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MICROSTRESS DISTRIBUTIONS IN SINGLE CRYSTALS
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A mothod to detevmine the microstress distributions in
crystals is presented in this thesis, The dislocation segments
embedded inside a single :rystai are considered the main. mechanism
for obtaining the necessary knowledge to describe the microstress
distribution in this crystai system, Utilizing a iine-to%sion model,
a modified expression to describe the stress field acting on a dis-
Tocation 1ine in terms of its geometrical parameters is obtained,

In tBis analytical derivation, the increase in energy due to inter-
actions between a particular dislocation line and an infinite number
of surrounded dislocations is considered.

AA experimental study utilizing an x-ray Lang Scannind'
technique has been carried ouJ to obtain the dislocation distribution
patiern in a Silicon single crystal, Fram the geometrical parameters’
measured from the experimentally obtained pattern, the stress iioid
acting on each individual dislocation, in‘thi:pattom. is calculated.
This leads to the descriz:ion of the stress distributions inside @

single crystal via the analytic expressions of the present study.
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Cette thise développe une mithode d'évaluer Vet

distributions de micro-contrainte 3 1'intérieur d'un cristal,

(
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d'un seul cristal contiennent toute )'information nécessaire

On considiresque les segments de dislocation a 1'intérieur

pour en deduire la distribution de 'mcro,cont'mnt'e du s:p‘tﬁig\ )
cristallin . En utilisant un moddle de tension lin&nirﬁ) on
‘obtient ainsi une nouvelle expression analytique pour d(dﬁn

le champs de contrainte imposé sur une ligne de dislocn.iov;mn
fonction de ses paramtresfgémwiqws. Cette expression

indut 'énergie additionnelle due aux 1ntdractio:§s‘fa§ntn une

ligne de dislocation ot' un nombre infini de dig}‘oca:‘tions

voisines, j ‘ [

Cejtte thdse présente aussi une étude expérimentale

qui se sert de la méthode de balayage de rayons x de Lang afin
d'obtenir la distribution des dislocations d 1'intérieur d'un

seul cristal de siHciwr. Les paramdtres qeomatr{ques masurés
_au laboratoire permettent ainsi de calculer le champs de contrainte
imposé sur chaque dislocation individvelle. Ce dernier calcul

est enfin utilisé avec les expressions analytiques developples
dans la thise pour obtenir les distridbutions de contrainte

1'intérieur d'un seul cristal. \ .
N e ’

~—
-




R
&ﬁm%l s

{{i=
ACKNOWL EQGEMENT

The author wishes to express his sincere gratitude/to
his research supervisor, Professor J.W. Provan, without whose
guidance «and encouragement the cm\ct!onjf the presert work
would not have been possible. The author wishes to express his
deep appreciation to Professor D.R. Axelrad for his help and use-
ful discussions on several occasions‘dur‘ino thg course of this .
work, The author wishes aiso to acknowledge the help of Or. S,
Basu and Nr. G, ’{Thount. '

The author wishes ta express his sincere thanks to
Mr. B, Piwczyk and Dr. R.R. Robinson for giving him the opportunity
to complete the experimental course of this study in the X-Ray
Diffraction Lab of Bﬂ\-Northc‘rn Rosuﬁ:h tn Ottawa. MNr, Piwcayk
gave every cooperation to the author and the success of the joint
ventuuz is largely du} to his willingness to qive of his valuable
time and experience. -

Sincere thanks are due to Mr. Paul Thibault for prepiring
the French version of the abstract and to Ms. Sandi Diamond for
typing this m‘uQ. -

This project was supported by a Nationdl Resedrch Counci)

' of Canada grant no. A 7525. This financial help is gratefully

acknowledged. o ) o




ABSTRACT
ACKNOWLEDGEMENT

TABLE OF CONTENTS
LIST OF NOTATIONS
LIST OF TABLES _
LIST-OF FIGURES

Chapter 1

Chapter 11

Chapter 111 /
*

-iv.

TABLE OF CONTENTS

INTRQOCTION

1 The Development of Dislocation
- Theory

AN Y\ AT '
NICRUSTREDY

I1.1  Introduction

11.2 Interaction of Dislocations !
/ with an Applied Stress in an
Antsotropic Crystal (

11.3 The Self Energy of a Dislocation
Line .

11.4 Interaction Ene Between Two
Straight Dislocations

1.5 The Ene Increase Caused by
the Bow-Out - :

11.6 The Gereral Equation

M(
I,V Decoration Techaiques:
I15,2 Transmissioh Electron Nicroscopy

L]

16

8

2l

)
L3




"v\q’,“ . ) P e, ,
SERIRE R0 ) P
[} .
~v- \ .
Chapter 111 (continued) Page ’
Ly Infrared Technique 2}
1.4 X-R?y Diffraction 23
u LS The X-Ray Oynamical Theory 25 ‘ ' '
— and Contrast of Dislocation “
Images . . g
Chapter IV THE EXPERINENTAL INVESTIGATIONS N
Iv.\ Geometry of Topographical \)
Technique and [mage Resolu- 8
. tion .
\ ) Iv.2 StVicon Crystal; Description AL
‘ and Cleaning
Iv.3 Processing of [1ford Nuclear 36
, . Plates
Chapter ¥ MICROSTRESS DISTRIBUTIONS IN A SINGLE wo
. V. The Obsarv&uon and Histo- 37
. grams of the Dislocation
3 ;ngths. Ly and Their Radii ‘
urvature, R B
' V.2 Microstress Distributions 3R .
. V. Possible Gaussian Distridbu- 39
et ’ tions
) \ - ,
V.4 Discussion of Resulti 4
3 \ \ N &
| Chapter VI CONGLUDING REMARKS “
\
Vit Summiry and Conclusions Q
st 1R Proposals for Further Re- 4
search _
BIBLIOGRARHY . o
LHUSTMT!ONS ) L
’ {
APPENDIX | BASIC CONCEPTS OF NICNONECHANICS % /

¢ k)
/ LY
R " /
’ o o ) _ )
,
.




APPENDIX 11

APPENDIX TIH

APPENDIX IV
APPENDIX V

‘v‘-

THE EFFECT OF DISLOCATIONS NE
LINEAR RESPONSE OF ELASTIC WETERO-
GENEOUS SOLIDS

ENERGY OF INTERACTION BETWEEN T™O
DISLOCATION LOOP

SELF-STRESS OF A CURVED DISLOCATION
CONPUTER PROGRANS ’

4




. - 3 * AT T T
R AR N BT

80

dhr)
‘E(u)

AE

L

{n)

k!
Kn -
~0

!0(\ and !03

Y ad L,

B . P Ttr‘:":“"*:"r’?‘;% = T
A s el R

~vitl- |
LIST. QF NOTATIONS |

Area wrmundod'by Q di\hbcmon 100p

/Bumn vector of 4 dislocation segment ‘.
Distance between two components of the R-ray
diffracted beam.

¥

»
Interplanar spacing. o

Total dislocation energy per unit lYength.
Dislocation self energy per unit length
Dislocation energy increase caused by, the bow 'out
mechanism

Exponential function

A third sensor in a nonorthogonal coordinate system
and is perpendicular to another two sensors A and
£y

Firce per unit length on the disiocation line
Reciprocal lattice vector

X-ray diffracted wave vector

1-ry wWave vacuum vector

Components of X-ray wave vector in the hcident

and diffracted beam direction

Dislocation segment length '

t-ray collimated slits

Total dislocation lengths. ‘nw%ct with a particular
dislocation segmnt, mw

Ovder of L-ray nﬂoctio:. it may take\values:

T2, 3-n

| ' .




- Wave length of the R-ray beam
© The-shear wodulus }

Distances Lietween two dislocation loops and m
arbitrary origin \

T'hc difference between r\* and !

Virtual change to an arbitrary point on the 'dh-

location Vine and ceuses, for a point (X,Y) u.dh-

placement (8k{n), 8¥(n))

Arc length along the dislocation segment

Unit vector tangent to a dislocation line at a
point n

Tensor equal to' m-:—gyi-

Vertical resolution of a d!s]bcaﬂo?\“ image
X=-ray focal spot width

f

Mork done on a dislocation line due to its self
energy

Horizontal resolution of a dislocation image

A dislocation core pirameter

A second order orientation tensor

" Kronecker delta

f
A parameter chosen along a dislocation segment
and {t increases in the positive sense of the

dislocation

The Poission's ratie
Dislocation line direction

-




n
“d
)
N
U(‘“

LW
\3‘(2 and “ya
\,'z
Y
(\ s )

'
N\

- A sentor in & nonorthogona) doordinate system

A constant
To remove the divergence of equation (2.18), it is
&onuhud that two elements, of the dislocations,
dl, and dl, do not interact when they are closer
than distance p

Dislocation density

Denotes ‘s&mgiov\"

A strets tensor

A stress tensor evaluated on a dislocation segment
a due to the presence of a dislocation segment
Stress tensors evaluated in x and y direction and
perpendicular to 2 direction of external coordinate
system

A stress tensor evaluated in ¥ direction and per-
pendicular to I direction of local coordinate
system )

Gradient operator

Denotes a first-order tensor
Denotas & second-order teasor

b
Crystal lattice plame

Ay

P




x
»

o 2]
P r"!",, N P .
L A 2 L, T

Table
30

4.1

-X-

LIST OF_TABILS

.

Distinguishing Characteristics of Diffraction
Topography Methods for Mapping Individual
Dislocations

Crystallographic Orientations vs. Diffraction
Angles for Silicon and Selected Targets

Table of Dislocation Segment's Lengths Shown
in Fig. 5.1 )

Table of Dis\ocatiog\chment's Radii Shown
in Fig. 5.1

Table of the Values of the Microstresses
in x and y Directions of the External Co-
ordinate System Y

. - Mmoo

Page

54

55

56

58

60




LIST OF FIGURES

/\
Atomic configuration surrounding an edge
dislocation.

Position of atoms during the pas§age of a
dislocation.

Scrow disloca}ion.

Dislocation configuration in a new and un-
strained crystal.

Frank-Read source mechanism.
Dislocation's bow-out in a slip plane.

Two dislocation loop§ within the same
elastic continuum,

Coordinate system for interacted dis-
locations x, x, and y,ys.

Bow-out configuration of an edge dis-
location AB.

x-rig diffraction topography methods.

The two main directions of polarization
for X-ray beam.

X-ray Bragg diffraction.

Ewald sphere construction for one active
lattice spot, kinematical diffraction
donditions.

Diffraction geometry of Laue case,

Ewald sphere construction for one active
reciprocal lattice spot, dynamical dif-
fraction conditions, polarization state
pl. The distances QH and'Q0 are greatly
underexaggerated.

Page

62
63

64
65

66
67
68

69
70

N
12

73

73

74
75

P




Y

v i > ™ ot
AR TR
‘,»’jn"{». r Y

AN “-::#. [
N o A

Figure

3.7

4.5a
4.5b

Sckematic illustration showing relative
contribution of direct and dynamical
positions of incident beam.

Geometry of dislocation image formulation,

Scanning transmission Lang topograph geo-
metry .,

Diagram to illustrate calculation of the '
minimum distance 80y, of M« . and

images on the film, ?
Diamond lattice, '

Two face centered cubes combined to form
a diamond lattice.

X-ray Lang Camera arrangement.

The tensile apparatus and X-ray film position.
Stress apparatus details.

Dislocation pattern, 80X, obtained from
Silicon single crystal (0.06 nm x 8.5 mm),
using X-ray Lang camera, under external

stress 20 kg/cm’. .

Histogram of the dislocation segment'% lengths
and its fitted gaussian distributions.

Histogram of the dislocation segment's radii
and its fitted gaussian distribation.

Histogram of microstresses o  and its fitted
gaussian distribution. .

Histogram of microstresses %2 and its fitted
gaussian distribution. y

Schematic of a structured wmedium - the three
measuring scales. °

Idealized model for displacement kinematics
of ath crystal.

Idealized grain boundary displacement kine-
matics.

Page
76

77
18

79

81

82 -
83
84

87
a8

89




Figure

1.4
1.5

Symetric tilt copper boundary.

General description of a bicrystal showing
the fine degrees of freedom.



¢
a5,

Chapte: 1

<

INTRODUCTION

A wmore complete and realistic understanding of the stress-
deformation relations pertaining to polycrystalline solids remains
a major objective of the mechanics of deformable bodies. Classical
continuum mechanics and its extensions of high order, try to describe
these relations by utilizing mathematical models based on theﬂpbser-
vations of the material in bulk and employing the simple.assum&tion
that the material is locally homogeneous. This classical approach is
a macroscopic description of the material behaviour which ignores the
non-detemministic influence of the microstructure of real materials
and consequently is unable to include the properties of this micro-
structure within its mathematical formulation. These theories have
been accepted as an approximation to the response of materials, but
they fail, to a certain extent, to close the gap between their theo-
retical predictions and existing experimental evidences.

To overcome the limitations of continuum mechanical theories,
Axelrad (1-3) and Axelrad and Provan [4-6] have formulated a theary
within which they accept polycrystalline materials as composed of
real crystals. ‘ln this theory, the mechanical response of a poly-
crystal system is first formulated at a microstructural level by
considering that -the relevant quantities, characterizing the material
system at this level, such as crystal orientation, size, position and
shape of crystals, are random by nature, A transition is then obtained
to the macrolevel by the use of certain concepts derived from statisti-

cal mechanics and the mathematical theory of probability.




This way of solution has two main objectives; first, to obtain
a microscopic stress distribution leading to the predictions of local
phenomenon such as the initiation and development of cracﬁs and, second-
ly, to relate the observable macroscopic response behaviour of the poly-
crystalline system to the microstructural characteristics of such a
system. °

The aim of the present study is to furnish the probabilistic
micromechanics theory with a method of determining the microstress
distribution inside a single crystal. In this thesis, the éislocation
segments embedded inside the single crystal are considered the main
mechanism for obtaining the necessary knowledge to describe the micro-
stress distribution in this crystaf system.

In order to clarify this approach, a brief review of the
development of dislocation theory is discussed next, while the micro-
mechanical concepts for the case of polycrystalline solid is given in

appendix [ of this thesis.

I The Development of Dislocation Theory

Crystalline solids deform by means/of translational slip
in a particular crystallographic plane (slip plane) along a particular
cry;talloqraphic direction (slip directjon) within that plane. The
idea of slip seems to suggest that planes of atoms slide as rigid
rbodies across each ogher. However, this would mean that the shear
stress on the slip planc is uniformly distributed and that the atoms
in the slip ?lane can move simultanecusly. Thus the material in this

s1ip plane becomes amorphous as all the coherence between the atoms
1 .




on either side of the plane is ées{royed. It is havd to accebt that
the §hear stress on the slip plane can be uyniformly distributed par-
ticularly in the presence of thermal vibrations of atoms themselves.
Furthermore, the production of an amorppous layer is analogous to
the process of melting, where crystallinity is lost, which involves
encrgies much hjgher than that observed during the slip process.
Obreimov and Shubnikay 7] » who analyzed the plastic de-\
formation of NaCl in crystals in polarized light, showed that slip®
develops progressively. After this it became clear that translational
slip cannot be reduced to simultaneous slipping of crystalline blocks
and must necessarily be a consecutive slip. The concept of cqnsecutive,
slip succeeded replacing the simultaneous slip idea and the same final
result is achieved, but 1he consecutive slip gencrates a certalin inter-
mediate stage where there is discontinuity within the slip band with
the lattice in register on either side. This discontinuity is a
boundary separating éhe slipped and unslipped areas of the crystal
and it is identified as a dislocation line.
The mathematical theory of dislocations in a elastic continuum

(9]

was first systematically studied by Voltera (8 and Weingarten

After a preliminary work by Prandtl (%) ang ventinger (111 | gis-
lTocations, were applied to the explanation of the plastic deformation
of a single crystal by Orowgh. Polanyi and Taylor, indepe&dently.
They considered the dislocations as imperfections in crystals and ex-
plained why the observed yield stresses of crystals are much lower
than the theoretical values calculated from atomic theory assuming

the perfect lattice state. Orowan Q2] showed that the boundary of

-
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a limited region forms a closed ring of dislocations if this region
of one atomic plane slips along its neighbouring plane for a distance
equal the parameter of the transition of the lattice. Further slip
can extend along the slip plane by gradual widening of the regions

of local slip which is equivalent to the displacement of the dis-
location in the slip plane. Polanyi 03] investigated the edge
dislocation, fig. 1.1, and noted that the displacement of the dis-
Yocation leads to slip by an amount equal to the parameter of thé
lattice. He attempted to calculate the stress pecessary for the

(4]

displacement ot dislocations. Taylor considered the atomic
plane next to the dislocation as not remaining straight but con-
tinues to bend around the edge of the extra half plane which forms
the dislocation line. He showed that translational slip for a length
equal to the parameter of the latticércan occur &ue to the motion

of positive, as well as negative, edge dislocations, fig. 1.2.

The concept of non-straight dislocation and screw dislocation, fig,
1.3, was introduced by Burgers (18] who expressed also the elastic
field caused by a dislocatien loop by a surface integral of a known
function over the slip surface bounded by the loop, using the analogy
of Vortex lines in the theory of hydrodynamics.

Thehattention after that was paid to the effect of crystal
structure on the dislocatioﬁ properties. Examples of the results
achieved in this way were the introduction of partial\pislocations.
by Heideareich and/Schockley (6] and by Frank a7 , the concept of
dislocation splitting and the recognition of the importance of the
stacking fault energies. Seeger's theory of work hardening“due to

\J
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dislocation accunulation in the crystal appeared as a result of the
work of Mott (19] » mechanical and x-ray studies and the investigations
of slip linc pattern by optical and electron microscopy. Peach and
Koehler (20] transformed the Burgers surface integral into a line
integral aéd defined the force acting on a line element of disloca-
tions.

Turning our attention to attempts to describe the gvera\l
response of a crystalline material, Nye (21] introduced the density
tensor of dislocations which was utilized later by Kondo (22] ,

Bilby (23] , and Kroner (24] » independently. They found that the
dens({y tensor of dislocations cany be written as the rotation of
plastic distortion. Kroner (2s) developed the theory of a continuous
distribution of dislocations in connection with the stress function of
elasticity. The relation between the ipcompability of strains and

the Burgers vector due to a continuous distribution of ’tationary

(261

dislocations have been studied by Moriguchi and Kondo Mura

( 2?'32 ]commencea his theory of continuous distribution of moving
dislocations by deriving tﬂe deformation due to a single dislocation,
then he extended this expression to the deformation field due to a
continuous distribution of dislocations. From his theofy. Mura
derived Von Mises yield criterion and the Prandtl-Reuss relation
between stress and plastic strain rate for isotropic and anisotropic
elasto-plastic material and he derived the velocity tensor and density

tensor of continuous distributions of dislocations considering the

dynamic case.

by
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Eshelby contributed markedly in the development of the
mathematical theory of dislocations. He found the solution of an
oscillating screw dislocation (33] » moving dislocations [34] ’
and dislocations in anisotropic media (35] .

Probabjlistic approaches include those by Nilson, Lagneborg
- [36]

and Sandstrom » who measured the mobile dislocation density.

They considered that the increase in the stress inside the crystalline
material is ‘a direct measure of the effective stress where the average
dislocation density is obtained from Orowan equation for'plastic flow.

(1-6]

Utilizing the concepts of micromechanics theory , which accepts
the existence of imperfections inside the crystals within its mathema-
tical formulations, Axelrad, Provan and el Helbawi (37] have developed
an analytical model to evaluate the effect of internal dislocations in
each crystal on the linear response of elastic heteroge?eous solids
(see appendix 11).

Thus it can easily be realized, from this review, that the
study of the mechanical properties of crystalline bodies is reduced
essentially to thg,study of the defect structure of dislocations and
the factors controlling their generation and dynamics.

Particular to the approach taken in this thesis, the analysis
of thg distributions of stress inside the crystal, stress on and due
to isolated or determinately positioned dislocation have generally
been investigated by Nabarro [3?3 » Indenbom (39] and Li {40] . How-
ever, in real crystals, the dislocations are positioned quite randomly

so that the local density and the positioning of dislocations change

in a random manner from one volume of the crystal to another. Such
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a nonuniformity inevitably leads to the nonuniformity of the stress

field inside the crystal which in turn can exert a consideradble in-
fluence on the motion and the piﬁning of dislocations, on the inter-
action of dislocations with impurities and poigt defects, on the
deformation and development of cracks and on other processes which
determine the mechanical properties of a crystalline system,

In this present study a theoretical-experimental work has

been carried out to determine the internal stress distribution in

- parallel glide planes inside a single crystal. Utilizing a line-

tension model, a modified expression to describe the stress field
acting on a dislocation line in terms of the geometrical parameters
of this dislocation is obtained. In this theoretical part, not only
is the self-energy of a dislocation line assumed to change under the
efféct of stress field, but also the increase in energy due to inter-
actions between this dislocation line and an infinite number of
surrounded dislocations is considered. This part has been discussed
in the subsequent Chapter 2 of this thesis.
An x-ray diffraction microra&iography technique, known as
the Lang Scanning Method, is used to obtain a dislocation distributlion
pattern under the effectyof external and internal stress fields within
glide planes {220} inside a Silicon single crystal. This technique
is described in detail in Chgpter 4 after a survey for the methods
used to observe dislocations inside materials is presented in Chapter 3.
From the geometrical parameters measured from the experimentally-
obtained pattern, the stress fieid acting on each dislocation in this ‘
pattern is ca]cu!atbd using the theoretical expression derived in Ehapter

4
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2. This leads to the description of the séress distribution inside a

single crystal which is the ultimate aim of this presént study. These
results are discussed in Chapter 5 whilst the conclusions that may be

. drawn from this study as well as future research considerations are

dealt with in Chapter 6. N




CHAPTER 11

DISLOCATION GEOMETRY AND ITS RELATED MICROSTRESS

® UIaLOLAat
. mn.a Introduction

In & new unstrained and well-cnnelalet‘i single crystal, the

dislocation density is typically 10¢ om/c.c. These dislocations
tend to arrange ihem;elves in a low energy configuration, rather
than being distributed at random. Such an arrvangement would be aided
by thermal fluctuations and so would occur readily at the higher tem-
peratures encountered during and immediately after crys'tallization.
A section of this configuration is shown in fig. 2.1. It consists
of a three dimensional network of dislocation segments intersecting
at vargjous nodes. These configurations are called Frank networks

° and are relatively stable states in regard to both their own internal
interactions and the effect of external stress.
. Upon application of a stress to a newly formed crystal, one
of the first events to occur is that.any free dislocations not in-
volved in a netwo)rk begin to move and either glide out of the crystal
or are stopped by the network. At some higher stress, Frank-Read sources
begin to operate and produce a series of concentric loops as shown
in fig. 2.2. ln this figure a straight part AB of a dislocation line
lies in 2 sl%p plane (the plane of the diagram) and its ends are pinned
down by either intersection nodes or any othér obstacle. This dis-

* location segment is forced to bow out in a circularhshape. ‘to keep
its low energy configuration, under the action of an external shear
stress until eventually a position of insttbi\oity is vreached and 2

. ‘closed loop of dislocation™is th;en forwmed around AB in the s_\ip plane
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together with another piece adjoining A and B8 from which the process
can be repeated.

This operation can then be divided into a ffvers‘ble p;ocess.
stage ) and 2 in fig. 2.2 and an irreversible one, after stage 2, which
need higher stresses to bend the dislocation segment into an aﬂproxima-
tely half-circle before it can expand ougward;, )

In this chapter, the following assumptions are made;

1. Infinity strong point obstacles are arranged at
vandom at each slip plane.
2. These points are kept fixed while the external
v stress is applied to the system,
3. The stress will cause any dislocation Vying in a
particular slip plane to move following the Frank-
Read source mechanism within this particular plane,

Following these assumptions and treating the Frank-Read sources
on the basis of the line-tension model, a relation between the micro-
stress on and due to dislocation interactions and the geometrical para-
meters of this dislocation is derived based on work of Jgssang, Lothe
and Skylslad (4] , Foreman (42] 8lin (43] and DeMit and Koehler (44] .

! .
1.2 Interaction/of Dislgca&ions uith an Applied Stress in_an

Anisotropic Crystal

o

in fig. 2.3, a dislocation line, pinned at its two end poiﬁts
A and B, is assumed to be lying entirely.in its own glide plane which
is taken to be X-Y plane with the V-axis purallel to the Burgers

A5

- vector direction. A pavameter n is chosen albqg the dislocation

’
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1s a unit vector tangent to AB at n and b is the burgers vector
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segment 1n such a way that 1t 1ucreases in the positive sense of the

dislocation, v ¢ a0 at A and 1 =1 corresponds to B. Any general

point X(r), Y(11) on the segment AB can be described by n(n), the angle

between the tangent at this point and the direction 7 on the dislocation

11ne

Upon applying an external shear stress, the dislocation line
will bow out passing through the pinning points and stability occurs
when the total self energy of the dislocation Tine 1s 1n balance

with the externally applied force

The work done, Ng. on the dislocation scyment 15 equal to the

f [
integral of the dislocation segment's self energy and has the form,[ao]

B
wg = Jf £E(0) ds (2 1)
A

where s 15 the arc length along the dislocation segment and [(0) 1s

/!
described as the energy per unit length which 15 assumed to depend

on 0 at n  Under any virtual change, the point n 15 displaced by an

amount &r(n) = (&X(n}, &Y(n) ). Then, the work done on the dislocation

segment due to this virtual displacement can be described as-

’ B
e . [ £t erin) ds (2.2)
A
where: i(n) ; (§.q0 Xt (2.3)

1s given by Peach and Koehler (20] as the force per unit length on

the dislocation line due to an external stress o.

However o can

-~

include the effects of other dislocations. In expression (2.3), t

e BRIt PO o P e
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~ denotes a f(rst—order tensor and = denotes a second-order tensor.
The climb motion is assumed to be ;gnored and only the forces causing
the glide effect will be considered, i.e., only the forces acting in
the X-Y plane. Examination of equation (2.3) shows that only the
Oyz cbmbonent of g causes a force in the X-Y plane. Then,

fyz (n) = boy, (sin 8(n) . - cos 6(n), 0) (2.4)
Equation (2.1) after a virtual movement for the dislocation segment,

under the effect of external stress, becomes:

5wg - Af8 £E(8) ds (2.5)

Under the condition of continuity on the,dislocation segment, expres-

sion (2.5) may be writtenf'n the form:

B
sl = Af 5(E(8) ds ) (2.6)
where: ds = (X‘z(n) + le(n) )2 dn (2.7)

Substituting equation (2.7) into equation (2.6) one gets;
1

1 v 2 12 T
s = 6 (E(e) (x )+ ¥ (n)) dn)

0

1
1

- f (E'(e) 66(n) (Xlz(n) + Y'z(n) )r ‘

0

E(0) & (_x"(n) sv ) ) ydn  (2.8)

wher; E ., X and Y are the 1st derivatives of these values.

Integrating by parts and using the fact that 6X and §Y vanish

at n= 0 and 1, since the end-points are pinned, we obtain,

[

- . A

AN o
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(2.9)

d ()
ﬁN[ = jr (E (o) + E(u)){(sin 0.4X - cos 9.4Y) g% dn

i\
In equations (2.2) and (2.9) 1t is realized that the variation (68X, 4Y)
1s an arbitrary function of n, and hence it is possible to set the

1ntegrals equal to zero to obtain
f(t) . or(t) =[E(0) + E (0)] [sin n.8X - cos 0.8Y] 3% (2.10)

Substituting equation (2.4) into (2.10).'§ives the condition

dv
ds

)

by = [E(0) + £ (0)]

(2.11)
Thus, under a uniform shear stress Oyze according to equation (2.11),
the dislocation line would be approximately a circular arc of radius

R and expression (2.11) becomes;
1 1
b oy, = (E(ny + £ (0) )R (2.12)

It should be noticed that ¢ in equation (2.12) is regarded as both

Yz
due to a external applied stress on the dislocation segment and an 1n-
ternal stress due to the dislocation's bow out against the surrounding
dislocations. Then E{0) i1n this equation must be taken as the self
energy of the dislocation segment plus the energy increase caused by
the bow out and equation (2.12) should be written as,

F

(0) ) ﬁ (2.13)

b oy = (ES(O) + AE(0) + ES (6) + AE

Y
where, in equation (2.13), Es(e) is the self energy of the dislocation
line and AE(0) is the energy increase of this dislocation 1line due to

bow out movement. Expressions for Es(e) and AE(0) are calculated

in the following sections of this chapter.
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11.3 The Self Lnergy of a Di.locatyon Line
O he Self tnerdy of 2 Di-locatiop Lne

In fag 2.4, f a loop | 13 created while loop 2 is present,
the stresses originating from loop 2 do work - W,,, where W,, is the
interaction energy between the two loops and has the form;

W, = Af dA . b o a B = 1,2 (2.14)
J :

where A, 15 the area surrounded by the dislocation loop, b q 2T the
1

components of the Burgers vector and o R is the self stress of a
?

curved dislocation. It has been calculated by Peach and Koehler [20]
and takes the form,

_-u ] a4 2 b 9 g2 .
”ali - 8n f’mh bm aX. V'R de 8n (imzs bm Y V'R dx(!

i i
C C

| __3R I

41:? ]-W f‘ mk bm (GX.BX aX - 6(18 aX. v R)ka (2.15)
C Vas ! (
o where V= - =1,2,3
1

11 1s the shear modulus of the treated material, v is the Poision

ratio and R=r - r where rand r are the distances between the two
dislocation 1oops and an arbitrary origin.
Substituting Equation (2.15) in (2.14) and using the Stokes'
theorem ‘
Af (g‘x; A - %}”C dA)=c; s Cfct dx,

13

where, in terms of the orthagonal unit vectors, the Einstein per-
mutation operator is given by, (46]

c.—.ei.(e.xek) /

ijk J

@ Then equation (2.14) yields:
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O W, - S” f f (F‘L .thzi)a ";_‘(Vd‘l‘.’ .x- d_]_, ),

C) C-

o a2l

z‘” \ff f (91 . dLl)R (Q)-‘-__d}f) +

1 C-

e e

4-1:(‘][-_\’) f (b’ xdly) .T. (b x dl:)
¢, C. (2.16)
R

where T : T, = w, X, voodl o=rde w= 2 (2.17)

and where + is a unit vector in the direction of a dislocation loop whose

length is v.

Expression (2.16) was first obtained by Blin [43] and the details of 1ts
\ derivation are described in appendix IlI of this thesis while expression

[20] , the details of its

(2.15) which was obtained by Peach and Koehler
derivation are in appendix 1V.

tach element d!qof any dislocation loop is actﬂ‘f:pon by a force caused
by the stress originating from all other parts of the loop and the work
done against all these forces is the work done to supply the self energy.
Then, the self energy ES is obtained in equation (2.16) one inserts

C,=C,=C and b,;=b,=b and then divides by 2, i.e.;

= B (b.dl,) (b.dI;) "~
b G Gann,
C)=¢C Ca=C

f f (b x dl,) .T. (b x dI;) (2.18)

1= C C,=(C

"
8n{1-v)
c

~
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«

In equation (2.18), the self energy 1s regarded as the interaction
energy betweé% all segments of the loop. Since the integrations in /
equation (2.16) count the interaction between two given elements
twice, then to calculate the self energy of one dis]ocaéion loop,
the result must be divided by 2 as in equation (2.18).

The self energy of a dislocation line, as it is expressed
in equation (2.18), diverges logarithmically. To remove this di-
vergence, Hirth and Lothe (26] postulated that two elements, d!.
and d}; do not interact when they are closer than some distance p.
On basis of this convention the self energy of a straight-dislocation

segment of any character is found by those two authors, to be;

{ 2
“3]" 7L lné% (2.19)
-V

ES = g‘n_ [(b‘)? +

b
where n=

while «, the dislocation core parameter, has been evaluated by Hunt-
ington [47] and Maradudin (48] using numerical computations and semi-

empirical atomic force laws. o is found to take 24 as a rough average.

11.4 Interaction Energy Between Two Straight Dislocations

In fig. (2.5) two dislocation segments x,-x, and y,-y, lying
in the same plane and oriented to each other are shown. A non-orthogonal
coordinate system xyz is constructed consisting of two senses E, and £2
and a third perpendicula} unit vector es;

where e, _ Er X &y

S T - ; (2.20)
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In this coordinate system, suguested by Jgssang, Lothe ‘dﬁ Skylstad [4]].
the interaction energy E]2 between the two dislocation segments is given

by equation (2.16) and takes the form;

Bro= [- 5 (buxby) o (6 x8&) ¢ = (b 6y) L by . £5)] X

fdxfg{*m)(ble)T(bpr). (2.21)

where T, the tensor defined in (2.17), becomes:

"} 1

X > 4
_ €0s0_ 22 ] + cos 0 3? cosd 3’
T= Jf dxjr dy [r2 £ (- sin‘g ax’ ~  sin‘0 9x3y  sin'0 3y’
TOXy Y
U L cos 0 3_
€ (sin‘o ax | sin%0 ay)
cos 0 3 P '
e - Gamo ax Eﬂfﬁ’ﬁ ay! 1 ROGY) (2.22)
Here
R7(x,y)= x° + .y’ - 2xycos O (2.23)

A1l the integrals in equations (2.21) and (2.22) can be calculated

explicitly. For example;

ffg_;_qx = 1(x,y)

which is to be used in equations (2.20) and (2.21) in the form

f i f —ERE'! Hx,yg) a/B=1,2 . (2.24)

- R+ y-xcos R+ x -y cos
while l(x.y)= X In X +y In y

T

~

W+
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C) Utilizing equations (2.22) and (2.24), then equation (2.21) can

be wratten in the form;

o= %; {(t}l c ) (92 . {,2) -2 [(bl X t}?) . ({l X 52)] +

]‘1; [!)n (s x g\)) ['37 . ('? x e)] ) !(x(l.yﬁ) t

|

(i) (B - @) (ba . e)] X

(B(xu.yﬁ) - cos 0 [x(1 In t(xu.yﬂ) * Yq In S(xu.ye)]) (2.25)

where
S =ycosh- x+R
) (2.26)
t=xcos 0 - y+R
I1.5 The Energy Increase Caused by the Bow Qut
*
o A segment AB in an infinite edge dislocation bowed out

To ACB as shown 1n fig. 2.6. The energy increase caused by this
bow out must be

_lim
=meo  NEg (2.27)

AE
Where AEm is given 1in gems of the self energies, Es‘ and interaction
energies, AEint' among the symmetrical arrangement shown in fig. 2.5.

Then, AEm can be constructed as;
AE,= 2E_(AC) + 2 E,  (RC.EA) - E_(AB) +
2€,, . (AC,BF) + E,  (AC,CB)

" 2B (EAAB) (2.28)
where the self energy Es can be calculated from equation (2.19)
while all of the interaction energies needed are calculated from

. ) equation (2.25).

s YR . e
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In this particular case, expression (2.25) becowes:

EIZ {‘4'11 (\ ") . {?) M 4"""(%{_'\)‘)[“3: . (’_l X gv)] [b7 . ('7 X ?J)]}x

I(x ,y)) (2.29)

3 3

Considering first the contribution:

MEy=2E (AC) + E;  (AC,CB) - E_(AB) (2.30)
where,
) ub 2 m (90 0) L L
ES(AC) {cos? (90-0) } 2 coso tn 2eo cos0
_ub? cos’0, L L
4, lsinfo ¢ Y-v | T coso e coso (2.31)
and;
= nb?L L
£ (AB) = g7ty Inct (2.32)

From equations (2.24) and (2.29), the interaction energy can be

written as,

ub .y cos?0 L 1 + cos O
(AC,CB) = e [sine - oy ] os g I o5 O (2.33)

\nt
Expanding equation (2.33) in a Taylor series about 0=0 and taking the

limit as 6 - O, one obtains,

}lb? L()l’ ( 1-2v ]‘ L

3
8n 1-v r48()

AE, = t 5 - 2 1n2) (2.34)

In the limit m » =, the remaining terms

AE, = ZEint(AC,EA) + ZEint(AC'BF) - ZEi“t(EA.AB)

are similarly calculated to yield R
2 2
o, = YL (o 4 2 n2) (2.35)

The total energy increase due to bow out given by equation (2.28)

is then,
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JwbLal o Lo
\E 8n(1-1) ((1-2v) ln4e” 0.5) (2.36)
11.6 The General Equation
»

For the case of an edge dislocation, AB in fig. 2.3, following
the Frank-Read source mechanism through its advance in the slip plane
under the effect of an externally applied stress and internal inter-
action stress, the situation can be summarized as follows:

I - The relation between the total energy of this dislocation

line and the total applied stress is described as:

b oy, = (E(0) + aE(0) + s;in) . Ae;io)) -‘R (2.13)

Il - The self energy of this dislocation line, AC + CB
in fig. 2.6, is described in equation (2.19) as,

E(0) = =L . &) “’_3‘_‘.) 1L

.

which can be written as;

2 I -0
[S(n) = 2—2—?— [cos?(90-0) + 5_‘%'___\()20_-_)] L o b

2cos0 2ep cost)
_oub? e, cos’6 L L
A (5070 + 27) s " Zeocoso (2.37)

IIl - The energy increase due to bow out mechanism is given

in equation (2.36) and it is:

2 2
AE(0)= B2 %‘_’v) ((1-2v) 1n4'é—p - 0.5)
Now, by direct substitution from equations (2.36) and (2.37) into

equation (2.13), the general form of solution.i‘s obtained as:

"z 4'"'?_ ;) [(sec’ + seco tan®0 -v cos0) (1-v) In(c seco) +

~

(% +1) (1-2) n5 - 0.5) +
(1-2v) geco tan?g -v tan 6 sin 0 + sec® 0] 7]!‘ ' (2.38)

where

c= o (
2ep




Chapter 111 $

THE OBSERVATION OF DISLOCATIONS IN CRYSTALS

1A Decoration Techniques

Hedges and Mitchell (49] were the first to observe the
dislocations within crystals. They found that particles of photo-
lytic silver, separated along the dislocation lines of low angle * \
sub-boundaries within crystals of silver chloride or silver bromide,
could be seen with normal bright field illumination. Thé silver
halide crystals provided a realistic model for studying the probable \
behaviour of dislocations in crystals of metals with face-centered-
cubic structure. Networks of dislocations in crystals in Alkali
Halides, made visible for dark field microscopic examination by
the separation of calloidal particles, have been studied by Amelinckx
DeKeyser andl co-workers [50].

In 1956, Dash (51 developed a method for decorating dis- +

locations in single crystal plates of silicon. Silicon deforms

plastically at temperatures above 1000 °C. Thus thin plates can be
prepared by sectioning and polishing at room temperature. The points
of intersection of dislocations with the surface can be made visible
by the.deformation of etch pits which can be observed in an infrared
transmission microscope. With his method, Dash made the first
observation of the Frank-Read source in Crystals. Bartlett and
Mitchell [52] used gold to decorate the materials. In their method
the crystals are exposed to.light at room temperature and this causes

nuclei to form along the dislocation lines throughout the thickness
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of crystal. The nuclei are made visible by the precipitation of

s

gold.

Many theoretically predicted dislocation phenomena have
been observed experimentally in crystals in which the dislocations
were made visible by decoration methods. These methods, however,
suffered from a number of disadvantages. Configurations of dis-
locations induced by plastic deformation are modified by thermally
activated climb or glide processes during heat treatment. Also, it
is not possible to observe the motion of dislocations or even two
successive positions of an array of dislocations during plastic
formation. Finally, these decoration techniques spoil the crystals
in such a way that no further physical investigations can be made.

Therefore, these decoration methods have limited use in practice.

I11.2 Transmission Electron Microscope

The transmission Electron microscopy of thin foils devised
by Bollman (53] and Hirsch and Whelan (54] made it possible to observe
the distribution of dislocations for any material which is stable in
an electron beam and can be produced in the form of thin sections.
This method depends on the diffraction contrast arising from the
interactions of the electron beam with the displaced atoms in the
strain fields around the dislocation.

Although electron microscopy has grea

that it is a high power nondestructive method (magnifications up to
3

100,000 are attainable), the use of thin foils approximately 10 A°

thick is a serious limitation of the method. This is probably not

of great inportan§e if the static distribution is the target of the
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study - provided that the distribution itself is not affected by the
method used for the preparation of such foils - however, if the
dynamical behaviour of dislocations is under investigation, the

method of foil preparation may have serious consequences.

Ir1.3 Infrared Technique

In 1975, at Siemen's Munich Laboratory, Heinrich Grienauer :
and his associates (55] devised a nondestructive infrared film method
to detect dislocations and other crystal structure defects. The key
item in this method is a laser that emits linearly polarized infrared

light at a wavelength of 1.1 microns onto the crystal under study.

e

A microscope enlarges the view of —a section 6f the crystal for exam-
ination. An analyzer absorbs the transmitted 1ight that has not had

its plane of polarizatioq. rotated. An infrared TV camera converts

the IR picture at the /transmitted 1ight into video signals for display
on a monitor.- In examining a crystal specimen, the analyzer is adjusted
s0 that }‘yﬁ)sorbs the portion of the ]igtit that passes through the
crys/ﬁf ;vithout deviating from its plane of polarization so that the
/ﬂ/owless crystal areas show up dark on the monitor. Zones with defects

in the lattice structure cause the polarization plane to rotate and .
»‘:'5

show up on the monitor as light spots against a dark background.

I11.4 X-Ray Technique

Independently in several laboratories, it was discovered that
indiv’/dual dislocations could be observed by the x-ray diffraction
technique. This technique is based upon the theory of x-ray diffraction

/
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stals. From point-to-point variations in the direction

ensities of the diffracted x-ray, the defect structure

4

may be examined.

The methods of Gunier and Tennevin [56]. Schulz (s7) and

Weissmann (s8]

of the diffrac
of gross orien
individual def
local perturba

be classified

are methods that mainly measure the local variations
ted beam. These methods are useful for the detection
tation. Intensity mapping methods are concerned with
ects, such as dislocations, which can be treatg as

tions within the perfect crystal. These methods chp

according to their geometrical arrangements as fol\c‘s:

i
(1) The Back Berg-Barrett-method. The diffracted beam leaves

(2)

the same side of the crystal through which the incident
beam enters. This method yields a projection of the
dislocations structure at and near a crystal surface.
Newkirk (59] used this method which had also been used
by Bonse and KapPler (60] but with strict collimation
of éhe incident beam by prior reflection from a mono-
chromator crystal.

The Transmission Berg-Barrett method. This is a thin
crysial transmission wethod, in Laue geometry, in which .,:j)
the ‘'diffracted beam and the transmitted beam leave the
same side of the crystal. Utilizing this technique,

[61.62] presented his methods "Section Topograph®

Lang
and "Projection Topograph™ where the images of individual
dislocations were first recorded. The transuis;ioﬁ Berg-
Barrett, method was used and developed by Webb. L63]

\ N
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(,‘ {3) Anomalous Transmicsion or Borrmann method. This is a

-«
'S

thick crystal transmission method tn which the diffracted
and transmitted beam leave the same side of the crystal
and both beams are used. This technique has been applied
with success by Borrmann and co-workers (64] , Barth and
Hosemann [65]. Gerold and Meier [66] and Authier [67]
Selection from among these three methods, as they have been
described and shown 1n fig. 3.1 and table 3.1, depends on the perfection,
a-ray absorption coefficient, thickness and size of the crystal to be
studred. In all of the methods discussed above, a special x-ray film
f must be used to record a maximum resolution for the topograph images.
] These f1lm plates must be carefully processed to obtain maximum contrast.
o While 1t 1s not the intent of this thesis to present x-ray theory
‘:’ n detarl, the interpretation of contrast 1s of paramount ymportance in

‘using x-ray topographical techniques, so a considerable amount of dis-
(68]

E cussion 15 necessary. However, for detailed theories, Zachariasen

[69]

Battermann and Cole , James [701, Hart [7]], Meleran (72], Qenning

and Polder [73]‘ Penning (74] and Authier [75) should be consulited.

Ly

In the next section, the dynamical theory will be discussed

briefly, followed by a discussion of the possible mechanism by which

dislocations can produce contrast.

111.5 The X-Ray Dynamical Theory of Contrast of Dislocation Images

When an x-ray impinges on a crystal, the alternating electric
field of ®he x-ray sets the electrons inside the crystal into forced

an vibration. The scattered wavelet is the result of the acceleration
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and deceleration of the vibrating dipoles and is coherent with the
exciting field 1n polarization, frequency, phase and amplitude.

As shown in fig. 3.2, two main directions of polarization
can be distinguished. The first is the o-polarization, which occurs
1f the scattered wavelet is emitted in a direction perpendicular to
the electric field strength of the incident field. The other polariza-
tion direction is the w-polarization which occurs if emission takes
place in a direction perpendicular to the magnetic field strength at
the exciting field. If the wavelet is emitted in an arbitrary direction,
the incident field may be decomposed into two parts, each corresponding
to one of the main polarization directions.

Diffraction is a constructive interferencé that occurs when
the difference in the distance travelled by two identical diffracted
waves 1s equal to an integral number of wavelengths, so that the two
waves are 1n phase. The tota) path difference between the two rays,

shown in fig. 3.3, is 2 d sin 0, and can be formulated as:

hkl

nM=2d . sino, (3.1)

hk1

This relation is known as Bragg's law and it states the
essential condition which must be satisfied if diﬁfraction is to
occur. In equation(3.1),1 is the wavelength of the characteristic
radiation from the x-ray target material, d is the interplanar spacing
for the tested specimen, 0, the Bragg angle, is half the angle between
the incident and diffracted beam and n is the order of reflection and
it may take any integral value consistent with sin O, not exceeding

unity.
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There are two general lLheories which may be used to account
_for the intensities obseryed in x-ray diffraction studies. The kine-
matical theory treats the scattering from each volume in the sample as
being i1ndependent of that of other volume elements, except for incoherent
power losses in reaching and leaving that particular volume element.
The other theory, called the Qynamical theory, takes into account all
wave interactions within the crystalline particle. The diffé}ence
between these two general theories wil]l be made clear in the following
discussion. £

Consider an x-ray wave of vacuum value vector 5O(I5° | = ;) fall-

ing on a crystal set exactly at the Bragg angle 0_ for diffraction fromj

8
a set of planes (hkl) with interplanar spacing dhkl' The origin of this
wave vector is the point L, fig. 3.4, and has an end point at the origin
0 of the reciprocal lattiZe. According to the geometrical theory of x-

ray diffraction there will be a diffracted beam in the direction LH with

wave vector v, (l¢, = %) if the reciprocal lattice point H at the end

s .
of the reciprocal lattice vector Ihk1™ OH (|9hk1b= 25'"83 a;%;) lies
2 = A

on the surface of a sphere of radius lgol and center L. This sphere
is called the Ewald sphere. In this geometrical approach no account is
taken of the interactions between the direct beam and tzf diffracted
beam. The calculated intensities corresponding to the abdve are known
as the kinematical theory of x-ray diffraction.

In fig. 3.4, since Bragg's law i; satisfied for reflection from
(hk1) planes, the diffracted beam is in correct orientation for dif-

fraction back into the incident beam direction by the (hk1) planes and

interferes with the incident beam. *

. j
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The interaction of the waves in the transmitted beam direction

and the diffracted beam direction is the basis of the dynamical theory

of x-ray diffraction. The problem of multiple interactions was treated

{76]

by Darwin

(191

was taken by Von Laue

up of a periodic continuous distribution of scattering material and

the dynamical conditions were determined by requiring the crystal waves
to satisfy Bragg's law and Maxwell's equation in a medium of periodically

varying complex dielectric constant. The solution of the resultant dy-

namical equation gives allowable wave vectors in the crystals, and the
properties of these vectors d;ternine scattered intensities.

For the case of Laue Transmissign. shown in fig. 3.5 and for
the ov-polarization state, the dynamical‘equivalent to the geometrical
theory as given by éatterman and Cole is shown in fig. 3.6.

" The solwtion of the dynamical equation for each state of po-
larization consists of two hyperbolic sheets in reciprocal space,
centered on Q, which are the two branches of the dispersion surface.
One branch, the -branch, gives the locus of the wave points of wave
vector €. longer than K, and the other branch, the B-branch, gives
the locus of wave vectors «, shorter than k. Each wave vector has a

N -8 '

component in the incident beam direction ko and «,, and a component
" -~ “ -

8
in the diffrgcted beam direction “Ha and ng* The a branch waves are
180o out of phase from the 8 branch.

A perfect single crystal will only diffract dynamically where
the two branches of the primary wave K, and the two branches of the

diffracted wave N

a defect in the crystal may severely bend the lattice planes surrounding

, Borie (7] and Ewald [78]. The most generalized approach

Von Laue considered the crystal to be made

are still coherently bounded to each other. However
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0 /’ it and this distorted region can diffract x-ray intensities from

the wings of the incident beam, fig. 3.7. This excess diffracted
intensity will give rise to the kinematical images where the coupling
of K, and Ky is destroyed because of large lattice distortion. In
addition to the dynamical image diffracted from perfect areas and
kinematical images diffracted from distorted areas around the defect, ‘
ther; will be an intermediate dynamical image of the defect. This
image arises from the areas of the strain field which are ﬁst reversely
distorted as the kinematical region itself and this intermediate image
is equivalent to interbranch scattering or transfer of energy from one
branch to the other. The intermediate dynamical image may or may ﬁot
be superimposed on the direct image.
Fig. 3.8 shows three situations each with a narrow beam of
o charactérlstic radiation incident at I on the x-ray entrance surface
of the specimen and radiation leaving the specimen over the region
HT on the exit surfase. The angle HIT=28, and the incident beam has
typically a divergence of f or 2\of arc in the plane of the diagram.
fig. 3.8a répresents the diffraction from a perfect Cﬁystal. In fig.
3.8b, a dislocation line normal to the plane of the diagram lies -
within the triangle IHT. The area of dislocation is divided to the
outer zone of coherent séattering and inner zoné of incoherent
scattering. In fig. 3.8c, the incident beam cuts through the center
of the dislocation. The inner zone of the d{}location can reflect a

considerable fraction of the energy within the angular range of the

incident beam and it produces an intense diffracted beam which over-

shadows the other rays travelling in the triangle IHT. The intense,

-y
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o Shar:kimage is the "direct image" and the diffuse, weaker image

arising from the outer zone is the “dynamical image". In the pro-
jection topographical technique for high contrast and good topograph
resolution, a direct image, strongly compared with the dynamical image

is desirable. .
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THE EXPERIMENTAL INVESTIGATION

IV The Geometry of Topoqraphical Technique and Image Resolution

The experimental work in this present study has been done
utilizing a_transmission Lang technique for which the horizontal
geometry is schematically shown in fig. 4.1. A divergent beam of
x-rays is emitte[d from an x-ray focal spot of height h and width w.
As x-rays cannot l;e focused by lenses, parallel beams can be obtained
by allowing a very small portion of the emitted radiation to pass
through a set of slits L, at a distance L from the source. The
collimated (parallel) beam of x-ray is diffracted by the crystal .
planes that have crystallographic directions inclined at Bragg

e angle ﬂB' An x-ray counter, set at twice the Bragg angle, is used
to align the crystal for maximum diffracted intensity.

The directly trans:itted x-ray beam is intercepted by a
metal shield while the diffracted beam is passed through a slit L,
in the shield and falls on a special photographic plate. The dif-
fraction image produced on the plate répresents that part of the
c:;ysta] which the beam traversef. Since L, is generally small,

v /
only a narrow portion of the crystal is imaged at one time, and the

crystal and film must be scanned through the x-ray beam in a directions,
shown in fig. 4.1. ‘
The resolution of the images obtained by Lang Topographical
\ ltechnique is in general dil:ferent in vertical and horizontal direction

In the vertical direction, which {s the direction parallel to the long

o < |




axis of the collimating slit L,, the geometrical resolution is given by

v _ xh . (4.1)

L
where x is t'he distance between the sample and film, h is the x-ray focus
height and L is the collimator length. The distance x is limited by the

need to avoid the undiffracted beam. The geometrical resolution of the

image is determined by

XAQ, _
e} (4.2)

where a=90 * 0., x is the specimen - film distancend. the difference
in diffraction angle, A0,_,, between the Km and L doublet is: [80]
ar (4.3)

AGy-2= Z—dh“ cos 0,

where A} is the separation of the x. -« and d is the spacing of
o) ar hk1
the crystal planes (hkl) used for diffraction.

In the present work, the dimensions of the x-ray focal spot

J

is 500u x 50()):, the specimen used is a Silicon single crystal and the

crystal planes used for diffraction arc (220). With reference to table

1

4.1, one can calculate the image resolutions in this particular case:

VYertical Resolution ¥= -’ib-

3
~9mex 0.5mm10 .
T 840

= 2.97619 micron
from (4-2) and (4-3), the Horizontal resolution is: .

XA .
. Z”'2 dhk] sin Tatoa) cosos “'”
! - 5 (0.7135 - 0.7093 10’
. . sin .27) cos 21.27
-4 1
_5 (42) (10 ) 10 !
\ -
- . = 6.297810C micron '
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() With reference to |fig. 4.2, following Okkerse and Penning

(8i] the distance, SD, between “ap and o images can be calculated
2

to indicate to what degree it effects the resolution. This distance

on film is, \ i
sp= X8 (4-5)

c0s20
since A=2d sin O ' (4-6)
Xsing 8\
SN LU L S 4-7
then  §0="—-F- = o (4-7)

The maximum value SDm between the images occurs when the

grystal - film distance is at its minimum value x

_
*w~ 2 sin 0 (4-8)
where w is the x-ray focal spot width.

In the present study, w = 500u and with reference to table

4.1, for (220) reflection in Silicon one can’ calculate SDm

/ SD- - 2 co:.:z 9 8-—:
- _f0.5) 107 42
) 2 cos? (21.27) .7093
= 1.7045 ‘
which is of considerable consequence. N

{
The Lang camera used in this experimental part of this thesis

is shown in fig. 4.5a, 4.5b and 4.5c. It consists of an adjustable
width incoming beam s1it (3), a high precision slide assembly (5), a
slide drive mechanism consisting of a reversible variablé speed dc

motor (6) and a set of adjustable position 1imit switch (2), a beam-

. stop slit (7) whose position and opeaing cah be adjusted - by (8) -




L

-34-

and a light tight but x-ray transparent film holder (9) that allows
transmittance of the intensity monitoring beam even with the film
in place.

The sample (12), a single crystal of silicon, is mounted in
a stress apparatus fig. 4.5c, which has been made to fit with the rest
of the camera and allows a tensile load to be easily applied to the
specimen through the use of an accurately measured lever. The load
at the far end of the lever is transferred to the specimen axis, scaled

up by the value b where b and a are the lever's dimensions as shown in
a

fig. 4.5c. The sample is positioned to diffract incoming x-rays into
an x-ray counter (1), Scintillation counter, used for alignment purposes

and set at the predetermined angle, 20,, for the reflection chosen.

g*
The beam stop slits are positioned to allow the entire dif-
fracted beam to pass while stopping the direct beam, these slits are
as close to the sample as is experimentally possible. In this particular
experimental work, the distance is 3mm.
The scan speed and scan length are then set by means of the
motor control and limit switches. The x-ray film is positioned as close
as possible to the back of E\g beam stop s]itsJand is aligned normal

to the diffracted beam as shown in fig. 4.1.

Iv.2 Silicon Crystals; Description and Cleaning

Silicon is an appropriate material to use to study the dif-

fraction phenomena associated with dislocations. Its low absorption

‘.goes not require the use of very thin samples while through ﬁhe use

of a single cryﬂtal of silicon, a wide range of dislocation densities .




can be obtained.

Silicon belongs to the cubic system and has a diamond
structure. This is characterized by each atom being symmetrically
surrounded by four equally spaced neighbours. Fig. 4.3 shows an
isometric and a planar view of the position of the atoms with respect
to the crystal axes x, y and z. Fig. 4.3 can be extended as shown in
fig. 4.4 to show two face centered cubes combined to form a diamond
lattice.

The preferred growth habit for silicbh is Octahedra, i.e.,
bounded by the family of {111} planes.

The silicon crystals used in the présent study have faces on
the {111} planes and diffraction planes on the {220} planes.

It is important to know that the ultimate result of any method
utilizing silicon slices depends heavily upon the initial cleaning of
the slice.

The following method (82] prévides a {echnique for the cleaning
of silicon slices. Although the method outlined is long and involves
many steps, each individual step is simple. If the procedure is followed
methodically, the results are good. \

1. Stices fare placed in 1, 1, 2 Trichloroethylene at 75 C for 450 + 150
seconds.
2. After all visible organic contaminants have been removed, slices are
" placed into 2 - propanal or wethanol for 300 ¢+ 30 seconds.
3. Slices are rinsed in flowing water which should be distilled and/or
' de-ionized.
4. Slices are ismersed in boiling Hydrogen peroxide for 300 : 30 seconds.
5. Stg? nusber # to be repeated.




6. Slices are immersed in Hydrofluoric acid for 5 + 0.5 minutes

such that slices are covered.
7. Slices are rinsed thoroughly in water at 90°c. 1
8. The polished surfaces of the slices are examined by eye to
determine if they are hydrophobic. If they are, the inspection
should be done under bright illumination with the unaided eye
to determine whether there is any visible particulate matter.
If a smcimn¢asses both examinatio?s. it is considered to

be clean.

Iv.3 Processing of Ilford Nuclear Plates

[1ford nuclear plates are used in this study to record the
dislocation images. The fonwing’processing procedure has been |
found to give gcu7d results for the development of 2* x 2" I1ford L4
nuclear plates with 50u emulsion.

1. Developer is 1:2 diluted 0-19 at 0°C for up to 30 minutes without
agitation. The plates have to_be checked after 10 minutes to /
determine if they are overexposed.\

2. Stop bath i/s 12 glacial acetic acid. It is used for 0°c for
5-10 minutes depending on the thickness of nuclear emulsion.

3. Fixer is Kodak rapid fix with 1002 extra hardener added. The
fixing solution is initially at 0° and\ wares up to room temperature
during the fixing time which could.be one hour.

4. ¥ashing is done using a methanal ultrasonic bath for 5 minutes to
eliminate dust from the emulsion. \

5. The plates are washed up in running water for two hours and then are

left to dry.
\



CHAPTER V e
MICROSTRESS DISTRIBUTIONS IN A SINGLE CRYSTAL

In this chapter the analytic results of this thesis are
combined with the experimental observations in order to determine
the microstress distributions in a Silicon single crystal. As a

»
result of the theoretical study in Chapter 2, the stress Ffield acting

on a dislocation line is described in equation (2.38). The important
variables governing this equation are the dislocation segwent's length,
L, the radius of its curvature, R, and 0, the angle between the}i;—//

. . . . . . — o1 L
location direction and the X-axis of its local :@Wo = sin ﬁ).

These geometrical parameters are evaluated from the dislocation pattern

—vbtained experimentally as described in Chapter 4 and shown in fig. 5.1:

+

v.l The Observation and Histograms of the Dislocation Lengths, L,

° and their Radii of Curvature, R.

The work that has been d’one in this thesis is based on the
idea of bow out under stress of pinned segmentg} of l’wp as illqstrated
in fig. 2.2. The configurations of the dislocation segment, aﬁ/ is -
discussed in Chapter 2, depend on a balance between forces associated
with app‘lied stress,line self energy and interactions with other
segments. Aside from these considerations, the dislocation behaviour
can be described in terms of the strength of the pimning points. In
the present study, the pinning points A and B in fig. Z’ are assumed
to withstand the bow-out of the dislocation segment under the effect
of a stress field acting within fhe elastic region of the test;/ed
wmaterial. Thus, the distance be A and B will stay fi;ed while
the radius of the curvature i{s decreased due to the bow-out mechanism.

* b
. . -
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‘I{7his indepem%ence) between the two variables L and Rnis important
in handling the analysis process of the stress distributions which
are, due to the nature of equation (2.38), functions of these two
random variables.

The values of L and R for each distocation are measured
from fig. 5.1 using computer program described in Appemi‘ix (V) and
the values are tabulated in gables 5.1 and 5.2. Their corresponding
histogramg are shown in figs. 5.2 and 5.3, respectively.

V.2 Microstress Distributions

The valuesof L, R and 8 for each measured dislocation, which
are indicafed in fig. 5.1, are insdrted in equation (2.38) and the
coms:bonding microstresses are evaluated using computer program
7escribed in Appendix (V). |

As discussed in Chapter 2, the microstress values, Oyg» 2TE

N

acting in the Y-direction of the local coordinate system XYI. A

transformation is to correlate these local stresses with the

3
material (external) coordinate system xyz shown id fig. 2.3. This

transformation is a;:‘Meved using rij' a second ‘?rder orientation
« ) / -

2

tensor, which can be expressed as: /

' cosB sinf 0 >
rij = | - sinB cosB 0 (.S.l)
« 0 1] 1 . v

where B is the angle between Y-axis in the local coordimate system
and y-axis in the extermal coordinate system. l

P )

3t
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v
0 Consequently, the microstresses can be calculated as:
0 OYZ ¢ 0 ,
Q = (IYZ 0 0 -~ l'ij ) (5.2)
0 0 0

Utilizing equation (5.2), the wficrostresses acting on
every, d~cation segment indicated in fig. 5.1 are evaluated. The
- results are tabulated in table 5.4 and the corresponding histograms
are shown in figs. 5.4 and. 5.5.
These histogramss as a result of the combination between
the theoretical and experimental study of this thesis, form the basis ‘
for the determination of continuous microstress distributions in the

case of uniaxially stressed specimens. This is one of primary goals

of micromechanics theory []'6].
0o N /
V.3 Possible Gaussian Interpretation
-~ I

Strunin 83+ 88] {1 actigated the probability distribution
for the valt;es of the components of the 1.ntemal-stress tensor pro-
duced by randomly positi{oned lir;ear dislocations in a crystal. The
histogram obtained from his investigation is fitted to a nermal
distribution curve. N “)

This leads to the strong assumption that adding an external
stress distributions (due to;;t:.ernally applied load) to the internal
stress distributidns' (due to. the presence of dislocations and their
interactions) within the r\ange of the elastic regime of the tested ‘
materfal, will result in a total stress distribution which is

. normally distributed.
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Provan and Axelrad [85], in their application of. proba-
bilistic micromechanics to actual polycrystalline solids, in the
form of pure copper and aluminum, predicted and utilized the idea
that the microstress distributions are of Gaussian form. Follouin/g
the concepts of these two approaches and realizing that for a random-
vector gaussian process X, the mean My and the variance Vx are given

-~ -~

“by;

n

1im 1
Ux = e n Z 51 . (5.3)
~ i =

and
n 3

lim ] _ 2
o= Jmo ‘Z (x - u)?] (5.4)
2 -1

Then, within the limitation of the present experimental wfrk -
47 dislocation segments have been investigated - we may/fit the
histograms obtafned in figs. (5.4) and (5.5) to the gaussian form
under assumption that the mean and the variance, described in

relations (5.3) and (5.4), can be accepted as;

47
1im ] ’
”oyz - n-mzayz % Ty Z] (ayz)n (5.5)
Ns
' 5
and
n | .
1im ¢ 1 4
vV = [ - ({lo,); - u_ )?2]
Oyz M n 12-1 yz'i Oyz
) 47
S .[%7 2 ((oy,)¢ = u; )?] b (5\-6)
1= X yz
where u o and V), are the mean and the variance, respectively,
’ 7 / yz .
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for the suggested gaussian process of the stress variable °yz' {
Carrying out this assumption, the histograms répresenting
the microstresses, in the x-direction and tl:e y-direction of the
extermdl coordinate system, are fitted to gaussian distributions.
The results are shown in figs. 5.4 and 5.5. '
Following the same fitting process, the histograms of the
leqgths and tc;\e radii of the dislocation segments shown in figs. 5.2
and 5.3 are fitted to gaussian distributfons. The results are also

shown in figs. 5.2 and 5.3.

V.4 Discussion of Results

The results obtained in the last three sectfons of this
chapter lead to the following observations.
1. In fig. 5{.2, the histogram representing the lengths of the dis-
location segments, the values of L vary from zero to 0.006 m.
At the same time, the lengths distribute themselves, approximately
equally, around the mean value of the lengths 0.0025 um.
2. In fig. 573, the histogram representing the radii of the dis-
locatiqn segments, the values of R vary from zero to 0.010 um.
This histogram shows a peak corresponding to dislocation segments
that have bowed out critically near the mean value of the radif,
0.0035 yen.
3. The histograms represénting the lengths and the radif of the
diklocation segments are similar to those obtafned b‘y Mughrab{ [85].
4. Studying‘t histograms in figs. 5.4 and/S.S,'the microstresses
fn the x-direc jon and the y-direction of the external coordinate

: \ ] |

N
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system xyz, it is found that the high stress values are affected
mainly by critical values of the radius, while length changes,
which lie in a narrow range compare to that of the radii, db not
critically effect the values of the stresses.

5. Inserting the mean values of L, R, and 0 in equation (2.38),
the medn values of stress are calculated and the res;lts are com-

pared to those obtained experimentally as follows.

Micro- uo= (g, M » M,) p_= Equation (5.4)
‘ strgssg§ . [¢] R L (3] o

o\, - 19.219 21

912 33.779 42

These results show that in the x-direction of the external co-

O
ordinate system, the direction of application of the external load
of 20 kg/cm?, the mean value of the microstresses: can be evaluated

thréugh a knowledge of the means of L, R, and 0.




-
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O Chapter_ VI

CONCLUDING REMARKS

vi.1 Summary and Conclusions

Since the main aim of this thesis has been to provide a
method to determine the microstress distributions in crystals, the
following conclusions of the investigations can be stated,
i)  from the independent work of Jgssang, Lothe and Skylstad [“].

Foreman [42]. Blin [43]and de Wit and Koehler [“]and treating

the Frank-Read source on the basis of the line tension model,

a theoretical relation between the microstresses on the dis-

Tocation segment and the geometrical parameters of this dis-

Jocation is derived. In this derivation the microstr#sses due
o to dislocation interactions are c’onsidered.

ii) The X-ray topographical technique, Lang method, provides an

accurate pattern of the dislocation individuals - in a selected

spec imen : under the effect of an external load and within the
range of the elastic behaviour of the tested material. From
this pattérn the geometrical parameters of these dislocation
individuals can be easily measured.
§§1) The combination of this theoretical and experimental study fs /
- able, as is described and analyzed in chapters 2, 4, and 5, to

ﬁrovide enough information to determine continuous distributions

of microstresses fnside single crystals.
. ‘/ ’ f
v1.2 Proposal for Future Research
. On basis of the presented work in this thesis, it is suggested

/
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that the following items should be considered for future research.

i)

§i)

The main purpose of this thesis is to introduce a method to
determine the stress distributions inside single crystals,

so the information obtained from the small area of the tested
specimen which has been examined and analyzed was enough to
test the validity of the introduced method. In any future
research, large areas should be examined and analyzed, in

the same way as it has been done in Chapter 5, in order to
get enough information to test the validity of the gaussian
distribution assumption. Furthermore, from the general ex-
pression of stresses, expressions for the mean value and

the variance can be determined using the well known basic
relations of normal distributions.

In the present work, only one stress tensor component acting
on the dislocation 1ine and parallel to the glide plane is
considered. Also’, in the derivatfon of the equation pertaining
to the equilibrium of microstresses using an efiergy argument,
the energy dissipation due to the dislocation movement ha;
been neglected in order to remain within an elastic analysis.
This study should be extended in future to include all the
stress tensor components which are working on the dislocation
line in a glide plane taken as randomly orfented. The energy
dissipation factor should also be taken into consfderation in
any future analytiﬁal formulation so that plastic or creep

descriptions ' can be formulated. y

-
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iii) The author believes that thc knowledge obtained from the
microstress distributions in a crystalline system is a key
to future analytic formulations developed in conjunctjon
with nondestructive fatigue tesling and stress microanalysis.
Furthermore, the necéssary knowledge to describe the irrever- :
sible behaviour response of crystalline materials will be
mainly obtained through the study of its dynamic dislocation
patterns. This suggests that future research should be carried
out by more advanced experimental techniques, such as an IR
technique, which are able to show the dislocation patterns,
in practically tested specimens, while their dynamic movement

is irreversible.
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Tlihim Sack reflection Berg-Barrett Transmission Berg-Barrett ; Anomalous Transmission-Borrmann

Meference Mirklss] Bonse and Kappler[w] Lang[ﬂ’sz] ‘ulebb[63] ‘ Borrmann et a‘I[ﬁ‘]

Stheae lickcdiffnctiwiragg Case - Thin crystal transmission | Thick crystal, Laue Case -
diffracted beam leaves the same diffraction, Laue Case - | anomalous. transmission
surface entered by the incident diffracted beam leaves ! and diffraction

. beam y N : through same surface as '
W~ transmitted beam
geemetric 1-5. 1-54 1-5.
resolution )
ftivity to

dislocation No Yes . Yes

sense of deformation

Thickness of specimen

comtribution to \ < S 0-2mm 1-Sem

tapbgraph ¢

Msorption criter T w1 Mt << | Myt >> 1

Structure factor ritio Unrestricted Unrestricted Faffy =1

@pm vg:ortd H only H only H and T superimposed
m_ls'& placement in H only avoiding I ! in H only avoiding I in H and T on back surface of
. specimen .
‘. - -

Dislocation image 1-5u ; 1-10: _ up to 150u

width —- X

Upper limit of dis- ‘ T

location demsity . 5 x 106 5 = 10?

(lines/om?)

5 x 108
| .

Table 3.1 DISTINGUISHING CHARACTERISTICS OF DIFFRACTION TOPOGRAPHY METHODS FOR MAPPING INDIVIDUAL DISLOCATIONS
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NETER OF SILI IS 5.4305 ANGSTROMS \
- (a]] KA C CR XAl | CR ¥AZ R KB1 | :
. 0.7135 | 0.6322 | 1.5405 | 1.5443 | 1.3922 |2.2900 | 2.2940 | 2.0850 N
m 3.1 13.05 | 156 | 28.42 | 2849 | 2663 | a2.8v | 42.8 | 388 ‘é”
28 1.9 21.40 18.94 | 47.27 47.39 42.48 | 713.17 73.32 65.73
M L6 N 25.15 22.24 56.08 56.23 | 50.28 | 88.68 88.88 79.0% . L
Q0 1.38% 0.26 | 30.45 26.91 69.08 69.28 61.65 |[114.92 | 115.24 | 100.26 o I
3 LS8 33.05 | 33.25 29.37 76.32 76.55 67.89 |133.49 | 133.96 | 113.53 ' :
442 1100 37.29 | .52 3.1 87.97 88.25 77.75 0.00 0.00 | 140.17 ;
- ST 1.0a%) 39.64 | 9.8 35.18 |_ 94.89 95.20 83.47 0.00 6.00 | 171.80
- 1338 .08 l 39.64 | 39.89 35.18 94.89 95.20 83.47 0.00 0.00 | 1N.80
%1&_‘0959! 43.33 | 43.60 38.42 | 106.64 | 107.02 92.89 0.00 0.00 0.00
%G
~
- TABLE 4.17
. : . CRYSTALLOGRAPHIC ORIENTATIONS VS. DIFFRACTION
| ANGLES FOR SILICON AND SELECTED TARGETS
Y
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“Dislocation's nusber " Dislocation Té;lgil;q
as indicated in fig. 5.1 x 10°° 1m
" . 2
] 48.85
2 36.94
R R T
B 4 | 13.74
s 40.10 -
6 o 18.32
I T It R
9 \ 32,07
T 10 ‘% 30.69
1 18.32
2T e
13 21.99
14 - 17.41
15 21.99
16 20.62
17 P 33.90/7\
18 27.49
T 18.32
20 45.29
- 21 ‘ 5.9
22 30.23
23 21.9
R - 85.99
T&Mcls.l Lengths of Miloaion Scpp!m Shown in fig. 5.1,
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Dislocation's number Dislocation length
as indicated in fig. 5.1 x 10-" pm
A . A

25 29.32

e e e ]

26 43.98

B3 o 55.43

L --WZI} ) 48,56
29 o -5‘0.48 )

N 30 23.82

‘31& | » 42.65

7‘ 32 19.00

- 33 10.99

34 28.40

’ 35 8.704

"“"‘*“‘”“""';;" o 46.27
37 27.49
38 17.41
39 ) 20.62
40 48.19
81 21.00 |
4z 0.9
43 T 16.28
4 8.662 |
. 45 9.621
46 13.74
47 14,66

(Continued) -¥Table 5.1 Lengths of Dislacation Segments b fig. §.1.
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Dislocation's number
as indicated in fig, 5.1

Dislocatfon radius

x 104 im

44.87

i ro

36.65

36.65

9.391

32.57

13.74

14.66

13.05

T T

37.23 -

10

24,74

11

o —— o A mioains B @ S

16.53

12 21.16
TR 21,99

14 22.68

15 34.59

16 2112

17 78.34

J 18 33.86
19 i / 18.88

20 \_) 67.43

. 2 9054
2 . (/ 3,78
23 23.49

7 74.72

26 2.9

Table 5.2 Radff of Dislocation Segments Shown P f1g. §.1.
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Dislocation’s number Dislocation radius
as indicsted in fig, 5.1 X 10-*
% 81.08
27 74.05
28 ] 19.03,
29 9.83
30 46.05
3 90.66
32 20,28
33 13.74
R 21.99
-
3 9.391
'3 61.97
37 49.47
18 16.49
39 40,31
40 69.67
] 34.36
7] 7.788
X 43 20,86 - -
M \ 14.83 \
45 8.475
46 17.18
/ 47 1.788
.

(Continued) ~ Table 5.2 Radif of Dislocation Segments Shown in fig. 5.1
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Dislocation number Stress in x-direction Stress in y-direction
as indicated in fig. 5.1 kg/cm’ kg/cm’
| 21.121 38.103
2 45.096 57.720
3 a8.260 66.429
| e 90.009 193.025
5 19.060 58.662 -
B 6 | 101.984 109. 364
7 70. 368 100,496
8 65.812 46.082
9 15.834 T 305
/ 10 53.39) 44.800
n 11.255 63.830
12 10.060 57.053
13 39,752 54.714
:-:_lz: o 52.787 84.477
15 7.944 27.703
e T ] 23.175 T 46.699
17 6.718 15.827
! 18 23.255 23.255
19 ) 65.566 100,791
20 ‘ 15.655 22
21 4,798 17.303
22 12.323 33.857 .
| 23 19.667 38.508  *
2 424 14906
- N

Table 5.3 Microstress Valugs in x and y directions of the Extermal

Ceordinate Systmm.
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Dislocation nuber
as indicated in fig. 5.1

e

Stress in x-dlrcction
kg/cm’

Stress in y-direction
kg/cm?

——

25 20.881 36.166
26 4.398 12.08s
g 7580 13.675
28 33.514 23.467
[ 9 " 2.693 12.669
T T30 16.892 21.620
S . S
31 3.229 12.053
B Y 84.172
33 25. 356 69.665
34 43.760 L 62.495
N 63.614 157.449 "
B IO\K376 16.608
to37 k\ 22.080
38 36.260 \ 118.601
39 11.670 \ 32.064
40 8857 ] 15.341
q 10.812 29.705
42 195.984 147.684\
Y | 22.260 4%.639 \
44 / 73.776 113.604
45 120.328 90.673
[ s T me0s 61.339
47 266.056 266.055

(Continued) - Table 5.3 Microstress Yalues in x and y #rections of the
Extoml Curdimu System
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PPENDI
BASIC CONGEPTS OF MICROMECHANICS .

The first concept of theoretical micromechanics is the

existence of three measuring scales for the description of the
deformation of a structured medium, ‘ The largest region on which
a1l the boundary conditions are assumed to be prescribed is known
as the macrodomain, see fig, I-1, The smallest region of interest
is referred to as the microglement mdﬁdosignated by tts volumwe
‘v and’its surface %. It is identified by the superscript .,
This corresponds to one individual crystal in the polycrystalline
solid, As a first approximation Q\ the analysis of the meterial
response, it is assumed that the constitutive relations of such
elements ave describable by continuum lews, whilst the stress and
displacoment fields are either random variables or stochastic pro-
cesses depending on the medium am’( the boundary value problem under
investigation, The mesodomain is an intermediary scale between
the microdomain and the macrodomain and is such that it contains

4 large number, N, of microelements with wal,2, ... + N w
and hence may be viewed upon analogously to the G!hbsm.\ ensemble
of statistical mechanics, Furtho}mn. 4 mesodomain is considered
to be a physical domain in a macroregion for which the statistics
of any “random vcr’fi\bh or stochastic process may safely be assumed
to be spatially homogenous. A1) parameters relating ‘t.o the wicro-
domain, mesodomain and macrodomain are pryfixed by “micro", “meso”
a.nd *macro* respectively. f \

The second concept of micromechanics 'involves tv\w geometric

description of the deformation kinematics of the microelements and
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grain boundarins. The displacement kinematics of the u‘h

crystal

ave idealized as shown iy Fig. 1-2, wherein the points interior

to the crysta) and on the grain boundary are distinguished. Thus,

the position vector to any arbitrary point of the “th crystal re-

lative to a fixed Lulerian frame (x‘. x?. x’) cen he expressed by:
R I R

or the indicial notation as: (r.v)

(‘Y + (‘R

1\
« 0 J

Xy W !

whore 'g IS the position vector to the centre of mass of the "th
crystal, “9 the orientation of the crystallographic axes of the
microelement with respect to the fixed Cartesian frame and 'Y the
position vector to the pojnt relative to the crystallographic axes,
Majuscules represent parameters in the undeformed configuration,
while their cor#ospond%ng minuscules represent their counterparts

in the deforwed configuration. Cartesian tensor notation is resort-
ed to for clarity. Hence, during and at the end of a random deform-

ation the position vector at "X may be written as:

Y . ue Y o+ O

or (1.2)

« Q

x = oy ij-“r‘
For the subsedbent-lnclysis of grain boundary effects on *
the deformational behavigur of polycrystalline solid, the arbitrary
points iniern:) to the crystalv as indicated above, and the points

4t the grain boundary are distinguished. Hence, for a surface point
(Fig. 1.2) the velations (1.1) and (1.2) become:




a crystal (undeformed) 2 th crystal (deformed)

arbitrary point
in 3th crystal grain boundary

‘v
*--
~~~
~~

b

-_'—';“‘° local co-ordinate
a frame
—
7 surface ==
N\ point
a
77
u -
6
//r /)L - ";\a
9
‘R
’2

- h
Figure 1.2 TIdealized mode] for dicslacement kinematics of -0 crystal
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e W eRy g he (1.3)
where ‘G, “H and "9, ™ are the position vectors of this point in
the undeformed and deformed states, respectively. By means of the
above relations the random deformation for the centre of mass of a

grain will be given by:

ll! . ﬂr -(k (l.‘)
and fs; ;n arhitrarvy ﬁoint inside the grain by: ;

\\w . -\5 - \\.5 a \\2 (\y - t\g tl! + "! “‘5)

Analogously, the deformation at the surface of the grain is given
by:

"y - “g - % * % - “2 "ﬁ M "g (1.6)
Hence the distance vector, ), between the centre of mass of any

contiquous grains o and g8 {s:

Iy

and constitutes a significant correlation parameter as discussed
later.

The idcalized deformation kinematics of the grain boundary
- is as shown in Fig. I1.3 with the relations defined relative to the

surface co-ordinates (Fig.l1-4)

“5: . (j « i.2.3) given by:

s J
u&‘ - “'.!" (‘BA H "5‘ - “’.‘ ;u(:!. uﬁé (1.8)

In equation (1.8) &n is the normal vector to the boundary plane
and “35 is the eigenvector about which a mismatch rotation of 0

”»

superimposes the local 8! axes on the "1 axes (Fig.1§). “8A. called

SR (.
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Figure 1.3, ldealized gratn boundary displacement kinematics
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the "calculation zone", is the undeformed distance between the crystal-
Tine lattice of cach adjacent crystal beyond which the conditions of
the atoms are those of the perfect crystal lattice. It may be expressed

s
~

SRR R TR TE N 1)

and in the deformed state, this distance becomes:

u(%& - ﬁg R ug - (%g “h . ﬂe (lb N Rr . "I (l.‘O)

so that the stochastic relative displacement is:
By oy ity . (1.11)
The above geometric and physical parameters forwm the basic
quantities utilized tq'the description of the response behaviour of
crystalline solid. Given that each grain can be considered as an
elastic continuum, conventional ktpematic quantities such as “micro-

strain" can readily be formulated. Thus for instance a "primitive

strain measure” in terms of the microdeformation gradient will be

as follows:
W o A . o o X (1.12)
g | o * a
- Y N ) \
from which & wicro-Langrangian or Eulerian strain can be defined as
follows: ‘ /
‘ ag | e ae . o n,C T om
AT SN I EEEE & TR A S (B Y

where the superscript "c” on ﬁg or “! 1ndiccte§ the dyadic conjugate
and 2 is! the Kronecker Delta. The above foruQ are oversimplifications
and gver\ook the influence of the grain boundaries and dislocations

in the crystals. Incorporating such effects leads by mecessity to
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¥

e\ a more complex fomulfﬂon of the response behaviour. Within the
framework of micromechanics, taking into consideration these effects,
the above kinematic parameters can be employed to define the linear

/ “microstrains” within thc{ crystal and at the grain boundary, respect-
ively., These lincar microstrains within the crystal and at the grain

'
t

boundary calculation zane of two ‘abutting crystals are expressed as

follows:’ g
, ,
1 i
" . u » (o { '} (l.“)
I T A (TR T
and: j
o) . R % ! ( af af ) (‘ .‘S)
T ';c v 2 dc.c + dc,c
. in which w and d are defined in (1.16) and (1.11), respectively. With

the grain boundary surface co-ordinate system as defined in equation
I

(1.8) the grain boundary displacgments and strains become:

Wre (0, A 03 g a (M, e e n, )

[}

: 0“9 - ( uﬂdh Gsd.' Uad’ ) \
/' | ’ 0 "Bdl 0 \
i - af af af
: 1) (.} 2™ dr d? |
| O afy, o[ (1.16)

The third concept of the micromechanical theory involves
the notion of a "material .functionmal® or nteria) operator which is
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characteristic for a specific medium and which contains geometrical
;id thermomechanical parameters or functions of such parameters.
The material functional takes the place of the familiar fourth-order
material tensor relating the stress to the strain using a continuum
model. [t can be written as a characteristic energy functional in
terms of the significant variables in the following manner: -
M N .
< oA . a0y 0 o v (1A
where the full ieaning of these parameters, characteristic for a
polycrystalline solid are explained in ref. [1-6]. '
Finally the last concept of the micromechanical theory is
that the theory is based on the mathematical theory of probability
and statistical mechanics. This is inevitable due to the inherently
random geometric and physical properties of a real material as pointed
out earlier. The charagteristﬂc quantities involved iq the analysis
are therefare random variadles or random functions of such variables
and time. Hence the deformation process of the polycrystalline material
is seen as a stochastic process. For the determination of the kinematic
parameters and the material characteristics involved, mathematical
expéétations and second mowents can be used. Some of the parameters
are éxperimenta\ly obtainable from crystallographic studies in the
| form of distributions. The Micromechanics theory hypothgsised from
the beginning that these distribuiions were Gaussian or nearly Gaussian,
statistically homogenous and nqﬁ-isotropic so that an approximation \
to a wore rigorous correlation iheory‘pould be employed. Confirmation

of the above hypothesis.has been afforded by the experimental work of

AN

TR R e, . ‘ - i
s iy
N R A R Y . 1 . s o
. e - IR NI
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Kalousek (a7 involving combined holographic interferometry and X-riy
diffraction studies of the distribytions of the dispiacements and ro-

tations of aluminium crystals embedded in an epoxy resin matrix under

a tensile load, N




O APPENDIX 11

For the simple case of the linear elastic résponse of
po\ycrys;u\nno solids taking into c;n‘sidention the presence of o
mobile internn'dis‘locations in‘ the crystal, the stress “r,”. de-
fined in the Cauchy sense, and internal strain "‘!U (equation (1.14),
relation for tpe n=th crystal. has been approximated (¥7) in taho

| following matner:

w, - \ 4}
“iy LITTOR U
{
4
(, 1 41
in which "D”H is a fourth order tensor cowprising of the elastic
‘ modulus Eijkl of the single crystal and the dislocation effect
v “!‘
'k
E Y Byw (F%'\GI\S" L RN
/ ) .
new -g-; 6 (1-v) p'opd (11.3)

W gt oy "oy oy o

2}
where G is the pure crystalline material's shear modulus, v its Poisson's
ratio, 2 a characteristic langth between pinning points of an edge dis-

| location acting on a slip plane, whose normal has direction cosines
%03;+ in the direction described by the cosines "021. both with respect
to the external coordinate frame, and finally where apy is the mobile

s
. F
B .

@ M
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dislocation density. The quantity "‘1‘ is a fourth order tensor repre-
senting the orientation of the slip plar‘as and direction of action of
the inactivated Frank-Read sources, ‘ | ‘

The above random quantities were considered {n terms of their
first and second moments leading to the expression:

wp e Ege e wlee “!1'3 ’ (11.4)
éhere «{> is the mean stress and <e> the mean strain, whilst V repre-
sents the variance of the parameter indicated by the subscripts. )
being the distance between any two contiguous grains a and 8 (equation
1.7) ) is used as a correlation parameter to define the cross variance

of the stress distribution R ¢ (A) and variance, V , in terws of the

L] w
corresponding statistics in the strain space so that:

: T
,R,S(U = (E+nep) ( £+ neld) RV

B gy

]
n (E o n<g>) <g>T R oo )
R () Hgp (1) ¢ 20 egr)
+ nie> 83-"{ (A) + n:""!‘f (2) (11.5)
and:

V. = R, (0) \ (11.6)
] ' ‘
The -above brief outline of the micromechanical theory as

applied to a pol;crystﬂline solid is seen to take into consideration
the presence of dislocations intermal to the crystal, which become

mobile on application of a lo7d.




-_This is formulated by the lcs‘t two expressions in equation (I1.4)
which if the dislocation term is omitted leads to the hnimh
stress-strain relationship conventionally obtained from ‘a continuum

model

23
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APPLNDIX 111

INURGY OF INTLRACTION BLIWELEN TWO DISLOCATION LOOPS

The anteraction energy between two loops, fig 2.4, from

cquation (2 14) s,

Nt f dA'l\ bh‘ ﬂ’ll(\\

A,

Substituting the value of o o0 from equation (2.15) into

equation (2,14}, one finds:

d ’
- b ~ - Y ¢4

W1 8. f f dAl(\ dx“l\ bm b-‘m Pama X VR
AL

A J ?
K f fdAx(< dx"' bm b;m "imp JX‘. VIR 4
Ay C

b AR
4:',»3’»./ f dAnB dx“: bm b“m L amk JX‘. :%XH ax

Ay C
. f foon, ax b b oo VR
400 13 K v o amk Nal axi

AN C

By using Stokes' theorem and the relation;
(by x b2) . (dly x dlz) = (by . d!l) (by . d!:) -
(b, . d1,) (by . dl;)

for every part in equation (II1.1), then it yields equation (2.16)

where all the terms are described in section 3 of Chapter 2.

|
!
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SELF -STRESS. OF_ A CURVED DISLOCAT 10N

Consider a material of ‘nﬁ;\ite extent and suppose that
a closed loop C of Burgers vector b is created, fig. I1V.1, some
displacement U(r) at r will appear due to the creation of the dis-
location, If a pm‘n‘t force I acts at r while the dislocation is
created, vt does work

W =T Ur) = Fm Um(r) (Iv.1)
where l’m and Um are components of F and U respectively.

If the displacement relieve the point force, they de-
crease the encrqgy of the mechanism producing the point force by
an amount W, the interaction energy. Then the total energy con-
tributed by the external mechanism producing the surface displace-
ments and the point force equals the elastic encrgy of the self-

stress field of the loop, then;

W= ,-\fdAJ. by Fn jmlF o T (IV.2)

Where F (- r) is the stress U‘J’ at v caused by the components

m (‘ijm
Fm of a point force F at r. The b]. are the components of b, dl\j are
the components of dA, etc.
Since the tensor green's function for the elastic displace-
ment s
Uijir) = E":ﬁ; (Big Ve - 3 Si“:;j yoooav) ’

Then equation (1V.2) can be written as:

= - _a_. r~ -
N AfdAJ. by Cign X U (F - r)  (Iv.4)

equating equations (IV.1) and (IV.5), one can get;




‘]07— -

) ) . !
O Uplr) ;fdhj i Gy Umdmoa o avsy ﬁ

With the use of the fact that

C\JU _— ((s‘.k aj] + ‘\” ajk) L AU S (1v.6)

Then, equation (IV.5) can be written, in a more extend form as;

1Y) al
. ok _m -
ur) - fdAJ. b, o fdl(j by 5
A A J
W
A b " v.7)
it Afd ;Y W‘. {

Since the stress can be expressed as,
dy

m
an t San ) BYQ] (1v.8)

0o, l\ & 4 + I\

\
s aly me (kt\Q

Then. from equations (1V.7) and (IV.8) and following the procedure
0 of deWit “m', Peach and Koehler (20] derived equation (2.15) which
enables one to determine the stress field of an arbitrarily curved

dislocation by line integration.




!u

“\

APPLNDIX V
(A)

THIS BRUEAN oA IUATE T MU AN Aty b 1 TR I AR L URVA TR

A S AR eEonte - AND 1A AtE: AL FAanTd THE COMPOTAT ION
METHOLE Ut o T Isee THe IMIERSED T LN c o oRDINA TS s OF THE TWO
PRERCENDIT U A DI s 08 Al b nt paenns ok THE AR THESE
RN AL O A THE COORTYIMATE S ot s BT IVE FOINTS AN
THE A ALY MU TR TENS DR Ttho B 1L LoD FATRY ARF UISED

AMEG N-G bl At oM e L B R M  THE NUMIRER OF FUINT S AL ORI

ANY O TUUN Ve THE AVLERAGE b T ML RADTT It TALEN AS THE MFAN
KAWL op QMY CEULN AL U T 100 StEARATE Akt MAY BE

CUVRMELITEDC AN AR OULRAL L MR AR FADTUS 1o Al 0 CALLULATED LR T

P ROINTS G ok AMY CTULN AT MAY LE BEU ENTED

DAYA LR 6 N e T R RESENTEN AT

CAN R I CC AL UITH A LEF MO TIeen o FIRELD TO SHECIRY N

CEY L T @A THE 1) WITH A LRV NN TTRTED UFI0 RTRELD IHR
AVE WTIH A EET S T1EIRU GF1C BTN, YO SPREUCIFY SieuksSlve
EOINT R DTN TES AL UNG THE At At NC!Y YO LD XC&) Y(a)
DN TE 1TT CARD AND YR Y YOSV NCI0 Y VIO UM THE 4TH. IF
fﬂtcc(lzval;

SOV THE S Ra T TERMINAQTEDN IR MORU T QAN 100 ARGCT ARE
FECCESI N Gr [F AN N BARGMe e e oSt TRIRD AS 3

MY VML CAMZ N MIY MIDE N DI e b S0 RS TR AR
t HORD:

R S NECATIVL ST ok PERPENDILULAR FISECTORS
OF SC eSS Tl ARC LHORD:

'y o Y-=INTeH EOTS F BERCENDICILAR RISECTUR: OF
SIS IV. ARL CHORDY

LA K CORDINGIE: O THE CENTRE OF A CIRCLE
LONATEDN LY THE FERCENDICAM AR DISEC10OR:

LA RANTIIN OMET NIRRT N THE PAYIS OF 2

' SN CRTIV0 Ca TS ALTNG THE AL
JRMOL AVLEQGE OF AL L T )Y FUR ANY CIveEN AR
hMne AVLEALE T AT L PMOY D FDR OATL AR

CIIRMEAMTTON B 8O0 Y MO IO YO LY Reo
L |

PEAYM Q, 10w

FORMAIC I : v
TRCN SO0 vy MoN 10

IHON LT D) GO TO oo

REAQLC O, JO XM XITY, YOI ), T2, N)
FORMAYT T 1D AL

IMN aN=

bt O BRI

ey 1O0 11, IMN

XMt 2 N1+ daX(T Y)Y

VMY -6 ¥( TAt YAYET Y2 -
' ﬁ/z




v -
Ll » N
R o= “ - o ‘h

AP EANE ST A S B 20 SR IR
YML ooYC e ey Tt )Y 2
LR IR I R R AR R 2R E R 2 B
o=\ ] YVOlaT VY YL Tl ey Ty MY
U1 -YMUay oMy
Lo YMoe o ams
ALY O G AR B R R B
AREERGLE G0 IE ARSI S I Y48 AR S AT SRR R
O SRR AL AU S A A I T IR AT R PR A EN G B 3 SR P AR Y Y B RS |
EoXt MR L T T (N TET N e N MR SAl YO D ey YV
Lo TRl v pry gy vale 1Y
N I AR S RAT YRR § AR
WhLT& e T R Ty, Tat, 1M
AL A L LS A
W LT8C L0 T ML Y N
' POEROO O T8 PIC AR 5eQiadiee L ey A v Yooo M DATA EINTS D TEST N
. S S
LR I
| AR O S SRS A LA AR RUANEE KA IR
ey T
Levoey AL IR
-t -y
(LN AT I SR W
!11\‘\ ’,:h!r!z'l-ydn‘al'hh !\

BMR By Qied )

WHIITRD 1, 4n MM
L0 FORMATC S e AVERQGE MEAN FATITLIS flw oo

ST
END
ARLUIES BLA L

P T

b AL e~




L5
LN, W : A
* P N ‘T‘ ——— - ‘ls

’ APPENDIX V '
(8)

CRATE T NTLANANY AHONEVM HANMMNINA

r

T T B Y

5

8

rdal

15

tNATA

THIC PONARAM TS TN CAILCIN ATE TWUE MIFONSTOFSY VAL IIE
ACTINA AN EVERY DT NCRTINM CFRMENT BY  TNSEB T TML TWF
VAL NEC NE THE AT ACATION 1 ENCT 1T QADTIIS AN THS
AMOILE RETWEEN THE YANGENT AMD THE Y-AXYTS N ENNAT NN
2410 HUAS AFCNM NECFOTREN N FHADBTID 2 NE THIN THISES,
niMencInn by (SN) R0 (EN) (PHAVISN) (SETALEN) ,STY(RAY STV {&N) . F (&Y,
LR AYAR! TV LEM)
P2 VY7V aAN
OY-2 V24 &
DD -N IV K
CHV= (A 14" 1NY ATV RN 2
LY TR
=9
(YR BN !
bet s |
Nes 4D
RN/ 2 V%N (Y (WARD (e [MEXD ) ) en) /D)
YY=1 ,=? ,wDD
MOTTF (A, &)
FNOMAT I Y Y, VY INTCQ) b 'V ENATY RANTIIS TANGE?
* NOTEMTATINN CYRERCK CYRFQCTay STRFR Q. V1)
READ (S VIR (1) 48P (1) SETA(T).RE [ BPHAY(T) 1=2),47)
ENOMAT (&RE L.}
ATA TR N N B
RO (V1 )=-Q0 (1) 22ARAR N /2 DA .
RU MV )Y =RI (V) XRAARGR N /72,74
Cz(a 201 (1)) /7 (FYRA)
FITY=-CSFIA (T -

ey -y 200 ER () v \\\\”’
VIV =CINE LT )Y /NS (B (Y)Y

PA=E 20TV e a2 (T R(2V (11202 ) (LR/ZIVIIICRLLY ,=POYRAL DGR (T ) ))
PR IFITINED NI ) ) (1 R(XXAXAINRYUC /2, V=0, &)
NC=XYr) (T ef2Y (1) xed)

MN=z—0P&P ) (T) &STMIE (1))

Nkz? 1) ee :

STRFCS=((SHMCA ) /(& ,2P12(} ., ~PR)))*(NASNRINCANNINE) JRR (1)
CTY(T)=STRFECR#STM(PHAY I T) *P)

STYLVI=STRESSIMNS (PUAY ] ) 2p)

VRTITE (AN IT GREGT ) ePR (1) oSFTAIT) PHAY(T) STRESS STX(T)(STYC(T)
FORMATY l)v.!‘).l:l?.&.'\!.E\7.&.‘!.F7.‘\.Ry,tl?.'\.l.x.Fl?,l..‘.x.
LR, JKRY L FR A )

CONMY TaNE

<Tne

X1, - Ed




