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Abstract

The research presented here is carried out along two related fronts. Calcula­

tional techniques which derive from the symmetry properties of the theory of strings

are used ta generate new solutions corresponding ta five dimensional rota:ting black

hales. The Dirichlet brane CD-brane) content ofthese black hales is then identified

and this information is used to compute the microscopic statistical entropy, which is

then shown to he identical to the classical Bekenstein-Hawking entropy. The sym­

metry techniques are then further exploited to create new ~ow-energy background

solutions describing different supersymmetric bound states of D-branes. In one case

these D-brane bound states have constituent D-branes which differ in dimension by

two. In the second case these bound states represent arbitrary numbers of D-branes

which intersect at non-trivial angles.
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Résumé

La recherche présentée ici comprend deux orientations intimement liées. Des

techniques de calcul qui se dérivent des caractéristiques de symétrie de la théorie

de cordes sont utilisées pour créer de nouvelles solutions qui représentent des trous

noirs en cinq dimensions qui ont un moment angulaire non-nul. Le contenu de

ces trous noirs en terme d'hypermembranes de Dirichlet (D-branes) est identifié

et utilisé pour calculer l'entropie microscopique et statistique. Cette entropie est

identique à l'entropie classique de Bekenstein et Hawking. Les techniques de calcul

sont également exploitées pour créer de nouvelles solutions de basse énergie qui

décrivent des états liés de D-branes. Un calcul se consacre à produire des solutions

d'états liés dans lesquelles les D-branes ont une différence de dimension de deux.

L'autre calcul produit des états liés dans lesquelles des D-branes s'intersectent à

angles arbitraires.
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Introduction and Outline

This thesis is based on research done in the context of the theory of strings.

Recent developments in this field of high energy physics, particularly progress in

the understanding of its non-perturbative aspects have shown that string theory is

rather more than just a theory of strings; that is, other (extended) objects, such

as Dirichlet branes (D-branes) and supergravity p-branes must he included in the

theory. These additional abjects fill out multiplets of states that are connected

by special sYmmetries, known as dualities, which relate different parts of string

theories, or even entire string theories, to one another.

In addition, the network of dualities of string theory has been interpreted as

evidence [1-3] that the four consistent string theories are really different parts of a

larger theory which has heen dubbed M-theory. We will not he concemed here with

this larger theory, but it is clear that these dualities, severa! of which we will use ta

great effect, have a large raIe ta play. Here we wish merely ta set up the context for

this work.

Black holes are extremely interesting objects predicted by Einstein's general

theory of relativity [4-5]. These are abjects so massive, possessing gravitational

fields so powerful that not even light is able ta escape, hence the term "black hole".

It has been shown that these abjects possess a thermodynamic entropy [6-7], for

which one would ideally like to have a microscopie and statistical interpretation.

Classical general relativity offers no clues as to what this interpretation might he.

At the same time, classical general relativity predicts that singularities may

forro, points where the curvature of spacetime grows without bound. It is thus to be

-1-



expected that quantum gravity is required to explain both the microscopie entropy~

and to resolve these curvature singularities, to discover the deep structure of these

objects [8].

String theory is at present a strong candidate for a theory ofquantum gravity [9].

It is logical, therefore ta study black hales in the context of string theory, in the hope

that sorne light may be shed on the physics of black hales, and aIso in an attempt to

validate the theory of strings as a physical theory.

Sorne progress has in fact been made on this front. One species of additional

object demanded by the dualities of the theory of strings which have been used

ta great effect are the D-branes. These are objects extended in zero or more

dimensions, and have been recently used ta compute~for the fust time, the statistical

entropy ofblack hales [l0-13]. Thus it is clear that D-branes represent useful probes

into the non-perturbative regime of string theory, in addition to their role in filling

multiplets as required by duality. We will see examples of calculations of this kind

in chapter VI.

In addition~ D-branes are interesting objects in their own right [14-15]. There

are many questions to he asked and, hopefully, answered with regard to how D­

branes interact with each other, for example. In chapter VII we will see many

examples of D-branes forming supersymmetric bound states, in which one D-brane

can he considered ta have "dissolved" in its companion, or in which the D-branes

in question intersect at non-trivial angles.

•
Introduction and Outline 2
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1.1. Outline

String theory is a large subject, and the size of this thesis refiects this. The desire

was that this thesis provide a self-contained introduction for non-specialists. This

necessitates the inclusion ofmuch review material which string theorists may choose

not to read. Here we present a short guide.

Chapters II through V represent introductions to the theory of strings, duality

symmetries in string theory, p- and D-branes, and black holes in string theory,

respectively. Chapter II contains material on the basics of string quantization,



supersymmetry and the superstring, the process of compactification of higher di­

mensions, then systematically presents the known consistent superstring theories,

including details of their low-energy effective space-time actions.

The third chapter presents the duality symmetries of the theory of strings, be­

ginning with the O(d, d, IR) symmetry of the low-energy string equations of motion,

continuing with target-space or T -duality and then finally one very small part of the

string duality family, Type IIA-Heterotic string/string duality in six dimensions.

Chapter IV presents the theory of Dirichlet branes, bath from the world-sheet

point of view, as weil as the space time point of view, where D-branes are related ta

a class of p-brane solutions of supergravity theories. The material here may be of

interest even ta specialists, given the recent rise of D-branes in string theory.

Black hales in the context of string theory are the subject of chapter V. A

catalog of black hale solutions ta the vacuum Einstein equation as weil as the

Einstein-Maxwell system is given, along with generalizations ta higher dimensions.

The string-theory analogs of these solutions are also discussed. Short treatments

of the thermodynamics of black hales and the connection between black hales and

D-branes are also given, leading to the research which is presented in chapters VI

and VII.

The original research which is presented in this thesis is ta he found in chap­

ters VI and VIT and was carried out on two related fronts. One is the construction

of new black hale solutions in string theory. The second is the construction of

new supersymmetric solutions representing bound states of D-branes. In chap­

ter VI, new solutions for a five-dimensional rotating supersymmetric black hale and

a six-dimensional rotating black string are presented. Analysis of these solutions,

including a microscopic counting of the black hale entropy, is then carried out. A

third example, that of the construction of a non-rotating dyonic black hale is aIso

presented. The results presented here have been published in [12,13] or will he

published [16]. Here, we present the research in greater detail.

In chapter VII the emphasis switches ta D-branes, with the construction of

supersymmetric D-brane bound states the subject. In the tirst case we have simple

bound states, but in the second part of chapter VII we construct bound states which

•

•
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intersect non-orthogonally. The publications in which this research appears are [17­

18].

Chapter VITI is the final chapter, which presents a summary of the work com­

pleted and discusses sorne avenues of future research. The appendices gather

information on notation and conventions, as weil as sorne topics that would require

too long a digression to present in the main texte

Those unfamiliar with string theory and in no particular hurry will hopefully find

it profitable ta read the entire thesis. Those who wish ooly to understand chapters VI

and VIT cao skip most of chapter II except section 2.3. Although most of chapter m
should he read, since the symmetry properties of the theory of strings play a major

raIe in this work, sections 3.2.2, 3.3.1 and section 3.5.2 can he safely left aside.

For chapter IV: it is possible to leave aside section 4.1 on p-branes as well as

section 4.4.1. As far as chapter V is concemed, sections 5.1.4, 4.2 can be safely

omitted.

Those familiar with the theory of strings are no doubt perfectly capable of

choosing which sections to read or to omit. It should he restated, however, that

the symmetry properties of string theory play a crucial raIe in this work, and it is

recommended that chapter ID should at least he skimmed quickly before moving on

ta chapters VI and VIT.

•

•
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II

The Theory of Strings

Quantum field theory based upon the notion of a point particle has enjoyed

unparalleled success in the description of nature at the subatomic level [19]. The

standard model of particle physics [20] represents the final achievement of this

programme, combining the notion of a field which is ta he quantized with the ideas

of renormalization, which bath constrains the available physical quantum fields

and provides a set of techniques ta extract answers which can be compared ta

experiment [21].

However, despite the success of this theory, there remain severa! less than

satisfying aspects of the standard techniques of quantum field theory, as weil as one

outright problem. An example of the first is the large number of free parameters

in the standard model. The second is the resistance of gravitation ta ail and any

attempts at quantization within this theoretical framework.

The theory which has come ta he looselyknown as "string theory"1 has emerged

in recent years as one of few serious candidates for a quantum theory of gravity.

This development was based on what one might call a radical departure from the

established formalism of quantum field theory: the generalization frOID the idea of

the point particle ta abjects of one dimension (called strings), and even ta objects of

higher dimensionality. This departure results in a theory which inescapably contains

gravitation, as weil as having room ta contain aIl known physics. At the present

moment, no one knows just how the standard modeI will faIl out of string theory,

but nonetheless progress continues ta be made.

1 We will see why l say "loosely" later on.

-5-



• 2.1. The basics

The Theory ofStrings 6

When one attempts ta change a feature such as the dimensionality of the funda­

mental constituents of an entire theoretical framework, the task must he done with

care and with full understancling of the roles played by the abjects under scrutiny.

Thus to generalize a point particle ta a higher dimensional object, it is necessary

ta consider issues not commonly dealt with in standard treatments of quantum field

theory. To describe how this generalization is made, it is useful to hegin with a

description of point particle theory, something with which the reader is no doubt

familiar.

2.1.1. From point particles to strings

If we consider a massless point partic1e without spin moving in a Minkowski

spacetime, a field theory action S suitable for describing this system is often written

as

(2.1.1)

where cP is the scalar function of the n spacetime coorclinates which determines how

the partic1e hehaves. Thus, this action is written in the spacetime formalism, in

which the action is calculated as an integral over aIl space, the equation of motion

which is obtained by varying this action with respect ta if; turns out to he

Dçf> = 0 (2.1.2)

•

where 0 = 81J8Jj is the Minkowski space d'Alembertian operator. The solutions of

(2.1.2) will show that the partic1e is required ta exist only on the light cane, as is

naturaI for a particle without masse

The above action and equation of motion are what most think of when the

words "massless scalar particle" are mentioned. The quantity r/J is a quantum field

composed of creation and annihilation operators, which in tum give rise to states

with any number of particles, hence the name quantum field theory given to this

formalisme



However, there exists, in the case of a single-particle state another way ta

fonnulate this system, in terms of the world-line along which the particle propagates.

In this case we may write the action as•
The Theory ofStrings 7

(2.1.3)

where TJf.JV is the Minkowski metric, the indices p, and v running over the dimensions

of the spacetime, r is an arbitrary parameter along the trajectory, Xf.J(r) is the

position ofthe particle, and 'T0 is a constant required to make the action dimensionless

(whenli == c == 1). The abject e(r) is a metric or measure along the world-line and

ôT == Ir. The role played by e(r) is to guarantee that S remains invariant under

reparametrizations of the world-line. It can he shawn that (2.1.3) is invariant under

r -+ fer). Hence it is clear that the physics of (2.1.3) should have no dependence

on how the world-line is parameterized. We can use the repararnetrization freedom

to make a choice in which e == 1, for which (2.1.3) becomes simply

Varying S with respect to XP results in the equation of motion

ff!.xf.J = 0
T

(2.1.4)

(2.1.5)

•

ofwhich the solutions are, obviously, straight lines X P == ppr+XC in the Minkowski

spacetime. However, one must remember that not all straight lines in Minkowski

space are pennissible as solutions of the theory descrihed by (2.1.4). In writing

(2.1.4) we have made a particular choice of world-line parameterization, and this

choice has consequences. Since S must be invariant under reparametrizations of

the world-line, we must impose constraints on our point particle to ensure that this

is always true. The appropriate constraint in this case, which derives from the

requirement that~ = 0 is the vanishing of the quantity

(2.1.6)

This restricts our straight-line solutions to he the lightlike geodesics in our spacetime,

the light cones, i.e., TJpvPPpv == O.



The spacetime and world-line formulations are indeed quite different in content.

One distinction, to which we alluded earlier, is usually denoted in the literature as

the distinction betweenfirst-quantization and second-quantization. The distinction

between these two is that first-quantization indicates the quantization of a particle,

and second-quantization the quantization of a field from which particles may he

created, thus producing multi-particle states.

If, for the purposes of illustration, we restrict our attention to states with a fixed

number ofparticles, then we can consider the spacetime and world-line formulations

as complementary. On the one hand, in the spacetime description the particle is

considered to move in an n-dimensional spacetime which may be considered as a

"container" for the particle2 whereas in the world-line description the spacetime

coordinates are fields which exist on the world-line. The world-line fonnulation of

the theory is the naturaI framework in which to begin the generalization of the point

particle to extended objects such as strings. Although much effort bas been put into

the development of what is known as string field theory, a second-quantized version

of string theory, it is not yet clear that this avenue of research will produce anything

useful [22-23].

In the simplest generalization of the point particle, about which much has been

written [9,23,24-27] one begins with a zero-dimensional object and generalizes it to

a one-dimensional objecte As mentioned, for this task one begins with the world-line

description of the point particle. This is due to the fact that the dimensionality of

the world-volume of the particle appears directly in the action, as the number of

dimensions over which it is necessary to integrate when calculating the action.

A one-dimensional particle, henceforth known as a string, sweeps out a two­

dimensional world-volume as it moves through spacetime, which we will call the

world sheet. This is in contrast to the one-dimensional world-volume, the world­

line, of the point particle. Strings can be of two types, depicted in Fig. 2.1.1. In the

case that the strings are intervals, or segments, they are lœown as open strings. The

other possibility is that the strings form loops, in which case they are called closed

strings. In either case we need two world sheet coordinates to describe the motion.

2 Ort for that matter, the fields frOID which the particles are created.

•

•

The Theory ofStrings 8



(2.1.7)
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(a)() )-~T• )
~,(b) • 7" ">-

Figure 2.1.1: Schematic depiction of (a) closed string and (b) open
string world sheets.

The action in this case rnay be written:

s - ~l jd2uH eabTf?w (BaX!') (BbXV
)

where eab is the metric on the world sheet (eab = (eab)-l and e = det eab). In general

we will use Minkowski signature, both in spacetime and on the world sheet. The

XI-' are the coordinate "fields" on the world sheet. We are using d2
(J' to denote drd(Y,

integration over the world sheet. Here r denotes the time coordinate, which has

the range -00 < r < CXJ, while the spatial coordinate q extends over 0 < (J' < 1r,

running from one end of the string ta the other in the case of open strings, or

representing one complete revolution in the case of closed strings. The constant Tl

makes the action dimensionless whenlï = c = 1. Equation (2.1.7) is a string theory

action written in what is commonlY known as the "sigma model" or "Polyakov"

form of the action [28].

The equation of motion derived from (2.1.7) by variation with respect to XI-' is

written

(2.1.8)

•

which cao. he seen to be the simple linear wave equation (~ - fflc,.)XI-' = 0 if3

eab
= (-01°1) (2.1.9)

which must, just as in the case of the point particle, he supplemented by constraints

derived by requiring that the variation of the action with respect ta the world sheet

metric, leS , vanish, in order to guarantee that the action does not depend on the
ab

3 We will see later that the world sheet metric May always be put in this form., at least locally.



coordinate system used on the world sheet. The energy momentum tensor in Cl + 1)­

dimensional field theory is normally defined as•
The Theory ofStrings

21r 88
Tab = r-= 1" ab

y-eue

10

(2.1.10)

and thus the constraint is simply Tab = O. It is also worth noting that by solving for

the constraints of eab and then eliminating them one arrives at the "Nambu-Goto"

form of the action [29]:

(2.1.11)

which has an interpretation in terms of the area of the world sheet swept out by the

string.

Up to now we have been discussing free point particles and the generalization

to free strings. What can he said about interactions? On the world-line of a point

particle the natural coupling [30], which preserves Poincaré and gauge invariance,4

is that of a gauge field. Thus, one can generalize the action (2.1.4) ta he

(2.1.12)

•

where 9J.'v is the (general) metric and AJ.' is a gauge field. This action describes the

point particle subject to external forces, gravity and electromagnetism, as it moves

along its world-line. This interaction with background fields described by gJ.'v and

AJ.' should he distinguished from interactions between different point particles.

It is then evident that we cao generalize (2.1.12) to the case of the string as

s - ~1 Jd2a{FëeabGpv (BaXP) (8r,XV
) + eabBpv (BaXP) (8r,XV) }

(2.1.13)

where eab is the Levi-Civita tensor on the world sheet, BJ.'v is an antisymmetric

tensor (2-form) potential, the generalization of AJ.' of (2.1.12).

4 Which really means that the indices on the various objects involved get cootracted in the
appropriate manner.



Now that we have given up the idea that the fundamental abjects in our theory are

points, we may seem to be on a slippery slope. What is to prevent us from taking

membranes or higher dimensional abjects as our starting point? Of course, there are

lirnits imposed by the dimensionality of the spacetime in which one lives, but other

than that there seems to he no obvious restriction.

The action for any of these systems can be written down simply by generalizing

from the world sheet indices a,b in (2.1.7) ta world-volume indices which run over

a greater range. The world-volume metric maintains its Minkowski signature. The

action corresponding to (2.1.7) for an object of n + 1 dimensions, an n-brane, can

he written [30]

S = ;n Jd"+luFêeab8aXI'&,X"GI''' (2.1.14)

where we have generalized our parameter TIto 'jn, known as the tension, which is

again necessary ta make S dimensionless. The spacetime metric GJjV represents a

generaI, possibly curved, spacetime background. Just as in (2.1.12) we can add a

gauge field which in this case will he an n + 1-form, which has a naturaI coupling in

an n + 1-dimensional world-volume. If this is done the action appears as

S = ;nJd"+lu{Féeab8aXI'&,X"GI'''

_ 2 eal,··an+lâ XJjl ••• 8 XJjn+lA(n+l) }
(n + 1)! al an+l J.Ll···J.Ln+l

(2.1.15)

where A(n+l) is the n + 1-form gauge potentiaI and € is the totally antisymmetric

tensor on the world sheet.

Recall that in the case of the point particle we noted that a reparametrization

choice had been made in writing (2.1.4). The fact that one can always choose a

reparametrization in which the action appears in the forro. (2.1.4) is one reason why

the action makes sense physically. That is, the physics has no dependence upon how

we choose to parameterize the world-line of our particle. A similar feature is at play

in the case of the string. For a general en + l)-dimensional abject, the metric on the

world-volume eab will have t(n + l)(n + 2) components constrained by the n + 1

independent reparametrization (diffeomorphism) invariances of the world-volume

•

•

2.1.2. From strings to ...

The Theory ofStrings 11



coordinates. Thus in(n + 1) components remain and e cannot he eliminated for

n > O. However, under a local Weyl rescaling of the world-volume metric•
The Theory ofStrings 12

(2.1.16)

the combination ye:ë eab appearing in the action transforms as

(2.1.17)

and we then see wby the string (n = 1) bas a special place amongst all ofthese objects.

The string displays conformaI invariance [31], i.e., the action is independent of the

scale.

Thus for the string, and only for the string it is always possible to transform the

world sheet metric in such a way that it is the two-dimensional Minkowski metric

(2.1.9). We tirst use the diffeomorphism invariance to put the world sheet metric in

the conformaI gauge:

(2.1.18)

•

then follow by conformally rescaling such that cp == O. We note aIso that this property

of the string is connected with the fact that the energy-momentum tensor (2.1.10)

is traceless [9,31] which will have consequences of extreme importance when we

come to quantize the string. These features differentiate a string theory from, say, a

membrane theory.

Membranes and higher dimensional objects have also other difficulties. Equa­

tion (2.1.14) defines a quantum field theory which is renormalizable by power

counting for n == 1 and non-renormalizable for n > 1.

More recent results in the theory of objects with higher dimensionality than

strings have indeed removed or shown the promise of removing sorne of the barriers

that stand in their way of being on an equal footing with the string. At this

moment in history the string still reigns, but the advent of supermembranes [30] and

eleven-dimensional M-theory [32], seems ta indicate that certain higher-dimensional

branes, as weil as certain point particles should be regarded on an equal footing with

strings.



ln this section we will develop the bosonic string in its open and closed versions.

Our discussion will follow most closely that of [9]. Tc begin we write the action of

the bosonic string from (2.1.15) with, of course, n = l, and putting 'Tl = (27ra/)-1

where ci is the Regge slope, or inverse string tension:

• 2.1.3. The bosonic string

The Theory ofStrings 13

(2.1.20)

•

S = ~a' Jd2uHeabÔaXP{%XvTJJW' (2.1.19)

Here we have set G/-,V = 'T/J.'v and B~2J = 0, to begin with a development of the free

bosonic string in Minkowski space, a complete understanding of which1S necessary

before moving on to more general spacetimes.

It is proper to note that the action (2.1.19) is not the most general action possible

even when restricted to flat backgrounds. There are two other possible tenns which

are consistent beth with Poincaré invariance in a D-dimensional spacetime and with

renonnalizability by power counting. These terms are:

SI =À Jd2uH

)../ JS2 = - d2aH'/?,
27r

where 'Tt is the scalar curvature of the world sheet, or the Ricci scalar in two

dimensions, and ).. and)'" are arbitrary constants.

The SI tenu is a world-volume cosmological constant tenu. It does not have

Weyl symmetry and therefore leads to inconsistent classical field equatiens. If we

take the action S +SI, the trace of the equation ofmotion for eab implies that eab = 0,

unless À = O. On the other hand, S2 will not concem us here either, since it is a

topological invariant which is fixed by the global topology of the string world sheet.

Since the equations of motion are local, this topological invariant has no effect and

can be dropped frOID the action with no loss in generality.

The symmetries of (2.1.19) are the following: reparametrization invariance:

8XJ.' = ça8aX/-'

oeab =çc8ce ab - 8cçaecb - 8cçbeac (2.1.21)



• Weyl scaling invariance:
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(2.1.22)

(2.1.23)

(2.1.24)

8XJJ =0,

and in addition the global symmetries of the background space in which the string

is propagating. Here we are in Minkowski space and therefore we simply have the

Poincaré invariance:
5XJJ = e JJvXv + /tJ.1.

6eab =0.

Note that in the above symmetries, Ça and Q are arbitrary funcrions of the world

sheet coordinates ua, whereas eJ.1.v (eJ.Lv antisyrnmetric) and K.JJ are constants.

As permitted by the invariances we can write eab = (~l ~) = TJab by using

the two reparametrizations and Weyl scaling. The action then simplifies to:

S == -1-fd2UTJab8aXJJ~X
4rral J.1.

from which the equation of motion we obtain is the free wave equation in two

dimensions,

For open strings, it is necessary to ensure that the action (2.1.24) is invariant

under a general variation in XJJ of XJ.L -r XJ.L + 6XJ.1. which gives tise to a volume

term proportional to the equation of motion (2.1.25) and to a surface tenn, the

vanishing of which tells us the boundary conditions to he imposed at the edges

(u = 0 and u = rr) of the string world sheet. This surface term appears as

2:œ fdT {ôq X P8Xp lcr-1r - ôq X P8Xp lcr-O} - 0 (2.1.26)

and it can he made ta disappear with the imposition of the Neumann boundary

condition 8crXI-'Icr-û,11'" = 0 or the Dirichlet boundary condition Xl-'lcr-o,11'" = constant

We will say more about these conditions later.

In the case of closed strings, on the other hand, functions XI-' heing periodic in

u and obeying (2.1.25) ensure that (2.1.24) is stationary.

As is the usual case in a two dimensional system, the general solution to a wave

equation like (2.1.25) can he given in terms of a sum of two arbitrary functions•

(a; - ~)XJJ = 0

XI-' (u, r) = Xf (r - u) + Xr (r + u) .

(2.1.25)

(2.1.27)



The functions have been labeled T and l since they are the "right-moving" and "left­

moving" modes of the coordinate fields. It is useful to rewrite the action in terms of

light cone coordinates for which the definitions and the derivatives are written

o-± =T±(j

•
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(2.1.28)
8± = i (8T ± Bu),

and the world sheet metric is given by

1
1]+- == 1]-+ = -2,1]++ = 71-- == o.

With this choice the action appears as

(2.1.29)

(2.1.30)

The utility of the light-cone coordinates is evident, since X/!, is only a function of

0--, and likewise only (j+ appears in Xi.
As mentioned earlier, varying the metric with respect to eab gives us the world

sheet energy momentum tensor Tab defined as

lIaS
Tab = 47rŒ ~r-b

y-euea

which one finds upon calculation to he

(2.1.31)

(2.1.32)

(2.1.33)

1 cd
Tab = 8aX~~Xf.J - 2eabe acX~8dXIJ.'

Note that one has the identity Tab1]ab = 0 which is aresultofconformai invariance and

holds in general. Now, the wave equation must he supplemented by the constraint

Tab = O. These constraints take the form

TlQ =TOI == 8T XIJ.8u Xf.J = 0,

1 ( 2 2)Tao = Tu == 2: (8T X) + (8u X) == 0

or, in the light-cone coordinates, of the forro

•
1

T++ == 2: (Tao + Ta)} == 8+XIJ.8+Xf.J == 0,

1
T __ = 2: (Tao - TOI) = 8_XIJ.8_X IJ. == 0,

T+_ ==T_+ == O.

(2.1.34)



where the third line here follows from TabTJab = O. In two-dimensionalquantum field

theory, energy-momentum conservation 8aT ab = 0 may he expressed as 8_T++ +

8+T_+ = O. However, one has that T _+ = 0 automatically, and thus the conservation

law becomes 8-T++ = 0, which is a powerful statement, implying an infinite set of

conserved quantities.

To see these conserved charges, let f((J+) be an arbitrary function of a+. Then

8-f = 0 and by extension 8-(fT++) = 0, so the charge Qf = IdafT++ is conserved.

Sïnce we can choose any f(a+) that we want, we have an infinite set of these

conserved quantities. This property is unique to the case of two dimensions, and

thus to string theory (with n = 1). Physically, these conserved quantities represent

residual symmetries which remain after the imposition of conformai gauge on the

world sheet metric. Consider that a reparametrization Ça which obeys

•
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(2.1.35)

preserves the choice of gauge of the world sheet metric. If we then define "light

cone" versions of the reparametrizations as ç±(17±) = (ço ± ç1) and consider world

sheet reparametrizations to he generated by the operator

(2.1.36)

we find that the generators of the residual symmetries cao he written

(2.1.37)

(2.1.38b)

(2.1.38a)

•

which are the generators of the conformai group in !Wo dimensions. In the case

that f "" ç+ the conserved charges generate (2.1.37). Only in two dimensions is the

group of conformal transformations infinite dimensional.

In solving (2.1.27) for the case of closed string, we need only consider the

periodicity requirement of XJ.'(a, T) in a, which gives us the general solution as:

XI-' =.!. (xl-' + f.2,.,..pa- + if.~ .!..aJ.' e-2inCT- )
r 2 JF L...J n n ,

n,.Q

Xi - ~ (xl' + PpI'a+ + if. L ~ô~ e-2inu+)
n."t)



where the a~ are the Fourier components, which will he interpreted as oscillato2

components describing the excitations of the string, i.e., the a~ are annihilation

operators, while the a~n are creation operators. AIso a length parameter .e has

been introduced, related to the inverse string tension a' according to .e = J20/.

The variables xl-' and pi"' are the center of mass position and momentum of the

string. Note that adding (2.1.38a) and (2.1.38b) together cancels the term linear in

u, consistent with the requirement of periodicity. The requirement that XI-'(r, u)

should he real implies that O!~n = (a~)t and that xl-' and pi"' are themselves real.

The classical Poisson brackets for closed strings from (2.1.24) are

•
The Theory ofStrings

[Xl-' (u) ,Xv (cr')] pb = [8r XI-' (u) ,8r X v (u')] pb = 0,

[8T XI-' (u) ,XI-' (u')] pb = 2'1ra'8 (u - u') rlw .
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(2.1.39)

Insertion of the solution (2.1.38) gives the Poisson brackets of the oscillator com­

ponents as

[ J.' El] _ [-1-' -V] _..r P.EIam' an pb - am, an pb - 1,m Um+n,O TJ ,

[ 1-' -El] -0O!m'O!n pb - .

(2.1.40)

Adopting the convention that the zero modes Qb and ab are defined as Qb = ab =

i.epl" then gives us the useful result that (2.1.40) remains valid when m = 0 or n = °
or both. Note also that we have [pI-', Xl-']pb = T/I-'V as we should expect.

The case of the open string is slightly different, for as we have mentioned we

must choose boundary conditions at u = 0 and at u = 'Ir such that (2.1.26) vanishes.

The fust choice which accomplishes this is aqXI-' = 0 at the endpoints of the string,

Le., the normal derivative vanishes at the string boundary. This condition is a "free

boundary condition" in the sense that momentum cannot flow off the end of the

string, and the end of the string is free to move about in spacetime. The general

solution of the wave equation with these boundary conditions is

5 It should be noted that the am are related to conventionally normalized oscillator components
by a~ - Viii a~. ete..•

XI-' (u, r) = xl-' + .e2rf'r + il2: .!.a~ e-inr cos nu.

n.,.o n
(2.1.41)



The boundary conditions cause the left-moving and right-moving modes to fonn

standing waves, meaning that we now have a = a. We can therefore write•
The Theory ofStrings

00 . ( -+-)
28±XJ.' = 8r XJ.' ± 8u XJ.' = t L a~ e-~n u- l

-00

where we have set the zero mode ab = tIf'.
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(2.1.42)

•

1t is now necessary to implement the constraints Tab = O. To do sa we consider

the mode expansions of the constraints (2.1.34). For closed strings it can be shown

that these reduce to (8r X r )2 = C8rXI)2 = 0 thus we find

(2.1.43)

The Fourier modes of the constraints can he identified with the infinite set of

conserved quantities which exist in the theory. We do not, therefore, expect the

constraints to change as the system evolves. We emphasize that Lm = 0 and Lm = 0

are independent constraints for the closed string.

In the open string case things become much more convenient if we extend

formally the definitions of X~ and Xi beyond the usuaI range 0 < cr < 1r by

arranging that Xr(cr + 1r) = XI(U) and XI(a + 1r) = Xr(cr). If this is done then

the open string boundary conditions imply that X r and Xl are periodic functions

of U with a period 27r. These choices are made to get around the fact that eina is

not a periodic function on 0 < a < 'Ir. The constraints in this case amount to the

vanishing ofT++ on the range -1T" < a < 'Ir, or at the same time the vanishing of the



•
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Fouriercomponen~

These are the infinite set of conserved quantities for the open string.

The Hamiltonian on the world sheet is given by

[9

(2.1.44)

(2.1.45)

which upon substitution of (2.1.38) for closed strings or (2.1.41) for open strings

gives us

1 00

1i = 2: L Ct':nCtnp
-00

1 00

1i = 2: L (Ct':nCi.n~ + a~nanp)
-00

(open strings)

(closed strings)

(2.1.46a)

(2.1.46b)

while noting that we have 1l = Lü for open strings and 1l = Lü + Lü for the closed

ones. Note that we have not considered quantum normal ordering effects in (2.1.46)

which will play a role when we come to consider the mass spectrum.

The constraint Lü = 0 gives an important formula for the mass in tenns of the

internai modes of oscillation of the open string, while for the closed string this is

given by Lü + La = O. These formulae are

(open strings)

(closed strings)

(2.1.47a)

(2.1.47b)

•
and are the mass shell conditions for the two different types of strings. For closed

strings we aIso point out that the set of constraints have the additional condition that

La - Lü = 0, which cornes from the fact that the combination Lü - La generates

rigid rotations of the string [9], U -7 u+ constant, which should have no physical



effect since CT is periodic. Therefore the two terms in (2.1.47b) will give equal

contributions. This is commonly termed the level matching condition, that is we

must a1ways excite equal numbers ofleft-moving and right-moving modes, i.e.,•
The Theory ofStrings

00 00

~ CY.~ O'.~ = ~ (iJ1. (iJ.l..L....J -n n L -n n
n=l n=l
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(2.1.48)

(2.1.49)

The various Fourier modes of the energy momentum tensor, Lm and Lm are

known as the Virasoro operators. The Poisson brackets of the Vrrasoro operators

can be computed to be

[Lm, Ln]pb = i (m - n) Lm+n

[Lm, Ln]pb =i (m - n) Lm+n

which is known as the Virasoro algebra. This algebra is fundamental in the theory

of strings. The Virasoro operators allow us to define the physical states of the theory.

The Fock space built up through application of the creation operators ~n and

(i~n to the ground state 10) is not positive definite due to the Minkowski metric

signature. The VIrasoro operators allow us to eliminate the unphysical states. Since

we cannot simply impose Tab 1 phys) = 0, we must impose the weaker condition

Lm 10) = 0 for m > O.

The version of the Virasoro algebra given above is classical. However, a com­

plete quantum computation of this algebra, which includes a detailed consideration

of the effects of normal ordering of the oscillator components is beyond the scope

of titis brief introduction. It will suffice to say that when quantum effects are taken

into account the result is that the Virasoro algebra gains an anomaly term, or central

charge, meaning that the algebra no longer closes, becoming:

(
D - 26 3 26 - D )

[Lm, Ln] = (m - n) Lm+n + 12 m + 12 m 8m+n o (2.1.50)

•
where D is the number of bosonic fields XJ.I., and the number 26 derives from the

contribution of certain ghost, or negative nonn, fields which appear in the Fadeev­

Popov gauge-fixing procedure [28,33]. Thus we arrive at the famous result that

the "critical dimension" of the bosonic string theory is 26. This is the number

of spacetime fields for which the VIrasoro anomaly vanishes, leaving a 'Trrasoro



algebra which closes. The VIrasoro algebra is tied to the confonnal symmetry of the

bosonic string action (2.1.19). Classically, the action is confonnally invariant, but

quantum effects create a confonnal anomaly [31] thereby breaking the conformal

invariance. Therefore, for D = 26 the conformai anomaly vanishes, and the bosonic

string theory is consistent.

Having 26 dimensions with Minkowski signature we will have, in generaI, states

forming representations of 80(1, 25). However, elimination of the non-physical

negative-norm states through application of the Vrrasoro operators irnplies that in

general the states of the theory will forro massive representations of 80(25). In

addition the massless states, being constrained to lie on the light cone will fonn

representations of 80(24).

\Vhen normal-ordering effects are included, the mass-shell condition for the

open bosonic string becornes

•
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(2.1.51)

Thus the spectrum of states of the open bosonic string includes, as the ground state,

a scalar tachyon with ciM 2 = -1 and a massless vector boson with 24 independent

polarizations as the fust excited state. An indication that 80(25) is in fact the correct

group can he obtained from the fact that we have 324 states with a'M 2 = 1 which

is precisely the dimension of the syrnmetric traceless representation of 80(25) [9].

It is interesting to note that the spin at a given mass level is constrained by the

formula J < a'M 2 + 1.

For the closed string, the normal-ordered mass formula is

(2.1.52)

•
and the states are more numerous given that we have both left- and right-moving

oscillators. The ground state is again a tachyon with a'lYI2 = -4. At the fust excited

state level, which is massless, we have the fust indication that we are on the right

track. We find a set of massless states which again have 80(24) quantum numbers

resulting from the tensor product SO(24)r ® SO(24)l of the left- and right-moving



modes. The symmetric and traceless part of this tensor product is a massless spin­

two particle: the graviton, the quantum of the gravitational field. At the same rime,

the antisymmetric part is an antisymmetric tensor field, commonly known as the

Kalb-Ramond potential, while the trace part is a scalar field which bas been called

the dilaton.

•
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•

Although we bave found a graviton state in the spectrum, the bosonic string

has sorne deficiencies. The presence of tachyons in the spectrum is under normal

circumstances cansidered a bad thing. Another glaring defect is the complete lack

of fermions. Thus it is necessary to incorporate the concept of supersymmetry into

string theory ta form the superstring theory which as we will see is successful in

correcting both of these defects.

2.2. The superstring

In this section we will overview the elements which come together ta form the

superstring theory. The concept of supersymmetry, a symmetry between bosonic

and fermionic degrees of freedom, was developed as a means of circumventing the

Coleman-Mandula theorem [34J which states that the maxim~! set of symmetries

a physical theory may possess are those of Poincaré invariance, internai global

symmetries, whose generators are Lorentz scalars (charge, isospin) and the discrete

symmetries C, P and T. One of the assumptions of Coleman and Mandula was that

the symmetry algebra of the S-matrix contains no anticommutators. By including

anti-commuting generators which transfonn under spinor representations of the

Lorentz group, the Poincaré spacetime symmetries can he extended.

Below, supersymmetry is briefly presented using the fonnalism of superspace

and superfields [35-39]. Then supersymmetry is installed on the string world sheet.

This necessitates a treatment of the boundary conditions which are to he imposed

on the fennionic fields on the world sheet. From this point, the computation of the

supersymmetric version of the VIrasoro algebra and its anomaly can he carried out

in a similar manner to that of the bosonic string.



We will demonstrate that the incorporation of N == 1 supersyrnmetry6 on the

world sheet results in a spacetime theory with fermions and with critical dimension

D = 10. Later we will see that world sheet supersyrnmetry can he extended

to spacetime supersymmetry through truncation of the spectrum in a consistent

manner [40].

•
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2.2.1. Superfields on the world sheet

The introduction of supersyrnmetry on the world sheet requires the pairing of a

fermionic degree offreedom 'l/JJ1o(G', T) with each bosonic degree offreedom X~(Œ, r).

The 'if;p. are two-component world sheet spinors.

The simplest way to install supersymmetry on the world sheet is through the in­

troduction of superspace. In superspace, the ordinary coordinates are supplemented

with the addition of a number of Grassman-valued (anti-commuting) coordinates

BCt which in two dimensions, for example, form two-component Majorana spinors.

Thus superspace is composed ofboth bosonic and fermionic coordinates [41]. Here

we will work with a superspace in which there are equal numbers of bosonic and

fermionic coordinates. A general function XJ1. in superspace can be expanded in a

Taylor series in the Grassman coordinates as

(2.2.1)

•

where B == et,0. The series terminates due to the anti-commuting nature of the

Grassman coordinates BCt. Xp. here is known as a superfield which contains the

bosonic scalar field X J1o , the fermionic field 'if;~ as weil a..() yet another bosonic

scalar field UJ.' which plays an essential role as an auxiliary field, allewing the

supersymmetry algebra to close without resorting te the use of the equations of

motion, often referred to as putting particles Hon shell".7

The supersymmetry generators are represented on superspace by the operators

(2.2.2)

6 N is a parameter that counts the number of supersymmetry generator pairs.
7 For a discussion of on-shell versus off-shell supersymmetry one is invited to consult [9] or

[25].



where,a are the two-dimensional Dirac matrices,8 which change fermionic degrees

of freedom into bosonic degrees of freedom, and vice versa. If we introduce an

anti-commuting parameter €o: as the infinitesimal parameter of a supersymmetry

transformation, then the combination ËQ generates the transfonnation:

•
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oeo: = [€Q, BO:] = €o:,

oua == [€Q, (Ta] == i€,aB

which can he used to define transfonnations on superfields as

8XJ' = [€Q, X~] = €QX~,

24

(2.2.3)

(2.2.4)

and it can then he shown that the effect of this supersymmetry transfonnation on the

component fields of the superfield XI' is

5XJJ. == €'lj;~,

8'lj;P. == - i,a€aaX~ + EUP,

o'UP = - i€,aaa7/l'.

(2.2.5)

The presence of the auxiliary field l1P allows the supersymmetry algebra to close

without the use of the equations ofmotion. Therefore we see that supersyrnmetry

cau be iJ.ïterpreted as a geometrical transformation in superspace, i.e., one which

"rotates" fennions into bosons and vice versa. We aIso mention that any function

of superfields is also a superfield and hence will transform according to (2.2.4).

The task now is to Iearn how to write supersymmetry invariant Lagrangians in

two dimensions, such that we cau find that which corresponds to the "superstring".

For this we will need two things: (1) a covariant derivative on superspace and (2)

mIes for integrating over Grassman valued coordinates. The former is supplied by

(2.2.6)

•
which bas the usefui property that {1)0:, Q[3} = o. Therefore if an object X trans­

forms as oX == €QX then so does 1)o:X, and thus 1)0: behaves as a superspace

covariant derivative. The mIes for (2) are handled by saying that the natural integral

8 See appendix A for the explicit representation.



over all ofsuperspace is given by Id2ud28 where d28 = d81dB2 and fd28 dealt with

through the definition•
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(2.2.7)

Thus given a Lagrangian of the fonu

where X is sorne supemeld, and it can be shown that

68 = !d2Ud2(}€QX

-0

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

through integration by parts in both the Grassman variables, and the ordinary vari­

ables. Therefore, any action of the fonn (2.2.8) is invariant under supersymmetry

transformations.

We then want to find a Lagrangian in which the elementary superfields are

the superfield analogs of the spacetime coordinate fields on the world sheet as in

(2.1.24). One which cornes readily to mind from this analOgy is

1 f 2 2 -S = 41ra' d ud 81JXP1JX~.

The expansions of the superspace covariant derivatives will he

i -
'1JX~ ='l/J~ + 8U~ - i,a8aaX~ + "2BB"(aaa7f;J.1.,

- - - - i- -1JXJ.1. = 'l/JP + U~B + i8aX PB,a - "2888a7f;J.1."(a,

and their substitution into (2.2.10) and execution of the integrals over the Grassman

coordinates 8 results in a supersymmetric Lagrangian of the form:

(2.2.12)

•
The equations of motion then imply that the auxiliary field 11~ vanishes, and hence­

forth it will be ignored.



The fermionic fields 7j;~ that we have introduced on the world sheet must he

complemented with a set of constraints and boundary conditions, just as in the

bosonic case we examined earlier. The fermionic equation of motion derived from

(2.2.12) will he the Dirac equation in two dimensions ,aaa7./JJ1. = O. An appropriate

basis with which to work for the Dirac matrices on the world sheet is

•
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2.2.2. Constraints and boundary conditions

26

o (0,= .
't

1 = (0 i), i 0 (2.2.13)

The fields 7/;~ cao be decomposed using this basis into

(2.2.14)

where 'l/J- are the right-moving and 7/;+ are the left-moving modes of 7/;, which are

also eigenstates of the chirality operator r = ,0,1, that is

(2.2.15)

and we can write decoupled equations for the right- and left-moving modes as

(2.2.16)

indicating that 'l/J± = 'l/J±(cr=f), paralleling those we have seen for the bosonic coor­

dinates X~. In the light-cone coordinates we have used previously the fermionic

part of the action can he written

(2.2.17)

•

in which form the decoupling between right- and left-moving fields is rather appar­

ent.

In this case as weIl, the XJJ. satisfy the same free wave equation as in the

purely bosonic case, and the mode expansions (2.1.38) carry over unchanged. The

fermionic coordinates will have their own surface terms from the variation of the

Lagrangian (2.2.12), the vanishing of which requires that 'l/J+8'l/J+ - 'l/J_87./J- vanish

at each end of the open string, which can he satisfied by putting 1/;+ = ±7./J- at each



end. The relative sign at a = 0 (say) can he chosen with no loss of generality ta he• positive, i.e.,
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'l/Jt (0, T) = 1/;': (0, T)
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(2.2.18)

which leaves us with two meaningful choices of sign at the a = 'Ir end of the string.

Choosing

'l/J':- (1r, T) = t/J': ('Ir, T) (2.2.19)

are known as Ramond (R) boundary conditions which have the mode expansions

tf;':.. (0-, r) =~L p(:: e-in(r-<T)

nEZ

tf;f. (0-, r) =~L p(:: e-in(r+<T)

nEZ

(2.2.20)

where nEZ implies summation over ail integers and the p are the oscillator

components. On the other hand, the choice

'l/Jt (1r, 1") = -'if;': ('Ir, 'T) (2.2.21)

(2.2.22)

•

are known as Neveu-Schwarz (NS) boundary conditions which have the different

mode expansions

tf;':.. (a, r) =~ L "If e-ir(r-<T)

rEZ+i

tf;f. (a, r) =~ L "If e-ir(r+cr)

rEZ+i

where r E Z + ! implies a SUffi over half-integers r, and again the 1] are the oscillator

components. The Ramond boundary conditions and the integral mode expansions

(2.2.20) describe string states that are spacetime fermions, while the Neveu-Schwarz

boundary conditions and half-integral mode expansions (2.2.22) describe string

states that are spacetime bosons.

For closed strings, on the other hand, the surface tenns vanish if the boundary

conditions are periodic or antiperiodic separately for the left-moving and the right­

moving fields.
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• This means that we can have

'l/J': = L ~ e-2in(r-u)

nEZ

'l/Jf. = L ~ e-2in(r+u)

nEZ

or 'l/J':- = L ri,: e-2ir(r-u)

rEZ+i

AND

or 'lj;f. = L fj~ e-2ir(r+u)

rEZ+-i

28

(2.2.23a)

(2.2.23b)

which correspond to the closed string having four distinct sectors, or sets of states,

which can be referred to as NS-NS, NS-R, R-NS, R-R. The NS-NS and R-R sec­

tors describe spacetime bosons, while the NS-R and R-NS describe the spacetime

fermions.

How does this come about? We begin by imposing the canonical commutation

relations on the fermionic coordinates, as in

{'lj;~ (0-, T) , 'l/Jb (0-', T) } = 1rO (cr - 0-') rfvOab (2.2.24)

which upon substitution of the mode expansions (2.2.20) or (2.2.22) for the open

string and (2.2.23) for the closed string give us the anticommutation relations for

the modes ~ and 7]~ as

(2.2.25)
{~, p~} = 7]1.won+m.

Note that for the closed string we will have another set of relations involving 1# and

~. Consider now a ground state of the Fock space such that

a~ 10) = a~ 10) = ~ 10) = a n>O (2.2.26)

for the NS boundary condition, or for the Ramond boundary condition

For the half-integer modes r#, it is possible ta identify a unique non-degenerate

ground state, which therefore is a scalar (spin zero). For the case of the integer

modes ~ this is not possible since we have the zero modes Pb. These will obey the

algebra•

a~ la) = a~ 10) = TJ~ la) = 0

{Pb, PO} = TJ~v

n, r > o. (2.2.27)

(2.2.28)



which is the Dirac algebr~ and thus up to a nonnalization the zero modes Pb just are

the Dirac matrices. Ifwe demand that the Dirac matrices satisfy {,fJ., ft'} = -21']/-'v

then we find that ffJ. = iV2lJb.
Ifwe write the mass shellrelation for the superstring7generalizing (2.1.47)7 we

find it to he for the NS condition

•
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M
2

= ~ ( f>!:nQnl' + f T17!:r 17rl' - D
n=l r-t

M 2
= ~I (Z): (d:nQnl' +à~ànl')

n=l

+~ T (rf-r17rl' + ff--T fi,. l') - 1)
r-!

and for the Ramond boundary condition

M
2

= ~I ( f Q!:nQnl' + î L nP"-nPnl')
n-l nEZ

29

(open strings) (2.2.29a)

(closed strings) (2.2.29b)

(open strings) (2.2.30a)

•

+ î Ln (P"-nPnl' + P-nPnl') ). (c1osed strings) (Z.Z.3Db)
nEZ

At each mass level we expect that for the Ramond boundary the states will fill out

representations of the Dirac algebra. As is well known7 the irreducible representa­

tions of the Dirac algebra are in fact the spinor representations of SO(l, D - 1) in

D dimensions.

We now need to find the constraints analogous to the vanishing of the VIrasoro

operators for the bosonic string, which allowed us to eliminate the non-physical

states of the theory, leaving hehind the physical spectrum. Recall that for the

bosonic string the Vrrasoro operators (2.1.43) for the closed string and (2.1.44)

for the open string had their origin in the variation of the Lagrangian with respect

to the world sheet metric ((2.1.31». Thus the removal of non-physical states for

the bosonic string is dependent upon the reparametrization independent forro. of

the action (2.1.30). This action can be thought of formally as D scalar fields XIJ

coupled to gravity in two dimensions, described by eab• From this we reason that in
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(2.2.31)
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the case in which there are aIso fermionic fields coupled to 2-dimensional gravity,

as in the superstring action (2.2.12), the proper course of action is to treat the XIJ

and 7j;1-' as superpartners coupled to 2-dimensional supergravity. In this case the

parameter describing the supersymmetry transfonnations € becomes dependent on

the world sheet coordinates E(U, r). This local supersymmetry algebra will give

us the infinite number of super-VIrasoro operators we will need to eliminate the

non-physical states for the superstring.

The super-VIrasoro constraints have, therefore, contributions from the fermionic

fields. When the parameter of the supersymmetry transfonnation € becomes local,

the supersymmetric variation of (2.2.12) no longer vanishes, but rather is given by

58 = 2:œ fd2
(J" (Ba€) r

•

where Ja is the world sheet supercurrent gÏven by

(2.2.32)

The supercurrent can be decomposed into positive- and negative-helicity compo­

nents as

(2.2.33)
J+ == 7j;~a+xIJ'

J_ == 7j;':-8_Xp..

We also write the world-sheet energy-momentum tensor for the superstring as

(2.2.34)

which is re-expressed in light cone coordinates as

T++ =8+XIJ8+Xp. + ~7/J~8+'lj;+p.,
i

T__ ==8-XJ1.a_X I-l + "27/J':...8_'l/J- IJ ,

T+_ ==T_+ == O.

(2.2.35)

(2.2.36)•
The supercurrent components J± are connected to T++ and T__ through an algebra

{J+(a), J+(a')} == 1r8(u - a')T++(a),

{J_(a), J_(a')} == 1r8(a - u')T__(0'),

{J+(cr), J_(a')} =0,
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(2.2.37a)
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00 00

L ~-nan~ + L (n + ;) P':n-nPnp Ramond
n--oo n--oo

1
=-

2

and therefore, if we wish to set T++ = T __ = 0 as in the case of the bosonic string,

we must set J+ = J_ = 0 as welle

Then one is able to write the super-Virasoro constraints for the closed string as

Lm --41 , rTrdae-2imuT__
?ra Jo

00 00

L a~_nan~ + L (r + ;) ~-r1]rp Neveu-Schwarz

n--oo r--oo

•

Gr = 4V2, rTrdO"e-2iru J_
rra Jo

00

= L rf,:-nO:n~

(2.2.37b)

Neveu-Schwarz

n--oo

Fm = 4V2, r'1rdae-2imu J_
?ra Jo
00

= L P':n-nQ:np

(2.2.37c)

Ramond
n--oo

(2.2.38a)
r--oo1

=-
2

for the right-movers and similarly for the left-movers as

L = _1_ !aTrdO" e2imu T-
m 4 1 ++?ra a

00 00

L ~-ni5:np + L (r + ;) ~-rfjrl-' Neveu-Schwarz

(2.2.38b)

Neveu-Schwarz

n--oo

•
(2.2.38c)

Ramond
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For the open string case we have

1 1rr . .Lm =--, da{e~muT ++ + e-~mq T __ }
21ra 0

1 jrr imu
= -- due T++ = 0

21ra' -rr
00 00

L a~_nan~ + L (r + ;) l1~-r1]rjj Neveu-Schwarz
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00 00

L a~-nCl.n~ + L (n + ;) rI:n-nPnjj Ramond
n--oo n=--oo

=2
n--oo r=--oo

(2.2.39a)

0.11r· .G = -- du{e&ru 1. + e-&TU J }
r 2 ' + -1ra 0

0. jrrd iru 1. 2 ~ p.
= 2' u e + = L..J 1'Jr - n anf.'

1ra -rr n:::a-oo

exactly similar to the right-moving closed string.

(2.2.39b)

Neveu-Schwarz

(2.2.39c)

Ramond

The methods for dealing with these operators parallel those used for the bosonic

string, and the reader interested in the specifie details is recommended to consult

the references, in particular [9] and [25].

1t is reasonably clear, however, that what is going to result is a supersymmetric

generalization of the VIrasoro algebra appearing in (2.1.50). This generalization

has, in fact, two parts corresponding to the NS and R sector. In the NS sector the

super-VIrasoro algebra is

•
[Lm, Ln] = Cm - n) Lm+n + ~ (m3

- m) lÎm+n.O

[Lm, Gr] = (; - r) Gm+r

{Gr,Gs} =2Lr+. + ~ (T2 -~) Ôr+'.O

(2.2.40)



D 3
[Lm, Ln] = (m - n) Lm+n + gm 8m+n,o

[Lm, Fn] = (; - n) Fm+n (2.2.41)

D 2
{Fm 7 Fn } =2Lm +n + 2"m 8m+n,O

where as in the case of the bosonic string, the anomaly tenus derive frOID the nonnaI

ordering of the oscillator components. A physical bosonic state is then identified by

requiring that

•
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while that of the Ramond sector is very similar, appearing as
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Gr 1 phys) = 0, r > 0

Lm 1 phys) = 0, m > 0 (2.2.42)

(La - a) 1 phys} = 0

where a is a nonnaI-ordering constant for bosonic states. For physical fermionic

states the conditions are

Fm 1 phys} =0 r > 0

Lm 1 phys) = 0 r > 0

(Fa - a./) 1 phys) = 0

(2.2.43)

•

where al is the nonnaI ordering constant for the fermionic states. The nonnal

ordering constants are a = î and al = a for the open string, and a = 1 and a' = 0 for

the closed string. These are reflected in the mass formulae (2.2.29) and (2.2.30).

It can he shawn [25] that the critical dimension D that results in a super-VIrasoro

algebra without anomalies is 10. In this case the supersymmetric generalization of

the confonnal anomaly, the superconformal anomaly will vanish, and thus the

superstring theory is consistenë quantum. theory in ten spacetime dimensions.

One might have been hoping for D = 4, but this is not the case. The question then

arises as to how one arrives at a theory in a more reasonable number of spacetime

dimensions, i.e., four.

Another question concems the existence, although we will not demonstrate this

explicitly, of a tachyon in the spectrum. The tachyon can he understood from the

normal ordering term in (2.2.29). There is the further question of the relationship

9 Weil, it is aImost consistent at this point, see section 2.2.2.1.



hetween world-sheet and spacetime supersymmetry. That is, given that we have

supersymmetry on the world sheet, do we then have supersymmetry in spacetime

as weIl? If not automatically, is it possible to arrange this to be the case? These are

topics that we will explore in the next sections.

•
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2.2.2.1. Spacetime supersymmetry

The superstring model above, even with critical dimension D = lOis still not

yet completely consistent. The spectrum still includes a tachyon. The tachyon

can, however, be e1irninated when the spectrum of string states is truncated in a very

specific manner, and when this is done, the number offermionic and bosonic degrees

of freedom at each mass level are the same, and we have spacetime supersymmetry.

The truncation of the string spectrum necessary for creating spacetime super­

symmetry is known as the GSO projection, after the originators Gliozzi, Scherk

and Olive [40]. It should he noted, however, that the desire ta produce a theory

which is spacetime supersymmetric is not the ooly argument in favor of making this

modification to the spectrum. There is the aforementioned tachyon that we would

like to eliminate.

Further, one sees a problem in that the theory has certain anticommuting opera­

tors ?/JJJ that map bosons to bosons [9]. That is, if 1cP) is said to he a bosonic state, then

?/JI-' 1cP) is a state of integer spin that has been created by an anticommuting operator

acting on 1cP). This is not normally encountered in physics. Further, consider n such

operators acting on our state:

(2.2.44)

•

If n is even, there is no real difficulty, since the product of an even number of

anticommuting operators is commuting. For n odd, however, it is tempting to

propose eliminating the states. The GSO projection consists of the proposai that

all states of the forro (2.2.44) with n odd are to be eliminated from the spectrum

of states, while those of even n are kept. This is done by formally introducing a

quantum number (_l)F, called G-parity for historicaI reasons and under which the

Fermi fields 'lj;JJ are odd and the bosonic fields XI-' even.
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(2.2.45b)

(2.2.45a)NS sector

R sector
n-l

The Theory ofStrings

1 + k (_l)F+l
p=----­

2

Thus we define for the NS and R sectors the GSO projection operators

1 + (_l)F+l 00

P = 2 F = L rt.r17~
lr-!
00

F=L~n~

•
where the zero-mode contribution is counted by writing F + 1 and k can be chosen

to he either +1 or -1 independently for the right-moving and left-moving fields.

Note that for left-moving fields Fin (2.2.45a) or (2.2.45b) is replaced by

00

F = ""::::Jl -pL..J/I-r'T/r
lr-!

or
00

F=L~n~.
n-l

(2.2.46)

Note that the GSO projection is carried out separately on right- and left-moving

states. In this way, the GSO projection eliminates our unruly tachyonic scalar, for

which F = 0, since only states with (-l)F = -1 survive the projection in the NS

sector, and gives us a theory which can be shown to have ten-dimensional spacetime

supersymmetry [42].

Historically, closed string theories in which k has the same value for both right­

and left-moving fields are known as type IIB theories whereas k chosen to have

opposite values for the left- and right-movers leads to type lIA theories. We will

describe these theories in more detail in a later section.

2.2.3. Compactification

•

The procedure which allows us to take a theory which is fonnulated in 10 spacetime

dimensions (or 26 for the purely bosonic string, if we wish) and effectively reduce

the number of spacetime dimensions is known as compactification. In the same

way as there are two ways of thinking about string theory, from the point of view

of the world sheet and from the point of view of spacetime, one can consider

compactification from these two complementary points of view.

Compactification from the spacetime perspective, usually called Kaluza-Klein

compactification, is an ansatz which tells us how higher dimensional fields, such as

the metric, appear to a four-dimensional physicist for example. Sïnce this compact­

ification procedure will be of great utility in our work, we will explain it in sufficient



detail. However, we will begin with a discussion ofcompactification from the world

sheet perspective.

In the following, we will restrict our attention to compactification of higher

dimensions on tori, that is we make the extra coordinates periodic. This is only

the simplest possibility. There exists an extensive literature which considers other

possibilities, such as orbifolds [43] or more general Calabi-Yau manifolds [44].
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•

2.2.3.1. Compactification of world-sheet fields

As the reader has undoubtedly already noted, the addition of fermionic fields on the

world sheet was responsible for lowering the critical dimension of the superstring

theory to ten from the twenty-six of the bosonic string theory. This gives one the

idea that the addition of other fields on the world sheet, not necessarily fermionic

ones, may have a similar effect.

In fact this can be brought about in conjunction with the elimination of the

higher dimensions for the bosonic string in a process sometimes called toroïdal

compactification. On the world sheet, the higher dimensions beyond say 10, the

critical dimension of the superstring, are just a selection from among the twenty-six

which live there, with the exception of time. Thus we choose 16 coordinate fields

on the world sheet, and we enforce on them periodic boundary conditions in a

spacetime sense. These fields are already periodic on the world sheet, but we now

add a condition such as Xi = Xi + 21rRi . mi where i mns over the 16 "compact"

coordinates, Ri represents the radii, or periods, of these coordinates and mi are

arbitrary integers. Thus we have formed a torus.

For simplicity, let us consider a single coordinate X of the closed bosonic string

on the world sheet that is compactified iuto a circle. We then have X =X + 21rRm,

and the mode expansion ofX is modified to reBect that the center ofmass momentum

along the compact direction is quantized, giving

X (u, r) = x + a'pr + 2Lu + ~L ~{an e-Une'T-<T) + <in e-2in('T+<T)}. (2.2.47)
n"on

Note that the momentum zero mode is quantized as p = ~ with k E Z.This ensures

any momentum eigenfunctions along the compact direction are single valued. Also,



37

(2.2.48)
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L = mR with m E Z~ and m describes the number of times that the string wraps

around the compact coordinate. This wrapping cannot occur in the uncompactified

case, since the energy will diverge as R -+ 00. Note aIso that wrapping around

compact coordinates does not occur for open strings 10

As usuaI the mode expansion (2.2.47) can be decomposed into right- and left­

moving parts

X r (T - 0") =Xr + ~ (v;;! p + -;;.,) ('1 - 0") + il '""" .!..an e-2in(T-CT)
2 v~ 2~nn.,.o

Xl (T + 0") =XI + i (v;;! p - -;;.,) ('1 + 0") + il 2: .!..an e-2in(T+CT)

2 va' 2 n,-D n

•

where X r and Xl are the center of mass position of the right- and left-moving modes

respectively. Recall that l = .../2cl. Substituting this into the zero-mode VIrasoro

constraints gives us, for the compact coordinate

1 ( rï L)2 a' 2
La = '4 v cl p + v;;! + N + "4 (PfJ)

- 1 ( r-; L ) 2 - a' ( )2La = - va' p - -- + N + - PfJ
4 Vël 4

(2.2.49)

which give a formula for the 25-dimensional mass of the form

k2 2R2, 2 - ,m
a M = 2(N + N - 2) + Cl! R2 + cl . (2.2.50)

where
00

N = 2: (a~nanJ.' + a~nan25)
n-l
00

N- " (~J,: - -25 - )= L...J Œ_nan ?, + Cl!-n Cl!n2S

n-l

(2.2.51)

are the contributions of the oscillator components. Thus we see that the 25­

dimensional mass has a contribution from the momentum of the center of mass

10 We will see in chapter IV that considerations of open versus closed strings in conjunction with
compactification lead us to new objects in string theory, the D-branes.

Il From the mass formula one may be led to expect that changing R ++ ~ is a symmetry and this
is in fact true as we will see in chapter m.•
of the string along the 26' th dimension. Il Note here that we are labelling the



dimensions J.L = 0 ... 24. The level matching condition La - Lü = 0 gives the

relation•
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N - il =pL = km.

2.2.3.2. WorId sheet current aIgebra

38

(2.2.52)

•

The closed string has no points of preference like the endpoints of an open string.

Therefore, if one contemplates the addition of charges to a closed string, one must

consider that the charge is distributed over the string. This can be carried out through

the addition of bosonic fields on the world sheet, which are Lorentz singlets, but

carry internai quantum numbers.

The consistency of string theory is quite fragile, but it turns out that consistency

can he maintained as long as certain conditions are met. First of all, the total number

of bosonic fields must aIways add up to 26. Thus the number n of these charge

fields that one must have if there are D coordinate fields XJ1. is given by n = 26 - D.

It can be shown that with suitable, special conditions [9] on the zero modes of

these charge fields, they can generate an SO(2n)r Q9 SO(2n)l internai symmetry

group, while satisfying the quantum consistency conditions. At the same time,

the zero mode conditions on the charge fields prevent the extension of the Lorentz

group of the theory beyond SO(l, D - 1). Thus, by adding a current aIgebra, one

can consttuct a consistent completely bosonic string theory in D dimensions with

SO(2n) ® SO(2n) symmetry. In a sense, in this way we can "adjust" the criticaI

dimension of the bosonic string.

Let us now return to toroidal compactification. Consider again the single

compact coordinate of section 2.2.3.1. Let 1k, m) denote the ground state of a Fock

space which has internai momentum number k and winding number12 m. Let us

DOW construct massless vector states. Two are given by

(2.2.53)

12 We suppress the 25-momentum.



since they have N = El 1 and P = L = 0, M 2 = o. These two vectors

can be considered to result from the decomposition of the graviton Gp.v and the

antisymmetric tensor field B J.W with respect ta the 25-climensional Lorentz subgroup.

More massless fields cao be found when P, L =1 O. If we take pL = km = 1

for example, setting p = LIci then we can have zero mass if N = l, fil = 0, and

if R2 = ci from (2.2.49) and (2.2.50). Sïnce km = 1 requires k = m = ±l, for

this special value of the compactification radius, we have four massless vector fields

given by
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a~l Il ,1), a~l 1-1, -1) , a~l Il, -1), ~11-1, 1)
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(2.2.54)

•

in addition ta those, (2.2.53), that are present at any compactification radius.

Thus we see a rough outline of how compactification gives cise ta the fields

needed to fonn representations of SO(2ti)r ® SO(2d)h at least at special compact­

ification radii. Thus nonabelian symmetry can arise from this procedure. This

procedure is of particular interest in the case of the heterotic string [45], where

16 (right-moving) dimensions are compactified ta produce a nonabelian symmetry

group of 80(32). It cao aIso he arranged to form the group Es @ Es, since the

exceptional group Es has 248 generators whereas 80(32) has 496 generators.

2.2.3.3. Kaluza-Klein compactification

The Kaluza-Klein programme is, as we have noted, an approach to compactification

from the spacetime perspective as it is unnecessary to even mention the existence

of a world sheet when carrying it through. In fact, this programme predates string

theory [46] and in its simplest tenns it is an ansatz that tells us how the physics of

fields in a spacetime of dimension d appear when observed in n < d dimensions,

where d - n dimensions have been compactified. The fields themselves ooly depend

on non-compact coordinates.

The compactified dimensions are considered to have a radius small enough that

at large length scales they are indistinguishable from points. An example of this

effect is a cylinder appearing as a line from a great distance. When they are very

small, very high energies are necessary to probe these compact dimensions, and



theyare thus completely hidden from low energy physicists. Kaluza-Klein theory

is a subject unto itself [47] as weIl as having applications in string theory.

Let us fust consider a simple example, one which we will have occasion to use

during the course of this work. Let us consider that we have the set of spacetime

fields that were mentioned in section 2.1.3, that is in spacetime with a background

metric GIlV ' and a dilaton field r/J. We wish to compactify one coordinate, that

is we want to carry out Kaluza-Klein compactification from d + 1 dimensions ta

d dimensions. The Kaluza-Klein compactification ansatz for this situation is, in

•
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(2.2.55)

(2.2.56)

matrix form

(
G 20- A(l) A(l) 20- A(l) )

G d IlV + e (d)G Il (ti)G v e (ci)G Il
(d+1)j:&ii = 20- A(l) e2u

e (ci)G v

where we have written G(d+l) ~(d+1)~(d+l) as the exponential of a field, labelled u,

which transforms as a scalar under under the d-dimensional Lorentz group. The

field A~~G v transforms as a vector in d dimensions. In this case the metric can he

simply written in line-element form as

dSfd+l) = G(dl pvdxPdxv + elu
( dx6 + i\~~G pdxl' ) 1

(G 20- A(l) A(l) ) d I-'d v= (d) JjV + e (ci)G J.' (d)G v x x

+ e2u (dx6) 2 + 2 e2u A(1) dx J.'dx6
(d)GJ.' •

Here it is thus very clear that in d dimensions the (d + l)-dimensional metric

appears as a d-dimensional metric plus a vector field, denoted Ag), and a scalar.

As we have mentioned, there is also a scalar field called the dilaton. Under such a

compactification it is transformed as

r/J(d+l) = l/Jd - (J. (2.2.57)

•

It is aIso clear that exactly the same sort of procedure takes place for the other

fields in the action. For example, in the case of the antisymmetric tensor B, one has

the ansatz

1 [B 1 (1) (1) (1) (1»)] Il v
B(d+1) J.'V = 2" (d) JjV - 2" A(d)G p.A(r!)B v - A(d)B JjA(ti)G v dx 1\ dx

A(l) d p. d+ (ti)B p. x 1\ y,
(2.2.58)
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(2.2.60)
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where here the vector field coming from the compactification of B6 are denoted A~).

Note, however that the ansatz for B6 also involves the gauge fields Ag> coming from

the compactification of the metric.

Let us now briefly generalize this idea to compactification of multiple coordi­

nates. Wbat does the D = 10 metric look like in, say, D = 6? The answer is the

following ( C C- ACl) jlA(1) ii C- ACl) j1 )

G .• == 6 JJV + {1.v 6Gp. 6Gv jlv 6GJJ
lOJ.l.v G__A(l)v G-- (2.2.59)

JJV 6Gv pv

where GlO is the ten-dimensional metric, G6 is the six-dimensional metric, the fields

A~~ are U(l) six-dimensional gauge fields, tP6 is the dilaton13 in six dimensions.

{; is a collection of ten six-dimensional scalars, aIso called moduli in the literature.

Note here that the hatted indices ron from 0 to 9, the indices topped with a - ron

from 6 to 9 and indices iL, v by themselves ron from 0 to 5. From this we see that

the ten-dimensionaI metric appears in six dimensions as a metric, four vector fields

and ten scalars.

ft is common in the literature to define e2u == det G which is a measure of the

"size" of the compact space. AIso note that the six-dimensional dilaton and that in

ten dimensions are related by the formula

1 -4>6 = <PlO - 2: log det G jlV·

•

There is also the necessity of rescaling the Newton constant depending on the

dimension in which one is working, so as to maintain a dimensionless action. If we

define a constant", which is related to the farniliar Newton constant GN through

",2 == 87rGN, then the six-dimensional and the ten-dimensional constants Iî. are

related by

•

K,

/'1;6 = VV4 (2.2.61)

where V4 is the volume of the four coordinates that were compactified, that is

V4 = fd4x~- detC.

It should he apparent that compactification on the world sheet as discussed in

the previous section, and the Kaluza-Klein method are, after al1, equivalent. We cao

13 We will, for the most part in this work, follow the convention that the dimensionality of an
object is given as a subscript when there is any chance of confusion. See appendix A.



easily imagine constructing string theory from the heginning on a manifold with

a numher of compact dimensions, in which case the spacetime description of the

theory would he identical to that which would he produced by the Kaluza-Klein

procedure on the same manifold. There is thus no essential difference between

them. Compactification on the world sheet is convenient for introducing nonabelian

symmetries into a string theory. Kaluza-Klein is appropriate for working with the

spacetime description of a string theory. Let us now move on ta discuss these

spacetime descriptions of superstring theories and how they are obtained.

•
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2.3. The four superstring theories and their low energy Iimits

In the previous sections we have given an overview of the basics of string theory.

We now wish to present the four consistent superstring theories in a systematic

fashion, as weIl as write down spacetime actions which represent the low-energy

limits of the bosonic sector of these theories, since it is with these low energy

spacetime descriptions that we will be most concemed in this work. First, however,

we describe the methods used ta arrive at the low-energy spacetime actions that we

will be writing down.

2.3.1. Equations of motion for the spacetime fields

Let us begin with the world sheet action in conformal gauge (2.1.24) in which we

will replace the flat-space background 'f/IJV with general background GIJV. This gives

us the action

S = 4:0<1 !d2
UÔaXI'Ô

a
XVGpv. (2.3.1)

It turns out that there is no way to regularize the theory described by (2.3.1) without

breaking the world sheet scale or conformal invariance. For example, it is clear that

the use of Pauli-Villars regularizatian, with the introduction of massive regulator

fields, will violate the scale invariance. Dimensional regularization methods turn

out not to help since the non-lïnear sigma model (2.3.1) is only scale invariant in

precisely two (world sheet) dimensions.

The breakdown of scale invariance in a quantum field theory is characterized in

terms of what is known as the ,B-function. In different ways which depend on the



model under study, and the way in which the ,B-function is defined, a non-vanishing

,B-function is created by the appearance of ultraviolet divergences in Feynman

diagrams. In string theory the problem is slightly different. The question is still

of divergences but the appearance of these divergences is tightly linked to whether

or not the quantum field theory defined by the action (2.3.1) is Weyl invariant on

a curved world sheet. Weyl invariance implies global scale invariance which in its

turn implies a vanishing ,B-function and therefore ultraviolet finiteness [48]. If the

,B-function is computed, and is non-zero, then setting it ta zero results in a set of

constraints which must hold for the quantum theory ta he Weyl invariant.

Here we sketch the computation of the {1-functions. We make an expansion of

the action in powers of cl by writing the coordinate fields as quantum fluctuations

around sorne vacuum expectation value, X~(u, T) = xt; +X"'(u, T). At such a point

in the spacetime, the metric can he expanded in what are known as Riemann normal

coordinates [4] as
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(2.3.2)

where RJ.'Àvp the Riemann tensor at the point Xo. We then choose a reparametrization

of the world sheet such that e ab = e-2cp TJab• From this eab == e2rp TJab, and therefore,

since we are using dimensional regularization in 2 + € dimensions, we will have

ye:ë = e(2+f)rp.

Substituting our expansion (2.3.2) and the expansion efrp == 1 + €cp + ... (2.3.1)

becomes

(2.3.3)

•
Now, the Feynman diagrams which contribute to the ,B-function at the one-Ioop

level are given in Fig. 2.3.1. Diagram (a) ofFig. 2.3.1 is obtained simply making the

contraction (XÀXP) with two of the X's that appear in the quartic term of (2.3.3)

whereas the diagram (h) cornes from the insertion of a kinetic term €cp8a.X~aaXv
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(h)
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(2.3.4)

(2.3.5)

(2.3.6)

•

Figure 2.3.1: The diagrams which contribute to the l1-function at
one loop. The cross in (h) represents insertion of a kinetic term of
coefficient Erp.

in with the quartic terme We have that

!
d2+Ek eik(u-u')

/ XÀ (0") XP (0"')) = 1rTJÀP lim ---",---
\ 0"-40"' (27[)2+E k2

TJÀP
,....,-

2E

since it is logarithmically divergent14 and thus the factor of E in the denominator of

(2.3.4) cancels the factor of E in the numerator, resulting in Shaving cp dependence.

It turns out that the dependence on cp of the SUffi of the two diagrams in Fig. 2.3.1

vanishes.

However, there are additional diagrams like that ofFig. 2.3.1 (b) with X~BaXv

and BaX~aaXv on the externallegs that are proportional to Bacp. We can integrate

these diagrarns by parts and drop terms proportional to BaBaX~ which vanish by the

equations of motion, and what is left is a net cp dependence which cao he absorbed

inta the wavefunction and spacetime metric renannalizations [49]

XP ---1- Xp. +~R~ (Xo) Xv + 0 (X2 )6E v

1
GJJlI ---1- Gp.lI - 2E RJJv (Xo)

where R JJlI is the Ricci tensor ( RJJv = gÀPRÀJJPv)' These renormalizations are an

important feature of non-linear sigma models. This absorption, however, causes

in turn a reappearance of an effective action which has dependence on cp, due to

cancellation of E, given by

SfJ = s:ct !d2
ucpRI'V(X) 8a XI'éY'Xv

14 In dimensional regularization at one loop divergences manifest themselves as simple poles.
Also~ the contraction (aaXJ1.aQXv) is a quadratically divergent massless tadpole and is discarded
in this technique.



where we write X = Xo + .K(a, r). Thus, to one loop arder in 0/ (2.3.1) produces

a Weyl invariant theory, that is to say a theory independent of the scaling parameter

cp, if and only if•
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(2.3.7)

which are precisely the vacuum Einstein equations. Thus by demanding Weyl

invariance, an intrinsic property of the string, he rnaintained in a curved spacetime

we arrive at a well-known dynamical equation for the spacetime metric. We can

then write our ,B-functianal as

(2.3.8)

The condition for the vanishing of the ,B-function must coincide with the equations

of motion, if we are to give them a sensible physical interpretation. Thus we see

that here the ,B-function represents a long-wavelength or low-energy approximation

to the equation of motion for the gravitational field.

To be sure, (2.3.1) is not the most general action for which the ,B-functional

can be computed. There are in fact two other tenns which can be added to the

Lagrangian which are invariant under reparametrizations of the world sheet and

which are renonnalizable by power counting. These are:

SI - - 4:et !d2aeab8aXJ.l.8"XVBpv

S2 == _1 fd2crFë cP'R
411"·

(2.3.9)

•

where BI-lv is the antisymmetric Kalb-Ramond field, €ab is the Levi-Civita antisym­

metric tensor on the world sheet, if> is the dilaton field and 'R, is the Ricci scalar

on the world sheet. The origin of Bp.v and cP in terms of the string spectrum was

discussed in section 2.1.3. Note also that 82 is almost the topological invariant of

the world sheet which we met in (2.1.20), but now we take advantage of the fact

that in two dimensions scalar fields are dimensionless to generalize it ta include

the dilaton field cP explicitly as we are considering world sheet metrics that are not

necessarily flat. However, we note that it cames in with a different power of 0/ and

thus only contributes to the ,B-function at a higher-loop order than S or SI.
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(2.3.10)
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Carrying out an analysis similar to, but of course more involved than that

sketched above since we compare tree-Ievel tenns of S2 with one-Ioop tenns of

S + SI, leads us to the equations of motion for the spacetime degrees offreedom:

R~v - ~H~PUHvpu + 2\1J.l \1v4J =0

\1>..H>"~v - 2 (\1>..4J) H>"~v = 0

4(\1 4J)2 + 4'V 'Vp.4J + R -.!-H HJ.lVP =0P. p. 12 ~vp

•

where H~vp = âJ.lBvp + âpB~v + âvBpl-' or in the language offorms [50] H = dB.

We are then led, on the basis of the equations of motion (2.3.10) to formulate

the action in spacetime as

(2.3.11)

where K = V81rGN contains the 26-dimensional Newton constant. This action

can be verified to reproduce the equations of motion (2.3.10). Equation (2.3.11)

then describes the low-energy or long-wavelength limit of the massless degrees of

freedom of the bosonic string.

It is worth noting here that the explicit presence of the dilaton in (2.3.11) gives

this action a different appearance from the standard action for Einstein gravity

coupled to various matter fields [51], which in D dimensions is

s = 161r~N jdDxACR+.:l' matter).

Ifwe rescale the metric G~v in (2.3.11) through the relation15

(2.3.12)

-4J/6 G
gJ.1.V = e J.1.V, (2.3.13)

then we obtain the Einstein-frame metric, gp.v, so named because in tenns of this

metric the action appears as

•
(2.3.14)

vhere the Ricci scalar tenn is similar to that in (2.3.12).

15 The information in appendix B is useful here.
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q

Figure 2.3.2: A schematic of the Chan-Paton method with charges
q and q transforming under a symmetry group at the ends of the
open string.
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•

This completes our sketch ofthe methods for obtaining the low-energy equations

ofmotion and the corresponding spacetime action frOID the world sheet by requiring

the ,B-function to vanish at the one-Ioop level. It is c1ear that it is possible to continue

to higher loops, or to obtain the corresponding equations for the massive modes of

the string as weIl [52], but that is another story. We now move on to describe the four

known consistent string theories and their low energy effective actions in spacetime,

which turn out ta he supergravity actions.

2.3.2. The Type 1 superstring

The superstring theory which is based on open strings is known as Type l string

theory due to the fact that it has one supersymmetry in ten dimensions. The reason

for this cao be stated intuitively as follows. For open strings the left- and right­

moving modes, as we have seen, are not independent as theyare in the c1osed-string

case, but rather combine into standing waves, which places ao additional constraint

on the spectrum of states and breaks half of the supersymmetry.

It is possible in the case of the open superstring theory to add a Yang-Mills gauge

field sector to the theory through the addition of charges transforming under sorne

internai symmetry group to the ends of the string. This procedure is known as the

Chan-Paton method [53] and is shown schematically in Fig. 2.3.2. The symmetry

groups that one cao add to the open string in this manner are quite varied at the

classicallevel, but when constraints arising from quantum anomalies are taken ioto

account, it is found that only the group 80(32) is possible [54]. In this case the



charges q and li of Fig. 2.3.2 lie in a real representation, and the string is said to he

unoriented. 16 There is thus one unique consistent Type 1 superstring theory.

The low-energy effective action of the Type 1 theory, commonly referred to as

the lYPe 1 supergravity action, contains massless fields from both the unoriented

closed and open string sectors. It is necessary to include unoriented closed strings

since the Chan-Paton charges can combine to form Yang-Mills singlets. Thus the

type 1 supergravity action contains a metric G and a dilaton ifJ(f) from the closed­

string NS-NS sector; an antisymmetric tensor A(2)from the closed string R-R sector,

and frOID the open string NS sector we bave a set of 80(32) gauge fields AC!). The

action is written as
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(2.3.15)

where Ris the Ricci scalar, }F<3) = dA(2) is the field strength ofthe Rarnond-Ramond

!Wo-foon potential. Note that G is the string-frame metric. The two-forro field

strength of the open string gauge fields ]F<2) is defined as ]F<2) = dAO) + A(l) 1\ A(l).

2.3.3. The Type II superstring

The Type II superstring theories are based on closed strings ooly. Sïnce open

strings must be unoriented, removing them allows us to work with oriented closed

strings. There are two lYPe II superstring theories, both of which have N = 2

supersymmetry in spacetime, hence the name "'TYPe Ir'.

In our discussion ofthe GSO projection and spacetime supersymmetry in section

2.2.2.1 we defined the GSO projection operators

16 An oriented string is not invariant under world sheet parity, fT -+ 1r - fT (for the open string),
which exchanges the ends ofthe string, but an unoriented string is invariant under this transformation.•

1 + (_I)F+l
p=----­

2

l+k(-l)F+l
p=-_....:--_-

2

00

F = L~r17~
r-î

00

F=L~n~
n-1

NS sector

R sector

(2.3.16a)

(2.3.16b)
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where for left-moving fields Fin (2.3.16b) is replaced by

or
n-1
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(2.3.17)

and where k can be chosen to he either +1 or -1 independently for the right-moving

and left-moving fields, i.e., the GSO projection is carried out separately on right- and

left-moving states. We aIso briefly noted that for type IIA theories, k was chosen to

have different signs for the right- and left-moving fields~ whereas for the type lIB

theory k was chosen to he the same for both directions.

One can distinquish more clearly between the states of the type IIA and the

type lIB theories by considering the zero-mode contribution to (_l)F. Recall from

section 2.2.2 that the ground state for the Ramond sector is degenerate, fonning

a spinor representation of 80(1, D - 1). After negative-norm states have been

removed, using methods such as covariant [9] or lightcone gauge quantization [9,25],

in ten dimensions the Ramond sector zero modes will fonn a massless SO(8) spinor.

Let us focus for the moment on the right-moving Ramond ground state. The 16

independent components of this ground state can he chosen to be

4

ISa) = II (ft) Sa 10)R Sa = 0 or 1 (2.3.18)
0-1

where fa = P6a- 1 + iloa . Ifwe introduce the chirality operator for S0(8)

8

X = II 'Yi
i-l

(2.3.19)

then the ground state spinor splits into two spinors, one each ofpositive and negative

chirality.

To see this, notice tirst that

4 8

E ftfa == E pbpb· (2.3.20)
0:=1 i=l

Then it may be shawn that ft anticommutes with x~ and therefore that 10)R and

ft 10)R have opposite chirality. In addition• [X, ft] == 2if! (2.3.21)



from whence it follows that the chirality of 10) R and fJ 10)R can he chasen to be

(-i)4 = 1 and i(-i)3 = -1 respectively. As a result of ail this, our state Iso.) R has

the chirality
•
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(2.3.22)

which means that (-l)F of the zero modes gives the chirality of the SO(8) spinor

ground state. Thus, since k is chosen ta be opposite for right- and left-movers in

the case of the type IIA theory, consequently the right- and left-moving ground

state spinors have opposite chirality. In the type IIB case the right- and left-moving

ground states have the same chirality since k is the same for bath sets of fields.

Another characteristic of the type II string theories is that they do not have

the freedom ta introduce a Yang-Mills gauge group. The reason is simple. With

closed strings there are no free ends on which one can attach the charges, as in the

Chan-Paton method of the type l string. No charges transforming under a symmetry

group in tum implies no Yang-Mills gauge symmetry.

2.3.3.1. Type lIA superstring

If we consider that right-moving and left-moving fields have opposite chirality,

then the theory has two conserved supersymmetries of opposite handedness. This

theory is called Type IIA, and it is left-right symmetric, or non-chiral as a result of

the choice of opposite chirality for the right-moving and left-moving fields as was

discussed in the last section.

The low-energy type lIA supergravity effective action for the massless bosonic

states of the string spectrum is given by [55]

BIlA = 2~2 JéOxv G{ e-2t{>(a) ( R+4(V'</>(al)2 - l~ (H<alf)

-HF(2lf - ~ (F(4lf}- 4~2JB(aldA(3ldA(3l
(2.3.23)

•
where G1JV is the string frame metric, H(a) = dB(a) is the field strength of the

Kalb-Ramond field, F(2) = dA(l) and F(4) = dA(3) - H(a)A(l) are the Ramond-

Ramond field strengths of the one-fonu potential A (1) and the tbree-form potential

A (3) respectively, and finally ep(a) is the dilaton. Assuming that the dilaton vanishes



asymptatically, Newton's constant is given by ",2 = 8'1rGN. l7 The reader is

reminded that in 10 dimensions the Einstein metric gp,v is obtained from the string

frame metric Gp,v through the equation18•
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(2.3.24)

Of special note here is the field content of the Ramond-Ramond sector, that is

the gauge potentials A (1) and A (3). Of course, the Hodge duals of the field strengths

of these potentials, defined in D-dimensions by

p(D-n) = *F(n)

F (D-n) -.j G F(n) P,D-n+l···P,D
f.'l···p'D-n - €P,l···P,D-nf.'D-n+l···PD

(2.3.25)

•

where €P,l"'J.'D is the Levi-Civita totally antisymmetric tensor density, will represent

an altemate way to describe the physical content of the Ramond-Ramond potentials

in the Type lIA supergravity. AIso worth noting is that we could add to (2.3.23)

a scalar (O-fonu) field strength which would represent a non-propagating instanton

field. However, since we will not need it, we refrain from writing this field explicitly.

2.3.3.2. Type lIB superstring

The other possibility, as we have seen, for a closed superstring theory is to use the

same chirality for the right- and left-moving fields. ft is in this case permissible

ta symmetrize the left- and right-moving modes or one can choose not ta do sa.

If one decides to carry out such a symmetrization, one arrives at the unoriented

closed-string sector of the lYPe 1 string and one is subsequently forced by quantum

consistency conditions to include 80(32) open strings in arder to obtain a consistent

superstring theory, one which is already lmown.

On the other hand, ifone makes no demands ofsymmetrization, one has a theory

oforiented closed strings which has two supersymmetries of the same chirality. This

is the type lIB superstring theory, which is left-right asymmetric or chiral.

17 In the case that the dilaton tends ta the value 4>Ôa ) at asymptatic infinity. we have".,2 -7 ".,2 e -24'>~G) •

18 For D dimensions the transformation is g~v =0 e-4<Pc
g,) /(D-2) GI-'v'



SIlB = 2~2 !d lOxv J { e-2c/>'b) ( R + 4{\7<,b(bl)2 - l~ (H(b») 2) - ~ (V'xi

_ ~ (FC3) + XHCb») 2 __1_ (pC5») 2 } + _1_ fA (4) p(3) H(b)
12 480 4~2

(2.3.26)

where J~v is the string-frame metric19 , HCb) = dBCb) is the field strength of the

Kalb-Rarnond field, p(3) = dA(2) and F(5) = dA(4) - !CBCb) p(3) - A(2) H(b») are RR

field strengths, while X = A (0) is the RR scalar, and ifJ(b) is the dilaton.

It is ta be noted here that strict!y speaking there is no covariant action we

can write down for A(4). The Hodge dual of a five-form field strength in ten

dimensions is again a five-fonu field strength. The kinetic tenu of the five-form

field strength in (2.3.26) describes bath a self-dual (FC5) = *F(S») and an anti-self­

dual (FC5) = -*F(S») field strength and there is no simple way of modifying this

action such that the physical degrees of freedom correspond ta the self-dual part and

at the same time the anti-self-dual part vanishes. Thus to eliminate the anti-self-dual

part of F(5) we will impose the constraint F(5) = *F(5) ·'by hand" at the level of the

equations of motion [57].

Note aIso here that the Ramond-Ramond field content here is distinct from that

•
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The Type IIB supergravity action is given by [56]

52

•

of equation (2.3.23).

2.3.4. The heterotic superstring

There exists still another possibility. Sïnce for closed string theories the left- and

right moving modes are not coupled, it is possible ta imagine handling each set of

modes in a different way [45]. This is exactly what is done in the case of the heterotic

string. Simply put, the right-moving modes are handled in a supersymmetric fashion,

that is one introduces right-moving superfields on the world sheet, while the left­

moving modes remain strictly bosonic. However this introduces a problem in that

the critical dimension of the right-moving modes is DOW 10 rather than the 26 of the

bosonic string.

19 The string frame metric is again related in ten dimensions to the 'TYPe IIB Einstein frame metric
thr gh . -4>(1))12ou JJJv - e JJJv.



This means that there are only 10 right-moving X~ to pair with 10 of the 26

left-moving Xc' and in order to form a true spacetime coordinate one must have

both Xl! and Xi. This means that there are 16 extra left-moving bosonic fields,

which cannot he simply removed in order to maintain a vanishing VIrasoro anomaly

or conformal central charge. We can, however take advantage of the procedures

explained in section 2.2.3.1 to add a CUITent algebra to the world sheet, in conjunction

with toroidal compactification.

As previously mentioned, this produces a string theory with critical dimension

10, which at the same time contains a Yang-Mills gauge group with 80(32) or

Es @ Eg symmetry. The heterotic string thus has, in a consistent closed string

theory, both fermions from the spacetime supersymmetry ofthe right-moving modes

as weil as a Yang-Mills gauge group from the left rooving modes. The heterotic

string is often thought to he the superstring theory with the most phenomenological

relevance.

•
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The bosonic part of the low-energy heterotic supergravity action can he written

as

Shet = 2:2 JdIOxv' g e-2
q,(h) ( R+4(V'et>ehl)2 - l~ (Heh») 2 _ ~ Tr (.r<2l) 2)

(2.3.27)

where g is the heterotic string-frame metric, cj>(h) the dilaton as usual and

p2) = dA(l) is the field strength of the Yang-Mills one-fonIl A(t) which takes

values in the Lie Algebra of 80(32) or Eg @ Eg depending on the case at hand [32].

We end this section by stating that this work will he primarily concemed with

properties and solutions of the Type II string theories, although we will have also

use for the heterotic string as we will see in the next chapter. We have included a

short description of the lYPe l string mainly in an attempt to give a more complete

overview of the basics of string theory. Those who find the choice of symbols

non-standard should be reminded that effort is heing expended to develop a clear

notational system, and that further information on notation and conventions can he

found in appendix A .
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(2.3.28)
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2.3.5. A compactified action

In this section we will briefly put together sorne of the ideas that we have introduced

in the previous sections, namely compactification according to the Kaluza-Klein

procedure, Hodge dualization, and the low energy effective action of a superstring

theory, in order to see how these things might work together.

Let us take as an example the low energy effective supergravity action in 10

dimensions of the type lIA superstring, given in (2.3.23) and repeated here as

SIlA = 2~2 jdIOxv' G{ e-2t/>(4) ( R+ 4(V'r,b<al)2 - 1~ (Fa)t)
- { (F(2)t - ~ (F(4)t} - 4~2IB(a}dA(3)dA(3)

•

where ta remind the reader G/J1/ is the string frame metric, H(a) = dB(a) is the field

strengthofthe Kalb-Ramond field, F(2) = dA(l) and F(4) = dA(3) - H(a)A(l) are the

Ramond-Ramond field strengths, and ifJ(a) is the dilaton. Recall also that Newton's

constant is given by ",2 = 81T'GN'

If we apply the Kaluza-Klein procedure to this action, choosing the four­

dimensional manifold T 4 , the four-taros, we have the result

S6IIA = 2:~1rtxJ G6{ e-2t/>~') ( ll6 +4{V'r,b~a})2 - (V',d - 1~ (H~a}r)

_ e; (FJ2l) 2 _ e:" (FJ4})
2

} - 8:~1B~alFr}Ft}

(2.3.29)

where

(2.3.30)

•

allows us to compute the six-dimensional Newton's constant and VT 4, the volume

of the compact manifold T 4 and where we note the appearance of the additional

scalar field l7 as a result of the compactification. It is important to note that this is

a truncated action, i.e., we are setting many scalar and vector fields which arise as

a result of the compactification procedure to zero, namely the components of the

fields in (2.3.28) in the compact directions.20

20 A complete compactification of the type lIA low energy effective action will be presented in
chapterill.



This action can be made easier to work with if we use Hodge duality in six

dimensions. We take the Hodge dual of the four-farm field strength p(4) as•
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(2.3.31)

and with this replacement for FJ4) the action appears as

S6IIA = 2:~1rf'x"; G6{ e-2t/>~a) ( 1?(; + 4(V'</>~al)2 - (V'u)2 - l~ (Hàalf)

_ e; (pJ2l)
2

_ e~20- (pf})
2

} - 8~ IB~alFf}FJ2}.
(2.3.32)

This action is easier to deal with, since we have !Wo two-form field strengths

coupling in different ways, and therefore !Wo one-form gauge potentials, rather than

one one-form and one three-form potential. This gives us a small example of how

the ideas of compactification and Hodge duality work for the low energy actions we

will he considering later in this work.

There is one final note to he added. Often in the literature on low-energy string

theory one speaks of the "string coupling" constant, often given the symbol g. This

coupling constant arises in string perturbation theory, and is related to the dilaton

field as g = et/J. The string coupling can be related to the Newton constant GN and

the inverse string tension cl in ten dimensions as

(2.3.33)

•

Of course, when compactification is carried out, GN must he adjusted as above, by

factors of the square root of the volume of the compact manifold. We will avoid

using the symbol 9 for the string coupling from this point, due to the possibility of

confusion with the determinant of the Einstein frame metric of type lIA superstring

theory. We will rather use the symbol "g-bar" g as above. Thus completes chapter II,

an overview of the basics of the theory of strings. It is hoped that the reader has

benefited from reading it and that it has prepared him for the chapters that follow.



•

•

III

The symmetries of the theory of strings

One of the most fascinating aspects of the theory of strings is the number of

syrnmetries [58] which can relate different regimes of a given string theory ta each

other, or relate one string theory to another. Recently, the latter has had a crucial

role ta play in advances in our understanding of the structure of string theory, for

example the belief [1,2,3] that the different string theories are each a different ten­

dimensional description of a more fundamental eleven-dimensional HM-theory".

This new understanding has led to the development of techniques which can he

used to construct new solutions of the low-energy supergravity equations of motion.

This leads, more or less directly, ta improvements in our comprehension of the

non-perturbative regimes of string theory by allowing construction and analysis of

larger familles of non-perturbative solutions.

What are these symmetries? In this work we will divide these symmetries, which

often in the literature are known by the name dualities into three main groups:

1. O(d, fi) symmetries are symmetries of the low-energy equations of mo­

tion which result frOID independence ofsolutions ofvarious dimensions.

In a sense we can "rotate" and/or "boost" a solution in such a way that

it becomes a different solution.

2. Target-space (T-) duality. This is the symmetry we alluded to when we

wrote equation (2.2.50) in which, the radius of a compact dimension is

inverted, i.e., R --+ cilR.

3. S -duality, which cauhe said to relate weak- and strong-couplingregimes

of a string theory, or even different string theories.

-56-



In what follows we will attempt to rernove at least sorne of the mysteries from each

of these symmetries or dualities, in its tum.•
The symmetries ofthe theory ofstrings 57
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3.1. General Remarks on Symmetry

In the previous chapter, we developed string theory by starting with a world­

sheet action and then ending with a space-time description in terms of low-energy

effective actions which tum out to he supergravity actions. It is a similar route that

we will. follow in the development of the symmetries of string theory, beginning

with an introduction to how these symmetries manifest themselves on the world

sheet before we move on to explore their space-time fonnulations.

Field theories in two dimensions which display conformal symmetry, whether

or not they are related to the string world sheet, are known as Conformal Field

Theories (CFT) [31]. There is a large literature on CFf, but it is enough for the

reader to understand that world-sheet string actions are indeed eFT's. Within CFT

there are certain classes of operators, sometimes denoted truly marginal, for which,

as their coupling constants change value, the CFT continuously traces out a space

known as a moduli space M which has dimension equal to the number of these

truly marginal operators. Thus M describes an infinite collection of continuously

related conformai field theories.

It sometimes occurs that one can span (at least a neighborhood of) the moduli

space of the CFf by acting on the coupling constants with sorne continuous group

which we will denote C§. In addition, one sometimes finds that there exists sorne

subgroup Ç/s of Ç/ which is a physical symmetry of the CFT. An element 9 E Ç/

transforms the CFT 2 Ml at sorne pointMl in the moduli space into another theory

2M2 corresponding to a different point M2 ofM. When gis an elernent ofÇ/s, then

2 Ml and 2M2 are physically equivalent. By extension, ail CFT's in the moduli

space which are related by Ç/s, called the orbit of fi#s, are physically equivalent. It is

evident that the group C§ will depend in detail on the moduli space M.

Ta translate what may he a confusing foray into conformal field theories into the

language of string theory, the couplings of the truly marginal operators mentioned



above are usually grouped into the metric G j.lv(X(J), antisymmetric tensor (Kalb­

Ramond) field B j.lv(X(J), and the dilaton c/J(X(J), with all of which we have made our

acquaintance in the second chapter. There are also other fields but we will discuss

fields specific to particular superstring theories later.

Our objective in discussing the symmetries of string theory is to find the groups

c.#s under which the world sheet action is physically unchanged. The case of most

relevance is that case in which d dimensions have been compactified.

•
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3.2. O(d, d) symmetry of the string

A world sheet action for string theory which describes a number d of coordinates

which are compactified into a d-torus Td can be written [9]

S = -.!:.- fd2u{M eabGij + eabBij}ÔaXiÔbX; (3.2.1)
41r

where 1 < i, j < d and the Xi are coordinates that have been made periodic, l as

in section 2.2.3.1, that is

(3.2.2)

(3.2.3)

and where we have made the metric Gij and the antisymmetric tensor Bi; dimen­

sionless by dividing out the string tension as in

Gij
Gij --+ -,'

Cl!

It is again drawn to the reader's attention that (3.2.1) describes only the parts of

the metric and antisymmetric tensor fields which lie in the set of compactified

coordinates. Note also that we are leaving out the dilaton field from this discussion.

From the conformal field theory perspective, the number of truly marginal

operators for a generic d-dimensional background is d2• In the case of (3.2.1) we

have, due to the symmetry of Gii , d(d + 1)/2 operators

•
and from the antisymmetry of Bii the d(d - 1)/2 operators

eabôaXi
ÔbXi

1 Here we set the~ - 1 for simplicity of presentation.

(3.2.4)

(3.2.5)



with their corresponding couplings Gij and BU, which add together to form the

necessary set of d2 operators and their associated couplings. From the CFf point

of view we have a d2-dimensional moduli space for which the task is to find the

symmetry group f1.

•
The symmetries ofthe theory ofstrings 59

(3.2.7)

(3.2.8)

•

3.2.1. The bosonic string

We quantize the theory just as in chapter II but for the presence of the antisymmetric

tensor field Bij. In this case the coordinate Xiea-, r) and its associated canonical

momentum Pi are given by

Xi (7, a-) = xi + mia- + Gij(Pj - Bjkmk)

+~ '" .!. [ci e-inCr-<T) +&i e-in(r+<T)]VïL.J n n n
n.,-{}

21rPi 0:= Gij8"..Xj + Bij8uXj

1 L [(G B) - i -in(r-u) (G B) -J' -inCr+<T)]=p' + - .. - .. LX:. e + .. + .. a e
1 V2 JI 1] n 1] 1.J n

n"j'Q
(3.2.6)

where Pi is the center of mass momentum and the oscillator components ai and ai
are functions ofGij and Bij. Of course, since the Xi are compact as per (3.2.2) we

will have Pi quantized in integer modes.

The Hamiltonian and the VIrasoro constraints then take the form

1-l =Lo + Lo
1

fo
27r

2 '" kl'
= 411" 0 d".{ 411" P;PjG'} + ôuX' (G;j - B;kBljG ) ôuX}

+ 41r8uXipjBikGkj}

= 4~ fo21rd
'" (p2+ p2)

where
Pa = (21rPi - (Gij + Bij) 8<TXj) iV~

Fa = (21rPi + (Gij - Bij) 8<TXj) iV~

where2 roi are a basis of the compactification lattice3 Ad. That is, the process

of compactification cao be considered to be "division" of a non-compact manifold

2 tv and ro are defined by: 2::-1 tvftvj - 2Gij , 2::-1f:4]fifJ~ - 5/ and ~:"l ifJ~ifJ~ - !Gij.
3 In terms of a basis (el·' . éd) of d-dimensional Euclidean space ]Rd a lattice is the set of aIl

points whose expansion coefficients in the basis are ail integers.



by a periodic lattice. In the case at hand, the torus in d-dimensions is obtained by

dividing•
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(3.2.9)

(3.2.10)

(3.2.11)

T d = Rd
trAd

Even in the presence of Bii, P and P decouple, describing independently

right- and left-moving modes. The Hamiltonian consists of a part which describes

the zero modes, along with an oscillator contribution. We will consider how the

oscillator components behave under symmetry transfonnations later, for now we

will concentrate on the zero mode part of the spectrum. Substituting (3.2.6) into

(3.2.7) gives the Hamiltonian of the zero modes as

1-l ==Lo +Lo

== ~ (p2 +132)

== ~ (kikiGii + mimi (Gij - BikBljGkl) + 2mikiBikGkj)

where ki and mi are integers. The integers ki give the momentum eigenvalue of the

center of mass of the string along the i'th direction. In a sunilar way, since a closed

string can wrap around a compact direction an integer number of rimes, mi gives

the winding number (the number of wraps) around the i'th compactified coordinate.

We also have the zero mode momenta

Pa = (ki + mi (Gii + Bij )) iiJ~,

Pa = (ki - mi (Gij - Bii)) w~.

We must now identify the group C§ which generates the moduli space of the

whole set of Lagrangians, i.e., the whole set of the CFr's as weIl as the subgroup

r9'd in the d-dimensional space under which the physics is invariant. It turns out that,

sparing the reader many details, the moduli space for toroidal compactifications is

isomorphic to the coset space4 [59-60]

4 Let }R.<Cl,b) be an Ca + b)-dimensional space with inner product of signature Ca, b). OCa, b, R) is
then the orthogonal group on JRCCl,b} Then §(Cl,b) - lt),b.R> can be identified as the set of

• (O(Cl ~O(b,R»

space-like a-dimensional hyperplanes in ]R<Cl,b) , that is hyperplanes upon which the inner product is
positive definite.•

o (d, d, IR)

o (d, IR) @ 0 (d, IR)
(3.2.12)



where O(d, d, IR) is the non-compact orthogonal group in d + d dimensions. 5 A

convenient manner of representing elements of 9 E O(d, d, lR) is to group them into

matrices of the fonn•
The symmetries ofthe theory ofstrings

g= (~ ~)
where 2{, 23", <t, ::D are each d x d matrices such that gtJ 9 = J where

where l is the d x d identity matrix. This then implies that

2{t <t + <tt2{ = 0

Q)t::o + ::ot~ = 0 .

2{t~ + (tt23" = I
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(3.2.13)

(3.2.14)

(3.2.15)

Note also that with this representation, gt E O(d, d, IR) as weIl.

If we take the zero-mode momenta, Pa and Pa, they form an even self-dual

Lorentzian lattice r(d,d) [59]. Here even means that the Lorentzian length is an even

integer, that is

(3.2.16)

•

It is known that all even self-dual (d, ri) Lorentzian lattices are related to one another

by O(d, d, lR) rotations [61J. Thus any O(d, d, lR) rotation of the lattice rCd,d) retums

an even self-duallattice. In addition, to any such lattice there exists a corresponding

toroidal background.

The momenta (P, j1) transfonn. as vectors under O(d, d, IR). At the same time, the

Hamiltonian, and thus the spectrum of zero modes, is invariant under the maximal

compact subgroup O(d, R) ® O(d, lR), i.e., invariant under rotations of p and fi sepa­

rately. Therefore, we have identified the solution-generating group fi as O(d t d, lR),

and the moduli space is locally isomorphic to the coset manifold (3.2.12).

We recall from (3.2.8) that the momenta p and fi are specified by G and B.

Therefore, the manner in which the solution generating group fil acts upon G and

B is defined by its action on the momentum vectors (P, p). We can write the

5 The Lorentz group, for example. is 50(3, 1).
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Hamiltonian (3.2.10) in the form

where M is a 2d x 2d matrix given by

(
G - BG-1B BG-1 )

]V( (G, B) = -G-1 B G-1
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(3.2.17)

(3.2.18)

and where Z = (mi, kj) is a vector of integers which count the winding number

and the momentum modes. Under an O(d, d, R) rotation defined by 9 (3.2.13) the

matrix ]y( transforms as

(3.2.19)

•

Thus, we have identified the group of transformations f1 = O(d, d, lR) which

carries a CFT containing a set of d2 couplings defining a d2-dimensional moduli

space into a related CFT with a like number of couplings, in the case of the bosonic

string. The space-time version of this fonnalism is not hard to write down, since the

components in the space-time metric and antisymmetric tensor fields just are these

couplings.

Therefore, in space-time one is allowed ta write down transformation matrices

of the forro given in (3.2.13) which transfonn the space-time fields. This is, as we

will c4scover later, of great utility.

3.2.2. The heterotic string

As we saw in section 2.3.4, the heterotic string treats left- and right-moving modes

differently. Thus the symmetry group on the moduli space of the heterotic string is

slightly different, and here we will make note of these differences.

The world sheet bosonic action for the heterotic string can be written

s =..!:.- fd2u{ ( reeabg + eabB(h)) 8 xpa Xv27r V -e p.v pv a b

+ eabA pa8a XP.a"Xa + ( v=:ëeabga!3 + eabB~~) aaxa~x!3}
(3.2.20)



where the indices 1 < Ct, f3 < 16 mn over the space of the chiral bosons6 Xo. •

Of course, the vector fields AJJo. are the couplings of the truly marginal operators

eabaa xJJ8bxo. of the corresponding conformaI field theory.

As mentioned in section 2.2.3.1 the Xo. are used to construct the Yang-Mills

group of the heterotic string. Thus the internal coordinates must live on the weight

lattice of Es ® Es or 80(32). The indices (J.L, Ct) label a (16 + d)-dimensional

orthonormal basis, in which gJJII = 6JJII , go.{3 = 8a {3' From this we can plausibly

argue that the moduli space of the heterotic string, with a d-dimensional toroidal

background (as in the previous subsectionon the bosonic string) is locally isomorphic

to the space [59,60]

•
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(3.2.21)
o (d + 16, d, IR)

o (d + 16, IR) ® 0 (d, IR)'

Thus, for the heterotic string, the relevant symmetry group is O(d + 16, d, R), which

ofcourse has a similar space-time interpretation to that of (3.2.18). However, for the

space time interpretation in the case of the heterotic string, the configuration of the

gauge fields A JJQ must lie in a subgroup of 80(32) or Es ® Es that commutes with

a set of the U(l) generators of the gauge group. Thus if the subgroup in question

commutes withp of the U(1) generators, then we will have O(d+p, d, IR) symmetry.

To close this section, we remark that the O(d, IR) ® O(d, IR) or O(d + 16, IR) ®

O(d, IR) symmetry of the Hamiltonians that we have derived was done ooly with the

zero modes. Therefore, it is oolya symmetry of the low-energy or long-wavelength

part of string theory. The action of the solution generating groups O(d, d, lR) and

O(d, d + 16, R) is to map a conformal background onto the leading order of a

conformal background. From the spacetime perspective, these symmetries and

solution generating groups hold ooly for the low-energy effective actions of string

theories. However, as we will see in the next section, there is a subgroup of

O(d, d, R), namely O(d, d, tE) that is an exact symmetry of the theory of strings.

• 6 TheXa are the left-moving bosonic fields used to construct the world-sheet current algebra as
discussed in section 2.2.3.1.



Loosely said, T -duality implies that the string cannat "tell~' whether it is propagating•
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3.3. T -duality symmetry of the string
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(3.3.1)

,
on a compact coordinate with radius R~ or on a coordinate with radius R. T -duality

is a property ofstring theory that has no analog in point particle field theory. One can

understand this by noting that a one-dimensional extended object can wrap around

a compact dimension. The winding numher gives a contribution to the energy since

the string must stretch somewhat each time it winds. Let us now consider in general

terms this symmetry of string theory. Let us explain this symmetry in detail in the

simplest circumstances possible, a single bosonic string coordinate compactified

on a circle of radius R. Sorne of what we say here is repetition of things already

mentioned in section 2.2.3.1, but done with more attention to the symmetry that was

hinted at in (2.2.50).

We write the world sheet action of our single bosonic coordinate as7

S = 4:Cl Jd
2
a8a X {J"X

where the usuaI compactification

x = X + 21rRm (m E oZ) (3.3.2)

(3.3.3)

is imposed. X(u, r), since it satisfies as usuaI a free wave equation, is decomposed

into left- and right-moving modes as

Xr(a-) =Xr+ I%:Pr a- + il%:L .!.ane-ind-,
n,on

Xl (a+) =XI + I%:PI a+ + il%:~ ~&ne-ind+,

where X r and Xl are the center of mass position. The dimensionless center of mass

momenta Pl and Pr are defined to he

•
1 (R R)

Pr= V2 R n + R m ,

Pl =_1 (Rn - -.!!:-m) .
V2 R R

7 We use here the orthonormal reparametrization (see section 3.1).

(3.3.4)
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The canonical momentum conjugate to X is

1 [ L '-L .+]p = p +p + Q emu + a e-l1UT

2 JFïI l r n n
1rV 4.a· n10 n.,.o
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(3.3.5)

and the total momentum conjugate to the center of mass coordinate x = Xl + X r is

(3.3.6)

The Hamiltonian then reads

where
00

La = j;p; +L Q-nQn

n-1
00

L- 1 2 ~- -a = !PI + L.....J Q-nQn

n-1

are, as we have seen before, the zero modes of the VIrasoro operators.

We now note that La and La are invariant under the transformation

R VOl
-- -+--VOl R.

m f-+ n

(3.3.7)

(3.3.8)

(3.3.9)

That is to say, ifwe invert the radius ofour compact coordinate while at the same time

interchanging winding and momentum quantum numbers, the VIrasoro constraints

remain satisfied and therefore the spectrum is unchanged. The oscillatorcomponents

are aIso transformed under (3.3.9) according to

(3.3.10)

which implies that ô,,-Xr --+ ô".Xr and ô".Xz -+ -ô".Xz under the action ofT-duality.

The one-loop partition fonction of the compactified bosonic string is

where fl is a modular parameter which describes conformally inequivalent tori, r
is the region of the fl-plane which covers the set of inequivaIent tari, and where•

z -ld2eZI Ce. éJ LTrexp (itreLo - itrëLo)
PlJ'r

(3.3.11)



Z'(g, Q) represents the contribution of all coordinates other than our compact one.

The trace is taken over the space spanned by the oscillators O!, â and we sum over

all momenta according to (3.3.4). Symmetry of the partition function under (3.3.9)

follows immediately upon recognition that the mode and winding number integers

are dummy variables.

Thus we have shown that target space duality is a symmetry of the one-loop

string partition function, and therefore of the free string spectrum. We daim, as a

result, that compactification on a small radius (~ < < 1) is completely equivalent
va'

to compactification on a large radius (VI » 1). This daim cao he proved

by demonstrating T -duality of the higher-genus (higher-loop) contribution to the

partition function. We will not go through the details here, the interested reader can

find the relevant material in [58] and the references therein.

It will he found, however, that for the higher-genus partition function we will

have [62]

Z (<1> + 210g R, ~) - z (<1>, R) (3.3.12)

which is to say that in arder for the T -duality symmetry to hoId to ail orders in

perturbation theory, the dilaton field must he transformed as well, according ta

if/ = 4> + 2 log R.

We remark here that T -duality in this forro has been often regarded as evidence

of the existence of a minimallength in string theory [63]. This question, although

inreresting, takes us weIl beyond the scope of this work.

As in the case of the O(d, d, JR) symmetry, we can construct for T -duality a

mapping between space-time fields of a low energy effective action, rather than

between couplings in a world sheet conformai field theory. When this is done,

certain very useful methods of transforming known solutions into new solutions can

be obtained. We will see use of this later.

•

•

The symmetries ofthe theory ofstrings 66



1t tums out that the symmetry group O(d, d, R) contains within it the T-duality

symmetry. If we write down a matrix 9 (3.2.13) of the form
•
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3.3.1. Relation to O(d, cl) symmetry
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(3.3.13)

where êi is zero, save for the i - i'th component, which is unity. I is again the

d-dimensional identity matrix. The duality generated by (3.3.13) can be shawn to

he a generalization ta several compact coordinates of the T -duality symmetry. For

example, gêi takes Rt -t ~ in the case where the d-dimensional background is a

direct product of a circle of radius R; and sorne Cd - 1)-dimensional background.

Thus T-duality lies in the O(d, d, 7l) subgroup of O(d, d, lR). This is then

evidence that O(d, d, Z) is an exact symmetry of string theory. Showing that this

is true requires consideration of the transformation of the oscillator components in

addition to the zero modes.

We begin by writing down the equal-time canonical commutation relations

(3.3.14)

(3.3.15)

We then substitute the mode expansions for Xi and pi from (3.2.6) to obtain the

commutation relations of the oscillator components, of which the non-vanishing

ones are
[xi,Pj] =i8i

j

[a:~, ~] = [a~,~] = mGij8m +n o

where Gij is the background metric of the d compact directions of section 3.2.

Recall that the oscillator components are themselves functions of Gij and Bij. The

Harniltonian can again be computed by inserting the mode expansions into (3.2.7)

generalizing (3.2.17) to

(3.3.16)

where the oscillator numbers are now given by

• 00

N = L Gija~n~'
n-l

00

:Fi = L Gija~n~·
n-l

(3.3.17)



From (3.2.13) and (3.2.18) we can compute that the transformation of Gij and

Bij under a group element g E O(d, d, Z) is given by•
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K' = (2rK + Q) (ctK + 1»-1
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(3.3.18)

where K = G + B and from which G and B can he retrieved by taking the decom­

position into symmetric and antisymmetric parts. In this way a pair of relations

between the original and transformed metrics can be found as

(1) + <tK)t C' (1) + <tK) = G = (1) - (f,Ki C' GD - <tK) . (3.3.19)

Now, to be a symmetry of the string, the group element g must preserve the

commutation relations of all the oscillators (3.3.15). Preservation of the commu­

tation relations in conjunction with the mode expansions (3.2.6) uniquely fixes the

action of duality on the oscillators to be [64]

(3.3.20)

•

One can see that with (3.3.19) and (3.3.20) the oscillator numbers (3.3.17) are

invariant, thus the entire Hamilton is invariant under O(d, d, Z). AIso from (3.3.20)

one can demonstrate that under T -duality transformations given by (3.3.13) the

left-moving oscillators an behave as in (3.3.10). To he sure, O(d, d, Z) is more

general than just T -duality. For example, it includes transformations which change

the basis of the compactification lattice Ad [58].

3.3.2. T-duality of type II superstrings

In the case of the type II string there is more to T-duality than inverting the radii of

compactified directions. When applied to a type II string theory, T -duality has the

effectofreversing the relative chiralities ofright- and left-movingground states [65].

Sïnce, as we have seen, type IIA has opposite chiralities for the two sets of ground

states, while for the type IIB theory they have the same chirality, T -duality has the

effect of exchanging the type IIA and type lIB theories.

Let us sketch an argument. Consider one dimension x9 which is compactified.

From (3.3.4) we see that in the R -+ 00 limit we have p~ == -pi while in the



R --+ 0 limit we will have p~ = pr. Both type II theories are 80(9, 1) invariant,

but under different representations of 80(9,1). T-duality reverses8 the sign of the

left-moving X 9 , and by supersymmetry aIso of the left-moving 'l/J9 [66].

If we then separate the Lorentz generators into their right- and left-moving

components as LJ.Lv = L~v + Lfv then T -duality flips the sign of all the terms in

Lr9 sa that the Lorentz generators of the T -dual theory are tJ.L9 = L~9 - J:.,r9• This

reverses the sign of the helicity for all the states, and switches the chirality of the

left-moving zero modes. Essentially, one of the SQ in the analog of (2.3.18) for

left-moving modes changes, resulting in a change of chirality of the ground state

according to (2.3.22). Therefore, the relative chiralities ofthe right- and left-moving

ground states are reversed, since the right-movers maintain their chirality while the

chirality of the left-movers is switched.

We also know that the type lIA and type IIB string theories contain different

Ramond-Ramond fields, and therefore T-duality, ta be consistent, must transform

one set into another. The action ofT -duality of x 9 on the spinor fields can be written

•
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for a matrix P9 which represents the parity transformation in x9 on the spinors.

This must he consistent with 'l/J[ --+ -'l/J[, thus P9 must anticommute with 'Y9 and

commute with all the other ïJ.L. A definition of P9 which accomplishes this is

P9 = ï 9ï 11 where 'Yll is the chirality operator. By the 'Y-algebra identity

,V,[j.LI ••• ,J.Ln] = ,[v ... 'YJ.Ln] + L 8VJ.Ll ï [P2 ••• ,J.Ln] ,

perms

(3.3.21)

the effect on the type lIA one-form potential A(1), say, is ta add a 9-index if there

isn't one, and to remove one if there is. That is to say that we have

p,=9
f.L f 9.

(3.3.22)

•
The remaining components needed to fill out the type IIB Ai?'~ will of course come

from the type lIA A~~ and so on.

8 We will see this effect explained in detail in Chapter IV.



As a final remark, due ta the special way in which fields of the Ramond-Ramond

sector of type II theories transform under T -duality, one cannat utilize the solution

generating transfonnation O(d, d, IR) in the type II case unless the Ramond-Ramond

fields vanish.

•
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3.4. String duality

String duality is the most recently discovered symmetry of string theory. String

duality refers ta a collection of symmetries that continues to grow as our knowledge

improves, rather than ta a single symmetry. The major reason for which string

duality has remained undiscovered for 50 long, even though string theory itself goes

back sorne twenty-five years, has ta do with the fact that string duality is not a

rnanifest feature of the perturbation expansion of string theory, as is T -duality, but

is rather a property of the exact theory [3,67].

As a result, string duality is in a position ta provide us with clues about string

theory in the strong coupling regime. At least in those cases in which the background

has enough supersymmetry, we can gather with the help ofstring duality much useful

information about strongly coupled strings. This is important since it has become

clear that purely perturbative string theory is not sufficient ta solve problems such as

that of the value of the cosmological constant, how string theory selects its vacuum,

or how supersymmetry is broken. Ta place string duality in its proper context, before

we move on ta the details of the precise string duality symmetries we will need for

the work at hand, we offer an introduction in the next section.

3.4.1. Introduction to string duality

The basic idea that is at play in string duality is that the strong-coupling limit of one

string theory is equivalentphysically to the weak-coupling limitofa different theory.

This "different" theory may contain, in general, objects other than strings [1,68].

For example, the multiplets of string duality contain, in addition to the vibrating

strings which are the basic quanta of string theory, classical objects such as solitons.



By way of illustration, in string duality there is a conjectured duality [67] which

relates strings to fivebranes in ten dimensions9 (a fivebrane has five spatial and one

time dimension). There are as yet many mysteries associated with higher membrane

theories, thus we set these aside for the purpose of this work ta concentrate our

attention on a small subset of string duality.

In order to introduce the idea of a relation between strong-coupling and weak

coupling limits, let us consider for a moment Maxwell's equations:

•
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\J. Ë = Pe

\J·B=Pm

\J x Ë +8t Ë = 0

\J x B - 8tË =0

(3.4.1a)

(3.4.1b)

where we have added a magnetic source term, Pm for symmetry. These equations

have a symmetry under the transfonnation

É-+B, Ë-+-Ë, Pe -Ho Pm' (3.4.2)

Dirac [69] calculated the consequences of the existence of a magnetic charge,

or magnetic monopole and found that single-valuedness of a quantum mechanical

wavefunction was dependent on having

(3.4.3)

•

where n is an integer, which is known as the Dirac quantization condition.

The quantization condition (3.4.3) tells us that in the case that electrically

charged objects in a theory are weakly coupled, (qe << 1) the magnetic objects in

the theory are strongly coupled (qm » 1) and vice versa. Magnetic monopoles

have been shown to exist in grand unified theories [70]. They are classical solutions

without singularities, with a characteristic size set by the scale of the spontaneous

symmetry breaking.

In a regime which is electrically weakly caupled, therefore, the electrically

charged abjects differ greatly from the magnetically charged ones. Electrically

charged objects have pointlike interactions since the coupling is not strong enough

ta resolve the structure ofthe interaction. This is akin to the Fermi theory of the weak

9 See section 2.1.2 for a short discussion ofthese objects or refer to [30].



interaction. The magnetically charged objects are strongly coupled and have finite

size. On this basis and on the basis of further evidence, it was conjectured [71] that

there exists a regime of the theory where the roles of electric (weak) and magnetic

(strong) coupling are reversed. Here the electrically charged objects would have

finite size and the magnetically charged ones would he pointlike.

In string theory the basic idea is the same, but the execution, due ta the increased

complexity ofthe theory is vastly more complicated. We will reduce this complexity

by focussing our attention on a particular string duality, usually given the name

string/string duality, which will play a substantial role in this work.

•
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3.5. String/string duality

String/string duality, as the name might suggest, relates one string theory to another.

In contrast to the T-duality studied in the last section, string/string duality is, like

O(d, d, lR) symmetry, known to he exact only for the low energy effective actions of

string theories. It is conjectured to he generally true for complete string theories, but

while these conjectures remain to be proved, one can make good use of string/string

duality in the context of low energy string theory.

The specific string/string duality that we will discuss here is that which exists

between the low-energy effective action of the type lIA superstring compactified

to six dimensions on the Calabi-Yau manifoldlO [72-73] K3 and the low energy

effective action of the heterotic superstring compactified of the four-toros T 4• This

conjecture was fust put forward in [74-76] and is considered in detail in [77].

The evidence upon which a conjecture of this sort is normally based is the

equivalence of the low energy effective actions, that is the space-time degrees of

freedom can be mapped one-to-one from one theory to the other, as weil as the

identification of the moduli spaces. This second means that the group which moves

the couplings of the corresponding CFf through the moduli space as weil as the

subgroups which form orbits of physically identical theories are the same. This

evidence is quite compelling. There remains, however, one other aspect of the

10 We state that those who do not know what a Calabi-Yan manifold is will not, in fact, he required
to know anytbing other than that K3 is compact and four-dimensional.



two theories which must he ascertained to coincide: the spectrum of Bogomol'nyi­

Prasad-Sommerfeld (BPS) saturated states. The reader unfamiliar with BPS states

need not he concerned, as we digress in the next section to their explanation.•
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3.S.1. BPS saturated states

To understand BPS saturated states, it is tirst necessary to understand slightly

more about supersymmetry. We fust introduce supersymmetry generators Q and

Q = Qt which are generalizations in spacetime of those given in (2.2.2). In four

space-time dimensions, for example [36] we can write the anticommutator of the

supersymmetry generators as

{Qi Q-~} = 20-1-'.P oii
a' {3 ex{3 1-'

{Q~, Q~} = {Q~, Q~} = 0

(3.5.1a)

(3.5.1b)

(3.5.4)

•

where the (71-' are the Pauli matrices, (/3)a are (anti)spinor indices and Pp. the

momentum. Taking the trace of (3.5.1a) gives [25]

pO = 1l = ~ L (Q~(Q~)t + (Q~)tQ~) > 0 (3.5.2)
a-I,2

which is a positive semi-definite operator, giving energy eigenvalues which are non­

negative. This means that a vacuum state which is invariant under supersymmetry

transformations has zero energy.

In section 2.2 we noted that one of the symmetries of physical processes was an

internal global symmetry, whose generators are Lorentz scalars. These generators

'B will form a Lie algebra,

[13i,13i] = iCiik13k (3.5.3)

where the Ciik are the structure constants. Consider that the Hamiltonian 1l is

invariant under this symmetry group. In this case the supersymmetry algebra cao

gain terms known as central charges r, as in

{Qi, Qi} =rii ,

{Qi, Qi} =crii)t,

where we suppress the spinor indices. The r commute with all the Q and Q and

generate an Abelian invariant subalgebra of the internal symmetry group generated



by the~. The presence of central charges necessitates a rediagonalization of the

basis of the Q and when this is carried out one has a new set of supersymmetry

generators whose anticommutation relations can he written schematically as•
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{Qu, Qlj} = (2M + Zj) Oij,

{Q2i, Q2j} = (2M - Zj) Oij,

74

(3.5.5a)

(3.5.5b)

where the Z > 0 are the eigenvalues of the central charges in the new basis. Since

{Qi i, Ql j} and {Q2i, Q2j} are positive definite operators and Z ~ 0, then all the

central charges lie in the range 0 < Z < 2M. When one or more of the Z = 2M,

then we say that we have a saturated state. When this happens the anticommutation

relation (3.5.5b) vanishes for sorne i, and thus the multiplets of supersymmetric

states become short, i.e., they contain fewer states than in the unsaturated case [36].

In the case that ail the Z are saturated, the multiplets contain one-half of the states

of the most generaI multiplet.

Now, consider a one-particle state 17P) which is annihilated by the supersymmetry

generators Q2 from (3.5.5). Schernatically, we have

(7/11 {Q2, Q2} 17/1) = (?/JI 211, - Z I?/J)

0=2 (7/l11l1?/J) - (?/JI Z I?/J)
(3.5.6)

•

which gives us the mass of the particle and its charge under the internai symmetry

group (3.5.3). Therefore, for any particle in a BPS state, the mass is entirely

detennined by its charge. It has the largest possible ratio of the charge to the mass,

and is said to he in an extrema! state.Il

Since the supersymmetry algebra contains the Hamiltonian, we can uncover

much more information about the dynamics of a supersymmetric theory than is

possible with ordinary internai symmetries. With furthur analysis, strong constraints

can he placed on the interactions and on the phases of the theory [3].

The importance of this is that this result is a consequence of supersymmetry

and the dYQamics of the theory have no effect on the mass, i.e., the mass is free of

radiative corrections and therefore the mass remains known even when the coupling

Il We will have more to say in Iater chapters about extrema! solutions of the string equations of
motion.



becomes large. These solutions are aIso stable, as no decay into lower energy states

is possible.

Thus the utility of BPS states is that our knowledge of their properties is inde­

pendent of whether or not we have a perturbative description at a given value of the

coupling. This explains why these states are 50 important in studies of duality, as it

gives us a way to compute a spectrum of states at strong coupling and compare this

to the conjectured dual weakly coupled theory.

•
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3.5.2. Type nA - heterotic string/string duality

Let us now develop the evidence for the string/string duality that exists between the

type IIA superstring compactified on K3 and the heterotic superstring compactified

onT4•

The low-energy effective action describing the heterotic string compactified on

T 4 is [77]

Sh = _1_ jcfx-J Qe-2if}h) {R + 4(Vcj>(h»)2 _ ~ (H(h»)2
21'i;~ 12

-:FJ?;J'" (LML)"'!3 j=<2l!3/-'v + ~g/-'VTr [(8/-,M) L(8v M) L] },
(3.5.7)

where QfJl/ is the heterotic metric in the string fra..TD.e, the Uel) gauge

fields ACl) Ct are represented by their field strengths y::{2) a == dAO) a and

H(h) = dBCh) + 2La.BA (1) a /\ y::{2).B is the field strength of the heterotic antisym­

metric tensor field BCh) (which includes Chern-Sîmons terms of the gauge fields).

Note that the space time indices IJ., vron 0 < IJ., v < 5 and the gauge indices a,

f3 ron 1 < a, f3 < 24. cj>(h) is the dilaton and M is a 24 x 24 matrix of scalars

representing an element of the caset spacel2 O(~)~!b~10) which satisfies

(3.5.8)

•
where

L == (-I20 L4) (3.5.9)

The 80 scaIars originate from the internai components of the ten-dimensionaI metric,

antisymmetric tensor field, and the gauge fields. Sïnce we have compactified four

12 As discussed in section 3.2 with d - 4.



dimensions, according to section 2.2.3.3 we will have four gauge fields from the

metric, four from the antisymetric tensor field and, of course, the 16 that existed in

the 10-dimensional theory reduced to six dimensions.

The other theory in question here, the type lIA theory compactified on K3 is

given by

SIlA = _1_ frt xV-Ge-2t/J(a) {R + 4(\74;(a»)2 _ .-!... (H(a») 2
2~ 12

- F;;Ja (LML)afJ F(2)fJpv + ~GPVTr [(ôpM) L(ôvM) L]

_ ~éwp(n~âBCa)F(2) ex. L F(2){3}
4 /-,1/ pu a{3 Itâ '

•
The symmetries ofthe theory ofstrings 76

(3.5.10)

where 0 < /1-, v, p, f7,I'i., 8 < 5 and as before 1 < a, (3 < 24. Here Gp 1/ is the type

nA metric, H(a) = dB(a) is the field strength of the antisymmetric tensor field, fj>(a)

is the dilaton, A (1) ex. are the 24 abelian gauge fields, again with their field strengths

F(2) ex. = dA(1) a and M is a 24 x 24 matrix of scalars that finds itself in the same

coset space as in the heterotic string above and aIso obeys the same relations

(3.5.11)

•

as in (3.5.8). The scaIars come from the components of the metric and the anti­

symmetric tensor field along the tangent space of K3. Note that the Chern-Siroons

terms for H(a) are absent, although they are replaced by the final term in (3.5.10).

AIso note that €p.••.S denotes the totally antisymmetric tensor. The gauge fields are

descended from the three-form potential A(3) and the one-form potential AC!) from

the Ramond-Ramond sector. The A (3) potential provides 23 gauge fields, 22 of

which come in the form A~;~ where i and j denote tangent space directions on the

compactification manifold K3, and another from dualization of the three form in 6

dimensions. A (1) of course provides the remaining gauge field.

It can be shown that the equations of motion obtained by variation of the

actions (3.5.7) and (3.5.10) are identical ifone maps the fields type IIA ++ heterotic

according to
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(3.5.12a)

(3.5.12b)

(3.5.12c)

•

Thus we have, for the case of the duality between the type nA superstring compact­

ified on K3 and the heterotic string compactified on T 4 a map for the low-energy

space-time fields, giving us the means to take a solution of one theory and convert

it easily into a solution of the other theory. We shall make use of this mapping in

later chapters.

We mentioned above that tbree things have ta he done ta support such a duality

conjecture. The fust we have just done, showing that the low energy equations of

motion are identical under an appropriate mapping of fields. The second, showing

that the moduli spaces are identical is a highly non-trivial undertaking, involving a

foray into the mathematics of algebraic geometry, and thus we will content ourselves

with a few remarks.

We noted above that both the matrix of scalar fields M from the heterotic string

and that, M from the type nA string were elements of the coset space (3.2.12). This

makes plausible the idea that the moduli spaces are identical. AIso in [78] it was

demonstrated that the moduli space of confonnal field theories on the Calabi-Yau

manifold K3 was in fact locally of the form o(~)~'8~~o)' We recognize this as the

same as that of the heterotic string compactified on T 4 from section 3.2, therefore

that the moduli spaces would be identical is not surprising. We see from this the

reason for which the type nA string must he cornpactified on K3 in arder for this

duallty ta hold.

The third criterion that we noted above, the identity of the spectra of BPS

saturated states in the two theories is also a subject that will take us tao far afield,

and we will make do with sorne short plausibility arguments. Ta hegin we note

that a fundamental string solution of the heterotic string equations of motion will

he electrically charged [75] from the B1~, and hence magnetically charged under

the type lIA Bi:2 since they are Hodge duals of one another ( (3.S.12e)). Thus the



fundamental type IIA string will have he charged conversely, electrically under B~c:J

and magnetically under B1':J. The question, as motivated by the duality conjecture,

is the existence of solutions which are fundamental (selitonic) in the heterotic (type

lIA) variables while at the same time being solitonic (fundamental) in the type IIA

(heterotic) variables.

We have not yet discussed the construction of classical solutions for the low

energy actions of string theory, which is a topic with which we will concerned in

the remaining chapters. As a modest attempt at completeness, however, let us write

down a classical spacetime solution corresponding to a fundamental heterotic string

in six dimensions [79], which is
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( C)-l
ds~ = 1 + r 2 (-dt? + (dx5

/) + dr2 + r 2(dB2 + sin2 Bde(2)

A(l)a =0

B(h) = _ C dt 1\ dx5

C +r2

M=124
_2.+.(h) 1 Ce '+' = +-

r 2
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(3.5.13)

•

where C is a constant which is determined by the tension of the heterotic string.

This solution has the required electric charge under B(h) and can he shown to have

an essential singularity at r = o.
Ifwe map this solution to a type lIA solution using (3.5.12), it takes the fonu

d8~ = - dt?- + CdxS
)2 + (1 + ~) dr2 + CC + r2}(drP + 5in

2 (Jdcl)

A(l)a =0

H(a) == - 2C dxi 1\ dxi /\ dxk (3.5.14)

M -124

e_2</>(0) = (1 + ~ ) -1

where we have given the H(a) resulting from the dualization due te compactness of

expression. This is evidently magnetic under B(a) and it can be seen that r = 0 in

this case is merely a coordinate rather than an essential singularity by defining a new



coordinate p = log T near r = O. Thus we have written down a singular electric fun­

damental solution for the heterotic string and shawn that under string/string duality it

becomes a non-singular magnetic solitonic solution of the type lIA supergavity [80].

Now we must do the converse, a fundamental solution of the type lIA string

must become a solitonic solution of the heterotic string. It can he shown that the

fundamental solution of the type rIA string is [77]
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C'
Bea) = - dt 1\ dx5

C' +r2

M=I24

_2A,(a) 1 C'e 'fi = +-
r 2
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(3.5.15)

•

which is, in fact, identical ta (3.5.13) except for the fact that the constant C'is

determined by the type lIA string tension. It is then evident that the corresponding

solitonic solution of the heterotic superstring will he identical to (3.5.14) and we

write it here as

ds~ - - dt?- + (d:cS )2 + (1 + ~~) dr2 + (C' + r2)(drP + sin2 (}dcp2)

A(l)Q =0

H(h) = - 2C' dxi 1\ dxi 1\ dxk (3.5.16)

M=I24

e-2~(h) = (1 + ~~) -1.

Thus we have the expected duality structure, analogous to that between electric

charges and magnetic monopoles in field theory, occuring between the type lIA

string compactified on K3 and the heterotic string compactified on T 4 • There is

more work required [77] to show that these solutions (3.5.13), (3.5.14), (3.5.15)

and (3.5.16) have all the properties expected of heterotic and type lIA fundamental

strings and solitons. However, since we have not yet studied how such solutions are

constructed, l propose to leave this subject for another day.
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The theory of Dirichlet branes

As a result of the study of non-perturbative dualities, such as T -duality, about

which we wrote in chapter ID, Dirichlet-branes, or D-branes for short have been

developed [14,65,81]. Their role in string theory is, as we shall see, rather important,

particularly in the 1YPe l and 'TYPe II theories. D-branes also play an essential raIe

in the duality symmetries, as the carriers of fundamental Ramond-Ramond charge.

Certain of the multiplets exchanged by various S-dualities interchange the Neveu­

Schwarz-Neveu-Schwarz and Ramond-Ramond sectors of type II string theories.

Sînce fundamental strings do not carry Ramond-Ramond charges, other objects, the

D-branes, must fulfill this raIe.

In this chapter we will develop the theory of D-branes from two points of view,

as particular types of supergravity solutions known as p-branes, and from a more

specifically string-theoretic standpoint as topological defects in type l and type II

superstring theory, leading to the extension of T -duality to the type l string.

4.1. p-branes as solutions to supergravity

p-branes are classical solutions ta low energy supergravity equations of motion,

such as those associated with the fi.ve consistent string theories introduced in chap­

ter II [82-83]. They take the fOrIn, in the simplest case, of Poincaré invariant hyper­

planes in spacetime.

Ta begin, let us write down a general supergravity action which cao he consid­

ered a subset of the bosonic sectors of any of the supergravity actions introduced

previously, since it includes a metric and a dilaton. To this we couple a d-forro

-80-
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potential, the action appearing as
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(4.1.1)

where 91-'1.1 is the Einstein-frame metric, 4J is the dilaton, and p(d+l) is the (d+ l)-form

field strength of the d-form. potential, a is a constant depending on d, and D is the

spacetime dimension. Evidently, the precise values of d (and therefore of a) will

depend on the specific supergravity we are considering. For example, in the case of

the type lIA supergravity, d = 1 and d = 3 and their Hodge duals are the relevant

possibilities.

We now add a coupling to an elementary d-dimensional abject [83], known as

a (p := d - 1)-brane described by a world-volume action similar to that given in

(2.1.15)

(4.1.2)

where eab is the world-volume metric with its determinant e and € is the totally

antisymmetric tensor on the world sheet. The aJ1. are the world-volume coordinates

of the p-brane. Note two changes between this world-volume action and that of

(2.1.15). The fust is that the dilaton now appears in the kinetic term and the second

is the inclusion of the world-volume cosmological constant term (d - 2)'V"=ë. As

noted in section 2.1.3, this term is not Weyl invariant and leads to inconsistent

classical equations for the string (d = 2). However, when d=12 we no longer have

Weyl invariance to he broken and thus the inclusion of this term is necessary for full

generality. The choice of coupling for this term is thus explained.

The dependence on the dilaton of (4.1.2) is chosen such that under the rescaling

•
(4.1.3)



where we have introduced the "dual" world-volume dimension d = D - cl - 2, both

Sand Sd scale the same way, namely•
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(4.1.4)

The field equation and the Bianchi identity of the cl-fonu potential may he

written
4 72

d * (e-at/J F(d+l» = 21~? (_I)d *J

dFCcÎ+l) =0

(4.1.5a)

(4.1.5b)

•

where .lT is a rank J tensor source given by
D-l

Jp, ...pJ - 'TdJ a.JlTEal"'aJ8a 1xpl •.• 8aJXpJ~ II 0" (XV - XV) (4.1.6)
v-O

Variation of the action S + Sd results in the following equations of motion: for

the Einstein equation we have

Rpv - &gpvR - &(C8p<P)C8v<P) - &gpv CV<pi)

( )

(4.1.7)
_~ e-a,p (FCcÎ+l») 2 _ Al 9J.'V (FCcÎ.+l)) 2 = K.2Tdv

2(d!) IJV n(d + 1) IJ

where the energy momentum tensor TcÎlJv and (FCcÎ.+l»)~v are given by

D-l

Tdpv = - 'Ta JddlT~eab8aXp8bXv eaq,/d ~ II 0" (XV - XV) ,
y -g v-O

(
FCc1+1» 2 = F(d+l) p(d+l)Ckl"'CCn- l

J.'al ···Ckn-l v ,
IJV

(4.1.8)

the equation of motion of the cl-fonu potential is

8P.l (.J 9 eat/J F(d+l)lJl"·P.n )

f
D-l (4.1.9)

= 2K?Ta ddŒ€al···ad8al XIJI .. . 8adXJ.'d II 6 (xl.' - XV) ,

v-O

and finally the dilaton equation is written

a (yCg8J.' cP) + A a yCge-at/J (pCcÎ+l)) 2
J.' 2(d + l)!

a/î;2c;r 4 f - 4 D-l
= A d dd(J"HeabaaXIJ~XvGp.v eat/Jld II 6 (xl.' - XV) .

d v-O

(4.1.10)



In addition, the field equations of the p-brane, obtained by varying S + Sd with

respect to XP, and eab respectively, are written

Ba ( HeabBbXPgp" ea<pld) - ~HeabBaXPé%X"Bp (gpp ea<PId)

- ~€al.·.ada XI-'l ... a XI-'c1p(d+l) = 0d! al ad PI-'l"'p'ci

(4.1.11)

•
and
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e - 8 Xp.~XVg ea4J/ J.ab - a Vb P.V •
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(4.1.12)

1t is evident that these equations are rather complex and difficult to solve. However,

we can make progress in finding a solution by imposing a simplifying ansatz.

We begin this ansatz by assuming that the world-volume of our object will he

invariant under Poincaré transformations. We also, for the sake ofsimplicity, demand

that the solution he isotropic in the coordinates orthogonal to the translationally

invariant ones. For the solutions for which we are looking, then, spacetime is

divided into two sets. A set of translationally invariant coordinates of the solution,

which are the world-volume coordinates, and a set of coordinates in which the

solution is isotropic, nonnally tenned the transverse space. 1t is worth noting that

this last restriction can he relaxed in various generalizations of the prototype p-brane

solutions for which we now search.

Poincaré invariance is thus imposed on the aworld-volume coordinates, whereas

the isotropic nature of the transverse space can he assured by imposing SO(D - d:)

invariance. Thus our ansatz imposes (poincaré)(d) ® SO(D - d) symmetry. We

therefore divide the coordinates xlJ. into two ranges, as xp. = {xÎJ., yi} where il =

o 1 ... d - 1 and i = d ... D - 1" , ".
An ansatz for a metric which realizes this symmetry is given by [79J

(4.1.13)

•
where fI and /2 are functions to be determined and r = n is the radial coordinate

in the transverse space. From this ansatz, it is easy to see that translational invariance

in the world-volume directions xÎJ. as weil as SO(n - â:) invariance in the transverse

space is guaranteed by the metric elements having ooly dependence ofthe transverse



radial vector r. The accompanying ansatz for the scalar dilaton field is simply

ifJ(xl-') = ifJ(r).•
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We now come to the ansatz for the dfonn potential. As we mentioned in section

2.1.1 the naturaI coupling to the world-line ofa point particle is a one-form potential.

Ta the world sheet of a string couples a two-forro potential. Thus as in section 2.1.2

we have an d-fonn potential coupling to the d-dimensional world volume of an

extended d- l-dimensional abject which carries charge.

The charges of objects like the ones we are constructing are defined in tenns

of Gauss'-law type integrals of the corresponding field strength over the surface at

asymptotic infinity. The simplest ansatz that gives a non-zero electric charge qe can

he written

(4.1.14)

for which the field strength is

(4.1.15)

This ansatz is called the eleetrie ansatz since it is an ansatz for a generalization of

the one-form potential familiar from the Maxwell theory. We restate in the interest

of clarity that the hatted indicies, e.g., Il represent coordinates in the world-volume

of the p-brane, while i, etc., represent transverse coordinates.

For the p-brane we also make the coordinate split XI-' = {XP" yi} and make the

starie gauge choice which identifies the world-volume coordinates of the p-brane

and their spacetime counterparts, that is Xjj. = ap.. We aIso impose the condition

that yi = constant for which we will see the significance later.

Now that our ansatz has been specified, it is time to insert it into our equations

of motion. Substitution into (4.1.12) results in

• e - e2!I+a</J/d 'Tlab - '[ab (4.1.16)
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(4.1.17)
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while the world-volume {1., f) components of the Einstein equation reduee to a single

equation

e(d-Z)fL+dh oij ( (d - 1)aiajli + dÛ; 1)BiJi ajJi + (d + 1)Biajh

JCd + 1) - ,.
+ 2 ôif2âj f2 +d(d - 1)ÔiflÔjf2

+ ~ e-2d!l+2/3-ar/J Ôi/38jf3 + ~Ôi</>ÔjlP)
D-l

= -K.2:rae(J-2)!l+ar/J/2 II 8 (yi)
i-D-d

•

where again J = D - d - 2, the dimension udual" to d. For the transverse spaee

eomponents i, j we have

edft+(d-2}!2 (Jôiai f2 - 8ijd8klôkÔlf2 +d8iEJi /1 - d8Ïj8klôkalfl

,.. . d(J + 1) .. kl ,.....
+ da' fI (}J fI - 2 8'J 8 8kf1 8lf1 - d(ô' fI (}J f2 + 8' f2f}J fI

+ (cl - 1)o'ioklakliadz) + ~ait/J[Ji t/J - ~oijoklak t/JBlt/J)

- ~ e-dfl+(d-Z)h+Z/3 -a.p (aih [Ji h - ~o'ioklak/3Bd3) = 0,

(4.1.18)

for the potential equation C4.1.11) we have

D-1
8ijÔi ( e-dfl+dh-ar/J 8jf3) = 2K.2:rd II 8 (yi) ,

i==D-d

(4.1.19)

and for the dilaton (Bq. (4.1.10) we obtain

8ij8i ( ed!l+dh 8j</» - ~ e-d!l+dh+2h-aifJ §Ïjôif28jf3

D-l

= aK.2:rJ.€'d/I+af/>/2 II 8 (yi)
i=D-d

(4.1.20)

Equations (4.1.17), (4.1.18), (4.1.19), (4.1.20) and (4.1.21) thus provide the

system of five equations needed to determine the four unknown funetions fI, f2, f3,

cP and the fixed eoupling a.•

while finally, for the p-brane equation we find

ai (ed!l+aifJ/2 -eh) = o. (4.1.21)
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The unique solution, assurning that the metric is asymptotically fla4 Le.,

g~v --+ 1J/-,v as r --t 00 can he found ta be [82,83]

ft = 2(d:li) (13 - 13) ,

h = - 2(~d) (13 - 13) ,

a</J a2
( - ) -2=4 /3-/3 +f3

•

where h = a</Jo/2 and ifJo is the vacuum expectation value of the dilaton. The

function /3 is then given by

(4.1.23)

where 9 is given by

(4.1.24a)

9= -llog(r) d=O (4. 1.24b)

r
d= -1 (4.1.24c)

where we have

(4.1.26)

{
2~2TaA- d > 1

l = 1Ç2'.Ta d+l (4.1.25)
d=O

1r

where in turn A d+ 1 is the area of the unit (d+ 1)-sphere. The parameter a is given as

2 2dd
a = 4 - CD _ 2)"

We thus arrive at our basic solution for p-branes, or Poincaré invariant hyper­

planes, which is given for the general action (4.1.1) and (4.1.2) in the case that the

dilaton vanishes asymptotically as

ds2
= 1[Q dxPdx i>TljJ.i> + X/3dyidyi6ii'

Cd) 1 A A A

A = ± _-dXl-'l /\ dX J.'2 /\ ••• A dxl-'J., (4.1.27)
1[Cff)

erP=:J-CY,

• where

Q!=
(D - 2)'

d
{3 = CD - 2)' (4.1.28)



Note that it is evident from the form of j{ from (4.1.23) that the solution approaches

fiat space at asymptotic infinity in the transverse space. Note also that 9 = erP -+ 0

as r -r 0, and thus these solutions may correspond to the exterior of perturbative

states.

•
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4.1.1. Masses and charges for p-branes

The definition of the Arnowitz-Deser-Misner (ADM) mass [4] for a given solution,

such as a p-brane, is given in the case of asymptotic Ca..rtesian coordinates by the

fonnula

D-d [D-d d-l]
M = 2:2 f L ni L (8j hij - 8ihjj) - L 8ihpp r d

+
1
dQ

~l ~l ~l

(4.1.29)

where ni is a radial unit vector in the transverse space and hJ.'v is the deformation

of the Einstein-frame metric

(4.1.30)

from fiat space in the asymptotic region. It is thus a measure of how quickly a

spacetime approaches flat space. In equation (4.1.29), the indices i and j denote the

9 - p transverse coordinates, while ft labels the p spatial coordinates parallel to the

world-volume.

Application of this fonnula gives for the prototype p-brane solution (4.1.27) the

result1

(4.1.31)

where we have again made ifJo arbitrary.

The charges are defined in a sunilar manner to the ADM mass as Gaussian

integrals, that is, we define the "electric" charge qe and the "magnetic" charge qm

as [83]

1 1t should be stated that the ADM mass fonnula (4.1.29) is only appropriate when d ;::: 1 since
for il < 1 this measure of the mass diverges.•

qe = _1_ f* p(d+l)V2K, , (4.1.32)
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(4.1.33)
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where K- = V81rGN is related to the Newton constant GN in D dimensions. Note

that Hodge duality in the qe fonnula is performed with respect to the string-frame

metric. Their application to the solution (4.1.27) results in the charges

qe = V2K-Ta. (_)(d+l)(D-cÎ) A d+
1

qm =0.

•
From (4.1.33) and (4.1.31) one sees that the charge qe and the mass M ohey the

relation
1 -

M = M Iqel eh (4.1.34)
y2K-

which looks very much like the mass-charge relation of a BPS saturated state,

although here no supersymmetry has been assumed.

4.1.2. Moiti-centre p-brane solutions

It is, of course, evident from the forro of the basic p-brane solution that we can

replace the harmonic fonction 1{ of (4.1.26) with a more general version. One

standard generalization is that of an array of parallel p-branes. Thus we can have

(4.1.35)

•

where fi is a constant vector defining the centre of the p-brane. This harmonic

function represents an array of parallel p-branes, each having the same dimension

and transverse space. The ability to superpose solutions in this manner is related

to the zero force condition, in which the static force between two parallel p-branes

vanishes. This implies that two parallel p-branes can remain in equilibrium. This

condition is closely related ta supersymmetry.

We have thus succeeded in constructing elementary p-brane solutions to the

supergravity action (4.1.1) coupled ta a d-dimensional abject. We label these

solutions elementary because they have non-vanishing electric charge and exhibit

o-function singularities at r = O. This is as we discussed in chapter m on string

duality. Let us move on ta consider briefly solitonic solutions ta supergravity.



In this section we seek the solutions dual ta those ofthe last section~namely solitonic

solutions. As we noted in chapter III, these should be regular at the origin, rather

than singular, and should carry a non-vanishing magnetic charge.2

To begin, we consider the action (4.1.1) alone. We construct an ansatz, this rime

with Poincaré invariance in a d-dimensional world-volume3 and with SO(D - d)

invariance in the now (D - d)-dimensional transverse space~ thus the group is

Poincaré(d) ® SO(n - d). A split of the coordinates into world-volume and trans­

verse is again made~ but this time xl-' = {xÎJ , yi} where il = 0, 1, ... , d - 1 and

i = d, ... ,n - 1. For the d-form potential, however~ we write the ansatz for its

field strength rather than for the potential itself. To obtain a non-vanishing magnetic

charge from the definition gÏven in (4.1.32) we write the ansatz as

•
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4.1.3. Supergravity solitons
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(4.1.36)

where qm is the magnetic charge. Sînce tlùs is a harmonic form there is no globally

valid potential which can he written down which gives FCd+l) when the exterior

derivative is taken, but it does satisfy the Bianchi identities.4

It is not difficult to show that the field equations of the action (4.1.1) are satisfied

when the replacements d~ dand a -+ -a are made in equations (4.1.17) - (4.1.21)

with the source terms set equal to zero. Thus we can write the solution (with </Jo = 0)

in this case as
ds2

= XCldxÎJdxvTJÎJv + Xf3dyidyi tSij,

FCd+l) = V2Kqm dxil A dXi2 A ... /\ dxi,j+l

ecP = J(Y

(4.1.37)

where

a = - (D _ 2)'
d

f3 = CD - 2)'
a,= 2:. (4.1.38)

•
2 As the name "soliton" suggests, at least certain classes of these solutions exhibit scattering

behavior normally associated with particular solutions of non-Iinear wave equations [84].
3 Thus we see why we called J. the dimension dual to d.
4 According to the Hodge decomposition theorem one can decompose a general p-fonn w as

w - do: + -d( -(3) + '"(. Here cr is a (p - l)-form, and f3 a (p + l)-form. The forro 'Y satisfies the
Laplace equation V2'"( - 0 and is thus harmonie. Such a forro. canno~ in general, be written as the
exterior derivative of a (p - l)-form.
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where 9 is given by
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JC(Y) = 1+ 9 (y)

90

(4.1.39)

d>1

9==

1 l'
drd

-l'loger) d == 0

(4.1.40a)

(4.1.40b)

where we now have

r

l'
d= -1 (4.1.40c)

(4.1.41)
, _ {2~2'TaAJ+l d > 1,e - K.27~ _
~ d=O.

1r

In setting the source terms to zero one avoids the 8-function singularities, and thus

these solutions are considered regular. However, they are regular only in the string

frame. Since our supergravity action (4.1.1) is written in the Einstein frame, the

solutions are singular. AIso note that these solutions are nonperturbative, since the

string coupling 9 == e4> -+ 00 as r ~ O.

For these solutions the mass and charges are given by

M = Ta e13 AJ+l

(4.1.42)

qm == V2~T-(_)(d+I)(D-cÎ) A A

d d+l'

where again h == a4>o/2, and therefore we have an exactly similar relation between

the mass and the charge as in the elementary case, i.e.,

1 -
M = M Iqml eh . (4.1.43)

v21'i.

As a final remark, we will state without proof that the electric charge of the

elementary solution and the magnetic charge of the solitonic solution obey a Dirac

quantization condition [85-87] which is written

This completes our short survey of the supergravity solutions known as p-branes,

where incidentally p = d - 1 = the number of spatial dimensions in the world­

volume. These solutions we constructed by means of an ansatz that separates the•
nEZ. (4.1.44)



D spacetime dimensions into world-volume and transverse coordinates. We found

two classes of these solutions, corresponding to elementary (singular, electric) and

solitonic (regular, magnetic) cases. We shall move on in the next section to develop

what are known as Dirichlet Branes or D-branes and show that they are closely

related to the p-branes.

•
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4.2. Dirichlet branes

D-braoes [14,65,81] are extended objects that are closely related to the p-branes of

the previous section. It will tum out that D-branes cao be described in spacetime

by Bogomol'nYi-Prasad-Sommerfeld (BPS) saturated versions of a subset of the

possible p-brane solutions. The necessity of their presence in string theory cao he

argued on the basis of T -duality, which was presented in detail in chapter III. In

certain limits, T -duality results in what might he termed paradoxical hehavior. Let

us examine this paradox further, demonstrating how it leads us to the D-branes.

4.2.1. T -duality for open strings

There seems ta be a paradox that arises in the Type 1 string in the limit that the

radius ofa compact dimension vanishes. Let us write the mass spectrum for a closed

string "vhere one dimension has been compactified. From (2.2.50) one has

k2 m2R2
1 2 - 1

œ M = 2(N + N - 2) + a R2 + a' . (4.2.1)

where N and N are the contribution to the mass of the oscillators. From this we

see that when the radius of the compact coordinate goes to zero, any non zero mode

(k i 0) of the center of mass momentum will have infinite mass, while at the same

time a continuum of masses are produced from the winding number m. Thus the

dimension does oot disappear, but becomes uncompactified.

However, open strings cannot wind around the periodic dimension and thus they

have no quantum number which plays the raIe of m in (4.2.1), thus when R -+ 0 the

k i 0 states go to infinite momentum as expected, but there is no new continuum. of

states. Due to this the compactified dimension disappears, leaving behind a theory

in D - 1 spacetime dimensions.



What is it that brings about the seeming paradox? It is the fact that the open

string theory always contains a closed-string sector. Thus we have, in the R -+ 0

limit a string theory in which the closed strings live in D spacetime dimensions, but

at the same time the open strings live in D - 1 dimensions. This seems slightly

bizarre at tirst view.

•
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(4.2.2)

It is possible, however, to puzzle out what is going on [65]. Between its

endpoints the open string is exactly the same as the closed string, and thus should

still be moving in D dimensions. The thing that is different with the open string is

thus only the endpoints, which are seemingly restricted to lie on a D - 1 dimensional

hyperplane.

Indeed, that this is the case can be demonstrated from the T -duality transfor­

mations. Recall from chapter II, equation (3.3.4) that the right- and left-moving

zero-mode momenta of the closed string are

pr=aij5=~(~+~),

Pl = &ijS=~ (~ - ~":).
where we have chosen to label the compact coordinate X 25• Under the transfonna-

tion

it is easy ta see that

cl
R-+­

R
kBm

-25 -25ao -+ -an .

(4.2.3)

(4.2.4)

(4.2.5)

•

We can straightforwardly generalize this to several compactified dimensions by

defining a vector of momentum-mode integers k and a similar vector of winding

mode integers m, and we will have the zero-mode momenta as

. . ~' (k. o.m.)t t I.LLj 1
P ==ao= - -+--

r 2 Ri al '

i -i R (ki R;,mi )
Pl = CiO = Y"2 Ri -~ .

where the index i indicates the compact dimension. It is then clear that the state

denoted by Ck, iii) with radii Rï is the same as the stated denoted by Cm, k) at the

dual radii R~ = ci/ R;,.



Let us DOW define coordinates Y dual to X, which describe the theory after the

tranfonnation (4.2.3). We will then have, due to a suitable generalization of (4.2.4)

the relationship between X and Y as•
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(4.2.6)

where Sp. = 0 for a coordinate along which T-duality is not being carried out, and

Sp. = 1 for coordinates which are being T-dualized.

It is clear that the change in sign ofthe left-moving coordinate makes very little5

difference in the case of the closed string, but let us return to the open string case.

Recall that the boundary condition at the end of the string must he chosen so that

the surface term (2.1.26) vanishes. The condition that is chosen is normally the

Neumann condition 8u X = O. The action of T -duality on this boundary condition

is as follows:
8uXP. = (ÔuCT-) ô_Xp. + (80"l/+) a+x

= - ô-xt + ô+Xr

= - (a_y/, + ô+y[Jl)

= - ôTYJl

(4.2.7)

•

which implies that in the T -dual theory the compact YJl are constant along each

world sheet boundary, that is they do not move. This is the Dirichlet boundary

condition, yp. = constant. Note also that this effect is completely reversible. T­

duality applied to a Dirichlet boundary condition changes it to a Neumann boundary

condition.

Further, the compact yi coordinates are the same on every world sheet bound­

ary [66]. To see this, we write the open string mode expansions as

(4.2.8a)

(4.2.8b)

5 Except for a change in chirality for the type II string as we saw in chapter II.
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(4.2.9)

The theory ofDirichlet branes

where l = v'20!.' and where for the compact coordinates pi = *. The dual compact

coordinates yi = X; - Xf then have
. . 2 .
~ (0- = 0) - y~ (0- = 0) = - Til pl

2TiO!.'ni

•
which indicates that yi(a = 1r) and yi(a = 0) are identical points on the dual torus

of coordinates. The ends of the open string are attached to the hyperplane while

at the same time the string can wind around the compact dimension. Thus for

the open string, T -duality has again interchanged momentum modes and winding

modes. The ends of the string are, of course, still free to move in all dimensions that

have not undergone a T -duality transformation. One can think of these hyperplanes

as defects in spacetime. Such a topological defect with p spatial dimensions is in

general described by the combination ofNeumann and Dirichlet boundary conditions

(4.2.10)

These hyperplanes have been given the name Dirichlet or D-branes, and we will see

that they are dynamical objects.

4.2.2. An action for D-branes

•

Now that we have good evidence that the ends of open strings become trapped on

D-branes under T-duality, how do we describe them? As objects which constitute

part of string theory, they should be described, as are strings themselves, by a con­

formally invariant field theory. One can write a cr-model action including Dirichlet

boundary conditions which represents a D-brane moving in an arbitrary massless

background (metric, antisymmetric tensor and dilaton), then by carrying out a com­

putation paralleling that of section 2.3.1 the vanishing of the ,B-function gives us

field equations. From these equations we can derive an effective action [88] for a

Dp-brane withp spatial dimensions (and thus d= p+ 1-dimensional world-volume)

tobe

(4.2.11)



where Cab = GI-'l/8aXp.~Xl/ is the induced metric on the D-brane world-volume,

Êab the induced antisymmetric tensar and similarly for JF<2), the field strength of

the world-volume U(l) gauge field A(l) of the open string. The parameters 'J'p

and f..Lp are the D-brane tension ( = mass density) and charge density under the

Ramond-Ramond p + 1 = d-form A (cÎ). The dilaton dependence cornes about from

the fact that this is a tree-Ievel open string action. It is aIso possible ta have severaI

D-branes whose world-volumes coincide. In this case the U(l) gauge field of the

single brane is generalized ta a U(n) gauge field for n coincident branes. If one of

the n D-branes is displaced, then this breaks the U(n) symmetry ta U(n-l)® U(I).

That the combination Bab + 27rQ'lF<2) appears in the action is not an accident. If

we carry out a gauge transfonnation on Bab we find

•
The theory ofDirichlet branes 95

(4.2.12)

which gives rise to a surface tenu that must he cancelled by assiging ta Â(l) the

transformation

A(1)' "(I) A
~ =~ -Xa· (4.2.13)

From T -duality we can determine that there should he additional terms in the

Ramond-Ramond part of the action (4.2.11) [65]. One way to see this is as follows.

Consider the example ofaD I-brane CD-string) in the x l_x2 plane. For this D-string

there are only two non-zero terms in the potential to wmch it couples, and these are

A~;l and A~;2. Let us use world-volume coordinates uO and u1,choosing a gauge

in which 8qOXt = 1 and 8u Lxzl = 1. Evidently uO = t and (Tl = xl sa we can write

the action for this D-string as

If we choose the gauge A~~ = Xx2 for the world-volume U(l) gauge field of the

D-brane and carry out T-duality in the x2 direction using the results of section 3.3.2

we obtain

•

S, . - fd 1 (A(2) 8 XX2 A(2»)
D-stnng - f.l.l X \ txl + zl tz2 '

S, fd 1 (A(3) 2 'lF(2) )
D-string = f.l.l x tz1z2 + 1T'a zl z2X

(4.2.14)

(4.2.15)



where IF(2) = dA(l) , and X is the type ITB RR scalar. The generalization ofthis can

he shown to he [89]•
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(4.2.16)

The Ramond-Ramond tenn in (4.2.11) thus represents the lowest order in an

expansion of (4.2.16). The integration picks out the d-form of the expansion, and

the trace is taken over the n-dimensional representation of U(n), in the case that

there are n coincident D-branes. In (4.2.16) ail spacetime fOnIl fields are implicitly

wri.tten as induced fields on the D-brane world-volume.

The massless closed type II strings coupling ta the D-brane have the spacetime

action given in equations (2.3.23) and (2.3.26) and rewritten here generically as

1 f 10 r-;::;{ -2t/J ( 2 1 2)Srr=2K2 d xv-G e R+4('\lif» - 12H

- L Al (F<d+l»)2}
2(d + 1)!

(4.2.17)

•

where the fields are as in section 2.3.3 and where d = 1, 3 for the type fiA theory

and d = 0,2,4 in the type IIB theory. Note that the case d = 4 is problematic as

explained in chapter II, giving rise ta a self-dual 5-form field strength. Also, here

we ignore the Chem-Sïmons terms.

4.2.3. D-brane tension and charge

Let us now try to discover sorne of the properties of these D-branes given the action

(4.2.11). The first thing we will calculate is the D-brane tension Tp, for which the

simplest calculation is that illustrated in Fig. 4.2.1, the exchange of a closed string

hetween two D-branes.

We begin by parameterizing the world sheet as given in Fig. 4.2.1, where 0 <
T < 7r mns along the world sheet from one D-brane to the other and 0 < cr < 27ft

is a periodic coordinate with modulus 0 < t < 00. With our new understanding of

duality in the open string, we have two ways of interpreting this graph. The first

way is to make time ron horizontally along T, in which sense we have a tree-Ievel

closed string exchange. If we make time ron vertically instead, then what we see
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Figure 4.2.1: Schematic depiction of a closed string being ex­
changed between two D-branes.

is an open string, with one end fixed to each of the D-branes, appearing out of the

vacuum, splitting, rejoining, and then disappearing, Le., it is one-Ioop open string

graphe

Consider taking the t --+ 0 limit of the open-string loop amplitude. This

effectively takes the area of the loop to zero, but unlike a closed string loop, which is

topologically a toros, there is no requirement of modular invariance6 to eut off the

range of integration hence preventing a divergence. However, since we have a dual

6 The modular group is the symmetry group of tari.

(4.2.19)

(R)

description, by taking time horizontally we find that the limit t -+ 0 is dominated

by the lowest modes of the closed string spectrum. Thus the t -+ 0 limit may

be interpreted as a closed string infrared divergence and the string folklore of no

ultraviolet divergences in string theory and that all divergences are controlled by

long-distance (lightest modes) physics, is upheld.

One-Ioop vacuum amplitudes can be computed with the Coleman-Weinberg

fonnula [90] which is a sum over the zero-point energies of all the modes, as in

V Jddk faOOdt k2+M
2

A = _-4 --A - L e-7ra't---zL (4.2.18)
2 (21r)d 0 t i

where we are performing a SUffi over the physical spectrum of the string Ml trans­

verse to the D-brane, and an integral over the momentum k in the p + 1 = dextended

directions of the D-brane world-volume. The mass spectrum is given by
00 00 1

. L a':nanp. + L rr/:"r'T]rp. - 2 (NS)
M 2 = ZJ.121j +~ n-l r-l/2

41r2Q,2 a' 00

L a':nCXnp. + ~ L n~nPnp.
n-l nEZ•



where lIi = x{ - x{ is the separation distance of the branes, thus the presence of

D-branes modifies the mass spectrum to include a contribution from the open strings

stretching between them.

Carrying through the computation [68] gives the result
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(00dt A 2,2 00 ( ) -8
A = Vd Jo t (27rt)-d/2 e -fr 187T:a. II 1 - in

o n-l

X ~ (-16fi (1 +jn)8+ ~TI (1 +jn_l)8 - ~ fi (1 - jn-l) 8)
(4.2.20)

where q ::: e-ri and we have included an overall factor of two from exchange of

the ends of the string, whieh is a symmetry of unoriented strings. At this point our

work is done, as the second line of equation (4.2.20) vanishes due to the '~obscure

identity" of Jacobi 8-fanetïons [91], thus

A=O.

This indicates that two separated D-branes with the same dimension exert no forces

on each ather. This also indicates that D-branes are supersymmetric states, with

the net forces from the NS-NS and R-R sectors of the closed superstring exactly

cancelling.

At this point, it is possible to make a tield-theoretical ealculation where one

computes the exchange between the D-branes of not a string, but rather of the

various background fields, Le., the graviton and dilaton. Due to the mixing between

the graviton and the dilaton, this calculation is best carried out in the Einstein

frame [92] which decouples these propagators.

Changing to the Einstein frame involves writing

cP/2 G9pv = e J.J.l/ (4.2.21)

•
in terms of which our generic type II action is written

1 fI-cP (4-d)q,/2 2
SIl = - dlOxV g{R - - (\h/J)2 - ~H2 _ '" e A (F(d+l»}

21t2 2 12 L.J 2(d + 1)!
(4.2.22)
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(4.2.23)
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and our D-brane action as

fi - 'Jp jérre(J-4)(J/4 ,j- detgab + :Jil< j A<d:J

where B = ]F<2) = o.
To leading order in the coupling, the energy of interaction of the two D-branes

cornes from the excbange of a single graviton, a single dilaton or a single RR field.

The graviton propagator in D dimensions is written [93]

•

(4.2.24)

(4.2.25)

where the scalar propagator AD(X) is given by

j dDk eikx

AD (x) = (21r)D k 2

while the sources N q)7 NA(d)' and Ng",v are those obtained by linearizing the world­

volume action of each D-brane, which we will label simply 1 and 2. Since only

one component of A (d) couples to a static planar Dp-brane, we can treat in this

computation the tensor RR potential as a scalar. The sources then take the rather

simpleform

(4.2.26)

1 and 2

(4.2.27)

•

where the product of d-functions serves to localize the D-brane in the transverse

space. The amplitude is then given by the integral

At = -21<2 jdLOx dlOz { N~LlLO ex - z) N~ - N~(dlLlLO ex - z) N~(<Îl

N i AP.V,PU ( ) N 2 }+ BJ.'vlllO x - Z gpu

where the integration variables x and z are associated with D-branes

respectively. Making the required computations the result cornes out to be

(4.2.28)



where!le ACr) is the scalar propagator in the 10 - d-dirnensional Euclidean space
IO-d

transverse to the D-branes. The fotm is as expected~ replusion due ta the Ramond-

Ramond charge in addition ta an attraction due to the graviton and the dilaton.

Comparing (4.2.28) and our string result~ we canclude that

•
The theory ofDirichlet branes 100

(4.2.29)

and thus the RR repulsian exactly balances the gravitatianal attraction for these

abjects. Also~ (4.2.29) is nothing other than the mass-charge relation for a BPS

saturated state. D-branes~ therefore, are supersymmetric.

It is possible ta compute the exactly value of Tp (and therefore of f-Lp) by sep­

arating the contributions of the RR and NS-NS closed string sectors ta the string

amplitude (4.2.20). Ta do this we take the separations to he large (v1f = r -+ 00)

and expand the integrand for t l'V o. The second line of (4.2.20) is

then l''V (8 - 8)' + Oee- l / t ), and using the representation

7rfoOO 2!lb (r) = - ds(27r2s)-D/2 e-r J21rs
2 0

of the propagator we have the result

(4.2.30)

(4.2.31)

from which we can extract, through comparison with the field theory result (4.2.28)

the charge density and tension of D-branes as

(4.2.32)

which, as might he expected for intrinsic modes of a fundamental theory, are fixed

by the value of the inverse string tension. Note also that if we write the charge and

tension in terms of d, the dimension of the world-volume, it is written as

•
(4.2.33)



Dirac's quantization condition [69], (3.4.3) can he extended to bigher dimen­

sions [85,86,87]. Let us consider a Dp-brane located at the ongin and perÏonn the

integral

f ·pCd+l) = f.LJ (4.2.34)

Now recall that when we take the Hodge dual of F(d+i) we obtain a field strength

F(9-d> which can he written as the exterior derivative of the potential A(8-d>, with

the caveat that the potential in tbis case is not globally defined, so we write
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and we are allowed, in the same manner as Dirac, to define a smooth potential

everywhere except along a singular hyperstring cutting the (9 - d)-dimensional

sphere S(9-tÎ) on the hypersphere S(S-J>. The wave function of a (7 - d) brane

obtains a phase shift when transported around such a singular hyperstring given by

:i.. - /1. A !F-(9-d> - ±II. Ali. A

"fJ - t""(7-d) - t""dt""(7-d) (4.2.35)

•

which must be an integer multiple of 27I" for the wave function to remain single­

valued. For the D-brane charge given by (4.2.33) this can he seen ta be the case

with the integer heing unity. Thus the charge of D-branes as computed by closed

string exchange is consistent with the charge quantization mIe.

4.2.4. D ..brane excitations

The ground state of an open superstring is a massless spacetime vector and its

fermionic superpartner. As demonstrated in [94] the various components of an

open string describe the excitation of the D-branes to which they are attached. In

particular, for the massless vector, polarizations parallel to the world-volume of a

single D-brane describe U(1) gauge fields living in the world-volume. Components

transverse to the brane describe the transverse oscillations of the D-brane, that is

deformations in its shape. This is entirely expected, since it is difficult ta imagine

that D-branes, as massive objects, could remain perfectly rigid in a theory which

contains gravity.
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Figure 4.2.2: Schematic depiction of three coincident D-strings
wrapped around a compact coordinate with right- (N) and left­
moving (:N) open strings, forming a "string gas" attached.
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The perturbative excitations of a Dp-brane, therefore, are described by a full­

fledged open superstring theory, which possesses a low energy limit which is an

Abelian supersymmetric Yang-Mills theory dimensionally reduced frOID ten to d
dimensions, where d is the world-volume dimension of the brane. The presence of

D-branes necessitates a new analysis of the open string, which in the absence of D­

branes was unavoidably unoriented, and for which the Kalb-Ramond field does not

appear since it is not symmetric under exchange of the ends of the string, known as

world sheet parity. This reanalysis shows that in the presence of D-branes oriented

open strings are quite normal, and even required. We now understand slightly better

the origin of the Bpv + 27ra'm<;J component of the action (4.2.11).

Thus we see that we can consider an D-brane in an excited state as possessing a

"gas" of open strings attached to the brane. Let us consider the energy of aD-string

with such a collection of open strings attached to it. Recall from (4.2.19) that the

mass of an individual open string was

•
00 00 1
L Q~nan J.4 + L rrt..r'f/r J.' - 2:
n-l r-l/2
00

L Q~nanJ.' + ! L nri:nPnp.
n-l nEZ

(NS)

(R)

(4.2.36)
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Figure 4.2.3: Schematic depiction of three strings attached
between two D-branes. Two strings have winding number m = 0
and one bas m = 1 around the compact coordinate.

where now we have generalized ?Ji to include the possibility that an open string

stretching between two separated D-branes may also wrap around a compact di­

rection an integer number of times (see Fig. 4.2.3). Thus in general we have

1zJi = x{ - ~ + 27rRim. If we want the low energy excitations of D-branes, we

focus on massless open string states. For simplicity, let us consider a single D­

brane. In this case the separation }Ji}ji = 0 and we are left only with the oscillator

contribution of (4.2.36). We have then M 2 = 0 for the ground state r = 1/2 in the

Neveu-Schwarz sector, as weIl as for n = 0 in the Ramond sector. Concentrating on

the NS sector, we form the corresponding vertex operators

v = (p8r XP eiP.X , (World-volume)

V = (i8r Xi eiP.X ~ (i8CTyi eiP.X , (Transverse)

(4.2.37a)

(4.2.37b)

•

where yi is the T-dual coordinate to Xi in the space transverse to the D-brane. We

then interpret, frOID the vertex operators in the world volume, (4.2.37a), that there

exists a gauge field in the world volume of the D-brane. For transverse polarizations

(i, T duality transforms the vertex operator into that of the transverse position of

the brane, and we then see that the transverse polarizations do indeed describe

the transverse ondulations of the D-brane. Of course, the NS bosons have their

companion R fennions.



Let us now specialize to the relatively simple case ofaD-string which is wrapped

around a compact coordinate with compactification radius R (see Fig. 4.2.2). As we

saw in section 2.2.3.1, in the case of a compact radius, the center of mass momentum

of the string as it travels along the compactified D-string will he quantized in integer

units of 1/R. The energy will he a sum of the zero point energy of the D-string

and the contribution from the gas of open strings. The zero point energy is simply a

product of the D-string tension Tl from (4.2.32) rnultiplied by the distance around

the compact coordinate, 21rR. For the contribution of the '~stringgas", let us suppose

that we have a state in which there are 'J1k right-moving open strings with momentum

eigenvalue k, and similarly mk for the left-moving strings. We can then write the

mass of the state as

•

where
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N+N
M = 27I"'J1R + R
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(4.2.38)

•

00 00

:N = L k 'J1k, :N = L k sJtk' (4.2.39)
k-l k=rl

Sïnce for the D-string there are 10 - 2 = 8 transverse directions, we will have 8

massless bosonic and 8 massless fennionic modes associated with each of the strings

traveling around the D-string.

Of course, all these things become more complicated when one has more than

one coïncident brane present [65]. In this case one can have the open strings

attaching themselves to the same brane, or to different branes, depending on the

Chan-Paton charge. The number of massless states then increases rapidly with the

number of coincident branes. It is also clear that it is possible to generalize to other

D-branes.



As we noted earlier, the interaction energy of two similar D-branes, (4.2.20)

vanishes, indicating that the D-branes are supersymmetric. The results for the D­

brane tension and charge also indicate that they are BPS saturated states. The ooly

question which remains to he answered is the number of supersymmetries that are

left unbroken by these states.

This question is not difficult to answer. The action of T -duality in the open

string sector of the type l string theory produces D-branes as we have seen. Away

from a D-brane only closed strings can propagate, and therefore the physics is

locally that of the type II theory. As we have already noted, the type II theory has

two supersymmetries, one each for the left- and right-moving fields, whereas the

type l theory has only one supersymmetry, a result of the left- and right-moving

fields combining to fonn standing waves. Thus any state containing a D-brane to

which open strings can couple must break half of the supersymmetries.
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•

4.3. Classical D-brane solutions

Now that we have identified D-branes as the carriers of RR charge in string theory,

and we have written down an world-volume action (4.2.11) and (4.2.16) for them

and have succeeded in computing certain of their properties, we would like ta find

background field solutions to the supergravity equations ofmotion which correspond

to these abjects in spacetime.

The likely candidates were developed in section 4.1. These p-branes have the

same symmetry properties as D-branes, that is, a D-brane has Poincaré invariance

in its world-volume, since there are Neuman boundary conditions imposed here,

and at the same rime SO(D - â:) invariance in the transverse space, as a result of

tha imposition of the Dirichlet boundary conditions which localize the D-brane in

spacetime.

AIso, it is possible to compute the amplitudes of closed strings scattering from

a D-brane [95] tbrough the techniques of conformal field tbeory, meaning from a

world sheet perspective. From tbese amplitudes it is possible to extract infonnation



regarding the long range background fields of D-branes. The results show that these

fields correspond exactly ta those of our elementary p-brane solutions (4.1.27).

This is yet more evidence suggesting an identification of elementary supergravity

p-branes with classical background field representation of D-branes.

We also saw that D-branes are supersymmetric, although they break half of

the supersymmetries, and have a tension, or mass, and a charge related by BPS

saturation. Thus, if we can find p-brane solutions which satisfy these properties, we

will have found the classicallow-energy spacetime solutions corresponding to our

D-branes.

•
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4.3.1. Classical supersymmetry

As we saw in the opening section of this chapter, the p-brane solutions, both

elementary and solitonic were found ta have a relation very much like that of

(4.2.29) which is a hint that the p-brane solutions are supersymmetric, but does not

in itselfconstitute a proof. For the case ofp-branes, this is a consequence ofchoosing

the coefficients in the p-brane world-volume action to he as in (4.1.2) [83]. What

we will undertake in this section is to make plausible the fact that the elementary

p-brane solutions in D = 10 preserve, in fact, one-half of the supersymmetries and

therefore can he identified as our classical background versions of D-branes.

If we consider our p-brane solutions, we note that there are no fermionic fields

present. Thus, when the supersymmetry transformations are applied to such a

solution, the supersymmetric variation of the bosonic field vanishes, since it is

proportional to the fermionic fields. However, the supersymmetric variation of the

fennionic fields, even when they are vanishing themselves need not vanish as it is

proportional to the bosonic fields. To demonstrate supersymmetry, there must exist

covariantly constant Killing spinors such that the supersymmetry transformations

of the gravitino, the superpartner of the graviton, and the dilatino, that of the dilaton

vanish identically [79].

We work in the context of type II supergravity. Our strategy, following [83]

will he ta assume an ansatz for a solution as in (4.1.13), substitute this into the

supersymmetry transformation mIes of the gravitino and dilatino, demand that there



he unbroken supersymmetry7 and compare the results to those of section 4.1. The

motivation for this strategy is the fact that the supersymmetry transformation rules

are first-order equations rather than second order as are the equations of motion.

Ta facilitate this comparison we will work in the Einstein frame. The type IIA

supergravity action is written in the Einstein frame as
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_<p(a) i
SfIA = _1_ fdlOX~{R_ .!.(\74>Ca»2 __e _ (HCa»

21'i.2 2 12
3t/J(a) /2 2 <pCa)/2 2 1 J

- e 4 (F(2») - e 48 (p(4») } - 4x;2 BCa)dAC3)dA(3)

(4.3.1)

where 9p.v is the Einstein frame metric, H(a) = dB(a) is the field strength of the

Kalb-Ramond field, p(2) = dA(l) and p(4) = dA.(3) - H(a)A(l) are the Ramond-

Ramond field strengths of the one-form potential A (1) and the three-form potential

A(3) respectively, and finally 4>(a) is, as always, the dilaton.

For the type IIA theory~ the supersymmetry transformation for the gravitino is

•

3t/J(a) /4
87jJ(a) =1) e + e (7 vp - 148 v7 P) 711 F(2)e

p. p. 64 p. p. vp

_t/J(a) /2
+ e (7 VPU _ 98 v 7PU) 711H(a) e

96 p. p. vpu

• t/J(a) /4 20
+ te (, ZlPUÀ _ -8 Zl7puÀ) F(4) e

256 p. 3 p. vpuÀ

and for the type lIA dilatino we have

where the 'Yp. are the Dirac matrices in D = 10, with

and

7 Only the vacuum retains ail of the supersymmetries.

(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)
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Also, here the covariant derivative Vis written

8 1 IIp
Vp. == p. + 4w~vPI

where WJj1/P is the spin connection [51] obtained by solving the equation8

108

(4.3.6)

(4.3.7)

(403.8b)

(403.8a)

where in tum the e~ and r~1I are the usual vielbein and affine connection. Explicit

formulas for WJjij and r1J1/À are

.. 1· . . 1·· .
W ~J = -e1/~(a eJ - a eJ ) - -e1/J(a e~ - a e~)

IJ 2 P.1I Vp. 2 IJv Vp.

1 pi uj k(a a)- 2e e el-' peuk - uepk,

1r I-'vÀ = 2(8)..9I-'v + 8vgl-'À - 8>..g/-,1/)'

On the type IIB side~ the supergravity action in the Einstein frame is given by

1 f 1 _(jJ(b) 2 _5(jJ(b) /2

SfiB =- d10xA{R - -CVcPCb»)2 __e _ (H(b») _ e (\7X)2
2",,2 2 12 2

(jJ(b)

_~ (FC3) + X HCb») 2
__1_ (FC5») 2

} + _1_JA(4)F(3) H(b)
12 480 4K,2

(4.3.9)

where jP.1I is the Einstein frame metric, HCb) = dBCb) is the field strength of the

Kalb-Ramond field, F(3) = dA(2) and F(5) = dA(4) - !(B(b)F(3) - A (2) H(b}) are RR

field strengths, while X = A (0) is the RR scalar, and cP(b} is the dilaton.

It is known [9] that the format used here to present the type IIB supergravity

is not the most efficient for the presentation of the type IIB supersymmetry trans­

fonnations9 for the gravitino and dilatino. The way to make it more efficient is

as follows. We fust recognize that the type lIB supergravity possesses a global

SU(l, 1) symmetry, a non-compact version of SU(2). The maximal compact sub­

group of SU(l, 1) is U(l). Then we combine the dilaton cP(b} and the RR scalar X

into a 2 x 2 matrix V~ where a = 1, 2, V~ = (V:)* and impose the condition

8 In the case of vanishing torsion, Le., T;v - V p.e~ - Vve~ - O. Note that when an object has
multiple indicies we add a connection term for eacht as in V p.et - ap'e~ + wp. îjei - r~vei.

9 There is no simple way to write the action in the new formt so we will omit it.•
€abV~V: = detV = 1 (4.3.10)



sa that V transforms under SU(l, 1) with U(1) charges ±1. We then fonu the

SU(l, l)-invariant quantity•
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(4.3.11)

For the two two-form potentials of the type IIB theory we combine their respective

field strengths as

(4.3.12)

then we define a new complex tbree-form field strength as

,.,..(3) __€ T rar;;b
~'- ab V+- (4.3.13)

with the definition of a covariant derivative that maintains the charge U of a field

under U(l) whicb is

(4.3.14)

(4.3.16)

•

After these definitions, we cao write the type IIB supersymmetry transformations

as

6'l/J(b) = fJ e + _t_·_7vpu),ô"'( F(5) ê +~ (7 vpcr - 96 v "'(Pu) ~3) e* (4.3.15)
po po 4 (S!) p. vpu),ô 96 po po vpu

for the gravitino and

6À(b) = i"'(IJe*'P - .!:...-7poVPT:3) ê
J" 24 J"vp

for the dilatino since in the type IIB case, ê is chiral 7 Ile = ê.

It is found, upon substituting the ansatz of (4.1.13) into the supersymmetry

transfonnations that for D = 10 and world-volume dimension 1 :s; d < 7 that

Killing spinors exist for which the transformations (4.3.2) and (4.3.3) or (4.3.15)

and (4.3 .16) vanish. However, this requirement reduces the four unknO\vn functions

fI, 12, 13, and ifJ to one, exactly as occured when the ansatz was substituted into the

equations of motion. The result of all this is that we may interpret the elementary

p-brane solutions of §4.1 as the low energy background solutions corresponding ta

D-branes.

That this works should not, after aIl, he considered a miracle. The supersym­

metry variation of an equation of motion is something that should vanish by the



equations of motion. Supersymmetry involves enough constraints that if the su­

persymmetry transformations are known, as weIl as one equation of motion, the

remaining equations of motion cao be deduced. Therefore that an ansatz that is

supersymmetric also salves the equations of motion is not surprising. Of course, we

had no reason in this chapter ta choose a different ansatz when we constructed the

p-branes.

There exist, of course, many other variants of the p-brane solutions. Sorne are

called "black" p-branes because they display the phenomenon of an event horizon.

Other types of solutions exist which break more than half, but not ail, of the

supersymmetries. These other types of solutions are also BPS saturated states and

play a role in many string dualities. However, a systematic exposition of these

solutions is beyond the scope of this work. Let us move on ta dicuss in the next

chapter black hales in the theory of strings.

•

•
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v
The theory of black holes

The existence ofcompletely collapsed abjects, Imown as black hales by the fact that

a region of spacetime from which not even light can escape is formed, is quite likely

the most Ïntriguing prediction of Einstein's general theory of relativity. Add ta this

the accompanying prediction of spacetime points within this "region of no escape"

where the spacetime curvature becomes unboundedly large, suggestively labeled

the singularity. Black hales thus present an enigma even at this level, suggesting

strongly that a quantized theory of gravity is necessary ta determine the physics of

the singularity.

In addition, the laws of classical black hole mechanics, which we will discuss

in more detaillater, take such a form as ta suggest a direct connection with ther­

madynamics, leading Bekenstein [6] ta posit that black hales possess an intrinsic

entropy. At that point, the lack of a non-zero temperature made the thermodynamic

analogy seem unlikely ta be anytbing other than just that, an analogy. After ail, if a

black hole is in sorne way defined by this region of no escape, then the temperature

of a black hale should he zero, since it is a perfect absorber. This piece of the puzzle

was discovered by Hawking [7] when through application ofquantum mechanics he

demonstrated that black hales emit thermal radiation, and thus possess a non-zero

temperature, completing the thermodynamic structure.

This is, of course, not the end, but rather the beginning of the story since new

questions then surfaced. The first was the statistical interpretation of the entropy.

For ordinary thermodynamic systems, the entropy can he computed by statistical

analysis of the fundamental degrees of freedom of the system. What are these

degrees of freedom in the case of black hales?

-lll-



A second question raised by the work of Hawking is known as the information

loss paradox of black hales [96-98]. If a black hole is allowed to radiate away

ail of its mass, thus evaporating completely, where does the information about the

quantum states that fonned it go? Such a process is non-unitary, thus violating the

principles of the quantum mechanics that were required to (theoretically) produce

the process i tself.

It is clear~ then, that a quantum theory of gravity is called for and that black

holes bring sharply ioto focus this need. String theory, as a serious candidate for

a theory containing quantum gravity is a logical framework in which ta attempt a

response to the questions posed by black hale physics.

The study ofblack holes in string theory is normally begun within the framework

of classical, exact solutions to the low energy effective string equations of motion.

When fields such as the dilaton and the various gauge fields vanish, the classical

solutions of the Einstein equation, R~v = 0, such as the Schwarzschild or Kerr

solutions are solutions of the low energy effective string equations of motion, for

example (2.3.10). While the black hole solutions ofstring theory form a much wider

class than those of general relativity, it is worthwhile to begin with a short review

of the black hales of general relativity.
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5.1. Black holes

A spherical body of matter which is sufficiently cold and contains sufficient mass

cannat, according to general relativity, exist in hydrostatic equilibrium [5]. It must,

therefore, suffer complete collapse under its own gravity and form. a spacetime

known as a black hale.

One rather interesting characteristic ascribed ta the process of gravitational

collapse is cailed the cosmic censorship conjecture [99]. This conjecture states that

the curvature singularities produced are always shrouded by an event horizon, i.e.,

a black hole. In other words, the singularity cau never he observed at asymptotic

infinity. Ta be precise, this conjecture must specify conditions on the matter fields

in question, for example it has been shawn that in the gravitational collapse of a



perfect fluid "oaked" singularities cao occur [100]. Despite substantial theoretical

effort this conjecture remains exactly that.

Let us pause briefly to consider the definition of a black hole. The notion of a

region of no escape due to strong gravitational fields is not defined with sufficient

precision by: The region of spacetime such that every timelike (or null) worldline

with at least one point in the region is completely contained in the region. With

a definition such as this, everyone's causal future is a black hole. An appropriate

definition of a black hole in the case of asymptotically fiat spacetimes is that region

[rom which it is impossible to escape to future null infinity.l With this definition

one is essentially confined to finite distance from the origin r, and we choose ta

hegin our study of black hales with the confinement to finite r described by the

Schwarzschild solution.
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5.1.1. The Schwarzschild metric

The Schwarzschild solution, a solution of the source-free (vacuum) Einstein equa­

tion was first written down in 1916 [101] and for which appears the classic graphical

representation in Fig. 5.1.1. The solution is written in D == 4 in the usual spherical

coordinates {t, r, B, cp} in spacetime with Minkowski signature as the line element

where M is the masse

One notes immediately the existence of four points at which (5.1.1) is singular,

r == 2GN M and r == 0, B== 0 and () == 7r. Such singularities cao he due to either of a) a

fallure of the system of coordinates used to describe the solution or, b) the existence

of an essential singularity in the spacetime. Here r == 2GN M is an example of the

first, defining the boundary of the region of 00 escape called the event horizon. This

boundary occurs at the Schwarzschild radius and is the radius at which the escape

velocity equals that of light. The points B= 0, 1r are the trivial singularities of polar

coordinates. On the other hand, the point r = 0 is the true singularity where the

curvature grows without bound.

1 These concepts are the subject of appendix C.
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Figure 5.1.1: The spacetime geometry described by the
Schwarzschild solution. The figure represents a time-slice t = 0
with one degree of rotational freedom suppressed, Le., circles at
radius r are actually spheres of area 47fr2.
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Represented in Fig. 5.1.2 is a Penrose diagram of the maximally analytically

extended2 Schwarzschild solution. Since the Schwarzschild solution is invariant

under time reversal, the maximally extended solution contains a "white hale" (region

IV) which emerges from i- in the infinite timelike past as weIl as the black hole,

region III which extends toward i+ in the infinite timelike future, as well as two

asymptotically fiat regions CI, II). One thing to note here is that the singularity

is spacelike, and thus the hapless adventurer who stumbles into a Schwarzschild

black hale has no choice but to collide with the singularity. H+ and H- denote

respectively the future and past event horizons. For black holes formed by the

collapse of infalling matter, only regions l and III are expected ta he relevant

physically.

Schwarzschild black hales have been shawn ta be stable under small perturba­

tions [102], which indicates that it is classically impossible ta extract energy from

such a black hale. We can then identify a Schwarzschild black hole as the ultimate

ground state of a heavy mass.

The Schwarzschild solution has, of course, higher dimensional generalizations.

The causal structure remains identical with each point in Fig. 5.1.2 representing a

2 These concepts are explained in appendix C.
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Figure 5.1.2: Penrose diagram of the maximal analytic extension
of the Schwarzschild black hole.

manifold of dimension D - 2. These solutions are written [103]

2 ( (3) d,2 ( 13) -1 2 2dnD- 2ds = - 1 - -- r + 1 - -- dr + r ~1O
r D - 3 r D - 3

Ils

(5.1.2)

where dQD-2 is the line element on the unit (D - 2)-sphere and the parameter {3 is

related ta the mass by
M = (D - 2)An-2 f3

2K.2
(5.1.3)

(5.1.5)

•

where K. = V81rGN was defined in chapter II, and An-2' the area of the (D - 2)­

sphere is given by
D-l

21r---r-
An-2 = r (D

ï
1) . (5.1.4)

Another way to obtain a higher dimensional generalization is to form a metric

of the fonn

ds2 __ (1 _2G~M) dt! + (1 _2G~M) -\ dr2

+ r2(dB2 + sin2 Bdep) + 6ijdxidxj

where D - 5 < i, j < D - 1. This is particularly useful when one wishes to study

solutions which have a four dimensional compactification. It is evident that one can

combine the two generalizations to form, for example in six dimensions, abjects like

a five-dimensional Schwarzschild metric, adding a fiat coordinate to lift it ta D = 6.
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The Reissner-Nordstrom [104] solution represents a charged black hole solution to

the Einstein-Maxwell equations, which are given by

Rp.v - ~gp.vR = (Fp.pFvP - ~gp.vFpuFPU)

5.1.2. Reissner-Nordstrom solution•
where F = dAM is the field strength of the Maxwell gauge field AM, which satisfies

the Maxwell equations which are written in terms of forms as

dF=O, d(*F) = AD-2 *.lf (5.1.7)

where J is the one-form Maxwell current source.

The Reissner-Nordstrom solution inc1udes, therefore, a gauge field as weIl as a

metric and is written

(5.1.8)

where q = J qe2 + qm2 and in turn qe and qm are the electric and magnetic charge,

respectively, as defined in equation (4.1.32).

The causal structure of the Reissner-Nordstrom metric is quite different than

that of the Schwarzschild solution and even changes rather drastically depending

on the relative values of q and M. If 0 < Iql < M the metric coefficient can he

factored into two real roots as

(5.1.9)

where

•
(5.1.10)

and thus the spacetime exhibits two horizons, an inner horizon at r = r _ and an

outer one at r = T+. A Penrose diagram of the maximal analytic extension of this

spacetime is to he found inFig. 5.1.3. Itconsists ofan infinite chain ofasymptotically
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Figure 5.1.3: Penrose diagram of the Reissner-Nordstrom black
hole for q < .lvI.
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fiat regions l connected by regions l [ and II1. Each region [1l is bounded by

a timelike singularity. The significance of the inner horizon is that the trajectory

of an infalling observer is only unique up to r = r_, at which point it becomes

dependent upon boundary conditions at the singularity. To see this, consider the

surface !7of Fig. 5.1.3. !7 is a Cauchy surface for the two regions [and the

neighboring regions [[. However, in the neighboring regions III there are timelike

curves travelling backward in time (past-directed) which approach the singularity

and do not cross r = r _. Thus T = T _ is the future Cauchy horizon for c9;
and the conditions on !7do not determine the continuation of the curve beyond

r = r _. Further, one is not forced to collide with the singularity in contrast with

the Schwarzschild case, since it is now timelike. In fact, our infalling observer

must actually exert himself to reach the singularity as freely falling observers avoid

it, continuing through the regions II, [II, II and ïnto anotber asymptotically fiat

region l of the spacetime.

When q = M, however, the picture changes to that of Fig. 5.1.4 in which the

inner and outer horizons coïncide, r+ = r _ = GN M. Note that the surface marked
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Figure 5.1.4: Penrose diagram of the Reissner-Nordstrom black
hole for q = M.
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(5.1.11)

•

t = const appears to make contact with the singularity, but this is nothing more than

an artifact of the conformal rescaling used to construct the diagram. To see this, we

compute the proper distance to the horizon r = GN M frOID sorne point at a radius

ra > GN M along a radial curve at fixed t, which is given by

rra dr

L- lGNM (1- G~M) =00.

Thus, as r -+ GN M the fixed-t surface takes on the geometry of a infinite cylinder,

sa we have what is called an "infinite throat" (see Fig. 5.1.5). It seems that th~

horizon bas been pushed away ta infinity, though one can still faIl into the black

hole in finite proper time since the horizon is still a finite distance away in timelike

or null directions.

The final case ta consider is that of q > M. Here the Reissner-Nordstrom

solution describes a naked singularity, shawn in Fig. 5.1.6. It is widely considered

that q > M is impossible ta achieve given the cosmic censorship conjecture, as

well as other considerations. For example, a black hale with q rv M would exert

a repulsive electrostatic force on protons that is greater than its gravitational pull

on them by a factor of ~Îf rv ~ rv 1018, and such a differential in forces is likely
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Figure 5.1.5: Representation of a time-slice for the extrema!
Reissner-Nordstrom black hole (q = M).

to pull in neutralizing charge. When Hawking radiation is in effect, then, a black

hole will preferentially radiate away its charge, depending of course on the charge

to mass ratio of the particles in the theory. A small charge to mass ratio can result in

the charge remaining essentially constant, which is likely to he true for any possible

realistic magnetically charged black holes. Thus q = M is the largest possible

charge to mass ratio for the Reissner-Nordstrom solution. In this case the black hole

is called extremal.

Again we can generalize the Reissner-Nordstrom solution te higher dimensions

by writing the metric in a higher dimensional forro as in [103]

2 ( (3 >,.2)ds = - 1 - r D - 3 + r2CD- 2) dt?-

(

2 -1
(3 .x 2 2 D-2

+ 1 - r D- 3 + r2(D-2») dr +r da

~>,.
AM=±V~ rD-3

(5.1.12)

where {3 and the mass are related as in (5.1.3) and the electric charge qe is given in

terms of À by

One may ask what has happened to the magnetic charge of the higher dimen­

sional Reissner-Nordstrom solution. The answer is that there is no magnetic charge

in higher dimensions. qm is defined by integrating the Maxwell two-form field•
qe = ±.-\AD;2 J2(D - 2)(D - 3)

/î,
(5.1.13)
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Figure 5.1.6: Penrose diagram of the Reissner-Nordstrom black
hole for q > M.
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strength F over the surface at infinity, and only in two dimensions is titis sphere

two-dimensional, leading to a nonvanishing result. If one includes more general

fOnIl fields, such as those of the theory of strings, then one can find black hale solu­

tions in higher dimensions have magnetic-like charges, as weIl as being electrically

charged under these fields. AIso, in higher dimensions, we can cornpactify sorne

of the higher dimensions such that the surface at infinity is a two sphere, with each

point on this surface being the compact manifold.

5.1.3. Kerr·Newman solution

The Schwarzschild and the Reissner-Nordstrom solutions were both known shortly

after Einstein published bis general theory of relativity. The addition of angular

momentum to the Schwarzschild solution, giving us what is known as the Kerr

metric, took until 1963 [105]. Shortly thereafter a charged generalization of the

Kerr metric was found by Newman et al. [106].

The Kerr-Newman solution appears as

•
2 li. . 2 2 sin2 B 2 2 2

ds = - (il (dt - a sm Bdep) + 7((T + a )dcp - adt)

+ r? dr2 + p2dB2

il

JGNqer ( . 2 )AM =: 47r rJ- dt - a sm Bdep

(5.1.14)
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(5.1.15)
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where
p2 =r2 + a2 cos2 B,

~ =r2 +a2 + (GNqe)2 - 2GNMr

in Boyer-Lindquist coordinates [107]. The mass M, charge qe and the angular

rnomentum per unit mass a = J /M are the three parameters of this solution. For

a = 0 we recover the Reissner-Nordstrom solution, qe = 0 gives the Kerr metric

and a = qe = 0 reduces to the Schwarzschild solution. Due ta a remarkable series

of theorems by Israel, Carter, Hawking, and Robinson, collectively known as the

"no hair" theorem [108-109], which means roughly that in D = 4 any complete

gravitational collapse settles down to an endpoint uniquely determined by three

parameters: the mass, angular momentum, and charge, the Kerr-Newman solution

represents an exhaustive family of black holes in four dimensions.

The causal structure of the Kerr-Newman solution is similar to that of the

Reissner-Nordstrom metric. Of course, the addition of angular momentum brings

about certain changes. We again have both inner and outer horizons with radii given

•

by

T±=GNM±GNVAfl- (G:Mr -(!fi, (5.1.16)

but the structure of the singularity is modified. Computation of the scalar curvature

shows that

(5.1.17)

•

is a true curvature singularity when3 M =1 O. This gives the impression that there

is a singularity at the ongin only for B= 1r/2. The true nature of the singularity can

be found ta he that of a ring, through which one may pass to negative r, denoted in

Fig. S.1.7 by the two asymptotically fiat regions labelled r < O.

It is possible to classicaily extract energy from a black hale [110]. This process

can occur as long as the black hale rotates or has charge, and the process of energy

extraction subtracts angular momentum, or charge, or both, from the black hole.

These processes ultimately result in a Schwarzschild black hole from which it is

impossible, classically, to extract energy. There is thus a limit ta the amount of

3 We assume here that the effect of charge is negligible for an astrophysical body [51].
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Figure S.1.7: Penrose diagram of the Kerr black hale
forva2 +(GNqe)2 < GNM.
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energy that one can extract in this way. Given a black hole of mass M, angular

momentum J and charge qe, the total mass energy ofthe black hale can he written [4]

(5.1.18)

•

where Mir is the irreducible mass, that is the mass that the Schwarzschild black hale

which remains after all of the charge and angular momentum have been removed

by maximally efficient energy extraction processes. This formula shows that one

can think of the mass energy of a black hale as made up of contributions from the

irreducible mass, an electromagnetic mass energy, and a rotational energy.

As with other black hole solutions to the vacuum Einstein equation, it is possible

to add fiat directions to the Kerr metric in the manner of(5.1.5), as weIl a generalizing

the solution ta higher dimensions. In higher dimensions, ofcourse, more parameters

are required to describe this group of solutions, for example each pair of additional

dimensions brings with it the possibility of a new plane of rotation, and thus an

additional angular momentum parameter. One can see, then that there will he cases

for odd- and even-Do The higher dimensional generalization of the Kerr metric in
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odd dimensions in Boyer-Lindquist coordinates [107] is [103]

(~)

ds2
= - dt? + L {(r2 + a/)((d/-li)2 + /-l?d'P~) }

i

where
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(5.1.19)

(5.1.20)

and where ( Di! ) indicates the greatest integer, that is the greatest integer < Di l,

and the /-Li are the direction cosines which specify the direction of the radial vector.

Note that 0 < /-li < 1 since for any i, the pair (/-li, 'Pi) and (-/-Li, <Pi + 1r) are the same

direction. The ai are, of course, the angular momenta per unit mass in the i-th plane

of rotation.

When the dimension of the spacetime D is even, possessing therefore an odd

number of spatial directions, the solution is given as

where II and 1: are as in (5.1.20), and rp represents the direction cosine of the spatial

coordinate which is not paired up. The constraint for the direction cosines in this

case is then

•

(~)

ds2
= - dr + r2drp2 + L {(r2 + a/)((d/-li)2 + /-Lldcp~) }

i

(
~) )2{3r 2 rn 2

+ :rŒ dt + ~ aiIJ.i d'Pi + II _ I3r dr

(l?)
L J1.~ + rp2 = 1.
i-l

(5.1.21)

(5.1.22)



Again the mass is given by (5.1.3). For these solutions, the angular momenta are

obtained by transforming to Cartesian coordinates at large radius according to•
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Xi = r /-Li cos <Pi

giving the off diagonal parts of the metric as

i .
y = r /-Li sm !{Ji (5.1.23)

(5.1.24)

which allows us to identify the angular momentum in each plane of rotation as

J. = JYixi = ÂD-2{3ai
<Pi /'\.2

2Mai
D-2'

(5.1.25)

Let us now discuss sorne further properties of these solutions. In Boyer­

Lindquist coordinates, the event horizons appear where grr = (grr)-l = O. Thus we

find the horizons by setting

{
II - (3r

0-
- II - {3r2

(D even)

CD odd)

C5.1.26a)

(5.1.26b)

•

for which, in general, analytic solutions can not he found.

For D even, positive mass ensures that any existing horizons will he located at

positive r, thus avoiding naked singularities. In general there are three possibilities,

no horizons, one degenerate horizon, or two horizons. Wben none of the angular

momentum parameters vanish, C5.1.26a) is a polynomial of degree CD - 2). As

shawn by Galois, these polynomials are soluble in terrns of radicals only for D =

4, 6, although the polynomials are not campletely general since they contain D /2

free parameters. This coincides with our discussion of the Kerr-Newman solution

previously. One finds, however, that the vanishing of at least one of the angular

momentum parameters is sufficient to guarantee the existence of a horizon.

For odd dimension, the case D=5 is quadratic in r and the roots cao he written

as [103]

(5.1.27)
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for which the existence of a horizon requires

/3 >aI +~ + 2/ala21

M
3 2: 3~~N (J[ + Ji + 2IJ\J2i)
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(5.1.28)

For general D odd, two vanishing spin parameters are required to guarantee the

existence ofa horizon. Also, for D odd it is possible to find horizons at positive radius

even in the case of negative mass, however these solutions are rather pathological,

containing regions of causality violation, which allows such black holes ta evade

the positive energy theorem for black hales of [111].

Singularities exist for the higher dimensional solutions when the deviation from

flat space becomes infinite. If we write the metric in the form g~v = TJf.'v + hkf.'kv

where k~ is a vector field, then h -t 00 implies that the metric coefficient of dt?­

diverges, which in Boyer-Lindquist coordinates means that

{3r}rr; -t 00.{3r
IlL

(D even)

(D odd)

(S.1.29a)

(S.1.29b)

For D even, when any of the angular momentum parameters ai vanish, then II

contains overall factors of r 2 which cause a divergence at r = O. If none of the ai

vanish, then II is everywhere finite and ~ = 0 is required to have a singularity. This

latter condition can be shown to occur only on the surface of a (D - 3)-sphere with

radü in the rotation planes gÏven by the angular momentum parameters. Thus for

D = 4 we recover the ring geometry of the singularity of the Kerr metric.

In the case that D is odd, and all ai =1 0, again II is finite everywhere. ft can be

shown [103] that for D odd, ~ can he written as

(5.1.30)

•
which contains an overall factor ofT 2 to cancel that of the numerator. Thus, in arder

ta obtain a divergence, at least one of the angular momenta must vanish. When

one of the ai goes ta zero, there is an overall factor of r 2 from II which cancels

the numerator of (S.1.29b), but a cancellation of a factor of r 2 aIso occurs in ~,



in which case it is necessary to have the direction cosine J.1.j, corresponding to the

vanishing angular momentum parameter aj, vanish as weil. L will then diverge on

a (D - 4)-sphere, again with radii in the rotation planes given by the corresponding

angular momentum parameters. It can aIso be shown [103], that the singularities

discussed here correspond to curvature singularities.
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5.1.4. Taub..NUT metric

Ifone is prepared to put up with "pathological" behavior ofa solution ofthe Einstein

equations, it is possible to find other vacuum solutions. Here we will write down

one of the simplest of such solutions, which has two parameters. These are the

Taub-Newman-Unti-Tamburino (Taub-NUT) metrics [112]. These are written in

D =4as

where

ds2
= - f (dt + 2icos BdifJ? + j-1dr2

+ (r2 + i2)(dB2 + sin2 Bdcp2)
(5.1.31)

(5.1.32)

(5.1.33)

f
_ _ 2 GNMr +i2
- 1 2 l2r +

where R. is the Taub-NUT parameter. This metric is singular at r = r± = G N M ±

JG7vM2 + {2 where f = 0, but can be extended across these surfaces. It is found

that this metric exhibits a line singularity [113] at B = 0,1f, which Cart only be

avoided if the time coordinate is made periodic with period 2JG7vMl - (2. This

metric is widely considered not ta represent a physically realizable spacetime.

Of course, there is a generalization of the Taub-NUT metric with non-zero

angular momentum [114] which we will write down here as

2 (dr2 2) IJ.. 2 sin
2B 2ds = L ---;:;: + dB - L (dt - Podcp) +~ Cadt - Prdcp)

where

•

li. =r2
- 2GNMr -.e.2 +a2

,

L = T
2 + (R. - a cos f})2 ,

Pr =T
2 + a2 + i2,

Po = 2R. cos B+ a sin2 B.
The parameter a is as usuaI the angular momentum per unit masse

(5.1.34)



As we mentioned earlier, the laws of black hole mechanics are analogous with those

of thennodynamics. In this section we describe this analogy in more detail.

One of the anchors of the therrnodynamic analogy is the black hole area theo­

rem [109], which states that classically in a closed system, the area of ail black holes

in the universe can never decrease, 8.sd > O. This resembles greatly the second law

of thennodynamics, that in any physically allowed process the total entropy S of an

isolated system cannot decrease.

Following [51], we wish to define a quantity f) on the horizon of an arbitrary

stationary black hole. We do this with the help ofKilling vectors ç/.l which generates

a one parameter group of isometries of a given spacetime, as is given by Killing's

equation

•
The theory ofblack holes

5.2. The thermodynamics of black holes

127

(5.2.1)

where "VJ.' is the covariant derivative associated with the metric in question. This

gives a necessary and sufficient condition to ensure that all lengths are preserved

by the displacement €ç/.l. Thus the Killing vector field allows us to construct

conservation laws from symmetries in a differential geometric contexte One property

of the Killing field is that its contraction with the tangent of a geodesic, çJ.'uP is

constant along that geodesic. For a stationary black hole, there exists a Killing field

X/.l which is normal to the horizon. If xJ.' does not coincide with the stationary

Killing vector ç~, which generates the isometry of the solution as time evolves,4

then we can form an axial Killing field 7jJJ.' from a linear combination of çJ.' and Xi-'

such as

(5.2.2)

(5.2.3)

•

where OH is the angular velocity of the horizon, which is given by

a
o.H=~-­

r~+a2

for the case of the Kerr metric. Due to the fact that the horizon is a null surface and

that xJ.' is normal to it, theu we know that xPxJ.'1 horizon = 0 and we can therefore

4 {J.' expresses the fact that the time t is a cyclic coordinate.



• write

The theory ofblack holes 128

(5.2.4)

It can he shawn that f} is constant over the horizon, and can he computed to

he [51]

(5.2.5)

which for a static black hole has the physical interpretation of the force at infinity

that is necessary to hold a unit test mass in place on the horizon, called the surface

gravity.

From the constancy of f} on the horizon the following simple fonnula for the

mass of a stationary axisymmetric spacetime may he derived,

(5.2.6)

where (J" denotes a spacelike hypersurface which intersects the horizon and J rep­

resents the angular momentum, and Jd is the area of the event horizon. From this

in turn we derive a formula for the variation of the mass, which in the vacuum case

cornes out to he

(5.2.7)

A second formula for the mass can he derived by considering perturbations of

the metric [115] which is given as

8M= (5.2.8)

which we add to (5.2.7) to finally obtain

(5.2.9)

•
Thus we see that the surface gravity f} plays the raIe of a temperature in the

black hale when we make the following comparison between thermodynamics and

black hale mechanics:
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Law Context• Thermodynamics Black holes

Oth T = constant throughout body -a = constant over horizon
in thermal equilibrium of stationary black hole

lst dE=TdS+dW dM = 81rh
N

1)dd +QHdJ

2nd 58 > a 5d ~ a
3rd Impossible to achieve T = 0 Impossible to achieve 19 = 0

in a physical process in a physical process

It turns out that general expressions for the surface gravity and horizon area of

the metrics described in (5.1.19) and (5.1.21) can he obtained [103]. For the area

of the horizon we have

(
(~) 2).rd = An-2f3 D - 3 _ 2 ~ ai

21) ~ r2 +a~
i-l + l

and for the surface gravity

(5.2.10)

(D even)

CD odd)

(5.2.l1a)

(5.2.1 lb)

(5.2.12b)

(5.2.12a)

•

The indication that the relationship between the laws of thermodYQamics and

those of black hole mechanics may not be simply an analogy cornes from the fact

that the thennodynamic energy E and the black hale mass M are not just analogs

of one another, but rather describe the same physical quantity: the total energy. As

noted earlier, one naïvely sets the temperature of a black hole to zero, since it is a

perfect absorber, which would seern. to ruin the identification completely. However,

as shown by Hawking [7], quantum effects in the region of the event horizon result

in the emission of a blackbody spectrum of particles at a non-zero temperature.

The thermodynamic entropy S and temperature T are then related to the area of the

horizon and the surface gravity as (c =n = 1)

S=kB.rd
4GN'

T=_1)_
21rkB



where kB is the Boltzmann constant, which henceforth will he set to unity. It is also

possible to obtain a fonnula for the irreducible mass of a higher dimensional black

hale as [103]•
The rheory ofblack holes 130

(5.2.13)
iJ.sd' D - 2

Mir = 81rGN D - 3'

The thermodynamic analogy is thus complete, and the search for a microscopie

understanding of the entropy of a black hole can begin in earnest.

There are a few things to note here. For the Kerr metric, the entropy and

temperature are given by

s = 4~N = 2~GN ((M+ JM2 - (G:Mr-(qe)2 ) 2 + (G:Mr) ,
iJ JM2 - (G;M)2 _(qe)2

T=-= .

2~ 47rGNM ( M + JM2 - (G;M) 2 - (qe)2) _ (qe)2

(5.2.14)

Therefore, when G1r(qe)2 + a2 = GhM2, or when the black hole is extremal, the

temperature vanishes, and from (5.2.14) we see that the entropy reduces to

(5.2.15)

•

and therefore S =1 0 when T = O. It has been shown that, just as in attempts to att..ain

very low thermodynamic temperatures, the closer a black hole approaches il = 0,

the more difficult it is to get still closer [116]. AIso, there is another formulation

of the third law, known as the Nernst theorem, which states that the entropy S of

a system must tend to zeros as the temperature does. For black hales, however,

it is possible that the area remain finite as the surface gravity vanishes. Recently,

arguments have been made to produce counter examples ta the Nernst version of

the third law ather than in black hale physics [117] .

5 Or to a "universal constant".



It is evident from chapter II and fi that the string equations of motion are more

complicated than those of general relativity, even in D = 4. There are more fields

to consider, and thus the class of black hole solutions in string theory is very much

more general than the Kerr-Newman solution [118].

Since the dilaton couples to the gauge field strength6 in (2.3.23) the charged

black hole solutions ofstring theory are not those of the Einstein-Maxwell equations

(5.1.6). Thus we must begin anew, attempting to solve the low energy string

equations of motion, in order to find the string analog of the Reissner-Nordstrom

solution. This was done in [119]. The result for the string-frame metric and

associated fields was aIso found more recently through the solution generating

techniques described in chapter ill. The specifie procedure used is discussed in [120]

and similar techniques will be explained in detail in chapter VI. For now the result

is

•
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ds2 = _ (1- ~) (1 + ,BC
x2

r
-

1
)) -2 dt?-+ (1- ~) -1 dr2 +r2dr},2

A(l) =A(l) = -f3xvxz - 1 dt
G 2-/2 Cr + f3(x2 - 1))

-2r./>(h) _z·I.(a} 1 f3(x2
- 1)e =e ~ = +~---

r
(5.3.1)

where f3 is again a mass parameter related to the physical mass of the Schwarzschild

solution that was the starting point of the solution generating by (5.1.3), and where

x > 1 is a parameter used in generating the solution. Here we have a non-zero

dilaton as weil as a gauge field. Note that this is a solution of both the 'TYPe lIA

and heterotic string, since it involves only fields which are common to both of these

theories.

The causal structure of this solution is identical to that of the Schwarzschild

solution (see Fig. 5.1.2). One has the event horizon (coordinate singularity) at r = f3

and a curvature (essential) singularity at r = o. The absence of an inner horizon is

particularly noteworthy. AIso, as r ~ 0, the string coupling er.P becomes weak. It is

6 This can he seen explicitly when the action is written in the Einstein frame.



difficult ta speculate on what this might mean, however, since we have no reason ta

trust this solution close ta the singularity.

The physical mass M depends upon the frame, Einstein or string, used ta

compute it. Rescaling ta the Einstein metric through gJ.1V = e-2
<{J GJ.1V (for D = 4)

and comparing ta Schwarzschild asymptotically we obtain the mass, while the

charge is obtained from a similar expansion of the gauge field and comparing ta

(5.1.8). The results are

•

(3x2
M=-­

2GN
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(5.3.2)

from which we see that the charge to mass ratio depends only on the parameter x, as

(5.3.3)

For a gÏven mass M, therefore, the amount ofcharge can he augmented by increasing

x and decreasing (3, which reduces the area of the event horizon. If we take the

extremallimit, which is done by taking /3 -+ 0 and x -+ 00 simultaneously in such

a way as ta maintain a fixed mass, we find that the largest possible charge to mass

ratio is Iqel = ..Jj;ffM, at which point the horizon has shrunk onto the singularity.

The metric no\v appears as

(
2G M)-2

ds2 = - 1 + ~ dt? + dr2 + r2dnD
-

2 (5.3.4)

•

which is often called an extremal charged black hole, even though strictly speaking

it is not a black hale. Its Penrose diagram is ta he found in Fig. 5.3.1 where we

see that the singularities are null. Notice aIso that the spatial part is completely fiat.

This process of extrernization will he used later to create BPS saturated black hale

solutions. As we saw in chapter III, BPS states have the maximum ratio ofcharge ta

mass, thus this process is useful for creating black hale solutions with this property.

Extremization is, however, no guarantee of supersymmetry, as it remains possible

to create extremal solutions which are not supersymmetric. We will see an example

of sucb a solution in section 5.4.

Rescaling to the Einstein frame metric makes iteasier to compare (S.3.1) with the

black hales ofgeneral relativity. Using (2.3.24) and applying also the transformation



•
The theory ofblack hales

Figure 5.3.1: Penrose diagram of the extremal black hale with
non-zero dilaton.

R = r + (J(x2 - 1) results in a solution appearing as
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(5.3.5)

•

where we see that the geometry is that of the Schwarzschild solution, but with the

area of the spheres ( Q2) reduced. When R --+ 0 the area goes ta zero and this

surface is singular. In the R - t plane the causal structure is independent of qe and

thus it is given by Fig. 5.3.1 in the Einstein frame aIso.

From the area theorem of black hales and from the fact that the area of the

extremai black hale (5.3.4) is zero, we see that there is no classical process which

could produce an extrema! black hale from a non-extrema! one. The auxiliary

conditions upon which the area theorem depends are satisfied by the low energy

effective actions of string theory [118] .



Let us now begin witb the action of the heterotic string, (2.3.27) and perfonn a

compactification on K3 Q9 T 2 down to four dimensions. Further, we set all fields

except the metric, dilatan and one gauge field ta zero, and finally we transform ta

the Einstein frame. The result cao be written

Sh = 2~'i JrrXN (R - 2("Vif/hl)2 - e-2
q,(h) (.rOl /) (5.3.6)

which cao he seen ta he invariant under the four-dimensional transformation

,? '..w -+~ /.W,

~(h) -+ _ ~(h), (5.3.7)

p2) -+ P<2) = *p.2) ,

which is a manifestation of a self-duality of the heterotic string in D = 4 [121].

If we take our "stringy" Reissner-Nordstrom solution, (5.3.5) interpreted as a

D = 4 heterotic solution and apply to it this duality transformation, we obtain, due

ta the dualization, a magnetically charged black hale (with qm = qe), which cao he

written

•
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(5.3.8)

(5.3.9)

•

dSk = - (1 _2G;M) dt?- + (1 _2G;M) -[ dR2

+R (R - G:C;;)2) dQ.2,
ACI) = V~:qm cos ()drp,

-2t/J(h) = (1 _GN(qm?)
e 7rMR .

Here we note that the string coupling becomes strong near the curvature singular-

ity, due ta the change in sign of the dilaton. Since the metric is invariant under

this transformation, the Penrose diagram is again that of the Schwarzschild met­

ric for Iqml < ~M. However, the metric in the string frame is altered by the

transformation, and is written

dsk = - (1 - 2G;M) (1 -G:;;;tfi df

+ ((1- 2G;M) (1- G:t~2)) -1 dR2

+R2dQ2,



The tirst thing we note is that the area of the two-spheres does not vanish as one

approaches the singularity at r = GN(qm)2/(7rM). Furthermore, the extremallimit

of this metric,•
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(5.3.12)

(5.3.11)

•

ds2 _ -dt?-+ (1- 2G~M) -2 dr2 +r2dO? (5.3.10)

is for r > 2GN M without curvature singularities. Here a time slice t = const. has

the infinite throat geometry ofthe extremal Reissner-Nordstrom solution (Fig. 5.1.5),

that is there is an infinite proper distance between r = 2GNM and r > 2GNM.

But, the surface r = 2GN M is also an infinite distance away in timelike and null

directions as weIl as spacelike directions. The horizon has moved off to infinity,

taking with it the singularity, thus effectively neither of these exist since they could

not he discovered by mass or charge probes.

5.3.2. Asymptotically nonvanishing diIaton

The action (5.3.6) can be easily verified to be invariant under the transformation

? 1-'1/ ~? p1/'

4>(h) ~ if>(h) + if>&h) ,

;::<2) ~ P<2) = etj)~h) ;::<2),

where if>&h) is the value of the dilaton at asymptotic infinity. Although the Einstein

frame metric is at fust glance unaffected by such a transformation, it will have

dependence on 4>c;) through the charge, which is rescaled by a factor etj)~h) which

results in the solution appearing as

ds~ _ - (1 _2G~M) dt?- + (1 _2G~M) -1 dR2

(

m 2 _2tj)(h»)
+R R_GN(q,}: 0 dO?,

A(I) = J~:qmcosOdrp,

_2tj)(h) _2.1.(h} (1 GN(qm)2 e-2tj)~h»)
e = e 'f'O - •

1ïMR

In this case the extremallimit is now 1qm 1 = ..ji;M etj)~h) and thus when if>~h) is large,

we may indeed have black holes with qm or qe >> M.



Thus we see at play here the same sort of weaklstrang, electric/rnagnetic, sin­

gular/solitonic structure that we saw in Chapter ID. There is much more ta say here.

We can also imagine dyonic black hales, with bath electric and magnetic charge,

and string theory generalizations of black hales with angular rnomentum. Sorne of

these things we will discuss in later chapters, others we leave for the references.
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5.4. D-branes and black holes

The similarity between the fOrrIls of the black hole metrics that we have written

down here and thase which we wrote down in the previous chapter for the D-branes

will not have gone unnoticed.

It is not hard ta imagine the creation ofblack hole solutions which have, in higber

dimensions, non-vanishing higher form potentials and thus have, in the type II string

theories, the Ramond-Ramond charges of which the D-branes are the sources, as

we have seen. In this scenario, a black hole can be said to be composed of a number

of D-branes, forming in fact a bound state of these objects. This is particularly

true of supersymmetric black hales, which are composed of supersymmetric bound

states of D-branes, and for which the technology now exists, thanks to D-branes, ta

compute the entropy from a fundamental statistical viewpoint.

Let us consider here a simple example of a black hale with non-trivial D-brane

content. The following is an extrema! string-frame black hole solution of the type

IIA effective action in ten dimensions:

9

ds2
= - 111d~ +Il (dr2 + r2(d(J2 +sin2 (Jdcp2)) + 12 LCdxi)2,(5.4.la)

i-4
3

2 (3 v! (1 + 1f.) )ACl) = u! cos (Jdcp + r dt
vu+v r(A+B)'

e2fjJ(a) =(/2) ~ ,

(5.4.lb)

(5.4. le)

•
where

Il = JA2 - 81,

A=(l+;)(l+;),

JA+8
/2== A-B'

u-v
B ---Cl-A).

u+v
(5.4.2)



Here u, v > 0 are magnetic and electric charge parameters, respectively. The

directions x4, x5 , ••• , x9 are considered to be compact with radii ~,Rs, ... ,~.

As cao be seen from the field content, in the Ramond-Ramond sector we have a

dyonic one-fonn potential. As shown in chapter IV, for an electric D-brane, a

d-forro potential couples to an object with a d-dirnensional world-volurne. In the

magnetic case, a d-forro potential couples to the world volume ofa Cd = D - d- 2)­

dimensional object. Thus the content of this black hole in tenns of D-branes is an

electric D-point, and a magnetic D6-brane.

One can compute the physical ADM mass and charges as defined in (4.1.29)

and (4.1.32) to be
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(5.4.3)

(5.4.4)

•

41r
M=2 Cu + v ),

x;
3 9

qe = _ 81rv! (21r)6 IIRï
x;.J2(u + v) i-4'

3
m 87T"U!

q = - -/î,-vl:r.=:2(;:::u=+=v::;::)"

In order to compare charges and masses, we should divide out the vol!Jme of the

compact 6-torus, thus obtaining an electric charge per unit 6-volume of the six-torus

T 6 , which we write as
_ qe

qe = =
(21r)6 I1~=4 Rï /î,.J2(U + v)

We note that if u = 0, then qm = 0, so the magnetic D6-brane has vanished. Then

we note that 2x;2Mg. = (qe)2, indicating as in (4.1.34) that alone the D-point is a

BPS saturated state, as expected. For v = 0, then the D-point vanishes, and likewise

2x;2Mt = (qm)2, which indicates that, as in (4.1.43) the magnetic D6-brane is by

itself a BPS state.

However, ifwe compute the mass charge relation of the bound state we find that

21î?M 2 - (q-e)2 _ (qm)2 = 6(471")2 uv > 0 (5.4.5)
l'b

thus the bound state does not saturate the bound for both u, v :f O. We can conclude

that this particular black hole is not supersymmetric [16]. If one computes the mass

of the bound state in terms of the mass of its constituents, one finds that

41r
M - Mo - M6 = x;2 (u+v - v - u) = 0 (5.4.6)



which indicates that although the long range potential between a D-point and a

D6-brane is repulsive,7 they can fonD. threshold bound states. In [122]. an

approximate D-brane count of the entropy was carried out for a less general version

of this solution with a single charge parameter. The construction of the solution

(5.4.1) will he considered in detail in chapter VI.
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• 7 This is discussed in chapter Vll.



•

•

VI
Spinning black holes and their entropy

Recently, significant progress has been made in understanding the degrees of free­

dom giving tise to the entropy of certain black holes in string theory [10]. String

theory has thus demonstrated a remarkable and detailed knowledge of black hole

thermodYnamics. In [l0] it was found that the newly-understood roles [66,123­

128] for counting degeneracies of BPS-saturated, D-brane bound states precisely

reproduces the Bekenstein-Hawking entropy for a certain five-dimensiona! extrema!

Reissner-Nordstrom black hole. These results were extended to leading order above

extremality in [11,129] solidifying the identification of the microscopic states re­

sponsible for the entropy.

Here we will begin with an elementary introduction to the method ofcounting of

the entropy for a non-spinning black hole. In the sections which follow we construct

two different classes of black holes in five spacetime dimensions. In the tirst section

we construct a spinning generalization of the static black hole given in [10]. We

detail the methods used to construct the solution, which make use of the symmetry

properties of string theory as discussed in chapter m. The microscopie entropy will

then be computed from a counting of the degeneracies of the D-brane bound state

associated with the black hole.

In section 2 we will construct another five dimensional black hole, which we

will represent in six dimensions as a black string. This will aIso have non-zero

angular momentum. Here, however, we will compute the entropy of not only the

extrema! limit, but of the near-extremal solution as weIl, generalizing the result

of [11] to the spinning case. It is found that the D-brane techniques of counting the

microscopie entropy reproduce the exact result both at and to leading order away

-139-



from the extrema! state. Thus in these cases it is shown that the stringy degeneracies

continue to match the extremal Bekenstein-Hawking entropy when rotation is added.

We also, in section 6.4, demonstrate that one can overcome the tendency of

solution generating techniques to produce non-zero Taub-NUT charges when used

ta generated black hale solutions that are dyonic. The reader will also note that in

this chapter, the Newton constant GN has been set to unity

•
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6.1. Counting entropy with D-branes

Our task in this section is ta demonstrate the method of computing the entropy of

BPS saturated black hales using the D-brane technology as tirst developed in [10]. In

section 4.2.4, we sketched how D-strings could he excited, and that these excitations

could be interpreted as a gas of open strings attached ta a D-string. This picture can

clearly he extended to more general D-branes.

The basic idea behind the counting of black hole entropyl is rather simple.

Begin with a BPS saturated black hale in sorne number of dimensions, usually

four or five. This black hole is then embedded into a type II superstring theory

compactified on sorne manifold, for example K3 ® T 2• The embedded black hole

solution then carries charge under the Ramond-Ramond sector of the type II theory

in question. The solution can also carry charge under the Neveu-Schwarz-Neveu­

Schwarz sector, which is interpreted as momentum along compact directions. As

an aside, this also gives us NS-NS charge quantization. One can perform the usual

classical computations ofBekenstein-Hawking entropy for the black hale interpreted

as a type II BPS state.

Black holes are objects which are strongly coupled. This means that the string

coupling gis strong enough that the string length is much less than the Schwarzschild

radius of the black hole. In normal circumstances, this means that trying to probe

the interior of such an abject by means of perturbation theory, or weak-coupling

expansions, is futile. However, the BPS nature of the state under consideration

cornes ta the rescue. Since BPS states are free of quantum corrections, we are

1 Strictly speaking, of course, it is degeneracy that we are counting, the logarithm of which gives
the entropy.



allowed ta reduce the coupling ta the regime where we can consider the bound state

of D-branes which carry the RR charge of the black hole to be weakly bound. In

this situation, the string length becomes larger than the Schwarzschild radius of the

black hale. An image one might have is that the black hole has "unfolded" into its

constituent parts, such as a bound state of D-branes. Since D-branes carry integer

units of a fundamental RR charge, we are able to compute the precise number of

D-branes which form the bound state.

The NS-NS charge, interpreted as the total momentum of the gas ofopen strings

which exists on and between the various D-branes ofthe bound state, then cornes into

play. The logarithm ofthe number ofdistinct ways in which the total momentum can

be distributed amongst the constituent branes of the bound state gives us precisely

the entropy. We then rely on the characteristics of BPS saturated states ta protect

the degeneracy count from quantum corrections as the coupling is retumed to its

original value.

After this overview ofthe method, a concrete example is in order. For simplicity,

let us consider a static black hole in five dimensions, which is a solution oflow energy

type IIB superstring effective action, compactified on TS. The configuration that

we will consider contains a number of D5-branes which are wrapped over the entire

compact manifold, as weIl as a number of D-strings which are wrapped on one of

the compact coordinates ofTs. We also consider a NS-NS charge to he a momentum

along the compact direction around which the D-strings are wrapped.

As mentioned, we will have, as a result of the NS-NS charge or momentum, a

gas of open strings that travel along the D-branes. We will have strings for which

both ends connect ta the D-strings, and strings which attach solely ta the D5-branes.

We will aIso have two other sets of open strings. One set starts at the D-string and

ends on the D5-brane, for the other set the orientation is reversed. It is important ta

treat these strings as distinguishable. As mentioned, we want to excite these strings

up ta the maximum of the NS-NS charge.

As discussed in section 4.2.4, sometimes we wind up with massive excitations,

thus we search for the way to distribute the momentum such that the maximum

number of excitations remain massless. Consider the string action (2.2.12). In the

•

•
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case that we have a string which begins on a D5-brane and terminates on aD-string,

we will have the following boundary conditions:

D5-brane D-string

t N N

xl D D

x2 D D

x3 D D

x4 D D

x5 N N

x6 N D

x7 N D

x 8 N D

x9 N D. (6.1.1)
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From the combinations of boundary conditions we see that we have two N-N, four

D-D and four N-D. Now, the mode expansions of the open string will obviously

depend upon the set of boundary conditions imposed. Recall from (2.1.41) the

mode expansion of x~ for the open string. We will have slightly different mode

expansions in the case of Dirichlet boundary conditions at the ends of the string, or

for mixed boundary conditions [65]. We write them here as

Thus, when we have mixed boundary conditions we have half-integer modes just as

for the NS boundary condition in the case of the fermionic world sheet fields.•

2 il~ 1 . + .-
XP.(a, r) = xp. +.e pJ1tr + 2" L..J _a:~(e-mu +e-nw ),

n."o n

i.e '"" 1 . + .-XP.(u, r) ="2 L....t :;:a~(e-tru +e-tru ),

rEZ+f

8X~ i.e " 1 . + .-
XP.(a, r) = -2-a + 2" L..J _Q~(e-mu - e-mu ).

1r n'7'O n

(NN) (6.1.2a)

(DN,ND) (6.1.2b)

(DO) (6.1.2c)



As usual, in the Ramond sector the zero point energy, i.e., the nonnal ordering

constant in the mass vanishes, whereas in the Neveu-Schwarz sector we have•
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(6.1.3)

where NND is the number of coordinates with mixed boundary conditions. Since

in our case we have NND = 4, the zero point energy vanishes. The moding of the

fermionic fields is the same as that of the bosonic fields in the Ramond sector, and

opposite in the NS sector. Now, the Neveu-Schwarz fermionic vacuum state of the

four ND coordinates is a spinor under the group SOC4), and is thus multiplied by the

product of Dirac matrices -y6-y7"(8"(9. From the GSO projection it will have definite

chirality, i.e., "(6"(7"(8"(9 X = X and therefore what remains is in a two dimensional

representation. Sïnce the open strings are oriented, we have a second table like

(6.1.1) and each string can attach to any of the branes at each end. Thus the count

for the NS sector is

2·2· ns . ni (6.1.4)

where nS, ni are the numbers of fivebranes and D-strings respectively.

Now we examine the Rarnond sector. The Ramond sector fermions which

are transverse to the string and in the world volume of the fivebrane are half­

integer moded. Again, NND = 4 so the vacuum has zero energy. This time, the

vacuum state is in the spinor representation of SO(l, 5), with the GSO projection

rernoving the representation with negative chirality. In the case that the positive

chirality representation is composed only of left-moving modes, then the two­

dimensional representation which has positive chirality under both SOO t 1) from

the NN coordinates and the 80(4) from the coordinates xl, ... , x4 , fonning the

group 80(1,1) ® 80(4), survives the GSO projection. Agam we have oriented

strings so the result for the Ramond sector is therefore

2·2· ns . nt. (6.1.5)

•
The NS-NS charge Q will he quantized in integer multiples of 11Rs where Rs

is the radius of the compact direction xS , that is the total momentum Ps = QIRs.

Now, we bave for each momentum value 4ns . nI bosons and 4ns . nI fermions.
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Now, the task that we face is determining the number of ways of dividing up the

NS momentum number Q amongst the fermionic and bosonic ground states. The

number of ways of distributing Q amongst 4nr ns fermions and 4nr ns bosons is

given by the partition function [130]

I:dCQ)sQ = (fi :~::) 4nL

n

S •

\w=l

•
Here the origin of the numerator of the expansion are the fermions, meaning that

only one fermion can he excited at a time, and the denominator, which is really

just a shorthand way of writing an expansion in powers of s, has its origin in the

bosonic degrees of freedom. For large Q, the coefficients on the left hand side can

he approximated by [9]

(6.1.7)

and thus we have the entropy, finally as

S micro == log d(Q) == 27rJn l ns Q. (6.1.8)

(6.1.9)

Now let us compare this result with the classical entropy of a five dimensional

black hole which is charged under RR D5-branes and D-strings. Such a solution

has been given in [129]. It may he written in the string frame as

2
ds2 = (Il12)-1/2 ( - df + (dx5)2 + 13Cdt - dx5 ))

+ /[/2 (/i/2
i;CdaN + /:;1/2t CdXi)2)

B(b) =.!. (~ - 1) dt A dx5

2 Il
p(3) = ~dxi A dxi A a.xk A €ijkla1h

e-2t/J(b) == 12
Il

and where in tum the constants al, a2, and a3 normalize the D-brane charges and

NS momentum into integer units. In terms of the five-dimensional Newton constant•
where

f 1
a1n1

1 == +-2-'
T

/3 = a3~,
T

(6.1.10)
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• cc;) they are given as

4G<f]Rs ecP(b)

al = l'
'ira

A,(b) 1
aZ = e'+' a,
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(6.1.11)

Computing the classical Bekenstein-Hawking entropy for this solution one obtains

(6.1.12)

•

in complete agreement with (6.1.8).

Thus we have seen how to compute the entropy of a black hole by means of

a particular implementation of the D-brane technology [129]. There exist other

methods. For example, the method used in [10] uses a more sophisticated approach

based on cohomology of instanton moduli spaces. We will use this alternative

method to count the entropy of a spinning five dimensional black hole in the next

section. For the example at hand, the result is exactly the same.

6.2. Solution generating

Before we expIain our method for generating the final solution, let us review sorne

salient features of low-energy actions for the heterotic and rype II theories in six

and five dimensions. We will work with simplified versions of the six dimensional

actions found in equations (3.5.7), the heterotic string compactified on T 4 and

(3.5.10), the type IIA string compactified on the Calabi-Yau manifold K3. AlI

abelian gauge fields except one p(Z) = dA(1) have been set to zero, and ail scalars

resulting from compactification, the moduli, are vanishing. The one remaining

gauge field is taken to he a right-handed2 internai gauge field on the heterotic side,

and a field of Ramond-Ramond origin on the Type II side.

We then write on the heterotic side, to lowestorder in a' [131] the action which

we will use as:

Sh (T"l = !,rx"; g6e-24>~h) {R+4(V</>~h»)2- 1~ (H~h)r - ~ (~2)r}
(6.2.1)

2 We take the field to be right-handed, or of positive chirality, so that the extrema! configuration
is supersymmetric.
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H (h) a Ch) 1 Li(l) --(2) .
6p.1/).. = p.B6v).. - 2""'6p..I'"61/>' + (cyclic)
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(6.2.2)

Note that the Chem-Simons terms come from the gauge fields arising frOID com­

pactification. For the Type IIA side, we write the simplified six dimensional action

as

where

H (a) a BCa) ( li)
61-'v).. = 1-' 61/).. + cyc C (6.2.4)

These two actions are related by the string!string duality relation given in section

3.5( equation (3.5.12)), which we repeat here as

,;,(a) _ A,(h)
'P6 - - 'P6 (6.2.5a)

(6.2.5b)

(6.2.5c)

•

Since we will need also the five-dimensional type IIA action compactified on

K3 ® SL, we give here the standard Kaluza-Klein reduction on the circle SI with

coordinate labelling y = x5 , for the type IIA case as

d~ = GSpvdxPdxv + e2<T ( dy + Ag~dxP) 2

1
cP6 = cP + 2:0" (6.2.6)

B6 = ~ [B - ~ (A(1) A(1) - A(1) A(1) )] dxP. A dx1/ + A(1) dx1-' /\ dy2 J.&V 2 Gp. B1/ BI-' G1/ Bp.

where Ag~ and A~~ are the gauge fields coming frOID the compactification of the

metric and antisymmetric tensor fields respectively.



The five dimensional type IIA action (in the sector with A~) = 0) is expressed

in the string frame as3•
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SIIA (K3 <8> SI) = jdSX [V G [e-2t/>(4) ( R + 4('i1q/a))2 - l~ (Fa») 2

- (81'0/- ~e2u (:=:g)) 2
- ~e-2<7 (:=:~)r) (6.2.7)

_~eu (FC2»)2] + ~é,vÀQ,8A(l) p(2)F (2)]
4 8 Bp. vÀ Q{3

where Eg) = dAg), E~) = dA~) and

H(a) = a B(a) - ~A(l) E(2) - .!.A(l) s(2) + (cyclic)
I-'vÀ 1-' vÀ 2 GIJ BvÀ 2 Bp. GI-'V

(6.2.8)

In the five dirnensional Einstein frame, the transformation to which is defined by

gl-'v = e-4<P/3GIJV' the action appears as

SIlA (IO <8> S') = j dSx [v=g (R - ~('i1</l(a»)2 - (8!,ol

- ~e2<7-4</>(4) /3 (sg)t - ~e -2cr-4</>(4)/3 (:=:~)r
_~e8t/>(4) /3 (V(2)r-~e<7+2t/>(.) /3 (F(2)t)

+.!.€uPI-'VÀ (V(l),;:,(2) i:'(2) + A (1) F(2) p(2») ]8 u -Gpp.-BvÀ Bu pp. vÀ

(6.2.9)

where in this action we have Hodge-dualized the three-form H(a) via

(6.2.10)

•

Note also that V(2) = dV(l) .

Having completed the exposition of the actions we will use here, we now tum ta

the black hale solution ofthe five dimensional theory with which we will begffi. This

is a five dimensional black hole which spins in a single plane, which is a solution of

the five-dimensional Einstein equations, and which can he found in general form in

3 Note that we omit for simplicity the subscripts on the five-dimensional fields. In this chapter
we work only with five- and six-dimensional actions.
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(6.2.11)
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equation (5.1.19). We add a trivial fiat compact dimension with coordinate y, and

the metric is then

ds~ = G6~vdx~dxv

= -dt?- + (r2 + a2) sin2 ()dcp2 + ~ (dt + a sin2 ()dcp) 2

2
+ p dr2 + p2d02 + r2cos2 Od'l/J2 + dy 2

T 2 +a2 - f3

where ~ = T
2 + a2 cos2 f}, and (3 and a are the mass fuïd angular momentum

parameters as defined in chapter V. The coordinate system we are using here is that

of spherical polar coordinates in five dimensions, T, (), !p, 'if;, t with the additional flat

coordinate y. This black hole cao be thought of as a solution of the six dimensional

lowenergy action of type lIA string theory. It is a solution which has ooly the metric

excited but no gauge fields, antisyrnmetric tensor, dilaton, or moduli fields turned

on. From it, we will obtain a charged spinning black hole solution of the Type II

theory hl five dimensions. This black hale will be a spinning generalization of the

solution in [10].

•

6.2.1. Generating techniques

Our method for generating the desired black hole solution is to use a series of trans­

formations, namely 0(6,6, IR) boosts involving the time t and the circle coordinate

y, and string/string duality. String/string duality is implemented simply by comput­

ing the mapping given in equation (6.2.5). For the O(d, d, R) transformations, the

procedure we have implemented is that outlined in [120] which functions as follows:

Let us consider fust the procedure in the case of the heterotic string with one non­

zero gauge field, the extension ta more than one gauge field is straightforward. One

fust forms, from the fields making up the solution which one wishes ta transform,

the linear combinations

K - B(h) 1".. 1 A(l) A(l) ±
±lJv - - IJV - ':::IIJV - 4.M.1J .r1-zI 17f.Lv (6.2.12)

•
frOID which the following matrix is formed

(

K~g-IK_ K!-g-lK+
M= IC9-1K_ IC9-1K+

-CAt1»)tg-1K_ _(Atl))tg-lK+
(6.2.13)



where the superscript t indicates the transpose. At this point the effect of an

O(d, d, R) transfonnation on the solution in question is contained in the relation•
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(6.2.14)

where the transfonnation matrix Qd E O(d, d, lR). Specifie examples of transfor­

mation matrices will be given later.

After the O(d, d, R) transformation has been carried out, there remains the

question of extracting the new metric, antisyrnmetric tensor field, and gauge fields

from the new matrix M. The way to do this is also found in [120] and consists of

(6.2.15)1/~)
-"7/2
1/2
o(

"7/2
V= 1&2

which leaves M in astate looking like

(

9,-1 _Q,-l K'
MI = VMVt = _ K,tQ,-l K,tQ,-l K'

A(l),tQ,-l /V2 _A(l),tQ,-l K' /v12

forming the matrix

Q,-lA(l)'/V2 )
_K,tQ,-lA(l)1/V2
A(l),tQ,-lA(l) /2

(6.2.16)

where K' = (K'± =F Tl) and therefore the new metric, new K', and gauge field A(l)

can be extracted from the upper left, upper center, and upper right parts respectively

of M'. Then the antisymmetric tensor field is the antisymmetric part of K' as in

•

gl = (gl_I)-1

B(h)' = - ~ (KI - K't) . (6.2.17)

e2q}h)1 = det Q' e24J(h)

det9

Note also that the dilaton field is transfoffiled in accord with our discussion in

chapterill.

As was also noted in chapter ID, in the case of the heterotic string the group

under which the equations ofmotion of the low energy effective action are invariant

is O(d, d + p, lR) where dis the number of Killing coordinates, that is the number of

coordinates in the full ten dimensional theory with respect to which the solution is

independent, and pean he thoughtof as the number ofgauge fields in the solution.4

4 See section 3.2.2 for further clarification.



In the present case, we have a five-dimensional stationary solution, which is therefore

independent of time plus five other dimensions, only one of which is represented in

the six-dimensional versions of the action, equations (6.2.1) and (6.2.3). Sa in the

present context, on the heterotic side the group in question is 0(6, 7, R).

What of the type lIA side of the story? Under string/string duality, the (six­

dimensional) gauge fields present in the heterotic solution are mapped into Ramond­

Ramond one-form gauge potentials. Recall also from section 3.3.2 that T -duality

when applied ta the type II superstring changes the chirality of the solution, and

alters as well the field content of the Ramond-Ramond sector. Sînce T -duality is

in fact, as mentioned, in the O(d, d, Z) subgroup of O(d, d, IR), it is not possible to

carry out the more general O(d, d, IR) transformations on the RR sector. If one did

so then the result would he a solution which had one "foot" so to speak in each

of the type IIA and type lIB theories and the interpretation of such a solution is

completely unclear. Therefore, one can apply this technique to the type II theories

only when the Ramond-Ramond fields ail vanish. In this case the formulae (6.2.12)

and (6.2.13) apply when ail ACl) a = o.
Having described the procedure with which we will apply the O(d, li) transfor­

mations to our solution, let us outline the series of steps that willlead us to our new

solution. We begin with the metric (6.2.11) as a string-frames type lIA solution in

six dimensions. We apply an 0(6,6) boost mixing the (t, y) directions, following

the five dimensional black hale construction of [132]. The boost matrix .Qd used

for this first transformation is

•
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•

[4 0 0
0 x Jx2 -1 0

.Qd=
0 Jx2 -1 x (6.2.18)[4 0 0

0 0 x -..Jx2 -1
0 -Jx2 -1 x

where 1 < x < 00 is the boost parameter. Note the difference in sign of the off­

diagonal parts ofCd between the blacks. This causes the resulting six-dimensional

solution to have no G6yp for J.L < 5, but has a B~~t and a cP~a) •

5 Since the dilaton is zero string frame and Einstein frame metrics are identical.



The next step is to apply string/string duality to create a heterotic solution from

the type IIA solution. This is done by applying the mapping (6.2.5), after which the

new BCh) is computed by integrating the field strength HCh) according to•
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BCh) - fd PHCh) f ( (7)6 f.1V - x 6PIJV + P x
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(6.2.19)

•

where here there is not a SUffi over p, but rather this is carried out for each xP

upon which the solution depends. The arbitrary integration funetions fp are then

funetions ofall variables except the variable of integration xp • Comparison ofthe set

of results permits computation of a unique B(h) for which HCh) is the field strength,

up to gauge transformations.

Taking the heterotic solution produced by the string/string duality and using

the 0(6,7) symmetry we cau thus apply a second boost, mixing the rime t and

the internai direction involving A~l), with parameter z. String/string duality is then

applied a second time to convert the heterotic solution back to a Type IrA solution,

followed by the standard Kaluza-Klein reduction to five dimensions as given in

(6.2.6), which in tum is followed by the change to the Einstein frame.

The above boost parameters x and z are carefully chosen to satisfy z = 2x2 - 1

which reduces the five dimensional dilaton to a constant. Note that this is consistent

with the range 1 ::; z < 00 throughout the range of x. The resulting configuration is

a charged spinning five dimensional black hole with constant dilaton and constant

moduli, written as



•
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B(a) {3x-vx2 - 1 sin2 0 [r2 + (3(x2
- 1)] d

= - [pl + ,B(x2 - 1)] dcp /\ 'lj;

+ -(3ax(x
2

- 1) dt /\ (sin2 Bd + X cos
2

() d'l/J)
[pl + (3(x2 - 1)] cp Vx2 - 1

A(l) = ,BxJ2(x
2

- 1) (dt + ax sin2 Odcp - av!x2 - 1cos2 Od'l/J)
[pl + ,B(x2 - 1)]

erP(a) = 1 = eU
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(6.2.20)

(6.2.21)

•

where as in the initial solution (6.2.11) we have rJ2 =r 2 + a2 cos2 B, ,B is the mass

parameter and a the angular momentum parameter from (6.2.11). This solution

appears quite complicated, but when the extrema! limit is taken, it will simplify

substantially.

6.2.2. The extrema! black hole

Here we will exhibit the extremallimit of the black hole written in (6.2.20).

This is done by taking the boost parameter x off to infinity, and simultaneously the

mass parameter (3 and the angular momentum parameter a to zero such that the

quantities
lim {3 x2 = /-L,
x~oo

{3-..0

li.m ax=w,
x -.. 00

a.;.O

remain finite, where {3, a are the quantities appearing in the metric (6.2.11). After

doing a coordinate transformation to match with [10], r2 -r r2 + /-L, we obtain for

the extrema! metric and gauge fields

2 ( 11- ) 2 [ /-LW sm
2

() /-LW cos
2

0 ] 2
dS5 = - 1 - r2 dt - (r2 _ /-L) dcp + (r2 _ 11-) d'if;

(
11- )-2+ 1 - r2 dr2+r2(d02 + sin2 Odcp2 + cos2 Od'if;2)(6.2.22a)

A(1) = f ;z (dt + w sin2 Bd\" - w cos2 Bd,p) (6 .2.22b)

A(l) = ).3 ACl) (6222 )
B .Ji .. c

eu+2r/J(a} /3 = ).2 . (6.2.22d)



We recall for clarity that this solution is an extrema! type lIA solution which

has one non-zero Ramond-Ramond one-form potential A(l), one non-zero Neveu­

Schwarz-Neveu-Schwarz gauge field A.~) and, while the result of our solution

generating procedure yields zero dilaton and modulus cjJ(a) = a= a, we have shifted

these scalars by a constant to (6.2.22d), which introduces the scaling of the gauge

fields by .À given above [la]. The above fields are the only ones excited in this black

hole background. Notice that when we take w -1- O~ we recover the solution of [10],

and thus the solution in this limit is very similar to that considered in section 6.1.

•
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6.2.3. Properties of the solution

From the asymptotic metric, applying equation (5.1.25), we obtain for the angular

momentum, in the independent planes defined by cp, 'lj;,

1r
JI = Jep = +-/-lW,

4
1r

J2 = JTj; = --j..tW
4

and for the mass, computed according ta the fonnula (4.1.29) we find

31rJ.L
MADM=4'

while the charges under the form fields 3(2) and F(2) are6

n- = _1_ r * (e-2U-4<P(a) /3 ';:4'(2») _ ni' 2
'1'::' - 41r2 JS3 - B -,... A ,

- 1 1 * ( u+2..J,(a)/3 F(2») 1r,qF = - e If' = ---J.LA.
161r 8 3 2V2

(6.2.23)

(6.2.24)

(6.2.25)

•

Note that this black hole, although a solution of the low-energy string theory

equations, is not a solution of the Einstein-Maxwell equations in five dimensions.

In the spinning configuration, the magnetic dipole field combines with the electric

monopole field 50 that the Chem-Simons contributions to the equations of motion

are nontrivial.

Let us no\v obtain the classical entropy of this extrema! spinning black hole. In

the above coordinates, the horizon is at r = ra = Vïi, and its entropy is found to be

6 The sphere 8 3 is at infinity, 50 we can ignore the effects of the Chern-Simons terms.
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(6.2.26)

•

where in the second line we have \vritten the classical entropy in terms ofthe charges

and angular momenta. Note that both of these expressions are independent of À.

This extrema! rotating charged black hole has a horizon with finite area, a

feature not easy to find. Ordinarily the addition of rotation (without energy) to

an extremal Reissner-Nordstrom black hole destabilizes the horizon and yields a

naked singularity. However string theory, in order to avoid a conflict with the

microscopie counting, cleverly stabilizes the horizon with the help of a Chern­

Sïmons coupling in the low-energy field theory. In this process a qualitatively new

class of supersymmetric spinning black hale solutions was found [12]. AIso note

that the angular momentum is bounded above: J~ax = rœ q}/2 (in going beyond

this limit, closed timelike curves develop).

6.2.4. D-brane counting of the microscopie entropy

Let us examine the D-brane states that are responsible for the degeneracy of the

extremal black hales that we are considering. Due ta our method of construction,

the RR gauge field A(l) in (6.2.22) conceals equal numbers ofrotating D-points and

D4-branes. The D4-branes are wrapped on the four-cycle of K3. As a reminder,

we are considering the type lIA string compactified on K3 ~ S 1 down to five

dimensions.

It is easier to do the counting if we fust carry out a T -duality transformation

along the Sl direction, converting the solution to a type llB solution. On the

type IIB side, applying the information from chapter ~ we will have D-strings

wrapped on Sl bound to D5-branes wrapped on K3 ® Sl. It was also mentioned

in chapter IV that the dynamics of D-branes is described by open oriented string

theories dimensionally reduced to the world-volume. Thus for the D-point we have

an N = 1, U(~) Yang-Mills theory reduced from ten to two dimensions, and for

the D5-brane we have a similar theory reduced from ten to six dimensions. These



two Yang-Mills theories interact on the common volume R® SI, where the Ris the

time coordinate. Ifwe take the size of S I to be much larger than that of the K3, then

we are justified in ignoring the dynamics of the six dimensional theory and thus the

complete D-brane effective field theory will be a theory on the world-volume of the

D-string-D5-brane intersection.

The D5-brane charge can he viewed as an element of the K3 cohomology

H*(K3, oZ) which is identified with how the internal part of the D5-brane wraps

around K3.7 Note that the dot product !qF . qF is the same as the intersection of

cycles in the K3 cohomology.

In [133] relations were obtained hetween the cohomology ofsymmetric products

of certain hyper-Kahler manifolds and the partition functions of the bosonic and

supersymmetric strings. On the basis of these results it was conjectured [126] that

the bound states we are considering here can be identified with a sigma model on

the symmetric product of ( tqF . qF + 1) copies of K3 Le., on the quotient space

•
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•

®l _2
CK3) !qp+l

M=---­
Sl-.2+1!qp

where Sn denotes the symmetric group, the group ofpennutations ofn objects. This

conjecture has been verified in essentially aU cases, atleast up to T -duality [127,128].

The strategy is to use the cohomology of K3 to count the possible ways of fonning

our bound state.

The light-cone helicity of the six dimensional theory cao he obtained in a

manner sirnilar to that of [126,133], by introducing helicity operators F, F for the

left- and right-moving states, respectively. We will have SU(2)L ® SU(2)R or 0(4)

holonomy, but only the U(I)L ® U(l)R subgroup will enter consideration in our

analysis. The charges of the states under the U(l)L ® U(l)R subgroup are thus

given by CF, F). Let JI and J2 he currents associated with the commuting left- and

7 The arguments for compactification on T 4 181 SI are (essentially) identical with the replacement
of T 4 for K3 in the following discussions. Qnly the dimension of the manifold enters in the
asymptotic growth below.



right-moving U(l) elements of 0(4). These can be related to the helicities through•
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JI = &(F + F) ,

J2 = &CF - F).
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(6.2.27)

Consider, for example, the case where the D-branes vanish, qp = o. The ground

states of the sigma model are identified with the K3 cohomology, which has dimen­

sion 24. The helicities F and F for the ground states mn over the values {-1,0, l},

so we have the (JI, J2) spectrum consisting of 20 states with (0,0), two states with

(±l, 0), and two states with (0, ±l). These we recognize as the light-cone oscillator

quantum numbers of bosonic strings in 26 dimensions.

The D-brane BPS states considered in [10] correspond to Ramond-Ramond

states ofthis sigma model which are ground states on the right-moving side, while

the left-moving states are excited to a level fi determined by the NS-NS charge, i.e.,

fi = CIE. Recall that there is a bound for the F and F with respect to Lo and Lo [134].

This can he seen through bosonization of the Uel) currents. Let JI == ..;§8if> with

ê the complex dimension of the manifold M, in our case ê = qJ., + 2. Astate with

charge F will then he represented by an operator

(
OPeP)exp t..jê . <;1) (6.2.28)

where cI> is an operator which can contain any other state in the sigma model as weIl

as oscillator mode factors of the U(l) current, but not the Uel) momentum modes.

An exactly analagous construction holds for F. In particular, note that since the <I>

are of positive dimension, the dimensions of the operators are restricted by

p2
Lo > 2ê' (6.2.29)

•
We wish to count the entropy in a regime where qp is macroscopic but held

fixed. Moreover, we take the NS-NS charge (JE to he arbitrarily large. We are also

interested in a region with similarly macroscopic angular momenta 1JIf, 1J21 > > 1.

Let us consider the case in which the system is a right-moving ground state with

fixed F. Then we cao consider arbitrarily large values of F to make both JI and



J2 large with the same sign8 . Fixing F, and thus the angular momenta, imposes

constraints on the left-moving Hilbert space. Since this is where the entropy cornes

from, we must therefore make an estimate of the number of left-moving states are

still available when F is fixed. Considering a regime9 where (q; - F2 /2ê) >> 1

as weil as q=./q} >> 1, the answer is supplied by the bosonization discussed above.
- -2 -2

Since the total eigenvalue is La = Ti = flE., and we have used up {ê = 2i+4 for the

states we are interested in, the La eigenvalue of the extra operator~ is given by
-2 -2- F F

La (~) = n = fi - 2ê = q=. - 2q} +4 (6.2.30)

Sïnce the oscillatory states make the maximum contribution to degeneracy of string

states, we can effectively take n, the oscillator number remaining once the angular

momenta have been fixed, as the available oscillator number. From [133] we have

a formula for the generating function for the dimension of the cohomology of the

symmetric product of k manifolds W as

LSkdim(H* (WC8lk
)) = rr:i(1+s

k
)b- (6.2.31)

Sk rr:i (1 - sk)b+

where b_ and b+ are the dimensions of the fermionic and bosonic subspaces lO of

H*(W).il Using methods of computing the upper bound on the growth of such a

generating function which can be found in [135] we obtain a degeneracy growth of
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(6.2.32)

•

d ~ exp (2~~) -exp (2~ (~ -i~~41) G~ + 1))
~ exp (271" ~ Gq} + 1) - ~ (IJI! + IJ21)2)

where we have substituted P = Ji + J2 and use absolute value signs for the augular

momenta in order to write the final answer in its most general fonn, independently

8 To consider JI and J2 with the opposite sign, the entropy would have come from the right­
movers and we would he considering large values of F while the left-movers were in a ground
state.

9 It may be that our final results are valid beyond this regime of charges. Further note that the
given regime does not exclude the possibility that the ratio of p2/2ê to flE. is only slightly less than
one.
lOIn other words the cohomology classes of odd and even dimension respectively.
Il The similarity between (6.2.31) and the partition function (6.1.6) used in the altemate D-brane

counting will not have gone unoticed.
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of whether or not JI and J2 have the same sign. The entropy is thus
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(6.2.33)

Taking IJII = IJ21 = J, we see that this fonnula agrees with what we found for the

classical entropy (6.2.26) of the spinning black hole. For the record we mention

that this computation also sharpens the computation in [10] where, in principle, one

should have counted only the spin-zero D-branes to make the comparison with the

non-rotating black hole. It is satisfying that the classical and D-brane methods give

the same result, and we regard this as additional evidence for the D-brane picture

of [14].

One would also like to cODsider the possibility of the !Wo angular momeDta,

JI and J2, uDequal. We see that for the right-moving ground state IFI is bounded

as [134]

(6.2.34)

•

and therefore the difference between the spins cannot he arbitrarily large. This bound

can he combined with the previously noted relation gz/qj.. > > 1, to demonstrate

that these calculations are valid for !FI/IFI = /JI - J2//IJI + J21 « 1. As a

result, one would not expect to see a difference in the angular momenta at the

macroscopic level of the black hole computations. Constructions of extremal black

holes analogous ta that presented here in which the starting point is a five dimensional

Kerr solution with two independent angular momenta confinn this finding. In these

cases, demanding that the extrema! or supersymmetric limit he nonsingular requires

setting IJII = IJ21 [13]. Rence the D-brane and black hole results are also in perfect

agreement on this further aspect of the calculation. An exarnple ofsuch a calculation

will he presented in the next section.



In this section we will combine the analyses of [lI] and the previous section

to consider the entropy of a spinning black hale solution just above extremality.

Again we will find perfect agreement - a seven parameter fit - between the detailed

thermodynanüc behavio!' predicted by the Bekenstein-Hawking entropy and by the

•
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6.3. The non-extrema! case
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microscopie state counting.

6.3.1. A rotating nonextremal black hole

We begin with a simplified low-energy action for six-dimensional type IIB string

theory which contains only the following terms (GN = 1),

1 J~ r-T": ( 2 1 20- ( (3») 2)SIlE (K3) = 161r a-xV -J6 R - (~lT) - 12 e F6 (6.3.1)

in the six-dimensionalEinstein frame. F(3) as usual denotes the RR three form field

strength. We adopt conventions in which GN == 1. The scalar cr here is the logarithm

of the volume of the internai four-manifold in the string frame. The ten-dimensional

string dilaton rjJ(b) is an arbitrary constant for our solutions and will he omitted. We

will further compactify te five dimensions using the Kaluza-Klein ansatz (6.2.6),

where again y will he used ta denote the fifth spatial coordinate. We will also take

the asymptotic lengili L of the compact y coordinate to be very large.

The solutions of interest ta us are most simply represented as six-dimensional

black string solutions to (6.3.1), which wind around the y direction and hence are

black holes in five dimensions. The six-dimensional black string can cao carry bath

electric and magnetic charge with respect to F(3) :

(6.3.2)

(6.3.3)P = 21rn
- L .

qe = ~ r e20- *F(3)
- 8 153 '

qm = _1_ r F(3).
41r2 JS3

It may also carry total ADM momentum P along the y direction which appears in

five dimensions as an electric charge of the Kaluza-Klein gauge field Ag) coming

from compactification of the metric (11]:

•



We have chosen our conventions sa tbat n and qmqe =iQ2 are integers. In five

spacetime dimensions the spatial rotation group is 80(4) = SU(2) ® SU(2). Hence

solutions are in addition labeled by two independent angular momenta.

Black string solutions are also characterized by the asymptotic value of u. We

are primarily interested in the entropy which cannot depend on the asymptotic value

of u [136-140]. For a special asymptotic value 0-, the sources for u cancel exactly

and the equations of motion imply u is constant everywhere. This special value is

•
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(6.3.4)

•

In arder ta compute the entropy it is sufficient ta consider the solutions with u = ëJ.

Reduction from six to five dimensions yields in the usual way a second five

dimensional scalar field whose asymptotic value is L, the size of the SI parameter­

ized by y. This scalar could also he frozen to a value which would be proportional

to n/Q. However it is important not to freeze this field because we will need to

compute how the entropy varies as a function of both the energy and n with all other

quantities - in particular the asymptotic values of the fields - held fixed. This is

impossible to do if the value of the scalar field is tied to n/Q. This problem does

not arise for the scalar (J because, once the behavior of the entropy is known for

any value of the ratio qe / qm, it is determined for any other value by duality which

implies that it can depend only on the product Q2/2.

The solutions in which we are interested can be generated by methods exactly

analogous to those which were used to obtain (6.2.20) starting frOID (6.2.11) in

the previons section. Beginning with a slightly more general version of the five

dimensional Kerr solution which now spins in two independent planes, written as:

ds~ = G6 pvdxPdxv

= -df- + (r2 + a2
) sin2 ()dcp2 + ; (dt + a sin2 ()dcp + bcos2 ()d'if;)

2

r
2

; d 2 2d()2 (2 b2 2()d 2 d-2
+ (r2 +a2) (r2 +b2) _ (3r2 r + p + r + ) cos 'if; + y

(6.3.5)

where a and b are the angular momentum parameters, and ;- = r2 + a2 cos2 () +

b2 sin2 (). The coordinate system is the same as that in (6.2.11). We consider this as



a heterotic string solution in five dimensions. Again we may lift this solution to he a

black string solution of heterotic string theory in six dimensions by adding a trivial

flat direction y. As before we begin with a boost which mixes the time direction t

with the compact internal direction y to yield a nontrivial right-handed gauge field.

Next, string-string duality, (6.2.5)~ is applied, converting the solution to a type IIA

•
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(6.3.6)

a=ü,

solution, fol1owed by a T -duality transformation along the compact coordinate y

which produces a black string solution of Type IIB string theory in six dimensions.

We note here that due to T-duality being a subgroup of O(d, d), the same fonnalism

can he applied to implement this duality transformation, using a matrix of the form

OT= (~ ~l g).
o 0 [6

Lastly, a boost is performed along the string yielding the following metric:

2 [ (r~x2-r~(x2_l))] [ (r~x2-r~(x2-1))] 2
dS6 = - 1 - d~ + 1 - dyp2 p2

[
(a2r2 - b2r2 ) 5in2 B]

+ sin2 B r 2 + a2+ + {il - dcp2

[
(b2r2 - a2r2 ) cos2 e]

+ cos2 B T 2 + b2 + + pZ - d7j;2

+ p2de2 + rJ [(1_r~) (1 _r~ - a
2

- b2) + a
2
b
2

] -1dr2
r 2 r 2 r 2 r 4

+ 2S~2 (J [(ar;x _ br:' Jx2 - l )dt+ (ar;Jx2 - l - br:'x)dy] d'l'

+ 2C;2(J [(br;x_ ar:' Jx2 -l)dt+ (br;";x2 - 1 - ar:'x)dy] d,p

r---(r2 - r2 ) ab (r2 - r2 )
+ 2xJx2 - 1 + p2 - dtdy + 2 cos2

() sin2 B ~ - dcpd'lj;,

(6.3.7)

•

where ; = r 2 + a2 cos2 () +~ sin2 () has not changed, x is the boost parameter, and

a,b are components of the angular momentum per unit mass of the original Kerr

solution. A nontrivial RR three-fonu field strength is present, but its precise forro

will not be needed in the following. The parameters r ± are related to the charge by

0 2 =2qeqm = (1rr+r_)2. The outer and inner event horizons are located at

r2
= Hr; +r:' - é -if ± J(r~ - r~ - a2 _1J2)2 - 4a21J2). (6.3.8)
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The six-dimensional ADM energy of this solution is

and the ADM momentum along the string is given by
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(6.3.9)

(6.3.10)

(6.3.11)

The angular momenta in the independent planes defined by cp and 1./J are

JI = J'P - 11": (ar;x - br~Vx2 - 1) ,
J2 =Jt/J = 11": (br;x - ar~Vx2 - 1) .

Following [Il], we expect the Bekenstein-Hawking entropy to agree with the

D-brane counting away from the supersymmetric extremallimit [12] provided the

momentum density P / L and the excitation energy density 8E/ Lare small. To study

this limit we expand

r± = ro ± € , (6.3.12)

with € «: 1, and x finite. Note we need to take the limit in such a way that

r; - (lai + Ibl)2 > r:' in order to avoid naked singularities. This implies that a2 and

b2 are of order €. The longitudinal size of the string near the horizon is finite in this

limite To fust order in €, the excitation energy is

(6.3.13)

•

and the cIassical entropy is given by

S = ~L~r5( (4ro€ - a2 - b2) Xl + 2abxVx2 - 1 - ~ (4ro€ - a2 - b2)

1 _/ ) 1/2
+ ïV (4rO€ - a2 -1J2 - 2ab) (4rOé - a2 - b2 + 2ab) .

(6.3.14)

Now define the following quantities

(6.3.15)
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in terms ofwhich the entropy (6.3.14) is given by the simple fonnula
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(6.3.16)

which has the form of a sum of entropy from right-moving and left-moving strings

on the D-branes. We will now see how this cornes about.

6.3.2. D-brane count in non-extrema! case

As discussed in [10] and in section 6.2.4 the P = 0 black hole ground state is a bound

state of qe Ramond-Ramond D-strings wound around the S1 in the y direction with

qm RR fivebranes wound around bath the S 1 and the internai four-manifold K3. In

the limit of large radius L for S1, the excitations of this system are described by a

supersymmetric sigma model on a manifold of real dimension 2Q2 [126,127,128].

In the regime of charges we are interested in, ta leading arder the degeneracy cornes

from string modes with short wavelengths and hence the curvature of the manifold

is irrelevant. Thus we have the same leading degeneracy as the excitations of

202 species of massless bosons and 202 species of massless fermions which move

around the SI. Ignoring for the moment the angular momentum, the entropy of NB

(Np) species ofright-moving bosons (fermions) with total energy ER in a box of

length L is given by the standard thermodynamic formula

(6.3.17)

(6.3.18)

•

At low energies and large L the system is dilute, meaning that interactions can be ig­

nored, and the entropy from right-moving modes and left-moving modes is additive.

Hence, using NF = NB = 202 and ER,L = 21rnR,L/L, (6.3.17) becomes [10], [11]

S := 1TQ ( J2nL + V2nR) ,

where nL,R are given by (6.3.15) with J1 = J2 = O.

Now we must make a correction for the augular momentum. As argued in the

previous section of this chapter, JI + J2 is carried by left-movers, while J1 - J2 is

carried by right movers. Fixing the total angular momentum carried by the right

movers decreases the number of states available for a fixed energy. As previously



shawn, the effect of this on the entropy for left-movers only is ta replace nL with

fiL, However since the entropy of left and right movers is additive we have simply•
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(6.3.19)

•

in agreement with the black hole caiculation (6.3.16).

We have thus shawn that the D-brane method of counting the entropy of BPS

saturated rotating black hales gives perfect agreement, including numerical factors,

with the classical Bekenstein-Hawking entropy. The agreement, as we have just

seen continues, ta hold ta leading arder in a small parameter é away from the

extremal supersymmetric state. These are remarkable results and can be interpreted

ta indicate that string theory "understands" black hale entropy at a very deep level.

Of course, the CUITent state of the art in the counting of the entropy of black

holes through the D-brane methods is still rather limited, applying only ta extremal

or very near-extremal black hales. At the same time, advances are being made in

the understanding of the entropy of non-supersymmetric black holes [141].

6.4. A dyonic black hole

Let us tum now ta the construction of a black hole which, like the solutions

considered thus far, possesses both electric and magnetic charge, but these charges

are combined into a gauge field of the solution in a more restrictive manner. The

definition of dyonic that we will impose here is the following: A given n-fonn

potential is said to he dyonie if both magnetic and eleetric components are found

for a fixed value of n - 1 of the indicies. Thus, for a three-form, for example, one

must have a magnetic charge at A~tcp and an electric charge at A~h.

It has been found that eonstrueting dyonic solutions using the solution generating

techniques has the unfortunate side effect of generating a non-zero Taub-NUT

charge [142]. The time coordinate of the resulting spacetime must be made periodic

in order to avoid a line singularity as the azimuthal angle vanishes. Since Taub-NUT­

like metrics are widely believed to not represent physically realizable spacetimes,

the appearance of this parameter in the solution generating process is unfortunate.



It is evident that this restriction can he overcome by beginning the solution

generating process, not with the Schwarzschild metric, but rather with the Taub­

NUT solution (5.1.31). This gives us an extra parameter, the initial Taub-NUT

charge, with which to cancel the Taub-NUT charge appearing in the new solution.
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To generate a dyonic solution~ the following steps are carried out. First, one

interprets the metric (5.1.31) as a type lIA string frame solution in six dimensions by

adding two fiat compact coordinates, the action is given by (2.3 .28). In particular the

Ramond-Ramond sector is completely nu11. An O(d, d, IR) boost mixing time and

the sixth coordinate, x5 is performed to create a non-zero term in the Kalb-Ramond

field B~ixs -=1 O. The solution is still type IIA since the O(d, d, JR) transformations

remain within a particular theory.

Now we carry out string/string duality according to equation (3.5.12), which

converts our non-zero B~~x5 -+ B~a~x4' as weIl as converting the solution to a

heterotic solution. We then perform a T -duality transformation, which changes

B~a~z4 -+ G6 cpx4. Solution remains heterotic. A second boost is then performed,

this time an O(d, d+p, IR) boost ofthe heterotic string, mixing tirne and the coordinate

x4 . This creates a non-zero G6tx4 term, giving us two eomponents of G6/-Lx4 that

will hecome our dyonie gauge field.

To convert these off-diagonal components of G6 into a Ramond-Ramond gauge

field, we fust lift the solution to seven dimensions, by adding yet another fiat

coordinate. Then, the new dimension and the x4 dimension, along which we find

the terms of interest, are interchanged, and the solution is re-eompactified to six

dimensions. We now have a six dimensional metric, a six dimensional heterotic

gauge field and an additional scalar field.

Finally, string/string duality is again applied to convert the heterotic solution to a

type lIA solution, where the dyonic one-form is in the Ramond-Ramond sector. The

result is a rather eomplicated metric, G6, RR field A~l), dilaton cP~a) and a scalar u.

The Taub-NUT charge of the metric can at this point be made to vanish by setting

• .e = _f3_v_x_2_1_y_w_2_-_1
w

(6.4.1)
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(6.4.2b)

(6.4.2c)

(6.4.2a)
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where X and w are the parameters used in the fust and second boosts, respectively.

The solution rnay he written [16]

ds2
= - ~ dt? + ft (d~2 + r2(dfP + sin2 fJdcp2»)

+ /2 ((dx4)2 + Cdx5
)2) ,

(
(U+{3) ~ 2VV(J3+v) (1 +~) )

A (1) = cos Bdcp + dt,
6 VU + (3 + v CA + B) VU + (3 + v r

2fjJ(a) (j

e 6 =/2 = e ,

•

where
fl=VA2_B2,

JA+B
f2 = A- B'

A = (1 + ;) (1 + ~) , (6.4.3)

B _ v - u _ uv Cu - v)
- r (u + (3 + v) r 2 '

C = 1 _ 2{3 _ vu{3
r (v + u +,8) r 2 '

where {3 is a mass parameter, and u and v are the charge parameters of the rnagnetic

and electric charges, respectively. The solution has been written in a form in which

one obtains the extremallimit by setting {3 = O. The parameters u, v and {3 are

related to the original boost parameters x and w by

x=~, w=JU:V. (6.4.4)

For this solution the horizon is found to he located at

(6.4.5)
{3Cu + {3)(v + (3)

u+v+{3

and both roots are seen to he real and positive for u, v > 0 and {3 ~ o. In the

•

extremallimit, /3 ~ 0, it is zero regardless of the values of the charge parameters

u, v. The consequences are not entirely grave. Even with the horizon at rH = 0 in

the extremallimit, the area does not vanish. The formula for the area12 is

.Id = 1611'.3I4Rs (rH +u)2(rH +v)2 _ (rH(V _ u) _ UV(u - ~)2 (6.4.6)
u+v+

12 Area is computed in the six-dimensional Einstein frame.
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S = 41r3~R5 (uv)! . (6.4.7)
u+v•
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which in the extremallimit, rH ~ 0, /3 ~ 0 results in the classical entropy
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•

Note here that we have integrated over the compact coordinates x4 and x5, which

have ranges 21rB.4 and 27rRs respectively, as weIl as over Band cp. Further analysis

of this solution, including analysis of BPS limits and D-brane content was carried

out in chapter V.

In the previous sections, we created three black hole solutions. Two of these

solutions represent rotating charged black holes in five (section 6.2) and six (section

6.3) dimensions. These black hales had event horizons which had non-zero area in

the extremallimit, and thus non-zero entropy in this limit. Furthermore, they were

BPS saturated states carrying Ramond-Ramond charge in the type II superstring

theories, which allowed us to calculate their entropy from a microscopie counting

of D-brane degrees of freedom.

In the last section, we illustrated techniques for solution generating which can

he used ta create dyonic black holes, overcoming the tendancy to create unwanted

Taub-NUT charge. The resulting black hale was unfortunately not supersymmetric,

although the area of the event horizon is non-vanishing in the extremallimit. The D­

brane counting techniques can not, therefore, be used for this black hale. However,

it is clear that more computations can be done to create a dyonic black hale amenable

to D-brane analysis.

One other thing is clear as weIl. There is a close relationship between the bound

states of D-branes and black hales, we spoke of this briefly at the end of chapter V.

This indicates that advances in the understanding of black hole entropy can he made

by means of advances in the knowledge of how D-branes forro bound states. What

sorts of bound states are possible, what are their properties, and what is required

of them in arder that they forro BPS saturated states. We turn to questions such as

these in the next chapter.



•

•

VII
Bound states of D-branes

Understanding of non-perturbative aspects of string theory has advanced rapidly

during the past two years [1,2,14]. In the case of the Type II (and I) superstrings, of

particular non-perturbative interest are the Dirichlet branes (D-branes) which carry

charges of the Ramond-Ramond (RR) potentials, as discussed in chapter IV.

As we have seen in chapter VI, D-branes have also proven to he valuable

tools from a calculational standpoin4 leading to the computation of the entropy of

black hales from a counting of the underlying microscopic degrees of freedoffi. In

analyses such as these, the bound states are required to he supersymmetric in arder

that the counting, which can only he done at weak coupling, is protected from loop

corrections by BPS saturation as the coupling is increased to where the bound state

fonus a black hoIe. Thus supersymmetric D-brane bound states are of particular

interest.

In this chapter, we will extend the known exact low-energy supergravity solu­

tions which describe bound state configurations in two ways. In section 1 we will

construct supersymmetric bound states of D-branes in which the dimensions of the

D-branes involved differ by two rather than four. In section 2 we will extend the

class of known low-energy background field solutions to those which intersect at

non-trivial angles.

A great deal of effort has gone into generating the low-energy background field

solutions corresponding to various D-brane bound states [143]. These solutions

have so far been restricted to those describing p-branes which are either parallel or

intersect orthogonally. It has been shown [144], from the world-sheet standpoint

however, that there exist supersymmetric configurations where the angles hetween

-168-



the D-branes are other than zero or 1r/2. Preserving supersymmetry in such multiple

V-brane configurations requires that the angles are restricted to lie in an SU(N)

subgroup of rotations. The corresponding background field configurations remain

largely unexplored. In section 2, however, we will present one such class of

solutions. Our basic solution descrihe-s any number of D-membranes whose relative

orientations are given by certain SU(2) rotations.
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7.1. Bound states of (P, p - 2) D-branes

For the most part, the attention of researehers has been foeussed on examples of

D-brane bound states in whieh the difference in the dimension of the D-branes

involved is a multiple of four. This preference cornes about since it is the well­

known requirement for supersymmetry in a configuration of two separated D­

branes [65,81].

This feature is also revealed by an examination of the static (long-range) po­

tential between separated D-branes. Supersymmetry implies stability or a precise

cancelation of the inter-brane forces. For example, let us consider a DO-brane sep­

arated a distance T from a Dp-brane, where we will allow p = 0,2,4, or 6. There

are three contributions to the statie potential: gravitational, dilatonic and vector1

K;2 J.Vfo Mp
Ugrav = - 8A 7-p

8-p T

u.. _ _ 1 f30 {3p
d&la - 2 (7 - \ A Î-pPI 8-p T

1 qOqp
Uvect = + (7 ) A 7- c5où"- P 8-p T P

(7.1.1)

•

The Kronecker delta appears in the gauge field potential because ooly DO-branes

carry electrie charge under the RR vector. Using the relations relating the various

charges - which may be determined by examining the explicit low-energy solutions

(see ehapter IV and below) - Le., qO = V2K. Mo and f3p = 3ï p K. Mp , we may SUffi

1 The normalization of the mass and charge densities (Le., Ml' and q1') in these potentials will be
discussed in section 7.1.2.1. The 'charge' density for dilaton is chosen such that the asymptotic field
around a p-brane takes the form: cP ~ (1 ~ f!:p. In these formulae, An is the area of a unit

-1' 8-p r

n-sphere, see (5.1.4).



• these potentials to find

Utotal =
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",2 Mo Mp (4 _ _ ~ )
2 (7 - P)A8-p r7-p P o,p·
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(7.1.2)

•

Hence we see that the three forces precisely balance for two DO-branes~ resulting

in a constant (vanishing) potential. Even in the absence of the gauge potential,

however there is a similar cancelation for the DO- and D4-brane system. In this

case, the two branes carry dilaton charges of opposite signs 50 that the dilatonic

repulsion precisely balances the gravitational attraction.2 The vanishing potential

or stability of these two configurations is a reflection of the supersymmetry which

is preserved. In the former, 1/2 of the supersymmetries are preserved, while 1/4 are

preserved in the latter.

If we consider the case of a DO-brane with a D2-brane, we see that total

potential is attractive and 50 this configuration is unstable. Rence at the same time,

it fails to preserve any supersymmetries. However~ since the potential is attractive

(i.e., Utotal < 0), the DO-brane would presumably he drawn into the Dirichlet

membrane and eventually the combined system would settle into a stable bound

state configuration. While supersymmetry implies stability~ the converse is not

necessarily true. However we will he able to show by an explicit construction that

in fact the stable ground state configuration is supersymmetric, preserving 1/2 of

the supersymmetries. In general, our construction allows for the construction of

supersymmetric bound states involving D-branes with dimensions differing by two.

7.1.1. Sorne preliminaries

Let us recall here the actions we will be working with in this chapter. We will he

concemed here with the type II actions exclusively. These actions were detailed in

chapter II, but for the convenience of the reader are repeated here.

2 This mechanism was aIse observed for the multicenter solutions constructed in [145].



The bosonic part of the low-energy action for type lIA string theory in ten

dimensions is from (2.3.23)

SIlA = 2:2f dl~V G{e-2.p(o> [R+4('I1c,6(aJ)2 - 1~ (H(af] - ~ (p(2lf
-~ ( p C4»)2} __1_f BCa)dA(3)dA(3)

48 4~2

•
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(7.1.3)

where Gp.v is the string-frame metric, B(a) = dB(a) is the field strength of the

Kalb-Ramond field, p(2) = dA(l) and p(4) = dA(3) - HCa) A(l) are the Ramond-

Ramond field strengths, and final1y </JCa) is the dilaton. Assurning the dilaton vanishes

asymptotically, Newton's constant is given by ",,2 = 81rGN. For the type lIB case,

we write the action as «2.3.26))

SIlB= 2:2f dlOxV J { e-2
.p(bJ [R + 4('I1c,6(bJ)2 - /2 (H(b») 2] - i (ôxi

- 1~ (p(3) + XH(b1f - ~o (P<51f }
+ _1_f A (4) p(3) H(b)
4~2

(7.1.4)

where Jp.v is the string-frame metric, B(b) = dB(b) is the field strength of the Kalb­

Ramond field, p(3) = dA(2) and F(5) = dA(4) - !(B(b) p(3) - A (2)Heb») are RR field

strengths, while X = ACO) is the RR scalar, and 4>eb) is the dilaton. As mentioned

in chapter II, we are following the convention that the the self duality constraint

p(5) = * p(5) he applied by hand at the level of the equations of motion. AlI of

the solutions in the following will be presented in terms of the string-frame metric,

however, conversion to the Einstein-frame metric would he accomplished using:

_q,(a) /2
9J.'v = e GJ.'v ,

. _q}b) /2
Jp.v = e Jp.lI • (7.1.5)

•
The low energy background field solutions describing a single Dp-brane were

given in chapter IV «4.1.27)) for the case of D spacetime dimensions (recal1 that

d = p + 1). Here we specialize these solutions to D = 10, which contain ooly a

nontrivial metric, dilaton and a single RR potential, A (p+1), on which we have made

a gauge transformation to ensure that it vanishes asymptotically rather than going
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(7.1.6)
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to unity:

d 2 = J1{(fj) (-dt?- + d# + df )
s y 1{(y>

A(P+l) = ± (_1__ 1) dt /\ dx 1 /\ ••• /\ dxP
'X (y>

e2cP = 1{(YJ~ .
Here, the p spatial coordinates xp. ron parallel to the worldvolume of the brane,

while the orthogonal subspace is covered by the 9 - p coordinates yi. As we saw in

chapter IV: the solution is completely specified by a single function which may he

•

written as

(
1!..)7-P'}{ = 1 + _J.l_ -. (7.1.7)

7-p r

for3 p = 0, 1, ... ,6. Here, f.l is sorne dimensionless constant, i is an arbitrary

length scale and r 2 = I:~.:t(yii. The RR field strength for this configuration is

(7.1.8)

(7.1.9)

For p > 3, the D-branes are actually magnetically charged in terms of the RR

fields appearing in the above low energy actions, (7.1.3) and (7.1.4). In this case,

eq. (7.1.8) describes the Hodge dual of the magnetic field

F(8-p) = ±8/J-C iyi ( dyl /\ .•• /\ dy 9-P)

where iyi denotes the interior product with a unit vector pointing in the yi direc­

tion. For p = 3, the five-form field strength should be self-dual. In this case, the

correct solution may he constructed by replacing the electric five-form (7.1.8) by

(F(5) +* F(5))/2 to produce4

p(5) = 'F8i
X (~dyi /\ dt /\ dx l /\ dx2/\ dx3- ifj; (dyl/\ ... /\ dy6) )

(7.1.10)

while the dilaton remains constant (i.e., ecP = 1) in accord with eq. (7.1.6).

•
3 As noted in chapter~ this solution is aIso valid for p - 8, while J{ - 1 - p.log(r/ l) for p - 7.

These solutions can aIso be extended to the D-instanton with p =' -1, for which the metric becomes
euclidean without t or x~ [146].

4 This is not quite a duality rotation because the kinetic term for FCS) in the lIB action (7.1.4) has
the unconventional normalization 1/(4 . 5 t), - which simplifies the T -duality transformation - rather
than 1/(2· 5!) which is implicit in producing eq. (7.1.6).



As discussed in chapter IV, at the world-sheet level a Dp-brane is described by

imposing a combination of Neumann and Dirichlet boundary conditions on the

string world-sheet boundaries. Neumann conditions are imposed on the coordinate

fields associated with the p + 1 directions parallel to Ll'te D-brane's world-volume,

i.e., 8normalX~ = O. The fields associated with the remaining 9 - p coordinates

orthogonal to the D-brane satisfy Dirichlet boundary conditions, Le., XJ1. = constant,

which fixes the world-sheet boundaries to the brane.

These objects were originally discovered by considering the action ofT -duality

in the toroïdal compactification of open (bosonic) theories, as was discussed in

chapter IV In this context, T -duality trades the standard Neumann condition for

the Dirichlet boundary condition, written as 8tangentXJ1. = o. Renee if T -duality

is implemented along one of the world-volume coordinates of a Dp-brane, one of

the Neumann boundary conditions is replaced by a Dirichlet condition to produce

a D(p-1)-brane [89,147]. Alternatively, applying T-duality to a coordinate in

the transverse space will replace a Dirichlet condition with a Neumann condition

extending the Dp-brane to a D(p+1)-brane. For the present purposes, we wish to

consider a Dp-brane which is oriented at an angle with respect to sorne orthogonal

coordinate axes, e.g., tilted by an angle <: in the (X I ,X2)-plane. This requires

imposing Neumann and Dirichlet boundary conditions on linear combinations of

these coordinates

•
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7.1.2. Bound state of p = 0,2 D-branes
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(7.1.11)
an (Xl + tan ( x 2

) =0

8t (Xl - cot( X 2) =0

Now consider implementing the T -duality on X 2 in this example. The interchange

ofthe Neumann and Dirichlet conditions results in mixed boundary conditions which

may be expressed as

Here the factor of i appears since we are considering a euclidean world-sheet. Now

these mixed boundary conditions can he recognized as an example of the compatible•
an x 1 +itan( 8t X

2 =0

8n X 2 - itan( 8t X l =0.
(7.1.12)



boundary conditions arising when the Kalb-Ramond potential B~v and/or the world­

volume gauge field strength F~v acquire a nonvanishing expectation value [148],•
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(7.1.15)

(7.1.14)

•

Le.,

anX~ - i '5~v 8t X V = 0 (7.1.13)

where s=~v = B,.w + 21ra/~2. Recall from chapter IV that B~v and mt~ always

appear in tItis combination due to gauge invariance. In the present situation then,

T-duality has induced '512 = - tan (.

Nowa nonvanishing 1"-'~v will induce new couplings of the D-brane to the RR

fOTIn potentials [149]. From chapter ~ the full coupling of the RR fields to a

Dp-brane is given by the following integral over the world-volume

! Tr [eS'LA(nl] .

Rence in the above example if we begin with a Dp-brane angled in the (XI ,X2)_

plane, the result is a D(p + l)-brane with a nonvanishing flux '512. This final brane

would then couple ta both A (P+2) and A(p), and so should be regarded as a bound

state of a D(p-l)-brane with a D(p+l)-brane.

While the above description is formulated at the level of the string world­

sheet, we can easily lift the discussion ta one of background fields. We begin by

constructing the solution for a (delocalized) Dp-brane oriented at an angle in the

(Xl ,X2)-plane, and apply T-duality on X 2 to find a solution describing the bound

state of a D(p-l)-brane and a D(p+1)-brane. This will he our approach to building

the background field solutions for these bound states. We illustrate the procedure

in this section by considering in detail the construction of a bound state solution for

p = 0 and 2 branes.

We begin with the low energy Type IIB solution describing aD-string

ds2= v0{ (-dt2;; dil + d'Il +t (dyi)2)
~-2

A(2l= ±(~-l)dtAdX

e2q}b> = X

where x is the coordinate parallel ta the D-string, and we have singled out one of

the transverse coordinates as y == yI, for later convenience. Now J{ is a harmonie



function in the transverse coordinates. Normally, we would choose X = 1+~(l/r)6

as in equation (7.1.7). For our present purposes, however, we need a slightly

different harmonie function in that we want to delocalize the D-string in one of

the transverse directions, in order to implernent T -duality on the background fields

along this direction.

There are at least two different ways to do this. The hannonic fonction 1{ is

a solution of (the flat-space) Poisson's equation in the transverse coordinates, with

sorne delta-fonction source. For example in (7.1.7), the source is chosen so that

aiaix == -~A7 n~-Lt5(yi). The first way to accomplish a delocalization of the

string is to follow the 'vertical reduction' approach [150]. An infinite number of

identical sources are added in a periodic array along the y-axis. Then a smeared

solution may be extracted from the long range fields, for which the y-dependence

is exponentially suppressed. An easier approach, which rnight he termed 'vertical

oxidation', is to simply replace the above eight-dimensional t5-function source by

that of a line source extending along y, Le., aiaiX == _J.d5A6 rr~_2t5(yi). This

construction produces one of the anisotropic (P, q)-branes considered in [151].

In any event, the number of dimensions transverse to our smeared-out D-string

is effectively only 7, rather than 8, and the solution rnay he taken as in (7.1.7) with

p == 2:

.'J{ - 1 + ~ ur (7.1.16)

where here r 2 == E~"'2(yi)2. Note that the forrn of the RR potential in eq. (7.1.15)

tells us that we have aD-string oriented along x and smeared out in y, rather than

the other way around.

Now we perform a rotation on our delocalized D-string, in the y-x plane:

where ( will be the angle between the i-axis and axis of the D-string, i.e., the x-axis.

We then have,

•

•
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(x) (sin ( cos ( ) (ft)
Y == cos ( - sin ç y

dx == cos çdi + sin ( dy

dy == cos (dy - sin ( di
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(7.1.17)

(7.1.18)

)
"'V"



and after the rotation. the solution (7.1.15) becomes

ds2-v0f{ ;: +(cO~Ç+Sin2Ç)~+(S~Ç+cos2Ç)dfl

+2cosÇsinÇ (~ -1) dxdy+t (dxi )2}
,-2

A (2) = ± (~ - 1) dt i\ (cos çdX + sin çdy)

e2t:/Jeb) = t'tr•
•Jl. (7.1.19)

•
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•

Following the discussion at the beginning of this section, we apply T -duality

in the y direction on our delocalized and rotated D-string. The resulting solution

should then describe a bound state of aD-point (p = 0) and aD-membrane (p = 2).

The ten-dimensional T -duality map between the spacetime degrees of freedom of

the type IIA and the type lIB string theories was given in [56]. Using our notation

and conventions, the map from the IIB to the lIA theory reads as

1
Gzz =-

Jzz
JzJ.' J zv - B1~B~~

Gp.v = Jl-'V - J--
zz

B(b) J
B(a) = B(b) + 2 z(j.L v]z

p.v p.v J--
zz

A (1) = A~2) + XB~b)
p. ZJ.' Zl-'

A(2) J
A~3) = A(2) + 2 z(j.L v]z

zp.v p.v J--
zz

(

B(b) A(2) J )
A(3) = A(4) _ + ~ A~2) B(b) _ B~b) A(2) _ 4 if!' )~V pli (7.1.20)

IJVp p.vpz 2 z~ vp] z~ vp]

where the fields are as described in section 7.1.1. Here z denotes the Killing

coordinate with respect to which the T -dualization is applied, while fL, v, P denote

any coordinates other than z.
A straightforward application of the T -duality map (7.1.20) to the solution

(7.1.19) Yields

ds2 = v0f {-dt} + dx
2

+ dy2 +~ (d i)2}
X 1+ eX - 1) cos2 ( ~ y

1=2
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A(3) = ± (1 - J-C) cos ç dt 1\ dx 1\ d-
l + (X - 1) cos2 <: y

A (1) = ± J{ - 1 sin çdt
J{

Bea) = CI - :Ji) cos ç sin ç dx 1\ d-.
1 + (1{ - 1) cos2 ç y

3
e2fjJ(al = X!

1 + (1{ - 1)cos2 <:

177

(7.1.21)

•

Rence as expected this solution involves both A(3) and A(l) indicating the presence

of a D2-brane and a DO-brane, respectively, in the (x, y)-plane. Sïnce the bound

state solution only depends on T 2 = L~"'2(yi)2 as in (7.1.16), the DO-brane is delo­

calized in world-volume of the D-membrane. Remarkably T -duality has produced

Gxi = Gyy so that the bound state is spatially isotropie, even though it has lost

the usuaI world-volume Lorentz invariance which characterizes the single D-brane

solutions (7.1.6). Note that the off-diagonal term in the metrie (7.1.19), whieh was

produced by the rotation (7.1.17), has clisappeared. Instead a Kalb-Ramond field

has been generated, as is required by the Kalb-Ramond coupling appearing in F(4)

and by the presence of both A (3) and A(l) in this solution. One ean verify that

with <: = 0, the T -dual solution reduces to aD-membrane with A (l) = 0 = B(a), as

expected. Similarly with ç = 1f/2, A (3) and Bea) vanish leaving a single nO-brane

delocalized in the (x, y)-plane. We should also note that this solution (7.1.21) for a

bound state of DO- and D2-branes appears in [152].

7.1.2.1. Mass and Charge Relations

In this section, we consider sorne of the physical characteristics of the above bound

state solution (7.1.21). The physical charge densities associated with the various

RR fields were defined in chapter ~ equation (4.1.32). We arrange that in our

solutions the foon potentials vanish asymptotically so that the charge formulae yield

the correct results while ignoring the interactions between the different potentials.

In using the definitions of (4.1.32) in this section, we drop the use of the e and

m superscripts and instead label the charges with subscripts indicating the spatial

dimension of the brane to which they belong. The D-particle and D-membrane
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(7.1.22)
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carry charges for A (1) and A (3), respectively, which for the above solution yields

:r (27r)2 RxRy .. 05 . ÇA
qo = .- M prt. sm 6

V2K

~= ± ~ pl,5cos(A6
V2K

•
where in calculating qO we have set x (y) to have a range of 27rRz (27fRy). Here

CJ2 is a charge per unit area while qO is the total charge. The corresponding charge

density associated with the delocalized DO-branes is then

(7.1.23)- = qO = _1_.e5 sin r A
qO (211")2 RxRy 1= ifiKJ.L ~ 6·

For a p-brane, the ADM mass per unit p-volume is aIso defined in chapter IV,

(4.1.29). The ADM mass density of the bound state (7.1.21), which for the present

purposes is effectively a membrane with p = 2, is then

1 5
MO,2 = 211,2 p,l A6 .

Therefore we have

(7.1.24)

This relation indicates that this bound state saturates the BPS bound for this system

[65].

(7.1.25)

It is interesting to consider the ratio of the charge densities

iio-=-tan(.
q2

We aIso lœow that the source for iio is spread over the (x,y)-plane, and sa in the

stringy discussion surrounding (7.1.14), we would expect that the D-membrane

carries a flux5 ~xii = - tan (. In fact, this flux precisely agrees with that arising

in the preceding discussion given the identification: Xl = fi, X 2 = x. Further, we

might consider the limit

This suggests that the Kalb-Ramond field accounts for the total flux in ~, and so

the world-volume gauge field should vanish, i.e., ~~ = O. Of course, B~~ can

5 The orientation for S-- is in keeping with that used to calculate qo.•
lim B~aJ = - tan ( .
r~O zy

(7.1.26)
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be shifted by a constant via a gauge transformation, which at the same time would

induce a nonvanishing ~~. This has no physical consequences for the bound state

solution, but it is amusing to show that in this case the T -dual solution is a rotated

D-string in a background where the x and fj axes are also tilted.

It is also interesting to see that the results for the charges are consistent with the

appropriate charge quantization mIes (4.2.35), namely

7 _p ( 1) !(3-p)qp = np/-lp = np(21r)! a

•

where /-lp is the charge density of a fundamental Dp-brane and np is an integer. If

one begins with aD-string with qi = nI /-lI, then the charges in the T -dual bound

state satisfy qO = noJ.lO and fJ2 = n2/-l2 with nI = -(no + n2). This requires taking

into account that the range of fj in the original solution before T -duality solution

is R~ = a'/ Ry, and similarly the gravitational couplings of the T -dual theories are

related by K,I = KR/ Ry. Further, one notes that the rotation angle is quantized as
m R'­tan /" = _.::1!..

~ n~

7.1.3. More bound state solutions

•

In the preceding section, we presented in detail the procedure for constructing the

solution for a DO-brane bound ta aD-membrane by beginning with aD-string. It

is now a simple matter to construct other bound state solutions by simply changing

the starting point of the construction. In general if we begin with a Dp-brane,

the resulting solution describes a D(p-1 )-brane bound to a D(p+1)-brane. In the

following, we present the results for p = 2,3,4 and 5. We also give a solution

describing a bound state of a D4-brane, DO-brane, and two different D2-branes,

which results from applying our procedure twice on a certain D-membrane solution.

In general, the resulting bound state solutions are anisotropie in that the full

Lorentz invariance in the world-volume of the D(p+1)-brane is lost. The invariance

that remains is Euclidean invariance in the plane in which the D(p-1 )-brane is

delocalized, i.e., (x,y)-plane in (7.1.21), and Lorentz invariance in the remaining

world-volume directions of the D(p+1)-brane.

As p is varied in these examples, the relevant T -duality altemates between

mapping lIB fields to lIA fields, and vice versa. The former transformation is given



in (7.1.20). Using our conventions, the T-duality map from type lIA theory te the

type lIB theory [56] is explicitly:•
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1
Jzz =--

Gzz
G G B (a)B(a)
z~ zv - z~ zV

JIJV = GIJV - G--
zz

G B(a)
B(b) = B(a) + 2 z[p. v]z

IJV /-,V Gzz
GZiJ= ---
Gzz
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G B(a) A(l)
A(2) = A(3) __ 2A(l)B(a~ + 2 z(p. v]z z

iJV /-,vz [p. v]z G--
zz

x =-AQ)
z

(1)
A~2) =A(l) _ Az GZIJ

ZIJ /-' Gzz
G B(a) A(l) G A(3)

A(4) _ = A(3) _ ~ (A(l)B(a) _ z(.u vp] z + z[p. vp]z )
J,/,l/pZ ,.wp 2 [p. vp] G-- G--

zz zz
(7.1.28)

•

The field definitions are again given in section 7.1.1, and z is the Killing coordinate

which is T-dualized (while J.L, v, p:/ z). Note that in this map only the elements of

the four-forro RR potential involving z are given. The remaining components are

detennined by requiring that the corresponding five-form field strength is self-dual.

7.1.3.1. p = 3, 1 branes

Here our approach is to begin with the D-membrane solution (7.1.6) carrying

electric charge from A (3). We single out y = yI and delocalize the solution in this

transverse direction. Then we rotate by an angle ( as in (7.1.17) where we set

x = xl. The resulting solution is

{
-dt?- + (dx2)2 (COS

2
( ) (sm2

( )
ds2

= v0{ X + 1C + sin2
( dx2 + --x- + cos2

( dy2

+2cos(sin( (~ - 1) dXdy+ dT2 + T2 (drP

+ sin
2

(} ( dcpI + sin2 CPI ( dcp~ + sin2 CP2 ( dcp~ + sin2 CP3dcp~) ) ) ) }

A(3) - ± (~ -1) dtA (cos (d!ë+ sin(dy)A dx2

e2rjJ(o.) = /(U.v :n. (7.1.29)



where 1C = 1 + *(llr)4. We have also introduced polar coordinates on the effective

transverse space (originally described by yi with i = 2, ... , 7). This facilitates

writing the magnetic contribution to the four-form RR potential which appears after

T -dualizing.

Now applying T -duality with respect to yasin (7.1.28), we obtain the following

solution:

•
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•

ds2 = v0{{ -dtl + (dx
2

)
2

+ dx
2

+ dfP + dr2 + T 2 (dfP
X 1 +(X - 1)cos2 Ç

+ 5in
2 B (dlOI + 5in

2
lOI (dlO~ + 5in

2
\02 ( dlO~ + 5in

2 103dlO~) ) ) ) }

A (4) = cos Ç 1C - 1 ( 1C) d d- d 2 d­
=F -2- X 1 + 1 + (X _ 1) cos2 Ç t 1\ x 1\ x 1\ Y

=F p,.t- cos ç sin4
() sin3

'Pl sin2 'P2 cos CP3 dB 1\ d'Pl 1\ dq:;2 1\ d'P4

(2) 1C - 1 2
A = ± 1C sin ( dt 1\ dx

B(b) = CI - Je) cos ( sin ( dfi 1\ dy
1 + (X - 1) cos2 (

e2q}b) = ---X---=-2-. (7.1.30)
l+(X-l)cos (

Note that the T -duality map (7.1.28) explicitly produced the electric component of

the potential A(4), and the magnetic component was determined by demanding that

F(5) he self-duaL As evidenced by the presence of the four-form and two-form RR

potentials, we have a bound state of a D-three-brane and aD-string.

7.1.3.2. p = 4,2 branes

Once again "Ne apply the same procedure of delocalization and rotation on a

D3-brane, followed by T -duality. This case is slightly more complicated, as the

D3-brane is charged by the self-dual five-form field strength. Thus one must use

the linear combination of electric and magnetic fields given in (7.1.10).



The rotated solution is

2 w{ -dt2 + (dx2
)

2
+ (dx3

)2 (COS2 ç . 2 ) d-2ds == V Jt X + 1{ + sm ç x

+ e~( + cos2 () dif +2cos(sin( (~ - 1) dxdfj

+ dr2 + r2 (d02 + sin2 0 (d'Pt + sin2 'P 1 (d'P~ + sin2
'Pld'P~) )) }

A(4) = ± ~ (~ - 1) dt /\ (cos (dx +sin( djj) /\ dx2 /\ dx3

± ~jd3 sin3 f) sin2
CPI cos 'P2 (sinÇ di - cos (dy) /\ dB /\ d'Pl 1\ d'P3

e2t/>(b) = 1 (7.1.31)
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(7.1.32)

•

where X == 1+ Ï(l/r)3. Note also that the dilaton here is a constant which has been

set equal to zero.

Applying the duality map (7.1.20) gives us the result:

2 ~ {-dtz + {dx2)2 + {dx3 )2 dx2 + dy2
ds == v X +-----~-

X 1 + (X - 1) cos2 (

+dr2 + r2 (d02 + sin2 0 (d'Pt + sin2 'PI (d'P~ + sin
2 \02d'P~))) }

(3) IX - 1 2 3
A == 1= 2 X sin ( dt /\ dx /\ dx

± id
3
~os ( sin3 0 sin2 'PI cos \02 dO /\ d'PI /\ d'P3

B(a) == (1 -1{) cos ( sin ( d?i A d-
l +(X - l)cos2 ( y

e2<jJ(4) == y'j{
1 + (J{ - 1) cos2 (

Here the interpretation is that of aD-membrane, associated with the electric

component of the three-form potential, A(t3~ 3' in a bound state with a D4-brane
xx

carrying a magnetic field with A~~lCfJ3. This is consistent with the dyonic nature of

the initial five-form self dual field strength.

In [153], the authors give a solution of a bound state of aD-membrane with a

D4-brane. Their solution, obtained from compactification of D == Il supergravity,

agrees precisely with the solution (7.1.32) given above.



Here the starting point is a D4-brane which would carry an electric six-form field

strength according to (7.1.6), so we must Hodge dualize to the magnetic four-form

field strength (7.1.9). The magnetic potential is again most easily expressed using

polar coordinates in the transverse space around the delocalized D4-brane. Applying

our standard construction, the final solution, as the reader can easily verify, is

ds2= v0{ { -dtl + 2:i.:2 (dx
i
) 2 + dx2+ df/

1{ 1 + eX - 1) cos2 ,

+dr2 + r
2

( dlP + 5in
2 0(dCPt + 5in

2
cp\ dCPn) }

(
1 + l (X - 1) cos

2
') 2

A(4) = 1= p,/,2 sin, 2(1( 1) 2 sin Bcos CPI di 1\ dy 1\ dB 1\ dC{)2
1 + - cos ç

± sin ç dt 1\ dx2 1\ dx3 1\ dx4

X
A(2) = ± pl,2 cos ç sin2 Bcos cp 1dB 1\ dCP2

B(b) = (1 - 1C) cos ç sin ( di 1\ d-
l + (X - 1) cos2 ç y

e2,p(b) = 1 2 (7.1.33)
1 + (X - 1) cos (

where X = 1+ ~{llr)2. In this case the bound state is made up ofdyonic D3-branes

and magnetically charged D5-branes.

• 7.1.3.3. p = 5,3 branes

Bound states ofD-branes 183

•

7.1.3.4. p = 6,4 branes

Beginning with a D5-brane, we dualize the associated electric seven-form field

strength to a magnetic three-form field strength and compute the two-form magnetic

potential in polar coordinates. After repeating the usual steps once again, the final

result is

ds2 = v0{ { -dtl + E~-2 (dx
i
)

2
+ dxZ + dy2

1{ 1 + (X - l)cos2 (

+dr2 + T
2 (d02 + sin2 OdCPt) }

A(3) - p,l sin ( Bd- d- d
- 1= 1 + eX _1) cos2 (" cos x 1\ y 1\ CPI

A (1) = 1= jd cos çcos () dCPI
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B(a) = Cl - X) cos (sin(dx 1\ d-
l + (J-C - 1) cos2( y

e2t/PJ.) = 1
v0{ (1 + (X - 1) cos2 ()
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(7.1.34)

•

where 1{ = 1 + pl/ r. The bound state here contains a D4-brane and a D6-hrane,

which are both magnetically charged.

7.1.3.5. p = 4,2,2,0 branes

It is a simple exercise ta apply our procedure involving delocalization, rotation and

T -duality with respect ta more than just one of the transverse coordinates of the

original D-brane solutions. The resulting solution describes a bound state involving

more than just two types of D-hranes. Ta illustrate this idea, we considered the

following example: Beginning with the D-membrane solution (7.1.6), we singled

out two orthogonal planes: (xl, yI) and (x2 , y2). Applying the procedure in the

(xl, yl)-plane - with a rotation angle ( ta (x, fi) - produces a bound state of p = 3

and 1 D-branes, as in part (i) above. Repeating the procedure a second rime in the

(x2 , y2)-plane - rotating by 'if; to (x, y) - Yields the following solution

ds2 = v0{ {-dt?- + di
2

+ dy2 + dx
2

+ dfJ2
1{ 1 + (J{ - 1) cos2 ( 1+ (X - 1) cos2 'if;

+dr
2 + r

2
( d02 + 5in

2 0 (d'Pt + 5in
2

'Pl (d'P~ + 5in
2 'P2d'P~) )) }

A(3) = (1{ -1)cos(sin7P (1{ - l)cosVJsin(
± 1 + (X - 1) cos2 ( dt 1\ di 1\ dy ± 1 + eX _ 1) cos2 'l/J dt 1\ dx 1\ dfJ

± pi,3 cos (cos 'I/J sm3
(} sin2

Çpl cos 'P2 dO 1\ d'Pl 1\ dcp3

A (1) = =F X - 1 sin ( sin .,p dt
X

BCa)::::& (1 - X) cos ( sin ( di A. d-
l + (1 - X) cos2 ( y

Cl - X) cos.,p sin 'l/l d" d"
+ 1 + C]{ - 1) cos2 7/J x 1\ y

tt..r~e2,p(a) = ..J \.. ~-:-(-------:-2----::)---:(:-------2~) (7.1.35)
1 + ex - 1) cos ( 1 + (J{ - 1) cos 7/J



where J{ = 1 + ÏCl/r)3. The electric potentiaI A(l) indicates the presence of

DO-branes, while the magnetic component of A (3) arises from D4-branes. Mean­

while the two electric components of A (3) indicates that there are t\vo kinds of

D-membranes, one in the (x,y)-plane and another in the (x,y)-plane.
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7.1.4. Discussion

Using T-duality, we have provided a straightforward construction of low-energy

background field solutions corresponding to D-brane bound states for which the

difference in dimension is two. We have aIso presented a number of explicit

examples of such solutions. Since supersymmetry is preserved by T -duality, the

bound state solutions retain the supersymmetric properties ofthe initial configuration

which involves a single D-brane. Hence these bound states preserve one half of

the supersymmetries. Our discussion of the background fields complements that

of Polchinski, who recently gave a string world-sheet description of these bound

states [65]. Indeed (7.1.24) explicitly shows that the bound state of p = 0, 2 branes

saturates the BPS bound given there. Similarlyextending the calculations of section

7.1.2.1 to the other examples, we find

(7.1.36)

•

with Mp-1,p+l = 1:;PA7-p. In close analogy to equation (7.1.23), we defined the

charge density of the D(p - 1)-brane as qp-l = «21T")2%Ry)-1qp-1. For the dyonic

D3-branes, the charge density that enters this formula can he written as the sum of

the electric and magnetic contributions:

Note, of course, that qj = q'3. In the last example with a bound state of four kinds

of branes, this relation extends in the obvious way with a sum of squares of ail of

the charge densities.

While we have explicitly given all the bound state solutions with. asymptoti­

cally flat Minkowski-signature geometries, one ceuld aIso apply our procedure to

constructing more exotic solutions involving instantons, strings, or demain walls



- i.e., Dp-branes with p = -1, 7 and 8. For example, a euclidean p = 0 solution

in the type lIA theory would correspond ta an instantonic string. Applying our

construction would lead to a 'bound state' solution with an instantonic membrane

(p = 1) and a delocalized instanton (p = -1). One could also further explore the

possibilities arising from multiple applications of our construction, as considered

in the example of section 7.1.3.5. Another obvious extension would he to begin

with the multiple D-brane solutions discussed in chapter IV. The harmonic function

(7.1.7) appearing in the original solutions (7.1.6) was chosen ta solve Poisson's

equation with a single delta-function source. It is straightforward ta introduce more

sources producing solutions which describe severa! separated parallel D-branes.

Used as the starting point for the construction given here, these solutions would

yield multiple bound states resting in static equilibrium - a possibility which arises

due ta their supersymmetric character.

It would also be of interest to examine in more detail the correspondance of our

low energy background field solutions with the stringy description of these bound

states. The charge and mass densities can in principle be extracted frOID a one-laop

string amplitude describing the interaction of two D-branes (see e.g., [65]). This

approach was in fact recently considered for the present D-brane bound states by

Lifschytz [154]. Altematively, by examining the scattering of closed strings from

D-branes, one can aIso extract all of their long-range fields [95]. Applying this

technique ta the D-brane bound states, one again finds a precise agreement between

these long-range fields and the corresponding low energy solutions [155].

•
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•

7.2. Membranes at angles

We begin by writing down the solution describing an arbitrary number n of D­

membranes, each of which is rotated by certain SU(2) angle, in the type IIA low

energy effective string theory. The solution cantains only a nontrivial (string-frame)

metric, three-fonn RR potentia! and dilatan:
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n

- E XaXb sin2
(Qa - ab) (dx 1

1\ dx3
- dx2

1\ dx4
) }

a<b

(7.2.1)

(7.2.2)

(7.2.3)

where
n n

X = EXa+ EXaXb sin2 (aa - ab) •

a-l a<b

Above, the rotation matrix Ra associated with the a'th D-membrane is given by

co~aa0 sinaa )

-smaa cos (l'a

The matrices acting in the space of xi's are easily recognized as SU(2) rotations

as follows: one defines the complex coordinates z 1 = x l + ix2 and z2 = x 3 +

ix4. Then the above rotations are given by (zl, z2) ~ (eiaa zl, e-iaa z2), or zi ~

[exp(iaa 0"3)]i izi. One expects from [144] that restricting the relative orientation

of the membranes in this way will preserve sorne of the supersymmetry, and we

continu this fact in the following.

The funetions Xa are harmonic functions in the transverse space of yi'S. That

is, they solve the flat-space Poisson's equation in the transverse space, e.g.,

9
.. 3 TI (k k)8"3 aiBjXa = -laA4 8 Y - Ya .

k=5

Above, R.a are arbitrary positive parameters which have the dimension of length, and

we use A4 ta denote the volume of a unit four-sphere, given in (5.1.4). In fact, one•
yielding the solutions

1 ( la )3
Xa(fj) = 3" IV- Ual . (7.2.4)



may introduce any number of delta-function sources at arbitrary positions on the

right hand side of equation (7.2.3), and the corresponding solution would describe

a system of parallel branes.

A few words are in order as to the origin of this solution. It is in effect an

interpolation between the known solutions for parallel D-membranes, and that [156]

for orthogonal D-membranes intersecting over a point. It is straightforward to verify

that when the angles are all set to Q'a = 0, the solution reduces to that of n parallel

branes lying in the Cy2, y4) plane. Note that in this case the membranes have also

been delocalized or smeared out in the xl and x 3 directions. One may also verify that

choosing all Q'a == 0'0 simplycorresponds to an overall SU(2) rotation of the previous

solution. Similarly the known configuration of orthogonally oriented membranes is

reproduced by choosing aa 's to be either zero or 1r/2. Further with the Q'a set to either

0'0 and 1r/2 + a o , equation (7.2.1) corresponds to a rotation of this solution. Finally,

one may verify that making a further SUeZ) rotation of the entire solution simply

corresponds shifting all of the angles Q'a by the same constant. For this to work, it is

important that the second term in A(3) is proportional to dt /\ Re(dz l /\ dz2), which

is invariant under SU(2) rotations. Verifying that (7.2.1) solves û1.e low-energy field

equations of type IrA string theory was done with the aid of a computer.

Ta remind the reader of our notation: we refer to xi and yi as world-volume and

transverse coordinates, respectively, as was the case in chapter IV. Here however, for

a given brane, a particular (linear combination of) xi may actually still correspond

to a transverse direction, although it will he one in which the brane is delocalized.

Renee in the next section, when we smear out the solution in sorne yi making

the solution independent of this coordinate, the designation for the coordinate is

changed to xi. We will also assume that the xi coordinates are all compact with a

range of 21rLi.

•

•

Bound states ofD-branes 188



In this section, we consider sorne of the physical characteristics of the above

configuration (7.2.1). In particular, we calculate the mass and charge densities of

our solution. The latter densities are calculated using asymptotic flux integrals, and

50 they are completely detennined by the leading-order behavior of the asymptotic

fields. In examining the solution, one sees that these leading order fields are simply

linear superpositions of the asymptotic fields generated by the individual rotated

membranes. Hence we generalize the rotation appearing in these linearized fields

by replacing Qa by an independent angle f3a in the lower two-by-two block of the

rotation matrices (7.2.2). Such a configuration would only solve the linearized

asymptotic equations of motion, and not the full nonlinear supergravity equations,

but this generalization does yield sorne interesting insight when examining the BPS

bound.

The ADM mass per unit p-volume is defined in (4.1.29). Calculating the mass

per unit four-volume (of the internal space of xi,s) for our angled system gives us

the result

•
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7.2.1. Mass and Charge Relations

189

(7.2.5)A4~ 3
M = 2,.,,2 ~ia .

a=l

Thus the mass density is simply the sum of the mass densities of the constituent

branes, which was to he entirely expected. Note then that this result is completely

independent of the rotation angles.

The membranes carry an electric RR four-form field strength and the corre­

sponding physical charge density is given by (4.1.32)

(7.2.6)

•

Hodge duality produces a six-farm which is then integrated over the asymptotic

four-sphere in the transverse space and sorne two-torus in (xl, x2 , x3 , x 4). Thus

given, the three-form potential in (7.2.1), in applying (7.2.6) we obtain a number

of independent charges related to the choice of asymptotic surface over which one

integrates. For example the tenn in A (3) proportional dt 1\ dx2 1\ dx4 yields a term.

in *F(4) ta he integrated over the compact coordinates xl and x3 as weil as the



four-sphere at infinity. We use the following notation ta write the resulting charge•
Bound states ofD-branes 190

(7.2.7)

(7.2.8)

where the antisymmetric matrix notation will be usefullater on. This result gives

the charge per unit area in the (x2 , x 4 ) plane, Le., the plane in which the branes lie

for Q'a = l3a = O. In arder to compare the charges, however, we should divide out the

area of the orthogonal (xl, x 3) toms in order to produce a charge per four-volume

in the entire compact space. Hence we define rie13 = qr3/(41r2Ll~). In a like

manner all the charge densities qèij can be calculated and we list the nonvanishing

contributions
- A4 ~ 3

qe 13 = - M L-t la cos Q'a cos l3a,
v2K, a-l

n
- A4,,~ .

qe 14 = - M L-t l~ cos aa sml3a,
V 21'1, a:zl

- A4~3'qe23 = M L-t la smœa cosl3a,
V 21'1, a ... l

-e A4~D3o °aq 24 == M L-t.(..a smœa SIDfJa'
v21'C a-l

Of course these charge densities are dependent on the rotation angles which orient

the various D-membranes. Note that if œa == f3a == 0 we recover the expected charge

configuration of a collection of parallel membranes lying in the (x2 , x 4) plane, i.e.,

•

where the single nonvanishing charge density is simply the sum of that for the

individual branes.

Having calculated these physical characteristics of our configuration of D­

membranes with angles, we would like to examine the BPS bound. The latter may

he detennined from the eigenvalues of the Bogomol'nyi matrix, which is derived

using both the supersymmetry algebra and the asymptotic form of the background

fields [79,157]. Unbroken supersymmetries arise when this matrixhas eigenspinors

with a vanishing eigenvalue. In the present problem, the Bogomol'nyi matrix
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is [158]
l _

M = M + V2K. qeijrOïj

for which the distinct eigenvalues are

1 _ _ 1 --
M ± -- qe. _qe .. ± -€- -klqe ..qeklV2K. 1.1 '1 2 1] 1.}
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(7.2.9)

(7.2.10)

In these formulae, the implicit sums aIl ron from 1 to 4, and we use the antisym­

metric notation q-eij = _qeji introduced above. AIso note that the two signs in the

eigenvalues are chosen independently. Since the mass is positive, the eigenvalues

for which the fust sign is positive cannat vanish, and hence at least half of the super­

symmetries are broken by our solution. The vanishing of the remaining eigenvalues

cao he expressed in terms of a BPS mass limit

2 1 (- - 1 - - )M± = - qe ..qe .. ± -€--klqe ..qekl2K.2 '1.] 1.] 2 1.] '&] •

Substituting our values for the charge densities (7.2.8) results in

(7.2.11)

•

Mi = u:~r[(~~cos(aa 'FiJa)r + (~l~Sin(aa 'FiJa)r] .
(7.2.12)

In comparing these BPS bounds (7.2.12) with the mass (7.2.5), we find that in

general the mass exceeds the former bounds. To make this more apparent, one may

introduce complex variables Z±,a = (A4/2K.2).e~ exp[i(aa =F l3a)]. Now it is clear

that generically M 2 = (La IZ±,aj)2 exceeds Mi = l2:a Z±,aI2
• It is also clear that

the only way to lower the mass to one of the bounds is to chose al.l of the phases to

be equal, i.e., aa - l3a = 2B or aa + l3a = 2B'. There are only two distinct choices

here up to an overall rotation. If we set al = 131 = 0 to fix the overall orientation of

the configuration, we must choose the remaining angles witb.l3a = aa or l3a = -aa.

The former corresponds to the choice made in our solution (7.2.1), and for which we

then have M = M+ and one-quarter of the supersymmetries heing preserved. The

latter choice, for which M = M_, would yield a slightly different configuration.

Complex SU(2) rotations are again relevant in this case, but DOW the SU(2) acts on

(zl, z2)=(x l + iil, x3 - ix4). Our solution would he modified by changing the sign



of Q'a in the lower two-by-two block of the rotation matrices (7.2.2), and the sign of

dx2 Adx4 would be reversed in the last tenn in A (3). As expected, our results here are

entirely consistent with the analysis of [l44J mentioned earlier which is fonnulated

at the level of the string world-sheet and provides an independent confirmation of

their results when applied to D-membranes.

•
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7.2.2. T ..DuaIity

The ten-dimensional T -duality map between the type lIA and IIB string theories

was given in equations (7.1.20) and (7.1.28). In the next subsection, we consider

the effect of T -duality along coordinates that are in the transverse space. The

effect of these transfonnations is to extend the dimension of the D-branes. The

results then are new solutions describing Dp-branes with relative SU(2) angles and

so remaining parallel over a (p-2)-brane. In subsection 7.2.2.2, we consider the

effect of T -duality transformations along world-volume coordinates. The results

here involve more exotic bound state configurations of D-branes, as found in the

previous section.

7.2.2.1. Transverse directions

In arder to apply T-duality along one of the transverse coordinates, e.g., '/Î, we

must fust delocalize the solution in this direction, which we then denote as xS • This

amounts to replacing the sources in (7.2.3) by four-dimensional delta-functions,

producing solutions of the fonu

1 ( la )2
Xa(Y) = 2 l:lf -Yal

where now y = (y6, Y7 , y8, y9). A straightforward application of the T -duality map

(7.1.28) from the type IIA to the type IIB theory along x5 in this smeared out solution

yields

5

ds
2

= VI + X [1 ~ X ( - dt'- + L (dx')
2

i-l

n 9

+L X., {[(R,,)\dx']2 + [(R,,)3jdx-Ï]2}) + L (dyi)
2

]

a-l ~6



F(5) = dt A dxS A dyk A 8k { 1~ X [t Xa (Ra)2idxi A (Ra)4jdxi
a-1

-t XaXb sin2 (aa - ab) (dx l A dx3
- dx2

A dx4
) ]}

a<b

{
n }h . . 1 l 3

+ dx /\ dy" /\ dy) /\ €hijk8k 2: Xa (Ra) ldx /\ (Ra) mdxm

a-1
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(7.2.13)

•

This solution obviously describes a system of angled D3-branes, as indicated by the

presence of the nontrivial five-fonu RR field strength. We have written the solution

in terms of the self-dual field strength, rather than the potential A(4), hecause the

magnetic part of the latter is rather unwieldy when the D3-branes are centered

at arbitrary positions Ya. If one sets Ya = 0, the potential can he given in a fairly

compact form using polar coordinates on the transverse space. Note also that Ehijk is

the antisymmetric Levi-Civita symbol on the transverse space with h, i, j, k = 6 ... 9

and €6789 = +1.

One can carry this process further by delocalizing the above solution in another

transverse coordinate y6 Cwhich we then denote x 6 - also, note that one now has

Xa = la/Iy - YaD, and applying T-duality along this direction to produce a system

of D4-branes with SU(2) angles. Here, the T-duality map from type IIB ta type

lIA generates a magnetie three-form potential through A~Jp = A~~p6 Cthe remaining

tenus in this relation vanish in the present case). This part of the transformation

is equivalent to mapping the field strengths F~~pu = F~~pq6' since the delocalized

solution is independent of x6• Renee the T -dual solution may he expressed as

6

ds
2 =';1 + X[1 ~ X ( - dt?- + 2: (dxi)2

i-1

n 2 2 9 ]
+ 2: Xa{[CRa)ljdxj ] + [CRa)3 jdxj ] }) + 2: (dyi)2

a-1 i-7

F(4) - dyi A dyi A €;jk8k { t Xa (Ra)! Idx l A (Ra)3mdxm}
a-1

2q,(a) l
e = vil + X· (7.2.14)



Again the magnetic field strength takes a much more compact fOnIl than the corre­

sponding potential for the multi-center solution. One sees that this solution describes

a system of D4-branes since the magnetic p(4) is the only nontrivial RR field.

Ofcourse, this procedure ofT-dualizing in the transverse space cao he continued

ta produce configurations of higher dimensional D-branes with angles. Since the

SU(2) rotations effectively extend the dimension of the world-volume by two, the

remaining solutions will have a transverse space of dimension lo\ver than three, and

hence will not he asymptotically flat. For example, the solution describing angled

D6-branes would have a transverse space of dimension one, and thus would have

the appearance of an anisotropic domain wall.

•
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7.2.2.2. World-volume directions

An alternative to the above procedure is to apply T -duality in the world volume

directions of the original solution (7.2.1). Sïnce the membranes are rotated in these

directions, T -dual configurations will involve D-brane bound states for which the

difference in dimension is two, as discussed in section one. To simplify the procedure

we specialize the general solution ta the case of two V-membranes and aIso set

the rotation angles (al, a2) = (0, a). With these simplifications, equation (7.2.1)

reduces to

ds2
= v'ï+X {1 ~ X ( - dr +(1 + Xd[(dx 1)2 + (dz3)2] + (dx2i + (dx4)2

+ X2 [ (cosadx l
- sinadx2)

2
+ (cos adx3 + sinadx4) 2] )

9

+ L (dyi)2}
i ...5

A(3) = 1 ~tX /\ { - (X2 + XI X2) sin2 a dx l /\ dx3 + X2 sin a cos Cl< dx l /\ dx4

- X2 cos a sin O! dx2 1\ dx3

+ (Xl + X2cos2a+XlX2sin2 a) dx2 l\dx4
}

(7.2.15)

and X is given by



We also simplify the following results by positioning the second membrane at the

origin, i.e., we set Y2 = 0, but leave YI arbitrary.

As the fust example, we apply T -duality along the x 4 direction - note that this

direction is tangent to the world-volume of the a=l membrane, but is angled with

respect to the second. We find that
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•

ds2 = VI +XL ~ X( - d2- +(1 +X[) (dx l
/ + (.ia/f

( )2) (dx3)
2

+ (dx4)2
+ X2 cos Cidx l

- sin adx2 + .
1 +X2sm2a

+ dr2 + r 2
( drP + sin2 B (d'Pi + sin2

'Pl (d'P~+ sin2 'P2d'P~) )) }

(4) 1 . 2 {l + XII } l 3 4
A = - - X2 sm Ct 1 X + 1 X . 2 dt 1\ dx 1\ dx 1\ dx

2 + + 2sm Ct

1 . {Il} 2 3 4- 2:X2 cos Ct sm a 1 + X2 sm2 a + 1 + X dt 1\ dx A dx 1\ dx

+ l~ sin Ct sin3 Bsin2
CPI cos CP2 ( cos Ci dx 1

- sin Ci dx2
) 1\ dB 1\ dcp l 1\ dCP3

A(2) = 1~tX fi. {X2 cos Cl!sina.dx1 + (X - X2 sin2 Cl!) dx2
}

B(b) == X2 cos Ct sin Ct dx3 /\ dx4

1 + X2 sin2 Ct

e24J{b) = __l_+_X--=-_ 6
2 (7.2.1 )

1 +X2sin Ci

where we have transfonned the coordinates transverse to the system into spherical

coordinates to facilitate the computations of the four-form RR potential. Setting

X2 = 0, one can verify that this solution reduces to that of aD-string lying parallel to

x2 and at the same time delocalized in x l , x3 and x4• Setting Xl == 0 and comparing

with the solutions of the fust section of this chapter, one finds that the solution

is precisely that of a D(3,1)-brane bound state. There has been a rotation of this

bound state so that it lies in (cos Ci x2 + sin a xl, x3 , x4 ) with the D-strings oriented

along the fust direction. The bound state is aIso delocalized in the orthogonal

cos a xl - sin Ct x 2 direction. The angle Ct also determines the relative charge

densities of the D-strings and D3-branes-Ïn section 7.1.3.1 ç - 7r/2 - a.
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Next, applying T-duality in the y2 direction produces a solution of the form

1 2 2 2 3 2 29
2 = r;--:-;v{ -dt? (dx) + (dx) + (dx) + (dx

4) " (d i)2}
ds v 1 +.A. 1 ty" + 1 X . 2 + L.J y+..A. + 2 sm Q

i-5

196

•

A (3) X2 cos a sin ad (d 1 d 2 d 3 d 4)= X. 2 tA x A x - x /\ x
1 + 2sm a

+ l~ sin2 a sin3
() sin2

'Pl cos 'P2 dB A d'Pl A d'P3

A (1) = {1+ X2 sin
2

a _ 1}dt
1 +1:

BCa) = X2 cos a sin Q (d 3 d 4 _ d 1 d 2)
1 + X2 sin2 a x A x x 1\ x

3
2tjJ(al (1 + X)!

e = 2. (7.2.17)
(1 + X2 sin2 0:)

In this case setting X2 = 0 reduces the solution to that of a D-particle positioned at

YI and delocalized in the xi directions. Setting Xl = 0 reproduces a special case

of the D(4,2,2,O)-brane bound state given in (7.1.35). Here the two angles (,'if; of

equation (7.1.35) are related, and given in tenus of a as ( = -'if; = 'Ir/2 - a.

As a final example, we performT -duality along x3 in the two membrane solution

(7.2.15) with the resulting solution

2 _ ~{-dt?- + (1 + Xl + X2cos2 a) (dx l )2 + (1 + X2 sin2 a) (dx2 )2
ds -vl+X l+X

_ 2X2 cos Cl! sin a dx1dx2 + (dx
3)

2
+ (dx

4)2 +~ (d i)2}
1 + X 1 + Xl + X2 cos2 a: ~ y

1-5

Ac4) X2 cos Q sin a { 11}d d 1 d 3 d 4= - --+ tA x A x 1\ x
2 1 + X 1 + Xl + X2 cos2 a

{
1 - 2XI 1

+ + ---:-----~~
2XI 2 (1 + Xi + X2 cos2 a)

1 + X2} 2 3 4
- 2X1 (1 + X) dt A dx /\ dx A dx

+ if sin3 B sin2
'Pl COS 'P2 dx l A dB /\ d'Pl A d'P3

+ i~ cos Q sin3
() sin2

'Pl cos C{J2 ( cos a dx l

- sin Q dx2
) A d8 1\ d'Pl 1\ d'P2

A(2) = - X~ :";;a dt /1. { sin a (l + Xl) dx l + cos a dx2 }

B (b) X2 cos a sin Cl! d 3 d 4
==- x/\x

1 + Xl + X2 cos2 0:



e2t/>(b) = 1+X 2 . (7.2.18)
1 + Xl + X2 COS a

where we have aIso put YI = °here for simplicity. With X2 = 0, we have a single

D3-brfu,e filling (x2, x3, x 4) and delocalized in xl. With Xl = 0, one may verify that

the resultdescribes a D(3,1)-brane bound state parallel to (sin a xl +cos Q x2 , x3 , x 4)

with the Dl-branes lying in the fust of these directions. Again the relative charge

densities of the bound state are determined by the rotation angle.
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7.2.3. Discussion

In this section we presented a new low-energy solution (7.2.1) describing an arbitrary

number n of D-membranes oriented at angles with respect to one another. We were

aIso able to show that this configuration saturated the BPS bound hecause the relative

rotations between the membranes are in an SU(2) subgroup. As a result, the system

preserves one-quarter of the supersymmetries.

Our solutionprovides the most generaI supersymmetric configuration containing

(only) two D-membranes. One might think of extending the rotations considered

here to an arbitrary SU(2) rotation, but tlùs generalization would ooly change the

overall orientation of our solution. Following the analysis of [144], with three

D-membranes one might make SU(3) rotations while still preserving one-eighth

of the supersymmetries. TItis would extend the space in which the rotations act to

produce an effective seven-dimensional world volume. It would he interesting to

find the corresponding background field solution. For general n, one might consider

SU(n) rotations [144], however, in practice one would he limited to SU(4) by the

fact that the spacetime is ten-dimensional.

By applying T -duality to the membrane solution (7.2.1), we produced solutions

describing systems of higher dimensional D-branes oriented at angles, and aIso

configurations involving D(p+l,p-I )-brane bound states. Sînce supersymmetry is

preserved by T -duality, these other new solutions aIso preserve one-quarter of the

supersymmetries. By explicit construction, we have confirmed the existence of

a supersymmetric configuration including DO-branes and D(4,2,2,0)-bound states.

These supersymmetric solutions were conjectured in [154], where it was shown that

the interaction potential precisely vanished between these !Wo objects.



•

•

VIII
Conclusions

String theory has become an important area of research in recent years. As elo­

quently argued by Polchinslci [3] this is due in large part to string theory being the

only way we have yet found to soften the divergences of quantum gravity while re­

maining consistent with Lorentz invariance. This feature alone makes string theory

a worthy candidate for study.

The study of black holes in the context of string theory is important for two

reasons. First, the existence of long-standing theoretical questions such as the

microscopic interpretation of the entropy of a black hole, and the black hale infor­

mation paradox make it clear that a quantum theory of gravity is necessary. If string

theory pretends to be a quantum theory of gravity, then it should provide answers

where other approaches fail. As we have seen in chapter~ string theory has made

progress on this front.

The second reason for the study of black hales in string theory is that black

holes are part of the nonperturbative regime of the theory. It has become clear that

knowledge of the nonperturbative regime of string theory is necessary to describe

the microscopic entropy of a black hole, or to shed light on cosmological questions.

Thus black hales can aid us in discerning the nonperturbative structure of the theory

of strings.

During the past two years, progress in this area has advanced dramatically. With

this has come the detailing of the various dualities which relate different parts of

string theories to other parts, or different string theories to other string theories. This

in turn has led to the discovery that there are other objects than strings contained

in the theory of strings. Dirichlet branes CD-branes) provide certain states that
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are necessary to fiTI out multiplets of states which are related by the system of

duality symmetries of string theory, which otherwise wouId he incomplete. With

the inclusion of D-branes, the system of dualities points to the astonishing l yet

naturat conclusion that the four consistent string theories in ten dimensions are

different ways of describing a more fundamental eleven dimensional theory, which

has been dubbed M-theory.

The Dirichlet branes have also proven themselves very useful as probes into the

nonperturbative behavior of string theory, as it is the degrees of freedom of a bound

state of D-branes that we counted when we computed the microscopic entropy

of two different black holes in chapter VI. In the fust section of chapter IV, the

microscopie entropy of a five-dimensional extremal, supersymmetric and rotating

black hole was computed using the D-brane technique. This calculation extended

the validity of the then-nascent "D-brane technology" to the case of rotating black

holes in five dimensions.

The extension of titis technique to non-extremal, and thus non-supersymmetric

black hales was the subject of the second section of chapter VI. Again this research

represents the fust rime such a computation was done for the case ofnon-zero angular

momentum, and as such was an important test of the D-brane technique. The fact

that computations ofthis type are successful is substantial evidence that string theory

"knows" about the microscopie degrees of freedom underlying the thermodynamics

of black hales. Thus the theory of strings is making its fust successes as a candidate

for a quantum theory of gravity.

These computations aIso make it cIear that D-branes and their bound states and

black holes are cIosely related. It is then logical that to advance the state of the art of

one is ta do so for the other, and that by using them together we have powerful tools

for the study of nonperturbative string theory. This is not to mention that D-branes

are interesting objects in their own right.

In chapter VIT, the lmowledge of the properties of bound states of D-branes was

improved in two ways. In section one it was demonstrated that by means ofa simple

construction combining rotation with one of the duality symmetries of the theory of

strings, that ofT -duality, the set of known D-brane bound states can he augmented

•
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considerably. More specificaIly, it was shown that two D-branes, which differ in

dimension by two, for example a D-membrane and aD-point can form a bound

state which is supersymmetric. In the final bound state, the D-brane of smaller

dimension is effectively"delocalized" in its partner, i.e., one could think of it as

having "dissolved" in the other D-brane. Fonnerly, the search for supersymmetric

bound states of D-branes was biased toward those in which the dimension of the

constituents differed by four. The reason for this prejudice is that in this type

of bound state the D-branes can have arbitrary separation. Thus a large class of

D-brane bound states which had been previously overlooked were brought to the

attention of the string theory community.

The second part of chapter VII concerns a further extension in the set of known

low-energy background solutions which represent D-brane bound states. Here,

bound states which are composed of an arbitrary number of V-membranes which

intersect at arbitrary angles were constructed. These existence of these solutions

had heen demonstrated by other researchers [l44], however the explicit solution had

not been previously written down. It was aIso demonstrated that enlargement of the

collection of bound states could he carried out by applying the duality symmetries

of string theory ta the basic solution.
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S.l. Future directions

String theory has begun to deliver on its promise as a possible theory of quantum

gravity. However, it is apparent that there is much that remains to he done, even in

the area of the physics of black hales. The techniques of the D-brane technology

of entropy counting are still restricted ta only a tiny class of possible black hale

solutions, namely those black hales which are extrema! or very close to extremaI.

It is, however, possible ta make very good estimates of the entropy of non-extrema!

black hales [141].

For example, it may he possible ta exploit the symmetries of string theory ta

decode the microscopic physics ofnon-extrema! black hales by studying the ways in

which the symmetries alter the microscopic physics of the black holes for which the



counting works when the symmetries are applied. This will require more detailed

knowledge of how symmetries work, which in turn may require more information

about the eleven dimensionai M-theory, which as yet remains mysterious.

There exist also a large number of supersymmetric, and non-supersymmetric

black hales and D-brane bound states which remain to be discovered. Perhaps

with rime a pattern will emerge which will lead to fonnulation of a structure which

includes both of these as well as links between them. Conceivably, such a struc­

ture may reveal cIues as to the mechanism of supersymmetry breaking, leading to

progress on models of superstring grand unification.

It is clear that much has been learned about the theory of strings since the

importance of dualities and the nonperturbative regime of the theory have been

recognized. It is equally clear that we are onIy beginning to uncover its secrets.

•
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• AppendixA.

Notation and conventions

In this work we will he using the HEast-Coast" [36] metric diag(-1, l, l, ...) with

the number of 1's depending on the number of dimensions we are working in. We

use units where c = fi = 1. Note that the Newton constant GN =1 1, except in

chapter VI. Uppercase X, Y will denote the coordinate fields on the world-sheet

whereas lowercase x, y will denote coordinates in space-time. The representation

of the Dirac matrices on the world sheet is

~o_ 0 Qi)
with "f3 = ,0"(1. We also work with

1 = (0 i), i 0 (A.!)

(A.2)

•

For the Ricci tensor and Ricci scalar we have R pv = R ÀI-'Àv and R = gl-'VRI-'v.

String theory is a large subject, and many symbols must he used to denote

different physical quantities. This is made even more of a problem when string

dualities are used to related the same quantities from different string theories to

each other, and!or when one begins to compactify fields from one dimension to

another. Thus one is pressed to invent a notational scheme which is clear without

being cumbersome. In this work we will stress clarity at the expense ofoccasionally

having to use a few more symbols. A detailed list of symbols follows this section.

Let us begin by stating sorne general guidelines:

1. Indicies on the world-sheet are indicated by roman characters, a, b, etc.,

while indicies in space time are denoted I-L., v, and so on. Occasionally

we use a, (3, to indicate an index in the space of U(l) gauge fields of

the heterotic string, for example in (3.2.20).

2. The same symbol with a different type of index will in general denote

the same abject (or similar objects) in different circumstances. Thus

1]ab denotes the Minkowski metric on the world-sh~et, whereas 1]I-'V

denotes the Minkowski metric in spacetime.
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• 3. String-frame metrics will he denoted by uppercase letters, for example

G for the Type lIA supergravity, J for its type IIB counterpart, etc..

4. Einstein-frame metrics will be denoted by the lowercase counterparts

of the string frame metrics, i.e., for the type II theory 9 and j for type

IIA and type IIB respectively.

5. When there is the possibility for confusion, the dimensionality will he

placed on the abject in question as a subscript, for example <P6 for the

six-dimensional dilaton field.

6. In the case of compactifications, space-time indices will be arranged

according to:

6.1. The indices p., 1/, etc., are used for the target space, the

space ta which one is compactifying. Thus in the case of

compactifying from ten ta six dimensions 1-', LI, etc., will

mn from 0 to 5.

6.2. Hatted indices {i., v, are used for the space from which one

is compactL.rying. Thus for the example of compactifying

from ten ta six dimensions, {i., v, mn from 0 ta 9.

6.3. The compactified space will he indicated with indices, il,

v, etc., which evidently in our D == 10 to D = 6 example

mn from 6 ta 9.

7. n-form potentials and their n + I-form field strengilis will always he

denoted by A(n) and p(n+l) respectively in the Ramond-Ramond sec-

tor, whereas in the Neveu-Schwarz-Neveu-Schwarz sector the Kalb-

Ramond field will be B and its field strength H.

8. Kaluza-Klein gauge fields coming from compactification are denoted

Ag) when derived frOID the type nA string frame metric, A~~a) when

derived from the type IIA Kalb-Ramond field, and sa on. The field

strength of the A(1) is given the symbol S(2). The logical extension is

• that A~) denotes such a gauge field in the type ITB string theory.



•
List ofsymbols

8.1. We use the notation of forros wherever appropriate, for

exarnple H = dB, dx 1\ dy, etc..

8.2. Hodge dualization in the notation offorms is denoted by the

standard "Hodge star", while the result of this procedure is

denoted with a -, Le., we have p(D-n) = *p(n) .

8.3. When there is possibility of confusion we will use super­

scripts (Il, Ch) , (a) or (b) to denote to which string theory, type

1, heterotic, type IIA or type IIB, respectively a particular

field belongs. Of course the n of the Ramond-Ramond

fields make clear to which type II theory they belong.

9. It will, despite our best efforts to the contrary, sometimes occur that two

different quantities will be denoted by the same symbol. Care has been

taken ta ensure that the usages are sufficiently different that context is

more than adequate to distinguish them.

A.I. List of symboIs
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s
S

Ta, Tl

'In

al

1]J.'V

TJab

T,a

a±=r±a

X,Y

• 'lj;

a, b, c, etc.

Action

Entropy

Normalization constants for point particles, strings

Tension of n-brane

Inverse string tension or Regge slope

Minkowski metric in spacetime

Minkowski metric on world-volume

World-sheet coordinates

World-sheet light cone coordinates

World-sheet coordinate fields

World-sheet fermionic fields

World-sheet indices, tangent space indices
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• eab World-sheet metric

€ab World-sheet antisymmetric tensor

Tab World-sheet energy momentum tensor

{} World-sheet conformai factor

"'la Dirac matrices on world-volume, on tangent space

71-l Dirac matrices in spacetime

'R World-sheet Ricci scaIar
p -p Right- and left-moving bosonic oscillator componentsQn,Qn

JJ -JJ Neveu-Schwarz oscillator components"lr, "lr

~,i1ri Ramond oscillator components

N,N Right- and left-moving oscillator number

1l Hamiltonian

()a World-sheet superspace coordinate

X World-sheet superfield

1) Superspace covariant derivative

Ja World-sheet supercurrent

Lm,Lm Right- and left-moving Virasoro operators

Gr Neveu-Schwarz Vrrasoro operators

Fm Ramond VIrasoro operators

[ ]pb Classical Poisson brackets

SOen) Special orthogonal group

Eg Exceptional group

D Spacetime dimension

GN Newton constant

x; Supergravity coupling constant

x,y Space-time coordinates

R Ricci scalar, also radius of compact coordinates

G Type l string frame metric

ig Type l Einstein frame metric

• g Heterotic string frame metric

.? Heterotic Einstein frame metric
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• G T~eUAstrffigfrwneme~c

9 T~e UA Einstein frame metric

J T~eDBstrffigfrroneme~c

j T~e DB Einstein frame metric

</J('r.l T~e 1 dilaton field

</J(h) Heterotic dilaton field

</J(a) T~e UA dilaton field

</J(b) Type IIB dilaton field

c/J~ ?) Asymptotic value of dilaton

BCh) Heterotic Kalb-Ramond field

HCh) Heterotic NS-NS three-form field strength

B(a) T~e lIA Kalb-Ramond field
H(a) Type UA NS-NS three-form field strength

B(b) Type IIB Kalb-Ramond field

HCb) T~e IIB NS-NS three-form field strength

ACl) Type 1 Yang-Mills gauge field
]F<2) Type 1 Yang-Mills field strength

AC!) Heterotic Yang-Mills gauge field
p.2) Heterotic Yang-Mills field strength

A(n) Ramond-Ramond n-fonn potentials
pen) Ramond-Ramond n-fonn field strengths

X = ACO) Ramond-Ramond type llB scalar
A(l) Kaluza-Klein gauge field from metricG

(1) Kaluza-Klein gauge field from Kalb-Ramond fieldABCa.)

3(2) Field strengths of Kaluza-Klein gauge fields

eU' Kaluza-Klein scalar

G Kaluza-Klein moduli

VCl) D = 5 Hodge dual of Kalb-Ramond field

V (2) D = 5 Hodge dual of NS-NS field strength

• 1f;Ca) Type lIA gravitino
1f;(b) Type ITB gravitino
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•
A(a) Type IIA dilatino

A(b) TYPe lIB dilatino

Q Supersymmetry generators

qe, qm Electric, magnetic charge

J{ Hannonic functions in space transverse to p-branes

d World volume dimension of p-branes

d World volume dimension "dual" to d, d = D - d - 2

Cab Metric induced on Dp-brane world-volume

Bab AS tensor field induced on Dp-brane world volume

OH Angular velocity of black hale horizon

Xl-' Killing field normal to black hale horizon

'lj;1-' Axial Killing field

çJ.' Stationary Killing field

f) Surface gravity of black hale

{.Li Direction cosines

{3 Mass parameter for black holes

01' Area of event horizon of black hale

T Thermodynamic temperature

À Generic coupling constant

An Area of unit n-sphere

f? Cauchy surface

8J.'Z/ Lorentz transformation

KP Poincaré translation

:N,]\[ Total D-brane string gas occupation number

'J1k Occupation number atmomentum level k (right-moving)

sJtk Occupation number atmomentum level k Oeft-moving)

1:, Generators of Lorentz transformations

h Deviation of a metric from fiat space

OD Line element of sphere SD

• ea Vielbein1-'
i Spin connectionWJ.' j
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Affine connection

Covariant derivative (spacetime)

Conformai group generator
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(A.2.1)

A.2. Relation to supergravity conventions

In this section we give the relationship between the conventions used here and

those commonly used by the supergravity community. For this purpose, we take the

conventions of [56] as indicative of those in use by the supergravity community.

To begin, there are general differences such as the metric signature. As stated,

here we use the "East coast" metric diag(-, +, +, ...) whereas in supergravity the

"West coast" metric diag(+, -, -, ...) is still, unfortunately, popular. This change

brings in a change of sign for each index contraction. There is aIso an overall sign

difference of the action.

Another difference of a general nature concems the definition of field strengths.

In the notation of [56], the field strength of a rank-n antisymmetric tensor potential

c(n) is given by
âc(n) =a CCn)

~l ~2···~n+d

= n: 1 (81'1 C1~~··l'n+l + CYCliC).

When written in the notation of forros, as used here, a factor of ~! is absorbed into

the definition of the foOll, thus giving

dC- Cn) - a c-(n) 1·
- ~l /-S2•••P.n+L + cyc lC. (A.2.2)

•

Similar consideration will apply to antisymmetric products, i.e., in the notation

of [56] we write the product of a rank-n antisymmetric tensor with another of rank

mas
c(n)c(rn) =CCn) cCrn)

~L ···/-'n ~n+l···J.'n+m]

_ n!m! (CCn) c(rn) . )
- (n + m)! J.1.L ···~n ~n+l···J.'n+m + cyclic

whereas with the form. notation used here we have

ë Cn) /\ ë(m) = CCn) c(rn) + cyclic
~l···J.'n /ln+l···P.n+m •



In the above note that "cyclic" includes considerations of the change in sign due

to the number of permutations between canonical order and the cyclic order in

question.

With such generalities aside, we present the mapping between our fields and

those of [56]. Here "Superstring" refers to our notation, while "Supergravity" refers

to that of [56]. AIl of the following refer to ten dimensional fields.
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Description

string frame metrict

dilaton

•

Superstring Supergravity

G 9
if; 4>

B ÊCI) Kalb-Ramond field

H 31lCI) NS-NS field strength

X l RRscalar

A(l) -Â(l) RR one-form. potential

F(2) PCl) RR two-fonu field strength

A (2) Ê(2) RR two-fonu potential

F(3) 31l(2) RR three-form field strength

A(3) ~ê RR three-form potential

F(4) 6G RR four-fonu field strength

A(4) 4Ê RR four-fonu potential

F(5) 20P RR five-form field strength

Note that the unconventional normalization of the five-fonn field strength F(5),

as mentioned in chapter n is duly refiected in the last line of the above.

t Thus there is no change in nonnalization, only the change in metric signature

mentioned previously.
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Sorne useful mathematicaI tools

Here we group together sorne mathematical relations which are useful when deriving

equations of motion for string theories, and of course in gravitation theory.

B.1. Calculus of variations

The calculation of the supergravity equations of motion is made simpler with the

use of

5...) 9 = ~yCg gJJv5gloW = -~yCg gJJvl5"g~w

5(gJJV) = - gJJagJJI3 15"gal3

1
5f'JJvp = 2 (\lpogZ/L + \lvog/J. - \lJJogvp)

oRJJvp(j 0:=\l [p. \lUogv]p - \7[1-'1 \7po9Iv](j

oR =\lp.\lvogJJv - \lJJ \7JJ ogv
V

- Rp.vogJJv

Where square brackets indicate antisymmetrization, that is

CB.l.la)

CB.l.Ib)

CB.l.le)

CB.l.ld)

CB.l.Ie)

(B. 1.2)

•

and the vertical bars 1 1 indicate that the indicies they enclose are to he excluded

from the antisymmetrization.

In varying an action, we need to remove the derivatives of the variations. Doing

this, we perform integrations by parts and we can use the following relations:

JdDxv' gF(</J)V2(g/wog!'V) = JdDxv' gg!'v(V2F(</J))og!'v (B.1.3a)

+ JdDxyCgVP [F(</J)g!'vVPog!'v - g!'vO[rVpF(</J)] (B.1.3b)

JdDxv' gF(</J)V!,V vOgi'V = JdD
X v' g [ÔI'ôvF(</J) - r p!'vôpF(</J)] 0g!'v

+ JdDxv' gV!, [F(</J)'ilvOg!'v - V vF(</J)0g!'V] (B.1.3e)

where we have kept the boundary terms as total derivatives.
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For conformally related spacetimes gJJv == eCt.tPGJJv , where we denote the covariant

derivative with respect to the metric G by \1 and that with respect to the conformally

related metric 9 by Vwe have,

•
Miscellaneous useful formulas

B.2. Conformally related spacetimes

a a 2
RJJveg) = RpveG) - 2(D - 2)\1JJ \1vc/J - 2 Gpv\J 4>

a2 a 2

+ "4(D - 2)\1J.'4>\1 veP - 4(D - 2)GJ.'v(\14»2

RCg) == e-Ct.cP { R(G) - a(D - 1)\72</>

Q2 }- 4(D - l)(D - 2)(V'c/Jl

CV4»2 = e-CtrP (\1</»

211

(B.2.la)

(B.2.lb)

(B.2.le)

where D is the dimension of the spacetime.

For superstring theories in D dimensions, the conformai transformation from

the string frame to the Einstein frame is

- -4</J/(D-2) G
9pv - e pv·

B.3. Miscellaneous useful formulas

(B.2.2)

•

Here we gather a few formulas which are sometimes useful in the course of

computations.

r~p = 8v (logN) (B.3.1a)

Rpv = J=u8",hFgr~v) - 8p8v (logN) - IPpre", CB.3.1b)

\7pA(I)p = ./ /pCHA(I)P) CB.3.Ie)

"VILP(2)pv == ~81L(HP(2)PV) (B.3.1d)
,.. v -g ,..
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• AppendixC.

Penrose diagrams

The most fundamental thing concerning two separated space-time points is their

causal relation. 1s point a inside, outside or exactly on the future or past light cone

ofpoint b. When it cornes to discussing black holes, causal structure becomes rather

subtle and particularly important. Penrose diagrams [51,96,113,159] are a very

useful aid to the graphical depiction of the causal structure of spacetime. Here we

introduce the ideas involved.

We begin with Minkowski space in spherical polar coordinates. The line element

is written
ds2

= - dt?- + dr2 + r 2(dfP + sin2 Bdcf/)

= - dt?- + dr2 + r2d.Q~

and therefore at each point (r, t) where -00 < t < 00 and 0 < r < 00 there is a

two-sphere 8 2 of area 47rr2• We then introduce light-cone coordinates

u=t-r

in terms of which the line element is written

v = t+r (C.2)

2 1 2 2ds = -du dv + -Cv - u) dQ,2
4

(C.3)

•

The relation between the original coordinates r and t and the light cone co­

ordintes in various asymptotic regions of spacetime is needed to create Penrose

diagrams. These relationships are expressed in Fig. C.I. Indicated are

• i+ = {t --+ 00, r fixed } = future timelike infinity,

• i- = {t --+ -00, r fixed } = past timelike infinity,

• iO = {r --+ 00, t fixed } = spacelike infinity,

• 1+ = {v -r 00, u fixed } = future null infinity,

• 1- =: {u ~ -00, v fixed } = past null infinity.
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Penrose diagrams

t

Figure C.l: Relation hetween Minkowski spherical polar coordi­
nates and the light cane coordinates.
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Past and future null infinity (along the light cane) are very useful concepts. For

example the ADM formula used ta compute the mass of p-branes in chapter m
is based on the deviation of the metric frOID flat space as large distances from the

abject. In the case of an abject which is emitting gravitational radiation, if a pulse

is emitted at time t, then we must wait a period of time t > r for the pulse to pass

before we can make a measurement of the object after the pulse. As r --1- 00 we

make such measurements at 1+.

However, in the light cone coordinates 1+ is at an infinite value of v. We would,

however, like ta he able to draw a diagram on a finite sheet of paper. We therefore

introduce a conformai factor w2 given by

(C.4)

and coordinates 7./J and ( related ta the lightcone coordinates by the transformations

•

'Ij; = tan-1 v + tan-1 u

ç - tan-1 tan-1- v- u

and in these coordinates the Minkowski line element takes on the appearance

(C.S)

(C.6)



where the new coordinates 'if; and ç then range over the half-diamond ç± 'if; < 1r,

ç> o.•
Penrose diagrams

-'Ir < 'if; + ç < 1r

-'Ir < 'if; - ç < 'Ir
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(c.?)

0$(

Equation (C.6) is simply the natural Lorentz metric in spherical polar coordinates

8 3 ® IR. We can think of it as an unphysical pseudometric 9p.v which is related to

the physical metric by

- 2
gp.v = w gp.v (C.S)

•

where w2, the confonnal factor, may or may not he infinite. The fact that 9pv is

conformal to the physical metric means that the causal relation hetween two points

is the same in both of the metrics, due to the angle-preserving nature of a conformal

transformation. The pseudometric is finite at values of 'if;, ( that correspond ta the

asymptotic regions of Minkowski space, thus the asymptotic points are mapped to

finite ones.

Further, statements about the asymptotic behavior of the physical metric can

be translated into statements about the behavior of the pseudometric at the points

iO, etc., as long as the physical metric under discussion is asymptotically fiat. The

conditions for asymptotic fiatness of acurved space-time are complicated [4,51] but

they essentially mean that we can perform the conformal mapping of infinity to a

finite point as was just done.

A Penrose diagram of Minkowski space is given in Fig. C.2. The upper and

lower triangles represent the future and past light cones, each point is actually a

two-sphere.
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(

Figure C.2: Minkowski space represented as a Penrose diagram

C.l. A black hole example
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Let us move on to a more complicated example, that of the Schwarzschild black

hale. The Penrose diagram. for the maximal analytic extension of the Schwarzschild

metric was given in Fig. 5.1.2 and is reproduced in Fig. C.3 for the convenience of

the reader. What is meant by maximal analytic extension? Our discussion follows

that of [113]. Consider the Schwarzschild metric, which we write (putting GN = 1

in this section)

(G.9)

•

where M is the gravitational mass as measured from infinity, or ADM mass. It

can be shown that any spherically symmetric solution of the vacuum Einstein equa­

tion is locally isometric to the Schwarzschild metric. One nonnally regards the

Schwarzschild metric as being the solution ontside sorne spherical body of radius

ra > 2M, while the metric inside the body has a different form determined by the

energy-momentum tensor of the matter of which the body is composed.

The Schwarzschild metric is singular when r = 0, and when r = 2M (as weIl as

possessing the standard trivial singularities of spherical polar coordinates at () =- 0



and () = 1r). One must therefore eut r = 0 and r = 2M out of the manifold, which

divides the spacetime into !Wo disconnected regions, defined by 0 < r < 2M and

2M < r < 00. If we wish our spacetime to he connected, Le., to he able to go

eveI'Y"vhere, in principle, in the spacetime in starting from anywhere, then we must

choose either one, or the other, but not both. The obvious choice is to take the region

with r > 2M. Thus, (C.9) corresponds to the region l of Fig. C.3.

The question posed is then "'is this manifold with Schwarzschild metric (C.9)

for r > 2M extendible?" That is, can we embed this manifold into a larger manifold

with a new metric which coincides with (C.9) for r > 2M? The obvious place to

look for such an extension is where r -+ 2M. To make the extension, consider

defining a new coordinate r as

r=J d~M =r+2Mlog(r-2M). (C.10)
1--r

•
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Then we take our light-cone coordinates in terms of r,

u = t - f, v =t+f

•

and we can write the metric (C.9) in the fonn

ds2 = - (1 - 2~) dv 2 + 2dv dr + r 2(drP + sin2 (Jdcp2). (C.11)

This new metric is non-singular on the larger manifold for which 0 < r < 00, and

when 2M < r < 00 it is isometric ta the 2M < r < 00 region of the original

Schwarzschild metric.

There is, hawever, the feature of CC.11) is not time symmetric. The surface

r = 2M, upan which t -+ 00 acts as a one-way membrane. Future-directed timelike

and null curves can cross the surface r = 2M only from the outside Cr > 2M) ta the

inside (r < 2M). Past-directed timelike or null curves in the outside region cannat

cross into the inside. AIso, the future directed timelike or null curve which crosses

the surface at r = 2M approaches r = 0 within a finite affine distance. Thus the

extension ta (C.ll) is represented by regions l and III in Fig. C.3.

If one uses the coordinate u rather than v, then the metric takes the fonn

(C.12)
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Figure C.3: Penrose diagram of the maximal analytic extension of
the Schwarzschild black hale.

which is again non-singular for 0 < r < 00 and isometric to (C.9) in the region

r > 2M. For this extension, however, the direction of time is reversed. In this case

only past-directed timelike or n1111 curves may pass through the r = 2M surface

from the outside to the inside. This extension is represented by regions l and IV of

Fig. C.3.

It is possible to make both extensions simultaneously. One can find a stilliarger

manifold in which to embed the manifolds defined by (C.12) and (C.l1) such that

they coincide with each other and with (C.9) in the region r > 2M. The construction

of this manifold was carried out by Kruskal [160] and in terms of both light-cone

coordinates the metric takes the forro

ds2 = - ( 1- 2~) dudv + r 2(d02 + sin2 OdVi ),

where r is given by
1

r + 2Mlog(r - 2M) -= l(v - u).

(C.13)

(C.14)

It is possible to go further still. If we apply the most general coordinate

transformation under which the Kruskal metric (C.13) retains its form, we find

ds2 = _ (1 _2M) du dv du'dv' + r2(d(}2 + sin2 (}dcp2) (C.IS)
r du' dv'

where u' = u'(u) and v' = v'Cv) are arbitrary differentiable functions. Ifwe choose

u' and v' as• 1 1 ,
X = l(v - u),

1
T = -CUl + v')

2
(C.16)
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then the metric has the final form

Ifwe then choose
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(C.17)

v' =em (C.18)

then r is determined implicitly by

2 2 r
'1 - X = (2M - r) e!1VI

and K is found to he
2 16M2 -r

K = em .
r

(C.19)

(C.20)

•

Here regions l through IV refer to Fig. C.3. The metric (C.17) for x > ITI is

represented by region l, isometric to the Schwarzschild metric for r > 2M. The

region defined by x > -T is represented by regions l and III, and is isometric to

the extension (C.11). Similary the region defined by x > T is isometric to (C.12),

corresponding to regions l and IV. There is yet another region, that defined by

x < -/TI, which is represented by region II. This is again isometric with the exterior

Schwarzschild metric (r > 2M), and can be regarded as another asymptotically fiat

universe lying on the far side of the Schwarzschild "throat" (see figure Fig. 5.1.1 of

chapter V).

There are no timelike or null curves which travel from region 1 ta region II.

AlI such curves which cross the surface r = 2M approach the singularity at r = 0

where they terminate. Thus we have found the maximal analytic extension of the

Schwarzschild metric. It is clear that the same sorts of analyses can be made in

the case of other exact solutions of bath the Einstein equation and the string theory

equations of motion.
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