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ABSTRACT

In two experiments, we examined similarity ratings and categorization performance

with recorded impact sounds representing three material categories (wood, metal,

glass) being manipulated by three different categories of action (drop, strike, rat-

tle). Previous research focusing on single impact sounds suggests that temporal cues

related to damping are essential for material discrimination, but spectral cues are po-

tentially more efficient for discriminating materials manipulated by different actions

that include multiple impacts (e.g. dropping, rattling). Perceived similarity between

material categories across different actions was correlated with the distribution of

long-term spectral energy (spectral centroid). Similarity between action categories

was described by the temporal distribution of envelope energy (temporal centroid)

or by the density of impacts. Moreover, perceptual similarity correlated with the

pattern of confusion in categorization judgments. Listeners tended to confuse ma-

terials with similar spectral centroids, and actions with similar temporal centroids

and onset densities. To confirm the influence of these different features, we removed

spectral cues by applying the envelopes of the original sounds to a broadband noise

carrier. Without spectral cues, listeners retained sensitivity to action categories but

not to material categories. Conversely, listeners recognized material but not action

categories after envelope scrambling that preserved long-term spectral content.

PACS numbers: 43.66.Lj, 43.66.Jh, 43.66.Ba

1



I. INTRODUCTION

Sounds in a natural environment convey information about sound sources and sound-

producing events. Several studies have examined the acoustical cues that allow listeners to

identify the material of solid objects being struck together (Gaver, 1993, 1988; Giordano and

McAdams, 2006; Klatzky, Pai, and Krotkov, 2000; Kunkler-Peck and Turvey, 2000; Lutfi,

2001; Lutfi and Oh, 1997; McAdams, Chaigne, and Roussarie, 2004; McAdams, Roussarie,

Chaigne, and Giordano, 2010). Most of this work has focused on single impact sounds

where the object is freely vibrating after being struck. In this study, we investigated the

similarity perception and categorization of materials across different types of impact actions

(strike, drop, rattle), and of these actions across variation in the sound source material

(glass, metal, wood). From a perspective of ’ecological acoustics’, Gaver (1993) argued

that sound-generating actions are generally recognized via temporal cues, whereas material

discrimination relies more on spectrotemporal information. However, there is still a lack

of empirical evidence about the acoustic information used by listeners to recover either

material or action information when different actions and materials are combined as in a

natural context. Compared to single impact sounds, different types of impact introduce a

much broader range of acoustic variation that is often encountered in ecological listening

situations. For material discrimination, it is not clear that the acoustical features suggested

in studies of single impact sounds are also used in the context of multiple impact sounds. In

the context of combined actions and materials it is also not clear whether listeners might use

particular features for particular combinations or instead favor potential cues that invariant

across combinations. Metal and glass, for instance, may be well discriminated based on

damping-related cues in the ideal situation of isolated single impacts where listeners have
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access to the full decay time. Spectral cues, however, may be more relevant if they can be

used to discriminate materials with different patterns of envelope fluctuation introduced by

different types of action. Similarly, it is unclear if there are invariant acoustical cues that

allow listeners to discriminate action categories across the variation in the material of the

manipulated object.

Previous work on material discrimination with single impact sounds has highlighted

the relevance of damping-related cues. From a theoretical perspective, Wildes and Richards

(1988) and Gaver (1993) have suggested that the frequency-specific decay of vibrations in

struck solid bars or plates can be used to recover the material of the sound source inde-

pendently of the objects’ shape or manner of support. In later empirical studies, Klatzky

et al. (2000), McAdams et al. (2004), McAdams et al. (2010) and Aramaki et al. (2011)

used physical models of impacted plates or bars and found that perceived similarity and

categorization of wood and glass or wood and metal can indeed be described by damping

parameters. The relevance of damping information has also been demonstrated with real

impacted bars or plates (Giordano, 2003; Giordano and McAdams, 2006; Tucker and Brown,

2003). An influence of pitch or spectral cues has also been reported (Avanzini and Rocchesso,

2001; Giordano and McAdams, 2006; Klatzky et al., 2000; Lutfi and Oh, 1997) but the role

of frequency information in material discrimination is less clear. Although frequency content

depends on the material of the sound source, spectral cues also vary with other important

object properties such as object size and geometry. Investigating material identification of

real impacted plates of variable size, Giordano and McAdams (2006) found that damping

cues could account for identification of materials of vastly different mechanical properties

(steel/glass vs wood/plexiglass), but that listeners relied on frequency cues for fine-grained

identification within these gross categories. Similarly, Lutfi and Oh (1997) showed that
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listeners made limited use of damping cues and relied on signal frequency for fine-grained

material discrimination of simulated bars. McAdams et al. (2010) reported that perceptual

ratings of similarity between impacted plates correlated with pitch, but also found that lis-

teners ignored pitch information and relied on damping cues during material categorization

of the same sounds. Thus, although a number of studies have demonstrated the relevance of

acoustical measures related to damping, listeners appear to use different kinds of spectral or

temporal information depending on the given task and stimulus context. It remains unclear,

however, in which contexts the reliance on frequency information may represent an efficient

perceptual strategy.

Spectral cues for material discrimination may become relevant when considering acous-

tic variation across a broader context of natural sound-producing events. In sounds that are

not generated by a single impact, the decay time is typically a less efficient perceptual cue

given that the object is not freely vibrating for a sustained period of time. Listeners may

instead favor long-term frequency content if the associated spectral cues are more invariant

across different types of action. Lemaitre and Heller (2012), however, found that material

discrimination was generally poor for non-impact sounds (cylinders rolling, bouncing, or be-

ing scraped), arguing that material categories are only robustly identifiable when damping

cues are available in single impact sounds. This led the authors to question whether ma-

terial discrimination in general is based on auditory cues or whether the representations of

material categories relies instead primarily on visual or haptic experience. Giordano et al.

(2012), studying walked-upon materials, confirmed that material identification based on

haptic feedback was indeed more accurate than in auditory perception. However, multiple

impact sounds (rattling, bouncing, scattering, dropping, etc.) constitute a large and impor-

tant part of natural sound events, and these sounds may still have characteristic spectral
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cues that could be used for material discrimination across different types of impacts. When

different materials are combined with different types of impact as in the present study, lis-

teners may either take advantage of the access to the frequency-dependent decay of partials

in single impact sounds or they may favor spectral cues that are potentially more invariant

across the variation in the sound-producing action.

Identification of sound-producing actions has received much less focus than material

identification. This is despite the fact that action recognition has been reported to be notably

accurate in auditory perception and potentially more robust than material identification

(Lemaitre and Heller, 2012). Warren and Verbrugge (1984) investigated dropped objects

and found that listeners accurately discriminated between bouncing and breaking events.

Warren et al. (1987) found that listeners could estimate the elasticity of bouncing balls on

the basis of the first onsets in a bouncing sequence. Gygi et al. (2004) using noise vocoding

found that about 50% of a diverse set of environmental sounds could be identified without

spectral cues altogether. Similarly, Warren and Verbrugge (1984) synthesized bouncing

and breaking events using short spectrally averaged segments matching the impact onset

pattern of the original sounds. Although a drop in categorization performance was observed,

listeners continued to discriminate actions with high accuracy without spectral cues (86.7%

for breaking and 93.0% for bouncing events). Although this confirms that temporal onset

patterns can be used for action categorization, the potential role of spectral cues suggested

by the drop in performance is less clear. It remains uncertain whether listeners can still use

spectral information to infer information about action categories when temporal information

is limited, e.g. in highly reverberant environments. Acoustical features that summarize

temporal cues relevant for action recognition across variation in the sound object are also

lacking.
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Previous sound source perception studies have used identification/categorization judg-

ments (Giordano and McAdams, 2006; Lemaitre and Heller, 2012; Warren and Verbrugge,

1984), similarity ratings (Giordano, 2005; Klatzky et al., 2000; McAdams et al., 2004), or

both (Gygi et al., 2007; McAdams et al., 2010). Multidimensional scaling (MDS) of similar-

ity ratings with environmental sounds has been used to determine perceptual representations

of sound source properties and their acoustical correlates (Gygi et al., 2007; Klatzky et al.,

2000; McAdams et al., 2004, 2010). Even for similarity ratings of musical tones, clusters in

regions of MDS spaces have been shown to be occupied by sounds produced by the same

instrument family or manner of excitation (Giordano and McAdams, 2010). Only a few

studies have made quantitative comparisons between representations derived from similarity

and categorization data. Gygi et al. (2007) compared similarity ratings and free grouping

responses of a range of environmental sounds and found similar gross clusters related to

sound source attributes in MDS representations derived from the similarity and grouping

data. Although similar category information emerged, only a moderate correlation between

the two representations was reported. The similarity representations generally enhanced the

spacing between clusters and correlated better with acoustic descriptors than the catego-

rization data. McAdams et al. (2010) found that similarity ratings of simulated impacted

plates were described by two MDS dimensions closely related to mechanical properties of the

sound source with one dimension being related to wave velocity and pitch and another to

damping and duration. When asked to categorize the material of the same sounds, however,

listeners ignored pitch information and relied exclusively on damping cues. This result could

suggest that listeners focus on acoustically salient features when judging similarity but shift

their focus to more task-relevant cues during categorization. It is, however, also possible

that similarity and categorization data are related via a non-linear mapping that would only
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be revealed by a model describing this relationship.

The relationship between similarity and categorization has been discussed extensively

from a general psychological perspective. Formal models of categorization often rely strongly

on concepts of similarity although different measures of similarity have been discussed (Gold-

stone, 1994; Tversky, 1977). Categorization may be viewed as a function of similarity in the

sense that objects perceived to be similar with respect to some feature are grouped together

(Sloutsky, 2003). Shepard (1987) argued that categorization can be described formally as

an exponentially decreasing function of distance in perceptual similarity space. This allows

categorization performance to be predicted from a non-linear mapping of distances in MDS

space (Krumhansl, 1978; Nosofsky, 1986; Shepard, 1987). Alternatively, similarity may be

viewed as a function of identification or categorization confusion in the sense that objects

that are grouped together become perceptually similar (Goldstone et al., 2001). General

recognition theory (GRT, Ashby and Perrin, 1988) assumes that subjects place decision

boundaries in a multidimensional perceptual space (where MDS is the particular case of a

metric space, Ashby and Perrin, 1988) and associate a category response with a particular

region. Perceived similarity is then assumed to be proportional to the amount of confusion

between stimulus categories.

In the current study, we investigated material and action perception in impact sounds

that simultaneously varied across combinations of impact action and material. Using the

same stimulus set, listeners rated similarity (Experiment 1) and categorized (Experiment

2) the same actions with variation in materials and the same materials with variation in

actions. First, we modeled the similarity data using weighted MDS to investigate whether

common acoustical features could describe the ratings across listeners. Next, we modeled

category confusion patterns with general recognition theory, a multidimensional extension
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of signal detection theory. We used hierarchical model selection to test whether listeners’

sensitivity in material categorization was independent of the sound-producing action, and

conversely whether action sensitivity was independent of variation in materials. For material

categorization, this allowed us to investigate whether listeners favored cues that are indepen-

dent of the type of impact, or whether they selectively use decay-related information when

this is available in single impact sounds. Modeling of the similarity and categorization data

also allowed us to compare these representations quantitatively. We tested how well MDS

dimensions and associated acoustical features predicted category confusions and vice versa.

Finally, we examined action and material categorization with the sound stimuli synthesized

to remove either long-term spectral cues (using time domain scrambling) or temporal enve-

lope cues (using noise vocoding). Again, we modeled categorization responses with GRT to

investigate whether the spectral and temporal manipulations affected category combinations

differently. Materials with highly different damping properties such as metal and wood could

potentially still be discriminated with single impact sounds solely based on the decay rate,

whereas the material of multiple impacts would be indiscriminable. On the other hand, given

that listeners have been reported to favor spectral cues for discrimination of fine-grained ma-

terial categories, removal of temporal cues also allowed us to uncover whether spectral cues

can be used for material perception and categorization more generally, and whether they can

be used without temporal information altogether.
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II. EXPERIMENT 1: SIMILARITY RATINGS

A. Methods

1. Subjects

Twenty listeners (10 males, 10 females, aged 21-40 years) participated in Experiment 1

and were paid for their participation. All participants reported having normal hearing.

2. Stimuli

Eighteen sounds were recorded to represent three different action categories (strike,

rattle, drop) and three different material categories (wood, metal, glass). Two different ex-

emplars were recorded for each of the nine category combinations. In each material category

we used a small number (5-8) of objects of comparable range of sizes (5-30 cm). We used

solid objects of varying shape (rods, plates and cylinders) made of aluminum, pine, or glass.

Rattle sounds were produced by manually rattling all of the objects and drop sounds were

made by dropping them on a solid floor from a fixed distance. Strike sounds were made by

impacting two of the objects within a material category.

All sounds were recorded at a sampling rate of 44.1 kHz in an acoustically isolated room

using two Audio-technica AT4041 microphones connected to a remote computer via an RME

Fireface sound card. The duration of the signals ranged from 0.9 to 1.6 seconds.

Subsequently, the stimuli were equalized in perceived loudness by having five expert

listeners adjust the level of 17 of the 18 stimuli to the perceived level of the remaining sound

(a single strike on metal). For each stimulus, the level was set using the median of the five

loudness estimates.

9



3. Apparatus

During the experiment, listeners were seated in an IAC 1202 double-walled sound booth.

Sounds were generated from a Macintosh computer through an RME Fireface sound card.

Presentation of stimuli and the collection of responses were controlled using Matlab. Sounds

were presented over a set of Sennheiser HD250 Linear II headphones. Sound pressure level

was measured at the headphones on a Brüel & Kjaer 2209 sound level meter (A-weighting,

fast response) with an IEC 60318-1 ear simulator (G.R.A.S. Type RA0039). The peak level

of the stimuli equalized in perceived loudness ranged from 66 to 75 dB SPL.

4. Procedure

Listeners were asked to rate the similarity between pairs of sounds by adjusting a

continuous on-screen slider scale marked ’very similar’ and ’very dissimilar’ at the extremes.

Listeners could replay the sounds as many times as they wished before making a rating.

They were instructed to use the full range of the scale in their responses over the whole

experiment. The 18 different sounds were presented in random order at the beginning of

the experiment to give listeners a sense of the range of variation. In the subsequent rating

trials, each of the 171 possible sound pairs was presented. Identical pairs were included to

control for subjects not attending to the task (i.e., rating identical pairs as dissimilar). An

experimental session took approximately 30 min. to complete.
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B. Results

1. Multidimensional scaling

We used multidimensional scaling to represent the rated similarity between each sound

pair in a low-dimensional space. We used a weighted distance model (Carroll and Chang,

1970) where the similarity between stimuli is modeled in terms of Euclidean distances. The

weighted model assumes common underlying perceptual dimensions but different subjects

may weight these dimensions differently:

djin =

[ R∑

r=1

wnr(xjr − xir)
2

] 1
2

(1)

where xjr is the coordinate of sound stimulus j on dimension r and wnr is the weight of

subject n on the common dimension r. We performed model selection following the procedure

described in McAdams et al. (1995) to determine the appropriate dimensionality of the

common space.

Multidimensional scaling resulted in a two-dimensional space accounting for the rated

similarity between the different sound pairs. As can be seen in Figure 1, different categories

occupy separate regions of the perceptual space and the two dimensions appear to relate to

the actions and material categories. Dimension 1 separates wood from glass/metal, whereas

dimension 2 separates the action categories. Glass and metal sounds are rated as being

similar across action categories but dissimilar to wood sounds. For the action categories,

listeners rated single impact strikes as being more similar to drop sounds than they were to

rattle sounds.
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C. Auditory features

In order to examine signal features relevant to listeners’ perception of similarity, we

analyzed the sound stimuli using a representative model of spectrotemporal processing in

the auditory periphery. First, the average signal level of the recorded stimuli was scaled to

ensure it matched the measured sound pressure level. The signal was filtered corresponding

to minimum audible field measurements to account for outer- and middle-ear filtering (Kil-

lion, 1978). Frequency-to-place transformation along the basilar membrane was simulated

using a gammatone filter bank (Patterson et al., 1995). The center frequencies of the filters

were uniformly spaced on the ERB-rate scale (Glasberg and Moore, 1990) that approximates

the auditory filter bandwidths as derived from masked detection thresholds in normal hear-

ing listeners. The ERB-rate scale returns the number of equivalent rectangular bandwidths

(ERB) of the auditory filters approximated as z = 21.4 ∗ log(1 + 0.00437 ∗ f). The output

of each filter channel (ψz(z, t)) was raised to the power of 0.25 to account for basilar mem-

brane compression (Oxenham and Bacon, 2004) and was half-wave rectified to simulate the

transformation of basilar membrane oscillations into hair-cell potentials. Temporal adapta-
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tion and integration in the auditory nerve were simulated using a series of feedback loops

as described by Dau, Püschel, and Kohlrausch (1996). Finally, each channel was converted

to dB and low-pass filtered at 150 Hz to account for further temporal integration at higher

stages in the auditory system.

1. Spectral centroid (SC)

First we investigated the potential correlation of long-term spectral content with MDS

dimension 1 related to material categories. To do this, we used a measure of spectral centroid

previously shown to be a robust predictor of timbre perception (Grey and Gordon, 1978;

Marozeau et al., 2003; McAdams et al., 1995). Spectral centroid measures have also been

related to viscoelastic properties of different impacted materials more generally (Avanzini

and Rocchesso, 2004; McAdams et al., 2004, 2010). We calculated the spectral centroid as

the center frequency (in ERB-rate (z)) of a given filter weighted by the energy in that filter

summed over time:

SC =

∑
z[z

∑
t ψ]∑

z

∑
t ψ

(2)

calculated for the initial 200 ms of the sounds in order to avoid artifacts due to low signal

levels at the end of the sound files.

The spectral centroid thus describes the spectral ’center of gravity’ in the distribution

of energy over frequencies in the long-term spectrum. Impacts on glass or metal produce

more high-frequency energy relative to impacts on wood and thus have higher SC values.

The spectral envelopes calculated from the output of the auditory filters and SC values for

different material categories are illustrated in Figure 2.
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We found a significant correlation between the spectral centroids and the material-

related perceptual dimension of the weighted MDS model [r(16) = 0.89, p < 0.0001]. Like

the perceptual similarity data, the auditory feature discriminates gross material categories

(wood at low SC values vs. glass-metal at higher SC values, see Fig. 4).

2. Temporal centroid (TC)

To examine the relationship between the similarity of actions along MDS dimension

2 and temporal information, we extracted a centroid measure in the temporal domain to

quantify the dispersion of energy in the amplitude envelope over time. The temporal centroid

(TC) describes the ’center of gravity’ of the temporal envelope as the sample times (in s.)

weighted by the envelope energy summed over frequencies:

TC =

∑
t[t

∑
z ψ]∑

t

∑
z ψ

(3)

Rattle sounds have larger temporal centroids than drop or strike sounds where the

energy is concentrated around the initial impulse. The dispersion of material in drop sounds
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will also increase the temporal centroid relative to single impacts. The temporal centroids for

different actions are illustrated in Figure 3. The correlation between the temporal centroid

and the action related perceptual dimension was also significant [r(16) = 0.91, p < 0.0001]

and the descriptor effectively discriminates all action categories (see Fig. 4).
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3. Event density (ED)

The temporal centroid gives a global measure of the temporal position of envelope energy

but it does not quantify individual impacts that may be perceptually salient with single and

multiple impact sounds. For this reason we defined an alternative feature of event density

(ED) to quantify similarity in the action-related dimension. To extract individual impacts,

we summed the temporal envelope over frequency channels and extracted local peaks in the

broad-band envelope. In order to make the peak detection reflect local impacts both in

rattling and drop sounds, we removed faster envelope fluctuations by low-pass filtering at

50 Hz instead of 150 Hz. Event density was then defined as the sum of local peaks in the

temporal envelope for the duration of the sound. We found that this feature also correlated

significantly with MDS dimension 2 [r(16) = 0.93, p < 0.0001].

4. Testing auditory features

The limited number of sounds used for pair-wise similarity comparison may represent a

limited range of acoustic variation occurring naturally in the given category combinations.

Although the auditory features appear to quantify the perceived similarity between cate-

gories, it may be difficult to generalize about category information because of the limited

number of sounds used. For this reason, we tested the variation of the features on a larger

number of sounds. We recorded ten novel exemplars of each of the nine category combina-

tions yielding a total of 90 new sounds. We used a larger range of variation of object sizes

and geometries to enhance the range of acoustic variation. We then calculated the auditory

features for this larger sound bank to investigate the spread of categories in this feature

space. Figure 5 shows the SC and TC values of each sound as extracted from the auditory
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model. As can be seen, the sound categories occupy similar regions of the feature space as

found in the perceptual data. We then tested how well the spectral and temporal centroid

would distinguish the categories that were separated in the perceptual MDS space. The

temporal centroid separated strike-drop and rattle-drop sounds with a mean error rate of

3.8%. The spectral centroid separated wood sounds with a mean error rate of 7.8%, whereas

glass and metal sounds were highly overlapping as in the perceptual space.
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D. Discussion

Multidimensional scaling of the similarity data suggested two perceptual dimensions

related to category information. Gross material categories (wood vs metal/glass) were sep-

arated along dimension 1, whereas action categories were separated along dimension 2. The

large similarity between glass and metal is consistent with classification studies showing

confusion between them (Giordano and McAdams, 2006; Lemaitre and Heller, 2012). This

could indicate that listeners rate similarity with respect to features that are relevant for

categorization, even though they were not instructed to attend to category information in

this experiment.
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Analysis of auditory features suggested a relevance of spectral characteristics of mate-

rials across the different types of impact (MDS dimension 1). Previous studies with single

impacts on different materials confirm a relation between perceptual similarity and spectral

centroid measures, in particular in the attack portion of the sounds (Giordano, 2005; Grey

and Gordon, 1978; McAdams et al., 2004, 2010, 1995). Our results suggest that this also

applies across different sound producing actions. The spectral energy distribution may be a

more effective cue for identifying material properties than pitch-related cues, for example,

when also considering multiple impact sounds with less clear pitch quality.

Perception of actions and materials may involve loudness cues (Giordano and McAdams,

2006). In our stimulus set, loudness was perceptually equalized to avoid different stimuli

having different audibility levels. However, this also means that potential effects of loudness

were not investigated. We found a relatively large spread in the levels of the subjectively

equalized stimuli, perhaps suggesting that listeners’ loudness estimates were influenced by

sound source information. When examining the acoustic features in a larger sound set

(section IIC 4), we did not equalize the sounds subjectively. Similar variation within and

between categories in this feature space suggest that these features are less influenced by the

global level, but the precise role of loudness cues remained to be examined.

One interesting observation is the high degree of overlap between perceptual similarity

and stimulus similarity that emerges at the level of the auditory periphery. We examined

the same auditory features calculated at earlier stages in the auditory model. Using a model

without the simulated neural adaptation in the auditory nerve, we observed a drop in the

correlation between perceptual dimensions and both the spectral centroid (correlation with

MDS dimension 1: r = 0.84) and temporal centroid (correlation with MDS dimension 2:

r = 0.54). Adaptation did not influence peak detection so the correlation with event density
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was unchanged. Calculating the same features from an FFT-based spectrogram of the sounds

instead of an auditory model resulted in considerably lower correlations (spectral centroid

and MDS dimension 1: r = 0.69; temporal centroid and MDS dimension 2: r = 0.72).

This suggests that processing in the auditory periphery may capture some features that are

relevant for categorizing higher-order information, as indicated by previous studies (Lewicki,

2002). However, it also remains unclear whether listeners focus on salient spectrotemporal

features that are implicitly carrying category-level information or whether the same features

are used during behavioral categorization. In Experiment 2, we examined whether the simi-

larity ratings also predict performance in category discrimination by collecting categorization

responses to the same set of sounds.

III. EXPERIMENT 2: CATEGORIZATION JUDGMENTS

A. Methods

1. Subjects

Twenty subjects took part in the experiment (10 females, 10 males, aged 20-38). None

of the subjects in Experiment 2 had participated in Experiment 1. All participants had

normal hearing.

2. Stimuli

Subjects were presented with the same stimuli used in Experiment 1. In order to verify

the different influence of spectral and temporal cues suggested by the results of Experiment 1,

subjects were also presented with sounds manipulated to remove either spectral or temporal
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cues. Spectral cues were removed by applying the temporal envelopes of the original sounds

to a broadband noise carrier. This resulted in a sound set with fixed spectral centroid (= 23.8

ERB, equivalent to that of glass/metal sounds in Experiment 1) and temporal centroids

identical to the original sound set. As a second manipulation, we removed envelope cues

by splitting the original sound signals into overlapping time windows (Hann-shaped, 40 ms

length) and randomly permuting the windows in such a way that each of the scrambled

sounds had a fixed long temporal centroid (= 300 ms, equivalent of rattle sounds) while

preserving long-term spectral content. Figure 6 shows examples of the original and scrambled

envelopes for each action category.
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3. Apparatus

The apparatus used was identical to that of Experiment 1.
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4. Procedure

On different trials, listeners were presented with the sound stimuli and asked to identify

either the material (wood, metal, or glass) or the action (drop, strike, or rattle) category.

Word labels for the three different response categories were presented on-screen and subjects

were asked to choose the appropriate label via a key press. The 18 original sounds were

presented intermingled with the (2x18) scrambled sounds in random order. The action and

material categorization was presented in separate blocks and both blocks were presented

twice. In each categorization block, all (3x18) sound stimuli were presented. Response time

was not limited. After a response, the interface indicated the chosen category but no feedback

on accuracy was given. Subjects performed a short trial round before the experiment to

familiarize themselves with the task. An experimental session took approximately 20 min.

to complete.

B. Categorization performance

Table I reports the categorization confusion data for all participants. The confusion

scores suggest accurate categorization of both actions and materials for the original sounds.

Spectral scrambling biases material categorization towards metal responses, whereas most

action responses remain correct with the exception of struck glass, which is more often

categorized as being dropped. For the temporal scrambling, material categorization remains

accurate whereas actions are categorized as rattles.

Figure 7 shows the mean categorization accuracy for each condition averaged over the

individual action and material categories. We analyzed the categorization performance us-

ing a repeated measures analysis of variance (ANOVA) that included factors for the cate-
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gory types (materials, actions) and manipulation types (none, spectral scrambling, tempo-

ral scrambling). The ANOVA revealed an interaction between the two factors [F (1, 2) =

32.46, p < 0.0001], demonstrating that the manipulation of temporal and spectral cues affect

the categorization of actions and materials differently.
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C. Category sensitivity: General Recognition Theory

We used General Recognition Theory (GRT, Ashby and Lee, 1991; Ashby and Townsend,

1986), a multivariate generalization of Signal Detection Theory, to model listeners’ category

discrimination performance. With two different perceptual dimensions (materials and ac-

tions), the GRT model assumes that a given stimulus Si elicits a perceptual effect fi(x, y)

that follows a two-dimensional normal distribution N with mean µi and co-variance matrix

Σi. In a categorization task, the listener is assumed to divide the perceptual space into

regions each associated with a given response. Decision bounds between these regions can

be modeled as linear functions. The probability of responding Rj to stimulus Si is then the
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density of the perceptual effect in the associated response region:

P (Rj|Si) =

∫

Rj

∫
fi(x, y) dxdy (4)

where

fi(x, y) = N (µi,Σi) (5)

GRT allows us to examine quantitatively whether different combinations of action and

material categories are perceptually separable (Ashby and Townsend, 1986). For instance, a

given material category such as glass is perceptually separable if the perceptual effects of glass

sounds do not vary depending on the type of impact producing the sound (i.e., the perceptual

effect of glass sounds will have identical means across actions). Similarly, if decision bounds

are identical for all glass sounds then listeners’ tendency to respond glass is not biased by

the type of impact (they are ’decisionally separable’, cf. Ashby and Townsend, 1986). Here,

we fit the model with categorization data where responses occur to one dimension at a time

(unlike identification experiments where there is a unique response for each stimulus). In this

case, model parameters are estimated separately for each dimension and it is not meaningful

to estimate co-variance between the dimensions.

We estimated a GRT model with the categorization confusion data of the original sound

set for all participants by minimizing the negative log-likelihood of the model. In the most

general model, the means, variances, and decision bounds for each category combination are

free to vary. Models with identical means or variances across dimensions are special cases

of the more general model. Because of this nesting, we use a hierarchical model selection

procedure to find the appropriate number of free parameters using a likelihood ratio test (cf.
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Ashby and Lee, 1991). We first test the general model against a model with equal means by

computing the ratio of the likelihoods of the two models. The log-likelihood ratio is compared

to a chi-square distribution with degrees of freedom equal to the difference in number of free

parameters between the general and the restricted model in order to determine whether the

extra free parameters of the general model provide a significantly better fit to the data. We

then proceed to examine whether models with fixed bounds and variances account for the

categorization responses (Ashby and Lee, 1991).

This model selection procedure resulted in a model with equal means, decision bounds,

variances (12 free parameters) along both dimensions. This model accounted for 99.0% of

the variance in the categorization responses (the full model explaining all of the variance).

Figure 8 shows the fitted GRT model (a), and the initial full model with unequal means,

bounds, and variances (b).

Having a very good fit with equal parameters along both dimensions suggests that

categorization of both materials and actions are separable with respect to perception and

decision bias. Listeners recognized the sound source material similarly across impact types

and, conversely, were not affected by the material in their ability to discriminate the impact

action category. Interestingly, this means that listeners discriminate material categories in

multiple impact sounds and that the discrimination sensitivity is similar to what is found

with single impact strikes. Across actions, glass and metal sounds were confused more often

than metal/glass and wood, as often reported in studies of single impact sounds (Giordano

and McAdams, 2006; Lutfi and Oh, 1997). For the action discrimination, strike sounds were

occasionally confused with drop sounds but not with rattle sounds, whereas rattle sounds

could be confused with drops.

As can be seen, the configuration of category means is similar to the perceptual structure
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inferred from the similarity ratings in Experiment 1. In effect, categories perceived as more

similar are also more likely to be confused during categorization. As a heuristic measure to

compare the modeled similarity and categorization responses, we calculated the correlation

between the distribution of means for a given category in the fitted GRT model and the

MDS coordinates. For the MDS representation, we used the average of the two exemplars of

the same category combination. We found high correlations between both MDS dimension 1

and the material-related dimension in the GRT model [r(7) = 0.85, p < 0.036] and between

MDS dimension 2 and the action-related GRT dimension [r(7) = 0.97, p < 0.0001].
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D. Predicting perceptual similarity from categorization performance

The correlation between the similarity structure and categorization sensitivity also sug-

gests the possibility of making quantitative predictions about categorization performance

from perceptual similarity, or inversely of deriving similarity measures from category sen-

sitivity. As mentioned, GRT views similarity as being proportional to the probability of

category confusion. The similarity s between stimulus Si and stimulus Sj may be defined

as the amount of the perceptual effect of stimulus Si that falls into the response region

associated with Sj (Ashby and Perrin, 1988):

s(Si, Sj) =

∫

Rj

∫
fi(x, y) dxdy (6)

This yields a bias-free measure (analogous to d′ in SDT), where the distance between two

stimuli in perceptual space is only determined by the parameters of the normal distribution

defining the perceptual effects.

We used this measure to calculate a similarity matrix for each exemplar of the different

category combinations from the fitted GRT model. We then compared these matrices to the

pair-wise similarity ratings obtained in Experiment 1. Overall, the GRT-derived similarities

corresponded poorly to observed similarities, accounting for only 56.7% of the variation of

the observed similarity ratings. The GRT model appears to underestimate the similarity

between stimuli where there is little confusion. Because the categorization accuracy was

very high for many category combinations, the normal distribution of perceptual effects will

result in very small similarity estimates for these stimulus combinations. The fact that we

observed a similar configuration of perceptual effects in the GRT model and the MDS space

suggests that the relation between similarity and categorization sensitivity is not accurately

26



captured for our data by the shape of the Gaussian distribution on which the GRT similarity

measure relies.

E. Predicting categorization performance from perceptual similarity

It is also possible, however, to consider the inverse relation in which categorization is

explained as a function of perceived similarity in multidimensional perceptual space. As

mentioned above, this approach is suggested by different variants of the choice model (Luce,

1963; Shepard, 1957). Unlike the context-free GRT measure of similarity (Eq. 6), choice

models weight the context of other stimulus exemplars in the experiment and do not make

assumptions about parametric distribution of perceptual effects. In a categorization exper-

iment, the probability of a stimulus Si being identified as belonging to category Cj may

simply be formulated as a function of the summed similarity ηij between Si and all other

stimuli in the category normalized by the summed similarity between all stimuli ηik (cf. the

Generalized Context Model, Nosofsky, 1986; here we ignore possible response bias):

P (Rj|Si) =

∑
j∈Cj

ηij∑
k ηik

(7)

where ηij is a function of the distance dijr between stimuli along a particular common di-

mension r in weighted MDS space (Eq. 1):

ηij = −ced
p
ijr (8)

This formulation means that the probability of a categorization confusion falls off mono-

tonically with the distance in MDS space. The nonnegative parameters c and p determine
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the rate and shape of the decay and thus define the general stimulus discriminability. If

p = 2, then η takes the shape of a Gaussian function, and the model becomes similar to a

context-sensitive formulation of the GRT similarity measure (where the perceptual effects are

integrated across all members of a category; Ashby and Perrin, 1988). Gaussian similarity

functions with p = 2 may better explain category performance in individual well-practiced

subjects (Nosofsky, 1986), whereas exponential decay with p = 1 may generalize better across

subjects and experiments (Shepard, 1987).

Using the context model in Eq. 7, we estimated category responses from the two com-

mon dimensions of the MDS space inferred from the similarity data in Experiment 1. We

then compared the predicted categorization responses from the MDS model to the observed

categorization data from Experiment 2. We set the parameter p = 1, because we compared

the MDS common space to categorization performance in the population of untrained par-

ticipants. The scaling parameter c was set to a high value of 10 due to the general high

discriminability between sound exemplars. With these parameters, we found that the model

accounted for a large portion of the observed categorization performance. With similarities

along MDS dimension 1, the model explained 78.8% of the variation in the material cate-

gorization performance, whereas similarities along MDS dimension 2 accounted for 93.8%

of the variation in action categorization. In comparison, MDS dimension 1 explained only

10.7% of the variation in the action categorization, and MDS dimension 2 explained 15.4% of

the variation in material categorization. With even sharper decay of the similarity function

(p = 0.5 in Eq. 8), we found that the model explained 95.0% and 99.1% of the material

and action categorization data, respectively. This also implies that the auditory features

correlated with the MDS dimensions (spectral centroid, temporal centroid, event density)

effectively predict categorization sensitivity.
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F. Effects of temporal and spectral scrambling

The averaged categorization performance (Fig. 7) showed that removal of either spec-

tral or temporal cues lowered categorization performance but affected the categorization of

actions and materials differently. As indicated by the results of Experiment 1, removal of

temporal cues with preservation of long-term spectral content (and thus identical spectral

centroids) resulted in categorization at chance level for actions but not for materials. Con-

versely, removal of spectral information with preserved envelopes resulted in chance level

performance for material categories but not for actions.
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[FIG 9]

We fitted GRTmodels for the categorization data obtained with spectrally or temporally

scrambled stimuli (Fig. 9). In the spectral scrambling condition, model selection resulted

in a configuration with equal bounds but unequal variances and means on the material

dimension, and equal means and variances but unequal bounds on the action dimension.

Removal of spectral cues resulted in loss of sensitivity even for gross material categories

(wood vs glass/metal). Listeners categorized sounds primarily as metal and sometimes as

glass. This is consistent with the fact that these noise vocoded sounds have a fixed high

spectral centroid value that correspond to glass/metal sounds as shown in Experiment 1.

On the other hand, listeners continued to discriminate action categories with relatively high

sensitivity without spectral cues. Model selection suggested that the spectral manipulation

introduced a decisional bias toward drop responses that was stronger for glass and metal.

This bias followed the pattern of confusion observed with the original sound set: strike or

rattle sounds became more confused with drop sounds but the manipulation did not increase

the confusion between strike and rattle sounds.

For the temporally scrambled sounds a model with equal means, decision bounds, and

variances on both dimensions was found to account for the categorization performance.

Removal of envelope information resulted in complete loss of action category sensitivity.

Nearly all envelope-scrambled sounds were categorized as rattle sounds, as expected by

the high temporal centroid or event density values. Material categories, on the other hand,

continued to be discriminated with a similar sensitivity as observed with the original sounds.

Metal/glass sounds continued to be confused similarly as with temporal cues, although metal

appeared to be categorized less accurately in the case of strike sounds.
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IV. GENERAL DISCUSSION

GRT model selection suggested that actions were perceptually separable across the

material of the object, and that materials were separable across sound-generating actions.

Combined with the acoustical analysis derived from the similarity data, these results suggest

the relevance of cues that are invariant across the large range of acoustic variation introduced

by the different impact actions. Although single impact studies have suggested cues that

allow fine-grained discrimination of materials, our results suggest the relevance of considering

the cues that are invariant across a greater variation in context.

The material-related dimension derived from the similarity ratings was described by

spectral content as quantified by the spectral centroid, effectively predicting sensitivity in

material categorization. Removal of temporal cues showed that listeners were able to dis-

criminate gross material categories based only on spectral information also for multiple

impact sounds. Without temporal cues, listeners discriminated gross categories (wood vs

glass/metal) but also continued to discriminate glass and metal sounds at a level similar to

that of the original sounds. When we removed spectral cues, on the other hand, the material

of single impact sounds could potentially have been discriminated based on the amplitude de-

cay rate but we did not see this. Listeners showed no sensitivity between any of the material

categories without spectral cues, suggesting that they cannot use envelope cues for material

discrimination independently of frequency information (cf. Avanzini and Rocchesso, 2004;

Wildes and Richards, 1988). With single impacts, we saw a small tendency for improved

discrimination of metal sounds and impaired discrimination of metal when temporal cues

were removed, but GRT model selection suggested similar sensitivity across actions.

These findings indicate that spectral content is favored as a more invariant cue to ma-
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terial properties when considering different impact types. The strong focus on the relevance

of damping-related cues for material discrimination in the sound source perception litera-

ture should be viewed in relation to the fact that most studies have used the same sound

generating action, single impacts. This constraint may have created a bias towards the rel-

evance of damping cues. We suggest that spectral cues may be more general and robust

when considering cues for material discrimination in a broader context of different sound-

generating events. Our results also question the conclusions drawn by Lemaitre and Heller

(2012) arguing that material discrimination per se has only limited relevance in audition

given that damping cues are only efficient with single impact sounds. To the contrary, we

find that reliance on spectral cues allow listeners to pick up material information across im-

pact categories, even if it may result in lower sensitivity for single impacts. Weak material

discrimination was reported by Lemaitre and Heller (2012) in particular with rolling and

scraping cylinders that lack both the temporal and spectral cues characteristic of impacted

sound sources. However, impact actions generating vibration of solid materials are still a

major part of natural acoustic events. It seems likely that listeners favor spectral cues that

are both invariant across contexts and potentially faster to compute as they rely less on slow

temporal information. Our temporal scrambling resulted in sounds with relatively uniform

spectral content over the duration of the sound, suggesting discrimination based on global

frequency content. Given that the material composition of objects is often not optimally

inferred with visual perception, efficient auditory cues for material categories are highly

valuable in a natural environment. The perceptual relevance of spectral cues reported in a

number of studies (Avanzini and Rocchesso, 2001; Giordano, 2003; Giordano and McAdams,

2006; Klatzky et al., 2000; Lutfi and Oh, 1997) should also be viewed in relation to natural

settings where the use of more efficient and context-invariant spectral features may be traded
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off for accuracy.

Our results confirm a remarkable robustness of auditory action perception investigated

in only a few previous studies (Lemaitre and Heller, 2012; Warren and Verbrugge, 1984).

Action discrimination accuracy remained high even after removal of spectral cues. How-

ever, the loss of spectral information caused listeners to bias their responses toward drop

sounds, particularly for strikes on metal/glass. This result supports those results of Warren

and Verbrugge (1984), who found that listeners discriminated bouncing and breaking events

without spectral cues, although their absence reduced discrimination sensitivity. However,

in our study, temporal scrambling destroyed action sensitivity entirely suggesting that listen-

ers are not able infer action information from spectral cues without temporal information.

We quantified the perceived similarity between action categories via the centroid of the

temporal envelope or the density of impacts, effectively also describing sensitivity in action

discrimination. These features summarizing the temporal evolution of the envelope may be

sufficient for recognition of events generated by continuous excitation such as rattle sounds.

Our temporal scrambling produced realistic rattle sounds suggesting that for these types of

continuous ’textural’ sound events, action perception may not rely on the exact temporal

envelope pattern, but can be captured by summary features (McDermott and Simoncelli,

2011).

The similarity and categorization data revealed related representations. Description of

this relationship, however, relied on acccurate model assumptions. As predicted by the formal

categorization models considered in this study, categorization performance was described

via a nonlinear mapping of the similarities and normalization. Since we used stimuli that

where highly discriminable for many category combinations, we found that a sharp decay

of the mapping function yielded better predictions. It was also important to retrieve the
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correct dimensionality of the data. For the similarity ratings, subject weighting in the MDS

procedure captured two separate dimensions related to the material and action category

information and these dimensions could then be used to predict categorization performance.

The fact that categorization can be deduced from similarity with these model assumptions

also suggests that they reflect related but not identical processes. This may also be suggestive

as to why previous studies have derived qualitatively similar sound source features from

similarity and categorization data but sometimes with only moderate linear correlations

between them (Giordano and McAdams, 2010; Gygi et al., 2007; McAdams et al., 2010).
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TABLES

TABLE I. Observed categorization confusion matrices for the population of subjects in each ex-

perimental condition. Rows correspond to stimuli and columns to response categories. Boldface

indicate correct responses. W=Wood; G=Glass; M=Metal; S=Strike; D=Drop; R=Rattle.

Experimental condition

Original sounds Spectral scrambling Temporal scrambling

W M G S D R W M G S D R W M G S D R

WS 80 0 0 80 0 0 12 58 10 47 32 1 76 3 1 3 7 70

WD 79 1 0 1 78 1 9 51 20 11 67 2 75 5 0 3 1 76

WR 80 0 0 1 13 66 3 62 15 0 26 54 79 0 1 0 2 78

MS 0 73 7 80 0 0 5 47 28 21 58 1 11 41 28 5 1 74

MD 0 58 22 5 75 0 2 63 15 5 73 2 2 60 18 0 2 78

MR 0 59 21 0 5 75 4 70 6 0 18 62 0 52 28 0 0 80

GS 1 11 68 80 0 0 4 48 28 22 58 0 2 11 67 12 0 68

GD 0 9 71 2 77 1 7 56 17 5 71 4 3 16 61 1 3 76

GR 0 6 74 1 6 73 4 66 10 2 29 49 0 14 66 0 0 80
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FIGURES

FIG. 1. Representation of perceptual similarity in two dimensions as found by multidimensional

scaling. Different marker shapes indicate the material category and different shading indicate the

action category. Solid lines visualize linear boundaries between material or action categories found

by linear discriminant analysis.

FIG. 2. Spectral envelopes and spectral centroid values (vertical lines) for different materials. The

two columns show examples of spectral envelopes for different action categories

FIG. 3. Examples of temporal envelopes (in pseudosones) for different actions. The vertical lines

indicate the position of the temporal centroids.

FIG. 4. Correlation between perceptual dimensions of the weighted MDS model and auditory

features. Above left: the material-related dimension compared to the spectral centroid. Above

right: the action-related dimension compared to the temporal centroid. Below: the action-related

dimension compared to event density

FIG. 5. Test of auditory features on a sound bank of 90 novel impact sounds. Horizontal and

vertical lines visualize the separation value between relevant categories that minimize the error

rate.

FIG. 6. Original (left) and scrambled (right) temporal envelopes for the different action categories
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FIG. 7. Average categorization performance for material and action categories in the different

experimental conditions. Chance performance is 33.3% correct (stippled line). Error bars indicate

1 S.E.M.

FIG. 8. GRT models fitted to the categorization data for the original sound set. Circles show the

contours of equal probability associated with the joint distributions of the perceptual effects. Lines

indicate decision bounds between response regions. The means of perceptual effects all fall in regions

associated with a correct response. (a) shows the fitted model with equal means, variances, and

decisions bounds across category combinations, and (b) shows the full model where all parameters

are free to vary.

FIG. 9. GRTmodels fitted to the categorization data with spectral scrambling (above) and temporal

scrambling (below)

41



−0.5 0 0.5

−0.5

0

0.5

Dimension 1

D
im

e
n
s
io
n
2

s tr ike
rattle
drop

glass
metal
wood



10 20 30
0

0.5

1

1.5

Drop

10 20 30
0

0.2

0.4

0.6

0.8
Strike

10 20 30
0.5

0.6

0.7

0.8

0.9
Rattle

Glass

10 20 30
0.5

0.6

0.7

0.8

0.9

A
m
p
li
tu

d
e

10 20 30
0.2

0.4

0.6

0.8

1

10 20 30

0.7

0.8

0.9

1

Metal

10 20 30
0.4

0.6

0.8

1

10 20 30
0

0.2

0.4

0.6

0.8

Center Frequency (erb-rate)
10 20 30

0

0.5

1

1.5

Wood



0 0.3 0.6
0

2

4

6

8
Glass

0 0.3 0.6
0

2

4

6
Metal

0 0.3 0.6
0

2

4

6

8
Wood

Strike

0 0.3 0.6
0

2

4

6

L
ev

el
(p

.s
.)

0 0.3 0.6
0

2

4

6

8

0 0.3 0.6
0

5

10

Drop

0 0.3 0.6
0

1

2

3

4

0 0.3 0.6
0

1

2

3

Time (s)
0 0.3 0.6

0

2

4

6

Rattle



16 18 20 22

−0.4

−0.2

0

0.2

0.4
r = .89

M
D
S
d
im

en
si
o
n
1

Spectral centroid (erb-rate)
0.1 0.15 0.2 0.25 0.3

−0.4

−0.2

0

0.2

0.4
r = .91

M
D
S
d
im

en
si
o
n
2

Temporal centroid (sec.)

0 5 10 15 20

−0.4

−0.2

0

0.2

0.4
r = .93

M
D
S
d
im

en
si
o
n
2

Event density

str ike
rattle
drop

glass
metal
wood



16 18 20 22

0.05

0.1

0.15

0.2

0.25

0.3

Spectral centroid (erb-rate)

T
em

p
o
ra

l
ce

n
tr
o
id

(s
)

strike
rattle
drop

glass
metal
wood



0 0.2 0.4 0.6
0

5

10

0 0.2 0.4 0.6
0

5

10

Strike

0 0.2 0.4 0.6
0

5

10

L
ev

el
(p

.s
.)

0 0.2 0.4 0.6
0

5

10

15

Drop

0 0.2 0.4 0.6
0

5

10

Time (s)
0 0.2 0.4 0.6

0

5

10

Rattle

Time (s)



0

30

70

100

R
e
sp

o
n
se

A
c
c
u
ra

c
y
[P

e
rc

e
n
t
C
o
rr
e
c
t]

Original
sounds

Spectral
scrambl ing

Temporal
scrambl ing

Material s
Actions



Material categories

A
ct
io
n
ca

te
g
o
ri
es

( a)
str ike
rattle
drop

glass
metal
wood

Material categories

A
ct
io
n
ca

te
g
o
ri
es

(b) str ike
rattle
drop

glass
metal
wood



Material categories

A
c
ti
o
n
c
a
te
g
o
r
ie
s

Spectral scrambling

strike

d rop

ratt le

w
o
o
d

g
la
ss

m
e
ta

l

s tr ike
rattle
drop

glass
metal
wood

Material categories

A
c
ti
o
n
c
a
te
g
o
r
ie
s

Temporal scrambling

rattle

str ik e

d rop

w
o
o
d

m
e
ta

l

g
la
ss

s tr ike
rattle
drop

glass
metal
wood


	Article File
	1
	2
	3
	4
	5
	6
	7
	8
	9

