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ABSTRACT

Transcriptional regulation of gene expression is a crucial process for the proper devel-

opment and functioning of an organism. The process of transcriptional regulation ensuring

the precise spatial and temporal expression of genes is carried out by proteins binding to

regulatory regions in the DNA. Identification of these regulatory regions is crucial for

understanding the patterns of gene expression regulation as well as for carrying out diag-

nosis and drug discovery for diseases occurring due to misregulation of genes caused by

mutations in the regulatory regions. In this thesis, we present and compare computational

methods based on regular hidden Markov models (HMMs), phylogenetic hidden Markov

models (phylo-HMMs), and support vector machines (SVMs) for the identification of cell

type specific regulatory regions using DNA sequence information from the genome of the

species in question and from the genomes of related species. While the regular HMMs and

SVMs only use DNA sequence information, the phylo-HMMs exploit sequence readout

as well as sequence evolution information to identify regulatory regions. In the process

of learning to identify regulatory regions, the models recognize highly discriminating se-

quence patterns indicative of regulatory function which are often either transcription factor

binding motifs or portions of transcription factor binding motifs. Each of the three models

has its shortcomings and on combining the predictions of two or more models; the models

can complement each other to overcome these shortcomings. For instance, when training

to identify GM12878 lymphoblastoid cell line specific regulatory regions in the human

genome, we noticed that combining the predictions of the SVM, the regular HMM, and

the phylo-HMM gave us the best results. Also, on comparing the highly discriminating
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six-length sequence patterns recognized by the regular HMM and phylo-HMM against the

database of known motifs we observed a total of 91 matches.
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ABRÉGÉ

La régulation transcriptionnelle de l’expression des gènes est un processus crucial

pour le bon développement et le bon fonctionnement d’un organisme. Le processus de

régulation transcriptionnelle assurant l’expression spatiale et temporelle précise des gènes

est réalisé par des protéines se liant aux régions régulatrices de l’ADN. L’identification

de ces régions régulatrices est cruciale pour comprendre les schémas de régulation de

l’expression génique, ainsi que pour effectuer le diagnostic et la découverte de médicaments

pour les maladies dues à une mauvaise régulation des gènes provoqués par des muta-

tions dans les régions régulatrices. Dans cette thèse, nous présentons et comparons des

méthodes de calcul basées sur des modèles de Markov cachés réguliers (HMM), des

modèles de Markov cachés phylogénétiques (phylo-HMM) et des machines à vecteurs

de support (SVM) pour l’identification de régions régulatrices spécifiques de type cellu-

laire du génome de l’espèce en question et des génomes d’espèces apparentées. Alors que

les HMM et SVM classiques n’utilisent que des informations sur les séquences d’ADN,

les phylo-HMM exploitent les informations sur les séquences ainsi que sur l’évolution des

séquences pour identifier les régions régulatrices. Dans le processus d’apprentissage pour

identifier les régions régulatrices, les modèles reconnaissent des motifs de séquence haute-

ment discriminants indiquant la fonction de régulation qui sont souvent soit des motifs de

liaison de facteurs de transcription, soit des parties de motifs de liaison de facteurs de tran-

scription. Chacun des trois modèles présente des lacunes et combine les prévisions de deux

modèles ou plus, les modèles peuvent se compléter pour surmonter ces lacunes. Par exem-

ple, lorsque nous nous sommes entraı̂nés à identifier les régions régulatrices spécifiques
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de la lignée cellulaire lymphoblastoı̈de GM12878 dans le génome humain, nous avons

constaté que la combinaison des prédictions du SVM, du HMM normal et du phylo-HMM

nous a donné les meilleurs résultats. En outre, en comparant les séquences de séquences

de six longueurs hautement discriminantes reconnues par le HMM ordinaire et le phylo-

HMM contre la base de données de motifs connus, nous avons observé un total de 91

correspondances.
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CHAPTER 1

Introduction

1.1 Molecular Biology Background

DNA, or deoxyribonucleic acid, found inside the cell is a long double stranded

molecule responsible for carrying genetic information. For simplicity it can be viewed

as a string over the alphabet set {A(adenine), C(cytosine), G(guanine), T(thymine)}. Each

element of this string is referred to as a base or nucleotide.

The information stored in the DNA contains the instructions needed for an organism

to grow, survive and reproduce. In order to carry out these functions proteins need to be

produced. A segment of the DNA that contains instructions to produce proteins is called

as a gene.

1.1.1 Gene Expression

The process of utilizing the information carried in a gene to produce a protein is

termed as gene expression. In eukaryotes gene expression involves 3 key steps, as shown

in Figure 1–1:-

1. Gene transcription, in which the gene is transcribed to a precursor messenger RNA

(precursor-mRNA).

2. RNA splicing, in which the introns are removed from the precursor-mRNA caus-

ing the precursor-mRNA to be converted to a mature messenger RNA. The gene

architecture in eukaryotes (Figure 1–2) is divided into regions called exons which

are interleaved with regions called introns. The introns are discarded from the gene
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Figure 1–1: Gene Expression in Eukaryotes

(Figure taken from [2])

through splicing and are thus not translated into proteins. On the other hand the

exons are translated into proteins. However, there are exons which are combination

of translated (coding sequence (CDS)) and untranslated regions [1], which occur at

the beginning and end of the gene called as 5’ and 3’ UTRs (untranslated regions).

3. Translation, in which the messenger RNA is translated to a protein.
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Figure 1–2: Eukaryotic Gene Architecture

(Figure taken from [3] )

1.1.2 Need for Gene Expression Regulation

Gene expression regulation is the term used to describe any mechanism employed

by the cell to enhance or repress the expression of a gene. The primary reasons for gene

expression regulation are stated below.

Cell Differentiation

The cells forming different tissues of the human body have the same genome but have

different functional roles. In order to fulfill these functions genes have to be selectively

turned on and off. For example, genes encoding proteins needed for the function of the

liver are turned on in the liver cells but are turned off in the heart cells.

Cell Division Control

Cyclin-dependent kinases (CDKs) are a family of protein kinases that are shown to

have a role in regulating cell division [4]. The regulation of CDK encoding genes in

turn leads to the regulation of cell division. Cell division is essential for long term tissue

survival as cells have a limited lifetime. The rate of cell division needs to be regulated as

different cells have different lifespans. For example, in humans red blood cells have an

average lifespan of four months, while white blood cells live on average for more than a

year [5].

3



Response to Environmental Changes

Gene expression is also altered in response to changes in the external environment or

in immune response to a disorder. For example, it is shown that humans produce different

amounts of skin pigment melanin depending on light exposure [6], and the gene producing

the protein S100A9 which plays a prominent role in regulation of immune response [7] was

recorded to be up-regulated in patients diagnosed with severe acute respiratory syndrome

(SARS) [8].

1.1.3 Gene Transcription

Gene transcription is the first step in the process of gene expression. It is depicted

in Figure 1–3 in which a gene is transcribed into precursor messenger RNA. This is the

process that lies at the heart of the problem addressed in this thesis. In this process one of

the DNA strands is used as a template strand to synthesize a complementary RNA (pre-

cursor messenger RNA) also called as the transcript of a gene. Transcription is done by an

enzyme called RNA polymerase that binds to the promoter of the gene. The promoter is a

fragment of DNA located upstream of the 5’ end of the gene. Once the RNA polymerase

is bound, the DNA double helix near the gene to be transcribed is unwound. The RNA

polymerase then walks along the template strand synthesizing the complementary RNA by

transcribing the complementary nucleotide to the RNA transcript for each nucleotide en-

countered along its walk. This synthesis originates from the transcription start site (TSS)

which is the location where the first nucleotide is transcribed into RNA. The RNA poly-

merase continues adding nucleotides to the RNA strand until it gets signals to stop. The

process of ending transcription is called termination, and it happens once the polymerase

transcribes a sequence of DNA known as terminator.

4



Figure 1–3: Gene Transcription

(Figure taken from [9])

1.1.4 Transcriptional Regulation

The RNA polymerase by itself is not equipped to recognize the TSS, and requires the

presence of other proteins called transcription factors (TFs). The TFs bind the DNA at

the promoter to form a complex thereby creating favourable conditions for the RNA poly-

merase to bind to the promoter forming another complex known as transcription initiation

complex (TIC). There are several players regulating the formation of the TIC and hence

regulating the transcription of the gene. These can be categorized into two broad sets: one,

the TFs that bind the DNA, and the other that are a part of the DNA called as cis-regulatory

regions or just regulatory regions.
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1.1.5 Transcriptional Regulatory Factors

The rate of transcription is a result of the combined effect of gene activating and

repressing mechanisms carried out by the regulatory factors.

Transcription Factors

Transcription factors (TFs) are proteins that control the rate of transcription of genes

to precursor messenger RNA, by binding to specific DNA sequences. A census carried

out on TFs in humans documents the presence of 1391 manually curated TFs and also

speculates the presence of a total of 2000 - 3000 TFs [10].

The TFs bind DNA segments usually 5-15 bases long called transcription factor bind-

ing sites (TFBS). A set of TFBS for a TF is defined as a motif. The TFBS are a part of

either the promoter region of a gene or enhancer regions, which are either in the introns

or are further away from the TSS of the target gene than the promoters. They can be up

to a distance of 1 million bases from the TSS either upstream or downstream of the target

gene [11]. As mentioned earlier the TFs bind in a sequence-specific manner and a com-

mon way to represent binding specificities of a TF is by using a position weight matrix

(PWM) [12] with each position in the binding site modelled as a multinomial distribution

over the four nucleotides. A PWM for a particular TF is usually built by using SELEX

[13] experiments.

The function of TFs is to regulate, i.e. turn on, and turn off genes to ensure that they

are expressed in the right cells at the right time and in the right amount [14]. The TFs can

be functionally classified as:

1. Activators: TFs that bind the DNA at promoters or at enhancers of a gene and acti-

vate transcription by attracting the TIC.
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2. Repressors: TFs that inhibit the transcription of a gene. There are several ways in

which this might be achieved. For example, the repressor may have the same binding

preference as an activator and compete with it for binding sites. It is important to

note that a repressor of one gene may act as an activator of the other gene.

There are also non-DNA binding proteins that assist the activators and repressors in

gene expression regulation and are called as co-activators and co-repressors.

• Co-Activators: Non-DNA binding proteins, some of which act as a bridge between

different activator proteins and help facilitate TIC formation while others help the

activators to access their binding sites on the DNA.

• Co-Repressors: Non-DNA binding proteins that inhibit transcription. One of the

common ways is to bind to an activator or to the TIC directly in order to inhibit their

activity.

Transcription factors are modular in structure as can be seen from Figure 1–4 and

these modules are called protein domains. A protein domain is a conserved part of a given

protein sequence and structure that can evolve, function, and exist independently of the

rest of the protein sequence. As described in [14], the protein domains that TFs contain

are:

• DNA-binding domain (DBD), which attaches to specific sequences of DNA either

in the promoter or enhancer regions of the regulated genes.

• Trans-activating domain (TAD), which contains binding sites for other proteins such

as transcription co-activators and co-repressors. These binding sites are referred to

as activation functions (AFs).
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Figure 1–4: Structure of a TF

(Figure taken from [15])

• An optional signal-sensing domain (SSD), which senses external signals and, in re-

sponse, transmits these signals to the rest of the transcription complex, resulting in

up or down-regulation of gene expression. Also, the DBD and signal-sensing do-

mains may reside on separate proteins that associate within the transcription com-

plex to regulate gene expression.

Cis-Regulatory Regions

Cis-regulatory regions are portions of the DNA that harbour activators or repressors.

They can be divided into the following classes:

1. Promoters: Promoters are found upstream of 5’ end of the gene and are limited to a

few hundred bases. These contain binding sites for the TFs that develop favourable

conditions for binding of the RNA polymerase and also contain binding sites for

other activators.

2. Enhancers: Enhancers are regions that are about 50 to 1500 base pairs in length

containing binding sites for activators and are far away from the TSS of the target

gene than the promoters. Their location with respect to the target gene (or genes)

is highly variable. The identification of enhancers has been more challenging than

8



that of promoters. To identify promoters, regions upstream of the 5’ end of the

genes upto a few hundred bases need to be scanned instead of the entire genome.

Also, the enhancers are not necessarily associated with the regulation of the closest

gene and in some cases have been found to affect the regulation of multiple genes.

Similarly, it is not uncommon for a gene to rely on contributions from multiple

enhancers for its spatial and temporal regulation [16]. In fact mammalian genomes

contain around 20,000 genes and an estimate of approximately 1 million enhancer

sequences bringing the calculation to 4 enhancers per gene per cell type [17]. The

mechanism that best explains how enhancers affect gene expression even from a

distance of up to a million bases is that of enhancer-promoter looping, which is

depicted in Figure 1–5. The DNA sequence in the cells, though often depicted as a

linear sequence of nucleotides for simplicity is actually packaged tightly as a ball of

yarn around nuclear proteins. The complex of DNA and nuclear proteins is termed

as chromatin. Chromatin is a flexible polymer that can reorganize to form loops

leading to enhancer promoter interaction in the right tissue at the right time [18].

The transcription factors bound to the promoters and enhancers interact with each

other directly or through a co-activator. This increases the local concentration of

transcription factors in the vicinity of the gene enhancing its expression [11].

3. Silencers: As the name suggests silencers are regulatory regions that have an in-

hibiting effect on transcription. Like enhancers these may be located thousands of

bases away from the target gene, and contain binding sites for repressors.
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Figure 1–5: Enhancer-Promoter loop

The top portion shows the DNA in a linear fashion showing different components such as

enhancers, promoters and genes. The lower portion of the figure shows the

enhancer-promoter interaction due to looping. Different colours are used to make the

mapping between the top and the bottom portion more clear (Figure taken from [19]).
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1.1.6 Tissue Specificity of Regulatory Regions

As mentioned earlier in section 1.1.2, a cell has only a limited subset of its genes

expressed. This subset depends on the cell type. This occurs owing to the fact that dif-

ferent tissues have different functional roles and to fulfill these functions genes need to be

selectively expressed. As TFs are involved in the regulation of genes differential cell type

specific gene expression is carried out by regulating selective binding of TFs to the DNA.

The selective binding of TFs leads to only a subset of the cis-regulatory regions being

functionally active. Hence, in a given cell type only a subset of the cis-regulatory regions

are active. Based on a comparative study of gene expression, TF binding, and chromatin

structure has revealed that chromatin structure plays the major role in differential binding

of TFs [20]. A nucleosome is a subunit of chromatin where the DNA is wound around

a set of eight proteins called histones. Each nucleosome takes up less than two turns of

the DNA comprising of around 146 bases [21]. In a simplified way a nucleosome can be

thought of as a cylinder with the DNA wound around it like a string. The DNA that is in

the nucleosomes is generally inaccessible for the TFs to engage, making the cis-regulatory

regions that fall in the nucleosomes inactive. What leads to cell-specific gene expression

is the organization of the chromatin in different cells. The active re-arrangement of nu-

cleosomes causing chromatin reorganization is carried out by pioneering factors which

are special TFs that have the ability to bind nucleosomal DNA. Figure 1–6 shows the pi-

oneering factor binding the nucleosomal DNA and opening up the chromatin, making it

accessible to the other TFs.
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Figure 1–6: Opening up of Chromatin by Pioneer Factor

(Figure taken from [22]).
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1.1.7 Sequence Conservation

All present day organisms have descended from a single common ancestor and their

genetic sequences have evolved from ancestral sequences. The species are different due

to the mutations accumulated in their DNA sequences. The mutations include deletions

(removal of one or more bases from the DNA sequence), substitutions (replacement of a

base by another base), and insertions (one or more bases added to an existing DNA se-

quence). Mutations may have positive effects or negative effects in the form of increase

or decrease in the survival and reproduction rate, or be neutral. Selection is the power-

ful mechanism in evolution through which the variations produced by the mutations get

filtered. The increase in survival and reproduction rates associated with positive changes

enable the individuals having them to have a higher number of offsprings, in turn, causing

these positive changes to be preserved, while the opposite happens in case of the negative

changes and they are eventually removed from the population. Mutations in the func-

tional regions such as genes and regulatory regions more often than not have negative

impact, putting these mutations under negative selection whereas on the other hand neu-

tral mutations accumulate in the non-functional regions. As a result the sequences of the

non-functional regions become increasingly dissimilar as the evolutionary distance grows.

Genes on the other hand are highly conserved amongst the species and hence many gene

finding techniques have taken the approach of comparing orthologous sequences among

multiple species [23]. Regulatory regions are a little tricky to deal with when it comes to

sequence conservation mainly due to three reasons. Firstly, the effect of mutations occur-

ring in regulatory regions may vary, some of the mutations may only have a subtle effect

such as change in the gene expression levels while others may disrupt the function of the
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region by changing or deleting a TFBS resulting in variations that are deleterious making

them subject to negative selection. Secondly, sequence conservation may not be a must

for the conservation of transcriptional regulation as TFs exhibit some flexibility in the un-

derlying sequence of the sites they bind, and sometimes changes in the relative ordering

and spatial relationship of binding sites do not result in loss of functionality [24, 25]. Even

though it has been shown that sequences that are conserved over large evolutionary dis-

tances are more likely to be functional than those which are conserved over short distances

[26], sequence conservation does not guarantee that the sequence is functional.

1.2 Biomedical Importance of Regulatory Regions

This thesis addresses the problem of identifying regulatory regions in the human

genome. The problem is worthy enough for the purpose of disease diagnosis and drug

discovery as many findings have shown a link between mutations in the regulatory regions

in humans and many diseases [25]. These diseases may be hereditary or non-hereditary

in nature depending on whether the causal mutation in the regulatory region belonged to

the type germline or somatic. Germline mutations are mutations that may be transmit-

ted to an offspring as they occur in the germ cells. Germ cells are cells that become sex

cells also known as gametes. An instance of a hereditary disease shown to be linked with

germline mutations in the regulatory regions is β-thalassemia, an inherited blood disorder

that reduces the production of hemoglogin [27]. β-thalassemia is shown to be linked with

mutations in the promoter of the β-globin gene causing disturbance in its expression [28].

Another hereditary disease shown to be linked with germline mutations is pyruvate ki-

nase deficiency, an inherited disorder characterized by lack of the pyruvate kinase enzyme

which is used by red blood cells. Due to the lack of pyruvate kinase enzyme the red blood
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cells break down easily, leading to lower populations of these cells [29]. Pyruvate kinase

deficiency is shown to be linked with mutations in the promoter of the PKLR gene [25].

On the other hand several non-hereditary diseases have been linked to somatic mutations

in the regulatory elements. Somatic mutations unlike germline mutations do not occur in

the germ cells and are not propagated to an offspring. Mutations in the promoter of the

erythropoietin gene is shown to cause severe diabetic eye and kidney complications [30].

1.3 Experimental Approaches to Identify Regulatory Regions

There are several experimental approaches developed for identifying regulatory re-

gions. Here, we discuss the two major high-throughput genome-wide approaches.

1.3.1 High-Throughput ChIP Experiments

Chromatin Immunoprecipitation (ChIP) [31] experiment is an experiment for probing

protein-DNA interactions within the cell. It can be used to identify multiple genomic

regions associated with a protein. The procedure for the ChIP experiment is as follows:-

1. The DNA and the interacting protein are cross-linked using a reversible cross-

linking agent such as formaldehyde. This preserves the DNA-protein interactions.

2. The DNA-protein complexes are fragmented into fragments of approximately 500

bases by sonication.

3. The fragments of chromatin are then immunoprecipitated using antibodies specific

to the particular protein. This will cause the fragments associated with proteins to

be co-precipitated.

4. The cross-links between the protein and the DNA are reversed to get the DNA that

was interacting with the protein.
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The sequence of the DNA segments that were interacting with the proteins can be

determined by either using microarrays (ChIP-chip) [32] or by using next-generation mas-

sively parallel sequencing (ChIP-Seq) [33, 34]. Both ChIP-chip and ChIP-seq experiments

have been used to identify DNA regions in different organisms and cell types that are

bound by several TFs on a genome wide basis. As the regulatory regions contain binding

sites for multiple TFs, the aggregation of results of ChIP-chip and ChIP-seq experiments

conducted for several TFs on a cell type is used as a representation of the regulatory re-

gions in that cell type.

1.3.2 Assays Identifying Open Chromatin

The portions of the DNA present in the nucleosomes do not harbour binding sites for

TFs and hence detecting the nucleosome free regions of the chromatin, also called open

chromatin, can be useful for identifying regulatory regions. These assays are useful in

scenarios when the DNA binding proteins are not known or the antibody is not available.

DNASE-seq is one such approach. In DNASE-seq an enzyme called deoxyribonuclease

(DNASE) is used to digest the open DNA, also called as DNASE-I hypersensitive sites.

The mapping of the DNASE-I hypersensitive sites across the entire genome is done using

next generation high-throughput sequencing technologies such as Illumina or Solexa [35,

36].

The experimental approaches discussed in this section have limitations in the form

of the cost of the experiments, the number of TFs whose motifs can be profiled, and

the number of different cell types for which the experiments can be carried out. Due

to these limitations computational approaches towards handling the task of identifying

cis-regulatory regions are an invaluable asset to the researchers.
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1.4 Literature Review

The problem of computationally identifying regulatory regions has been approached

in many different ways in the past. This section summarizes these approaches. The dif-

ferent approaches can be categorized based on the pieces of information they leverage to

handle the task of identifying regulatory regions.

1.4.1 Using Densities of Transcription Factor Binding Sites

The computational tools in this category view regulatory regions as clusters of TFBS

and use the already profiled motifs of TFs to identify clusters of TFBS in the DNA se-

quences. The crux of the methodology of these tools can be explained in two steps. Firstly,

the DNA sequence is scanned for matches to PWMs of multiple TFs to find putative TFBS,

and a score is assigned to the regions within the sequence based on a statistical measure

of the significance of density of TFBS. Secondly, an attempt to filter out the regions that

are spurious hits that occur just by random chance is made by setting a threshold upon the

calculated score [25]. MCAST, a tool presented in [37] identifies regions with clusters of

binding sites in a given DNA sequence by analyzing a window within the sequence whose

length is specified by the user. The window is slid over the DNA sequence by a user-

specified step-size. The putative TFBS or hits within the window are identified using the

PWMs for multiple TFs. MCAST scores a window having multiple hits by undertaking

the following steps. Firstly, it calculates the P-values for each hit for individual TF based

on the local nucleotide distribution of the sequence within the window. The P-value of

an individual binding site is equal to the expected frequency of equivalent or better sites

in a random sequence having a similar nucleotide composition as that of the sequence in

the window. Secondly, combined single hit P-values for multiple TFs are approximated
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as upper bounds. Thirdly, scores for all k-hits within the window are calculated. A k-hit

is defined as a set of non-overlapping k hits within a window, where k is a user-defined

parameter signifying the least number of hits required for the window to be a contender

for a regulatory module. The score of a k-hit is defined as the maximum of the P-values

p1, p2, ..., pk of the k non-overlapping hits as the requirement is that all the P-values should

be small. The k-hit score for the entire window is taken as the minimum of all the k-hit

scores for that window. Finally, if the k-hit score of the window is below the decided

threshold, then the window is reported as a regulatory region.

The work presented by Lifanov et al. in [38] which aimed at predicting regulatory

regions associated with the developmental genes in the Drosophila genome involved the

identification of homotypic clusters of binding sites, i.e. binding sites for a single TF as

opposed to finding heterotypic clusters of binding sites from multiple TFs. This choice

relied on the results presented in the earlier works [39]. The data required for building

the classifier included known TF binding motifs to construct the PWMs, set of known

cis-regulatory regions, and known regulatory interactions. The methodology comprised of

counting the number of binding sites in a sliding window over the genome and evaluating

the significance of the clusters in the form of an E-value by adopting a view that the number

of PWM matches in a window follows a Poisson distribution [40].

Blanchette et al. [41] leveraged the fact of sequence conservation and shifted the

focus from detecting regulatory regions associated with a particular set of genes to pre-

dicting a global map of regulatory regions for the entire human genome. The data used to

fulfill this task included a total of 481 PWMs representing the binding affinities of a total

of 229 TF families from the TRANSFAC database [42], and the genome-wide alignment
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of the human, mouse, and rat genomes produced using the MULTIZ program. The regions

from all the three genomes within the MULTIZ alignment blocks were scanned for PWM

matches against all the PWMs, and the log-likelihood ratio scores were calculated, then

for every alignment column, the hit scores across the three genomes were combined as a

weighted sum. The human genome being the one whose regulatory map was to be un-

covered was understandably given more weight than the hit scores of the positions from

the other two genomes. The alignment columns with hit scores less than a threshold of

10 were discarded and then the scores for the regions were calculated. The score for a

region lying a between alignment columns p1 and p2 under the PWM m was taken as the

sum of the hit scores of the non-overlapping hits occurring within the region. Following

this, P-values were calculated for the score of every region under every PWM, also tak-

ing into consideration the GC content and the length of the region. Finally, the candidate

regulatory modules were viewed as consisting of hits from a range of one to five PWMs

of the 481 PWMs and were assigned module scores by taking the negative of the log of

the P-value for the event that a module consists of hits from k PWMs, where k lies within

the range from one to five. The number k for a region was selected to be the one which

recorded the highest statistical significance.

1.4.2 Using Combinatorial Effects of Transcription Factors

As discussed in section 1.1.5 gene expression regulation is a result of co-operative

and competitive binding of TFs and hence identifying regulatory regions as by treating

them as combinatorial patterns of TFBS has been a widely adopted approach. Wasserman

and Fickett [43] employed logistic regression analysis (LRA) to predict skeletal muscle-

specific regulatory regions in humans. A set of TFs regulating the gene expression in the
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skeletal muscle cells was recognized, and their PWM match scores were used as features

to train the LRA model. The same approach was later used to identify liver-specific reg-

ulatory regions with an additional step of filtering aimed at reducing the number of false

positive predictions and improving specificity [44]. The filtering step involved the selec-

tion of predicted regions conserved between orthologous human and rodent sequences.

A large portion of this category is dominated by a family of probabilistic methods, all

of which implement a hidden Markov model (HMM) to identify regulatory regions. They

model the regulatory regions as being generated by a combination of binding sites. One of

the first members of this family is the tool Cister [45] which uses posterior decoding to find

for every position in a queried DNA sequence, the likelihood of being in the ’motif’, ’inter-

cluster background’, and ’intra-cluster background’ states. The emission probabilities for

the motif states are evaluated from the nucleotide frequency matrices of TFs provided as

input, whereas for the background states the emission probability values are estimated at

runtime based on the frequency of the nucleotides found in a window surrounding the

position in question. Cister was applied on the muscle data and was found to perform at

least as well as the LRA method of Wasserman and Fickett [45].

Cluster-Buster [46] learns two separate HMMs given a set of frequency matrices for

the TFs, and a queried sequence. One of them known as the motif cluster model, models

the regulatory regions, and the other models the background DNA. To decide whether a

subsequence within a queried sequence is a regulatory region or not, the likelihood of the

subsequence as per both models is compared using the log odds ratio. The motif cluster

model assumes that in a regulatory region the motifs occur randomly following a uniform

distribution, whereas the background model is based on the assumption that nucleotides
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occur randomly and independently with probabilities estimated from their frequency of

occurrences in the neighbourhood of the queried position in the sequence. Cluster-Buster

locates regulatory regions in a given input sequence by following a three-step algorithm

described in [46].

Stubb [47] learns an HMM using the expectation-maximization technique to detect

regulatory regions given the PWMs of a set of TFs. Along with the usual parameters of

an HMM, Stubb also learns correlations between binding sites, and it does so by learning

a history-conscious HMM. The choice for this variant was guided by the knowledge that

some TFs in order to be functional need to interact with other TFs with the help of co-

factors, and there were instances observed when modules predicted by the computational

methods available then were reported as non-functional, probably because something in

the arrangement of the binding sites was not proper. The process at every step either emits

a motif of one of the TFs or emits the background motif. The probability of a motif also

known as subsequence probability is calculated by using the entries of the weight matrices

and is an important part of the computation required for training the HMM. StubbMS is an

extension applied to Stubb. It compares sequences from multiple species to improve the

detections of regulatory regions. StubbMS finds fixed alignment between species based

on sequence similarity using Lagan [48] or DiAlign [49] depending on whether two or

more than two species are used. The rest of the procedure for training the HMM remains

the same except for the calculation of the subsequence probabilities for the motifs falling

within the aligned blocks, which are calculated based on an evolutionary model that as-

sumes that all the bases evolve independently at equal rates, and that the probability of

fixation of a mutation is proportional to the values present in the PWMs.
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Sinha et al. presented MORPHMS [50] that is similar to their previously designed

tool StubbMS [47] but overcomes one shortcoming of StubbMS, and consequently per-

forms better. StubbMS uses LAGAN [48] to compute the alignment between two species

and assumes this alignment to be correct, whereas MORPHMS aligns the DNA sequences

using a probabilistic approach. A pair-HMM similar to the one used by Holmes and Durbin

[51] is used to compute the alignment. This allows the uncertainty in the alignment to be

accounted for.

EEL [52] is a computational tool which was developed with the same agenda as

MORPHMS, to combine both sequence alignment and detection of cis-regulatory regions.

EEL first scans a pair of given orthologous sequences to locate all the putative binding

sites and then uses the Smith Watermann local alignment algorithm [53] to align the bind-

ing sites. The scores assigned to the regions are based on binding site clustering, affinity

of binding sites, and conservation. To account for the clustering factor, a negative score

is added to the total score for the increased distance between adjacent binding sites and

a positive score is added for the conserved binding sites based on their binding affinities.

In order to account for the fact that true affinities of binding sites are not only dependent

on the underlying sequence but also on the secondary interactions between TFs required

for their cooperative binding, EEL adds correction factors which approximate the maxi-

mum free energy lost due to the loss of interactions between TFs caused by insertion of

sequences between adjacent binding sites. This loss in free energy is approximated as the

energy required to twist or compress DNA sequences of different lengths such that similar

3-D positions for both the pairs of TFs is achieved.
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1.4.3 Motif Blind Techniques Using Sequence

Motif blind techniques do not use motifs of TFs to detect regulatory regions. These

techniques use the underlying DNA sequence information to identify regulatory regions

with some of the techniques also using other information such as sequence conservation.

In the process of identifying discriminatory sequence patterns, these techniques often end

up discovering motifs or portions of motifs of TFs. This is commonly named as the De

novo discovery of binding sites. Elnitski et al. in their work presented in [54] computed

Regulatory potential (RP) scores of regions to discriminate regulatory DNA from neutral

DNA. The computation of RP scores takes into account both the underlying DNA sequence

information as well as sequence conservation into account. Two different Markov models

are learned, one to model the regulatory DNA, and the other to model the neutral DNA.

These Markov models run along an alignment rather than along a single DNA sequence

and the RP score for a region is given by the log-odds ratio from the learned Markov

models. However, choosing the parameters of the Markov models is tricky especially with

the increase in the number of species in the alignment. In [54] a fifth order Markov model

along with a 5-symbol alphabet (matches of As and Ts, matches of Cs and Gs, substitutions

comprising A and G or C and T called transitions, substitutions comprising A and T or C

and G called transitions, and columns containing a gap) recorded the best performance

on the human-mouse alignment, whereas in [55] for the three-way human, mouse, and rat

alignment, a second order model using a more complicated 10-symbol alphabet performed

the best.

CisModule [56] presented by Zhou and Wong aims at the detection of TFBS, motif

patterns, and cis-regulatory regions by using hierarchical mixture modeling with Bayesian
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inference. It uses a two-level hierarchical mixture model. At the first level, the sequences

are modeled as a collection of regulatory regions of a user-specified length, interspersed

with background sequences while the second level views the regulatory regions as a mix-

ture of motifs, and inter-regulatory background regions.

HexDiff [57] counts the frequency of hexamers within a known set of regulatory

regions, and a set of control sequences provided as training data. It then finds the most

discriminating hexamers and these selected hexamers are then used for building a linear

model to predict regulatory regions in new sequences. The idea behind this which was

also validated by the authors was that the highly discriminating hexamers are mostly parts

of sequence signatures of the binding sites found in the regulatory regions.

Kmer-SVM [58] uses support vector machine (SVM) classifier to classify DNA se-

quences. It trains an SVM classifier using a set of known regulatory regions as the positive

set, and a negative set containing sequences that match the positive sequences in terms of

GC dinucleotide content, length, and repeat fraction. The input features to the SVM clas-

sifier are a set of k-mers. As a result of the training process, weights are assigned to the

k-mers signifying their power in discriminating between the sequences from the positive

and the negative set. It offers a choice of two kernels to compute the similarity among se-

quences required by the SVM classifier: the spectrum kernel, and the weighted spectrum

kernel.

1.4.4 Integrative Approaches

The computational tools falling under this category use a combination of more than

one of the previously defined approaches. The computational tool CLARE [59] uses both,

a set of known TF PWMs from the TRANSFAC [42] and JASPAR [60] databases as well
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as de novo binding sites. The input to the CLARE program is a set of cis-regulatory se-

quences. CLARE then proceeds to build a classifier. A control set is created by sampling

regions from the non-coding portions of the human genome ensuring the balance between

the positive and negative datasets in terms of length and GC content so that the classifier

does not learn to differentiate between the two sets solely on the basis of GC content. After

this, feature vectors are created for all the sequences from both the sets by scanning for

matches using the known PWMs as well as 10 over-represented motifs found in the posi-

tive set using the PRIORITY [61] tool which employs Gibbs sampling. Once the feature

vectors are prepared, they are used to train a linear LASSO machine learning classifier to

predict regulatory regions.

The EnhancerFinder [62] tool for the task of identifying tissue specific regulatory

regions uses a variety of data that captures details about sequence conservation, DNA

sequence in the form of K-mer counts, chromatin accessibility in the form of histone mod-

ifications, and TF bindings. It uses different kernel functions for different feature data,

and then a weighted combination of these kernel functions is learned using a multi kernel

learning (MKL) classifier. EnhancerFinder employs a two step method. At the first step,

an MKL classifier is used distinguish enhancers from the background DNA on a genome-

wide basis, and at the second step, an MKL classifier is used to map the predicted regions

to specific tissues in which they are functional. The authors compared the performance of

EnhancerFinder against the performance of CLARE [59] and found it to be significantly

better.

Blatti and Sinha et al. in their work in [63] approached the problem of identifying cell

type specific regulatory regions by using data of gene expression, low resolution chromatin
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accessibility, and TF-DNA binding specificities in the form of motif scores. They were

able to build reliable models applicable for genome-wide prediction for more than 70

expression domains in the Drosophila embryo. Expression domains can be seen as cell

types and different stages of development of the embryo describing the patterns of gene

expression.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows:

In Chapter 2, first a bird’s eye view of the problem is given. Then the three machine

learning methods, namely, hidden Markov models (HMMs), phylogenetic hidden Markov

models (phylo-HMMs), and support vector machines (SVMs) are described along with

the reasons for using them in this work. To set the premise for discussing phylo-HMMs,

multiple sequence alignment, ancestral reconstruction, and phylogenetic models are also

discussed.

In Chapter 3, firstly, the data used in this work followed by the data preprocessing

steps are defined. Secondly, the problem statement is defined formally in terms of the

data. Finally, the specific details of the machine learning models built are described.

In Chapter 4, the results obtained by the different machine learning models are com-

pared and analyzed.

In Chapter 5, we start off by summarizing our work and describe how it can be use-

ful to other researchers. Then we discuss what future extensions to this work can prove

beneficial.
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CHAPTER 2

General Overview of Methods

The problem statement associated with this thesis will be discussed in detail in the

next chapter. However, here before discussing the general overview of the methods we

would like to give a bird’s eye view of the problem statement. The aim is to build models

that can computationally label cell type specific regulatory regions of a given genome

using the DNA sequence information of that genome and genomes of related species. This

is basically an instance of the problem of sequence labelling or sequence tagging which

involves the assignment of a categorical label to each member of a sequence of observed

values [64].

2.1 Hidden Markov Models

The machine learning algorithms dealing with sequence labelling tasks usually do

not assign labels to observations by treating them as independent quantities but also take

into consideration the effect of the nearby observations. Many of the machine learning

models generally used for sequence labelling are probabilistic in nature. Hidden Markov

models (HMMs) are popular probabilistic sequence labelling classifiers. They are used in

situations where the data is a sequence of units or observations depending probabilistically

on the state of a stochastic system or process. A general way of saying this is that the

observations are emitted from a state. The true state of the system is not available and is the

latent or hidden causal variable that needs to be inferred. The way an HMM works is that at

any index i = 0, 1, 2, ... the system is in some latent state S i = s and it stochastically emits
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an observation Oi = o based only on s. The system then probabilistically transitions to a

new state S i+1 according to a probability distribution P[S i+1|S i] and the process continues

in this manner. The first order HMM which is used in this work is based on two simplifying

assumptions. First, as shown in equation 2.1 the probability of transitioning to a state at

the next index only depends on the state at the current index and not on the states visited

by the system before. This is called as the Markovian assumption.

P[S i+1|S i, S i−1, S i−2, ...] = P[S i+1|S i] (2.1)

Second, as depicted in equation 2.2 the observation Oi emitted by state S i only depends on

the state S i and is independent of all other states and observations. Later, we will see how

this condition has been relaxed to a certain extent to better suit the problem at hand.

P[Oi|S 0, ..., S i, S i+1, ...,O0, ...,Oi,Oi+1, ...] = P[Oi|S i] (2.2)

The index i = 0, 1, 2, .. mentioned earlier can represent a time slice if the process

is running through time or can be a position if the process is running through space, for

example, along the length of a DNA sequence emitting nucleotides as observations.

The finite first order variant of HMM used in this work can be defined as a 5-tuple

model which consists of:

• S− finite set of states

• O− finite set of observations

• State Transition Probabilities −Ps,s
′ = P[S i+1 = s

′

|S i = s], ∀s
′

, s ∈ S . This is

represented concisely in the form of a transition matrix T of size |S | × |S |, where the
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jth row gives the multinomial distribution for the next state over all the states in S

given the current state is j.

• Observation Emission Probabilities −bs,o = P[Oi = o|S i = s],∀o ∈ O and s ∈ S

which are stored in an emission matrix E of size |S |× |O|, where the jth row gives the

multinomial distribution over all the observations in O given the system is in state j.

• Π− Initial state probability vector, where Π j is the probability for the HMM to start

at state j

The model of the HMM just described above can be used to generate a sequence of

observations(O0,O1,O2, ...,OL−1) of length L in the following way:

1. Set i = 0 and pick an initial state S 0 as per the initial state probability vector Π.

2. As per the emission probability distribution for the state S i emit an observation Oi.

3. Transit to a state S i+1 chosen randomly from the transition probability distribution

given by the current state S i.

4. Set i = i + 1. If i < L then goto step 2, else exit.

Keeping this vision of the HMM as a generative model three basic problems that make

HMMs relevant to real world applications can be solved. These problems are discussed in

the following subsection.

2.1.1 Inference and Learning Problems

Decoding: Finding the most likely state sequence

The decoding problem puts forward the objective to find the sequence of states that

best explains a given observation sequence O0,O1,O2, ...,OL−1 .

arg max
S 0,...,S L−1

P[S 0, S 1, ..., S L−1|O0,O1, ...,OL−1] (2.3)
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The Viterbi algorithm [65] is used to solve the decoding problem. The state sequence

returned by the Viterbi algorithm is called as the Viterbi path. The running time of the

Viterbi algorithm is O(|S |2 · L)

Posterior Decoding

In posterior decoding the aim is to find the posterior probability of the process being

in state s at some ith index for the sequence O0,O1,O2, ...,OL−1, given mathematically as

P[S i = s|O0,O1, ...,OL−1]. This helps us in finding the posterior distribution at index i over

all the states, and the maximum a posteriori probability and hence the most likely state can

be found out by simply taking the maximum over all these posterior probabilities.

The posterior decoding problem is addressed using the forward-backward algorithm

[66]. The output of the forward-backward algorithm consists of a vector of size |S | for

every position of the input observation sequence representing the posterior predictive dis-

tribution over all the states at that position. The output of the forward-backward algorithm

is often more useful than the Viterbi algorithm as it gives a quantitative measure of confi-

dence in the predictions made, as opposed to a single label, allowing one to filter the results

as per the required confidence threshold. The running time of the forward-backward algo-

rithm is O(|S |2 · L)

Learning of Model Parameters

There are two main approaches for learning the model parameters for an HMM

from given data: the Baum-Welch algorithm [67] and maximum likelihood learning from

complete trajectories. The Baum-Welch algorithm is effective for learning the HMM pa-

rameters when data consists of observation sequences and the information regarding the
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state paths for these sequences is missing. The Baum-Welch algorithm is an expectation-

maximization (EM) algorithm, and is described below.

Given an observation sequence O0,O1, ...,OL−1, the Baum-Welch algorithm learns

the model parameters of the HMM, namely the state transition probabilities, the emission

observation probabilities, and the initial state probabilities. It does so by running an EM

procedure that aims at maximizing P[O0,O1, ...,OL−1] w.r.t. the model parameters. It

starts with an initial guess for the model parameters and then repeats the following EM

procedure until convergence:

• E-step:

1. Compute P[S i = s|O0,O1, ...,OL−1],∀s ∈ S and 0 ≤ i < L using the forward-

backward algorithm [66].

2. Compute P[S i = s, S i+1 = s
′

|O0,O1, ...,OL−1],∀s, s
′

∈ S and 0 ≤ i < L − 1.

• M-step:

1. Compute Πs = P[S 0 = s|O0,O1, ...,OL−1],∀s ∈ S using the forward-backward

algorithm [66].

2. Compute state transition probabilities ∀s, s
′

∈ S as follows:

Ps,s
′ =

Expected # s to s
′

transitions

Expected # transitions from s

=

L−2∑
i=0

P[S i = s, S i+1 = s
′

|O0,O1, ...,OL−1]

L−2∑
i=0

P[S i = s|O0,O1, ...,OL−1]

(2.4)
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3. Compute observation emission probabilities as follows:

bs,o =
Expected # o emitted from s

Expected # occurrences of s

=

L−1∑
i=0

1{Oi = o} · P[S i = s|O0,O1, ...,OL−1]

L−1∑
i=0

P[S i|O0,O1, ...,OL−1]

(2.5)

Note that here we have described the Baum-Welch algorithm for the case when we have

only one observation sequence but the algorithm can be easily extended to accommodate

for the case when multiple observation sequences are available. Like all EM algorithms,

the Baum-Welch algorithm is vulnerable to getting stuck in local optima and hence running

the Baum-Welch algorithm multiple times with a different set of initial parameters, and

then picking the best solution among the results of these runs is a common practice. The

time complexity for one EM iteration of the Baum-Welch algorithm is O(|S |2 · L).

When we have data in the form of trajectories that contain observation sequences

along with their true state paths then instead of running an EM algorithm, we can learn

model parameters that maximize the likelihood of the given data by using the procedure

defined below.

Given a set ξ of n sample trajectories, with the kth trajectory of the form ξk =

(S k
0
,Ok

0
), (S k

1
,Ok

1
), ..., (S k

Lk−1
,Ok

Lk−1
) that includes both observation and true system state,

the maximum likelihood estimation of the parameters of the HMM can be calculated as

shown through equations 2.6 to 2.8. For simplicity of notation ξk(S i) and ξk(Oi) are used

to refer to the state and observation at the ith state of the kth trajectory.
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Πs =
# trajectories starting in s

n
=

n−1∑
k=0

1{ξk(S 0) = s}

n
(2.6)

Ps,s
′ =

# s to s
′

transitions

# transitions from s
=

n−1∑
k=0

Lk−2∑
i=0

1{ξk(S i) = s, ξk(S i+1) = s
′

}

n−1∑
k=0

Lk−2∑
i=0

1{ξk(S i) = s}

(2.7)

bs,o =
# o emitted from state s

# occurrences of state s
=

n−1∑
k=0

Lk−1∑
i=0

1{ξk(S i) = s, ξk(Oi) = o}

n−1∑
k=0

Lk−1∑
i=0

1{ξk(S i) = s}

(2.8)

2.1.2 Approach

A DNA sequence having different components like regulatory regions and genes in-

terspersed in background DNA can be modeled as being generated by an HMM working

along the length of the sequence, transiting between states associated with the different

components and emitting observations in the form of nucleotides or groups of nucleotides.

The parameters of such an HMM can be learned, given a set of sequences along with their

true internal state parse as mentioned above.

2.2 Phylogenetic Tree

As mentioned in section 1.1.7 all organisms have descended from a single common

ancestor and among any set of species there exists an evolutionary relationship which in

the literature is termed as phylogeny [68]. A phylogenetic tree as shown in Figure 2–1

is used to represent phylogeny among a set of species. The leaves of a phylogenetic tree

represent the extant species while the internal nodes represent the hypothetical evolution-

ary ancestors of the extant species. The branching pattern of the tree represents how the
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Figure 2–1: Phylogenetic Tree

The figure is of a subtree of the tree containing 100 leaf nodes that was used for building

the ”Vertebrate Multiz Alignment & Conservation (100 Species)” track of the UCSC

Genome browser (https://genome.ucsc.edu/) [69, 70].

species have evolved from a sequence of common ancestors. Each branching point rep-

resents a speciation event, and the branches represent the evolutionary derivations. The

length of a branch represents the amount of mutations accumulated between the species.

Two extant species on the tree are said to be more closely related if they have a more recent

common ancestor and are said to be less closely related otherwise.

2.3 Multiple Sequence Alignment

Multiple sequence alignment (MSA) is an important step in representing the similar-

ity between DNA sequences. The conserved bases are aligned in the same column of the

alignment by inserting gaps (”−”) within the sequences to accommodate for insertions and

deletions. One of the most common approaches to MSA is that of progressive alignment.

Progressive alignment is a heuristic approach based on a simple idea. Firstly, align pairs of

most closely related sequences and then align the alignments to get alignments for a larger
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Figure 2–2: Progressive Multiple Sequence Alignment

number of sequences. The order in which the pairwise alignments are to be performed

is decided by a guide tree [71]. The pairwise alignment starts at the leaves and then pro-

ceeds towards the root. At each level, the sequences or alignments found at the siblings

are aligned as shown in Figure 2–2. A phylogenetic tree connecting multiple species can

act as a guide tree to progressively align the genomes of species represented by the leaves.

The alignment is decided upon so as to maximize the similarity score among the given

sequences under a given scoring scheme. For example, the scoring scheme used for the

alignment shown in Figure 2–2 is +1 for a match, -1 for a mismatch, and a gap penalty

of -2. Progressive MSA is not guaranteed to achieve the global optimal score as decisions

made in the earlier stages without the knowledge of all the sequences can lead to errors

that are propagated all the way through to the final outcome. However, it is widely used

because it is fast and can easily scale to thousands of sequences [71].

There are a large number of progressive MSA programs such as CLUSTAL W [72], T-

Coffee [73], MUSCLE [74], and MULTIZ [75]. Here, we will stick to discussing MULTIZ
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as the alignments used in this work which will be introduced later are generated using

MULTIZ.

The MULTIZ program is capable of generating genome-wide MSA given the DNA

sequences of a set of species and the phylogenetic tree that connects them. The pairwise

alignments are computed using the BLASTZ program [76, 77] or its improvement, the

lastz program [78]. These are local alignment programs. A local alignment of two DNA

sequences is different from a global alignment such that in a local alignment one of the

sequences known as the query sequence is aligned to the best matching substring of the

other sequence known as the reference sequence. The BLASTZ program follows three

main steps:

1. It looks for short nearly exact matches in the two sequences.

2. Each of the alignments found in step 1 is extended in either direction without allow-

ing for gaps. This extension stops once the alignment score starts to fall below a

certain threshold. Provided the gap-free alignments scored beyond a decided thresh-

old, they are further extended, this time allowing for gaps. Again, the alignments

assigned scores beyond a particular value are retained while the others are discarded.

3. To have more connectivity in the alignments, steps 1 and 2 are repeated for the

intervening regions between the alignments obtained after step 2, but with somewhat

lower requirements.

At the end of the three step procedure, there might be cases where multiple regions may

align to the same region. This can be dealt with techniques such as chaining, in which

only the matches that follow same relative ordering in both the sequences are retained,

and techniques that only retain the best scoring alignments with the constraint that every
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Figure 2–3: Working of MULTIZ

This figure is taken from [75]. Here, M and N are two blocksets referenced by human and

cow respectively. G is the blockset corresponding to the human referenced pairwise

alignment of human and cow that guides the alignment procedure to get the human

referenced blockset for the set of species given by the union of species present in the

blocksets M and N.

position in the reference sequence can appear in at most one alignment [77]. The MULTIZ

program gets a set of local alignments from the BLASTZ program in the form of a set of

blocks referred to as a blockset by the authors of MULTIZ. Every blockset has a reference

sequence. In order to align two blocksets, for instance, one referenced by human and the

other by cow to get a blockset referenced by human, MULTIZ uses a blockset of pairwise

alignment between human and cow referenced by human to guide the procedure of align-

ment which uses a dynamic programming technique [75]. This is pictorially represented

in Figure 2–3 that is taken from [75].

2.4 Ancestral DNA Sequence Reconstruction

Ancestral sequence reconstruction attempts to predict the DNA sequences of the an-

cestral species using a molecular evolution model fed with the DNA sequence information

of their modern day descendants [79]. The primary motivation to address the problem

of ancestral reconstruction was to develop a better understanding of the evolutionary pat-

terns. The knowledge about evolutionary patterns plays an integral role in addressing

many problems such as prediction of protein coding regions, and prediction of regulatory
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regions [80]. Given a set of orthologous genomic DNA sequences along with the phy-

logenetic tree relating them, the identification of the DNA sequences of all the ancestral

species in the tree involves the following major steps as mentioned by Blanchette et al. in

[81]:

1. Multiple Sequence Alignment (MSA) of the given set of orthologous DNA se-

quences, which helps in identifying the regions derived from a common ancestral

sequence either through direct inheritance or substitution.

2. Indel reconstruction. Indel is the term used to refer to both insertion and deletion

of bases in a DNA sequence. Indel reconstruction can be defined as inferring the

history of insertions and deletions that occurred along the branches of the given

phylogenetic tree. The sets of insertions and deletions are selected such that gaps

present in the MSA are best explained under the assumed evolutionary parameters.

3. Substitution reconstruction, which involves predicting which nucleotide was present

at each position in the ancestral sequence.

Ancestors 1.0 [79] is a program provided as a web server for ancestral reconstruction

that performs all of the above steps. It brings the tools and algorithms developed by differ-

ent authors under one umbrella. It takes as input a set of DNA sequences in Fasta format

[82] along with the phylogenetic tree relating them, in Newick format [83], and outputs an

alignment containing both, the provided DNA sequences of extant species as well as the

predicted ancestral DNA sequences. Along with the extended alignment it also outputs

the most likely indel reconstruction and the posterior probability for each position of each

ancestor. One can also provide aligned sequences and choose whether he/she wants them

to be realigned. Ancestors 1.0 provides different MSA programs to choose from. These
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include MUSCLE [74] and TBA [75]. For indel reconstruction it runs the algorithms de-

veloped by Diallo et al. [84] to solve the indel maximum likelihood problem, and for

inferring substitution it uses an adaptation of the Felsenstein algorithm [85, 86].

2.5 Phylogenetic Models

HMMs, discussed in the previous section 2.1 can exploit a given DNA sequence to

uncover regulatory regions using the different inference algorithms. However, it cannot

directly make use of sequence evolution. As discussed earlier in section 1.1.7, knowledge

about sequence conservation can play an important role in identifying the regulatory re-

gions. One simple and obvious extension of an HMM to take into consideration sequence

evolution might be to change the set of observations O to have alignment columns, but

this technique does not scale beyond a few species as the number of possible observations

increases exponentially with the number of species. On the other hand, the emission prob-

ability of an alignment column can be calculated in an elegant manner using phylogenetic

models. Phylogenetic models are probabilistic models developed for modeling the pro-

cess of sequence evolution as a Markov process. In order to calculate the likelihood of

an alignment column, phylogenetic models along with the topology and branch lengths of

the phylogenetic tree connecting the present day species, also take into consideration the

patterns of substitution and the background distribution of the characters. Each character

in an alignment column belongs to the alphabet set Σ (for example, Σ = {A,C,G,T, ”− ”})

with the constraint that every character in a column should not be ”−”. Formally, a phylo-

genetic model can be defined as ψ = (Q, τ, β, π) where:

• Q− substitution rate matrix of size |Σ| × |Σ|.
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• τ− tree topology. The tree, is a binary tree with n leaves, n − 1 internal nodes, and

2n − 2 edges called branches.

• β− vector of branch lengths for the tree. A branch length is a non-negative real

number that signifies the expected number of substituions per site.

• π− vector of size |Σ| containing background frequencies.

A phylogenetic model ψ can be seen as modeling the process of evolution as a Markov

process and generating an alignment column in the following manner:

1. A character is picked randomly from Σ according to the background distribution π

and is placed at the root of the tree.

2. As the process moves along the branches of the tree from the root to the leaves,

characters are assigned to the nodes depending on the substitution rates given by

the substitution rate matrix Q, the length of the branch between the node and its

parent, and the base present at the parent node. The probability of substituting a

character a by character b over a branch of length l denoted as P[b|a, l] can be

obtained by looking up the element given by the row corresponding to character

a and the column corresponding to character b in the substitution probability matrix

for branch length l given by equation 2.9:

P[l] = eQl (2.9)

where, eQl =
∞∑

i=0

(Ql)i

i!
[11]

In this manner, the substitution process is modeled as a continuous-time Markov pro-

cess, continuous time because the branch lengths represent evolution time which is con-

tinuous and Markov because the probability of a character appearing at a node given the
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character at its parent node is independent of the characters present at the parent’s ances-

tors.

As described in [87], the likelihood of an alignment column Xi present at some arbi-

trary position i of an alignment X of DNA sequences from species represented at the leaves

of a phylogenetic tree τ can be calculated under a phylogenetic model ψ = (Q, τ, β, π) by

marginalizing over all the possible labelings of the ancestral nodes present in the tree.

Thus, the likelihood of column Xi is P[Xi|ψ] =
∑
ζ P[ζ, Xi|ψ], where ζ is the labeling of all

the ancestral nodes. The number of possible labelings grows exponentially in the number

of leaf nodes. For n leaves, the number of ancestral nodes in the tree is n − 1 and there are

|Σ|n−1 possible labellings. This makes the computation time of the likelihood exponential

in the number of leaves for a constant |Σ|. Felsenstein [85, 86] provided an algorithm that

uses dynamic programming to efficiently perform the marginalizing step as follows. For

a node u with children v and w connected via edges of length lv and lw respectively, the

probability of all the leaves present below u given the character at node u is a, is denoted

by P[Lu|a] which can be evaluated using equation 2.10.

P[Lu|a] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
b

P[b|a, lu]P[Lv|b]
∑
c

P[c|a, lw]P[Lw|c], if u is a non-leaf node

1{xu = a}, if u is a leaf node

(2.10)

The total probability of any alignment column Xi is given as P[Xi|ψ] =
∑
a

πaP[Lr|a], where

πa denotes the background probability of character a and r denotes the root of the tree.

The running time of the Felsenstein algorithm is O(n · |Σ|2). In case if X is an alignment of

extant as well as ancestral sequences, as presented by the output of the Ancestors 1.0 [79]
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program, then in order to calculate the likelihood of any alignment column Xi, there is no

need for marginalizing over the ancestral labellings and the likelihood can be computed in

O(n) time using equation 2.11 given below:

P[Xi|ψ] = P[xr|ψ]
∏

(u,v)∈Eτ

P[xv|xu, ψ] (2.11)

where,

• xu is the notation used to represent the character present at node u, and r is the

notation used for the root node.

• Eτ is the set of edges of tree τ. Each edge is in the form of a tuple given as (parent

node, child node). In a tree with n leaves there are 2n − 2 edges.

2.6 Phylogenetic Hidden Markov Models

Phylogenetic hidden Markov models (phylo-HMM) [87] are a variant of the HMM

specially designed to exploit the knowledge of sequence evolution along with DNA se-

quence information. In phylo-HMMs both phylogenetic models and HMMs are combined.

Thus, phylo-HMMs are a combination of two Markov processes, one running along the

branches of a phylogenetic tree and the other running along the length of a DNA sequence.

As described by Yang [88], HMMs operating on DNA sequences work in the dimension

of space; whereas, phylogenetic models work in the dimension of time.

2.6.1 Mathematical Model of Phylogenetic Hidden Markov Models

A phylo-HMM is formally defined as a 5-tuple model consisting of the following:

• S− finite set of states

• Σ− alphabet set. Every member of an alignment column belongs to the alphabet set.
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• Ψ = {ψ0, ..., ψ|S | − 1}− set of phylogenetic models associated with the states, where

ψs is associated with state s. Different phylogenetic models are used with different

states as the substituion rates, patterns of substitution, and background distributions

may differ from state to state, for instance, states corresponding to functional and

non-functional DNA.

• State Transition Probabilities −Ps,s
′ = P{S i+1 = s

′

|S i = s}, ∀s
′

, s ∈ S . These are

represented concisely in the form of a transition matrix T of size |S | × |S |.

• Π− initial state probability vector, where Π j is the probability for the HMM to start

at state j.

2.6.2 Inference and Learning Problems

Inference Problems

Given an alignment X of length L, which can be conveniently viewed as a sequence

of alignment columns X0, X1, ..., XL−1, the decoding problem and the posterior decoding

problem described in section 2.1.1 can be solved using the Viterbi [65] and the forward-

backward [66] algorithms respectively, as in case of a regular HMM. Alignment columns

are analogous to observations being emitted from the states in case of a regular HMM

and the emission probability of an alignment column can be seen as its likelihood under

the phylogenetic model associated with the state. The running time of the Viterbi and the

forward-backward algorithms for a tree with n leaves increases to O(|S |2 · L · n · |Σ|2) or

O(|S |2 · L · n) depending on whether the ancestral sequences are available or not.

Learning of Model Parameters

The model parameters of a phylo-HMM can be learned using the maximum likeli-

hood estimation technique, given a phylogenetic tree τ with m nodes, and a set ξ of n
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sample trajectories, where each trajectory consists of an alignment of DNA sequences

from m species and the state parse corresponding to the alignment. Trajectory ξk is of the

form ξk = (Xk, S k) ∀0 ≤ k ≤ n − 1. Further Xk and S k can be seen as a vector of align-

ment columns, Xk
0
, Xk

1
, ..., Xk

Lk−1
, and vector a state labels, S k

0
, S k

1
, ..., S k

Lk−1
, where Lk is the

number of columns in the kth alignment. The notation Xk
i, j

is used to denote the character

present at the row corresponding to the jth node in τ and the ith column of alignment Xk.

The initial state probabilities and the state transition probabilities can be learned as in case

of the regular HMM; however, for completeness the expressions are mentioned below:

Πs =
# alignments starting in state s

n
=

n−1∑
k=0

S k
0
= s

n
(2.12)

Ps,s
′ =

# s to s
′

transitions

# transitions from s
=

n−1∑
k=0

Lk−2∑
i=0

1{S k
i
= s, S k

i+1
= s

′

}

n−1∑
k=0

Lk−2∑
i=0

1{S k
i
= s}

(2.13)

The likelihood of a column Xi under the phylogenetic model ψs given by P[Xi|ψs] can also

be written as P[Xi|s] because ψs is followed when the process is in state s. Therefore,

equation 2.11 can be rephrased as:

P[Xi|ψs] = P[Xi|s] = P[xr|s]
∏

(u,v)∈Eτ

P[xv|xu, s] (2.14)

The probabilities P[xr = a|s] and P[xv = b|xu = a, ψs] can be estimated as follows:
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P[xr = a|s] =
# columns emitted from s with a at root

# alignment columns emitted from s
=

n−1∑
k=0

Lk−1∑
i=0

1{Xk
i,r
= a, S k

i
= s}

n−1∑
k=0

Lk−1∑
i=0

1{S k
i
= s}

(2.15)

P[xv = b|xu = a, s] =

n−1∑
k=0

Lk−1∑
i=0

1{Xk
i,u
= a, Xk

i,v
= b, S i = s}

n−1∑
k=0

Lk−1∑
i=0

1{Xk
i,u
= a, S i = s}

(2.16)

Note that the Baum-Welch algorithm would have to be used in scenarios where informa-

tion about the true state paths is absent.

2.7 Support Vector Machine

Support Vector Machine (SVM) is a popular supervised machine learning model that

can be used to solve classification as well as regression problems. Since here we are con-

cerned with solving a classification problem, we will stick to discussing SVM as a classi-

fier. SVM is a decision machine and unlike probabilistic classifiers does not give posterior

probabilities as output [89]. Considering the two-class case, given a set of training data

points along with their true labels, an SVM learns a decision boundary in the form of a

hyperplane. The hyperplane that is chosen should not only fit the training data but should

also have low generalization error. To tackle this problem SVM chooses a hyperplane

that maximizes the margin. The margin for a given hyperplane is defined as twice the

Euclidean distance between the hyperplane and the nearest training data point as shown in

Figure 2–4. The running time to train an SVM is quadratic in the number of examples, and
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Figure 2–4: SVM Margin

hence, it is computationally expensive to train SVMs when the size of the training dataset

exceeds beyond a few hundred thousand examples.

The SVM is able to only choose linear decision boundaries. However, it can separate

non-linear data by choosing linear decision boundaries in some higher dimensional space

which will correspond to non-linear decision boundaries in the input space. This can be

achieved with the help of kernel functions [89]. Kernel functions are used for comput-

ing similarity between higher dimensional mappings of two data points without actually

mapping them.

There are mainly two flavours of SVM: the hard-margin SVM and the soft-margin

SVM.
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Hard-margin SVM tries to learn a decision boundary which maximizes the margin

with the constraint that no misclassifications should be encountered when the model is

applied to the training data.

Soft-margin SVM, unlike the hard-margin SVM, does allow for some training data

points to be misclassified in order to prevent overfitting of data. The hard-margin SVM

may result in highly curvy decision boundaries with narrow margins in the attempt of

classifying every training example correctly. This may lead to high generalization error

from overfitting on training data. To check on the misclassifications, the soft-margin SVM

penalizes the misclassified points. The penalty ζi associated with a misclassified training

example i grows linearly with the distance of the point from the decision boundary. The

sum of all such penalties is termed as soft-error. The soft-margin SVM solves an optimiza-

tion problem that combines both the maximization of the margin and the minimization of

the soft-error. The degree to which the misclassifications are penalized is controlled by a

parameter usually denoted by C. The higher C is, the more are the misclassifications pe-

nalized. Consequently, C acts as a knob for controlling overfitting and is usually selected

via cross-validation strategies.

One important difference between SVM and the HMM is that unlike the HMM, SVM

assumes the data to be independent and identically distributed (i.i.d). This i.i.d assumption

is not true in case of sequential data where the order of the observations matter. Hence,

some tricks had to be adapted to use SVM for the sequence labelling task. These tricks as

well as the reason behind choosing SVM for this particular problem will be discussed in

the subsequent chapters.
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CHAPTER 3

Method Development and Application

In this chapter we will describe the data used for the methods discussed in the previous

chapter and also discuss the implementation details of those methods.

3.1 Data

This section highlights the different pieces of data used by the methods described in

the previous chapter. The description of the data along with its sources is given below.

• The latest build of the human reference genome, the GRCh38/hg38 (Dec. 2009)

assembly produced by the Genome Reference Consortium [90]. It was downloaded

from the UCSC Genome Browser (http://genome.ucsc.edu/) [69, 70]. It is divided

into a total of 24 chromosomes, the chromosomes numbered through 1 to 22, and

the chromosomes X and Y. The total length of the human reference genome is close

to three billion bases.

• Set of regulatory regions represented as genome coordinates in BED format which

is discussed in [91]. This set of regions was presented by the ENCODE Analysis

Working Group. It has been derived from the results of a large number of ChIP-seq

experiments performed by the ENCODE project [92], covering a broad spectrum of

161 TFs and 91 human cell types [93], and was downloaded from the ENCODE data

repository at the UCSC Genome Browser [93, 94]. It can be viewed as the ”Txn Fac-

tor ChIP Track” in the UCSC Genome Browser. The genome coordinates present in

this piece of data are as per the GRCh37/hg19 (Feb. 2009) assembly of the human
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genome and had to be converted to match the corresponding coordinates in the hg38

assembly. This was achieved by using the liftOver tool from the UCSC Kent tools

[95]. Following the lift over, the set of regions was divided into two subsets. One

containing regulatory regions functional in the GM12878 lymphoblastoid cell line

[96], which will be referred to as GM12878 regulatory regions in the rest of the the-

sis, and the other containing the set of regions that are functional in one or more cell

types other than GM12878 lymphoblastoid cell line, which for simplicity will be

referred to as non-GM12878 regulatory regions from here onwards. The GM12878

regulatory regions cover ∼ 1.7% of the total genome, while the non-GM12878 reg-

ulatory regions cover ∼ 10%.

• Set of positions of coding exons downloaded from the ”Old UCSC Genes” track of

the UCSC Genome Browser (http://genome.ucsc.edu/) [69, 70]. The coding exons

cover ∼ 1% of the genome.

• Genome wide MSA of 115 species, 58 present day mammals and 57 ancestral

species. This was achieved by feeding the Ancestors 1.0 [79] program with the

Hg38 100-way alignment downloaded from the UCSC Genome Browser [69, 97].

The Hg38 100-way alignment is an alignment of 100 vertebrate species [98] aligned

using the MULTIZ program [75] keeping human as the reference species. The out-

put of the Ancestors 1.0 was then filtered to keep only the mammals and their an-

cestors. The rationale behind this filtering step was that sequence conservation may

loose its discriminatory power to identify regulatory regions if the species consid-

ered are at large evolutionary distances. This is because even regulatory regions

49



may accumulate large number of mutations over large evolutionary distances. We

will refer to this piece of data as the 115 mammal alignment.

3.2 Problem Definition

Now that a detailed description of the data being used is provided, the premise for

discussing the problem statement in detail is set. The problem statement is to build models

that can computationally identify cell type specific regulatory regions within the genome

of some concerned species, given the DNA sequence information of both the concerned

and its related species. In this work we train the models to identify regulatory regions

in the GM12878 lymphoblastoid cell line in humans. The GM12878 regulatory regions

form the positive class that we want to learn to identify. The set of coding exons acts as

a positive control as in the work of Elnitski et al. [54]. The negative set comprises all

the DNA excluding the GM12878 regulatory regions and including the coding exons as

well as the non-GM12878 regulatory regions; which we will refer to as the non-functional

DNA.

3.3 Data Preprocessing

DNA sequences of all chromosomes of the hg38 human genome assembly, originally

represented as a sequence of nucleotides were represented as a sequence of 6-mers using a

sliding window of size six which was slid by a step-size of one. The coordinates consisting

of the start and end positions of the GM12878 regulatory regions, non-GM12878 regula-

tory regions, and set of coding exons were modified to adapt to the 6-mer representation of

the chromosomes. The start coordinate of a region was replaced by the starting position of

the first window containing the start coordinate of the region, and the end coordinate was

replaced by the starting position of the last window containing the end coordinate. The
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first window of which the start coordinate denoted by pstart is a part of, begins at position

max (pstart − 5, 0), and the last window containing the end coordinate denoted as pend is the

window beginning at position min (pend, last position − 5), where the last position is one

less than the size of the chromosome under consideration. All regions belonging to the

non-GM12878 regulatory or the coding exons set that had an overlap of at least one base

with a region in the GM12878 regulatory set were removed. This was done to give prefer-

ence to regions belonging to the GM12878 regulatory set as the objective of this work is to

build a classifier which is able to predict GM12878 regulatory regions. The preprocessing

of the 115 mammal alignment was done in the following manner:

1. All the alignment columns having a gap in the human sequence were removed.

2. A sliding window of size six was used to represent the alignment as an alignment

of sequences of 6-mers. Every 6-mer that contained one or more gaps ” − ” was

counted as a special ” − ” k-mer. This reduces the set of possible characters to

{A,C,G,T }6 ∪ {” − ” k-mer}.

The rationale behind representing the human and the 115 mammal alignment as se-

quences or alignments of 6-mers was borrowed from [57] that even though we do not have

TF binding motifs to discriminate between regulatory and non-regulatory DNA, our clas-

sifiers would identify discriminating 6-mers that cover portions of TF binding motifs and

learn to identify regulatory regions based on them.

3.4 Learning

The preprocessed data was used to train the different models, which are described

here.
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Figure 3–1: Two State HMM

3.4.1 Hidden Markov Models

Regular as well as phylogenetic HMMs with three different structures were trained.

The HMMs with different structures use the different pieces of data differently.

Two-State HMM

The two-state HMM as shown in Figure 3–1 has two states: the GM12878 regulatory

state and the background DNA state. It is based on an assumption that the GM12878

regulatory regions are generated by the GM12878 regulatory state and the rest of the

DNA is generated by the background DNA state. In other words the process running

along the genome (or alignments of genomes) is in the GM12878 regulatory state for the

GM12878 regulatory regions and is in the background DNA state for the all the other

portions of the genome irrespective of whether they fall under the set of coding exons,

non-GM12878 regulatory regions or non-functional DNA. Thus, in case of a two-state

HMM the 6-mer sequences (alignments in case of phylogenetic HMM) falling within the

boundaries of the GM12878 regulatory regions were used to learn the emission probabil-

ities of the GM12878 regulatory state and those falling outside the GM12878 regulatory

regions were used to learn the emission probabilities for the background DNA state.
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Figure 3–2: Three State HMM

Three-State HMM

The state space associated with the three-state regular and phylogenetic HMM as seen

from Figure 3–2 comprises of the GM12878 regulatory state, the non-GM12878 regula-

tory state, and the background DNA state. The GM12878 regulatory state and the non-

GM12878 regulatory state model the GM12878 regulatory and non-GM12878 regulatory

regions respectively, whereas the coding exons and the non-functional DNA are assumed

to be generated while the process is in the background DNA state.
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Figure 3–3: Four State HMM

Four-State HMM

As shown in Figure 3–3, the four-state HMM uses four different states to model

the four kinds of regions we have, namely, the GM12878 regulatory regions, the non-

GM12878 regulatory regions, the coding exons, and the non-functional DNA. The back-

ground DNA state, in this case, models the non-functional DNA regions only. It is im-

portant to note that the set of regions modelled by the background DNA state changes

depending on the structure of the HMM used.

The HMMs mentioned above are modelled as generators of DNA sequences in case

of regular HMMs and as generators of alignments in case of phylo-HMMs. The regular

HMM generates DNA sequences by emitting overlapping 6-mers as observations; whereas

on the other hand, the phylogenetic HMM generates alignments by emitting alignment

columns of 6-mers. Figure 3–4 shows the observations in the form of 6-mers that are

emitted by a regular HMM to generate the given DNA sequence. As the HMMs in our
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Figure 3–4: Generation of DNA Sequence by Regular HMM

The top portion of the figure shows a DNA sequence of length seven that is generated by

a regular HMM. The 6-mers or observations that are emitted by the regular HMM to

generate the given DNA sequence are given in the form of a table.

case emit 6-mers or alignment columns of 6-mers, one of the major assumptions on which

the HMMs are based, that the observation Oi emitted by state S i at the ith index is only

dependent on S i and is independent of states and observations occurring at any other index

is breached. Here, it can be seen that the overlapping windows are not independent, given

the state the process is at. For example, we take a simple scenario where from all states all

6-mers are equally probable. If the 6-mer present at some arbitrary position i is AATTGG

then the 6-mers from the alphabet {A, C, G, T}6 that can appear at position i + 1 with

non-zero probability (exactly with probability 1/4) are ATTGGA, ATTGGC, ATTGGG,

ATTGGT as opposed to all the 6-mers appearing with an equal probability of 1/46. To

deal with this problem we tried out three different heuristic approaches:

1. Ostrich heuristic - Following the principle of ostrich effect, ”to stick one’s head in

the sand and pretend there is no problem” [99], the problem can be totally ignored,
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i.e. we can ignore the problem of dependence among overlapping windows de-

spite knowing the underlying states and continue using the learning and inference

algorithms designed for scenarios where observations are independent of each other

given the states.

2. Parallel six heuristic - Instead of running the HMM over a sequence of overlap-

ping 6 length windows, we can run the HMM over a sequence of non-overlapping

windows. For instance, we can run the HMM on a sequence of non-overlapping

windows starting at positions that are multiples of six, i.e. positions 0, 6, ..., till

the end of the sequence. But, due to this only one-sixth of the total windows

are considered, and there might be a significant loss of vital information required

to identify the regulatory regions. To overcome this we run six identical HMMs

(HMM0,HMM1, ...,HMM5), where HMM j runs over windows starting at positions

1{i mod 6 = j}. It is important to note that a position p is covered by multiple

windows that are assumed to be generated by different HMMs. To get the posterior

probability that a position p belongs to a particular state s, we average the posterior

probabilities computed for all the windows covering position p. This helps us to

achieve a smooth output without abrupt fluctuations.

3. Sixth root heuristic - As discussed earlier, by following the ostrich heuristic the

probability of the possible 6-mers at an arbitrary position is taken to be much lower

than what it actually is. As will be shown in the following chapter this underestima-

tion of the emission probabilities has a severe negative impact on the performance of

the HMMs. To scale the emission probabilities we decided to take the sixth root of

the emission probabilities. This approach is mostly intuition and result driven. The
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intuition behind choosing the sixth root to scale the probabilities came from the fact

that every position in the DNA sequence apart from the first and last five positions is

a member of six windows and contributes to the likelihood of six 6-mers. This can

be seen analogous to the position being emitted six times and thus to compensate

for this we decided to take the sixth root of the emission probabilities. As will be

seen in the next chapter, doing this achieves significantly better performance over

the ostrich heuristic.

3.4.2 Support Vector Machines

We trained support vector machine (SVM) models to solve a binary classification

problem of segregating the GM12878 regulatory regions from the rest of the DNA. As

discussed earlier in section 2.7, SVM is a supervised machine learning model that requires

training examples from both the positive and the negative classes. While the GM12878

regulatory regions in our case serve as the positive training examples, the set of negative

training examples had to be constructed by selecting for each positive example a DNA

sequence having the same length, belonging to the same chromosome, and not overlap-

ping with any of the GM12878 regulatory regions. In this manner, a negative training set

having the same size as well as the same length distribution as the positive training set was

constructed.

Deciding whether a DNA sequence belongs to the regulatory class or not is very sim-

ilar to the text categorization problem which aims at classifying documents into different

categories. Analogous to a document being seen as a sequence of words or n-grams (con-

tiguous sequence of n words), a DNA sequence as in our case can be viewed as a sequence
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of 6-mers. In text categorization, the documents are vectorized to be represented as real-

valued vectors whose size is often equal to the number of words or n-grams in the corpus.

Following a similar approach, the DNA sequences were vectorized to be represented as

real-valued vectors in a space having the number of dimensions equal to the number of

possible 6-mers, i.e. 46. The value assigned to component i of the vector representing

a DNA sequence S is equal to the frequency of occurrence of the 6-mer associated with

dimension i. This gives a high dimensional yet sparse dataset. SVMs have been shown to

perform well on the text categorization problem owing to the fact that SVMs give a stable

performance when the number of dimensions in the input space are high and the datasets

are sparse [100]. Based on this, we expect the SVM classifier to perform well in our case

as well. We trained the SVM with the k-spectrum kernel [101]. A k-spectrum kernel com-

putes similarities between two sequences based on the frequencies of k-mers. In our case

we are using 6-mers, so k = 6. This is exactly the same as the approach taken by Fletez-

Brant, Dongwon Lee, Beer et al. for designing their tool, the kmer-SVM [58]. The length

distribution of the GM12878 regulatory regions is shown below in Figure 3–5. Usually,

the lengths of the regions given by the individual ChIP-seq experiments are of size 200-

500 bases, but many of these regions overlap each other. These overlapping regions are

merged, resulting in longer regions. Since the k-spectrum kernel is a not a length invariant

kernel, large variations in the lengths of sequences can negatively affect the performance

of the classifier. To avoid this, we discarded all the regions that had lengths greater than

1000 bases. Keeping only regions that have lengths less than or equal to 1000 gives us a

set of regions that covers 85% of the original set of GM12878 regulatory regions. The

mean length of the regions in this reduced set is 500 bases.
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Figure 3–5: Length Distribution of GM12878 Regulatory Regions

The SVM classifier trained using the positive and negative sets described above was

used to solve the sequence labelling task of identifying GM12878 regulatory DNA for the

DNA sequence of an entire chromosome by adopting the following procedure:

1. Divide the DNA sequence of the chromosome represented as a sequence of 6-mers

into windows of length 500 using a sliding window with a step-size of 6. This gives

us a total of chromosome length/6 number of subsequences.

2. Run the trained SVM classifier on each of the subsequences. This gives a class label

for every subsequence. All the positions in the sequence are covered by multiple

subsequences. A position is reported as GM12878 regulatory if and only if a ma-

jority of the subsequences covering the position are classified as being GM12878

regulatory regions.
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3.5 Comparing the Models in terms of Number of Parameters

The three classifiers used here, namely the phylo-HMM, the regular HMM and the

SVM vary in the number of parameters that need to be estimated during learning. The

greater the number of parameters, the greater the ability of the classifier to model complex

processes or functions. However, given a certain amount of data, the increase in the num-

ber of parameters also increases the risk of overfitting on the training data which leads to

the classifier having a high generalization error.

The SVM classifier defines the decision boundary in terms of the number of training

examples. Hence, the number of parameters it needs to learn is equal to the number of

training instances. However, all the training data points except the points nearest to the

decision boundary on either side have the parameters associated with them set to zero as

the decision boundary can be defined only in terms of the points closest to the decision

boundary on either side, also called as support vectors. Thus, the number of non-zero

parameters is equal to the number of support vectors. Thus, the number of parameters to be

estimated is the order ofO(n), where n is the number of training examples. The parameters

to be estimated for the regular HMM comprise of the state transition probabilities, the

emission observation probabilities, and the initial state probabilities. The breakdown of

the number of parameters to be estimated under each of these components is given below

in Table 3–1.

Table 3–1: The Number of Parameters to be Estimated by the Regular HMM

State Transition Probabilities Emission Observation Probabilities Initial State Probabilities

O(|S |2) O(|Σ|k ∗ |S |) O(|S |)

Here,
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• S− finite set of states

• k− the length of the k-mer. In our case it is 6.

• Σ− alphabet set, which in our case is {A,C,G,T }

The phylo-HMM needs the same number of parameters to be estimated for the state

transition probabilities and for the initial state probabilities as in case of the regular HMM.

However, the number of parameters needed to evaluate the likelihood of an alignment col-

umn given the state significantly exceeds the number of emission observation probabilities

to be estimated in case of the regular HMM. Recall from Equation 2.14 that in order to

calculate the likelihood of a column Xi given the process is in some arbitrary state s we

need to estimate:

• Probability of character a occurring at the root conditioned on state s : P[xr =

a|s],∀a ∈ Σ and s ∈ S .

• Probability of character a being substituted by character b along the edge (u, v) when

the process is in state s: P[xv = b|xu = a, s],∀a, b ∈ Σ, s ∈ S and (u, v) ∈ Eτ.

The number of parameters to be estimated by phylo-HMM for each of the components is

given below:

Table 3–2: The Number of Parameters to be Estimated by the Phylo-HMM

State Transition Probabilities P[xr = a|s] P[xv = b|xu = a, s] Initial State Probabilities

O(|S |2) O(|Σ|k ∗ |S |) O(|Σ|2k ∗ |Eτ| ∗ |S |) O(|S |)

Here,

• S− finite set of states.

• k− the length of the k-mer.

• Σ− alphabet set, which in our case is {A,C,G,T }.

61



• Eτ− set of edges in the phylogenetic tree τ.

From, the discussion above we can clearly see that the phylo-HMM is capable of

modeling much complex processes than the regular HMM and the SVM, while also being

more vulnerable to overfitting.
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CHAPTER 4

Result Analysis

In this chapter, intermediate as well as final results are discussed and analyzed.

4.1 Hidden Markov Models

The regular HMMs as well phylo-HMMs were trained on data from chromosomes

1, 5, 13, 18, 19, 20, and 21; while their performance was tested on chromosome 8. The

choice of chromosomes for training and testing was uniformly random.

4.1.1 Selection of Heuristics

To check the feasibility of the three heuristics discussed in section 3.4.1, namely,

the ostrich heuristic, the parallel six heuristic, and the sixth root heuristic; we tested the

performance of the two-state regular HMM on chromosome 7. Note that chromosome 7

was used as cross-validation data as we did not want the heuristic selection to be based on

the test data of chromosome 8. A portion of the most likely state sequence produced by

the Viterbi algorithm in all the three cases along with true state labels is shown in Figure

4–1. From this, we can see that the predictions for the parallel six and the sixth root

versions are similar to each other and correspond to the true labels on many occasions. On

the other hand, the predictions made by the HMM using the ostrich heuristic is seen to

have very frequent transitions between the two states, leading to a large number of false

predictions (both false positives and false negatives). This can be owed to the fact that

when using the ostrich heuristic, the emission probabilities are highly underestimated as

discussed in section 3.4.1. This causes the estimated emission probabilities to be much
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lower in value as compared to the transition probabilities, and this leads to frequent state

transitions. Having looked at this result, we became aware of the flaw in using the ostrich

heuristic and decided to discard it from future experiments while the other two heuristics

were tested further with different structures.

4.1.2 Comparing the Parallel Six and the Sixth Root Heuristics

The performance for regular as well as phylo-HMMs with different structures using

the parallel six and the sixth root heuristics was reported on chromosome 8 in terms of

the receiver operating characteristic (ROC) curve and the precision-recall (PR) curve. The

ROC curve defined for a two-class (positive class and negative class) classifier is a plot

of sensitivity also called as recall or true positive rate (TPR) against 1− specificity also

known as the false positive rate (FPR). The expressions for sensitivity and specificity in

terms of true positives (TP), false positives(FP), false negatives (FN), and true negatives

(TN) are given below in equations 4.1 and 4.2. Sensitivity is the fraction of total positive

observations classified correctly, and specificity is the fraction of the negative observations

classified correctly.

Sensitivity =
TP

TP + FN
(4.1)

Specificity =
TN

TN + FP
(4.2)

A probabilistic binary classifier outputs for a given observation the probability of

belonging to the positive class versus belonging to the negative class. The decision of

which label should be assigned to the given observation depends on whether the output

probability is above or below the decided threshold. Every point on the ROC curve gives

the sensitivity and the 1− specificity pair corresponding to a particular decision threshold.

64



Figure 4–1: Comparison of the Different Heuristics.

(A) shows the true labels for the portion of chromosome 7 (chr7). (B) shows the

predictions recorded by running the Viterbi algorithm for the two-state regular HMM

using the parallel six heuristic. (C) shows the Viterbi output of the two-state regular

HMM using the sixth root heuristic. (D) shows the output of the Viterbi algorithm for the

two-state regular HMM using the ostrich heuristic.
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Similarly, the PR curve represents the trade-off between precision and recall for different

decision thresholds. Precision is the measure of how accurate is the classifier when it

predicts an observation to be positive. The expression for precision is given below:

Precision =
TP

TP + FP
(4.3)

To report the performance for the three-state and the four-state HMMs in terms of the

ROC and the PR curves the view of a one-versus-all classifier was adopted where all the

observations predicted to belong to any of the classes other than the GM12878 regulatory

class are seen as the same.

The output of the forward-backward algorithm was used to plot the ROC curve, and

the area under the curve (AUC) was calculated for every case. The AUC value for a

given ROC curve is a measure of the ability of the classifier to demarcate between the two

classes. An area of 0.5 corresponds to a random classifier while the area of 1 corresponds

to a perfect classifier. Figure 4–2 shows these ROC curves along with the AUC values.

There are many interesting observations that one can make from these plots. In case of

the regular HMM for all three structures, the curves for both the heuristics almost overlap

each other throughout and looking at the AUC values one cannot decide on picking one

heuristic against the other. Coming to the phylo-HMM results, for the two-state case, the

observations are very similar to those in case of the regular HMM. However, for the three-

state and the four-state phylo-HMMs, the parallel six heuristic beats the performance of

the sixth root heuristic, but there is a significant drop in performance for both heuristics

when compared to the two-state variant.
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Figure 4–2: Comparing the Parallel Six and the Sixth Root Heuristics in Terms of ROC

Curves
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Next, the PR curves were plotted which can be seen in Figure 4–3. The story por-

trayed by the PR curves is also the same as the one depicted by the ROC curves. In case of

the 2-state and the 3-state regular HMM, the two curves significantly overlap each other,

while in the 4-state regular HMM and the 2-state phylogenetic HMM, the curves cross

each other at multiple locations signifying that no heuristic performs better than the other

throughout the entire range of recall.

4.1.3 Comparison within Limited False Positive Rate

As mentioned earlier in section 3.1, the GM12878 regulatory regions cover only ∼

1.7% of the entire genome leading to an imbalanced ratio < 1:50 between the GM12878

regulatory and the rest of the DNA. Thus, where for a balanced dataset the false positive

rate (FPR) of 20% is seen as good the same FPR in our case will imply that the number

of false positive predictions exceeds the total number of positive observations by more

than ten folds. This is unacceptable for practical purposes and for the classifier to be

useful, the amount of false positives need to be limited. We limited the FPR to be at

most 5% and observed the behavior of the ROC curves corresponding to the HMMs with

different structures and using different heuristics. Figure 4–4 shows the behavior of the

ROC curves within the acceptable FPR range. We see that no single curve is above all the

other curves for the entire range of acceptable FPR. The curves cross each other at one or

more locations. Two ROC curves crossing each other imply that one of the classifiers is

better than the other for the range of FPR values where its ROC curve lies above, while

the other classifier is better in regions outside this range. From Figure 4–4 we can see

drastic changes in the relative performance of the classifiers as the FPR values change.

For instance we can see that the performance of the parallel six four-state regular HMM
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Figure 4–3: Comparing the Parallel Six and the Sixth Root Heuristics Using PR Curves
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is the worst among all the classifiers for FPR < 1%, but then its performance improves

steeply to become the best beyond the FPR value of just below 2%. On the other hand,

the parallel six three-state phylo-HMM, the parallel six four-state phylo-HMM, and the

sixth root three-state phylo-HMM start as the top three performers before falling behind

just before the 2% FPR mark. Thus, even by looking at only the acceptable range of FPR

values we cannot decide upon which structure, heuristic, and variant of the HMM to use

over the entire range of acceptable FPR values. One other critical observation we can

make is that even though we don’t see an increase in the AUC values with increase in state

space, increased state space does have positive effects in certain intervals of the acceptable

FPR range.

4.1.4 Combined Performance of Regular and Phylogenetic Hidden Markov Models

As seen in the previous section different HMM classifiers perform best at different

intervals of the FPR range and no single classifier performs the best throughout the ac-

ceptable range. We decided to combine the predictions given by the regular and the phylo-

HMM to see if their combine performance could beat their individual performances and

perform better than the other HMM classifiers for the entire range of FPR.

The results of the regular and phylo-HMM are combined by taking the intersection

of the predictions made by them, i.e. reporting only those windows as positive that were

predicted as positive by both. To plot the ROC curve of the combined performance we

divided the FPR range spanning from 0 to 1 into hundred intervals. Next, from each of

these intervals we selected one point from each of the two ROC curves corresponding

to the regular and the phylo-HMM classifiers. The decision thresholds at which these

points were plotted were looked up. Using these decision thresholds we got the sets of
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Figure 4–4: Comparing Different HMM Classifiers within Limited False Positive Rate

Using ROC Curves
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windows predicted to be GM12878 regulatory in each case. Taking the intersection of

these predictions gave us a new point on the combined ROC curve. It is important to

note that this is a specificity increasing and sensitivity reducing technique. Let us consider

a and b to be the two points on the two ROC curves. Let TPa, FPa, specificitya, and

sensitivitya denote the set of TP predictions, set of FP predictions, value of specificity, and

value of sensitivity associated with point a. Similarly, let us denote these quantities by

TPb, FPb, specificityb, and sensitivityb for point b, and by TPab, FPab, specificityab, and

sensitivityab for the point achieved by intersecting the predictions corresponding to a and

b.

TPab ← TPa

⋂
TPb

⇒ |TPab| ≤ min(|TPa|, | TPb|)

⇒ sensitivityab ≤ min(sensitivitya, sensitivityb)

Similarly, FPab ← FPa

⋂
FPb

⇒ |FPab| ≤ min(|FPa|, | FPb|)

⇒ specificityab ≥ min(specificitya, specificityb)

δsensitivity = |min(sensitivitya, sensitivityb) − sensitivityab|

δspecificity = |min(specificitya, specificityb) − specificityab|

The technique of intersecting predictons will be beneficial if
δsensitivity
δspecificity

< 1 ,i.e. if

there is a large gain in specificity for a small loss in sensitivity. The smaller the ratio, the

larger the benefits. For the ratio to be small, it is necessary that both the classifiers have

a large amount of true positive predictions in common, but do not have a large number

of false positives in common. By randomly sampling the predictions we observed that

there were many instances where the regular HMM made false positive predictions and
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the phylo-HMM did not. This happened typically in regions where the sequence readout

was indicative of GM12878 regulatory function, but the regions were not conserved. An

example of such a prediction is shown in Figure 4–5. Figure 4–5 shows a view of the

UCSC Genome Browser (http://genome.ucsc.edu/) [69]. One can see that the regular two-

state HMM assigns positive scores to two poorly conserved regions that are not functional

in GM12878 cell line, while the same region is given negative scores by the phylo-HMM.

On the other hand, we also found a good number of regions that were predicted as false

positives by the phylo-HMM and not by the regular HMM. These regions were ones that

were generally well conserved, but their sequence readout was not convincing enough for

the regular HMM to assign them a high posterior probability of being GM12878 regu-

latory. The example of such a prediction can be seen in Figure 4–6. From Figure 4–6

we can see that a highly conserved non-functional in GM12878 cell line DNA region is

scored positively by the phylo-HMM but not by the regular HMM. One interesting thing

to note is the increase in the regulatory-score assigned by the regular HMM. Even though

this increase does not take the score to be positive, it takes it very close to being positive.

This is indicative of the fact that even the sequence readout of this region has information

that is indicative of GM12878 regulatory function and hence, the predictions made by the

phylo-HMM are not only driven by sequence conservation. It is important to note that

this discussion on the nature of the false positive predictions made by the regular HMM

and phylo-HMM are based on the predictions that we randomly sampled and manually

inspected by visualizing them in the UCSC Genome Browser (http://genome.ucsc.edu/)

[69] and since we could analyze only a fraction of the regions due to time limitations, we
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cannot completely rule out the possibility of existence of regions for which the nature of

false positive predictions may be different.

We combined the performance of the regular and the phylo-HMM keeping the struc-

ture and the heuristic fixed. The ROC curves denoting the combined performance, along

with the ROC curves for the regular and phylo-HMM for each combination of structure

and heuristic are shown in Figure 4–7. In all the cases we can see that the combined ROC

curve indicates performance better than at least one of the two classifiers throughout the

range of FPR, and for the two-state parallel six and the two-state sixth root HMMs the

combined ROC curve shows better performance than both the classifiers. Also, for the

three-state parallel six and the four-state parallel six the combined ROC curve is above the

other two curves for lower values of FPR before it is overtaken by the curve corresponding

to the regular HMM. Next, we compare the performance of all the variants seen so far

with the FPR limited to 5%. Figure 4–8 shows this comparison. We see that the prob-

lem of no classifier dominating for the entire range does not show up here. The top three

curves showing the combined performances of the regular and phylo-HMMs in case of

the parallel six two-state HMM, the sixth root two-state HMM, and the parallel six three-

state HMM are above all the other ROC curves for the entire range of acceptable FPR,

with combination of parallel six two-state regular and phylo-HMMs performing the best.

Hence, now we can choose a single classifier for the entire range of acceptable FPR.

4.2 Support Vector Machines

We trained the support vector machine (SVM) classifier using all the regions from the

reduced positive and negative training sets described in section 3.4.2, except the regions

from chromosome 8 and chromosome 2. The SVM we used was a soft-margin SVM and
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Figure 4–5: False Positive Predictions made by the Regular HMM
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Figure 4–5: The different tracks starting from the top are:

1. The Labels GM12878 track indicating the presence of GM12878 regulatory DNA.

The GM12878 regulatory regions are shown in black and for all the other regions

there is no fill at all.

2. The Phylo 2-state HMM track shows the output of the forward-backward algorithm

for the 2-state phylo-HMM. The posterior probability that the six-length window

starting at the particular position belongs to the GM12878 regulatory set is not plot-

ted directly. The posterior probability is used to obtain a regulatory-score that when

plotted can be visually more informative. The computation of the regulatory-score is

given by equation 4.4, where p is the posterior probability of the six-length window

belonging to the GM12878 regulatory set which is rounded off to the ninth decimal

place.

Regulatory-Score =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

log10(p) if 0 < p < 0.5

− log10(1 − p) if 0.5 ≤ p < 1

−10 if p = 0

+10 if p = 1

(4.4)

3. The Regular 2-state HMM track shows the regulatory-scores obtained using the reg-

ular 2-state HMM.

4. The MULTIZ alignments track shows the MULTIZ 100way alignment. Here, we

have customized this track to show information only from the 58 present day species

that we are using. The fill pattern used by the UCSC Genome Browser is that the

darker the shade, the more is the sequence conserved, with the absence of fill denot-

ing gaps.
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Figure 4–6: False Positive Predictions made by the Phylogenetic HMM
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Figure 4–7: Combining the Regular and the Phylogenetic HMMs

hence, the parameter C controlling the degree of penalization of the misclassifications

had to be chosen. This was done by following a stratified 5-fold cross-validation (CV)

strategy. In this the entire training set is randomly divided into 5 equal size subsets, each

containing the same proportion of negative and positive examples. Then one of the 5
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Figure 4–8: ROC Curves for all HMM Classifiers along with their Combinations within

Limited False Positive Rate
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Figure 4–9: Five-Fold Cross Validation Accuracy for the SVM Classifier versus Penalty

Parameter C

Note: The graph has been plotted in log scale for better resolution

subsets is retained as the validation set to test the classifier and the remaining four are

used for training the model. This is repeated for five times using a different subset as

the validation set every time. The test results on all of the subsets are then averaged and

presented as the cross-validation performance. The 5-fold CV was performed using the

different values of C, and the value that gave the best result was chosen. The 5-fold CV

accuracies for different values of C are shown below in Figure 4–9. The value C = 2×10−4

gave the best 5-fold CV accuracy of 75.68%.
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Next, we ran the trained SVM classifier on the whole of chromosome 8 using the slid-

ing window and labelling of positions based on the labels of the overlapping subsequences

approach, as mentioned in section 3.4.2. Since SVM is not a probabilistic classifier we

do not get a ROC curve, but just a single pair of specificity and sensitivity values. Our

SVM classifier gave us a specificity of 74.52% and a sensitivity of 76.61%. As discussed

earlier in section 4.1.3, due to the large class imbalance in our case, a classifier with such a

high false positive rate is of little practical importance. However, it may prove to be useful

when used in combination with other classifiers.

4.2.1 Combined Performance of Support Vector Machines and Hidden Markov

Models

The performance of an HMM was reported as a ROC curve, i.e. pairs of values of sen-

sitivity and 1-specificity or false positive rate (FPR), whereas the performance of our SVM

classifier is reported as a single sensitivity, FPR pair. A ROC curve corresponding to the

combined performance can be drawn by plotting the sensitivity and FPR values achieved

by intersecting the predictions made by the HMM at different FPRs with the predictions

made by the SVM. Figure 4–10 shows the performance achieved by intersecting the pre-

dictions given by the combination of the parallel six two-state regular and phylogenetic

HMM, which was the best classifier among all the HMM classifiers, with the predictions

of the SVM classifier. One can see that there is a slight increase in performance by using

the predictions given by the SVM classifier. The following facts can explain this slight

increase. One, due to the high true positive rate of the SVM classifier, almost every true

positive prediction made the combined HMM classifier was predicted to be positive by

the SVM classifier. Second, almost all the false positive predictions made by the regu-

lar HMM which were already discarded on taking the intersection with the predictions
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of the phylo-HMM, match with the false positive predictions made by the SVM classi-

fier, causing them also to be discarded. Recall that these are regions where the sequence

readout of the region is indicative of GM12878 regulatory function, but the region itself

is not well conserved. Figure 4–11 shows a screenshot of the UCSC Genome Browser

(http://genome.ucsc.edu) showing a portion of chromosome 8. Here apart from the tracks

mentioned in section 4.1.4, a track showing SVM predictions has been added. It can be

seen that the SVM classifier falsely predicts five regions, four of which are predicted to

be positive by the regular 2-state HMM also. All of the predicted regions are not well

conserved and are predicted correctly to be negative by the phylogenetic HMM.

4.3 Analysis of False Positive Predictions

It is important to analyze the composition of the false positive predictions made by

the classifier to better understand the mistakes the classifier is making and how it can

be improved in the future. The composition of false positive predictions obtained after

intersecting the predictions made by the SVM classifier with the predictions made by the

combination of the parallel six two-state regular and phylo-HMMs was analyzed. We

limited the FPR at 5% and counted the number of false positive predictions that belonged

to the following sets of regions:

1. The non-GM12878 regulatory set.

2. The set of DNase-I hypersensitive sites. This set was built by combining the re-

sults from DNase-I hypersensitivity assays on 95 cell types by the John Stamatoy-

annapoulos lab at the University of Washington, as part of the ENCODE project

first production phase [102]. It was downloaded from the ENCODE data reposi-

tory at the UCSC Genome Browser (http://genome.ucsc.edu/) [69, 94, 70]. Then
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Figure 4–10: Intersecting the Predictions of the SVM Classifier with the Predictions of the

Combination of Regular and Phylogenetic HMMs
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Figure 4–11: False Positive Predictions made by the SVM Classifier
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this set was divided into two subsets, one containing DNase-I hypersensitive sites

for the GM1878 lymphoblastoid cell line and the other containing all the hyper-

sensitive sites other than the ones for the GM12878 lymphoblastoid cell line. For

simplicity, we will refer the two subsets as GM12878 DNase-I hypersensitive sites

and non-GM12878 DNase-I hypersensitive sites. The DNase-I hypersensitive sites

indicate portions of open chromatin that are sensitive to digestion by the DNase

enzyme and provide a good approximation of the regulatory regions as regulatory

regions in general, tend to be DNase-sensitive [103]. Even though both ChIP-seq

and DNase-I hypersensitivity assays are used for identifying regulatory regions, the

results of both the experiments do not match completely as both have their limita-

tions. For instance, DNase-I hypersensitivity assay is better at capturing promoters

than enhancers as the former are more DNase-I hypersensitive [103] and the ChIP-

seq experiments are limited by the TFs for which the antibodies are available.

The composition of the false positive predictions is presented below in table 4.3. We

see that almost 53% of the false positive predictions are ones that were designated to

be regulatory in some other cell type by at least one of the two experiments. Next, we

checked the composition of the false positive predictions made by the combination of the

parallel six three-state phylo and regular HMMs to see if adding the third state to model the

non-GM12878 regulatory DNA was beneficial or not. This composition is summarized in

table 4.3. It can be seen that the overall fraction of false positives that were recognized as

non-GM12878 regulatory DNA by at least one of the two experiments goes to down to ∼

41.87%. This drop of ∼ 12% from the two-state case is indicative that adding the extra state

does increase the discriminatory power of the classifier to differentiate between regulatory
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regions from different cell types, but only to a certain extent. This can be attributed to the

fact that the underlying mechanism for cell type specificity is that of chromatin structure

remodelling, and knowledge about chromatin structure cannot be overcome with DNA

sequence information.

Table 4–1: Composition of False Positives Achieved after Intersecting the Predictions of

the SVM and the Combination of the Parallel Six Two-State Regular and phylo-HMMs

Class % Composition

non-GM12878 regulatory regions 35.47%

GM12878 DNase-I hypersensitive sites 0.33%

non-GM12878 DNase-I hypersensitive sites 17.56%

Table 4–2: Composition of False Positives Achieved after Intersecting the Predictions

Made by the Parallel Six Three-State Phylogenetic and Regular HMMs

Class % Composition

non-GM12878 regulatory regions 27.32%

GM12878 DNase-I hypersensitive sites 0.28%

non-GM12878 DNase-I hypersensitive sites 14.55%

4.4 Analysis of Over-Represented K-mers

The k-mers, where k = 6, which are much more probable in the GM12878 regulatory

state than the other states were looked up using the emission probability tables and were

compared against motifs of known TFs to see if our classifier had implicitly identified the

motifs or portions of motifs. Using the emission probability table of the regular HMM,

the 6-mers were ranked according to the odds ratio of being emitted from the GM12878

regulatory state versus being emitted from any other state. The expression for the odds

ratio is given by equation 4.5. Following this top 50 6-mers with the highest odds ratios
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were selected to be analyzed.

Ro =
P[o|S GM12878]

P[o|s ∈ S \ {S GM12878}]
(4.5)

Here,

• o is the 6-mer.

• S is the associated state space.

• S GM12878 is the state that models the GM12878 regulatory DNA.

• S \ {S GM12878} denotes set of all states except S GM12878.

Similarly, top 50 over-represented 6-mers for the phylo-HMM were also recognized. To

find 6-mers that were more probable and also more conserved in the GM12878 regulatory

state, we ranked the 6-mers according to the ratio given by equation 4.6.

Ro =

P[xr = o|S GM12878]
∏

(u,v)∈Eτ

P[xv = o|xu = o, S GM12878]

P[xr = o|S \ {S GM12878}]
∏

(u,v)∈Eτ

P[xv = o|xu = o, S \ {S GM12878}]
(4.6)

Here,

• xu is the notation used to represent the character present at node u.

• Eτ is the set of edges present in the tree τ.

• r is root node.

• All the other notations are same as equation 4.5.

The over-represented 6-mers found were then compared to known motifs using the

Tomtom motif comparison tool [104]. Tomtom compares the queried sequence (in our

case, the 6-mer) against a database of known motifs and produces matches having E-values

beyond a certain threshold. We checked our over-represented 6-mers against the Homo

sapiens Comprehensive Model Collection v11 core (HOCOMOCO v11 CORE) database
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Figure 4–12: Matching of an Over-represented 6-mer to Known Motifs

(A) shows the match between the over-represented 6-mer TCCGCG and the motif for the

transcription factor ELF1 [106] found in the HOCOMOCO v11 CORE database [105].

The match has an E-value of 5.41 and a p-value of 1.35e-02. (B) shows the match

between the over-represented 6-mer TCCGCG and the motif for transcription factor

E2F2 [107] found in the HOCOMOCO v11 CORE database [105]. The match has an

E-value of 3.54 and a p-value of 8.80e-03. Both (A) and (B) were presented as outputs by

the Tomtom motif comparison tool [104].

[105], which contains binding motifs for TFs binding human DNA. A total of 91 matches

were found for the E-value threshold of 10. Figure 4–12 shows two of the matches for one

of the over-represented 6-mer. The complete list of the top fifty over-represented 6-mers

recognized by the regular and the phylogenetic HMM along with the ids of the motifs they

matched to from the HOCOMOCO v11 CORE database can be found in Appendices A

and B.
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CHAPTER 5

Conclusion and Future Work

5.1 Summary of Contributions

This thesis aimed by building machine learning models to computationally identify

cell type specific regulatory regions within the genome of some concerned species using

the sequence information from the genomes of the concerned species and its orthologous

species.

The problem of identifying regulatory regions is worthy enough for the purpose of

better understanding patterns and mechanisms of gene expression regulation, and also for

the purpose of disease diagnosis and drug discovery as many diseases are shown to be

linked with mutations occurring in the regulatory regions. While experimental approaches

do exist to identify regulatory regions, they have limitations in the form of cost, time, and

availability of specific chemicals needed to carry out an experiment. These limitations

make the computational approaches an invaluable asset to the researchers.

In this work we trained machine learning models to identify regulatory regions in

the GM12878 lymphoblastoid cell line in humans. We leveraged the information about

sequence readout and sequence evolution due to two important properties of regulatory

regions. First, regulatory sequences contain DNA segments usually 5-15 bases long called

transcription factor binding sites to which transcription factors bind, making the sequence

composition of the regulatory regions different from that of non-functional DNA. Second,
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regulatory regions are more likely to be conserved as compared to the non-functional re-

gions, as mutations in the functional DNA more often than not have negative impact on an

organism’s survival and reproduction rates.

We trained the support vector machine (SVM) and regular hidden Markov model

(HMM) classifiers to identify GM12878 lymphoblastoid cell line specific regulatory re-

gions using only the DNA sequence information from the human genome. The HMM was

trained based on the assumption that the DNA sequence of a chromosome was generated

using a Markovian process and the different regions in a chromosome such as regulatory

regions, non-functional regions, etc were generated while the underlying process was in

different states. On the other hand, the SVM classifier was trained to solve a binary classi-

fication problem using the k-spectrum string kernel [101]. Next, to use sequence evolution

information along with sequence readout information, we selected the phylogenetic hid-

den Markov model (phylo-HMM) classifier. A phylo-HMM can be seen as a generator of

multiple sequence alignments (MSA). It does so by running two Markov processes, one

running along the branches of a phylogenetic tree and the other running along the length of

a DNA sequence. We used MSA that not only included sequences from present day mam-

mals, but also contained ancestral sequences that were constructed using the Ancestors

1.0 program [79]. This helped us capture better information about sequence evolution. In

our knowledge this was the first attempt to use information from computationally inferred

ancestral sequences in detecting regulatory regions.

We ran regular HMMs and phylo-HMMs with different structures and compared their

results against each other to settle down on the best structure and variant of the HMM, but

ended up observing that choice of the classifier depended on the desired false positive
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rate. However, in the process, we visually analyzed a good number of predictions and dis-

covered that the regular and the phylo-HMMs were making false positive predictions of

different nature due to the different information they were being guided through. The false

positive predictions made by the regular HMM were due to the lack of sequence evolution

information, and the phylo-HMM was sometimes misguided by strong sequence conser-

vation signal. We dealt with the problem of such false positive predictions by taking an

intersection of the predictions made by the regular and the phylo-HMMs. This also helped

us to settle for a single HMM based classifier that outperformed every other HMM clas-

sifier irrespective of the desired false positive rate. We further improved the performance

of this classifier by combining its results with that of the SVM classifier. Thus, in the end,

we had a classifier that was an ensemble of all three classifiers, combining their individual

strengths.

The highly discriminating sequence patterns recognized by our classifiers were com-

pared against the Homo sapiens Comprehensive Model Collection v11 core (HOCO-

MOCO v11 CORE) database [105] of known transcription factor binding motifs and a

total of 91 matches were found.

5.2 Future Work

In this thesis, we trained machine learning models to identify cell type specific reg-

ulatory regions based on sequence data of concerned and related species. We found that

the classifier obtained by taking an ensemble of the parallel six two-state regular HMM,

parallel six two-state phylogenetic HMM, and the SVM trained on sequence data using the

k-spectrum kernel gave us the best results within the acceptable false positive rate range.

We see a large scope for both extending our current models to build better models, and for
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coming up with other techniques to tackle the problem. The HMMs used in this work have

the state durations of the underlying Markov process intrinsically modeled as geometric

distributions, and it would be interesting to model these state durations as Poisson or Gaus-

sian distributions as in the case of hidden semi-Markov models [108]; however, given its

large computational time requirement kept us away from trying it. Even though fast im-

plementations exist, they are not fast enough yet to be applicable to our problem setting.

One more area to work on is the dependence of overlapping 6-mers despite knowing the

underlying state. We did come up with three heuristics and compared their performance

against each other; however, other tricks shall also be tried in the hunt for a better solution

for the dependence of overlapping 6-mers. The sequence labelling task of identifying cell

type specific regulatory regions should also be approached using other machine learning

techniques, particularly deep learning techniques such as recurrent neural networks shall

be a good fit as they have shown to be a success in the sequence labelling tasks for natural

language processing.
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Appendix A

Matches for Over-represented K-mers Recognized by Two-state Parallel Six

Regular Hidden Markov Model

Below are the top fifty over-represented 6-mers recognized by the parallel six two-

state regular hidden Markov model along with the motif ids of the transcription factor

binding motifs from the Homo sapiens Comprehensive Model Collection v11 core (HO-

COMOCO v11 CORE) database [105]. We mention motif ids instead of just transcription

factor names to facilitate easy access to sequence signature of the motifs from the HOCO-

MOCO v11 CORE database.

CGCGCG - E2F5 HUMAN.H11MO.0.B, ZBT14 HUMAN.H11MO.0.C,

E2F2 HUMAN.H11MO.0.B

GCGGCG - TAF1 HUMAN.H11MO.0.A, THAP1 HUMAN.H11MO.0.C,

TYY1 HUMAN.H11MO.0.A, KLF12 HUMAN.H11MO.0.C

CGCCGC - TAF1 HUMAN.H11MO.0.A, THAP1 HUMAN.H11MO.0.C,

TYY1 HUMAN.H11MO.0.A, KLF12 HUMAN.H11MO.0.C

GCCGCG - ZFX HUMAN.H11MO.0.A, E2F2 HUMAN.H11MO.0.B,

MYCN HUMAN.H11MO.0.A, TYY1 HUMAN.H11MO.0.A,

MYC HUMAN.H11MO.0.A, KLF1 HUMAN.H11MO.0.A,

KLF12 HUMAN.H11MO.0.C, KLF3 HUMAN.H11MO.0.B

CGCGGC - ZFX HUMAN.H11MO.0.A, E2F2 HUMAN.H11MO.0.B,

TYY1 HUMAN.H11MO.0.A, MYCN HUMAN.H11MO.0.A,
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MYC HUMAN.H11MO.0.A, KLF1 HUMAN.H11MO.0.A,

KLF12 HUMAN.H11MO.0.C, KLF3 HUMAN.H11MO.0.B

CGGCGG - TAF1 HUMAN.H11MO.0.A, MBD2 HUMAN.H11MO.0.B,

TYY1 HUMAN.H11MO.0.A, KLF12 HUMAN.H11MO.0.C,

MXI1 HUMAN.H11MO.0.A

CCGCCG - TAF1 HUMAN.H11MO.0.A, MBD2 HUMAN.H11MO.0.B,

TYY1 HUMAN.H11MO.0.A, KLF12 HUMAN.H11MO.0.C,

MXI1 HUMAN.H11MO.0.A

CCGCGG - AP2B HUMAN.H11MO.0.B, NR1H4 HUMAN.H11MO.0.B

CCCGCG - AP2B HUMAN.H11MO.0.B, E2F4 HUMAN.H11MO.0.A,

E2F1 HUMAN.H11MO.0.A, E2F3 HUMAN.H11MO.0.A,

NRF1 HUMAN.H11MO.0.A, KAISO HUMAN.H11MO.0.A,

KLF12 HUMAN.H11MO.0.C, E2F6 HUMAN.H11MO.0.A,

TFDP1 HUMAN.H11MO.0.C, E2F7 HUMAN.H11MO.0.B,

NR1H4 HUMAN.H11MO.0.B

CGGCGC - CTCFL HUMAN.H11MO.0.A, ZN335 HUMAN.H11MO.0.A,

E2F2 HUMAN.H11MO.0.B, KLF12 HUMAN.H11MO.0.C

CGCGGG - AP2B HUMAN.H11MO.0.B, E2F4 HUMAN.H11MO.0.A,

E2F1 HUMAN.H11MO.0.A, E2F3 HUMAN.H11MO.0.A,

NRF1 HUMAN.H11MO.0.A, KAISO HUMAN.H11MO.0.A,

KLF12 HUMAN.H11MO.0.C, E2F6 HUMAN.H11MO.0.A,

TFDP1 HUMAN.H11MO.0.C, E2F7 HUMAN.H11MO.0.B,

NR1H4 HUMAN.H11MO.0.B
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GCGCCG - CTCFL HUMAN.H11MO.0.A, ZN335 HUMAN.H11MO.0.A,

E2F2 HUMAN.H11MO.0.B, KLF12 HUMAN.H11MO.0.C

GCGCGC - ZBT14 HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

AHR HUMAN.H11MO.0.B

CCGGCG - MBD2 HUMAN.H11MO.0.B, ETV1 HUMAN.H11MO.0.A,

SP2 HUMAN.H11MO.0.A, MECP2 HUMAN.H11MO.0.C

CGCCGG - MBD2 HUMAN.H11MO.0.B, ETV1 HUMAN.H11MO.0.A,

SP2 HUMAN.H11MO.0.A, MECP2 HUMAN.H11MO.0.C

CGCGGA - HINFP HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

ELF1 HUMAN.H11MO.0.A, MECP2 HUMAN.H11MO.0.C

TCCGCG - HINFP HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

ELF1 HUMAN.H11MO.0.A, MECP2 HUMAN.H11MO.0.C

CGCGCT - ZBT14 HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

MYC HUMAN.H11MO.0.A, MAX HUMAN.H11MO.0.A

AGCGCG - ZBT14 HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

MYC HUMAN.H11MO.0.A, MAX HUMAN.H11MO.0.A

CGCGAC - AHR HUMAN.H11MO.0.B, E2F2 HUMAN.H11MO.0.B,

TFE3 HUMAN.H11MO.0.B, TFEB HUMAN.H11MO.0.C,

MITF HUMAN.H11MO.0.A, USF1 HUMAN.H11MO.0.A,

KAISO HUMAN.H11MO.0.A

CGCGAG - KAISO HUMAN.H11MO.0.A, HINFP HUMAN.H11MO.0.C,

E2F2 HUMAN.H11MO.0.B
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CCGCGA - HINFP HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

KAISO HUMAN.H11MO.0.A, TYY1 HUMAN.H11MO.0.A

CTCGCG - KAISO HUMAN.H11MO.0.A, HINFP HUMAN.H11MO.0.C,

E2F2 HUMAN.H11MO.0.B

TCGGCG - ZN335 HUMAN.H11MO.0.A

CGCCGA - ZN335 HUMAN.H11MO.0.A

CGGCGA - TAF1 HUMAN.H11MO.0.A, MBD2 HUMAN.H11MO.0.B

TCGCGG - HINFP HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

KAISO HUMAN.H11MO.0.A, TYY1 HUMAN.H11MO.0.A

GTCGCG - AHR HUMAN.H11MO.0.B, E2F2 HUMAN.H11MO.0.B,

TFE3 HUMAN.H11MO.0.B, TFEB HUMAN.H11MO.0.C,

MITF HUMAN.H11MO.0.A, USF1 HUMAN.H11MO.0.A,

KAISO HUMAN.H11MO.0.A

TCGCCG - TAF1 HUMAN.H11MO.0.A, MBD2 HUMAN.H11MO.0.B

TGCGCG - ZBT14 HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

NRF1 HUMAN.H11MO.0.A, AHR HUMAN.H11MO.0.B

CGAGCG - ZBT14 HUMAN.H11MO.0.C, PAX5 HUMAN.H11MO.0.A

CGCGCA - ZBT14 HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

NRF1 HUMAN.H11MO.0.A, AHR HUMAN.H11MO.0.B

CGCTCG - ZBT14 HUMAN.H11MO.0.C, PAX5 HUMAN.H11MO.0.A

CGGCCG - MBD2 HUMAN.H11MO.0.B, HINFP HUMAN.H11MO.0.C

GCGCGG - ZBT14 HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

NRF1 HUMAN.H11MO.0.A, E2F4 HUMAN.H11MO.0.A,
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E2F1 HUMAN.H11MO.0.A, KLF12 HUMAN.H11MO.0.C,

E2F6 HUMAN.H11MO.0.A

CGCGTC - E2F2 HUMAN.H11MO.0.B, ATF6A HUMAN.H11MO.0.B,

HIF1A HUMAN.H11MO.0.C

CCGCGC - ZBT14 HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

NRF1 HUMAN.H11MO.0.A, E2F4 HUMAN.H11MO.0.A,

E2F1 HUMAN.H11MO.0.A, KLF12 HUMAN.H11MO.0.C,

E2F6 HUMAN.H11MO.0.A

CGTCGC - RFX1 HUMAN.H11MO.0.B, MYCN HUMAN.H11MO.0.A,

MYC HUMAN.H11MO.0.A

GCGACG - RFX1 HUMAN.H11MO.0.B, MYCN HUMAN.H11MO.0.A,

MYC HUMAN.H11MO.0.A

GACGCG - E2F2 HUMAN.H11MO.0.B, ATF6A HUMAN.H11MO.0.B,

HIF1A HUMAN.H11MO.0.C

CGACCG - ZBT48 HUMAN.H11MO.0.C

GGCGGC - TYY1 HUMAN.H11MO.0.A, THAP1 HUMAN.H11MO.0.C,

TAF1 HUMAN.H11MO.0.A, ZFP42 HUMAN.H11MO.0.A,

CTCFL HUMAN.H11MO.0.A, MXI1 HUMAN.H11MO.0.A,

E2F3 HUMAN.H11MO.0.A, INSM1 HUMAN.H11MO.0.C,

KLF12 HUMAN.H11MO.0.C, E2F6 HUMAN.H11MO.0.A,

TFDP1 HUMAN.H11MO.0.C, CTCF HUMAN.H11MO.0.A,

E2F4 HUMAN.H11MO.0.A, E2F1 HUMAN.H11MO.0.A
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GCCGCC - TYY1 HUMAN.H11MO.0.A, THAP1 HUMAN.H11MO.0.C,

TAF1 HUMAN.H11MO.0.A, ZFP42 HUMAN.H11MO.0.A,

CTCFL HUMAN.H11MO.0.A, MXI1 HUMAN.H11MO.0.A,

E2F3 HUMAN.H11MO.0.A, INSM1 HUMAN.H11MO.0.C,

KLF12 HUMAN.H11MO.0.C, E2F6 HUMAN.H11MO.0.A,

TFDP1 HUMAN.H11MO.0.C, CTCF HUMAN.H11MO.0.A,

E2F4 HUMAN.H11MO.0.A, E2F1 HUMAN.H11MO.0.A

CGGTCG - ZBT48 HUMAN.H11MO.0.C

GGCCGC - ZFX HUMAN.H11MO.0.A, ZFP42 HUMAN.H11MO.0.A,

THAP1 HUMAN.H11MO.0.C, TYY1 HUMAN.H11MO.0.A,

HEN1 HUMAN.H11MO.0.C, MBD2 HUMAN.H11MO.0.B,

KLF1 HUMAN.H11MO.0.A, CTCF HUMAN.H11MO.0.A,

KLF3 HUMAN.H11MO.0.B, HINFP HUMAN.H11MO.0.C

GCGGCC - ZFX HUMAN.H11MO.0.A, ZFP42 HUMAN.H11MO.0.A,

THAP1 HUMAN.H11MO.0.C, TYY1 HUMAN.H11MO.0.A,

HEN1 HUMAN.H11MO.0.C, MBD2 HUMAN.H11MO.0.B,

KLF1 HUMAN.H11MO.0.A, CTCF HUMAN.H11MO.0.A,

KLF3 HUMAN.H11MO.0.B, HINFP HUMAN.H11MO.0.C

TTCGCG - E2F2 HUMAN.H11MO.0.B, E2F5 HUMAN.H11MO.0.B,

TFDP1 HUMAN.H11MO.0.C, E2F3 HUMAN.H11MO.0.A,

E2F1 HUMAN.H11MO.0.A, KAISO HUMAN.H11MO.0.A,

E2F4 HUMAN.H11MO.0.A
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GGGGCG - SP1 HUMAN.H11MO.0.A, KLF12 HUMAN.H11MO.0.C,

SP3 HUMAN.H11MO.0.B, CTCFL HUMAN.H11MO.0.A,

E2F4 HUMAN.H11MO.0.A, SP2 HUMAN.H11MO.0.A,

KLF9 HUMAN.H11MO.0.C, E2F7 HUMAN.H11MO.0.B,

SP4 HUMAN.H11MO.0.A, E2F1 HUMAN.H11MO.0.A,

E2F6 HUMAN.H11MO.0.A, TFDP1 HUMAN.H11MO.0.C,

INSM1 HUMAN.H11MO.0.C, KLF1 HUMAN.H11MO.0.A,

E2F2 HUMAN.H11MO.0.B, PATZ1 HUMAN.H11MO.0.C,

CTCF HUMAN.H11MO.0.A, KLF3 HUMAN.H11MO.0.B,

HEN1 HUMAN.H11MO.0.C, ZBT7A HUMAN.H11MO.0.A,

EGR1 HUMAN.H11MO.0.A, TAL1 HUMAN.H11MO.0.A,

KLF6 HUMAN.H11MO.0.A, KLF15 HUMAN.H11MO.0.A,

KLF8 HUMAN.H11MO.0.C, ZN281 HUMAN.H11MO.0.A,

ZBT14 HUMAN.H11MO.0.C, SRBP2 HUMAN.H11MO.0.B,

ZBT17 HUMAN.H11MO.0.A
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Appendix B

Matches for Over-represented K-mers Recognized by Two-state Parallel Six

Phylogenetic Hidden Markov Model

Below are the top fifty over-represented 6-mers recognized by the parallel six two-

state phylogenetic hidden Markov model along with the motif ids of the transcription factor

binding motifs from the Homo sapiens Comprehensive Model Collection v11 core (HO-

COMOCO v11 CORE) database [105].

TCGCGA - KAISO HUMAN.H11MO.0.A, E2F2 HUMAN.H11MO.0.B

TACGCG - EPAS1 HUMAN.H11MO.0.B, ARNT HUMAN.H11MO.0.B,

E2F2 HUMAN.H11MO.0.B

CGTACG - ARNT HUMAN.H11MO.0.B, EPAS1 HUMAN.H11MO.0.B

CGCGTA - EPAS1 HUMAN.H11MO.0.B, ARNT HUMAN.H11MO.0.B,

E2F2 HUMAN.H11MO.0.B

CGCGAA - E2F2 HUMAN.H11MO.0.B, E2F5 HUMAN.H11MO.0.B,

TFDP1 HUMAN.H11MO.0.C, E2F3 HUMAN.H11MO.0.A,

E2F1 HUMAN.H11MO.0.A, KAISO HUMAN.H11MO.0.A,

E2F4 HUMAN.H11MO.0.A

TCGCGT - AHR HUMAN.H11MO.0.B, ATF3 HUMAN.H11MO.0.A,

TFEB HUMAN.H11MO.0.C, TFE3 HUMAN.H11MO.0.B,

E2F2 HUMAN.H11MO.0.B, MITF HUMAN.H11MO.0.A,

BHE40 HUMAN.H11MO.0.A, USF1 HUMAN.H11MO.0.A
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CGCGTA - EPAS1 HUMAN.H11MO.0.B, ARNT HUMAN.H11MO.0.B,

E2F2 HUMAN.H11MO.0.B

CGCGAA - E2F2 HUMAN.H11MO.0.B, E2F5 HUMAN.H11MO.0.B,

TFDP1 HUMAN.H11MO.0.C, E2F3 HUMAN.H11MO.0.A,

E2F1 HUMAN.H11MO.0.A, KAISO HUMAN.H11MO.0.A,

E2F4 HUMAN.H11MO.0.A

TTCGCG - E2F2 HUMAN.H11MO.0.B, E2F5 HUMAN.H11MO.0.B,

TFDP1 HUMAN.H11MO.0.C, E2F3 HUMAN.H11MO.0.A,

E2F1 HUMAN.H11MO.0.A, KAISO HUMAN.H11MO.0.A,

E2F4 HUMAN.H11MO.0.A

CGCGAT - KAISO HUMAN.H11MO.0.A, ZBT14 HUMAN.H11MO.0.C,

TYY1 HUMAN.H11MO.0.A, E2F2 HUMAN.H11MO.0.B

TCGCGA - KAISO HUMAN.H11MO.0.A, E2F2 HUMAN.H11MO.0.B

CGCGTT - ZBT14 HUMAN.H11MO.0.C, ELF1 HUMAN.H11MO.0.A

CGAACG - HINFP HUMAN.H11MO.0.C

CGTTCG - HINFP HUMAN.H11MO.0.C

CGCGAA - E2F2 HUMAN.H11MO.0.B, E2F5 HUMAN.H11MO.0.B,

TFDP1 HUMAN.H11MO.0.C, E2F3 HUMAN.H11MO.0.A,

E2F1 HUMAN.H11MO.0.A, KAISO HUMAN.H11MO.0.A,

E2F4 HUMAN.H11MO.0.A

TGCGCA - NRF1 HUMAN.H11MO.0.A, CEBPE HUMAN.H11MO.0.A,

CEBPD HUMAN.H11MO.0.C, MTF1 HUMAN.H11MO.0.C,

CEBPB HUMAN.H11MO.0.A
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GCGCAT - NRF1 HUMAN.H11MO.0.A

TGCGCA - NRF1 HUMAN.H11MO.0.A, CEBPE HUMAN.H11MO.0.A,

CEBPD HUMAN.H11MO.0.C, MTF1 HUMAN.H11MO.0.C,

CEBPB HUMAN.H11MO.0.A

CACGCG - AHR HUMAN.H11MO.0.B, MAX HUMAN.H11MO.0.A,

TFEB HUMAN.H11MO.0.C, TFE3 HUMAN.H11MO.0.B,

BHE40 HUMAN.H11MO.0.A, MYCN HUMAN.H11MO.0.A,

MITF HUMAN.H11MO.0.A, BMAL1 HUMAN.H11MO.0.A,

MYC HUMAN.H11MO.0.A, USF1 HUMAN.H11MO.0.A,

CLOCK HUMAN.H11MO.0.C, MXI1 HUMAN.H11MO.0.A

CGCGTG - AHR HUMAN.H11MO.0.B, MAX HUMAN.H11MO.0.A,

TFEB HUMAN.H11MO.0.C, TFE3 HUMAN.H11MO.0.B,

BHE40 HUMAN.H11MO.0.A, MYCN HUMAN.H11MO.0.A,

MITF HUMAN.H11MO.0.A, BMAL1 HUMAN.H11MO.0.A,

MYC HUMAN.H11MO.0.A, USF1 HUMAN.H11MO.0.A,

CLOCK HUMAN.H11MO.0.C, MXI1 HUMAN.H11MO.0.A

TGGCGA - RFX1 HUMAN.H11MO.0.B, RFX2 HUMAN.H11MO.0.A,

TYY1 HUMAN.H11MO.0.A, KAISO HUMAN.H11MO.0.A

GCGCGT - ZBT14 HUMAN.H11MO.0.C, HIF1A HUMAN.H11MO.0.C,

MAX HUMAN.H11MO.0.A, BHE40 HUMAN.H11MO.0.A,

MYC HUMAN.H11MO.0.A, ARNT HUMAN.H11MO.0.B,

EPAS1 HUMAN.H11MO.0.B, E2F5 HUMAN.H11MO.0.B

CGCATG - NRF1 HUMAN.H11MO.0.A, PAX6 HUMAN.H11MO.0.C
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CGCGCA - ZBT14 HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

NRF1 HUMAN.H11MO.0.A, AHR HUMAN.H11MO.0.B

CGCCAT - TYY1 HUMAN.H11MO.0.A, THAP1 HUMAN.H11MO.0.C,

ZFP42 HUMAN.H11MO.0.A, TAF1 HUMAN.H11MO.0.A,

E2F3 HUMAN.H11MO.0.A, RFX1 HUMAN.H11MO.0.B,

RFX2 HUMAN.H11MO.0.A, SOX17 HUMAN.H11MO.0.C,

HXB4 HUMAN.H11MO.0.B

CATGCG - NRF1 HUMAN.H11MO.0.A, PAX6 HUMAN.H11MO.0.C

TGCGCG - ZBT14 HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

NRF1 HUMAN.H11MO.0.A, AHR HUMAN.H11MO.0.B

CGCGCA - ZBT14 HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

NRF1 HUMAN.H11MO.0.A, AHR HUMAN.H11MO.0.B

CGCGAG - KAISO HUMAN.H11MO.0.A, HINFP HUMAN.H11MO.0.C,

E2F2 HUMAN.H11MO.0.B

CGTGCG - MYCN HUMAN.H11MO.0.A, MTF1 HUMAN.H11MO.0.C,

HIF1A HUMAN.H11MO.0.C, AHR HUMAN.H11MO.0.B,

ARNT HUMAN.H11MO.0.B, HINFP HUMAN.H11MO.0.C

GCGCAA - CEBPE HUMAN.H11MO.0.A, CEBPD HUMAN.H11MO.0.C,

E2F2 HUMAN.H11MO.0.B, CEBPB HUMAN.H11MO.0.A,

MTF1 HUMAN.H11MO.0.C, NRF1 HUMAN.H11MO.0.A,

AHR HUMAN.H11MO.0.B, HIC1 HUMAN.H11MO.0.C,

ZN449 HUMAN.H11MO.0.C, CEBPA HUMAN.H11MO.0.A,

E2F5 HUMAN.H11MO.0.B
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TTGCGC - CEBPE HUMAN.H11MO.0.A, CEBPD HUMAN.H11MO.0.C,

E2F2 HUMAN.H11MO.0.B, CEBPB HUMAN.H11MO.0.A,

MTF1 HUMAN.H11MO.0.C, NRF1 HUMAN.H11MO.0.A,

AHR HUMAN.H11MO.0.B, HIC1 HUMAN.H11MO.0.C,

ZN449 HUMAN.H11MO.0.C, CEBPA HUMAN.H11MO.0.A,

E2F5 HUMAN.H11MO.0.B

CGCACG - MYCN HUMAN.H11MO.0.A, MTF1 HUMAN.H11MO.0.C,

HIF1A HUMAN.H11MO.0.C, AHR HUMAN.H11MO.0.B,

ARNT HUMAN.H11MO.0.B, HINFP HUMAN.H11MO.0.C

TTGCGA - CEBPE HUMAN.H11MO.0.A, IKZF1 HUMAN.H11MO.0.C,

AHR HUMAN.H11MO.0.B, KAISO HUMAN.H11MO.0.A

CCGCGA - HINFP HUMAN.H11MO.0.C, E2F2 HUMAN.H11MO.0.B,

KAISO HUMAN.H11MO.0.A, TYY1 HUMAN.H11MO.0.A

GCGTAC - AHR HUMAN.H11MO.0.B, ARNT HUMAN.H11MO.0.B,

EPAS1 HUMAN.H11MO.0.B

CGCGGT - ZBT14 HUMAN.H11MO.0.C, NR1H4 HUMAN.H11MO.0.B,

RFX1 HUMAN.H11MO.0.B

CTCGCG - KAISO HUMAN.H11MO.0.A, HINFP HUMAN.H11MO.0.C,

E2F2 HUMAN.H11MO.0.B

GTCGCG - AHR HUMAN.H11MO.0.B, E2F2 HUMAN.H11MO.0.B,

TFE3 HUMAN.H11MO.0.B, TFEB HUMAN.H11MO.0.C,

MITF HUMAN.H11MO.0.A, USF1 HUMAN.H11MO.0.A,

KAISO HUMAN.H11MO.0.A
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CTAGCG - HINFP HUMAN.H11MO.0.C, KAISO HUMAN.H11MO.0.A

CGCGTC - E2F2 HUMAN.H11MO.0.B, ATF6A HUMAN.H11MO.0.B,

HIF1A HUMAN.H11MO.0.C

CGCTAG - HINFP HUMAN.H11MO.0.C, KAISO HUMAN.H11MO.0.A

TTTCGC - E2F2 HUMAN.H11MO.0.B, IRF9 HUMAN.H11MO.0.C,

E2F5 HUMAN.H11MO.0.B, IRF7 HUMAN.H11MO.0.C,

CEBPE HUMAN.H11MO.0.A, NFKB1 HUMAN.H11MO.0.A,

IRF2 HUMAN.H11MO.0.A, E2F3 HUMAN.H11MO.0.A,

TFDP1 HUMAN.H11MO.0.C, KAISO HUMAN.H11MO.0.A

CCGCGT - MAX HUMAN.H11MO.0.A, MYCN HUMAN.H11MO.0.A,

MYC HUMAN.H11MO.0.A, ELF1 HUMAN.H11MO.0.A,

ATF6A HUMAN.H11MO.0.B, MXI1 HUMAN.H11MO.0.A,

BMAL1 HUMAN.H11MO.0.A

GCGCGA - E2F2 HUMAN.H11MO.0.B, E2F5 HUMAN.H11MO.0.B,

ZBT14 HUMAN.H11MO.0.C, E2F1 HUMAN.H11MO.0.A,

E2F3 HUMAN.H11MO.0.A, TFDP1 HUMAN.H11MO.0.C,

E2F6 HUMAN.H11MO.0.A, E2F4 HUMAN.H11MO.0.A,

KAISO HUMAN.H11MO.0.A, E2F7 HUMAN.H11MO.0.B

TACGCA - HLF HUMAN.H11MO.0.C, AHR HUMAN.H11MO.0.B,

CEBPE HUMAN.H11MO.0.A, NRF1 HUMAN.H11MO.0.A,

ZN260 HUMAN.H11MO.0.C

TTCCGC - PAX6 HUMAN.H11MO.0.C, ZN140 HUMAN.H11MO.0.C,

ELF2 HUMAN.H11MO.0.C, GABPA HUMAN.H11MO.0.A,
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ETV1 HUMAN.H11MO.0.A, E2F7 HUMAN.H11MO.0.B,

ELK1 HUMAN.H11MO.0.B, E2F2 HUMAN.H11MO.0.B,

ELK4 HUMAN.H11MO.0.A, ELF1 HUMAN.H11MO.0.A,

E2F4 HUMAN.H11MO.0.A, E2F3 HUMAN.H11MO.0.A,

TFDP1 HUMAN.H11MO.0.C, E2F6 HUMAN.H11MO.0.A,

E2F1 HUMAN.H11MO.0.A, OSR2 HUMAN.H11MO.0.C,

ELF5 HUMAN.H11MO.0.A, HINFP HUMAN.H11MO.0.C

CGCAAC - AHR HUMAN.H11MO.0.B, E2F2 HUMAN.H11MO.0.B,

CEBPD HUMAN.H11MO.0.C, HIC1 HUMAN.H11MO.0.C,

ZN449 HUMAN.H11MO.0.C
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