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Abstract

The research presented here is carried out along two related fronts. Calcula-
tional techniques which derive from the symmetry properties of the theory of strings
are used to generate new solutions corresponding to five dimensional rotating black
holes. The Dirichlet brane (D-brane) content of these black holes is then identified
and this information is used to compute the microscopic statistical entropy, which is
then shown to be identical to the classical Bekenstein-Hawking entropy. The sym-
metry techniques are then further exploited to create new low-energy background
solutions describing different supersymmetric bound states of D-branes. In one case
these D-brane bound states have constituent D-branes which differ in dimension by
two. In the second case these bound states represent arbitrary numbers of D-branes

which intersect at non-trivial angles.



Résumé

La recherche présentée ici comprend deux orientations intimement liées. Des
techniques de calcul qui se dérivent des caractéristiques de symétrie de la théorie
de cordes sont utilisées pour créer de nouvelles solutions qui représentent des trous
noirs en cing dimensions qui ont un moment angulaire non-nul. Le contenu de
ces trous noirs en terme d’hypermembranes de Dirichlet (D-branes) est identifié
et utilisé pour calculer 1’entropie microscopique et statistique. Cette entropie est
identique a ’entropie classique de Bekenstein et Hawking. Les techniques de calcul
sont également exploitées pour créer de nouvelles solutions de basse énergie qui
décrivent des états liés de D-branes. Un calcul se consacre a produire des solutions
d’états liés dans lesquelles les D-branes ont une différence de dimension de deux.
L’'autre calcul produit des états li€s dans lesquelles des D-branes s’intersectent a

angles arbitraires.



Acknowledgements

To my supervisor, Robert Myers, I owe much. I thank him for his guidance,
encouragement and patience. I have profited enormously from his tuition. I express
also my gratitude to Nemanja Kaloper and Ramzi Khuri for many stimulating and
useful discussions, and for their willingness to share their ideas. The courses of
Professors C.S. Lam and R. Sharp were also very profitable.

I would like also to thank those with whom I have collaborated, David Lowe,
Andy Strominger, Cumrun Vafa, and in particular Amanda Peet and Guy Michaud
for useful discussions, and for grace under questioning.

My office mates Mohammed Garousi, Omid Hamidi-Ravari, Yongyian Feng
and Patrick Girard have made office life enjoyable, even if there are no windows.
Thanks also to Paul Mercure and Juan Gallego for keeping the computers running.

For the other inhabitants of the third and fourth floors, who have made both the
city of Montréal in general and the department of physics in particular interesting
places to exist, there doesn’t seem to be any simple way to express how I feel. Thus
I will simply say “thank you for everything” to Martin Kamela, Alexander Marini,
Chris Roderick, Rainer Ullmann, May Chiao, Peter Bamert, Rakie Cham, and others
whose names I either forget, or never learned in the first place.

Special thanks are owed to those who found the patience to withstand my
efforts to learn a second language, among them Philippe Page, Rahma Tabti, Denis
Michaud, Harald Roussel, Héléne Nadeau and others too numerous to mention.

The financial support of NSERC and FCAR du Québec is also appreciated.

Official soundtrack by Jimi Hendrix, Stevie Ray Vaughan, Miles Davis, Wes
Montgomery, and Ethel.

Finally, I would like to say to my family that I am at last “out of school”.






Contents
Abstract . . . . . . L oL Lo e e e e e e e e e e e e e i
Resumé . . . . . . . . . L e e e e e ii
Acknowledgements . . . . . . . . ... ..o 0o e e e e i1
Contents . . . . . . . . .. e e e e e e e e e e e v
Listof figures . . . . . . . . . . . o 0 e e e e e e X
l. Introductionand Outline . . . . . . . .. ... ... ........ 1
I.I.Outhine . . . . . . . . . . . o o e e e e 2
2. The Theory of Strings . . . . . . . . . . . . . . ... ... .. 5
2.1. Thebasics . . . . . . . . 0 0 v il e e e e e e e e 6
2.1.1. From point particles to strings . . . . . . .. .. .. .. 6
2.1.2. From stringS t0 ... . . « v v 4 v 4 e e e e e e e e e e 11
2.13. The bosonicstring . . . . . . . . . o v v v v v v L. 13
22. The superstring . . . . . . . . .« ot v v i v e e e 22
2.2.1. Superfields on the world sheet . . . . . ... .. .. .. 23
2.2.2. Constraints and boundary conditions . . .. ... .. .. 26
2.2.2.1. Spacetime supersymmetry . . . . . . . . . . . . . . 34

2.2.3. Compactification . . . . . . . . . . . ... ... ... 35



2.2.3.1. Compactification of world-sheet fields . . . . . . . .
2.2.3.2. World sheet current algebra . . . . . . . . .. ...
2.2.3.3. Kaluza-Klein compactification . . . . . . .. . ..

2.3. The four superstring theories and their low energy

2.3.1. Equations of motion for the spacetime fields . . . . . . .

2.3.2. The Type I superstring . . . . . . . . ... . ... ...

23.3. The Type O superstring . . . . . . . . .. . . . . ...
23.3.1. Type DA superstting . . . . . . . . . . . .« . ..
2332. Type IIB superstring . . . . . . « « o v v v v v vt

2.3.4. The heterotic superstring . . . . . . . . ¢« ¢ « - . . ..

2.3.5. A compactified action . . . . ... . L0000 .

3. The symmetries of the theory of strings . . . . . . . . . . . . . ..

3.1. General Remarks on Symmetry . . . . . .. ... ... ...

3.2. O(d,d) symmetry of the string . . . . . . ... ... .....

3.2.1. The bosonic string

3.2.2. The heterotic string

--------------------

3.3. T-duality symmetry of the stting . . . . . . . .. . . . .. ..

3.3.1. Relation to O(d,d) symmetry . . . . . . . . . .. . ...

3.3.2. T-duality of type II

3.4. String duality . . . . .

superstrings . . . . . . . .0 ... .

--------------------

3.4.1. Introduction to string duality . . . . . ... .. ... ..

3.5. String/string duality . .

3.5.1. BPS saturated states

....................

...................

....................

vi

36
38
39

42
42
47

48
50
51

52
54

56
57

58
59
62
64
67
68

70
70

72
73
75

80



4.1. p-branes as solutions to supergravity . . .
. 4.1.1. Masses and charges for p-branes . .
4.1.2. Multi-centre p-brane solutions . . .

4.1.3. Supergravity solitons . . . . . . ..

4.2. Dirichletbranes . . . . . . .. ... ..
4.2.1. T-duality for open strings . . . . .
4.2.2. An action for D-branes . . . . . . .

4.2.3. D-brane tension and charge . . . .

4.2.3.1. Charge quantization. . . . . .

4.2.4. D-brane excitations . . . . . . . ..
4.2.5. Supersymmetry of D-branes . . . .
4.3. Classical D-brane solutions . . . . . . . .

4.3.1. Classical supersymmetry . . . . . .

5. The theory of black holes . . . . .. ... ..
S5.1. Blackholes . ... ... ........
5.1.1. The Schwarzschild metric . . . . .

5.1.2. Reissner-Nordstrom solution . . . .

5.1.3. Kerr-Newman solution . . . . . . .

5.1.4. Taub-NUT metric . .. ... ...

5.2. The thermodynamics of black holes . . . .

5.3. Black holes of string theory . . . . . . .
5.3.1. Magnetically charged black holes . .

5.3.2. Asymptotically nonvanishing dilaton

5.4. D-branes and black holes . ... . . ..

6. Spinning black holes and their entropy . . . . .

‘ 6.1. Counting entropy with D-branes . . . . .

vit



viil

6.2. Solution generating . . . . . . . . - . . . . ... 0oL 145
6.2.1. Generating techniques . . . . . . . . . . ... ... .. 148
6.2.2. The extrtemal black hole . . . . . . . .. .. ... ... 152
6.2.3. Properties of the solution . . . . . . . . . . ... .. .. 153
6.2.4. D-brane counting of the microscopic entropy . . . . . . . 154

6.3. The non-extremalcase . . . . . . . . . . . .. ... ..... 159
6.3.1. A rotating nonextremal black hole . . . . . .. .. ... 159
6.3.2. D-brane count in non-extremal case . . . . ... . ... 163

6.4. Adyonicblackhole .. .. ... .. ... .......... 164

7. Bound states of D-branes . . . . . . . . . ... .00 168

7.1. Bound states of (p,p—2) D-branes . . . . . . . ... .. ... 169
7.1.1. Some preliminaries . . . . . . . . . . . . ... ... .. 170
7.1.2. Bound state of p=0,2 D-branes . . . . . .. ... ... 173

7.1.2.1. Mass and Charge Relations . . . . . .. ... ... 177
7.1.3. More bound state solutions . . . . . . . . .. ... L. 179
7.13.1. p=3,1branes ... ... ... .. ... ..., 180
7.132. p=4,2branes . . . . . . . . . .. e 181
7.133. p=53branes . . ... . ... . ... ... .. 183
7.13.4. p=6,4branes . .. . . . . . ¢ v v v v it 0. 183
7.135. p=4,220branes . . . . . . ... .. ... ... 184
7.1.4. Discussion . . . ... ... ..o 0o L., 185

72. Membranes atangles . . . . . ... ... ... ... .. 186
7.2.1. Mass and Charge Relations . . . . . . ... ... .... 189
722. T-Duality . . .. .. .. .. ... ..., 192

7.2.2.1. Transverse directions . . . . . . . . . . ... ... 192
7.2.2.2. World-volume directions . . . . . . . . .. . ... 194



8. Conclusions . . . . . . . i i e e e e e e e e e e e e e e e e e e 198
8.1. Future directions . . . . . . . . v v v v v v e e e e e e e, 200

A. Notation and conventions . - . . v ¢ 4 v v v v e v e e e e e e e 202
Al . Listofsymbols . . ... ... ... ... ... ... ... 204
A.2. Relation to supergravity conventions . . . . . . . . . . . . . . 208

B. Some useful mathematicaltools . . . . . . . . . . . . . ... ... 210
B.1. Calculus of variations . . . . . . - « « « v v v e e e e e 210
B.2. Conformally related spacetimes . . . . . . . . .. .. .. .. 211
B.3. Miscellaneous useful formulas . . . . . . . . . .. . . .. .. 211
C.Penrose diagrams . . . . . . . . . . .. 0ot e n e e . 212
C.1. Ablackholeexample . . . ... ... .......... 215

References . . . . . . o v v i i e e e e e e e e e e e e e e e e 219



List of figures

Figure 2.1.1. Open and closed string world sheets . . . . . . . . . .. 9
Figure 2.3.1. Diagrams contributing to one-loop G-function . . . . . . 44
Figure 2.3.2. Open string Chan Paton charges . . . . . . .. . . ... 47
Figure 4.2.1. Closed string exchange between D-branes . . . . . . . . 97

Figure 4.2.2. Representation of gas of open strings attached

to D-branes . . . . . .. L. oL ..o e e e e e e 102
Figure 4.2.3. Representation strings attached to D-branes . . . . . . . 103
Figure 5.1.1. Representation of Schwarzschild geometry . . . . . . . . 114
Figure 5.1.2. Penrose diagram of Schwarzschild black hole . . . . .. 115

Figure 5.1.3. Penrose diagram of Reissner-Nordstrom black
hole . . . . . . o L e 117

Figure 5.1.4. Penrose diagram of extremal Reissner-
Nordstrom black hole . . . . ... .. ... ... .... ... 118

Figure 5.1.5. Representation of extremal Reissner-Nordstrom

BEOMETY . . & v v vttt e e e e e e e e e e e e e e e e e e e 119
Figure 5.1.6. Penrose diagram of Reissner-Nordstrom naked

singularity . . . . . . . . L. e e e e e e e e . 120
Figure 5.1.7. Penrose diagram of Kerr black hole . . . . .. . .. .. 122

Figure 5.3.1. Penrose diagram of extremal black hole with

nonzero dilaton . . . . . . . .. . s e e e e e e e e e e e e 133

Figure C.1. Minkowski spherical polar coordinates related to
light cone coordinates . . . . . . . . ... .. 000 ... 213

Figure C.2. Penrose diagram of Minkowski space . . .. ... .. .. 215

Figure C.3. Penrose diagram of Schwarzschild black hole . . . . . .. 217



Introduction and Outline

This thesis is based on research done in the context of the theory of strings.
Recent developments in this field of high energy physics, particularly progress in
the understanding of its non-perturbative aspects have shown that string theory is
rather more than just a theory of strings; that is, other (extended) objects, such
as Dirichlet branes (D-branes) and supergravity p-branes must be included in the
theory. These additional objects fill out multiplets of states that are connected
by special symmetries, known as dualities, which relate different parts of string
theories, or even entire string theories, to one another.

In addition, the network of dualities of string theory has been interpreted as
evidence [1-3] that the four consistent string theories are really different parts of a
larger theory which has been dubbed M-theory. We will not be concerned here with
this larger theory, but it is clear that these dualities, several of which we will use to
great effect, have a large role to play. Here we wish merely to set up the context for
this work.

Black holes are extremely interesting objects predicted by Einstein’s general
theory of relativity [4-5]. These are objects so massive, possessing gravitational
fields so powerful that not even light is able to escape, hence the term “black hole”.
It has been shown that these objects possess a thermodynamic entropy [6-7], for
which one would ideally like to have a microscopic and statistical interpretation.
Classical general relativity offers no clues as to what this interpretation might be.

At the same time, classical general relativity predicts that singularities may

form, points where the curvature of spacetime grows without bound. It is thus to be

—1-
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expected that quantum gravity is required to explain both the microscopic entropy,
and to resolve these curvature singularities, to discover the deep structure of these
objects [8].

String theory is at present a strong candidate for a theory of quantum gravity [9].
It is logical, therefore to study black holes in the context of string theory, in the hope
that some light may be shed on the physics of black holes, and also in an attempt to |
validate the theory of strings as a physical theory.

Some progress has in fact been made on this front. One species of additional
object demanded by the dualities of the theory of strings which have been used
to great effect are the D-branes. These are objects extended in zero or more
dimensions, and have been recently used to compute, for the first time, the statistical
entropy of black holes [10-13]. Thus it is clear that D-branes represent useful probes
into the non-perturbative regime of string theory, in addition to their role in filling
multiplets as required by duality. We will see examples of calculations of this kind
in chapter VI.

In addition, D-branés are interesting objects in their own right [14-15]. There
are many questions to be asked and, hopefully, answered with regard to how D-
branes interact with each other, for example. In chapter VII we will see many
examples of D-branes forming supersymmetric bound states, in which one D-brane
can be considered to have “dissolved” in its companion, or in which the D-branes

in question intersect at non-trivial angles.

1.1. Outline

String theory is a large subject, and the size of this thesis reflects this. The desire
was that this thesis provide a self-contained introduction for non-specialists. This
necessitates the inclusion of muchreview material which string theorists may choose
not to read. Here we present a short guide.

Chapters II through V represent introductions to the theory of strings, duality
symmetries in string theory, p- and D-branes, and black holes in string theory,
respectively. Chapter II contains material on the basics of string quantization,
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supersymmetry and the superstring, the process of compactification of higher di-
mensions, then systematically presents the known consistent superstring theories,
including details of their low-energy effective space-time actions.

The third chapter presents the duality symmetries of the theory of strings, be-
ginning with the O(d, d, R) symmetry of the low-energy string equations of motion,
continuing with target-space or 7°-duality and then finally one very small part of the
string duality family, Type A—Heterotic string/string duality in six dimensions.

Chapter IV presents the theory of Dirichlet branes, both from the world-sheet
point of view, as well as the space time point of view, where D-branes are related to
a class of p-brane solutions of supergravity theories. The material here may be of
interest even to specialists, given the recent rise of D-branes in string theory.

Black holes in the context of string theory are the subject of chapter V. A
catalog of black hole solutions to the vacuum Einstein equation as well as the
Einstein-Maxwell system is given, along with generalizations to higher dimensions.
The string-theory analogs of these solutions are also discussed. Short treatments
of the thermodynamics of black holes and the connection between black holes and
D-branes are also given, leading to the research which is presented in chapters VI
and VII.

The original research which is presented in this thesis is to be found in chap-
ters VI and VII and was carried out on two related fronts. One is the construction
of new black hole solutions in string theory. The second is the construction of
new supersymmetric solutions representing bound states of D-branes. In chap-
ter VI, new solutions for a five-dimensional rotating supersymmetric black hole and
a six-dimensional rotating black string are presented. Analysis of these solutions,
including a microscopic counting of the black hole entropy, is then carried out. A
third example, that of the construction of a non-rotating dyonic black hole is also
presented. The results presented here have been published in [12,13] or will be
published [16]. Here, we present the research in greater detail.

In chapter VII the emphasis switches to D-branes, with the construction of
supersymmetric D-brane bound states the subject. In the first case we have simple
bound states, but in the second part of chapter VII we construct bound states which
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intersect non-orthogonally. The publications in which this research appears are [17-
18].

Chapter VIII is the final chapter, which presents a summary of the work com-
pleted and discusses some avenues of future research. The appendices gather
information on notation and conventions, as well as some topics that would require
too long a digression to present in the main text.

Those unfamiliar with string theory and in no particular hurry will hopefully find
it profitable to read the entire thesis. Those who wish only to understand chapters VI
and VTI can skip most of chapter II except section 2.3. Although most of chapter III
should be read, since the symmetry properties of the theory of strings play a major
role in this work, sections 3.2.2, 3.3.1 and section 3.5.2 can be safely left aside.

For chapter IV, it is possible to leave aside section 4.1 on p-branes as well as
section 4.4.1. As far as chapter V is concerned, sections 5.1.4, 4.2 can be safely
omitted.

Those familiar with the theory of strings are no doubt perfectly capable of
choosing which sections to read or to omit. It should be restated, however, that
the symmetry properties of string theory play a crucial role in this work, and it is
recommended that chapter IIT should at least be skimmed quickly before moving on
to chapters VI and VIL



The Theory of Strings

Quantum field theory based upon the notion of a point particle has enjoyed
unparalleled success in the description of nature at the subatomic level [19]. The
standard model of particle physics [20] represents the final achievement of this
programme, combining the notion of a field which is to be quantized with the ideas
of renormalization, which both constrains the available physical quantum fields
and provides a set of techniques to extract answers which can be compared to
experiment [21].

However, despite the success of this theory, there remain several less than
satisfying aspects of the standard techniques of quantum field theory, as well as one
outright problem. An example of the first is the large number of free parameters
in the standard model. The second is the resistance of gravitation to all and any
attempts at quantization within this theoretical framework.

The theory which has come to be loosely known as “string theory”! hasemerged
in recent years as one of few serious candidates for a quantum theory of gravity.
This development was based on what one might call a radical departure from the
established formalism of quantum field theory: the generalization from the idea of
the point particle to objects of one dimension (called strings), and even to objects of
higher dimensionality. This departure results in a theory which inescapably contains
gravitation, as well as having room to contain all known physics. At the present
moment, no one knows just how the standard model will fall out of string theory,

but nonetheless progress continues to be made.

1 We will see why I say “loosely” later on.
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2.1. The basics

When one attempts to change a feature such as the dimensionality of the funda-
mental constituents of an entire theoretical framework, the task must be done with
care and with full understanding of the roles played by the objects under scrutiny.
Thus to generalize a point particle to a higher dimensional object, it is necessary
to consider issues not commonly dealt with in standard treatments of quantum field
theory. To describe how this generalization is made, it is useful to begin with a
description of point particle theory, something with which the reader is no doubt
familiar.

2.1.1. From point particles to strings

If we consider a massless point particle without spin moving in a Minkowski
spacetime, a field theory action S suitable for describing this system is often written

as

S- fd"z (8,8) (8“9) @.1.1)

where ¢ is the scalar function of the n spacetime coordinates which determines how
the particle behaves. Thus, this action is written in the spacetime formalism, in
which the action is calculated as an integral over all space, the equation of motion

which is obtained by varying this action with respect to ¢ turns out to be
O¢p=0 (2.1.2)

where O = 9,0 is the Minkowski space d’Alembertian operator. The solutions of
(2.1.2) will show that the particle is required to exist only on the light cone, as is
natural for a particle without mass.

The above action and equation of motion are what most think of when the
words “massless scalar particle” are mentioned. The quantity ¢ is a quantum field
composed of creation and annihilation operators, which in turn give rise to states
with any number of particles, hence the name quantum field theory given to this

formalism.
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However, there exists, in the case of a single-particle state another way to
formulate this system, in terms of the world-line along which the particle propagates.

In this case we may write the action as

Sw = % dre(T) N (0-X*) (8-X") (2.1.3)

where 7,,,, is the Minkowski metric, the indices 1 and v running over the dimensions
of the spacetime, T is an arbitrary parameter along the trajectory, X*(7) is the
position of the particle, and Ty is a constant required to make the action dimensionless
(whenk = ¢ = 1). The object e(7) is a metric or measure along the world-line and
Or = 3‘9.:. The role played by e(7) is to guarantee that S remains invariant under
reparametrizations of the world-line. It can be shown that (2.1.3) is invariant under
T — 7(7). Hence it is clear that the physics of (2.1.3) should have no dependence
on how the world-line is parameterized. We can use the reparametrization freedom

to make a choice in which e = 1, for which (2.1.3) becomes simply
To u "
=5 aT Ny (BTX ) (a-,-X ) . (2.1.4)
Varying S with respect to X# results in the equation of motion
BXH =0 (2.1.5)

of which the solutions are, obviously, straight lines X# = p#7+X}' in the Minkowski
spacetime. However, one must remember that not all straight lines in Minkowski
space are permissible as solutions of the theory described by (2.1.4). In writing
(2.1.4) we have made a particular choice of world-line parameterization, and this
choice has consequences. Since S must be invariant under reparametrizations of
the world-line, we must impose constraints on our point particle to ensure that this
is always true. The appropriate constraint in this case, which derives from the

requirement that i‘;-% = 0 is the vanishing of the quantity
‘:{ = Th‘y (6TX”) (61-XV) . (2.1 -6)

This restricts our straight-line solutions to be the lightlike geodesics in our spacetime,

the light cones, i.e., 7,,p*p” = 0.
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The spacetime and world-line formulations are indeed quite different in content.
One distinction, to which we alluded earlier, is usually denoted in the literature as
the distinction between first-quantization and second-quantization. The distinction
between these two is that first-quantization indicates the quantization of a particle,
and second-quantization the quantization of a field from which particles may be
created, thus producing multi-particle states.

If, for the purposes of illustration, we restrict our attention to states with a fixed
number of particles, then we can consider the spacetime and world-line formulations
as complementary. On the one hand, in the spacetime description the particle is
considered to move in an n-dimensional spacetime which may be considered as a
“container” for the particle? whereas in the world-line description the spacetime
coordinates are fields which exist on the world-line. The world-line formulation of
the theory is the natural framework in which to begin the generalization of the point
particle to extended objects such as strings. Although much effort has been put into
the development of what is known as string field theory, a second-quantized version
of string theory, it is not yet clear that this avenue of research will produce anything
useful [22-23].

In the simplest generalization of the point particle, about which much has been
written [9,23,24-27] one begins with a zero-dimensional object and generalizes it to
aone-dimensional object. As mentioned, for this task one begins with the world-line
description of the point particle. This is due to the fact that the dimensionality of
the world-volume of the particle appears directly in the action, as the number of
dimensions over which it is necessary to integrate when calculating the action.

A one-dimensional particle, henceforth known as a string, sweeps out a two-
dimensional world-volume as it moves through spacetime, which we will call the
world sheet. This is in contrast to the one-dimensional world-volume, the world-
line, of the point particle. Strings can be of two types, depicted in Fig. 2.1.1. In the
case that the strings are intervals, or segments, they are known as open strings. The
other possibility is that the strings form loops, in which case they are called closed

strings. In either case we need two world sheet coordinates to describe the motion.

2 Or, for that matter, the fields from which the particles are created.
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Figure 2.1.1: Schematic depiction of (a) closed string and (5) open
string world sheets.

The action in this case may be written:
"'_2 ov —€e€ 77(,:1/( a )( b ) 2.1.7

where ey, is the metric on the world sheet (e%® = (eqp)~ ! and e = det e,p). In general
we will use Minkowski signature, both in spacetime and on the world sheet. The
X# are the coordinate “fields” on the world sheet. We are using d?o to denote drdo,
integration over the world sheet. Here 7 denotes the time coordinate, which has
the range ~oo < 7 < oo, while the spatial coordinate ¢ extends over0 < o <,
running from one end of the string to the other in the case of cpen strings, or
representing one complete revolution in the case of closed strings. The constant T
makes the action dimensionless when’ = ¢ = 1. Equation (2.1.7) is a string theory
action written in what is commonly known as the “sigma model” or “Polyakov”
form of the action [28].
The equation of motion derived from (2.1.7) by variation with respect to X# is
written
e, X" =0 (2.1.8)

which can be seen to be the simple linear wave equation (82 — §2)X* = 0 if>

et — (‘01 (1’) 2.1.9)

which must, just as in the case of the point particle, be supplemented by constraints
derived by requiring that the variation of the action with respect to the world sheet

metric, 3%3;, vanish, in order to guarantee that the action does not depend on the

3 'We will see later that the world sheet metric may always be put in this form, at least locally.
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coordinate system used on the world sheet. The energy momentum tensor in (1 +1)-

dimensional field theory is normally defined as

o 55
V—e desd

and thus the constraint is simply Ty = 0. It is also worth noting that by solving for

T (2.1.10)

the constraints of e4; and then eliminating them one arrives at the “Nambu-Goto”

form of the action [29]:

5= / dodr\) (0. X7 (0, X) — (8- X - 0,X) @.1.11)

which has an interpretation in terms of the area of the world sheet swept out by the
string.

Up to now we have been discussing free point particles and the generalization
to free strings. What can be said about interactions? On the world-line of a point
particle the natural coupling [30], which preserves Poincaré and gauge invariance,*

is that of a gauge field. Thus, one can generalize the action (2.1.4) to be
§== [dr{gum (8-X*) (0:X") + A, (8-X*)} (2.1.12)

where g, is the (general) metric and A, is a gauge field. This action describes the
point particle subject to external forces, gravity and electromagnetism, as it moves
along its world-line. This interaction with background fields described by g,,, and
A, should be distinguished from interactions between different point particles.

It is then evident that we can generalize (2.1.12) to the case of the string as

T
S = 71 / dza{ V—ee®Gy (0:X*) (8X7) + €% By, (8:X*) (05X") }

(2.1.13)

where €% is the Levi-Civita tensor on the world sheet, B, is an antisymmetric

tensor (2-form) potential, the generalization of A, of (2.1.12).

4 Which really means that the indices on the various objects involved get contracted in the
appropriate manner.
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2.1.2. From strings to ...

Now that we have given up the idea that the fundamental objects in our theory are
points, we may seem to be on a slippery slope. What is to prevent us from taking
membranes or higher dimensional objects as our starting point? Of course, there are
limiis imposed by the dimensionality of the spacetime in which one lives, but other
than that there seems to be no obvious restriction.

The action for any of these systems can be written down simply by generalizing
from the world sheet indices a,b in (2.1.7) to world-volume indices which run over
a greater range. The world-volume metric maintains its Minkowski signature. The
action corresponding to (2.1.7) for an object of n + 1 dimensions, an n-brane, can
be written [30]

S= % f "o/ —ee®8, X s X" Gy (2.1.19)

where we have generalized our parameter T to T, known as the tension, which is
again necessary to make S dimensionless. The spacetime metric G, represents a
general, possibly curved, spacetime background. Just as in (2.1.12) we can add a
gauge field which in this case will be an n + 1-form, which has a natural coupling in

an n + 1-dimensional world-volume. If this is done the action appears as

S = %/d""’la{\/ —ee“baaX"BbX”Gm,
_ 2
(n+1)!

€T Gy XPL .9, X AID }

(2.1.15)
where A™*1 is the n + 1-form gauge potential and e is the totally antisymmetric
tensor on the world sheet.

Recall that in the case of the point particle we noted that a reparametrization
choice had been made in writing (2.1.4). The fact that one can always choose a
reparametrization in which the action appears in the form (2.1.4) is one reason why
the action makes sense physically. That is, the physics has no dependence upon how
we choose to parameterize the world-line of our particle. A similar feature is at play
in the case of the string. For a general (n + 1)-dimensional object, the metric on the
world-volume e, will have %(n + 1)(n + 2) components constrained by the n + 1

independent reparametrization (diffeomorphism) invariances of the world-volume
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coordinates. Thus %:'n,(n + 1) components remain and e cannot be eliminated for

n > 0. However, under a local Weyl rescaling of the world-volume metric
€ap = £2(0) eqs, (2.1.16)

the combination v/—e e appearing in the action transforms as
pP
V—ee® .Q%("H)‘I\/ —ee®. (2.1.17)

and we then see why the string (n = 1) has a special place amongst all of these objects.
The string displays conformal invariance [31], i.e., the action is independent of the
scale.

Thus for the string, and only for the string it is always possible to transform the
world sheet metric in such a way that it is the two-dimensional Minkowski metric
(2.1.9). We first use the diffeomorphism invariance to put the world sheet metric in

the conformal gauge:
€ab = €*1las, (2.1.18)

then follow by conformally rescaling such that ¢ = 0. We note also that this property
of the string is connected with the fact that the energy-momentum tensor (2.1.10)
is traceless [9,31] which will have consequences of extreme importance when we
come to quantize the string. These features differentiate a string theory from, say, a
membrane theory.

Membranes and higher dimensional objects have also other difficulties. Equa-
tion (2.1.14) defines a quantum field theory which is renormalizable by power
counting for n = 1 and non-renormalizable forn > 1.

More recent results in the theory of objects with higher dimensionality than
strings have indeed removed or shown the promise of removing some of the barriers
that stand in their way of being on an equal footing with the string. At this
moment in history the string still reigns, but the advent of supermembranes [30] and
eleven-dimensional M-theory [32], seems to indicate that certain higher-dimensional
branes, as well as certain point particles should be regarded on an equal footing with
strings.
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2.1.3. The bosonic string

In this section we will develop the bosonic string in its open and closed versions.
Our discussion will follow most closely that of [9]. To begin we write the action of
the bosonic string from (2.1.15) with, of course, n = 1, and putting T; = 27a’) ™!

where o is the Regge slope, or inverse string tension:

S = %/dza —eeabaaX“abX”r]#,,. (2.1.19)

Here we have set G, = 14, and Bf},} = 0, to begin with a development of the free
bosonic string in Minkowski space, a complete understanding of whichis necessary
before moving on to more general spacetimes.

Itis proper to note that the action (2.1.19) is not the most general action possible
even when restricted to flat backgrounds. There are two other possible terms which
are consistent both with Poincaré€ invariance in a D-dimensional spacetime and with

renormalizability by power counting. These terms are:
S =A[d20\/—e
AI
Sy = / d*o/—€eR
2w

where R is the scalar curvature of the world sheet, or the Ricci scalar in two

(2.1.20)

dimensions, and A and X’ are arbitrary constants.

The S term is a world-volume cosmological constant term. It does not have
Weyl symmetry and therefore leads to inconsistent classical field equations. If we
take the action S+ S, the trace of the equation of motion for e, implies that e,y = 0,
unless A = 0. On the other hand, S; will not concern us here either, since it is a
topological invariant which is fixed by the global topology of the string world sheet.
Since the equations of motion are local, this topological invariant has no effect and
can be dropped from the action with no loss in generality.

The symmetries of (2.1.19) are the following: reparametrization invariance:
dXH =£%9, X*
5e?® =£°9,e% — §,£%L — §,£be%¢ (2.1.21)
6v/—e =08, (£°V=e)
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Weyl scaling invariance:
e = Qe
(2.1.22)

dX* =0,
and in addition the global symmetries of the background space in which the string

is propagating. Here we are in Minkowski space and therefore we simply have the

Poincaré invariance:
SXH =0+, X" +rH*

§e =0.
Note that in the above symmetries, £2 and Q are arbitrary functions of the world

(2.1.23)

sheet coordinates ¢, whereas ©#, (O, antisymmetric) and «# are constants.

As permitted by the invariances we can write egp = (“01 (1)) = 7,5 by using

the two reparametrizations and Weyl scaling. The action then simplifies to:

1
4o’

S =

f d2o ™0, X 8 X, (2.1.24)

from which the equation of motion we obtain is the free wave equation in two

dimensions,
(@2 -3HX+=0 (2.1.25)

For open strings, it is necessary to ensure that the action (2.1.24) is invariant
under a general variation in X# of X# — X* + §X# which gives rise to a volume
term proportional to the equation of motion (2.1.25) and to a surface term, the
vanishing of which tells us the boundary conditions to be imposed at the edges

(0 =0 and o = 7) of the string world sheet. This surface term appears as
1
— B - Iz -
— f ar {9, X*5X,)| -0, X#X,| =0 (2.1.26)

and it can be made to disappear with the imposition of the Neumann boundary
condition 85 X * |0, = 0 or the Dirichlet boundary condition X#|,g » = constant.
We will say more about these conditions later.

In the case of closed strings, on the other hand, functions X# being periodic in
o and obeying (2.1.25) ensure that (2.1.24) is stationary.

As is the usual case in a two dimensional system, the general solution to a wave

equation like (2.1.25) can be given in terms of a sum of two arbitrary functions

Xt =Xt —-0)+ X' (t+0). (2.1.27)
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The functions have been labeled r and [ since they are the “right-moving” and “left-
moving” modes of the coordinate fields. It is useful to rewrite the action in terms of

light cone coordinates for which the definitions and the derivatives are written

+

o =Tx0o
(2.1.28)
ai =%(a‘riaa'):
and the world sheet metric is given by
1
Mo = M—p = =5, Tt = 71— = 0. (2.1.29)
With this choice the action appears as
1
- d*0 8, X*0_X,,. (2.1.30)

4ma!
The utility of the light-cone coordinates is evident, since X£ is only a function of
o~, and likewise only o* appears in X}'.
As mentioned earlier, varying the metric with respect to e3® gives us the world

sheet energy momentum tensor 7, defined as

, 1 46§
Tab=47ra *\/:;;5-525 (2131)
which one finds upon calculation to be
1
Top = aXP0 X, — ~€ap20: X 03X, (2.1.32)

2

Note that one has the identity Tp51% = 0 which is aresult of conformal invariance and
holds in general. Now, the wave equation must be supplemented by the constraint

Tap = 0. These constraints take the form

Tio =To1 = 0- X#0, X, =0,

Too =Ti1 = 5 (Gr X +(8,X7) =0 (2:1.33)
or, in the light-cone coordinates, of the form
T =5 (Moo + Ton) = 3, X#8.X,
T__ =2 (Too — Tor) = 0-XH6_X, =0, (2.1.34)

T =T +"~O.



The Theory of Strings 16

where the third line here follows from T,;;n%® = 0. In two-dimensional quantum field
theory, energy-momentum conservation 9,7% = 0 may be expressed as 8_T' +
0.T_, = 0. However, one has that T"_, = 0 automatically, and thus the conservation
law becomes d_T., = 0, which is a powerful statement, implying an infinite set of
conserved quantities.

To see these conserved charges, let f(o*) be an arbitrary function of ¢*. Then
O_ f = 0 and by extension 8_(fT%+) = 0, so the charge Qf = [do fTy is conserved.
Since we can choose any f(o*) that we want, we have an infinite set of these
conserved quantities. This property is unique to the case of two dimensions, and
thus to string theory (with n = 1). Physically, these conserved quantities represent
residual symmetries which remain after the imposition of conformal gauge on the

world sheet metric. Consider that a reparametrization £ which obeys
8ol + 8b¢s = 2ot (2.1.35)

preserves the choice of gauge of the world sheet metric. If we then define “light
cone” versions of the reparametrizations as £¥(o*) = (¢° + ¢£!) and consider world

sheet reparametrizations to be generated by the operator
Y =£%0, (2.1.36)
we find that the generators of the residual symmetries can be written
¥E = e*o, (2.1.37)

which are the generators of the conformal group in two dimensions. In the case
that f ~ &' the conserved charges generate (2.1.37). Only in two dimensions is the
group of conformal transformations infinite dimensional.

In solving (2.1.27) for the case of closed string, we need only consider the

periodicity requirement of X#(o, 7) in o, which gives us the general solution as:

1 1 A
b by g2 -+ ot e—2ing
XH 2(:1: +0pPo + 2L E —one ), (2.1.38a)
n70
1 1 .+
ol P 2 + 4 Z ml a—2ing
X; 2(z + pfo +z£§ 0ne ) (2.1.38b)

n70
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where the o are the Fourier components, which will be interpreted as oscillator®
components describing the excitations of the string, i.e., the of; are annihilation
operators, while the of . are creation operators. Also a length parameter £ has
been introduced, related to the inverse string tension o' according to £ = v2¢/'.
The variables z# and p# are the center of mass position and momentum of the
string. Note that adding (2.1.38a) and (2.1.38b) together cancels the term linear in
o, consistent with the requirement of periodicity. The requirement that X#(7, o)

should be real implies that o = (o)T and that z* and p* are themselves real.

The classical Poisson brackets for closed strings from (2.1.24) are

[X* (o), X" (a')]pb = [60:X¥ (0),8- X" (a’)]pb =0,

2.1.39
(8- X" (0), X* (o')] ,, =278 (o — o) . @139

Insertion of the solution (2.1.38) gives the Poisson brackets of the oscillator com-

ponents as

[O."#“ a:] b= [&fm an] b = im 5m+n,0 /e

(2.1.40)
[ah,, &%) o5 =0-

Adopting the convention that the zero modes &} and af are defined as &5 = o =

s¢p# then gives us the useful result that (2.1.40) remains valid whenm =0orn =0

or both. Note also that we have [p#, z#],, = n*¥ as we should expect.

The case of the open string is slightly different, for as we have mentioned we
must choose boundary conditions at o = 0 and at o = 7 such that (2.1.26) vanishes.
The first choice which accomplishes this is 8, X# = 0 at the endpoints of the string,
i.e., the normal derivative vanishes at the string boundary. This condition is a “free
boundary condition” in the sense that momentum cannot flow off the end of the
string, and the end of the string is free to move about in spacetime. The general

solution of the wave equation with these boundary conditions is

1 .
XH(o,m) =zH + PpPT+ily —~af €™ cos no. (2.1.41)
n=l

S It should be noted that the am are related to conventionally normalized oscillator components
by af, = /maf, etc..
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The boundary conditions cause the left-moving and right-moving modes to form

standing waves, meaning that we now have a = &. We can therefore write

o -
204 XF =0, X £, XF =¢ Z ak e~in(e%) , (2.1.42)

-G

where we have set the zero mode a’o‘ = {p¥.

It is now necessary to implement the constraints 7,5 = 0. To do so we consider
the mode expansions of the constraints (2.1.34). For closed strings it can be shown

that these reduce to (8, X,)? = (8- X;)* = 0 thus we find

=2imo =2imo
L= 41ra’ / doe T _ = y— [ doe (2 X,.)

H =
= 5 § :am—naﬂ# =
—c0

/ danxmch
Za —nOny =

(2.1.43)

/ do eZimO' (31-Xz)2
0

The Fourier modes of the constraints can be identified with the infinite set of
conserved quantities which exist in the theory. We do not, therefore, expect the
constraints to change as the system evolves. We emphasize that L., = 0 and Lyp=0

are independent constraints for the closed string.

In the open string case things become much more convenient if we extend
formally the definitions of X¥' and X{‘ beyond the usual range 0 < ¢ < 7 by
arranging that X,(o + 7) = Xj(o) and X;(c + ) = X,(o). If this is done then
the open string boundary conditions imply that X, and X are periodic functions
of o with a period 2. These choices are made to get around the fact that ¥ is
not a periodic function on 0 < ¢ < 7. The constraints in this case amount to the

vanishing of T+ on therange —m < ¢ < T, or at the same time the vanishing of the
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Fourier components

1 [ . ;
Lm=m/d0’ (szaT.H. +¢e maT._)
1
ol

3 e

These are the infinite set of conserved quantities for the open string.

dae""”{(a X)? + (8, X)) (2.1.44)

The Hamiltonian on the world sheet is given by

1
4rrad

Wda{(&,-X)z +(8,X)*} (2.1.45)
0

which upon substitution of (2.1.38) for closed strings or (2.1.41) for open strings

gives us
I cO
H = 3 Z ok an, (open strings) (2.1.46a)
-0
1 o
=3 (o pony + &2 L an,,) (closed strings) (2.1.46b)
-0

while noting that we have H = Lg for open strings and H = Lg + I for the closed
ones. Note that we have not considered quantum normal ordering effects in (2.1.46)
which will play a role when we come to consider the mass spectrum.

The constraint Lo = 0 gives an important formula for the mass in terms of the
internal modes of oscillation of the open string, while for the closed string this is

given by Lo + Lo = 0. These formulae are

o0

M? = é Z ot o, (open strings) (2.1.47a)
n=l

== Z (o nomy + G£Gn,)  (closed strings)  (2.1.47b)
n=1

and are the mass shell conditions for the two different types of strings. For closed
strings we also point out that the set of constraints have the additional condition that
Lo — Lo = 0, which comes from the fact that the combination Lo — Lo generates
rigid rotations of the string [9], ¢ — o+ constant, which should have no physical
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effect since o is periodic. Therefore the two terms in (2.1.47b) will give equal
contributions. This is commonly termed the level matching condition, that is we

must always excite equal numbers of left-moving and right-moving modes, i.e.,

(e o] o0
> ateh=) ak &k (2.1.48)

n=| n=1

The various Fourier modes of the energy momentum tensor, L., and L,, are
known as the Virasoro operators. The Poisson brackets of the Virasoro operators

can be computed to be
(L, Ln]pb =t(m —n) Lmn

= = - 2.1.49
[Lm; Ln]pb =1(m — n) Lm+n ( )

which is known as the Virasoro algebra. This algebra is fundamental in the theory
of strings. The Virasoro operators allow us to define the physical states of the theory.

The Fock space built up through application of the creation operators o, and
a” . to the ground state [0) is not positive definite due to the Minkowski metric
signature. The Virasoro operators aliow us to eliminate the unphysical states. Since
we cannot simply impose Ty | phys) = 0, we must impose the weaker condition
Ly, |0)=0form > 0.

The version of the Virasoro algebra given above is classical. However, a com-
plete quantum computation of this algebra, which includes a detailed consideration
of the effects of normal ordering of the oscillator components is beyond the scope
of this brief introduction. It will suffice to say that when quantum effects are taken
into account the result is that the Virasoro algebra gains an anomaly term, or central

charge, meaning that the algebra no longer closes, becoming:

D-26 5 26-D
2 " 12

[Lms Ll = (m = 1) Lnan + m)bmino  (2.150)

where D is the number of bosonic fields X*#, and the number 26 derives from the
contribution of certain ghost, or negative norm, fields which appear in the Fadeev-
Popov gauge-fixing procedure [28,33]. Thus we arrive at the famous result that
the “critical dimension” of the bosonic string theory is 26. This is the number

of spacetime fields for which the Virasoro anomaly vanishes, leaving a Virasoro
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algebra which closes. The Virasoro algebra is tied to the conformal symmetry of the
bosonic string action (2.1.19). Classically, the action is conformally invariant, but
quantum effects create a conformal anomaly [31] thereby breaking the conformal
invariance. Therefore, for D = 26 the conformal anomaly vanishes, and the bosonic
string theory is consistent.

Having 26 dimensions with Minkowski signature we will have, in general, states
forming representations of SO(1,25). However, elimination of the non-physical
negative-norm states through application of the Virasoro operators implies that in
general the states of the theory will form massive representations of SO(25). In
addition the massless states, being constrained to lie on the light cone will form
representations of SO(24).

When normal-ordering effects are included, the mass-shell condition for the

open bosonic string becomes

1 (o]
M2 = = (Z ot o — 1) : (2.1.51)

Thus the spectrum of states of the open bosonic string includes, as the ground state,
a scalar tachyon with o/ M? = —1 and a massless vector boson with 24 independent
polarizations as the first excited state. An indication that SO(25) is in fact the correct
group can be obtained from the fact that we have 324 states with o’ M? = 1 which
is precisely the dimension of the symmetric traceless representation of SO(25) [9].
It is interesting to note that the spin at a given mass level is constrained by the
formula J < o/ M? + 1.

For the closed string, the normal-ordered mass formula is

1 oo
M2 = = (Z (a’inanp +aﬁnan#) - 4) ) (2.1.52)

n=1
and the states are more numerous given that we have both left- and right-moving
oscillators. The ground state is again a tachyon with o/ M? = —4. At the first excited
state level, which is massless, we have the first indication that we are on the right
track. We find a set of massless states which again have SO(24) quantum numbers
resulting from the tensor product SO(24), ® SO(24); of the left- and right-moving
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modes. The symmetric and traceless part of this tensor product is a massless spin-
two particle: the graviton, the quantum of the gravitational field. At the same time,
the antisymmetric part is an antisymmetric tensor field, commonly known as the
Kalb-Ramond potential, while the trace part is a scalar field which has been called

the dilaton.

Although we have found a graviton state in the spectrum, the bosonic string
has some deficiencies. The presence of tachyons in the spectrum is under normal
circumstances considered a bad thing. Another glaring defect is the complete lack
of fermions. Thus it is necessary to incorporate the concept of supersymmetry into
string theory to form the superstring theory which as we will see is successful in

correcting both of these defects.

2.2. The superstring

In this section we will overview the elements which come together to form the
superstring theory. The concept of supersymmetry, a symmetry between bosonic
and fermionic degrees of freedom, was developed as a means of circumventing the
Coleman-Mandula theorem [34] which states that the maximal set of symmetries
a physical theory may possess are those of Poincaré invariance, internal global
symmetries, whose generators are Lorentz scalars (charge, isospin) and the discrete
symmetries C, P and T. One of the assumptions of Coleman and Mandula was that
the symmetry algebra of the S-matrix contains no anticommutators. By including
anti-commuting generators which transform under spinor representations of the

Lorentz group, the Poincaré spacetime symmetries can be extended.

Below, supersymmetry is briefly presented using the formalism of superspace
and superfields [35-39]. Then supersymmetry is installed on the string world sheet.
This necessitates a treatment of the boundary conditions which are to be imposed
on the fermionic fields on the world sheet. From this point, the computation of the
supersymmetric version of the Virasoro algebra and its anomaly can be carried out

in a similar manner to that of the bosonic string.
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We will demonstrate that the incorporation of V = 1 supc:rsymrnc:try6 on the
world sheet results in a spacetime theory with fermions and with critical dimension
D = 10. Later we will see that world sheet supersymmetry can be extended
to spacetime supersymmetry through truncation cf the spectrum in a consistent

manner [40].
2.2.1. Superfields on the world sheet

The introduction of supersymmetry on the world sheet requires the pairing of a
fermionic degree of freedom ¥#(o, ) with each bosonic degree of freedom X (o, 7).
The 9# are two-component world sheet spinors.

The simplest way to install supersymmetry on the world sheet is through the in-
troduction of superspace. In superspace, the ordinary coordinates are supplemented
with the addition of 2 number of Grassman-valued (anti-commuting) coordinates
6% which in two dimensions, for example, form two-component Majorana spinors.
Thus superspace is composed of both bosonic and fermionic coordinates {41]. Here
we will work with a superspace in which there are equal numbers of bosonic and
fermionic coordinates. A general function * in superspace can be expanded in a

Taylor series in the Grassman coordinates as
K- (o, 6) = X* (o) + 0vH (o) + %éo‘w‘ (o) (2.2.1)

where § = 140, The series terminates due to the anti-commuting nature of the
Grassman coordinates §%*. X* here is known as a superfield which contains the
bosonic scalar field X#, the fermionic field 14 as well as yet another bosonic
scalar field U# which plays an essential role as an auxiliary field, allowing the
supersymmetry algebra to close without resorting to the use of the equations of
motion, often referred to as putting particles “on shell”.”

The supersymmetry generators are represented on superspace by the operators

o .
Qa = W +1 ('YGG)Q aa (2.2.2)

6 Nisa parameter that counts the number of supersymmetry generator pairs.
7 For a discussion of on-shell versus off-shell supersymmetry one is invited to consult [9] or
[25].
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where ¢ are the two-dimensional Dirac matrices,® which change fermionic degrees
of freedom into bosonic degrees of freedom, and vice versa. If we introduce an
anti-commuting parameter ¢, as the infinitesimal parameter of a supersymmetry

transformation, then the combination €() generates the transformation:

56° = [€Q,6%] = €%,

(2.2.3)
do® = [éQ, 0'“] = 1&7%0
which can be used to define transformations on superfields as
§KH# = [€Q, KF] = eQX*, (2.2.4)

and it can then be shown that the effect of this supersymmetry transformation on the

component fields of the superfield K* is
dXH =&yt _
SYF = — iy%eB, XH + eUF, (2.2.5)
SUH = — ey 0,9 .

The presence of the auxiliary field U# allows the supersymmetry algebra to close
without the use of the equations of motion. Therefore we see that supersymmetry
can be interpreted as a geometrical transformation in superspace, i.e., one which
“rotates” fermions into bosons and vice versa. We also mention that any function
of superfields is also a superfield and hence will transform according to (2.2.4).
The task now is to learn how to write supersymmetry invariant Lagrangians in
two dimensions, such that we can find that which corresponds to the “superstring”.
For this we will need two things: (1) a covariant derivative on superspace and (2)

rules for integrating over Grassman valued coordinates. The former is supplied by

a LG+ A
D = 55— i1°60 (2.2.6)

which has the useful property that {Dq, @} = 0. Therefore if an object K trans-

forms as §X = éQX then so does DK, and thus D, behaves as a superspace

covariant derivative. The rules for (2) are handled by saying that the natural integral

8 See appendix A for the explicit representation.
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over all of superspace is given by [d?0d26 where d%4 = d§'d6? and [d?8 dealt with
through the definition

/ @20 (a+ 616 + 6%, +9'6%) =c. 2.2.7)
Thus given a Lagrangian of the form
S = / d>od*0 K (2.2.8)
where X is some superfield, and it can be shown that

5S = f d*od?0eQ K
=0

2.2.9)

through integration by parts in both the Grassman variables, and the ordinary vari-
ables. Therefore, any action of the form (2.2.8) is invariant under supersymmetry
transformations.

We then want to find a Lagrangian in which the elementary superfields are
the superfield analogs of the spacetime coordinate fields on the world sheet as in
(2.1.24). One which comes readily to mind from this analogy is

1
4o

/ d2od*0DKFDK,,. (2.2.10)
The expansions of the superspace covariant derivatives will be

DIH =1 + GUF — i7°00, X" + ~ G672 0,0,
] f (2.2.11)

DKF = P¥ + UPG +i0, X #0~° ~ 5679631,5“7“,

and their substitution into (2.2.10) and execution of the integrals over the Grassman

coordinates § results in a supersymmetric Lagrangian of the form:

1 .
y— / d?0 (8. XP0° Xy — 1Py 8athy — UPU,) (2.2.12)

S=

The equations of motion then imply that the auxiliary field U¥ vanishes, and hence-
forth it will be ignored.
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2.2.2. Constraints and boundary conditions

The fermionic fields # that we have introduced on the world sheet must be
complemented with a set of constraints and boundary conditions, just as in the
bosonic case we examined earlier. The fermionic equation of motion derived from
(2.2.12) will be the Dirac equation in two dimensions y%0,%# = 0. An appropriate

basis with which to work for the Dirac matrices on the world sheet is

0 0 —: 1 (0 1
¥ (1, O) ¥ _<i 0) (2.2.13)
The fields 1# can be decomposed using this basis into
w#
o = ( ;) (2.2.14)
Yy

where _ are the right-moving and v, are the left-moving modes of 1, which are

also eigenstates of the chirality operator 3 = 4041, that is

Ve = Fibx (2.2.15)

and we can write decoupled equations for the right- and left-moving modes as
(Or £ 0r) e =0 (2.2.16)

indicating that ¥4 = ¥4 (07), paralleling those we have seen for the bosonic coor-
dinates X#. In the light-cone coordinates we have used previously the fermionic
part of the action can be written
z
2wa’

Sy = / do (Y 0uth—py + VEO_1huy) (2.2.17)

in which form the decoupling between right- and left-moving fields is rather appar-
ent.

In this case as well, the X* satisfy the same free wave equation as in the
purely bosonic case, and the mode expansions (2.1.38) carry over unchanged. The
fermionic coordinates will have their own surface terms from the variation of the
Lagrangian (2.2.12), the vanishing of which requires that 9,819, — ¥_d1y_ vanish
at each end of the open string, which can be satisfied by putting %, = £7_ ateach
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end. The relative sign at o = 0 (say) can be chosen with no loss of generality to be

positive, i.e.,
¥E 0,7) = ¥* (0,7) (2.2.18)

which leaves us with two meaningful choices of sign at the o = w end of the string.

Choosing
Wi (r, ) =y (m,7) (2.2.19)

are known as Ramond (R) boundary conditions which have the mode expansions

s = _1_ —in(r—o)
Wen-— ,% phe
1 ) (2.2.20)
U @r) = 3 g

neZ
where n € Z implies summation over all integers and the p are the oscillator

components. On the other hand, the choice
i (m, 1) = =y (7, 7) 2.2.21)

are known as Neveu-Schwarz (NS) boundary conditions which have the different

mode expansions

1 .
Blo,1)=— 2: p g —ir(r—0o)
Y (o,7) 7 r

Z 1
refn (2.2.22)

1 —ir(T+o
Won = 3 neT

reZ+;

wherer € Z + % implies a sum over half-integers r, and again the 7 are the oscillator
components. The Ramond boundary conditions and the integral mode expansions
(2.2.20) describe string states that are spacetime fermions, while the Neveu-Schwarz
boundary conditions and half-integral mode expansions (2.2.22) describe string
states that are spacetime bosons.

For closed strings, on the other hand, the surface terms vanish if the boundary
conditions are periodic or antiperiodic separately for the left-moving and the right-

moving fields.
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This means that we can have
'(/Jf, _ Z ,Dﬁ e—2in(r—0) oo wli _ Z 7)1{‘ e—ZiT(T—O') (2.2.23q)
neZ 1-€Z+I1

AND

"ﬁf - Z ﬁﬂn e—2in(r+0)  op ¢f - Z ﬁ,’.‘ e—2ir(r+o) (2.2.23b)
nez rEZ-h}

which correspond to the closed string having four distinct sectors, or sets of states,
which can be referred to as NS-NS, NS-R, R-NS, R-R. The NS-NS and R-R sec-
tors describe spacetime bosons, while the NS-R and R-NS describe the spacetime

fermions.
How does this come about? We begin by imposing the canonical commutation

relations on the fermionic coordinates, as in

{¥E (o, 7, ¥ (¢!, 7)} =76 (0 — &) 1" 6as (2.2.29)

which upon substitution of the mode expansions (2.2.20) or (2.2.22) for the open
string and (2.2.23) for the closed string give us the anticommutation relations for

the modes g4 and 7 as
{nF,n5} =1t 6rss,

{05: P} =1 bn4m.
Note that for the closed string we will have another set of relations involving 7 and

(2.2.25)

Ph. Consider now a ground state of the Fock space such that
ab|0)=ah|0) =ph[0)=0 n>0 (2.2.26)
for the NS boundary condition, or for the Ramond boundary condition
ak |0) = &k |0) =n¥|0) =0 n,t > 0. (2.2.27)

For the half-integer modes 7n#, it is possible to identify a unique non-degenerate
ground state, which therefore is a scalar (spin zero). For the case of the integer
modes g, this is not possible since we have the zero modes ph. These will obey the
algebra

{r, P8} = 1t (2.2.28)



The Theory of Strings 29

which is the Dirac algebra, and thus up to a normalization the zero modes pg justare
the Dirac matrices. If we demand that the Dirac matrices satisfy {v#,y"} = —2n#*
then we find that v* = iv/2f.

If we write the mass shell relation for the superstring, generalizing (2.1.47), we
find it to be for the NS condition

1 [ 2 1
M? = > ( Z a‘inan# + Z T'r)ﬁ,.n,-# - 5) (open strings) (2.2.29a)
@ n=1 r,%
1 [o o]
2
M= = o (22 (e pany + 6dn,)
n=|
o0
+ Zr (T)ﬁ,.'r],-“ + ﬁﬁrﬁ,‘y) — 1) (closed strings) (2.2.29b)
i
™3

and for the Ramond boundary condition

1 oo
M? = = < Z a/inan# +14 Z np’inpﬂp) (open strings) (2.2.30a)
n=l neZ

1 o0
M2 = = (2 > (ot oy, + hdn,)

n=l

+ 3 Z n (p‘inpn# + __nﬁn“) ) . (closed strings) (2.2.30b)
neZ

At each mass level we expect that for the Ramond boundary the states will fill out
representations of the Dirac algebra. As is well known, the irreducible representa-
tions of the Dirac algebra are in fact the spinor representations of SO(1,D — 1) in
D dimensions.

We now need to find the constraints analogous to the vanishing of the Virasoro
operators for the bosonic string, which allowed us to eliminate the non-physical
states of the theory, leaving behind the physical spectrum. Recall that for the
bosonic string the Virasoro operators (2.1.43) for the closed string and (2.1.44)
for the open string had their origin in the variation of the Lagrangian with respect
to the world sheet metric ((2.1.31)). Thus the removal of non-physical states for
the bosonic string is dependent upon the reparametrization independent form of
the action (2.1.30). This action can be thought of formally as D scalar fields X#

coupled to gravity in two dimensions, described by 2. From this we reason that in
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the case in which there are also fermionic fields coupled to 2-dimensional gravity,
as in the superstring action (2.2.12), the proper course of action is to treat the X#
and 9* as superpartners coupled to 2-dimensional supergravity. In this case the
parameter describing the supersymmetry transformations € becomes dependent on
the world sheet coordinates ¢(o, 7). This local supersymmetry algebra will give
us the infinite number of super-Virasoro operators we will need to eliminate the
non-physical states for the superstring.

The super-Virasoro constraints have, therefore, contributions from the fermionic
fields. When the parameter of the supersymmetry transformation ¢ becomes local,

the supersymmetric variation of (2.2.12) no longer vanishes, but rather is given by

1
27!

0S =

f d2o (8,8) J° (2.2.31)
where J, is the world sheet supercurrent given by
1
Jo = Eybmbﬂabx,,. (2.2.32)

The supercurrent can be decomposed into positive- and negative-helicity compo-

nents as
Jo =08, X,,,

J_=yFo_X,.

We also write the world-sheet energy-momentum tensor for the superstring as

(2.2.33)

Top = a X 06X + 50 YaDstu + 20 Woats — (xace) (2.2.34)
which is re-expressed in light cone coordinates as
Typ =0, XP0, X, + %¢f8+w+,_,,
T__ =3_XFO_X, + %W_‘@_w_w (2.2.35)
T.(.._ =T—.}. = 0.
The supercurrent components J are connected to 7%, and 7 _ through an algebra
{J+(0), Je (")} =mé(o — T (o),
{J=(0), J-(c")} =7wé(c — " \T__(0), (2.2.36)
{J:(0), J_(c"} =0,
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and therefore, if we wish to set T4, = 7°__ = 0 as in the case of the bosonic string,
we must set J,. = J_ = 0 as well.

Then one is able to write the super-Virasoro constraints for the closed string as

1 1r 2
—2imo
Lm 47ra, dO'e T_._
_nan,u + Z (7'+ ) m—rTlry  Neveu-Schwarz
r=—00
(2.2.37a)
oo
Z m—nCnp + Z (n+ ) m—nPnu Ramond
=—00 nN~—00
2 " .
G,,=4‘:;, /0 doe2 J_ 2.2.375)
oo
= Z n,‘-‘_nan,; Neveu-Schwarz
n=—o0
F,= 4‘/; da —%imo (2.2.37¢c)
0
co

Z Ramond

for the right-movers and similarly for the left-movers as

- 2imo
Lm 4o’ T
Z ak —naﬂﬂ + Z ('r + ) ,.17,-,; Neveu-Schwarz
1 n=—c0 r=—0co
— (2.2.38a)
2] o
Z ak —nan.u"' Z (n+ ) m_npn# Ramond
i=—00 N=-—00
2iro
47ra J (2.2.38b)
Z Tf:‘—nany Neveu-Schwarz
N=—00
2imo
47ra Je (2.2.38¢)
= Z m_nan“. Ramond

=-—00
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For the open string case we have

1 T ; ;
Ly = Tl / do{e™ T\ +e™ "™ T__}

1 T
= / doe™ T, =0

2ra’
o m
Z a"m_nan“ + Z (1‘+ ?) nfn_,.n,-# Neveu-Schwarz
n=—00 r=—00
=2 (2.2.39a)
Z _nanp + Z (n+ ) _npny Ramond
n=—0oQ n=—o0
2 [T . .
.= 2\/;, f do{e J.+e "7 J_} (2.2.390)
0
o0
2\/— do‘ eiro Je=2 Z nf_nan“ Neveu-Schwarz
T n=—oo
Fn = 27ra / do{e'"‘" Jo+ e~ime J_} (2.2.39¢)
do e'™? Jr=2 Z m—nC Ramond
21ra / et

exactly similar to the right-moving closed string.

The methods for dealing with these operators parallel those used for the bosonic
string, and the reader interested in the specific details is recommended to consult

the references, in particular [9] and [25].

It is reasonably clear, however, that what is going to result is a supersymmetric
generalization of the Virasoro algebra appearing in (2.1.50). This generalization
has, in fact, two parts corresponding to the NS and R sector. In the NS sector the

super-Virasoro algebra is

D
Ly Lnl = (m = 1) L + 3 (m® =) Snemg
m

(Lims Gl = (5 =7) G (2:2.40)

D 1
{Gr: Gs} =2Lpis + E (7'2 - Z) 5r+3,0
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while that of the Ramond sector is very similar, appearing as

D
[(Lm, Lnl = (M — 1) Lynyn + §m36m+n,0

[LTTH Fn] = (T_2n' - n) Fm-pn, (2.2.41)
D
{Fm,Fa} =2Lmin + Emzam,o

where as in the case of the bosonic string, the anomaly terms derive from the normal
ordering of the oscillator components. A physical bosonic state is then identified by

requiring that
G,— I phys) =0, r>0

Lo | phys) =0, m >0 (2.2.42)
(Lo — a)| phys) = O
where a is a normal-ordering constant for bosonic states. For physical fermionic
states the conditions are
Fm | phys) =0 r>0
L | phys) =0 >0 (2.2.43)
(Fo — a')| phys) = 0

where o’ is the normal ordering constant for the fermionic states. The normal
ordering constants are @ = } and a’ = O for the open string, and a = 1 and a’ = 0 for
the closed string. These are reflected in the mass formulae (2.2.29) and (2.2.30).

It can be shown [25] that the critical dimension D that results in a super-Virasoro
algebra without anomalies is 10. In this case the supersymmetric generalization of
the conformal anomaly, the superconformal anomaly will vanish, and thus the
superstring theory is consistent’ quantum theory in ten spacetime dimensions.
One might have been hoping for D = 4, but this is not the case. The question then
arises as to how one arrives at a theory in a more reasonable number of spacetime
dimensions, i.e., four.

Another question concerns the existence, although we will not demonstrate this
explicitly, of a tachyon in the specttum. The tachyon can be understood from the
normal ordering term in (2.2.29). There is the further question of the relationship

9 Well, it is almost consistent at this point, see section 2.2.2.1.
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between world-sheet and spacetime supersymmetry. That is, given that we have
supersymmetry on the world sheet, do we then have supersymmetry in spacetime
as well? If not automatically, is it possible to arrange this to be the case? These are

topics that we will explore in the next sections.

2.2.2.1. Spacetime supersymmetry

The superstring model above, even with critical dimension D = 10 is still not
yet completely consistent. The spectrum still includes a tachyon. The tachyon
can, however, be eliminated when the spectrum of string states is ttuncated in a very
specific manner, and when this is done, the number of fermionic and bosonic degrees
of freedom at each mass level are the same, and we have spacetime supersymmetry.

The tuncation of the string spectrum necessary for creating spacetime super-
symmetry is known as the GSO projection, after the originators Gliozzi, Scherk
and Olive [40]. It should be noted, however, that the desire to produce a theory
which is spacetime supersymmetric is not the only argument in favor of making this
modification to the spectrum. There is the aforementioned tachyon that we would
like to eliminate.

Further, one sees a problem in that the theory has certain anticommuting opera-
tors y/# that map bosons to bosons [9]. That is, if |¢) is said to be a bosonic state, then
Y# |@) is a state of integer spin that has been created by an anticommuting operator
acting on |¢). This is not normally encountered in physics. Further, consider n such

operators acting on our state:
YPLPH2 .o qhbn | @) 2.2.44)

If n is even, there is no real difficulty, since the product of an even number of
anticommuting operators is commuting. For n odd, however, it is tempting to
propose eliminating the states. The GSO projection consists of the proposal that
all states of the form (2.2.44) with n odd are to be eliminated from the spectrum
of states, while those of even n are kept. This is done by formally introducing a
quantum number (—1)¥, called G-parity for historical reasons and under which the

Fermi fields ¢# are odd and the bosonic fields X* even.
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Thus we define for the NS and R sectors the GSO projection operators

1 +(__1)F+1 0
P=——>"— F= > NS sector  (2.2.45a)
=%
_1\F+l e
p-L*Fk (2 2 F=35 pl.t Rsector  (22.450)

n=1
where the zero-mode contribution is counted by writing F' + 1 and k& can be chosen
to be either +1 or —1 independently for the right-moving and left-moving fields.
Note that for left-moving fields F' in (2.2.45a) or (2.2.45b) is replaced by
oo o0
F=) ### or F=> pl.ph (2.2.46)
1

r=z n=1

Note that the GSO projection is carried out separately on right- and left-moving
states. In this way, the GSO projection eliminates our unruly tachyonic scalar, for
which F' = O, since only states with (—1)¥ = —1 survive the projection in the NS
sector, and gives us a theory which can be shown to have ten-dimensional spacetime
supersymmetry [42].

Historically, closed string theories in which & has the same value for both right-
and left-moving fields are known as type IIB theories whereas k chosen to have
opposite values for the left- and right-movers leads to type IIA theories. We will

describe these theories in more detail in a later section.

2.2.3. Compactification

The procedure which allows us to take a theory which is formulated in 10 spacetime
dimensions (or 26 for the purely bosonic string, if we wish) and effectively reduce
the number of spacetime dimensions is known as compactification. In the same
way as there are two ways of thinking about string theory, from the point of view
of the world sheet and from the point of view of spacetime, one can consider
compactification from these two complementary points of view.
Compactification from the spacetime perspective, usually called Kaluza-Klein
compactification, is an ansatz which tells us how higher dimensional fields, such as
' the metric, appear to a four-dimensional physicist for example. Since this compact-

ification procedure will be of great utility in our work, we will explain it in sufficient
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detail. However, we will begin with a discussion of compactification from the world
sheet perspective.

In the following, we will restrict our attention to compactification of higher
dimensions on tori, that is we make the extra coordinates periodic. This is only
the simplest possibility. There exists an extensive literature which considers other

possibilities, such as orbifolds [43] or more general Calabi-Yau manifolds [44].

2.2.3.1. Compactification of world-sheet fields

As the reader has undoubtedly already noted, the addition of fermionic fields on the
world sheet was responsible for lowering the critical dimension of the superstring
theory to ten from the twenty-six of the bosonic string theory. This gives one the
idea that the addition of other fields on the world sheet, not necessarily fermionic
ones, may have a similar effect.

In fact this can be brought about in conjunction with the elimination of the
higher dimensions for the bosonic string in a process sometimes called roroidal
compactification. On the world sheet, the higher dimensions beyond say 10, the
critical dimension of the superstring, are just a selection from among the twenty-six
which live there, with the exception of time. Thus we choose 16 coordinate fields
on the world sheet, and we enforce on them periodic boundary conditions in a
spacetime sense. These fields are already periodic on the world sheet, but we now
add a condition such as X* = X* + 2w R* - m; where i runs over the 16 “compact”
coordinates, R? represents the radii, or periods, of these coordinates and m; are
arbitrary integers. Thus we have formed a torus.

For simplicity, let us consider a single coordinate X of the closed bosonic string
on the world sheet that is compactified into a circle. We then have X = X +27Rm,
and the mode expansion of X is modified to reflect that the center of mass momentum

along the compact direction is quantized, giving

X(o,7)=z+a'pr+2Lo+ %_‘i > %{an e~ A=) ¢ 5 e 2N} (2.2.47)
n=0

Note that the momentum zero mode is quantized as p = f_z with k£ € Z.This ensures

any momentum eigenfunctions along the compact direction are single valued. Also,
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L = mR with m € Z, and m describes the number of times that the string wraps
around the compact coordinate. This wrapping cannot occur in the uncompactified
case, since the energy will diverge as R — co. Note also that wrapping around
compact coordinates does not occur for open strings'©

As usual the mode expansion (2.2.47) can be decomposed into right- and left-

moving parts
1 .
Xr(r—0)= -'2?1-*”-(\/_zn—f-v—'-L—)('Jr---o-)-{-zfi —anm g —2in(T—0)
Vo! 2 &
it I (2.2.48)
5., e —2in(T+o)
Xi(r+o)=z;+ = (\/_p \/_)(T+a)+§§-ﬁane it
n

where z, and z; are the center of mass position of the right- and left-moving modes
respectively. Recall that £ = \/2¢/. Substituting this into the zero-mode Virasoro

constraints gives us, for the compact coordinate

1( ~ L\ o, \2
-3 \/&-p+‘/——_, +N+Z(p,‘)

_-(\/_p \/__)2+N+ ’(p#)z

which give a formula for the 25-dimensionai mass of tiie form

(2.2.49)

bu

k?' m2 RZ

=2(N+N ~2)+d — o2 T (2.2.50)

where

o0
N = E (aﬁnanu-f-az_snaﬂzs)

n=l (2.2.51)

o0
N =3 (8l + 6258025 )
n=1
are the contributions of the oscillator components. Thus we see that the 25-
dimensional mass has a contribution from the momentum of the center of mass

of the string along the 26’th dimension.!!  Note here that we are labelling the

10 We will see in chapter IV that considerations of open versus closed strings in conjunction with
compactification lead us to new objects in string theory, the D-branes.

11 From the mass formula one may be led to expect that changing R > % is a symmetry and this
is in fact true as we will see in chapter III.
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dimensions gz = 0...24. The level matching condition Ly — Lo = O gives the

relation

N — N =pL=km. (2.2.52)

2.2.3.2. World sheet current algebra

The closed string has no points of preference like the endpoints of an open string.
Therefore, if one contemplates the addition of charges to a closed string, one must
consider that the charge is distributed over the string. This can be carried out through
the addition of bosonic fields on the world sheet, which are Lorentz singlets, but
carry internal quantum numbers.

The consistency of string theory is quite fragile, but it turns out that consistency
can be maintained as long as certain conditions are met. First of all, the total number
of bosonic fields must always add up to 26. Thus the number n of these charge
fields that one must have if there are D coordinate fields X* is given by n = 26 — D.
It can be shown that with suitable, special conditions [9] on the zero modes of
these charge fields, they can generate an SO(2n), ® SO(2n); internal symmetry
group, while satisfying the quantum consistency conditions. At the same time,
the zero mode conditions on the charge fields prevent the extension of the Lorentz
group of the theory beyond SO(1, D — 1). Thus, by adding a current algebra, one
can construct a consistent completely bosonic string theory in D dimensions with
SO(2n) ® SO(2n) symmetry. In a sense, in this way we can “adjust” the critical
dimension of the bosonic string.

Let us now return to toroidal compactification. Consider again the single
compact coordinate of section 2.2.3.1. Let |k, m) denote the ground state of a Fock
space which has internal momentum number k and winding number!? m. Let us

now construct massless vector states. Two are given by

(a{‘_la—lzs + a—-lzsal_‘l) |Oa O) (2.2.53)

12 we suppress the 25-momentum.
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since they have N = N = land p = L = 0, M? = 0. These two vectors
can be considered to result from the decomposition of the graviton G, and the
antisymmetric tensor field B, withrespect to the 25-dimensional Lorentz subgroup.

More massless fields can be found when p, L # 0. If we take pL = km =1
for example, setting p = L/o/ then we can have zero mass if N = 1, N = 0, and
if R? = ¢ from (2.2.49) and (2.2.50). Since km = 1 requires k = m = %I, for
this special value of the compactification radius, we have four massless vector fields

given by
£ LYy, o -1,-1), & 1,-1), &, |-1,1) (2.2.59)

in addition to those, (2.2.53), that are present at any compactification radius.

Thus we see a rough outline of how compactification gives rise to the fields
needed to form representations of SO(2d), & SO(2d),;, at least at special compact-
ification radii. Thus nonabelian symmetry can arise from this procedure. This
procedure is of particular interest in the case of the hererotic string [45], where
16 (right-moving) dimensions are compactified to produce a nonabelian symmetry
group of SO(32). It can also be arranged to form the group Eg ® Ejg, since the
exceptional group Ejg has 248 generators whereas SO(32) has 496 generators.

2.2.3.3. Kaluza-Klein compactification

The Kaluza-Klein programme is, as we have noted, an approach to compactification
from the spacetime perspective as it is unnecessary to even mention the existence
of a world sheet when carrying it through. In fact, this programme predates string
theory [46] and in its simplest terms it is an ansatz that tells us how the physics of
fields in a spacetime of dimension d appear when observed in n < d dimensions,
where d —n dimensions have been compactified. The fields themselves only depend
on non-compact coordinates.

The compactified dimensions are considered to have a radius small enough that
at large length scales they are indistinguishable from points. An example of this
effect is a cylinder appearing as a line from a great distance. When they are very

small, very high energies are necessary to probe these compact dimensions, and
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they are thus completely hidden from low energy physicists. Kaluza-Klein theory
is a subject unto itself [47] as well as having applications in string theory.

Let us first consider a simple example, one which we will have occasion to use
during the course of this work. Let us consider that we have the set of spacetime
fields that were mentioned in section 2.1.3, that is in spacetime with a background
metric G, and a dilaton field ¢. We wish to compactify one coordinate, that
is we want to carry out Kaluza-Klein compactification from d + 1 dimensions to

d dimensions. The Kaluza-Klein compactification ansatz for this situation is, in

matrix form
G+ AL AD o260 4D
G(d‘i’l)“ = ( o elo A((S)G# @Gy Z(g)GP) (2.2.55)
@G v €

where we have written G(d+1)z(d+l)z(d+l) as the exponential of a field, labelied o,
which transforms as a scalar under under the d-dimensional Lorentz group. The
field A&;GV transforms as a vector in d dimensions. In this case the metric can be

simply written in line-element form as
2
2 2 6 1
dS(d+1) = G(d) I_wd.'li“dmv +e“? (d.'r + Agdggpdxp)

20 A)_ AQ)
= (Gl +e AZg AD, ) detds” (2.2.56)

20 6 20 A (1)
(dx ) +2e A(d)Gydz"d:c .
Here it is thus very clear that in d dimensions the (d + 1)-dimensional metric
appears as a d-dimensional metric plus a vector field, denoted AL, and a scalar.

As we have mentioned, there is also a scalar field called the dilaton. Under such a

compactification it is transformed as

Pa+1) = @q — 0. (2.2.57)

It is also clear that exactly the same sort of procedure takes place for the other
fields in the action. For example, in the case of the antisymmetric tensor B, one has

the ansatz

1 IROTNG) M) A
Basyw =3 [B(d) w5 (A(d)G WMoy ~ Ml u) dz A dz”

833 dz* A dy,
(2.2.58)
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where here the vector field coming from the compactification of Bg are denoted Ag) .
Note, however that the ansatz for Bg also involves the gauge fields A(Gl) coming from
the compactification of the metric.

Let us now briefly generalize this idea to compactification of multiple coordi-
nates. What does the D = 10 metric look like in, say, D = 6? The answer is the

following

5 ADE )T A _A(Df
G6yv+Gﬁt7A6GzA6GZ GWAGG:> (2.2.59)

Groe = ( Guhss, G
where G is the ten-dimensional metric, Gg is the six-dimensional metric, the fields
Aé% are U(1) six-dimensional gauge fields, ¢ is the dilaton!? in six dimensions.
G is a collection of ten six-dimensional scalars, also called moduli in the literature.
Note here that the hatted indices run from O to 9, the indices topped with a ~run
from 6 to 9 and indices p, v by themselves run from O to 5. From this we see that
the ten-dimensional metric appears in six dimensions as a metric, four vector fields
and ten scalars.

It is common in the literature to define €2 = det G which is a measure of the
“size” of the compact space. Also note that the six-dimensional dilaton and that in

ten dimensions are related by the formula
1 -
¢6 = 10 — 5 logdet Gpp- (2.2.60)

There is also the necessity of rescaling the Newton constant depending on the
dimension in which one is working, so as to maintain a dimensionless action. If we
define a constant « which is related to the familiar Newton constant G through
k? = 817Gy, then the six-dimensional and the ten-dimensional constants x are
related by

Ke = —e (2.2.61)

VVa

where V4 is the volume of the four coordinates that were compactified, that is
Vi = [d*z+/—detG.
It should be apparent that compactification on the world sheet as discussed in

the previous section, and the Kaluza-Klein method are, after all, equivalent. We can

13 we will, for the most part in this work, follow the convention that the dimensionality of an
object is given as a subscript when there is any chance of confusion. See appendix A.
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easily imagine constructing string theory from the beginning on a manifold with
a number of compact dimensions, in which case the spacetime description of the
theory would be identical to that which would be produced by the Kaluza-Klein
procedure on the same manifold. There is thus no essential difference between
them. Compactification on the world sheet is convenient for introducing nonabelian
symmetries into a string theory. Kaluza-Klein is appropriate for working with the
spacetime description of a string theory. Let us now move on to discuss these

spacetime descriptions of superstring theories and how they are obtained.

2.3. The four superstring theories and their low energy limits

In the previous sections we have given an overview of the basics of string theory.
We now wish to present the four consistent superstring theories in a systematic
fashion, as well as write down spacetime actions which represent the low-energy
limits of the bosonic sector of these theories, since it is with these low energy
spacetime descriptions that we will be most concerned in this work. First, however,
we describe the methods used to arrive at the low-energy spacetime actions that we

will be writing down.

2.3.1. Equations of motion for the spacetime fields

Let us begin with the world sheet action in conformal gauge (2.1.24) in which we
will replace the flat-space background 7, with general background G,,,.. This gives

us the action
1
4o’

It turns out that there is no way to regularize the theory described by (2.3.1) without

S =

/ d20 8, XH8° XV Gy (2.3.1)

breaking the world sheet scale or conformal invariance. For example, it is clear that
the use of Pauli-Villars regularization, with the introduction of massive regulator
fields, will violate the scale invariance. Dimensional regularization methods turn
out not to help since the non-linear sigma model (2.3.1) is only scale invariant in
precisely two (world sheet) dimensions.

The breakdown of scale invariance in a quantum field theory is characterized in

terms of what is known as the B-function. In different ways which depend on the
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model under study, and the way in which the 3-function is defined, a non-vanishing
B-function is created by the appearance of ultraviolet divergences in Feynman
diagrams. In string theory the problem is slightly different. The question is still
of divergences but the appearance of these divergences is tightly linked to whether
or not the quantum field theory defined by the action (2.3.1) is Weyl invariant on
a curved world sheet. Weyl invariance implies global scale invariance which in its
turn implies a vanishing S-function and therefore ultraviolet finiteness [48]. If the
B-function is computed, and is non-zero, then setting it to zero results in a set of
constraints which must hold for the quantum theory to be Weyl invariant.

Here we sketch the computation of the §-functions. We make an expansion of
the action in powers of o by writing the coordinate fields as quantum fluctuations
around some vacuum expectation value, X#(o,7) = Xé‘ +XH(o, 7). Atsucha point
in the spacetime, the metric can be expanded in what are known as Riemann normal

coordinates [4] as

1 5O 1 PSS sy 4
G v (X0) = Ny — §11‘:“A,,p)f(*xf’ — z VB, wpX"XrXP+0 (X)) (23.2)
where R, )., the Riemann tensor at the point Xo. We then choose areparametrization
of the world sheet such that €3 = e=2¥ 19, From this ez, = €% 743, and therefore,
since we are using dimensional regularization in 2 + ¢ dimensions, we will have
J—=e = e@+y_

Substituting our expansion (2.3.2) and the expansion e = 1 +ep +...(2.3.1)
becomes

S = L dz"'ea{ (0. XF3°XY) (1 + €0) Mo

dmo! 2.3.3)

1 2 A Ly A A
— 3R, X X8, 407X (1 + ep) + O (X)” }.

Now, the Feynman diagrams which contribute to the @-function at the one-loop
level are givenin Fig. 2.3.1. Diagram (a) of Fig. 2.3.1 is obtained simply making the
contraction {X*X*) with two of the X s that appear in the quartic term of (2.3.3)
whereas the diagram (b) comes from the insertion of a kinetic term epd, X#83 XV
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(a) (b)

Figure 2.3.1: The diagrams which contribute to the S-function at
one loop. The cross in (b) represents insertion of a kinetic term of
coefficient ep.

in with the quartic term. We have that
d2te eik(o—a’)

X*(0) X? (¢/) ) =mn™ lim
< (o (a)> " lm, IR 234

e

~ 2
since it is logarithmically divergent'* and thus the factor of e in the denominator of

(2.3.4) cancels the factor of e in the numerator, resulting in S having ¢ dependence.
It turns out that the dependence on ¢ of the sum of the two diagrams in Fig. 2.3.1
vanishes.

However, there are additional diagrams like that of Fig. 2.3.1 (b) with Xrg,Xv
and 8, X#8% X" on the external legs that are proportional to §,¢. We can integrate
these diagrams by parts and drop terms proportional to 8,8% X# which vanish by the
equations of motion, and what is left is a net ¢ dependence which can be absorbed
into the wavefunction and spacetime metric renormalizations [49]

X+ X+ éR{,‘ (Xo) X¥ +0 (XZ)
] (2.3.5)
Guv =Gy ~ 5 Ftur (X0)
where Ry, is the Ricci tensor ( Ry, = g’\PRA#p,,). These renormalizations are an
important feature of non-linear sigma models. This absorption, however, causes
in turn a reappearance of an effective action which has dependence on ¢, due to

cancellation of ¢, given by

Sg = —

8ol

/ 420 PR, (X) 8, XFO2 XY (2.3.6)

14 I dimensional regularization at one loop divergences manifest themselves as simple poles.
Also, the contraction (8, X#8*X") is a quadratically divergent massless tadpole and is discarded
in this technique.
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where we write X = Xg + X (o, 7). Thus, to one loop order in o’ (2.3.1) produces
a Weyl invariant theory, that is to say a theory independent of the scaling parameter
@, if and only if

R (X)=0 2.3.7)

which are precisely the vacuum Einstein equations. Thus by demanding Weyl
invariance, an intrinsic property of the string, be maintained in a curved spacetime
we arrive at a well-known dynamical equation for the spacetime metric. We can

then write our G-functional as
1
Buu(X) = —ﬂR,‘,,(X) . (2.3.8)

The condition for ihe vanishing of the S-function must coincide with the equations
of motion, if we are to give them a sensible physical interpretation. Thus we see
that here the S-function represents a long-wavelength or low-energy approximation
to the equation of motion for the gravitational field.

To be sure, (2.3.1) is not the most general action for which the S-functional
can be computed. There are in fact two other terms which can be added to the
Lagrangian which are invariant under reparametrizations of the world sheet and

which are renormalizable by power counting. These are:

1
4ra’

Sp=— f d’ov/—epR
4r-

Si= -

/ d*0 %28, X" 0, X” B
(2.3.9)

where By, is the antisymmetric Kalb-Ramond field, €9 is the Levi-Civita antisym-
metric tensor on the world sheet, ¢ is the dilaton field and R is the Ricci scalar
on the world sheet. The origin of By, and ¢ in terms of the string spectrum was
discussed in section 2.1.3. Note also that S; is almost the topological invariant of
the world sheet which we met in (2.1.20), but now we take advantage of the fact
that in two dimensions scalar fields are dimensionless to generalize it to include
the dilaton field ¢ explicitly as we are considering world sheet metrics that are not
necessarily flat. However, we note that it comes in with a different power of o’ and

thus only contributes to the 8-function at a higher-loop order than S or 5.
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Carrying out an analysis similar to, but of course more involved than that
sketched above since we compare tree-level terms of S; with one-loop terms of

S + S, leads us to the equations of motion for the spacetime degrees of freedom:

1
Ry — 7H, " Hypo + 2V, V06 =0
VaHu —2(VA9) H 4y =0 (2.3.10)

4V, 0)? + 4V, VFO+ R — Tl-z-Hu,,pH“"P =0

where Hy,p = 8, By, + 0pBuy + 0, B,y or in the language of forms [50] H = dB.
We are then led, on the basis of the equations of motion (2.3.10) to formulate

the action in spacetime as

1 [ -2 21

where & = /87G contains the 26-dimensional Newton constant. This action
can be verified to reproduce the equations of motion (2.3.10). Equation (2.3.11)
then describes the low-energy or long-wavelength limit of the massless degrees of
freedom of the bosonic string.

It is worth noting here that the explicit presence of the dilaton in (2.3.11) gives
this action a different appearance from the standard action for Einstein gravity

coupled to various matter fields [51], which in D dimensions is

1

§= 167Gy

/ dPz/=g(R + & matter)- (2.3.12)
If we rescale the metric G, in (2.3.11) through the relation’’
Guv =G, (2.3.13)

then we obtain the Einstein-frame metric, g,,, so named because in terms of this

metric the action appears as

1 fa6 1o, €% pvp
S26= 53 /d zv/=g (R (V9 — ———HyupH 2.3.14)

vhere the Ricci scalar term is similar to that in (2.3.12).

15 The information in appendix B is useful here.
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Figure 2.3.2: A schematic of the Chan-Paton method with charges
g and ¢ transforming under a symmetry group at the ends of the
open string.

This completes our sketch of the methods for obtaining the low-energy equations
of motion and the corresponding spacetime action from the world sheet by requiring
the S-function to vanish at the one-loop level. Itis clear that it is possible to continue
to higher loops, or to obtain the corresponding equations for the massive modes of
the string as well [52], but that is another story. We now move on to describe the four
known consistent string theories and their low energy effective actions in spacetime,

which turn out to be supergravity actions.

2.3.2. The Type I superstring

The superstring theory which is based on open strings is known as Type I string
theory due to the fact that it has one supersymmetry in ten dimensions. The reason
for this can be stated intuitively as follows. For open strings the left- and right-
moving modes, as we have seen, are not independent as they are in the closed-string
case, but rather combine into standing waves, which places an additional constraint

on the spectrum of states and breaks half of the supersymmetry.

Itis possible in the case of the open superstring theory to add a Yang-Mills gauge
field sector to the theory through the addition of charges transforming under some
internal symmetry group to the ends of the string. This procedure is known as the
Chan-Paton method [53] and is shown schematically in Fig. 2.3.2. The symmetry
groups that one can add to the open string in this manner are quite varied at the
classical level, but when constraints arising from quantum anomalies are taken into

account, it is found that only the group SO(32) is possible [54]. In this case the
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charges q and § of Fig. 2.3.2 lie in a real representation, and the string is said to be
unoriented.'S  There is thus one unique consistent Type I superstring theory.

The low-energy effective action of the Type I theory, commonly referred to as
the Type I supergravity action, contains massless fields from both the unoriented
closed and open string sectors. It is necessary to include unoriented closed strings
since the Chan-Paton charges can combine to form Yang-Mills singlets. Thus the
type I supergravity action contains a metric G and a dilaton ¢® from the closed-
string NS-NS sector; an antisymmetric tensor A® from the closed string R-R sector,
and from the open string NS sector we have a set of SO(32) gauge fields A®). The
action is written as

Sy = ZITZ / dloxm{ 7 (R+4(VeP)) - L (15‘“’)2

12

0) (2.3.15)

e—¢ 2
— @
e (7®) }
where R is the Ricci scalar, F®) = dA® is the field strength of the Ramond-Ramond

two-form potential. Note that G is the string-frame metric. The two-form field
strength of the open string gauge fields F@ is defined as F® = dA® + AD A AD,

2.3.3. The Type II superstring

The Type II superstring theories are based on closed strings only. Since open
strings must be unoriented, removing them allows us to work with oriented closed
strings. There are two Type II superstring theories, both of which have N = 2
supersymmetry in spacetime, hence the name “Type IT”.

In our discussion of the GSO projection and spacetime supersymmetry in section
2.2.2.1 we defined the GSO projection operators

1 +(_1)F+l o
P= — F= Z nt ¥ NS sector  (2.3.16a)
r=%
1+k (-1 =
p=-= (2 ) F=Y ol Rsector  (23.16b)
n=1

16 An oriented string is not invariant under world sheet parity, o — 7 — o (for the open string),
which exchanges the ends of the string, but an unoriented string is invariant under this transformation.
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where for left-moving fields F' in (2.3.16b) is replaced by

F=§Fﬁrﬁ¢‘ or F=§:ﬁ‘inﬁﬁ, (23.17)
re3

n=]

and where k can be chosen to be either +1 or —1 independently for the right-moving
and left-moving fields, i.e., the GSO projection is carried out separately on right- and
left-moving states. We also briefly noted that for type IIA theories, k£ was chosen to
have different signs for the right- and left-moving fields, whereas for the type IIB
theory k was chosen to be the same for both directions.

One can distinquish more clearly between the states of the type IIA and the
type IIB theories by considering the zero-mode contribution to (—1)¥. Recall from
section 2.2.2 that the ground state for the Ramond sector is degenerate, forming
a spinor representation of SO(1,D — 1). After negative-norm states have been
removed, using methods such as covariant [9] or lightcone gauge quantization [9,25],
in ten dimensions the Ramond sector zero modes will form a massless SO(8) spinor.

Let us focus for the moment on the right-moving Ramond ground state. The 16

independent components of this ground state can be chosen to be

4
sy =[] (f;)"" 0V  sa=0orl (2.3.18)

a=1

where f, = pga‘"l + ip(z)". If we introduce the chirality operator for SO(8)

8
x=II+ (23.19)

i=1
then the ground state spinor splits into two spinors, one each of positive and negative
chirality.
To see this, notice first that
- 4 8
> flfa=>" pbob (2.3.20)
a=1 =1
Then it may be shown that fl anticommutes with x, and therefore that |0)p and
£110) 5 have opposite chirality. In addition

b, £11=2if] (2.3.21)
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from whence it follows that the chirality of |0), and Loy g can be chosen to be
(—i)* = 1 and #(—19)® = —1 respectively. As a result of all this, our state |s,) has
the chirality
x = (—1)22a % = (—1)Pokb (2.3.22)

which means that (—1)F of the zero modes gives the chirality of the SO(8) spinor
ground state. Thus, since k is chosen to be opposite for right- and left-movers in
the case of the type [IA theory, consequently the right- and left-moving ground
state spinors have opposite chirality. In the type IIB case the right- and left-moving
ground states have the same chirality since k is the same for both sets of fields.

Another characteristic of the type II string theories is that they do not have
the freedom to introduce a Yang-Mills gauge group. The reason is simple. With
closed strings there are no free ends on which one can attach the charges, as in the
Chan-Paton method of the type I string. No charges transforming under a symmetry
group in turn implies no Yang-Mills gauge symmetry.

2.3.3.1. Type IIA superstring

If we consider that right-moving and left-moving fields have opposite chirality,
then the theory has two conserved supersymmetries of opposite handedness. This
theory is called Type ITA, and it is left-right symmetric, or non-chiral as a result of
the choice of opposite chirality for the right-moving and left-moving fields as was
discussed in the last section.

The low-energy type IIA supergravity effective action for the massless bosonic

states of the string spectrum is given by [55]
L g0, /=G e~26® @y _ L (g@)?
Srra zﬁzfd 2v/=G{e R+4(V¢@) — — (H®)

_ % (F(z))2 _ 3}5 (F(4))2 } _ 4Lﬂz‘/B(a)ama)dAc)

(2.3.23)

where G, is the string frame metric, H® = dB@ is the field strength of the
Kalb-Ramond field, F@® = dAM and F® = dA® — H® AW are the Ramond-
Ramond field strengths of the one-form potential A1) and the three-form potential
A® respectively, and finally ¢(@ is the dilaton. Assuming that the dilaton vanishes
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asymptotically, Newton’s constant is given by 2 = 87Gp.!7 The reader is
reminded that in 10 dimensions the Einstein metric g, is obtained from the string

frame metric G, through the equation'®

—e~¢92¢g (2.3.24)

Guv pv-

Of special note here is the field content of the Ramond-Ramond sector, that is
the gauge potentials A®) and A®. Of course, the Hodge duals of the field strengths
of these potentials, defined in D-dimensions by

FD-n) _« p(n)

D-n) _ . ./_ (N) UD—n+1""BD
F#l"’#D—n - G eﬂl"'.uD—nI-‘D—nH"'#DF "

(2.3.25)

where €, ..., is the Levi-Civita totally antisymmetric tensor density, will represent
an alternate way to describe the physical content of the Ramond-Ramond potentials
in the Type ITA supergravity. Also worth noting is that we could add to (2.3.23)
a scalar (0-form) field strength which would represent a non-propagating instanton

field. However, since we will not need it, we refrain from writing this field explicitly.

2.3.3.2. Type IIB superstring

The other possibility, as we have seen, for a closed superstring theory is to use the
same chirality for the right- and left-moving fields. It is in this case permissible
to symmetrize the left- and right-moving modes or one can choose not to do so.
If one decides to carry out such a symmetrization, one arrives at the unoriented
closed-string sector of the Type I string and one is subsequently forced by quantum
consistency conditions to include SO(32) open strings in order to obtain a consistent
superstring theory, one which is already known.

On the other hand, if one makes no demands of symmetrization, one has a theory
of oriented closed strings which has two supersymmetries of the same chirality. This
is the type IIB superstring theory, which is left-right asymmetric or chiral.

17 1n the case that the dilaton tends to the value # atasymptotic infinity, we have k2 — k2e~2¢",
18 For D dimensions the transformation is gy, = e~**/(>=2 Guv-
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The Type IIB supergravity action is given by [56]

LI Uy J P YL ez _ L (g®\*) _ Loy
SIIB-zKZ/d zv/=7{e (R+4(V¢ ? - = (H®)) - 5%

_ 1L2 (F(s) . XH(b))Z _ ﬁ (F<5))2 } + 4%2 /A(4)F(3)ch)
(2.3.26)
where J,, is the string-frame metric!? , H® = dB® is the field strength of the
Kalb-Ramond field, F® = dA® and FO® = dA® — L(BOF®) — AO H®) are RR
field strengths, while x = A© is the RR scalar, and ¢® is the dilaton.

It is to be noted here that strictly speaking there is no covariant action we
can write down for A®. The Hodge dual of a five-form field strength in ten
dimensions is again a five-form field strength. The kinetic term of the five-form
field strength in (2.3.26) describes both a self-dual (F® = *F®) and an anti-self-
dual (F® = —*F®) field strength and there is no simple way of modifying this
action such that the physical degrees of freedom correspond to the self-dual part and
at the same time the anti-self-dual part vanishes. Thus to eliminate the anti-self-dual
part of F® we will impose the constraint F®) =*F®) “by hand” at the level of the
equations of motion [57].

Note also here that the Ramond-Ramond field content here is distinct from that

of equation (2.3.23).
2.3.4. The heterotic superstring

There exists still another possibility. Since for closed string theories the left- and
right moving modes are not coupled, it is possible to imagine handling each set of
modes in a different way [45]. This is exactly what is done in the case of the heterotic
string. Simply put, the right-moving modes are handled in a supersymmetric fashion,
that is one introduces right-moving superfields on the world sheet, while the left-
moving modes remain strictly bosonic. However this introduces a problem in that
the critical dimension of the right-moving modes is now 10 rather than the 26 of the

bosonic string.

. 19 The string frame metric is again related in ten dimensions to the Type B Einstein frame metric
through j,, =e=¢%/2 J,,,.
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This means that there are only 10 right-moving X¥ to pair with 10 of the 26
left-moving X7, and in order to form a true spacetime coordinate one must have
both X and X ,“ . This means that there are 16 extra left-moving bosonic fields,
which cannot be simply removed in order to maintain a vanishing Virasoro anomaly
or conformal central charge. We can, however take advantage of the procedures
explained in section 2.2.3.1 to add a current algebra to the world sheet, in conjunction
with toroidal compactification.

As previously mentioned, this produces a string theory with critical dimension
10, which at the same time contains a Yang-Mills gauge group with SO(32) or
Eg ® Eg symmetry. The heterotic string thus has, in a consistent closed string
theory, both fermions from the spacetime supersymmetry of the right-moving modes
as well as a Yang-Mills gauge group from the left moving modes. The heterotic
string is often thought to be the superstring theory with the most phenomenological
relevance.

The bosonic part of the low-energy heterotic supergravity action can be written

as

Shet = 21? 407/ =G e 21" (R + 4V MY — -115 (H<h>)2 - %Tr (]3(2))2>

2.3.27)

where G is the heterotic string-frame metric, ¢(® the dilaton as usual and
FP = dAWD is the field strength of the Yang-Mills one-form A which takes
values in the Lie Algebra of SO(32) or Eg ® Fg depending on the case at hand [32].
We end this section by stating that this work will be primarily concerned with
properties and solutions of the Type II string theories, although we will have also
use for the heterotic string as we will see in the next chapter. We have included a
short description of the Type I string mainly in an attempt to give a more complete
overview of the basics of string theory. Those who find the choice of symbols
non-standard should be reminded that effort is being expended to develop a clear
notational system, and that further information on notation and conventions can be

found in appendix A.
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2.3.5. A compactified action

In this section we will briefly put together some of the ideas that we have introduced
in the previous sections, namely compactification according to the Kaluza-Klein
procedure, Hodge dualization, and the low energy effective action of a superstring
theory, in order to see how these things might work together.

Let us take as an example the low energy effective supergravity action in 10

dimensions of the type IIA superstring, given in (2.3.23) and repeated here as

a 1 2
Si1a == dOzv/=G{ e ( R+4(Ve) - = (H®)
22 12 (2.3.28)
1 2 1 2 1 =
_ = @Y _ - 4) o (@) 7 43} 7 43)
4F) 48(1«")} 452/3 dA®dA

where to remind the reader G, is the string frame metric, H@ = dB@ is the field
strength of the Kalb-Ramond field, F® = dA® and F® = dA® — H@® AD are the
Ramond-Ramond field strengths, and ¢@ is the dilaton. Recall also that Newton’s
constant is given by x2 = 871G ..

If we apply the Kaluza-Klein procedure to this action, choosing the four-

dimensional manifold 7%, the four-torus, we have the result
1 _24@ 1 « 2
Serra = 53 /défcv “Gs{e 2% (Ra + 4V — (Vo) - 3 (Hé )) )
6

e?’ 20 2 e% £ 2 1 5@ (2 @
_4(6)_ 4 (6)}—8»:%/6 6 76
(2.3.29)

where
K6 = K/ VT4 (2.3.30)

allows us to compute the six-dimensional Newton’s constant and VT4, the volume
of the compact manifold 7% and where we note the appearance of the additional
scalar field o as a result of the compactification. It is important to note that this is
a truncated action, i.e., we are setting many scalar and vector fields which arise as
a result of the compactification procedure to zero, namely the components of the
fields in (2.3.28) in the compact directions.2’

20 A complete compactification of the type ITA low energy effective action will be presented in
chapter III.
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This action can be made easier to work with if we use Hodge duality in six

dimensions. We take the Hodge dual of the four-form field strength F¥ as

F® = \/=G6 €uuporysF P71 (2.3.31)

6pur

and with this replacement for Fé‘” the action appears as
Serra=— /d6:1:\/ ——G5{ -2455 (Rs + 4(v¢(0) (Vo')2 (H(“)) )

20 —2c ( (2)) } ,.;2 / B@ F(z) F(z)

- (@) -

This action 1s easier to deal with, since we have two two-form field strengths

(2.3.32)

coupling in different ways, and therefore two one-form gauge potentials, rather than
one one-form and one three-form potential. This gives us a small example of how
the ideas of compactification and Hodge duality work for the low energy actions we
will be considering later in this work.

There is one final note to be added. Often in the literature on low-energy string
theory one speaks of the “string coupling” constant, often given the symbol g. This
coupling constant arises in string perturbation theory, and is related to the dilaton
field as g = e®. The string coupling can be related to the Newton constant G and
the inverse string tension o' in ten dimensions as

 8nbalt

(2.3.33)

Of course, when compactification is carried out, Gy must be adjusted as above, by
factors of the square root of the volume of the compact manifold. We will avoid
using the symbol g for the string coupling from this point, due to the possibility of
confusion with the determinant of the Einstein frame metric of type IIA superstring
theory. We will rather use the symbol “g-bar” ¢ as above. Thus completes chapter IT,
an overview of the basics of the theory of strings. It is hoped that the reader has
benefited from reading it and that it has prepared him for the chapters that follow.
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One of the most fascinating aspects of the theory of strings is the number of
symmetries [S8] which can relate different regimes of a given string theory to each
other, or relate one string theory to another. Recently, the latter has had a crucial
role to play in advances in our understanding of the structure of string theory, for
example the belief [1,2,3] that the different string theories are each a different ten-
dimensional description of a more fundamental eleven-dimensional “M-theory”.
This new understanding has led to the development of techniques which can be
used to construct new solutions of the low-energy supergravity equations of motion.
This leads, more or less directly, to improvements in our comprehension of the
non-perturbative regimes of string theory by allowing construction and analysis of
larger families of non-perturbative solutions.

What are these symmetries? In this work we will divide these symmetries, which

often in the literature are known by the name dualities into three main groups:

1. O(d, d) symmetries are symmetries of the low-energy equations of mo-
tion which result from independence of solutions of various dimensions.
In a sense we can “rotate” and/or “boost” a solution in such a way that
it becomes a different solution.

2. Target-space (7'-) duality. This is the symmetry we alluded to when we
wrote equation (2.2.50) in which, the radius of a compact dimension is
inverted, i.e., R — o/R.

3. S-duality, which can be said torelate weak- and strong-coupling regimes
of a string theory, or even different string theories.

— 56 —
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In what follows we will attempt to remove at least some of the mysteries from each

of these symmetries or dualities, in its turn.

3.1. General Remarks on Symmetry

In the previous chapter, we developed string theory by starting with a world-
sheet action and then ending with a space-time description in terms of low-energy
effective actions which turn out to be supergravity actions. It is a similar route that
we will follow in the development of the symmetries of string theory, beginning
with an introduction to how these symmetries manifest themselves on the world
sheet before we move on to explore their space-time formuiations.

Field theories in two dimensions which display conformal symmetry, whether
or not they are related to the string world sheet, are known as Conformal Field
Theories (CFT) [31]. There is a large literature on CFT, but it is enough for the
reader to understand that world-sheet string actions are indeed CFT’s. Within CFT
there are certain classes of operators, sometimes denoted truly marginal, for which,
as their coupling constants change value, the CFT continuously traces out a space
known as a moduli space M which has dimension equal to the number of these
truly marginal operators. Thus M describes an infinite collection of continuously

related conformal field theories.

It sometimes occurs that one can span (at least a neighborhood of) the moduli
space of the CFT by acting on the coupling constants with some continuous group
which we will denote . In addition, one sometimes finds that there exists some
subgroup ¥, of & which is a physical symmetry of the CFT. An element g € ¥
transforms the CFT %4, at some point M) in the moduli space into another theory
Z)\, corresponding to a different point M; of M. When g is an element of &, then
Zpm; and Z), are physically equivalent. By extension, all CFT’s in the moduli
space which are related by ¥, called the orbir of ¥;, are physically equivalent. It is
evident that the group ¢ will depend in detail on the moduli space M.

To translate what may be a confusing foray into conformal field theories into the

language of string theory, the couplings of the truly marginal operators mentioned
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above are usually grouped into the metric G, (X7), antisymmetric tensor (Kalb-
Ramond) field B,,,(X), and the dilaton ¢(X ), with all of which we have made our
acquaintance in the second chapter. There are also other fields but we will discuss
fields specific to particular superstring theories later.

Our objective in discussing the symmetries of string theory is to find the groups
¢, under which the world sheet action is physically unchanged. The case of most

relevance is that case in which d dimensions have been compactified.

3.2. O(d,d) symmetry of the string

A world sheet action for string theory which describes a number d of coordinates

which are compactified into a d-torus T¢ can be written [9]
1 . .
S = e dza{\/ —e eabG,-j + e“bB,-j}BaX’abXJ (3.2.1)

where 1 < 7,5 < d and the X* are coordinates that have been made periodic,1 as

in section 2.2.3.1, that is
X=X +2mm} (3.2.2)

and where we have made the metric G;; and the antisymmetric tensor B;; dimen-

sionless by dividing out the string tension as in
Gij

o’

G,‘j — Bij — —. (3.2.3)

It is again drawn to the reader’s attention that (3.2.1) describes only the parts of
the metric and antisymmetric tensor fields which lie in the set of compactified
coordinates. Note also that we are leaving out the dilaton field from this discussion.

From the conformal field theory perspective, the number of truly marginal
operators for a generic d-dimensional background is d?. In the case of (3.2.1) we

have, due to the symmetry of Gy;, d(d + 1)/2 operators
V—ee®8, X0 X7 (3.2.4)
and from the antisymmetry of B;; the d(d — 1)/2 operators

b8, X6, X7 (3.2.5)

' Here we set the R; = 1 for simplicity of presentation.
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with their corresponding couplings G;; and B;j, which add together to form the
necessary set of d? operators and their associated couplings. From the CFT point
of view we have a d?-dimensional moduli space for which the task is to find the
symmetry group ¥.

3.2.1. The bosonic string

We quantize the theory just as in chapter II but for the presence of the antisymmetric
tensor field B;;. In this case the coordinate X i(g, 7) and its associated canonical

momentum F; are given by

Xi(r,o)=zt+m 0'+G7(pJ kak)
A Z 1 [ a; e—in(r—a) . 5[;'1 e—in('r-l—a’)]
ﬁ il
2nP; =G0, X7 + B;j0, X7
1 . ..
=p; + 7_5 Z [(Gj,' - Bij)a}yz g~in(r—a) +(Gij + Bij)&gl e‘"‘("“")]

ns0
(3.2.6)
where p; is the center of mass momentum and the oscillator components o* and &*
are functions of Gy; and B;;. Of course, since the X ' are compact as per (3.2.2) we

will have p; quantized in integer modes.
The Hamiltonian and the Virasoro constraints then take the form

H= Lo + Eo
1 3 . . )
) da{47r2P,-1-"jG” +8,X* (Gij — By BiyGM) 0, X7
. . 32.7
+ 47r8¢TX‘P-B,-ka’} @-2.7)
- / do P2 + Pz)
where ( ( ) )
= (27P; — (Gi; + Bi;) 8, X7) &
PoATw TR (3.2.8)

= (2nP; + (Gij — Bij) 8, X7) &
where? w; are a basis of the compactification lattice> A9. That is, the process

of compactification can be considered to be “division” of a non-compact manifold

2 & and & are defined by: >4 wd wi =2Gyj, ¢ @il =87 and Y8 @i - 3G,
3 In terms of a basis (g1---€q) of d-d:mensmnal Euclidean space RS a lattice is the set of all
points whose expansion coefficients in the basis are ail integers.
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by a periodic lattice. In the case at hand, the torus in d-dimensions is obtained by
dividing

T? = R (3.2.9)

TAd

Even in the presence of B;;, P and P decouple, describing independently

right- and left-moving modes. The Hamiltonian consists of a part which describes

the zero modes, along with an oscillator contribution. We will consider how the

oscillator components behave under symmetry transformations later, for now we

will concentrate on the zero mode part of the spectrum. Substituting (3.2.6) into

(3.2.7) gives the Hamiltonian of the zero modes as
H=Lo+ Lo

= % (P2 +152) (3.2.10)
- % (kik;GYF + mimi (Gi; — BaBiyG™) +2m'k; BaG* )
where k; and m; are integers. The integers k; give the momentum eigenvalue of the
center of mass of the string along the ¢’th direction. In a similar way, since a closed
string can wrap around a compact direction an integer number of times, m; gives
the winding number (the number of wraps) around the 7’th compactified coordinate.
We also have the zero mode momenta
Pa = (k,-+m1‘(G,-,~ +B='j))@'£,_ G211
Pa = (ki — m’ (Gij — Byj)) @,

We must now identify the group & which generates the moduli space of the
whole set of Lagrangians, i.e., the whole set of the CFT’s as well as the subgroup
¢, in the d-dimensional space under which the physics is invariant. It turns out that,
sparing the reader many details, the moduli space for toroidal compactifications is
isomorphic to the coset space* [59-60]

0, d,R)

O, R) ® 0d,R) (3.2.12)

4 Let R©®® be an (a + b)-dimensional space with inner product of signature (a, ). O(a, b, R) is
then the orthogonal group on R@® . Then £ = ﬁ%‘{é’%ﬁs can be identified as the set of

space-like a-dimensional hyperplanes in R@-®, that is hyperplanes upon which the inner product is
positive definite.
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where O(d, d, R) is the non-compact orthogonal group in d + d dimensions. > A

convenient manner of representing elements of g € O(d, d, R) is to group them into

A B
g=(C 9) (3.2.13)

matrices of the form

where 2, B, €, D are each d x d matrices such that gt Jg = J where
0 I
T = (I 0) (3.2.14)

where [ is the d x d identity matrix. This then implies that
AC+THA=0
BD + DB =0. (3.2.15)
AD+CB =1

Note also that with this representation, g* € O(d, d, R) as well.

If we take the zero-mode momenta, p, and f,, they form an even self-dual
Lorentzian lattice "9 [59]. Here even means that the Lorentzian length is an even
integer, that is

72 — p? = 2m'k; € 2Z. (3.2.16)

It is known that all even self-dual (<, d) Lorentzian lattices are related to one another
by O(d, d, R) rotations [61]. Thus any O(d, d, ) rotation of the lattice T returns
an even self-dual lattice. In addition, to any such lattice there exists a corresponding
toroidal background.

The momenta (p, ) transform as vectors under O(d, d, R). Atthe same time, the
Hamiltonian, and thus the spectrum of zero modes, is invariant under the maximal
compact subgroup O(d, R) ® O(d, R), i.e., invariant under rotations of p and 5 sepa-
rately. Therefore, we have identified the solution-generating group ¢ as O(d, d, R),
and the moduli space is locally isomorphic to the coset manifold (3.2.12).

We recall from (3.2.8) that the momenta p and p are specified by G and B.
Therefore, the manner in which the solution generating group ¢ acts upon G and

B is defined by its action on the momentum vectors (p,7). We can write the

5 The Lorentz group, for example, is SO(3, 1).
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Hamiltonian (3.2.10) in the form
H = $2PMZ (3.2.17)
where M is a 2d x 2d matrix given by

(3.2.18)

_ ol -1
M(G,B)=(G BG-'B BG )

-G~ 'B G!
and where Z = (m;, k;) is a vector of integers which count the winding number
and the momentum modes. Under an O(d, d, R) rotation defined by g (3.2.13) the

matrix M transforms as

M = gMgt. (3.2.19)

Thus, we have identified the group of transformations &4 = O(d, d, R) which
carries a CFT containing a set of d? couplings defining a d?-dimensional moduli
space into a related CFT with a like number of couplings, in the case of the bosonic
string. The space-time version of this formalism is not hard to write down, since the
components in the space-time metric and antisymmetric tensor fields just are these
couplings.

Therefore, in space-time one is allowed to write down transformation matrices
of the form given in (3.2.13) which transform the space-time fields. This is, as we

will discover later, of great utility.
3.2.2. The heterotic string

As we saw in section 2.3.4, the heterotic string treats left- and right-moving modes
differently. Thus the symmetry group on the moduli space of the heterotic string is
slightly different, and here we will make note of these differences.

The world sheet bosonic action for the heterotic string can be written

1
S=5 / Po{ (V=2 e, + e BE) 0, X0, X"

+ e 408, X 0, X + (Ve e®Gag + ¥ BY ) 8, X%0,XF }
| (3.2.20)
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where the indices 1 < a,8 < 16 run over the space of the chiral bosons® X©.
Of course, the vector fields .4, are the couplings of the truly marginal operators
€303, X3, X of the corresponding conformal field theory.

As mentioned in section 2.2.3.1 the X are used to construct the Yang-Mills
group of the heterotic string. Thus the internal coordinates must live on the weight
lattice of Eg ® FEg or SO(32). The indices (u, a) label a (16 + d)-dimensional
orthonormal basis, in which G, = 8,0, Gog = dog- From this we can plausibly
argue that the moduli space of the heterotic string, with a d-dimensional toroidal
background (as in the previous subsection on the bosonic string) is locally isomorphic

to the space [59,60]
0d+16,d,R)

OWd+16, R0 {,R)’
Thus, for the heterotic string, the relevant symmetry group is O(d + 16, d, R), which

3.2.21)

of course has a similar space-time interpretation to that of (3.2.18). However, for the
space time interpretation in the case of the heterotic string, the configuration of the
gauge fields A, must lie in a subgroup of SO(32) or Eg ® Eg that commutes with
a set of the U(1) generators of the gauge group. Thus if the subgroup in question
commutes with p of the U (1) generators, then we will have O(d + 5, d, R) symmetry.

To close this section, we remark that the O(d,R) ® O(d,R) or O(d + 16,R) ®
0O(d, R) symmetry of the Hamiltonians that we have derived was done only with the
zero modes. Therefore, it is only a symmetry of the low-energy or iong-wavelength
part of string theory. The action of the solution generating groups O(d, d, R) and
O(d,d + 16,R) is to map a conformal background onto the leading order of a
conformal background. From the spacetime perspective, these symmetries and
solution generating groups hold only for the low-energy effective actions of string
theories. However, as we will see in the next section, there is a subgroup of

0(d, d, R), namely O(d, d, Z) that is an exact symmetry of the theory of strings.

6 TheX< are the left-moving bosonic fields used to construct the world-sheet current algebra as
discussed in section 2.2.3.1.
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3.3. T'-duality symmetry of the string

Loosely said, T-duality implies that the string cannot “tell” whether it is propagating
on a compact coordinate with radius R, or on a coordinate with radius %. T-duality
is a property of string theory that has no analog in point particle field theory. One can
understand this by noting that a one-dimensional extended object can wrap around
a compact dimension. The winding number gives a contribution to the energy since
the string must stretch somewhat each time it winds. Let us now consider in general
terms this symmetry of string theory. Let us explain this symmetry in detail in the
simplest circumstances possible, a single bosonic string coordinate compactified
on a circle of radius K. Some of what we say here is repetition of things already

mentioned in section 2.2.3.1, but done with more attention to the symmetry that was

hinted at in (2.2.50).
We write the world sheet action of our single bosonic coordinate as’
S / d?09, X9°X (3.3.1)
4o
where the usual compactification
X=X+2rRm (m € Z) (3.3.2)

is imposed. X (o, 7), since it satisfies as usual a free wave equation, is decomposed

into left- and right-moving modes as

[ 7 1 o
Xr (0'“)=1L‘r+ % ra‘_-!-z'\/%zgane"‘m ,
770
! . ! 1. . +
Xi (c*) =Zi+4/ %Pla++i\/%§;ane o

where z, and z; are the center of mass position. The dimensionless center of mass

(3.3.3)

momenta p; and p, are defined to be

1 (\/J R )
—n+—m],

"TVER Vel (3.3.4)
_L (v R -

7 We use here the orthonormal reparametrization (see section 3.1).
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The canonical momentum conjugate to X is

1 - .+
P=s— +pp + ane™ + ) ap,e (3.3.5)
271_\/2—01, DL+ DPr ; n % n

and the total momentum conjugate to the center of mass coordinate z = z; + Zr IS

1

2o/

p= (o1 +pr) . (3.3.6)

The Hamiltonian then reads
H =Ly +I:0 (3.3.7)

where
o
2
Lo = %p,. + Z &_nln
=l (3.3.8)
~ 2 -~ —~
Lo = %P[ + Z G_nCn
n=|
are, as we have seen before, the zero modes of the Virasoro operators.

We now note that Ly and Lg are invariant under the transformation

R Vo
Jo R . (3.3.9)

mern

That s to say, if we invert the radius of our compact coordinate while at the same time
interchanging winding and momentum quantum numbers, the Virasoro constraints
remain satisfied and therefore the spectrum is unchanged. The oscillator components

are also transformed under (3.3.9) according to

which implies that 8, X, — 8, X, and 0. X; — —8; X under the action of T-duality.
The one-loop partition function of the compactified bosonic string is

Z = / d*0Z'(0,8) Y Trexp (imoLo — ingLo) (3.3.11)
r
DuPr

where p is a modular parameter which describes conformally inequivalent tori, I'

is the region of the g-plane which covers the set of inequivalent tori, and where



The symmetries of the theory of strings . 66

Z'(p, ) represents the contribution of all coordinates other than our compact one.
The trace is taken over the space spanned by the oscillators «, & and we sum over
all momenta according to (3.3.4). Symmetry of the partition function under (3.3.9)
follows immediately upon recognition that the mode and winding number integers
are dummy variables.

Thus we have shown that target space duality is a symmetry of the one-loop
string partition function, and therefore of the free string spectrum. We claim, as a
result, that compactification on a small radius (Tff; << 1) is completely equivalent
to compactification on a large radius (% >> 1). This claim can be proved
by demonstrating 7'-duality of the higher-genus (higher-loop) contribution to the
partition function. We will not go through the details here, the interested reader can
find the relevant material in [58] and the references therein.

It will be found, however, that for the higher-genus partition function we will
have [62]

Z (qﬁ +2log R, %) =Z(¢,R) (3.3.12)
which is to say that in order for the 7T-duality symmetry to hold to all orders in
perturbation theory, the dilaton field must be transformed as well, according to
¢ =p+2logR.

We remark here that 7"-duality in this form has been often regarded as evidence
of the existence of a minimal length in string theory [63]. This question, although
interesting, takes us well beyond the scope of this work.

As in the case of the O(d, d,R) symmetry, we can construct for T-duality a
mapping between space-time fields of a low energy effective action, rather than
between couplings in a world sheet conformal field theory. When this is done,
certain very useful methods of transforming known solutions into new solutions can

be obtained. We will see use of this later.
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3.3.1. Relation to O(d, d) symmetry

It turns out that the symmetry group O(d, d, R) contains within it the T-duality
symmetry. If we write down a matrix g (3.2.13) of the form

(I —e Eq
e = ( & I—Ei) (3.3.13)

where ¢; is zero, save for the 7 — 7’th component, which is unity. I is again the
d-dimensional identity matrix. The duality generated by (3.3.13) can be shown to
be a generalization to several compact coordinates of the T'-duality symmetry. For
example, g., takes R; — é in the case where the d-dimensional background is a
direct product of a circle of radius R; and some (d — 1)-dimensicnal background.

Thus T'-duality lies in the O(d, d,Z) subgroup of O(d,d,R). This is then
evidence that O(d, d, Z) is an exact symmetry of string theory. Showing that this
is true requires consideration of the transformation of the oscillator components in
addition to the zero modes.

We begin by writing down the equal-time canonical commutation relations
[X'(o), Pj(a")] = i6*;6(c — o). (3.3.14)

We then substitute the mode expansions for X* and P? from (3.2.6) to obtain the
commutation relations of the oscillator components, of which the non-vanishing

ones are . _
[xlapj] = 7:51_7

[a::u a{n] = [&na &J-r;z] = mGij5m+n0

where Gy; is the background metric of the d compact directions of section 3.2.

(3.3.15)

Recall that the oscillator components are themselves functions of G;; and Bj;. The
Hamiltonian can again be computed by inserting the mode expansions into (3.2.7)
generalizing (3.2.17) to

H=12MZ+N+N (3.3.16)

where the oscillator numbers are now given by

(o o]
N=) Gyja',ol, N=) Gya. &, (33.17)

n=] n=1
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From (3.2.13) and (3.2.18) we can compute that the transformation of G;; and

B;; under a group element g € O(d, d, Z) is given by
K' = QK +9B)(CK +D)! (3.3.18)

where K = G + B and from which G and B can be retrieved by taking the decom-
position into symmetric and antisymmetric parts. In this way a pair of relations

between the original and transformed metrics can be found as
@+CK) G @+CK)=G =D - CK)¥G' (D - ¢K). (3.3.19)

Now, to be a symmetry of the string, the group element g must preserve the
commutation relations of all the oscillators (3.3.15). Preservation of the commu-
tation relations in conjunction with the mode expansions (3.2.6) uniquely fixes the

action of duality on the oscillators to be [64]
on +@+CK) Lo, @, o @ -cCcK) ! an. (3.3.20)

One can see that with (3.3.19) and (3.3.20) the oscillator numbers (3.3.17) are
invariant, thus the entire Hamilton is invariant under O(d, d, Z). Also from (3.3.20)
one can demonstrate that under 7’-duality transformations given by (3.3.13) the
left-moving oscillators &, behave as in (3.3.10). To be sure, O(d, d, Z) is more
general than just T-duality. For example, it includes transformations which change

the basis of the compactification lattice A% [58].

3.3.2. T-duality of type H superstrings

In the case of the type II string there is more to T-duality than inverting the radii of
compactified directions. When applied to a type II string theory, T'-duality has the
effect of reversing the relative chiralities of right- and left-moving ground states [65].
Since, as we have seen, type IIA has opposite chiralities for the two sets of ground
states, while for the type IIB theory they have the same chirality, T-duality has the
effect of exchanging the type IIA and type IIB theories.

Let us sketch an argument. Consider one dimension z° which is compactified.

From (3.3.4) we see that in the R — oo limit we have p} = —p; while in the
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R — 0 limit we will have p) = p]. Both type II theories are SO(9, 1) invariant,
but under different representations of SO(9, 1). T-duality reverses® the sign of the
left-moving X?, and by supersymmetry also of the left-moving v [66].

If we then separate the Lorentz generators into their right- and left-moving
components as LAY = LFY + L1 then T-duality flips the sign of all the terms in
Ly ? so that the Lorentz generators of the T-dual theory are £+ = £#0 — Lf‘g. This
reverses the sign of the helicity for all the states, and switches the chirality of the
left-moving zero modes. Essentially, one of the s, in the analog of (2.3.18) for
left-moving modes changes, resulting in a change of chirality of the ground state
according to (2.3.22). Therefore, the relative chiralities of the right- and left-moving
ground states are reversed, since the right-movers maintain their chirality while the
chirality of the left-movers is switched.

We also know that the type ITA and type IIB string theories contain different
Ramond-Ramond fields, and therefore T'-duality, to be consistent, must transform

one set into another. The action of T-duality of z” on the spinor fields can be written
Sra(c™) = Sralc™) Sialc™) — ?9Sla(o'+)

for a matrix Py which represents the parity transformation in z° on the spinors.
This must be consistent with 111? — —¢,9, thus P9 must anticommute with 4° and
commute with all the other y#. A definition of Py which accomplishes this is
Py = v7y!! where v!! is the chirality operator. By the ~y-algebra identity

N B Y LRV I Z §vHLylB2 L ypn] (3.3.21)
perms
the effect on the type IIA one-form potential A, say, is to add a 9-index if there
isn’t one, and to remove one if there is. That is to say that we have

X K
ngAf}) = { Affg uA9. (3.3.22)

The remaining components needed to fill out the type IIB Aff,, will of course come

from the type TA Afzg and so on.

8 We will see this effect explained in detail in Chapter IV.
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As a final remark, due to the special way in which fields of the Ramond-Ramond
sector of type II theories transform under T-duality, one cannot utilize the solution
generating transformation O(d, d, R) in the type II case unless the Ramond-Ramond

fields vanish.

3.4. String duality

String duality is the most recently discovered symmetry of string theory. String
duality refers to a collection of symmetries that continues to grow as our knowledge
improves, rather than to a single symmetry. The major reason for which string
duality has remained undiscovered for so long, even though string theory itself goes
back some twenty-five years, has to do with the fact that string duality is not a
manifest feature of the perturbation expansion of string theory, as is T-duality, but
is rather a property of the exact theory [3,67].

As a result, string duality is in a position to provide us with clues about string
theory in the strong coupling regime. Atleastin those cases in which the background
has enough supersymmetry, we can gather with the help of string duality much useful
information about strongly coupled strings. This is important since it has become
clear that purely perturbative string theory is not sufficient to solve problems such as
that of the value of the cosmological constant, how string theory selects its vacuum,
or how supersymmetry is broken. To place string duality in its proper context, before
we move on to the details of the precise string duality symmetries we will need for

the work at hand, we offer an introduction in the next section.

3.4.1. Introduction to string duality

The basic idea that is at play in string duality is that the strong-coupling limit of one
string theory is equivalent physically to the weak-coupling limit of a different theory.
This “different” theory may contain, in general, objects other than strings [1,68].
For example, the multiplets of string duality contain, in addition to the vibrating
strings which are the basic quanta of string theory, classical objects such as solitons.
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By way of illustration, in string duality there is a conjectured duality {67] which
relates strings to fivebranes in ten dimensions® (a fivebrane has five spatial and one
time dimension). There are as yet many mysteries associated with higher membrane
theories, thus we set these aside for the purpose of this work to concentrate our
attention on a small subset of string duality.

In order to introduce the idea of a relation between strong-coupling and weak

coupling limits, let us consider for a moment Maxwell’s equations:

—

V-E =p, VxE+8B=0 (3.4.1q)
V-B=pn, VxB-8E=0 (3.4.1b)

where we have added a magnetic source term, p,, for symmetry. These equations

have a symmetry under the transformation
E - B, B —E,  pe pm. (3.4.2)

Dirac [69] calculated the consequences of the existence of a magnetic charge,
or magnetic monopole and found that single-valuedness of a quantum mechanical

wavefunction was dependent on having
¢°q™ = 2nhn (3.4.3)

where n is an integer, which is known as the Dirac quantization condition.

The quantization condition (3.4.3) tells us that in the case that electrically
charged objects in a theory are weakly coupled, (¢ << 1) the magnetic objects in
the theory are strongly coupled (¢™ >> 1) and vice versa. Magnetic monopoles
have been shown to exist in grand unified theories [70]. They are classical solutions
without singularities, with a characteristic size set by the scale of the spontaneous
symmetry breaking.

In a regime which is electrically weakly coupled, therefore, the electrically
charged objects differ greatly from the magnetically charged ones. Electrically
charged objects have pointlike interactions since the coupling is not strong enough

toresolve the structure of the interaction. This is akin to the Fermi theory of the weak

9 See section 2.1.2 for a short discussion of these objects or refer to [30].
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interaction. The magnetically charged objects are strongly coupled and have finite
size. On this basis and on the basis of further evidence, it was conjectured [71] that
there exists a regime of the theory where the roles of electric (weak) and magnetic
(strong) coupling are reversed. Here the electrically charged objects would have
finite size and the magnetically charged ones would be pointlike.

In string theory the basic idea is the same, but the execution, due to the increased
complexity of the theory is vastly more complicated. We will reduce this complexity
by focussing our attention on a particular string duality, usually given the name
string/string duality, which will play a substantial role in this work.

3.5. String/string duality

String/string duality, as the name might suggest, relates one string theory to another.

In contrast to the T-duality studied in the last section, string/string duality is, like
0(d, d, R) symmetry, known to be exact only for the low energy effective actions of
string theories. It is conjectured to be generally true for complete string theories, but
while these conjectures remain to be proved, one can make good use of string/string
duality in the context of low energy string theory.

The specific string/string duality that we will discuss here is that which exists
between the low-energy effective action of the type IIA superstring compactified
to six dimensions on the Calabi-Yau manifold!® [72-73] K3 and the low energy
effective action of the heterotic superstring compactified of the four-torus 7. This
conjecture was first put forward in [74-76] and is considered in detail in [77].

The evidence upon which a conjecture of this sort is normally based is the
equivalence of the low energy effective actions, that is the space-time degrees of
freedom can be mapped one-to-one from one theory to the other, as well as the
identification of the moduli spaces. This second means that the group which moves
the couplings of the corresponding CFT through the moduli space as well as the
subgroups which form orbits of physically identical theories are the same. This

evidence is quite compelling. There remains, however, one other aspect of the

10 We state that those who do not know what a Calabi-Yau manifold is will not, in fact, be required
to know anything other than that K3 is compact and four-dimensional.
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two theories which must be ascertained to coincide: the spectrum of Bogomol’nyi-
Prasad-Sommerfeld (BPS) saturated states. The reader unfamiliar with BPS states

need not be concerned, as we digress in the next section to their explanation.

3.5.1. BPS saturated states

To understand BPS saturated states, it is first necessary to understand slightly
more about supersymmetry. We first introduce supersymmetry generators Q@ and
Q = QF which are generalizations in spacetime of those given in (2.2.2). In four

space-time dimensions, for example [36] we can write the anticommutator of the

supersymmetry generators as

{Q4, Q}} =204, P,6% (3.5.1a)

{QL Qf}={QL Q4 =0 (3.5.16)
where the o# are the Pauli matrices, (8)a are (anti)spinor indices and P, the
momentum. Taking the trace of (3.5.1a) gives [25]

Po=t=2 3 (QU@bt+@1QL) 2 0 (3:5:2)
a=12

which is a positive semi-definite operator, giving energy eigenvalues which are non-
negative. This means that a vacuum state which is invariant under supersymmetry
transformations has zero energy.

In section 2.2 we noted that one of the symmetries of physical processes was an
internal global symmetry, whose generators are Lorentz scalars. These generators
‘B will form a Lie algebra,

[B;, B;1 = iCi;* By, (3.5.3)
where the C;;* are the structure constants. Consider that the Hamiltonian % is
invariant under this symmetry group. In this case the supersymmetry algebra can
gain terms known as central charges I', as in

{Q%,Q} =T,

{Q Q7 =),

where we suppress the spinor indices. The I' commute with all the Q and Q and

3.5.4)

generate an Abelian invariant subalgebra of the internal symmetry group generated



The symmerries of the theory of strings 74

by the B. The presence of central charges necessitates a rediagonalization of the
basis of the ) and when this is carried out one has a new set of supersymmetry

generators whose anticommutation relations can be written schematically as

{Q1i,Q1} = (2M + Z;) &3, (3.5.5a)
{@2i,Q25} = (2M — Z;) &i;, (3.5.58)

where the Z > 0 are the eigenvalues of the central charges in the new basis. Since
{Q1:, Q1 ;} and {Q2:, Q2 ;} are positive definite operators and Z > 0, then all the
central charges lie in the range 0 < Z < 2M. When one or more of the Z = 2M,
then we say that we have a saturated state. When this happens the anticommutation
relation (3.5.5b) vanishes for some ¢, and thus the multiplets of supersymmetric
states become short, i.e., they contain fewer states than in the unsaturated case [36].
In the case that all the Z are saturated, the multiplets contain one-half of the states
of the most general multiplet.

Now, consider a one-particle state [¢/) which is annihilated by the supersymmetry
generators ()2 from (3.5.5). Schematically, we have

(¥ {Q2, @2} 1¥) = (Y| 2H — Z [¢)
0=2(y|H|¢) — (¥ Z[¥)

which gives us the mass of the particle and its charge under the internal symmetry

(3.5.6)

group (3.5.3). Therefore, for any particle in a BPS state, the mass is entirely
determined by its charge. It has the largest possible ratio of the charge to the mass,
and is said to be in an extremal state.!!

Since the supersymmetry algebra contains the Hamiltonian, we can uncover
much more information about the dynamics of a supersymmetric theory than is
possible with ordinary internal symmetries. With furthur analysis, strong constraints
can be placed on the interactions and on the phases of the theory [3].

The importance of this is that this result is a consequence of supersymmetry
and the dynamics of the theory have no effect on the mass, i.e., the mass is free of

radiative corrections and therefore the mass remains known even when the coupling

11 wWe will have more to say in later chapters about extremal solutions of the string equations of
maotion.
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becomes large. These solutions are also stable, as no decay into lower energy states
1s possible.

Thus the utility of BPS states is that our knowledge of their properties is inde-
pendent of whether or not we have a perturbative description at a given value of the
coupling. This explains why these states are so important in studies of duality, as it
gives us a way to compute a spectrum of states at strong coupling and compare this

to the conjectured dual weakly coupled theory.
3.5.2. Type ITA — heterotic string/string duality

Let us now develop the evidence for the string/string duality that exists between the
type IIA superstring compactified on K3 and the heterotic superstring compactified
on T,

The low-energy effective action describing the heterotic string compactified on

T4 is [77]
_ L — G a—26® 2 _ L (g2
S"‘zng /d"m/ Ge {R+4(V¢ ¥ - (H )

— FO LML)y FRPH ég“" Tr [(8,M) L (G, M) L] }

3.5.7
where G,, is the heterotic metric in the string frame, the U(l) gauge
fields A(e are represented by their field strengths F®e = dADe and
H® = gB®™ + 20,540 A FDB js the field strength of the heterotic antisym-
metric tensor field B® (which includes Chern-Simons terms of the gauge fields).
Note that the space time indices u, v run 0 < p,v < 5 and the gauge indices ¢,
Brunl < @, < 24. ¢ is the dilaton and M is a 24 x 24 matrix of scalars

representing an element of the coset space'? (2)(; 2(2)20) which satisfies

M=M MIM=L (3.5.8)

where
—Ixy
L ( Is ) (3.5.9)

The 80 scalars originate from the internal components of the ten-dimensional metric,

antisymmetric tensor field, and the gauge fields. Since we have compactified four

12 A5 discussed in section 3.2 with d = 4.
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dimensions, according to section 2.2.3.3 we will have four gauge fields from the
metric, four from the antisymetric tensor field and, of course, the 16 that existed in
the 10-dimensional theory reduced to six dimensions.

The other theory in question here, the type IIA theory compactified on K3 is
given by

_ L —2¢@ @2 _ L (g@)?
SHA-%% fd%x/—Ge {R+4(V¢ ¥ -5 (H )

— F@®(LML)op FPFPH + %GF"’ Tr [(8,M) L (8, M) L]
B zl_L prposs g pAar, o Fg;)ﬁ},

(3.5.10)
where 0 < u, v, p,0,k,6 < 5 and as before 1 < o, 8 < 24. Here Gy, is the type
IIA metric, H® = dB® is the field strength of the antisymmetric tensor field, ¢
is the dilaton, AV @ are the 24 abelian gauge fields, again with their field strengths
F@a = dAM @ and M is a 24 x 24 matrix of scalars that finds itself in the same

coset space as in the heterotic string above and also obeys the same relations
Mt=M MLMt =L (3.5.11)

as in (3.5.8). The scalars come from the components of the metric and the anti-
symrmnetric tensor field along the tangent space of K3. Note that the Chern-Simons
terms for H(® are absent, although they are replaced by the final term in (3.5.10).
Also note that ¢#¢ denotes the totally antisymmetric tensor. The gauge fields are
descended from the three-form potential A® and the one-form potential A from
the Ramond-Ramond sector. The A® potential provides 23 gauge fields, 22 of
which come in the form ASL where ¢ and j denote tangent space directions on the
compactification manifold K3, and another from dualization of the three form in 6
dimensions. A of course provides the remaining gauge field.

It can be shown that the equations of motion obtained by variation of the
actions (3.5.7) and (3.5.10) are identical if one maps the fields type IIA <+ heterotic

according to
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5@ = _ p® Gu=e2"g,. (3512

AP = ADe, M= M, (3.5.12b)
1 (R

H;(ﬁ/)p = ge,uupcrmf e ¢ H k) cncé'. (3.5.12¢)

Thus we have, for the case of the duality between the type IIA superstring compact-
ified on K3 and the heterotic string compactified on 7 a map for the low-energy
space-time fields, giving us the means to take a solution of one theory and convert
it easily into a solution of the other theory. We shall make use of this mapping in
later chapters.

We mentioned above that three things have to be done to support such a duality
conjecture. The first we have just done, showing that the low energy equations of
motion are identical under an appropriate mapping of fields. The second, showing
that the moduli spaces are identical is a highly non-trivial undertaking, involving a
foray into the mathematics of algebraic geometry, and thus we will content ourselves
with a few remarks.

We noted above that both the matrix of scalar fields M from the heterotic string
and that, M from the type ITA string were elements of the coset space (3.2.12). This
makes plausible the idea that the moduli spaces are identical. Also in [78] it was
demonstrated that the moduli space of conformal field theories on the Calabi-Yau
manifold K3 was in fact locally of the form D(%%%%' We recognize this as the
same as that of the heterotic string compactified on 7 from section 3.2, therefore
that the moduli spaces would be identical is not surprising. We see from this the
reason for which the type IIA string must be compactified on K3 in order for this
duality to hold.

The third criterion that we noted above, the identity of the spectra of BPS
saturated states in the two theories is also a subject that will take us too far afield,
and we will make do with some short plausibility arguments. To begin we note
that a fundamental string solution of the heterotic string equations of motion will
be electrically charged [75] from the B,(,’,‘,), and hence magnetically charged under
the type ITA B,(f,‘,) since they are Hodge duals of one another ( (3.5.12¢)). Thus the
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fundamental type ITA string will have be charged conversely, electrically under Bfﬁ,)
and magnetically under B,(,’,‘,) The question, as motivated by the duality conjecture,
is the existence of solutions which are fundamental (solitonic) in the heterotic (type
OA) variables while at the same time being solitonic (fundamental) in the type DA
(heterotic) variables.

We have not yet discussed the construction of classical solutions for the low
energy actions of string theory, which is a topic with which we will concerned in
the remaining chapters. As a modest attempt at completeness, however, let us write
down a classical spacetime solution corresponding to a fundamental heterotic string

in six dimensions [79], which is

-1
ds? = (1 + f—z) (—dt? + (dz°)?) + dr? + r*(d6? + sin? d?)

ADe =0
B®W - — € i drS (3.5.13)
C +12
M =1y
e _ 1+ c
»

where C is a constant which is determined by the tension of the heterotic string.
This solution has the required electric charge under B and can be shown to have
an essential singularity at r = 0.

If we map this solution to a type IIA solution using (3.5.12), it takes the form

ds? = — di? + @z + (1 + ;cf) dr? + (C + r2)(d6? + sin? 0dis?)

ADe g
H® = —2Cdz* A dad A dz* (3.5.14)
M =14

-1
—2¢@ _ c
e (1 + 7-2)

where we have given the H® resulting from the dualization due to compactness of
expression. This is evidently magnetic under B® and it can be seen that r = 0 in

this case is merely a coordinate rather than an essential singularity by defining a new
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coordinate p = log r near r = 0. Thus we have written down a singular electric fun-
damental solution for the heterotic string and shown that under string/string duality it
becomes a non-singular magnetic solitonic solution of the type IIA supergavity [80].

Now we must do the converse, a fundamental solution of the type IIA string
must become a solitonic solution of the heterotic string. It can be shown that the

fundamental solution of the type IIA string is [77]

N —1
ds? = (1 + f—z) (—dt? + (dz°)?) + dr? + r2(d§? + sin® §dyp?)

AD= =0
’
B@ _ _ c'f- ydi A dz® (3.5.15)
M =1
-2 (a) C’
¢ = 1+ ﬁ'

which is, in fact, identical to (3.5.13) except for the fact that the constant C’ is
determined by the type IIA string tension. It is then evident that the corresponding
solitonic solution of the heterotic superstring will be identical to (3.5.14) and we

write it here as

!
dsd = — df? + (do) + (1 " f—2> dr? + (C' + r2)(d6? + sin? 6dyp?)

AW -0
H® = — 20" dzt A d2d A dzF (3.5.16)
M =Dy

N =1
e=26% _ (l + C_z) .

T

Thus we have the expected duality structure, analogous to that between electric
charges and magnetic monopoles in field theory, occuring between the type A
string compactified on K3 and the heterotic string compactified on 7%. There is
more work required [77] to show that these solutions (3.5.13), (3.5.14), (3.5.15)
and (3.5.16) have all the properties expected of heterotic and type IIA fundamental
strings and solitons. However, since we have not yet studied how such solutions are

constructed, I propose to leave this subject for another day.
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As a result of the study of non-perturbative dualities, such as T'-duality, about
which we wrote in chapter I, Dirichlet-branes, or D-branes for short have been
developed [14,65,81]. Theirrole in string theory is, 2s we shall see, rather important,
particularly in the Type I and Type II theories. D-branes also play an essential role
in the duality symmetries, as the carriers of fundamental Ramond-Ramond charge.
Certain of the multiplets exchanged by various S-dualities interchange the Neveu-
Schwarz-Neveu-Schwarz and Ramond-Ramond sectors of type II string theories.
Since fundamental strings do not carry Ramond-Ramond charges, other objects, the
D-branes, must fulfill this role.

In this chapter we will develop the theory of D-branes from two points of view,
as particular types of supergravity solutions known as p-branes, and from a more
specifically string-theoretic standpoint as topological defects in type I and type II
superstring theory, leading to the extension of T-duality to the type I string.

4.1. p-branes as solutions to supergravity

p-branes are classical solutions to low energy supergravity equations of motion,
such as those associated with the five consistent string theories introduced in chap-
ter II [82-83]. They take the form, in the simplest case, of Poincaré invariant hyper-
planes in spacetime.
To begin, let us write down a general supergravity action which can be consid-
ered a subset of the bosonic sectors of any of the supergravity actions introduced

previously, since it includes a metric and a dilaton. To this we couple a d-form

-— 80 -
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potential, the action appearing as

I _L 2___ 1 o-ae (g 2)
=53 dz,/_g(R 3 (V8P = e (F0) (4.1.1)

where g, is the Einstein-frame metric, ¢ is the dilaton, and F@+D is the (d+1)-form
field strength of the d-form potential, a is a constant depending on d, and D is the
spacetime dimension. Evidently, the precise values of d (and therefore of a) will
depend on the specific supergravity we are considering. For example, in the case of
the type ITA supergravity, d =1 and d = 3 and their Hodge duals are the relevant
possibilities.
We now add a coupling to an elementary d-dimensional object [83], known as
a (p = d — 1)-brane described by a world-volume action similar to that given in
(2.1.15)
S;= % / d‘ia{\/—_e %0, XP O X" Gy €419 1+ (d — 2)/ "¢

(4.1.2)

2 L. .
-G €210y XM+ - By X P4 Ag?,_.#&}

where ey, is the world-volume metric with its determinant e and € is the totally
antisymmetric tensor on the world sheet. The o* are the world-volume coordinates
of the p-brane. Note two changes between this world-volume action and that of
(2.1.15). The first is that the dilaton now appears in the kinetic term and the second
is the inclusion of the world-volume cosmological constant term (d — 2)\/—e. As
noted in section 2.1.3, this term is not Weyl invariant and leads to inconsistent
classical equations for the string (d = 2). However, when d # 2 we no longer have
Weyl invariance to be broken and thus the inclusion of this term is necessary for full
generality. The choice of coupling for this term is thus explained.

The dependence on the dilaton of (4.1.2) is chosen such that under the rescaling

2d
guv > AD2g,,

) d ()
A 2 fm---p,; (4.1.3)
¢ 2dda ¢
e? - \D-2¢

6ab - /\2 eab
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where we have introduced the “dual” world-volume dimension d = D — d — 2, both
S and S scale the same way, namely
S — Ads, S; — Ais;. (4.1.4)
The field equation and the Bianchi identity of the d-form potential may be
written
d*(e™ FD) _22 (1) *J (4.1.50)
dF@D _g (4.1.5b)

where J is a rank d tensor source given by
1
v—g

Variation of the action S + S results in the following equations of motion: for

) D-1
I / e %48, XH - - 8, X [[é(=-x*) (416
=0

the Einstein equation we have

1 1 1
Rpu - i’g,uuR ) ((ap¢)(av¢) - ’2‘g,uu (V¢)2)
1 ) (d+1) 2 1 (d+1) 2 2rd @17
T2@an ((F )uv T n@d+ i (F ) ) = T

where the energy momentum tensor T4 and (F(‘i“))fn, are given by

R . R D-1
T = — T, f o/ e, X8, X7 234 L s -xv),
-9 v=0

- 2 - - [+ IR |
(d+1) = Fld+l) (d+1)
(F " )pu _Fl‘a‘t"'an—[FV * )
(4.1.8)
the equation of motion of the d-form potential is
Oy (/=505 FdeDcesn)
(4.1.9)

) D—1
= 2/‘5273 ddO'Galmad.aa[X#l . aad-X#‘i H ) (.’EU - -Xu) b
v=(0

and finally the dilaton equation is written

N 2
8. (/—a8¥ 2 =ge—a¢ [ pld+D)
 (V50#9) + s mgen (F)
K2Ts [ 3 e,
- 9—&4 / d%ov/—ee®0, X*0, X" G e®/¢ [] 6 (=¥ — X¥).

(4.1.10)
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In addition, the field equations of the p-brane, obtained by varying S + S; with

respect to X# and e8® respectively, are written

- 1 o
8a (V=ee 0, X¥g,, €9/9) — 2/ =ee®0, XV, X" 3, (gpue*!?)

1 ai--a;g ; (d-
81 Bl .. g pd+l)
(Z!e 170 Gy X H1 3ad.X dFP#r"P& 0

4.1.11)

and
eab = a XH0p X" gy 2?14 | (4.1.12)

It is evident that these equations are rather complex and difficult to solve. However,
we can make progress in finding a solution by imposing a simplifying ansatz.

We begin this ansatz by assuming that the world-volume of our object will be
invariant under Poincaré transformations. We also, for the sake of simplicity, demand
that the solution be isotropic in the coordinates orthogonal to the translationally
invariant ones. For the solutions for which we are looking, then, spacetime is
divided into two sets. A set of translationally invariant coordinates of the solution,
which are the world-volume coordinates, and a set of coordinates in which the
solution is isotropic, normally termed the transverse space. It is worth noting that
this last restriction can be relaxed in various generalizations of the prototype p-brane
solutions for which we now search.

Poincaré invariance is thus imposed on the dworld-volume coordinates, whereas
the isotropic nature of the transverse space can be assured by imposing SO(D — d)
invariance. Thus our ansatz imposes (Poincaré)(d) ® SO(D — d) symmetry. We
therefore divide the coordinates z# into two ranges, as z# = {z#,3*} where o =
0,1,---,d—1landi=d,---,D—1.

An ansatz for a metric which realizes this symmetry is given by [79]

ds* = 2N sy debdz” + 212006, dyi dyd (4.1.13)

where f; and f; are functions to be determined and r = /77 is the radial coordinate
in the transverse space. From this ansatz, it is easy to see that translational invariance
in the world-volume directions z# as well as SO(D — d) invariance in the transverse

space is guaranteed by the metric elements having only dependence of the transverse



The theory of Dirichlet branes 84

radial vector 7. The accompanying ansatz for the scalar dilaton field is simply
P(zF) = &(r).

We now come to the ansatz for the d form potential. As we mentioned in section
2.1.1 the natural coupling to the world-line of a point particle is a one-form potential.
To the world sheet of a string couples a two-form potential. Thus as in section 2.1.2
we have an d-form potential coupling to the d-dimensional world volume of an

extended d — 1-dimensional object which carries charge.

The charges of objects like the ones we are constructing are defined in terms
of Gauss’-law type integrals of the corresponding field strength over the surface at
asymptotic infinity. The simplest ansatz that gives a non-zero electric charge ¢° can

be written

AD o _ s gz A dghr A ... A dgha (4.1.14)
for which the field strength is
F@D _ 5,50 goi A dzft A dzf2 A« .. A drfn-t (4.1.15)

This ansatz is called the electric ansatz since it is an ansatz for a generalization of
the one-form potential familiar from the Maxwell theory. We restate in the interest
of clarity that the hatted indicies, e.g., & represent coordinates in the world-volume

of the p-brane, while ¢, etc., represent transverse coordinates.

For the p-brane we also make the coordinate split X# = {X#, Y"*} and make the
static gauge choice which identifies the world-volume coordinates of the p-brane
and their spacetime counterparts, that is X# = ¢#. We also impose the condition
that Y = constant for which we will see the significance later.

Now that our ansatz has been specified, it is time to insert it into our equations

of motion. Substitution into (4.1.12) results in

eqy = e2f1%a9/d (4.1.16)
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while the world-volume 7, # components of the Einstein equation reduce to a single

equation
ed-Dfi+dfz 55 ((a? ~ 1)8;8; fi + ——— d(d dd =Dy 16,51 +(d+1)0:0; 2
d“” K24 D 5 1,0: 5, + d(d - 1DB:1103£2
+ 3 e—2df1+2f3—a¢ 8:f30; fs + Zai¢aj¢) (4.1.17)
— K27 38(3-2) fi+ag/2 [i:f 5 ( yi)
i=D—d

where again d = D — d — 2, the dimension “dual” to d. For the transverse space

components ¢, j we have

cdfi+d-2f (gaiaj fo — 646" 8,8, f> + d6'0T f; — d67 6% 6,8, f,

a_s . d d+ 1 ~ . . .
+dipoify - L Dstishy, 0,5, — A& 109, + 0 1200
+(@— 159 ak‘am 81f) + 566696 — 2695806619
1 _5p i _ i . 1 ;-
- se dfi(d~2) f2+2fs~ad (3 £ — igwgklak 38, f3) -
(4.1.18)
for the potential equation (4.1.11) we have
) D-1 _
6%9;( e~¢fivdfa—ad . £} = 22T, s (¢, (4.1.19)
4] d
i=D—d
and for the dilaton (Eq. (4.1.10) we obtain
.. s T a _ 2 T _ .o
548 ( edfirdf2 o, ¢,) ~2e dfi+df242f3=ab 5ii g, £, 5. f3
. D-1 4.1.20
- a&z‘T&edf“'aWz H 8 (y;) ( )
i=D—d
while finally, for the p-brane equation we find
8 (ei+a8/2 1) = . (4.1.21)

Equations (4.1.17), (4.1.18), (4.1.19), (4.1.20) and (4.1.21) thus provide the
system of five equations needed to determine the four unknown functions fi, f2, f3,
¢ and the fixed coupling a.
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The unique solution, assuming that the metric is asymptotically flat, i.e.,

Juv — Tuw as T — o0 can be found to be [82,83]

d

f1=2(ci+ = (fs — f3),
d -

f2=-2—(d}3(f3_f3)’
2 -
2L (=B

(4.1.22)

where f3 = a@o/2 and ¢ is the vacuum expectation value of the dilaton. The

function f3 is then given by
e B =@ =eF+5@

where G is given by

where we have

(4.1.23)

(4.1.24a)

(4.1.24b)

(4.1.24¢)

(4.1.25)

where in turn A z,; is the area of the unit (d+ 1)-sphere. The parameter a is given as

2— —
a“=4 D-2

(4.1.26)

We thus arrive at our basic solution for p-branes, or Poincaré invariant hyper-

planes, which is given for the general action (4.1.1) and (4.1.2) in the case that the

dilaton vanishes asymptotically as

ds? = HodzPdz"ngs + HPdy'dy? 6:5,

1 A 5 i
AD o 4 - _gobi A goin A---Adzhd,

H(@D)
e =37,

where

(4.1.27)

(4.1.28)
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Note that it is evident from the form of H from (4.1.23) that the solution approaches
flat space at asymptotic infinity in the transverse space. Note also that g = e? — 0
as r — 0, and thus these solutions may correspond to the exterior of perturbative

states.

4.1.1. Masses and charges for p-branes

The definition of the Arnowitz-Deser-Misner (ADM) mass [4] for a given solution,

such as a p-brane, is given in the case of asymptotic Cartesian coordinates by the

formula
1 D~d |D-d d—1 ]
M= ZJ?{ dont | (B5hij — Bihjj) — D Bihga| TH1dQ (4.1.29)
i=1 7=1 [‘“1

where n! is a radial unit vector in the transverse space and hyy is the deformation

of the Einstein-frame metric
hp.u = Guv — Tuv (4.1.30)

from flat space in the asymptotic region. It is thus a measure of how quickly a
spacetime approaches flat space. In equation (4.1.29), the indices 7 and j denote the
9 — p transverse coordinates, while f labels the p spatial coordinates parallel to the
world-volume.

Application of this formula gives for the prototype p-brane solution (4.1.27) the
result!

M=T:ePA; (4.1.31)
d d+1

where we have again made ¢g arbitrary.

The charges are defined in a similar manner to the ADM mass as Gaussian
integrals, that is, we define the “electric” charge ¢ and the “magnetic” charge g™
as [83]

¢ = \/15 f*F(&+l) , ¢™ = ‘/15 fF(ain) (4.1.32)
K K

1 It should be stated that the ADM mass formula (4.1.29) is only appropriate when d > 1 since
for d < 1 this measure of the mass diverges.
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where k = /87Gy is related to the Newton constant G in D dimensions. Note

that Hodge duality in the ¢° formula is performed with respect to the string-frame

metric. Their application to the solution (4.1.27) results in the charges
¢® = V2T 3 (—)HDD-D 4.

g™ =0.

(4.1.33)

From (4.1.33) and (4.1.31) one sees that the charge ¢° and the mass M obey the

relation

- _\/%m efs (4.1.34)

which looks very much like the mass-charge relation of a BPS saturated state,

although here no supersymmetry has been assumed.

4.1.2. Multi-centre p-brane solutions

It is, of course, evident from the form of the basic p-brane solution that we can
replace the harmonic function H of (4.1.26) with a more general version. One

standard generalization is that of an array of parallel p-branes. Thus we can have

H@H=1+> G <L) (4.1.35)

|7 — 7l

where 7; is a constant vector defining the centre of the p-brane. This harmonic
function represents an array of parallel p-branes, each having the same dimension
and transverse space. The ability to superpose solutions in this manner is related
to the zero force condition, in which the static force between two parallel p-branes
vanishes. This implies that two parallel p-branes can remain in equilibrium. This
condition is closely related to supersymmetry.

We have thus succeeded in constructing elementary p-brane solutions to the
supergravity action (4.1.1) coupled to a d-dimensional object. We label these
solutions elementary because they have non-vanishing electric charge and exhibit
d-function singularities at r = 0. This is as we discussed in chapter II on string

duality. Let us move on to consider briefly solitonic solutions to supergravity.
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4.1.3. Supergravity solitons

In this section we seek the solutions dual to those of the last section, namely solitonic

solutions. As we noted in chapter III, these should be regular at the origin, rather
than singular, and should carry a non-vanishing magnetic charge.?

To begin, we consider the action (4.1.1) alone. We construct an ansatz, this time
with Poincaré invariance in a d-dimensional world-volume> and with SO(D — d)
invariance in the now (D — d)-dimensional transverse space, thus the group is
Poincaré(d) ® SO(D — d). A split of the coordinates into world-volume and trans-
verse is again made, but this time z# = {z# 3} where i = 0,1,---,d — 1 and
i=d,---,D — 1. For the d-form potential, however, we write the ansatz for its
field strength rather than for the potential itself. To obtain a non-vanishing magnetic
charge from the definition given in (4.1.32) we write the ansatz as

F(!IH) - ﬁnqmdxil Adz2 A --- A dzide (4.1.36)

where g™ is the magnetic charge. Since this is a harmonic form there is no globally
valid potential which can be written down which gives F@*) when the exterior
derivative is taken, but it does satisfy the Bianchi identities.*

It is not difficult to show that the field equations of the action (4.1.1) are satisfied
when the replacements d — dand a » —aare made in equations (4.1.17)—(4.1.21)
with the source terms set equal to zero. Thus we can write the solution (with ¢g = 0)

in this case as .. L
ds? = Hdzhdz" ngp + HPdy'dy? 65,

Fd+l) _ \/ifcqmd:vil Adz2 A -~ A dzldst (4.1.37)
e? =37
where - o
d d a
o = —(-D——2—)’ ﬁ= ZTDT?)’ ’y= 5. (4.1.38)

2 As the name “soliton” suggests, at least certain classes of these solutions exhibit scattering
behavior normally associated with particular solutions of non-linear wave equations [84].

3 Thus we see why we called d the dimension dual to d.

4 According to the Hodge decomposition theorem one can decompose a general p-form w as
w=da+ *d(*8)+~. Here a is a (p — 1)-form, and 3 a (p + 1)-form. The form - satisfies the
Laplace equation V24 = 0 and is thus harmonic. Such a form cannot, in general, be written as the
exterior derivative of a (p — 1)-form.
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and where
H@=1+5@ (4.1.39)
where G is given by
1Y N
-——— d 2 1 (4.1.40(1)
drd
G={ —flog(r) d=0 (4.1.400)
. ] 4.1.40
(— 7 d=-—1 (4.1.40c)

where we now have

l = (4.1.41)

A S
In setting the source terms to zero one avoids the §-function singularities, and thus
these solutions are considered regular. However, they are regular only in the string
frame. Since our supergravity action (4.1.1) is written in the Einstein frame, the
solutions are singular. Also note that these solutions are nonperturbative, since the
string coupling ¢ = e? — coas r — 0.
For these solutions the mass and charges are given by
M=T; efs A1
¢° =0, (4.1.42)
g™ = V2T (=) EDD=D g,
where again f2 = agyg /2, and therefore we have an exactly similar relation between

the mass and the charge as in the elementary case, i.c.,

I -
M=——|g™ef3. 4.1.43
Wl (4.1.43)

As a final remark, we will state without proof that the electric charge of the
elementary solution and the magnetic charge of the solitonic solution obey a Dirac

quantization condition [85-87] which is written
q¢°q™ = 2mn, n € Z. (4.1.44)

This completes our short survey of the supergravity solutions known as p-branes,

~

where incidentally p = d — 1 = the number of spatial dimensions in the world-

volume. These solutions we constructed by means of an ansatz that separates the
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D spacetime dimensions into world-volume and transverse coordinates. We found
two classes of these solutions, corresponding to elementary (singular, electric) and
solitonic (regular, magnetic) cases. We shall move on in the next section to develop
what are known as Dirichlet Branes or D-branes and show that they are closely

related to the p-branes.

4.2. Dirichlet branes

D-branes [14,65,81] are extended objects that are closely related to the p-branes of
the previous section. It will turn out that D-branes can be described in spacetime
by Bogomol’'nyi-Prasad-Sommerfeld (BPS) saturated versions of a subset of the
possible p-brane solutions. The necessity of their presence in string theory can be
argued on the basis of T'-duality, which was presented in detail in chapter III. In
certain limits, 7'-duality results in what might be termed paradoxical behavior. Let

us examine this paradox further, demonstrating how it leads us to the D-branes.

4.2.1. T-duality for open strings

There seems to be a paradox that arises in the Type I string in the limit that the
radius of a compact dimension vanishes. Let us write the mass spectrum for a closed

string where one dimension has been compactified. From (2.2.50) one has

k> m2R?

oM =2UAN+ N =2+ o5+ — (4.2.1)

where N and N are the contribution to the mass of the oscillators. From this we
see that when the radius of the compact coordinate goes to zero, any non zero mode
(k # 0) of the center of mass momentum will have infinite mass, while at the same
time a continuum of masses are produced from the winding number m. Thus the
dimension does not disappear, but becomes uncompactified.

However, open strings cannot wind around the periodic dimension and thus they
have no quantum number which plays the role of m in (4.2.1), thus when R — O the
k # 0 states go to infinite momentum as expected, but there is no new continuum of
states. Due to this the compactified dimension disappears, leaving behind a theory
in D — 1 spacetime dimensions.
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What is it that brings about the seeming paradox? It is the fact that the open
string theory always contains a closed-string sector. Thus we have, in the R — 0
limit a string theory in which the closed strings live in D spacetime dimensions, but
at the same time the open strings live in D — 1 dimensions. This seems slightly
bizarre at first view.

It is possible, however, to puzzle out what is going on [65]. Between its
endpoints the open string is exactly the same as the closed string, and thus should
still be moving in D dimensions. The thing that is different with the open string is
thus only the endpoints, which are seemingly restricted to lie on a D — 1 dimensional
hyperplane.

Indeed, that this is the case can be demonstrated from the 7'-duality transfor-
mations. Recall from chapter II, equation (3.3.4) that the right- and left-moving

zero-mode momenta of the closed string are

25 o (kK Rm
Pr=oy =45 §+ K

(4.2.2)
=85 = C_x_i E - Rm
=y = 2 R o .
where we have chosen to label the compact coordinate X%. Under the transforma-
tion
al
R — 7 kem (4.2.3)
it is easy to see that
o >, af - -ap. (4.2.4)

We can straightforwardly generalize this to several compactified dimensions by
defining a vector of momentum-mode integers k and a similar vector of winding
mode integers mt, and we will have the zero-mode momenta as

pi-af=yfS (E+ ),

pi = ”6=\/§(—ki— R‘T") -

R; 1o’

where the index ¢ indicates the compact dimension. It is then clear that the state
denoted by (E, m) with radii R; is the same as the stated denoted by (%, IZ) at the
dual radii R} = o//R;.

(4.2.5)
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Let us now define coordinates Y dual to X, which describe the theory after the
tranformation (4.2.3). We will then have, due to a suitable generalization of (4.2.4)

the relationship between X and Y as
YE(oT)=XE(oc7) Y (o*) =(=1)S XF (o%) (4.2.6)

where S, = 0 for a coordinate along which T-duality is not being carried out, and
Sy = 1 for coordinates which are being T'-dualized.

It is clear that the change in sign of the left-moving coordinate makes very Littled
difference in the case of the closed string, but let us return to the open string case.
Recall that the boundary condition at the end of the string must be chosen so that
the surface term (2.1.26) vanishes. The condition that is chosen is normally the
Neumann condition 8, X = 0. The action of T'-duality on this boundary condition

is as follows:
s X* = (0p07) O_X* + (600") 0: X

- — (o_¥F+a.1p)
LG

(4.2.7)

which implies that in the 7-dual theory the compact Y# are constant along each
world sheet boundary, that is they do not move. This is the Dirichlet boundary
condition, Y# = constant. Note also that this effect is completely reversible. T-
duality applied to a Dirichlet boundary condition changes it to a Neumann boundary
condition.

Further, the compact Y coordinates are the same on every world sheet bound-

ary [66]. To see this, we write the open string mode expansions as

1 1 -
7 1 2 - S B a—ino
Xtk 2 (x +pFto” + ik E ~ane ) (4.2.8a)
na)
xrol (xﬂ + ko ity 1 p emina® ) (4.2.85)
L2 no" o

5 Except for a change in chirality for the type II string as we saw in chapter II.
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where £ = v/2a/ and where for the compact coordinates p* = }%‘1 The dual compact
coordinates Y* = X? — X} then have
Yi(c=0)—Y'(oc=0)= — né?p’
T
_ 2ra n; (4.2.9)
R;
=2mn;R;.

which indicates that Y*(o = ) and Y(o = 0) are identical points on the dual torus
of coordinates. The ends of the open string are attached to the hyperplane while
at the same time the string can wind around the compact dimension. Thus for
the open string, T'-duality has again interchanged momentum modes and winding
modes. The ends of the string are, of course, still free to move in all dimensions that
have not undergone a T'-duality transformaticn. One can think of these hyperplanes
as defects in spacetime. Such a topological defect with p spatial dimensions is in

general described by the combination of Neumann and Dirichlet boundary conditions
Xl =0, X' = - =0, XP=XPl=xP? ... XP 10  (42.10)

These hyperplanes have been given the name Dirichlet or D-branes, and we will see

that they are dynamical objects.

4.2.2. An action for D-branes

Now that we have good evidence that the ends of open strings become trapped on
D-branes under 7-duality, how do we describe them? As objects which constitute
part of string theory, they should be described, as are strings themselves, by a con-
formally invariant field theory. One can write a o-model action including Dirichlet
boundary conditions which represents a D-brane moving in an arbitrary massless
background (metric, antisymmetric tensor and dilaton), then by carrying out a com-
putation paralleling that of section 2.3.1 the vanishing of the S-function gives us
field equations. From these equations we can derive an effective action [88] for a
Dyp-brane with p spatial dimensions (and thus d = p+ 1-dimensional world-volume)
to be

§=T, / doe? \/ —det (Gop + Bap + 21’ F D) + pp / AD (4.2.11)
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where G, = GF9, X, 0y X, is the induced metric on the D-brane world-volume,
B,y the induced antisymmetric tensor and similarly for F?, the field strength of
the world-volume U(1) gauge field A®") of the open string. The parameters T,
and pu, are the D-brane tension ( = mass density) and charge density under the
Ramond-Ramond p + 1 = d-form A The dilaton dependence comes about from
the fact that this is a tree-level open string action. It is also possible to have several
D-branes whose world-volumes coincide. In this case the U(1) gauge field of the
single brane is generalized to a U(n) gauge field for n coincident branes. If one of
the n D-branes is displaced, then this breaks the U(n) symmetry to U(n — 1) @ U(1).

That the combination Eab +2ma/® appears in the action is not an accident. If

we carry out a gauge transformation on By we find
By = Bap + 0a s — Os%a (42.12)

which gives rise to a surface term that must be cancelled by assiging to A the

transformation

~ ! A
A" A — (4.2.13)

From T'-duality we can determine that there should be additional terms in the
Ramond-Ramond part of the action (4.2.11) [65]. One way to see this is as follows.
Consider the example of a D1-brane (D-string) in the z!-z2 plane. For this D-string
there are only two non-zero terms in the potential to which it couples, and these are
Ag:)l and Ag)z Let us use world-volume coordinates ¢© and ¢!, choosing a gauge
in which 8,0X* = 1 and 8,1 X = 1. Evidently 6° =  and ¢! = z! so we can write

the action for this D-string as
5" D-string = K1 / dz! (Agi{ + aleng)z) : (4.2.14)

If we choose the gauge A(zlz) = X2 for the world-volume U(1) gauge field of the
D-brane and carry out T-duality in the z? direction using the results of section 3.3.2
we obtain

S’ D-string = 1 f da’ (Ag‘l)l 2t 27ra'lFﬁlz x) (4.2.15)
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where F@® = dA(, and y is the type [IB RR scalar. The generalization of this can
be shown to be [89]

5’ p.brane = Ho / Tr (27 F4E) 5 4@, (4.2.16)
a

The Ramond-Rarmond term in (4.2.11) thus represents the lowest order in an
expansion of (4.2.16). The integration picks out the d-form of the expansion, and
the trace is taken over the n-dimensional representation of U(n), in the case that
there are n coincident D-branes. In (4.2.16) all spacetime form fields are implicitly
written as induced fields on the D-brane world-volume.

The massléss closed type II strings coupling to the D-brane have the spacetime

action given in equations (2.3.23) and (2.3.26) and rewritten here generically as
BRI I ye) ) 2 1.0
Str=5 /d V=G| (R+4(Vo) - SH
- L (pen)’)
2(d+ 1!

where the fields are as in section 2.3.3 and where d = 1,3 for the type IIA theory

(4.2.17)

and d = 0,2, 4 in the type IIB theory. Note that the case d = 4 is problematic as
explained in chapter II, giving rise to a self-dual 5-form field strength. Also, here

we ignore the Chern-Simons terms.

4.2.3. D-brane tension and charge

Let us now try to discover some of the properties of these D-branes given the action
(4.2.11). The first thing we will calculate is the D-brane tension Ty, for which the
simplest calculation is that illustrated in Fig. 4.2.1, the exchange of a closed string
between two D-branes.

We begin by parameterizing the world sheet as given in Fig. 4.2.1, where 0 <
7 < 7 runs along the world sheet from one D-brane to the other and 0 < o < 27t
is a periodic coordinate with modulus 0 < ¢ < co. With our new understanding of
duality in the open string, we have two ways of interpreting this graph. The first
way is to make time run horizontally along 7, in which sense we have a tree-level

closed string exchange. If we make time run vertically instead, then what we see
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......

C..

Figure 4.2.1: Schematic depiction of a closed string being ex-
changed between two D-branes.

is an open string, with one end fixed to each of the D-branes, appearing out of the
vacuum, splitting, rejoining, and then disappearing, i.e., it is one-loop open string
graph.

Consider taking the ¢ — O limit of the open-string loop amplitude. This
effectively takes the area of the loop to zero, but unlike a closed string loop, which is
topologically a torus, there is no requirement of modular invariance® to cut off the
range of integration hence preventing a divergence. However, since we have a dual
description, by taking time horizontally we find that the limit £ — O is dominated
by the lowest modes of the closed string spectrum. Thus the ¢ — 0 limit may
be interpreted as a closed string infrared divergence and the string folklore of no
ultraviolet divergences in string theory and that all divergences are controlled by
long-distance (lightest modes) physics, is upheld.

One-loop vacuum amplitudes can be computed with the Coleman-Weinberg
formula [90] which is a sum over the zero-point energies of all the modes, as in

an Vi [ &% / dt Z o—mat P (4.2.18)
@m?

where we are performing a sum over the physical spectrum of the string M? trans-

verse to the D-brane, and an integral over the momentum k in the p+1 = d extended
directions of the D-brane world-volume. The mass spectrum is given by

Za_nan,‘ + Z e, — 5 (NS)

YY; + n=1 r=1/2

4r2al?
zaﬁna@ +4D o pn, ®)

n=1 nez

M2 = (4.2.19)

6 The modular group is the symmetry group of tori.
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where Y = a:’l - x% is the separation distance of the branes, thus the presence of
D-branes modifies the mass spectrum to include a contribution from the open strings
stretching between them.

Carrying through the computation [68] gives the result

dt 3 —tr 7ra'2 > n -8
A=Vg [ T @rt™ e il T (1= )

n=1

x % (-1611;[1(1 +q2")8+ég (1+q2"“)8 - %g (1 -~ qz"“)s)

(4.2.20)
where q = e~™* and we have included an overall factor of two from exchange of
the ends of the string, which is a symmetry of unoriented strings. At this point our
work is done, as the second line of equation (4.2.20) vanishes due to the “obscure

identity” of Jacobi ®-functions [91], thus
A=0.

This indicates that two separated D-branes with the same dimension exert no forces
on each other. This also indicates that D-branes are supersymmetric states, with
the net forces from the NS-NS and R-R sectors of the closed superstring exactly
cancelling.

At this point, it is possible to make a field-theoretical calculation where one
computes the exchange between the D-branes of not a string, but rather of the
various background fields, i.e., the graviton and dilaton. Due to the mixing between
the graviton and the dilaton, this calculation is best carried out in the Einstein
frame [92] which decouples these propagators.

Changing to the Einstein frame involves writing
gw =€%2 G, (4.2.21)

in terms of which our generic type II action is written

_ 1 fao, —fp 1 2 e e(+=4)912 @d+n\?
SII_zn?-/d z —g{R 2 V) -~ _2 2(d + 1! (F ) }
(4.2.22)
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and our D-brane action as

$=7, / A% e@=D9/4 | /" det 5oy + —2- / AD (4.2.23)

o7
where B =F? =0
To leading order in the coupling, the energy of interaction of the two D-branes
comes from the exchange of a single graviton, a single dilaton or a single RR field.

The graviton propagator in DD dimensions is written [93]

Ap™7 = (17”"17"" +nHn — 5= 277“”71””) Ap (4.224)
where the scalar propagator Ap(z) is given by
dPL eikz
Ap ()= | —F— 4.2.25
p@= [ =5 (4.2.25)

while the sources Ny, N ,

volume action of each D-brane, which we will label simply 1 and 2. Since only

&, and N, are those obtained by linearizing the world-

one component of A couples to a static planar Dp-brane, we can treat in this

computation the tensor RR potential as a scalar. The sources then take the rather

simple form
N, -22%o, H § ()
7
Nyi = p H 5 (y ) (4.2.26)
ifur<d—1
Mo =53 10 0)  { o e <

where the product of é-functions serves to localize the D-brane in the transverse

space. The amplitude is then given by the integral

Ap = —2x? f d'%z d'% {N;Aw (z—2) Nj ~ N} 3A0( — 2) N3,

(4.2.27)

N5 e )

where the integration variables z and z are associated with D-branes 1 and 2

respectively. Making the required computations the result comes out to be

Ap =V (up—znzfﬂ) e () (4.2.28)
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where Afo_ é(r) is the scalar propagator in the 10 — d-dimensional Euclidean space
transverse to the D-branes. The form is as expected, replusion due to the Ramond-
Ramond charge in addition to an attraction due to the graviton and the dilaton.

Comparing (4.2.28) and our string result, we conclude that

Tp= L2 (4.2.29)

and thus the RR repulsion exactly balances the gravitational attraction for these
objects. Also, (4.2.29) is nothing other than the mass-charge relation for a BPS
saturated state. D-branes, therefore, are supersymmetric.

It is possible to compute the exactly value of T}, (and therefore of p,) by sep-
arating the contributions of the RR and NS-NS closed string sectors to the string
amplitude (4.2.20). To do this we take the separations to be large VY =r - )
and expand the integrand for ¢ ~ 0. The second line of (4.2.20) is

then ~ (8 — 8)% + O(e~1/t), and using the representation
T [ 2 \—D/2 o—r2/2
AH () =5 / ds@2ris)~DPl2e—r"/2ms (4.2.30)
0
of the propagator we have the result

A=V;(1 — 1)2n(4n’e')>PAS,_;(r)+O (e"’/ ‘/"7) (4.2.31)

from which we can extract, through comparison with the field theory result (4.2.28)

the charge density and tension of D-branes as
26272 = 2 = 2m(4m?ay>~F (4.2.32)

which, as might be expected for intrinsic modes of a fundamental theory, are fixed
by the value of the inverse string tension. Note also that if we write the charge and

tension in terms of cf, the dimension of the world-volume, it is written as

p% = 2629% = 2n(4n?al) 7" (4.2.33)
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4.2.3.1. Charge quantization

Dirac’s quantization condition [69], (3.4.3) can be extended to higher dimen-
sions [85,86,87]. Let us consider a Dp-brane located at the origin and perform the
integral

@+ _ .
j&{ CETY = s (4.2.34)

Now recall that when we take the Hodge dual of F(@*1) we obtain a field strength
FO~d which can be written as the exterior derivative of the potential A8—9, with

the caveat that the potential in this case is not globally defined, so we write

*FED - FO-D o G f6-D

and we are allowed, in the same manner as Dirac, to define a smooth potential
everywhere except along a singular hyperstring cutting the (9 — d)-dimensional
sphere Sy_g, on the hypersphere Sg_ 5. The wave function of a (7 — d) brane
obtains a phase shift when transported around such a singular hyperstring given by

¢ =tia_g f[F@—‘ﬂ = Epgpeg_g (4.2.35)

which must be an integer multiple of 27 for the wave function to remain single-
valued. For the D-brane charge given by (4.2.33) this can be seen to be the case
with the integer being unity. Thus the charge of D-branes as computed by closed

string exchange is consistent with the charge quantization rule.

4.2.4. D-brane excitations

The ground state of an open superstring is a massless spacetime vector and its
fermionic superpartner. As demonstrated in [94] the various components of an
open string describe the excitation of the D-branes to which they are attached. In
particular, for the massless vector, polarizations parallel to the world-volume of a
single D-brane describe U(1) gauge fields living in the world-volume. Components
transverse to the brane describe the transverse oscillations of the D-brane, that is
deformations in its shape. This is entirely expected, since it is difficult to imagine
that D-branes, as massive objects, could remain perfectly rigid in a theory which

contains gravity.
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Figure 4.2.2: Schematic depiction of three coincident D-strings
wrapped around a compact coordinate with right- (N) and left-
moving (N) open strings, forming a “string gas” attached.

The perturbative excitations of a Dp-brane, therefore, are described by a full-
fledged open superstring theory, which possesses a low energy limit which is an
Abelian supersymmetric Yang-Mills theory dimensionally reduced from ten to d
dimensions, where d is the world-volume dimension of the brane. The presence of
D-branes necessitates a new analysis of the open string, which in the absence of D-
branes was unavoidably unoriented, and for which the Kalb-Ramond field does not
appear since it is not symmetric under exchange of the ends of the string, known as
world sheet parity. This reanalysis shows that in the presence of D-branes oriented
open strings are quite normal, and even required. We now understand slightly better
the origin of the B, + 27ra’1F§‘2,,), component of the action (4.2.11).

Thus we see that we can consider an D-brane in an excited state as possessing a
“gas” of open strings attached to the brane. Let us consider the energy of a D-string
with such a collection of open strings attached to it. Recall from (4.2.19) that the

mass of an individual open string was

o o0 1
D ontmu+ Y i, — 5 (NS)

iy, .
_dY 1) r=1/2 (4.2.36)

4r2e? o | &
Z aﬁnanp. + % Z np"_‘npn# ®R)

=1 neZ

M2
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Figure 4.2.3: Schematic depiction of three strings attached
between two D-branes. Two strings have winding number m = 0
and one has m = 1 around the compact coordinate.

where now we have generalized Y7 to include the possibility that an open string
stretching between two separated D-branes may also wrap around a compact di-
rection an integer number of times (see Fig. 4.2.3). Thus in general we have
Yl = :c’l — x% + 27 Rim. If we want the low energy excitations of D-branes, we
focus on massless open string states. For simplicity, let us consider a single D-
brane. In this case the separation Y7 Y; = 0 and we are left only with the oscillator
contribution of (4.2.36). We have then M? = 0 for the ground state 7 = 1/2 in the
Neveu-Schwarz sector, as well as for n = 0 in the Ramond sector. Concentrating on

the NS sector, we form the corresponding vertex operators

V =(p0, XPePX, (World-volume)  (4.2.37a)
V =¢o, X ePX 5 (8, Y e’ X (Transverse) (4.2.37b)

where Y7 is the T-dual coordinate to X? in the space transverse to the D-brane. We
then interpret, from the vertex operators in the world volume, (4.2.37a), that there
exists a gauge field in the world volume of the D-brane. For transverse polarizations
i» T duality transforms the vertex operator into that of the transverse position of
the brane, and we then see that the transverse polarizations do indeed describe
the transverse ondulations of the D-brane. Of course, the NS bosons have their

companion R fermions.
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Letus now specialize to the relatively simple case of a D-string which is wrapped
around a compact coordinate with compactification radius R (see Fig. 4.2.2). As we
saw in section 2.2.3.1, in the case of 2 compact radius, the center of mass momentum
of the string as it travels along the compactified D-string will be quantized in integer
units of 1/R. The energy will be a sum of the zero point energy of the D-string
and the contribution from the gas of open strings. The zero point energy is simply a
product of the D-string tension T from (4.2.32) multiplied by the distance around
the compact coordinate, 27 R. For the contribution of the “string gas”, let us suppose
that we have a state in which there are 9% right-moving open strings with momentum
eigenvalue %, and similarly ¥t for the left-moving strings. We can then write the

mass of the state as -
N+N

M =21T|R+ (4.2.38)

where
e o] (s o]
N = § :km,,, N= § :k Ny.. (4.2.39)
k=1 k=1

Since for the D-string there are 10 — 2 = 8 transverse directions, we will have 8
massless bosonic and 8 massless fermionic modes associated with each of the strings
traveling around the D-string.

Of course, all these things become more complicated when one has more than
one coincident brane present {65]. In this case one can have the open strings
attaching themselves to the same brane, or to different branes, depending on the
Chan-Paton charge. The number of massless states then increases rapidly with the
number of coincident branes. It is also clear that it is possible to generalize to other

D-branes.
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4.2.5. Supersymmetry of D-branes

As we noted earlier, the interaction energy of two similar D-branes, (4.2.20)
vanishes, indicating that the D-branes are supersymmetric. The results for the D-
brane tension and charge also indicate that they are BPS saturated states. The only
question which remains to be answered is the number of supersymmetries that are
left unbroken by these states.

This question is not difficult to answer. The action of T-duality in the open
string sector of the type I string theory produces D-branes as we have seen. Away
from a D-brane only closed strings can propagate, and therefore the physics is
locally that of the type II theory. As we have already noted, the type II theory has
two supersymmetries, one each for the left- and right-moving fields, whereas the
type I theory has only one supersymmetry, a result of the left- and right-moving
fields combining to form standing waves. Thus any state containing a D-brane to

which open strings can couple must break half of the supersymmetries.

4.3. Classical D-brane solutions

Now that we have identified D-branes as the carriers of RR charge in string theory,
and we have written down an world-volume action (4.2.11) and (4.2.16) for them
and have succeeded in computing certain of their properties, we would like to find
background field solutions to the supergravity equations of motion which correspond
to these objects in spacetime.

The likely candidates were developed in section 4.1. These p-branes have the
same symmetry properties as D-branes, that is, a D-brane has Poincaré invariance
1n its world-volume, since there are Neuman boundary conditions imposed here,
and at the same time SO(D — d) invariance in the transverse space, as a result of
the imposition of the Dirichlet boundary conditions which localize the D-brane in
spacetime.

Also, it is possible to compute the amplitudes of closed strings scattering from
a D-brane [95] through the techniques of conformal field theory, meaning from a

world sheet perspective. From these amplitudes it is possible to extract information
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regarding the long range background fields of D-branes. The results show that these
fields correspond exactly to those of our elementary p-brane solutions (4.1.27).
This is vet more evidence suggesting an identification of elementary supergravity
p-branes with classical background field representation of D-branes.

We also saw that D-branes are supersymmetric, although they break half of
the supersymmetries, and have a tension, or mass, and a charge related by BPS
saturation. Thus, if we can find p-brane solutions which satisfy these properties, we
will have found the classical low-energy spacetime solutions corresponding to our

D-branes.
4.3.1. Classical supersymmetry

As we saw in the opening section of this chapter, the p-brane solutions, both
elementary and solitonic were found to have a relation very much like that of
(4.2.29) which is a hint that the p-brane solutions are supersymmetric, but does not
in itself constitute a proof. For the case of p-branes, this is a consequence of choosing
the coefficients in the p-brane world-volume action to be as in (4.1.2) [83]. What
we will undertake in this section is to make plausible the fact that the elementary
p-brane solutions in D = 10 preserve, in fact, one-half of the supersymmetries and
therefore can be identified as our classical background versions of D-branes.

If we consider our p-brane solutions, we note that there are no fermionic fields
present. Thus, when the supersymmetry transformations are applied to such a
solution, the supersymmetric variation of the bosonic field vanishes, since it is
proportional to the fermionic fields. However, the supersymmetric variation of the
fermionic fields, even when they are vanishing themselves need not vanish as it is
proportional to the bosonic fields. To demonstrate supersymmetry, there must exist
covariantly constant Killing spinors such that the supersymmetry transformations
of the gravitino, the superpartner of the graviton, and the dilatino, that of the dilaton
vanish identically [79].

We work in the context of type II supergravity. Our strategy, following [83]
will be to assume an ansatz for a solution as in (4.1.13), substitute this into the

supersymimetry transformation rules of the gravitino and dilatino, demand that there



The theory of Dirichlet branes 107

be unbroken supersymmetry’ and compare the results to those of section 4.1. The

motivation for this strategy is the fact that the supersymmetry transformation rules

are first-order equations rather than second order as are the equations of motion.
To facilitate this comparison we will work in the Einstein frame. The type IIA

supergravity action is written in the Einstein frame as

1 =4 '
SEIA'_'ﬁ diox /_{R_ (v¢(a)) 12 (H(a))

~ e3¢4 /2 ( F(z)) _ % (F<4>) - / B@APGAG)
43.1)

where g, is the Einstein frame metric, H® = dB®@ is the field strength of the
Kalb-Ramond field, F@® = dA®) and F®¥ = d4® — H@ AW are the Ramond-
Ramond field strengths of the one-form potential A} and the three-form potential

A®) respectively, and finally ¢® is, as always, the dilaton.
For the type IJA theory, the supersymmetry transformation for the gravitino is

e3¢ /4 1L (2
51/)(") Due + 2 (,sz/p - 146;,"7”)'7 F,Sp)e
e_¢(a)/2
5 (,Y#upo' _ QJ#U’YPU) llH(pa'E (4.3.2)
. Hla)
ied /4 vpoA _ 6 v pcrA F(4)
256 \ ¥ 3 vpoA
and for the type IIA dilatino we have
3 (a) 4
5@ _ (‘/_ipﬂqs(a),yuyu L3 P @)
4 16v2 433
—_s6) , @ ( i )
/2 jed /4
+ —————¥P° (@ _ '~ " vpoA (4 )E
24+/2 YP7 1924/2 vpoA
where the y* are the Dirac matrices in D = 10, with
1Bz pn 7{#17#2 ces »Yl‘n] (4.3.4)
and
A = g0yl P, (4.3.5)

7 Only the vacuum retains all of the supersymmetries.
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Also, here the covariant derivative D is written

1
D = O+ g™ (43.6)
where w),,, is the spin connection [51] obtained by solving the equation®
Vel = duel, +wijel —T0, el =0 (4.3.7)

where in turn the e, and I'Z, are the usual vielbein and affine connection. Explicit

formulas for w,fj and [,y are

1 . . 1 i ;
wul = 56" (Ouel, — O,e]) - 567 (Buel, — Buel)

|
— iep‘e‘” efj(@,,eak — Os€pk), (4.3.8a)
1
F;w)\ = 5(3xgpu + augyA - 6,\9;111)- (4.3.8b)
On the type IIB side, the supergravity action in the Einstein frame is given by
1 1 e_¢(b) 2 _5¢( )/2
E __* [410,. /Slp__ o2 _ €7 (g _& T 2
SFis =5z [1%v/=T{ R~ 57407 - £ (1) (V)
345(6) 2
- 3) (b) 5 4) p3) g7 ®)
12 (F +xH ) 480(F ) }+ fA FoH

(4.3.9)
where jy, is the Einstein frame metric, H® = dB® is the field strength of the
Kalb-Ramond field, F® = dA® and F® = dA® — J(BOF® — AO H®) are RR
field strengths, while x = A is the RR scalar, and ¢® is the dilaton.

It is known [9] that the format used here to present the type IIB supergravity
is not the most efficient for the presentation of the type IIB supersymmetry trans-
formations® for the gravitino and dilatino. The way to make it more efficient is
as follows. We first recognize that the type [IB supergravity possesses a global
SU(1, 1) symmetry, a non-compact version of SU(2). The maximal compact sub-
group of SU(1, 1) is U(1). Then we combine the dilaton ¢® and the RR scalar ¥

into a 2 x 2 matrix V£ where a = 1,2, V2 = (V%)* and impose the condition

€apVEV2 =detV =1 (4.3.10)

8 In the case of vanishing torsion, i.e., T, = Vel — Ve, = 0. Note t.hat when an object has
multiple indicies we add a connection term for each, as in V e}, = 9y}, +w,’ e} — T}, €.
9 There s no simple way to write the action in the new form, so we will ormt it.
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so that V' transforms under SU(1, 1) with U(1) charges =1. We then form the
SU(1, 1)-invariant quantity

Py = —€ap Ve VL. (4.3.11)

For the two two-form potentials of the type IIB theory we combine their respective

field strengths as
=l = g® =2 = F@ (4.3.12)

then we define a new complex three-form field strength as
FO = _e, Vozb (4.3.13)

with the definition of a covariant derivative that maintains the charge U of a field
under U(1) which is
Dy = (8 — UeaV20,V2) . (4.3.14)

After these definitions, we can write the type IIB supersymmetry transformations

5 = Dye + 4(5')7,4,(,” TuFE) \s6 + o= - ( po _ 9,5“"7#0) FE,e* (43.15)

for the gravitino and

SA® _ iyHe* P, — _V#ij}ﬁ’gp (4.3.16)

for the dilatino since in the type IIB case, € is chiral y!le = €.

It is found, upon substituting the ansatz of (4.1.13) into the supersymmetry
transformations that for D = 10 and world-volume dimension 1 < d < 7 that
Killing spinors exist for which the transformations (4.3.2) and (4.3.3) or (4.3.15)
and (4.3.16) vanish. However, this requirement reduces the four unknown functions
f1, f2, f3, and ¢ to one, exactly as occured when the ansatz was substituted into the
equations of motion. The result of all this is that we may interpret the elementary
p-brane solutions of §4.1 as the low energy background solutions corresponding to
D-branes.

That this works should not, after all, be considered a miracle. The supersym-

metry variation of an equation of motion is something that should vanish by the
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equations of motion. Supersymmetry involves enough constraints that if the su-
persymmetry transformations are known, as well as one equation of motion, the
remaining equations of motion can be deduced. Therefore that an ansatz that is
supersymmetric also solves the equations of motion is not surprising. Of course, we
had no reason in this chapter to choose a different ansatz when we constructed the
p-branes.

There exist, of course, many other variants of the p-brane solutions. Some are
called “black” p-branes because they display the phenomenon of an event horizon.
Other types of solutions exist which break more than half, but not all, of the
supersymmetries. These other types of solutions are also BPS saturated states and
play a role in many string dualities. However, a systematic exposition of these
solutions is beyond the scope of this work. Let us move on to dicuss in the next

chapter black holes in the theory of strings.



The theory of black holes

The existence of completely collapsed objects, known as black holes by the fact that

aregion of spacetime from which not even light can escape is formed, is quite likely
the most intriguing prediction of Einstein’s general theory of relativity. Add to this
the accompanying prediction of spacetime points within this “region of no escape”
where the spacetime curvature becomes unboundedly large, suggestively labeled
the singularity. Black holes thus present an enigma even at this level, suggesting
strongly that a quantized theory of gravity is necessary to determine the physics of
the singularity.

In addition, the laws of classical black hole mechanics, which we will discuss
in more detail later, take such a form as to suggest a direct connection with ther-
modynamics, leading Bekenstein [6] to posit that black holes possess an intrinsic
entropy. At that point, the lack of a non-zero temperature made the thermodynamic
analogy seem unlikely to be anything other than just that, an analogy. After all, if a
black hole is in some way defined by this region of no escape, then the temperature
of a black hole should be zero, since it is a perfect absorber. This piece of the puzzle
was discovered by Hawking [7] when through application of quantum mechanics he
demonstrated that black holes emit thermal radiation, and thus possess a non-zero
temperature, completing the thermodynamic structure.

This is, of course, not the end, but rather the beginning of the story since new
questions then surfaced. The first was the statistical interpretation of the entropy.
For ordinary thermodynamic systems, the entropy can be computed by statistical
analysis of the fundamental degrees of freedom of the systern. What are these

degrees of freedom in the case of black holes?

—111-
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A second question raised by the work of Hawking is known as the information
loss paradox of black holes [96-98]. If a black hole is allowed to radiate away
all of its mass, thus evaporating completely, where does the information about the
quantum states that formed it go? Such a process is non-unitary, thus violating the
principles of the quantum mechanics that were required to (theoretically) produce
the process itself.

It is clear, then, that a quantum theory of gravity is called for and that black
holes bring sharply into focus this need. String theory, as a serious candidate for
a theory containing quantum gravity is a logical framework in which to attempt a
response to the questions posed by black hole physics.

The study of black holes in string theory is normally begun within the framework
of classical, exact solutions to the low energy effective string equations of motion.
When fields such as the dilaton and the various gauge fields vanish, the classical
solutions of the Einstein equation, R,, = 0, such as the Schwarzschild or Kerr
solutions are solutions of the low energy effective string equations of motion, for
example (2.3.10). While the black hole solutions of string theory form a much wider
class than those of general relativity, it is worthwhile to begin with a short review

of the black holes of general relativity.

5.1. Black holes

A spherical body of matter which is sufficiently cold and contains sufficient mass
cannot, according to general relativity, exist in hydrostatic equilibrium [5]. It must,
therefore, suffer complete collapse under its own gravity and form a spacetime
known as a black hole.

One rather interesting characteristic ascribed to the process of gravitational
collapse is called the cosmic censorship conjecture [99]. This conjecture states that
the curvature singularities produced are always shrouded by an event horizon, i.e.,
a black hole. In other words, the singularity can never be observed at asymptotic
infinity. To be precise, this conjecture must specify conditions on the matter fields

in question, for example it has been shown that in the gravitational collapse of a
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perfect fluid “naked” singularities can occur [100]. Despite substantial theoretical
effort this conjecture remains exactly that.

Let us pause briefly to consider the definition of a black hole. The notion of a
region of no escape due to strong gravitational fields is not defined with sufficient
precision by: The region of spacetime such that every timelike (or null) worldline
with at least one point in the region is completely contained in the region. With
a definition such as this, everyone’s causal future is a black hole. An appropriate
definition of a black hole in the case of asymptotically flat spacetimes is that region
from which it is impossible to escape to future null infinity.! ~ With this definition
one is essentially confined to finite distance from the origin r, and we choose to
begin our study of black holes with the confinement to finite r described by the

Schwarzschild solution.

5.1.1. The Schwarzschild metric

The Schwarzschild solution, a solution of the source-free (vacuum) Einstein equa-
tion was first written down in 1916 [101] and for which appears the classic graphical
representation in Fig. 5.1.1. The solution is written in D = 4 in the usual spherical

coordinates {t, r, 8, ¢} in spacetime with Minkowski signature as the line element

-1
ds? = — (1 - ZG:’ M ) dt? + (1 - ZGJ;’ M ) dr? +72(d6? +sin® 8dp?) (5.1.1)

where M is the mass.

One notes immediately the existence of four points at which (5.1.1) is singular,
r=2GNM andr =0, 8 =0and § = 7. Such singularities can be due to either of a) a
failure of the system of coordinates used to describe the solution or, b) the existence
of an essential singularity in the spacetime. Here r = 2G ;M is an example of the
first, defining the boundary of the region of no escape called the event horizon. This
boundary occurs at the Schwarzschild radius and is the radius at which the escape
velocity equals that of light. The points § = 0, 7 are the trivial singularities of polar
coordinates. On the other hand, the point r = O is the true singularity where the

curvature grows without bound.

1 These concepts are the subject of appendix C.
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Figure 5.1.1: The spacetime geometry described by the
Schwarzschild solution. The figure represents a time-slice £ = 0
with one degree of rotational freedom suppressed, i.e., circles at
radius r are actually spheres of area 4772,

Represented in Fig. 5.1.2 is a Penrose diagram of the maximally analytically
extended? Schwarzschild solution. Since the Schwarzschild solution is invariant
under time reversal, the maximally extended solution contains a “white hole” (region
IV) which emerges from 7~ in the infinite timelike past as well as the black hole,
region III which extends toward ¢* in the infinite timelike future, as well as two
asymptotically flat regions (I, II). One thing to note here is that the singularity
is spacelike, and thus the hapless adventurer who stumbles into a Schwarzschild
black hole has no choice but to collide with the singularity. H¥ and H~ denote
respectively the future and past event horizons. For black holes formed by the
collapse of infalling matter, only regions I and [II are expected to be relevant
physically.

Schwarzschild black holes have been shown to be stable under small perturba-
tions [102], which indicates that it is classically impossible to extract energy from
such a black hole. We can then identify a Schwarzschild black hole as the ultimate

ground state of a heavy mass.

The Schwarzschild solution has, of course, higher dimensional generalizations.

The causal structure remains identical with each point in Fig. 5.1.2 representing a

2 These concepts are explained in appendix C.
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r=0 it

Figure 5.1.2: Penrose diagram of the maximal analytic extension
of the Schwarzschild black hole.

manifold of dimension D — 2. These solutions are written [103]

-1
ds* =— (1~ ﬂ_ a2+ (1- L) & +r2d0P2 (5.1.2)
rD—3 D=3

where dQP—2 is the line element on the unit (D — 2)-sphere and the parameter 3 is

related to the mass by
(D —2)Ap—2
2K2

where xk = /87G y was defined in chapter II, and Ap_3, the area of the (D — 2)-
sphere is given by

M= 8 (5.1.3)

27'['2‘2_"['
D-1\"
L (57
Another way to obtain a higher dimensional generalization is to form a metric

Ap_o2 = .14

of the form

-1
ds? = — (1 ~ ZGNM) d? + (1 - ZGNM) dr?

T T
+ 72(d6? + sin? 8dyp) + 6;;dz* de?

(5.1.5)

where D — 5 < 4,5 < D — 1. This is particularly useful when one wishes to study
solutions which have a four dimensional compactification. It is evident that one can
combine the two generalizations to form, for example in six dimensions, objects like

a five-dimensional Schwarzschild metric, adding a flat coordinate to liftit to D = 6.
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5.1.2. Reissner-Nordstrom solution

The Reissner-Nordstrom [104] solution represents a charged black hole solution to
the Einstein-Maxwell equations, which are given by

1 1

where F' = d Ay is the field strength of the Maxwell gauge field A s, which satisfies

the Maxwell equations which are written in terms of forms as
dF =0, dCF)=Ap->2 T (G.1.7)

where J is the one-form Maxwell current source.
The Reissner-Nordstrom solution includes, therefore, a gauge field as well as a
metric and is written

2
ds? = — (1 _GvM GN(f) df?

r T2

2 -1
+ (1 _2GNM GN2 ) dr? +2(dg* +sin® de?)  (5.1.8)

T T
G e
Ay = =N (q—dt +qg™cosf dqo)
4T \ r
where ¢ = \/q%% + ¢™? and in turn ¢¢ and ¢™ are the electric and magnetic charge,

respectively, as defined in equation (4.1.32).

The causal structure of the Reissner-Nordstrom metric is quite different than
that of the Schwarzschild solution and even changes rather drastically depending
on the relative values of ¢ and M. If 0 < |g| < M the metric coefficient can be

factored into two real roots as

2GyM  GLE s r_
(1 T * r2 ) N (1 - T) (1 N —r_) (5.1.9)
where
r+=GNM +Gn\V/M? —q? (5.1.10)

and thus the spacetime exhibits two horizons, an inner horizon at r = r_ and an
outer one at 7 = r,. A Penrose diagram of the maximal analytic extension of this

spacetime is to be found in Fig. 5.1.3. Itconsists of an infinite chain of asymptotically
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Figure 5.1.3: Penrose diagram of the Reissner-Nordstrom black
hole for g < M.

flat regions I connected by regions I and IITI. Each region II1I is bounded by
a timelike singularity. The significance of the inner horizon is that the trajectory
of an infalling observer is only unique up to r = r_, at which point it becomes
dependent upon boundary conditions at the singularity. To see this, consider the
surface 57 of Fig. 5.1.3. Fisa Cauchy surface for the two regions I and the
neighboring regions I7. However, in the neighboring regions 111 there are timelike
curves travelling backward in time (past-directed) which approach the singularity
and do not cross 7 = r—. Thus r = r_ is the future Cauchy horizon for %
and the conditions on & do not determine the continuation of the curve beyond
r = r_. Further, one is not forced to collide with the singularity in contrast with
the Schwarzschild case, since it is now timelike. In fact, our infalling observer
must actually exert himself to reach the singularity as freely falling observers avoid
it, continuing through the regions II, ITI, I and into another asymptotically flat
region I of the spacetime.

When g = M, however, the picture changes to that of Fig. 5.1.4 in which the

inner and outer horizons coincide, r,. = r— = Gy M. Note that the surface marked
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Figure 5.1.4: Penrose diagram of the Reissner-Nordstrom black
hole for g = M. :

t = const appears to make contact with the singularity, but this is nothing more than
an artifact of the conformal rescaling used to construct the diagram. To see this, we
compute the proper distance to the horizon r = Gy M from some point at a radius

ro > G N M along aradial curve at fixed ¢, which is given by

0
I . (5.1.11)

Gy M (1 — QNTM)
Thus, as » — G M the fixed-¢ surface takes on the geometry of a infinite cylinder,
so we have what is called an “infinite throat” (see Fig. 5.1.5). It seems that the
horizon has been pushed away to infinity, though one can still fall into the black
hole in finite proper time since the horizon is still a finite distance away in timelike
or null directions.

The final case to consider is that of g > M. Here the Reissner-Nordstrom
solution describes a naked singularity, shown in Fig. 5.1.6. It is widely considered
that ¢ > M is impossible to achieve given the cosmic censorship conjecture, as
well as other considerations. For example, a black hole with ¢ ~ M would exert
a repulsive electrostatic force on protons that is greater than its gravitational pull

on them by a factor of ;""ZM ~ ﬁ ~ 10'8, and such a differential in forces is likely
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Figure 5.1.5: Representation of a time-slice for the extremal
Reissner-Nordstrom black hole (¢ = M).

to pull in neutralizing charge. When Hawking radiation is in effect, then, a black
hole will preferentially radiate away its charge, depending of course on the charge
to mass ratio of the particles in the theory. A small charge to mass ratio can result in
the charge remaining essentially constant, which is likely to be true for any possible
realistic magnetically charged black holes. Thus ¢ = M is the largest possible
charge to mass ratio for the Reissner-Nordstrom solution. In this case the black hole
is called extremal.

Again we can generalize the Reissner-Nordstrom solution to higher dimensions

by writing the metric in a higher dimensional form as in [103]

2 B A2
ds?* = — (1 = TZ(D_Z)) dt?

8 2 N
D3t T.Z(D-Z)) dr? +r2dQP~? (5.1.12)

+(1—
T
D-2 A
A=+ &2 (D —

3) rD-3
where 3 and the mass are related as in (5.1.3) and the electric charge ¢ is given in

terms of A by

Ap—2

gt =+ V2(D -2)(D =3) (5.1.13)

2
K

One may ask what has happened to the magnetic charge of the higher dimen-

sional Reissner-Nordstrom solution. The answer is that there is no magnetic charge

in higher dimensions. ¢™ is defined by integrating the Maxwell two-form field
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Figure 5.1.6: Penrose diagram of the Reissner-Nordsttom black
hole forg > M.

strength F' over the surface at infinity, and only in two dimensions is this sphere
two-dimensional, leading to a nonvanishing result. If one includes more general
form fields, such as those of the theory of strings, then one can find black hole solu-
tions in higher dimensions have magnetic-like charges, as well as being electrically
charged under these fields. Also, in higher dimensions, we can compactify some
of the higher dimensions such that the surface at infinity is a two sphere, with each
point on this surface being the compact manifold.

5.1.3. Kerr-Newman solution

The Schwarzschild and the Reissner-Nordstrom solutions were both known shortly
after Einstein published his general theory of relativity. The addition of angular
momentum to the Schwarzschild solution, giving us what is known as the Kerr
metric, took until 1963 [10S]. Shortly thereafter a charged generalization of the

Kerr metric was found by Newman er al. [106].
The Kerr-Newman solution appears as
sin? 8
p?

- §dr2 + pAde (5.1.14)

A

p?

ds? =

(dt — asin® 8dyp)? + ((? + a®)dp — adt)?

_ Gqu'r -2
A=/ (dt asin Bdgo)
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where

2
2 + @% cos? é,

o =r
2 2 e\2
A=r*+a*+(GNng®)" —2GNMrT

in Boyer-Lindquist coordinates [107]. The mass M, charge ¢® and the angular

(5.1.15)

momentum per unit mass ¢ = J/M are the three parameters of this solution. For
a = 0 we recover the Reissner-Nordstrom solution, g¢ = 0 gives the Kerr metric
and a = ¢° = 0 reduces to the Schwarzschild solution. Due to a remarkable series
of theorems by Israel, Carter, Hawking, and Robinson, collectively known as the
“no hair” theorem [108-109], which means roughly that in D = 4 any complete
gravitational collapse settles down to an endpoint uniquely determined by three
parameters: the mass, angular momentum, and charge, the Kerr-Newman solution
represents an exhaustive family of black holes in four dimensions.

The causal structure of the Kerr-Newman solution is similar to that of the
Reissner-Nordstrom metric. Of course, the addition of angular momentum brings
about certain changes. We again have both inner and outer horizons with radii given

by

re=GNM £ GN\/A[Z - (GNLM)Z — (g®)?, (5.1.16)
but the structure of the singularity is modified. Computation of the scalar curvature
shows that

p? =1*+a%cos? 8 =0 (5.1.17)

is a true curvature singularity when®> M < 0. This gives the impression that there
is a singularity at the origin only for § = /2. The true nature of the singularity can
be found to be that of a ring, through which one may pass to negative r, denoted in
Fig. 5.1.7 by the two asymptotically flat regions labelled r < O.

It is possible to classically extract energy from a black hole [110]. This process
can occur as long as the black hole rotates or has charge, and the process of energy
extraction subtracts angular momentum, or charge, or both, from the black hole.
These processes ultimately result in a Schwarzschild black hole from which it is

impossible, classically, to extract energy. There is thus a limit to the amount of

3 We assume here that the effect of charge is negligible for an astrophysical body [51].
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Figure 5.1.7: Penrose diagram of the Kerr black hole

for \/a? + (Gqu)Z < GnNM.
energy that one can extract in this way. Given a black hole of mass M, angular
momentum J and charge ¢¢, the total mass energy of the black hole can be written [4]

2
2 (.. @? J?
M= (M1,+4Mir) +4G?VM§ (5.1.18)

where Mj; is the irreducible mass, that is the mass that the Schwarzschild black hole
which remains after all of the charge and angular momentum have been removed
by maximally efficient energy extraction processes. This formula shows that one
can think of the mass energy of a black hole as made up of contributions from the
irreducible mass, an electromagnetic mass energy, and a rotational energy.

As with other black hole solutions to the vacuum Einstein equation, it is possible
to add flat directions to the Kerr metric in the manner of (5.1.5), as well a generalizing
the solution to higher dimensions. In higher dimensions, of course, more parameters
are required to describe this group of solutions, for example each pair of additional
dimensions brings with it the possibility of a new plane of rotation, and thus an
additional angular momentum parameter. One can see, then that there will be cases

for odd- and even-D. The higher dimensional generalization of the Kerr metric in
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odd dimensions in Boyer-Lindquist coordinates [107] is [103]

(25
ds? = a2+ S {0+ aP N + ulded) )
i (om s (5.1.19)
H,,.Z N I

2 2
+ E dt + ; a;lli d(,G, + mdr

where
(Z5)
n= JJ ¢*+ad

i=1

<D—I
I ag.ug

1—-%= e L 20 (5.1.20)

~ 12+a}

(Z54)

1=Z#§

i=l
and where (%) indicates the greatest integer, that is the greatest integer < %,
and the y; are the direction cosines which specify the direction of the radial vector.
Note that 0 < p; < 1 since for any 1, the pair (u;, ¢;) and (—p;, ;i + ) are the same
direction. The ¢; are, of course, the angular momenta per unit mass in the i-th plane
of rotation.
When the dimension of the spacetime D is even, possessing therefore an odd

number of spatial directions, the solution is given as

(2x2)
ds? = — dt* + r’d@* + Z {(7-2 + a2 )((dpi)* + u,-zdgo;‘-’)}
1
(ps2y 2 (5.1.21)
2
r =
+ -QHE- dt + Z aiugchp,- + o= ﬁrdrz

where IT and X are as in (5.1.20), and @ represents the direction cosine of the spatial
coordinate which is not paired up. The constraint for the direction cosines in this

case is then
(252)
Y optedt=1. (5.1.22)

i=]
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Again the mass is given by (5.1.3). For these solutions, the angular momenta are

obtained by transforming to Cartesian coordinates at large radius according to
z* = ru; cos @; y' = rp;sin g (5.1.23)

giving the off diagonal parts of the metric as

Ba;

. qin2 .. ..
2BUSCE 2 btde: = —2-5% iyt de’ — 2hdy) (5.1.24)
T

D=3

which allows us to identify the angular momenturn in each plane of rotation as

Ap—z8a;

2
K
2Ma; (5.1.25)

D-2

J%_ _ inxi _

Let us now discuss some further properties of these solutions. In Boyer-
Lindquist coordinates, the event horizons appear where ¢'™ = (grr)~! = 0. Thus we

find the horizons by setting

0 IT1—pr (D even) (5.1.26a)
- {1’[ — Br? (D o0dd) (5.1.26b)

for which, in general, analytic solutions can not be found.

For D even, positive mass ensures that any existing horizons will be located at
positive 7, thus avoiding naked singularities. In general there are three possibilities,
no horizons, one degenerate horizon, or two horizons. When none of the angular
momentum parameters vanish, (5.1.26a) is a polynomial of degree (D — 2). As
shown by Galois, these polynomials are soluble in terms of radicals only for D =
4,6, although the polynomials are not completely general since they contain D/2
free parameters. This coincides with our discussion of the Kerr-Newman solution
previously. One finds, however, that the vanishing of at least one of the angular
momentum parameters is sufficient to guarantee the existence of a horizon.

For odd dimension, the case D=5 is quadratic in r and the roots can be written
as [103]

2} =8 —af — o} £ /(8 - o} - B — 4alc} (5.1.27)
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for which the existence of a horizon requires
B >ai + a5 +2|aia|

2
M? 2 57—t + I3 + 2017

(5.1.28)

For general D odd, two vanishing spin parameters are required to guarantee the
existence of ahorizon. Also, for D odd itis possible to find horizons at positive radius
even in the case of negative mass, however these solutions are rather pathological,
containing regions of causality violation, which allows such black holes to evade
the positive energy theorem for black holes of [111].

Singularities exist for the higher dimensional solutions when the deviation from
flat space becomes infinite. If we write the metric in the form g, = 7., + hkyky
where &, is a vector field, then h — oo implies that the metric coefficient of dt?

diverges, which in Boyer-Lindquist coordinates means that

Br

T . (D even) (5.1.29q)
5 .

én% (D odd) (5.1.296)

For D even, when any of the angular momentum parameters a; vanish, then IT
contains overall factors of 2 which cause a divergence at r = 0. If none of the a;
vanish, then II is everywhere finite and X = 0 is required to have a singularity. This
latter condition can be shown to occur only on the surface of a (D — 3)-sphere with
radii in the rotation planes given by the angular momentum parameters. Thus for
D = 4 we recover the ring geometry of the singularity of the Kerr metric.
In the case that D is odd, and all a; # 0, again IT is finite everywhere. It can be
shown [103] that for D odd, X can be written as
>= Z T’; i‘a (5.1.30)
which contains an overall factor of 72 to cancel that of the numerator. Thus, in order
to obtain a divergence, at least one of the angular momenta must vanish. When
one of the a; goes to zero, there is an overall factor of r? from IT which cancels

the numerator of (5.1.29b), but a cancellation of a factor of 2 also occurs in £,
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in which case it is necessary to have the direction cosine p;, corresponding to the
vanishing angular momentum parameter a;, vanish as well. £ will then diverge on
a (D — 4)-sphere, again with radii in the rotation planes given by the corresponding
angular momentum parameters. It can also be shown [103], that the singularities

discussed here correspond to curvature singularities.

5.1.4. Taub-NUT metric

If one is prepared to put up with “pathological” behavior of a solution of the Einstein
equations, it is possible to find other vacuum solutions. Here we will write down
one of the simplest of such solutions, which has two parameters. These are the
Taub-Newman-Unti-Tamburino (Taub-NUT) metrics [112]. These are written in

D=4as
ds? = — f(dt + 2¢cos 8dp)* + fLdr?

(5.1.31)
+ (12 + £2)(d6? + sin? 8dp?)
where 5
GNMT +¢
=] —-2— 5.1.32
f=1 T2+ ¢2 ( )

where £ is the Taub-NUT parameter. This metric is singularatr = r.. = GNM £
\/m where f = 0, but can be extended across these surfaces. It is found
that this metric exhibits a line singularity [113] at § = 0,n, which can only be
avoided if the time coordinate is made periodic with period 2\/C—}’2N—MT—_[2. This
metric is widely considered not to represent a physically realizable spacetime.

Of course, there is a generalization of the Taub-NUT metric with non-zero

angular momentum [114] which we will write down here as

2 sa2
ds® =% (di +d82) _ %(dt — Pydo)* + S“; i

n (adt — P-dp)* (5.1.33)

where
A=1?—2GNMr — % +d?,

% =72+ ~acos§)?,
(5.1.39)
P, =7*+a? + 2,
Py =2£cosf +asin® 4.
The parameter a is as usual the angular momentum per unit mass.
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5.2. The thermodynamics of black holes

As we mentioned earlier, the laws of black hole mechanics are analogous with those
of thermodynamics. In this section we describe this analogy in more detail.

One of the anchors of the thermodynamic analogy is the black hole area theo-
rem [109], which states that classically in a closed system, the area of all black holes
in the universe can never decrease, d.2¢ > 0. This resembles greatly the second law
of thermodynamics, that in any physically allowed process the total entropy & of an
isolated system cannot decrease.

Following [51], we wish to define a quantity ¥ on the horizon of an arbitrary
stationary black hole. We do this with the help of Killing vectors £ which generates
a one parameter group of isometries of a given spacetime, as is given by Killing’s
equation

Vil +V,€, =0 5.2.1)

where V, is the covariant derivative associated with the metric in question. This
gives a necessary and sufficient condition to ensure that all lengths are preserved
by the displacement e£#. Thus the Killing vector field allows us to construct
conservation laws from symmetries in a differential geometric context. One property
of the Killing field is that its contraction with the tangent of a geodesic, {,u* is
constant along that geodesic. For a stationary black hole, there exists a Killing field
x* which is normal to the horizon. If x¥ does not coincide with the stationary
Killing vector £#, which generates the isometry of the solution as time evolves,*

then we can form an axial Killing field # from a linear combination of £&# and x*

such as
X = &F +Qgip* (5.2.2)

where Qp; is the angular velocity of the horizon, which is given by

a

Q= o
r% + a2

(5.2.3)

for the case of the Kerr metric. Due to the fact that the horizon is a null surface and

that x# is normal to it, then we know that x*x,| horizon = 0 and we can therefore

4 &* expresses the fact that the time ¢ is a cyclic coordinate.



The theory of black holes 128

write

VF (x"xv) = —29x*. (5.2.4)

It can be shown that ¥ is constant over the horizon, and can be computed to
be [51]
1
9 = =3 (V*x") (Vaxs) | norizon (52.5)

which for a static black hole has the physical interpretation of the force at infinity
that is necessary to hold a unit test mass in place on the horizon, called the surface
gravity.

From the constancy of ¥ on the horizon the following simple formula for the

mass of a stationary axisymmetric spacetime may be derived,

1 1
- _2 pgv 2.6
M 2/;11/ (T#,, 2g,,,,T> nie +47TGN’L9.Q{+ZQHJ (5.2.6)

where o denotes a spacelike hypersurface which intersects the horizon and J rep-
resents the angular momentum, and & is the area of the event horizon. From this
in turn we derive a formula for the variation of the mass, which in the vacuum case

comes out to be
oM = Z%(ﬂ&ﬁ+ﬂ6d)+2(JJQH+QH6J). 5.2.7)
A second formula for the mass can be derived by considering perturbations of

the metric [115] which is given as

1
41TGN

M = — H6Y —-2J6Qy (5.2.8)

which we add to (5.2.7) to finally obtain

1

oM = 8GN

95 + Q6. (5.2.9)

Thus we see that the surface gravity ¥ plays the role of a temperature in the
black hole when we make the following comparison between thermodynamics and

black hole mechanics:
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Law Context
Thermodynamics Black holes
Oth T = constant throughout body ¥ = constant over horizon
in thermal equilibrium of stationary black hole
1
Ist dE =TdS +dW dM = mﬁdﬂ{ +QgdJ
2nd 8§ >0 o >0
3rd Impossible to achieve T = 0 Impossible to achieve ¥ = 0
in a physical process in a physical process

It turns out that general expressions for the surface gravity and horizon area of
the metrics described in (5.1.19) and (5.1.21) can be obtained [103]. For the area

of the horizon we have

(D—Z ,
Ap_2p a;
- —_3_ E 2.
-4 >g D-3-2 Tia (5.2.10)
i=1 t
and for the surface gravity
ol - 8 (D even) (5.2.11a)
j _ Zﬁ'l’ T=7+
) 811 —24r

—_— 5.2.11b
3GZ pers (D odd) ( )

The indication that the relationship between the laws of thermodynamics and
those of black hole mechanics may not be simply an analogy comes from the fact
that the thermodynamic energy E and the black hole mass M are not just analogs
of one another, but rather describe the same physical quantity: the total energy. As
noted earlier, one naively sets the temperature of a black hole to zero, since itis a
perfect absorber, which would seem to ruin the identification completely. However,
as shown by Hawking [7], quantum effects in the region of the event horizon result
in the emission of a blackbody spectrum of particles at a non-zero temperature.
The thermodynamic entropy S and temperature 7" are then related to the area of the

horizon and the surface gravity as (¢ =k = 1)

kp o
= 2.12
S TR (5.2.12a)
v (5.2.12b)

N 2mkp
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where kp is the Boltzmann constant, which henceforth will be set to unity. Itis also
possible to obtain a formula for the irreducible mass of a higher dimensional black

hole as [103]
daf D -2

~ 817Gy D -3

The thermodynamic analogy is thus complete, and the search for a microscopic

M (5.2.13)

understanding of the entropy of a black hole can begin in earnest.
There are a few things to note here. For the Kerr metric, the entropy and

temperature are given by

2
o J \ J \°
“acy TN (M*\/W‘(m) —@ ) (o) |-
M2 g 2 e)2
9 —(GNM) — (%)

=5 = =5 : :
arGNM | M + \/MZ ~ () - (qe)2) — (g°)?

(5.2.14)
Therefore, when G3:(¢%)? + a? = G4 M?, or when the black hole is extremal, the

temperature vanishes, and from (5.2.14) we see that the entropy reduces to

J 2
§ =27GN (2 (GN—M) + (q=)2) (5.2.15)

and therefore 8§ # 0 when T" = 0. It has been shown that, just as in attempts to attain
very low thermodynamic temperatures, the closer a black hole approaches ¥ = 0,
the more difficult it is to get still closer {116]. Also, there is another formulation
of the third law, known as the Nernst theorem, which states that the entropy S of
a system must tend to zero® as the temperature does. For black holes, however,
it is possible that the area remain finite as the surface gravity vanishes. Recently,
arguments have been made to produce counter examples to the Nernst version of
the third law other than in black hole physics [117].

5 Ortoa “universal constant”.
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5.3. Black holes of string theory

It is evident from chapter II and 1T that the string equations of motion are more
complicated than those of general relativity, even in D = 4. There are more fields
to consider, and thus the class of black hole solutions in string theory is very much
more general than the Kerr-Newman solution [118].

Since the dilaton couples to the gauge field strength® in (2.3.23) the charged
black hole solutions of string theory are not those of the Einstein-Maxwell equations
(5.1.6). Thus we must begin anew, attempting to solve the low energy string
equations of motion, in order to find the string analog of the Reissner-Nordstrom
solution. This was done in [119]. The result for the string-frame metric and
associated fields was also found more recently through the solution generating
techniques described in chapter III. The specific procedure used is discussed in [120]
and similar techniques will be explained in detail in chapter VI. For now the result

is

s T

) =A(l) - —,313‘\/ | d
A ¢ 2v2(r+B 1)) ‘

2 _
e_2¢(h) = e—2¢(a) =1+ ﬁ(x—l_)
T

-2 -1
ds? = — (1 ~ g) (1+——ﬁ(”2 — 1)) dt* + (1 - é) dr? + r2dQ?

(5.3.1)
where (3 is again a mass parameter related to the physical mass of the Schwarzschild
solution that was the starting point of the solution generating by (5.1.3), and where
z > 1 is a parameter used in generating the solution. Here we have a non-zero
dilaton as well as a gauge field. Note that this is a solution of both the Type ITA
and heterotic string, since it involves only fields which are common to both of these
theories.

The causal structure of this solution is identical to that of the Schwarzschild
solution (see Fig. 5.1.2). One has the event horizon (coordinate singularity) atr = 3
and a curvature (essential) singularity at 7 = 0. The absence of an inner horizon is

particularly noteworthy. Also, as 7 — 0, the string coupling e? becomes weak. It is

6 This can be seen explicitly when the action is written in the Einstein frame.
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difficult to speculate on what this might mean, however, since we have no reason to
trust this solution close to the singularity.

The physical mass M depends upon the frame, Einstein or string, used to
compute it. Rescaling to the Einstein metric through g,, = e2¢ Guy (for D = 4)
and comparing to Schwarzschild asymptotically we obtain the mass, while the
charge is obtained from a similar expansion of the gauge field and comparing to

(5.1.8). The results are

2 V2 =
Ao B o = \/E____ﬁx =71 (5.3.2)
2G N 2 GnN
from which we see that the charge to mass ratio depends only on the parameter z, as
e\2 mZ -1
(ix.r)z —2n (z—z) : (5.3.3)

For a given mass M, therefore, the amount of charge can be augmented by increasing
z and decreasing 8, which reduces the area of the event horizon. If we take the
extremal limit, which is done by taking § — 0 and z — oo simultaneously in such
a way as to maintain a fixed mass, we find that the largest possible charge to mass
ratio is |¢¢| = v/27 M, at which point the horizon has shrunk onto the singularity.

The metric now appears as

-2
ds? = — (1 + ZG;" M ) dt? + dr? + r2dQP 2 (5.3.4)

which is often called an extremal charged black hole, even though strictly speaking
it is not a black hole. Its Penrose diagram is to be found in Fig. 5.3.1 where we
see that the singularities are null. Notice also that the spatial part is completely flat.
This process of extremization will be used later to create BPS saturated black hole
solutions. As we saw in chapter III, BPS states have the maximum ratio of charge to
mass, thus this process is useful for creating black hole solutions with this property.
Extremization is, however, no guarantee of supersymmetry, as it remains possible
to create extremal solutions which are not supersymmetric. We will see an example
of such a solution in section 5.4.

Rescaling to the Einstein frame metric makes it easier to compare (5.3.1) with the
black holes of general relativity. Using (2.3.24) and applying also the transformation
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Figure 5.3.1: Penrose diagram of the extremal black hole with
non-zero dilaton.

R =1+ B(z? — 1) results in a solution appearing as

-1
dshy = — (1 - ng) d + (1 - ZGNM) dR?

R
ey2
+R(R— -—GN;‘;) ) dQ?
” (5.3.5)
W_Arw_ _. JGNE
AD = AG o pit
2
2™ _ o26@ | _ GN@)
© © TMR

where we see that the geometry is that of the Schwarzschild solution, but with the
area of the spheres ( Q?) reduced. When R — O the area goes to zero and this
surface is singular. In the R — ¢ plane the causal structure is independent of ¢% and
thus it is given by Fig. 5.3.1 in the Einstein frame also.

From the area theorem of black holes and from the fact that the area of the
extremal black hole (5.3.4) is zero, we see that there is no classical process which
could produce an extremal black hole from a non-extremal one. The auxiliary
conditions upon which the area theorem depends are satisfied by the low energy

effective actions of string theory [118].
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5.3.1. Magnetically charged black holes

Let us now begin with the action of the heterotic string, (2.3.27) and perform a
compactification on K3 ® T2 down to four dimensions. Further, we set all fields
except the metric, dilaton and one gauge field to zero, and finally we transform to

the Einstein frame. The result can be written

S = é / d'z /5 (R —2(VgMy? — =2 (ﬂ))z) (5.3.6)
which can be seen to be invariant under the four-dimensional transformation
Fuv P Zpvs
oM — — o™, (537
FO _ FO - ~F®,
which is a manifestation of a self-duality of the heterotic string in D = 4 [121].
If we take our “stringy” Reissner-Nordstrom solution, (5.3.5) interpreted as a
D = 4 heterotic solution and apply to it this duality transformation, we obtain, due
to the dualization, a magnetically charged black hole (with ¢™ = ¢®), which can be

written

R R
my2
+R (R— Gl@™) )dﬂz,

M
AD = 1/ i—:q’" cos fdep,

Here we note that the string coupling becomes strong near the curvature singular-

~1
dsy = — (1 —ZGNM) d? + (1 —ZGNM) dR?

(5.3.8)

ity, due to the change in sign of the dilaton. Since the metric is invariant under
this transformation, the Penrose diagram is again that of the Schwarzschild met-
ric for |¢™| < V2w M. However, the metric in the string frame is altered by the

transformation, and is written

-1
2 __(,_26nM _ Gn(g™
ds% = (1 R ) (1 Yz dt?

2GNM Gn@™*\\ ", (5.3.9)
((-5F7) (-55F)) =

+ R2dQ?,
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The first thing we note is that the area of the two-spheres does not vanish as one
approaches the singularity at 7 = G (¢™)?/(w M). Furthermore, the extremal limit
of this metric,

-2
ds? = —dt* + (1 - ZGf M ) dr? + r2dQ? (5.3.10)

is for r > 2G y M without curvature singularities. Here a time slice £ = const. has
the infinite throat geometry of the extremal Reissner-Nordstrom solution (Fig. 5.1.5),
that is there is an infinite proper distance between r = 2GyM and 7 > 2Gy M.
But, the surface r = 2G' M is also an infinite distance away in timelike and null
directions as well as spacelike directions. The horizon has moved off to infinity,
taking with it the singularity, thus effectively neither of these exist since they could

not be discovered by mass or charge probes.

5.3.2. Asymptotically nonvanishing dilaton

The action (5.3.6) can be easily verified to be invariant under the transformation
Fuv T Zuv,
¢ — o™ 4 oV, (5.3.11)
FO L FO -8 7O,
where ¢»g‘) is the value of the dilaton at asymptotic infinity. Although the Einstein
frame metric is at first glance unaffected by such a transformation, it will have
dependence on qb(()h) through the charge, which is rescaled by a factor %0 which

results in the solution appearing as

-1
dsk = — (1 - 2G§’M) dt? + (1 - 2GgM) dR?
ma2 o260
+R(R_GN(q )22 )492,

M
AD = \/ -iiq"‘ cos Bdp,
T

2 ,—2¢%
=20 _ o—26 (1 Gn(g™)? e 2% .
TMR

(5.3.12)

In this case the extremal limitis now |¢g™| = v/27 M e#0” and thus when gﬁgh) is large,

we may indeed have black holes with ¢™ or ¢ >> M.
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Thus we see at play here the same sort of weak/strong, electric/magnetic, sin-
gular/solitonic structure that we saw in Chapter III. There is much more to say here.
We can also imagine dyonic black holes, with both electric and magnetic charge,
and string theory generalizations of black holes with angular momentum. Some of

these things we will discuss in later chapters, others we leave for the references.

5.4. D-branes and black holes

The similarity between the forms of the black hole metrics that we have written
down here and those which we wrote down in the previous chapter for the D-branes
will not have gone unnoticed.

Itis not hard to imagine the creation of black hole solutions which have, in higher
dimensions, non-vanishing higher form potentials and thus have, in the type Il string
theories, the Ramond-Ramond charges of which the D-branes are the sources, as
we have seen. In this scenario, a black hole can be said to be composed of a number
of D-branes, forming in fact a bound state of these objects. This is particularly
true of supersymmetric black holes, which are composed of supersymmetric bound
states of D-branes, and for which the technology now exists, thanks to D-branes, to
compute the entropy from a fundamental statistical viewpoint.

Let us consider here a simple example of a black hole with non-trivial D-brane
content. The following is an extremal string-frame black hole solution of the type

HA effective action in ten dimensions:

9
ds” = — f{dt + fi (dr® + r(d6% + sin? 6dp™)) + o3 (ds2(5.4.10)

i=4
3
14+ 2
AD - \/%L_v (u% cos Ody + %dt) , (5.4.1b)
2% =(1)3, (5.4.10
where

[A+B

= 2 _ = -—

fl A BZ’ f2 .A- — Bv

U v uUu—7v

A= (1+;) (1+;), B -2 2a-4. (5.4.2)
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Here u,v > 0 are magnetic and electric charge parameters, respectively. The
directions z*,z°,---,z° are considered to be compact with radii R4, Rs, -+, Ry.
As can be seen from the field content, in the Ramond-Ramond sector we have a
dyonic one-form potential. As shown in chapter IV, for an electric D-brane, a
d-form potential couples to an object with a d-dimensional world-volume. In the
magnetic case, a d-form potential couples to the world volume of a (d = D — d—2)-
dimensional object. Thus the content of this black hole in terms of D-branes is an
electric D-point, and a magnetic D6-brane.

One can compute the physical ADM mass and charges as defined in (4.1.29)
and (4.1.32) to be

4
M= (w+v),
K
Srv% 6 2
e __ _ _ - .
iy CFan Al ER" (5.4.3)
3
m 8mul

=" k2 + )

In order to compare charges and masses, we should divide out the volume of the
compact 6-torus, thus obtaining an electric charge per unit 6-volume of the six-torus
TS, which we write as

= q° 3 8ru?
Cm6 [l R AV2@w+v)
We note that if © = 0, then g™ = 0, so the magnetic D6-brane has vanished. Then

(5.4.4)

we note that 25> MZ = (g°)?, indicating as in (4.1.34) that alone the D-point is a
BPS saturated state, as expected. For v = 0, then the D-point vanishes, and likewise
262M? = (g™)?, which indicates that, as in (4.1.43) the magnetic D6-brane is by
itself a BPS state.

However, if we compute the mass charge relation of the bound state we find that

6(4m)?
Kk

2EM? — (g8 — (™) = uw >0 (5.4.5)

thus the bound state does not saturate the bound for both u, v = 0. We can conclude
that this particular black hole is not supersymmetric [16]. If one computes the mass
of the bound state in terms of the mass of its constituents, one finds that

4
M—Mo—M5=K—7;(u+v—v—u)=O (5.4.6)
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which indicates that although the long range potential between a D-point and a
D6-brane is repulsive,7 they can form threshold bound states. In [122]. an
approximate D-brane count of the entropy was carried out for a less general version
of this solution with a single charge parameter. The construction of the solution

(5.4.1) will be considered in detail in chapter V1.

7 This is discussed in chapter VII.



Spinning black holes and their entropy

Recently, significant progress has been made in understanding the degrees of free-
dom giving rise to the entropy of certain black holes in string theory [10]. String
theory has thus demonstrated a remarkable and detailed knowledge of black hole
thermodynamics. In [10] it was found that the newly-understood rules [66,123-
128] for counting degeneracies of BPS-saturated, D-brane bound states precisely
reproduces the Bekenstein-Hawking entropy for a certain five-dimensional extremal
Reissner-Nordstrom black hole. These results were extended to leading order above
extremality in [11,129] solidifying the identification of the microscopic states re-
sponsible for the entropy.

Here we will begin with an elementary introduction to the method of counting of
the entropy for a non-spinning black hole. In the sections which follow we construct
two different classes of black holes in five spacetime dimensions. In the first section
we construct a spinning generalizaticn of the static black hole given in [10]. We
detail the methods used to construct the solution, which make use of the symmetry
properties of string theory as discussed in chapter III. The microscopic entropy will
then be computed from a counting of the degeneracies of the D-brane bound state
associated with the black hole.

In section 2 we will construct another five dimensional black hole, which we
will represent in six dimensions as a black string. This will also have non-zero
angular momentum. Here, however, we will compute the entropy of not only the
extremal limit, but of the near-extremal solution as well, generalizing the result
of [11] to the spinning case. It is found that the D-brane techniques of counting the

microscopic entropy reproduce the exact result both at and to leading order away

- 139~
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from the extremal state. Thus in these cases it is shown that the stringy degeneracies
continue to match the extremal Bekenstein-Hawking entropy when rotation is added.

We also, in section 6.4, demonstrate that one can overcome the tendency of
solution generating techniques to produce non-zero Taub-NUT charges when used
to generated black hole solutions that are dyonic. The reader will also note that in

this chapter, the Newton constant Gy has been set to unity

6.1. Counting entropy with D-branes

Our task in this section is to demonstrate the method of computing the entropy of
BPS saturated black holes using the D-brane technology as first developed in [10]. In
section 4.2.4, we sketched how D-strings could be excited, and that these excitations
could be interpreted as a gas of open strings attached to a D-string. This picture can
clearly be extended to more general D-branes.

The basic idea behind the counting of black hole entropy! is rather simple.
Begin with a BPS saturated black hole in some number of dimensions, usually
four or five. This black hole is then embedded into a type II superstring theory
compactified on some manifold, for example K3 ® T2. The embedded black hole
solution then carries charge under the Ramond-Ramond sector of the type II theory
in question. The solution can also carry charge under the Neveu-Schwarz-Neveu-
Schwarz sector, which is interpreted as momentum along compact directions. As
an aside, this also gives us NS-NS charge quantization. One can perform the usual
classical computations of Bekenstein-Hawking entropy for the black hole interpreted
as a type I BPS state.

Black holes are objects which are strongly coupled. This means that the string
coupling ¢ is strong enough that the string length is much less than the Schwarzschild
radius of the black hole. In normal circumstances, this means that trying to probe
the interior of such an object by means of perturbation theory, or weak-coupling
expansions, is futile. However, the BPS nature of the state under consideration

comes to the rescue. Since BPS states are free of quantum corrections, we are

1 Strictly speaking, of course, it is degeneracy that we are counting, the logarithm of which gives
the entropy.
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allowed to reduce the coupling to the regime where we can consider the bound state
of D-branes which carry the RR charge of the black hole to be weakly bound. In
this situation, the string length becomes larger than the Schwarzschild radius of the
black hole. An image one might have is that the black hole has “unfolded” into its
constituent parts, such as a bound state of D-branes. Since D-branes carry integer
units of a fundamental RR charge, we are able to compute the precise number of
D-branes which form the bound state.

The NS-NS charge, interpreted as the total momentum of the gas of open strings
which exists on and between the various D-branes of the bound state, then comes into
play. The logarithm of the number of distinct ways in which the total momentum can
be distributed amongst the constituent branes of the bound state gives us precisely
the entropy. We then rely on the characteristics of BPS saturated states to protect
the degeneracy count from quantum corrections as the coupling is returned to its
original value.

After this overview of the method, a concrete example is in order. For simplicity,
let us consider a static black hole in five dimensions, which is a solution of low energy
type IIB superstring effective action, compactified on T°. The configuration that
we will consider contains a number of D5-branes which are wrapped over the entire
compact manifold, as well as a number of D-strings which are wrapped on one of
the compact coordinates of 7. We also consider a NS-NS charge to be amomentum
along the compact direction around which the D-strings are wrapped.

As mentioned, we will have, as a result of the NS-NS charge or momentum, a
gas of open strings that travel along the D-branes. We will have strings for which
both ends connect to the D-strings, and strings which attach solely to the D5-branes.
We will also have two other sets of open strings. One set starts at the D-string and
ends on the D5-brane, for the other set the orientation is reversed. It is important to
treat these strings as distinguishable. As mentioned, we want to excite these strings
up to the maximum of the NS-NS charge.

As discussed in section 4.2.4, sometimes we wind up with massive excitations,
thus we search for the way to distribute the momentum such that the maximum

number of excitations remain massless. Consider the string action (2.2.12). In the
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case that we have a string which begins on a D5-brane and terminates on a D-string,

we will have the following boundary conditions:

D5-brane D-sting
t N N
z! D D
z? D D
z3 D D
z* D D
z° N N
z8 N D
z’ N D
z8 N D
z° N D. 6.1.1)

From the combinations of boundary conditions we see that we have two N-N, four
D-D and four N-D. Now, the mode expansions of the open string will obviously
depend upon the set of boundary conditions imposed. Recall from (2.1.41) the
mode expansion of X# for the open string. We will have slightly different mode
expansions in the case of Dirichlet boundary conditions at the ends of the string, or

for mixed boundary conditions {65]. We write them here as

XHB(o, ) =z* + PP + ’; ZT—La#( e~ind’ Le=im0Ty  (NN)  (6.1.2a)

ny0
m =g _1_ Ba—ira® , —irg™
XMom) =2 D —ab(eT +eT), (DN,ND) (6.1.2b)
r'€Z+il
X“(O','r)==6—;(—a Z; —a"‘( —ino® _ g—inoy (DD)  (6.1.2¢)
-;4)

Thus, when we have mixed boundary conditions we have half-integer modes just as

for the NS boundary condition in the case of the fermionic world sheet fields.
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As usual, in the Ramond sector the zero point energy, i.e., the normal ordering
constant in the mass vanishes, whereas in the Neveu-Schwarz sector we have

1 1 1 1\ Nyp 1
E()—(S—NND) (—2—4—@) +NND <Z§+ﬁ>_ 8 2 (6.1.3)

where Ny p is the number of coordinates with mixed boundary conditions. Since
in our case we have Ny p = 4, the zero point energy vanishes. The moding of the
fermionic fields is the same as that of the bosonic fields in the Ramond sector, and
opposite in the NS sector. Now, the Neveu-Schwarz fermionic vacuum state of the
four ND coordinates is a spinor under the group SO(4), and is thus multiplied by the
product of Dirac matrices yy’v8v°. From the GSO projection it will have definite
chirality, i.e., v®v7v84?x = x and therefore what remains is in a two dimensional
representation. Since the open strings are oriented, we have a second table like
(6.1.1) and each string can attach to any of the branes at each end. Thus the count

for the NS sector is
2-2-n5-n1 (6.1.4)

where ns, n; are the numbers of fivebranes and D-strings respectively.

Now we examine the Ramond sector. The Ramond sector fermions which
are transverse to the string and in the world volume of the fivebrane are half-
integer moded. Again, Nyp = 4 so the vacuum has zero energy. This time, the
vacuum state is in the spinor representation of SO(1,5), with the GSO projection
removing the representation with negative chirality. In the case that the positive
chirality representation is composed only of left-moving modes, then the two-
dimensional representation which has positive chirality under both SO(1,1) from
the NN coordinates and the SO(4) from the coordinates z!,- - -, z*, forming the
group SO(1,1) ® SO(4), survives the GSO projection. Again we have oriented

strings so the result for the Ramond sector is therefore
2-2-n5-n1. (615)

The NS-NS charge @ will be quantized in integer multiples of 1/Rs where Rs
is the radius of the compact direction z°, that is the total momentum Ps = Q/Rs.

Now, we have for each momentum value 4ns - n; bosons and 4ns - n; fermions.
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Now, the task that we face is determining the number of ways of dividing up the
NS momentum number Q amongst the fermionic and bosonic ground states. The
number of ways of distributing @ amongst 4n;ns fermions and 4n;ns bosons is

given by the partition function [130]

1 4nns
3 d(@)s2 ( A st) . (6.1.6)
uFl

Here the origin of the numerator of the expansion are the fermions, meaning that

only one fermion can be excited at a time, and the denominator, which is really
just a shorthand way of writing an expansion in powers of s, has its origin in the
bosonic degrees of freedom. For large @, the coefficients on the left hand side can
be approximated by [9]

d(Q) ~ &2V 6.1.7)
and thus we have the entropy, finally as

S micro = logd(Q) =2m+/nins Q. (6.1.8)

Now let us compare this result with the classical entropy of a five dimensional
black hole which is charged under RR D5-branes and D-strings. Such a solution
has been given in [129]. It may be written in the string frame as

ds* =(fi fz)"lﬂ( — dt? + (d2°)* + fa(dt — da:s)) :

+7’ (f” DI Z(dm‘)z)

i=1

o _1 (i 1) dt A dz° ©19
fi
FO _ Edzt Adz? A dzF A et fa
b
o—26® =%
where
TS S “i@ (6.1.10)

and where in turn the constants a;, @3, and a3 normalize the D-brane charges and

NS momentum into integer units. In terms of the five-dimensional Newton constant
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Gf,) they are given as

4G%) Rs ed® (®) 4GS
al =Iv7rT, a2=6¢ a’, (13 = TrRASr- (6'1'11)

Computing the classical Bekenstein-Hawking entropy for this solution one obtains

S = .QiS) =2my/nnsQ (6.1.12)
4G
N

in complete agreement with (6.1.8).

Thus we have seen how to compute the entropy of a black hole by means of
a particular implementation of the D-brane technology [129]. There exist other
methods. For example, the method used in [10] uses a more sophisticated approach
based on cohomology of instanton moduli spaces. We will use this alternative
method to count the entropy of a spinning five dimensional black hole in the next

section. For the example at hand, the result is exactly the same.

6.2. Solution generating

Before we explain our method for generating the final solution, let us review some
salient features of low—energy actions for the heterotic and Type II theories in six
and five dimensions. We will work with simplified versions of the six dimensional
actions found in equations (3.5.7), the heterotic string compactified on T and
(3.5.10), the type IIA string compactified on the Calabi-Yau manifold K3. All
abelian gauge fields except one F® = dA() have been set to zero, and all scalars
resulting from compactification, the moduli, are vanishing. The one remaining
gauge field is taken to be a right-handed? internal gauge field on the heterotic side,
and a field of Ramond—-Ramond origin on the Type II side.

We then write on the heterotic side, to lowest order in o’ [131] the action which

we will use as:

4 _24h) 1 2 1 2
S 0 [/ T o - gy () ()}
(6.2.1)

2 We take the field to be right-handed, or of positive chirality, so that the extremal configuration
is supersymmetric.
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where

h) R)
H{,\ = 9uB{), — _AG T, + (cyclic) (6.2.2)

Note that the Chern—Simons terms come from the gauge fields arising from com-

pactification. For the Type IIA side, we write the simplified six dimensional action

as
Srra (x3) = /dﬁsc \/—G(,[ ~2¢¢" (R+4(v¢<°)) (H(a)> )
Lz} . L wsefp@ 7@ p@
-7 () ]+ 55 paﬁBsc;wstpF 5]
(6.2.3)
where
Hepyx = 0uBgy + (cyclic) (6.2.4)

These two actions are related by the string/string duality relation given in section

3.5( equation (3.5.12)), which we repeat here as

_a4(R)
85 = — ¢g” Gouw = €% Geuu (6.2.5a)
AL = AL (6.2.5b)
1 (B
Héz)up g Cnvpors © 2% Héh) i (6.2.5¢)

Since we will need also the five-dimensional type IIA action compactified on
K3 ® S!, we give here the standard Kaluza—Klein reduction on the circle S! with
coordinate labelling y = z°, for the type IIA case as

d2 G drtdz’ 20 d A(l)dp2
sé = Gsydztdz” + e (y+ G#z)

1
6= ¢+ 50 (6.2.6)

1

B
6=3

1
[Bpu -5 (A58, - Ag;Ag;)] do* A dz” + A de# A dy

where A(I) and A(l) are the gauge fields coming from the compactification of the

metric and antisymmetric tensor fields respectively.
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The five dimensional type ITA action (in the sector with Ag,l) = 0) is expressed

in the string frame as’

a 1 2
Srra (K3@Sh) = /dsm [\/—G [e‘2¢( ) (R+4(V¢5("’)2 -1 (H(a))

— (8u0)’ ~ 3620 (zg))2 - %e—z" (sﬁ)f) (6.2.7)

1 V2] 1 ras A ) 2@ 5@
-z (F?) ] + 5PN FOFS

where £2 = dAY), 22 = dAD and

B® _ Lwze _loze (cyclic) (6.2.8)

(a) _
H - 2 °GuTBvd 9 Bu=—Guv

prA B

In the five dimensional Einstein frame, the transformation to which is defined by

Guv = €~ */3G,,, the action appears as
4
Srra (K35 = / &z [\/_—g (R — 5(V6? — (8u0)”
_Lo-asp3 (=<2>)2 _ L em2o—asps (=<2>)2
4 =G 4 =B

_.% £86%/3 (V(Z))2 _ %eﬁzq,,(a) /3 (F(2))2>

1 A (=) =@) 1) 22 Q)
+§€o'p,uu (VU )=Gpu='BuA + ABJFP# Fz/,\ )
6.2.9
where in this action we have Hodge—dualized the three—form H(® via
1 i@
Hf::,),\ - 56345 /3 \/_—g'eapyuxva)op
L =2 _1l.w=m (6:2.10)
@ = - L
=B} = 58uEBux — 388, EGu + (eyclic) .

Note also that V@ = gV,

Having completed the exposition of the actions we will use here, we now turn to
the black hole solution of the five dimensional theory with which we will begin. This
is a five dimensional black hole which spins in a single plane, which is a solution of

the five-dimensional Einstein equations, and which can be found in general form in

3 Note that we omit for simplicity the subscripts on the five-dimensional fields. In this chapter
we work only with five- and six-dimensional actions.
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equation (5.1.19). We add a trivial flat compact dimension with coordinate y, and
the metric is then
ds% = G¢ pvdztdz”
_ 2, N2p72, B ) 2
= —dt* + (r +a ) sin’ fd? + po (dt+as1n 94(,0) 6.2.11)
2

+ sz?adrz + p?df? + 12 cos? 6dy? + dy?
where p2 = 12 + g% cos? 9, and B and a are the mass and angular momentum
parameters as defined in chapter V. The coordinate system we are using here is that
of spherical polar coordinates in five dimensions, r, 8, @, ¥, t with the additional flat
coordinate y. This black hole can be thought of as a solution of the six dimensional
low energy action of type ITA string theory. Itis a solution which has only the metric
excited but no gauge fields, antisymmetric tensor, dilaton, or moduli fields turned
on. From it, we will obtain a charged spinning black hole solution of the Type I
theory in five dimensions. This black hole will be a spinning generalization of the

solution in [10].

6.2.1. Generating techniques

Our method for generating the desired black hole solution is to use a series of trans-
formations, namely O(6, 6, R) boosts involving the time ¢ and the circle coordinate
y, and string/string duality. String/string duality is implemented simply by comput-
ing the mapping given in equation (6.2.5). For the O(d, d, R) transformations, the
procedure we have implemented is that outlined in [120] which functions as follows:

Letus consider first the procedure in the case of the heterotic string with one non-
zero gauge field, the extension to more than one gauge field is straightforward. One
first forms, from the fields making up the solution which one wishes to transform,

the linear combinations
1
Kipu = _B/g:/) - g;w - ZAS)-A-E}) £ Ny (6.2.12)

from which the following matrix is formed

K:GTlK_ KtG K, —KtGg—lAD
M= ( KiGK_ KiG™K, —KiGtAD ) (6.2.13)
~ADyg Tk —(ADyg-TK, (AN G-Ta®
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where the superscript ¢ indicates the transpose. At this point the effect of an

0(d, d, R) transformation on the solution in question is contained in the relation
M — M = QM (6.2.14)

where the transformation matrix Q4 € 0(d, d,R). Specific examples of transfor-
mation matrices will be given later.

After the O(d,d,R) transformation has been carried out, there remains the
question of extracting the new metric, antisymmetric tensor field, and gauge fields
from the new matrix M. The way to do this is also found in [120] and consists of

forming the matrix

n/2 —m/2 0
Vv=|1/2 1/2 (i/_ (6.2.15)
0 0 1/v2
which leaves M in a state looking like
g~ ~g' 'K g~ AW /2
ml - VJ;'[Vt = _K!tgl—l KIth—IKI _K!tgl_lA(l),/\/i
AV G s AW g g A AW g A o
6.2.16)

where K’ = (K'+ F 1) and therefore the new metric, new K’, and gauge field AV
can be extracted from the upper left, upper center, and upper right parts respectively

of M. Then the antisymmetric tensor field is the antisymmetric part of K” as in
_1y -1
g - (g7

@ _ Lt
B > (K K ) (6.2.17)
' 1
26 _ detG 26
detG

Note also that the dilaton field is transformed in accord with our discussion in
chapter III.

As was also noted in chapter I, in the case of the heterotic string the group
under which the equations of motion of the low energy effective action are invariant
is O(d, d + p, R) where d is the number of Killing coordinates, that is the number of
coordinates in the full ten dimensional theory with respect to which the solution is

independent, and 5 can be thought of as the number of gauge fields in the solution.*

4 gee section 3.2.2 for further clarification.
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In the present case, we have a five-dimensional stationary solution, which is therefore
independent of time plus five other dimensions, only one of which is represented in
the six-dimensional versions of the action, equations (6.2.1) and (6.2.3). So in the
present context, on the heterotic side the group in question is O(6, 7, R).

What of the type ITA side of the story? Under string/string duality, the (six-
dimensional) gauge fields present in the heterotic solution are mapped into Ramond-
Ramond one-form gauge potentials. Recall also from section 3.3.2 that T'-duality
when applied to the type II superstring changes the chirality of the solution, and
alters as well the field content of the Ramond-Ramond sector. Since T'-duality is
in fact, as mentioned, in the O(d, d, Z) subgroup of O(d, d, R), it is not possible to
carry out the more general O(d, d, R) transformations on the RR sector. If one did
so then the result would be a solution which had one “foot” so to speak in each
of the type IIA and type IIB theories and the interpretation of such a solution is
completely unclear. Therefore, one can apply this technique to the type II theories
only when the Ramond-Ramond fields all vanish. In this case the formulae (6.2.12)
and (6.2.13) apply when all AVe = Q.

Having described the procedure with which we will apply the O(d, d) transfor-
mations to our solution, let us outline the series of steps that will lead us to our new
solution. We begin with the metric (6.2.11) as a string-frame® type IIA solution in
six dimensions. We apply an O(6, 6) boost mixing the (¢, y) directions, following
the five dimensional black hole construction of [132]. The boost matrix Q4 used

for this first transformation is

Iy 0 0
0 z z2 -1 O
0 2 —1 T
0 0 T —Vz2 -1

0 —Vz¢t-1 z
where 1 < r < oo is the boost parameter. Note the difference in sign of the off-
diagonal parts of Q4 between the blocks. This causes the resulting six—dimensional

solution to have no Ggy,, for 4 < 5, buthas a Bg;l and a ¢g“).

5 Since the dilaton is zero string frame and Einstein frame metrics are identical.
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The next step is to apply string/string duality to create a heterotic solution from
the type IIA solution. This is done by applying the mapping (6.2.5), after which the
new B® is computed by integrating the field strength H‘® according to

B, - /deHg’;)W+ Fo(&%) (6.2.19)

where here there is not a sum over p, but rather this is carried out for each z?
upon which the solution depends. The arbitrary integration functions f, are then
functions of all variables except the variable of integration z?. Comparison of the set
of results permits computation of a unique B for which H‘? is the field strength,
up to gauge transformations.

Taking the heterotic solution produced by the string/string duality and using
the O(6,7) symmetry we can thus apply a second boost, mixing the time ¢ and
the internal direction involving AW with parameter z. String/string duality is then
applied a second time to convert the heterotic solution back to a Type IIA solution,
followed by the standard Kaluza—Klein reduction to five dimensions as given in
(6.2.6), which in turn is followed by the change to the Einstein frame.

The above boost parameters z and z are carefully chosen to satisfy z = 222 — 1
which reduces the five dimensional dilaton to a constant. Note that this is consistent
with the range 1 < z < oo throughout the range of z. The resulting configuration is
a charged spinning five dimensional black hole with constant dilaton and constant

moduli, written as

PP=8) o [P+8a* 1]

e PepE@ D (e =p) o
2 2 , Baz’sin?d (pz)
+ [p +B(z 1)] do* + 7+ B 1)]
~eo [ﬂa\/xz_ P =0) SENT T i 2ap|av
[0 + B — 1] [P2 +ﬂ($2 ~-1)°
+sin29[r2+a2+[3(a:2 ﬁa z?sin’ § [p* — B(a? _1)2 }
[¢? + B - 1)]*

+00826[r2+ﬁ(:z;2_ - Ba?(z? — 1) cos? 9[p2+ﬁ(:1: —1)] ]

[? + Bz — D]
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_ Bzvz? —1sin* 4 [r? + fz® — 1)]

(a) _
B [+ Bz — 1)] dp N dy
—faz(@® — 1) ( 2 g 4 ESOE. )
+ [p2+ﬁ(:c2—1)]dt/\ sin” 6dp + mz_ldz[:

2 __
e

e$ 1= (6.2.20)

2 cos? 8, 8 is the mass

where as in the initial solution (6.2.11) we have p? = r+a
parameter and g the angular momentum parameter from (6.2.11). This solution
appears quite complicated, but when the extremal limit is taken, it will simplify

substantially.

6.2.2. The extremal black hole

Here we will exhibit the extremal limit of the black hole written in (6.2.20).
This is done by taking the boost parameter z off to infinity, and simultaneously the
mass parameter § and the angular momentum parameter a to zero such that the

quantities
lim Az*= s

T =0

F—=0 (6.2.21)
lim az=w,

T — o0

a—0

remain finite, where [, a are the quantities appearing in the metric (6.2.11). After
doing a coordinate transformation to match with {10], 2 orls 1, we obtain for

the extremal metric and gauge fields

2
2 a2 2
ds§=—(1—”) [dt_,uwsm Gd(p+pwcos 6d¢]

r2 (rP—w) " (P -n)
-2
+ (1 - 7%) dr*+12(d6? + sin® 0dep? + cos? 8dp2)(6.2.22a)
2
AW = %:‘—2 (dt +wsin® 6dp — w cos? ed¢) (6.2.22b)
A3
AD = % A (6.2.22¢)

72613 _ 32, (6.2.22d)
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We recall for clarity that this solution is an extremal type ITA solution which
has one non-zero Ramond-Ramond one-form potential A", one non-zero Neveu-
Schwarz—-Neveu-Schwarz gauge field Ag) and, while the result of our solution
generating procedure yields zero dilaton and modulus ¢©@ = 0 = ¢, we have shifted
these scalars by a constant to (6.2.22d), which introduces the scaling of the gauge
fields by A given above [10]. The above fields are the only ones excited in this black
hole background. Notice that when we take w — 0, we recover the solution of [10],

and thus the solution in this limit is very similar to that considered in section 6.1.

6.2.3. Properties of the solution

From the asymptotic metric, applying equation (5.1.25), we obtain for the angular
momentum, in the independent planes defined by ¢, 9,

T

t (6.2.23)
o= Jy=—Jpw
and for the mass, computed according to the formula (4.1.29) we find
3mu
Mapuy = 2 (6.2.24)
while the charges under the form fields =@ and F® are®
1 * Vg —4h8) 13 —
==13 (e 2044 /3:g))=#/)\2,
. 52 o - 6.2.25)
- * [ o2 Y3 @)y _ __"
¥ =16x _/5‘-3 (e F ) 2\/5# A

Note that this black hole, although a solution of the low—energy string theory
equations, is not a solution of the Einstein—Maxwell equations in five dimensions.
In the spinning configuration, the magnetic dipole field combines with the electric
monopole field so that the Chern—Simons contributions to the equations of motion
are nontrivial.

Let us now obtain the classical entropy of this extremal spinning black hole. In

the above coordinates, the horizon is at r = 7o = |/, and its entropy is found to be

6 The sphere S° is at infinity, so we can ignore the effects of the Chern-Simons terms.
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AJil=|R[=D

(6.2.26)

2
=27 %_JZ

where in the second line we have written the classical entropy in terms of the charges
and angular momenta. Note that both of these expressions are independent of A.
This extremal rotating charged black hole has a horizon with finite area, a
feature not easy to find. Ordinarily the addition of rotation (without energy) to
an extremal Reissner-Nordstrom black hole destabilizes the horizon and yields a
naked singularity. However string theory, in order to avoid a conflict with the
microscopic counting, cleverly stabilizes the horizon with the help of a Chern-
Simons coupling in the low-energy field theory. In this process a qualitatively new
class of supersymmetric spinning black hole solutions was found [12]. Also note
that the angular momentum is bounded above: J2__. = ¢= q%. /2 (in going beyond

this limit, closed timelike curves develop).

6.2.4. D-brane counting of the microscopic entropy

Let us examine the D-brane states that are responsible for the degeneracy of the
extremal black holes that we are considering. Due to our method of construction,
the RR gauge field A" in (6.2.22) conceals equal numbers of rotating D-points and
D4-branes. The D4-branes are wrapped on the four-cycle of K3. As a reminder,
we are considering the type IIA string compactified on K3 ® S! down to five
dimensions.

It is easier to do the counting if we first carry out a 7’-duality transformation
along the S! direction, converting the solution to a type IIB solution. On the
type IIB side, applying the information from chapter IV, we will have D-strings
wrapped on S! bound to DS5-branes wrapped on K3 ® S!. It was also mentioned
in chapter IV that the dynamics of D-branes is described by open oriented string
theories dimensionally reduced to the world-volume. Thus for the D-point we have
an N=1,U (%) Yang-Mills theory reduced from ten to two dimensions, and for

the D5-brane we have a similar theory reduced from ten to six dimensions. These
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two Yang-Mills theories interact on the common volume R® S!, where the R is the
time coordinate. If we take the size of S! to be much larger than that of the K3, then
we are justified in ignoring the dynamics of the six dimensional theory and thus the
complete D-brane effective field theory will be a theory on the world-volume of the
D-string—DS5-brane intersection.

The DS-brane charge can be viewed as an element of the K3 cohomology
H*(K3,Z) which is identified with how the internal part of the D5-brane wraps
around K3.7 Note that the dot product tqr - qF is the same as the intersection of

cycles in the K3 cohomology.

In [133] relations were obtained between the cchomology of symmetric products
of certain hyper-Kahler manifolds and the partition functions of the bosonic and
supersymmetric strings. On the basis of these results it was conjectured [126] that
the bound states we are considering here can be identified with a sigma model on

the symmetric product of (%qF - gr + 1) copies of K3 i.e., on the quotient space

(K3)®lzq%,+l

M
S%q%.-l-l

where S, denotes the symmetric group, the group of permutations of n objects. This
conjecture has been verified in essentially all cases, at least up to T-duality [127,128].
The strategy is to use the cohomology of K3 to count the possible ways of forming

our bound state.

The light-cone helicity of the six dimensional theory can be obtained in a
manner similar to that of [126,133], by introducing helicity operators F, F for the
left- and right-moving states, respectively. We will have SU(2)r, ® SU(2)g or O(4)
holonomy, but only the U(1)r ® U(1)gr subgroup will enter consideration in our
analysis. The charges of the states under the U(1); ® U(1)g subgroup are thus
given by (F,F). Let J. 1 and J, be currents associated with the commuting left- and

7' The arguments for compactification on 7% ® S are (essentially) identical with the replacement
of T* for K3 in the following discussions. Only the dimension of the manifold enters in the
asymptotic growth below.
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right-moving U(1) elements of O(4). These can be related to the helicities through

1

N Rl S

F+F),
(6.2.27)

o

(
(F - F)

Consider, for example, the case where the D-branes vanish, gr = 0. The ground

J1
J2

states of the sigma model are identified with the K3 cohomology, which has dimen-
sion 24. The helicities F' and F for the ground states run over the values {—1,0, 1},
so we have the (J}, J>) spectrum consisting of 20 states with (0,0), two states with
(%1, 0), and two states with (0, +=1). These we recognize as the light-cone oscillator
quantumn numbers of bosonic strings in 26 dimensions.

The D-brane BPS states considered in [10] correspond to Ramond-Ramond
states of this sigma model which are ground states on the right-moving side, while
the left-moving states are excited to a level 72 determined by the NS-NS charge, 1.e.,
fi = g=. Recall that there is a bound for the F" and F with respect to Lo and Lo [134].
This can be seen through bosonization of the U(1) currents. Let J; = NG d¢ with
¢ the complex dimension of the manifold M, in our case ¢ = q%; + 2. A state with
charge F will then be represented by an operator

exp (’%‘5) . (6.2.28)

where ® is an operator which can contain any other state in the sigma model as well
as oscillator mode factors of the U(1) current, but nor the U(1) momentum modes.
An exactly analagous construction holds for F'. In particular, note that since the ¢

are of positive dimension, the dimensions of the operators are restricted by

- 2
L%  Lo> g—c (6.2.29)

We wish to count the entropy in a regime where gz is macroscopic but held
fixed. Moreover, we take the NS-NS charge ¢z to be arbitrarily large. We are also
interested in a region with similarly macroscopic angular momenta |Ji ], |J2[ >> 1.
Let us consider the case in which the system is a right-moving ground state with

fixed F. Then we can consider arbitrarily large values of F' to make both J; and
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J, large with the same sign® . Fixing F, and thus the angular momenta, imposes
constraints on the left-moving Hilbert space. Since this is where the entropy comes
from, we must therefore make an estimate of the number of left-moving states are
still available when F is fixed. Considering a regime® where (g= — £2/28) >> 1
as well as g=/ q%, >> 1, the answer is supplied by the bosonization discussed above.
Since the total eigenvalue is l_lo~= 7 = g=, and we have used up % = %4 for the
states we are interested in, the Lg eigenvalue of the extra operator @ is given by
Eo(®)=n=ﬁ—§—;=q—=-—2£:—4 (6.2.30)
Since the oscillatory states make the maximum contribution to degeneracy of string
states, we can effectively take n, the oscillator number remaining once the angular
momenta have been fixed, as the available oscillator number. From [133] we have
a formula for the generating function for the dimension of the cohomology of the
symmetric product of k¥ manifolds W as
Ok oo kyb—
S skdim (H (%)) - THIES ‘:ssk))b+ (6.2.31)

where b_ and b, are the dimensions of the fermionic and bosonic subspaces!® of

H*(W).!!  Using methods of computing the upper bound on the growth of such a
generating function which can be found in [135] we obtain a degeneracy growth of

d ~ exp <2w\/§) =exp | 2w (q_:_ - %) (%qu + 1)
¥
~ exp (27r\/qg (%q}, + 1> - % (|J1| + [le)z)

where we have substituted F' = J; + J, and use absolute value signs for the angular

-

(6.2.32)

momenta in order to write the final answer in its most general form, independently

8 To consider J1 and J; with the opposite sign, the entropy would have come from the right-
movers and we would be considering large values of F' while the left-movers were in a ground
state.

o may be that our final results are valid beyond this regime of charges. Further note that the
given regime does not exclude the possibility that the ratio of F2/2é to ¢z is only slightly less than
one.

10 In other words the cohomology classes of odd and even dimension respectively.
11 The similarity between (6.2.31) and the partition function (6.1.6) used in the alternate D-brane
counting will not have gone unoticed.
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of whether or not J; and J, have the same sign. The entropy is thus

1 1
Smicro ~ 27r\/q—._.; (qup + 1) — 2 (Al + 1) 6233)

Taking |Ji| = |J2] = J, we see that this formula agrees with what we found for the
classical entropy (6.2.26) of the spinning black hole. For the record we mention
that this computation also sharpens the computation in [10] where, in principle, one
should have counted only the spin—zero D-branes to make the comparison with the
non-rotating black hole. It is satisfying that the classical and D-brane methods give
the same result, and we regard this as additional evidence for the D-brane picture
of [14].
One would also like to consider the possibility of the two angular momenta,
J1 and J,, unequal. We see that for the right-moving ground state |F'| is bounded
as [134]
|F|=|J1 —J < % = %q%. +1, (6.2.34)

and therefore the difference between the spins cannot be arbitrarily large. This bound
can be combined with the previously noted relation gz/ q%, >> 1, to demonstrate
that these calculations are valid for |F|/|F| = |J; — J|/|J1 + J2| << 1. Asa
result, one would not expect to see a difference in the angular momenta at the
macroscopic level of the black hole computations. Constructions of extremal black
holes analogous to that presented here in which the starting point is a five dimensional
Kerr solution with two independent angular momenta confirm this finding. In these
cases, demanding that the extremal or supersymmetric limit be nonsingular requires
setting |J1| = |J2| [13]. Hence the D-brane and black hole results are also in perfect
agreement on this further aspect of the calculation. An example of such a calculation

will be presented in the next section.
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6.3. The non-extremal case

In this section we will combine the analyses of [11] and the previous section
to consider the entropy of a spinning black hole solution just above extremality.
Again we will find perfect agreement - a seven parameter fit - between the detailed
thermodynamic behavior predicted by the Bekenstein-Hawking entropy and by the

microscopic state counting.

6.3.1. A rotating nonextremal black hole

We begin with a simplified low-energy action for six-dimensional type IIB string
theory which contains only the following terms (G = 1),

__L - Oy L 20 ()
Sirp (K3) = 16W/d6z\/ Js <R (Vo)* - e (F6 ) (6.3.1)

in the six-dimensional Einstein frame. F'® as usual denotes the RR three form field
strength. We adopt conventions in which Gy = 1. The scalar o here is the logarithm
of the volume of the internal four-manifold in the string frame. The ten-dimensional
string dilaton ¢® is an arbitrary constant for our solutions and will be omitted. We
will further compactify to five dimensions using the Kaluza-Klein ansatz (6.2.6),
where again y will be used to denote the fifth spatial coordinate. We will also take
the asymptotic length L of the compact y coordinate to be very large.

The solutions of interest to us are most simply represented as six-dimensional
black string solutions to (6.3.1), which wind around the y direction and hence are
black holes in five dimensions. The six-dimensional black string can can carry both

electric and magnetic charge with respect to F) :

. 1 / 20 * ()
8 Js3 !

1
m=__ [ F®
42 g

6.3.2)
q

It may also carry total ADM momentum P along the y direction which appears in

five dimensions as an electric charge of the Kaluza-Klein gauge field Ag) coming

from compactification of the metric [11]:

2
= 2 (6.3.3)

=7
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We have chosen our conventions so that n and ¢™¢® = 1Q? are integers. In five
spacetime dimensions the spatial rotation group is SO(4) = SU(2) ® SU(2). Hence
solutions are in addition labeled by two independent angular momenta.

Black string solutions are also characterized by the asymptotic value of o. We
are primarily interested in the entropy which cannot depend on the asymptotic value
of ¢ [136-140]. For a special asymptotic value &, the sources for ¢ cancel exactly
and the equations of motion imply o is constant everywhere. This special value is

= 24g°
e = Wz‘;m. (6.3.4)

In order to compute the entropy it is sufficient to consider the solutions with o = &.

Reduction from six to five dimensions yields in the usual way a second five
dimensional scalar field whose asymptotic value is L, the size of the S! parameter-
ized by y. This scalar could also be frozen to a value which would be proportional
to n/Q. However it is important not to freeze this field because we will need to
compute how the entropy varies as a function of both the energy and n with all other
quantities - in particular the asymptotic values of the fields - held fixed. This is
impossible to do if the value of the scalar field is tied to n/Q. This problem does
not arise for the scalar o because, once the behavior of the entropy is known for
any value of the ratio ¢®/¢™, it is determined for any other value by duality which
implies that it can depend only on the product Q%/2.

The solutions in which we are interested can be generated by methods exactly
analogous to those which were used to obtain (6.2.20) starting from (6.2.11) in
the previous section. Beginning with a slightly more general version of the five

dimensional Kerr solution which now spins in two independent planes, written as:

ds% = Gg pdztdz”

2
= —dt? + (r* + %) sin® Gdp? + % (dt +asin® 8dy + bcos? edw)
r’g 2, 2302 02 12 2 a2
A T A e 0yt
(6.3.5)

where a and b are the angular momentumn parameters, and p* = 72 + a® cos® 4 +

b? sin? §. The coordinate system is the same as that in (6.2.11). We consider this as
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a heterotic string solution in five dimensions. Again we may lift this solution to be a
black string solution of heterotic string theory in six dimensions by adding a trivial
flat direction y. As before we begin with a boost which mixes the time direction ¢
with the compact internal direction y to yield a nontrivial right-handed gauge field.
Next, string-string duality, (6.2.5), is applied, converting the solution to a type ITIA
solution, followed by a T'-duality transformation along the compact coordinate y
which produces a black string solution of Type IIB string theory in six dimensions.
We note here that due to 7'-duality being a subgroup of O(d, d), the same formalism
can be applied to implement this duality transformation, using a matrix of the form
Is 0 O
Qr = (0 -1 0) . (6.3.6)
0 0 I
Lastly, a boost is performed along the string yielding the following metric:

BTy R

5 &

a2r? — 122 sin?
+sin? 6 lr +a2+( ri—trl)sin gjl di?
2
2.2 _ 2.2 cos?
v o2 [1~2+b2+ (¥*r2 — 2 2) cos 6] i
2 2_ 2 _ 32 252 ~1
s BI(-2) (EE2) 2y
.2
. 252 0 [(arkz —br2 /a2 = 1)t + (ariv/a? — 1 — brla) dy]dy
2
+ 2c§; d [(bfrf:x —art /22 — 1)dt+ (br%\/:z:z -1- arz_m)dy] dy
2 _ 2 2 _ 2
+2zVz? — ( )dtdy+2cos fsin’ 0%;—1‘_—)@941!%
o=3, 6.3.7)

where p? = % + a® cos? 6 + b* sin? 6 has not changed, = is the boost parameter, and
a,b are components of the angular momentum per unit mass of the original Kerr
solution. A nontrivial RR three-form field strength is present, but its precise form
will not be needed in the following. The parameters r4. are related to the charge by

Q? =2¢%¢g™ = (7rr+r_)2 The outer and inner event horizons are located at

= ;(r++r bzzb\/(r.,.—r - —b2)2—4a2b2) . (6.3.8)
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The six-dimensional ADM energy of this solution 1s
Lm 2, .2 22 2
=5 (2 (r+ +r_) + (r+ - 'r_) (2:1: - I)) ) (6.3.9)
and the ADM momentum along the string is given by

p="L /1 (ri - r2_) . (6.3.10)

4

The angular momenta in the independent planes defined by ¢ and v are

Ji=J,= L (arz:z:—b'r_z_\/a:z — 1) ,

4

J2§J¢=%(bria:—a7'7; :1:2—1).

Following [11], we expect the Bekenstein-Hawking entropy to agree with the

(6.3.11)

D-brane counting away from the supersymmetric extremal limit [12] provided the
momentum density P/L and the excitation energy density § &/ L are small. To study

this limit we expand
T+ =TgLe€E, (6.3.12)

with € <« 1, and z finite. Note we need to take the limit in such a way that
r2 — (Ja| + |b])?* > r% in order to avoid naked singularities. This implies that a? and
b? are of order . The longitudinal size of the string near the horizon is finite in this

limit. To first order in ¢, the excitation energy is

_ Lmroe 2
6B === (2.2: —1), (6.3.13)

and the classical entropy is given by

= %Lﬂzr%(@roe —a® - bz) ? +2abz /22 - 1 — % (4’1‘06 —a® - b2)

1/2
+%\/(4roe—a2 — b% — 2ab) (4rpe — a2 -—b2+2ab)) ! .

(6.3.14)
Now define the following quantities
- 2
ip=-LeEsp) - L)
_ L 1+ 1) o
L= g CE =P =
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in terms of which the entropy (6.3.14) is given by the simple formula

S=1Q (\/2ﬁL+ \/Zﬁg) (6.3.16)

which has the form of a sum of entropy from right-moving and left-moving strings

on the D-branes. We will now see how this comes about.

6.3.2. D-brane count in non-extremal case

Asdiscussed in [10] and in section 6.2.4 the P = 0 black hole ground state is a bound
state of g¢ Ramond-Ramond D-strings wound around the S' in the y direction with
g™ RR fivebranes wound around both the S! and the internal four-manifold K3. In
the limit of large radius L for S!, the excitations of this system are described by a
supersymmetric sigma model on a manifold of real dimension 202 [126,127,128].
In the regime of charges we are interested in, to leading order the degeneracy comes
from string modes with short wavelengths and hence the curvature of the manifold
is irrelevant. Thus we have the same leading degeneracy as the excitations of
2Q? species of massless bosons and 2Q? species of massless fermions which move
around the S!. Ignoring for the moment the angular momentum, the entropy of N
(INg) species of right-moving bosons (fermions) with total energy Eg in a box of

length L is given by the standard thermodynamic formula

8=\/7r(2NB +6NF)ERL- 63.17)

Atlow energies and large L the system is dilute, meaning that interactions can be ig-
nored, and the entropy from right-moving modes and left-moving modes is additive.

Hence, using N = Ng =292 and Ep 1, = 27np, /L, (6.3.17) becomes [10], [11]

8 =m0 ( 2np + \/iﬁ) , (6.3.18)

where ny, g are given by (6.3.15) with J; = J = 0.

Now we must make a correction for the angular momentum. As argued in the
previous section of this chapter, J; + J3 is carried by left-movers, while J; — J> is
carried by right movers. Fixing the total angular momentum carried by the right

movers decreases the number of states available for a fixed energy. As previously
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shown, the effect of this on the entropy for left-movers only is to replace ny with

7ir,. However since the entropy of left and right movers is additive we have simply

S=7rQ( 21“7,L+\/2ﬁ—3) : (6.3.19)

in agreement with the black hiole calculation (6.3.16).

We have thus shown that the D-brane method of counting the entropy of BPS
saturated rotating black holes gives perfect agreement, including numerical factors,
with the classical Bekenstein-Hawking entropy. The agreement, as we have just
seen continues, to hold to leading order in a small parameter ¢ away from the
extremal supersymmetric state. These are remarkable results and can be interpreted
to indicate that string theory “understands” black hole entropy at a very deep level.

Of course, the current state of the art in the counting of the entropy of black
holes through the D-brane methods is still rather limited, applying only to extremal
or very near-extremal black holes. At the same time, advances are being made in

the understanding of the entropy of non-supersymmetric black holes [141].

6.4. A dyonic black hole

Let us turn now to the construction of a black hole which, like the solutions
considered thus far, possesses both electric and magnetic charge, but these charges
are combined into a gauge field of the solution in a more restrictive manner. The
definition of dyonic that we will impose here is the following: A given n-form
potential is said to be dyonic if both magnetic and electric components are found
for a fixed value of n — 1 of the indicies. Thus, for a three-form, for example, one
must have a magnetic charge at A,E?3<p and an electric charge at Afgt

It has been found that constructing dyonic solutions using the solution generating
techniques has the unfortunate side effect of generating a non-zero Taub-NUT
charge [142]. The time coordinate of the resulting spacetime must be made periodic
in order to avoid a line singularity as the azimuthal angle vanishes. Since Taub-NUT-
like metrics are widely believed to not represent physically realizable spacetimes,

the appearance of this parameter in the solution generating process is unfortunate.
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It is evident that this restriction can be overcome by beginning the solution
generating process, not with the Schwarzschild metric, but rather with the Taub-
NUT solution (5.1.31). This gives us an extra parameter, the initial Taub-NUT

charge, with which to cancel the Taub-NUT charge appearing in the new solution.

To generate a dyonic solution, the following steps are carried out. First, one
interprets the metric (5.1.31) as a type IIA string frame solution in six dimensions by
adding two flat compact coordinates, the action is given by (2.3.28). In particular the
Ramond-Ramond sector is completely null. An O(d, d, R) boost mixing time and
the sixth coordinate, z° is performed to create a non-zero term in the Kalb-Ramond
field Bg?z s # 0. The solution is still type IIA since the O(d, d, R) transformations
remain within a particular theory.

Now we carry out string/string duality according to equation (3.5.12), which
converts our non-zero Bé‘:)ms — Bé“;z,,, as well as converting the solution to a
heterotic solution. We then perform a T'-duality transformation, which changes
Bé“;z4 — Gg ¢ Solution remains heterotic. A second boost is then performed,
this time an O(d, d+5, R) boost of the heterotic string, mixing time and the coordinate

z*. This creates a non-zero Gg,+ term, giving us two components of G uzt that

will become our dyonic gauge field.

To convert these off-diagonal components of G¢ into a Ramond-Ramond gauge
field, we first lift the solution to seven dimensions, by adding yet another flat
coordinate. Then, the new dimension and the z* dimension, along which we find
the terms of interest, are interchanged, and the solution is re-compactified to six
dimensions. We now have a six dimensional metric, a six dimensional heterotic

gauge field and an additional scalar field.

Finally, string/string duality is again applied to convert the heterotic solution to a
type IIA solution, where the dyonic one-form is in the Ramond-Ramond sector. The
result is a rather complicated metric, G¢, RR field Agl), dilaton ¢g°) and a scalar o.
The Taub-NUT charge of the metric can at this point be made to vanish by setting

_ BV —1Vu? -1

w

£ (6.4.1)
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where z and w are the parameters used in the first and second boosts, respectively.

The solution may be written [16]

2
ds? = — E_dtz + fi (d% +r2(d6? + sin® Gdtpz))
1

+f2 ((d:c“)2 + (dxs)z) : (6.4.2a)
o [((w+B)Vu 2\/17(ﬂ+v)(1+§) )
Ay’ = (——,—..u s cos Bdyp + AiB Joifis Ta.'t, (6.4.2b)
206" —f, =7, (6.4.2¢)
where
fl = -Az - st
A+B
=\Z=E
u v
A= (1+7) (1+7), (6.4.3)
B_v—u_ uwv (u — v)
r (w+pB+v) r?’
c-1-% vup

r (@wW+u+pB) 2’
where 3 is a mass parameter, and « and v are the charge parameters of the magnetic

and electric charges, respectively. The solution has been written in a form in which
one obtains the extremal limit by setting § = 0. The parameters u, v and 3 are

related to the original boost parameters z and w by

o \/% w = ”:”, (6.4.4)

For this solution the horizon is found to be located at

Bt \/ﬂ(u+ﬂ)(v +8) 6.45)

u+v+p

and both roots are seen to be real and positive for v, > 0 and § > 0. In the
extremal limit, 8 — 0, it is zero regardless of the values of the charge parameters
u, v. The consequences are not entirely grave. Even with the horizon at gz = 0 in

the extremal limit, the area does not vanish. The formula for the areal? is

uv(u — v)
utv+p

2
A = 167r3R4R5 \/(TH +u)(rg +v)? — (rH('u —u) — ) (6.4.6)

12 Areais computed in the six-dimensional Einstein frame.



Spinning black holes and their entropy 167

which in the extremal limit, 7 — 0, 8 — O results in the classical entropy

3
S = and Rurs Y (6.4.7)
u+v

Note here that we have integrated over the compact coordinates z* and z°, which
have ranges 27w R4 and 2w R respectively, as well as over 6 and . Further analysis
of this solution, including analysis of BPS limits and D-brane content was carried
out in chapter V.

In the previous sections, we created three black hole solutions. Two of these
solutions represent rotating charged black holes in five (section 6.2) and six (section
6.3) dimensions. These black holes had event horizons which had non-zero area in
the extremal limnit, and thus non-zero entropy in this limit. Furthermore, they were
BPS saturated states carrying Ramond-Ramond charge in the type II superstring
theories, which allowed us to calculate their entropy from a microscopic counting
of D-brane degrees of freedom.

In the last section, we illustrated techniques for solution generating which can
be used to create dyonic black holes, overcoming the tendancy to create unwanted
Taub-NUT charge. The resulting black hole was unfortunately not supersymmetric,
although the area of the event horizon is non-vanishing in the extremal limit. The D-
brane counting techniques can not, therefore, be used for this black hole. However,
itis clear that more computations can be done to create a dyonic black hole amenable
to D-brane analysis.

One other thing is clear as well. There is a close relationship between the bound
states of D-branes and black holes, we spoke of this briefly at the end of chapter V.
This indicates that advances in the understanding of black hole entropy can be made
by means of advances in the knowledge of how D-branes form bound states. What
sorts of bound states are possible, what are their properties, and what is required
of them in order that they form BPS saturated states. We turn to questions such as

these in the next chapter.
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Bound states of D-branes

Understanding of non-perturbative aspects of string theory has advanced rapidly
during the past two years [1,2,14]. In the case of the Type II (and I) superstrings, of
particular non-perturbative interest are the Dirichlet branes (D-branes) which carry
charges of the Ramond-Ramond (RR) potentials, as discussed in chapter IV.

As we have seen in chapter VI, D-branes have also proven to be valuable
tools from a calculational standpoint, leading to the computation of the entropy of
black holes from a counting of the underlying microscopic degrees of freedom. In
analyses such as these, the bound states are required to be supersymmetric in order
that the counting, which can only be done at weak coupling, is protected from loop
corrections by BPS saturation as the coupling is increased to where the bound state
forms a black hole. Thus supersymmetric D-brane bound states are of particular
interest.

In this chapter, we will extend the known exact low-energy supergravity solu-
tions which describe bound state configurations in two ways. In section 1 we will
construct supersymmetric bound states of D-branes in which the dimensions of the
D-branes involved differ by two rather than four. In section 2 we will extend the
class of known low-energy background field solutions to those which intersect at
non-trivial angles.

A great deal of effort has gone into generating the low-energy background field
solutions corresponding to various D-brane bound states [143]. These solutions
have so far been restricted to those describing p-branes which are either parallel or
intersect orthogonally. It has been shown [144], from the world-sheet standpoint
however, that there exist supersymmetric configurations where the angles between

— 168 -
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the D-branes are other than zero or 7 /2. Preserving supersymmetry in such multiple
D-brane configurations requires that the angles are restricted to lie in an SU(NV)
subgroup of rotations. The corresponding background field configurations remain
largely unexplored. In section 2, however, we will present one such class of
solutions. QOur basic solution describes any number of D-membranes whose relative

orientations are given by certain SU(2) rotations.

7.1. Bound states of (p, p — 2) D-branes

For the most part, the attention of researchers has been focussed on examples of

D-brane bound states in which the difference in the dimension of the D-branes
involved is a multiple of four. This preference comes about since it is the well-
known requirement for supersymmetry in a configuration of two separated D-
branes [65,81].

This feature is also revealed by an examination of the static (long-range) po-
tential between separated D-branes. Supersymmetry implies stability or a precise
cancelation of the inter-brane forces. For example, let us consider a DO-brane sep-
arated a distance r from a Dp-brane, where we will allow p = 0,2, 4, or 6. There

are three contributions to the static potential: gravitational, dilatonic and vector!

U _ k2 My M,
grev T 8Agp, TP
1 Bo ﬂp
Udita = — > 7.1.1
o= T ST pAs TP oD
1
Uvect = 20

) Ag—pr’P %0,

The Kronecker delta appears in the gauge field potential because only DO0-branes
carry electric charge under the RR vector. Using the relations relating the various
charges — which may be determined by examining the explicit low-energy solutions

(see chapter IV and below) —i.e., gg = V2 Mo and B, = 3—'2'Eic M, we may sum

1 The normalization of the mass and charge densities (i.e., My and gp) in these potentials will be
discussed in section 7.1.2.1. The ‘charge’ density for dilaton is chosen such that the asymptotic field

around a p-brane takes the form: ¢ ~ HT,—JB% In these formulae, A4, is the area of a unit
-P

n-sphere, see (5.1.4).
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these potentials to find

K? My M,
2(7—p)Ag—p 7P

Utotal = (4 —p—460p) - (7.1.2)

Hence we see that the three forces precisely balance for two DO-branes, resulting
in a constant (vanishing) potential. Even in the absence of the gauge potential,
however there is a similar cancelation for the D0- and D4-brane system. In this
case, the two branes carry dilaton charges of opposite signs so that the dilatonic
repulsion precisely balances the gravitational attraction.?  The vanishing potential
or stability of these two configurations is a reflection of the supersymmetry which
is preserved. In the former, 1/2 of the supersymmetries are preserved, while 1/4 are

preserved in the latter.

If we consider the case of a DO-brane with a D2-brane, we see that total
potential is attractive and so this configuration is unstable. Hence at the same time,
it fails to preserve any supersymmetries. However, since the potential is attractive
(ie., Uiotar < 0), the DO-brane would presumably be drawn into the Dirichlet
membrane and eventually the combined system would settle into a stable bound
state configuration. While supersymmetry implies stability, the converse is not
necessarily true. However we will be able to show by an explicit construction that
in fact the stable ground state configuration is supersymmetric, preserving 1/2 of
the supersymmetries. In general, our construction allows for the construction of

supersymmetric bound states involving D-branes with dimensions differing by two.

7.1.1. Some preliminaries

Let us recall here the actions we will be working with in this chapter. We will be
concerned here with the type II actions exclusively. These actions were detailed in

chapter II, but for the convenience of the reader are repeated here.

2 This mechanism was also observed for the multicenter solutions constructed in [145].
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The bosonic part of the low-energy action for type IIA string theory in ten
dimensions is from (2.3.23)

2x2 12

1 o@)? 1 @ 1 43) 3 4G3)
—2 (F®) b - o5 [ B@daPd4

a 2 2
St w g [0/ {4 [ sacogon - & (o)f] -1 (7

K
(7.1.3)

where G, is the string-frame metric, H@ = dB@ is the field strength of the
Kalb-Ramond field, F® = dA® and F® = d4A® — H®@ AW are the Ramond-
Ramond field strengths, and finally ¢® is the dilaton. Assuming the dilaton vanishes
asymptotically, Newton’s constant is given by x? = 8w G . Forthe type IIB case,
we write the action as ((2.3.26))

_ L fao, 5] o26® o2 _ L (g®\] _Lg.02
Sup= 55 [ 4%V J{e [R+4(v¢ F-5 (2%) ] 5 @0

_ ILZ (FO® +xH‘b))2 _ 2813 (F(S))z }

. 4_1_&2 / A@ 5O g®)

(7.1.4)
where J,,,, is the string-frame metric, #® = dB® is the field strength of the Kalb-
Ramond field, F® = dA® and FO = dA® — 2(BOF® ~ 4@H®) are RR field
strengths, while y = A© is the RR scalar, and qb(b) is the dilaton. As mentioned
in chapter II, we are following the convention that the the self duality constraint
FO) =* FO) pe applied by hand at the level of the equations of motion. All of
the solutions in the following will be presented in terms of the string-frame metric,

however, conversion to the Einstein-frame metric would be accomplished using:
—¢@ . —o®
gw=2"% 12G,, Juw =€ 12 1. (1.1.5)

The low energy background field solutions describing a single Dp-brane were
given in chapter IV ((4.1.27)) for the case of D spacetime dimensions (recall that
d = p+ 1). Here we specialize these solutions to D = 10, which contain only a
nontrivial metric, dilaton and a single RR potential, A®*D_ on which we have made

a gauge transformation to ensure that it vanishes asymptotically rather than going
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to unity:
—dt? + dz?
- VG (5t + o7
AT - 4 (,ﬂ#@ - 1) dt Adz! A - A dzP (7.1.6)
2 - 3 ()T .

Here, the p spatial coordinates z# run parallel to the worldvolume of the brane,
while the orthogonal subspace is covered by the 9 — p coordinates y*. As we saw in

chapter IV, the solution is completely specified by a single function which may be

7-p
:}c—1+i(€> : (7.1.7)
7T—p

for’ p=0,1,...,6. Here, u is some dimensionless constant, £ is an arbitrary
length scale and r? = Zg—p (y")?. The RR field strength for this configuration is

written as

F®*2 = £35729;H dy’ Adt Adz' A -+ AdzP . (7.1.8)

For p > 3, the D-branes are actually magnetically charged in terms of the RR
fields appearing in the above low energy actions, (7.1.3) and (7.1.4). In this case,
eq. (7.1.8) describes the Hodge dual of the magnetic field

F@P) = 48,5 iy; (dylA..-Ady9—P) (7.1.9)

where iy; denotes the interior product with a unit vector pointing in the y? direc-
tion. For p = 3, the five-form field strength should be self-dual. In this case, the
correct solution may be constructed by replacing the electric five-form (7.1.8) by
(FO +* FO) /2 to produce*

;5
O - ‘97 (-dy’/\dt/\d:z: Adz? Nde® —ig; (dy' A~ A dyf)
(7-1.10)

while the dilaton remains constant (i.e., €® = 1) in accord with eq. (7.1.6).

3 Asnoted in chapter IV, this solution is also valid for p = 8, while }{ = 1 — ulog(r/£) forp = 7.
These solutions can also be extended to the D-instanton with p = —1, for which the metric becomes
euclidean without ¢ or z# [146].

4 This is not quite a duality rotation because the kinetic term for F in the IIB action (7.1.4) has
the unconventional normalization 1 /(4 - 5!), — which simplifies the T-duality transformation — rather
than 1/(2 - 5!) which is implicit in producing eq. (7.1.6).
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7.1.2. Bound state of p = 0,2 D-branes

As discussed in chapter IV, at the world-sheet level a Dp-brane is described by
imposing a combination of Neumann and Dirichlet boundary conditions on the
string world-sheet boundaries. Neumann conditions are imposed on the coordinate
fields associated with the p + 1 directions parallel to the D-brane’s world-volume,
i.e., OnormatX* = 0. The fields associated with the remaining 9 — p coordinates
orthogonal to the D-brane satisfy Dirichlet boundary conditions, i.e., X# = constant,
which fixes the world-sheet boundaries to the brane.

These objects were originally discovered by considering the action of T-duality
in the toroidal compactification of open (bosonic) theories, as was discussed in
chapter IV. In this context, T-duality trades the standard Neumann condition for
the Dirichlet boundary condition, written as Oigngent X* = 0. Hence if T-duality
is implemented along one of the world-volume coordinates of a Dp-brane, one of
the Neumann boundary conditions is replaced by a Dirichlet condition to produce
a D(p-1)-brane [89,147]. Alternatively, applying 7T'-duality to a coordinate in
the transverse space will replace a Dirichlet condition with a Neumann condition
extending the Dp-brane to a D(p+1)-brane. For the present purposes, we wish to
consider a Dp-brane which is oriented at an angle with respect to some orthogonal
coordinate axes, e.g., tilted by an angle ¢ in the (X!,X?)-plane. This requires
imposing Neumann and Dirichlet boundary conditions on linear combinations of

these coordinates
O (X' +tan ¢ X?) =0
(7.1.11)
& (Xl — cot¢ X2) =0
Now consider implementing the T-duality on X? in this example. The interchange
of the Neumann and Dirichlet conditions results in mixed boundary conditions which
may be expressed as
X! +itan¢ 8, X% =0
(7.1.12)
0.X* —itan¢ 8 X' =0.
Here the factor of ¢ appears since we are considering a euclidean world-sheet. Now

these mixed boundary conditions can be recognized as an example of the compatible
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boundary conditions arising when the Kalb-Ramond potential B,,,, and/or the world-
‘ volume gauge field strength F},, acquire a nonvanishing expectation value [148],
ie.,

O Xt —iFF, 0 X" =0 (7.1.13)
where F,, = By, +27a'FZ. Recall from chapter IV that B,, and Fiy always
appear in this combination due to gauge invariance. In the present situation then,
T'-duality has induced F)5 = —tan (.

Now a nonvanishing F,,, will induce new couplings of the D-brane to the RR
form potentials [149]. From chapter IV, the full coupling of the RR fields to a

Dp-brane is given by the following integral over the world-volume

/ Tr [es‘ ZA(")] . (7.1.14)

Hence in the above example if we begin with a Dp-brane angled in the (X!, X?)-
plane, the result is a D(p + 1)-brane with a nonvanishing flux F1. This final brane
would then couple to both A®*2) and A®, and so should be regarded as 2 bound
state of a D(p—1)-brane with a D(p+1)-brane.

While the above description is formulated at the level of the string world-
sheet, we can easily lift the discussion to one of background fields. We begin by
constructing the solution for a (delocalized) Dp-brane oriented at an angle in the
(X!,X?)-plane, and apply T-duality on X? to find a solution describing the bound
state of a D(p—1)-brane and a D(p+1)-brane. This will be our approach to building
the background field solutions for these bound states. We illustrate the procedure
in this section by considering in detail the construction of a bound state solution for
p = 0 and 2 branes.

We begin with the low energy Type IIB solution describing a D-string

dsz=\/g—{( —di? + do? dy2+2(dy )

=2
1 7.1.15
AP = :i:(——l)dt/\dx ( )
H
e _ 5¢
. where z is the coordinate parallel to the D-string, and we have singled out one of

the transverse coordinates as y = y!, for later convenience. Now K is a harmonic
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function in the transverse coordinates. Normally, we would choose H = 1+ %‘(E / r)6
as in equation (7.1.7). For our present purposes, however, we need a slightly
different harmonic function in that we want to delocalize the D-string in one of
the transverse directions, in order to implement 7'-duality on the background fields
along this direction.

There are at least two different ways to do this. The harmonic function ¥ is
a solution of (the flat-space) Poisson’s equation in the transverse coordinates, with
some delta-function source. For example in (7.1.7), the source is chosen so that
8 OH = —plb A7 []5.,6(y"). The first way to accomplish a delocalization of the
string is to follow the ‘vertical reduction’ approach [150]. An infinite number of
identical sources are added in a periodic array along the y-axis. Then a smeared
solution may be extracted from the long range fields, for which the y-dependence
is exponentially suppressed. An easier approach, which might be termed ‘vertical
oxidation’, is to simply replace the above eight-dimensional -function source by
that of a line source extending along y, i.e., 8:0; 7 = —ufAsg H?.Zé(y‘). This
construction produces one of the anisotropic (p, g)-branes considered in [151].

In any event, the number of dimensions transverse to our smeared-out D-string
is effectively only 7, rather than 8, and the solution may be taken as in (7.1.7) with
p=2:

p e\’
H=1l+2 (-) (7.1.16)
S\r

where here r? = Z?,z(y")z. Note that the form of the RR potential in eq. (7.1.15)
tells us that we have a D-string oriented along z and smeared out in y, rather than
the other way around.

Now we perform a rotation on our delocalized D-string, in the y-z plane:

z\ _(sin¢ cos¢ F
(y) N (cos( —sin() (g) (7.1.17)

where ¢ will be the angle between the Z-axis and axis of the D-string, i.e., the z-axis.

We then have,

dz = cos(dZ +sin(dy
(7.1.18)
dy = cos(dj — sin( dZ
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and after the rotation, the solution (7.1.15) becomes

_ 2 .2
dsz=\/ﬂ_{{ dt2+(cos C+s’m2§) d:i-2+<iujl{—c+c052(> dgjz

H H
8
+2cos{sin¢ (——1) d:z:dy+z da: }
=2
o_ (L _ T
A 5 1) dt A (cos(dz +sin( dy)
2 = 3. (7.1.19)

Following the discussion at the beginning of this section, we apply T-duality
in the ¢ direction on our delocalized and rotated D-string. The resulting solution
should then describe a bound state of a D-point (p = 0) and a D-membrane (p = 2).
The ten-dimensional 7'-duality map between the spacetime degrees of freedom of
the type IIA and the type IIB string theories was given in [56]. Using our notation
and conventions, the map from the IIB to the IIA theory reads as

1 ez¢(b)
Gzz=—— e o
2z Jzz
&) ) ®)
_ JE,uJZV - BZ/.;BEU sz
Guv =Jpw — Gz = —
Jzz E7:
®)
B(a) B(b) +ZBZ[I1JV]2 B‘(?c;‘) — _JEIJ
zz JEZ
A(l) A(2) +XB(b) Ag) —
ADJ
3) (2) FHuYviz
Az = A +2——— T
BO 4D T
3 _ 2@ 342 p®) _ p® 4@ 2(u Y zlv pl2
Aivp = Apupz + (A suBual — B Avp— 4 Tz ) (7.1.20)

where the fields are as described in section 7.1.1. Here Z denotes the Killing
coordinate with respect to which the T'-dualization is applied, while y, v, p denote
any coordinates other than Zz.

A straightforward application of the T-duality map (7.1.20) to the solution
(7.1.19) yields

2 —dt? dz? + dif? : a2
as “@{ 7 +1+(5—C—1)c052§+§(dy)
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(1 —=FH)cos(

A¥ = + T* GT—TDoostc XN dEN Y

AD = 4 j; sin ¢ dt

B@ _ (11+‘( ;?_Cols)f:::?é dz A dj.
26 = 3t (7.1.21)

1+ (H —1)cos2¢

Hence as expected this solution involves both A® and AV indicating the presence
of a D2-brane and a DO-brane, respectively, in the (Z, #)-plane. Since the bound
state solution only depends on 2 = Z?,,z(y")2 as in (7.1.16), the DO-brane is delo-
calized in world-volume of the D-membrane. Remarkably 7T'-duality has produced
Gzs = Ggy so that the bound state is spatially isotropic, even though it has lost
the usual world-volume Lorentz invariance which characterizes the single D-brane
solutions (7.1.6). Note that the off-diagonal term in the metric (7.1.19), which was
produced by the rotation (7.1.17), has disappeared. Instead a Kalb-Ramond field
has been generated, as is required by the Kalb-Ramond coupling appearing in F®*
and by the presence of both A® and AWM in this solution. One can verify that
with ¢ = 0, the T"-dual solution reduces to a D-membrane with A) =0 = B®, as
expected. Similarly with ¢ = 7/2, A®) and B vanish leaving a single DO-brane
delocalized in the (Z, §)-plane. We should also note that this solution (7.1.21) fora
bound state of DO- and D2-branes appears in [152].

7.1.2.1. Mass and Charge Relations

In this section, we consider some of the physical characteristics of the above bound
state solution (7.1.21). The physical charge densities associated with the various
RR fields were defined in chapter IV, equation (4.1.32). We arrange that in our
solutions the form potentials vanish asymptotically so that the charge formulae yield
the correct results while ignoring the interactions between the different potentials.
In using the definitions of (4.1.32) in this section, we drop the use of the ¢ and
™ superscripts and instead label the charges with subscripts indicating the spatial
dimension of the brane to which they belong. The D-particle and D-membrane
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carry charges for AD and A®), respectively, which for the above solution yields
21)* Rz R; )
o= 0 Hely 2/?"&’#35 sin ¢ Asg
| 2K (7.1.22)
=+ ——upblcosCA
) ﬂﬂﬂ«‘-’s ¢ As
where in calculating go we have set Z () to have a range of 2w Rz (2w Ry). Here

¢ is a charge per unit area while g is the total charge. The corresponding charge

density associated with the delocalized DQ-branes is then

= b 7.1.23
do @nF RaR; ﬁnﬂé sin¢ Ag . (7.1.23)

For a p-brane, the ADM mass per unit p-volume is also defined in chapter IV,
(4.1.29). The ADM mass density of the bound state (7.1.21), which for the present

purposes is effectively a membrane with p = 2, is then
1
Moo = ~—ul’As .
0,2 2ﬂzﬂl 6

Therefore we have
2 1 /.
(Mo2)* = 55 (£ +4) - (7.1.24)
This relation indicates that this bound state saturates the BPS bound for this system
[65].

It is interesting to consider the ratio of the charge densities

D _anc. (7.1.25)
@

We also know that the source for gy is spread over the (Z,%)-plane, and so in the
stringy discussion surrounding (7.1.14), we would expect that the D-membrane
carries a flux’ Fzy = —tan(. In fact, this flux precisely agrees with that arising
in the preceding discussion given the identification: X! = §, X2 = Z. Further, we
might consider the limit

}i_%ng= —tan( . (7.1.26)

This suggests that the Kalb-Ramond field accounts for the total flux in &, and so

the world-volume gauge field should vanish, i.e., IE{,,Z,E = 0. Of course, Bg;-,) can

5 The orientation for F is in keeping with that used to calculate go.
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be shifted by a constant via a gauge transformation, which at the same time would
induce a nonvanishing IF% This has no physical consequences for the bound state
solution, but it is amusing to show that in this case the 7T'-dual solution is a rotated
D-string in a background where the Z and § axes are also tilted.

It is also interesting to see that the results for the charges are consistent with the

appropriate charge quantization rules (4.2.35), namely
71_ le3_
@p = Npttp = np(2m)2 P (o) 177 (7.1.27)

where p,, is the charge density of a fundamental Dp-brane and i, is an integer. If
one begins with a D-string with q; = njui, then the charges in the T'-dual bound
state satisfy go = nouo and g = nau; with n; = —(ng + nz). This requires taking
into account that the range of § in the original solution before T'-duality solution
is R} = o/ / Ry, and similarly the gravitational couplings of the T-dual theories are
related by &’ = kvVa'/ Ry. Further, one notes that the rotation angle is quantized as

7.1.3. More bound state solutions

In the preceding section, we presented in detail the procedure for constructing the
solution for a DO-brane bound to a D-membrane by beginning with a D-string. It
is now a simple matter to construct other bound state solutions by simply changing
the starting point of the construction. In general if we begin with a Dp-brane,
the resulting solution describes a D(p-1)-brane bound to a D(p+1)-brane. In the
following, we present the results for p = 2,3,4 and 5. We also give a solution
describing a bound state of a D4-brane, D0-brane, and two different D2-branes,
which results from applying our procedure twice on a certain J-membrane solution.

In general, the resulting bound state solutions are anisotropic in that the full
Lorentz invariance in the world-volume of the D(p+1)-brane is lost. The invariance
that remains is Euclidean invariance in the plane in which the D(p—1)-brane is
delocalized, i.e., (Z,%)-plane in (7.1.21), and Lorentz invariance in the remaining
world-volume directions of the D(p+1)-brane.

As p is varied in these examples, the relevant T-duality alternates between

mapping IIB fields to ITA fields, and vice versa. The former transformation is given
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in (7.1.20). Using our conventions, the T'-duality map from type IIA theory to the
type IIB theory [56] is explicitly:

1 ® e
Jzz = e ~
Zz zz
(@) gla) (a)
T =G GZ;;GEV—BE‘;;BE?I Je = __'BEZ
wr =Cuy — GEE wo zz
G, B G;
B® - B@ +2‘[T“25”_]i Bgz - — ‘;’;
Gy, BEAY
3 1 1
AD = 40); ~24() B 2T E x =—AP
M
AD - 40 _ 4 Gy
s Gzs
(@) 4D 3)
AD 4 _3 ( AV @ _ CapBuads | Cawlupz ) (7.1.28)
BypZ prp o\ e "vpl Gs: Gs3

The field definitions are again given in section 7.1.1, and Z is the Killing coordinate
which is T-dualized (while y, v, p & Z). Note that in this map only the elements of
the four-form RR potential involving Z are given. The remaining components are

determined by requiring that the corresponding five-form field strength is seif-dual.

7.1.3.1. p = 3,1 branes

Here our approach is to begin with the D-membrane solution (7.1.6) carrying
electric charge from A®). We single out y = ! and delocalize the solution in this
transverse direction. Then we rotate by an angle ¢ as in (7.1.17) where we set

r = r!. The resulting solution is

_ 2)2 2 in?
a5 = VA{ L) | (95 ) ag s (Bl v cost () a?

+2cos(sin¢ (% - 1) dzdg + dr? + 72 (dez
+sin® 6 (dgo% +sin? p; (dga% +sin? (d(p% +sin® ga:,dgoﬁ) ) )) }
A® = + (% - 1> dt A (cos ¢ d& + sin € dij) A dz?
e - V. (7.1.29)
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where H = 1+ £(¢/ r)*. We have also introduced polar coordinates on the effective
transverse space (originally described by y* with 7 = 2,...,7). This facilitates
writing the magnetic contribution to the four-form RR potential which appears after
T'-dualizing.

Now applying T'-duality with respect to § as in (7.1.28), we obtain the following

solution:
—di? + (da:z)z dz? + di?
2 _ : G
ds -\/ﬁ{ ¥ +1+(3f—1)coszc+dr +r (da
+sin 6 (dp? +sin® o1 (dSO% +sin’ o3 (d"”% + sin’ "03@1))) ) }
(4)= COSC}C_]' H Ad~/\d2/\d~
A T2 Tx 1+1+(J{—1)COSZC wNEEN AN

T pt* cos ¢ sin* 6 sin® P1 sin? @, cos ©3d8 Adp1 Adea A dps
AP = + ﬁg{_—l sin ¢ dt A dz?
(1 —-FH)cos¢ sin¢
1+ (H —1)cos2¢
ez¢(b) - H .
1+(H ~1)cos2(¢

B® _ dZ A df

(7.1.30)

Note that the 7-duality map (7.1.28) explicitly produced the electric component of
the potential A, and the magnetic component was determined by demanding that
F) be self-dual. As evidenced by the presence of the four-form and two-form RR
potentials, we have a bound state of a D-three-brane and a D-string.

7.1.3.2. p =4,2 branes

Once again we apply the same procedure of delocalization and rotation on a
D3-brane, followed by T-duality. This case is slightly more complicated, as the
D3-brane is charged by the self-dual five-form field strength. Thus one must use
the linear combination of electric and magnetic fields given in (7.1.10).
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The rotated solution is

4e? = \/ﬁ{ —dt? + (d:z:;zz + (dz:3)2 N (coszg + sin? C) 452

H
P 1

+ (Sl—;c—£+cos2 C) dj* +2cos(sin¢ (56_ - 1) dzdg

+dr? 472 (d6? +sin? 6 (dig? + sin® py (de} + sin’ ¢2d3 ) ) ) }

A® = i% (% - 1) dt A (cos ¢ dE + sin € df) A dz? A dz®

+ %uﬁ:’ sin® 9sin® @) cos @y (sin¢ dE — cos ¢ df) A df A dipy A dips
e2” _ 1 (7.1.31)
where H = 1+ 4£(¢/ r)3. Note also that the dilaton here is a constant which has been

set equal to zero.

Applying the duality map (7.1.20) gives us the result:
—df? + (dz?)* + (dz3)’ 22 + df
VIS "

H 1+(FH —1)cos?(¢

+dr? +r% (d02 +sin® 6 (dso% +sin’ gy (d‘P% +sin® <p2d<p§) ) ) }

T sin{ dt A\ dz° A dz
iyﬁ;osc
B@ _ (1 —=FH)cos¢sin¢
I+ (H —1)cos2¢
ez¢(¢)= \/ﬁ
1 +(H — 1)cos2¢

sin® @sin® @} cos p df A dip; A dos

dZ A dj

(7.1.32)

Here the interpretation is that of a D-membrane, associated with the electric
component of the three-form potential, Ag)zzs, in a bound state with a D4-brane
g’;gl%. This is consistent with the dyonic nature of
the initial five-form self dual field strength.

In [153], the authors give a solution of a bound state of a D-membrane with a

carrying a magnetic field with 4

D4-brane. Their solution, obtained from compactification of D = 11 supergravity,
agrees precisely with the solution (7.1.32) given above.
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7.1.3.3. p=S5,3 branes

Here the starting point is a D4-brane which would carry an electric six-form field
strength according to (7.1.6), so we must Hodge dualize to the magnetic four-form
field strength (7.1.9). The magnetic potential is again most easily expressed using
polar coordinates in the transverse space around the delocalized D4-brane. Applying
our standard construction, the final solution, as the reader can easily verify, is

—d? + %, (dzf)° dz? + d?
2 _ =2
as _\@E{ % TTH (= Deos? ¢

+dr? + r? (d92 +sin® 6 (dsﬂ% +sin® ‘Pld“’%)) }

1+ L(H —1)cos?¢
@ = 2 si 2 in g dEAdGAdOAd
A F ub sm(( T+ (= 1) cos’¢ sin“ 6 cos ¢ dT A df w2

ﬂ:%dmdxzxxdx%dx‘*
AP = + 0% cos ¢ sin® B cos p1db A dpr
_ (I =F)cos¢sing
14+ (FH —1)cos2¢

2¢(b) - 1
© T —Dcos’¢ (7.1.33)

where H = 1+5(¢/ r)2. In this case the bound state is made up of dyonic D3-branes

dz A df

and magnetically charged D5-branes.

7.1.34. p = 6,4 branes

Beginning with a D5-brane, we dualize the associated electric seven-form field
strength to a magnetic three-form field strength and compute the two-form magnetic
potential in polar coordinates. After repeating the usual steps once again, the final

result is

—df + Y3, (dof)? dz2 + di?
2 _ j=2
ds _\/ﬁ{ H +1+(5f—-1)coszg
+dr? + 12 (d92 + sin? edgo%) }

pLsing
1+ (H —1)cos2¢
AW = x pecos( cos § dpy

A® = cos 8dz A dij A dip,
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B@ - (1 —=3)cossinC
14+ (H —1)cos2(
ezé(a) _ 1

- \/?—f(l + (3 — 1) cos?()

dZ A dj

(7.1.34)

where H = 1 + /7. The bound state here contains a D4-brane and a D6-brane,

which are both magnetically charged.

7.1.3.5. p=4,2,2,0 branes

It is a simple exercise to apply our procedure involving delocalization, rotation and
T'-duality with respect to more than just one of the transverse coordinates of the
original D-brane solutions. The resulting solution describes a bound state involving
more than just two types of D-branes. To illustrate this idea, we considered the
following example: Beginning with the D-membrane solution (7.1.6), we singled
out two orthogonal planes: (z!,#!) and (z2,y?). Applying the procedure in the
(z!, y')-plane — with a rotation angle ¢ to (%, §) — produces a bound state of p = 3
and 1 D-branes, as in part (i) above. Repeating the procedure a second time in the

(22, y°)-plane — rotating by v to (£, §) — yields the following solution

_ =2 g~ A2 o a7
st = VT dt2+ d#? + di? L d*+dj
H  1+H-1)cos?¢ 1+(H —1)cos2y
+dr? + 72 (dez+sin29(dgo§+sm2¢1 (d<p§+sin2 <p2d<p§)))}
@) _ . (H{—1)cos¢siny _ - (H—-1Dcosysin( . .
A + T+ — Dcos? ¢ dtANdT ANdy + 1+(5—C—1)cosz¢dt/\dz/\dy
+ 103 cos ¢ cos 1 sin’ @sin® ¢, cos 2 df A dpy A dga
AD = £ sin¢sinyg dt
(a)=(1—f}{)cosCsin<: _ -
B 1+ —H)cos2¢ dz A dg
(1 —-H)cosy sinyy | .
T Ir - Doosty ENH
3
a Hz
e - (7.1.35)

(1+(H —1)cos?¢) (1 +(FH — 1)cos? )
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where H = 1 + %(Z/r)3. The electric potential A1 indicates the presence of
DO-branes, while the magnetic component of A® arises from D4-branes. Mean-
while the two electric components of A® indicates that there are two kinds of

D-membranes, one in the (Z,%)-plane and another in the (Z,7)-plane.

7.1.4. Discussion

Using T'-duality, we have provided a straightforward construction of low-energy
background field solutions corresponding to D-brane bound states for which the
difference in dimension is two. We have also presented a number of explicit
examples of such solutions. Since supersymmetry is preserved by T-duality, the
bound state solutions retain the supersymmetric properties of the initial configuration
which involves a single D-brane. Hence these bound states preserve one half of
the supersymmetries. Our discussion of the background fields complements that
of Polchinski, who recently gave a string world-sheet description of these bound
states [65]. Indeed (7.1.24) explicitly shows that the bound state of p = 0, 2 branes
saturates the BPS bound given there. Similarly extending the calculations of section
7.1.2.1 to the other examples, we find

1
(Mp_1pr1)” = 57 (q},_l +q12,+1> (7.1.36)

with Mp_| 51 = %;/h_p. In close analogy to equation (7.1.23), we defined the
charge density of the D(p — 1)-brane as §,—; = (2m)2RzRy)~gp—1. For the dyonic
D3-branes, the charge density that enters this formula can be written as the sum of

the electric and magnetic contributions:
l e m
Q3=2 (¢13+<13)-

Note, of course, that g§ = ¢5°. In the last example with a bound state of four kinds
of branes, this relation extends in the obvious way with a sum of squares of all of
the charge densities.

While we have explicitly given all the bound state solutions with asymptoti-
cally flat Minkowski-signature geometries, one could also apply our procedure to

constructing more exotic solutions involving instantons, strings, or domain walls
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— i.e., Dp-branes with p = —1,7 and 8. For example, a euclidean p = 0 solution
in the type ITA theory would correspond to an instantonic string. Applying our
construction would lead to a ‘bound state’ solution with an instantonic membrane
(p = 1) and a delocalized instanton (p = —1). One could also further explore the
possibilities arising from multiple applications of our construction, as considered
in the example of section 7.1.3.5. Another obvious extension would be to begin
with the multiple D-brane solutions discussed in chapter IV. The harmonic function
(7.1.7) appearing in the original solutions (7.1.6) was chosen to solve Poisson’s
equation with a single delta-function source. It is straightforward to introduce more
sources producing solutions which describe several separated parallel D-branes.
Used as the starting point for the construction given here, these solutions would
yield multiple bound states resting in static equilibrium — a possibility which arises
due to their supersymmetric character.

It would also be of interest to examine in more detail the correspondance of our
low energy background field solutions with the stringy description of these bound
states. The charge and mass densities can in principle be extracted from a one-loop
string amplitude describing the interaction of two D-branes (see e.g., [65]). This
approach was in fact recently considered for the present D-brane bound states by
Lifschytz [154]. Alternatively, by examining the scattering of closed strings from
D-branes, one can also extract all of their long-range fields [95]. Applying this
technique to the D-brane bound states, one again finds a precise agreement between

these long-range fields and the corresponding low energy solutions [155].

7.2. Membranes at angles

We begin by writing down the solution describing an arbitrary number n of D-
membranes, each of which is rotated by certain SU(2) angle, in the type IIA low
energy effective string theory. The solution contains only a nontrivial (string-frame)
metric, three-form RR potential and dilaton:
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4
dsz=\/1_+_x[1—i—x(—dt2+§ (dzf)*

n 9
30 X { (R 1o’ + (R jd2 1 ) + 3 (a)” ]

a=1 =5

n
A® - _1_d+t_x A { Z X, (Ra)z id:z:i A (Ra)4jd:1:j
a=]

n
— Z X, Xp sin? (ag — ap) (dz:l Adz® —dz? A d.'L'4) }
a<b

2 V13X (7.2.1)

where

x=zn:xa+zn:xaxb sin? (ag — o) -

a=1 a<b
Above, the rotation matrix R, associated with the a’th D-membrane is given by
cosqa, —Ssina, O
_ | sina, cosa, )
Rq ( O COS Qg sina, ) (7.2.2)
—sinqg COSQq

The matrices acting in the space of z*’s are easily recognized as SU(2) rotations

as follows: one defines the complex coordinates z! = z! +4z? and 22 = z3 +

iz*. Then the above rotations are given by (z!, 22) — (e#®z!,e™i®22) or 2t —
[exp(Gaaos)] : ;j27. One expects from [144] that restricting the relative orientation
of the membranes in this way will preserve some of the supersymmetry, and we
confirm this fact in the following.

The functions X, are harmonic functions in the transverse space of y*’s. That

is, they solve the flat-space Poisson’s equation in the transverse space, e.g.,

9
598:8;%Xs = —63A4 [[6 (yk - y{;) : (7.2.3)
k=5
yielding the solutions
DC(g)—l(e—“)3 (1.2.4)
@ 3\G-a@) - >

Above, £, are arbitrary positive parameters which have the dimension of length, and

we use A4 to denote the volume of a unit four-sphere, given in (5.1.4). In fact, one
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may introduce any number of delta-function sources at arbitrary positions on the
right hand side of equation (7.2.3), and the corresponding solution would describe
a system of parallel branes.

A few words are in order as to the origin of this solution. It is in effect an
interpolation between the known solutions for parallel D-membranes, and that [156]
for orthogonal D-membranes intersecting over a point. It is straightforward to verify
that when the angles are all set to o, = 0, the solution reduces to that of n parallel
branes lying in the (3%, y*) plane. Note that in this case the membranes have also
been delocalized or smeared out in the z! and z> directions. One may also verify that
choosing all ¢4 = a, simply corresponds to an overall SU(2) rotation of the previous
solution. Similarly the known configuration of orthogonally oriented membranes is
reproduced by choosing a,;’s to be either zero or /2. Further with the o, setto either
o and /2 + a,, equation (7.2.1) corresponds to a rotation of this solution. Finally,
one may verify that making a further SU(2) rotation of the entire solution simply
corresponds shifting all of the angles o, by the same constant. For this to work, it is
important that the second term in A®) is proportional to dt A Re(dz! A dz?), which
is invariant under SU(2) rotations. Verifying that (7.2.1) solves the low-energy field
equations of type ITA string theory was done with the aid of a computer.

To remind the reader of our notation: we refer to z* and * as world-volume and
transverse coordinates, respectively, as was the case in chapter I'V. Here however, for
a given brane, a particular (linear combination of) z* may actually still correspond
to a transverse direction, although it will be one in which the brane is delocalized.
Hence in the next section, when we smear out the solution in some y* making
the solution independent of this coordinate, the designation for the coordinate is
changed to z'. We will also assume that the z* coordinates are all compact with a

range of 2w L;.
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7.2.1. Mass and Charge Relations

In this section, we consider some of the physical characteristics of the above
configuration (7.2.1). In particular, we calculate the mass and charge densities of
our solution. The latter densities are calculated using asymptotic flux integrals, and
so they are completely determined by the leading-order behavior of the asymptotic
fields. In examining the solution, one sees that these leading order fields are simply
linear superpositions of the asymptotic fields generated by the individual rotated
membranes. Hence we generalize the rotation appearing in these linearized fields
by replacing a, by an independent angle 3, in the lower two-by-two block of the
rotation matrices (7.2.2). Such a configuration would only solve the linearized
asymptotic equations of motion, and not the full nonlinear supergravity equations,
but this generalization does yield some interesting insight when examining the BPS
bound.

The ADM mass per unit p-volume is defined in (4.1.29). Calculating the mass
per unit four-volume (of the internal space of z*’s) for our angled system gives us

the result
./q.4 e 3
M= 53 a§=l £, . (7.2.5)

Thus the mass density is simply the sum of the mass densities of the constituent
branes, which was to be entirely expected. Note then that this result is completely
independent of the rotation angles.

The membranes carry an electric RR four-form field strength and the corre-
sponding physical charge density is given by (4.1.32)

€ = ﬁ f W SO (7.2.6)

Hodge duality produces a six-form which is then integrated over the asymptotic
four-sphere in the transverse space and some two-torus in (z!, z%, 22, z%). Thus
given, the three-form potential in (7.2.1), in applying (7.2.6) we obtain a number
of independent charges related to the choice of asymptotic surface over which one
integrates. For example the term in A® proportional dt A dz? A dz* yields a term

in *F® to be integrated over the compact coordinates z! and z> as well as the
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four-sphere at infinity. We use the following notation to write the resulting charge

Ag
qi3 = —a3; = __\/_i_ (41r2L1L3) 283 cos ag cos B, (7.2.7)

where the antisymmetric matrix notation will be useful later on. This result gives

a=1

the charge per unit area in the (z2, z*) plane, i.e., the plane in which the branes lie
for cig = B, = 0. In order to compare the charges, however, we should divide out the
area of the orthogonal (z!, £3) torus in order to produce a charge per four-volume
in the entire compact space. Hence we define ¢&;3 = ¢5; /(41r2L114). In a like

manner all the charge densities ¢2;; can be calculated and we list the nonvanishing

contributions
¢C13 = \/_K Z £ cos ag cos B,
qela= — —m Zﬁi oS ag Sin g,
a=l (7.2.8)
g3 = \/_& ; £3 sin arg OS fa,
- 3
Q%24 = \/— agf 2 Sinog sin B, .

Of course these charge densities are dependent on the rotation angles which orient
the various D-membranes. Note that if o, = §, = 0 we recover the expected charge

configuration of a collection of parallel membranes lying in the (z2, z*) plane, i.e.,
~ Ag ~ ~ ~
q%13 = '——Zfz, 214 =0%3=q°4 =0

where the single nonvanishing charge density is simply the sum of that for the
individual branes.

Having calculated these physical characteristics of our configuration of D-
membranes with angles, we would like to examine the BPS bound. The latter may
be determined from the eigenvalues of the Bogomol’nyi matrix, which is derived
using both the supersymmetry algebra and the asymptotic form of the background
fields [79,157]. Unbroken supersymmetries arise when this matrix has eigenspinors
with a vanishing eigenvalue. In the present problem, the Bogomol'nyi matrix
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is [158]
Mz M+ 7;;56‘;% (7.2.9)
for which the distinct eigenvalues are
M + -\7—%;\/ ¢%i;q%; = %e,-jkzq‘e,-jiek, . (7.2.10)

In these formulae, the implicit sums all run from 1 to 4, and we use the antisym-
metric notation ¢¢;; = —¢®;; introduced above. Also note that the two signs in the
eigenvalues are chosen independently. Since the mass is positive, the eigenvalues
for which the first sign is positive cannot vanish, and hence at least half of the super-
symmetries are broken by our solution. The vanishing of the remaining eigenvalues

can be expressed in terms of a BPS mass limit
2 1 .. g€ 1 e..qe
My = 55 | €425 + 565 m ) - (7.2.11)

Substituting our values for the charge densities (7.2.8) results in

n 2 n 2
M: = (2%) i (Z & cos(ag F ,3,,)) + (Z £ sin (o F ﬂa))

! = (7.2.12)
In comparing these BPS bounds (7.2.12) with the mass (7.2.5), we find that in
general the mass exceeds the former bounds. To make this more apparent, one may
introduce complex variables Z1. ; = (A4/ 2/{2)82 exp[i(ag F Bz)]. Now it is clear
that generically M2 = (3", [ Z+ q4[)? exceeds M2 = |3, Z+ /> Itis also clear that
the only way to lower the mass to one of the bounds is to chose all of the phases to
be equal, i.e., ¢y — B, = 26 or a4 + B, = 26'. There are only two distinct choices
here up to an overall rotation. If we set a; = 81 = 0 to fix the overall orientation of
the configuration, we must choose the remaining angles with 8, = a4 or Bz = —a,.
The former corresponds to the choice made in our solution (7.2.1), and for which we
then have M = M, and one-quarter of the supersymmetries being preserved. The
latter choice, for which M = M_, would yield a slightly different configuration.
Complex SU(2) rotations are again relevant in this case, but now the SU(2) acts on

(2!, 22)=(z! +iz?, 3 — iz*). Our solution would be modified by changing the sign
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of o in the lower two-by-two block of the rotation matrices (7.2.2), and the sign of
dz? Adz* would be reversed in the last term in A®). Asexpected, our results here are
entirely consistent with the analysis of [144] mentioned earlier which is formulated
at the level of the string world-sheet and provides an independent confirmation of

their results when applied to D-membranes.
7.2.2. T-Duality

The ten-dimensional T'-duality map between the type IIA and IIB string theories
was given in equations (7.1.20) and (7.1.28). In the next subsection, we consider
the effect of T-duality along coordinates that are in the transverse space. The
effect of these transformations is to extend the dimension of the D-branes. The
results then are new solutions describing Dp-branes with relative SU(2) angles and
so remaining parallel over a (p-2)-brane. In subsection 7.2.2.2, we consider the
effect of T'-duality transformations along world-volume coordinates. The results
here involve more exotic bound state configurations of D-branes, as found in the

previous section.

7.2.2.1. Transverse directions

In order to apply 7I'-duality along one of the transverse coordinates, e.g., 7, we
must first delocalize the solution in this direction, which we then denote as z°. This

amounts to replacing the sources in (7.2.3) by four-dimensional delta-functions,

producing solutions of the form

=

where now 7 = (y6, Y, 8,17, A straightforward application of the 7T'-duality map
(7.1.28) from the type IIA to the type IIB theory along z° in this smeared out solution
yields

5
dsz=m[—1 ix(-—dthz (dzf)?
i=]

- 9
D IR (G B R M

a=1 i=6
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= D Ta (R)ids’ A (Ro)jds?

a=1

- i XaXs sin® (ca — p) (dz! A da? — dz? A da?) | }

a<b

k(3
+dz™ Adyt A dy? A e,,,-jkak{ > " Xa (Ra)'ydat A (Ra)3md:z:”‘}

a=|

F® —dt A dd /\dy"/\ak{l

2 1. (7.2.13)

This solution obviously describes a system of angled D3-branes, as indicated by the
presence of the nontrivial five-form RR field strength. We have written the solution
in terms of the self-dual field strength, rather than the potential A®, because the
magnetic part of the latter is rather unwieldy when the D3-branes are centered
at arbitrary positions ¥,. If cne sets 7, = 0, the potential can be given in a fairly
compact form using polar coordinates on the transverse space. Note also that ep;;¢, is
the antisymmetric Levi-Civita symbol on the transverse space with h, %, j,k=6...9
and eg7g9 = +1.

One can carry this process further by delocalizing the above solution in another
transverse coordinate y6 (which we then denote z8 — also, note that one now has
Xg = £ /|7 — ¥al), and applying T-duality along this direction to produce a system
of D4-branes with SU(2) angles. Here, the T-duality map from type IIB to type
ITA generates a magnetic three-form potential through AE,Z,, A(4) v p6 (the remaining
terms in this relation vanish in the present case). This part of the transformation

4 &)

is equivalent to mapping the field strengths Fj 5, = 0pa6? since the delocalized

solution is independent of z6. Hence the T-dual solution may be expressed as

ds? m[ (dt2+z dz')

f=]

n 9
+ > %af [(Ra) o | ‘4 |(Ra)? jdo | 2}) +3 (dyi)z}
a=1 =7
n
F® =dyt Ady? A e,-jka,,{ > Xa (Ro)'dzt A (Ra)3mdm"‘}
=1
62¢(G) _ ; ’

. 7.2.14
1+X ( )
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Again the magnetic field strength takes a much more compact form than the corre-

. sponding potential for the multi-center solution. One sees that this solution describes
a system of D4-branes since the magnetic F¥ is the only nontrivial RR field.

Of course, this procedure of T'-dualizing in the transverse space can be continued

to produce configurations of higher dimensional D-branes with angles. Since the

SU(2) rotations effectively exiend the dimension of the world-volume by two, the

remaining solutions will have a transverse space of dimension lower than three, and

hence will not be asymptotically flat. For example, the solution describing angled

D6-branes would have a transverse space of dimension one, and thus would have

the appearance of an anisotropic domain wall.

7.2.2.2. World-volume directions

An alternative to the above procedure is to apply 7'-duality in the world volume
directions of the original solution (7.2.1). Since the membranes are rotated in these
directions, T"-dual configurations will involve D-brane bound states for which the
difference in dimension is two, as discussed in section one. To simplify the procedure
we specialize the general solution to the case of two D-membranes and also set
the rotation angles (a1, a2) = (0, a). With these simplifications, equation (7.2.1)

reduces to

ds? = Vi+ X {l—i—x( — A2+ (1 + %) [(d:r:[)z + (d:z3)2] +(dz?)? + (dz*y?

2 2
+ X, [(cos adz! — sin adzz) + (cos adz?® +sin adz“) ] )
2 -y 2

+ 3 (dv) }

=5
dt

A® = o A { — (X + X1 %) sin? adz! A dz® + X, sin acos o dz! A dzt

— X, cos a sin @ dz? A dz°

+ (xl + %, cos? o + X X, sin? a) dz? A d:v4}
e2® - 1+ %X (7.2.15)

. and X is given by
X = X; +X; + X1, sin® .
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We also simplify the following results by positioning the second membrane at the
origin, i.e., we set 2 = 0, but leave ) arbitrary.

As the first example, we apply 7'-duality along the z* direction — note that this
direction is tangent to the world-volume of the a=1 membrane, but is angled with

respect to the second. We find that

ds* = m{i‘i_x( — dt? +(1+X1) (dz1)2+ (dz2)2

(dz3)” + (dz%)*
1+ X;sin?

+ Xa (cos adz! — sinadz ) )

+dr? + 12 (d92 +sin?4 (dgo{-+sin o1 (dcpz + sin go;y_dtp%))) }

1+3C1

1+ xz sin? o
1

X5 sin? o 1+3C

+£% sin a sin? @ sin? ¢, cos @, (cosad:z:

AD = —-—fXZzsm a{ }dt/\d:c Adz3 Adzt

1 .
_Exzcosasma{l_*_ }dt/\dz Adz3 A dz?

- sinadz’-) Ad8 A dpy A dps

A(z)-——d-t——/\ {xzcosasmada: +(IX.' %, sin? a) dr }
1+X
Xocosasina
®) _ A2
B 1+x25in204d$ A da’
2¢(b)= 1+X 7216
© 1+ %, sin? (7.2.16)

where we have transformed the coordinates transverse to the system into spherical
coordinates to facilitate the computations of the four-form RR potential. Setting
X, = 0, one can verify that this solution reduces to that of a D-string lying parallel to
z? and at the same time delocalized in z!, 3 and z*. Setting X; = 0 and comparing
with the solutions of the first section of this chapter, one finds that the solution
is precisely that of a D(3,1)-brane bound state. There has been a rotation of this
bound state so that it lies in (cos a £ +sina !, z3, z*) with the D-strings oriented
along the first direction. The bound state is also delocalized in the orthogonal
cosaz! — sinaz? direction. The angle o also determines the relative charge

densities of the D-strings and D3-branes—in section 7.1.3.1 { = 7/2 — a.
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Next, applying T-duality in the y? direction produces a solution of the form

4 -V TTE l_ff; . (dz!)? + (dz?)* + (dz3)* + (dz*)’ +i (@)?)

1+3Czsin2a s
1-

_Xzcosasina
1+ X;sin?
+£% sin® o sin® § sin? @1 cos prdf A dpy Adps

AP dt A (alac1 Adz? —dz A dx4)

1+X, sin? o

m_ ) Fen =
A { Tix l}dt
B@ - 11:2_:;? asi:;:‘ (d:v3 Adzt —dz! A dmz)

2
3
. 3
2@ o (1+ 1) (7.2.17)

- (1 + X sin? a)?"
In this case setting X> = 0 reduces the solution to that of a D-particle positioned at
71 and delocalized in the z* directions. Setting X; = O reproduces a special case
of the D(4,2,2,0)-brane bound state given in (7.1.35). Here the two angles (,¢ of
equation (7.1.35) are related, and givenin terms of e as { = —¢ = 1/2 — .
As a final example, we perform T'-duality along z* in the two membrane solution

(7.2.15) with the resulting solution

d32 =\/1—+—x{ —dtz + (1 + fX.} + xz 0052 O{)l Ec.lz:;)z + (1 +Xs SiIl2 a) (dm2)2

. 1 2 3 2 4 2 9
_ 2Xpcosasinadzide® | (dz?)” + (dz*) +z(dyi)2}
i=5

1+X 1+ X +X;c052

X5 cosa sin o 1 1
A® - == + dt A dz! A dz? 4
2 1+X 1+X+Xacos? T T Ndz

{1 -2 . 1
2361 2(1+9C1 -i-x'zf.‘.OS2 a)
1+X,
2%, (1 +X)
+£3 sin® @ sin® @) cospadz! Adf A dpy Adps

}dt Adz? Adz A dz?

+£3 cos a sin’ 8 sin? ¢; cos @y ( cos a dz!

- sinad:z:z) ANdE ANdpr Adps

A® o xlz iu;a dt A { sina (1+X;)dz! +cosa da:z}
B(b) - _ fX:2 COS ¢ Sin ¢ dm3 A d$4

1+X;+Xcos?
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62¢(b) _ 1+X
T1+X;+Xscos2a”
where we have also put ; = 0 here for simplicity. With X; = 0, we have a single

D3-brane filling (z2, 3, z*) and delocalized in z!. With X, = 0, one may verify that

the result describes a D(3,1)-brane bound state parailel to (sin o z! +cos a z2, 23, z%)

(7.2.18)

with the D1-branes lying in the first of these directions. Again the relative charge

densities of the bound state are determined by the rotation angle.
7.2.3. Discussion

In this section we presented anew low-energy solution (7.2.1) describing an arbitrary

number n of D-membranes oriented at angles with respect to one another. We were
also able to show that this configuration saturated the BPS bound because the relative
rotations between the membranes are in an SU(2) subgroup. As aresult, the system
preserves one-quarter of the supersymmetries.

Our solution provides the most general supersymmetric configuration containing
(only) two D-membranes. One might think of extending the rotations considered
here to an arbitrary SU(2) rotation, but this generalization would only change the
overall orientation of our solution. Following the analysis of [144], with three
D-membranes one might make SU(3) rotations while still preserving one-eighth
of the supersymmetries. This would extend the space in which the rotations act to
produce an effective seven-dimensional world volume. It would be interesting to
find the corresponding background field solution. For general n, one might consider
SU(n) rotations [144], however, in practice one would be limited to SU(4) by the
fact that the spacetime is ten-dimensional.

By applying T'-duality to the membrane solution (7.2.1), we produced solutions
describing systems of higher dimensional D-branes oriented at angles, and also
configurations involving D(p+1,p—1)-brane bound states. Since supersymmetry is
preserved by T-duality, these other new solutions also preserve one-quarter of the
supersymmetries. By explicit construction, we have confirmed the existence of
a supersymmetric configuration including DO0-branes and D(4,2,2,0)-bound states.
These supersymmetric solutions were conjectured in [154], where it was shown that

the interaction potential precisely vanished between these two objects.



VI

Conclusions

String theory has become an important area of research in recent years. As elo-
quently argued by Polchinski [3] this is due in large part to string theory being the
only way we have yet found to soften the divergences of quantum gravity while re-
maining consistent with Lorentz invariance. This feature alone makes string theory
a worthy candidate for study.

The study of black holes in the context of string theory is important for two
reasons. First, the existence of long-standing theoretical questions such as the
microscopic interpretation of the entropy of a black hole, and the black hole infor-
mation paradox make it clear that a quantum theory of gravity is necessary. If string
theory pretends to be a quantum theory of gravity, then it should provide answers
where other approaches fail. As we have seen in chapter IV, string theory has made
progress on this front.

The second reason for the study of black holes in string theory is that black
holes are part of the nonperturbative regime of the theory. It has become clear that
knowledge of the nonperturbative regime of string theory is necessary to describe
the microscopic entropy of a black hole, or to shed light on cosmological questions.
Thus black holes can aid us in discerning the nonperturbative structure of the theory
of strings.

During the past two years, progress in this area has advanced dramatically. With
this has come the detailing of the various dualities which relate different parts of
string theories to other parts, or different string theories to other string theories. This
in turn has led to the discovery that there are other objects than strings contained
in the theory of strings. Dirichlet branes (D-branes) provide certain states that
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are necessary to fill out multiplets of states which are related by the system of
duality symmetries of string theory, which otherwise would be incomplete. With
the inclusion of D-branes, the system of dualities points to the astonishing, yet
natural, conclusion that the four consistent string theories in ten dimensions are
different ways of describing a more fundamental eleven dimensional theory, which
has been dubbed M-theory.

The Dirichlet branes have also proven themselves very useful as probes into the
nonperturbative behavior of string theory, as it is the degrees of freedom of a bound
state of D-branes that we counted when we computed the microscopic entropy
of two different black holes in chapter VI. In the first section of chapter IV, the
microscopic entropy of a five-dimensional extremal, supersymmetric and rotating
black hole was computed using the D-brane technique. This calculation extended
the validity of the then-nascent “D-brane technology” to the case of rotating black
holes in five dimensions.

The extension of this technique to non-extremal, and thus non-supersymmetric
black holes was the subject of the second section of chapter V1. Again this research
represents the first time such a computation was done for the case of non-zero angular
momentum, and as such was an important test of the D-brane technique. The fact
that computations of this type are successful is substantial evidence that string theory
“knows™ about the microscopic degrees of freedom underlying the thermodynamics
of black holes. Thus the theory of strings is making its first successes as a candidate
for a quantum theory of gravity.

These computations also make it clear that D-branes and their bound states and
black holes are closely related. Itis thenlogical that to advance the state of the art of
one is to do so for the other, and that by using them together we have powerful tools
for the study of nonperturbative string theory. This is not to mention that D-branes
are interesting objects in their own right.

In chapter VII, the knowledge of the properties of bound states of D-branes was
improved in two ways. In section one it was demonstrated that by means of a simple
construction combining rotation with one of the duality symmetries of the theory of
strings, that of T"-duality, the set of known D-brane bound states can be augmented
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considerably. More specifically, it was shown that two D-branes, which differ in
dimension by two, for example a D-membrane and a D-point can form a bound
state which is supersymmetric. In the final bound state, the D-brane of smaller
dimension is effectively “delocalized” in its partner, i.e., one could think of it as
having “dissolved” in the other D-brane. Formerly, the search for supersymmetric
bound states of D-branes was biased toward those in which the dimension of the
constituents differed by four. The reason for this prejudice is that in this type
of bound state the D-branes can have arbitrary separation. Thus a large class of
D-brane bound states which had been previously overlooked were brought to the
attention of the string theory community.

The second part of chapter VII concerns a further extension in the set of known
low-energy background solutions which represent D-brane bound states. Here,
bound states which are composed of an arbitrary number of D-membranes which
intersect at arbitrary angles were constructed. These existence of these solutions
had been demonstrated by other researchers [144], however the explicit solution had
not been previously written down. It was also demonstrated that enlargement of the
collection of bound states could be carried out by applying the duality symmetries
of string theory to the basic solution.

8.1. Future directions

String theory has begun to deliver on its promise as a possible theory of quantum
gravity. However, it is apparent that there is much that remains to be done, even in
the area of the physics of black holes. The techniques of the D-brane technology
of entropy counting are still restricted to only a tiny class of possible black hole
solutions, namely those black holes which are extremal or very close to extremal.
It is, however, possible to make very good estimates of the entropy of non-extremal
black holes [141].

For example, it may be possible to exploit the symmetries of string theory to
decode the microscopic physics of non-extremal black holes by studying the ways in
which the symmetries alter the microscopic physics of the black holes for which the
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counting works when the symmetries are applied. This will require more detailed
knowledge of how symmetries work, which in turn may require more information
about the eleven dimensional M-theory, which as yet remains mysterious.

There exist also a large number of supersymmetric, and non-supersymmetric
black holes and D-brane bound states which remain to be discovered. Perhaps
with time a pattern will emerge which will lead to formulation of a structure which
includes both of these as well as links between them. Conceivably, such a struc-
ture may reveal clues as to the mechanism of supersymmetry breaking, leading to
progress on models of superstring grand unification.

It is clear that much has been learned about the theory of strings since the
importance of dualities and the nonperturbative regime of the theory have been
recognized. It is equally clear that we are only beginning to uncover its secrets.



Appendix A.
Notation and conventions

In this work we will be using the “East-Coast” [36] metric diag(—1, 1, 1,...) with
the number of 1’s depending on the number of dimensions we are working in. We
use units where ¢ = £ = 1. Note that the Newton constant Gy ¥ 1, except in
chapter VI. Uppercase X, Y will denote the coordinate fields on the world-sheet
whereas lowercase z, y will denote coordinates in space-time. The representation

of the Dirac matrices on the world sheet is

o_ (0 —i AR’
v (z o) 7 “(i o) (4-1)
with v = 494!, We also work with

{*, 7"} = -2 (A.2)

For the Ricci tensor and Ricci scalar we have R, = RA pw and R =gt R,

String theory is a large subject, and many symbols must be used to denote
different physical quantities. This is made even more of a problem when string
dualities are used to related the same quantities from different string theories to
each other, and/or when one begins to compactify fields from one dimension to
another. Thus one is pressed to invent a notational scheme which is clear without
being cumbersome. In this work we will stress clarity at the expense of occasionally
having to use a few more symbols. A detailed list of symbols follows this section.
Let us begin by stating some general guidelines:

1. Indicies on the world-sheet are indicated by roman characters, a, b, etc.,
while indicies in space time are denoted u, v, and so on. Occasionally
we use &, (3, to indicate an index in the space of U(1) gauge fields of
the heterotic string, for example in (3.2.20).

2. The same symbol with a different type of index will in general denote
the same object (or similar objects) in different circumstances. Thus
7% denotes the Minkowski metric on the world-shéet, whereas n#¥

denotes the Minkowski metric in spacetime.
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. String-frame metrics will be denoted by uppercase letters, for example
G for the Type IIA supergravity, J for its type [IB counterpart, etc..

. Einstein-frame metrics will be denoted by the lowercase counterparts
of the string frame metrics, i.e., for the type II theory g and j for type
DA and type IIB respectively.

. When there is the possibility for confusion, the dimensionality will be
placed on the object in question as a subscript, for example ¢¢ for the

six-dimensional dilaton field.

. In the case of compactifications, space-time indices will be arranged

according to:

6.1. The indices u, v, etc., are used for the target space, the
space to which one is compactifying. Thus in the case of
compactifying from ten to six dimensions g, v, etc., will

run from O to 5.

6.2. Hatted indices f, , are used for the space from which one
is compactifying. Thus for the example of compactifying

from ten to six dimensions, f, 7, run from 0 t0 9.

6.3. The compactified space will be indicated with indices, i,
U, etc., which evidently in our D = 10 to D = 6 example

run from 6 to 9.

. n-form potentials and their n + 1-form field strengths will always be
denoted by A™ and F™*D respectively in the Ramond-Ramond sec-
tor, whereas in the Neveu-Schwarz-Neveu-Schwarz sector the Kalb-
Ramond field will be B and its field strength H.

. Kaluza-Klein gauge fields coming from compactification are denoted
Ag) when derived from the type ITA string frame metric, Agga, when
derived from the type ITA Kalb-Ramond field, and so on. The field
strength of the A() is given the symbol Z@). The logical extension is
that AS-U denotes such a gauge field in the type IIB string theory.
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8.1. We use the notation of forms wherever appropriate, for
example H = dB, dz A dy, etc..

8.2. Hodge dualization in the notation of forms is denoted by the
standard “Hodge star”, while the result of this procedure is
denoted with a ~, i.e., we have F(P—™ = * p(n),

8.3. When there is possibility of confusion we will use super-
scripts @, () (@) or ®) 1 denote to which string theory, type
I, heterotic, type IIA or type IIB, respectively a particular
field belongs. Of course the n of the Ramond-Ramond
fields make clear to which type II theory they belong.

9. It will, despite our best efforts to the contrary, sometimes occur that two

A.l.

different quantities will be denoted by the same symbol. Care has been
taken to ensure that the usages are sufficiently different that context is

more than adequate to distinguish them.

List of symbols
S Action
S Entropy
Jo, T1 Normalization constants for point particles, strings
Tn Tension of n-brane
o Inverse string tension or Regge slope
Nuv Minkowski metric in spacetime
Nab Minkowski metric on world-volume
T, O World-sheet coordinates
cF=7x0 World-sheet light cone coordinates
X, Y World-sheet coordinate fields
P World-sheet fermionic fields

a, b, c, etc. World-sheet indices, tangent space indices
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‘World-sheet metric

World-sheet antisymmetric tensor

World-sheet energy momentum tensor
World-sheet conformal factor

Dirac matrices on world-volume, on tangent space
Dirac matrices in spacetime

World-sheet Ricci scalar

Right- and left-moving bosonic oscillator components
Neveu-Schwarz oscillator components
Ramond oscillator components

Right- and left-moving oscillator number
Hamiltonian

‘World-sheet superspace coordinate
‘World-sheet superfield

Superspace covariant derivative

World-sheet supercurrent

Right- and left-moving Virasoro operators
Neveu-Schwarz Virasoro operators

Ramond Virasoro operators

Classical Poisson brackets

Special orthogonal group

Exceptional group

Spacetime dimension

Newton constant

Supergravity coupling constant

Space-time coordinates

Ricci scalar, also radius of compact coordinates
Type I string frame metric

Type I Einstein frame metric

Heterotic string frame metric

Heterotic Einstein frame metric
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Type IIA string frame metric

Type IIA Einstein frame metric

Type IIB string frame metric

Type IIB Einstein frame metric

Type I dilaton field

Heterotic dilaton field

Type IA dilaton field

Type IIB dilaton field

Asymptotic value of dilaton

Heterotic Kalb-Ramond field

Heterotic NS-NS three-form field strength
Type I1A Kalb-Ramond field

Type IIA NS-NS three-form field strength
Type IIB Kalb-Ramond field

Type IIB NS-NS three-form field strength
Type I Yang-Mills gauge field

Type I Yang-Mills field strength
Heterotic Yang-Mills gauge field
Heterotic Yang-Mills field strength
Ramond-Ramond n-form potentials
Ramond-Ramond n-form field strengths
Ramond-Ramond type IIB scalar
Kaluza-Klein gauge field from metric

Kaluza-Klein gauge field from Kalb-Ramond field
Field strengths of Kaluza-Klein gauge fields

Kaluza-Klein scalar

Kaluza-Klein moduli

D = 5 Hodge dual of Kalb-Ramond field
D = 5 Hodge dual of NS-NS field strength
Type IIA gravitino

Type IIB gravitino
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Type A dilatino

Type IIB dilatino

Supersymmetry generators

Electric, magnetic charge

Harmonic functions in space transverse to p-branes
World volume dimension of p-branes

World volume dimension “dual”tod,d =D —d — 2
Metric induced on Dp-brane world-volume

AS tensor field induced on Dp-brane world volume
Angular velocity of black hole horizon

Killing field normal to black hole horizon

Axial Killing field

Stationary Killing field

Surface gravity of black hole

Direction cosines

Mass parameter for black holes

Area of event horizon of black hole

Thermodynamic temperature

Generic coupling constant

Area of unit n-sphere

Cauchy surface

Lorentz transformation

Poincaré translation

Total D-brane string gas occupation number
Occupation number at momentum level & (right-moving)
Occupation number at momentum level k (left-moving)
Generators of Lorentz transformations

Deviation of a metric from flat space

Line element of sphere S?

Vielbein

Spin connection
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I'hy Affine connection
v Covariant derivative (spacetime)
4 Conformal group generator

A.2. Relation to supergravity conventions

In this section we give the relationship between the conventions used here and
those commonly used by the supergravity community. For this purpose, we take the
conventions of [56] as indicative of those in use by the supergravity community.

To begin, there are general differences such as the metric signature. As stated,
here we use the “East coast” metric diag(—, +, +, .. .) whereas in supergravity the
“West coast” mefric diag(+, —, —, . . .) is still, unfortunately, popular. This change
brings in a change of sign for each index contraction. There is also an overall sign
difference of the action.

Another difference of a general nature concerns the definition of field strengths.
In the notation of [56], the field strength of a rank-n antisymmetric tensor potential
C™ is given by

(n) _ n)
OC™ =0y, Crzorpia]

1 -
B n+1 (am Ol(irzl?--p,,ﬂ + CYCIIC) .

(4.2.1)

When written in the notation of forms, as used here, a factor of # is absorbed into

the definition of the form, thus giving

dC™ =0, CP., . +cyclic. (A.2.2)

Similar consideration will apply to antisymmetric products, i.e., in the notation
of [56] we write the product of a rank-n antisymmetric tensor with another of rank
m as

Cc™om) _ C(n) C(m)

l ‘Un T Bnsl #n-t—m]

nim!
(n) (m) .
('n +m)! (Cp’l “Hn C/‘n-«-l wpinsm T CYC].IC)

whereas with the form notation used here we have

(1) A A(m) (n) (m) ;
C™WACT = Cptl L Cu e F CYcClic.
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In the above note that “cyclic” includes considerations of the change in sign due
to the number of permutations between canonical order and the cyclic order in
question.

With such generalities aside, we present the mapping between our fields and
those of [56]. Here “Superstring” refers to our notation, while “Supergravity” refers

to that of [56]. All of the following refer to ten dimensional fields.

Superstring Supergravity Description

G g string frame metrict

¢ é dilaton

B BM Kalb-Ramond field

H 3HWM NS-NS field strength

X ¢ RR scalar

AD —AM RR one-form potential

F® FO RR two-form field strength
AD B® RR two-form potential

F® IHP RR three-form field strength
A® 3¢ RR three-form potential
F® 6G RR four-form field strength
A® 4B RR four-form potential
F® 20F RR five-form field strength

Note that the unconventional normalization of the five-form field strength F®),
as mentioned in chapter II is duly reflected in the last line of the above.
t Thus there is no change in normalization, only the change in metric signature

mentioned previously.



Appendix B.
Some useful mathematical tools

Here we group together some mathematical relations which are useful when deriving

equations of motion for string theories, and of course in gravitation theory.

B.1. Calculus of variations

The calculation of the supergravity equations of motion is made simpler with the

use of
1 1
dv/—g = SvV—9 ubght” = —5\/—g g*0gu (B.1.1a)
8(g") = — g**g*P8g,p (B.1.1b)
1
JF#Vp = 5 (Vp5gu‘u + Vyb'gp“ - V“ngp) (B.1.1¢c)
OR =V#V,,Jg‘“’ - V#V“ng” - R#,,ég“” (B.1.1e)

Where square brackets indicate antisymmetrization, that is
1
v[11-1/?/] = E(v;‘VV - vv.vp) (B.1.2)

and the vertical bars | | indicate that the indicies they enclose are to be excluded
from the antisymmetrization.
In varying an action, we need to remove the derivatives of the variations. Doing

this, we perform integrations by parts and we can use the following relations:
[ Pev=F @V Gube ) = [ oy TGaun TG (B3
+ / P2\ /=G , [F($)9u VP60 ~ gubg" VPF($)] (B.1.3b)
[ Pov=aF @959 = [ 47275 (0,0, F@) ~ T8, F @) 69
+ / dPz/=gV, [F(®V.6g* — V, F($)6g""] (B.1.3¢)

where we have kept the boundary terms as total derivatives.
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B.2. Conformally related spacetimes

For conformally related spacetimes g, = e*?G uv» Where we denote the covariant
derivative with respect to the metric G by V and that with respect to the conformally

related metric g by V we have,

Ru(9) = Ru(@ — (D = DV, V06 — 2Gu V26
2 2
+ %(D — )V, bV, — %(D — )G (V) (B2.1a)
R(g) =e"°‘¢‘{R(G) — (D - )V24
al
— 2@ - (D - 2(V¢} (B.2.1b)
(V¢)* =e~(V¢) (B.2.1¢)
where D is the dimension of the spacetime.

For superstring theories in D dimensions, the conformal transformation from

the string frame to the Einstein frame is

Guy =4/ Dq (B2.2)

B.3. Miscellaneous useful formulas

Here we gather a few formulas which are sometimes useful in the course of

computations.

I, =08,(log v/~g) (B.3.1a)

1
By = —=0a(v/=gT) = uBu(log v/=9) rg.I%0, (B3.15)

1
vV, ADk < \/__ga#(,/——gA“) #y (B.3.1¢)

1
v F@uv _ _gap(\/ZEF(Z) Ky (B.3.1d)
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Penrose diagrams

The most fundamental thing concerning two separated space-time points is their
causal relation. Is point a inside, outside or exactly on the future or past light cone
of point . When it comes to discussing black holes, causal structure becomes rather
subtle and particularly important. Penrose diagrams [51,96,113,159] are a very
useful aid to the graphical depiction of the causal structure of spacetime. Here we
introduce the ideas involved.

We begin with Minkowski space in spherical polar coordinates. The line element
is written
ds? = — dt® + dr? + r*(d6?* +sin® 6d¢?)
= — dt? +dr? +72dQ2

and therefore at each point (r,¢) where —oo < ¢t < oo and 0 < r < oo there is a

C.1)

two-sphere 52 of area 4rr?. We then introduce light-cone coordinates
u=t—r v=t+r1 (C.2)
in terms of which the line element is written
ds? = —dudv + %(v — u)2dQ3 (C.3)

The relation between the original coordinates r and ¢ and the light cone co-
ordintes in various asymptotic regions of spacetime is needed to create Penrose

diagrams. These relationships are expressed in Fig. C.1. Indicated are

o i* = {t — oo, r fixed } = future timelike infinity,
e i~ = {t - —oo,r fixed } = past timelike infinity,
e % = {r — o0, t fixed } = spacelike infinity,

o I = {v — o0, u fixed } = future null infinity,

o I~ = {u — —o0, v fixed } = past null infinity.
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Figure C.1: Relation between Minkowski spherical polar coordi-
nates and the light cone coordinates.

Past and future null infinity (along the light cone) are very useful concepts. For
example the ADM formula used to compute the mass of p-branes in chapter III
is based on the deviation of the metric from flat space as large distances from the
object. In the case of an object which is emitting gravitational radiation, if a pulse
is emitted at time £, then we must wait a period of time ¢ > r for the pulse to pass
before we can make a measurement of the object after the pulse. As r — oo we
make such measurements at I™*.

However, in the light cone coordinates I is at an infinite value of v. We would,
however, like to be able to draw a diagram on a finite sheet of paper. We therefore
introduce a conformal factor w? given by

2 4

YT A D) ©H

and coordinates 7 and ( related to the lightcone coordinates by the transformations

Y= tan"ly+tan"lu
(=tan vy —tan"lu ©

and in these coordinates the Minkowski line element takes on the appearance

ds? = —dyp? + d¢? + sin? (dQ3 (C.6)
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where the new coordinates 7 and ¢ then range over the half-diamond ( £ ¢ < 7,
¢>0.

T <Y+l
<Yy -{(<7w (C. 7
0<(¢

Equation (C.6) is simply the natural Lorentz metric in spherical polar coordinates
53 ® R. We can think of it as an unphysical pseudometric gy Which is related to
the physical metric by

G = & Guo (C.8)

where w?, the conformal factor, may or may not be infinite. The fact that Juv is
conformal to the physical metric means that the causal relation between two points
is the same in both of the metrics, due to the angle-preserving nature of a conformal
transformation. The pseudometric is finite at values of 9, ¢ that correspond to the
asymptotic regions of Minkowski space, thus the asymptotic points are mapped to
finite ones.

Further, statements about the asymptotic behavior of the physical metric can
be translated into statements about the behavior of the pseudometric at the points
i, etc., as long as the physical metric under discussion is asymptotically flat. The
conditions for asymptotic flatness of a curved space-time are complicated {4,51] but
they essentially mean that we can perform the conformal mapping of infinity to a
finite point as was just done.

A Penrose diagram of Minkowski space is given in Fig. C.2. The upper and
lower triangles represent the future and past light cones, each point is actually a

two-sphere.
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Figure C.2: Minkowski space represented as a Penrose diagram

C.1. A black hole example

Let us move on to a more complicated example, that of the Schwarzschild black
hole. The Penrose diagram for the maximal analytic extension of the Schwarzschild
metric was given in Fig. 5.1.2 and is reproduced in Fig. C.3 for the convenience of
the reader. What is meant by maximal analytic extension? Our discussion follows
that of [113]. Consider the Schwarzschild metric, which we write (putting Gy =1

in this section)

ds® = — (1 - g) dt* + (1 - zf—f) B dr? + r2(d6* +sin® 8dp?)  (C.9)
where M is the gravitational mass as measured from infinity, or ADM mass. It
can be shown that any spherically symmetric solution of the vacuum Einstein equa-
tion is locally isometric to the Schwarzschild metric. One normally regards the
Schwarzschild metric as being the solution outside some spherical body of radius
ro > 2M, while the metric inside the body has a different form determined by the
energy-momentum tensor of the matter of which the body is composed.

The Schwarzschild metric is singular when r = 0, and when r = 2M (as well as

possessing the standard trivial singularities of spherical polar coordinates at 8 = 0
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and 6 = 7). One must therefore cut r = 0 and r = 2M out of the manifold, which
divides the spacetime into two disconnected regions, defined by 0 < » < 2M and
2M < r < . If we wish our spacetime to be connected, i.e., to be able to go
everywhere, in principle, in the spacetime in starting from anywhere, then we must
choose either one, or the other, but not both. The obvious choice is to take the region
with r > 2M. Thus, (C.9) corresponds to the region [ of Fig. C.3.

The question posed is then “is this manifold with Schwarzschild metric (C.9)
for r > 2M extendible?” That is, can we embed this manifold into a larger manifold
with a new metric which coincides with (C.9) for r > 2M? The obvious place to
look for such an extension is where 7 — 2M. To make the extension, consider

defining a new coordinate 7 as
e [T 2M1 2 C.10
T= T—_zﬂ=7’+ og(r—- M). ( .10)
T
Then we take our light-cone coordinates in terms of 7,
u=t—7, v=t+7F
and we can write the metric (C.9) in the form

ds® = — (1 - %) dv? + 2dv dr + r*(d6? + sin® 6dp?). (C.11)

1.
This new metric is non-singular on the larger manifold for which 0 < r < oo, and
when 2M < 7 < oo it is isometric to the 2M < r < oo region of the original
Schwarzschild metric.

There is, however, the feature of (C.11) is not time symmetric. The surface
r = 2M, upon which ¢ — oo acts as a one-way membrane. Future-directed timelike
and null curves can cross the surface r = 2M only from the outside (r > 2M) to the
inside (r < 2M). Past-directed timelike or null curves in the outside region cannot
cross into the inside. Also, the future directed timelike or null curve which crosses
the surface at r = 2M approaches r = 0 within a finite affine distance. Thus the
extension to (C.11) is represented by regions I and II7 in Fig. C.3.

If one uses the coordinate « rather than v, then the metric takes the form

ds? = — (1 - %) du? — 2dudr + rX(d6? + sin® 8dp?) (C.12)

T
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Figure C.3: Penrose diagram of the maximal analytic extension of
the Schwarzschild black hole.

which is again non-singular for 0 < r < oo and isometric to (C.9) in the region
r > 2M. For this extension, however, the direction of time is reversed. In this case
only past-directed timelike or null curves may pass through the r = 2M surface
from the outside to the inside. This extension is represented by regions I and IV of
Fig. C.3.

It is possible to make both extensions simultaneously. One can find a still larger
manifold in which to embed the manifolds defined by (C.12) and (C.11) such that
they coincide with each other and with (C.9) in theregion 7 > 2M. The construction
of this manifold was carried out by Kruskal [160] and in terms of both light-cone

coordinates the metric takes the form

2
ds* = — <1 - TM) dudv + r2(d8? + sin® 8dyp?), (C.13)
where r is given by
1
r+2Mlog(r —2M) = E(U — u). (C.19)

It is possible to go further still. If we apply the most general coordinate
transformation under which the Kruskal metric (C.13) retains its form, we find

T du! dv’

where 4/ = u/(u) and v’ = v'(v) are arbitrary differentiable functions. If we choose

2
ds? = — (1 — ﬂ) B AVt r2(d6? + sin? d?) (C.15)

v’ and v as
1 1
z= E(v' —uh), T= E(UI +v) (C.16)
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then the metric has the final form
ds? = K2(r, )(—d7? + dz?) + r2(1, z)(d6? + sin® 8dyp?) (C.17)

If we then choose
u = —e I, v = e (C.18)

then 7 is determined implicitly by

™ — 22 =(2M —r)em (C.19)
and K is found to be X
1 —r
K= 6? eIM (C.20)

Here regions I through I'V refer to Fig. C.3. The metric (C.17) for z > |7| is
represented by region I, isometric to the Schwarzschild metric for » > 2M. The
region defined by z > —7 is represented by regions I and II1, and is isometric to
the extension (C.11). Similary the region defined by z > 7 is isometric to (C.12),
corresponding to regions I and IV. There is yet another region, that defined by
z < —|7|, which is represented by region II. This is again isometric with the exterior
Schwarzschild metric (r > 2M), and can be regarded as another asymptotically flat
universe lying on the far side of the Schwarzschild “throat” (see figure Fig. 5.1.1 of
chapter V).

There are no timelike or null curves which travel from region I to region /1.
All such curves which cross the surface 7 = 2M approach the singularity at 7 = 0
where they terminate. Thus we have found the maximal analytic extension of the
Schwarzschild metric. It is clear that the same sorts of analyses can be made in
the case of other exact solutions of both the Einstein equation and the string theory

equations of motion.
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