate the utility and power of these methods via

the simulation of several well-known and physically significant nonlinear phenomena. In

particular, the occurrence of three uniquely nonlinear propagation modes known as spatial
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Figure 2.3: Convergence of the mixed Crank-Nicolson FETD method for a dispersive nonlinearity.
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Figure 2.4: Convergence of the VWE Newmark-β FETD method for a dispersive nonlinearity.
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solitons, temporal solitons, and supercontinuum generation will be investigated. While the

accuracy of the methods cannot be verified for these problems due to the lack of exact

closed-form solutions, the successful recreation and modeling of these phenomena within the

derived nonlinear FETD methods further corroborates their versatility, applicability, and

proper functioning.

2.5.1 Spatial Soliton

One fundamental aspect of non-guided wave propagation in bulk linear media is diffraction,

in which an initially confined beam gradually spreads out in space. In consequence, any

initially focused beam will tend to rapidly widen and spread out as it propagates, becoming

less focused and more diffuse [2]. In a nonlinear medium, however, the dependence of the

permittivity or refractive index on the field strength can give rise to a lensing or self-focusing

effect. Essentially, the transverse profile of a beam’s intensity can yield a gradient in the

material’s refractive index such that it mimics a convex lens. The result is that if a beam of

the correct profile and intensity is emitted into a bulk nonlinear medium, the focusing effect

of the nonlinearity can be made to exactly counterbalance the diffraction, yielding the stable

propagation of a confined beam over large distances without a guiding structure, known as

a spatial soliton [23].

To demonstrate the occurrence of this phenomena, a rectangular slab of bulk nonlinear

media measuring 30 cm wide by 100 cm long was simulated in two dimensions with the

mixed FETD formulation. Here, a two dimensional domain is important, since cylindrically

symmetric three-dimensional spatial solitons are known to be unstable in a pure Kerr medium

[23]. Additionally, these results are equally obtainable with the VWE formulation, but this

data has been omitted for brevity. An initially confined beam was injected into the left-hand

side of the slab and was permitted to propagate, with the other three boundaries having

Perfect Electric Conductor (PEC) conditions applied. More specifically, the beam’s electric
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field was given by:

E⃗ = A sech
(︂
ky(y − y0)

)︂
f(t)ây (2.139)

where A = 3× 1010 V/m, ky = 180 m−1, y0 = 0.15 m and the temporal profile f(t) was that

of a ramped sinusoid:

f(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 t ≤ 0

1
2

(︂
1− cos( ωt

2α
)
)︂
sin(ωt) 0 < t ≤ 2πK

ω

sin(ωt) t > 2πK
ω

(2.140)

with f = 2.4 × 109 Hz, ω = 2πf , and K = 3/2, resulting in a transverse profile with a

Full Width at Half Maximum (FWHM) of 1.46 cm. The average edge length in the mesh

was selected to be h = 2 × 10−3 m, the temporal time step set to ∆t = h/c, and the

Newton-Raphson stop criteria made equal to a relative change in solution of 10−6.

Figure 2.5 depicts the result of the simulation for a purely linear medium in which ϵ =

4.2ϵ0 (or equivalently for which χ(1) = 3.2), and χ(2) = χ(3) = 0. The initial bright localized

beam can easily be seen on the leftmost boundary, however with the lack of nonlinearity the

beam rapidly diffracts and spreads out, creating a diffuse interference pattern as the wave

rebounds off the PEC walls.

In contrast, Figure 2.6 shows the results of the exact same simulation except where the

linear medium has been replaced with one exhibiting an instantaneous nonlinearity of the

form presented in equation (1.8), with α = 1, χ(1) = 3.2, and χ(3) = 1.5 × 10−19 m2/V 2.

This time the focusing effects of the nonlinearity are abundantly clear, as the beam remains

roughly confined to its original focused shape during propagation. Note that in this particular

simulation, since the beam intensity is ramped up from zero, an initial non-focused wavefront

occurs until such a time as the beam has reached sufficient strength for the nonlinearity to

effectively mitigate diffraction.
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Figure 2.5: Diffuse interference pattern resulting from diffraction in a bulk linear medium.

Figure 2.6: Creation of a focused spatial soliton due to the presence of an instantaneous nonlinearity.
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2.5.2 Temporal Soliton

Whereas the previous example dealt with wave propagation in bulk media, here attention

is turned toward the more common scenario of guided waves, such as those found in fibre

optic cables. Due to the confining and guiding properties of the waveguide, unlike in bulk

media, a propagating wave will not diffract, maintaining in general a fixed transverse profile

as it travels. However, depending on the operating frequency and the materials from which

the guide is made, the signal can still become distorted. Indeed, the most common source of

such distortion is linear material or chromatic dispersion. As mentioned in previous sections,

materials exhibiting linear dispersion in essence have frequency-dependent permittivities,

meaning that each spectral component of a pulse or signal will propagate at a slightly

different speed, a phenomena often characterized in terms of the Group Velocity Dispersion

(GVD). Due to these differences in propagation speed, an initially well-formed pulse will

gradually broaden, becoming increasingly distorted as its constituent spectral components

separate during propagation. Generally speaking such pulse broadening is an unwanted and

problematic phenomena, as any signal sent down the guide may not be intelligible upon

reception at the other end. Dispersion is thus one main complication limiting bandwidth

and transmission rates in optical fibres [83].

One possible way to mitigate the effects of GVD, however, is by leveraging nonlinearity

within the optical fibre. Since within a nonlinear medium the permittivity is a function

of field strength, different parts of the signal will experience varying propagation velocities

according to the wave intensity at that point. In consequence, the resulting self-phase modu-

lation leads to a change in frequency or “chirp” over the length of the pulse, with the leading

edge decreasing in frequency and the trailing edge increasing in frequency [23].

In this manner, if a medium exhibits anomalous linear dispersion (that is, dispersion

in which the high frequency components travel faster than the low frequency ones) as well

as precisely the right amount of nonlinearity (tuned via the pulse shape and intensity) the

two phenomena can be made to effectively cancel each other out. The resulting pulse thus
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propagates through the material without significant distortion or broadening and is known

as a temporal soliton.

As before, a problem domain was selected to recreate this phenomena, this time within

the nonlinear dispersive VWE FETD framework. Rather than a bulk medium, however, a

dielectric slab waveguide was chosen to more closely mimic the operation of an optical fibre.

The resulting domain was rectangular in shape, measuring 10 µm wide by 100 µm long, and

was composed of three dielectric layers. The two exterior cladding regions were selected to

be free space, while the middle dielectric measured 2 µm in width and was made to exhibit

the full range of phenomena discussed so far, including linear dispersion, instantaneous

nonlinearity, and dispersive nonlinearity. More specifically, the linear dispersion was selected

to be second-order Lorentz, with a time-dependent linear susceptibility given by:

χ(1)(t) = χ∞δ(t) +
(χs − χ∞)ω2

0√︁
ω2
0 − δ2

e−δt sin

(︃√︂
ω2
0 − δ2t

)︃
u(t) (2.141)

where ω0 is the resonant frequency, δ is the damping constant, u(t) is the Heaviside step

function, and δ(t) is the Dirac delta function. In the present case, the following values were

selected for the linear dispersive parameters:

ω0 ≈ 1.885× 1014 (rad/s) δ = 2× 1011 (rad/s) χs = 6.1 χ∞ = 4.7 (2.142)

and were chosen to yield easily observable pulse broadening over the distance simulated.

Additionally, the parameter α of equation (1.8) was selected to be 0.8, meaning both

instantaneous and dispersive nonlinearities were present. In the dispersive case, the nonlinear

response function g(t) was also selected to be of the Lorentzian-type:

g(t) =

(︃
τ 21 + τ 22
τ1τ 22

)︃
e−t/τ2 sin

(︃
t

τ1

)︃
u(t) (2.143)

where τ1 represents the optical phonon period and τ2 the phonon lifetime [27]. Here, these
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parameters were selected as τ1 = 3.358× 10−14 s and τ2 = 1.1× 10−13 s, with the nonlinear

susceptibility set to χ(3) = 1.1× 10−18 m2/V 2.

Lastly, the incident pulse was again excited on the leftmost boundary of the waveguide,

in the fundamental transverse magnetic (TM) mode, whose B⃗ field is given as:

B⃗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
H2e

−a(y−y0)h(t) ây 6 µm < y < 10 µm

H1 cos
(︁
kx(y − y0)

)︁
h(t) ây 4 µm < y < 6 µm

H2e
a(y−y0)h(t) ây 0 µm < y < 4 µm

(2.144)

with a = 1.443 × 106 m−1, kx = 1.368 × 106 rad/m, y0 = 5 × 10−6 m, H1 = 10 Wb/m2,

and H2 = 11.71 Wb/m2. Meanwhile, the temporal profile h(t) was selected as a modulated

hyperbolic secant given by:

h(t) =

⎧⎪⎪⎨⎪⎪⎩
sech( t−t0

T
) sin

(︁
ω(t− t0)

)︁
0 < t < tp

0 otherwise

(2.145)

with T = 2 × 10−14 s, f = 5 × 1013 Hz, ω = 2πf , t0 = 3/f , and tp = 2t0. The resulting

pulse had a FWHM of approximately 52.7 fs and a fundamental frequency of 50 THz, with

roughly 6 periods of the carrier wave being contained within the pulse envelope.

To illustrate the negative effects of linear dispersion and GVD on their own, an initial

simulation with this setup was performed in which all of the nonlinearity was turned off.

The results of this simulation (performed with h = 0.2 µm, ∆t = h/c, and triangular

first-order elements) is shown in Figure 2.7. This level of spatial discretization amounts to

roughly 15 points per wavelength within the medium and should therefore result in negligible

numerical vs chromatic dispersion. While the pulse is initially well localized and compact

within the guide, as it propagates the effects of anomalous linear dispersion rapidly take

hold, broadening it significantly over time. Indeed, the anomalous nature of the dispersion

is partially visible in the pulse as higher frequency components have collected toward the
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front, leaving the lower frequency components to the rear, resulting in a negative chirp.

On the other hand, Figure 2.8 reveals the effects of that same linear dispersion, but with

the added influence of the above nonlinearities in effect. This time, the linear dispersion

has been largely counterbalanced by the self-phase modulation of the nonlinearity, yielding

a temporal soliton. As the pulse propagates, therefore, its initial shape and size remain

roughly intact, with no significant alteration in frequency or chirp detected.

2.5.3 Supercontinuum Generation

In this subsection, a last example of a real-world application of the simulation tools developed

in this chapter will be demonstrated. More specifically, the phenomenon of supercontinuum

generation will be exhibited, in which laser light undergoes extreme spectral broadening

under the influences of dispersion and nonlinearity, resulting in a very wide continuous optical

spectrum. This phenomena is significant not only for its spectacular visually observable

effects, but also because it represents an important source of high power density ultra-

broadband radiation [84].

The underlying physical processes behind supercontinuum generation in nonlinear optical

fibres can be quite varied and depends on different parameters such as chromatic dispersion,

laser pulse intensity, width, and duration, as well as the wavelength or frequency at which

the system is operated. However, one common regime of operation in which supercontinuum

generation is known to occur is when working with ultrafast femtosecond pulses excited in

the vicinity of a waveguide’s zero dispersion wavelength (ZDW), the point where the overall

fibre transitions from being anomalously dispersive to normally dispersive (or vice versa).

As detailed extensively in [85], when femtosecond pulses are created or “pumped” at a

wavelength or frequency in the anomalous dispersion regime, but close to the ZDW, several

mechanisms come into effect. Initially, the high intensity of the beam causes the creation

of a high-order temporal soliton, similar in nature to that described in Subsection 2.5.2 but

with a more complex temporal evolution. After a short distance, however, perturbations
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Figure 2.7: Demonstration of the effects of anomalous linear dispersion in a dielectric slab waveguide.

Figure 2.8: Creation of a temporal soliton via the introduction of dielectric nonlinearity.
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cause this high-order soliton to be unstable, resulting in a process called soliton fission.

By fissioning, the high-order soliton ejects energy into many smaller distinct low-order or

fundamental soliton components. However, due to the proximity of the ZDW, some of

this energy is shed into the normally dispersive region, creating dispersive waves. The

energy which remains in the anomalous dispersion region, meanwhile, can itself continue to

shift to longer wavelengths due to nonlinear soliton phenomena such as self-frequency shift

and cross-phase modulation, among others. The result is that, due to the interactions of

nonlinearity, anomalous dispersion, and normal dispersion, an initially spectrally confined

pulse experiences dramatic spectral broadening, with most of the initial energy now spread

out over a wide range of frequencies.

To demonstrate the occurrence of this phenomenon, a new numerical simulation was

devised to which the mixed FETD method could be applied. This time, a parallel plate

waveguide was created and filled with a material exhibiting both linear dispersion and an

instantaneous nonlinearity (α = 1). The waveguide measured 1 µm in width, 1 mm in

length, and was equipped with PEC boundaries.

The pulse itself was excited on the leftmost boundary and had a constant transverse com-

ponent with a modulated hyperbolic secant envelope in time. The corresponding magnetic

field was given by:

B⃗ =

⎧⎪⎪⎨⎪⎪⎩
A sech( t−t0

T
) sin

(︁
ω(t− t0)

)︁
ây 0 < t < 2t0

0 otherwise

(2.146)

in which A = 10Wb/m2, f = 2×1014 Hz, t0 = 30/f , ω = 2πf , and T = 2.84×10−14 s. The

resulting pulse had a FWHM of approximately 74.8 fs. The average element edge length in

the mesh was set to h = 0.1 µm, with first-order triangular elements, and a temporal time

step size of ∆t = h/c.

As for the material parameters, the linear dispersion was modeled by the following three-
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term Sellmeier equation:

χ(1)(λ) =
3∑︂

i=1

Biλ
2

λ2 − Ci

(2.147)

where λ is the equivalent free-space wavelength measured in µm and the values of the co-

efficients Bi and Ci are given in Table 2.2. The nonlinear susceptibility, meanwhile, was

B1 B2 B3 C1 C2 C3

0.6962 0.4079 0.8975 0.0684 0.1162 6.3000

Table 2.2: Sellmeier coefficients for supercontinuum generation.

assigned the value of χ(3) = 8 × 10−21 m2/V 2. Note that the values given in Table 2.2 are

those associated with fused silica [86], with the exception of the value of C3. The deviations

of C3 and χ(3) from the true values for silica were made to mildly alter the effects of disper-

sion and nonlinearity, such that supercontinuum generation could be observed over a shorter

distance and thus require less computational resources. Given sufficient computational time

and resources, however, the full true parameters could easily be used.

Figure 2.9 depicts a visual representation of the evolution of the pulse’s spectral contents

during propagation, as measured in the center of the guide at y = 0.5 µm. The horizontal

axis represents the equivalent free-space wavelength of each frequency, the vertical axis the

propagation distance within the guide, and the color the spectral intensity at each point.

While most of the spectral energy is initially clustered around the pulse’s fundamental fre-

quency of 200 THz (1.5 µm), the pulse rapidly fissions and decomposes, spreading its energy

out into a broad range of adjacent wavelengths/frequencies. This is especially evident in Fig-

ure 2.10 where the spectral contents of the pulse have been individually plotted for three

separate locations in the guide. Again, it can be clearly seen that while the initial pulse

is nicely localized around the 200 THz (1.5 µm) fundamental frequency (wavelength), af-

ter propagating through the guide the energy has uniformly spread out over a much wider

range. The resulting signal has roughly equal spectral power over a 1.4 µm range, whereas

the original pulse’s energy was contained within a 3 dB bandwidth of only roughly 50 nm.
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Figure 2.9: Linear (left) and logarithmic (right) visual depiction of the spectral contents of the pulse as it
propagates down the guide. The intensity has been normalized to the highest value.

Figure 2.10: Linear (top) and logarithmic (bottom) plots of the pulse’s normalized spectral composition
after traveling 0.41 mm and 0.81 mm in the guide.
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2.6 Summary

In this chapter a novel family of FETD-based methods was derived for the treatment of elec-

trically complex media within the full non-approximative Maxwell’s Equations. The resulting

methods are capable of modeling very general combinations of linear dispersion, instanta-

neous nonlinearity, and dispersive nonlinearities up to, in principle, arbitrary dispersive and

nonlinear orders.

Two versions of the FETD algorithm were derived and implemented. The first was based

upon the mixed formulation making use of both edge and face elements as well as the Crank-

Nicolson temporal discretization. The second, meanwhile, was based upon the Vector Wave

Equation (VWE) formulation which used only edge elements and the Newmark-β temporal

discretization. Both methods introduced dispersive modeling via the z-transform method,

implemented via a series of auxiliary variable update equations. The nonlinearity, in turn,

resulted in matrix quantities becoming functions of time, requiring the use of nonlinear root

finding. Specifically, it was shown that the nonlinear system’s Jacobian can be obtained in

closed-form, easily allowing for the use of the Newton-Raphson method.

The convergence of the newly derived methods was then tested via several artificially

manufactured solutions and was shown to be correctly approaching the exact solution as

the mesh was refined. It was also demonstrated that the mixed and VWE formulations

produce similar results with comparable levels of accuracy. Moreover, the utility and proper

functioning of these methods was also showcased via the simulation of several physically sig-

nificant nonlinear phenomena, including spatial and temporal solitons, and supercontinuum

generation.

The nonlinear dispersive algorithms derived in this chapter will form the base for all

further chapters in this thesis. In particular, the next chapter will provide a more in-depth

look at the characteristics of these algorithms, whereas subsequent chapters will develop

additional tools and techniques to improve their applicability and usefulness.
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Chapter 3

Implementation, Stability, and Energy

Whereas the last chapter presented and derived the mathematical basis of implicit FETD

methods for nonlinear dispersive media, in this chapter the focus will be on the implementa-

tion and characteristics of these algorithms. In particular, techniques for obtaining valid and

efficient solutions from Newton-Raphson will be discussed, as well as details concerning the

evaluation of elemental matrices and auxiliary variable updating. Lastly, the critical notion

of stability will be discussed, including an analysis of numerically conserved quantities of

interest, such as energy.

3.1 Newton-Raphson Iteration

A key part of the nonlinear algorithms presented in the last chapter was the iterative solution

of a nonlinear system of equations via the Newton-Raphson method:

{F}
(︁
{x}
)︁
= 0 (3.1)

{x}(k+1) = {x}(k) − [J ]−1
(k){F}(k). (3.2)

As was briefly mentioned, one of the major benefits of the Newton-Raphson method is its fast

convergence. More specifically, it can be shown that the Newton-Raphson method exhibits
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quadratic convergence, which is to say:

⃓⃓⃓
{x}(k+1) − {x̂}

⃓⃓⃓
≤ C

⃓⃓⃓
{x}(k) − {x̂}

⃓⃓⃓2
(3.3)

where {x}(k) is the solution after k iterations of the algorithm, {x̂} is the exact solution, C

is some positive constant, and | · | denotes the Euclidean norm [87].

Of course, the quadratic convergence of equation (3.3) is only valid if the solution actually

converges. Unfortunately, this is not always guaranteed, and generally requires a starting

value {x}(0) sufficiently close to the true solution {x̂} to ensure convergence. Moreover,

should the nonlinear system being solved have multiple possible solutions, the one to which

the method converges can exhibit extreme sensitivity to the starting guess, leading to so-

called basins of attraction [88]. As a result of these considerations it is imperative that an

appropriate starting guess be selected not only to ensure convergence to the correct solution,

but also convergence as quickly and efficiently as possible.

Luckily, since the FETD algorithms derived previously all involve time-stepping, a natural

choice for the initial guess is available. To illustrate, consider a time-dependent function u(t)

whose values at time n and n+ 1 may be related via a Taylor series expansion:

un+1 = un +∆t

(︃
∂u

∂t

)︃n

+
∆t2

2

(︃
∂2u

∂t2

)︃n

+ · · · (3.4)

Rearranging these terms it is thus fairly easy to conclude that

⃓⃓
un+1 − un

⃓⃓
≈ O(∆t) (3.5)

or, in other words, for sufficiently small time steps ∆t, the solution at time n + 1 will be

relatively close to that at time n. This naturally suggests using the previous time step’s
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solution as the initial guess for the current time step [63]:

{e}n+1
(0) = {e}n. (3.6)

Such a choice should not only result in the convergence of the Newton-Raphson algorithm,

but convergence to the correct solution in an efficient manner.

Despite the availability of a good initial guess, it should be noted however that this is

not in and of itself a guarantee of convergence to the correct solution. Owing to this, when

performing the iterations it is important to not only monitor the relative change in the

solution as a stopping criteria, but also the residual of the original nonlinear system {F}.

Doing so may thus help permit the detection of convergence to an incorrect solution, such

as convergence to a local minimum rather than a global one.

3.2 Elemental Matrix Properties

Many aspects of the implementation of a numerical algorithm depend upon the properties

of its underlying matrix quantities. In consequence, here the properties of the matrices

introduced in the previous chapter will be analyzed to help determine, among other things,

which matrix solvers are most suitable for the solution of the Jacobian system.
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3.2.1 Instantaneous Nonlinearity

Recall that in the case of an instantaneous nonlinearity, the key matrices of the mixed and

VWE formulations were defined as:

[M (e)]ij = [T (e)]ij =

∫︂
Ωe

ϵ0
(︁
1 + χ(1) + χ(3)E2

)︁
W⃗

(1)(e)

i · W⃗
(1)(e)

j dΩ (3.7)

[S(e)]ij = [C(e)][M
(e)
f ][C(e)]Tij =

∫︂
Ωe

1

µ

(︁
∇× W⃗

(1)(e)

i

)︁
·
(︁
∇× W⃗

(1)(e)

j

)︁
dΩ (3.8)

[J (e)]ij = [T (e)]ij +
∆t2

4
[S(e)]ij +

∫︂
Ωe

2ϵ0χ
(3)
(︁
W⃗

(1)(e)

i · E⃗
)︁(︁
W⃗

(1)(e)

j · E⃗
)︁
dΩ. (3.9)

Firstly, it is fairly straightforward to conclude that an interchange of the indices i and

j in each of these matrices leaves the result unchanged. Hence, it can be said that each of

them is symmetric, and so, for example:

[M (e)] = [M (e)]T . (3.10)

Additionally, suppose the [M (e)] matrix above is both left and right multiplied by an

arbitrary vector {x} to yield a scalar quantity as follows:

{x}T [M (e)]{x} =
∑︂
i

∑︂
j

xixj

∫︂
Ωe

ϵ0
(︁
1 + χ(1) + χ(3)E2

)︁
W⃗

(1)(e)

i · W⃗
(1)(e)

j dΩ (3.11)

=

∫︂
Ωe

ϵ0
(︁
1 + χ(1) + χ(3)E2

)︁(︂∑︂
i

xiW⃗
(1)(e)

i

)︂
·
(︂∑︂

j

xjW⃗
(1)(e)

j

)︂
dΩ. (3.12)

Defining a new vector α⃗ as

α⃗ =
∑︂
k

xkW⃗
(1)(e)

k (3.13)
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permits equation (3.12) equally be written as:

{x}T [M (e)]{x} =

∫︂
Ωe

ϵ0
(︁
1 + χ(1) + χ(3)E2

)︁
α⃗ · α⃗ dΩ (3.14)

=

∫︂
Ωe

ϵ0(1 + χ(1) + χ(3)E2) |α⃗|2 dΩ. (3.15)

For any passive material, the susceptibilities χ(1) and χ(3) are strictly non-negative, as

is the quantity E2 for any value of the electric field E⃗. Moreover, since the 1-form basis

functions are linearly independent, α⃗ can only be zero when {x} itself is zero:

{x} ≠ 0 ⇔ α⃗ ̸= 0. (3.16)

Since the magnitude |α⃗|2 is strictly nonzero for nonzero α⃗, the result is that for any given

nonzero vector {x}, the entire integrand of equation (3.12) is strictly non-negative, meaning:

{x}T [M (e)]{x} > 0 ∀ {x} ∈ Rn \ {0}. (3.17)

Equation (3.17) is recognized as the definition of positive definiteness for a matrix [89].

Thus, combining this with the earlier result of equation (3.10) shows that the [M (e)] matrix

is symmetric positive definite. In fact, repeating a similar analysis for the remaining two

matrices in (3.8) and (3.9) reveals they also share this property.

While the above proofs only demonstrate that the local matrices are symmetric positive

definite, it can in fact be shown that this is a sufficient condition for the resulting global

matrices to also possess these properties (see Appendix A). This therefore represents quite

an important result, as the property of being symmetric positive definite not only has impli-

cations for stability (as discussed later), but also permits the use of highly efficient matrix

solving algorithms such as the widely popular Cholesky Factorization and Preconditioned

Conjugate Gradient (PCG) methods [90].
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3.2.2 Dispersive Nonlinearity

In the case of a dispersive nonlinearity, the [S] matrix is unchanged, however the [K] and

[J ] matrices are modified to include factors due to the nonlinear convolution:

[K(e)]ij =

∫︂
Ωe

(︂
a0 + ϵ0αχ

(3)E2 + (1− α)ϵ0χ
(3)(h0E

2 + G1)
)︂
W⃗

(1)(e)

i · W⃗
(1)(e)

j dΩ (3.18)

[J (e)]ij = [K(e)]ij +
∆t2

4
[S(e)]ij +

∫︂
Ωe

2ϵ0χ
(3)
(︁
α + (1− α)h0

)︁
(W⃗

(1)(e)

i · E⃗)(W⃗
(1)(e)

j · E⃗) dΩ

(3.19)

As was the case in the previous subsection, an interchange of the indices in equations (3.18)

and (3.19) leaves the result unchanged, meaning the [K(e)] and [J (e)] matrices are still sym-

metric.

The question of positive-definiteness is, however, a bit more complex. Applying a similar

procedure to that outlined in the previous subsection to the [K(e)] matrix above now requires

knowledge about the quantities a0, h0, and G1 (from Subsection 1.2.1 it is assumed that

0 ≤ α ≤ 1). As was detailed in Subsection 2.2.2 the constants a0 and h0 result from applying

the z-transform to the linear and nonlinear convolutions, respectively. These constants are

derived from the permittivity function ϵL(t) and the nonlinear term g(t), as well as the

temporal step size ∆t, and thus depend upon the dispersive models being used. For many

practical models it can be verified that the constants a0 and h0 will be strictly greater than

zero for any positive value of ∆t. Indeed, this was the case for the sample materials studied

in Chapter 2.

Unfortunately, the behaviour of the G1 term is harder to characterize. In essence, deter-

mining whether h0E
2 + G1 will remain positive for all times is tantamount to determining

whether the same is true of the convolution which it approximates. Sadly, for many mate-

rials of interest it is not immediately obvious whether the quantity g(t) ∗E2 will be strictly

positive for all time, and is thus hard to prove whether the [K] and [J ] matrices of equations

(3.18) and (3.19) are always positive definite. Despite this theoretical difficulty, numerical
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studies have thus far suggested that these matrices do, in fact, remain symmetric positive

definite throughout the course of a computation, though naturally this cannot be taken as

definitive proof.

3.3 Evaluation of Elemental Matrices

For a linear FETD method, the [M ] and [T ] matrices do not change with time, as the

permittivity is a simple scalar constant:

[M (e)]ij = [T (e)]ij =

∫︂
Ωe

ϵ W⃗
(1)(e)

i · W⃗
(1)(e)

j dΩ. (3.20)

Since the permittivity in the above equation is constant, the only spatially varying part of

the integrand in (3.20) are the 1-form basis functions. At first it may seem a complex task

to integrate these basis functions over a triangular or tetrahedral element, however, due to

the properties of these basis functions the result is often surprisingly obtainable in closed

form. For instance, in two dimensions it can be shown that [91]:

∫︂
Ωe

(L
(e)
1 )l(L

(e)
2 )m(L

(e)
3 )n dΩ =

l! m! n!

(l +m+ n+ 2)!
2∆(e) (3.21)

where L
(e)
i are the scalar interpolary basis functions from which the vector 1-forms are

constructed, and ∆(e) is the triangle area. Exact expressions for each entry of the [M (e)]

and [T (e)] matrices can thus be found and tabulated, making the evaluation of the elemental

matrices quite straightforward and efficient in the linear case.

Unfortunately, in the nonlinear case the dependence of the permittivity on the electric

field, and thus indirectly on the spatial coordinates, precludes the use of equation (3.21). As

a result, closed form expressions for the nonlinear [M (e)] and [T (e)] matrices are generally

unavailable, meaning they must instead be evaluated numerically.

One approach to the numerical evaluation of the matrices in (3.20) is via Gaussian
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Quadrature, in which integrals over the triangle, for example, may be approximated as

[20]: ∫︂∫︂
Ωe

f(n1, n2, n3) dΩ ≈
∑︂
i

wif(n1i, n2i, n3i) (3.22)

where (n1, n2, n3) are simplex coordinates within the triangle [20], (n1i, n2i, n3i) are the cor-

responding sampling points, and wi their respective weights. The number of sampling points

and weights used depends on the desired level of accuracy, with tabulated values of abscissae

and weights available to quite high order [92]. The numerical integration scheme provided

by equation (3.22) has the benefit of being straightforward to implement, and can achieve,

in principle, any desired level of accuracy.

While the numerical integration of (3.22) may be inexpensive for any one nonlinear

element, in aggregate the overhead imposed for the entire domain can quickly skyrocket.

Indeed, for the worst case scenario of a domain completely filled with nonlinear media, the

need to numerically integrate the local matrices of every single element, compounded with

the fact that these matrices change and must be recomputed multiple times during Newton-

Raphson and time-stepping, results in an immense computational burden. It is not entirely

surprising, therefore, that nonlinear simulations generally dwarf their linear counterparts in

terms of required execution time and resources.

This immense computational burden imposed by nonlinearity can unsurprisingly result

in a significant barrier to entry. To mitigate this obstacle, a few different approaches are

possible. One, as detailed and implemented in Chapter 5, is to attempt to exploit parallelism

to accelerate these nonlinear algorithms. Another method, detailed below, has not been

implemented or tested in this thesis, but is suggested as a potentially promising future

improvement.

The main issue with the [M (e)] and [T (e)] matrices within a nonlinear simulation is in the

dependence of the permittivity on the electric field. However, since the resulting permittivity

is effectively a function of space and time, it can itself thus potentially be approximated via
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scalar elemental interpolary basis functions as:

ϵ(x⃗, t) ≈
∑︂
k

ϵ̃k(t)L
(e)
k (3.23)

where ϵ̃k are time-dependent expansion weights. Substituting this expression into the defi-

nition of the local [M (e)] and [T (e)] matrices would then yield:

[M (e)]ij = [T (e)]ij =

∫︂
Ωe

ϵ W⃗
(1)(e)

i · W⃗
(1)(e)

j dΩ (3.24)

=

∫︂
Ωe

∑︂
k

ϵ̃kL
(e)
k W⃗

(1)(e)

i · W⃗
(1)(e)

j dΩ (3.25)

=
∑︂
k

ϵ̃k

∫︂
Ωe

L
(e)
k W⃗

(1)(e)

i · W⃗
(1)(e)

j dΩ (3.26)

=
∑︂
k

ϵ̃k[Mk
(e)]ij. (3.27)

The expression for the matrices obtained in equation (3.26) is attractive since the inte-

grand is now only a function of the scalar interpolary functions. Therefore, using equation

(3.21), the integral in (3.26) is constant and obtainable in closed form, alleviating the need

to use Gaussian Quadrature.

In fact, just such a technique was used in conjunction with the explicit auxiliary differen-

tial equation method in [67], however several challenges remain in adopting such a technique

to implicit z-transform FETD methods. The first is that a relationship is ultimately re-

quired between the global permittivity weights ϵ̃k and the working unknown of interest, the

electric field weights {e}. The second is in the derivation of the Jacobian associated with the

matrices in (3.26), which will naturally depend upon the relationship between ϵ̃k and {e}.

However, should the resulting Jacobian also be obtainable in closed form, the proposed ap-

proximation has the potential to alleviate a tremendous amount of computational resources,

since not only are analytic expressions much faster to evaluate than Gaussian Quadrature,

but also would not change over time.
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3.4 Auxiliary Variable Updating

In the last chapter it was shown how the introduction of dispersion (either linear or nonlinear)

resulted in convolutions whose update equations were implemented via the z-transform and

simplified by the introduction of the Transposed Direct Form II technique. This resulted in

a set of auxiliary variables which accumulate field and convolution values as the simulation

progresses.

While the update procedure for the convolution variables in the linear case is relatively

straightforward, a subtlety arises in the update equations for the nonlinear case. Recall that

the nonlinear convolution:

B = g(t) ∗ E2(t) (3.28)

is approximated via the z-transform method as:

Bn = h0(E
2)n + Gn−1

1 (3.29)

for which the [K] matrix becomes:

[K(e)]n+1
ij =

∫︂
Ωe

(︂
a0+ϵ0χ

(3)(E2)n+1+(1−α)ϵ0χ(3)(h0(E
2)n+1+Gn

1 )
)︂
W⃗

(1)(e)

i ·W⃗
(1)(e)

j dΩ. (3.30)

The complicating factor within equation (3.30), which differentiates it from the linear

case, is that here the auxiliary variable G1 is found within the elemental integral. The main

consequence of this is that, when performing the Gaussian Quadrature evaluation of the

integral in (3.22), the value of G1 will be required at each quadrature or sample point within

each element, for as many past time steps are required for the medium’s dispersive order.

Hence, at every time step, each of the auxiliary variables at each quadrature point must be

advanced in time.

While not as significant as the numerical integration overhead, the fact that the update

equation overhead is multiplied by the number of quadrature points nevertheless results in a
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non-negligible burden. It is possible, however, that by adopting a procedure similar to that

proposed in the last subsection and expanding the nonlinear convolution in terms of scalar

basis functions, some of this overhead may be alleviated. Not only would this allow closed-

form expressions for the matrices, but might also simplify the auxiliary variable updating by

only needing to store and advance the expansion weights, at the cost of now interpolating

the convolution at each quadrature point. However, many of the issues identified with

interpolating the permittivity in the last section persist here, and so this approach has not

been adopted in this thesis. Nevertheless, it may prove an interesting avenue of approach

for future study.

3.5 Stability

When formulating any kind of numerical method or algorithm an important consideration

is that of stability. Indeed, in the previous chapters the notion of numerical stability was

mentioned several times to distinguish the methods derived in this thesis from existing

methods.

Depending on context, the notion of stability can have different meanings. However,

roughly speaking, a numerical method being stable results in the numerical solution to a

homogeneous (source-free) problem being bounded by some limit for all time steps. For

example, the most common choice usually defines stability as [93]:

⃓⃓
{u}n+1

⃓⃓
≤ C

⃓⃓
{u}0

⃓⃓
(3.31)

where {u} is the numerical solution, C is some non-negative constant, and as before | · | is the

magnitude or Euclidean norm. In essence, this definition of stability forbids the numerical

solution from exhibiting exponential growth, and for linear problems equates to the numerical

problem being well-posed. To demonstrate this, suppose some numerical algorithm obtains
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{u}n+1 from {u}n via the application of some operator A(·), such that:

{u}n+1 = A({u}n) (3.32)

= An({u}0). (3.33)

For the method represented by A(·) to be termed well-posed, small perturbations in the

initial condition {u}0 should result in a comparably small change in the solution at time

{u}n+1 [94]: ⃓⃓
{ũ}n+1 − {u}n+1

⃓⃓
≤ C

⃓⃓
v0
⃓⃓

(3.34)

where {ũ}n+1 is the solution obtained from the perturbed initial condition

{ũ}0 = {u}0 + {v}0. (3.35)

This definition is the same as that used for well-posedness in partial differential equations.

If the operator A(·) is linear, the criteria in 3.34 can also be expressed as:

⃓⃓
{ũ}n+1 − {u}n

⃓⃓
≤ C

⃓⃓
{v}0

⃓⃓
(3.36)⃓⃓

An({ũ}0)− An({u}0)
⃓⃓
≤ C

⃓⃓
{v}0

⃓⃓
(3.37)⃓⃓

An({u}0) + An({v}0)− An({u}0)
⃓⃓
≤ C

⃓⃓
{v}0

⃓⃓
(3.38)⃓⃓

An({v}0)
⃓⃓
≤ C

⃓⃓
{v}0

⃓⃓
(3.39)⃓⃓

{v}n+1
⃓⃓
≤ C

⃓⃓
{v}0

⃓⃓
(3.40)

which is precisely the original stability criteria stipulated in (3.31). Hence, in the case of a

linear method, the stability criteria in (3.31) directly implies that condition (3.34) is satisfied.

Such a consistent definition of stability is important, as perturbations to the original dif-

ferential equation, either due to discretization or finite floating point machine precision, could

otherwise result in solutions which deviate substantially from the true solutions and non-
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physically “explode” or “blow-up”, meaning they become unbounded. Having a numerical

method which is stable at a given operating point thereby guarantees that such perturbations

do not grow, but rather remain bounded. In fact, for a consistent linear Finite-Difference

scheme, due to the Lax equivalence theorem, stability is a sufficient condition to guarantee

the solution converges, meaning it approaches the true solution as the grid is refined [95].

The stability of a given numerical algorithm can generally be classified as either condi-

tionally stable or unconditionally stable. As the name implies, conditional stability dictates

that there is a certain set of constraints or criteria which must be satisfied for the method

to be stable. For Finite-Element analysis, these constraints are generally related to the tem-

poral discretization parameter ∆t, as well as the global matrices (themselves dependent on

the spatial discretization, i.e. on the size of the elements in the mesh). For instance, when

discretized via the central difference method, the linear VWE FETD method is conditionally

stable with stability criterion given by [20]:

∆t ≤ 2√︁
ρ([T ]−1[S])

(3.41)

where ρ(·) denotes the spectral radius. In contrast, an unconditionally stable method is one

in which there is no restriction on the temporal step size ∆t in order to ensure the stability

criteria of equation (3.31) is satisfied. For example, when the Newmark-β method is applied

to linear FETD problems, it is unconditionally stable for β ≥ 1/4 [20, 96].

While unconditionally stable algorithms tend to be more computationally expensive, this

is mitigated by their ability to use larger time intervals and therefore fewer overall steps for

the same amount of simulated time. Such methods are particularly attractive for nonlinear

algorithms, such as those presented in the previous chapter, due to the constantly changing

and evolving nature of the [M ], [T ], and [J ] matrices.

Unfortunately, while many methods have been devised to analyze the stability of linear

FETD methods, the same cannot generally be said for their nonlinear counterparts. In fact,

80



3.5 - Stability Chapter 3 - Implementation, Stability, and Energy

analyzing the stability of nonlinear methods can pose a significant challenge. This difficulty

stems, in part, from the fact that for a nonlinear operator A(·), the stability condition in

(3.31) no longer directly implies (3.34) is satisfied. In other words, a bounded nonlinear

operator is not necessarily continuous as it is in the linear case, meaning that additional care

must be taken to avoid ambiguity in what is meant by a nonlinear method being termed

stable. Moreover, there is currently no nonlinear analog of the Lax equivalence theorem,

so that even if a nonlinear method is stable in the sense of (3.31) or (3.34) (or both), the

solution cannot be guaranteed to converge to and correctly approximate the true solution

[97]. Hence, while it is hoped that the unconditional stability of a linear method may be

maintained when generalized to nonlinear problems, there is little guarantee that this will

occur.

While attempts to prove the unconditional stability of the algorithms derived in Chapter

2 have so far been unsuccessful, two promising pieces of evidence do currently support the

notion that these algorithms may in fact be numerically stable. The first is the result of

empirical numerical studies, which demonstrate bounded solutions for large values of ∆t. The

second, which is of more theoretical interest, is related to the evolution of the discretized

electromagnetic energy stored in the fields during the solution process. More specifically, in

the next section it will be shown that the algorithms derived in the previous chapter conserve

energy exactly, a criteria likely necessary, but which may not be sufficient, for unconditional

stability.
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3.6 Conservation of Energy

3.6.1 Linear Media

For any linear electromagnetic system, the energy density may be expressed as [2]:

u = um + ue =
1

2
B⃗ · H⃗ +

1

2
D⃗ · E⃗

=
1

2µ
|B⃗|2 + ϵ

2
|E⃗|2

(︃
J

m3

)︃
(3.42)

where um and ue are the magnetic and electric contributions, respectively, and from which

the total energy is obtained via spatial integration:

U = Um + Ue =
1

2

∫︂
Ω

1

µ
|B⃗|2 dΩ +

1

2

∫︂
Ω

ϵ |E⃗|2 dΩ (J). (3.43)

If the mixed Finite-Element approximation of the electric and magnetic fields in (2.4) and

(2.5) are substituted into the total energy expression above, a straightforward comparison

with the matrices of equations (2.19) and (2.22) shows that, after global assembly, the

equivalent total numerical energy is given by:

U = Um + Ue =
1

2
{b}T [Mf ]{b}+

1

2
{e}T [M ]{e} (3.44)

which may also be written in the form of a partitioned matrix-vector product as:

U =
1

2

[︃
{b}T {e}T

]︃⎡⎢⎣[Mf ] 0

0 [M ]

⎤⎥⎦
⎡⎢⎣{b}
{e}

⎤⎥⎦ ≜
1

2
{y}T [M ]{y}. (3.45)

Two interesting properties about the numerical energy in (3.45) should be noted. The

first is that U can be shown to be conserved exactly by the linear Crank-Nicolson mixed
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FETD method. The second is that it can also be considered as inducing an energy norm:

∥{y}∥U =

√︃
1

2
{y}T [M ]{y} (3.46)

since the quantity in (3.46) can be shown to obey the following three defining norm properties

[98]:

1. ∥αu∥ = |α|∥u∥

2. ∥u+ v∥ ≤ ∥u∥+ ∥v∥

3. ∥u∥ ≥ 0 with ∥u∥ = 0 if and only if u = 0

where u and v are arbitrary members of a vector space, and α some arbitrary constant.

The first criteria is easily verified directly from the properties of matrix-vector algebra.

The second criteria (the triangle inequality) can be shown to follow from the third condition

via the Cauchy-Schwartz inequality, provided that the [Mf ] and [M ] matrices are symmetric.

Lastly, the third criteria can be found to be satisfied if the [Mf ] and [M ] matrices are positive

definite. Since these matrices are indeed symmetric positive definite in linear mixed FETD,

equation (3.45) not only represents the physical electromagnetic energy, but can also be

considered as inducing a valid energy norm. As will be shown next, the fact that (3.46)

defines a valid norm will have a significant impact on the method’s stability.

If the Finite-Element formulation of a homogeneous (source-free) problem has non-

increasing energy at each subsequent time step:

Un+1 ≤ Un (3.47)

then it is relatively straightforward to conclude that:

Un+1 ≤ U0 (3.48)
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or, equivalently,

∥{y}n+1∥U ≤ ∥{y}0∥U . (3.49)

Moreover, due to the equivalence of norms in a finite-dimensional vector space [98] the

energy and Euclidean norms may be related by:

C1∥{y}∥U ≤ |{y}| ≤ C2∥{y}∥U (3.50)

where C1 and C2 are positive constants. Combining (3.48) and (3.50) it is fairly straightfor-

ward to thus conclude that:

|{y}n+1| ≤ C|{y}0| (3.51)

where C is likewise a positive constant related to C1 and C2, meaning equation (3.51) above

is precisely the stability constraint of equation (3.31). Alternatively, by substituting in the

definition of the {y} vector from equation (3.45) into the above one can also obtain:

|{e}n+1|2 + |{b}n+1|2 ≤ C2
(︂
|{e}0|2 + |{b}0|2

)︂
. (3.52)

The alternative relation obtained in equation (3.52) can in essence be thought of as a

two variable equivalent of the stability condition stated in equation (3.31), and precludes

the possibility of the solutions growing exponentially without bound. In other words, if a

method can be shown to conserve energy, and that energy induces a valid norm, then the

method can be said to be stable in the sense of equation (3.31) and thus also in the sense of

(3.34) if linear. In fact, as long as a numerical method can be shown to conserve some norm,

even if it is not representative of the physical energy, the above arguments still hold. This is

the case in the linear VWE Newmark-β method, for example, which for β = 1/4 preserves

the following norm exactly, regardless of the time step size [57]:

∥{y}∥U =

√︃
1

2
{e}T [S]{e}+ 1

2

d{e}T
dt

[T ]
d{e}
dt

(3.53)
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and is thus unconditionally stable.

3.6.2 Nonlinear Mixed FETD

In the case of an electrically nonlinear medium, the expression for the electromagnetic energy

becomes more complex. By integrating Poynting’s Theorem [2], it can be shown that the

general expression for the electromagnetic energy density in an electrically nonlinear region

is given by:

u = um + ue =
1

2µ
B⃗ · B⃗ +

∫︂ D⃗

0

E⃗ · dD⃗
′

(3.54)

for which the total energy in a specified region is then given by

U =
1

2

∫︂
Ω

1

µ
B⃗ · B⃗ dΩ +

∫︂
Ω

∫︂ D⃗

0

E⃗ · dD⃗
′
dΩ. (3.55)

Since the displacement field is generally considered the dependent variable, the integral

within the energy density expression can also be written in terms of the co-energy [38]:

∫︂ D⃗

0

E⃗ · dD⃗
′
= E⃗ · D⃗ −

∫︂ E⃗

0

D⃗ · dE⃗
′

(3.56)

such that the total energy can equivalently be found via:

U =
1

2

∫︂
Ω

1

µ
B⃗ · B⃗ dΩ +

∫︂
Ω

(︂
E⃗ · D⃗ −

∫︂ E⃗

0

D⃗ · dE⃗
′)︂
dΩ. (3.57)

For example, consider an instantaneous nonlinearity in which

D⃗ = ϵ0χ
(3)E2E⃗. (3.58)
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If the fields are initially zero, the associated nonlinear electric energy density is found to be:

ue = D⃗ · E⃗ −
∫︂ E⃗

0

D⃗ · dE⃗
′

(3.59)

= ϵ0χ
(3)E4 − 1

4
ϵ0χ

(3)E4 (3.60)

=
3

4
ϵ0χ

(3)E4. (3.61)

Unfortunately, contrary to the linear case, the expression for the nonlinear energy in

equation (3.61) is not preserved when passing to a discretized space. Since the integral in

the nonlinear electric energy density in equation (3.54) implicitly depends on time via the

electric and displacement fields, the numerical equivalent within the simulation naturally

depends upon the temporal discretization chosen.

In the case of mixed Crank-Nicolson FETD, the temporal discretization is equivalent to

an application of the well-known trapezoidal rule:

∫︂ b

a

f(x) dx = (a− b)

(︃
f(a) + f(b)

2

)︃
. (3.62)

For a linear medium, this trapezoidal approximation is enough to obtain the exact value

of the integral, thus explaining the similarity between the continuous and discrete energy

expressions in that case. In contrast, due to the time-stepping nature of the numerical

method, the integration in the nonlinear case can in essence be thought of as occurring in

discrete time intervals:

∫︂ D⃗

0

E⃗ · dD⃗
′
=

∫︂ D⃗
1

0

E⃗ · dD⃗
′
+

∫︂ D⃗
2

D⃗
1
E⃗ · dD⃗

′
+ · · ·+

∫︂ D⃗
n+1

D⃗
n

E⃗ · dD⃗
′

(3.63)

where each integral is approximated by the trapezoidal rule in (3.62). Thus, the equivalent

discretized nonlinear electric energy is defined by the following recurrence relation:

Un+1
e = Un

e +
1

2

∫︂
Ω

(D⃗
n+1

− D⃗
n
)(E⃗

n+1
+ E⃗

n
) dΩ (3.64)
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from which an expression for the nonlinear electric energy at time step n+1 may be obtained:

Un+1
e =

1

2

n∑︂
k=0

∫︂
Ω

(D⃗
k+1

− D⃗
k
)(E⃗

k+1
+ E⃗

k
) dΩ. (3.65)

To determine the Finite-Element representation of the above energy, the basis function

representation of the electric field in (2.4) can again be substituted, as well as the appropriate

constitutive relation. The fully discretized form of the recurrence relation in (3.64) is thus:

Un+1
e = Un

e +
1

2
({e}n+1)T [M ]n+1{e}n+1

+
1

2
({e}n+1)T ([M ]n+1 − [M ]n){e}n − 1

2
({e}n)T [M ]n{e}n (3.66)

from which the total energy within the mixed FETD method at time n+ 1 is given by:

Un+1 = U0
e +

1

2
({b}n+1)T [Mf ]{b}n+1 +

1

2
({e}n+1)T [M ]n+1{e}n+1

− 1

2
({e}0)T [M ]0{e}0 + 1

2

n∑︂
k=0

({e}k+1)T
(︁
[M ]k+1 − [M ]k

)︁
{e}k. (3.67)

Unfortunately, contrary to the linear case, it is not obvious if the quantity in equation

(3.67) can be associated with or induce a valid norm. Indeed, due to the nonlinearity within

the [M ] matrix the first norm property in (1) is violated. Moreover, rather than simply

being a function of the present values of the electric and magnetic fields, the numerical

energy depends upon all past values of the electric field. Hence, even if the [M ] matrix

were strictly positive definite, it is unclear whether this would be sufficient to guarantee the

summation term in (3.67) is non-negative. In consequence, even if the energy were bounded,

the solution itself may not be. However, despite the mathematical difficulty in developing a

norm for the nonlinear energy above, it can actually nonetheless be shown that the nonlinear

mixed Crank-Nicolson FETD method of Chapter 2 conserves this energy quantity exactly.

To facilitate the following analysis, the jump ⟦·⟧ and average ⟪·⟫ operators will be defined
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as:

⟦u⟧ = un+1 − un (3.68)

⟪u⟫ = un+1 + un

2
. (3.69)

With this notation, the homogeneous mixed Crank-Nicolson Maxwell’s Equations of (2.32)

and (2.33) can be written as:

⟦{b}⟧ = −∆t[C]T⟪{e}⟫ (3.70)

⟦[M ]{e}⟧ = ∆t[C][Mf ]⟪{b}⟫. (3.71)

Left multiplying equation (3.70) by ⟪{b}T⟫[Mf ] and taking the transpose yields:

⟦{b}T ⟧[Mf ]⟪{b}⟫ = −∆t⟪{e}T⟫[C][Mf ]⟪{b}⟫ (3.72)

where the symmetry of the [Mf ] matrix has been used. Noticing the similarities between the

right-hand sides of equations (3.72) and (3.71) then permits the elimination of {b} from the

right-hand side of (3.72):

⟦{b}T ⟧[Mf ]⟪{b}⟫ = −⟪{e}T⟫⟦[M ]{e}⟧. (3.73)

Lastly, a straightforward expansion of the left-hand side of the above equation shows that:

⟦{b}T ⟧[Mf ]⟪{b}⟫ = 1

2
⟦{b}T [Mf ]{b}⟧ (3.74)

whereas for the right-hand side

⟪{e}T⟫⟦[M ]{e}⟧ = 1

2
⟦{e}T [M ]{e}⟧+ 1

2
{e}n+1⟦[M ]⟧{e}n. (3.75)
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Combining (3.73), (3.74), and (3.75) finally produces:

1

2
⟦{b}T [Mf ]{b}⟧+ 1

2
⟦{e}T [M ]{e}⟧+ 1

2
{e}n+1⟦[M ]⟧{e}n = 0. (3.76)

The first term on the left-hand side of equation (3.76) can be identified as the change in

magnetic energy ⟦Um⟧. As for the remaining two terms, a comparison with the recurrence

relation of equation (3.66) reveals them to be equal to the change in the nonlinear electric

energy, ⟦Ue⟧. As a result, equation (3.76) can also be written as:

⟦U⟧ = ⟦Um⟧+ ⟦Ue⟧ = 0 (3.77)

from which it is concluded that the nonlinear mixed Crank-Nicolson FETD implementation

conserves the total electromagnetic energy exactly, in the absence of source terms.

This result is physically significant in that any true solution to Maxwell’s Equations must

also conserve this energy exactly. However, as mentioned, due to difficulties in showing that

(3.67) induces a valid norm, nothing can currently be said about the stability of the method

in the sense of either equation (3.31) or (3.34). Nevertheless, despite these difficulties, the

notion that the overall energy of the simulation is non-increasing does elicit some degree of

confidence.

3.6.3 Nonlinear VWE FETD

In the case of the Vector Wave Equation, the numerical electromagnetic energies of the

previous section are not explicitly conserved in general. As mentioned earlier, this is due

to the homogeneous VWE supporting solutions of the form E⃗ = −(at + b)∇ϕ whose en-

ergy increases quadratically over time. Instead, for linear media, it can be shown that the
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continuous quantity:

ŨL =
1

2

∫︂
Ω

1

µ
(∇× E⃗)2 dΩ +

1

2

∫︂
Ω

ϵ

(︄
∂E⃗

∂t

)︄2

dΩ (3.78)

= Ũm + Ũ e (3.79)

is always conserved by the VWE, whereas the discrete equivalent:

ŨL =
1

2
{e}T [S]{e}+ 1

2

d{e}T

dt
[T ]

d{e}
dt

(3.80)

is conserved by the linear Newmark-β FETD VWE formulation [57]. A dimensional analysis

of the above quantity shows that it has units of J/s2, consistent with the quadratically

increasing energy obtainable by the late-time growth solution in which d2U/dt2 ̸= 0. It is thus

not entirely surprising that this quantity should be conserved, with dŨ/dt = d3U/dt3 = 0.

As mentioned previously, however, the fact that Ũ does not represent the actual physical

energy does not preclude its utility in determining the stability of the method, as for linear

media it still induces a valid norm.

In the continuous nonlinear setting, the quantity in (3.78) is no longer conserved, however

the following quantity can be shown to be conserved by the nonlinear VWE instead:

Ũ =
1

2

∫︂
Ω

1

µ
(∇× E⃗)2dΩ + ψ (3.81)

where

ψ =

∫︂
Ω

∫︂ t

0

∂2D⃗

∂t′2
· ∂E⃗
∂t′

dt′dΩ. (3.82)
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Indeed, taking the temporal derivative of the quantity in (3.81) yields:

dŨ

dt
=

1

2

∫︂
Ω

1

µ

∂

∂t
(∇× E⃗)2 dΩ +

∫︂
Ω

∂

∂t

∫︂ t

0

∂2D⃗

∂t′2
· ∂E⃗
∂t′

dt′dΩ (3.83)

=

∫︂
Ω

1

µ
(∇× E⃗) ·

(︄
∇× ∂E⃗

∂t

)︄
dΩ +

∫︂
Ω

∂2D⃗

∂t2
· ∂E⃗
∂t

dΩ. (3.84)

Applying the vector identity (2.12) to the first term in (3.84) and grouping terms then results

in:

dŨ

dt
=

∫︂
Ω

(︄
∇× 1

µ
∇× E⃗ +

∂2D⃗

∂t2

)︄
· ∂E⃗
∂t

dΩ (3.85)

where the bracketed quantity is easily identified as the original vector wave equation. Thus,

if E⃗ and D⃗ are solutions to the source-free VWE, the above results in:

dŨ

dt
= 0 (3.86)

indicating the conservation of the quantity Ũ .

Similarly to the mixed method, determining the discrete equivalent of Ũ depends upon

the temporal discretization used, as ψ is a function of time. For the Newmark-β method

with β = 1/4, this once again amounts to an application of the trapezoidal rule [20], such

that (3.82) is approximated by the recurrence relation:

ψn+1 = ψn +
∆t

2

∫︂
Ω

(︄
∂2D⃗

∂t2

n+1

· ∂E⃗
∂t

n+1

+
∂2D⃗

∂t2

n

· ∂E⃗
∂t

n)︄
dΩ (3.87)

which may be more succinctly written by making use of the jump and average operators

from earlier, yielding:

⟦ψ⟧ = ∆t⟪
∫︂
Ω

∂2D⃗

∂t2
· ∂E⃗
∂t

dΩ⟫ . (3.88)

Lastly, as before, a straightforward substitution of the Finite-Element basis function expan-

91



3.6 - Conservation of Energy Chapter 3 - Implementation, Stability, and Energy

sions for the electric field results in the fully discrete equivalents of ψ and Ũ :

ψn+1 = ψn +∆t⟪d{e}
T

dt

d2

dt2

(︂
[K]{e}

)︂
⟫ (3.89)

=
∆t

2

n∑︂
k=0

(︄(︃
d{e}T

dt

d2

dt2
(︁
[K]{e}

)︁)︃k+1

+

(︃
d{e}T

dt

d2

dt2
(︁
[K]{e}

)︁)︃k
)︄

(3.90)

Ũ
n+1

=
1

2
({e}n+1)T [S]{e}n+1 + ψn+1. (3.91)

Similarly to the last section, it is not immediately obvious whether the discrete nonlinear

quantity Ũ can be associated with a valid norm, due to the nonlinearity and complicated

dependence on past field values. However, just as in the previous case, despite this math-

ematical difficulty, the nonlinear Newmark-β VWE method of Chapter 2 can be shown to

conserve Ũ exactly.

Using the jump and average operators, the Newmark-β equations of (2.109) and (2.110)

can be expressed as:

⟦u⟧ = ∆t⟪du
dt
⟫ (3.92)

⟦du
dt
⟧ = ∆t⟪d

2u

dt2
⟫ . (3.93)

Starting from the homogeneous semi-discrete VWE in (2.124) one can left-multiply by

d{e}T/dt to obtain:

d{e}T

dt

d2

dt2

(︂
[K]{e}

)︂
+
d{e}T

dt
[S]{e} = 0 (3.94)

to which the averaging operator may then be applied:

⟪d{e}
T

dt

d2

dt2

(︂
[K]{e}

)︂
⟫+ ⟪d{e}

T

dt
[S]{e}⟫ = 0. (3.95)
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Now, due to the symmetry of the [S] matrix, the following identity can be easily verified:

d{e}T

dt
[S]{e} =

d

dt

(︂1
2
{e}T [S]{e}

)︂
(3.96)

from which equation (3.95) can also be written as:

⟪d{e}
T

dt

d2

dt2

(︂
[K]{e}

)︂
⟫+ ⟪ d

dt

(︂1
2
{e}T [S]{e}

)︂
⟫ = 0. (3.97)

Multiplying through by ∆t

∆t⟪d{e}
T

dt

d2

dt2

(︂
[K]{e}

)︂
⟫+∆t⟪ d

dt

(︂1
2
{e}T [S]{e}

)︂
⟫ = 0 (3.98)

the first term is recognized from (3.89) as the change in the nonlinear electric part, ⟦ψ⟧,
whereas the second term is seen from (3.92) to be the change in the magnetic part, ⟦Ũm⟧.
Therefore, it is concluded that:

⟦Ũ⟧ = ⟦Ũm⟧+ ⟦ψ⟧ = 0 (3.99)

and so the nonlinear Newmark-β VWE formulation conserves the quantity Ũ exactly.

Much as in the case of the mixed method the above result does not in and of itself prove

the unconditional stability of the method neither in the sense of equation (3.31) nor (3.34),

partly due to the difficulty in verifying whether (3.91) induces a valid norm. Moreover, due

to the nature of nonlinear root finding and floating point precision, the numerical energy can

still stray from its starting value. Nevertheless, the fact that the method exhibits the same

conservation as the linear and continuous cases does, again, elicit some degree of confidence

in its stability. Indeed, for all numerical studies undertaken in this thesis, no instabilities

were ever encountered.
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3.7 Summary

In this chapter several key details concerning the implementation and characteristics of the

algorithms derived in the previous chapter were explored. Details concerning the Newton-

Raphson method were addressed, including strategies for selecting good initial guesses which

maximize likelihood and speed of convergence. Moreover, an analysis of the methods’ non-

linear system matrices was performed to better understand how to optimize their solution.

For instantaneous nonlinearities, the resulting matrices were shown to be symmetric positive

definite, whereas for nonlinear dispersive media only the symmetry of the underlying ma-

trices could be proven. Furthermore, some of the more subtle differences of implementing a

nonlinear FETD solver were addressed, including the need to numerically evaluate elemental

matrices and the updating of nonlinear dispersive auxiliary variables.

Lastly, the crucial notion of numerical stability was discussed. In particular, it was shown

that the definition of stability in the nonlinear setting is more nuanced than for its linear

counterpart and that the stability of a linear method cannot be assumed to be preserved

when generalized. Despite this, however, it was successfully shown that both of the derived

formulations have the desirable property of preserving the total numerical electromagnetic

energy exactly, regardless of the time step size used. While this is an encouraging indication

of the methods’ stability, it cannot be taken as definitive proof due to difficulties in estab-

lishing an equivalent energy norm and the specifics of which particular definition of stability

is used. Nevertheless, these promising developments point toward methods which are overall

well-behaved.
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Chapter 4

Perfectly Matched Layers

One of the intrinsic limitations of any numerical method lies in the fact that it must ulti-

mately be executed on a finite computer system. As a result, computer simulations such

as FETD are fundamentally limited in their scope and accuracy by the amount of com-

putational resources available on the host machine. For finite problems, such limitations

are often either inconsequential, mitigable, or circumventable. However, in contrast, many

electromagnetic systems of practical interest operate in domains whose extent is theoreti-

cally infinite. This is the case, for example, with any kind of radiation problem in which

an antenna is transmitting into the surrounding environment. Such a problem naturally

poses a challenge for numerical methods as an infinite domain must now be represented by

a finite-resource discretized numerical equivalent.

One obvious solution to this problem is to simply trim the infinite domain down to a

much smaller finite one surrounding the object or area of interest, however, such a straight-

forward procedure would naturally alter the solution. Consider, for instance, if the domain

were truncated via a Dirichlet or PEC boundary condition, then reflections from the newly

truncated boundary would invariably result in a corruption of the solution on the interior.

However, if the new truncated boundary were to instead be equipped with a system meant to

absorb outward propagating waves, the solution on the interior would remain unchanged from
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that which would have occurred in the original infinite domain. Such a system could even

have additional practical uses for finite problems by restricting the simulation only to impor-

tant sub-areas of interest, such as within the vicinity of a waveguide obstruction or defect.

To date, many techniques based upon this approach have been successfully implemented,

permitting not only the emulation of infinite domains, but also substantial computational

savings due to reduced simulation area or volume.

In general, techniques for implementing absorbing boundaries can be broadly classified

as falling into two main categories. The first is that of the so called Absorbing Boundary

Conditions (ABC), in which either a “one-way” wave equation or an “annihilation operator”

is enforced on the boundary. As the name implies, a one-way wave equation only supports

wave propagation in one direction, which precludes any reflections when enforced on the

boundary [99]. On the other hand, annihilation operators ensure the solution obeys the

Sommerfeld Radiation Condition [100], resulting in exclusively outward propagating waves.

In contrast, the second category, known as Perfectly Matched Layers (PML), creates a buffer

region around the boundary which is not only tuned to the incident medium to prevent

reflections, but also strongly artificially attenuates any propagating waves within it. When

backed by a traditional PEC or other boundary condition, outward propagating waves must

effectively travel through the PML twice before being able to re-enter the domain and are

attenuated each time, resulting in very little energy bouncing back into the truncated domain

[20].

While it is unlikely to have an antenna system radiating into an infinitely large non-

linear medium, such a system does have immediate applicability to waveguides, where the

implementation of either ABCs or PMLs to reduce simulation size, and hence the number

of required degrees of freedom and computation time, is highly attractive. For this reason,

this chapter will focus upon the derivation and implementation of absorbing boundaries for

use with nonlinear dispersive media. However, while both the ABC and PML methods have

achieved noteworthy success for linear materials, ABC-based techniques can prove non-trivial
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to derive. In particular, developing ABCs for nonlinear media can be especially challenging,

requiring the derivation of equivalent or approximate one-way wave equations or radiation

conditions within these complex materials, which must then be enforced [101]. Moreover,

most ABC are ill-suited for use with dispersive media as they depend on the wave velocity

near the boundary, a quantity ill-defined in such media in the time-domain [37]. In contrast,

PML-based techniques require no such complementary equations, as the absorbing charac-

teristics and lack of reflection are largely determined by the PML’s structure itself. For this

reason in the following sections the PML will be developed as the technique of choice for the

absorption of dispersive nonlinear phenomena within the FETD method. More specifically,

it will be shown that a particular implementation of the PML based on complex coordinate

stretching is ideal for use with nonlinear dispersive media, requiring very little additional

overhead or complications.

4.1 PML Overview

As mentioned, the Perfectly Matched Layer is a region of artificial attenuation which is

perfectly matched to the incident medium (meaning there is no perceived discontinuity in

wave impedance on the part of a propagating wave) and thereby suppresses reflections,

mimicking a much larger or even infinite domain. First derived by Berenger [102], PMLs

were initially formulated by splitting Maxwell’s Equations and introducing artificial electric

and magnetic conductivities whose values were carefully chosen so as to be reflectionless to

the incident medium. In particular, Berenger showed that for a PML to be reflectionless,

these electric and magnetic conductivities needed to satisfy an anisotropic matching condition

related to the incident medium’s material parameters, which in 2D is given by:

σE
x

ϵ
=
σH
x

µ

σE
y

ϵ
=
σH
y

µ
(4.1)
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where σE
i and σH

i are the artificial electric and magnetic conductivities, and ϵ and µ are the

permittivity and permeability, respectively. While simple and straightforward in the case of

linear media, the matching condition in equation (4.1) is substantially complicated by the

introduction of electrically complex media, in which the permittivity can be a function of

time and field strength.

Luckily, further investigation of the notion of a PML later revealed additional matching

criteria and implementations that can also yield perfect transmission, but which do not

explicitly depend upon ϵ and µ. For instance, Sacks [103] and Gedney [104] showed that

Berenger’s original PML could equally be interpreted as a uniaxial anisotropic dispersive

medium, rather than split artificial conductivities. Thus, within the PML region, one could

simply substitute the material parameters for their uniaxial frequency-dependent equivalents

in the standard un-split Maxwell’s Equations. While this considerably simplifies and unifies

the implementation, it does however introduce additional complications in the need to model

both dispersion and anisotropy within the PML. Moreover, such an implementation can run

into additional issues when truncating dispersive, bianisotropic, lossy, or nonlinear media,

as care must be taken in how the PML dispersion and anisotropy are combined with the

material parameters present in the adjoining interior domain [105, 106].

However, as it turns out, the reinterpretation of the PML as an anisotropic medium

would not be the only reformulation of the method. In fact, additional research into PMLs

was able to reveal yet another interpretation of their absorptive and reflectionless properties,

this time as a result of a complex coordinate stretching of space within the PML region

[107, 108, 109]. As will be shown in the next section, such a coordinate stretching approach

amounts to a change of variables within the PML, which essentially transforms propagating

waves into decaying ones. Not only that, but coordinate stretching can also be made to only

affect the spatial part of the underlying wave equations, rather than the temporal part. In

consequence, this makes the coordinate stretching implementation of the PML an attractive

candidate for nonlinear dispersive media, as ϵ is only found within the temporal derivatives.
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Regardless of the specific interpretation or implementation, PMLs for linear media have

become immensely popular, both within the FDTD and FETD methods, and have resulted

in a wealth of research, optimizations, extensions to additional coordinate systems [110],

and related techniques. However, their adaptation to complex nonlinear media has been less

widespread. Nevertheless, to date several variants of the PML have in fact been successfully

applied to nonlinear dispersive materials within the FDTD formulation. These methods,

sometimes known as Material Independent Perfectly Matched Layers (MIPML), have been

derived using many of the techniques described earlier, including Berenger’s split conduc-

tivity approach [111, 112], the anisotropic approach [113], and the coordinate stretching

technique [114, 115]. Alas, despite these achievements, as it currently stands no such PML

formulation has ever been adapted to the FETD method for electrically nonlinear and dis-

persive media, an unsurprising fact given the general deficit of nonlinear dispersive FETD

solvers.

The PML derived in the following sections is thus the first to truncate domains containing

electrically nonlinear media within the FETD framework. As such, the resulting technique

will have the potential to significantly improve the efficiency and modeling capabilities of

the algorithms derived in Chapter 2.

4.2 Coordinate Stretching: Linear Media

For any linear medium, a wave solution propagating in the positive x direction can in general

be expressed as a sum of plane waves of the form:

E(x, t) ≈ ej(ωt−kxx) (4.2)

where kx is the wavenumber in the x direction, ω is the angular frequency, and j is the

imaginary unit. Evaluating the expression in equation (4.2) along the real x-axis naturally

results in an oscillatory solution. However, since the solution in (4.2) is an analytic function,
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it is equally valid to consider evaluating it for complex values of x, such as x = xR − jxI

[116]. As a result of this analytic continuation or stretching, within the regions where x has

an imaginary part the solution changes to the following form:

Ẽ(x, t) ≈ ej(ωt−kx[xR−jxI ]) = e−kxxIej(ωt−kxxR). (4.3)

The exponential term related to xI is now clearly resulting in a decrease in amplitude or

attenuation during propagation. In other words, the wave is being absorbed within the an-

alytically continued region of x. More importantly, however, is the fact that this behaviour

has been obtained without changing the solution in equation (4.2). Thus, in regions where

x is strictly real-valued, the solution is unchanged. The result is that not only does the

stretched region now absorb incident waves, it does so without changing the original solu-

tion in the unstretched regions, i.e. without reflection. Hence to implement a PML one

must simply “stretch” the spatial axes into the complex plane within the desired region of

absorption. Moreover, while the above examples were concerned with propagation in the x

direction, similar transformations could of course be applied to the y and z coordinates to

yield absorption in those directions as well.

The simplest way to accomplish this is to perform a change of variables for Maxwell’s

Equations within the PML region:

ξ̃ = ξ − jf(ξ) (4.4)

where in Cartesian coordinates ξ ∈ {x, y, z}, ξ̃ is a stretched variable, and f(ξ) is in principle

an arbitrary positive function of ξ. As a consequence, any spatial derivatives which occur

within the original PDEs must be replaced with their stretched equivalents within the PML
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region, derived via the chain rule:

∂

∂ξ
=
∂ξ̃

∂ξ

∂

∂ξ̃
(4.5)

=

(︃
1− j

df

dξ

)︃
∂

∂ξ̃
(4.6)

=

(︃
1 +

1

j

df

dξ

)︃
∂

∂ξ̃
. (4.7)

While many choices are possible for how exactly to stretch the spatial axes, one of the

most common is to select:

df

dξ
=
σξ(ξ)

ω
(4.8)

where σξ(ξ) is again in principle an arbitrary positive function of ξ. With this choice, the

substitution to be made in the original differential equations within the PML region becomes

∂

∂ξ
↦→ ∂

∂ξ̃
=

1

1 +
σξ

jω

∂

∂ξ
(4.9)

which may be simplified somewhat by defining sξ = 1 + σξ/jω:

∂

∂ξ
↦→ 1

sξ

∂

∂ξ
. (4.10)

As mentioned, in theory σξ can be any positive function, including a simple scalar con-

stant, and still result in perfect transmission. However, once discretized any abrupt transition

will likely result in numerical reflections from the PML as it is unlikely to be exactly perfectly

matched in the discrete problem space. In consequence, σξ is more commonly chosen to be a

slowly increasing function, providing a gradual transition into the stretched coordinate space

and limiting numerical reflections [102, 104].

Furthermore, initially it may seem that the inclusion of the angular frequency ω in equa-

tion (4.8) needlessly introduces dispersion into the formulation. However, a closer inspection
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of equation (4.3) shows that for a constant imaginary part, the resulting attenuation is

dependent on kx, meaning higher frequencies (shorter wavelengths) will be more strongly

attenuated than lower frequencies (longer wavelengths). In contrast, in linear non-dispersive

media, the frequency-dependence of the stretching in (4.8) results in an attenuation depen-

dent on k/ω which equates to the phase velocity and is thus a constant. The dispersive

nature of the coordinate stretching within the PML thereby guarantees that all frequency

components will be equally absorbed.

4.3 Coordinate Stretching: Nonlinear Media

One of the main difficulties in moving from a linear domain to a nonlinear one is in the

loss of linear superposition. As a result, any solution to the nonlinear wave equation cannot

necessarily be considered as being the sum of individual plane wave solutions as in equation

(4.2). In consequence, it is not immediately obvious whether the coordinate stretching

technique detailed in the last section will immediately carry over to the nonlinear setting for

the implementation of a PML.

However, luckily the solutions of the nonlinear Maxwell’s Equations are fundamentally

still propagatory in nature. Indeed, since the nonlinear parameter χ(3) is generally very small

as compared to its linear counterpart χ(1), the presence of nonlinearity can be thought of as

only a small perturbation to the original solution which would have resulted in linear media.

For instance, using a small first order nonlinear perturbation to the wave equation results

in the following approximative solution, common in guiding structures such as optical fibres

[117]:

E(x⃗, t) ≈ Re
(︁
F (x, y)A(z, t)ej(ωt−βz)

)︁
(4.11)

where Re(·) denotes the real part, F (x, y) is the transverse shape of the guided mode, and

A(z, t) is the amplitude or envelope function. Accordingly, despite the nonlinearity, solutions

to the nonlinear Maxwell’s Equations should still largely be absorbed within a region where
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the spatial coordinates have been stretched, due to the exponential term in (4.11).

While the solutions to the nonlinear Maxwell’s Equations will be mostly absorbed within

the coordinate stretched PML region, it is important to note that such absorption may not

be exactly as uniform as in the linear case. This is a result of the fact that the ratio β/ω

may not be exactly constant over the true nonlinear solution, coupled with the unknown

behaviour of the A(z, t) term. However, these issues may be potentially mitigated by tuning

the parameters sξ and σ(ξ), such as was done for the absorption of evanescent waves in linear

media [106, 116].

4.4 PML for Nonlinear Dispersive VWE FETD

In this section, the coordinate stretching approach described in the previous sections will be

applied to the nonlinear dispersive VWE-based FETD algorithm. While the focus here will

be on the VWE formulation, it is worth noting that most of the derivation to follow can

easily be carried over to the mixed formulation, given the many similarities between the two

methods discussed in Chapter 2.

As a starting point, Faraday’s and Ampère’s Laws can be expressed in time-harmonic

form within the PML region as:

∇B × E⃗ = −jωB⃗ (4.12)

∇D × 1

µ
B⃗ = jωD⃗ + J⃗ (4.13)

where the curl operators∇B× and∇D× have had their spatial derivatives modified according

to the stretching in equation (4.10), to yield absorption in the desired direction(s). Note that

the subscripts B and D in equations (4.12) and (4.13) allow for different stretching factors

to be applied to each field, if desired. Moreover, it is worth reiterating that outside of the

PML region the equations and formulation remain entirely unchanged from that presented

in Chapter 2, with the standard curl operators in place.

103



4.4 - PML for Nonlinear Dispersive VWE FETD Chapter 4 - Perfectly Matched Layers

Combining Faraday’s and Ampère’s Laws in the usual fashion results in the following

vector wave equation within the PML region:

∇D × 1

µ
∇B × E⃗ + (jω)2D⃗ = −jωJ⃗ (4.14)

where it must again be emphasized that the curl operators are implicitly functions of fre-

quency. Applying a Galerkin procedure, the dot product of the wave equation in (4.14) is

taken with the 1-form basis functions, and the result integrated over each element:

∫︂
Ωe

(︁
∇D× 1

µ
∇B × E⃗

)︁
·W⃗

(1)(e)

j dΩ+(jω)2
∫︂
Ωe

D⃗ ·W⃗
(1)(e)

j dΩ+

∫︂
Ωe

jωJ⃗ ·W⃗
(1)(e)

j dΩ = 0. (4.15)

The second and third terms in the above do not include spatial derivatives of any kind,

and are thus completely unchanged from the non-PML region, resulting in the same [K]

matrix and {f} vector defined previously:

∫︂
Ωe

(∇D × 1

µ
∇B × E⃗) · W⃗

(1)(e)

j dΩ + (jω)2
(︂
[K]{e}

)︂
+ {f} = 0. (4.16)

As for the first term, a straightforward albeit it tedious calculation shows that the vector

identity of equation (2.12) remains valid for the stretched curl and divergence operators in

the frequency domain:

∇D · (A⃗× B⃗) = (∇D × A⃗) · B⃗ − (∇D × B⃗) · A⃗ (4.17)

such that the integral of equation (4.16) can be re-written as:

∫︂
Ωe

1

µ

(︁
∇D × W⃗

(1)(e)

j

)︁
· (∇B × E⃗) dΩ−

∫︂
Ωe

∇D ·
(︃
1

µ
W⃗

(1)(e)

j ×∇B × E⃗

)︃
dΩ. (4.18)

Here, the normal course of action would be to apply the divergence theorem to the second

term in (4.18). However, since the spatial coordinates of the divergence operator have been
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stretched, a slightly modified form of the divergence theorem must be used (see Appendix

B for a derivation):

∫︂
Ωe

∇D · F⃗ dΩ =
1

sDx

∫︂
∂Ωe

Fxâx · dS⃗ +
1

sDy

∫︂
∂Ωe

Fyây · dS⃗ +
1

sDz

∫︂
∂Ωe

Fzâz · dS⃗. (4.19)

This version of the divergence theorem is only valid if the PML conductivity σξ is assumed

constant in space, meaning the original function σ(ξ) is either itself constant or approxi-

mated in a piecewise-constant fashion over the length of the PML. While initially this may

seem restrictive, a piecewise-constant permittivity can still adequately suppress numerical

reflections if sufficient subdivisions are used. More importantly, however, as will be shown

later this simplification also permits the elemental matrix expressions to be obtained in

closed-form.

Applying this stretched version of the Divergence Theorem to equation (4.18) then results

in:

∫︂
Ωe

1

µ

(︁
∇D × W⃗

(1)(e)

j

)︁
·
(︁
∇B × E⃗

)︁
dΩ− 1

sDx

∫︂
∂Ωe

(︃
1

µ
W⃗

(1)(e)

j ×∇B × E⃗

)︃
x

âx · dS⃗

− 1

sDy

∫︂
∂Ωe

(︃
1

µ
W⃗

(1)(e)

j ×∇B × E⃗

)︃
y

ây · dS⃗ − 1

sDz

∫︂
∂Ωe

(︃
1

µ
W⃗

(1)(e)

j ×∇B × E⃗

)︃
z

âz · dS⃗.

(4.20)

As mentioned earlier, however, a common choice of boundary condition for terminating

the domain on the far side of the PML layer is a simple Dirichlet or PEC one, in which the

tangential field value is simply set to zero. Under this assumption, all of the surface integral

terms in equation (4.20) can be dropped. As for the remaining term, the interpolated basis

function expansion of the electric field can be substituted as before, resulting in:

le∑︂
i=1

∫︂
Ωe

(︁
∇D × W⃗

(1)(e)

j

)︁
·
(︁
∇B × W⃗

(1)(e)

i

)︁
{e(e)}i dΩ. (4.21)

At this point, no further simplification of equation (4.21) is possible without knowing the
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specific implementation details concerning the basis functions in question.

For instance, if using first-order 1-form basis functions in two spatial dimensions, it can

be shown in the frequency-domain (see Appendix C) that

∇D × W⃗
(1)(e)

j =
l
(e)
j

2∆(e)

(︃
1

sDx
+

1

sDy

)︃
(4.22)

∇B × W⃗
(1)(e)

i =
l
(e)
i

2∆(e)

(︃
1

sBx
+

1

sBy

)︃
(4.23)

where l
(e)
i and l

(e)
j are the lengths of the edges associated with basis functions i and j,

respectively, and ∆(e) is the area of the triangular element. Combining this with equation

(4.21) then results in:

le∑︂
i=1

(︃
1

sDx
+

1

sDy

)︃(︃
1

sBx
+

1

sBy

)︃(︄
l
(e)
i l

(e)
j

4∆(e)

)︄
{e(e)}i ≜

(︃
1

sDx
+

1

sDy

)︃(︃
1

sBx
+

1

sBy

)︃
[Ŝ

(e)
]{e(e)}.

(4.24)

Note that the [Ŝ
(e)
] matrix defined above differs from the previously seen [S(e)] matrix only

by a factor of four and in fact reduces to the same matrix if σ = 0 (sξ = 1), as expected.

Moreover, while the expression in equation (4.24) is valid only for first-order two-dimensional

basis functions, the generalization to three dimensions, while naturally more involved, main-

tains a similar product structure between a function of frequency, a matrix, and a vector (See

Appendix C). Combining these results and returning to the time-domain at last yields the

semi-discrete vector wave equation within the PML region, for first-order two-dimensional

basis functions:

d2

dt2

(︂
[K]{e}

)︂
+ p(t) ∗ [Ŝ]{e}+ {f} = 0 (4.25)

in which

p(t) = F−1

{︃(︃
1

sDy
+

1

sDx

)︃(︃
1

sBy
+

1

sBx

)︃}︃
(4.26)

and F−1 denotes the inverse Fourier transform.

It is in equation (4.25) that the main advantage of the coordinate stretching formulation
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of the PML becomes clear in this case. Not only is the PML isotropic, but has also only

affected the spatial derivatives (corresponding to the [Ŝ] matrix), while the temporal term

containing all of the material complexity is completely untouched. As a result, the PML

can easily be incorporated into any existing solver for complex media, without altering its

core structure or functionality. This is in contrast to other approaches in which factors

are sometimes introduced within the temporal derivative, in conjunction with the original

permittivity, and which usually require anisotropy. In addition, the coordinate stretching

approach also has the benefit of maximizing the similarity between the formulation in PML

and non-PML regions, thus decreasing overhead and algorithmic complexity.

Under these circumstances, applying Newmark-β to equation (4.25) only differs from

the procedure used previously by the presence of the convolution with p(t). However, from

equations (4.9) and (4.24), p(t) is a rational function of jω in the frequency-domain. As

a result, the convolution with p(t) is of the exact same type as was studied for dispersive

media in Chapter 2, and is easily addressed via the z-transform approach. Indeed, applying

the z-transform and Transposed Direct Form II update procedures to the convolution {P} ≜

p(t) ∗ [Ŝ]{e} results in the following auxiliary update equations:

{Zα}n = vα[Ŝ]{e}n − gα{P}n + {Zα+1}n−1 α < p (4.27)

{Zα}n = vα[Ŝ]{e}n − gα{P}n α = p (4.28)

{P}n = v0[Ŝ]{e}n + {Z1}n−1. (4.29)

Following through with the application of Newmark-β to equation (4.25) and substitut-

ing (4.29) for the PML convolution at last provides the update equation in the nonlinear
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dispersive PML region:

(︃
[K]n+1 +

∆t2

4
v0[Ŝ]

)︃
{e}n+1 = 2

(︃
[K]n − ∆t2

4
v0[Ŝ]

)︃
{e}n

−
(︃
[K]n−1 +

∆t2

4
v0[Ŝ]

)︃
{e}n−1 −

(︂
{W1}n + 2{W1}n−1 + {W1}n−2

)︂
− ∆t2

4

(︂
{Z1}n + 2{Z1}n−1 + {Z1}n−2

)︂
− ∆t2

4

(︂
{f}n+1 + 2{f}n + {f}n−1

)︂
. (4.30)

Thus, by combining equation (4.30) in the PML region with equation (2.125) in the non-PML

region, the domain can be effectively truncated without reflection. The update procedure

in the two domains is effectively the same, with the exception of needing to take the extra

step of updating the PML auxiliary variables within the PML region(s). In this way, the

coordinate stretching approach requires minimal perturbation to the underlying method

while providing effective domain truncation. Equation (4.30) is thus the main result of

this chapter and represents the first time that the truncating effects of Perfectly Matched

Layers are combined with dielectric nonlinearity within the context of the Finite-Element

Time-Domain method.

4.5 Numerical Validation

Due to the lack of closed-form solutions, in order to verify the performance of the nonlinear

PML devised in this chapter a solution obtained in a PML-truncated domain can instead

be compared to one obtained in a domain which has been physically extended well beyond

the truncation point. Assuming this extension itself is terminated with a traditional PEC

boundary condition, and that the domain is extended a sufficient distance to ensure that

reflections from this boundary do not have time to make it back to the PML comparison

point, the result should be an accurate assessment of the PML’s performance.

Given its physically significant nature, as well as the presence of linear dispersion, in-

stantaneous nonlinearity, and dispersive nonlinearity all in one simulation, the dielectric slab
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waveguide example of Subsection 2.5.2 was selected as the PML test problem. As a result, if

successful, the PML should result in the truncation of the waveguide, providing reflectionless

absorption of a temporal soliton.

The material parameters and transverse dimensions of the waveguide remained unchanged

from those used earlier. The base waveguide section common to both the PML and extended

domains measured 40 µm long, while the extended domain added an additional 180 µm

beyond the shared region, for a total length of 220 µm. The PML, meanwhile, was made

to truncate the rightmost portion of the domain, and measured either 5 µm, 10 µm or 20

µm in length beyond the shared region. Moreover, as explained earlier, it is helpful to have

the coordinate stretching within the PML region turned on gradually in order to minimize

numerical reflections. To that effect, within the PML region the stretching factors were

chosen as follows:

σD = σB = σmax

(︃
d

L

)︃4

(4.31)

where d is the distance into the PML region, L is the length of the PML region, and σmax

was selected to be 3 × 1014. However, as was the case in the derivation of the expressions

in equations (4.25) and (4.26), it is often necessary to assume that the factors in (4.31)

are constant within each element to facilitate the derivation. Thus, for each length the

PML region was divided into 20 equal rectangular sub-regions, forming a piecewise constant

approximation to the fourth-order polynomial profile in (4.31).

The results of running the same simulation on both the extended and PML-truncated

domains are displayed in Figure 4.1, which shows a comparison plot of the y-component of

the fields obtained in both cases as measured in the center of the guide approximately 10

grid points from the interface. For these simulations, the average element edge length was

set to h = 80 nm with a 20 µm thick PML. Upon visual inspection the two signals appear

to be virtually indistinguishable, with very little variation or reflection demonstrated by the

PML.

Alternatively, to better quantify the PML’s performance, the amount of reflection can
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instead be characterized by defining a reflection coefficient as follows:

Γ(ω) = 20 log10

⃓⃓⃓⃓
F(Ey,ext)−F(Ey,pml)

F(Ey,ext)

⃓⃓⃓⃓
(4.32)

in which Ey,ext is the reference solution obtained on the extended domain, Ey,pml is the PML

solution, and F(·) denotes the Fourier transform. The reflection coefficient so defined is

plotted in Figure 4.2 as a function of both frequency and PML thickness. For reference, the

measured normalized spectrum of the incident pulse is also depicted.

For a 20 µm thick PML the reflection at the pulse’s fundamental frequency of 50 THz

is -60 dB, representing a reflection of roughly 0.1% of the incident wave or 0.0001% of the

incident power. The PML also performs equally well over the rest of the pulse’s bandwidth,

with an average reflection of roughly -58.5 dB and peak reflection of -43.1 dB.

Interestingly, for all thicknesses the PML seems to suffer significant reflections in the 30 -

35 THz range, which is due in part to the proximity of the resonance frequency of the linear

dispersive medium. While this is not an issue for the present simulation due to very little

of the pulse’s spectral energy being concentrated in this region (≈ 0.5%), it is an important

factor to consider when applying the PML to future problems. This breakdown of the PML

in the vicinity of material resonance frequencies is not unique to the methods in this thesis,

however, and has previously also been reported in FDTD implementations [114].

Finally, while for all of the above results a fixed number of 20 piecewise constant sub-

divisions were used within the PML layer, in principle this too can be varied and have

an important impact on the accuracy of the PML. For instance, using fewer sub-divisions

was shown to increase numerical reflections, as the transition between regions is made more

abrupt. Conversely, increasing the number of subdivisions is likely to further increase ac-

curacy up until other factors such as mesh size dominate the error term. The increased

smoothness of the piecewise-constant approximation resulting from more subdivisions likely

not only improves performance by minimizing numerical reflections, but also by better ap-
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Figure 4.1: Comparison of extended domain and PML electric fields over time for a 20µm thick PML layer.

Figure 4.2: Reflection coefficient vs frequency and PML length for the absorption of a temporal soliton.

111



4.6 - Summary Chapter 4 - Perfectly Matched Layers

proximating a gradual adiabatic absorber [118].

4.6 Summary

In this chapter a Perfectly Matched Layer (PML) compatible with the nonlinear dispersive

FETD methods presented in Chapter 2 was derived for the truncation of computational

domains containing electrically complex media. Of the various formulations of the PML

that exist in the literature, the coordinate stretching version was found to be the ideal

candidate for incorporation into these methods as it only produces modifications to the

spatial parts of the underlying equations, which are unaffected by the complex dielectric

behaviour. Moreover, despite the additional complications imposed by nonlinearity it was

argued that the solutions to the nonlinear Maxwell’s Equations are still propagatory in

nature, allowing the coordinate stretched PML to effectively truncate the domain in the

nonlinear regime. Lastly, the performance of the nonlinear PML was verified via a numerical

study in which a temporal soliton propagating in a dielectric slab waveguide was shown to

be successfully absorbed by the truncating layer, with an average reflection of -58.5 dB over

the bandwidth of the pulse.
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Chapter 5

Parallel Nonlinear FETD

As has been alluded to several times thus far, the added accuracy and flexibility of FETD

methods for nonlinear dispersive media come at a computational cost. The need to re-

evaluate, reassemble, and solve all nonlinear matrices multiple times per time step can, in

many cases, be such a burden as to not warrant the added accuracy and capability versus a

simpler approximative method unless absolutely necessary.

Due to this significant barrier to entry, this chapter will be dedicated to improving the

efficiency and execution times of the algorithms developed thus far. In particular, this will be

accomplished by exploring the use of parallelism to accelerate each step of these methods, us-

ing novel combinations of existing and original techniques. Moreover, due to their prevalence,

affordability, and immense computational capacity, the implementation of these parallel al-

gorithms will be discussed with the goal of execution on NVIDIA Graphics Processing Units

(GPUs). It is imperative to note, however, that while the implementation details presented

in the following sections are GPU-centric, in principle the parallel algorithms themselves

are architecture independent. Thus, future studies could also investigate and compare the

performance of other parallel systems, such as multi-core Central Processing Units (CPUs),

as well as supercomputing clusters.
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5.1 Graphics Processing Units (GPUs)

Graphics Processing Units (GPUs) have evolved tremendously over the course of their his-

tory. In the early days of computing, dedicated video hardware was required to handle little

more than monochromatic text output on Cathode Ray Tubes (CRTs). However, as com-

puter systems naturally evolved, so too did their ability to visually interact with the user.

Indeed, dedicated graphics hardware rapidly transformed from simple non-programmable

pipelines for the rendering of 2D wireframe drawings to full blown parallel architectures

capable of rendering dozens of high definition 3D images in near real-time [119]. Today,

GPUs continue to evolve and strive for ever increasing computational power, propelled by

strong commercial and consumer demand for high definition video playback, video games,

and research tools.

While Central Processing Units (CPUs) have also evolved rapidly over this time, they did

so in a fundamentally different way to their GPU counterparts. Whereas CPUs are required

to be general purpose, GPUs are hyper-specialized for graphics processing and have therefore

largely been designed to exploit the features and structure of graphics computations. In par-

ticular, many of the operations associated with computer graphics are tedious and repetitive,

requiring thousands of similar arithmetic operations be performed for each component in a

scene. For example, one ubiquitous operation in graphics processing is texture mapping, in

which a 2D image is transformed or overlaid on top of a polyhedral 3D surface. With the

large number of polygons making up a 3D model, texture mapping consists of an immense

number of independent floating-point coordinate transformations per video frame [119].

Seeing that texture mapping is but one example of a large set of independent com-

putations associated with computer graphics, the advantages of parallel processing were

quickly identified. Rather than having one large sophisticated processor churn through each

computation in series, a much larger number of simpler workers could perform the same

computations concurrently, translating into a significant increase in speed, throughput, and

framerate, as well as smoother performance. It is no surprise, then, that GPUs today are
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composed of thousands of specialized sub-processors, equipped with a multitude of intricate

parallel pipelines, each capable of performing the operations required for 3D rendering.

This focus on parallelism has naturally caused GPU architecture and design philosophy to

diverge from their CPU counterparts. As mentioned, CPUs tend to be optimized for general

serial execution and branching, and as a result are equipped with sophisticated caching

and control structures. GPUs, in contrast, are optimized for Floating Point Operations per

Second (FLOPS) and memory bandwidth, at the expense of far less caching and control

[120].

With this emphasis, it is unsurprising that modern GPUs have eclipsed their CPU coun-

terparts in terms of FLOPS and memory bandwidth. However, despite the escalating gap in

these metrics between the two, only in the past decade have GPUs begun to be widely used

for general purpose computations in addition to graphics processing. This lag in general

purpose GPU computing was partly due to the fact that not all algorithms are immediately

suited to a parallel execution model, requiring the development of parallel alternatives. How-

ever, a more severe complicating factor was that prior to this time, programming a GPU was

generally a difficult and unwieldy affair [119]. It was not until the advent of dedicated mul-

tipurpose GPU programming languages (such as NVIDIA CUDA [121] and OpenCL [122])

that GPUs were able to be widely integrated into scientific computing. Since then, they have

grown to be a pervasive and dominant force in scientific computing, from fields as diverse

as molecular biology and computational chemistry, to linear algebra, computational finance,

and machine learning [123, 124].

Due to the massively parallel nature of the GPU architecture, as well as their relative

affordability and ubiquity, the derivation and implementation of the parallel algorithms to

follow will be presented with GPUs in mind. Specifically, the GPU architecture will be

assumed to be that of NVIDIA’s, and the resulting implementations programmed in their

proprietary Compute Unified Device Architecture (CUDA) GPU language.
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5.2 Derivation

In previous chapters, much of the overhead associated with nonlinear dispersive simulations

was postulated to be due to the evaluation and assembly of elemental and global matri-

ces. Indeed, when combined with the inversion of the Jacobian matrix system, these three

operations together likely constitute the vast majority of computation time for nonlinear

dispersive FETD. As a result, in this section each of these operations will be analyzed to

develop a parallel alternative, in the hopes of improving the algorithm’s overall performance.

It should equally be noted that the introduction of both linear and nonlinear dispersion

also results in increased overhead, as time must be taken to update all of the auxiliary

variables at each time step. However, the overhead imposed by these auxiliary variable

updates, as well as possible parallelization strategies, has already been discussed in the

literature [125], and in any case likely pales in comparison to the three components identified

above. As a result, the present treatment will focus primarily on the mentioned hypothesized

bottlenecks, which are due to the nonlinearity.

Lastly, because of the similarity between the mixed and VWE formulations noted earlier,

these three operations are naturally shared between the two methods. In consequence,

the following discussion will analyze the general nature of the operations to be parallelized

without focusing on a particular formulation, knowing that it can easily be applied to either

method. In fact, since the operations to be discussed are common across most if not all

nonlinear Finite-Element implementations, the algorithms presented in this section may

prove beneficial not only to the simulation of electrically nonlinear media, but any type of

nonlinear problem with a similar formulation, such as those for magnetic machines.

5.2.1 Parallelization Strategy

With the prevalence of nonlinearity in other engineering fields, the issue of accelerating the

solution process for nonlinear systems of equations is not new to electrically complex media.
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In fact, many alternatives or modifications to the standard Newton-Raphson technique have

been developed over the years to attempt to reduce the computational burden of nonlinear

root finding. In particular, the Jacobian-Free Newton-Krylov (JFNK) method has become

quite popular due to its ability to avoid calculating the Jacobian matrix explicitly [126]. It

does this by leveraging the Krylov subspace (in which matrix inversion is instead replaced

with a series of matrix-vector products) and approximating the Jacobian via a Taylor ex-

pansion in the system vector {F}. Despite the success and popularity of this method, in this

chapter a different approach will be adopted. Rather than approximating the Jacobian as in

JFNK, here the full non-approximative Newton-Raphson approach will be employed, and the

overhead associated with forming the exact full Jacobian directly parallelized. The resulting

method will hopefully thus exhibit the full accuracy and convergence of the Newton-Raphson

method, but with a significant boost in speed and performance. Nevertheless, the JFNK

method may prove a useful avenue for future study.

5.2.2 Elemental Matrix Evaluation

The first bottleneck to be addressed is that of elemental matrix evaluation. As was discussed

in Chapter 2, to evaluate its local [K(e)] and [J (e)] matrices each element must perform

numerical integration using Gaussian Quadrature. However, within the framework of the

Finite-Element method, each of these elemental matrices is completely independent of the

others. In essence, information is only “shared” between elements according to their con-

nectivity when they are assembled into their global counterparts. The numerical evaluation

of the elemental matrices thus requires the same computations be executed on different data

sets completely independently. This thereby constitutes a so-called embarrassingly parallel

problem.

This type of problem is ideally suited for implementation on a wide range of parallel

systems. Indeed, this is particularly true of the GPU architecture, which is based on a Single

Instruction Multiple Thread (SIMT) execution model. Under this model, NVIDIA GPUs
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Figure 5.1: Straightforward parallelization of elemental matrix evaluation. Used with permission from

[127], ©2020 IEEE.

group single execution instances (called threads) into structures called blocks. These blocks

are then assigned to the GPU’s execution hardware, known as Streaming Multiprocessors

(SMs), in which batches of threads are executed in lock-step with each other [120]. The

SIMT model and GPU hardware are thus most efficient when executing the exact same

instructions over and over again, but on different memory locations.

Due to the embarrassingly parallel nature of the numerical matrix evaluation and the

GPU’s SIMT architecture, the required GPU algorithm is relatively straightforward to de-

velop and implement. Indeed, if each nonlinear element in the mesh is assigned to a thread,

then the Gaussian Quadrature calculations can proceed in lock step with each other, as each

thread accesses the geometry and field data for its own element in memory. This straight-

forward parallelization scheme is depicted visually in Figure 5.1.

Despite the simplicity of this approach, its potential impact should not be underesti-

mated. If, as hypothesized, the matrix evaluations do indeed constitute a significant fraction

of computation time (as will soon be verified), substantial performance increase should re-

sult from this step alone. Nonetheless, the global matrix assembly and solving should not

be neglected in terms of added overhead since they are repeated so often in the nonlinear

regime. Moreover, as will be discussed in Section 5.3, additional overall improvements come

from having as much of the total algorithm execute on the GPU as possible.
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5.2.3 Matrix Assembly and Solving

The parallelization of global matrix assembly from local elemental matrices has been widely

studied within Finite-Elements, particularly for frequency domain or quasi-static analyses

where it generally represents a larger fraction of overall computation time [128, 129]. As

mentioned earlier, the independent local elements only share information with each other

during global matrix assembly. Since this requires connected elements to add their local

contributions together to form the global matrix entries, a naive parallelization strategy

would inevitably lead to race conditions, in which two elements attempt to write to the same

memory location at the same time, yielding undefined behaviour. To mitigate this, additional

processing layers are often required, such as coloring algorithms [130]. Additionally, parallel

algorithms for the solution of sparse matrix systems constitutes a massive area of study

in its own right, with direct methods (such as parallel Cholesky factorization [131]) and

Krylov methods (such as Preconditioned Conjugate Gradient (PCG) [132] and Generalized

Minimum Residual (GMRES)[133]) having attained widespread use.

However, rather than adopting some combination of these existing algorithms, here a

different approach will be employed. Instead of parallelizing the assembly and solution

procedures independently, the recently proposed Finite-Element Gaussian Belief Propagation

(FGaBP) method will be used instead. As will be discussed in the next subsection, one of

the true strengths of the FGaBP algorithm is that it is able to solve the matrix equations

in parallel without ever explicitly assembling the global matrix. The FGaBP algorithm

thereby addresses both of these issues at once, skipping the assembly step entirely while still

providing a parallel solution to the global matrix system.

5.2.4 Gaussian Belief Propagation

Originally derived for frequency-domain problems, the Finite-Element Gaussian Belief Prop-

agation (FGaBP) method is a parallel technique for the solution of linear systems arising from

the Finite-Element method [134, 135, 136]. Interestingly, the main advantage of the FGaBP
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method is not only that it solves matrix systems resulting from Finite-Element discretizations

in parallel, but that it does so without ever explicitly forming the global matrix, resulting in

a performance boost as compared to traditional parallel Finite-Element algorithms. Further-

more, the FGaBP algorithm has also recently been adapted to linear time-domain problems

via the FETD method, with similar performance increase [137]. Within the present context,

the ability of the FGaBP method to solve the Jacobian matrix system directly from the local

matrices, without ever needing to assemble the global Jacobian matrix, makes the FGaBP

method an ideal candidate for use with the algorithms derived in Chapter 2.

In essence, the FGaBP method works by reformulating the linear system into a maximiza-

tion problem. Given the general global linear Jacobian system associated with a Newton-

Raphson iteration:

[J ](k){∆e} = −{F}(k) (5.1)

where {∆e} = {e}(k+1) − {e}(k), the equivalent maximization problem can be stated as:

argmax
{∆e}

(P ) = argmax
{∆e}

(︃
exp

(︃
−1

2
{∆e}T [J ](k){∆e} − {F}T(k){∆e}

)︃)︃
. (5.2)

Indeed, taking the derivative of P in equation (5.2) with respect to {∆e} and setting it equal

to zero yields:

∂P

∂{∆e}
= exp

(︃
−1

2
{∆e}T [J ](k){∆e} − {F}T(k){∆e}

)︃(︂
[J ](k){∆e}+ {F}(k)

)︂
= 0 (5.3)

whose solution is exactly given by equation (5.1).

By itself, the reformulation of equation (5.2) is not particular useful at first glance.

However, due to its exponential nature, it actually possesses two key properties which make

the FGaBP algorithm possible. Firstly, recalling that within the FETD formulation the
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global matrix [J ] is formed by the combination of elemental matrices [J (e)]:

[J ] =
∑︂
e

[J ′(e)] (5.4)

permits equation (5.2) to be re-written in terms of expanded local matrices as:

argmax
{∆e}

(︄
exp

(︄∑︂
e

−1

2
{∆e(e)}T [J ′(e)](k){∆e(e)} − {F ′(e)}T(k){∆e(e)}

)︄)︄
. (5.5)

However, given the exponential nature of this expression, it may equally be expressed as the

product of local factors:

argmax
{∆e}

(︄∏︂
e

exp

(︃
−1

2
{∆e(e)}T [J ′(e)](k){∆e(e)} − {F ′(e)}T(k){∆e(e)}

)︃)︄
. (5.6)

The second key property of this formulation is that the global expression in equation

(5.2), as well as each of the factors in (5.6), can be interpreted as unnormalized Gaussian

distributions if the [J ] matrix is symmetric positive definite1. Under this interpretation,

the solution to equation (5.2) is that which maximizes the equivalent Gaussian distribution,

which is simply the mean value {µ}:

{∆e} = {µ}. (5.7)

The ability of the FGaBP algorithm to solve the resulting matrix problem without ever

explicitly forming the equivalent global problem is thanks to these two properties. The goal

of the FGaBP algorithm is thus to have each elemental factor in equation (5.6) independently

attempt to maximize the overall probability. Naturally, because of the interdependence and

connectivity of the individual elemental factors, some amount of communication will be

required between adjacent elements in order to jointly maximize the global probability. The

1Recall from Chapter 3 that the [J ] matrix is provably symmetric positive definite for instantaneous
nonlinearities. For dispersive nonlinearities, the property of positive-definiteness is unproven, but supported
by numerical studies.
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Figure 5.2: Visual depiction of the FGaBP algorithm. Used with permission from [127], ©2020 IEEE.

resulting messages shared between elements or factors essentially amount to conditional or

marginal means, i.e. roughly speaking, given the values of neighboring variables, what is the

likely value of the current unknown.

With the Gaussian nature of the local factors in equation (5.6), these messages can

actually be found in closed-form, and are related to the local elemental matrices [J (e)].

Thus, as the algorithm proceeds, adjacent elements will share information back and forth

about the likely values of their unknowns, until these values globally converge to the most

likely value: the mean {µ} which is the solution to the original global problem. This process

is shown graphically in Figure 5.2, where the messages in question (α and β) are mediated

between the unknowns (variable nodes) via the elements (factor nodes).

Let the messages from a variable node (i) to a factor node (a) be denoted by αia and βia,

and those from a factor node (a) to variable node (i) by αai and βai. If two intermediate

variables Ai and Bi are used to aggregate and relate the individual messages, then the FGaBP

algorithm proceeds as follows:

1. For each variable node (i), receive the messages αai and βai from each adjoining factor

node and use them to update Ai and Bi as well as calculate new messages to send back
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to the factor nodes:

Ai =
∑︂

k∈N (i)

αki Bi =
∑︂

k∈N (i)

βki (5.8)

αia = Ai − αai βia = Bi − βai (5.9)

where N (i) denotes all factor nodes (elements) in the neighborhood of (connected to)

variable node (edge) (i).

2. For each factor node (a), receive the messages αia and βia. Then, define a new matrix

[W (a)] and vector {S(a)} as:

[W (a)] = [J (a)] + diag(α1a, α2a, · · · ) (5.10)

{S(a)}j = −{F (a)}j + βja (5.11)

which will then permit the evaluation of the updated messages αai and βai to send back

to the variable nodes. More specifically, for each factor node, the updated messages to

be sent back to the variable nodes may be found via

αai = [J (a)]ii − {V (a)}T [W̃ (a)
]−1{V (a)} (5.12)

βai = {F (a)}i − {S̃(a)}T [W̃ (a)
]−1{V (a)} (5.13)

where {V (a)} is the ith row of the [W (a)] matrix with the ith column removed, [W̃
(a)
]

is the [W (a)] matrix with the ith row and ith column removed, and {S̃(a)} is the {S(a)}

vector with the ith row removed.

3. Repeat steps 1 and 2 above over and over, trading messages back and forth between

factor and variable nodes, until the variables Ai and Bi converge. That is, until the

values of A and B are no longer changing to within some tolerance.
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4. Once convergence has been achieved, recover the mean (and therefore the solution) via

the following:

{∆e}i = {µ}i =
Bi

Ai

. (5.14)

The FGaBP procedure outlined above not only results in the solution to the linear system

of equation 5.1, but does so only ever using information from the local matrices and source

vectors. The algorithm does, however, require some additional overhead. For instance, stor-

ing each of the individual elemental matrices does require more memory than the equivalent

combined global matrix. Moreover, some initial overhead is still required in order to avoid

conflicts in updating A and B. Even so, the overall resulting algorithm is immensely paral-

lelizable: thousands of messages to and from the elements and unknowns can be computed

entirely in parallel, using only local elemental data.

Lastly, a closer look at equations (5.12) and (5.13) shows that each element must still

solve a linear system of the form:

[W̃
(a)
]{y} = {V (a)}. (5.15)

However, in contrast to the original global problem, each of the elemental [W̃
(a)
] matrices is

much, much smaller than [J ]. In fact, for an element with p degrees of freedom, the resulting

system is of order p− 1. Hence, for triangular first-order elements, this equates to solving a

2×2 matrix, which is easily inverted directly in closed-form. For more details concerning the

theory, derivation, convergence, and implementation of the FGaBP algorithm, the reader is

encouraged to consult references [134, 135, 136] and [137].

With this development, the overall procedure for the parallel solution of a nonlinear

system via the Newton-Raphson, parallel elemental evaluation, and FGaBP methods is now

as follows:

1. Using the current solution estimate {e}(k), use the method described in Subsection

5.2.2 to evaluate the new [K(e)] and [J (e)] matrices for each element.
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2. Using the elemental matrix data evaluated in the previous step, initiate the FGaBP

algorithm to solve for {∆e}.

3. Once FGaBP has converged and the solution has been recovered, update the Newton-

Raphson estimate using {e}(k+1) = {e}(k) + {∆e}.

4. Return to step 1 and perform a new iteration of Newton-Raphson until the estimate

{e}(k) has converged to the desired tolerance.

5.3 Implementation Details

The combination of parallel elemental matrix evaluation and the FGaBP algorithm presented

in the previous sections should, in principle, provide a significant performance boost when

executed on massively parallel hardware such as a GPU. However, due to the nature of

GPU architecture, a haphazard implementation of a particular algorithm can easily result in

unwanted serializations and underwhelming performance. Specifically, within the NVIDIA

GPU architecture there are two main points of optimization which can have a significant

impact on performance and which will be discussed next.

The first is the interplay and distinction between GPU and CPU memory. In general,

each of the SMs on the GPU has access to a large amount of storage known as global memory.

While this global memory is physically located on the graphics card, it is not on the same

chip as the processor itself. Moreover, it is imperative to note that this GPU global memory

and the host CPU memory are fundamentally distinct, meaning that the CPU and GPU

do not have access to a shared common memory space. A direct consequence of this is

that any time information must be shared between the GPU and CPU it must be explicitly

transferred from one to the other. Unfortunately, this memory transfer between host CPU

memory and global GPU memory must happen over a bus, and is therefore much slower

than simply accessing data already stored on the GPU. If data is constantly going back and

forth between the CPU and GPU the resulting transfer overhead can rapidly overshadow
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any performance increase afforded by the parallelization [120].

Minimizing memory transfers between the host CPU and the GPU is thus an important

point of optimization. When implementing the parallel version of the algorithms detailed in

the previous sections it is therefore imperative to ensure that as much of the computation

occurs on the GPU as possible. For instance, in addition to the elemental matrix evaluation

and the FGaBP algorithm, the evaluation of source terms, updating of the magnetic field (in

the case of mixed methods), and updating of any auxiliary variables, should all be executed

on the GPU within global memory. The result of this optimization strategy is that, for the

algorithm implemented and tested in the next section, memory transfers occur only twice:

once at the beginning to transfer mesh and geometric data to the GPU and once at the end

to transfer the solution back to the CPU.

The second memory optimization consideration comes in the form of how NVIDIA GPUs

access their global memory. Due to the SIMT design philosophy of the GPU, global memory

is designed to be accessed in large contiguous chunks, meaning that all of the data required

by a group of executing threads can be fetched in a single memory transaction. In contrast,

if each executing thread were to access random scattered locations in global memory, this

access pattern would result in serialization and necessitate 32 different memory transactions.

Clearly, maximum memory bandwidth will thus result when executing threads require access

to sequential memory addresses [120].

As a result of this global memory access pattern, the storage format of the algorithm’s

various data structures can have a significant impact on memory throughput and perfor-

mance. For example, consider Figure 5.3 in which three threads, each associated with a

different element, are each attempting to access their local matrix data from global memory.

If these local matrices are stored in row-major format one after the other, the threads will

end up requesting non-consecutive memory locations, requiring multiple memory transac-

tions. In contrast, if the local matrices are interwoven, the resulting memory accesses can

be made to be contiguous and served in a single transaction. The result is that for best
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Figure 5.3: Depiction of non-coalesced vs coalesced GPU global memory access.

performance data should be stored in GPU memory in a way consistent with the required

access patterns.

While the two memory considerations detailed above are generally where the most per-

formance can be gained or lost, there are also other smaller optimizations possible which

may also increase performance. For example, in addition to global memory, the GPU also

has much smaller constant and shared memory available [120]. These differ in their access

patterns and scope, but if used properly are much faster than global memory. The implemen-

tation tested in the next section, for instance, loads values such as the Gaussian Quadrature

abscissae and weights, as well as physical parameters, into constant memory as they require

little space and are unchanged over the course of the computation.

While having the entire computation execute on the GPU without the need for CPU in-

tervention or memory transfers results in a much faster parallel algorithm, it must be noted

that this is counterbalanced by the need to have the entire simulation fit into the GPU
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memory. For small computations this is inconsequential, however for very large computa-

tions GPU memory is generally less abundant than CPU memory and may become a limiting

factor. However, while GPUs offer the greatest amount of hardware parallelism (and were

exclusively used for parallelization in this thesis), it is important to reiterate that the algo-

rithms described in this chapter are generally architecture independent. Hence, while the

implementation details will vary between different hardware, these algorithms could equally

be adapted for execution on multi-core CPUs and supercomputing clusters.

5.4 Numerical Analysis

In this section the GPU parallelization schemes proposed in this chapter will be tested

to determine their level of effectiveness in accelerating nonlinear FETD computations. In

particular, the next subsection will empirically verify many of the postulates made concerning

which aspects of the nonlinear FETD algorithms contribute the most overhead and are the

most computationally intensive. The following subsection will then present the results of

addressing this overhead via a GPU implementation of the proposed parallel algorithms.

As was mentioned earlier, the parallelization of the auxiliary variable update equations

associated with dispersion has already been addressed in the literature [125]. As a result, the

selected test problem for the present analyses was the spatial soliton problem of Subsection

2.5.1, and contained only an instantaneous nonlinearity. For all the results that follow,

therefore, the exact same dimensions and simulation parameters as in Subsection 2.5.1 were

used.

5.4.1 Nonlinear Overhead Analysis

To obtain performance metrics for the base FETD method, a serial version of the mixed

algorithm was implemented in C++. Mesh and geometry data was generated and exported

by MATLAB R2018A [82], and subsequently read into the test program from binary files,
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with the remainder of the simulation being executed locally by the CPU. The solving of the

global Jacobian system was done via the Preconditioned Conjugate Gradient (PCG) method,

implemented in the open-source linear algebra package Eigen v3.3.5 [138]. The remainder of

the algorithm was custom written, including the calculation of local elemental matrices and

the assembly of the global system.

Once complete, the serial algorithm was compiled and optimized with the \O2 compiler

flag and intrinsic functions enabled. The program was then executed on a single core of

a workstation equipped with an Intel 8700K CPU clocked at 3.7 GHz. The machine was

equally supplied with 16 GB of DDR4 RAM, operating at 3000 MHz. Chronometry was

performed by querying the Windows performance counter [139], with all timing data being

averaged over 7 runs. Finally, two versions of the CPU code were actually produced, one

using single floating point precision arithmetic and the other using double precision. Despite

double precision being far more common due to its increased accuracy, the decision was

made to include single precision in the following analyses due to the fact that single precision

operations tend to be much faster and may thus be useful for obtaining approximate results

for parameter tuning during design before being followed up with a more accurate but costly

double precision computation.

Figure 5.4 shows some of the results of profiling the serial CPU implementation. In

particular, it shows the proportion of total computation time spent on two key parts of the

simulation: elemental matrix evaluation/assembly and the Jacobian matrix solving. Even

for the simulations with the least number of electric field degrees of freedom (DoF), it can

be seen that the elemental matrix evaluation and assembly represents the vast majority of

computation time, ranging from 83% to 86% depending on precision, versus 12% to 15% for

matrix solving. As the number of elements and degrees of freedom increases, however, the

situation becomes even more extreme. By the time the resolution has increased to almost

120,000 DoF, elemental matrix evaluation and assembly represent a staggering 97% to 98%

of computation time, vs only 1% to 2% for matrix solving. These results are paradoxically

129



5.4 - Numerical Analysis Chapter 5 - Parallel Nonlinear FETD

0 2 4 6 8 10 12
Electric Field Degrees of Freedom 104

82

84

86

88

90

92

94

96

98

100

M
at

rix
 E

va
lu

at
io

n 
an

d 
As

se
m

bl
y 

(%
)

0

5

10

15

M
at

rix
 S

ol
vi

ng
 (%

)

Double Precision
Single Precision

Figure 5.4: Breakdown of FETD computation time for an instantaneous nonlinearity in both single and
double floating point precision.

both expected and surprising. With the number of elements in a given simulation and

the computational effort required to perform the numerical integration, this data seemingly

confirms the prediction that this part of the algorithm would contribute significantly to the

overall execution time. However, that the effect would be so drastic as to dwarf even the

repeated matrix solving is remarkable. Moreover, not only does the matrix evaluation far

exceed time spent matrix solving, the trend of Figure 5.4 suggests the disparity gets worse

as the number of variables is increased.

This result is odd considering that, for a specified order of basis functions and number

of quadrature points, the work per element is constant, meaning that the computational

complexity of matrix evaluation and assembly should be O(m), where m is the number of

elements in the mesh. Since the number of edges scales roughly linearly with the number

of elements, this means that the matrix evaluation and assembly should equally be O(n),

where n is the number of edges or electric field degrees of freedom.

The solution of a matrix system via the conjugate gradient method, in contrast, is gener-
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ally O(s
√
κ) where s is the number of non-zeros in the matrix and κ is the matrix condition

number [140]. For Finite-Element meshes of this kind, κ and s are generally O(n) [141],

meaning the overall solution procedure is O(n3/2).

The expected portion of time spent matrix solving should thus be roughly approximated

by:

≈ O
(︃

n3/2

n3/2 + n

)︃
(5.16)

which is a monotonically increasing function in n. In other words, it should be expected

for the proportion of time spent matrix solving to slowly increase rather than decrease

as the simulation grows. The counterintuitive results of Figure 5.4 may nevertheless be

explained by a few potential factors. The first is that, due to the nonlinearity, the Jacobian

matrix fluctuates with each new iteration. In consequence, the condition number κ may

vary significantly throughout the course of a given simulation and an estimate related n or

m much more difficult to accurately produce. The second is that, due to the time-stepping

nature of the simulation, a very good initial guess is available to the PCG and Newton-

Raphson solvers. This can substantially reduce the number of Newton-Raphson and PCG

iterations required to obtain the correct solution, accelerating the process considerably. For

instance, despite the simulations depicted in Figure 5.4 having up to ≈ 105 DoF, the PCG

solver required on average no more than 45 iterations to obtain the solution, well below the

estimated number of
√
n ≈ 340. In fact, as the mesh is refined and the time step ∆t becomes

smaller and smaller, the difference between successive solutions decreases, as per equation

(3.5). Hence, the average number of Newton-Raphson and PCG iterations needed to achieve

convergence can remain roughly constant or actually decrease as the mesh is refined. The

result is that, in reality, the computational complexity of root finding and matrix solving

may be much less than that initially predicted, leading to the trends observed in Figure 5.4.

This of course does not preclude the possibility of a turning point in which eventually the

increase in condition number begins to dominate, reversing the observed trend. Moreover,

due to the reliance of the Jacobian on the solution itself, this point may occur much sooner
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or later depending on the exact problem being studied and its implementation. However, in

general, it is quite safe to conclude that elemental matrix evaluation and assembly are the

major bottlenecks within nonlinear FETD computations.

5.4.2 Speedup Results

With the hypothesized bottlenecks of nonlinear FETD methods confirmed, the parallel al-

gorithm derived in Section 5.2 was implemented on an NVIDIA GPU using the CUDA

language, with special attention given to the implementation details discussed in Section

5.3. Execution time was then compared between the CPU and GPU versions, with as much

of the underlying structure and implementation of the CPU code being kept as possible in

the GPU code to ensure a fair comparison. That being said, custom routines were written to

perform the parallel elemental matrix evaluation, Gaussian Belief Propagation matrix solv-

ing, and other intervening operations. The GPU code was compiled in CUDA v9.2 and was

executed on an NVIDIA GTX 1070Ti GPU with 2432 cores clocked at 1607 MHz with 8 GB

of GDDR5 memory. The workstation hosting the graphics card was the same as that used

for the CPU code in the previous section, meaning that any non-GPU sections of code were

executed on the same processor as in the serial case. Since this model of GPU is capable of

both double and single precision arithmetic, as with the CPU case, two versions of the code

were written.

Figure 5.5 depicts the resulting speedup achieved by the GPU version of the algorithm,

obtained by dividing the total execution time on the CPU by the total execution time on

the GPU. For the smallest number of degrees of freedom tested (about 104), the GPU im-

plementation is about 3-5 times faster than its CPU counterpart (note that the overhead

time required to transfer data to and from host and GPU memory has been included in

this data). As the number of degrees of freedom increases, however, the disparity between

the two algorithms grows significantly, as does the difference between single and double

precision performance. At the maximum extent tested, equal to roughly 115,000 DoF, the
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Figure 5.5: GPU over CPU speedup as a function of degrees of freedom for both single and double precision
floating point simulations.

single precision GPU implementation performs an impressive 212 times faster than its CPU

counterpart, whereas for double precision it performs 141 times faster. In the case of single

precision, this represents a dramatic reduction in computation time from over 1.5 hours down

to roughly 30 seconds. Further analysis of these results reveals, unsurprisingly, that most

of the speedup comes from the parallelization of the elemental matrix evaluation. Indeed,

with its independent nature and emphasis on simple multiplication and addition, numerical

integration benefits immensely from the GPU’s FLOPS. With the high proportion of com-

putation time spent on these operations in the CPU version, it is unsurprising, therefore,

that the result is a significant boost in speed. This isn’t to say that the implementation of

FGaBP is inconsequential. In fact, not only does the FGaBP algorithm solve the matrix

system up to 5 times faster than the serial PCG, it also completely skips the step of matrix

assembly, and allows data to remain on the GPU at all times, saving significantly on memory

transfers.

As for the overall trend in Figure 5.5, in general it is found that the speedup increases
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as the number of variables is increased. This is likely due to how the GPU schedules its

threads internally. As the number of executing threads on the GPU increases, it is better

able to interleave execution and hide latency [120]. For instance, if a group of threads stalls

while waiting for data from memory, given sufficient additional threads, the GPU cores can

pivot to other threads and perform useful work in the interim. Thus, performance increases

as better utilization of GPU resources is achieved. When coupled with the data in Figure

5.4, this explains the increasing speedups observed in Figure 5.5. While not observed for the

maximum number of variables studied here, it is however expected that at some point GPU

utilization will max out, and the amount of speedup will stabilize.

Lastly, it is worth noting that these results are in some sense the best case performance

speedups, as the domain being studied is 100% filled with nonlinear media. If a domain

were to contain a smaller fraction of nonlinear media, the effects of parallelization would

naturally decrease, since the number of elemental matrices which must be updated each

iteration is reduced, decreasing the amount of overhead to start with. Moreover, while these

results were presented for a two-dimensional mixed FETD test case, similar performance

increase should be expected for both VWE and three-dimensional implementations. For 3D

problems in particular, the number of degrees of freedom increases causing the work required

to numerically evaluate each elemental matrix and solve the global systems to also increase.

The result is that these operations will still constitute the vast majority of computation

time, but are more able to take advantage of the GPU’s resources due to the increase in

workload. However, this is slightly counterbalanced by the higher memory requirements of

3D simulations hitting the GPU’s global memory limit sooner than in 2D.

5.5 Summary

In this chapter the issue of the immense computational burden imposed by the inclusion

of dielectric nonlinearity was addressed. While many approaches to reduce this burden are
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possible, here the idea of exploiting parallelism within the nonlinear algorithms was put forth

and developed. The Graphics Processing Unit (GPU) was introduced as a widely available

and cost-effective source of wide-scale parallelism and some of the context and history of

their use presented.

An analysis of the nonlinear algorithms was then presented with the goal of identifying

and characterizing their overhead as well as determining their amenability to parallelization.

Bottlenecks were identified in the repeated evaluation, assembly, and solution of the matrix

systems which result from the nonlinearity, and mitigating parallel algorithms proposed.

These included straightforward elemental matrix parallelization schemes, as well as the use

of the Gaussian Belief Propagation algorithm to parallelize the solution of the Jacobian

matrix system without ever explicitly forming the global matrices.

Finally, numerical studies were presented to verify and confirm the postulated bottlenecks

as well as determine the performance of the parallelized GPU algorithms. To that end,

both CPU and GPU algorithms were implemented in C++ and CUDA, respectively, and a

series of profiling and comparison executions performed. These tests confirmed that matrix

evaluation and assembly constitute a significant fraction of computation time, representing

in the worst case up to 98% of total computation time. This helped explain, in part, the

excellent performance of the GPU algorithm as compared to its CPU counterpart, which

was found to perform up to 212 times faster. This represented a significant reduction in

computation time, from roughly 1.5 hours down to 30 seconds, and demonstrates the GPU’s

effectiveness in making nonlinear computations more widely accessible.
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Conclusion

6.1 Summary

In conclusion, this thesis has introduced a family of Finite-Element-based numerical methods

for the modeling of electrically complex material interactions with the electromagnetic field,

including linear dispersion, instantaneous nonlinearity, and dispersive nonlinearity. The de-

veloped methods directly numerically approximate the nonlinear Maxwell’s Equations and,

contrary to many of the methods used to model these materials currently, do not rely upon

approximative simplifications, giving them a much wider modeling ability and range of ap-

plicability. Moreover, by leveraging the Finite-Element method, as well as implicit temporal

discretizations and the z-transform method, the derived techniques provide increased flexi-

bility, accuracy, and stability over existing full-wave nonlinear Maxwell’s Equations solvers.

Chapter 2 introduced the classic mixed and vector wave equation formulations of the

FETD method for linear media. When temporally discretized via the Crank-Nicolson and

Newmark-β formulations, respectively, these methods were shown to be remarkably similar

in their characteristics and implementations, which aided greatly in their development. The

z-transform was then introduced as the method of choice for incorporating linear dispersion

into these base methods, allowing for the flexible modeling of dispersive media up to arbi-
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trary order. With these foundations in place, instantaneous nonlinearity was introduced to

the methods via the inclusion of higher-order susceptibilities within the permittivity. This

resulted in significant modifications to the underlying methods, as the mass matrices ef-

fectively became functions of field strength and therefore time, changing values with each

iteration. The solution of the resulting nonlinear system was obtained via the iterative

Newton-Raphson method, with the required Jacobian being derived in closed-form. The

inclusion of nonlinear dispersion was achieved by once again making use of the z-transform

technique, with much of the derived nonlinear expressions, including the Jacobian, carrying

over from the instantaneous case. Convergence studies were then undertaken with artificially

manufactured solutions to demonstrate the proper functioning of the mixed and VWE meth-

ods and their comparable levels of accuracy. The applicability of nonlinear FETD analysis

was also showcased via the simulation of several notable problems of physical significance,

including the propagation of spatial and temporal solitons, and supercontinuum generation.

While Chapter 2 involved much of the mathematical derivation of these methods, Chapter

3 delved deeper into their implementation details and characteristics. In the case of instan-

taneous nonlinearities, it was shown that the elemental and global matrices are symmetric

positive definite, whereas for dispersive nonlinearities, only symmetry could be conclusively

proven. In terms of stability, both the mixed and VWE formulations were shown to nu-

merically conserve the discrete analog of the electromagnetic energy, regardless of the time

step size used, which is potentially an important indication of the unconditional numerical

stability of the methods.

Chapter 4 introduced the notion of a perfectly matched layer and described how they

can be of use for both the reduction in size of simulation domains and the emulation of

ones which are infinite in extent. Given the immense proven utility of PMLs for linear

media, a discussion of the various PML formulations was undertaken to find one suitable

for adaptation to nonlinear media. In particular, it was found that the complex coordinate

stretching interpretation of the PML was ideal for use with nonlinear media, due to its
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ability to only affect the spatial part of the differential equations in question, while the

material nonlinearity and dispersion are concentrated in the temporal part. This allowed

the two techniques to be straightforwardly combined and minimized the amount of overhead

required, thus simplifying the implementation considerably. Additionally, the absorption

characteristics of the nonlinear PML were verified, demonstrating the simple and effective

truncation of a temporal soliton to high accuracy.

Chapter 5, meanwhile, addressed one of the main drawbacks of the nonlinear FETD

methods introduced in previous chapters: their immense computational burden. Since both

the mass and Jacobian matrices are functions of time, they must be re-evaluated and re-

assembled for each iteration of Newton-Raphson at each time step. Moreover, since the

expressions for the local matrices rely on the field solution, the elemental matrices cannot

be found in closed form and must be computed numerically. When combined with multi-

ple Jacobian matrix solutions per time step, the resulting overhead as compared to simpler

approximative methods is staggering. To mitigate these burdens, the use of parallelism was

suggested in order to accelerate each step of the process. It was proposed that by using a

simple novel parallel update scheme for elemental matrix evaluation, as well as the recently

proposed Finite-Element Gaussian Belief Propagation method, that much of this debilitating

overhead could be either accelerated or avoided entirely. While this parallelization strategy

was architecture independent, a more focused discussion on how it could be implemented on

GPU hardware was presented, as GPUs currently represent one of the most readily avail-

able and cost-effective sources of parallelism. Finally, a serial version of the algorithm was

profiled to confirm suspected nonlinear overhead and bottlenecks and the resulting parallel

GPU implementation benchmarked to determine its performance. Overall, the GPU version

was found to significantly ease the computational burden and in the best case performed

over 200 times faster than its serial counterpart.
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6.2 Future Work

While the present thesis has made significant inroads toward the widespread development,

refinement and, hopefully, adoption of FETD methods for electrically complex media, there

nevertheless remains several promising avenues for future study.

For instance, while the implementation of the parallel algorithm presented in this thesis

was GPU-centric, many other avenues of parallelization are possible. In the future, two such

possible parallel platforms are multi-core CPUs as well as High Performance Computing

(HPC) clusters. In particular, the use of large-scale computing clusters could be especially

advantageous since in general they have far more memory available than current GPUs and

can thus process much larger problems. Additionally, it may be possible to incorporate

aspects of nonlinearity into other existing parallel algorithms to boost performance, such as

within the Discontinuous Galerkin method [142]. Furthermore, initial studies, such as those

reported in [143], also indicate it may be possible to directly integrate the Newton-Raphson

iterations into the FGaBP solver, rather than treating the two as distinct sequential steps,

yielding increased efficiency.

Of course, other optimizations to the serial nonlinear algorithm may also be possible.

Notably, in Chapter 3 it was mentioned that it is likely possible to introduce interpolation

basis functions for the permittivity such that exact closed-form expressions for the mass

and Jacobian matrices are obtainable. If this were to be successfully implemented, signif-

icant efficiency gains would be experienced as it would do away entirely with the need to

numerically integrate each nonlinear element. Another alternative avenue of exploration, as

mentioned in Chapter 5, could be the adaptation of methods such as JFNK to nonlinear

dielectric media.

Going forward, future investigations into these methods could also look into incorporating

more recent tools and techniques. For instance, machine learning has the potential to furnish

more accurate initial guesses for Newton-Raphson, based on previous data and material

parameters. As long as a system can be trained to provide an initial guess which is better
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than that used currently, the number of iterations can be reduced, further saving computation

time.

While the numerical studies conducted in this thesis were all two-dimensional in nature,

due in part to the extreme computational burden imposed by nonlinearity, none of the theory

or derivations presented were dependent on this fact. Thus, given increased computational

resources and the aid of the developed GPU algorithms (to reduce the immense computation

times which are sure to result) future studies could further verify the effectiveness and

accuracy of the methods derived in this thesis by applying them to problems in three spatial

dimensions.

Lastly, while the permittivity model used in this thesis was quite general and capable of

modeling most of the dominant effects routinely encountered in fields such as nonlinear optics,

as mentioned in Subsection 1.2.1, there remain a variety of phenomena which were excluded.

Further generalizing the methods discussed in this thesis to scenarios in which dielectric

anisotropy, ferroelectricity, conductive losses, coupled problems, magnetic dispersion, or even

magnetic nonlinearity are all present in conjunction with the phenomena studied here is

undoubtedly possible. In particular, the extension of the present techniques to anisotropic

media could prove particularly useful, given many glass and crystal structures tend to exhibit

this behaviour. While at present use cases for such extremely varied phenomena existing in

the same numerical simulation are few and far between, as technology continues to evolve

it is reassuring to know that the foundations for such methods have nevertheless been laid,

just in case.
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Global and Local Matrices

A.1 Global Matrix Assembly

One of the key steps in implementing a Finite-Element method is in combining each of

the local elemental matrix systems into a global one which spans the entire domain. If

each element were completely independent of its neighbors, meaning they did not share any

degrees of freedom, then this assembly procedure would simply consist of embedding each

local system of the form:

[T (e)]{e(e)} = {f (e)} (A.1)

into a block-diagonal global system:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[T (1)]

[T (2)]

. . .

[T (e)]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

{e(1)}

{e(2)}
...

{e(e)}

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

{f (1)}

{f (2)}
...

{f (e)}

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A.2)

This block diagonal system may also be written as:

[Tdis]{edis} = {fdis} (A.3)

141



A.1 - Global Matrix Assembly Appendix A - Global and Local Matrices

where the subscript “dis” indicates the matrices and vectors are disjoint, meaning all of the

elemental matrices and degrees of freedom have been embedded independently and do not

overlap.

Naturally, however, in discretizing a problem domain the resulting elements will generally

not be all independent and will share degrees of freedom. The result is that the disjoint and

combined global node numberings will differ and the global matrix will no longer be block-

diagonal. To account for this, a new connectivity matrix [Q] can be defined which relates

the disjoint local numbering to the conjoint global numbering according to:

{edis} = [Q]{econ}. (A.4)

For instance, consider the two-element system depicted in Figure A.1 below. Due to their

shared edge, rather than having a global system with six degrees of freedom, in reality there

are only five true independent variables. Thus, in this case, the [Q] matrix would relate the

two numberings as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
(1)
1

e
(1)
2

e
(1)
3

e
(2)
4

e
(2)
5

e
(2)
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3

e4

e5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.5)

Substituting the relation between the disjoint and conjoint variables of equation (A.4)

into the block-diagonal system of equation (A.3) results in the following:

[Tdis][Q]{econ} = {fdis}. (A.6)
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Disjoint (Local) Edge Numbering

1

2

3
4

5

6

Conjoint (Global) Edge Numbering

1

2

3

4

5

Figure A.1: Comparison of local vs global edge numberings for matrix assembly.

Unfortunately the system in (A.6), while only dependent on the unique global conjoint

numbering, is overdetermined. This is due to the fact that the shared edges result in many

equations (rows of [Tdis]) relating the same variables in a repetitive or redundant manner. In

Figure A.1, for instance, relationships between local edges 1 & 3 and 4 & 6 do not represent

two unique constraints, but rather a single one between global edges 1, 3, & 5. Thus, since the

local equations do not represent unique relationships between distinct variables, they should

instead be combined to yield a minimal set of constraints between the unique shared edges.

Luckily, this can easily be accomplished by multiplying equation (A.6) by the transpose of

the connectivity matrix:

[Q]T [Tdis][Q]{econ} = [Q]T{fdis}. (A.7)

The above at last represents the global Finite-Element system, with the final conjoint global

matrix [T ] being identified as:

[T ] = [Tcon] = [Q]T [Tdis][Q] (A.8)

and the equivalent conjoint global source term given by:

{f} = {fcon} = [Q]T{fdis}. (A.9)

Alternatively, if the block-diagonal matrix [Tdis] is expressed as a sum of elemental con-
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tributions:

[Tdis] =
∑︂
e

[T
(e)
dis ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[T (1)]

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

[T (2)]

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ · · ·+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

[T (e)]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.10)

the global matrix may also be expressed as:

[T ] = [Q]T
(︂∑︂

e

[T
(e)
dis ]
)︂
[Q] =

∑︂
e

[Q]T [T
(e)
dis ][Q] ≜

∑︂
e

[T ′(e)] (A.11)

which is of the exact same form as expressed in equation (2.26) of Chapter 2.

Lastly, in practice it is seldom necessary to explicitly construct the [Q] matrix, with

the global matrix being assembled from the local matrices according to the connectivity

progressively as the local matrices are computed.

A.2 Symmetry and Positive-Definiteness

As was demonstrated in the previous section, a global Finite-Element matrix may be con-

structed from its local counterparts via a connectivity matrix:

[T ] = [Q]T [Tdis][Q]. (A.12)

In this section, several properties of this global matrix will be shown to stem directly from

the elemental matrices from which it is constructed.

Firstly, taking the transpose of the above equation results in:

[T ]T =
(︁
[Q]T [Tdis][Q]

)︁T
= [Q]T [Tdis]

T [Q] (A.13)
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from which it is straightforward to conclude that the global matrix [T ] will be symmetric

if and only if the disjoint matrix [Tdis] is also symmetric, i.e. if [Tdis] = [Tdis]
T . However,

since the [Tdis] matrix is block-diagonal, the requirement that it be symmetric is in turn

equivalent to requiring that each of its constituent block matrices be symmetric. Thus, since

here each of the constituent block matrices is a local elemental matrix, it is concluded that

if the elemental matrices are symmetric, so too is the resulting global matrix.

As for positive-definiteness, equation (A.12) can be both left and right multiplied by an

arbitrary vector {x} such that:

{x}T [T ]{x} = {x}T [Q]T [Tdis][Q]{x}. (A.14)

Defining a new vector {y} = [Q]{x} the above can alternatively be expressed as:

{x}T [T ]{x} = {y}T [Tdis]{y} (A.15)

where it should be noted that {y} = 0 if and only if {x} = 0, since the [Q] matrix has full

column rank. Hence, it can once again be concluded that [T ] is symmetric positive-definite if

and only if the disjoint matrix [Tdis] has this property. As was the case for symmetry above,

since [Tdis] is block-diagonal, positive-definiteness thus also depends entirely on whether the

constituent block matrices share this property. Hence, it is concluded that if the elemental

matrices are positive-definite, so too is the resulting global matrix.
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The Stretched Divergence Theorem

In this section an informal proof of the “stretched” Divergence Theorem used in the deriva-

tion of the coordinate-stretched PML of Chapter 4 will be shown for constant stretching

factors sξ. In particular, it will be shown that:

∫︂
Ωe

∇D · F⃗ dΩ =
1

sDx

∫︂
∂Ωe

Fxâx · dS⃗ +
1

sDy

∫︂
∂Ωe

Fyây · dS⃗ +
1

sDz

∫︂
∂Ωe

Fzâz · dS⃗ (B.1)

is true for an arbitrary cubic volume, as depicted in Figure B.1 below. The generalization to

arbitrary volumes will not be explicitly shown, but is understood to follow by shrinking the

cubic volume and using a tiling and gluing procedure akin to the limiting value of a Riemann

sum to fill the macroscopic volume [144].

To begin, the stretched divergence operator on the left-hand side of equation (B.1) can

𝑥1 𝑥2 𝑦1
𝑦2𝑧1
𝑧2

ො𝑎𝑥ො𝑎𝑦ො𝑎𝑧

Figure B.1: Sample cubic volume for the application of the stretched Divergence Theorem.
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be explicitly expanded and results in the following:

∫︂
Ωe

∇D · F⃗ dΩ =

∫︂
Ωe

1

sDx

∂Fx

∂x
+

1

sDy

∂Fy

∂y
+

1

sDz

∂Fz

∂z
dΩ. (B.2)

Isolating the x component of the integrand, making use of the fact that sξ is assumed constant

in space, and writing the volume integral explicitly gives:

∫︂
Ωe

1

sDx

∂Fx

∂x
dΩ =

1

sDx

∫︂ z2

z1

∫︂ y2

y1

∫︂ x2

x1

∂Fx

∂x
dxdydz. (B.3)

However, using the Fundamental Theorem of Calculus [145], this may also be expressed as:

∫︂
Ωe

1

sDx

∂Fx

∂x
dΩ =

1

sDx

∫︂ z2

z1

∫︂ y2

y1

Fx

⃓⃓⃓
x2

− Fx

⃓⃓⃓
x1

dydz. (B.4)

Moving on to the right-hand side of equation (B.1), the x-component surface integral can

be evaluated solely over the left and right surfaces (x = x1 and x = x2), since there will be

no contribution from other surfaces as their normals are orthogonal to âx:

1

sDx

∫︂
∂Ω

Fxâx · dS⃗ =
1

sDx

∫︂ z2

z1

∫︂ y2

y1

Fxâx · (−âx)dydz
⃓⃓⃓
x1

+
1

sDx

∫︂ z2

z1

∫︂ y2

y1

Fxâx · âxdydz
⃓⃓⃓
x2

(B.5)

=
1

sDx

∫︂ z2

z1

∫︂ y2

y1

Fx

⃓⃓⃓
x2

− Fx

⃓⃓⃓
x1

dydz. (B.6)

This last expression is found to be exactly equal to that obtained previously in equation

(B.4), meaning that: ∫︂
Ωe

1

sDx

∂Fx

∂x
dΩ =

1

sDx

∫︂
∂Ωe

Fxâx · dS⃗. (B.7)

Repeating this exercise for the y and z components follows a similar procedure, and in like

147



Appendix B - The Stretched Divergence Theorem

manner yields:

∫︂
Ωe

1

sDy

∂Fy

∂y
dΩ =

1

sDy

∫︂
∂Ωe

Fyây · dS⃗ (B.8)

∫︂
Ωe

1

sDz

∂Fz

∂z
dΩ =

1

sDz

∫︂
∂Ωe

Fzâz · dS⃗. (B.9)

Combining the relations in equations (B.7), (B.8), and (B.9) thus proves equation (B.1) for

the cubic volume of Figure B.1. As mentioned earlier, the generalization to arbitrary volumes

will not be explicitly shown here, but follows using a similar cut and paste procedure to the

“unstretched” Divergence Theorem.
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PML Parameters

C.1 2D PML Parameters

In this section, the expression for the stiffness matrix associated with the coordinate-stretched

PML will be derived for two-dimensional first-order basis functions. To begin, recall from

Chapter 4, equation (4.21), that the PML stiffness matrix is associated with the following

expression:
le∑︂
i=1

∫︂
Ωe

(︁
∇D × W⃗

(1)(e)

j

)︁
·
(︁
∇B × W⃗

(1)(e)

i

)︁
{e(e)}i dΩ (C.1)

where it must be remembered that the curl operators have been stretched.

As detailed in Jin [20], the 1-form basis functions may be expressed as:

W⃗
(1)(e)

1 = l
(e)
1

(︂
L
(e)
1 ∇L(e)

2 − L
(e)
2 ∇L(e)

1

)︂
(C.2)

where l
(e)
i is the length of the ith edge, and the functions L

(e)
i are the scalar triangle interpo-

lation functions defined by:

L
(e)
i =

1

2∆(e)

(︂
a
(e)
i + b

(e)
i x+ c

(e)
i y
)︂

(C.3)

in which ∆(e) is the triangle area and the constant weights a
(e)
i , b

(e)
i , and c

(e)
i are deter-
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mined from the triangle vertex coordinates. The remaining two vector basis functions are

subsequently obtained by cyclically permuting the indices in (C.2).

The following stretched vector identity:

∇D × (fF⃗ ) = f∇D × F⃗ +∇Df × F⃗ (C.4)

can be shown to hold true for a scalar function f and vector field F⃗ by a straightforward

expansion of both sides. Then, taking the curl of equation (C.2) and applying this vector

identity results in:

∇D × W⃗
(1)(e)

1 = l
(e)
1

(︂
L
(e)
1 ∇D ×∇L(e)

2 +∇DL
(e)
1 ×∇L(e)

2

− L
(e)
2 ∇D ×∇L(e)

1 −∇DL
(e)
2 ×∇L(e)

1

)︂
. (C.5)

However, since the basis functions L
(e)
i are first-order, taking the gradient of equation (C.3)

results in the following expression:

∇L(e)
i =

1

2∆(e)

(︂
b
(e)
i âx + c

(e)
i ây

)︂
(C.6)

which is constant. Hence, the curl of the ∇L(e)
i terms vanish and equation (C.5) simplifies

to:

∇D × W⃗
(1)(e)

1 = l
(e)
1

(︂
∇DL

(e)
1 ×∇L(e)

2 −∇DL
(e)
2 ×∇L(e)

1

)︂
. (C.7)

Substituting the definition of L
(e)
i from equation (C.3) and performing the required normal

and stretched gradients then yields the following expression for the curl of W⃗
(1)(e)

1 :

∇D × W⃗
(1)(e)

1 =
l
(e)
1

4(∆(e))2

(︂
b
(e)
1 c

(e)
2 − b

(e)
2 c

(e)
1

)︂(︃ 1

sDx
+

1

sDy

)︃
âz. (C.8)

Furthermore, as noted in Jin, the expression b
(e)
1 c

(e)
2 − b

(e)
2 c

(e)
1 can be identified as twice the
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area of the triangle, such that the curl is at last found to be:

∇D × W⃗
(1)(e)

1 =
l
(e)
1

2∆(e)

(︃
1

sDx
+

1

sDy

)︃
âz. (C.9)

Performing the same computation for the other two vector basis functions likewise yields a

similar result, so that in general:

∇D × W⃗
(1)(e)

j =
l
(e)
j

2∆(e)

(︃
1

sDx
+

1

sDy

)︃
âz (C.10)

∇B × W⃗
(1)(e)

i =
l
(e)
i

2∆(e)

(︃
1

sBx
+

1

sBy

)︃
âz. (C.11)

Making this substitution into the expression for the stiffness matrix in equation (C.1)

results in:
le∑︂
i=1

∫︂
Ωe

l
(e)
i l

(e)
j

4(∆(e))2

(︃
1

sDx
+

1

sDy

)︃(︃
1

sBx
+

1

sBy

)︃
dΩ{e(e)}i (C.12)

which after recognizing the integrand as constant in space at last results in the final expression

for the stiffness matrix:

le∑︂
i=1

(︃
1

sDx
+

1

sDy

)︃(︃
1

sBx
+

1

sBy

)︃(︄
l
(e)
i l

(e)
j

4∆

)︄
{e(e)}i

=

(︃
1

sDx
+

1

sDy

)︃(︃
1

sBx
+

1

sBy

)︃
[Ŝ

(e)
]{e(e)}

= p(ω)[Ŝ
(e)
]{e(e)}

(C.13)

which is precisely the expression reported in equation (4.24) of Chapter 4.

C.2 3D PML Parameters

In this section, a similar procedure to that presented in the previous section will be carried

out in order to derive the stiffness matrix and convolution functions required to implement
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a PML in three spatial dimensions, using first-order tetrahedral elements.

In like manner to the two-dimensional case, the expressions for the stiffness matrix and

tetrahedral first-order 1-forms in three dimensions are given by:

le∑︂
i=1

∫︂
Ωe

(︁
∇D × W⃗

(1)(e)

j

)︁
·
(︁
∇B × W⃗

(1)(e)

i

)︁
{e(e)}i dΩ (C.14)

and

W⃗
(1)(e)

i = l
(e)
i

(︂
L
(e)
i1
∇L(e)

i2
− L

(e)
i2
∇L(e)

i1

)︂
(C.15)

where i1 and i2 are the vertices associated with the ith edge, and l
(e)
i is its length [20]. The

scalar tetrahedral basis functions in turn are now given by:

L
(e)
i =

1

6V (e)

(︂
a
(e)
i + b

(e)
i x+ c

(e)
i y + d

(e)
i z
)︂

(C.16)

in which V (e) is the volume of the tetrahedron and the constants a
(e)
i , b

(e)
i , c

(e)
i and d

(e)
i are

determined from its vertex coordinates.

Since the expression in equation (C.15) is precisely the same as that seen earlier in equa-

tion (C.2), and since the current basis functions are also first-order, applying the stretched

vector identity of equation (C.4) to the curl of (C.15) results in the same expression obtained

earlier in (C.7):

∇D × W⃗
(1)(e)

i = l
(e)
i

(︂
∇DL

(e)
i1

×∇L(e)
i2

−∇DL
(e)
i2

×∇L(e)
i1

)︂
. (C.17)

This time, however, the gradients of the scalar basis functions are found to be:

∇L(e)
i =

1

6V (e)

(︂
b
(e)
i âx + c

(e)
i ây + d

(e)
i âz

)︂
(C.18)
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such that when substituted into equation (C.17) above, results in the following:

∇D × W⃗
(1)(e)

i =
1

36(V (e))
2

(︄(︃
1

sDy
+

1

sDz
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c
(e)
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d
(e)
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− c
(e)
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d
(e)
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)︂
âx

+

(︃
1
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1
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ây +

(︃
1
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1
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c
(e)
i2

− b
(e)
i2
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(e)
i1

)︂
âz

)︄
. (C.19)

Making the substitution of equation (C.19) into equation (C.14) and performing the

integral over the element (noting again that the integrand is constant in space) at last yields

the, quite involved, expression for the stiffness matrix:

le∑︂
i=1

∫︂
Ωe
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However, by defining the following quantities:

p(e)x (ω) =

(︃
1
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1
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)︃(︃
1
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1
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p(e)y (ω) =
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equation (C.20) can be simplified considerably to:

le∑︂
i=1

∫︂
Ωe

(∇D × W⃗
(1)(e)

j ) · (∇B × W⃗
(1)(e)

i ){e(e)}i dΩ

= p(e)x (ω)[S(e)
x ]{e(e)}+ p(e)y (ω)[S(e)

y ]{e(e)}+ p(e)z (ω)[S(e)
z ]{e(e)}. (C.27)

As was the case in two dimensions, the simplified expression of equation (C.27) consists

entirely of frequency-dependent functions multiplied by constant matrices. Thus, the result-

ing convolutions in the time-domain can easily be modeled using the same techniques studied

in Chapter 4. Lastly, it should be noted that if the PML is turned off, p
(e)
x = p

(e)
y = p

(e)
z = 4,

and the stiffness matrix reduces exactly to the expression given in [20] for regular FETD.
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