MULTISTABILITY AND
PROBABILISTIC PROPERTIES OF
DIFFERENTIAL DELAY EQUATIONS

by

JEROME LOSSON

Department of Physics

McGill University
Montréal, Québec, Canada

June 1991

A Thesis submitted to the
Faculty of Graduate Studies and Research
in partial fulfillment
of the requirements for the degree of
Master of Science.

(©Jérome Losson, 1991




)

@ mes parents, Michéle et Jean-Pierre Losson et & Jacques Michalczak




ABSTRACT

The dynamics of a class of nonlinear delay differential equations (D.D.E’s) is studied. We
focus attention on D.D.E’s with a discrete delay used as models for production/destruction
processes. The design of an electronic analog computer simulating an integrable D.D.E is
presented. This computer is used to illustrate the presence of bistable solutions in the system.
The multistability is investigated numerically with an analytic integration algorithm. Higher
order multistability is reported, and the structure of basin boundaries in the space of initial
functions is investigated. Pathological dependence of solution hehavior on the initial function
is shown to be present in large regions of parameter space. A D.D.E obtained as the singular
perturbation of the one dimensional “hat map” is studied numerically. Several schemes to
undertake a statistical analysis of the equation are presented. We first focus attention on
the construction of densities along trajectories, and then on the construction of densities for
ensembles of trajectories generated by ensembles of initial functions. A cycling of densities
is observed in both cases, and compared to the asymptotic periodicity of the Frobenius-
Perron operator for the hat map. Functional analytic techniques used for the analysis of
stochastic wave propagation in continuous media and in quantum field theory are extended
to the statistical study of D.D.E’s, and provide a theoretical framework within which te
study D.D.E dynamics in the spirit of ergodic theory and statistical mechanics.




RESUME

Cette these porte sur I’étude du comportement dynamique d'une classe d’équations
différentielles avec mémoire (équations dites a délai, ou E.D.D.) pouvant générer le chaos.
Ces équations sont utilisées pour modeliser les processus de controle avec rétroaction re-
tardée. Un ordinateur électronique analogue destiné a simuler une E.D.D intégrable en
temps réel est décrit. L’ordinateur est utilisé pour illustrer la présence de cycles limites
bistables. Cette bistabilité est par la suite étudiée numériquement griace & un algorithme
d’intégration analytique. La présence de solutions multistables (tristables, quadristables,
etc.) est mise en évidence et la structure des frontieres de bassins d'attractions dans l'espace
des fonctions initiales est analysée. On observe une dépendence pathologique du comporte-
ment asymptotique sur les variations de fonctions initiales dans de vastes régions e I'espace
des parametres de controle. Une E.D.D obtenue par perturbation singuliere de I’application
unidimensionelle dite “application chapeau” (hat map) est simulée numériquement. Plusieurs
approches destinées a faciliter une étude numérique statistique de ce systeme dynamique sont
présentées. Tout d’abord, des densités définies le long d’une simple trajectoire sont obtenues.
En un second temps, on considere I'évolutior. de densités définies sur des ensembles de tra-
jectoires générées par des ensembles de fonctions initiales. Dans les deux cas, 1’évolution
temporelle est cyclique, et donc, a rapprocher de la périodicité asymptotique de ’opérateur
de Frobenius-Perron pour 'application chapeau. En dernier lieu, les techniques utilisées pour
I'étude de flots stochastiques dans les milieux continus, et les outils de la théorie des champs
quantiques sont utilisés pour I’élaboration d’un formalisme théorique formant la base d’une
approche nouvelle des systemes dynamiques avec mémoire, inspirée de la théorie ergodigque
et de la mécanique statistique.
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Chapter 1

Introduction

The use of non-linear equations to obtain insight into the evolution of complex systems is
the essence of non-linear dynamics, a field of activity which has greatly expanded in the last
thirty years. At this point it appears that the tools of non-linear dynamics potentially hold
as much promise for the development of theoretical physics as the use of probability theory
did in the first part of this century [66].

This thesis focuses on a small subset of nonlinear dynamics, namely the study the dy-
namics of a class of non-linear delay differential equations (D.D.E’s) which model delayed
feedback control loops. Delay differential equations have been used to study problems of
laser physics and nuclear engineering, control theory and economic modeling. They also
appear frequently in mathematical biology and studies of population dynamics. The appeal
of nonlinear dynamics lies in the fact that it is possible to simulate complex (sometimes even
chaotic) behavior using relatively simple non-linear mathematical models.

In this introductory chapter the origin and formulation of history-dependent models is
first described. In Section 1.2, we present some of the basic concepts of non-linear dynamics.
The connection between delay-dependent models and a formulation in terms of partial dif-
ferential equations (P.D.E’s) is given in Sections 1.3 and 1.4. Finally singular perturbation
limits and some other techniques used to study D.D.E’s are explained in Section 1.5.

Chapter 2 describes the design and performance of an analog computer constructed to
simulate the solution of a class of delay differential equations with piecewise constant forcing

terms. The use of this computer highlighted the sensitivity of delayed dynamics on initial




conditions.

Chapter 3 explores the dynamics of a piecewise integrable delay differential equation using
an algorithm which integrates the equation analytically (but not symbolically) allowing a far
greater accuracy than that obtained with traditional numerical integration schemes, and
significant reductions in computation times. We focus attention on exploring the presence of
multistability in the D.D.E discussed in Chapter 2. In particular, we illustrate the complexity
of the basin boundaries in the space of initial functions. The multistability displayed by the
D.D.E is studied in detail with a specific set of non constant initial functions.

In Chapter 4, we examine numerically the behavior of large collections of delay differen-
tial equations. In Section 4.1 we review some of the techniques used to study deterministic
systems from a statistical point of view, and discuss an interesting property of smoothing
Markov operators known as asymplotic periodicity. In Section 4.2, we numerically inves-
tigate the statistical properties of large collections of D.D.E’s using several methods (see
4.2.2a,b,c,d) designed to facilitate the numerical study of flows of functions. In Section 4.3,
an analytic expression for the density along the trajectory of a piecewise integrable dynamical
system is derived, and applied to a delay differential equation and a simple neural network.

In Chapter 5 we present a formalism with which to investigate the dynamics of densities of
initial functions (density functionals) evolving under the action of delay differential equations.
In Section 5.1, some introductory definitions from measure theory and probability theory
are given. In Section 5.2 we derive a functional differential equation for the evolution of the
density functional and then derive partial differential equations specifying the time evolution
of the moments of the distribution of functions. In Section 5.3, we apply the Feynman
diagram technique to the statistical study of delay differential equations. We show how the
diagrams can be used to derive the partial differential equations mentioned above. Since
the Fourier transform of the density functional can be interpreted as a path integral, we
explain in Section 5.3 the close connection between the statistical study of delay differential

equations and quantum field theories.




1.1 History dependent models.

In the absence of non-local effects, the instantaneous transmission of information between two
systems is impossible without a violation of the assumption of causality. The delays involved
necessarily impose a fundamental constraint on any theory describing physical interactions.
If the time scale of the delays is comparable to that of the processes under consideration, a
sound model must explicitly take the delays into account.

The idea that the evolution of a system can only be predicted given some knowledge
of its past history is not novel. A review of the relevance of time-delays in control theory
can be found in [3]. In biclogical systems, delays arise because of the finite speed at which
biochemical and electrochemical signals propagate. Hormones are carried by the blood flow
to their targets; action potentials propagate down axons and neuro-transmitters must diffuse
across the synaptic cleft between neurcns. In the study of population dynamics, delay-
dependent models reflect the time lags that always exist between environmental stimuli and
adaptive responses.

The use of delay-dependent models is in no way exclusive to theoretical biology and
biomathematics. A number of physical systems require their use to understand their be-
havior: the stability of nuclear reactors [15, 19, 41], neutron shielding [6, 61] and bistable
optical devices (21, 32, 34] to name just a few. As early as the 1930’s Kalecki [36] proposed
delay-differential equations as models of cyclic economic commodity market activity. In re-
cent work delay dependent models have been used to investigate the dynamics of commodity
price fluctuations (2, 50]. Mathematically, the framework within which to investigate such
apparently diverse behavior is the theory of functional differential equations.

When a model is formulated in terms of coupled first-order ordinary differential e uations

for the vector variable x(t) =(z,(t),...,z.(t)):

-dettz = F(zl(t)v""zn(t))a F= (Fl,... ,Fn), (11)

the initial values z,(0) suffice to predict the evolution of z,(t) for any future time. However
as the examples cited above illustrate, it is sometimes necessary to use knowledge of the past

history of at least one of the variables to allow prediction.
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If the evolution of the variable z,(t) depends on some cumulative effect of all its earlier
values, it should be replaced by some function f, weighted by a suitable factor g, and
integrated over all previous times. Then the evolution equation is an integro-differential
equation:

D o P (o[ slt= Oftar(eN)at...). (12)

The function g (the kernel of the equation) specifies the weight to be attached to the function
f of z; at each point of time in the past. This is an example of a D.D.E with distributed
delays.

If there is a discrete time lag in the action of z, on some other variable, we speak of
a discrete delay in the system (1.1) and in that case at least one of the set of O.D.E’s is
amended by replacing, for example, F(...,z(t),...) by F(...,zx(t - 7),...). Then the

equation of evolution
dx(t)
dt
is a D.D.E with discrete delay. For illustrative purposes, we examine two specific areas of

investigation in which the use of delay dependent models has been particularly fruitful. The

=F(z,(t),...,za(t - 7),...) (1.3)

first one is the study of nuclear reactors, and in which the goal is to write down the conditions
on control parameters which guarantee the stability of the system. The second one is the
modeling of physiological control loops. In both of these areas, models are often naturally
framed as non-linear D.D.E’s.

Example 1.1: A NUCLEAR REACTOR DYNAMICS MODEL.

In nuclear engineering, delay differential equations with distributed delays have been
used to describe the dynamics (and, in particular, to determine the stability conditions) of
circulating-fuel nuclear reactors. Ergen [15] assumed that all the particles of the fuel spent
the same time T in the reactor and that power extraction was proportional to the integral
of power P(t) over past residence times. This led to the following equation for the rate of

change of temperature T'(t),

i‘% =€ [P(t) - %[’T P(t - 3)d’] ‘ (14)

The relative increase in the power P from one generation of neutrons to the next is



assumed to be proportional to T,

d—l";fi—tﬂﬂ oc (_?aT(t)) , (1.5)

where —a is the temperature coefficient of reactivity and 7 is the average life time of one
neutron generation. Since neutrons enter the reaction only some time after the occurrence
of the fission which produced them, the reactor power at time t depends on the history of

the reaction. Thus equation (1.4) is modified to

d_Zf_t) = :;-T(t)P(t) - gP(t) + [;3/:” P(t — s)g(s)ds (1.6)

where the delay kernel g(s) indicates which fraction of the neutrons produced by a fission at
time t — s is available for power production at a time s. The presence of the third term in
(1.6), the so-called delayed term, is crucial in the reactor stability problem [56].

Example 1.2: PHYSIOLOGICAL CONTROL PROCESSES.

Historicelly, delay dependent models have been instrumental in the development of con-
trol theory. The classical situation that a control theorist faces is to model and understand
the dynamics of a remotely controlled variable. Often the interaction between the control-
ling unit and the controlled process is such that time lags are significant. [For a list of such
systems and a control theoretical approach to the treatment of delay dependent models, see
[57])]. This paradigm is also applicable to many of the problems facing those investigating
the dynamics of physiological control processes.

To clarify the discussion, introduce a variable z(t). Generically, in biological systems
z(t) will vary to accommodate a changing internal and/or external environment. In many
situations, z(t) is controlled remotely and an accurate model must take the delays into

account. For example, the equation

dz
i -az(t) + F(z(t-T) (1.7)

with different nonlinearities F' has been used to describe the oscillations of the pupil area
and the pupil eye reflex [47], as a model for the human respiratory system [53, 54], and to
describe the regulation of several processes in blood cell production [55]. In these different

applications, the function F reflects the type of feedback present in the control loop and the

5



variable z(t) represents, respectively, the area of the pupil, the concentration of CO, in the
blood stream, or the number of circulating blood cells.

The use of delay equations is important to understand some clinically observed patholo-
gies which can be thought of as resulting from deregulations of these control mechanisms
arising from shifts in the parameter space of the process. For example an abnormal vari-
ability of the number of red blood cells in the body (one of the symptoms of periodic
autoimmune hemolytic anemia) can be understood as arising from a change in system lo-
cation in parameter space for equation (1.7), resulting in a bifurcation in its dynamics [54].
Periodic autoimmune hemolytic anemia is an example of what has been called a dynamical
disease: a malfunction which is not necessarily the result of infection by a pathogen, but
the result of a qualitative change in the dynamics of a physiological control loop [54]. The
causes of this dynamic change are then interpreted as changes in the parameters of the model
under consideration. This relatively new approach to physiological dynamics has proven to
be useful for the investigation of several diseases, but the development of the theory and a
more systematic use are still hampered by a lack of understanding of the behavior of delay
differential equations.

The difficulties inherent in the study of D.D.E dynamics partially stem from the fact that
D.D.E’s are infinite dimensional dynamical systems. Their phase-space is a normed function
space because the initial condition is a function defined everywhere on an iritial interval
[-7,0] in the case of discrete delay situation, or on (—o00,0] in the distributed delay case.
The main motivation for this thesis is the paucity of insight and analytic results concerning
the influence of initial functions on eventual D.D.E solution dynamics, and the absence of

analytic tools with which to investigate D.D.E’s statistically.

1.2 Non-linear dynamics and D.D.E’s.

Systems of O.D.E’s and maps (with either continuous or discrete time) have been studied
extensively: the behavior of flows in finite dimensional spaces has been the subject of intense
scrutiny [4, 11, 18, 20, 40, 46).

For investigators using D.D.E’s as models for physical systems it is necessary to have some

6
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information concerning the generic solution properties of these equations. Thus existence
and stability of solutions, the effects of changing initial conditions and the potential existence
of chaotic dynamics are all important points to address. They remain largely unanswered
but are crucial for the researcher dealing with delay dependent models. Before proceeding,
we introduce some of the concepts of non-linear dynamics which will be used throughout the

thesis.

1.2.1 Introductory remarks.

An important feature of nonlinear deterministic systems is that they can display very com-
plicated behavior. The essence of this complexity is twofold.

1) It is frequently observed that the topology of the attracting manifold of a given non-
linear deterministic system changes as some control parameters are varied [20]. Changes
in the topology can be viewed as qualitative changes in solution behavior. For example, a
steady-state solution can suddenly become oscillatory, or a hitherto bounded solution can
diverge to infinity. These qualitative changes in solution behavior are called bifurcations.
Mathematically, the equations of motion are non-linear differential equations and the bifur-
cations correspond to certain changes in the eigenvalues of the differential operators near
fixed points (or points in phase space at which all time derivatives are zero).

2) Simple non-linear deterministic systems can generate turbulent-like behavior (or de-
terministic chaos) which never repeats itself in the phase space. Deterministic chaos is
observed in certain regions of parameter space and may not be ubiquitous for 2 given sys-
tem, t.e. many nonlinear systems can display a wide array of dynamic behavior ranging from
steady state behavior to oscillations of varying complexity to turbulent like behavior as a
control parameter is changed. In fact there are well known routes to chaos [72]. These routes
usually consist of a sequence of bifurcations which lead the system from simple motion to
chaotic behavior. For example the period doubling route to chaos (Feigenbaum’s scenario)

is a sequence of doublings of the solution period leading to chaos as a parameter is changed

[72].



-

1.2.2 D.D.E’s

In studying D.D.E’s concepts familiar to the non-linear dynafnicist like fixed points, flows,
basins of attraction must be adapied to the framework of functional analysis. This is because
delay differential equations are in fact functional operators acting on the elements of a normed
function space. For example, a D.D.E with discrete delays transforms a function defined on
an interval [jr,(j + 1)7] into another function defined on [(j + 1)7,(j + 2)7], j = 0,1,:--,
where 7 is the largest of the delays present. The fixed points of the D.D.E are invariant
functions for the functional operator and the flows are flows of functions. These concepts
have been introduced [22] but the formalism makes the results available difficult to access for
many investigators likely to encounter D.D.E’s in their research. In addition, the presence
of basins of attraction in function spaces and the structure of these basin boundaries have
apparently never been investigated.

One way of dealing with these difficulties is to reduce the D.D.E’s to systems easier to
study, O.D.E’s or maps for example. Before illustrating some of these techniques, let us

highlight the connection between some P.D.E models and a formulation in terms of delay

differential equations.

1.3 Initial-Boundary Value problems for hyperbolic
P.D.E’s: The link with D.D.E’s.

To now the focus has been on models for which the dependence on past history is built
in. That is to say, when the equations are written dcwn, the way in which the system
depends on its history is explicit. In some cases, it is possible to obtain a D.D.E from a
reinterpretation of a prior: non history-dependent models. General well-posed non-linear
boundary value problems for hyperbolic equations are reducible to functional differential
equations, some of which are D.D.E’s. This procedure was first noted by A. A. Vitt in 1936
(80], and apparently independently by Miranker [58] and Cooke et al. [12] while studying
the dynamics of transmission lines terminated by general circuit elements. The method is
based on the observation that a hyperbolic P.D.E can be written as set of first order P.D.E's,

which can in turn be written as a set of O.D.E's via the introduction of the directional (or




total) derivative. Before proceeding further we review the concept of a hyperbolic equation,

and the associated characteristic curves.
The normal form for a hyperbolic P.D.E as defined by Morse and Feshbach [60] is

Py 0 Oy
a’\a“_Pa’\+Qaﬂ+R¢ (1.8)
where P, Q, R are functions of A and p. It is easily shown [60] that the wave equation
o 106%
37 “doe (19)

is a hyperbolic equation. If ¥(z,t) is a scalar, it can also be shown that any hyperbolic
equation can be written in the matrix form

8U U
AS +B— +CU=0 (1.10)

where A, B, C, are 2 x 2 matrices whose entries are functions of z and ¢, and U = U(z,t).

In addition there exists a vector V = V(z,t) such that
v(z,t)VTA = p(z,t)V'B. (1.1%

v and p are not both zero and V7 is the transpose of V. Equation (1.10) can therefore be

written

7] i)
T - _ T = 0. 1.12
VA(pat+uaz)U+pV CU =0 (1.12)
The curve £, parametrized by s and defined by
&= v _ 4()
L'{i: 0 where ()= A (1.13)

is called a characteristic curve, or characteristic for equation (1.10). Defining D to be the

directional derivative along £

a 0
= p— — 1.14
DC pat + uaz’ ( )
we can write (1.12)
VTAD (U)+pVTCU =0, (1.15)

and the equation looks like a set of O.D.E’s. For a given hyperbolic P.D.E the information

about the solutions flows along the families of characteristic curves. Note that since U is

9



2 x 2 in our case, there are two families of characteristic curves, but the situatici is exactly

the same if Uis | x [ [67].

Now consider the following initial-boundary value problem:

u, + M(z,t)u, = ¢(z,t), where z €[0,1] and t >0, (1.16)
along with
M(z,t) = ( f'(:’t) fz(g’t) ) u(z,t) = ( ::E::;) and ¢(z,t) = ( z;f:’g )
The initial conditions are given by
u(z,0) = uy(z), (1.17)

and the boundary conditions are general integro-differential conditions which can be formally

written

B,(u"(a,t)) = 0 (1.18)
where i = 1,2, 7 = 1,2, k = 1,0,—1 and a = 0,1 so that the argument of the boundary

conditions B, and B, in (1.18) is a contraction of 12 terms (for each j, 3 possible k’s, for

each (j,k), 2 possible a’s). We define
u(a,t) = uj(a,t), (1.19)

the differential term in the boundary condition,

u.gl)(a,t) = 8_ui%1_,_tz’ (1.20)
and the integral term,
(-1 _ t ndt' 2
uf _/O u,(a,t')dt’. (1.21)

The functions B, and B, are given, as is the vector function uy(z). The requirement that ¢
be independent of u is essential at this point. Once the method is developed it is easy to
see how more general situations can be treated, and we shall come back to this point at the
end of the section.

The characteristics for (1.16) form two families of curves (see Figure 1.1)

L i"E=—1-— and £2:d_z !

1 dt f‘ dt = ‘};‘. (1.22)

10




u,(1,¢ + T(t))
L,
uz(oat)
t
u(0,¢) _’[—1/ uy(1,t + Ty(t))
0 1

Figure 1.1: Two possible shapes for the characteristic curves of system (1.16).

We assume that through each point (z,t) € [0,1] x R* there are two characteristics: £,

with pcsitive slope and £, with negative slope. Now introduce the directional derivative
0 )
i= =+ h(z ) (i=1, 2
D at+f(:c t)az (i=1,2) (1.23)
along the characteristic £,. Equation (1.16) therefore takes the form
Du,=¢, (i=1,2). (1.24)

A characteristic through a point (0,¢) will intersect the boundary z = 1 at a point
(1,¢ -+ Ty(t)) where Ti(t) can be found by integrating the relation dz/dt = f;'. Similarly a
characteristic through the point (1, £) will intersect the boundary z = 0 at a point (0,+T;(£))
where now T,(t) depends only on f, defined in (1.22)

Integration of Dy u; = ¢, along the characteristic £, from a point (0,¢) to a point (1, T)(t))
yields

t+ 1 () -
w(l,t +Ti(t)) = (0, 8) + / &3, §)di, (1.25)
t

where the integral is a line integral along C,.
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Similarly, integration of D,u; = ¢, along L., gives obtain,

u,y(1,t) = uy(0,2 + To(t)) + 11720) #:(2, t)dt. (1.26)

(Remember that £, has a negative slope so that T, < 0.) We have equations linking
uf")(O,t) and u,(o)(l,t) and we can now obtain similar equalities for uf*')(o,t) and u,(*')(l,t)

by differentiating (or integrating) equations (1.25) and (1.26). To simplify, define

Q,(t) = [ HTY (), (1.27)
and
Qu(t) = [ o PE D (1.28)
Furthermore if
y](t) = ul(l,t), yg(t) = ug(O, t), (1-29)

straightforward differentiation and integration of equation (1.25) yields,
1 (0,¢) = y;(t + T1(t)) — Qi(¢),
u{'0,8) = [1 + T{(t)lyj (¢ + Tu(2)) — 2} (2), (1.30)
t [}
u{™"(0,¢) =/u y1(s + T1(s))ds —/U Q,(s)ds
for the first equation, and
u2(0,t) = ya(t + T2(t)) + Qa(2),

u$(0,2) = [1 + Ty(t)]wy(t + To(t)) — Qi(e), (1.31)
u$™(0,¢) = -/u‘ y2(s + T2(s))ds - /: Qy(s)ds

for the second equation of system (1.24).

If we substitute these expressions in relation (1.18) for the boundary conditions, we obtain

the following system of D.D.E’s:

B, (1@ s(t + TN B e 01 + Te)), [ wilo)ds, [ wuls + Ti(o))ds
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alt), (e + To0), 150 a6 + To®), [ waloM, [ o + To()ldot) =0 (1.32)

where (t > 0), (i=1,2). Therefore, a solution of (1.16), (1.17) and (1.18) yields a solution
of (1.32).

We now show the converse (a solution of (1.32) is a solution of (1.16), (1.17) and (1.18)) to
demonstrate the complete equivalence between the original initial-boundary value problem
for the P.D.E and the initial value problem for the D.D.E.

Suppose that y,(t) and y,(t) setisfy (1.32). Define u,(1,t) and u,(0,¢) by (1.29) for ¢ > 0.
To define, u,(x,t) for 0 < z < 1, integrate (1.24) along the characteristic £,, and proceed
similarly for the definition of u;(z,t) using both cases the known values of u,(1,¢) and u,(0,t).
Clearly, (1.25) and (1.26) are then satisfied and so are (1.30) and (1.31). Hence (1.32) leads
at once to (1.18) and (1.16) is satisfied because (1.24) is valid. Thus every solution of (1.32)
generates in a unique way a solution of (1.16) with boundary conditions (1.18)! In addition,
the initial condition (1.17) yields, via the integration along characteristics, two values y,(t)
and y5(t) which are, in general, appropriate initial values for the D.D.E {12].

The original equation (1.16) is linear but general non-linear boundary conditions will
make the system of D.D.E’s (1.32) non-linear. Because the dynamics of the two systems are
exactly the same, one should not be surprised to observe sensitive dependence on the initial
conditions (or other types of behaviors typically displayed by non-linear systems) arise in
equation (1.16) which is linear.

In conclusion there is a general method for linking mixed problems formulated as hyper-
bolic P.D.E’s and initial value problems for history dependent models. Known theory and
techniques for either kind of problem can be applied to the other.

1.4 Distributed delays: Approximating D.D.E’s.

The results of the preceding section give us an explicit connection between hyperbolic P.D.E’s
and delay differential equations. We now consider the transformation of a D.D.E with
distributed delays into ordinary or partial differential equations. It is worth emphasizing
this possibility because models are often framed as partial differential equations, and the

possibilities of (occasionally simpler) alternate formulations are frequently ignored.
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Conditions for the reducibility of a D.D.E to a system of ordinary differential equations
will first be examined. We shall then give a general statement concerning the equivalence
between D.D.E’s and P.D.E’s.

Consider an integro-differential system of the form,

t
= At + [ Kt u)dn (1.33)

with the initial conditions
z(t) = p(t) fort<0
A(z,t) = Ay(pst) fort<0
[ ;K(w(u),(),u)du = I,

Theorem 1.4.1 (Vogel [81]): In equation (1.33), let K(z(u),t,u) be a given kernel differentiable
in z and t. If there are functions fy(t), fi(t),...,fp-1(t) and W(t,u) such that

o’K 0K o 'K

—;,,_(zatvu) = qu(z,t,u) + fi T’ft—(z’t’u) +-- 4 fP-l—a'Fr(zvtau) + W(tsu)s (1'34)
then the solution z(t) of (1.33) satisfies a p + 1-dimensional system of O.D.E’s.

This result is applicable to systems of the form:

2 A0+ [ Hia(u)e(t - w)ds, (1.33)

with initial conditions
z(t) = p(t) fort <0
A(z,t) = Ao(p,t) fort <0
3]
[ Heg(-v)du = Lo

which are examples of Volterra systems [49, 82]. (Note that equation (1.6) for the power
available from a circulating-fuel nuclear reactor belongs to this class of equation, as does the
population dynamics model considered in Example 1.3). For equation (1.35), the condition
for the reducibility of the integro-differential equation to a system of O.D.E’s is that the

delay kernel g satisfies,

dPg dg g
Q- a09+017t'+ "'+‘1p—l‘_—‘dtp_‘a (1.36)
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where the a,’s are constants. In other words, the condition on the kernel is that it be a sum
of exponertials multiplied by polynomials of order at most p.

There are even inore fundamental results relating D.D.E’s to partial differential equations.
Theorem 1.4.2 (Fargue [16]): If the kernel K(z(u),t,u)is such that (1.33) possesses piecewise
differentiable (C') solutions, asymptotically bounded above by bexp(n | t |¥) with b, n, k,
€ R, then (1.33) is equivalent to the system,

Z—:: = F(z,t)+ _/:c K(p(a,t),t,t — a)da,
op , Op _
at ' aa - J(G)Z(t),

6 being the usual Dirac delta function, and p(a,t) a piecewise C' function.

The proof of the theorem is based on the fact that it is possible to replace the trajectory
of the system up to time ¢ by a field (or function) p which is defined for scalar systems as
the solution of a P.D.E in one dimension. If no memory is present (the relevant information

is the state of the system at time t), the field can be chosen to be
p(a,t) = H(a)z(t - a),

where H(a) is the Heaviside function. Other fields can be introduced depending on the
properties of the desired final system. The procedure is not physical in the sense that the
field p has no direct (physical) meaning since (1.33) can represent quite varied physical
situations. However, it allows a new perspective on hereditary systems:
Systems with memory can be interpreted as being non-local (or extended). This allows the
introduction of a field which is now intrinsic to the system, and the variable (or property)
which satisfies the D.D.E is a functional of this field depending on its value at each point in
the system.

These ideas are rather general, and their effectiveness can be illustrated with a simple
example taken from the study of population dynamics.
Example 1.3: REDUCTION OF A VOLTERRA TYPE D.D.E TO A SET oF O.D.E’s

Let us suppose the D.D.E is of the form

dz

S = F(a(t)y(t)) where y(t)= [ ; g(t — v)z(u)du. (1.37)
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with initial conditions
z(t) = ¢(t) fort <0
0
[ elwa(-w)du = L
where, again, ¢ is the delay kernel.

Data on insect maturation times can be interpreted in terms of a delay kernel. This
kerne! can then be used in a distributed delay differential equation, itself obtained from an
age-structured model formulated as a P.D.E [5]. For certain species of flies the kernel can
be determined with sufficient precision and fitted to a shifted gamma distribution.

Suppose that g is the gamma distribution

g=Gm"(q) = %—";T——l—q'"e‘"", a,m> 0 (1.38)
where m is an integer. This kernel has a maximum at ¢ = 7 so the average delay is given
by

- _ JeGi(q)dg m+1
T ="z = . 1.39
[FCriady - @ (1:39)
Note that
Jdim_ G7(q) = 6(g-T) (1.40)
Fconst
so that in this limit
y(t) ==(t - 7). (1.41)
Similarly, we have the recursion relation,
dG;n —u m— m
U= aforg-v) - G2 - vk (142)
We now introduce
zo(t) = z(¢)
t
z.(t)E/ g(u)Gy'(t—u)du i=1,...,m+ 1. (1.43)

The equations satisfied by the z,’s are obtained by computing %‘;‘ (using Leibniz’s rule) and

the recursion relation (1.42). The result is
dlo

dt = F(ZU’ zm-('-l)
dz, .
"y =a(z-y —2) i=1,2,---,m+1, (1.44)
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where the first equation follows from z,,,41(¢) = y(¢). Therefore the original integro-differential
equation is strictly equivalent to the system (1.44) of (m +2) O.D.E’s, all of which are linear
except for the first one (because it contains F').

If the limit (1.40) is taken, the original equation becomes a D.D.E with discrete delay
by virtue of equation (1.41), and it is equivalent to an infinite set of linear O.D.E’s plus one
non-linear O.D.E.

The initial condition of (1.37) is infinite-dimensional. The initial condition of the equiv-
alent system of O.D.E’s is finite dimensional (in the case of distributed delays). The equiv-
alence between the two systems holds, although there is an apparent dimension difference
since the initial condition for the integro-differential equation is infinite dimensional but the

solution only depends on m + 2 integrals:

0(0) = [ pu)6 (~u)du (1.45)

t.e. the initial conditions for the set of O.D.E’s. Here ¢(t), t € (—o0,0] is the initial function
for (1.37).

This is an example of the redundancy of the information contained in an initial condition.
Using this redundancy whenever possible is the basis of a technique of reduction of the study
of the dynamics of some D.D.E’s to the study of so called shift operators which will be

presented in the next section (cf. Section 1.5.2).

1.5 Discrete delays: Production-Destruction models.

When the kernel g is a Dirac delta function, the dependence on past history is focused around
a single instant in time and the dynamics are described by a D.D.E with discrete delays.
Suppose the rate of change of a quantity z(t) is equal to the difference between a production
rate P and a destruction rate D, P

z

— =P - D, 1.46
dt P-D ( )

Also assume that the destruction rate D is proportional to z(t) while the production rate
P, denoted by F' from now on depends on the delayed variable z(t — 7):

%% = —az(t)+ F(z(t—7)) a,7>0 (1.47)
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Negative feedback: Positive feedback: Mixed feedback:
'-\\
F(x) \ F(z) F(o)
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N
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Figure 1.2: Example of three possible types of feedback.

or

u:—f + z(t) = F(z(t - 7)) where v =a™! and F = g (1.48)

This equation has been used to investigate the dynamics of linear arrays of tunnel diodes,

electro-optical bistable devices, high frequency generators [10, 13, 14, 23, 34]. It has been

applied in mathematical biology to study the regulation of red blood cell populations (55],
respiratory control circuits [55], and neural control loops [47].

The function F in (1.48) is the feedback function. Its characteristics determine the type

of feedback present and the dynamics of (1.48).

® When F is monotone decreasing, the equation models a negative feedback loop.
® When F is monotone increasing, the equation models a positive feedbuck loop.
e In general F is not monotone and the maximal production rate occurs at some intermediate
values of the variable. In such cases, the equation models a mixed feedback loop.

In spite of its simple form, equation {1.48) can display a wide array of behaviors. Its
solutions can either be stationary, periodic with arbitrary complexity, or chaotic [14] and we

are far from a complete understanding of its dynamics.

1.5.1 Singular perturbation of a difference equation.

A natural approach to equation (1.48) is to consider it as a singular perturbation of the

difference equation with continuous argument
z(t) = F(z(t - 7)), te R (1.49)
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along with the consistency condition

lim ¢(t) = F(p(-1)) = (0), (1.50)

t—u-
where o(t), the initial condition, is a function defined on [—1,0]. From now on, the delay is
taken to be 1. This can be done without loss of generality by scaling the time t (or replacing
t by t' = t/7in the above D.D.E).
A series of papers by Ivanov and Sharkovkii [35] examines the connections between the

dynamics of (1.48), those of (1.49) and those of the one-dimensional map
F: zv+— F(z). (1.51)

The asymptotic behavior of solutions of (1.49) is linked to the dynamics of the map
(1.51). To study the solutions of (1.49), one follows the continuum of trajectories of the
discrete map {z, | z, = F(z,-)} with 2, € {z = ¢(t) | t € [-1,0)}. The nature of the
solutions (constant, periodic or chaotic) is related to the complexity of the iteration sequence
{z, |2, = F(z,_,)}, 2, € R. For example a stable fixed point of the map corresponds to an
attractive steady state solution for the difference equation. There is a formal correspondence
between periodic iteration sequences and limit cycles in the continuous time system [35].

The next question to address is: “to what extent the results obtained by studying the
difference equation (1.49) hold for the D.D.E?” The exact influences of the singular per-
turbation on a difference equation are not fully understood but the following results are a
first step towards a complete understanding of equation (1.48). They are valid if the map F
has an invariant interval I = [a,b] C [0,1] and if the non-linearity F' in (1.48) is piecewise
continuous.

Definition 1.1 The map F is said to possess an invariant interval I = [a,b] if and only if

Veel, F(z)el.e

Notation: C(A, B) = {f : f(x)is continuous and bounded above and below by the maximum
and the minimum of B, for all x in A} with the norm, || f ||=sup{] f(x) | : x in A}. The
vector x stands for a point (z;,...,z,) in the n-dimensional space A. C(A, B) is therefore a

Banach space. o
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Definition 1.2 z(t) denotes the solution of (1.48) with the initial condition ¢ € &, =
C(|-1,0],I). Similarly, z,(t) denotes the solution of (1.49) with initial function ¢ € Xe

Definition 1.3 z” is an attracting fixed point of the map F with a basin of attraction J;, if
"li_.qzo F"(Eo) = z', VZ() € Jo. (1.52)

Further, let X, = C([-1,0],Jo). o
Theorem 1.5.1 (Ivanov and Sharkovskii [35]):

Forany v >0 and y € X, limy_.o z};(t) = 2. @

In other words asymptotically constant solutions persist under singular perturbations of
(1.49). Theorem 1.5.1 can be extended to the case of an attracting set, an attractor of the
map F.

Definition 1.4 I, is an invariant, attracting set for the map F with basin of attraction J, if
"ango dist(F",I) — 0 for all z € J,.

where dist(z,],) denotes the distance between a point z (€ R) and a given, but arbitrary
point belonging to the interval i,. o

Therefore, the basin of attraction is that region of phase space such that any trajectory
initially belonging to it will eventually reach the invariant set. In other words, a given
attracting invariant set will attract all trajectories originating in a region of phase space.
This region is the basin of attraction. It should be noted that the structure of basins
of attraction is in general quite complicated. In particular the boundary separating two
neighbouring basins of attractions can possess a self-similar structure (see (8] and Section
3.3.2).
Theorem 1.5.2 (Ivanov and Sharkovskii [35]): For any v > 0 and ¢ € C([-1,0], Ju),

inf{l,} < Jim inf z,(t) < Lim sup z.(t) < sup{l,}.e

This theorem tells us that when the structure of the attracting set I, of the map F is
complicated [i.e. it is not simply a point, but perhaps a set of points of measure zero (e.g.
a Cantor set), or a full interval], then this set also attracts solutions z,(t) of the original

D.D.E. This is a generalization of Theorem 1.5.1 which states the persistence of an attractive
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fixed point under the singular perturbation. Theorem 1.5.2 says that attracting sets for the
map are also attracting sets for the D.D.E.

In addition, it is possible to show that closeness between solutions of (1.48) and (1.49)
holds uniformly on finite intervals [0,] with £ > 0, for initial conditions ¢ satisfying the
consistency requirement (1.51) [35]. This is in agreement with the intuition that close initial
data ¢ and 3 generate solutions z, and z!, which are close within at least a finite time
interval, provided v is small enough.

To make this precise, introduce the subset of initial functions X} = {p € X} | ¢(0) =
F(¢(—1))}. Then we have
Theorem 1.5.3 (Ivanov and Sharkovskii {35]) For any ¢ € X} and positive ¢ and ¢ there exist

positive § and v, depending on t,¢ and y such that
| 2, — 2y, |ljog <€ forall 0 <v<w,

provided || ¢ — ¥ ||-10) < 6 and Y € X). o

These results (and others concerning, for example, the persistency of repelling sets) show
the usefulness of reducing the D.D.E to a lower dimensional dynamical system when possible.
Important qualitative information about the solutions of the functional differential equation
can then be obtained with relatively little effort. However, care should be taken when trying
to interpret them. In some simple cases the singular term v(dz/dt) may yield either a
simplification or a complexification of the behavior of the difference equation: the attractor
of the difference equation consists of periodic functions, while that of the D.D.E represents

chaotic solutions or vice-versa.

1.5.2 The paradigm equation: Piecewise constant non-linearities

(PCNL).

Another set of techniques developed to study the dynamics of equation (1.48) is the ideal-
ization of the feedback function to make the equation analytically solvable. To understand

the procedure, consider the following D.D.E:

% = —az(t) + F(z,) wherez, = z(t — 1), (1.53)
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with

_ Bar
F = 120’ (1.54)
a smooth humped function with a unique maximum located at
(1/m)
Tmaz = ( e ) n>m>l. (1.55)
n—m

When the appropriate limit n,m — oo is taken, F' becomes piecewise constant:

lim F(z) = { 2 e ¢ {z:} b(m,n) > a(m,n) > 0. (1.56)

n—o00

Equation (1.53), in conjunction to (1.56) is analytically solvable. Its solutions are piecewise
exponential. Earlier work [1] shows that studying the equation with PCNL sometimes yields
results applicable to the continuous feedback case.

In fact let us state an important theorem by Babai [1] linking the dynamics of an equation

like (1.53) with a discontinuous non-linearity (1.56) to those of the equation

dr
i —az(t) + F,(z(t - 1)), (1.57)

with the continuous non-linearity

0 fé<a—Loré>b+12

_ ) ifa+l<é<b-1}
Fn(f)_ pn(f) ifd—-:;(e(a-f-l (1.58)

n

() ifb-2<é<b+ .

In equation (1.58), lim,_. F,, = F. The solution of (1.53) with (1.56) is z(¢) and that of
(1.57) with (1.58) is z,(¢).
Theorem 1.5.4 (Babai [1]): Let ¢(t) be a continuous, positive function. Further let

za(t—1)=2(t —7) = p(t) Vt € [0,7],

where z(t) and z,,(t) satisfy (1.53)—(1.56) and (1.57) — (1.58)) respectively. Then asn — oo,
z, converges uniformly onto z in the time interval [0,%), vi € R*. o
This general result draws the connection between idealized systems and real ones and is

an important motivation for the work performed on integrable systems.

22



-

a) The paradigm equation:

The core of this thesis is the investigation of the dynamics of a D.D.E with a piecewise

constant non-linearity emulating a mixed feedback situation

dz .
i —az(t) + F(z(t — 1)) with F(9) = {

¢ ‘f” € [01902]

0 ifn¢ (8.6 (1:59)

and ¢ > 0,60, > 6, > 0. This “box” shaped nonlinearity is the idealization of a smooth hump,
characteristic of mixed feedback control functions. In general, with a smooth function (1.53)
is not analytically integrable. The PCNL makes analytic integration straightforward, and
the solutions are piecewise exponential increasing or decreasing depending on whether the
delayed variable is contained in the interval [6,,6,]:

~_ v+ (z(to) — v)exp[—a(t — ty)] if z(s — 1) € [61,8,] Vs € [t,1]
z(i) = { z(ty) exp[—aft — o)) if (s — 1) ¢ [61,82) Vs € [tu,t] (1.60)

where 4 = ¢/o is the asymptote for the rising exponential.

b) PCNL: reducing the D.D.E to a shift operator.

When the D.D.E’s are integrable, if the information contained in the initial function is
redundant in certain parameter ranges then it is possible to reduce the equations to discrete
time maps whose dynamics are closely tied to those of the D.D.E’s.

One way to understand this is to see that the complete solution of equation (1.59) can
be obtained by manipulating the extrema and the times at which the solution crosses either
6, or ;. (This property is used in Chapter 3 to construct the analytic integration scheme
mentioned earlier). Similarly, only a few points need be specified in the initial function
to guarantee the uniqueness of the solution. The procedure is illustrated here with a one
dimensional map obtained from (1.59). The details of the various derivations can be found
in [24]. The idea is to construct a transformation 7 mapping a time interval into a point
(which completely characterizes the interval), and then to follow the evolution of this point
under the action of a diffeomorphism. The sequence of points obtained by iterating the map

completely describes the solution of the D.D.E.
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To understand the derivation it is useful to realize that most of the information contained
in a time interval of length 1 is redundant. To describe completely the solution on such an
interval one needs to know the following:

1. When the solution crossed the thresholds 6, and 6, within the last delay.

2. Which region of phase-space the solution entered at these crossing times (i.e. whether
it entered or exited the interval [, 6,]).

Restricting our considerations to situations in which the solution crosses a given threshold
at most once within a given delay (excluding the endpoints of the interval), only one variable
is necessary to describe the solution on a time interval of length 1.

Let us define a set S of initial functions ¢(t), defined for ¢ € [—1,0], on which the
transformation 7 will act:

Definition 1.5 o € S if and only if there exists 2 w such that forall t € [—1, -1+ w), p(t) > 6,,
forall t € [-1+w,0),p(t) < 6, and ¢(0) = 8,. The solution is completely determined by w
on (0,1]. We label it z,(t).

It is noted here without proof that there exists a unique w; € [0,1) such that for all

w < w, the solution will tend to the lower asymptote without ever crossing 4, and a unique
w, such that if w > w, the solution will tend to the upper asymptote and cross 4, before
crossing §,. The proof can be found in an der Heiden and Mackey [24]
Definition 1.6 Let c, label the i** solution of z,,(t) = 1 for t > 0 (i.e. the instant at which
Z.(t) crosses the bottom threshold for the :** time). Also let e, denote the i** extremum of
z.(t).

Without loss of generality we scale F (see Appendix A for details) such that

F(¢) = { o ::g: E:{ (1.61)

Suppose that the parameters satisfy
Y= (y-1)e™* <me® <y and 7(y — 1+ ¢™%)7 <me?, (1.62)
where m is the positive root of the quadratic
m’—(y-(y-1)e* -7 )m—v(y-1)e™* =0. (1.63)
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Figure 1.3: A typical solution of equation (1.59) with & =2, ¢ = §, 6, =1, 6, = 2. Note
that the initial function belongs to the set S introduced in Definition 1.4.

Both of these conditions are necessary to ensure that z,,(t) does not cross 1 more than once
within a delay, and that e; < b. Since z,(t) is piecewise exponential, it is straightforward to

calculate e, ¢, €2, ¢2. If ¢ € §, then ¢, is a maximum if i is odd, and it is a minimum if i

is even:

ey =zy(w)=v+(1-v)e™, (1.64)
¢ =—2ln [i] 1, (1.65)

a €
ey = z,(1) = e;e "%, (1.66)

1-
0 = —lln[ "] +1. (1.67)

a €2 —°

From Figure 1.3 it is clear that the solution on the interval A, = [c; ~ 1,¢;] belongs to
S. If we now go back to the original interval A, in which t € {—1,0] the time spent above
the first threshold §, = 1is w. In A, , the time spent above the same threshold is now

¢ — ¢z + 1. Formally,

T(Al) =w
T(A;) =i —cp+ 1 (1.68)
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Figure 1.4: The one dimensional map F when the parameters in equation (1.59) are such
that its solution is the one displayed in Figure 1.3.

and this information is enough to describe the evolution of the solution z,,(t) for all ¢ > 0.
In the mathematics literature, 7 is known as a shift operator. It is a functional operator,
but in our example (equation (1.59)), T can be written as a one dimensional map because
the functions on which it operates are described by the single parameter w.

This one-dimensional map F of the unit interval onto itself,
F(w) = +1=w+ > {Infzo(w)] +In | ——T— (1.69)
w)=c - =w a zu(w 2o =7 .

is a discrete-time system which describes the evolution of z,,(t) for all ¢ > 0. Note that z,(w)
and z,,(1) are given by equations (1.64) and (1.66) respectively.

If F(w) > 1, the solution escapes to #;. In the simplest case (illustrated in Figure 1.3)
it spends more than one delay above §, and is then “reinjected” towards §, = 1. Because
the solution remains above 4, longer than one delay, it loses memory of its behaviour in the
neighborhood of 6,. As a result, on A; = [cs — 1,c6] the time spent above 8, is independent
of the way the solution reached 8,. In other words, with this choice of parameters, the
transformation F is constant on the interval (w;,1). Figure 1.4 shows an example of a
transformation F derived with a set of parameters for which the solution looks like the one
displayed in Figure (1.3).

The dynamics of the map are directly related to the behaviour of the original D.D.E. For
example, a fixed point of the map corresponds to a periodic solution of the equation, and
the linear stability analysis around the fixed point determines the local stability of the cor-

responding limit cycle. The presence of chaotic orbits in the map would imply the existence
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of chaotic solutions of the continuous time system. Similarly, the basins of attraction of the
map characterize some of the basins of attraction in the infinite dimensional phase space of
the delay differential equation.

In regions of parameter space where the solutions cross a given threshold more than once
within a delay, the reduction to a discrete time system is in principle possible. However,
the dimension of the map increases with the number of variables necessary to describe the
solution on an interval of length 7. In practice, this approach seems to not be efficient for the
characterization of the more complex solutions of equation (1.59). Indeed, in some regions
of parameter space, the complexity of the dynamics makes a deterministic investigation not

only arduous but perhaps meaningless.

1.6 Summary.

In this introductory chapter, we presented a formulation of history dependent models in
terms of functional differential equations. Some important ideas of non-linear dynamics and
their relevance to the study of non-linear delay differential equations were then explored in
Section 1.2. They include the concept of deterministic chaos and the sensitive dependence
displayed by many non-linear equations on changes of their initial conditions.

In Sections 1.3 and 1.4 the important connection between hereditary systems and partial
differential equations was then highlighted. It is shown that for a large class of systems,
results existing concerning one formulation can be applied to the study of the other.

Finally, in Section 1.5, the approximation of D.D.E’s by “simpler” dynamical systems,
difference equations and finite dimensional maps was introduced for a class of non-linear
D.D.E’s with discrete delays modeling production-destruction processes.

In the following chapter, we describe an electronic circuit accurately modeled by such
an equation in order to get an insight into the dynamics of a paradigm system for delayed

mixed feedback mechanisms.
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Chapter 2

Analog simulation of a D.D.E.

This chapter examines the dynamics of an electronic analog computer constructed to simu-
late a large class of systems described by the production destruction models introduced in
Section 1.5. The details of the design are specific to the D.D.E under consideration. Cir-
cuit performance will be evaluated here for the simulation of an integrable delay differential
equation introduced in Section 2.1.

Analog simuletion might appear an archaic way to investigate the behavior of delay
differential equations. As we have seen, several methods to study these equations analytically
and numerically already exist. However, only simple equations (absence of noise, constant
initial functions, simple non-linearities) have been studied so far.

The rationale for using an analog computer lies in the fact that we are no longer working
with a model, but with a physical system described accurately by a chosen delay differential
equation. There are several advantages to the use of analog simulations for the study of
hereditary systems.

1) The real time integration allows rapid explorations of parameter space: changing a
parameter is obtained by changing the value of a potentiometer.

2) Once the circuit is oscillating it is straightforward to investigate the influence of con-
tinuous parameter changes on solution behavior.

3) In addition, the presence of continuous electrical signals in the circuit avoids some of
problems associated with specifying non constant initial functions since at equilibrium, the

signal is an initial condition to itself, whether the parameters are fixed or in the process of
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being varied continuously.

In this chapter, the circuit design is first presented in Section 2.1 along with a stage
by stage description of its comnonents. The attention is restricted to the simulation of
the production-destruction models presented in Section 1.5 A detailed derivation of the
equation simulated by the electronic analog computer is given in Section 2.2 and it is shown
that this equation is equivalent to equation (2.3). In Section 2.3 the performance of the
analog computer is evaluated from comparison with some digital simulations of equation
(2.3). Finally, Section 2.4 explores the dependence of solution behavior on changes in the

initial function.

2.1 Design of the analog computer.

We restrict our attention to equations introduced in Section 1.5 of the form

‘-;i:- = —az(t) + F(z(t — 7)). (2.1)
The computer designed to study (2.1) is a closed electronic loop. The voltage z(t) is moni-
tored at a given point in the loop. The idea behind the design is the following. If an electrical
signal is to exist in the loop, it has to satisfy the constraints imposed by the different stages
of the circuit. These constraints can be chosen so that the only signal possibly remaining is
such that the voltage z(t) satisfies the delay differential equation (2.1).

To simulate equation (2.1), the signal present in the circuit must be differentiated by one
of the components. This is undesirable for two reasons.

1) Electronic differentiators are inherently unstable. They have a tendency to drift in
time, due to charge build-ups on one of the capacitors present at a differentiating stage.

2) In addition, if a signal varies rapidly, its time derivative will be large. This means that
there will be a voltage surge past the differentiator in the loop. Most electronic components
are vulnerable to these surges.

To improve performance it is desirable to avoid differentiators in the analog computer.

This can be done by rewriting equation (2.1) as an integral equation,

z(t) = ./1:[—‘“(8) + F(z(s — 7)]ds + z(t,) where { i ; tf’r (2.2)
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The circuit is then built to simulate this equation. It must be able to amplify the present
signal z(t) by a factor of a, delay it and then transform it according to the desired F, sum
the resulting signals, integrate the sum and then equate the result of the integration with
the initial »ignal. These cperations are represented schematically in Figure 2.1.

At this point, we need to know what the exact production rate F is in order to describe
the design in detail. Thus we focus attention on a simple system given by

%2 _az(t)+ F(z(t-7)), where F(z,)= { ¢ e €l (3

with a > 0. The production rate F is piecewise constant and the destruction rate is propor-
tional to the present signal z(¢) so that the solution is a sequence of piecewise exponential
segments, alternatively increasing and decreasing (see equation (1.60) for an analytic expres-
sion of the solutions of (2.3) when r = 1).

The analog computer is built to simulate equation (2.3) for several reasons.

1) The availability of analytic results for this system make it an ideal candidate because
the performance of the analog computer can be calibrated with analytic results rather than
with numerical ones.

2) In addition, it is hoped that the analytic investigation of new types of behaviors
observed with the electronic circuit will be facilitated by the integrability of equation (2.1). It
seems that there is little point in simulating electronically a D.D.E which has been integrated
numerically and for which analytic results appear to be out of reach.

The proper calibration of the various components and the precise delimitation of their
range of applicability is necessary for a proper interpretation of the data. To understand

the behavior of the analog electronic oscillator, it is crucial to know what the effect of each

stage is on its input signal.

2.1.1 Stage by stage description of the circuit.

Most components of the oscillator are simple applications of operational amplifier technology.

We begin with the description of these elements.

a) Op-amp based components.
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Figure 2.1: Block diagram of the electronic analog computer.
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Figure 2.2: The finite gain inverting amplifier, used in the computer to simulate the destruc-
tion rate in equation (2.3).

The finite gain inverting amplifier. (Figure 2.2) As a function of the input voltage
Vi(t), the output voltage Vy(t) is given by the relation:

Vilt) = ~ W (e)

Throughout the circuit, the finite gein operational amplifiers were built using a standard

amplifier, the uA741TC [31].
The main limitation - this component is an attenuation of the output for high input

frequencies. This effect is absent for signals varying at less than 10KHz. Since the Bessel
filter (see below, Section 2.1.1b) is adjusted to have a corner frequency at 1 KHz, we need

not consider this problem further.

The summing amplifier. (Figure 2.3) The role of a summing amplifier is to add two
signals present at its inverting input. The relation between input voltages V,(t) and V,(t)

and output voltage Vi(t) is

Ry
R,

V() =~y -

= 20

This component is built with a CA3140E, an op-amp with low input current and high input

impedance, necessary qualities to improve the stability.
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Figure 2.3: Summing amplifier stage. It is used in the computer to add the production and
destruction rates before integrating the sum. The op-amp used here is a CA3140E.

Asg in the previous stage, the main limitation is an attenuation of the output for frequen-

cies higher than 10KHz but again this effect will not be considered further.

The integrator. (Figure 2.4) This part of the circuit is straightforward. The output
voltage V}, of the integrator is given as a function of the input V| by,

Vift) = “RIE ‘0' Vi(a)ds + Vilto).

However, some care has to be taken to choose the proper chip because integrators have
a tendency to saturate, primarily due to charge build-up on the capacitor C,. The offset
voltages and offset currents are responsible for this effect [see (28] for concise definitions
of the terms employed here]. The rate at which the integrator saturates increases as the
frequency of the input signal decreases. For reasons detailed in Section 2.1.1b, the frequency
of the expected solutions should vary between 1Hz and 100Hz. The op-amp chosen for
this component is an OP-07E, specifically designed for this type of application. Its main
characteristics are a very low drift current and small temperature coefficient.

The values of R and C are chosen to minimize leakage current, saturation rate and other
problems frequently encountered with integrators [For a detailed discussion of electronic

analog integration, see [31]]. The frequency response is flat at frequencies below 2KHz.
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Figure 2.4: Schematic diagram of the integrating stage. The 20 Kf) resistor between pins 1
and 8 is part of a recommended trimming circuit needed to improve the integrator’s stability.

Bias adjusting stages. (Figure 2.5) These elements add or subtract a controllable DC
level to the input signal. They are necessary since the circuit component which delays the
signal (the Bucket Brigade Device (see below)) anly works properly when the AC input has
an 8 volt DC offset. Bias adjusting circuits are needed to raise the signal before the delay
chip, and then lower it back to its initial value after it has been delayed.

As for the other simple op-amp based stages, there is no attenuation at low frequencies.

The gain of these components is unity, and the attainable offsets range from —10V to +10V.

b) The delay circuit. (Figure 2.6)

The time delay in the system is totally responsible for the wealth of dynamics displayed by
equation (2.3). Electronically, this delay is obtained with an analog delay line, a CMOS
sampling device sometimes called a bucket brigade device (hereafter referred to as a B.B.D).
It samples and delays a signal by storing it in a series of capacitor circuits. Each of these
capacitor circuits is referred to as a “bucket” and the B.B.D transfers the contents of one
bucket into the next at every other logic high of the clock pulse. The time delay is inversely
proportional to the clock pulse frequency F,; and proportional to the number N of buckets

in the chip. Given the sampling frequency F,,
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Figure 2.5: Diagram of the bias adjusting circuits, needed to operate the delaying elements
in the analog computer.
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Figure 2.6: The delay circuit is made of four components: an analog delay line (B.B.D), two
bias adjustment circuits and a bessel filter. A pulse generator provides the sampling pulse.
The sampling pulse frequency determines the length of the delay.
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the delay T is
T=— (2.4)
=5 .

The B.B.D used here was a RD5108 analog delay line for which N = 1024.

Figure 2.7 shows the dependence of the delay on the sampling frequency. Observations
agree with equation (2.4) for sampling frequencies below 500KHz with an error of less then
1%. We are interested in having sampling frequencies of about 10KHz for reasons that will
be clear shortly, and in this case equation (2.4) is & reliable determinant of 7. However to
increase the reliability of our observations, the delay was determined from the calibration
curve displayed in Figure 2.7.

B.B.D calibration was performed by observing the relative phases of the input signal and
the filtered output with a digital oscilloscope. The filtering was performed by a Bessel filter,
an active filter with a controlable corner frequency (cut-off frequency). The use of such a
filter is necessary to smooth the B.B.D’s output since this chip samples its input and restores
it as a sequence of steps.

The sampling frequency, which determines the delay, is chosen to minimize the various
destabilizing factors in the computer. The frequency of the simplest limit cycle (indicative of
the frequency of most other limit cycles observed) increases with r. However, the amplitude
decreases with 7 [24]. A signal oscillating too slowly is difficult to integrate because the
charge accumulated on the integrator’s capacitor causes saturation unless the chip can be
finely trimmed (1.e. the sources of error present in the chip, like the offset current the offset
voltage are reduced to an absolute minimum). In this case, temporal drifts due to small
temperature changes will decrease the accuracy of the integrator. On the other hand, we do
not want to work with signals of too small amplitude since the signal to noise ratio should
be as high as possible.

A sampling frequency of about 10KHz gives a signal amplitude of about one volt, keeping
the signal to noise ratio (see Section 2.1.2 below) in the circuit above 100 while maintaining
the frequency of the simplest limit cycle between 2 and 3Hz. With these parameters fixed

the integrator works as intended.
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Figure 2.7: Calibration curve for the analog delay line. This data was used to determine the
delsy in the circuit, the sampling frequency being given by a digital frequency meter.
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Independently of the calibration of the B.B.D, which only gives us information about the
length of the delay, we want to study the frequency response of the combined elements of
the circuits lying between points (11) and (6) (see Figure 2.10). This set of components will
hereafter be referred to as the delay box.
¢ Frequency response of the delay box (see Figure 2.8). Since the gain of the delay box is
observed to depend on the offset of the input signal, the frequency response was examined
at four values of the offset: 0.25, 0.45, 1.00, 1.5 volts. These offsets were chosen because all
the measured offsets for the observed limit cycles lie within this interval. The signals used
for the frequency analysis are triangle waves of 1 volt amplitude. The triangle wave is chosen
because of its resemblance to the simple limit cycle. The results, shown in Figure 2.8 show
a constant unity gain for a given offset at low frequencies (< 100Hz). These results are in
good agreement with the measured gain when the circuit is spontaneously oscillating.

The initial preparation of the analog computer (corresponding to the initial function for
the D.D.E) is the turn-on state of the B.B.D i.e. the various voltages present in the 1024

buckets when the circuit starts oscillating.

¢) The feedback function. (Figure 2.9)
The feedback function F used here is the PCNL idealization of a smooth function describing
a mixed feedback situation. It is defined by,

F(q) = { c if g€ 6,6, (2.5)

0 otherwise.

This function is simulated electronically with two comparator circuits. This stage is most
easily understood by looking at the behavior of each comparator circuit separately, and
then at how their outputs are combined by logic gates. For the detailed description of a
comparator see [28]. The comparator output is either saturated at V. or at ground depending
on whether the non-inverting input is above or below the inverting one. Standard op-amps
are not comparators and should not be used as comparators even though their electronic
symbols ure the same. Dual packages designed for this type of application are standard.
The one used here is an LM393.
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Figure 2.8: Frequency response of the delay box.

6¢

LA

T

¥
1

L LI AL
:
$

L AR AR IR

L

LERLBR LA |

T

. . oF
o+
Rl o
&
- @- %
® W
' . (< S 5 3
- “ - g. “ -
o
. - -
ax
. e e Gl e em
a-u
. &% -

O+
Ol
O X

OF X
OF X

| AU S . TR
. . e e o e N
‘ . e e o v oy e i e o
. e o+ e oo e s+ o -
1
R s g e e = et s e+ s
.
e e s w6 eae e e
o m o e s min s e s e 4o
:
'
v.—o - an - - et st e e
X
. & - ¥ - -
. . - AR . . -
. e w e - -
. - - o
‘ vane e e -
— - - - -
e X - . e - -
*X
N - e e - - -
‘
- s . - -
'
t
:
. + e maesmss b w6 e se v eees te sen —
.. e e e e I~ -
. Vo e 1 sosrimn S
G e e - -
. - ‘ .o -
. e - e . N
- o - -
:
:
S U . - -
1
' i
. —ew S Co - e -
- . A
- .- - .- - e e
- . w mmmmane mw e e -
b mem wnme e - ~
- . -
- > . - - -
- . - - -
- ~
] i

107

104

10!

104

103

102

101

100

o: 0.25, +: 0.45, *: 1.00, x: 1.50

Offset(V)

'y




10K put

Ya

I 1.

g

Figure 2.9: Diagram of the components simulating the piecewise constant function defined
in (2.5).

The voltage dividers are used to set the values on one of the inputs on each comparator.
The output of comparator 1is V.. when the voltage z(t) at the noninverting input is higher
than the one set by the divider at the inverting input corresponding to ,. The output of
comparator 2 is V. when the voltage z(t) at the inverting input is lower than the voltage
set by the divider at the non-inverting input corresponding to ;. These two outputs are
combined by a 74LS00P NAND gate, the output of which is V. when z(t) is between 6, and
6., and zero otherwise. The resulting signal is sent to a logic inverter which produces the
desired feedback function.

e Limitations.

The only limitations that need be considered regarding this stage are the threshold sen-
sitivities. The feedback function was found to toggle between its low and high values for
input voltages differing by less than 2 mv. The time derivative of the signal is sufficiently
large [typically of the order of 1 (v/s)], so this limitation does not affect the analysis.
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2.1.2 Noise level in the circuit.

As in all electronic systems, noise is present. Aperiodic fluctuations are observed even when
the power is turned off. During the simulations, the noise shows up as small, rapid oscillations
riding the main cycle. However, the signal we are interested in is clearly distinguishable from
this noise since its fundamental frequency lies below 10Hz and amplitude (of order 1 volt) is
about two orders of magnitude larger than the fine structure fluctuations.

The exact influence of this noise on the system dynamics are not known. It is known
that dynamical systems can be very sensitive to stochastic perturbations even when the
(amplitude) scale of the perturbations is much smaller than the scale of the process under
consideration. For example, the presence of noise in a deterministic system might result in
a shift in parameter space of the point at which a bifurcation occurs in the unperturbed
case (the bifurcation could either be advenced or postponed). These phenomena are known
as nowse-induced transitions and have been the subject of intense scrutiny for some time
[29] [47]. Noise can also induce chaotic behavior or, conversely, highlight the coherence
underlying chaotic dynamics.

Figures 2.20 — 2.21 give some information concerning the power spectra of analytic solu-
tions and analog simulations of equation (2.3). They indicate that for slowly varying cycles,
the influence of stochastic perturbations on solution behavior is negligible. On the other
hand, the systematic shifts in parameter space observed in Figures 2.11 — 2.19, and dis-
cussed in Section 2.3.1a, may be due to the subtle (and unexplained) action of ncise on the
delay differential equation. These two observations are not contradictory, but reflect the
natural complexity arising from the interactions between purely deterministic and purely

probabilistic contributions.

2.2 Derivation of the circuit equation.

After calibration of the different stages, the closed loop oscillates spontaneously and the com-
puter integrates a D.D.E. Unambiguously identifying the equation being simulated requires
additional analysis, but is crucial if the elecironic loop is to be a reliable tool. It is possible

that the different stages influence one another in a way such that the integrated system is no
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Figure 2.10: Detailed diagram of the analog co
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longer described by equation (2.3). Therefore, before any attempts to electronically match
the results with the theory are made, it is important to verify that some basic characteristic
properties of equation (2.3) are present in the circuit. Similarly, it is crucial to study the
stability of the closed loop. This will tell us if the parameters set in the oscillator are time
dependent or not.

These observations are necessary to justify some assumptions that are made when a
quantitative analysis of the results is undertaken in an attempt to establish the exact corre-

spondence between the D.D.E and the analog computer.

2.2.1 Stability of the closed loop.

The identification of offset drifts due to temperature changes is relevant whenever one deals
with analog computers. It is equivalent to asking whether or not there exists a state of
thermal equilibrium for the . ‘rcuit. Charge accumulation on the various capacitors could
have a similar effect, potentialiy causing saturation of the whole system.

The warm-up time for the circuit is approximately one hour. During this time, the offset
of the waveform decreases by 0.1 £ 0.03 volts. Once equilibrium is reached, the offsets are
constant to within the measurement uncertainty (10~ volts) for periods of up to ten hours
(this is the longest time for which the oscillator was observed continuously, and is therefore a
lower bound on the temporal stability of the offsets in the loop). The shape and amplitude of

the waveform are also constant indicating that the parameters are indeed time-independent.

2.2.2 Qualitative observations.

Analytically, the upper asymptotic value 4 = ¢c/a of the solution z(t) is obtained by simul-
taneously taking the limits 4, — 0 and 6; — ooc. The lower asymptotic value is obtained
by setting 6, = 6,. Electronically, if the measured second threshold is set at values higher
than 3 volts while the lower threshold is taken to zero, the observed waveform reaches a
constant value interpreted as the upper asymptote. Similarly, if the two voltages simulating
the thresholds 6§, and 8, are set equal to each other the solution goes to zero.

Bifurcations closely resembling those predicted theoretically are observed. According to

the theory (24], in certain regions of parameter space the solutions periodically approach an
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unstable homoclinic cycle. This tendency is also observed in the electronic loop, the unstable
limit cycle being, as in the theoretical case, a periodic oscillation around the lower threshoid
with period P € [r,27].

It is important to keep in mind the nature of the observations in the preceding paragraph.
They are qualitative in the sense that we do not know exactly which equation is simulated by
the analog computer. To be more precise, the circuit was designed to simulate a particular
delay differential equation (z.e. (2.3)) and the circuit’s behavior indicates that, indeed, its
dynamics can be described by an equation which possesses certain properties of equation
(2.3). On the other hand, further analysis is required to establish the formal 1 between the
circuit and the equation it is supposed to simulate. The reason for the care being taken here
to distirguish between the electronic solutions (the voltage observed at a chosen point in
the circuit) and the analytic solutions of (2.3) (the solutions obtained on a digital computer
with the algorithm of integration described in Chapter 3) is threefold.

1) The analog computer is a physical system and it is designed to be modeled by a
chosen D.D.E ((2.3) in our case). The imprecisions in the design may add up to make
the loop behave quite differently from (2.3), even though some of the properties of (2.3),
discussed above in this section, seem to be present in the electronic analog computer.

2) Ideally, except for the amplifier simulating the destruction rate in equation (2.3), the
gain of all stages in the electronic loop should be identically unity. In addition, there should
be no offsets anywhere in the circuit. This cannot be the case because there are technical
constraints in the construction of the circuit which imply the addition compensating circuits
which cannot always have unity gain and zero offsets. Similarly, an integrator’s gain is
closely linked to its cutoff frequency, and the frequency of the signal to be integrated is the
main factor influencing the designer in the choice of the values of the various resistors and
capacitors present at an integrating stage, regardless of its total gain. As a consequence, the
destruction rate in the circuit (z.e. amplifier 1 in Figure 2.10) is not the only component
which participates in the effective simulation of a destruction rate, and it is necessary to
derive the “circuit equation” before proceeding to a quantitative interpretation of the data
(¢.e. one in which the electronic and the analytic solutions are compared quantitatively for

equal parameter values.
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3) Finally, although it appears that equation (2.3) possesses five independent control
parameters a, §,, 6,, 7, and c, it i- shown in Appendix A that the equation can be scaled

such that only three independent parameters remain. In other words, (2.3) is equivalent to

dz
= = 9G(=(t - 1)) — ex(t),

with L]
1 iféel,p
G({) = { 0 otherwise,

and

o
I
I

L
i
=|

2.2.3 Quantitative interpretation of the data.

It is possible to formulate the equation simulated by the analog computer by simply tracing
the signal as it passes through all the individual stages. The underlying assumption, justified
by the discussion of Section 2.2.2, is that when the loop is closed each stage continues to

behave as it did in an open loop configuration.
It is useful to define z,(¢) as the voltage present at time ¢ at point ¢ of Figure 2.10.

Expressed in terms of one another, these voltages are:

z,(t) = —(R./R:)=(t),

22(t) = —a(t)+ ki,
z3(t) = azzy(t—71)+ kg,

zi(t) = —(Ri/Rs)zs(t) + ki,

z5(t) = —zy(t) + ks,

ze(t) = —z5(t) + ky, (2.6)
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z:(t) = F(z¢),

zs(t) = —(R7/Rs)z:(t) — (R7/Re)z(t),
zo(t) = (R:él)/‘o zg(t')dt' + zo(to),
zi(t) = (Riw/Ro)=s(t),

Z”(t) = Z(t)= '—(Rn/R“)Em(t),

where
k, = offset due to bias adjust 1,
k; = offset used to recover the DC level before amplifier 2,
ks = offset due to B.B.D + Bessel filter,
k; = offset due to amplifier 4,
ks = offset due to amplifier 5,
a; = gain of B.B.D + Bessel filter.

Using these definitions, we obtain the following relation between z(t) and z¢(t),

Ri:RyR; ! RupRyoRiR, !
= - ds + z(t.). 2.
)= R R R RiC /. Flao(o)ds ~ g RoReReRIC, /. o(s)ds + =(t) @1)

Differentiating (2.7) and rewriting z¢ using (2.6) yields,

dz Rlsz R7 (R4a3 Rq Qajy (R«I ) )

— = -7)- ky— (=) kg +ka+bkqy—ks

dt RiRRRC. T\ R St T - k(g )t Rtk )
R12RIOR7R2

(2.8)

- t).
RuRoRsRoRiC, )

This equation is the one simulated by the analog computer and it is equivalent to the original
D.D.E (2.3). The only difference is that the parameters specified in the original equation
(2.3) are functions of the parameters in equation (2.8). To avoid any ambiguity in the
designation of the system variables, the parameters set electronically through control of the
circuit components will be referred to as the measured parameters. The corresponding

values obtained with the following analysis will be referred to as effective parameters.
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Measured and effective parameters: Establishing the correspondence.

From equation (2.8), the definition of the feedback function in the circuit is:

¢ if (az(t—7)+0,) € {6,,6,],
Fawt-r)+a)= { 0 otl(lelrw(ise, o) € Buta (2.9)
where
R,
a) =aj (E) ’
and R
oy = —a|k| + kz - kB (-I-li) <+ k4 - ks.
3

These relations follow from the equations in (2.6). The problem we are faced with is that the
circuit was designed so that the argument of the feedback function be the delayed variable
z(t), not a linear function of it: a;z(t — 7) + 0,. The same is true for the signal amplified
by R;/R,: it was supposed to be z(t), but it turns out to be z,(t) from equation (2.6).
The purpose of the following analysis is to transform, or scale, the various terms of (2.3), so
that it can be compared with the circuit equation (2.7). To make these ideas clear, consider

equation (2.9). It can be written as

_no | e ifz(t-T) € [6,63],
F(z(t—1)) = { 0 otherwise, (2-10)
with

e (6,—o . (62—-0

g = (_‘_a-l_‘) 6 = ii:h—‘-) (2.11)

In other words, a change in the argument of F is equivalent to a change in the thresholds.
The circuit was initially designed so that the argument of F would be z(¢ — 7). In practice,
it is z6(t). The dynamically relevant parameters are no longer 6, and 6, but ¢ and ;.

As the thresholds change, so do the gain and the height of the feedback function. From
equation (2.7), the constant multiplying z(t) is:

of = RuR\wR:R,
R\ \RyRsRsR,C,’

or, since a = (R;/R;),

_ _RuRyh «
R RyRsRsC,
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Again fiom equation (2.7), the effective height of the feedback function is proportional

to its measured value:
R;2 Ry R;

= RlUR,ReBC, -
It is observed that the off state of the function F is not 0 (ground) but a finite, positive

ce

(2.13)

voltage d. This must be taken into account, when performing the numerical integration. In
the same way as c* was obtained, we obtain
&= Ry RyoR;
R\ RyRs R5C,

where d is a measured value, and d° an effective one.

d, (2.14)

The delay measured in the circuit is not affected by this analysis since v = 7. The values
of the measured parameters suffer from the experimental error which can be determined
accurately. This experimental error propagates to the value of the effective parameters. The

error analysis for measured and effective parameters is explained in appendix A.

2.3 Comparing electronic and numerical solutions.

It is now possible to compare electronic solutions of equation (2.3) with some numerical
simulations. The algorithm used to solve the D.D.E is not a standard numerical integration
scheme but it is more accurate and efficient than Runge-Kutta or Adams routines, which
are schemes used commonly to perform D.D.E integration (when the delays are discrete).
It specifically makes use of the fact that the information on an initial interval is redundant
for this equation. It is presented in Appendix D. Figures 2.11 — 2.19 display electronic
and numerical solutions obtained with constant initial functions. It was noted in Section
2.1.1b that the voltages present in the 1024 “buckeis” of the B.B.D cotrespond to the initial
function for the D.D.E. For the following results, the delay line was preprogrammed with
a constant voltage belonging to the interval 6}, 03] and the numerical simulations were also

carried out with a constant initial function.

2.3.1 Variation of a single measured parameter.

In this section, some solutions obtained with the analog computer are compared to digital

simulations of equation (2.3). The electronic and digital simulations are compared for various
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values of the control parameters.
The delay is held constant throughout (cf. Section 2.1.1b). Similarly, for all the data

presented in this section, the initial function is a constant. This constant is such that the
forcing term is high (s.e. it is a constant voltage belonging to [65,05] for the electronic
simulations and it is a number in [8,,6,] for the digital simulations).

In parts a) and b) below, the protocol we used to obtain the electronic solutions was
the following. While the loop was oscillating, the measured parameters were set so that the
effective parameters took on the desired value. The loop was then opened, the B.B.D was
filled with the desired constant initial voltage and the loop was subsequently closed and set
into oscillation. The oscillations were recorded with a microcomputer (AT /386) through an
A/D board (Dagitek 2800). During a given recording session, no parameters were changed
in the oscillator (the dependence of solution behavior on changes of parameters while the
loop was oscillating is discussed in Section 2.4.1).

In part a), we discuss the behavior of the circuit as the thresholds 6, and 6, are varied,
and the solutions are compared to digital simulations. In part b), the gain a is changed,
and the resulting variations in solution are compared to the changes observed in the digital

simulations of equation (2.3).

a) Variations of 6, and 6,.

When 6, and 6, are sufficiently far apart, the dynamics of the equation are effectively con-
trolled by a negative feedback control loop. In this case the electronic and the numerical
simulations agree in the following way: Both the shape and the offset of the waveforms
are the same though the values of amplitude and period differ slightly (see Figure 2.11).
The differences are caused by the experimental errors in the determination of the measured
parameters.

As the first threshold is raised towards the second one, approximately the same sequence
of bifurcations is observed in both the analog computer and the digital computer simulation.
However, some cycles observed numerically did not appear electronically. This is due to
the fact that the region of parameter space in which these cycles are observed are smaller

than the error on the values of the measured parameters (see Figures 2.17 and 2.18). The
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bifurcation observed in Figure 2.12a is not present in Figure 2.12b. Given the fact that
this type of discrepancy also occurs in Figures 2.13a and b, and in 2.17 — 2.19a and b, it is
possible that there is a systematic shift in our estimation of the effective parameters in spite
of the attempts made to correct for such possible displacements. Another explanation for
this difference between electronic and numerical bifurcations is the presence of noise in the
circuit. Unfortunately, the exact influence of noise on delayed dynamics is difficult to study,
but Longtin [47] showed that certain stochastically perturbed non-linear D.D.E’s displayed
a postponement of the point at which a Hopf bifurcation occurred. The bifurcations showed
in Figures 2.11 to 2.19 are not Hopf bifurcations because they involve the bifurcation from
one limit cycle to another whereas the Hopf bifurcation is characterized by the emergence of
a limit cycle where steady state behavior was previously observed. For a detailed description
of standard bifurcations of vector fields (including the Hopf bifurcation) the reader is referred
to [20].

b) Variations of a.

The most interesting feature displayed by the solutions is a recurrent “flirt” with an unstable
homoclinic cycle, shown in Figures 2.16a-2.19a. This phenomenon is described by the dif-
feomorphism presented in Section 1.5.2 (1.e. solutions like the ones presented in Figure 1.3).
As a is raised, the duration of the residence of the solution around 6, increases (this is clear
in Figures 2.16a to 2.19a). There is again a systematic shift in the values of a describing
the same numerical and electronic solutions. This is interesting because it gives a physical

example of a system periodically approaching an unstable manifold.

c) Power spectra.

One other possible means of comparison between theory and experiment is the study of
the distribution of peaks in the power spectra of electronic and numerical solutions. For
example, consider Figures 2.20 and 2.21. The experimental sampling frequency was 500Hz
for all the experimental solutions. The power spectrum analysis was performed with analytic

solutions obtained with our algorithm (described in Appendix D). The integration step in
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the algorithm corresponds to an effective sampling frequency of 500Hz.

The solutions typically oscillate between 1 and 5Hz, and it seems unlikely that the solution
possess significant components beyond 50Hz. Aliasing is therefore not a problem. The
data was treated with a Hanning window w, = 1/2(1 — cos(27j /(N — 1))), where j is the
channel number [62). The DC peak in channel 0 is removed. There are no observable
components of the signals above 20Hz, and it therefore appears that the transmission line
noise does not affect the electronic solutions. The distribution of peaks for experimental and
theoretical signals is remarkably similar. The consistent shift of 2 to 3Hz observed is due to
the discrepancy between the periods of the two types of solution. The first peaks correspond

in both spectra to the observed periods of oscillation of 1.2 to 1.6Hz.

51




2.4 Multistability in the oscillatcr.

The initial preparation of the system is the initiai state of the B.B.D, and it corresponds
to the initial function for the D.D.E. All the properties of the analog oscillator discussed
to this point have been obtained with constant initial voltages. When the parameters are
varied continuously without restarting the system, the initial functions are no longer constant

because they are oscillatory solutions of equation (2.3).

2.4.1 Hysteresis in the bifurcation diagram:

In (2.3.1a), the parameters in the analog computer were set and then the loop was closed.
Parameters were not changed as the loop was oscillating. This protocol was followed to
allow a comparison between experimental observations and existing numerical and analytic
predictions. The parameters can also be changed as the computer is oscillating: this is called
a smooth change of the parameters.

As the threshold 8, is slowly increased towards 6,, the solutions undergo a series of
period-increasing bifurcations (see Figures 2.11 —2.15). When 6, gets too close to the second
threshold (above 2 volts for 8, = 3.2 volts), the solution decays to the lower asymptote. As 6,
is subsequently decreased, the first oscillatory solution observed in the system is the slowest
limit cycle in the system corresponding to the ideal negative feedback situation. Thus,
different solutions of equation (2.3) are found at the same parameter values depending on
whether 9, is being raised or lowered! This hysteresisin the bifurcation diagram indicates the
possible existence of multistability in the system. The only difference in behavior between
the rise and the fall of 8, is the initial condition for the system, because in the closed loop
the continuous electrical signal is an initial function for itself.

Bistability has been observed in physical systems described by delayed feedback mech-
anisms and it has been shown to exist in equation (2.3) with uncontrolled (1.e. with the
parameters being varied continuously, the dynamical variable being an initial condition to
itself) initial functions [14]. It has not yet been observed with controlled nonconstant I.F’s.
To examine the sensitivity of solution behavior on changing initial functions, we first present

a modification of the analog computer which allows any initial function to be entered into
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Figure 2.13: a) Electronic solution. b) Numerical solution. The parameters in both cases

1.604 £ 0.0005, a = 1.49 + 0.04, c = 3.49 + 0.0005.
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are effective parameters and equal to: * = 0.161 + 0.001s., 6, = 0.947 + 0.0005, 6,
1.604 + 0.0005, a = 1.41 £ 0.04, c = 3.49 + 0.0005.
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Figure 2.15: a) Electronic solution. b) Numerical solution. The parameters in both cases
are effective parameters and equal to: v = 0.161 £+ 0.001s., 6, = 1.042 £ 0.0005, 4, =

1.604 + 0.0005, a = 1.49 £ 0.04, c = 3.49 + 0.0005.
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Figure 2.16: a) Electronic solution. b) Numerical solution. The parameters in both cases
are effective parameters and equal to: r = 0.161 £ 0.001s., 6, = 0.896 + 0.0005, 6, =
1.604 £ 0.0005, a = 1.00 £ 0.03, c = 3.49 + 0.0005.
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Figure 2.17: a) Electronic solution. b) Numerical solution. The parameters in both cases
are effective parameters and equal to: * = 0.161 + 0.001s., 6, = 0.896 + 0.0005, 0, =
1.604 £ 0.0005, « = 1.26 £ 0.03, ¢ = 3.49 £ 0.0005.
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Figure 2.18: a) Electronic solution. b) Numerical solution. The parameters in both cases
are effective parameters and equal to: * = 0.161 + 0.001s., 6, = 0.896 + 0.0005, 0, =
1.604 + 0.0005, a = 1.83 + 0.03, ¢ = 3.49 £ 0.0005.
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Figure 2.19: a) Electronic solution. b) Numerical solution. The parameters in both cases

are effective parameters and equal to: = 0.161 + 0.001s., 6, = 0.896 + 0.0005, 6, =

1.604 £ 0.0005, a = 2.0 £ 0.03, ¢ = 3.49 £ 0.0005.
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Figure 2.20: a) Power spectrum of the electronic solution displayed in Figure 2.11a. b)
Power spectrum of the numerical solution presented in Figure 2.11b.
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Figure 2.21: a) Power spectrum of the electronic solution presented in Figure 2.15a. b)
Power spectrum of the numerical solution presented in Figure 2.15b.
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the B.B.D.

2.4.2 Controlling non-constant I.F’s.

The initial voltages present in the 1024 buckets of the B.B.D just prior to the closing of
the loop constitute the initial function for the D.D.E. It is possible to control these voltages
accurately by interfacing the B.B.D with a digital computer.

Remember that the B.B.D is sampling device: it stores in one of its 1024 capacitor circuits
a given voltage at every other logic high of a control sampling square wave. The trick is to
store the desired initial function into the digital computer. Then, using a D/A converter, it
is sent to the B.B.D. Therefore, the B.B.D receives two synchronized signals from the digital
computer: the initial function itself and the sampling pulse. A switching circuit closes the
loop on itself once the initial function is sent and the computer once again oscillates on its
own.

The idea is simple but the design is not. The synchronization between the initial func-
tion and the sampling signal has to be very precise. In fact, the only way to achieve the
required accuracy is to send a single signal from the digital computer, which contains both
the sampling pulse and the initial function. This single signal is programmed so that it
can be split by the switching circuit into a control component (the sampling pulse) and a
controlled component (the I.F.) which is directed by the switches to the input of the B.B.D.

Additional difficulties arise because the D/A’s output settling time is longer than the
maximum rise or fall time allowed at the B.B.D’s clock input. To circumvent this problem,
the digital pulse is sent to trigger a waveform generator’s TTL output which is the actual
sampling pulse in the analog computer.

The circuit presented in Figure 2.22 is more complex than it should be because we only
had access to one D/A port, so that in addition to the the preceding two signals, the single
waveform sent to the switching circuit had to contain information about the control signals

of the switches themselves.
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Figure 2.22: Diagram of the switching circuit discussed in Section 2.4.2. The switches used
for this circuit were HEF4069UBP while the op-amps were standard uA741TC
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2.4.3 Discussion.

Equation (2.3) serves as paradigm for the production-destruction models presented in Sec-
tion 1.5. The initial function corresponds to the initial preparation of the system. It is
very important to understand how changes in the initial function affect the behavior of the
solution because experimenters can rarely c. .itrol the initial state of their system accurately.
Understanding the dependence of system dynamics on the initial preparation is essential
for a good interpretation of experimental data. Once again, the analog oscillator is not a
tool designed for the systematic and quantitative investigation of the problem, but it does
provide us with a reliable physical system with which to investigate multistable behavior in
delayed mixed feedback control loops.

The behavior of solutions when the 1.F’s are varied is investigated with initial functions
which cross both 8, and 6, only once each (see Figure 2.23a). It is hoped that experimental
results concerning this type of initial function can be analytically understood and then
generalized to more complicated [.F’s. The simplicity of the chosen 1.F's reflects the total
absence of results concerning this problem.

Figure 2.23b shows a typical type of behavior observed when non-constant initial func-
tions are varied slightly. In this case, the parameter t, describing the initial function was
changed by 1.8 %). As t; is varied between ¢, and 0, the interval seems to be separated
in two sets. One attracts the short period solution and the other attracts the long period
solution. This separation of the interval [¢;,0] in several sets, each attracting a different limit
cycle is an illustration of multistability. This multistability is observed in the oscillator for
large ranges of parameters when the initial functions are of the type described above. The
structure of these sets is very complicated and cannot be determined with the electronic
loop. In fact, it is shown in Chapter 3 that the solutions display a pathological dependence

on initial functions for many classes of initial functions and for wide ranges of parameters.
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2.5 Summary

In this chapter we discussed the design and performance of an electronic analog computer
used to investigate the dynamics of a delay differential equation proposed as a paradigm
for production-destruction processes with mixed delayed feedback. Section 2.1 is a stage by
stage description of the circuit. In Section 2.2, the unambiguous correspondence between the
analog computer and the D.D.E it simulates is established and the stability of the system
is assessed. The electronically obtained solutions are compared to digital simulations (with
constant initial functions) in Section 2.3. Finally, the influence of changing non-constant

initial functions on solution behavior is discussed, and the existence of multistability in the

system is demonstrated in Section 2.4.
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Figure 2.23: a) The initial function used for the experiments on bistable behavior in the
analog computer. b) Two bistable electronic solutions. The difference between the two cases
is a change of the parameter t, of about 1.8 %. The period of the solution on the right is
about twice that of the solution on the left.
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Chapter 3

Multistability in delay differential
equations.

In this chapter, we explore multistable behavior in 2 class of delay differential equations
presented in Section 1.5 as models for production-destruction processes. Multistability is
defined as the coexistence of different asymptotic solutions at the same point in parameter
space: the type of solution is determined by the exact initial preparation (initial function)
of the system.

The dependence of system behavior on initial preparation is a concept familiar to non-
linear dynamicists, since one of the definitions of chaos states that the difference between
trajectories generated by close initial conditions diverges exponentially. However, when the
system is not chaotic, the dependence of the dynamics on initial preparation is often dis-
carded as a non-issue even though multistability in no way requires chaoticity.

Ignoring the presence of multistability in a dynamical system can greatly hamper the
process of matching theoretical predictions and experimental observations because it is im-
possible to perform an experiment twice with the exact same initial conditions. We illustrate
in Section 3.3 that the dependence of system behavior on initial preparation can be patho-
logical in the sense that minute variations in the initial function can generate important
qualitative differences in observed behavior. Thus, multistability is an interesting paradigm
with which to explore the variability of experimental data obtained from different perfor-
mances of the same experiment.

A dynamical (or semi-dynamical) system displays multistability when it possesses several
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locally stable attractors. The evolution of the system to a given attractor is determined by
the initial conditions. When there is multistability, the space of system initial conditions
is partitioned into basins of attraction. All initial conditions belonging to a given basin
of attraction will generate a unique asymptotic solution, but the phase of the solution de-
pends on the particular initial condition. Initial conditions belonging to different basins of
attractions will generate different types of solutions. The boundary separating two basins
of attraction is called a separatrix (or a basin boundary) and its structure may be quite
complex. In particular, it is known (8] that separatrices in certain two dimensional maps of
the complex plane into itself possess self similar (or fractal) properties.

In Section 3.1, we recall some of the concepts of nonlinear dynamics relevant to the
investigation of multistable finite dimensional dynamical systems.

Multistability in delay differential systems has been investigated in the context of non-
linear optics. Optical bistability was first predicted theoretically by Ikeda [32, 33|, and
demonstrated experimentally by Gibbs et al. [21, 27]. These experiments, along with exper-
imental and numerical work on bistable delay differential equations used in nonlinear optics
are presented in Section 3.2.

In Section 3.3 we discuss the dependence of solution behavior on changes of the initial
function in equation (2.3), and illustrate the existence of multistable periodic solutions.

In Section 3.4, we investigate the structure of the basin boundaries in the space of initial
functions of equation (2.3). This appears to be the first attempt to characterize the structure

of basin boundaries for delay differential equations.

3.1 Multistability and nonlinear dynamics.

The idea that qualitatively different behaviors can coexist in a given system at the same
point in parameter space is not novel. Mathematicians have always been concerned with the
existence and uniqueness properties of solutions of dynamical and semidynamical systems.
The omnipresence of existence and uniqueness proofs in the mathematics literature, though
sometimes motivated by the diffculty to obtain more stringent analytic resulits, attests to

that concern. The recent burgeoning of nonlinear dynamics has stimulated interest in the
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modeling community for systems whose solutions are not necessarily unique.
To illustrate the following introductory definitions, in this section we consider multista-

bility in electrophysiological cardirnc models formulated as ordinary and partial differential

equations.

3.1.1 Introductory definitions.

We consider a generic n-dimensional set of ordinary differential equations

2 F(x(t), x(t=0)=x, (3.1)
with
x(t) = (z1(t), - - yZa(t)),
and

F(x) = (fi(x),-+, fa(x)) for all x € R".

The vector field F generates a flow ¢, : R" — R", where ¢,(z) = ¢(,t) is a smooth
function defined for all x in R" and ¢ € R, and ¢, satisfies (3.1) because

G0 = Fed) (32)

for all x € R" and t € R. Therefore, the flow generated by (3.1) is the continuum of
trajectories generated by (3.1) originating from a continuum of initial conditions in R" [note
that if ¢, : S — R", then the flow is the continuum of trajectories generated by the
continuum of initial conditions in S].

Now we suppose that the system (3.1) possesses k locally stable fixed points: x; =
(=1, -, z;,) satisfying

F(x])=0 forj=1,---,k. (3.3)

Assume the existence of k mutually disjoint sets B, such that
Xo € B, <= ‘llrg x(t) = x;. (3.4)

The k sets B, are the k basins of attraction for the k fixed points of (3.1). The boundary

seperating any two disjoint basins of attraction is called the separatrix [20].
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Consider the evolution of a continuum of trajectories of system (3.1) generated by a

continuum of initial conditions defined on a set S such that
B, C Sfori=1,---,kand B,[|B, = 0if i #j.

It is clear that the flow ¢, : S —— R" will “separate” into (at least) k different branches,
each branch being attracted to a specific locally stable fixed point of system (3.1).

In general, multistable behavior is of interest when the system possesses k locally stable
attractors, rather than the k locally stable fixed points discussed above. When this the
case, then the continwum of initial conditions on a set (like S§) encompassing k basins of
attraction will evolve into k different oscillatory solutions. The exact nature of the solutions
(i.e. whether they are periodic, quasiperiodic or chaotic) depends on the nature of the k
attractors.

This is the dynamical picture of multistable behavior. It is precisely this picture which
is difficult to study in the case of flows generated by delay differential systems, for then the
flows discussed above are flows of functions generated by continua of initial functions. There
are attempts to formalize the study of flows in Banach spaces [22] but they exceed the scope
of this thesis. We defer to Chapter 5 the introduction of a formalism to start investigating
the statistical evolution of functionals.

Before proceeding to study bistable behavior in systems with delayed feedback, it is
instructive to illustrate some of the concepts presented in this section with examples taken

from cardiac electrophysiology.

3.1.2 Bistability in electrophysiclogical cardiac models.

The mathematical modeling of cardiac activity (and, more generally, the study of excitable
media) with the tools of nonlinear dynamics is an active field of investigation [83] [9]. In
this section, we focus attention on the presence of multistable behavior in models for the
electrical activity of cardiac tissue formulated as ordinary and partial differential equations.
First, consider the Van Capelle-Durrer (VCD) [79] model for the electrical activity of a single

cardiac cell. The model is a two dimensional set of ordinary equations:

& = )+ (LYY (35)
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Figure 3.1: Bistable solutions of system (3.5)-(3.6).

dY
dt
where V' is the transmembrane potential in the cell, and Y is a variable which indicates
the level of excitability of the cell (1.e. its ability to respond to an electric stimulus). C is
the membrane capacitance and T denotes the time constant of the activation/inactivation

process. The functions f, g are related to the current-voltage relations of maximally excitable

= T '(V)-Y] (3.6)

and completely unexcitable cells while h carries information concerning the ability of a
stimulated cell to recover after excitation. Figure 3.1 displays a typical solution V(t) of
system (3.5)-(3.6) (1.e. a simulated action potential), taken from Landau et al. [39] where
the model is discussed in detail. The interesting observation is that the model possesses two
Hopf bifurcation points around which there coexist bistable solutions. In one case, the two
solutions are periodic, while in the other one solution is periodic and the second is a steady
state. These numerical observations on a simple model may have great importance in the
correct interpretation and understanding of cardiac pathologies involving an abrupt change
in rythmicity.

These observations might seem somewhat ambitious given that we have only talked about
the multistability in a very simple model of the electrical activity of a single cardiac cell, but
they are analogous to similar observations in other models for the propagation of electric
stimuli in excitable media. For example, Lewis and Guevara [44] have studied the effect of
periodic electrical stimulations on the behavior of a strand of ventricular muscle. The model
they used to investigate the dynamics of the transmembrane potential VV was the parabolic

partial differential cable equation
— T = C—_ + Im, (3'7)
where z is the distance along the cable, a the cell radius, C the membrane capacitance and
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I,, is the net ionic current as described in a standard model of the ventricular muscle [44).

The numerical investigation of equation (3.7) indicates that there are regions of bistability
of the solutions in parameter space. Lewis and Guevara observed different synchronization
rthythms for the same stimulation frequency. In other words, a shift of the solutions of
equation (3.7) in phase space (generated by the addition of a bias potential) resulted in a
qualitative change in the period of this solution, indicating the presence of bistable attractors.

The clinical implications of these numerical observations are important. For example,
ventricular fibrillation is a fatal cardiac arrhythmia characterized by rapid, apparently ran-
dom contractions of the myocardium. The heart stops beating in an organized fashion
depriving muscles of oxygenated blond, and the lungs with oxygen depleted blood. Fibril-
lation is dealt with clinically by administering to the heart a series of electroshocks. 1f the
treatment is successful, the heart beat returns to normal. In light of the results on bista-
bility, it has been claimed that the phenomenon underlying the abrupt change of cardiac
rhythm due to electroshocks might be interpreted as an abrupt shift in the phase space of
the fibrillating tissues. More precisely, it is supposed that the shocks transport the cardiac
dynamics from one basin of attraction (fibrillation) into another (normal rhythm).

Another cardiac arrhythmia known as tachycardia has been studied within the context of
the theory of multistable dynamical systems. Tachycardia is characterized by a rapid periodic
oscillation of the myocardium, usually not fatal, and sometimes preceding fibrillation. There
are two types of tachycardia: ventricular tachycardia and re-entrant tachycardia. Ventricular
tachycardia is the variant often observed to precede fibrillation. The two tachycardias result
from different pathologies, but they are both thought to be bistable in the sense that a normal
heart rhythm can be shifted to tachycardia and vice versa through the application of an
electric shock. Moreover, ventricular tachycardias and normal rhythms are quite frequently
observed alternatively (without any external perturbation) in healthy patients.

There are models describing this switching behavior [39] which make use of the con-
cept of multistability to account for the odd tachycardiac segment of an otherwise normal
electrocardiogram. However, this approach is hampered by the paucity of results concern-
ing multistability in infinite dimensional dynamical systems like P.D.E’s, even though these

equations are frequently used in models of cardiac dynamics to account for the switching
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between metastable basins of attraction. It is therefore important to undertake a systematic
study of this behavior to facilitate the process of modeling complex biological entities, in
which multistability might be used as a paradigm to study system variability. More specifi-
cally, a better ur«erstanding of the multistability in partial differential equations may help
clinicians improve their treatment of frequently encountered cardiac arrhythmias.

We touch here on another motivation for the study of multistability in high dimensional
dynamical systems. As mentioned below, the investigation of optical bistable devices was
historically motivated by their potential applications as high speed switching mechanisms.
We discussed above how multistable systems were capable of this switching behavior. In fact,
preliminary results (371 indicate that multistable optical devices are potentially more efficient
for storing and processing information than conventional semiconductor based circuitry.

We now discuss some results on optical bistability, because during the past decade the

study of nonlinear optical cavities has greatly motivated the investigation of D.D.E dynamics.

3.2 Multistability in physics.

In this section, we review experimental observations of multistability in L aysical systems

that have been modeled by delay differential equations.

3.2.1 Optical bistability.

The motivation for studying optically bistable devices is twofold:

1) Intrinsic optically bistable devices (1.e. devices which exhibit two distinct states of
optical transmission) can scrve as extremely fast optical switches, and be used as short pulse
generators when their behavior is periodic [45];

2) Optical bistability has received a substantial amount of attention as a “toy problem”
in nonequilibrium statistical mechanics because of the relative simplicity of experimental
manipulations. When compared to turbulerce in fluid flows, the problem of optical turbu-
lence (or chaos) is simple to study both experimentally and theoretically, and it is hoped
that it might yield some insight into the problem of understanding and characterizing fully

developed fluid turbulence (75, 76, 77).
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The pioneering work on the dynamics of multistable nonlinear optical cavities is due to
Ikeda {32, 33] and Gibbs (21, 27|. lkeda showed that the Maxwell-Bloch equations for a
ring cavity filled with a nonlinear medium were reducible to a differential delay equation
in the limit of fast transverse atomic relaxation. The experimental realization of lkeda’s
model was provided by Gibbs using a hybrid optical device, providing the first evidence of
optical chaos. In this section, we describe the experiments in some detail because there
are still relatively few studies discussing the experimental observations of multistability as a
phenomenon wortky of investigation.

a) Exnerimental observations.

The observations discussed here are summarized from Gibbs et al. [21] who designed
the experiment to investigate the instabilities predicted by lkeda in intrinsically bistable
optical ring cavities. The experiments consist in measuring the light intensity emanating
from a nonlinear optical cavity driven by a laser source of constant intensity. The optical
cavity is a conventional potassium dihydrogen phosphate modulator, illuminated with a
constant intensity He-Ne laser. The input and output of the modulator are polarized with
linear polarizers. The modulator’s output light intensity is converted into a voltage with a
photodiode, and this voliage is in turn fed back, after a controlled delay, to the modulator.
This artificially induced delay plays the role of the cavity round trip time in an intrinsically
bistable device.

The equation used to modecl the dynamics of the modv’ator’s output intensity is
dz

7 + z(t) = mpu{l — £ cos[z(t — T) + ]}, (3.8)

€

and when the optical cavity is a liquid crystal, the delay cquation describing the dynamics
of the output is

e% + z(t) = psin®(z(t - 1) — ), (3.9)

where, in both equations z is proportional to the voltage fed to the modulator, € is the re-
sponse time of the electronic circuit, { measures the modulator’s ability to achieve extinction
between the cross linear polarizers and 7 plays the role of the cavit round trip time. z, is

a controlled D.C. bias applied to the modulator.
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The bifurcation parameter g is proportional to the gains of two amplifiers required for the
proper functioning of the delay circuit. The first amplifier is located between the photodiode
and the delay circuit, and the second is located on the feedback loop between the delay
circuit and the modulator. g is the only parameter varied iti the experiment.

Oscillations in output intensity have been the subject of intense scrutiny for the past
decade, and the presence of metastable solutions has been confirmed experimentally. The
main results relevant to bistable behavior can be summarized as follows.

1) When g is varied continuously from 0 to values greater then 1, the output intensity of
the modulator undergoes two period doubling bifurcations before entering a chaotic regime.

2) As u is lowered back to zero, the solution undergoes a series of period halfing bifurca-
tions, and does not follow the same path in phase space as it did when x was increased.

This type of behavior was discussed in Chapter 2 for an electronic analog oscillator sim-
ulating a delay differential equation. It is strongly indicative of multistability in the system
since hysteresis in the bifurcation pattern can be explained by a sensitive dependence of the
solution behavior on changes in the initial functions. To confirm the presence of multista-
bility experimentally, it would be necessary to artificially control the initial function in the
hybrid optical device, vary it and observe the subsequent variations in observed solutions.
This type of experiment has not been performed with optical devices, but numerical investi-
gations of the model D.D.E’s did highlight the presence of metastable attractors of periodic
solutions [14,45). For this reason, we turn to analytic and numerical techniques used to get
some insight into the stability properties of the phase space of equation (3.9).

b) Analytic and numerical results.

In general, the delay differential equation for a hybrid optical device is

e‘—g = —z(t) + F(p,z(t - 7)), (3.10)

where z(t) is the dimensioniess output of the system at time ¢ (related to the intensity of the
light transmitted by the optical cavity at time t), 7 is the time delay of the feedback loop
and ¢ is the response time of the nonlinear mediuni. The control parameter u is proportional

to the intensity of the incident light (the laser). The function F characterizes the system
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with nonlinearities. We consider equation (3.10) with a nonlinearity F given by
F(p;z) = psin®(z(t — ) — z,). (3.11)

[This function was introduced by Zhang et al. when consid=ring a liquid crystal hybrid optical
bistable device [84] |. For illustrative purposes, we follow the linear stability analysis given
by Li et al. [45) as an example of the preliminary analysis usually performed on nonlinear
delay differential systems. We then extend their numerical investigation to the paradigm
system with piecewise constant nonlinearities presented in Section 1.5 and investigate the
attractor basin boundaries for this system.

Equation (3.10) with (3.11) can be linearized about a fixed point z* such that if y(t) =

z(t) — =", we have

d
ed—’t’ = —y(t) + zy(t — 1) + W(g,y(t — 1)) (3.12)
where
it .= w2
T aI =z

and W is of order O(y?(t — 1)) (for a scaling of equations like (3.10) we refer the reader to
Appendix A). The initial condition for the linearized equation (3.12) is

y(t') = o(t') for t' € [—1,0].

As long as y remains small enough, we can neglect terms of higher order in y, and consider

the linear equation

éi—i’ = —y(t) + zy(t — 1). (3.13)

The Laplace transform of y(t) is, by definition,

L(y) = /U T e My(t) dt = §(t). (3.14)

A closed form solution of equation (3.13) can be written and its Laplace transform is

J(\) = {é¢(0) o | “1 o(u) e~ du} % Gu(A), (3.15)

where
Go(A) = (EA+1—ze ™). (3.16)
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Go()) is a meromorphic function because it possesses an infinite number of conjugate pairs
of isolated poles. Using the Mittag-Leffler theorem [70], G,()) can be expanded to give

oc

GA)= 3 = (3.17)

where ¢, the residue of the left hand side at A, is obtained using I'Hopital’s rule.
Taking the inverse Laplace transform of equation (3.15) yields

eM

o C4sl A 0 —Au d
o) = fim [ dAgse(0)+ e [ e ela) du (3.18)

0

1 Go(t —u — 1)p(u) du (3.19)

= ép(0)Gu(t) +2 [

where
C+sl eM

Su(t) = B L _a
)= Jim [ o)

We can write the solution y(t) in an alternate way using the Mittag-Leflier expansion,

(3.20)

W= 3 pe (3:21)

k=-o00

where
P = cip(0) + 2 cre™ /_0] p(u)e* du.

Therefore, computing the solution involves computing an infinite number of integrals over
the initial interval. Note that if different initial functions are such that the integrals corre-
sponding to the different A;’s have the same value, then they will yield the same asymptotic
solutions of equation (3.13). Every residue ¢, determines a possible mode of time evolution
of equation (3.13). The sign of the real parts of the c;'s determine the stability of the fixed
point z*. In particular, at the boundaries between the stable and unstable regions, the real
parts of all the cx’s must vanish. Therefore, the critical conditions separating stable and

unstable regions of the (z,€) plane are given by

Gil(ex) = 0 (3.22)
Re(ce) = 0. (3.23)
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w

Figure 3.2: Period of the solution of (3.10) with nonlinearity (3.11) as the frequency of the
initial function ¢(t) = Asin(w t) varies. The figure is a first glimpse at the structure of the
boundary separating two basins of attraction of the solutions.

Letting Im(cx) = wy, if wy # 0, the soluticns to this system are given by

1

- 3.24
cos(wy) (3.24)
along with
) (3.25)
wy

When w = 0, then
3 = 1, é € [O,W),

and therefore, if s, > 1 then =™ is unstable. Since we are interested in stable fixed points,
we only discuss the case s; < 0.
Suppose that ¢ has been determined from equation (3.25). We then have, from (3.22)

(with (3.23))
Ew = 1In ii —in cw
3

Re(c)= —1In (3.26)

asin(w) sesin(we) |’
Now, if w satisfies (3.24), that is w = w,, n = 1, 3,5, -+, then Re(c,) = In|s/s,|. The mode
wy is exciteble (or unstable to a small perturbation) when |s| > |s,|. On the other hand,
the steady state z* is stable when |s| < |s,|. If |s| < |s,], the steady state is always stable.
Therefore, s, is the instability threshold for system (3.13), and the stability conditions for a

steady state become

ls(z7)l < sl
3(1;) < 1 (327)

It is possible to find similar criteria for the bistable states using the integral averaging method

80



oy

and the theory of retarded functional differential equations. Such an analysis is explicitly
given by Li and Hao. [45] for the D.D.E considered in this section. The formalism is involved,
and makes use of the theory of retarded functional differential equations [45, 22, 59] so we
only give a brief summary of their main results. They are representative of the types of
investigation presently under way concerning the dynamics of real systems modeled by delay
differential equations.

1) Li and Hao showed that the point s = s, is a bifurcation point for the nonlinear system
even though it was determined from the linearized equation. However, the other s,’s with
t > 1 do not have such a clear meaning because in the nonlinear system one expects different
modes to couple and influence the critical values for the s,'s obtained from the linear stability
analysis. When € is not too small, it is acceptable to neglect the mode-mode coupling for
higher modes.

2) There exist bistable periodic solutions. The period of these solutions is denoted by
T, and T,. The initial function is of the form p(t) = Asin(wt), and Figure 3.2 displays the
dependence of the period of the solution on the frequency of the initial function. In some
sense, Figure 3.2 is our first glimpse at the structure of basin boundaries in the Banach space
of initial functions for equation (3.10) with (3.11). In Section 3.3 we will try to systematize
this type of approach for the integrable equation (2.3).

In the next section we will see how our own numerical results on delay differential systems

complement those of Li and Hao [45].

3.3 Multistable behavior of an integrable delay dif-
ferential equation.

We now focus our attention on the integrable D.D.E with piecewise constant forcing presented
in Section 1.5 as a paradigm for production-destruction processes involving a mixed delayed
feedback control loop. The simulations presented here were obtained with an algorithm

designed to emulate an analytic integration of

dz = —az(t) + F(z(t — 7)) where F(z) _—.{

c ilz € [01,02]
= (2.3)

0 otherwise.

81




The algorithm is described in detail in Appendix D (a listing of its Fortran implementation

is given in that appendix, along with other program listings).

3.3.1 Higher order multistability.

It is clear from the observations of Section 2.4 (concerning the analog computer simulating
(2.3)) and Section 3.2, that changing initial functions of D.D.E’s may have dramatic repercus-
sions on solution behavior. At this point there is good evidence that control loops involving
time delays can be :multistable, but there is no systematic investigation of this property
other than the occasional figure published to illustrate the phenomenon. We want to explore
this behavior for (2.3) numerically in the hope that the results stimulate further analytic
work. We begin by investigating the existence of cycles that are tristable, quadristable etc.,

because bistability is the only kind of multistability discussed in the literature.

a) Parametrizing the initial functions.

It was mentioned in Section 1.5.2 that the information content of the initial functions for
equation (2.3) was redundant. This observation is at the basis of a simple parametrization
of the initial functions for equation (2.3). Since the feedback function is piecewise constant,
the solution z.(t) of equation (2.3) with initial function ¢(t), t € [—7,0|, is completely
described by the times in [—7,0] at which ¢ crosses either 8, or 6,. If we label these crossing
times ¢,, then the solution z,(t) can be written z,)(¢). To clarify our discussion, we focus
attention on the solutions zy,,)(t) generated by initial functions p(t) belonging to a set ¢
defined as follows

8(t) = {@:(¢), Baft), a(t)} (3.28)

where

®i(t) = {(t) :¢(—7) < by, #(t)) =6, Vte[-7,t)]}
Bo(t) = {9(t): 6(t) € (6:,02) VEE (b1, t:)) (3.29)
i(t) = {o(t) : §(t2) = 6, #(t) > 8, Vt € [t,,0), #(0) == 6,}.

The rationale for restricting the initial functions under consideration to the elements of

® is to try and simplify the eventual analytic work suggested by the numerics.
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We can now investigate the effect of changing ¢, and ¢, on solution behavior.

b) Digital simulations.

The results presented here appear to be the first reports of higher order multistability in
a delay differential equation. Figures 3.3 and 3.4 display typical examples of the type of
bistability observed in large areas of the space of control parameters [N.B. The control
parameters in the system do not include ¢, and ¢,; these two quantities characterize the
initial function and thus cannot be considered as bifurcation or control parameters|. The
difference between the two initial functions generating the solutions presented in Figures

3.3(a,b), 3.4(a,b) is the value of the time ¢, at which it crosses 8, on the initial interval.
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Figure 3.3: Typical bistable solutions of equation (2.3). The parameters are: @ = 3.25, ¢ =
25, r=1,60,=1, 6,=2. a)t = —0.9925, t, = —0.6 and the period is P = 3.66. b)
P =5.19,t, = -0.995, t, = —0.27.
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Figure 3.4: Another example of bistability in (2.3). The parameters are the same as in
Figure (3.3) except: a = 3.5, ¢ = 19.5. a) ¢; = —0.985, ¢, = —0.834 and the period is
P =0.75. b) t, = —0.9925, ¢, = —0.4 and P = 8.96.
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Figure 3.5 displays a typical example of tristability. It is important at this point to note
that the multistability is robustin the sense that it is observed in large regions of parameter
space. Figure 3.6 illusirates this robustness. It is a plot of the periods of the solutions of
equation (2.3) as a function of the parameter a, when all the other control parameters are
held constant. The initial functions used here are of the type described in 3.3.1a. Figure
3.6 illustrates the relative prevalence of short limit cycles (containing at most 12 extrema
per period), an example of which is displayed in Figure 3.3a. It appears that the long limit
cycles (containing more than 12 extrema per period) are less frequent than the short limit
cycles when controlled parameters are varied. On the other hand, for a given set of fixed
control parameters, the long limit cycles appear to be more abundent than the short ones
as the initial functions are varied. In other words, the locii at which short limit cycles are
observed in [t),t,] space, (displayed in figures 3.7 — 3.9) are less numerous than those at
which long limit cycles are observed.

These apparently contradictory observations are illustrated by comparing Figures 3.6 and
3.7. They highlight one aspect of the complexity of multistable behavior in simple D.D.E’.
Before proceeding, note that there appears to be no limit to the order of multistability
displayed by equation (2.3). The more finely one looks ai the structure of (¢,,¢,) space, the
more limit cycles one is likely to find. This observation is based on numerical observations

and should be taken at best as an educated conjecture.

1.1.1 Basin boundaries in the space of initial functions.

With respect to multistability an important question to address, directly related to the
structure of basin boundaries in the space of initial functions, is :“Given a fixed set of
parameters, what is the relative distribution of long and short period limit cycles?” This
question is perhaps more crucial than the simple determination of the existence of multistable
behavior. When performing an experiment, little attention is usually given to the initial
preparation of the system. Being aware of the presence of multistability in the system
under consideration is useful, but it is more interesting to qualitatively know to what extent

perturbations to the initial {unctions will aflect the asymptotic solution. The fact that
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Figure 3.5: Tristability in equation (2.3). The parameters are the same as in Figure 3.3
except a = 3.25. a) t; = —0.925, t; = —0.711, and the period is P = 0.75. b) t, =
-0.9, ¢, = —0.386, and P = 1.78. c¢) t, = -0.9925, t, = —0.4 and P = 5.05.
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Figure 3.6: The quantity P = log(1 +log(1 + P)) as the parameter c is varied for 7 = 1,
a=2325,60,=1 and 6, = 2. P was plotted here rather than P for the clarity of the figure.

minute changes in the initial preparation of an experiment can have a dramatic influence on

observed behavior is not widely recognized. We illustrate this in the next section.

a) Digital simulations.

Consider equation (2.3) with the parameters of Figure 3.3. As the parameters ¢, and ¢,
are varied, we expect to generate both types of solutions presented in Figure 3.3. Figure
3.7 represents 10° solutions of equation (2.3) obtained with 10° different initial functions
belonging to $. More specifically, for each ¢, the graph represents 1000 values of ., dis-
tributed uniformly between t; and 0, and the procedure was repeated for 1000 values of ¢,.
The plotted points represent the loci in (¢;,2;) space which gencrated the short limit cycle

solution of Figure 3.3a.
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A noticeable feature of Figure 3.7 is unfortunately not clear without the original data:
The figure was obtained by discarding the points in (¢,,%;) space which did not generate the
solution of Figure 3.3a, and the relative importance (or size in some sense) of the basin of
attraction of this short period soluticn compared with the size of the basin of attraction of
the long period solution (Figure 3.3b) does not appear unambiguously. This size difference
was unambiguous in the original data, but the information is lost on Figure 3.7 because of
the impossibility to estimate the relative dominance of the “white spots” embedding the
black ones. Though it is impossible for the eye to determine roughly the ratio of the number
of dots on Figure 3.7 to 108, this ratio is of order 0.1. Thus, if an initial function belonging
to ¢ is picked at random, it is ten times more likely to generate the solution of Figure 3.3b
than that of Figure 3.3a.

Figures 3.8 and 3.9 are similar to 3.7 for different values of the parameters. It should be
kept in mind that these figures give only an indication of the complexity of the separatrix.
A black and white two dimensional picture cannot carry enough information to describe
the boundary separating more than two distinct basins of attraction. To illustrate the
distribution of (¢,,2,) pairs generating the three solutions shown in Figure 3.5 one might use

a three color graph, each color representing a given solution.
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1.0

Figure 3.7: The boundary of the basins of attraction of two bistable solutions of (2.3 )

displayed in Figure 3.3. The black dots represent values of (t,,¢,) for which the asymptotic
solution is the one shown in 3.3a.
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0.90

Figure 3.8: The black dots on this picture represent values of (t,,t;) for which the asymptotic
solution of (2.3) is the one displayed in Figure 3.5b

t,
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Figure 3.9: The black dots on this picturg represent values of (t,,t2) for which the asymptotic
solution is the one displayed in Figure 3.5a
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When the initial onditions are more complex, for instance when they possess n crossings
of the thresholds 6, and 6,, the structure of the basin boundaries are difficult to comprehend,
for then the parameters characterizing an initial function span a surface embedded in an n-
dimensional space. Whatever the class of initial functions under consideration, it is probably
a good idea to limit the number of parameters specifying them to at most two. For example,
Figure 3.2 is similar to 3.7 but the initial functions used to draw this figure belong to a set
¢’ such that

&' : {p(t) | p(t) = Asin(wt) fort € [~7,0].} (3.30)

In this case, the frequency content of the initial function is allowed to vary much more than

when (t) € ® even though the number of parameters specifying ¢(t) remains manageable.

3.4 Summary.

In this chapter, we have presented some results concerning multistability in delay differential
equations. In Section 3.1, the motivations to understand this behavior are given from a bio-
logical perspective. We discuss how multistability may explain certain cardiac arrhythmias
and the potential clinical applications of a better understanding of the structure of basin
boundaries in infinite dimensional dynamical systems.

In Section 3.2, we present earlier results concerning multistability in nonlinear optics.
We also review the basic analytic techniques used to determine the stability of solutions.

Section 3.3 is a systematic investigation of multistable behavior in delay differential equa-
tions. The numerical results illustrate both the robustness of the property and its complexity.

The structure of basin boundaries for parametrized initial functions is discussed in Section
3.4, where we demonstrate the possibility of extremely sensitive dependence of solution

dynamics on small perturbations of the initial function.
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Chapter 4

Dynamics of ensembles of D.D.E’s.

To now, attention has been focused on the examination of single trajectory behavior, t.e. the
study of the behavior of single solutions of delay differential equations, their complexity and
their bifurcations. In this chapter, we examine the behavior of ensembles of solutions as the
first step in the development of techniques to yield useful information about the statistics of
systems with delayed dynamics.

Why investigate purely deterministic systems from a statistical perspective? The moti-
vation for doing so lies in the observation that determinism does not imply predictability.
For example classical statisiical mechanics was developed as a theoretical framework for the
investigation of large numbers (of order 102?) of particles whose individual evolution zqua-
tions were deterministic (Hamilton’s equations). Furthermore, if the evolution of a system is
chaotic, then it is also reasonable to characterize its motion statistically. If system evolution
cannot be predicted exactly, then the way to carry out this statistical investigation is to
consider the evolution of phase space density functions so a statistical description of the
system can be given by its phase space density function. This density function weights the
phase space according to where the system is most likely to be found and can be used to
describe the nonequilibrium properties of the system and its measurable quantities [30].

In Section 4.1 we summarize some of the existing results on the evolution of phase space
densities evolving under the action of finite dimensional dynamical systems. In particular,
we introduce the Frobenius-Perron operator, and the Liouville equation, and introduce a

type of density behavior for discrete time maps known as asymptotic periodicity.
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The difficulties inheren. with the description of phase space densities for delay differential
systems are discussed in Section 4.2. We compare numerical observations concerning the
hat map with those concerning the corresponding singularly perturbed delay differential
equation.

In Section 4.3 we present some techniques to derive analytic expressions for densities
along the trajectories of an integrable delay differential equation. We then show how these

techniques are applicable to the study of certain neural nets.

4.1 Densities and dynamical systems.

4.1.1 Densities versus single trajectories.

The need to study a deterministic system statistically arises when the dynamics of this sys-
tem become “unpredictable”, when one is studying a large number of simple systems (as in
classical statistical mechanics), and when the deterministic system is perturbed stochasti-
cally.

To elaborate on these points, note that:

1) It is well known that simple deterministic systems can display complicated unpre-
dictable behavior or “deterministic chaos”. When the dynamics of a system are chaotic,
exact long term predictions become impossible from a practica! point of view and the search
for an underlying order is necessarily probabilistic in nature. The density behavior can often
be easily characterized when the single trajectory behavior is chaotic. For example, the
study of chaotic discrete time maps of the unit interval onto itself has greatly benefited from
this approach. When the maps are one dimensional, the density of initial conditions is a
function defined on a subinterval (or a collection of subintervals) of the unit interval. The
evolution of this function is then given by a hinear integral operator, the Frobenius-Perron
operator. A precise defirition of the Frobenius-Perron operator (FPO) and a review of its
applications to the study of interval maps is given in {40]. The FPO can also be defined
for continucus time systems, and it is a powerful tool for the investigation of the entropy
behavior of deterministic dynamical systems [51].

2) At the end of the nineteenth century a few physicists (including Boltzmann and Gibbs)
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realized that a meaningful investigation of macroscopic behavior could only be carried out
statistically. This idea led to the formulation of classical statistical mechanics and the
elabosation of techniques with which to study the evolution of systems composed of large
numbers of units (atoms for example) each governed by simple equations of motion (e.g.
Newton’s laws). In the spirit of statistical mechanics and ergodic theory it is reasonable to
develop techniques to deal with large collections of “particles” whose dynamical evolution
depends on their history. One potential area of application is the mathematical modeling
of neural organization, and neural information processing. Since time delays (due to finite
conduction times) in the brain are ubiquitous, modeling neural dynamics is an area in which
the use of D.D.E’s may prove to be most promising [47]. Because of the large numbers of
individual neurons (sorae chosen property of which is governed by a D.D.E) involved in a
given task it will be interesting to see to whai extent the ideas of statistical mechanics can
be applied to large collections of D.D.E’s.

3) Finally, a statistical investigation is required when dealing with stochastically per-
turbed systems. When this is the case, the specifications of the noisy component in the
system are probabilistic in nature and, therefore, the only meaningful observations can be

made within a statistical framewerk [71].

4.1.2 Temporal evolution of phase space densities.

In this section, we present some techniques developed to investigate the evolution of phase
space densities of ordinary differential equations and discrete time maps. If an ensemble of
initial conditions is specified (rather than a single initial condition) then this ensemble is
described by a phase space density. The time evolution of this density under the action of
the ODE or the map is associated with the evolution of the system’s thermodynamic state.
Before proceeding, we define a density.

Definition 4.1. A nonnegative L' function defined on a space X and satisfying

/_\, flz)de =1 (4.1)

is called a density. The space X is the phase space on which the dynamical system operates.

For the one dimensional maps of the unit interval onto itself considered below, X is the
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segment of the real line [0,1].

a) Discrete time systems.

The generic form of an [-dimensional discrete time system is
x4 = F(xy) (4.2)

where x, = (z},---,z!), and F is a function of [ variables. For the introductory definitions

presented in this section, we restrict ourselves to the one dimensional system
Ti4 = F(m,) and T, € {0, 1] (43)

Suppose we are given a density of initial conditions f,(z). The time evolution of f as z

evolves under the action of system (4.3) is given by an integral operator P such that

fira(z) = Pfi(z), (4.4)

or, alternately
fi(z) = P fo(z). (4.5)
For the dynamical systems discussed here, the integral operator P is a Markov operator.

Definition 4.2. Any linear operator P : L' — L! satisfying
P'f>0

and
/.\- P f(z) dz = /\ f(z) dz
forallte R, f >0, f € L' is called a Markov operator. This general Markov operator
describes the evolution of densities under the action of stochastically perturbed dynamical
systems. When the systems are completely deterministic, the Markov operator governing
the evolution of densities is called a Frobenius-Perron operator.
The sequence of densities {f,} evolving under the action of a Markov operator P is

denoted {P'f,}.
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In Section 4.3 we discuss the connection between some statistical properties of a given one
dimensional map and numerical simulations of the corresponding delay differential equation
obtained via a singular perturbation procedure. It therefore useful to explain the derivation
of the Frobenius-Perron operator for a one dimensional map F' acting on the phase space X.

Thus, we consider the dyramical system (4.3).
Let f, again denote the density of initial points (the initial ensemble). After one appli-

cation of F to this ensemble, the points are distributed in X according to Pf,. The fraction

of this ensemble contained in the interval [0, z] is

/UI P.fu(y) dy.

The points which are contained in the interval [0,z] originated in its counterimage under the

action of F. Let F~!([0,z]) denote this counterimage, t.e.
F7(0,2]) ={y€ X | F(y)€[0,z]}.

Therefore, we can write,

’ dy = dy. 4.6
fo P fo(y) dy fF oy oW Y (4.6)
Differentiating both sides of (4.6) yields
d
PIe) = gy [y POV (47)

This relation gives the prescription fcr obtaining the Frobenius-Perron operator when a

specific F is considered.

Example 4.1. The generalized hat map is defined by z,,; = F(z;), where

_J az when z € [0, 1]
F(z)= { a(l - z) Whean(%,l], (4.8)

for a € (1,2].

The counterimage of a set [0,z] under the action of the hat map is
1 1
F-([o, =[0,—] [1—-,1].
(0.2)) = 0, 22| U1 - ==
Therefore, using (4.7), the Frobenius-Perron operatoi for this transformation is defined by

Pflz) = % [f (5::) +f (1 - %z)] . (4.9)
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») Continuous time systems.

Since most physical laws are framed as differential equations, it is natural to consider the
evolution of densities in the phase space of these continuous time systems. The equations of

Hamilton are

dp. _ _OH
dz ~ Og
@ _ oH
de ~ Op,
fori=1,-.-,N, p, and g, are 6N conjugate generalized variables and H is the Hamiltonian

function for the system. The evolution of an ensemble of initial points distributed according

to the density f in (p,,q,) space is given by Liouville’s equation (18],

of N ([of0H Of6H
[Bq.ap. ap.aq,] (4.10)

a” k&
The Liouville equation can be reduced tc the Boltzmann equation with (many!) simplifying
assumptions when the system under consideration is a dilute gas [25]. The equilibrium
density of the Boltzmann equation (z.e. the density f. for which 8f./6t = 0) is known in
physics as the Maxwell-Boltzmann distribution.
More generally, the evolution of densities in phase space when the dynamics are given by
the n dimensional system of O.D.E’s

dz,

di =R(m1""’zn)’ 1=1,.--,m, (4'11)

is given by the generalized Liounille equation

of _  <~O(fF)
i Z:; o (4.12)

If the solution of (4.12) is written f(z,t) = P!fy(z), then P' is the continuous time
version of the Frobenius-Perron operator presented here. When one considers a system of
O.D.E’s perturbed by a white noise term, then the equation giving the evolution of phase
space densities is called the Fokker-Planck equation [68].
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4.1.3 Asymptotically periodic Markov operators.

To now nothing has been said about the asymptotic properties of the sequence of densities
evolving under the action of the Frobenius-Perron operator. This is an important problem
since the phase space densities are associated with thermodynamic states. Therefore, if there
exists a unique stationary distribution f. to which the sequence (continuous or discrete) { f;}
converges, the system evolves to a unique state of thermodynamic equilibrium. The converse
is true. For a detailed discussion of the possible types of density behavior and the connection
with the corresponding entropy behavior of the dynamical laws, the reader is referred to
Lasota and Mackey [51]. We focus attention on one possible type of density evolution known
as asymptotic periodicity.

To now asymptotic periodicity has only been investigated in discrete time systems [38,
40, 63, 64]. In Section 4.3, we discuss some results concerning strikingly similar behavior
in a continuous time system, and their implications. To explain asymptotic periodicity, we
need to introduce a property of certain Markov operators known as smoothing.

Definition 4.3. A Markov operator P, acting in a space X = [0,1] is said to be smoothing
if there exists a set A C X of finite Lebesgue measure, and two constants § and ¢ < 1 such
that for every set E C X whose Lebesgue measure satisfies u(E) > §, and for every initial
density f, there is some integer ¢y(fo, £) for which

/I;U(_\.\A) P fo(z)dz <€, for t>t,.
In other words, regardless of how small the support of the initial density, it will spread out
unde: the action of a smoothing Markov operator.

Smoothing operators possess a remarkable property explained in the following theorem
proved by Komornik and Lasota [38].

Theorem 4.1.1 (Komornik and Lasota) Let P be a smoothing Markov operator. Then there
is an integer » > 0, two sequences of functions g, € D and K, € L*,i =1,---,r,and a
bounded linear operator Q : L' — L' such that for all f € L', Pf takes the form

Pfie) = S M(Ha(e) + (=), (4.13)

=1
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where
M) = /\ K,(z)f(z) d=. (4.14)

The densities g,(z) and the operator Q satisfy the following:
(1) The g,(=) have disjoint support so g,(x)g,(z) =0 for all i # ;.
(2) For each integer i there is & unique integer a(i) such that Pg, = g, and where
a(i) # a(j) for i # j. Thus, the action of the operator P is to permute the densities g,(z).
(3) IIP'Qf(z)ll — O ast —r 0. o

From property {2), the operator equation (4.13) can be written

P f(2) = 3 Ml gaol®) + PQS(2), (4.15)

=1

where the subscript a’() is just the t*# application of the permutation af).

In simpler terms, the evolution of phase space densities for an asymptotically periodic
system is characterized by a periodic cycling of the functions A, (i = 1,---,r) which wéight
the various components g, (: = 1,--+,7) of the density f(z). The period of this cycle is at
most 7! since the supports of the g,’s are mutually disjoint.

This type of statistical cycling of the system in the asymptotic regime has profound
implications. For instance, asymptotically periodic systems never evolve to a unique state
of thermodynamic equilibrium, but endlessly visit a finite number of metastable states. The
exact cycle depends on the initial preparation of the system (the initial density f,). We
note that this cycling of densities does not imply a cycling in the entropy behavior of the
system. In fact, asymptotically periodic transformations evolve to a local entropy maximum
[63]. The maximum depends, like the density cycle, on the initial preparation of the system
(the initial density).

In Figure 4.1, we display the cycling of densities under the action of the Frobenius-Perron
operator for the hat map which is asymptotically periodic in certain parameter ranges.

The most intriguing property of asymptotically periodic systems is illustrated by the fol-
lowing Gedanken experiment. Suppose the initial preparation of a given system is described
by a uniform distribution over the entire phase space. As the density evolves in time, its

support splits into r disjoint sets. Asymptotically, the system is to be found in one of r
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Figure 4.1: The evolution of densities under the action of the asymptotically periodic
Frobenius-Perron operator P for the hat map when a = 2'/2. The initial density fi(z)
is plotted on the top graph. There are no transients in this case. The cycle shown here is of

period 2
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distinct states, or in a linear combination of these states, each weighted by the function
gi. Thus, asymptotic periodicity offers one possible framework within which to investigate
spontaneous quantization in ¢ screte time systems.

There is no formal analog of asymptotic periodicity for continuous time systems so the
applications to physical models, usually framed as differential equations, cannot be dis-
cussed at this point. However, the combination of results from ergodic theory and insights
from dynamical systems theory has been instrumental ir the classification of nonequilibrium
thermodynamic behavior [51], and it can be expected that the tools of nonlinear dynamics
will prove useful in the discovery of dynamical principles underlying quantum mechanical

behavior (if such principles exist).

4.2 Ensembles of D.D.E’s: Numerical insight.

It is clear from the considerations of the preceding section that a coherent analytic treat-
ment of ensembles of delay differential equations should make use of the tools of probability
theory in function spaces, since the distributions to be associated with the thermodynamic
states of D.D.E’s should be distributions of functions. In Chapter 5, we introduce some tech-
niques to proceed with such an analysis. In this section we focus attention on the numerical
investigation of the dynamics of large collections of delay equations.

We restrict ourselves to a particular D.D.E, which is the singular perturbation limit of
the hat map (4.8) presented in Section 4.1.1

dz _ az, if 2, € [0, ]] _
i —z(t)+{ a(l-2,) iz € (L], z, =2z(t-7). (4.16)

The rationale for studying this (nonintegrable) D.D.E, rather than the paradigm system
(2.3) considered in the previous chapters, is that there is a formal connection between this
system and a well understood discrete time system: the hat map. We noted in the previous
section that a particularly interesting type of density evolution consisted in an asymptotic
cycling of the densities in phase space under the action of the Frobenius-Perron operator

(see Section 4.2, equation (4.8)). If the limit ¢ — 0 is taken in (4.16), then we obtain the
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difference equation

_J az(t -7) if 2(t — 1) € [0,1]
z(t) = { a(l —z(t—7)) if z(t - 7)€ (0,1] (4.17)
The results of Ivanov and Sharkovskii (Section 1.5.1) demonstrate that the dynamics of

the difference equation are accurately described by the dynamics of the corresponding one

dimensional map

_ | az., if z, € [0,1]
Tot1 = { a(l-z,) ifz, €(3,1). (4.18)

The hat map was studied extensively by Provatas [63, 65] who proved several interesting

results concerning its statistical behavior. We summarize these results in the following

section.

4.2.1 The hat map.

Consider the generalized map (4.8), and its Frobenius-Perron operator (4.9). From Lasota
and Mackey {40], we know that the Frobenius-Perron operator for a mnap F: [0,1] — [0, 1]
is asymptotically periodic if F(z) satisfies the following (sufficient) conditions:

(1) There exists a partition 0 = by < b, < --- < b,, = 1of [0, 1] such that for each integer
i=1,---,m the restriction of F to [b,_,,b,] is a C? function.

(2) | F'(z) |29 >1,2#b,i=0,---,7 where J denotes the right derivative of F(z) at
z =0

(3) There exists a real, finite constant ¢ such that

"
,l—ﬁ,((:;)‘l <e¢ T#b,1=0,1,---,m.

For a € (1,2], and for the partition b, = 0 < b, = 1/2 < o, = 1 the hat map satisfies these

conditions. Thus the hat map is asymptotically periodic and the Frobenius-Perron operator
can be represented with the spectral decomposition of Theorem 4.1.

One remarkable result relates the value of the parameter a to the period of the density
cycle. Specifically, if a € (apy1,an), where a,, = 25‘*, then the period of the density cycle
is 2", In other words, in these parameter ranges, P! f(z) = P!*?" f(z). It is also straight

forward to show that the hat map is ergodic.
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In the next section, we make use of ergodicity in the hat map to construct densities along
trajectories. We would like to determine to what extent the properties of the map carry over

to the delay differential equation.

4.2.2 Densities and D.D.E’s.

The phase space of (4.16) is the normed function space C([0,7]) [see the notation above Defini-
tion 1.2 for a precise definition. Here the functions are not bounded so that B = (—o0,+00)
is omitted]. Thus, the phase space density functions associated with the thermodynamic
state of a D.D.E. are really phase space density functionals. Techniques to analytically in-
vestigate the behavior of these functionals are presented in Chapter 5. In this section, we
focus attention on possible ways to obtain numerical insight into the dynamics of these func-
tionals. Several of the constructions presented in the next sections are motivated by the
observation that the hat map is ergodic.

Roughly speaking, a transformation is said to be ergodic if its invariant sets are trivial.
This implies that a trajectory will visit all points in the phase space, and that space averages
can be replaced with time averages. An exact definition of ergodicity is given in [40]. For
this reason, we begin our investigation of densities for delay differential equations by the

construction of time averages to approximate space averages.

a) Densities along trajectories.

The first natural construction of densities in delay differential equations is to project the
solution z(t) onto the z-axis. Figures 4.2-4.4 display such projections for numerical solutions
of equation (4.16) with constant initial functions. The only parameter being changed is a

and £ = 0.1 throughout. Recall that there are windows in the interval a € (1,2] such

" window

that the density cycles for the hat map have period 2" when a belongs to the n
w, = [25#‘77, 237]. The number of peaks in the densities for the D.D.E equals the period of the
cycle for the map at the same parameter values, up to a shift depending on ¢. Qualitatively,
the effect of the singular perturbation procedure is to alter the w,, windows. Ase¢ is increased,

the behavior of the D.D.E deviates from that of the map.
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Figure 4.2: Solution of equation (4.16) when 7 = 3, € = 0.1, a = 1.28. For the same value
of a, the cycle of densities in the hat map is 2. The top right graph is the projection of the
solution along the z axis.
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Figure 4.3: Solution of equation (4.16) when r = 3, ¢ = 0.1, a = 1.10. For the same value
of a, the cycle of densities in the hat map is 4.
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Figure 4.4: Solution of equation (4.16) when 7 = 1, € = 0.1, a = 1.003. For the same value
of a, the cycle of densities in the hat map is 8.
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b) Densities for a “sliding” segment of solution.

The densities obtained by projecting the solution onto the z axis are time independent and
there is no hope to reproduce any cycling of the densities in the D.D.E. Therefore, the
next logical construction of D.D.E densities comes from the observation that the dynamical
system S, corresponding to equation (4.16) acts on the elements of the normed function space
C(]0,7]), and transforms a function defined on [—,0] into a function defined on [t - 7,¢]. In
other words it is relevant to look at the evolution of a density defined as the projection on
the = azis of a segment of the solution z(t) defined on the time interval ¢t € [i* — 7,t7] as
t* increases. [An element of C -1.e. a segment of z(t) of length 7- will be referred to as a
buffer from now on]. Figures 4.5-4.6 display such projections. Cycling is observed, and the
number of different supports of the densities is related to the period of the density cycle for
the map. Again, the value of ¢ determines the degree of similarity between the map and the

differential equation.

c) Average of an ensemble of buffers.

A generalization of the approach discussed in the previous section consists in following the
evolution of n buffers generated by = initial functions. More specifically, we look at the evo-
lution of a function defined as the average of the n buffers. The results of such a construction
are somewhat puzzling. They are displayed in Figures 4.7 obtained with a given value of a
corresponding to a period 2 cycling in the hat map. The number of peaks in the densities
again corresponds to the period of the density cycle in the map, but it is not yet understood
how to establish a clear connection between this evolution of averages and the evolution of
densities in the discrete time case. A detailed investigation is extremely time consuming
since it involves the numerical integration of large numbers (at least 10°) of D.D.E’s, and
it could not be carried out for this thesis. The results presented in this and the following
section merely indicate the direction for further numerical investigation, and they highlight
the need for a theoretical framework to investigate D.D.E’s from statistical point of view.

This framework is presented in Chapter 5.
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1) Sampling ensembles of D.D.E’s

Suppose that one is interested in studying the evolution of a collection of n noninteracting
particles, some property of which is governed by a D.D.E. If this property is a measurable
quantity (like velocity, electric charge etc.) monitored experimentally, it is sampled through-
out the system at discrete times. We label the quantity we are monitoring by Q,(t) for the
i'" particle. In the limit of infinitely many particles (the thermodynamic limit, in which the
index 1 becomes continuous), the result of a measurement on our “gas” of D.D.E’s at time
t” will be a function Q*'(i). In Figures 4.8 — 4.9, we display such functions as t" varies.
Here, again a cycling is observed. This cycling indicates that the initial functions did not
belong to one single basin of attraction. If they did, then all the initial functions would have
generated the same asymptotic solution up to a phase shift. In that case, regardless of the
instant ¢* at which the sampling is done, the function Q*’(i) is a projection on the z axis of
all the possible phases of z(t) and therefore Q'° (i) would be invariant in time. However, the
information content of the Q-cycles concerning the basins of attraction has not been studied,
again for lack of computing time, and our observations should be taken as conjectures rather

than affirmations.
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Figure 4.5: Densities of a buffer of length v as it slides along a solution of (4.16). The
parameters are the same as those in Figure 4.2. The 20 densities are obtained between
t = 157 and t = 177 at equally spaced intervals. Observe the smooth cycling as the densities
visit the two supports of the projection of Figure 4.2. The difference in the appearance of
the density is due to the change in the number of bins used to produce the two graphs. The
same remark holds for the discrepancy between Figures 4.6 and 4.3
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Figure 4.6: Densities of a buffer of length v as it slides along a solution of (4.16). The
parameters are the same as those in Figure 4.3. The 20 densities are obtained between
t = 157 and t = 177 at equally spaced intervals. Observe the smooth cycling as the densities
visit the four supports of the projection of Figure 4.3.
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Figure 4.7: Time evolution of the average of an ensemble of buffers sliding along 10* solutions
of (4.16) generated by 10° constant initial functions distributed uniformiy over the interval
(0,1). The parameters are those of Figure 4.2.

113



Figure 4.8: Temporal evolution of the distribution of points z(t*) generated by 10° constant
initial functions distributed uniformly over the interval (0,1), for 20 values of t* at equally
spaced intervals between t = 157 and ¢ = 20r. The parameters are the same as in Figure
4.2. This figure illustrates the sampling procedure discussed in Section 4.2.2d. Observe the
cycle of period approximately r.
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Figure 4.9: Temporal evolution of the distribution of points z(t*) generated by 10' initial
functions distributed uniformly over the interval (0,1), for 20 values of t* equally spaced
between t = 157 and t = 207. Again, the parameters are those of Figure 4.2. This Figure
illustrates the sampling procedure discussed in Section 4.2.2.d.
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4.3 Analytic expression of the density for an inte-
grable D.D.E.

In this section we present a technique to derive the analytic expression for the density
constructed along the trajectory of a piecewise integrable dynamical system. We illustrate
the procedure for the paradigm D.D.E of Section 1.5.2 and with a set of coupled G.D.E’s
giving the rule of evolution of a simple neural network studied by Lewis et al. [42].

The equation we consider is

%’tf = —az{t)+ F(a(t - 1)) (4.19)
where .8
_JeifEell,b
F(6) = { 0 otherwise. (420)
The solution z(t) of equation (4.19) with nonlinearity (4.20) is:
| (2(to) = y)eot-t)+7 if 2(t —ty) € [1,b]
2(t - to) = { z(t — ty)e~2(t-t) otherwise. (421)

where v = ¢/a is the upper asymptote. As mentioned in Section 1.5.2 the solution is
composed of a sequence of piecewise exponential segments evolving towards an asymptote
which is either 4 or 0 depending on the value of the deluyed variable z(t — 7). To simplify
the following analysis it is useful to classify all solutions z(t) according to the sign of the
slope of the first piecewise exponential segment of the solution:

If the first extremum of z(t), ¢ > 0 is a maximum (i.e. the slope of the first segment is
positive), then we say that z(t) is an §* solution.

If the first extremum of z(t), ¢t > 0 is 2 minimum, then we say that z(t) is an §~
solution.

Unless otherwise specified it is assumed from now on that z(t) is an S* solution. The
analysis presented holds for S~ solutions, but the notation is greatly simplified by introducing
this classification of solutions. We explain at the end of the section how the results should
be modified in case z(¢) is S~.

Definitions

* Tk is the time at which z(t) crosses either one of the thresholds 1 or b for the k** time.
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* E, is the k' extremum of z(t). The time at which the k** extremum occurs is T} + 7.
* We label each piecewise exponential segment of z(t), zx(¢x), with k being the index of
the extremum ending the segment. For all k z,(¢) is defined on [T}_,, T}].

With the above definitions we can now rewrite the solution (4.21} in a more compact
form for all t € [Ty, T}],

zi(th) = Ey_je ot Te-1+1) 4 (ke mod 2)(1 — et~ (T +1)), (4.22)

Hence the solution z(t) defined for all ¢ > 0 can be written as the sum of the successive

z*(t)’s each defined on a finite time interval. Their supports (in time) are disjoint. We write

2(t) = g 2a(te). (4.23)

Differentiate equation (4.23):
dr X dz;
— = —-. 4.24
dt Z dt; ( )

Remember that at any point in time, only one z(t;) is defined, and therefore it will the
onlv contributor to the sum. Hence we can write
dz\~' & /z\!
— = — . 4.25
( dt ) ,§ (dtk> ( )

Inverting relation (4.22) to obtain t; € [T, + 7, t; + 7] explicitly, we get

1 zx — v(k mod 2)
== - . 4.26
e alog (Ek_l — v(k mod 2) Fhimr tr (4.26)
Differentiating equation (4.22) with respect to ¢, yields
dze(te) _ _ p (=0Tt |y (k mod 2)e~=-enrt7)) . (4.27)
dt
Substituting (4.26) into (4.27) we finally get
ii—z—:gz(—tk—) = —a(zk(tx) — 7(k mod 2)). (4.28)
k
Therefore, we can write (4.25)
dz(t)) - = 1 (
i U1 . 4.29)
( dt ,‘z=:l a(zk(tx) — v(k mod 2))
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In order to eliminate the cumbersome labeling of the segments of solutions z4(¢,) in
(4.29), we have to multiply the equation by a term such that the time domain {TD,} =
[Tk-1+7, Ti+7]) on which each t, is defined is mapped properly into a corresponding z-domain
of definition {XD;}. This can be done by noting that the time interval [T;_, + 7, T} + 7]
corresponds to the z-interval [min(E,_,, E;), max(E;.,, Ex)] if z(t) satisfies (4.19) with
(4.20). [Remember that E, > E;_, only if the k'* segment of solution is decreasing.]

Let us now define the set counting function

Lo (2) = { 1 ifz € [a,d] (4.30)

0 otherwise.

Using (4.30), we can rewrite (4.29) for any S* solution z(t):
(%) - S
dt ~ & a(z(t) — y(k mod 2))
| Ugscr(2)(k mod 2) + U, (@)1 - b mod 2)] (4:31)

We can now compute the density f(z) along the trajectory z(t). To do so, note that

/.4 f(z) dz = /B dt, (4.32)

where A4 is the z-interval visited by z(t) when ¢ belongs to B. Then, we have the following

expression for the density:

oy (%) (439)
“e\&E) '
along with the normalization condition

/A f(z)dz = 1. (4.34)

As a result, using (4.33) and (4.31), we obtain the analytic expression for the density along
a trajectory of the delay differential equation (4.19) with (4.20), from E; to E,n

N
f(z) =Y —a(z — 9(k mod 2))~'I, [I[Ek_“g,‘](z)k mod 2 + (1 — k mod 2)1[5.,1.;*_,](2:)]

k=1
(4.35)

where Ty, n — T, = P and I is the normalization factor

T — Ti
Ik=( k Pk 1).
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Note that (4.35) is valid whether the segment of solution is the period or not. If the
solution is not perindic, and the segment chosen for the analysis contains N extrema, the
normalization condition (4.34) will not be satisfied but (4.35) will nevertheless give a quali-
tative idea of the form of the density.

Were the initial condition chosen so that z(t) were §~ (1.e. the slope of the first segment
being negative) the above expression would still be valid providing k& mod 2 were replaced
by (1 - k mod 2).

Numerically f(z) can be computed in a straightforward way if one knows the sequence of

crossing times, because the modulo operator can be replaced by conditional if statements.
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"Analytic" solution:

Figure 4.10: Analytic solution of equation (2.3) for r =1, 6, = 1, 6; = 2, a = 0.6, and
¢ = 2.4. The density was obtained from equation (4.35).

4.3.1 Application to a neural network.

It should be clear that equation (4.35) is a valid expression for the density along a trajectory
no matter what the dynamical system generating z(t). We explain here how formula (4.35)
can be generalized for an N-dimensional set of O.D.E’s describing the dynamics of a simple
neural network consisting of N interacting particles, examined by Lewis and Glass as a

paradigm for a class of complex biological networks [42].
The set of O.D.E’s is

dz: N .
= = —ut L w,Gi(z,)—p, =1, N, (4.36)
7

=1
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Analytic density:

"Analytic" solutaion:

Figure 4.11: Analytic solution of equation (2.3) for r = 1, 6, =1, 6, =2, a = 1, and
¢ = 4. The density was obtained from equation (4.35).
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where G is a function describing the response of each element to an input, p, is a parameter
interpreted as the response threshold, and w,, gives the weight of the input of element j to
element i. Lewis and Glass [42] assumed that there is no self input (i.e. w,, =0). Usually,
G is defined as a nonlinear monotonically increasing function. Lewis and Glass considered

G to be the limit of infinite slope of the sigmoidal function, in which the functions G, are

piecewise constant with a single discentinuity at z = 0, so that

__Joa ifz,<0
GJ(:BJ) == { bJ if z, >0 (4.37)
with the condition N
Ew., G,(z,) # . i=1,---,N. (4.38)
r=1

System (4.36) can be integrated analytically, and the solution is piecewise exponential:
2(8) = 7' + (2,(0) = 1) (4:39)
where the constant 4’ (the asymptote) is given by

v .
7,={ Sy a,—p, ifz, <0 j=pg 1<p<g<N. (4.40)

q:pwu bJ 4 if T, Z 0’

Labeling the times at which each z, crosses 0 carefully, it is straightforward to construct
the analytic density along an N dimensional trajectory for this system [42]. The use of such

a density facilitates a simple classification of the network’s dynamics.

4.4 Summary.

The purpose of this chapter is to illustrate the insight that can be gained by studying the
statistical evolution of D.D.E’s rather than by simply investigating single solution behavior.
In Section 4.1 we review some of the techniques used to characterize the probabilistic
properties of finite dimensional dynamical systems.
Section 4.2 is a numerical investigation of the dynamics of densities constructed along
the trajectories of a delay differential equation which is the singular perturbation of a well

studied one dimensional map known as the “hat map”. The behavior of solutions generated
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by ensembles of initial functions is discussed along with the effect of sampling a “gas” of
delay equations.

In Sectior 4.3, we present a technique to obtain the analytic expression for the density
along the trajectory of an integrable D.D.E. The technique is also applied to a simple neural

network framed as an N-dimensional set of O.D.E’s.

e
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Chapter 5

PROBABILISTIC DESCRIPTION
OF DELAYED FEEDBACK

SYSTEMS.

As we pointed out in the previous chapter, from a modeling perspective it may be crucial to
understand the statistical behavior of deterministic systems. Modern statistical mechanics
is based on this apparently contradictory observation. This chapter is motivated by the
absence of a theoretical framework with which to treat delayed dynamics statistically.

We present a way to statistically investigate the dynamics of delay differential equations
extending techniques introduced by E. Hopf [26] to study the statistics of turbulent flows
generated by the Navier-Stokes equation. The approach is illustrated with a class of delay
differential equations (with discrete delay) introduced in Section 1.5.

The centri. .dea is based on the observation that these equations can be viewed as
functional operators acting the elements of the function space C([0,1]) (defined in Chapter
1) since at time ¢ > 0, the D.D.E has transformed an initial function defined everywhere on
[-1,0] into a function defined everywhere on [t — 1, ¢].

As the formalism used throughout this chapter is that of probability theory in function
spaces, there is a strong analogy between the presentation here, the quantum theory of fields
(QFT), and the functional description of fluid mechanics. In particular perturbation theory,
and the graphical methods used in QFT and in the study of stochastic wave propagation are
applicable to the study of delay differential equations.
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In this chapter, the generating functional Z for n-point correlation functions is first
introduced in Section 5.1. The quantity Z allows one to directly obtain all the n-point
correlation functions via functional differentiation.

The application of this probabilistic concept to the statistical study of D.D.E’s is then
developed in Section 5.2. A functional differential equation for Z is obtained from the
original delay equation.

The hierarchy equations for the first and second order moments are obtained explicitly
in Section 5.3 and the problem of obtaining a moment of order k is reduced to solving
successive hyperbolic partial differential equations and ordinary differential equations. This
simplification of the problem is possible when the generating functional can be expanded in
a power series, each term of which can then be represented by a Feynman graph.

In Section 5.4 the connection with the quantum theory of fields is established. The
transition amplitudes calculated with the Feynman rules used in particle physics are obtained
from a functional, which is a special case of Z when the dynamics are given by the field

equations obtained from the principle of least action.

5.1 Introductory definitions.

The core of this chapter is the presentation of a formalism with which to study the behavior
of a D.D.E from a statistical point of view. The spirit of this approach is that of classical
statistical mechanics in which, since the work of Gibbs and Boltzmann, physicists have grown
accustomed to dealing with densities describing the thermodynamic states of a given system.
We are interested here in examining the evolution of a density of functions.

This evolution is described by a family of probability measures defined on a function
space, and it is shown how this family of measures can be described by a functional differential
equation. We start by introducing some concepts from measure theory and prebability

theory.
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5.1.1 o-algebras, measures and measure-spaces.

An important idea used in the following sections is that a density of functions can be de-
scribed by a measure defined on a function space. We start with the definition of a o-algebra.
Definition 5.1.1: A collection A of subsets of a set X is called a or-algebra if:

() When A € A then X\A4 € 4;

(b) Given a sequence (finite or not) {A;} of subsets of X, A, € A, then Uy A; € 4,

(c) X e A.
With this, we now define a measure defined on a o-algebra.
Definition 5.1.2: A real valued function u defined on a o-algebra is called a measure if:

(a)u(@) =0

(b) u(A) > 0for all A€ A; and

(€) (Ui Ax) = Tk u(Ax) if {Ax} is a finite or infinite sequence of pairwise disjoint

subsets of A, that is, A,NA4; =0 for ¢ # j.

Finally, we have the concept of a measure space.
Definition 5.1.3: If A is a o-algebra of subsets of X and if 4 is a measure on A then, the
triple (X, A, p) is called 2 measure space. The sets belonging to A are called measurable
sets because, for them, the measure is defined.

A simple example of a measure space is the real line X = R in which the o-algebra
is a partition of mutually disjoint subsets of X. If the measure u is defined by ascribing a
non-negative number to each element of A, then the measure describes a piecewise constant
distribution of points on the real line, each constant segment corresponding to an element
of A. This example illustrates the fact that a measure describes a density. The same is true
when the measure space is infinite dimensional. The Wiener measure is an example of such
a measure. It has been discussed in detail in the context of stochastic wave propagation
(74, 43], and used to study a class of partial differential equations encountered in some cell

population dynamics problems [40].
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5.1.2 Generating functions and the functional Z.

In this section, we introduce the basic tool used to derive the P.D.E's for the moments of
the distribution of initial functions: the generating functional. The origin of the generating
functional is most easily understood by realizing that it is the infinite dimensional analogue

of the generating function.
In probability theory, the moments of all order of a given probability distribution P; can

be obtained from a so-called generating function. If we have a random vector (£,,---,¢,)

and a vector (v,,-++,v,), the characteristic function is (with i = —1)

E (el(vlfl +'-'+l1n£u)) - / e'("l€l+"’+”nfn) Pe(dw),
AY

= /;e'{v'e} dP(,

= (). (5.1)
Differentiation of ¢(v) yields
%f _=iEQ), (5.2)
and, in general,
g:f =i B) (5.3)

In other words, differentiation of the generating function ¢ yields all the moments of the
distribution P, when the vectors { are finite dimensional.

We now consider the case when { is a function f defined on an interval A (finite or
not). Let C be a function space with the topology given by the suppremum norm defined in
Definition 1.4. (1.e. the distance between two functions is the L' norm of their difference).
p is a probability measure (i.e. it is properly normalized) defined on this space and f(r) is
an element of C. If f is defined for all » € A, the characteristic functional Z of the measure
p [or the generating functional for the correlation functions associated with the distribution

of functions f(r)] is defined by

2] = [exp[i [ J)f(r) ar| duih)
<exp [i /A J(r)f(r) .h]). (5.4)
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J(r) is called the source of the function f(r). [This terminology will become transparent
when the formalism is applied to the theory of quantum fields in Section 5.3].

The set of all possible functions f is known as a random field of functions. The situation
here is that a first realization of the process will yield a2 function f;, a second realization
will yield a another function f;, etc... Throughout this chapter, the term field will be used,

unless otherwise specified, to denote a set of functions. It is not a field in the physical sense,

which is just a single function.
Functionally differentiating Z with respect to the source J(r) gives:

%—:Iz—% = <6J(£) exp[/ J(r)f(r)dr]>
:<f(£)exp [i /A J(r)f(r)dr] > (5.5)

[For a precise definition of the functional (or variational) derivative see Appendix C.] In

(taw) -~ (i) 7~
(#e)- fe)exp [i [ Ir)s(r) ar] ). (5)

Thus, we have the following important result:
1 " Z(J|
i 8J(6) - -8J(£n)

In other words, functional differentiation of Z with respect to the sources yields the n-point

general, we have

(5.7)

(f(&1) - f(&n)) =

J(§)=0

correlation functions

(f(€1) -~ f(€n))

giving the complete statistical description of the distribution of functions in the space C of
which f is a fixed but arbitrary element. Remember that this distribution of functions is
also described by the probability measure u defined on C. Hence, Z is sometimes called the
characteristic functional of the measure p.

We can generalize these ideas to the case where Z = Z, is time varying, describing a

family of measures u,. In particular, Z; can describe the evolution of a density of functions
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changing under the action of a prescribed dynamical system. For example, a D.D.E will
transform a density of initial functions with measure g, into another density of functions
with measure y, for t;, > 0. The functional differential equation derived in the following
section will be an evolution equation for the characteristic functional of the family of measures
generated by the action of a D.D.E on an initial density of functions.

In conclusion, we define the characteristic functional of a two variable density. The
associated measure is defined on a “two-dimensional” function space =, the elements of which
are pairs of functions (fi(r;), f2(r2)). If these functions are defined for (r,r2) € A, x A,

the characteristic functional is defined by

2|, ) = <exP [i /Al Ji(r1) fi(ry)dry + /A7 Jz(fz)fz("z)d"2]> (5.8)

where the brackets indicate integration with respect to the probability measure of the random
field (fi(r1), f2(r2)). This measure is called a joint probability measure [43]. We can now
apply the above definitions to the study of delay differential equations.

5.2 Characteristic Functionals and D.D.E’s.

Here, we restrict our attention to equations of the form

dz
5 = ~oz(t) + F(z(t - 1)), (5.9)

with the initial function
z(t) =p(t) if t € [—1,0].

Some care should be taken to choose a proper notation because the formalism gets somewhat

involved! From now on we consider equation (5.9) rewritten as

u(s) =v(s) for s € [0,1],
(5.10)
duls)  — _aqu(s)+ F(v(s-1)) fors e (1,2].

By S;, we denote the corresponding semidynamical system
Se = €([0,1]) — C([0,1])

129



e

given by
Sv(z) = uy(z + t), (5.11)
where u,(s) denotes the solution of equation (5.10) corresponding to the initial function v.
We make use of the term semidynamical system, because a D.D.E is noninvertible, i.e. it
cannot be run unambiguously forward and backwards in time. We note here that all the
dynamical laws of physics are invertible. (These laws do not include Schrédinger’s equation
which is analogous to a Fokker-Planck equation, and therefore is not a dynamical equation
per se [68]).
From (5.10) and (5.11), we have the following relations
:9@55"’(’) = { i(:ut(i)-l- £) + Fluy(z+t — 1)) r o e 81 c,i]]’. (8.12)
Thus, we consider a function f(z) [which is a segment of a solution of 5.10] defined on an
interval I, = [t,t + 1], as t increases (continuously). The above definition states that this f
is the initial condition v when the argument (z +t) is less than 1, and the solution u, of the
equation otherwise.
We nrext introduce the characteristic functional Z, of a Borel probability measure u,
defined on the space of initial functions. This space is the Banach space C([0,1]), again
with the topology given by the suppremum norm (see the notation above Definition 1.2 for

details). We define
2y, J2] = /cexp [i/ol Ji(z)Sw(z) d:l:+i/0l J2(z)v(z) dz] dpy(v). (5.13)

The source functions J; and J, are elements of C({0,1]).
Before deriving the functional differential equation satisfied by 2, it is useful to define
the family of measures y, referred to earlier. If u, is the probability measure on the space

of initial functions, and 4 is a subspace of ([0, 1]), then
() = pol(S7(4)). (5.14)

In other words, the probability that a randomly chosen function belongs to A at time t equals
the probubility that the counterimage of that function (under the action of S;) belonged io
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the counterimage of the set A. This conservation of probability equation defines the family
of measures characterized by the solutions Z, of the Hopf functional differential equation.
As mentioned, this type of equation has been used in the quantum theory of fields and in
the study of stochastic partial differential equation [69, 74, 78]. Work by Capinski [7) seemns
to be the first attempt to use this technique to investigate the dynamics of delay differential

equation.

5.2.1 A functional differential equation for Z.

If f(z) and g(z) are two functions defined on an interval I, we define

{f,9) = [ fl2)g(a) de.
To simplify the notation we write

T(Jy, Jyjv] = (S UaEat) (5.15)

T is used from now on to denote the function of J;,J; and v defined in (5.15) We begin with

the following relations

s = (1 [ n@see &)
= (1 [ nieme) &)
F (T [ T(O-aule) + Flué - D) d) (5.16)
5j§2) = "<T/01 J2(€)v(€) d€>a (5.17)
52:2) = i <T/UI JT(€)Sev(€) d§> , (5.18)

where it is understood that

(9)-1) o

Time differentiation of the characteristic functional Z, yields

%‘-f—' - <T/0l J,(c)?s—é—"z(—”) dz:>
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e

= (1 T I(e)(z +t)de+ T / ’-‘ Ji(2)uy(z + t) dz)

1
L (r /] Ji(2)F(uy(z +t — 1)) dz> (5.19)
-t
Therefore, from (5.16) — (5.18), we obtain a functional differential equation for the char-

acteristic functional

02, 1- §Z, ! 62,
ot /o Ni(=)g; (6],(z+t)) "/. ,J‘(”)u,(z+t)
+<r / J,(z)F(u.,(z+t-1))dx>. (5.20)
1-t
Equation (5.20) contains all the statistical informetion describing the evolution of a

density of initial functions under the action of the delay differential equation (5.12). It is

not possible to go any further without restricting F'.
For illustrative purposes, assume that the feedback F function in the D.D.E is a polyno-

mial expression in the delayed variable

F(z(t-1)) = éakz(t -r)k. (5.21)

Using (5.21), equation (5.20) becomes

02‘ - 1-¢ 52, 1 Z
/ "‘(‘”)az (6J1(2+t)) "‘f, N(=)g7, (z+t)
52
-(1-k) ¢ ~n

+kz_j i a,,/ @ (5.02)
We illustrate this analysis with a linear delay differential equation.
Example 5.1. Consider the linear D.D.E,

:—: = —au(s)+Pu(s-1), forse(1,2] (5.23)

with initial condition v as in (5.10). The corresponding semidynamical system is defined by
(5.11). For this equation, the definition (5.13) for the characteristic functional holds and the
relations (5.16) to (5.18) are valid. The Hopf differential equation becomes

% _ /01 GJ,(z)at (6.],:2 )) a/;‘ J,(z)m%T)
+/ll_ Jl(z)st(:ftt =) dz. e (5.24)
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Example 5.2. A continuous analogue of the quadratic map
Tnsl = rzn(l - zn) (5.25)

is the difference equation

e% = —au(s) + ru(s — 1)(1 — u(s — 1)), (5.26)

where again the initial conditions, and the corresponding semidynamical system are defined
as in (5.11). Note that (5.26) is the singular perturbation of the quadratic map (5.25) as
defined in Section 1.5.1. The characteristic functional is defined by (5.13), and the preceding
analysis holds. The functional differential equation corresponding to (5.26) is

82, 1- §2, 52,
2 /0 > (6J1(2+t)) °-/ IO G

62, o 52, i

+r/,_,"'(z)6.lg(z+t— 0 dz_r./:_chll(x)éJf(z-l»t— ) dz. ¢ (5.27)

Finding a general solution for these equations is not possible at present. A correct method

of solution should make use of integration with respect to measures defined-on function
spaces. At present, the theory of such integrals does not allow their consistent utilization
in solving functional differential equations. These observations presently limit the role to be
played by Hopf functional equations in the study of infinite dimensional dynamical systems.
Nevertheless, relatively mild assumptions about their solutions allow one to gain significant

insight into their dynamics.

5.2.2 Moment functions of y,:

The statistical properties of the random field of functions v and u, are described by the
infinity of moments of the measure yu,. It is possible to write the moment evolution equations
(and, in some cases, to solve them) in the spirit of the preceding analysis. For fixed ¢, the
average value of the function defined on I, = [t,t + 1] (i.e. v on [¢,1] and u, on (1,1 + ¢]),

which is just the first order moment of the measure y,, is
M)(t,z) = /v(z +t)dpo(v) forz € [0,1-t¢, (5.28)
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Ml(t,z) = /u,,(z +t)dpy(v) forz e (1-t¢,1]. (5.29)

These two equations can be written as one relation:
Mi(t;2) = [ulz +t) du(v) forz € [0,1]. (5.30)

The definition of the second order moment (or covariance function) M?(t,z,y) is, with the

same notation,

M3(t,z,y) = /v(a: + t)v(y +t) dpy(v) = M2 (t,z,y) forz,y€[0,1—¢]x[0,1-1¢],
Mi(t,z,y) = /u,,(z + t)v(y + t) dpo(v) = M2 (t,z,y) for z,y € (1 -¢,1] x [0,1-¢],
M3(t,z,y) = /v(z + thuy(y +t) dpo(v) = M2, (t,z,y) for z,y€ (0,1 —1¢] x (1-¢,1],

M(t,z,y) = /u.,(z + t)u,(y + ) duo(v) = M2 (t,z,y) for z,y€ (1-¢,1] x(1-¢,1].

The subscripts of the various components of M? refer to the segments of the solution whose
correlation is given by the particular component. For example, MZ, describes the correla-
tion between u and v segments of the solution. This notation is made clearer by Figure 5.1.
Remember that the initial function is defined on an interval [0,1] so that to complete the
description of the statistical dependence of the solution u on the initial function, it is nec-
essary to introduce the functions M2 . Of course, M. is the first order moment of measure
oy M2 is the second order moment of u, etc. The relatively mild condition imposed on the
solution of equation (5.22) is that it be an analytic functional with respect to J; and J,. [In
other words, we require that Z, can be expanded in a “power series about the functions J,
J,"].

The expression for the series expansion of a functional can be understood with the fol-

lowing argument. Let
F(yh"'ayk) = F(y)

be a function of k variables. The power series expansion of this function is

F)=3 % -+ % oifalinnrin)onse - 4a), (5.31)

n=0,;=0 th=0 "
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solution

(=

Figure 5.1: A discrete delay D.D.E transforms a function defined on [0,1] into a function
defined on I,. Illustration of the “o”, “v” and “u” segments of the solution.

where
" F(y)

£, =
Oy -+ - Oyn

y=u
Going over to the case of infinitely many variables,

i — z,

wi=1,-,k) — y(2)

Y — / dz (5.32)

we obtain the corresponding series expansion of a functional

Fly] = 2/@, ---dz,.;lié',.(zl,---,z")y(z,)--oy(z,.), (5.33)
where 5 Fly]
_ "Fly

= e v |, (634

F[y] is called the generating functional of the functions £,. Therefore, the expansion of the

characteristic functional is

2|, J2] = if:/.../é‘m(t,zl,...,zp) (fl J,(z,)dz,) ( ﬁ Jg(z,)dz,) (5.35)

p=0qg=0 )=q+1
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The kernels £,, in the expansion are proportional to the moment functions of the measure

;. From equations (5.17), (5.18) and (5.34) they are given by

1 &2, P

£W = ;6_——']" 6Jp-q "i (u(zl) [ u(zq)v(zq+,) ce e v(mp)) (5-36)
* 1 2 :
1P

= Mio-a(En20) (537)

Therefore, the Hopf equation (5.22) is equivalent to an infinite number of partial differential
equations for the moments. [This observation is the infinite dimensional generalization of the
well known expansion of a distribution function in terms of the corresponding probability
moments (or their Legendre transforms, the cumulants)].

Consider the first and second order moments of the measure yu,. If we substitute the
definitions (5.36)-(5.37) along with the expansion (5.35) into equation (5.22), we obtain a
P.D.E for the moment M](t,z):

0 11 0 1

atMv(t,z:) = 02M" (tyz) for z € [0,1-¢],

%Md(t,z) = —aM(t,z)+ ) axMhi(z+t —1,.5,z+t-1)
k=1

forz € (1-t,1], (5.38)

the n arguments of M", indicating that this quantity is the k-point autocorrelation function
of the initial function distribution described by p,. What we have done in (5.38) is simply
rewrite the Hopf equation (5.22) for the first order moments. It is important to realize
that the Hopf equation is equivalent to an infinity of moment equations. The equation of
evolution of the k** moment is given by substituting the definition of the moment under
consideration into (5.22) and then use formulae (5.35) and (5.37) to the appropriate order.

N.B. To illustrate the notation,

ML (tw,2,y,2) = M, / v(w)v(e)v(y)v(z + t) dpo.
for w,z,y€ (0,1 -tjand z€ (1 —¢,1]. o

To continue the example, the second order moment function M?(t,z) are given by the four
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equations

ot

0
ot

0 2p2
anu(t’z’y)

ot

The functions M2, and M2

2 M2 (to) =

—M2v(t,z,y) =

S Mz, (t2ry) =

8 2 a 2
Mvv(t’ z, y) + ay Mvv(t?z’ y)

Oz
for (z,y) € [0,1 —¢) x [0,1 — ¢t),
0

b__sz(t’z’y) aMuv(t z,y)+

+Zak bz +t—=1,45D 24t —1,y)
for (z,y) € (1-¢] x [0,1 -],

9 M2 Lt T, y) — aM? (t,z,y) +

5_
+Zak koen(tz,y+t— 1,50y 4t - 1)
for (z,y) € [0,1 — ¢} x (1 — ¢, 1],
—2aM (t,z,y) +
+ Zak{ MA bzt =140 2 48— 1,y) +
+M otz y+t—1,0N g4t -1)},
for (z,y) € (1 -¢,1] x (1 —¢,1].

are given by

a
8t n(t z,y) = _aMgu +
+Z akM:k(zvy +t—-1, ""-ay +t- l)v
0 .. 3
EM (tz,y,2) = —aM, (¢ z,y,2)+

+ZakM (z,y,z+t—1,.%,z+t-1).
k=3

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

The functions whose label does not contain u are given moments of the initial measure.

Therefore the solution of each equation gives us the initial condition for the next one.

A pattern clearly emerges from the preceding analysis: The moment M?(¢,z,,- - -

’ z,,) =

M?"(t,x) is given by 2 partial differential equations of the same form as the ones given above

™
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([0,1-t) or (1—t¢,1]). The first of these equations (when all the z;’s belong to [0,1 — ¢t]) is

%M.’,’p(t,x) = ?::‘ %M";p(t,X). (5.45)
We call the equations which give the moments of the form M, ,_,, mixed equations because
they yield functions which correlate mixed u and v segments of the solution. For the moment
of order p, there are (2 — 2) mixed equations and 2 pure equations. The pure equations
give M), and M’,, the p-point correlation functions of the v and u segments of the solution.

Ifz, € [0,1-¢tjforj=1,.--,landz, € (1-¢t,1]for j=,:--,p, then when the forcing
term F of equation (5.10) is the polynomial (5.21), the generic form of the mixed equation

for M, (p-1) is

8 L 8

BIM.':' ulp=t) = ; E:Mfc u(P“)(t’x) —a(p-1) M.',,r u(l’-‘)(t’x) +
n-1
Y o, (MOt %) + MERL, (t,%)} - (5.46)
Jj=o0

Once again, this equation is one representative of the (2° — 2) mixed equations to be solved
to obtain the moment of order p. Deriving these equations is tedious, but the task is greatly
simplified by the “similarity” existing between the systems of equations for moments of
different orders. In fact, it is possible to derive the equation for the p'* moment graphically,
with the introduction of Feynman diagrams used to represent each term in a moment
of given order. Before proceeding, we derive the partial differential equations analogous to
(5.38) and (5.39)-(5.42) in the case of the linear D.D.E considered in Example 5.1.
Example 4.3: When the D.D.E is

dz
i ~az(t) + f=(t - 1), (5.47)

the first order moment equations are given by

OM!(t,z)  OMl(t,z)

) - P, . (5.48)
%‘t_"_’_) = —aM\(t,z)+ BM\(t,z). (5.49)
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The four equations of evolution of the second order moments are
aMl?v(t’z?y) - ava(tazv y) + 0M3,,(t,z,y)

ot - Oz Oy ’ (5.50)
2 2
aM',..gtt,z,y) _ aM‘,.,é(’i,z,y) — aM2,(t,z,y) + BMZ(t,2,y), (5.51)
2 2
OMe,(ti2,y) _ OME(tzy) aM?,(t,2,y) + BM2,(¢,2,y), (5.52)
ot By .
2
aMuuétt, z’y) = —20M3u(t’ T, y) + ﬂ [Mozu(t’ T, y) + M:o(t,z,y)] R (5.53)

To solve these equations, one needs to solve first for the moments M2, and M2, which satisfy

OM2 (t,z,y)

oat = —aMfo(t,t,!/HﬂMfo(t,z,y), (5.54)
2
%%‘;’i”—) = —aMi(t,z,y)+BM2(Lz2,y). (5.55)

Remember that M2 and M2 are given, hence the moments can be obtained by solving
successive ordinary or hyperbolic partial differential equations.
Before we proceed, it is interesting to note that these equations can be obtained from a

graphical analysis.

5.3 Perturbation theory and the diagram technique.

In this section, a technique to graphically represent a functional expansion is explained and
used to simplify the derivation of moment equations. Recall that the generating functional
can be represented by a series expansion. Each term in the series is proportional to a
probability moment (the exact proportionality factor is given by equation (5.37)). Each one
of these noments is a correlation function, as is illustrated by the definitions of the second
order moment, and each moment can in turn be represented by a unique Feynman-like
graph. The exact form of the equation for this moment is then determined by the number of
vertices and loops in the diagram. This graphical method of investigation has many features
in common with the methods of quantum field theory. In Section 5.4, the connection between
the formalism presented here and quantum field theory is explained. We first investigate the
application of diagrams to the study of wave propagation in strongly fluctuating continuous

media.

139



B

5.3.1 Diagrams in stochastic wave analysis.

The diagram technique is presented here in the context of wave analysis in a continuous
medium [74). More precisely, we consider the propagation of a harmonic scalar wave in an
unbounded medium characterized for illustrative purposes by a Gaussian random field. The

function characterizing this field (the stochastic Green’s function) satisfies
ViG(r,x,) + k*[1 + £(r, p)|G(r, 1) = 8(r, 1), (5.56)

where ¢ is called the stochastic forcing term and g is some control parameter. The
Laplacian operates on the variable r, and the field is therefore generated by a function
at point ry. Writing equation (5.56) as an integral equation and applying the method of

successive approximations, we obtain,

G(r,ry;p) = Go(r,yry) - kz/Go(l',l'x)f(l‘l)GO(l‘hl'o) dry
+(—k2)2/Go(r,rl)£(r1 )Go(l‘l,l'g)f(l'z)ao(l'g, l'u) dl'] dl'z

+(k)" [ Golr,r1)e(r1)Galr1, F2)é(r2) Gl )
&(r3)Go(ra,ry) dr drydrs + - -, (5.57)

where Gy(r, ry) satisfies the Helmholtz equation with a point source
V2Go(r, ro) + k3Go(r,re) = (r,x0) (5.58)

(i.e. it is a Green's function for the free field problem). As is well known, the solution of

this equation is
elkoll‘-l'ol

Go(ryry) = (5.59)

amfr—ro |
In order to determine the stochastic Green’s function Gy(r,ry; #) we must take the average
of the integral equation (5.57). The first term in relation (5.57) (i.e. the Green’s function for
the free field problem) is not affected by the averaging procedure because it is by definition
unrelated to any stochastic perturbations (the interest of this function is precisely that it
represents the response of the system when the source is point-like in the purely deterministic

case; the problem is then solved as a perturbation around this known solution). Since the
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function ¢(r,u) is Gaussian we have the identities
<§(rq) - €(ran-1 >=0

< §(r1) - b(rem) >= Z Kf(r"rJ) o Ke(rp,ry), (5.60)
and the sum is taken over all possible partitions of 2n points into couples. We use these
identities to rewrite the average of equation (5.57). Using the above identities we obtain the

following expression

< G(ryryip) > = Gu(r,r,) +
+k()'/G(,(r,r,)Gu(h,Pz)Gu(rzyl‘o)Ke(l'nrz) +

+k3/G0(l‘, r, )Go(l'l,rz)G()(l'z,l'a)Gu(r:h r;)Gu(rs, ) x
X [Ke(ri,r2) Ke(ra,ry) + Ke(ri,r3)Ke(rar,) +
+Ke(ry,r) Ke(ra,r3)ldry - dry + - - (5.61)

The second term of (5.61) is the average of the third term in (5.57). The first term of (5.57)
does not appear in (5.61); it vanishes according to the two identities given before (5.61).
The structure of relation (5.61)can be easily understood with the introduction of Feyn-
man Diagrams. They were first introduced in quantum electrodynamics, but have proven
useful in many other fields over the past 30 years. To represent the series (5.61) we express

the functions G, by a graph:

x LV
Gy(r,,r,) : ' Tr\

J
Furthermore, the coefficients k2 are represented by dots (.) placed at those points of the

graphs to which correspond the coefficients pu(r,). These dots are the vertices of the graph.
The points for which the functions {(r,) and {(r,) are contained under a common averaging

symbol are connected with a dotted line:

koKe(ryom): X% = = = - — - - x

I, r
In addition, integration is performed with respect to the coordinates of intrinsic vertices of
the graph. The number of all such vertices in a graph is called the order of the graph. To

illustrate these definitions, the first term of series 4 is represented by graph (1)
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and the second term is expressed in graph (2)

o - .
x —X
r I n r

The third term in the series is represented by gfaph (3)

% . . : — X % - . . . X
I I, r Ig nn I3 1,
The advantage of representing the mean field < G(r,ry; ) > in the form of & sum of

graphs lies not only in the clarity of the presentation, but also in the observation that it
is possible to transform the series using the topological features of the different graphs. In
addition, introducing an appropriate classification of the graphs it is possible to express the
sum of the perturbation series (5.61) as the sum of a certain subseries.

These ideas are far reaching and their applications to fluid dynamical problems lies be-
yond the scope of this work. Nevertheless, they are applicable to the derivation of the mo-
ment equations presented above, and a graphical description of expansion (5.35) reduces the

algebraic work and helps clarify the structure underlying the form of the moment equations.

5.3.2 Feynman graphs and the moment equations.

The kernels in the functional expansion (5.35) are now expressed as Feynman-like graphs,
and some topological properties of these graphs are used to write down the equation for the
corresponding moment.

Consider the moment M%,_, ,. The diagram to represent it is made up of semicircles
(loops) and lines. Loops can both be plain or dotted. The dotted part of the diagram
represents the v contribution to the moment. The plain part of the diagram represents the
u contribution to the moment. Diagrams corresponding to moments which are pure in the

sense of the previous sections (i.c. moments of the form M, or M%) contain plain loops
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Figure 5.2: From top to bottom, and left to right, the graphs for the moments
M::, Msg, A{l?u’ Msguz and Ml?‘u""

v

only, or dotted loops only. Every diagram is made up of loops connected to a plain horizontal
line (the base line). The points at which loops intersect this plain line are called the vertices
of the graph. The number of vertices in a graph equals the order of the moment it represents.
When the order of the moment is odd, the topology of the graphs is modified in order to
accommodate an odd number of intersections between a number of semicircular loops and a
straight line, which is an impossible constraint. The point of intersection of a plain (dotted)
loop with the base line is called a plain (dotted) apex. The number of plain (dotted) vertices
in a graph equals the exponent of u (v) in the subscript of the moment corresponding to the

graph. These definitions are illustrated in Figure 5.2.

Deriving the moment equations.

Suppose the delay equation under consideration has a polynomial forcing term given by
(5.21). We enumerate the following rules, to write down the equations for a moment repre-

sented as a diagram.
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1. The number k — [ of dotted vertices in the diagrams equals the number of partial
differential terms on the right hand side of the moment equations (i.e. the first sum on the

right hand side of (5.46)).
2. The number ({) of plain vertices equals the coefficient of terms of the form

_aM:(h-l)ul (t, X,

(i.e. the second term on the right hand side of (5.46)).
3. When k and ! are determined in a graph, the third term in the equation of evolution
of the corresponding moment is
n-1

k k
3 a, (MU, tx) + MG, (%))

=0
Therefore, to write down the partial differential evolution equation for a given moment, the
first step is to draw the Feynman diagram. The second step is to analyze the diagram with
the three rules enumerated above. It is clear that the diagrams presented here do not possess
the topological properties allowing a significant simplification of (5.35) via straightforward
graphical manipulation. The purpose of introducing diagrams to study delayed dynamics
is to illustrate the potential relevance of this powerful technique in dynamical systems the-
ory. They have proven to be extremely useful for the statistical investigation of P.D.E’s in
physics and it can be expected that their use to investigate delayed dynamics will be just as

rewarding.

5.4 Connection with the quantum theory of fields.

There is a strong analogy between the formalism presented here and the theory of quantum
fields. We now explore this connection. The starting point is the observation that the char-
acteristic, or generating, functional plays a fundamental role in the formulation of quantum
field theory. More precisely, the path integrals used to quantize field theory are generating

Junctionals.
Before proceeding, it is necessary to clarify the nomenclature. In this section, unlike in

the preceding ones, a field is understood in the physical sense, i.c. it is just a function (or
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alternately, a path or a trajectory). In the statistical study of D.D.E's, Z[j] is the generating
functional for the n-point correlation functions of a distribution in a Banach space. The
evolution of this distribution of functions (the “random field” in the mathematics sense) is
prescribed by the Hopf equation. Analogously, in quantum field theory, the concept of a
generating functional is used to study the statistics of a distribution of functions (a physicist
would say a “distribution of fields”).

The problems of interest in quantum field theory are mainly scattering processes. The
generic situation is the following. A particle is observed at (g,,¢,). To calculate a scattering
cross section, it is necessary to know with what probability it will be observed at (g;,¢;). In
other words it it important to calculate the transition probability amplitude from (q,,t,) to
(gssts). We now show how transition amplitudes are related to generating functionals. The

presentation follows closely that given in Ryder [69)].

5.4.1 Path integral formulation of quantum mechanics.

The concept of a propagator K(qsts;qt,) is of central importance here. Given a wave

function ¥(q,,t,) at time t,, the propagator X gives the corresponding wave function at time

ty:
‘I’(Q.ﬁt!) = /’C(thﬁ%t-)‘l’(q"t.)dq., (562)

where for simplicity, only the spatial dimension is considered. K(qy,t/;q.,¢,) is the probability
amplitude for a transition from (g,,¢,) to (gs,ts). Given that the particle is observed at (g,,¢,),
the probability that it is at g, at time ¢, is

P(gpitsi g t) = 1K(gr s g0 b)) (5.63)

In reality, the propagator is just < gsts|gt, >. To se= this, note that the state vector |¥t >
in the Schrodinger picture is related to that in the Heisenberg picture (|¥ >4) by

Wt >s=e " H/AW >y . (5.64)

Define the vector
gt >=eHthg > . (5.65)
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We then have
V(g t) =< gt|¥ >4 . (5.66)

Completeness of states enables us to write

< gty|¥ >= / <grtsrlgit, > dg, (5.67)

which using (5.66) is
V(g ty) = / < qstslat. > ¥(gt,) dg. (5.68)

Therefore, on comparison with (5.62) we see that
< qstslat, >= K(gs,tsiquti)- (5.69)
If the interval [¢,,¢/] is split into (n + 1) equal pieces of length 7, then
< gstrlat >=

/' . '/dql o -dq,. < q,t,lq,.t,, >< q,.t,.|q,.-1t,._1 D> L q.tllq.t. > . (5.70)
Note that the integral is taken over all possible “trajectories” (they are not trajectories in the
normal sense since each segment (q,¢,;q,-1t,—;) can be subdivided into smaller intervals and
8o there are no derivatives: they are Markov chains). Now, over a segment of one possible
path, it is possible to calculate the propagator
< @uityrlgt, > = <QJ+1|C'”,/"|QJ>
1 i .T
= / dp exp [;p(qm —q,-)] —if <gulHlg; >. (5.71)

Here, p, is the momentum between g; and g, or, equivalently between ¢, and ¢,,,.

As an example, if the Hamiltonian is of the form
H(p,q) = Hi(p) + Ha(q) (5.72)

where p and g are the generalized conjugate variables, then the propagator, [or alternately,

the path integral expression for the transition amplitude from (gq,,¢t,) to (gy,¢;)] is, when the
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number of divisions of (g,t,,qs¢t;) goes to infinity,
dp.
< gstslgt, > = llm II d‘b
=0

X exP{ E[PJ 95+ — QJ - TH(?.HQ;)]} (5'73)

=0

with g, = g, and g@,.4; = g;. This can be written symbolically as

DgD 1 ty .
< qetslgt, >= f th expy [ /: dt[pq-H(p,Q)]]- (5.74)

In the above, each function g(t) and p(t) defines a path in phase space and (5.74) is an integral
over all possible paths. Thus it is a path integral. The integral is infinite dimensional in the
sense that the integration is performed over a function. If the Hamiltonian (5.72) has the

form

2
H(p,q) = 5’; + V(q),

the p-integration in (5.73) can be performed and we arrive at the famous result

< qytslgt, >= N/quxp [h./ L(q,q)d ] (5.75)

and proper initial/boundary conditions are given by g(¢;) = gy and g(t,)=¢q,. L=T - V'is

S=/Ldt

For simplicity we focus attention on systems for which (5.74) holds. The boundary con-

the classical Lagrangian. The integral

is called the action.

ditions given above are apprpriate when studying the motion of classical particles, but they
are not useful to study the evolution of fields where the condition analogous to [g(t;) = ¢,
and ¢(t,) = ¢ would be ¥(t) = ¥, and ¥(t;) = ;. This is because actual particles
are created, they wnteract and they are then destroyed. In other words, the simple bound-
ary conditions at ¢, and ¢; ere no longer satisfactory physically, because they “bypass” the
creation-annihilation processes taking place at intermediate times. For example, in deter-

mining the differential cross section of *N scattering, the pion is created by an NN collision
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and it is destroyed when it is detected [73]. The “object” responsible for the creation and
annihilation of particles is called a source (for creation) or a sink (for annihilation). The

source J(t) is added as a “perturbation” to the Lagrangian L:
L — L+ kJ(t)q(t).

When |0, >’ is the ground state (the vacuum) in the presence of source J, the transition

amplitude is related to a functional of J, Z[J] by
;] f+oc
Z|J) = /'quxp [-;;/:x L+hJq+ tieg®dt
x <0,+00[0,—00 > . (5.76)

The actual derivation of the functional Z(J] is lengthy, and the complex perturbative term
1ieq® is added to the Lagrangian because a small imaginary part is added to the Hamiltonian
to isolate the ground state’s contribution when performing the complex integrals involved in
deriving formula (5.75). It is now straightforward to obtain the vacuum expectation value
of the time-ordered product < 0,+00|q(t;)-- q(,)|0,—0c0 >, with t, > ¢, if i > 7 which is
sometimes called the n-point function of the theory. To obtain an expression for this n-point
function, one functionally differentiates the functional Z,

§"2(J]
§Ji(t1) - 8Jn(tn) |,y

This relation is interesting because it illustrates the fact that the n*® order functional differ-

o i" < 0,+o00|g(tl)---q(t,)|0,—00 >. (5.77)

entiation of 2 with respect to the source function yields the expectation value of the time
ordered product of operators (g(¢,) - - - g(¢,)), which is proportional to the n'* moment of the
distribution of paths q. The idea that Z is the generating functional for the correlalion func-
tions will be taken up in the next section in the context of field theory, and the connection

with the statistical study of D.D.E’s is then made explicit.

5.4.2 Generating functionals for scalar fields.

If the scalar field ¢ has a source in the sense of the previous section, then the vacuum-to-

vacuum transition amplitude in the presence of that source is

20) = [Doexp{i [d's [L(6)+ I(=)o(@) + Jev']}
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x < 0,400]0,—00>" . (5.78)

This relation is analogous to (5.75) with the substitution Dg — D¢(z"*) and & = 1. After
coarse-graining Minkowski space t.e. breaking it up into four dimensional cubes of volume
§', and assuming that the field ¢ is constant in a unit cell, it is possible to obtain the vacuum-
vacuum transition amplitude in the case of a free particle. The fact that the particle is free

comes in the definition of the Lagrangian which is, in this case,
L=Lo= %(5,,¢5"¢ — m?). (5.79)

The derivation is again quite tedious and it can be found in [69]. The resulting expression

for the transition amplitude is
Zo[J] = N exp {—% [ I2)ar(z — y)I(3) de dy) (5.80)
where Ap(z — y) is the Feynman propagator which satisfies
(0 4+ m? —ie)Ap(z) = §(=), (5.81)

and the right hand side of the equation is the Dirac delta function. Expanding this functional
yields

2] = N{l—— [ H@)Ar(z - 3)J () de dy
+2 () [ 10185 - W) de dy]]
31-(-) [/ J(@) Az — y)J(y) dz dy] +} (5.82)

This equation is analogous to (5.35) in Section 5.2.2. The k'* order term in the above
expression is the k-point function of the theory or, tc use the language of quantum field
theory, it is the Green’s function for the k free particles problem.

To make the connection with the previous sections more obvious, functionally differentiate
2, with respect to the source term,

1 &2

5 (zr) 00z |,y 0l¢(z1) - - $(2a)I0 > . (5.83)
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The right hand side of this equation is the n'* moments of the “distribution of fields™.
Therefore, Z, is the generating functional for the n-point correlation functions describ-
ing the evolution of a distribution of functions. Following the evolution of these correlation
functions tells us how the transition amplitudes evolve in time. Since these transition am-
plitudes are necessary to calculate the scattering cross sections, we have the tools to follow
the evoiution of the scattering cross sections.
Remark 5.2. The correlation functions, as in stochastic wave analysis, are the quantities
represented with Feynman diagrams, and a diagrammatic study of the functional expansion
greatly simplifies the problem at hand.

Remark 5.3. The above presentation only holds for free fields. When the fields are interacting,

the Lagrangian takes the form
L= L+ L.

One can then derive an evolution equation for the generating functional (analogous to the
Hopf equation) and solve it approximately by treating the interaction as a perturbative term.
Having the generating functional for the Green's functions of the free field problem is then

essential to approximate an exact solution of the more interesting interacting field problem.

5.5 Summary

This chapter is an attempt to construct a theoretical framework with which to deal with
delay differential equation in the spirit of classical statistical mechanics.

Introductory definitions from measure theory and probability theory are given in Section
5.1. The concepts presented in Section 5.1 are applied in Section 5.2 to the statistical
investigation of D.D.E’s. In particular, we derive a functional differential equation describing
the evolution of a density of functions under the action of a delay differential equation. Partial
differential equations describing the evolution of the statistical moments of these functionals
are also presented.

In Section 5.3 we illustrate how the Feynman diagram technique can be applied to derive

the moment equations from the functional differential equation presented in Section 5.2.
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In Section 5.4 we illustrate the analogy between the statistical study of D.D.E’s and the
quantum theory of fields.
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Chapter 6

Conclusion

This thesis studies the dynamics of nonlinear delay differential equations (D.D.E’s) used as

models for control loops with delayed feedback.
In Chapter 1, we first recall the formal equivalence between models formulated as ini-

tial/boundary value problems for hyperbolic partial differential equations and models formu-
lated as delay differential equations. It is demonstrated that systems with memory can be
interpreted as being nonlocal, and that this nonlocality is the basis for the equivalence be-
tween some partial differential equations and delay differential equations. In fact, in Chapter
5, the tools used by physicists to statistically study the dynamics of P.D.E’s are extended
to the statistical investigation of D.D.E’s. Finally, the singular perturbation limit proce-
dure, and the reduction of a class of D.D.E’s to shift operators is discussed and applied to a
nonlinear integrable D.D.E with piecewise constant nonlinearities (PCNL).

In Chapter 2, we present the design of an electronic analog computer, built to simulate
the dynamics of a class of D.D.E’s discussed in Chapter 1. Multistable solutions are ob-
served when the system’s conirol parameters are changed continuously, and when the initial
preparation of *he circuit varies.

Chapter 3 is a numerical investigation of multistability in the delay differential equation
simulated electronically in Chapter 2. The results of these numerical simulations demonstrate
the presence of higher order multistability in the system (:.e. tristability, quadristability
etc.). While bistability in delay differential equations has been the subject of intense scrutiny
during the past decade, this is the first evidence of higher order multistability. In addition,
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we present the first systematic attempt at characterizing the boundary of basins of attraction
in the space of initial functions. Pathological dependence of solution behavior on changes in
the initial functions is demonstrated for bistable and tristable limit cycles.

In Chapter 4, we numerically explore the behavior of densities for a delay differential
equation which is the singular perturbation of the weil known “hat map”. Densities along
the trajectories are first constructed. It is seen that the number of peaks in the density equals
the period of the density cycles in the map. Because the phase space of D.D.E’s is a normed
function space, we then follow the evolution of a density which is the projection of a segment
(of length 1: a “buffer”) of the solution z(t) on the = axis as this segment slides along the
trajectory. A cycling of the densities constructed in this fashion is observed and appears to
offer one possible way to extend the concept of asymptotic periodicity to continuous time
systems. Cycling is also observed when the density is the average of ensembles of buffers
generated by ensembles of D.D.E’s. Finally, we look at the evolution of the distribution
of points obtained by sampling a large collection of solutions, each generated by a specific
initial function, at discrete times. This last construction is of particular interest from an
experimental point of view, for it simulates the measurement of a gas of noninteracting
D.D.E’s with a sampling device.

In Chapter 5, we present a theoretical framework with which to investigate D.D.E’s
statistically. We extend some techniques applied to the study of turbulent fluid flows to
the statistical study of delayed dynamics. Because the phase spaces of D.D.E’s are function
spaces, phase space densities for these systems are density functionals. We derive a functional
differential equation specifying the evolution of density functionals (i.e. it is an infinive
dimensional analogue of the Liouville equation). This equation is then reduced to an infinite
number of linear partial differential equations using perturbation theory. The connection
between Feynman graphs and the statistical study of D.D.E’s is demonstrated and used to
obtain some rules concerning the derivation of the partial differential equations. Finally,
because the Fourier transform of the density functional for a D.D.E can be interpreted as a
path integral, we illustrate the analogy between the statistics of D.D.E’s and the methods
of quantum field theory.
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Appendix A

Regrouping the parameters in
equation (2.3).

First of all, equation (2.3) can be written

dz(t)
dt

=cH(z(t - 7)) —az(t) where H(z.)= { (1) gt:;rfvi[si].’ b, (A.1)

In addition, time can be scaled by the delay 7:

()= 2, ¥(o)=a(t).
This gives p
WL~ rle Hiy(o = 1) - ay(o)). (A2)

Note that the delay is still present in the equation, and its parametric influence on solution
behavior can be studied in the new equation (A4.2): it is completely equivalent to the original

one (A.1). Further, it is possible to eliminate one of the thresholds by setting:

z(t) = %—f—) and G(§)=h (g]-) V¢ € R*.

Therefore,
_) 1 if¢el,6,/6,],
G({) = { 0 otherwise.

Defining 5 /
= rc/a,
{ € = ab,/c
e = 6,/6,,
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studying the original system (A.1) is completely equivalent to studying

dz
== 8[G(z(t — 1)) - ex(t)], (A.3)

G(6) = { 1 if £ €1,p],

0 otherwise.

with

These new parameters are the three independent parameters of equation (A.1). Being aware
of this reduction of the number of apparent parameters is important because varying one of

the original parameters (6,, a, etc.) is equivalent to varying several intrinsic parameters.
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Appendix B

Error analysis.

B.1 Error on measured quantities.

The systematic error on the values of the measured parameters is due to the uncertainty

of the measurements. We can estimate this error from the known accuracy of the various

pieces of equipment.
e Error on the measured thresholds: They were measured with a digital voltmeter,

therefore the error is the meter resolution:

om = £0.5 x 107 volts. (B.1)

e Error on the measured gain a: The gain was obtained from a digital oscilloscope
reading. The finest division reading 0.1 volts, the error associated with the measurement is
of order 0.1/7. Let (V, £ 0,) be the signal at the input of the amplifier and (V, £ 0,) be the

measured output of an amplifier stage, so the gain a is given by

_ Y
a= v
Therefore, the error on the gain is
(1/2)
da \’ da \?
0o = [(a;) o2 + (5’3’) a,’] (B.2)
where, 0, = o, >~ 0.03 volts. Differentiating a,
0.03 [/v,\? 1%
Oo = 7 (V) + 1] . (B3)
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e Errors on the gain and offset of the delay box: The error on the measured gain of
the delay box is the same as the error on a of amplifier 2. The error on the measured gain
is the same as that on the threshold because offsets are obtained by comparing input and
output stages on an oscilloscope screen. Therefore 0,5, > 0.03 volts.
e Error on the values of the passive components: The resistors were measured using
a digital Ohmmeter. The error on their value is equal to its resolution. o = 0.5 () for all
resistances smaller than or equal to 10 KQ. For Rg, the error is op, = 50 ().

The value of the capacitor C; was determined with a Wheatstone bridge. The error on
this measurement is

oc, ~0.15 x 107% Fd.

e Error on the height of the Feedback function: Once again, this parameter was
obtained with a digital voltmeter and the error in its measurement is o. ~ 0.005 volts.
e Error on the delay:

The clock frequency was determined with a frequency counter accurate to within 1Hz.

The delay calibration curve (see Figure 2.7) was fitted with the equation

T

f._-:ock (2073 + 10) s. (B.4)

so for all practical purposes, oy, , = 0 and o, = 10/ f .. In all measurements, f ok =
10315Hz, therefore
o, ~ 0.001 s. (B.5)

B.2 Errors on effective parameters:

e Error on the effective gain o°:

Remember,
o _( Ry Ry R; )a
R\ RoRsRsC,/
so
_ RoR; Rz Ry 2 oty \? 2
U:e = (R“‘;Q‘;R.Rocx) (UR“‘) + (Ru(;?vnoRoCl) (URIO) (R“nRQRaRs( ) (0"7)

+
RizRioRy RizRioRia RiaRioHza )2 2
(RanRaRsCl) (60)2 + (R RQRQRGCI) Un“ ( Ry IS Ra Ra € )2 0”9) (B'6)
RizR;0R RizR1oRia 2 Rz Rig Rza 2
(n,.n.n.*m"c.) (or,)* + (RuR.R.Récl) (oRe)" + (Rnnm.md) (0c,)"
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o Error on the effective height of the feedback function c*:

We had
& = ( Ri2R10R; )c.
R, Ry RgR;C,
Thus
ot = (mlalz) ona) + (miltz) (ono ) + (rifiliz: ) (on, )
(%)2(%)2 + (%)2@”“)2 + (rf%z’%f%:g—l)z(dng)z (B.7)

RiaRiRze \? 2 RiaRoR 2 2 RizRoR 2 2
(R..u".n'“}.n"..'ccl) (ory)* + (n,.n.n.n.,’cc,) (one)? + (7242 m.necc'f) (oc,)*.

¢ Error on the value of the effective threshold:
The two effective thresholds 65 and 6; are given in terms 8, and 6, by relation (2.11).

The errors on 6, and 6, are equal and we therefore have
2 2 (1/2)
_ | (z2) 2 8\ 2 L (=)
09: = [( a ) Uﬂu + (a') 001 + ( a / O’ul (B.S)
where: =1,2.

The errors on the effective parameters, derived above, are used to minimize the discrep-

ancies between the electronic and numerical solutions presented in Figures 2.11-2.19.
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Appendix C

Functional derivatives.

The concept of a functional is well known; a functional is a mapping whose arguments are

functions and whose values are real numbers. Usually functionals are defined by integrals:
B[A] = /:F[z\(r)] dr (C.1)
where F is a given function. A variation §®[A] of the functional ®[)] is defined by:
@[N] = {®[A + 8A] - ()]}

where the brackets indicate that we only consider the part of the difference which is linear
in 8§, and §\(7) is zero everywhere except in a neighbourhood A(z) of some point z lying in
the interval [a,b]. The functional derivative (or variational derivative) of the functional
&[] at the point z is defined by

591N _ . {8[A+8) - 8[X)

5Mz) ~ (=0 fou bA(r) dr (€.2)
As an example consider the linear functional
b
B[A] = / A(r)g(r) dr. (C.3)

Its derivative is calculated according to the definition as follows:
b b
&2+ 63 = [ Ar)g(r) dr + [ E\(r)o(r) dr,

hence
B[\ + 6)] — B[N = /A o BA)g(r) dr
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and we can calculate the functional derivative

88 _ . fu Nl dr
§M(z)  a—ov Jage) 6A(r) dr ) (C4)

If g(r) is continuous, then by virtue of the mean value theorem,
L2 dr=2' §X(r) dr, "€ A(z).
[, 5Xstrydr=2' [ 8Mr)dr, o€ Ae)

Because z’' — r as A(z) — 0, one finally gets, for the functional derivative of (C.3),

ﬁl(iz_) [/ﬂb A(r)g(r) dr] = g(z). (C.5)

It is possible to define functional derivatives of higher order, in analogy to the finite dimen-
sional situation. In fact, many well known results concerning the differential calculus of finite
dimensional objects have analogues in the infinite dimensional case. For a summary of the
main results of functional calculus we refer the reader to Sobczyk (1988) [74].

Remark. The concept of a functional derivative presented here is a special case of the
differentiation of a mapping of a topological space into another. If this space is the Banach
function space, then the derivatives can be Fréchet or Gateaux derivatives. Furthermore, if
the mapping under study is a functional whose arguments are elements of the Banach space

C, then its Fréchet derivative is the functional derivative defined in this section.
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Appendix D

Program listings

Due to space constraints all the programs used in the calculations in this thesis could not
be presented. The programe given here are:

1) The program used to compute Figures 3.3-3.6 illustrating the multistability in equation
(2.3). This analytic integration algorithm was used to obtain the other simulations labelled
” Analytic solutions” in Chapter 4 and the Figures related to equation (2.3) in Chapter 3.

2) The numerical integration of equation (4.16).

3) The program used to produce Figures (4.5) and (4.6).

A complete listing of all programs used is available on request.
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oaoo0oononnoo0on0oo0on

o000

program gadapcemf

This program integrates the MCM-ADH equation using an

algorithm which solves the equation analytically. The

Initial Functions can cross thl and th2 once at wl-tau

and w2-tau (fi=1) or remain in [thl,th2]) (fi=0). In

both cases the I.F is at th2 at t=(. The arrays are

first initialized, then the type of initial function

is selected. The solution is computed in the loop ending

at line 1000 (the counter for the loop being j). On line 1100

the period of the signal is computed (using the extrema (E(j)’s)).
Every time time the slope changes the program goes through the entire
j-loop (ending at line 1000). The program checks whether or

not it knows the crossing time corresponding to the extremum it
wants to compute. It then computes E(j) and checks for

new crossings between E(j-1) and E(j), and stores these crossings
for later use in computing extrema. Inside the "j-loop", the proper
indexing of the new crossing times is done with the

counter k which depends on the type of initial function used.

The density is then analytycally computed until line 1800 and

stored in the array ds(1).

E(j) contains the extrema corresponding to a given parameters/I.F
set. T(j) contains the crossing times with thl and/or th2. x(j)
contains an array of point obtained with the E’'s and T's ropresenting
the solution in a way such that it can be plotted by any exterior
graphics package. In this edition of the program the graphics are
performed by MGS, a set of FORTRAN routines written by J.S.
Outerbridge. The routines are called directly in the program every
time plotting of an array is desired. Newd was also written by J.S.0.

It is used for input/output.
"initst" and the "include" statement are necessary for MGS to work

properly.

real*8 c,alpha,thl,th2,wl,w2,accur,dnextr

real*8 E(10000),T(10000),x(100000),tag(3),ds(251)
real*8 tau,gamma,Tpriml,Tprim2,fi,btime,inifar(15)
real*8 k,Elast,i,w,del,inter,dt,vime,nl,nt

real*8 n,flag(8),flags,v,s,nmax,np,£fin

real*8 ntrans,na,npossible,difl,dif2,period

real*8 deltal,delta2,delta3,deltad,transplot,length
real+*8 de,Emin,Emax,sstart,ssttoopp

integer intrans,ina,inpossible,m,kounter,label,nextr,mn,in
integer idif,b,isstart,issttoopp

include ’'st$exe:STDEF.’

call initst

open(45,file='ct.dat’,status='new’)
open(55,file=’et.dat’,status='new’)
open(60,file=’'dens.dat’,status='new’)
open(63,fi1le='per.dat’,status="new’)
open(64,file='sol.dat’,status='new’)
call newd(’non-constant IC’, fi, 0., 1.)
call newd(’first crossing time’, wl, 0., 1.)
call newd(’second crossing time’, w2, 0., 1.)
call newd('’enter the delay’, tau, 0., 5000.)
call newd('’enter thl’, thi, 0., 5.)
call newd(’enter th2’, th2, 0., 5.)
call newd('enter the gain’, alpha, 0., 40.)
call newd(’enter height of the feedback’, ¢, 0., 200.)
call newd(’enter total number of crossings’, n, 0., 1000000.)
call newd(’enter length of transient’, ntrans, 0., 1000000,)
call newd('’enter transplot’, transplot, 0., 1000000.)
call newd(’enter length of plot’, length, 0., 1000000.)
do 5 11,3

tag(l)=0.0d0 162




5 continue
do 10 1=1,1000
T(1)=0.0d0
10 continue
do 15 1=1,8
flag(l)=0.0d0
15 continue
do 20 1=1,1000
E(1)=0.0d0
20 continue
gamma=c/(alpha)
v=0.0d0
in=int(n)
na=n-ntrans
npossible=n/2,0d4d0-10.040
inpossible=in/2-10
intrans=int(ntrans)
accur=0.000000000000001
if(fi.eq.1.040) then
T(1l)=wl-tau
T(2)=w2-tau
T(3)=0.0d0
Tpriml=wl
E(l)=th2*dexp(-alpha*wl)
if(E(1).1t.thl) then
T(4)= (1/(alpha))*log(th2/thl)
k=4.,0d0
else
k=3.0d0
endif
else
- T(1)=0.0d0
) k=1.0d0
Tpriml=tau
E(l)=gamma+(th2-gamma)+*dexp(-alpha*tau)
endif

do 1000 j=2,n
vav+l

if(((v/2)-idint(v/2)).eq.0.0d0) then
if(fi.eq.1.0d40) then
s=0.0d0
else
s=1.,0d0
endif
Cmmmm——- the sloge leading to extremum E(j) is negative.
else
if(fi.eq.1.0d40) then
s=1.0d40
else
s=0.0d0
endif
endif
Commem—— the slope is positive.

if((T(j).gt.0.0d0).0r.(j.le.3.0d0)) then
tag(l)=1.0d0
endif
if((tag(l).eq.1.0d0).and.(fi.eq.1.0d0)) then
e tag(2)=1.0d0
endif
15((T(j).9t.0.0d0).and.(£fi.eq.0.0d0)) then
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tag(3)=1.0d0
endif
if((tag(2).eq.1.0d0).0or.{tag(3).eq.1.040)) then

Cmmmm— e crossing time is known.
flags=1.0d0
Tprim2=T(j)+tau
Cocommmmm e that’s the time of the extremum corresponding to the
Cm—mmmm jth crossing.
if(s.eq.0.0d0) then
E(j)=E(j-1)*dexp((~alpha)*(Tprim2-Tpriml))
else

E(j)=(c/(alpha))+(E(j-1)~c/(alpha))*dexp(-(alpha)*(Tprim2-Tpriml))
endif
Cremmmm———— If £¢j) and E(j-1) are in the same region no crossing occurs
fommmm e between them. You can then go on to the next j. If this is not
Cmmmmmmm——— the case, we have to find the new crossings by performing tests
Crmmmmm e on the extrema. We do this now.
if((E(j).qgt.th2).and.(E(j-1).g9t.th2)) then
flag(1l)=1.0d0
endif
if((E(j).1t.th2).and.(E(j=-1).1t.th2)) then
flag(2)=1.0d0
endif

if((E(j).gt.thl).and.(E(j-1).gt.thl)) then
flag(3)=1.0d0
endif
if((E(j).lt.thl).and.(E(j-1).1t.thl)} then
flag(4)=1.040
endif
if((flag(2).eq.1.0d0).and.(£flag(3).eq.1.0d0)) then
flag(5)=1.0d0
endif
if((flag(l).eq.1.0d40).0r.(flag(4).eq.1.0d0)) then
flag(6)=1.0d0
endif
if((flag(5).eq.1.0d0).or.(flag(6).eq.1.0d0)) then
fin=1,0d0
else
imk+1
fin=0.010
endif
Crmmmmm———— we now find the new crossings:
Commmmme——— "i" will label properly any newly discovered crossing time
Cmmmmemmeee between E(j) and its predecessor. For simplicity the search
Crmmmmm———— for crossings is split in two depending on whether the
Commmmme derivative is positive or negative,
else
flags=0.0d40
fin=0.0d0
endif
do 70 1=1,8
flag(1l)=0.040
70 continue
do 75 1=1,3
tag(l)=0.0d0
75 continue

if(fin.eq.0.0d0) then
if(s.eq.0.0d0) then

Cmmmmmm e The slope is negative.
if(E(j-1).gt.th2) then
c If there is a crossing it will be on a decreasing exponent:al
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segment with th2:

if((flags.eq.1.0d0).and.(E(j).1lt.th2)) then
T(i)=Tpriml-(1/(alpha))*dlog(th2/E(j-1))

endif

if(flags.eq.0.0d0) then
T(j)=Tpriml-(l/alpha)*dlog{th2/E(j-1))
Tprim2=T(j)+tau
E(j)=th2+*dexp(~(alpha)*(tau))

endif

if((flags.eq.1.0d0).and.(E(j).1t.thl)) then
T(i+l)=Tpriml-(l/alpha)*dlog(thl/E(j-1))
k=k+1

endif

if((flags.eq.0.0d0).and.(E(j).1t.thl)) then
T(j+l)=Tpriml-(1l/alpha)*dlog(thl/E(j-1))
Tprim2=T(j)+tau
k=k+1

endif

endif
if((E(j-1).1t.th2).and.(E(j-1).gt.thl)) then
if((flags.eq.1.0d40).and.(E(j).1t.thl)) then
T(i)= Tpriml-(1/(alpha))*dlog(thl/E(j-1))
endif
if(flags.eq.0.0d0) then
T(j)=Tpriml-(1l/alpha)*dlog(thl/E(j-1})
Tprim2=T(j)+tau
E(j)=thl*dexp( (~alpha)*(tau))
endif
endif
if(E(j-1).1t.thl) then
flag(7)=1.0d0
Nu=v
endif
k=k+1
Tpriml=Tprim2
else

————— DETERMINE CROSSINGS WHEN THE SLOPE 1S POSITIVE:

----- the slope is positive

if(E(j-1).1t.thl) then
if((flags.eq.1.0d40).and.(E{(j).gt.thl)) then
T(i)=Tpriml-(l/alpha)*dlog((thl-c/alpha)/(E(j-1)-c/alpha))
endif

~——- crossing of a rising exponential segment with thl.

if(flags.eq.0.0d0} then
T(j)=Tpriml-(1l/alpha)*dlog((thl-c/alpha)/(E{j~-1)-c/alpha})
Tprim2=T(j)+tau
E(j)=c/(alpha)+(thl-c/({alpha))*dexp((-alpha)*(tau})
endif
if((flags.eq.1.0d0).and.(E(j).gt.th2)) then
T(i+l)=Tpriml-(1l/alpha)*dlog((th2~c/alpha)/(E(j~1)-c/alpha))
k=k+l
endif
if((flags.eq.0,.0d0).and.(E(j).gt.th2)) then
T(j+1)=Tpriml-(1l/alpha)*dlog((th2~c/alpha)/(E(j~1)-c/alpha))
Tprim2=T(j)+tau
k=k+1
endif
elseif((E(j-1).gt.thl).and.(E(j-1).1t.th2)) then
if((flags.eq.1.0d0).and.(E(j).gt.th2)) then
T(i)=Tpriml-(l/alpha)*dlca((th2-c/alpha)/(E(j-1)-c/alpha})
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endif
if(flags.eq.0.0d0) then
T(j)=Tpriml-(1/alpha)*dleg((th2-c/alpha)/(E(j-1)~c/alpha))
Tprim2=T(j)+tau
ggg)- c/{alpha)+{th2-c/(alpha))*dexp(-(alpha)*(tau))
endi

£lag(8)=1.0d0
Nay

else

endif

k=k+1.0d0
Tpriml=Tprim2
endif

else
Tpriml=Tprim2
endif

1000 continue
1001 w=(0,0d0
i=0.0d0
c do 1050 m=1,n
c write(45,*) T(m)
cl050 continue
c do 1070 m=1,n
c write(55,*) E(m)
cl070 continue
if(£flag(7).eq.1.0d40) then
do 1005 le=1,n
waw+l
x(w)=0.0d0
1005 continue
endif
if(flag(8).eq.1.0d0) then
do 1010 1l=1,n
waw+l
x(w)=4.040
1010 continue
endif
if((flag(7).eq.0.0d0).and.(flag(8).eq.0.0d0)) then
do 1080 j=transplot,transplot+length
if(j.eg.l) then
if(fi.eq.1.0d0) then
np=idint(250*wl)
del=wl/np
do 1081 1=1,np
wasw+1
x(w)=th2*dexp(-(alpha)*l+*del)
1081 continue
else
np=idint(250*tau)
del=tau/np
do 1082 1ls=1,np
waw+l
x(w)=gamma+(th2-gamma)*dexp(-(alpha)*l*del)
1082 continue
endif
else
if(j.eq.transplot) then
sstartew
endif
if(E(j).1t.E(j-1)) then
inter= (1/(alpha))*dlog(abs(E(j-1)/E(j)))
np=idint(250.0d0*inter)
if(np.eq.0.0d0) then
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1085

1090

1080

1095

000

1500

W=

w+l

x(w)s(E(j-1))*dexp(-(alpha)*inter)

else

del=i

do 10
W=

nter/np
85 l=1,np
w+l

x(w)=(E(j-1))*dexp(-{alpha)*l*del)

conti
endif
else

nue

inter-(-l/(alpha))*dlog((E(j)-gamma)/(E(j—l)—gamma))
np=idint(250.0d40*inter)

if(np.eq.0.0d0) then

else
del=1i
do 10
W=

w=w+l

x(w).gamma+(E(j—l)-gamma)*dexp(-(alpha)*inter)

nter/np
90 1l=1,np
w+l

x(w)wgamma+(E(j-1)-gamma)+*dexp(~(alpha)*l*del)

conti
endif
endif
endif

if(j.eqg.(transplot+length)) then

nue

ssttoopp=w

endif
continue
endif
isstart=ss
issttoopp=
nmaxs=w

tart
ssttoopp

call mcinit(’'default’,STDOUT)
call mdwindow(10.040,50.040,0.0d40,5.0d0)

call merase

call mdport(0.0d0,0.85d06,0.0d0,.4040)

call mtsize

call CXYAX(‘’"Analytic" solution:’,’

(2)

call mdwindow(sstart,ss’toopp,0.0d0,5.

call mdmove(0.0d0,2.0d0)

time=sstart

do 1095 l=sstart,ssttoopp

time=time+1.0d0
call mddraw(time,x(time))

continue

1,1,
040}

call mdwindow(-1.040,0.0d0,9.0d40,3.0d0)
call mdport(0.8d40,1.3d0,0.7d0,1.0d40)

call mtsiz

call CXYAX('Initial Function:’,’

mn=int(n-1.
in=int(n)

do 1500 1=2,inpossible,2
deltal=(T(in)-T(in-1))
delta2=(T(in ~1)~-T(in-2*1))

e(1.0d0)

040)

difl=dabs(delta2-deltal)

delta3=(T(mn)-T(mn-1))
deltad=(T(mn-1)-T(mn-2*1))

dif2=dabs(deltad-delta3)
if((difl.lt.accur).and.(dif2.1t.accur)) then

endif
continue

nextr=1
goto 1600
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nextr=inpossible
1600 T(3)=T(3)

Emin=thl#*dexp(-alpha*tau)
Emax=gamma+(th2-gamma) *dexp{-alpha*tau)
de=(Emax-Emin)/250

do 1800 l=1,251

ds(1)=0.0d0
do 1900 m=intrans, intrans+nextr-1
if((int(m/2)-(m/2)).eq.0) then
if(((Emin+(l1-1)*de).gt.E(m-1)).and.((Emin+(1-1)*de).1t.E(m))) then
ds(1)=ds(1l)+(-1/alpha)*(1/((Emin+(1-1)*de)-gamma))*(T(m)-T(m-1))/deltal
endif
endif
if((int((m-1)/2)~((m-1)/2)).eq.0) then
if(((Emin+(l~-1)*de).gt.E(m)).and.((Emin+(l-1)*de).1t.E(m-1))) then

ds(l)=ds(1l)+(l/alpha)*(1/(Emin+(1l-1)*de))*(T(m)~-T(m-1))/deltal

endif
endif

1900 continue
1800 continue
call mdwindow(0.04d0,2.9d0,0.040,1.040)
call mdport(0.0d40,0.4d40,0.4240,0.78d0)
call mtsize(2)
call CXYAX('’Analytic density:*,’ ’,1,1,’' ’,1,1,'inside’)
call mdwindow(0.0d0,253.040,0.040,1.50d0)
call mdmove(0.0d40,0.0d0)
btime=0.0d0
do 2000 1=1,251
btime=btime+1.0d0
call mddraw(btime,ds(btime))
c write(60,*) ds(l)
2000 continue
call mflush
call endst(OK)
do 6000 j=sstart,ssttoopp
write(64,*) x(3j)
6000 continue

2100 end
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00000

this program integrates the "hat" DDE using a 4th
order Runge-Kutta algorithm.
the integration step is delt.
deldiv is the length of the delay in units of the step.

is the real time length of the delay.

real*8 xdel(501),x,dxdt,xh,delt,tau,xltau,xtinit,condn,ttime
real*8 realt,a,solution(501000),time,xl,x2,yl,y2,wxl,wx2,wyl, wy2
real*8 ntau,ntaumax,deldiv,delpr,tl,t2,1trans,pxl,px2,pyl,py2
real*8 pos(250),den(250),kountp,th,kountn,alpha,thl, th2, k,s
real*8 swxl, swx2,swyl,swy2,spxl,spx2,spyl,spy2,slol,slo2

real*8 temps,xmin,xmax,cif,up,down,trans

include 'stS$Sexe:STDEF.’

common/eqparam/a,xdel,delt, tau,tl,t2,alpha,thl,th2,s,s5l0l,sl02,cif
common/deloop/k

open(35,file='den.dat’,status='new’)

call initst

write(STDOUT,*) ’enter world co-ords’
read (STDIN,*) x1,x2,yl,y2
write(STDOUT,*) ‘enter down,up’
read(STDIN, *) down,up

write(STDOUT,*) 'enter port co-ords’
read(STDIN,*) pxl,px2,pyl,py2
write(STDOUT,*) ‘do you want the I.F? (1/0)’
read(STDIN,*) condn
if(condn.eq.1l) then
write(STDOUT,*) 'enter inset-world co-ords’
read(STDIN,*) wxl,wx2,wyl, wy2
write(STDOUT,*) ’enter co-ords of inset port’
read(STDIN,*) pwxl,pwx2,pwyl, pwy2
endif
write(STDOUT,*) 'enter a’
read(STDIN,*) a
write(STDOUT,*) 'enter tl’
read(STDIN,*) tl
write(STDOUT,*} 'enter t2°’
read(STDIN,*) t2
write(STDOUT,*) 'enter ntaumax’
read(STDIN,*) ntaumax
write(STDOUT,*) 'enter thl’
read(STDIN,*) thl
write(STDOUT,*) ‘enter th2’
read( STDIN,*) th2
write(STDOUT,*) 'enter slol (posi)’
read (STDIN,*) slol
write(STDOUT,*) ‘enter slo2 (nega)’
read {STDIN,*) slo2
write(STDOUT,*) 'enter gain’
read(STDIN,*) alpha
write(STDOUT,*) 'enter s—WORLD co-ords’
read(STDIN,*) swxl,swx2,swyl,swy2
write(STDOUT,*) ‘enter s-port world’
read(STDIN,*) spxl,spx2,5pyl,spy2
write(STDOUT,*) 'enter xman'
read(STDIN,*) xmin
write(STDOUT,*) 'enter xmax’
read(STDIN,*) xmax
write(STDOUT,*) ’'enter delay’
read( STDIN,*) tau
write(STDOUT,*) 'cif’
read(STDIN,*) cif
write(STDOUT,*) 'ENTER TRANS. 4
read(STDIN,*) trans
write(STDOUT, *) 'ENTER DELT’
read(STDIN,*) delt 129



104
204
304

c
cl04

63

deldiv=500.0d0
delprsdeldiv+l

FILL-UP THE INITIAL ARRAY
do 104 ttime=1,tl
xdel(ttime)=a*(ttime/500)+cif
continue
uo 204 ttime=tl+l, t2
xdel(ttime)-a't1/500+((ttime/SOO)-t1/500)+ci£
continue
do 304 ttime=t2+1,501
xdel(ttime)-(a*t1/500+(t2-t1—a*t2)/500)+a*(ttime/500)+cif
continue
do 104 ttime=1,500
xdel(ttime)=cif
continue
call mcinit(’default’,STDOUT)
call mdwindow(-1.0d0,0.040,0.0d0,1.0d0)
call merase
PLOTTING THE I.F
if(condn.eq.1.0d40) then
call mdport(pwxl,pwa,pwyl,pwyZ)
call mtsize(2)
call CXYAX('1.F’,’ ',1,1,’ t+,2,1,’inside’)
call mdwindow(wxl,wx2,wyl,wy2)
call mdmove(0.8d0,0.8d0)
do 63 ttime=1,501
call mddraw(ttime,xdel(ttime))
continue
endif
time=0
call mcwindow(trans,trans+15.0d0,down,up)
call maport(pxl,px2,pyl,py2)
call mtsize(2)
call cxyax(’Solution’,’ ’,15,0,' ',1,2,'inside’)
call grid(15,1)
call mdwindow(trans*501,trans*501+7515,xmin, xmax)
call mdmove(0.0d0,xdel(501))
do 100 ntau=1,ntaumax
xsxdel(deldiv+l)
do 101 k=1,deldiv

time=time+l
tnext=(ntau-l+k*delt)*tau
realt=tnext-delt*tau
xltausxdel (k)

call derivs(realt,x,dxdt,xltau)
call rkd(x,dxdt,realt,xh)

xdel (k)=x

x=xh

solution(time)=xh

if((time.ge.(trans*501+1)).and.(time.le.ttans*501+7515)) then

call mddraw(time,solution(time))
endif
continue
xdel(deldiv+1l)=xh
continue

o el GETTING A DENSITY ALONG THE TRAJECTORY: BINNING.

do 173 j=trans+*501+1,trans*501+7515
solution(j)-dint(lOO*(solution(j)-xmin)/(xmax—xmin))
continue
temps=0.0d0

do 183 k=1,99
temps=temps+1.0d0
do 180 1l=l,trans*515+7515

170




if(solution(l).eq.temps) then
den(k)=den(k)+1.0d0
endif
180 continue
183 continue

call mdwindow(down,up,swyl,b500.0d0)
call mdport{spxl,spx2,spyl,spy2)

call mtsize(2)
call cxyax(’Density’,’ ',1,2,' ’,1,0,'inside’)
call mdwindow(swxl,swx2,swyl,swy2)
call mdmove(0.0d0,den(1))

time=0.0d0

do 350 j=1,99
timestime+1.0d0
call mddrav(time,den{time))
350 continue

call mflush
call endst(OK)

c do 400 j=1,249
c write(35,+%) DEN{(J),solution{(j)
c400 CONTINUE

end

SUBROUTINE DERIVS(realt,x,dxdt,xltau)
double precision a,xltau,x,dxdt,xdel(501),delt,tau,realt
double precision tl,t2,alpha,thl,th2,k,s,slol,slo2
include ’'st$Sexe:STDEF.’
common/eqparam/a,xdel,delt,tau,tl,t2,alpha,thl,th2,s,slol,s8l02,cif
common/deloop/k
if((xltau.ge.0.0d0).and.(x1ltau.le.thl)) then
dxdt=-alpha*x+slol*xltau
else if((xltau.gt.thl).and.(xltau.le.th2)) then
dxdt=-alpha*x+slol*(l-xltau)
else
dxdt=-alpha*x
endif
end
SUBROUTINE RK4(x,dxdt,realt,xh)
double precision a,x,dxdt,xh,xdel(501),realt,delt,tau
double precision xt,dxt,dxm,hh,h6,th,tprime,xltau
double precision tl,t2,alpha,thl,th2,k,s,slol,slo2
include ’'stSexe:STDEF.’
common/eqraram/a,xdel ,delt,tau,tl,t2,alpha,thl,th2,s,slol,slo2,cif
common/deloop/k
hh=delt*tau/2
h6=hh/3
th=realt+hh
xt=x+({hh*dxdt)
xltau=(xdel(k)+xdel(k+1))/2
call derivs(th,xt,dxt,xltau)
xt=x+hh*dxt
call derivs(th,xt,dxm, x1ltau)
Xt=x+delt*tau*dxm
dxm=dxt+dxm
xltau=xdel(k+1)
tprimesrealt+delt*tau
call derivs(tprime,xt,dxt,xltau)
xh=x+h6*(dxdt+dxt+2*dxm)
end
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this program integrates the "hat" DDE using a 4th

order Runge-Kutta algorithm.

the integration step is delt,

deldiv is the length of the delay in units of the step.

is the real time length of the delay.

Once the equation is simulated, the program bins 20 buffers

containing a segment of length 1 of the solution,.

The points at which the 20 buffers begin are the sb’'s.

There is only 1 Initial Function since this program simulates the

procedure explainea in section 4.2.2b which consists

in following a segment of solution of length tau and

binning this "buffer" as it slides along a solution.

real*8 xdel(501),x,dxdt,xh,delt,tau,xltau,xtinit,ttime
real*8 realt,a,solution(501000),time

real#*8 ntau,ntaumax,deldiv,delpr,tl,t2,ltrans

real*8 kounter,th,kountn,alpha,thl, th2, k,s

real#*8 slol,slo2,buf(501),x1(20),%2(20),y1(20}.y2(20)
real*8 xmin,xmax,cif,start,bufden(50),heit,temps,sb(20)
include ’'st$exe:STDEF.'

common/eqparam/a.xdel.delt,tau,tl.tz.alpha.thl,th2,s,slol,s102,ci£
common/deloop/k

call initst

write(STDOUT,*) ‘enter a’
read(STDIN,*) a
write(STDOUT,*) ’‘enter tl’
read(STDIN,*) tl
wr:te(STDOUT,*) ‘enter t2'
reaa(STDIN,*) t2
write(STDOUT,*) ’‘enter ntaumax’
read(STDIN,*) ntaumax
write(STDOUT,*) ‘enter thl’
read (STDIN,*) thl
write(STDOUT,*) ’enter th2'
read(STDIN,*) th2
write(STDOUT,*) 'enter slol (posi)’
read (STDIN,*) slol
write(STDOUT,*) ’‘enter slo2 (nega)’
read(STDIN,*) slo2
write(STDOUT,*) ‘enter gain’
read(STDIN,*) alpha
write(STDOUT,*) 'enter xmin’
read (STDIN,*) xmin
write(SDOUT,*) ’'enter xmax'’
read (STDIN,*) xmax
write(STDOUT,*) 'enter delay’
read (STDIN,*) tau
write(STDOUT,*) ’cif’
read (STDIN,*) cif
write(STDOUT,*) "ENTER TRANS.'
read (STDIN,*) start
write(STDOUT,*) ’ENTER DELT'
read (STDIN, *) delt
weite(STDOUT,*) ’‘enter height’
read(STDIN,*) heit
do 37 j=1,20

write(STDOUT,*) ’enter sb’

read(STDIN,*) sb(j)
continue

deldiv=500.040
delpr=deldiv+l 172




Crmm———— FILL-UP THE INITIAL ARRAY
do 104 ttime=1,tl
xdel(ttime)=a*(ttime /500)+cif
104 continue
do 204 ttime=tl+l, t2
xdel(ttime)=a*tl1/500+((ttime/5060)-t1/500)+cif
204 continue
do 304 ttime=t2+1,501
xdel(ttime)=(a*tl/500+(t2-t1-a*t2)/500)+a*(ttime/500)+cif
304 continue

¢ do 104 ttime=1,500

c xdel(ttime)=cif

c104 continue

Crmmmm——- FILLING-UP THE X AND Y ARRAYS{COORDS OF THE 20 PORTS)

do 250 j=1,5
x1(j)=(j-1)*0.26d0
x2(j)=j*0.2640
y1l(3)=0.75d0
y2(3)=1.0d40
250 continue
do 251 j=6,10
x1(j)=x1(j-5)
x2(3)=x2(3-5)
yl(j)=0.5d0
y2(3j)=0.7540
251 continue
do 252 j=11,15
x1(j)=x1(3-5)
x2(j)=x2(3-5)
yl(j)=0.25d0
y2(j)=0.50d0
252 continue
do 253 j=16,20
x1(j)=x1(j-5)
x2(j)=x2(3j-5)
yl(j)=0.0d0
y2(j)=0.25d40
253 continue

call mcinit('default’,STDOUT)
call merase
time=0

do 100 ntau=l,ntaumax
x=xdel (deldiv+1l)
do 101 k=1,deldiv

time=time+1
tnext=(ntau-l+k*delt)*tau
realt=tnext-delt*tau
xltau=xdel(k)
call derivs(realt,x,dxdt,x1ltau)
call rkd{x,dxdt,reait, xhj
xdel(k)=x
x=xh
solution(time)=xh

101 continue

xdel(deldiv+l )=xh
100 continue

do 750 k=1,20
m=0
do 102 jesb(k),sb(k)+500
m=m+1
buf(m)=0.0d0 173



buf(m)esolution(j)
buf(m)=dint (50*(buf(m)-xmin)/(xmax-xmin))
102 continue
temps=0
do 103 1=1,50
bufden(l)=0.0d0
temps=temps+1
do 114 j=1,501
if(buf(j).eq.temps) then
bufden(l)=bufden(l)+1

endif
114 continue
103 continue

call mdwindow(xmin,xmax,0.0d0,heit)
call mdport(xl(k),x2(k),yl(k),y2(k))

call mtsize(2)
call cxyax(' ’',' ',1,2,’ ',1,1,'inside’)

call mdwindow(0.0d0,50.0d0,0.0d0,heit)
call mdmove(0.0d0,0.0d0)

kounter=0
do 105 n=1,50
kounterskounter+l
call mddraw(kounter ,bufden{kounter))
105 continue
750 continue

call mflush
call endst(OK)

end

SUBROUTINE DERIVS(realt,x,dxdt,xltau)
double precision a,xltau,x,dxdt,xdel(501),delt,tau,realt
double precision tl,t2,alpha,thl,th2,k,s,slol,sl02
include ’'st$exe:STDEF.’
common/eqparam/a,xdel ,delt,tau,tl,t2,alpha,thl,th2,s,slcl,slo02,cif
common/deloop/k
if((xltau.ge.0.0d0).and.(x1tau.le.thl)) then
dxdt=-alpha*x+slol*xltau
else if((xltau.gt.thl).and.(xltau.le.th2)) then
dxdt=-alpha*x+slol*(1l-xltau)
else
dxdt=-alpha*x
endif
end
SUBROUTINE RK4(x,dxdt,realt,xh)
double precision a,x,dxdt,xh,xdel(501),realt,delt, tau
double precision xt,dxt,dxm,hh,h6,th,tprime,xltau
double precision t1,t2,alpha, thl,th2,k,s,slo0l,s5l02
include ’stSexe:STDEF.’
common/egparam/a,xdel ,delt,tau,tl,t2,alpha,thl,th2,s,slol,slo2,cif
common/deloop/k
hh=delt*tau/2
hé=hh/3
th=realt+hh
xt=x+( hh*dxdt)
xltau=(xdel(k)+xdel (k+l))/2
call derivs(th,xt,dxt,xltau)
xt=x+hh*dxt
call derivs(th,xt,dxm,xltau)
xt=x+delt*tau*dxm
dxmedxt+dxm 174




™%

xltau=xdel(k+l)
tprime=realt+delt*tau
call derivs(tprime,xt,dxt,xltau)
xh=x+h6*(dxdt+dxt+2+*dxm)
end
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