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ABSTRACT 

The dynamics of a class of nonlinear delay differential equations (D.D.E's) is studied. We 
focus attention on D.D.E's with a dis crete delay used as models for production/destruction 
processes. The design of an electronic analog computer simulating an integrable D.D.E is 
presented. This computer is used to illustrate the presence of bistable sotutions in the system. 
The multistability is investigated numerically with an analytic integration algorithm. Higher 
order multistability is reported, and the structure of basin boundaries in the space of initial 
funetions is investigated. Pathological dependence of solution "ehavior on the initial function 
is shown to be present in large regions of parameter space. ft. D.D.E obtained as the singular 
perturbation of the one dimensional "hat map" is studied numerically. Severa! schemes to 
undertake a statistical analysis of the equation are presented. We first focus attention on 
the construction of densities along trajectories, and then on the construction of densities for 
ensembles of trajectories generated by ensembles of initial functions. A cyeting of densities 
is observed in both cases, and compared to the asymptotic periodicity of the Frobenius­
Perron operator for the hat map. Functional analytic techniques used for the analysis of 
stochastic wave propagation in continuous media and in quantum field theory are extellded 
to the statistical study of D.D.E's, and provide a theoretical {ramework within which to 
study D.D.E dynamics in the spirit of ergodic theory and statistical mechanics. 
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RÉSUMÉ 

Cette thèse porte sur l'étude du comportement dynamique d'une cluse d'équations 
différentielles avec mémoire (équations dites à délai, ou E.n.D.) pouvant générer le chaos. 
Ces équations sont utilisées pour modèliser les processus de contrôle avec rétroaction re­
tardée. Un ordinateur électronique analogue destiné à simuler une E.D.D intégrable en 
temps réel est décrit. L'ordinateur est utilisé pour illustrer la présence de cycles limites 
bistables. Cette bistabilité est par la suite étudiée numériquement grâce à un algorithme 
d'intégration analytique. La présence de solutions multistables (tristables, quadristables, 
etc.) est mise en évidence et la structure des frontières de bassins d'attractions dans l'espace 
des Conctions initiales est analysée. On observe une dépendence pathologique du comporte­
ment asymptotique sur les variations de Conctions initiales dans de vastes régions 1e l'espace 
des paramètres de contrôle. Une E.D.n obtenue par perturbation singulière de l'application 
unidimensionelle dite "application chapeau" (hat map) est simulée numériquement. Plusieurs 
approches destinées à faciliter une étude numérique statistique de ce système dynamique sont 
présentées. Tout d'abord, des densités définies le long d'une simple trajectoire sont obtenues. 
En un second temps, on considère l'évoluti<m de densités définies sur des ensembles de tra­
jectoires générées par des ensembles de fonctions initiales. Dans les deux CM, l'évolution 
temporelle est cyclique, et donc, à rapprocher de la périodicité asymptotique de l'opérateur 
de Frobenius-Perron pour l'application chapeau. En dernier lieu, les techniques utilisées pour 
l'étude de flots stochastiques dans les milieux continus, et les outils de la théorie des champs 
quantiqu('s sont utilisés pour l'élaboration d'un formalisme théorique Cormant la base d'une 
approche nouvelle des systèmes dynamiques avec mémoire, hlspirée de la théorie ergodique 
et de la mécanique statistique. 
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Chapter 1 

Introduction 

The use of non-linear equations to obtain inslght into the evolution of complex systems is 

the essence of non-linear dynamics, a field of activity which has greatly expanded in the last 

thirty years. At this point it appears that the tools of non-linear dynamics potentially hold 

as much promise for the development of th~oretical physics as the use of probabiüty theory 

did in the first part ofthis cent ury [66J. 

This thesis focuses on a small subset of nonlinear dynamics, namely the study the dy­

namics of a class of non-linear delay differential equations (D.D.E's) which model delayed 

feedback control loops. Delay differential equations have been used to study problems of 

laser physics and nuclear engineering, control theory and economic modeling. They also 

appear frequently in mathematical biology and studies of population dynamics. The appeal 

of nonlinear dyne.mics lies in the fact that it is possible to simulate complex (sometimes even 

chaotic) behavior using relatively simple non-linear mathematical models. 

In this introductory chapter the origin and formulation of history-&ependent models is 

first described. In Section 1.2, we present sorne of the basic concepts of non-linear dynamics. 

The connection between delay-dependent models and a formulation in terms oC partial diC­

ferential equations (P.D.E's) is given in Sections 1.3 and 1.4. Finally singular perturbation 

limits and sorne other techniques used to study D.D.E's are explained in Section 1.5. 

Chapter 2 describes the design and performance of an analog computer constructed to 

simulate the solution of a clus of delay differential equations with piecewise constant forcing 

terms. The use of this computer highlighted the sensitivity of delayed dynamics on initial 
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conditions. 

Chapter 3 explores the dynamics of a pier.ewise integrable delay differential equation using 

an algorithm which integrates the equation analybcally (but not symbolically) allowing a far 

greater accuracy than that obtained with traditional numericaI integration schemes, and 

significant reductions in computation times. We focus attention on exploring the presence of 

multistability in the D.D.E discussed in Chapter 2. In particular, we illustrate the complexity 

oC the basin boundaries in the space of initial fu.nctions. The multistability displayed by the 

D.D.E is studied in detail with a specifie set of non constant initial functions. 

In Chapter 4, we examine numerically the behavior of large collections of delay difl'eren­

tial equations. In Section 4.1 we review some of the techniques used to study deterministic 

systems from a statistical point of view, and discuss an interesting property of smoothing 

Markov operators known as asymptotac penodacdy. In Section 4.2, we numerically inves­

tigate the statistical properties of large collections of D.D.E's using several methods (see 

<!.2.2a,b,c,d) designed to facilitate the numerical study of flows of functions. In Section 4.3, 

an analytic expression for the density along the trajectory of a piecewise integrable dynamicaI 

system is derived, and applied to a delay difl'erential equation and a simple neural network. 

In Chapter 5 we present a formalism \Vith which to investigate the dynamics of densities of 

initial functions (den"aty functaonal!) evolving under the action of delay differential equations. 

In Section 5.1, some introductory definitions from measure theory and probability theory 

are given. In Section 5.2 we derive a functional differentiaI equation for the evolution of the 

density functional and then derive partial differential equations specifying the time evolution 

of the moments of the distribution of functions. In Section 5.3, we apply the Feynman 

diagram technique to the statistical study of delay differential equations. We show how the 

diagrams can be used to derive the partial differential equations mentioned above. Since 

the Fourier transform of the density functional can be interpreted as a path integral, we 

explain in Section 5.3 the close connection between the statisticaI study of delay differential 

equations and quantum field theories. 
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1.1 History dependent models. 

In the absence of non-local effects, the instantaneous transmission of information between two 

systems is impossible without a violation of the assumption of causality. The delays involvecl 

necessarily impose a fundamental constraint on any theory describing physical intrractions. 

If the time scale of the delays is comparable to that of the processes un der consideration, a 

sound model must explicitly take the delays into account. 

The idea that the evolution of a system can only be predicted given sorne knowledge 

of its past history is not novel. A review of the relevance of time-delays in control tht"oIY 

ean be found in [3]. In biological systems, delays arise because of the finite speed at which 

biochemieal and electrochemical signals propagate. Hormones are carried by the blood flow 

to their targetsj action potentials propagate down axons and neuro-transmitters must diffuse 

across the synaptic cleft between neurons. In the study of population dynamics, delay­

dependent models reflect the time lags that always exist between environmental stimuli and 

adaptivc responses. 

The use of delay-dependent models is in no way exclusive to theoretieal biology and 

biomathematics. A number of physical systems require their use to understand their be­

havior: the stability of nudear reactors [15, 19, 41], neutron shielding [6, 61] and bistable 

optical devices [21, 32, 34] to name just a few. As early as the 1930's Kalecki [36] proposed 

delay-differential equations as models of cyelie economic commodity market activity. In re­

cent work delay dependent models have been used to investigate the dynamics of comrnodity 

price fluctuations [2, 50]. Mathematically, the framework within whieh to investigate such 

apparently diverse behavior is the theory of functional differential equations. 

When a model is formulated in terms of coupled first-order ordinary differential e-luations 

for the veetor variable x(t) =(Zl (t), .. . , :l:n(t)): 

(1.1 ) 

the initial values :I:}(O) suffice to predict the evolution of zAt) for any future time. However 

as the examples cited ab ove illustrate, it is sometimes necessary to use knowledge of the past 

.... history of at least one of the variables to allow prediction. 
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If the evolution oC the variable Zk(t) depends on sorne cumulative eft'ect oC ail its earlier 

values, it should be replaced by sorne Cunction 1, weighted by a suitable Cactor g, and 

integrated over all previous times. Then the evolution equation is an integro-dift'erential 

equation: 

d~~t) = F (. .. , [t
oo 

g(t - t')/(zk(t'»dt', ..• ) . (1.2) 

The function 9 (the kemel of the equation) specifies the weight to be attached to the function 

f of Zk at each point of time in the pasto This is an example of a D.D.E with distributed 

delays. 

If there is a discrete time lag in the aetion of Zk on some other variable, we speak oC 

a dz!crete delay in the system (1.1) and in that case at least one oC the set of O.D.E's is 

amended by replacing, for example, F(""Zk(t), ... ) by F(""Zk(t - r), ... ). Then the 

equation of evolution 

(1.3) 

is a D.D.E with discrete delay. For illultrative purposes, we examine two specific areas oC 

investigation in which the use of delay dependent models has been particularly fruitful. The 

first one is the study oC nuclear reaetorl, and in which the goal il to write down the conditions 

on control parameters which guarantee the stability of the system. The second one is the 

modeling of physiological controlloops. In both of these areas, modela are often naturally 

framed as non-linear D.D.E's. 

Example 1.1: A NUCLEAR REACTOR DYNAMICS MODEL. 

In nuclear engineering, delay dift'erential equations with distributed delays have been 

used to describe the dynamics (and, in particular, to determine the stability conditions) of 

circulating-Cuel nuclear reaetors. Ergen [15] assumed that all the particles of the fuel spent 

the same time T in the reaetor and that power ext1:action wu proportional to the integral 

oC power P( t) over put residence times. This led to the following equation for the rate oC 

change oC temperature T(t), 

dT(t) [ 1 fT 1 --;u- = E P(t) - T Jo P(t - ~ )d~ (1.4) 

The relative increase in the power P Crom one generation of neutrons to the next is 
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assumed to be proportional to T, 

( 1.5) 

where -Q is the temperature coefficient of reactivity and T is the average life time oC one 

neutron generation. Since neutrons enter the readion only sorne time after the occurrence 

oC the fission which produced them, the reaetor power at time t depends on the history oC 

the readion. Thus equation (1.4) is modified to 

dP(t) -(l /3 /3100 

- = -=-T(t)P(t) - =P(t) + = pet - 3)g(3)d3 
dt T T Tu 

( 1.6) 

where the delay kernel g( .. ) indicates which fraction of the neutrons produced by a fission at 

time t - .. is available for power production at a time 3. The presence of the third term in 

(1.6), the so-called delayed term, is crucial in the reaetor stability problem [56]. 

Example 1.2: PHYSIOLOGICAL CONTROL PROCESSES. 

Historically, delay dependent models have been instrumental in the development oC con· 

trol theory. The dassical situation that a control theorist faces is to model and understand 

the dynamics of a remotely controlled variable. Often the interaction between the control· 

ling unit and the controlled process is such that time lags are significant. [For a list of such 

systems and a control theoretical approach to the treatment of delay dependent models, see 

[51]]. This paradigm is also applicable to many of the problems faeing those investigating 

the dynamics of physiological control processes. 

To clariCy the discussion, introduce a variable ~(t). Generically, in biological systems 

~(t) will vary to accommodate a changing internaI and/or external environment. In many 

situations, ~(t) is controlled remotely and an accurate model must take the delays into 

account. For example, the equation 

dz 
dt = -a~(t) + F(z(t - T) ( 1.7) 

with different nonlinearities F has been used to describe the oscillations of the pupil are a 

and the pupil eye reflex [47}, as a model for the human respiratory system [53, 54], and to 

describe the regulation of several processes in blood cell production [55]. In these different 

applications, the function F refleds the type of feedback present in the controlloop and the 
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variable z(t) represents, respectively, the area of the pupil, the concentration of CO2 in the 

blood stream, or the number of circulating blood cells. 

The use of delay equations is important to understand some clinically observed patholo­

gies which can be thought of as resulting from deregultdionl of these control mechanisms 

arising from shifts in the parametcr space of the process. For example an abnormal vari­

ability oC the number of red blood cells in the body (one of the symptoms of periodic 

autoimmune hemolytic anemia) can be understood as arising from a change in system lo­

cation in parameter space for equation (1.7), resulting in a bifurcation in its dynamics [54]. 

Periodic autoimmune hemolytic anemia is an example of what has been called a dynamical 

disease: a malfunction which is not necessarily the result of infection by a pathogen, but 

the result of a qualitative change in the dynamics of a physiological controlloop [54]. The 

causes of this dynamic change are then interpreted as changes in the parameters of the model 

un der consideration. This relatively new approach to physiological dynamics has proven to 

be useful for the investigation of several diseases, but the development of the theory and a 

more systematic use are still hampered by a lack of understanding of the behavior of delay 

difrerential equationr:. 

The difficulties inherent in the study of D.n.E dynamics partially stem from the ract that 

D.D.E's are infinite dimension al dynamicalsystems. Their phase-space is a normed function 

space because the initial condition is a function defined everywhere on an initial interval 

!-r,O] in the case of discrete delay situation, or on (-00,0] in the distributed delay case. 

The main motivation for this thesis is the paucity of insight and analytic results concerning 

the influence oC initial Cunctions on eventual D.D.E solution dynamics, and the absence of 

analytic tools with which to investigate D.D.E's statistically. 

1.2 Non-linear dynamics and D.D.E's. 

Systems of O.D.E's and maps (with either continuous or discrete time) have been studied 

extensively: the behavior of flows in finite dimensional spaces has been the subject of intense 

scrutiny 14, 11, 18,20, 40,46]. 

For investigators using D.D.E's as models for physicalsystems it is necessary to have sorne 
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information concerning the generic solution properties of these equations. Thus existence 

and stability of solutions, the efl'ects of changing initial conditions and the potential existence 

of chaotic dynamics are all important points to address. They remain largely unanswered 

but are crucial for the researcher dealing with delay dependent models. Before prot::eeding, 

we introduce some of the concepts of ilon-linear dynamics which will be used throughout the 

thesis. 

1.2.1 Introductory remarks. 

An important feature of nonlinear deterministic systems is that they can display very com­

plicated behavior. The essence of this complexity is twofold. 

1) It is frequently observed that the topology of the attracting manifold of a given non­

linear deterministic system changes as some control parameten are varied [20]. Changes 

in the topology can be viewed as qualitative changes in solution behavior. For example, a 

steady-state solution can suddenly become oscillatory, or a hitherto bounded solution can 

diverge to infinity. These qualitative changes in solution behavior are called bifurcations. 

Mathematically, the equations of motion are non-linear diff'erential equations and the bifur­

cations correspond to certain changes in the eigenvalues of the diff'erential operators near 

flxed points (or points in phase space at which all time derh'atives are zer(\). 

2) Simple non-linear deterministic systems can generate turbulent-like behavior (or de­

terministic chaos) which never repeats itself in the phase space. Deterministic chaos is 

observed in certain regions of parameter spa.ce a.nd May not be ubiquitous for a. given sys­

tem, I.e. many nonlinear systems can dis play a wide array of dynamie behavior ranging from 

steady state behavior to oscillations of varying complexity to turbulent like behavior as a 

control parameter is changed. In ract there are weIl known route! to chaos [72]. These routes 

usually consist of a sequence of bifurcations which le ad the sy5tem from simple motion to 

chaotic behavior. For example the period doubling route to chaos (Feigenbaum's scenario) 

is a sequence of doublings of the solution period lea.ding to chaos as a para.meter is chang~d 

[72]. 
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1.2.2 D.D.E's 

In studying D.D.E's concepts familiar to the non-linear dynamicist like fixed points, flows, 

basins of attraction must be adapted to the framework of {unctional analyais. This is because 

delay differential equations are in fact functional operators acting on the elements of a normed 

function space. For example, a D.D.E with discrete delays tran6form6 a function defined on 

an interval [jr, (j + l)rJ into another Cunction defined on [(j + l)r, (j + 2)r], j = 0, l,"', 

where r is the largest of the delays present. The fixed points of the D.D.E are invariant 

functions for the functional operator and the flows are flows oC functions. These concepts 

have been introduced [22] but the formwsm makes the resuIts available diflicult to access Cor 

many investigators likely to encounter D.D.E's in their research. In addition, the presence 

of basins oC attraction in function spaces and the structure oC these basin boundaries have 

apparently never been investigated. 

One way of dealing with these difficulties is to reduce the D.D.E's to systems euier to 

study, O.D.E's or mapa for example. Before illuatrating sorne of theae techniques, let us 

highlight the connection between sorne p.n.E models and a formulation in terms o{ delay 

differential equations. 

1.3 Initial-Boundary Value problems for hyperbolic 
P.D.E's: The link with D.D.E's. 

To now the Cocus has been on models {or which the dependence on put history is built 

an. That is to say, when the equations are \'t'ritten d~.wn, the way in which the system 

depends on its history is explicit. In sorne cases, it is possible to obtain a D.D.E {rom a 

reinterpretation of a prion non history-dependent models. General well-posed non-linear 

boundary value problems for hyperbolic equations are reducible to functional differential 

equations, some of which are D.D.E's. This procedure was first noted by A. A. Vitt in 1936 

[801, and apparently independently by Miranker [58] and Cooke et al. [12] while studying 

the dynamics of transmission lines terminated by general circuit elements. The method is 

bued on the observation that a hyperbolic P.D.E can be written as set of first or der p.n.E's, 

( which can in turn be wriUen as a set oC O.D.E's via the introduction of the directional (or 
'~ 

8 



totaQ derivative. Be{ore proceeding {urther we review the concept o{ a hyperbolic equation, 

and the associated characteridlc curves. 

The normal form {or a hyperbolic P.D.E as defined by Morse and Feshbach [60] is 

8'l"p a1/1 81/1 
a)"8p, = p a).. + Q 8p, + R"p (1.8) 

where P, Q, Rare {unctions o{ ).. and IL. It is easily shown [60J that the wave equation 

a21/1 1 a2"p 
----=0 
a:t2 c2 àt2 

( 1.9) 

is a hyperbolic equation. If ,p(z,t) is a scalar, it can also be shown that any hyperbolic 

equation can be written in the matrix form 

8U au 
A-+B-+CU=O 

at a:t 
(1.10) 

where A, B, C, are 2 x 2 matrices whose entries are {unctions of z and t, and U = U(:t,t). 

In addition there exists a vector V = V( z, t) such that 

T T II(Z, t)V A = p(z, t)V B. (LB) 

Il and pare not both zero and V T is the transpose o{ V. Equation (1.10) can there{ore be 

written 

v T 
A (p! + Il ! ) U + P V T 

CU = o. ( 1.12) 

The curve C, parametrized by ~ and defined by 

C:{ ~= Il 
t= P 

where ()=~, 
d" 

(1.13) 

is called a characteri~tic curve, or characten!tic {or equation (1.10). Defining De. to be the 

direction al derivative aIong C 

(1.14) 

we can write (1.12) 

V T ADc.(U) + pVTCU = 0, (1.15) 

and the equation loolc~ like a set of O.D.E's. For a given hyperbolic P.D.E the information 

about the solutions tlows &long the families of characteristic curves. Not.; that since U is 
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2 x 2 in our case, there are two families of characteristic turves, but the situatiGia is exactly 

the same if U is 1 x 1 [67]. 

Now consider the following initial-boundary value problem: 

Ut + M(z, t)uz = </1(z, t), where z E [0,1] and t > 0, 

&long with 

M(z,t) = ( II(Oz,t) ° ) 
h(z, t) , 

The initial conditions are given by 

u(z,O) = uo{z), 

(1.16) 

(1.17) 

and the boundary conditions are general integro-differential conditions which can be formally 

written 

(1.18) 

where i = 1,2, j = 1,2, k = 1,0,-1 and a = O,lso tha.t the argument of the boundary 

conditions B. and B2 in (1.18) is a contraction of 12 terms (for each i, 3 possible k's, for 

each (i, k), 2 possible a's). We define 

(1.19) 

the differential term in the boundary condition, 

(1)( ) _ 8uj(a, t) 
u· a,t - , 

1 dt 
(1.20) 

and the integr&l term, 

U~-l) = lot uia, t')dt'. (1.21) 

The functions B. and B2 are given, as is the vector function uo( z). The requirement that q, 
be independent of u is essential at this point. Once the method is developed it is easy to 

see how more general situations can be treated, and we shall come back to this point at the 

end of the section. 

The characteristics for (1.16) form two families of curves (see Figure 1.1) 

dz 1 dz 1 
Cl : dt = /1 and [,2: dt = 12' (1.22) 
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...... 

t 

UI (0, t) 

o 1 
x 

Figure 1.1: Two possible shapes for the characteristic curves of system (1.16). 

We assume that through each point (z,t) E [0,1] x R,+ there are two characteristics: CI 

with positive slope and l2 with negative slope. Now introduce the directional derivative 

8 8 
Di = 8t +1,(z,t)8z (i= 1,2) (1.23) 

along the characteristic l,. Equation (1.16) therefore takes the form 

D,u, = 4J, (i = 1,2). ( 1.24) 

A characteristic through a point (0, t) will intersed the boundary z - 1 at a point 

(l,t + TI(t» where TI(t) can be found by integrating the relation dz/dt = 11- 1
• Similarly a 

characteristic through the point (1, i) will intersed the boundary z = ° at a point (0, i+ T2(Î» 

where now T2(i) depends only on /2 defined in (1.22) 

Integration of DI 'UI = 4J1 along the characteristic c'I from a point (0, t) to a point (1, TI (t)) 

yields 

l '+/d l ) --
ul(l,t+TI(t»=UI(O,t)+ 1 4J(i,t)dt, ( 1.25) 

where the integral is a line integral along lI' 
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Similarly, integration of D2U2 = 4>2 along C2, gives obtain, 

(1.26) 

(Remember that C2 has a negative slope so that T2 < O.) We have equations linking 

u~")(O,t) and u~U)(I,t) and we can now obtain similar equalities for u~±})(O,t) and u~±I)(I,t) 

by difterentiating (or integrating) equations (1.25) and (1.26). To simplify, define 

I HT1(1) --
Ol(t) =, 4JI(i,t)dt, 

and 

Furthermore if 

st,raightforward difterentiation and integration of equation (1.25) yields, 

UI(O,t) = YI(t + Tt(t» - Ol(t), 

U~t)(O, t) = [1 + T:<t)]yat + TI(t» - nat), 

u1-1)(0,t) = l' YI(" + Tl (.s»d" - L' n}( .. )d .. 

for the fint equation, and 

U2(O,t) = Y2(t + T2(t» + 02(t), 

u~t)(O,t) = [1 + T;(t)]y;(t + T2(t» - n;(t), 

U~-l)(O,t) = l' Y2(" + T2(.s»d .. - L' ih( .. )d .. 

for the second equation of system (1.24). 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

(1.31) 

If we substitute these expressions in relation (L 18) for the houndary conditions, we ohtain 

the foUowing system of D.D.E's: 
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Y2(t)'Y2(t + T2(t»,y;(t),y;(t + T2(t)), l' Y2( .. )d .. , l' 112(" + T2( .. ))d .. ,t) = 0 (1.32) 

where (t ~ 0), (i = 1,2). Therefore, a solution of (1.16), (1.17) and (1.18) yields a solution 

of (1.32). 

We now show the converse (a solution of (1.32) is a solution 0((1.16), (1.17) and (1.18» to 

demonstrate the complete equivalence between the original initial-boundary value problem 

for the P.D.E and the initial value problem for the D.D.E. 

Suppose that Yt(t) and Y2(t) sitisfy (1.32). Define Ut(l,t) and U2(0,t) by (1.29) for t > O. 

To define, Ut(z,t) for 0 ~ z ~ 1, integrate (1.24) along the characteristic CIt and proceed 

similarly for the definition of U2(Z, t) uaing both cases the known values of UI (1, t) and U2(0, t). 

Clearly, (1.25) and (1.26) are then satisfied and 50 are (1.30) and (1.31). Hence (1.32) leads 

at once to (1.18) and (1.16) is satisfied because (1.24) is valid. Thus every solution of (1.32) 

generates in a unique way a solution of (1.16) with boundary conditions (1.18)! In addition, 

the initial condition (1.17) yields, vIa the integration along characteristics, two values yJ(t) 

and Yi(t) which are, in general, appropriate initial values for the D.D.E [12J. 

The original equation (1.16) is linear but general non-linear boundary conditions will 

make the system of D.D.E's (1.32) non-linear. Because the dynamics of the two systems are 

exactly the same, one should not be surprised to observe sensitive dependence on the initial 

conditions (or other types of behaviors typically displayed by non-linear systems) arise in 

equation (1.16) which is linear. 

In conclusion there is a general method for lin king mixed problema formulated as hyper­

bolic p.n.E's and initial value problems for history dependent modela. Known theory and 

techniques for either kind of problem can be applied to the other. 

1.4 Distributed delays: Approximating D.D.E's. 

The resuIts of the preceding section give us an explicit connection between hyperbolic P.D.E's 

and delay diff'erential equations. We now consider the transformation of a D.D.E with 

distributed delays into ordinary or partial diff'erential equa.tions. It is worth emphasizing 

tbis possibility because models are oCt en framed as partial diff'erential equations, and the 

possibilities of (occasionally simpler) alternate formulations are frequently ignored. 
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Conditions for the reducibility of a D.D.E to a system of ordinary dift'erential equations 

will first be examined. We shall then give a general statement concerning the equivalence 

between D.D.E's and P.D.E's. 

Con si der an integro-dift'erential system of the Corm, 

dz l' - = A(z,t) + K(z(u),t,u)du 
dt -oc 

with the initial conditions 

z(t) - cp(t) Cor t < 0 

A(z,t) - Au(cp,t) Cor t < 0 

[~ K(cp(u),O,u) du - 10 

(1.33) 

Theorem 1.4.1 (Vogel [81]): In equation (1.33), let K( z(u), t, u) be a given kernel diHerentiable 

in z and t. If there are (unctions lo( t), Il (t), ... '/"-1 (t) and W( t, u) such that 

OJIK OK Op-I K 
-0 (z, t, u) :::: /uK(z, t,11.) + /1-0 (z, t, u) + ... + Ip-l 8 1 (z, t,11.) + W(t, 11.), (1.34) 

tP t t"-

then the solution z(t) o( (1.33) satislies a p + I-dimensional system o( O.D.E's. 

This result is applicable to systems oC the form: 

with initial conditions 

dz l' -d :::: A(z,t) + H(z(u»g(t - u)du, 
t -oc 

z(t) - cp(t) Cor t < 0 

A(z, t) - Ao( cp, t) Cor t < 0 1: H(cp(u»g( -11.) du - 10 

(1.35) 

which are examples oC Volten-G systems [49, 82]. (Note that equation (1.6) for the power 

available from a circulating-fuel nuclear reaetor belongs to this class of equation, as does the 

population dynamics model considered in Example 1.3). For equation (1.35), the condition 

Cor the reducibility oC the integro-difFerential equation to a system of a.D.E's is that the 

delay kernel 9 satisfies, 

(1.36) 
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where the a, '5 are constants. In other words, the condition on the kernel is that it he a sum 

of exponentials multiplied by polynomials of order at most p. 

There are even more fundllmental. res1l1ts relating D.D.E's to partial differeniial equations. 

Theorem 1.4.2 (Fargue [16]): I!thekernel K(:c(u),t,u)is such that (1.33) possesses piecewise 

diHerentiable (CI) solutions, asymptotically bounded above by bexp(n 1 t Ik) with b, n, k, 

E R, then (1.33) is equivalent to t11e system, 

d:c 
dt 

8p 8p 
-..L_ 

- F(:c,t) + 100 

K(p(a,t),t,t - a)da, 

6(a)z(t), at 1 8a -

6 being the usual Dirac delta function, and p(a,t) a piecewise CI function. 

The proof of the theorem is hased on the {act that it is possible to replace the trajectory 

of the system up to time t by a field (or function) p which is defined for licalar systems as 

the solution of a P.D.E in one dimension. If no memory is present (the relevant information 

is the state of the system at time t), the field can he chosen to be 

p(a,t) = H(a)z(t - a), 

where H( a) is the Heaviside function. Other fields can be introduced depending on the 

properties of the desired final system. The procedure is not phY!lleal in the sense that the 

fit"ld p has no direct (physical) meaning sinee (1.33) can represent quite varied physical 

situations. However, it allows a new perspective on hereditary systems: 

Sy!ltem.5 wath memory can be anterpreted a.5 bemg non-local (or eztended). Thu allow!I the 

introductIon of a field whlch i.5 now mtMmle to the .5y.5tem, and the vanable (or property) 

whieh .5ati.5fie.5 the D.D.E i.5 a functional of thu field dependang on lb value at each pomt m 

the .5y.5tem. 

These ideas are rather general., and their effectiveness can be illustrated with a simple 

example taken from the study of population dynamics. 

Example 1.3: REDUCTION OF A VOLTERRA TYPE D.D.E TO A SET OF O.D.E's 

Let us suppose the D.D.E is of the form 

~i = F(z(t),y(t» where y(t) = f'oc g(t - u)z(u)du. 
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with initial conditions 

z(t) = !p(t) for t < 0 

[~ cp(u)g( -11.) du = lu 

where, again, 9 is the delay kerm~l. 

Data on insect maturation times can be interpreted in terms of a delay kernel. This 

kerne~ can then be used in a distributed delay difFerential equation, itself obtained from an 

age-structured model formulated as a P.D.E [5J. For certain species of flies the kernel can 

be determined with sufficient precision and fitted to a shifted gamma distribution. 

Suppose that 9 is the gamma distribution 

Gm() 4m+l m -aq 9 = q == --q e , 
a ml a,m~ 0 (1.38) 

where m is an integer. This kernel has a maximum at q = ~ 50 the average delay is given 

by 
_ JoOCJ qG;:'(q)dq m + 1 
T- ---- J:' G:;,(q)dp - 4 • 

(1.39) 

Note that 

lim G::'(q) = 5(q - r) 
m,Q_OIO 

(1.40) 
rconat 

50 that in this limit 

y(t) = z(t - f). (1.41) 

Similarly, we have the recursion relation, 

dG;:'(q - 11.) == {Gm-1( _ ) _ Gm( _ )} dq 4 a qUa q 11. • (1.42) 

We now introduce 

zo(t) == z(t) 

z.(t) == l'OCJ z(u)G:- 1 (t - u)du i = 1, ... , m + 1. (1.43) 

The equations satisfied by the z. '5 are obtained by computing !lJt (using Leibniz 's rule) and 

the recursion relation (1.42). The result is 

dzo dt = F(zu, zm+d 

dz, ( dt = 4(Z'_1 - z.) i = 1,2,··· ,m+ 1, (1.44) 
, 
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where the first equation follows from Zm+l (t) = y(t). Therefore the original integro-differential 

equation is strictly equivalent to the system (1.44) of (m + 2) D.D.E's, all of which are linear 

except for the first one (because it contains F). 

IC the limit (1.40) is taken, the original equation becomes a D.D.E with discrete delay 

by virtue of equation (1.41), and it is equivalent to an infinite set of linear a.D.E's plus one 

non-linear O.D.E. 

The initial condition of (1.37) is infinite-dimensional. The initial condition of the equiv­

aIent system of D.D.E's is finite dimensional (in the case of distributed delays). The equiv­

alence between the two systems holds, although there is an apparent dimension difference 

since the initial condition for the integro-differential equation is infinite dimension al but the 

solution only depends on m + 2 integrals: 

( 1.45) 

z.e. the initial conditions for the set of O.D.E's. Here c,o(t), t E (-00,0] is the initial function 

for (1.37). 

This is an example of the redundancy of the information contained in an initial condition. 

Using this redundancy whenever possible is the basis of a technique of reduction of the study 

of the dynamics of some D.D.E's to the study of so called shift operators which will be 

presented in the next section (cf. Section 1.5.2). 

1.5 Discrete delays: Production-Destruction models. 

\Vhen the kernel 9 is a Dirac delta function, the dependence on past history is focused around 

a single instant in time and the dynamics are described by a D.D.E with discrete delays. 

Suppose the rate of change of a quantity z(t) is e~ual to the difference between a production 

rate P and a destruction rate D, 
dz 
- =P- D. 
dt 

( 1.46) 

Aiso assume that the destruction rate D is proportional to ;c(t) while the production rate 

P, denoted by F from now on depends on the delayed variable ;c( t - T): 

d;c 
... "- dt = -a;c(t) + F(;c(t - T» a,T > 0 (1.47) 
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Nesative Ceedback: Positive Ceedback: Mixed feedback: 

F(x) F(x) F(I:) 

x x x 

Figure 1.2: Example of thne pOlsible types of feedback. 

or 
dz P 

II-
d 

+ z(t) = F(z(t - r» where Il = Q-l and F = - (1.48) 
t Q 

This equation has been uled to inveltigate the dynamics of linear arrays of tunnel diodes, 

electro-optical biltable devicel, high frequency generators [10, 13, 14, 23, 34]. It hu been 

applied in mathematical biology to study the regulation of red blood cell populations [55], 

respiratory control circuits [55], and neural controlloops [47]. 

1'he Cundion F in (1.48) ia the jeedbGcJ: fundion. lb charaderistics determine the type 

oC feedback present and the dynamics of (1.48). 

• When Fia monotone decreuing, the equation models a negative feedback loop. 

• When F is monotone increuing, the equation modela a positive feedbuck loop. 

• In general F is not monotone and the maximal production rate occura at aome intermediate 

values oC the variable. In such cases, the equation modela a mixed Ceedback loop. 

In spite 01 its simple form, equation (1.48) can diaplay a wide array of behaviors. lb 

solutions can either be stationary, periodic with arbitrary eomplexity, or chaotie [14] and we 

are Car from a complete understanding of its dynamies. 

1.5.1 Singular perturbation of a diff'erence equation. 

A natural approach to equation (1.48) is to consider it as 8. singular perturbation of the 

dift'erence equation with continuous argument 

z(t) = F(z(t - r)), t E R+ (1.49) 
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along with the consistency condition 

lim !pet) = F(!p(-I» = z(O), 
t-u-

(1.50) 

where «p(t), the initial condition, is a function defined on [-1,0]. From now on, the delay is 

taken to be 1. This can be done without loss of generality by scaling the time t (or replacing 

t by t' = tlT in the above D.D.E). 

A series of papers by Ivanov and Sharkovkil [35] examines the connections between the 

dynamics of (1.48), those of (1.49) and those of the one-dimensional map 

F: z t--+ F(z). (1.51 ) 

The asymptotic behavior of solutions of (1.49) is linked to the dynamics of the map 

(1.51). To study the solutions of (1.49), one {olIows the continuum of trajectories of the 

discrete map {z, 1 z, = F(z,-d} with Zu E {z = !pet) 1 t E [-l,On. The nature of the 

solutions (constant, periodic or chaotic) is related to the complexity of the iteration sequence 

{z, 1 :1:, = F(:I:'-l)}' :l:u E R. For example a stable fixed point of the map corresponds to an 

attractive steady state solution for the dift'erence equation. There is a formaI correspondence 

between periodic iteration sequences and limit cycles in the continuous time system [35J. 

The next question to address is: "to what extent the results obtained by studying the 

diff'erence equation (1.49) hold for the D.D.E?" The exact influences of the singular per­

turbation on a difl'erence equation are not fully understood but the following results are a 

first step towards a complete understanding of equation (1.48). They are valid if the map F 

has an invariant interval 1 = [a, b] ç [0,1] and if the non-linearity F in (1.48) is piecewise 

continuous. 

Definition 1.1 The rnap F is said to possess an invariant interval 1 = [4,61 if and only if 

"IzEl, F(z)EI .• 

Notation: C(A, B) = {f : J(x) is continuous and bounded above and below by the maximum 

and the minimum of B, for a.ll x in A} with the norm, Il J 11= sup{1 f(x) 1 : x in A}. The 

vec:tor x stands for a point (Zl!' .. , Zn) in the n-dimensional space A. C(A, B) is therefore a 

Banach space. • 
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Definition 1.2 z~(t) denotes the solution of (1.48) with the initial condition rp E X, = 

C(l-l,O],I). Similarly, zrp(t) denotes the solution of (1.49) with initial function rp EX,. 

Definition 1.3 z· is an attracting fixed point of the map F with a basin of attraction Jo if 

(1.52) 

Further, let .l'Jo = C([-l,O],Jo) •• 

Theorem 1.5.1 (Ivanov and Sharkovskil [35]): 

For any " > ° and tp E .l'Jo' lim,_oo z~(t) = Z· .• 

In other words asymptotically constant solutions persist under singular perturbations of 

(1.49). Theorem 1.5.1 can be extended to the case of an attracting set, an (dtrador of the 

rnapF. 

Definition 1.4 10 is an invariant, attracting set for the map F with basin of attraction Jo if 

lim dist(F",lo) --+ ° for ail z E Jo. 
n-oo 

where dist(z,lo) denotes the distance between a point z (E R) and a given, but arbitrary 

point belonging to the interval Ill' • 

Therefore, the basin of attraction is that region of phase space such that Any trajectory 

initially belonging to it will eventually reach the invariant set. In other words, a given 

attracting invariant set will attract all trajectories originating in a region of phase space. 

This region is the basin of att.raction. It should be noted that the structure of basins 

of attraction is in general quite complicated. In particular the boundary separating two 

neighbouring basins of attractions can possess a self-similar structure (see [8] and Section 

3.3.2). 

Theorem 1.5.2 (lvanov and Sharkovskil [35]): For ~1Dy" > ° and tp E C([-l,O],Ju), 

inf{Iu} ~ lim inf z~(t) ::; lim sup z~(t) ::; sup{lu} .• ,-oc ,-oc 
This theorem tells us that when the structure of the attracting set lu of the map F is 

complicated [i. e. it is not sim ply a point, but perhaps a set of points of rneuure zero (e.g. 

a Cantor set), or a full interval], then this set also attracts solutions z~(t) of the original 

( D.D.E. This is a generalization of Theorem 1.5.1 which states the persistence of an attractive 
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fixed point under the singular perturbation. Theorem 1.5.2 says that attracting sets for the 

map are also attracting sets for the D.D.E. 

In addition, it is possible to show that closeness between solutions of (1.48) and (1.49) 

holds uniformly on finite intervaIs [0, i] with i > 0, for initiaI conditions cp satisfying the 

consistency requirement (1.51) [35]. This is in agreement with the intuition that dose initial 

data V' and "" generate solutions z", and z~ which are close within at least a finite time 

interval, provided Il is smalI enough. 

To make this precise, introduce the subset of initial funetions X;l = {cp E X;l 1 cp(O) = 

F(I(J( -1))}. Then we have 

Theorem 1.5.3 (Ivanov and Sharkovskir [35]) For any cp E xy and positive i and € there exist 

positive 6 and "u depending on i, e and cp such that 

" z", - z~ "[O,ij ~ e for all 0 ~ Il ~ 110 

provided " V' - .,p 11[-1,0] ~ 6 and .,p E XI· • 

These results (and others concerning, for example, the persistency of repelling sets) show 

the usefulness of reducing the D.D.E ta a lower dimensional dynamicaI system when possible. 

Important qualitative information about the solutions of the functional differential equation 

can then be obtained with relatively little effort. However, care should be taken when trying 

to interpret them. In sorne simple cases the singular term II( dz / dt) may yield either a 

simplification or a complexification of the behavior of the difference equation: the attraetor 

of the difference equation consists of periodic funetions, while that of the D.D.E represents 

chaotic solutions or vlce-ver.9a. 

1.5.2 The paradigm equation: Piecewise constant non-Iinearities 
(PCNL). 

Another set of techniques developed ta study the dynamics of equation (1.48) is the Ideal­

ization of the {eedback {unction to make the equation analytically solvable. To understand 

the procedure, consider the following D.D.E: 

dz 
dt = -az(t) + F(zr) where Zr == z(t - T), (1.53 ) 
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with 

F 
_ I3z': 
- , 

1 + :r.~ 
a smooth humped function with a unique maximum located at 

( 
m )(l/n) 

zmtJ% = n > m > 1. 
n-m 

When the appropriate limit n, m --+ 00 is taken, F becomes piecewise constant: 

li F() _ {O if Z ~ [a, bl 
n .... ~ Z - e if Z E [a, bl b(m, n) > a(m, n) > O. 

(1.54) 

(1.55) 

(1.56) 

Equation (1.53), in conjunction to (1.56) is analytically solvable. Its lolutions are piecewile 

exponential. Earlier work lI] shows that studying the equation with PONL sometimes yields 

results applicable to the continuoui feedback eue. 

In fad let us state an important theorem by Babai [1]linking the dynamics of an equation 

like (1.53) with a discontinuous non-linearity (1.56) to those of the equation 

dz 
dt = -az(t) + Fn(z(t - T», 

with the continuous non-linearity 

if e < a - ~ or e > b + ~ 
if a + ! < e < b - ! 

'f ? e ' 1 a--< <a+-n n 
if b - ! < e < b + !. n n 

(1.57) 

(1.58) 

In equation (1.58), limn_oc Fn = F. The solution of (1.53) with (1.56) is z(t) and that of 

(1.57) with (1.58) is zn(t). 

Theorem 1.5.4 (Babai [1]): Let 'P(t) be a continuous, positive function. Further let 

Zn(t - r) = z(t - T) = 'P(t) "it E [O,r], 

where z(t) and zn(t) satisly (1.53) - (1.56) and (1.57) - (1.58) respectively. Then as n --+ 00, 

Zn converges unilormly onto z in the time interval [0, il, 'tIi E R+ .• 

This general reluit draws the connection between idealized systems and real ones and is 

( an important motivation for the work performed on integrable systems. 

" 
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a) The paradigm equation: 

The core of this thesis is the investigation oC the dynamies of a D.D.E with a pieeewise 

constant non-linearity emulating a mixed feedhack situation 

(1.59) 

and c > 0, 82 > 8. > O. This "box" shaped nonlinearity is the Idealazation of a smooth hump, 

eharacteristic of mixed feedbaek control funetions. In general, with a smooth function (1.53) 

is not analytically integrahle. The PCNL makes analytic integrat.ion straightforward, and 

the solutions are piecewise exponential inereasing or decreasing depending on whether the 

delayed variable is eontained in the interval [81t 82]: 

(1.60) 

where l' = cio is the asymptote for the rising exponential. 

b) PCNL: reducing the D.D.E to a shift operator. 

When the D.D.E's are integrable, if the information contained in the initial function is 

redundant in certain parameter ranges then it is possible to redur.e the equations to discrete 

time maps whose dynamics are closely tied to those of the D.D.E's. 

One way to understand this is to see that the complete solution of equation (1.59) can 

he obtained by manipulating the extrema and the times at which the solution crosses either 

81 or 82, (This property ie used in Chapter 3 to construct the analytic integration scheme 

mentioned earlier). Similarly, only a {ew points need he specified in the initial {undion 

to guarantee the uniqueness of the solution. The procedure is illustrated here with a one 

dimension al map ohtained {rom (1.59). The details of the various derivations can be round 

in [24]. The idea is to construct a transformation T mapping a time interval into a point 

(which eompletely characterizes the interval), and then to Collow the evolution of this point 

under the action of a diffeomorphism. The sequence of points obtained by iterating the map 

completely describes the solution of the D.D.E. 
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To underatand the derivation it is useful to realize that most of the information contained 

in a time interval of length 1 is redundant. To describe completely the solution on su ch an 

interval one needs to know the following: 

1. When the solution crossed the thresholds 61 and 62 within the last delay. 

2. Which region of phase-space the solution entered at these crossing times (i. e. whether 

it entered or exited the interval [61,62]), 

R~stricting our considerations to situations in which the solution croises a given threlhold 

at most once within a given delay (excluding the endpoints of the interval), only one variable 

is necessary to describe the solution on a time interval of length 1. 

Let us define a set S of initial functions r,o(t), defined for t E [-1,0], on which the 

transformation Twill act: 

Definition 1.5 r,o E S if and only ifthere exists a w such thaHor all t E [-1, -1 +w), cp(t) > 617 

for all t E [-1 + W, 0), cp(t) < 6) and r,o(O) = 81 , The solution il completely determined by W 

on (0,1]. We label it zw(t). 

It is noted here without proof that there exists a unique WI E [0,1) such that for all 

W < WI the solution will tend to the lower asymptote without ever crolsing 61 and a unique 

W:z such that if W > W2 the 1I01ution will tend to the upper asymptote and crOll1 82 before 

crossing 81, The proof can be found in an der Heiden and Mackey [24] 

Definition 1.6 Let c, label the i'Ia 1I0lution of zw(t) = 1 for t > 0 (i.e. the instant at which 

z",(t) crosses the bottom threshold for the i'" time). Also let e, denote the i'" extremum of 

zw(t). 

Without loss of generality we scale F (see Appendix A for details) such that 

F(() _ {c if' E [l,h], 
- 0 if,~[l,h]. 

Suppose that the parameters satisfy 

where m is the positivt. root of the quadratic 
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Figure 1.3: A typical solution 0/ equation (1.59) with a = 2, C = 5, (JI = l, (J2 = 2. Note 
that the initial/unction belongs to the set S introduced in Definition 1.4. 

Both of these conditions are necessary to ensure that zw(t) does not cross 1 more than once 

within a delay, and that el < b. Since :tw(t) is piecewise exponential, it is straightforward to 

calculate el, CI' e2, C2' If '" ES, then el is a maximum if i is odd, and it is a minimum if i 

lS even: 

(1) -a(l-w) e2 = :tw = el e , 

1 [1-1] C2 = - -ln -- + 1. 
Q e2-1 

(1.64 ) 

(1.65 ) 

(1.66) 

(1.67) 

From Figure 1.3 it is clear that the solution on the interval ~2 = [C2 _. l, C2 J belongs to 

S. If we now go back to the original interval ~ 1 in w hi ch t E [-1,0] the time spent above 

the first threshold 81 = 1 is w. In ~2 , the time spent above the same threshold is now 

Cl - C2 + 1. Formally, 

T(~.) = w 

T( ~2) = Cl - C2 + 1 
(1.68) 
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F(w) 

o 

Figure 1.4: The one dimensional map F wllen the parameters in equation (1.59) are sucll 
tllat its solution is tlle one displayed in Figure 1.3. 

and this information is enough to describe the evolution of the lolution ~w(t) for all t > o. 
In the mathematics literature, T is known as a !lhift opertJtor. It il a functional operator, 

but in our example (equation (1.59)), T ~an be written u a one dimenlional map because 

the functions on which it operates are delcribed by the single parameter w. 

This one-dimensional map r of the unit interval onto itself, 

F(w) = Cl - Cz + 1 = w + ~ {ln[~w(w)l + ln [zw~;): 'Y l} (1.69) 

is a discrete-time system which de8cribes the evolution of zw( t) for ail t > o. Note tha.t zw( w) 

and zu.(l) are given by equationl (1.64) and (1.66) respectively. 

If F(w) > 1, the solution esca.pes to (J2. In the limplelt cue (illultrated in Figure 1.3) 

it spends more than one delay a.bove 9'}. and il then "reinjected" towardl (JI = 1. Because 

the solution remains ab ove 92 longer than one delay, it IOle!l memory of itl behaviour in the 

neighborhood of (JI. As a result, on ~3 = [Cs - 1, Ct;] the time spent abo\'e BI is independent 

of the wa.y the solution rea.ched (J2. In other words, with this choice of pa.rameters, the 

transformation F is conltar.t on the interval (w2,lJ. Figure 1.4 Ihow~ an example of a 

transformation F derived with a set of pa.rameters for which the solution looks like the one 

displayed in Figure (1.3). 

The dynamici of the map are directly related to the behaviour of the original D.D.E. For 

exa.mple, a fixed point of the ma.p corresponds to a. periodic solution of the equation, and 

the linear stability analysis around the fixed point de termines the local sta.bility of the cor-

( responding limit cycle. The presence of chaotic orbits in the map would imply the existence 

26 



of chaotic solutions of the continuous time system. Similarly, the basins of attraction of the 

map charaderize some of the basins of attraction in the infinite dimension al phase space of 

the delay difl'erential equation. 

ln regions of parameter space where the solutions cross a given threshold more than once 

within a delay, the reduction to a dis crete time system is in principle possible. However, 

the dimension of the map increases with the number of variables necessary to describe the 

solution on an interval of length T. In practice, this approach seems to not be efficient for the 

characterization of the more complex solutions of equation (1.59). Indeed, in sorne regions 

oC parameter space, the complexity of the dynamicl makes a deterministic investigation not 

only arduous but perhaps meaningless. 

1.6 Summary. 

In this introductory chapter, we presented a formulation of history dependent models in 

terms of functional difl'erential equations. Sorne important ideas of non-linear dynamics and 

their relevance to the study oC non-linear delay difl'erential equations were then explored in 

Section 1.2. They include the concept of deterministic chaos and the sensitive dependence 

displayed by many non-linear equations on changes of their initial conditions. 

ln Sections 1.3 and 1.4 the important connection between hereditary systems and partial 

diff'erential equations was then highlighted. It is shown that for a large class of systems, 

results existing concerning one formulation can be applied to the study of the other. 

Finally, in Section 1.5, the approximation oC D.D.E's by "simpler" dynamical systems, 

difl'erence equations and finite dimension al maps was introduced for a claIS of non-linear 

D.D.E's with dis crete delays modeling production-destruction proceues. 

In the following chapter, we describe an electronic circuit aceurately modeled by such 

an equation in order to get an insight into the dynamies of a paradigm system {or delayed 

mixed feedback mechanisms. 

27 



( 

( 

Chapter 2 

Analog simulation of a D.D.E. 

This chapter examines the dynamics of an electronic ana!og computer constructed to simu­

late a large dus of systems described by the production destruction models introduced in 

Section 1.5. The details of the design are specifie to the D.D.E under consideration. Cir­

cuit performance will be evaluated here for the simulation of an integrable delay difFerentia! 

equation introduced in Seetion 2.1. 

Analog simul,tion might appear an archaic way to investigate the behavior of delay 

difFerential equations. As we have seen, severa! methods to study these equations analytically 

and numerically already exist. However,only simple equations (absence of noise, constant 

initial fURetions, simple non-linearities) have been studied so far. 

The ration ale for using an analog computer lies in the faet that we are no longer working 

with a model, but with a physical system described accurately by a chosen delay difFerential 

equation. There are several advantages to the use of analog simulations for the study of 

hereditary systems. 

1) The real time integration allows rapid explorations of parameter space: changing a 

parameter is obtained by changing the value of a potentiometer. 

2) Once the circuit is oscillating it is straightforward to investigate the influence of con­

tinuous parameter changes on solution behavior. 

3) In addition, the presence of continuo us electrical signals in the circuit avoids sorne of 

problems associated with specifying non constant initial funetions since at equilibrium, the 

signal is an initial condition to itself, whether the parameters are fixed or in the process of 
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being varied continuously. 

In this chapter, the circuit design is first presented in Section 2.1 along with a stage 

by stage description of its com?onents. The attention is restricted to the simulation of 

the production-destruction models presented in Section 1.5 A detailed derivation of the 

equation simulated by the electronic analog computer is given in Section 2.2 and it is shown 

that this equation is equivalent to equation (2.3). In Section 2.3 the performance of the 

analog computer is evaluated from comparison with sorne digital simulations of equation 

(2.3). Finally, Section 2.4 explores the dependence of solution behavior on changes in the 

initial function. 

2.1 Design of the analog computer. 

Wç restrict our attention to equations introduced in Section 1.5 of the form 

dz 
dt = -az(t) + F(z(t - T». (2.1 ) 

The computer designed to study (2.1) is a closed electronic loop. The voltage z(t) is moni­

tored at a given point in the loop. The idea behind the design is the following. If an electrical 

signal is to exist in the loop, it has to satisfy the constraints imposed by the different stages 

of the circuit. These constraints can be chosen so that the only signal possibly remaining is 

such that the voltagf! z(t) satisfies the delay differential equation (2.1). 

To simulate equation (2.1), the signal present in the circuit must be difl'erentiated by one 

of the components. This is undesirable for two reaSOllS. 

1) Electronic difFerentiators are inherently unstable. They have a tendency to drift in 

time, due to charge build-ups on one of the capacitors present at a difFerentiating stage. 

2) In addition, if a signal varit!. rapidly, its time derivative will be large. This means that 

there will be a voltage surge past the difl'erentiator in the loop. Most electronic components 

ai'e vuln~rable to these surges. 

To improve performance it is desirable to avoid difFerentiators in the analog computer. 

This can be done by rewriting equation (2.1) as an integral equation, 

z(t) = I.:r-az(~) + F(Z(3 - r)]d3 + z(tu) where {! ~ :~. (2.2) 
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The circuit is then built to simulate this equation. It must be able to ampliCy the present 

signal z( t) by a Cactor oC a, delay it and then transCorm it according to the desired F, sum 

the resulting signals, integrate the sum and then equate the result of the integration with 

the initial !lignaI. These operations are represented schematically in Figure 2.1. 

At this point, we need to know what the exact production rate Fis in order to describe 

the design in detail. Thus we focus attention on a simple system given by 

dz () F( ( » h F() {c if Zr E [8I! 82] 

dt 
= -oz t + z t - T, W ere ZT = 0 th . o erWlSe 

(2.3) 

with Q > O. The production rate Fis piecewise constant and the destruction rate is propor­

tional to the present signal z( t) 50 that the solution is a sequence oC piecewise exponential 

segments, alternatively increasing and decreuing (see equation (1.60) for an analytic expres­

sion of the solutions of (2.3) when T = 1). 

The analog computer is built to simulate equation (2.3) for severa! reasons. 

1) The availability of analytic results for this system make it an ideal candidate because 

the performance oC the anaJog computer can be calibrated with analytic results rather than 

with numerical ones. 

2) In addition, it is hoped that the analytic investigation of new types oC behaviors 

observed with the electronic circuit will be Cacilitated by the integrability of equation (2.1). It 

seems that there is little point in simulating electronically a D.D.E which has been integrated 

numerically and for which analytic results appear to be out of reach. 

The proper calibration of the various components and the precise delimitation of their 

range oC applicability is necessary Cor a proper interpretation of the data. To understand 

the behavior of the analog electronic oscillator, it is crucial to know what the eft'ect of each 

stage is on its input signal. 

2.1.1 Stage by stage description of the circuit. 

Most components of the oscillator are simple applications of operational amplifier technology. 

We begin with the description of these elements. 

a) Op-amp based components. 
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Figure 2.1: Block diagram of the electronic analog computer. 
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Figure 2.2: The finite gain inverting amplifier, u.ed in the computer to .imulate the destruc­
tion rate in equation (2.3). 

The finite gain inverting amplifier. (Figure 2.2) As a function of the input voltage 

Vt.{t), the output voltage Vo{t) is given by the relation: 

R'l 
Vo(t) = - RI V.(t). 

Throughout the circuit, the finite ge.in operational amplifiera were built using a standard 

amplifier, the uA741TC [31}. 

The main limitation ~ r this component is an attenuation of the output for high input 

frequencies. This efl'ect is absent for signals varying at less than 10KHz. Since the Bessel 

filter (see below, Section 2.1.1b) is adjusted to have a corner frequencyat 1 KHz, we need 

not consider this problem further. 

The 8umming amplifier. (Figure 2.3) The role of a summing amplifier is to add two 

signals present at its inverting input. The relation between input voltages Vi (t) and lt2(t) 

and output voltage Vu(t) \s 

R3 R3 
Vu(t) = - Rl Vj(t) - R

2 
V2(t) 

This component is built with a CA3140E, an op-amp with low input current and high input 

impedance, necessary qualities to improve the stability. 
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Figure 2.3: Summing amplifier stage. It is used in t.he computer to add tlte production and 
destruction rates belote integrating tlte sumo Tite op-amp used Itere is a CA3140E. 

As in the previous stage, the main limitation is an attenuation of the output for Crequen. 

cies higher than 10KHz but again this eft"ect will not be considered further. 

The integrator. (Figure 2.4) This part of the circuit is straightforward. The output 

voltage \'t) of the integrator is given as a Cunction of the input V. by, 

l " Vo(t) = - Re J,o V.( .. )d .. + Vu(to). 

However, some care has to he taken to choose the proper chip because integrators have 

a tendency to saturate, primarily due to charge build-up on the capacitor CI' The offset 

voltages and offset currents are rel5ponsihle for this eft"ect (see [28J (or concise definitions 

of the terms employed here]. The rate at which the integrator saturates increases as the 

Crequency of the input signal decreases. For reasons detailed in Section 2.1.1b, the Crequency 

of the expeded solutions should vary between 1Hz and 100Hz. The op-amp chosen {or 

thil component is an OP-07E, specifically designed for this type oC application. Its main 

charaderistics are a very low drift eurrent and small temperature coefficient. 

The values of Rand C are chosen to minimize leakage current, saturation rate and other 

prohlems frequently encountered with integrators [For a detailed discussion of electronic: 

analog integration, see 131)]. The frequency response is ftat at frequencies below 2KHz. 
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Figure 2.4: Schema tic diagram of the integrating stage. The 20 Ka resistor between pins 1 
and 8 is part of a recommended trimming circuit needed to improve the integrator's stability. 

Bias adjusting stages. (Figure 2.5) These elements add or lubtract a eontrollable DO 

level to the input signal. They are neeessary lin ce the circuit component whieh delays the 

signal (the Bueket Brigade Deviee (see below)) ~nly works properly when the AC input hu 

an 8 volt nc offset. Bias adjusting circuits are needed to raile the signal before the delay 

ehip, and then lower it baek to its initial value after it has been delayed. 

As (or the other simple op-amp bued stages, there is no attenuation at low frequencies. 

The gain of these eomponents il unit y, and the attainable offsets range from -lOV to + lOV. 

b) The delay circuit. (Figure 2.6) 

The time delay in the system il totally responsible lor the wealth ol dynamies displayed by 

equation (2.3). Electronically, this delay is obtained with an analog delay line, a CMOS 

sampling device sometimes called a bucket brigade device (hereafter referred to as a B.B.D). 

It samples and delays a signal by storing it in a series of capacitor circuits. Each of these 

eapacitor circuits is referred to as a "bucket" and the B.B.n transfers the contents of one 

bueket into the next at every other logic high of the dock pulse. The time delay is inversely 

proportional to the dock pulse frequency Fcloclr and proportional to the number N of buekets 

in the ehip. Given the lampling frequeney FJ ! 
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Figure 2.5: Diagram of the bi., adjusting circuits, needed to operate the delaying elements 
in the analog computer. 
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Vœ 100"" PULSE 
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Figure 2.6: The delay circuit is made 01 four components: an analog delay line (B.8.D), two 
bi., adjustment circuits and a bessellilter. A pulse generator pro vides the sampling pulse. 
The sampling pulse frequency determines the length of the delay. 
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the delay T is 
N 

T=-. 
F, 

(2.4) 

The B.B.n used here was a RD5108 analog delay line for which N = 1024. 

Figure 2.7 shows the dependence of the delay on the sampling frequency. Observations 

agree with equation (2.4) for sampling frequencies below 500KHz with an error of less then 

1 %. We are interested in having sampling frequencies of about 10KHz for reuons that will 

be cl~a.r shortly. and in this case equation (2.4) is r. reliable determinant of T. However to 

increase the reliability of our observations, the delay was determined from the calibration 

curve displayed in Figure 2.7. 

B.B.n calibration was performed by observing the relative phases of the input signal and 

the filtered output with a digital oscilloscope. The filtering wu performed by a Bessel filter, 

an active lilter with a controlable corner frequency (eut-ofF frequency). The use of such a 

filter is necessary to smooth the B.B.D's output since this chip samples its input and restores 

it as a sequence of steps. 

The sampling frequency, which determines the delay, is chosen to minimize the various 

destabilizing factors in the computer. The frequency of the simplest limit cycle (indicative of 

the frequency of most other limit cycles observed) increases with r. However, the amplitude 

decreases with T [24]. A signal oscillating too slowly is difficult to integrate because the 

charge accumulated on the integrator's capacitor caules saturation unless the chip can be 

finely trimmed (I.e. the sources of error present in the chip, like the offset current the offset 

voltage are reduced to an absolu te minimum). In this case, temporal drifts due to small 

temperature changes will decrease the accuracy of the integrator. On the other hand, we do 

not want to work with signals of too small amplitude since the signal to noise ratio should 

be as high as possible. 

A sampling frequency or about 10KHz gives a signal amplitude of about one volt, keeping 

the signal to noise ratio (see Section 2.1.2 below) in the circuit above 100 while maintaining 

the frequency of the simplest limit cycle between 2 and 3Hz. With these parameters fuced 

( the integrator works as intended. 
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Figure 2.7: Calibration curt'e for the analog delay line. This data was used to determine the 
delay in the circuit, the sampling frequency being gÜ'en by a digital frequency meter. 
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Independently of the calibration of the B.B.D, which only gives us information about the 

length of the delay, we want to study the frequency response of the combined elementa of 

the circuits lying between points (11) and (6) (see Figure 2.10). This set of c:omponents will 

hereafter be referred to as the delay box . 

• Frequency response of the delay box (see Figure 2.8). Since the gain of the delay box is 

observed to depend on the offset of the input signal, the frequency response wu examined 

at four values of the offset: 0.25, 0.45, 1.00, 1.5 volts. These offsets were chosen because ail 

the measured offsets for the observed limit cycles lie within this interval. The signals used 

for the frequency analysis are triangle wavel of 1 volt amplitude. The triangle wave is cholen 

because of its relemblance to the limple limit cycle. The reluits, shown in Figure 2.8 show 

a constant unitr gain for a given ofFlet at low frequencies (~ 100Hz). These resuIts are in 

good agreement with the meuured gain when the circuit is Ipontaneously olcillating. 

The initial preparation of the analog computer (correllponding to the initial function for 

the D.D.E) is the turn-on state of the B.B.D i.e. the various voltages present in the 1024 

buckets when the circuit starts oscillating. 

c) The reedback function. (Figure 2.9) 

The feedback {unction F used here is the PCNL idealization of a smooth function describing 

a mixed Ceedback situation. It is defined by, 

(2.5) 

This function is simulated electronically with two comparator circuit.. This stage is molt 

ealily understood by looking at the behavior of each comparator circuit leparately, and 

then at how their outputs are combined by logic gates. For the detailed description of a 

comparator see [28]. The comparator output is either saturated at Vcc or at ground depending 

on whether the non-inverting input is above or below the inverting one. Standard op-amps 

are not comparators and should not be used as comparators even though their electronic 

symboll ure the same. Dual packages designed Cor this type of application are standard. 

The one used here is an LM393. 
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Figure 2.8: Frequencr response of the dela.v box. 
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Figure 2.9: Diagram of tbe component •• imulating tbe piecewi.e con.tant function delined 
in (2.5). 

The voltage dividers are used to set the values on one of the inputs on each comparator. 

The output of comparator 1 is Ycc when the voltage z(t) at the noninverting input il higher 

than the one set by the divider at the inverting input corresponding to 91 • The output of 

comparator 2 is Ycc ~'hen the voltage z( t) at the inverting input is lower than the voltage 

set by the divider at the non-inverting input corresponding to 92 • These two outputs are 

combined by a 74LSOOP NAND gate, the output of which is l~ when z(t) is between 9. and 

82, and zero otherwise. The resulting signal is sent to a logic inverter which produces the 

desired feedback function. 

• Limitations. 

The only limitations that need be considered regarding this stage are the threshold sen­

sitivities. The feedback function was found to togle hetween its low and high values for 

input voltages difFering by less than 2 mv .. The time derivative of the signal is sufticiently 

large [typically of the or der of 1 (v/s)], so this limitation do es not affect the analysis. 
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2.1.2 Noise level in the circuit. 

As in all electronic systems, noise is present. Aperiodic fluctuations are observed even when 

the power is turned off. During the simulations, the noise shows up as small, rapid oscillations 

riding the main cycle. However, the signal we are interested in is clearly diatinguishable from 

this noise since its fundamental frequency lies below 10Hz and amplitude (of order 1 volt) is 

about two orders of magnitude larger than the fine structure fluctuations. 

The exact influence of this noise on the system dynamics are not known. It is known 

that dynamicai systems can be very sensitive to stochastic perturbations even when the 

(amplitude) scaie of the perturbations is much smaUer than the scale of the process under 

consideration. For example, the presence of noise in a determiniatic system might result in 

a shift in parameter space of the point at which a bifurcation occurs in the unperturbed 

case (the bifurcation could either be od"onc~d or p06tponed). These phenomena are known 

as nOI6~-lfIduced troMltaoM and have been the subjec:t of intense scrutiny for sorne time 

[29] [47]. Noise can also induce chaotic behavior or, conversely, highlight the coherence 

underlying chaotic dynamies. 

Figures 2.20 - 2.21 give some information concerning the power spectra of analytic solu­

tions and analog simulations of equation (2.3). They indicate that for slowly varying cycles, 

the influence of stochastic perturbations on solution behavior is negligible. On the other 

hand, the systematic shifts in parameter space observed in Figures 2.11 - 2.19, and dis­

cussed in Section 2.3.10, may be due to the subtle (and unexplained) action of noise on the 

delay differential equation. These two observations are not contradictory, but reflect the 

uatural complexity arising from the interactions between purely deterministic and purely 

probabilistic contributions. 

2.2 Derivation of the circuit equation. 

Arter calibration of the difl'erent stages, the closed loop oscillates spontaneously and the com­
i 

puter integrates a D.D.E. Unambiguously identifying the equation being simulated ret,tuires 

additional analysis, but is crucial if the elec! ronic loop is to be a reliable tool. It is possible 

~ that the diff'erent stages influence one another in a way such that the integrated system is no 
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( 
longer described by equation (2.3). Therefore, before any attempts to electronically match 

the results with the theory are made, it is important to verify that some basic characteristic 

properties of equation (2.3) are present in the circuit. Similarly, it is crucial to study the 

stability of the closed loop. This will tell us if the parameters set in the oscillator are time 

dependent or not. 

These observations are necessary to justify sorne assumptions that are made when a 

quantitative analysis of the results is undertaken in an attempt to establish the exact corre­

spondence between the D.D.E and the analog computer. 

2.2.1 Stability of the closed loop. 

The identification of offset drifts due to temperature changes is relevant whenever one deals 

with analog computers. It is equivalent to asking whether or not there exists a state of 

thermal equilibrium for the " :rcuit. Charge accumulation on the various capacitors could 

have a similar effect, potentialiy causing saturation of the whole system. 

The warm-up time for the circuit is approximately one hour. During this time, the offset 

of the waveform decreases by 0.1 ± 0.03 volts. Once equilibrium is reached, the offsets are 

constant to within tlte measurement uncertainty (10-3 volts) for periods of up to ten hours 

(this is the longest time for which the oscillator was observed continuously, and is therefore a 

lower bound on the temporal stability of the offsets in the loop). The shape and amplitude of 

the waveform are also constant indicating that the parameters are indeed time-independent. 

2.2.2 Qualitative observations. 

Analytically, the upper asymptotic value '"Y = cl ct of the solution z( t) is obtained by simu!­

taneomdy taking the limits 8, -+ 0 and 62 -+ 00. The lower asymptotic value is obtained 

by setting 8, = 82 • Electronically, if the measured second threshold is set at values higher 

than 3 volts while the lower threshold is taken to zero, the observed waveform reaches a 

constant value interpreted as the upper asymptote. Similarly, if the two voltages simulating 

the thresholds 8, and 62 are set equal to each other the solution goes to zero. 

Bifurcations closely resembling those predicted theoretically are observed. According to 

( the theory [24J, in certain regions of parameter space the solutions periodically approach an 
, 
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unstable homoclinic cycle. This tendency is also observed in the electronic loop, the unstable 

limit cycle being, as in the theoretical case, a periodic oscillation around the lower threshold 

with period P E [T,2T). 

It is important ta keep in mind the nature of the observations in the preceding paragraph. 

They are qualitative in the sense that we do not know exactly which equation is simulated by 

the analog computer. To be more precise, the circuit was designed to simulate a partirular 

delay differential equation (1. e. (2.3)) and the circuit '5 behavior indicates that, indeed, its 

dynamies can be described by an equation which possesses certain properties of equation 

(2.3). On the other hand, further analysis is required to establish the formai 1 between tht' 

circuit and the equation it is supposed to simulate. The reason for the care being taken here 

to distirguish between the electronic solutions (the voltage observed at a chosen point in 

the circuit) and the analytic solutions of (2.3) (the solutions obtained on a digital computer 

with the algorithm of integration described in Chapter 3) is threefold. 

1) The anaIog computer is a physical system and it is designed to be modeled by a 

chosen D.D.E ((2.3) in our case). The imprecisions in the design may add up to make 

the loop behave quite differently from (2.3), even though some of the properties of (2.3), 

discussed ab ove in this section, seem to be present in the electronic analog computer. 

2) IdeaIly, except for the amplifier simulating the destruction rate in equation (2.3), the 

gain of aIl stages in the electronic loop should be identicaIly unity. In addition, there should 

be no offsets anywhere in the circuit. This cannot be the case because there are technical 

constraints in the construction of the circuit which imply the addition compensating circuits 

which cannot aIways have unit y gain and zero offsets. Similarly, an integrator's gain is 

closely linked ta its eutoff frequency, and the frequeney of the signal to be integrated is the 

main factor influencing the designer in the ehoice of the values of the various resistors and 

capacitors present at an integrating stage, regardless of its total gain. As a consequence, the 

destruction rate in the circuit (I.e. amplifier 1 in Figure 2.10) is not the only component 

whieh participates in the effective simulation of a destruction rate, and it is necessary to 

derive the "circuit equation" before proceeding to a quantitative interpretation of the data 

(I.e. one in which the electronic and the analytic solutions are compared quantitatively for 

-1.... equaI parameter values. 
, . 
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3) Finally, although it appears that equation (2.3) possesses five independent control 

parameters a, 91, 82 , T, and c, it i:- shown in Appendix A that the equation can be scaled 

lU ch that only three independent pararneters rernain. In other words, (2.3) is equivalent to 

dz 
dt = cS[G(z(t - 1)) - EZ(t)], 

with 

{ 
1 if e E [1, "J 

G(e) = 0 h . ot erWlse, 

and 

cS 
TC 

-
a 
a9t 

E -
C 

82 e - 8
1

• 

2.2.3 Quantitative interpretation of the data. 

It is possible to Cormulate the equation .imulated by the analog computer by simply tracing 

the signal as it passes through all the individual stages. The underlying as.umption, justified 

by the discussion of Section 2.2.2, is that when the loop is do.ed each stage continue. to 

be}lave as it did in an open loop configuration. 

It is useful to define z.(t) as the voltage present at time t at point i of Figure 2.10. 

Expressed in terms of one another, these voltages are: 

Zl (t) = -(R2/ RI )z(t), 

Z2(t) = -z(t) + kt, 

za(t) = QaZ2(t - r) + IcB , 

z .. (t) = -(Rd Ra)z3(t) + k., 

zs(t) = -z .. (t) + ks , 

Z6(t) = -zs(t) + 1c2 , (2.6) 
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~7(t) = F(Z6), 

~8(t) = -(Rd RS)Z7(t) - (Rd lls)ZI(t), 

~9(t) = -1 l' (R
8
Cl ) '0 z8(t')dt' + Z9(tO), 

ZIO(t) = (RIO/ R9 )zg(t), 

ZlI(t) - z(t) = -(RldRll)ZIO(t), 

where 

k l _ offset due to bias adjust 1, 

k2 - offset used to recover the De level before amplifier 2, 

k B _ offset due to B.B.D + Bessel filter, 

k.j _ offset due to amplifier 4, 

k5 _ offset due to amplifier 5, 

03 _ gain of B.B.D + Bessel filter. 

U sing these definitions, we obtain the following relation between z( t) and Z6( t ), 

) R12RlOR7 l' Rl2RlOR7R2 l' 
z(t = R R R Re F(z6("»d,, - R R R D~R C z(")d,, + z(tu). 

Il 9 8 5 1 to 11 9 8 ~'6 1 l '0 
(2.7) 

Differentiating (2.7) and rewriting Z6 using (2.6) yields, 

dz _ R12RIOR7 F(R403 (_ )_R40 J L _(R4)1e ~Ie le -leo)) 
dt R R R R C R z t r R jÇ\ RB. 2 + 4 .\ 

119851 3 3:' 

_ R12RlOR7R2 z(t). (2.8) 
Rll RgRsllsRI Cl 

This equation is the one simulated by the analog computer and it is equivalent to the original 

D.D.E (2.3). The only difference is that the parameters specified in the original equation 

(2.3) a.re funetions of the pa.rameters in equation (2.8). To avoid any ambiguity in the 

designation of the system variables, the parameters set electronically through control of the 

circuit components will be referred to as the measured parameters. The corresponding 

values obtained with the following analysis will be reCerred to as effective parameters. 
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" Meallured and effective parameterll: Establishing the correspondence. 

From equation (2.8), the definition of the feedback function in the circuit is: 

(2.9) 

where 

and 

0, = -/l,k, + kl - kB (::) + le" - ks. 

These relations follow from the equations in (2.6). The problem we are faced with is that the 

circuit wu designed 50 that the argument of the feedback function be the delayed nriable 

:I:(t), not a linear function of it: /l}:I:(t - r) + 01' The same il true for th~ signal amplified 

by R2/R.: it wu supposed to be :I:(t), but it turns out to be Zl1(t) from equation (2.6). 

The purpose of the following analysis is to transform, or suie, the various terms of (2.3), so 

that it can be compared with the circuit equation (2.7). To make these ideas dear, consider 

equation (2.9). It can be written as 

with 

F(z(t _ r)) = {oc if z(t - r) E [Bi,S;], 
otherwise, 

Ile _ (81 - od 
17} - , 

al 

(2.10) 

(2.11) 

In other word., a change in the argument of F is equivalent to a change in the thresholds. 

The circuit wu initially designed so that the argument of F would be z( t - r). In practice, 

it is Z6(t). The dynamically relevant parameters are no longer SI and 82 but IIi and S;. 

As the thresholds change, 50 do the gain and the height of the feedback function. From 

equation (2.7), the constant multiplying z(t) i5: 

e RIlRIORï 
Q = RllR.gRs~Cl Q. 

(2.12) 
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Again from equation (2.7), the effective height of the feedback function is proportional 

to its measured value: 
e R12 RlURi ) 

C = Rl111gRsR
5
C1 c. (2.13 

It is observed that the off state of the function F is Dot 0 (ground) but a finite, positive 

voltage d. This must be taken into accoun·, when performing the numerical integration. In 

the same way as ce was obtained, we obtain 

JI! = R12 R
lO

R
7 d, 

R11llgRsRr,C. 
where d is a measured value, and tI: an effective one. 

(2.14) 

The delay measured in the circuit is not aft'ected by this analysis since Tt' = T. The values 

of the measured parameters suft'er from the experimental error which can be determined 

accurately. This experimental error propagates ta the value of the effective parameten. The 

error analysis (or measured and effective parameten is explained in appendix A. 

2.3 Comparing electronic and numerical solutions. 

It is now possible to compare electronic solutions of equation (2.3) with sorne flumerical 

simulation,s. The algorithm used to solve the D.D.E is not a standard numerical integration 

scheme but it is more accurate and efficient than Runge-Kutta or Adams routines, which 

are schemes used commonly to perform D.D.E integration (when the delays are discrete). 

It specifically makes use of the fact that the information on an initial interval is redundant 

for this equation. It is presented in Appendix D. Figures 2.11 - 2.19 display electronic 

and numerical solutions obtained with constant initial funetions. It was noted in Section 

2.1.1b that the voltages present in the 1024 "buckets" of the B.B.O correspond to the initial 

function Cor the O.D.E. For the Collowing resuIts, the delay line was preprogrammed with 

a constant voltage belonging to the interval [8r, 8~l and the numerical simulations were also 

carried out with a constant initial function. 

2.3.1 Variation oC a single measured parameter. 

In this section, some solutions obtained with the analog coml)Uter are compared ta digital 

simulations oC equation (2.3). The electronic and digital simulations are compared for various 
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values of the control parameters. 

The delay il held constant throughout (cf. Section 2.1.1b). Similarly, for ail the data 

presented in this section, the initial function is a constant. This constant is such that the 

forcing term is high (a. e. it is a constant voltage belonging to [8i, 9;] for the electronic 

simulations and it is a number in [8.,82l for the digitalllimulations). 

In parts a) and b) below, U~e protocol we used to obtain the electronic solutions wu 

the foUowing. While the loop was oscillating, the meuured parameters were set so that the 

effective parameters took on the desired value. The loop wu then opened, the B.B.D wu 

fiUed with the desired constant initial voltage and the loop wu sublequently closed and set 

into oscillation. The oscillationll were recorded with a microcomputer (ATj386) through an 

A/D board (Dagitek 2800). During a given recording sesllion, no parameters were changed 

in the oscillator (the dependence of solution behavior on changes of parameters while the 

loop was oscillating is discussed in Section 2.4.1). 

In part a), we discuss the behavior of the circuit u the thresholds 91 and 82 are varied, 

and the solutions are compared to digital simulations. In part b}, the gain Cl is changed, 

and the resulting variations in solution are compared to the changes obllerved in the digital 

simulations of equation (2.3). 

a) Variations of 8. and 82, 

When 81 and 82 are sufficiently far apart, the dynamics of the equation are efFectively con­

hoUed by a negative feedback controlloop. In this case the electronic and the numerical 

simulations agree in the following way: Both the shape and the offset of the waveforms 

are the same though the values of amplitude and period difl'er slightly (see Figure 2.11). 

The difFerences are caused by the experimental errors in the determination of the meuured 

parameters. 

As the first threshold is raised towards the second one, approximately the same sequence 

of bifurcations is observed in both the analog computer and the digital computer simulation. 

However, some cydes observed numericaUy did not appear electronicaUy. This is due to 

the fact that the region of parameter space in which these cycles are observed are smaller 

( than the error on the values of the measured parameters (see Figures 2.17 and 2.18). The 
... 
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bifurcation observed in Figure 2.12a is not present in Figure 2.12b. Given the Cad that 

this type of discrepancy also occurs in Figures 2.13a and b, and in 2.17 - 2.19a and b, it is 

possible that there is a systematic shift in our estimation of the effective parameters in spite 

of the attempts made to correct for su ch possible displacements. Another explanation Cor 

this difference between electronic and numerical bifurcations is the presence of noise in the 

circuit. Unfortunately, the exact influence of noise on delayed dynamics is difficult to study, 

but Longtin [47] showed that certain stochastically perturbed non-linear D.D.E's displayed 

a postponement of the point at which a Hopf bifurcation occurred. The bifurcations showed 

in Figures 2.11 to 2.19 are not Hopf bifurcations because they involve the bifurcation from 

one limit cycle to another whereas the Hopf bifurcation is characterized by the emergence of 

a limit cycle where steady state behavior was previously observed. For a detailed description 

of standard bifurcations of vector fields (induding the Hopf bifurcation) the reader is referred 

to [20]. 

b) Variations or a. 

The most interesting feature displayed by the solutions is a recurrent "flirt" with an unstable 

homoclinic cycle, shown in Figures 2.16a-2.19a. This phenomenon is described by the dif­

feomorphism presented in Section 1.5.2 (I.e. solutions like the ones presented in Figure 1.3). 

As Q is raised, the duration of the residence of the solution around (JI increases (this is clear 

in Figures 2.16a to 2.19a). There is again a systematic shift in the values oC Q describing 

the same numerical and electronic solutions. This is interesting because it gives a physical 

example of a system periodically approaching an unstabJe manifold. 

c) Power spectra. 

One other possible means of comparison between theory and f'xperiment is the study of 

the distribution of peaks in the power spectra oC electronic and numerical solutions. For 

example, con si der: Figures 2.20 and 2.21. The experimental sampling frequency was 500Hz 

for all the experimental solutions. The power spectrum analysis was perCormed with analytic 

solutions obtained with our algorithm (described in Appendix D). The integration step in 
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the algorithm corresponds to an effective sampling frequency oC 500Hz. 

The solutions typically oscillate between 1 and 5Hz, and it seems unlikely that the solution 

possess significant components beyond 50Hz. Aliasing is thereCore not a problem. The 

data was treated with a Hanning window w1 = 1/2(1 - cos(27r'j j(N - 1»), where j is the 

channel number [62]. The De peak in channel 0 is removed. There are no observable 

components of the signais above 20Hz, and it therefore appears that the transmission line 

noise does not affect the electronic solutions. The distribution oC peak. for experimental and 

theoretical signais is remarkably similar. The consistent shift oC 2 to 3Hz observed is due to 

the discrepancy between the periods of the two types of solution. The first peaks correspond 

in both spectra to the observed periods of oscillation of 1.2 to 1.6Hz. 
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2.4 Multistability in the oscillator. 

The initial preparation of the system is the initiai state of the B.B.D, and it corresponds 

to the initial function for the D.D.~. Ail the properties of the analog oscillator di:;,ussed 

to this point have been obtained with constant initial voltages. When the parameter! are 

varied continuously without restarting the system, the initial functions are no longer constant 

because they are oscillatory solutions of equation (2.3). 

2.4.1 Hysteresis in the birurcation diagram: 

In (2.3.1a), the parameters in the analog computer were set and then the loop was closed. 

Parameters were not changed as the loop was oscillating. This protocol was followed to 

alIow a comparison between experimental observations and existing numerical and analytic 

predictions. The parameters can alSO he changed as the computer i. oscillating: this is called 

a 6mooth change of the parameters. 

As the threshold 8. is slowly increased towards 82 , the solutions undergo a series of 

period-increasing bifurcations (see Figures 2.11- 2.15). When 6. gets too close to the second 

threshold (above 2 volts for 82 = 3.2 volts), the solution decays to the lower asymptote. As (J. 

is subsequently decreased, the first oscillatory solution observed in the system is the slowest 

limit cycle in the system corresponding to the ideal negative feedback situation. ThuI, 

dift'erent solutions of equation (2.3) are round at the same parameter values depending on 

whether 9. is being raised or lowered! This hy6tere611 in the bifurcation diagram indicates the 

poslible existence of multiatability in the system. The only difference in behavior hetween 

the nie and the rall of 8. is the initial condition for the system, because in the closed loop 

the continuous electrical signal is an initial function for itsclf. 

Bistability has been observed in physical systems described by delayed feedback mech­

aniams and it has been shown to exist in equation (2.3) with uncontrolled (&. e. with the 

parameters being varied continuously, the dynamical variable being an initial condition to 

ibelf) initial functioDs [14]. It has Dot yet been observed with controlled nonconstant I.F's. 

To examine the sensitivity of solution hehavior on changing initial functions, we fint present 

a modification of the analog computer which allows any initial function to be entered into 
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Figure 2.11: a) Electronie solution. b) Numerical solution. The parameters in both eues 
are effective parameters and equal to: r = 0.161 ± 0.001.9., 61 = 0.5 ± 0.0005, 82 = 1.604 ± 
0.0005, a = 1.48 ± 0.04, c = 3.49 ± 0.0005. 

- , -, -

2.4 b 

2 

1.6 

1 :j ,"1 ,t 1 .:\ ., 

\ ,/1 Il li l, 1/ \ ,/' \ "~li 1\ ,/ 1. 

1\ ' /1 ,\ 1/\ il 
,/ 1 / \ l \ "\ / Il /' 

l "\ ,i \ ... " /, /,1 1\ " 
1 ,1 ,,/ 1\ l'Il 
l, ,"', t " ' \, " \ ' 

:' 1 1 l " \ l' \ ,/ \ / 
'\' \ 1 \ l '1 '1 " " " \ l 1 \ ' 
\/ \/ \/ \;1 \,l \/ \ 1 \ l , l', 1 \ , 
1 1 \ 1 \ 1 \ .' \ l '1 / 
\ , \, l " 1 1, l ' 1 \ 1 Il \ \} "/ 

'1 '" \ V ''1 \ 

1.2 

0.8 

- ,. - -,- - -, o l 2 3 

tirne (seconds) 

53 



-' 

VDlt'. 

• 2.~. 

2." 

1.2 • 

.... 
.s .. .. . 2 •• ~ .. 

Figure 2.12: a) Electronic solution. b) Numerical solution. The parameters in both cases 
are effective parameters and equal to: T = 0.161 ± 0.001"., 9, = 0.802 ± 0.0005, 91 = 
1.604 ± 0.0005, Q = 1.48 ± 0.04, c = 3.49 ± 0.0005. 
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Figure 2.13: a) Electronic solution. b) Numerical solution. The parameters in both cases 
are effective parameters and equal to: r = 0.161 ± 0.001,., 61 = 0.877 ± 0.0005, 62 = 
1.604 ± 0.0005, Q = 1.49 ± 0.04, c = 3.49 ± 0.0005. 
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the B.B.D. 

2.4.2 Controlling non-constant I.F'5. 

The initial voltages present in the 1024 buckets oC the B.B.n just prior to tht closing of 

the loop constitute the initial function for the D.D.E. It is possible to control these voltages 

accurately by interfacing the B.B.n with a digital computer. 

Remember that the B.B.n is sampling device: it stores in one oC its 1024 capacitor circuits 

a given voltage at every other logic high oC a control sampling square wave. The trick is to 

store thE. desired initial (unction into the digital computer. Then, uling a DIA converter, it 

is sent to the B.B.D. Therefore, the B.B.D receives two synchronized signais from the digital 

computer: the initial function it&elf and the sampling pulse. A switching circuit closes the 

loop on itself once the initial {unction is sent and the computer once again oscilla tes on its 

own. 

The idea is simple but the design is not. The synchronization between the initial funr­

tion and the sampling signal has to be very precise. In (ad, the only way to achieve the 

required accuracy is to send a single signal from the digital computer, which contains both 

the sampling pulse and the initial function. This single signal is programmed 50 that it 

can be split by the switching circuit into a control component (the sampling pulse) and a 

controlled component (the J.F.) which is directed by the switches to the input oC the B.B.D. 

Additional difficulties arise because the D / A '5 output settling time is longer than the 

maximum rise or faU time aUowed at the B.B.D's dock input. To circumvent this problem, 

the digital pulse is sent to trigger a waveform generator's TTL output which is the actual 

sampling pulse in the analog computer. 

The circuit presented in Figure 2.22 is more complex than it should be because we only 

had access to one DI A port, 50 that in addition to the the preceding two signais, tht' singlt' 

waveform sent to the switching circuit had to contain information about the control signaIs 

of the switches themselves. 
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FiKure 2.22: Di.gram of the switching circuit discussed in Section 2.4.2. The switches used 
{or thi, circuit were HEF4069UBP wbile the op-amps were standard uA741TC 
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2.4.3 Discussion. 

Equation (2.3) serves as paradigm for the production-destruction modela presented in Sec­

tion 1.5. The initial function corresponds to the initial preparation of the system. ft is 

very important to understand how changes in the initial function aft'eet the behavior of thl" 

solution because experimenters can rarely c .. 1trol the initial state of their system accurately. 

U nderstanding the dependence of system dynamics on the initial preparation is essential 

for a good interpretation of experimental data. Once again, the analog oscillator is not a 

tool designed {or the systematic and quantitative investigation of the problem, but il does 

provide us with a rellahle physical system with which to investigate multistable behavior in 

delayed mixed feedback controlloops. 

The hehavior of solutions when the I.F's are varied is investigated with initial functions 

which cross both 81 and 82 only once each (see Figure 2.23a). ft is hoped that ex periment al 

results concerning this type of initial function can be analytically understood and then 

generalized to more complicated I.F's. The simplicity of the chosen I.F's refleds tht' total 

absence of results concerning this problern. 

Figure 2.23b shows a typical type of behavior observed when non-constant initial fune­

tions are varied slightly. In this case, the pararneter t2 describing the initial function was 

changed by 1.8 %). As t 2 is varied between t l and 0, the interval seems to be separated 

in two sets. One attracts the short period solution and the other attracts the long period 

solution. This separation ofthe interval [tt,Oj in severalsets, each attraeting a different limit 

cycle is an illustration of multistability. This multistability is observed in the oscillator for 

large ranges oC parameters wh en the initial Cunctions are of the type described above. The 

structure of these sets is very compllcatl"d and cannot be determined with the eledronic 

loop. In faet, it is shown in Chapter 3 that the solutions display a pathologieal dependence 

on initial {unctions for rnany classes of initial functions and for wide ranges of parameters. 
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2.5 Summary 

ln this chapter we discussed the design and performance of an electronic analog computer 

used to investigate the dynamics of a dela.y difl'erential equation proposed as a paradigm 

Cor production-destruction pro cesses with mixed delayed feedback. Section 2.1 is a stage by 

stage description of the circuit. In Section 2.2, the unambiguous correspondence between the 

analog computer and the D.D.E it simulates is established and the stability oC the system 

is aSllessed. The electronically obtained solutions are compared to digital simulations (with 

constant initial Cunctions) in Section 2.3. Finally, the influence of changing non-constant 

initial functions on solution behavior is discussed, and the existence oC multistability in the 

system is demonstrated in Section 2.4. 
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Figure 2.23: a) The initial function used for the experiments on bistab/e behavior in the 
&nalog computer. b) Two bistable electronic solutions. The dilference between the two cases 
is a change of the parameter t2 of about 1.8 %. The period of the solution on the right is 
about twice that of the solution on the left. 
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Chapter 3 

Multistability in delay differential 
equations. 

In this chapter, we explore multistable behavior in r clus of delay difl'erential equations 

presented in Section 1.5 as models Cor production-destruction processes. Multistability is 

defined as the coexistence oC difl'erent asymptotic solutions at the same point in parameter 

space: the type of solution is determined by the exact initiaI preparation (initial function) 

of the system. 

The dependence of system behavior on initial preparation is a concept familiar to non­

linear dynamicists, since one of the definitions of chaos states that the difl'erence between 

trajectories generated by close initiaI conditions diverges exponentially. However, when the 

system is not chaotic, the dependence of the dynamies on initial preparation is olten dis­

carded as a non-issue even though multistability in no way requires chaoticity. 

Ignoring the presence of multistability in a dynamicaI system can greaUy hamper the 

process of matching theoretical predictions and experimental observations because it is im­

possible to perform an experiment twice with the exact same initial conditions. We illustrate 

in Section 3.3 that the dependence of system behavior on initial preparation can be pat ho­

logical in the sense that minute variations in the initial function can generate important 

qualitative difl'erences in observed behavior. Thus, multistability is an interesting paradigm 

with which to explore the variability of experime'ltal data obtained from difl'erent perfor­

mances of the same experiment. 

A dynamical (or semi-dynamical) system displays multistability when it possesses several 
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locally stable attractors. The evolution of the system to a given attractor is determined by 

the initial conditions. When there is multistability, the space of system initial conditions 

is partitioned into basins of attraction. Ali initial conditions belonging to a given basin 

of attraction will generate a unique asymptotic solution, but the phase of the solution de­

pends on the particular initial condition. Initial conditions belonging to different basins of 

attractions will generate different types of solutions. The boundary separating two basins 

of attraction is called a separatrix (or a basin boundary) and its structure may be quite 

complex. In particular, it is known [8] that separatrices in certain two dimensional maps of 

the complex plane into itself possess self similar (or fractal) properties. 

In Section 3.1, we recall sorne of the concepts of nonlinear dynamics relevant to tht' 

investigation of multistable finite dimensional dynamical systems. 

Multistability in delay diffelential systems has been investigated in the context of non­

linear optics. Optical bistability was filst predicted theoretically by Ikeda [32, 331, and 

demonstrated experimentally by Gibbs et al. [21,27]. These experiments, along with exper­

imental and numerical work on bistable delay differential equations used in nonlinear optics 

are presented in Section 3.2. 

In Section 3.3 we discuss the dependence of solution behavior on changes of the initial 

function in equation (2.3), and illustrate the existence of multistable periodic solutions. 

In Section 3.4, we investigate the structure of the basin boundaries in the space of initial 

functions of equation (2.3). This appears to be the first attempt to characterize the structure 

of basin boundaries for delay differential equations. 

3.1 Multistability and I10nlinear dynamics. 

The idea that qualitatively different behaviors can coexist in a given system at the same 

point in parameter space is not novel. Mathematicians have always been concerned with the 

existence and uniqueness properties of solutions of dynamical and semidynamical systems. 

The omnipresence of existen~e and uniqueness proofs in the mathematics literature, though 

sometimes motivated by the dif'1culty to ohtain more stringent analytic resuIts, attests to 

that concern. The recent burgeonins of nonlinear dynamics has stimulated interest in the 
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modeling community {or systems whose solutions are not necessarily unique. 

To illustrate the {ollowing introductory definitions, in this section we consider multista­

bility in electrophysiological cardi,.~ models {ormulated as ordinary and partial dift'erential 

equations. 

3.1.1 Introductory deftnitions. 

We consider a generic n-dimensional set o{ ordinary difl'erential equations 

d~~t) = F(x(t», x(t = 0) = Xu (3.1) 

with 

and 

F(x) = (ft (x),,, " !n(X)) {or all x E Rn. 

The vedor field F generates a flow tPt: Rn.....-.. Rn, w here </>t ( z) = </>( z, t) is a smooth 

{unction defined {or all x in Rn and tER, and tPt satisfies (3.1) because 

dl· d(q"(z,t)) . = F(tP(z,t» 
t t=t 

(3.2) 

for aU x E Rn and i E R. Therefore, the flow generated by (3.1) is the continuum of 

trajectories generated by (3.1) originating from a continuum of initial condiHons in Rn [note 

that if ,pt : 5 .....-.. Rn, then the flow is the continuum of trajectories generated by the 

continuum of initial conditions in 5]. 

Now we suppose that the system (3.1) possesses le locally stable fixed points: xi = 

(ziJ"" ,z~J) satisfying 

F(x;) = 0 for j = 1,'" ,le . (3.3) 

Assume the existence of le mutually disjoint sets BJ such that 

Xo E BJ ~ lim x(t) = x
J
-. 

t-oc 
(3.4) 

The le sets BJ are the le basins oC attraction for the le fixed points of (3.1). The boundary 

if sepr·rating any two disjoint basins of attraction is called the separatrix [20]. , .. 
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Consider the evolution of a continuum of trajectories of system (3.1) generated by a 

continuum of initial conditions defined on a set S such that 

B. c S for i = 1,"', le and BI n BJ = 0 if i i- j. 

It is clear that the flow tPt : S 1----+ Rn will "aeparate" into (at least) le different branches, 

each bran ch being attracted to a specifie locally stable fixed point of system (3.1). 

In generaI, multistable behavior is of interest when the system possesses k locally stable 

attraetors, rather than the le locally stable fixed points discussed above. When this the 

case, then the continuum of initial conditions on a set (like S) encompassing le basins of 

attraction will evolve into le different oscillatory solutions. The exact nature of the solutions 

(i. e. whether they are periodic, quasiperiodic or chaotic) depends on the nature of the k 

attraetors. 

This is the dynamicai picture of multistable behavior. It is precisely this picture which 

is difficuit to study in the case of flows generated by delay differential systems, for then the 

flows discussed above are flows of functions generated by continua of initial functions. There 

are attempts to formalize the study of flows in Banach spaces [22J but they exceed the scope 

of this thesis. We defer to Chapter 5 the introduction of a formalism to start investigating 

the statistical evolution of funetionals. 

Before proceeding to study bistable behavior in systems with delayed feedback, it is 

instructive to illustrate sorne of the concepts presented in this section with examples taken 

from cardiac electrophysiology. 

3.1.2 Bistability in electrophysiological cardiac models. 

The mathematical modeling of eardiac activity (and, more generally, the study of eAdtable 

media) with the tools of nonlinear dynamics is an active field of investigation [83J [9]. In 

this section, we foeus attention on the presence of multistable behavior in models for the 

electrieal activity of cardiac tissue formulated as ordinary and partial differential equations. 

Fint, con si der the Van Capelle-Durrer (VCD) [79J model for the electrical activity of a single 

cardiac cell. The model is a two dimensional set of ordinary equations: 

~: - -C-1[g(V) + (1 - Y)f(V)] (3.5) 
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Figure 3.1: Bistable solutions of system (3.5)-(3.6). 

dl' = T-1[h(V) - Y] 
dt 

(3.6) 

where V is the transmembrane potf'ntial in the cell, and Y is a variable which indicates 

the level of excitability of the cell (1. f. its ability to respond to an electric stimulus). C is 

the membrane capacitance and T denotes the time constant of the a.ctivation/inactivation 

process. The functions l, gare related to the current-voltage relations of maximally excitable 

and completely unexcitable cells whil!" h carries information concerning the ability of a 

stimulated cell to recover after excitation. Figure 3.1 displays a typical solution V(t) of 

system (3.5)-(3.6) (I.e. a simulated action potential), taken from Landau et al. [39] where 

the model is discussed in detail. The interesting observation is that the model possesses two 

Hopf bifurcation points around which there coexist bistable solutions. In one case, the two 

solutions are periodic, while in the other one solution is periodic and the second 's a steady 

state. These numerical observations on a simple model may have great importance in the 

correct interpretation and understanding of cardiac pathologies involving an abrupt change 

in rythmicity. 

These observations might seem somewhat ambitious given that we have only talked about 

the multistability in a very simple model of the electrical activity of a single cardiar cell, but 

they are analogous to similar observations in other models for the propagation of electric 

stimuli in excitable media. For example, Lewis and Guevara [44] have studied the effect of 

periodic electrical stimulations on the behavior of a strand of ventricular muscle. The model 

they used to investigate the dynamics of the transmembrane potential V was the parabolic 

partial differential cable equatlon 

a 821' 8V 
2R. 8:t2 = C 7ft + J"" (3.7) 

.if where :t is the distance along the cabl<", a the cell radius, C the membrane capacitance and 

73 



'". 

lm is the net ionie current as described in a standard model of the ventricular muscle [441. 

The numerical investigation of equation (3.7) indicates that there are regions of bistability 

of the solutions in parameter space. Lewis and Guevara obser,,~d different synchronization 

rhythms for the same stimulation frequency. In other words, a shift of the solutions of 

equation (3.7) in phase spa,ce (generated by the addition of a bias poteutiaI) resulted in a 

qualitative change in the period of this solution, indicating the presence of bistable attractors. 

The clinical implications of these numericaI observations are important. For example, 

ventricular fibrillation is a fatal cardiac arrhythmia charaderized by rapid, apparently ran­

dom contractions of the myocardium. The heart stops beating in an organized fashion 

depriving muscles of oxygenated blood, and the lungs with oxygen depleted blood. Fibril­

lation is dealt with clinically by administering to the heart a series of electroshocks. If the 

treatment is successful, the heart beat returns to normal. ln light of the results on bistR.­

bility, it has been claimed that the phenomenon underlying the abrupt change of cardiac 

rhythm due to electroshocks might be interpreted as an abrupt shift in the phase space of 

the fibrillating tissues. More precisely, it is supposed that the shocks transport the cardiac 

dynamics from one basin of attraction (fibrillation) into another (normal rhythm). 

Another cardiac arrhythmia known as tachycardia has been studied within the context of 

the theory of multistable dynamicaI systems. Tachycardia is charaderized by a rapid periodic 

oscillation of the myocardium, usually not fatal, and sometimes preceding fibrillation. Therl' 

are two types of tachycardia: ventricular tachycardia !l.nd re-entrant tllchycardia. Ventricular 

tachycardia is the variant often observed to precede fibrillation. The two tachycardias result 

from different pathologies, but they are both thought to be bistable in the sense that a normal 

heart rhythm can be shifted to tachycardia and vice ver!a through the application of an 

electric shock. Moreover, ventricular tachycardias and normal rhythms are quite frequently 

observed alternatively (without any external perturbation) in healthy patients. 

There are models describing this switching behavior [39J which make use of the COIl­

cept of multistability to account for the odd tachycardiac segment of an otherwise normal 

electrocardiogram. However, this approach is hampered by the paucity of results concern­

ing multistability in infinite dimension al dynamical systems like p.n.E's, even tholJgh these 

equations are frequently used in models of cardiac dynamics to account for the switching 

74 



between metastable basins of attraction. It is therefore important to undertake a systematic 

study of this behavior to facilitate the process of modeling complex biological entities, in 

which multistability might be used as a paradigm to study system variability. More specifi­

cally, a betler ur(lerstanding of the multistability in partial differential equations may help 

clinicians improve their treatment of frequently encountered cardiac arrhythmias. 

We touch here on another motivation for the study of multistability in high dimensional 

dynamical systems. As mentioned below, the investigation of optical bistable devices was 

historically motivated by their potential applications as high speed switching mechanisms. 

W~ discussed above how multistable systems were capable of this switching behavior. In fact, 

preliminary rp,mlt,,; [37] !ndicate that multistable optical devices are potentially more efficient 

for storing and processing information than conventional semiconductor based circuitry. 

We now discuss sorne results on optical bistability, because during the past de cade the 

study of nonlinear optical cavities has greatly motivat,.d the investigation of D.D.E dynamics. 

3.2 Multistability in physics. 

ln this section, we review experimental observations of multistability in "l.lysical systems 

that have been modeled by delay differential equations. 

3.2.1 Optical bistability. 

Th~ motivation for studying optically bistable devices is twofold: 

1) Intrinsic optically bistable devices (a. e. devices which exhibit two distinct states of 

optical transmission) can s~rve as extremely fast optical switches, and be used as short pulse 

generators when their behavior is periodic [45]; 

2) Optical bistability has received a substantial amount of attention as a "toy problem" 

in nonequilibrium statistical mechanics because of the relative simplicity of experimental 

manipulations. When compared to turbulence in fluid fiows, the problem of optical turbu­

lence (or chaos) is simple to study both experimentally and theoretically, and it is hoped 

that it might yield some insight into the problem of undcrstanding and characterizing {ully 

àeveloped fiuid turbulence [75, 76, 77]. 
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The pioneering work on the dynamics of multistable nonlinear optical cavities is dut' to 

Ikeda [32, 33J and Gibbs [21, 27]. Ikeda showed that the Maxwell-Bloch equations for a 

ring cavity filled with a nonlinear medium were reducible to a differential dday equation 

in the limit of fast transverse atomic relaxation. The experimental realizatioll of Ikf'da 's 

model was provided by Gibbs using a hybrid optical device, providing the first t"videllct" of 

optical chaos. In this section, we describe the experiments in sorne detail btcaust' thert" 

are still relatively few studies discussing the experimental observations of multistability as a 

phenomenon worthy of investigation. 

a) Ex,erimental observations. 

The observations discussed here are summarized from Gibbs et al. [211 who designed 

the experiment to investigate the instabilities predicted by Ikeda in intrinsically bistablt" 

optical ring cavities. The experiments consist in measuring the light intensity emanating 

from a nonlinear optical cavity driven by a laser source of constant intensity. Tht" optical 

cavity is a conventional potassium dihydrogen phosphate modulator, ilIuminated with Il 

constant intensity He-Ne laser. The input and output of the modulator are polarized with 

linear polarizers. The modulator's output light intensity is converted into a voltage with a 

photodiode, and this voltage is in hrn fed back, after a controlled delay, to the modulator. 

This artificially induced delay plays the role of the cavity round trip time in an intrinsically 

bistable device. 

The equation used to model the dynamics of the modt·'!1tor's output inte!1sity is 

(3.8) 

and when the optical cavity is a liquid crystal, the delay cquation describing the dynamics 

of the output is 

(3.9) 

where, in both equations :t is proportion al to the voltage fed to the modulator, t: is the re­

sponse time of the electronic circuit, { measures the modulator's ability to achieve extinction 

between the cross linear polarizers anù T plays the role of the cavit,' round trip time. x" IS 

~ controlled D.C. bias applit"ri to the modulator. 
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The bifurcation parameter Il is proportional to the gains of two ampli fiers required for the 

proper functioning of the delay circuit. The first amplifier is located between the photodiode 

and the delay circuit, and the second is located on the feedback loop between the delay 

circuit and the modulator. Il is the only parameter varied in the experiment. 

Oscillations in output intensity have been the subject of intense scrutiny for the past 

decade, and the presence of metastable solutions has been confirmed eJtperimentally. The 

main results relevant to bistable behavior can be summarized as follows. 

1) When Il is varied continuously from 0 to values greater then 1, the output intensity of 

the modulator undergoes two period doubling bifurcations before entering a chaotic regime. 

2) As p, i~ lowered back to zero, the solution undergoes a series of period hs.lfing bifurca­

tions, and does not follow the same path in phase space as it did when Il was increased. 

This type of behavior was discussed in Chapter 2 for an eleetronic analog oscillator sim­

uJating a delay differential equation. It is strongly indicative of multistability in the system 

since hysteresis in the bifurcation pattern can be explained by a sensitive dependence of the 

solution behavior on changes in the initial functions. To confirm the presence of multista­

bility experimentally, it would be necessary to artificially control the initial function in the 

hybrid optical device, vary it and observe the subsequent variations in observed solutions. 

This type of experiment has not been performed with optical devices, but numerical investi­

gations of the model D.D.E's did highlight the presence of metastable attraetors of periodic 

solutions [14,45]. For this reason, we turn to analytic and numerical techniques used to get 

sorne insight into the stability properties of the phase space of equation (3.9). 

b) Analytic and numerical resu1ts. 

In general, the delay differential equation for a hybrid optical device is 

d~ 
E dt = -~(t) + F(Il,Z(t - T», (3.10) 

where z( t) is the dimensioniess output of the system at time t (related to the intensity of the 

light transmitted by the optical cavity at time t), T is the time delay of the feedback loop 

and E is the response time of the nonlinear medium. The control parameter p, is proportion al 

to the intensity of the incident light (the laser). The function F characterizes the system 
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with nonlinearities. We con si der equation (3.10) with a nonlinearity F given by 

(3.11) 

[This function was introduced by Zhang et al. when consid~ring a liquid crystal hybrid optical 

bistable device [841 ]. For illustrative purposes, we Collow the linear stability analysis given 

by Li et al. [45] as an exarnple of the preliminary analysis usually performed on nonlinear 

delay difl'erential systems. We then extend their nurnerical investigation to the paradigm 

system with piecewise constant nonlinearities presented in Section 1.5 and investigate the 

attraetor basin boundaries {or this system. 

Equation (3.10) with (3.11) can be linearized about a fixed point z· such that if y(t) = 

z(t) - z·, we have 

i~~ = -y(t) + z y(t - 1) + W(p,y(t - 1)) (3.12) 

where 

and W is of order O(y2(t - 1)) (for a scaling of equations like (3.10) we refer the reader to 

Appendix A). The initial condition {or the linearized equation (3.12) is 

y(t') = !pet') for t' E [-1,0]. 

As long as y remains small enough, we can neglect terrns of higher order in y, and consider 

the linear equation 

i~~ = -y(t) + z y(t - 1). (3.13) 

The Laplace transform of y( t) is, by definition, 

(3.14) 

A closed form solution of equation (3.13) can be written and its Laplace transform is 

(3.15 ) 

where 

(3.16) 
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( 
'~ 

Gu( ~) is a meromorphic function because it possesses an infinite number of conjugate pairs 

of isolated poles. Using the Mittag-Leffler theorem [70], ëu(.~) can be expanded to give 

(3.17) 

where Cio the residue of the left hand si de at ~k, is obtained using l'Hôpital's rule. 

Taking the inverse Laplace transform of equation (3.15) yields 

y(t) = l C+eI e~t 1° lim d~-_ -cp(O) + ze~ e-~U",(a) du 
/ .... 00 c-./ Go(~) -1 

(3.18) 

- icp(O)Gu(t) + z f~ Gu(t - u - 1)<p(u) du (3.19) 

where 

(3.20) 

w~ can write the solution y(t) in an alternate way using the Mittag-Leffler expansioli, 

where 

00 

y(t) = L Pke~·' 
k=-oo 

Pk := Ck<P(O) + z cke~·l° ",(u)e~·u du. 
-1 

(3.21 ) 

Therefore, computing the solution involves computing an infinite number of integrals over 

the initial interval. Note that if different initial funetions are such that the integrals corre­

sponding to the different ~k '5 have the ume value, then they will yield the same asymptotic 

solutions of equation (3.13). Every residue Ck determines a possible mode of time evolution 

of equation (3.13). The sign of the real parts of the Ck '5 de termine the stability of the fixed 

point z·. In particular, at the boundaries between the stable and unstable regions, the real 

parts of all the Ck '5 must vanish. Therefore, the critical conditions separating stable and 

unstable regions of the (z, i) plane are given by 

ë~I(Ck) - 0 (3.22) 

Re(ck) - O. (3.23) 
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Figure 3.2: Period of tbe solution ol (3.10) with nonlinearity (3.11) as the lrequency of the 
initial function ",(t) = Asin(w t) varies. The figure is a first glimpse at the structure of the 
boundary separating two basins of attraction of the solutions. 

Letting Im(c",) ::: Wb if w" 1= 0, the soluticns to this system are given by 

1 
-'''= ---

COS(Wk) 
(3.24 ) 

along with 
• tan(w,,) 
e:::- . (3.25 ) 

Wk 

When w = 0, then 

"0 = 1, i E [0,(0), 

and therefore, if "" > 1 then z· is unstable. Since we are interested in stable fixed points, 

we only discuss the case "" < O. 

Suppose that i has been determined Crom equation (3.25). We then have, from (3.22) 

(with (3.23» 

Re CIl = - ln = ln - - ln . 
1 

iw 1 l ,,1 . 1 €w 1 

( ) uin(w) ",,1 ""sin(wk} 
(3.26) 

Now, if w satisfies (3.24), that is w::: W n , n ::: 1,3,5,"', then Re(cn ) = ln l''/''ral. The mode 

Wn is excitable (or unstable to a small perturbation) when 1"1 > l''nl. On the oth~r hand, 

the steady state z· is stable when 1"1 < l''nl. If 1"1 < 1".1, the steady state is always stable. 

Therefore, "1 is the instability threshold for ~ystem (3.13), and the stability conditions for a 

steady state become 

Is(x")1 < 1"1/ 
.. (z) < 1 (3.27) 

It is pOlsible to find similar criteria for the bistahle states using the integral averaging method 
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and the theory of retarded functional differential equations. Such an analysis is explicitly 

given by Li and Hao. [45] for the D.D.E considered in this section. The formalism is involved, 

and makes use of the theory of retarded functional differential equations [45, 22, 59] so we 

only give a brief summary of their main results. They are representative of the types of 

investigation presently under way concerning the dynamics of real systems modeled by delay 

differential equations. 

1) Li and Hao showed that the point ~ = "1 is a bifurcation point for the nonlinear system 

even though it was determined from the linearized equation. However, the other ", '5 with 

, > 1 do not have such a clear meaning because in the nonlinear system one expeds different 

modes to couple and influence the critical values for the ", '5 obtained {rom the linear st abili t y 

analysis. When i is not too small, it is acceptable to neglect the mode-mode coupling (or 

higher modes. 

2) There exist bistable periodic solutions. The period of these solutions is denoted by 

TI and T'l' The initial function is of the form !p(t) = Asin(wt), and Figure 3.2 displays the 

dependence of the period of the solution on the frequency of the initial {unction. In some 

sense, Figure 3.2 is our first glimpse at the structure of basin boundaries in the Banach space 

of initial functions for equation (3.10) with (3.11). In Section 3.3 we will try to systematize 

this type of approach for the integrable equation (2.3). 

In the next section we will see how our own numerical results on delay differential systems 

complement those of Li and Hao [45]. 

3.3 Multistable behavior of an integrable delay diC­
ferential equation. 

We now focus our attention on the integrable D.D.E with piecewise constant forcing presented 

in Section 1.5 as a paradigm for production-destruction processes involving a mixed delayed 

feedback control !oop. The simulations presented here were obtained with an algorithm 

designed to emulate an analytic integration o{ 

d:e { dt = -az(t) + F(z(t - T)) where F(:e) = . 

81 

c ifzE:[81!8:z] 
o ntherwise. 

(2.3) 



The algorithm is described in detail in Appendix D (a listing of its Fortran implementation 

is given in that appendix, along with other program listings). 

3.3.1 Higher order multistability. 

It is clear from the observations of Section 2.4 (concerning the analog computer simulating 

(2.3)) and Section 3.2, t.hat changing initial functions of D.D.E's may have dramatic repercus­

sions on solution beha,·ior. At this point there is good evidence that controlloops involving 

time delays can be multistable, but there is no systematic investigation of this property 

other than the occasion al figure published to illustrate the phenomenon. We want to explore 

this behavior for (2.3) numericaUy in the hope that the results stimulate further analytic 

work. We begin by investigating the existence of cycles that are tristable, quadristable etc., 

because bistability is the only kind of multistability discussed in tbe literature. 

a) Parametrizing the initial functions. 

It was mentioned in Section 1.5.2 that the information content of the initial functions for 

equation (2.3) was redundant. This observation is at the basis of a simple parametrization 

of the initial functions for equation (2.3). Since the feedback function is piecewise constant, 

the solution z.,,(t) of equation (2.3) with initial function tp(t), t E [-T,O], is completely 

described by the times in [-T,O] at which I(J crosses either 81 or 82 , If we label thest'! crossing 

times t l , then the solution z",(t) can be written :I:{I,}(t). To clarify our discussion, we locus 

attention on the solutions Z{t,}(t) generated by initial fundions l(J(t) belonging to a set ~ 

defined as follows 

where 

tl(t) - {4>(t): 4>(-.,..) < 811 cfJ(td = BI Vt E [-T,td} 

t 2(t) - {4>(t): 4>(t) E (8,,82) Vt E (t),t 2 )} 

t 3(t) - {4>(t): 4>(t2 ) = 82, cfJ(t) > 82 Vt E [t 1,O), 4>(0) ::-.: 82}. 

(3.28) 

(3.29 ) 

The rationale for restricting the initial functions under consideration to the elements of 

t is to try and simplify the eventual analytic work suggested by the numerics. 
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We can now investigate the effect of changing t l and t 2 on solution behavior. 

b) Digital simulations. 

The results presented here appear to be the first reports of higher order multistability in 

a delay differential equation. Figures 3.3 and 3.4 display typical examples of the type of 

bistability observed in large are as of the space of control parameters [N.B. The control 

parameters in the system do not include t l and t 2 ; these two quantities characterize the 

initial function and thus cannot he considered as bifurcation or control parameters]. The 

difference hetween the two initial functions generating the solutions presented in Figures 

3.3( a,b), 3.4( a,h) is the value of the time t 2 at which it crosses 82 on the initial interval. 
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Figure 3.3: Typical bistable solutions of equation (2.3). The pararneters are: cr = 3.25, c = 
20.5, T = 1, 8) = 1, 82 = 2. a) t) = -0.9925, t 2 = -0.6 and the period is P = 3.66. b) 
P = 5.19, t l = -0.995, t 2 = -0.27. 
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Figure 3.4: Another example of bistabi1ity in (2.3 J. The parameters are the same as in 
Figure (3.3) except: Q = 3.5, c = 19.5. a) t l = -0.985, t 2 = -0.834 and the period is 
P = 0.75. b) t1 = -0.9925, t2 = -0.4 and P = 8.96. 
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Figure 3.5 dillplays a typical example of tristability. It is important at this point to note 

that the multistability is robust in the sense that it is observed in large regions of parameter 

space. Figure 3.6 illustrates this robustness. It is a plot of the periods of the solutions of 

equation (2.3) as a function of the parameter a, when all the other control pararneters are 

held constant. The initial functions used here are of the type described in 3.3.1a. Figure 

3.6 illustrates the relative prevalence of short lirnit cycles (containing at rnost 12 extrema 

per period), an example of which is displayed in Figure 3.3a. It appears that the long lirnit 

cycles (containing more than 12 extrema per period) are less frequent than the short limit 

cycles when controlled parameters are varied. On the other hand, for a gi"en set of fixed 

control parameters, the long limit cycles appear to be more abundent than the short ones 

as the initial functions are varied. In other words, the locii at which short limit cycles are 

observed in [t},t2J space, (displayed in figures 3.7 - 3.9) are less nurnerous than those at 

which long limit cycles are observed. 

These apparently contradictory observations are illustrated by comparing Figures 3.6 and 

3.7. They highlight one aspect of the complexity of multistable behavior in simple D.D.E's. 

Before proceeding, note that there appears to be no limit to the order of multistabiüty 

displayed by equation (2.3). The more finely one looks at the structure of (tt, t 2 ) space, the 

more limit cycles one is likely to find. This observation is based on numerical observations 

and should be taken at best as an educated conjecture. 

1.1.1 Basin boundaries in the space of initial functions. 

With respect to multistability an important question to address, directly related to the 

structure of basin boundaries in the space of initial functions, is :"Given a fixed set of 

parameters, what is the relative distribution of long and short period lir.1it cycles?" This 

question is perhaps more crucial than the simple dt'termination of the existence of mllltistable 

behavior. When performing an experirnent, little attention is uSllally given to tht' initial 

preparation of the system. Being aware of the presence of multistability in th(' syst('rn 

under consideration is useful, but it is more interesting to qualitatively know to what extent 

perturbations to the initial iunctions will affect the asymptotic solution. The faet that 
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Figure 3.5: Tristability in equation (2.3). The parameters are the same as in Figure 3.3 
except Q = 3.25. a) t i = -0.925, t2 = -0.711, and the period is P = 0.75. b) t l = 
-0.9, t2 = -0.386, and P = 1.78. c) t l = -0.9925, t2 = -0.4 and P = 5.05 . 
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Figure 3.6: The quantity ft = log(1 + 10g(1 + P» as the parameter c is varied for T = 1, 
a = 3.25, (JI = 1 and 82 = 2. ft wu ploUed here ratber than P lor tbe clarity 01 the ligure. 

minute changes in the initial preparation of an experiment can have a dramatic influence on 

observed behavior is not widely recognized. We illustrate this in the next section. 

a) Digital simulations. 

Consider equation (2.3) with the parameters of Fig~lre 3.3. As th.e parameters t l and t2 

are varied, we expect to generate both types of solutions presented in Figure 3.3. Figure 

3.7 represents 106 solutions of equation (2.3) obtained with 106 different initial functions 

belonging to t. More specifically, for each th the graph representl 1000 r"'ues of t 2 , dis­

tributed uniformly between t l and 0, and the procf'dure wu repeated for 1000 values of tl' 

The plotted points reprelent the loci in (th t2) space which generated the short limit cycle 

solution of Figure 3.3a. 
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A notice able feature of Figure 3.7 is unfortunately not dear without the original data: 

The figure was obtained by discarding the points in (t 17 tz) space w hi ch did not generate the 

solution of Figure 3.311., and the relative importance (or size in sorne sense) of the basin of 

attraction of this short period solution compared with the size of the basin of attraction of 

the long period solution (Figure 3.3b) does not appear unambiguously. This size difference 

was unambiguous in the original data, but the information is lost on Figure 3.7 because of 

the impossibility to estimate the relative dominance of the "white spots" embedding the 

black ones. Though it is impossible for the eye to determine roughly the ratio of the number 

of dots on Figure 3.7 to 106
, this ratio is of order 0.1. Thus, if an initial function belonging 

to t is picked at random, it is ten times more likely to generate the solution of Figure 3.3b 

than that of Figure 3.311.. 

Figures 3.8 and 3.9 are similar to 3.7 for difl'erent values of the parameters. It should be 

kept in mind that these figures give only an indication of the complexity of the separatrix. 

A black and white two dimension al picture cannot carry enough information to describc 

the boundary separating more than two distinct basins of attraction. To illustrate the 

distribution of (t l , t 2 ) pairs generating the three solutions shown in Figure 3.5 one might use 

a three color graph, each color representing a given solution. 
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Figure 3.7: The boundary of the basins of attraction of two bistable solutions of (2.3) 
displayed in Figure 3.3. The black dots represent values of (t., t
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solution is the one shawn in 3.3a. 
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Figure 3.8: The black dots on this picture represent values of (t), t 2 ) for which the asymptotic 

solu tion of (2.3) is the one displayed in Figure 3.5 b 
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When the initial .>nditions are more complex, for instance when they possess n crossings 

ofthe thresholds 81 and ( 2 ) the structure of the basin boundaries are difficult to comprehend, 

for then the parameters characterizing an initial function span a surface embedded in an n­

dimensional space. Whatever the class of initial functions under consideration, it is probably 

a good idea to limit the number o! parameters specifying them to at most two. For exarnple, 

Figure 3.2 is similar to 3.7 but the initial functions used to draw this figure belong to a set 

~' such that 

4" : (!p(t) 1 cp(t) = Asin(wt) for t E [-T,Ol.} (3.30) 

In this case, the frequ~ncy content of the initial function is allowed to vary much more titan 

when tf'( t) E ~ even though the number of parameters specifying cp( t) remains rnanageable. 

3.4 Summary. 

In this chapter, we have presented sorne results concerning multistability in delay differential 

equations. In Section 3.1, the motivations to understand this behavior are given from a bio­

logical perspective. We discuss how multistability may explain certain cardiac arrhythrnias 

and the potential clinical applications of a better understanding of the structure of basin 

boundaries in infinite dimensiollal dynamical systems. 

In Section 3.2, we present earlier results concerning muItistability in nonlinear optics. 

We also review the basic analytic techniques used to determine the stability of solutions. 

Section 3.3 is a systematic investigation of multistable behavior in delay differential equa­

tions. The numerical resuIts illustrate both the robustness of the property and its complexity. 

The structure of basin boundaries for parametrized initial functions is discussed in Section 

3.4, where we demonstrate the possibility of extremely sensitive dependence of solution 

dynamics on small perturbations of the initial function. 
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Chapter 4 

Dynamics of ensembles of D.D.E's. 

To now, attention has heen focused on the examination of single trajectory behavior, i.e. the 

study of the hehavior of single solutions of delay difl'erential equations, their complexity and 

their bifurcations. In this chapter, we examine the behavior of ensembles of solutions as the 

first step in the development of techniques to yield useful information about the statistics of 

systems with delayed dynamies. 

Why investigate purely deterministic syt;tems from a statistical perspective? The moti­

vation for doing 50 lit:s in the observation that determinism does not imply predictability. 

For example classical statistical mechanics was developed as a theoretical framework for the 

investigation of large numbers (of order 1023
) of particles whole individual evolution ~qua­

tions were deterministic (Ramilton's equations). Furthermore, if the evolution of a system is 

chaotic, then it is also reasonable to charlLcterize its motion statistically. If system evolution 

cann(\t be predicted exactly, then the way to carry out tbis statistical investigation is to 

consider the evolution of phase space density functions 10 a statistical description of the 

system can he given by its phase space density function. This density function weights the 

phase space according to where the system is most likely to be found and can be used to 

describe the nonequilibrium properties of the system and its measurable quantities [30]. 

In Section 4.1 we summarize sorne of the existing results on the evolution of phase space 

densities evolving under the action of finite dimension al dynamical systems. In particular, 

we introduce the Frobenius·Perron operator, and the Liouville equation, and introduce a 

type of density behavior for discrete time maps known as asymptotic periodicity. 
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The difficulties inherell~ with the description of phase space densities for delay differential 

systems are discussed in Section 4.2. We compare numerical observations concerning tht' 

hat map with those concerning the corresponding singularly perturbed delay differtntial 

equation. 

In Section 4.3 we present sorne techniques to derive analytic expressions for densities 

along the trajectories of an integrable delay differential equation. We then show how thest 

techniques are applicahle to the study of certain neural nets. 

4.1 Densities and dynamical systems. 

4.1.1 Densities versus single trajectories. 

The need to study a deterministic system statistically arises when the dynamics of this sys­

tem become "unpredictable", when one is studying a large number of simple systems (as in 

classical statistical mechanics), and when the deterministic system is perturbed stochasti­

cally. 

To elaborate on these points, note that: 

1) It is well known thl\t simple deterministic systems can display complicated unpre­

dictable behavior or "deterministic chaos". When the dynamics of a system are chaotic, 

exact long term predictions become impossible from a practica! point of view and the search 

for an underlying order is necessarily probabilistic in nature. The density behavior can often 

be easily charact.erized when the single trajectory behavior 15 chaotic. For example, the 

study of chaotic discrete time maps of the unit interval onto itBelf has greatly benefited from 

this approach. When the maps are one dimensional, the density of initial conditions is a 

function defined on a subinterval (or a collection of subintervals) of the unit interval. The 

evolution of this function is then given bya lmear integral operator, the Frobenius-Perron 

operator. A precise definition of the Frobenius-Perron operator (FPO) and a review of i ts 

applications to the study of interval maps is given in [40]. The FPO can also be defined 

for continuous time systems, and it is a powerful tool for the investigation of the entropy 

behavior of deterministic dynamical systems [51]. 

2) At the end of the nineteenth cent ury a few physicists (including Boltzmann and Gibbs) 
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realized that a rneaningful investigation of macroscopic behavior could only be carried out 

statistically. This idea led to the formulation of classic.al statistical mechanics and the 

elaboA'ation of techniques with which to study the evolution of systems composed of large 

numbers of units (atorns for example) each governed by simple equations of motion (e.g. 

Newton 's laws). In the spirit of statistical mechanics and ergodic theory it is reasonable to 

develop techniques tl) deal with large collections of "particles" whose dynamical evolution 

depends on their history. One potential are a of application is the mathematical modeling 

of neural organization, and neural information processing. Since time delays (due to finite 

conduction times) in the brain are ubiquitous, rnodeling neural dynamics is an area in which 

the use of D.D.E's may prove to be most prornising [47]. Because of the large numbers of 

individual neurons (sorne chosen property of which is governed by a D.D.E) involved in a 

given task it will be interesting to see to what extent the ideas of statistical mechanics can 

be applied to large collections of D.D.E's. 

3) FinaUy, a statistical investigation is required when dealing with stochastically per­

turbed systems. When this is the case, the specifications of the noisy component in the 

system are probabilistic in nature and, therefore, the only meaningful observations can be 

made within a statistical framewcrk [71J. 

4.1.2 Temporal evolution of phase space densities. 

ln this section, we present sorne techniques developed to investigate the evolution of phase 

space densities of ordinary ditrerential equations and discrete time maps. If an ensemble of 

initial conditions is specined (rather than a single initial condition) then this ensemble is 

described by a phase space density. The time evolution of this density un der the action of 

the ODE or the map Îs associated with the evolution of the system's thermodynamic state. 

Before proceeding, we define a den,,,ty. 

Definition 4.1. A nonnegative LI function defined on a space X and satisfying 

I. f(z) dz == 1 (4.1) 

is called a density. The space X is the phase space on which the dynamicaI system operates. 

For the one dimensional maps of the unit interval onto ihelf considered below, X is the 
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segment of the realline [0,1]. 

a) Discrete time systems. 

The generic form of an l-dimensional discrete time system is 

Xltl == F(x,) (4.2) 

where x, == (:r::, ... ,:r:~), and F is a {unction of 1 varisbles. For the introductory definitions 

presented in this section, we restrict ourselves to the one dimensional system 

:r:t+1 == F(:r:,) and :r:, E [0,1]. ( 4.3) 

Suppose we are given a density of initial conditions fo(:r:). The time evolution of f as :r: 

evolves un der the action of system (4.3) is given by an integral operator 'P such that 

(4.4 ) 

or, alternately 

( 4.5) 

For the dynamicaI systems discussed here, the integral operator 'P is a Markov operator. 

Definition 4.2. Any linear operator P : LI f---+ LI satisfying 

and 

/'\ pt f(:r:) d:r: = /'\ f(:r:) d:r: 

for aIl tER, f ~ 0, f E LI is called a Markov operator. This general Markov operator 

describes the evolution of densities under the action of stochastically perturbed dynamical 

systems. When the systems are completely deterministic, the Markov operator governing 

the evolloltion of df'nsities is called a Frobenius-Perron operator. 

The sequence of densities {f,} evolving under the action of a Markov operator P is 

denoted {pt fu}. 
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In Section 4.3 we discuss the connection between sorne statisticai properties of a given one 

dimensional map and numerical simulations of the corresponding delay differential equation 

obtained uza a singular perturbation procedure. It therefore useful to explain the derivation 

of the Frobenius-Perron operator for a one dimensional map F acting on the phase space X. 

Thus, wc con si der the dyna.micai system (4.3). 

Let Jo again denote the density of initial points (the initial ensemble). After one appli­

cation of F to this ensemble, the points are distributed in X according to 'P Jo. The fraction 

of this ensemble contained in the interval [O,:z: 1 is 

fuI 'Pfll{y)dy. 

The points which are contaiued in the interval [0, z] originated in its counterimage under the 

action of F. Let F-J([O,z]) denote this counterimage, I.e. 

F- 1([O,:z:]):::: {y E X 1 F(y) E [O,z]}. 

Therefore, we can write, 

r 'P fu(Y) dy = ( fo(Y) dy. Jo j F-l ([0,1']) 
(4.6) 

Differentiating both sides of (4.6) yields 

Pfu(:Z:)::::dd f fu(y)dy. :z: j F-l ([u,x)) 
(4.7) 

This relation gives the prescription {c,r obtaining the Frobenius-Perron operator when a 

specifie F is considered. 

Example 4.1. The generalized hat map is defined by :Z:ltl = F{:z:,), where 

F(:z:) _ { az when :z: E [0, il 
- a( 1 - :z: ) when:z: E 0, 1] , (4.8) 

for a E (1,2]. 

The counterimage of a set [O,:z:] under the action of the hat map is 

F-I([O,:z:J) = [0, ~:z:] U [1 - ~:z:, 1] . 
Therefore, using (4.7), the Frobenius-Perron operatol for this transformation is defined by 

'Pf(z) = ~ [1 (~:z:) +1 (1- ;:z:)]. (4.9) 
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il) Continuous time systems. 

Sin ce most physical laws are framed as differential equations, it is natural to consider the 

evolution of densities in the phase space of these continuous time systems. The equations of 

Hamilton are 

dpi BH 
-d:z; 8q, 

dq, 8H 
-

dz Bp, 

for i = 1, ... , N, p, and q. are 6N conjugate generalized variables and H is the Hamiltonian 

function for the system. The evolution of an ensemble of initial points distributed according 

to the density 1 in (PI! q.) space is given by Liouville's equation [18], 

BI __ f [81 BH _ 81 BH] 
8t - .=1 Bq,8p. Bp.8q.· 

( 4.10) 

The Liouville equation can be reduced to the Boltzmann equation with (many!) simplifying 

assumptions when the system under consideration is a dilute gas [25]. The equilibrium 

density of the Boltzmann equation (l.e. the density 1. for which BI.jat = 0) is known in 

physics as the Maxwell-Boltzmann distribution. 

More generally, the evolution of densities in phase space when the dynamics are given by 

the n dimensional system of O.D.E's 

i=1, .. ·,n, (4.11) 

is given by the generalzzed Liouville equation 

( 4.12) 

If the solution of (4.12) is written I(:z:, t) = pt lu{:z;), then pl is the continuous time 

version of the Frobenius-Perron operator presented here. When one considers a system of 

O.D.E's perturbed by a white noise term, then the equation giving the evolution of phase 

space densities is called the Fokker-Planck equation [68]. 
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4.1.3 Asymptotically periodic Markov operators. 

To now nothing has been said about the asymptotic properties of the sequence of densities 

evolving under the action of the Frobenius-Perron operator. This is an important problem 

since the phase space densities are assocÏated with thermodynamic statel. Therefore, if there 

exists a unique stationary distribution 1. to which the sequence- (continuous or dilcrete) {/t} 

converges, the system evolves to a unique state of thermodynamic equilibrium. The converse 

is true. For a detailed discuslion of the possible types of density behavior and the connection 

with the corresponding entropy behavior of the dynamicallaws, the reader is referred to 

Lasota and Mackey [51J. We focus attention on one possible type of denlity evolution known 

as asymptotic periodicity. 

To now asymptotic periodicity has only been inveltigated in discrete time systems [38, 

40, 63, 64J. In Section 4.3, we discuss sorne results concerning strikingly similar behavior 

in a continuous time system, and their implications. To explain asymptotic periodicity, we 

need to introduce a property of certain Markov operators known as Imoothing. 

Definition 4.3. A Markov operator 'P, acting in a space X = [0,1] is said to be Bmoothing 

if there exists a set A C X of finite Lebesgue measure, and two constants 6 and ~ < 1 such 

that for every set E C X wholf! Lebelgue meuure latisfies PL(E) > 6, and for every initial 

density lu there is some integer to(/o, E) for which 

l 'Ptlo(z) dz < E, for t ~ to. 
JEU<X\A) 

In other words, regardless of how Imall the lupport of the initial deDlity, it willspread out 

unde:' the action of a smoothing Markov operator. 

Smoothing operators pOllelS a remarkable property explained in the following theorem 

proved by Komornik and Lasota [38]. 

Theorem 4.1.1 (Komornik and Lasota) Let 'P be a smoothing Markov operator. Then there 

is an integer r > 0, two sequences of functions 9. E D and KI E Loc, i = 1," . ,r, and a 

bounded linear operator Q : Li 1---+ LI such that for all f E LI, 'P f tues the form 

,. 
'PI(z) = I,>\.(f)g.(z) + QI(z), (4.13) 

1==1 

100 



\ . 

where 

À,U) = 1" K.(z)f(:c) dz. ( 4.14) 

The densities g.(:c) and the operator Q satisly the lollowing: 

(1) The g.(z) have disjoint support 50 y,(z)gA:c) = 0 (or a1l i:f j. 

(2) For each integer i there is a unique integer a( i) such that 'Py, = 90(') and where 

a( i) =1 aU) (or i :f j. Thus, the action 01 the operator P is to permute the densities 9,(:C). 

(3) IIP'Qf(z)II--+ 0 as t -+ 00 •• 

From property (2), the operator equation (4.13) can he written 

r 

p'+1 f(:c) = LÀ.(f)Yol(.)(:c) + P'Qf(z), (4.15) 
.=1 

where the suhscript a'(i) is just the t'h application of the permutation a(i). 

In simpler terms, the evolution of phase space densities for an asymptotically perlodie 

system is charaderized by a periodic cycling of the functions ..\. (i = 1,' .. , r) whieh weight 

the various eomponents y, (i = 1,"', r) of the density f(:c). The period of this cycle is at 

most r! sinee the supports of the 9,'5 are mutually disjoint. 

This type of statistical cycling of the system in the asymptotic regime has profound 

implications. For instance, asymptotically periodic systems never evolve to a unique state 

of thermodynamic equilibrium, but endlessly visit a finite number of metutable states. The 

exact cycle depends on the initial preparation of the system (the initial density Ju). We 

note that this cycling of densities does not imply a cycling in the entropy behavior of the 

system. In fact, asymptotically periodic transformations evolve to a local entropy maximum 

[63]. The maximum depends, like the density cycle, on the initial preparation of the system 

(the initial density). 

In Figure 4.1, we display the cycling of densities under the action of the Frobenius-Perron 

operator for the hat map which is asymptotically periodic in certain par8.meter ranges. 

The most intriguing property of asymptotically periodic systems is illustrated by the fo)­

lowing Gedanken experiment. Suppose the initial preparation of a given system is described 

by a uniform distribution over the entire phase space. As the density evolves in time, its 

support splits into r disjoint sets. Asymptotically, the system is to be found in one of r 
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Figure 4.1: The evolution of densities under the action of the asymptotically periodic 
Frobenius-Perron operator P for the hat map when a = 21/2. The initial density j,,(z) 
is ploUed on the top graph. There are no transients in this case. The cycle shown here is of 
period 2 
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distinct states, or in a linear combination of these states, eaeh weighted by the {unction 

9j. Thus, asymptotic periodicity ofl'ers one possible {ramework within which to investigate 

spontaneous quantization in è' screte time systems. 

There is no formaI anaIog of asymptotic periodicity {or continuous time systems 50 the . 
applications to physicaI models, usually framed as difl'erential equations, cannot be dis-

cussed a.t this point. However, the combination of results {rom ergodie theory and insights 

from dynamicaI systems theory has been inlitrumental in the classification of nonequilibrium 

thermodynamic behavior (51], a.nd it can be expected that the tools of nonlinear dynamies 

will prove useful in the discovery of dyna.micaI principles underlying quantum mechanieal 

behavior (if su ch principles exist). 

4.2 Ensembles of D.D.E's: Numerical insight. 

It is clear {rom the considerations of the preceding seetion that a. coherent analytic treat­

ment of ensembles of dela.y difl'erential equations should make use of the tools of probability 

theory in {unction spaces, sinee the distributions to be associated with the thermodynamie 

states of D.D.E's should be distributions o{ funetions. In Chapter 5, we introduce sorne tech­

niques to proeeed with such an analysis. In this section we focus attention on the numerical 

investigation of the dynamics of large collections of delay equations. 

We restrict ourselves to a particular D.D.E, which is the singular perturbation limit of 

the hat map (4.8) presented in Section 4.1.1 

ed~ __ z(t)+{a~r ifzrE[O,~l 
dt - a(1-~r) ifzrEU,l], 

Zr=z(t-r). ( 4.16) 

The rationale for studying this (nonintegrable) D.D.E, rather than the paradigm system 

(2.3) considered in the previous chapters, is that there is a formaI connection hetween this 

system and a weIl understood dis crete time system: the hat map. We noted in the previotls 

section that a particularly interesting type of density evolution consisted in an asymptotic 

cycling of the densities in phase space under the action of the Frobenius-Perron operator 

(see Section 4.2, equation (4.8». If the limit ! ~ 0 is taken in (4.16), then we obtain the 
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difFerence equation 

t _ {a:r:(t-T) if:r:(t-T)E [O,l] 
:r:( ) - a(l - :r:(t - T)) if :r:(t .- T) E (0, ~l. (4.17) 

The results of Ivanov and Sharkovskil' (Section 1.5.1) demonstrate that the dynamies of 

the dift'erenee equation are aeeurately described by the dynamies of the corresponding one 

dimensional map 

(4.18) 

The hat map was studied extensively by Provatas [63,65] who proved several interesting 

results concerning its statistical behavior. We summarize these results in the following 

section. 

4.2.1 The bat map. 

Consider the generalized map (4.8), and its Frobenius-Perron operator (4.9). From Lasota 

and Mackey [40], we know that the Frobenius-Perron operator for a lDap F : [0,1]1---+ [0,1] 

is asymptotically periodic if F(:r:) satisfies the following (sufficient) conditions: 

(1) There exists a partition 0 = bo < bl < ... < bm = lof [0, 1] sueh that for eitch integer 

i = 1,"', m the restriction of F to [b'_1' bal is a C2 function. 

(2) 1 F'( ~) 1 ~ f) > 1, :r: :f bl! i = 0,'''' r where f) denotes the right derivative of F( ~) at 

:r: =0. 

(3) Th~re exists a real, finite constant C sueh that 

1 F"(:(') 1 

1 F'(~) 12 < c, ~ :F b" i = 0,1,'" ,m. 

For a E (l, 2J, and for the partition bo = 0 < b1 = 1/2 < ÏJ2 = 1 the hat map satisfies these 

conditions. Thus th~ hat map is asymptotically periodic and the Frobenius-Perron operator 

can be represented with the spectral decomposition of 1'heorem 4.1. 

One remarkable resuit relates the value of the parameter a to the period of the density 

cycle. Specifically, if a E (an+l' an], where an = 2~ , then the period of the density cycle 

is 2n
• In other words, in these parameter ranges, 'P' f(:r:) = 1"+2" f( z). It is also straight 

f for ward to show that the hat map is ergodic. 
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In the next section, we make use of ergodicity in the hat map to construct densities along 

trajectories. We would like to determine to what extent the properties of the map carry ovn 

to the delay differential equation. 

4.2.2 Densities and D.D.E's. 

The phase space of (4.16) is the normed function space C([O, Tl) [see the notation ab ove Defini­

tion 1.2 for a precise definition. Here the functions are not bounded 50 that B = ( -00, +00) 

is omittedJ. Thus, the phase space density functions associated with the thermodynamic 

state of a D.D.E. are really phase space density fundaonab. Techniques to analytically in­

vestigate the behavior of these functionals lire presented in Chapter 5. In this section, we 

focus attention on possible ways to obtain numerical insight into the dynamics of these func­

tionals. Several of the constructions presented in the next sections are motivated by the 

observation that the hat map is ergodic. 

Roughly speaking, a transformation is said to be ergodic if its invariant sets are trivial. 

This implies that a trajectory will visit all points in the phase space, and that space averages 

can be replaced with time averages. An exact definition of ergodicity is given in [401. For 

this reason, we begin our inv~stigation of densities for delay differential equations by the 

construction of time averages to approximate space averages. 

a) Densities Along trajectories. 

The fint natural construction of densities in delay difl'erential equations is to project the 

solution z( t) onto the z-axis. Figures 4.2-4.4 display such projections for numerical solutions 

of equation (4.16) with constant initial functions. The only parameter being changed is a 

and e = 0.1 throughout. Recall that there are windows in the interval a E (1,21 such 

that the density cycles for the hat map have period 2" when a belongs to the n"· window 

W n = [2;;t.rr, 2t,;]. The number ofpeaks in the densities for the D.D.E equals the period of the 

cycle for the map at the same parameter values, up to a shift depending on é. Qualitative!y, 

the efl'ect of the singular perturbation procedure is to alter the W n windows. As é is increased, 

the behavior of the D.D.E deviates from that of the map. 
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Figure 4.2: Solution of equation (4.16) when T = 3, ! = 0.1, a = 1.28. For the same value 

of a, the cycle of densities in the hat map is 2. The top right graph is the projection of the 
solution along the z axis. 
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Figure 4.3: Solution of equation (4.16) when T = 3, € = 0.1, a = 1.10. For the same value 
of a, the cycle of densities in the hat map is 4. 

107 



, 

l 

Denslty 
250 

1. F 
i .0 

0.5 

o . 0 0 
./ 

-1.0 0.0 o .48 0.58 

Solutlon 
o .58 

(-vv (\. Ir-J'I' 

~~ 
Ir- t" r-

~ 1"- 1LA,... 1\1 "" 
\...r- l'-' 

r""i ,r rv"1 (\. ,.JV'-, rJ' JI 
'" ~ V \....vvo 10., \...il-

O.4S 
75 76 71 78 79 80 al 12 Ij 114 85 16 17 88 19 gO 

Figure 4.4: Solution of equation (4.16) when r = l, € = 0.1, a = 1.003. For the same value 
of a, the cycle of densities in the hat map is 8. 
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b) Densities for a "sliding" segment of solution. 

The densities obtained by projecting the solution onto the :1: axis are time independent and 

theTe is no hope to reproduce any cycling of the densities in the D.D.E. Therefore, the 

next logical construction of D.D.E densities cornes from the observation that the dynamical 

system S, corresponding to equation (4.16) acts on the elements ofthe normed function space 

C(fO, TD, and transforms a function defined on [-T,O] into a function dehned on [t - T, tl. In 

other words it is relevant to look at the evolution of a density defined as the projection on 

the :1: a2:IS of a segment of the solution :I:(t) defined on the tlme intenJal t E [t· - T,t*] 0.9 

t* increases. [An element of C -I.e. a segment of :I:(t) of length T- will be referred to as a 

buffer from now on]. Figures 4.5-4.6 display such projections. Cycling is obl5erved, and the 

number of different supports of the densities is related to the period of the density cycle for 

the map. Again, the value of e Getermines the degree of similarity between the map and the 

differential equation. 

c) Average of an ensemble of bufFers. 

A generalization of the approach discussed in the previous section consists in following the 

evolution of n buffers generated by n initial functions. More specifically, we loolt at the evo­

lution of a function defined as the average of the n buffers. The reliults of such a construction 

are somewhat puzzling. They are displayed in Figures 4.7 obtained with a give'l1 value of a 

corresponding to a period 2 cycling in the hat map. The number of peaks in the densities 

again corresponds to the period of the density cycle in the rnap, but it is not yet understood 

how to establish a clear connection between this evolution of averages and the evolution of 

densities in the dis crete time case. A detailed investigation is extremely time consuming 

sinee it involves the numerieal integration of large numbers (at least 105
) of D.D.E's, and 

it eould not be carried out for this thesis. The results presented in this and the following 

section merely indicate the direction for further numerieal investigation, and they highlight 

the need for a theoretical {ramework to investigate D.D.E's from statistical point of view. 

This framework is presented in Chapter 5 . 
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d) Sampling ensembles of D.D.E's 

Suppose that one is interested in studying the evolution of a collection of n noninteracting 

partlcles, sorne property of which is governed by a D.D.E. If this property is a measurable 

quantity (like velocity, electric charge etc.) monitored experimentally, it is sampled through­

out the system at discrete times. We label the quantity we are monitoring by Q.(t) for the 

i"l particle. In the limit of infinitely many particles (the thermodynamic limit, in which the 

index i becomes continuous), the result of a measurement on our "gas" of D.D.E's at time 

t" will be a function Q'·(i). In Figures 4.8 - 4.9, we display such functions as t· varies. 

Here, again a cycling is observed. This cycling indicates that the initial functions did not 

belong to one single basin of attraction. If they did, then all the initial functions would have 

generated the same asymptotic liolution up to a phase shift. In that case, regardless of the 

instant t· at which the sampling is done, the function Qt' (i) is a projection on the z axis of 

aIl the possible phases of z(t) and therefore Qt'(i) would be invariant in time. However, the 

information content of the Q-cycles concerning the basins of attraction has not been studied, 

again for lack of computing time, and our observations should be taken as conjectures rather 

than affirmations. 
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Figure 4.5: Densities of a buffer of length T as it slides along a solution of (4.16). The 
parameters are the same as those in Figure 4.2. The 20 densities are obtained between 
t = 15T and t = 17T at equally spaced intervals. Observe the smooth cycling as tlle densities 
visU the two supports of the projection of Figure 4.2. The difference in the appearance of 
the density is due to the change in the number of bins used to produce the two graphs. The 
same remark holds for the discrepancy between Figures 4.6 and 4.3 
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Figure 4.6: Densities of a buffer of length r as it slides along a solution of (4.16). The 
parameters are the same as those in Figure 4.3. The 20 densities are obtained between 
t = 15r and t = 17r at equally spaced intervals. Observe the smooth cycling as the densities 
visit the four supports of the projection of Figure 4.3. 
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-

Figure 4.7: Time evolution of the average of an ensemble of buRers sliding &long 10" solu tions 
of (4.16) generated by 103 constant initial functions distributed uniformly over the inten'aJ 
(0,1). The parameters are those of Figure 4.2. 
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Figure 4.8: Temporal evolution 01 the distribution of points z(t") generated by 10:1 constant 
initial lunctions distributed uniformly over the interV4l (a, 1), for 20 values olt· at equally 
spaced intervals between t = 15r and t = 20T. The parameters are the same as in Figure 
4.2. Tbis ligure illudrates the sampling procedure discussed in Section 4.2.2d. Observe the 
cycle 01 period approximately T. 
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Figure 4.9: Temporal evolution of tbe distribution of points z(t-) generated by 10' initial 
functions distributed uniformly over tbe interval (0,1), for 20 values of t- equally spaced 
between t = 15r and t = 20r. Again, the parameters are tbose of Figure 4.2. This Figure 
mustrates tbe sampling procedure discussed in Section 4.2.2.d. 
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4.3 Analytic expression of the density for an inte­
grable D.D.E. 

In this section we present a technique to derive the analytic expression for the density 

constructed along the trajectory of a piecewise integrable dynamicaI system. We illustrate 

the procedure for the paradigm D.D.E of Section 1.5.2 and with a set of coupled O.D.E's 

giving the rule of evolution of a simple neural network studied by Lewis et al. [42]. 

The equation we consider is 

where 

dz = -Qz{t) + F(z(t - T» 
dt 

{ 
c if e E [l, b] 

F(() = 0 otherwise. 

The solution z(t) of equation (4.19) with nonlinearity (4.20) is: 

z(t _ t ) = { (z(tu) - "Y)e-a(t-to )+1' if z(t - tu) E [l,b] 
o z(t _ tu)e-a(t-to) otherwise. 

(4.19) 

(4.20) 

( 4.21) 

where "Y = cl a is the upper asymptote. As mentioned in Section 1.5.2 the solution is 

composed of a sequence of piecewise exponential segments evolving towards an asymptote 

which is either "Y or 0 depending on the value of the delayed variable z(t - T). To simplify 

the following analysis it is useful to clallSify all solutions z( t) according to the sign of the 

slope of the first piecewise exponentiaI segment of the solution: 

If the first extremum of z( t), t > 0 is a maximum (i. e. the &lope of the fint segment is 

pOlliitive), then we say that z(t) is an S+ solution. 

If the first extremum of z(t), t > 0 is a minimum, then we say that z(t) is an S­

solution. 

Unless otherwise specified it is assumed from now on that z(t) is an 5+ solution. The 

analysis presented holds for S- solutions, but the notation is greatly simplified by introducing 

this classification oC solutions. We explain at the end of the s~ction how the results should 

be modified in case z(t) is S-. 

Definitions 

• Tk is the time at which z( t) crosses either one of the thresholds 1 or b for the /eth time. 
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• E" is the kfh extremum of z(t). The time at which the kth extremum occurs is Tir + T. 

• We label each piecewise exponential segment of z(t), Zlr(t,,), with k bein~ the index of 

the extremum en ding the segment. For aIl k z,,( t,,) is defined on [1k - h T,,]. 

With the above definitions we can now rewrite the solution (4.21) in a more compact 

form for all t E [TIr _ h T,,], 

:I:,,(tlr) = Ek_ 1e-a (f.-(1.-1+1)) + -y(k mod 2)(1 - e-a(I.-(T.-1+l)). (4.22) 

Bence the solution z( t) defined for all t > 0 can he writ ten &5 the sum of the successive 

zk(t)'s each defined on a finite time interval. Their supports (in time) are disjoint. We write 

00 

z(t) = LZA:(t,,). (4.23) 
Ir=l 

DifFerentiate equation (4.23): 

(4.24) 

Rememher that at any point in time, only one :1:,,( tir) is defined, and therefore it will the 

only contributor to the sumo Hence we can write 

(:) -1 = Ë (;1:)-1 (4.25) 

Inverting relation (4.22) to ohtain tk E [T"-l + T, tIr + T] explicitly, we get 

1 (ZA: - -y(k mod 2) ) 
tic = - Ct log E"-l _ -y(k mod 2) + 11r- t + T. 

(4.26) 

Differentiating equation (4.22) with respect to tic yields 

d:l:;t~k) = -aEIr-l (e-a(t.-(T,,-l+T)) + Ct-y(k mod 2)e-a (l.-(T.-1+T))). (4.27) 

Substituting (4.26) into (4.27) we finally get 

dz;(t,,) = -a(ZIr(tk) -1(k mod 2». (4.28) 
tIc 

Therefore, we can write (4.25) 

(4.29) 
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In order to eliminate the cumbersome labeling of the segments of solutions Zk( t,:) in 

(4.29), we have to multiply the equation by a term such that the time domain {T Dk} = 
[Tl' _1 +r, Tk+r] on which each t l' is defined is mapped properly into a corresponding z-domain 

of definition {X Dit}. This can he done by noting that the time interval [Tk _ 1 + r, Tk + r] 
corre!pond! to the z-interval [min(El'_It E k ), max(Ek_ l , E k )] if œ(t) latisfies (4.19) with 

(4.20). [Rememher that Ek > El'-I only if the Ie'h segment of solution is decreasing.] 

Let us now define the set counting function 

1 () {1 if œ E [a, h] 
(a ,hl Z = 0 otherwise. 

Vsing (4.30), we can rewrite (4.29) for any S+ solution œ(t): 

(
dZ(t»)-1 00 1 

"dt = ~ a(œ(t) -'l(1e mod 2» 

( 4.30) 

x [ I(E._l.E.l(œ)(1r. mod 2) + l(E •. E._d(œ)(l- Ir. mod 2)] .(4.31) 

We can now compute the density fez) along the trajectory œ(t). To do so, note that 

1 f(œ)dœ = i dt, 
.4 B 

( 4.32) 

where A is the z-interval visited by z(t) when t helongs to B. Then, we have the following 

expression for the density: 

(
dz)-l 

fez) ex dt ' ( 4.33) 

along with the normalization condition 

L f(œ) dz = 1. ( 4.34) 

As a result, using (4.33) and (4.31), we obtain the analytic expression fOT the density along 

a trajectory of the delay differential equation (4.19) with (4.20), from El' to Ek+1\' 

1\' 

fez) = L -n(œ -'l(1r. mod 2)t llk [1(Elt _ 1 .Eltl(Z)k mod 2 + (1- le mod 2)1[E •. Elt_d(œ)] 
k=1 

where T"+N - Tl' = P and lk is the normalization factor 

Il' = (Tk -pTl'- 1 
) • 
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Note that (4.35) is valid whether the segment of solution is the period or not. If the 

solution is not periodic, and the segment chosen for the analysis contains N extrema, the 

normalization condition (4.34) will not he satisfied but (4.35) will nevertheless give a quali­

tative idea of the form of the density. 

Were the initial condition chosen so that :e( t) were S- (J. e. the slope ofthe first segment 

being negative) the ahove expression would still he valid providing le mod 2 were replaced 

by (1- le mod 2). 

Numerically !(:e) can be computed in a straightforward way if one knows the sequence of 

crossing times, hecause the modulo operator can he replaced by condition al if statements. 
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Analyt1c dens1ty: 

2.9 

~Analyt1cW solution: 

o.o~------------------·--------------------------------------------~ 10.0 50.0 

Figure 4.10: Analytic solution 01 equation (2.3) lor r = 1, 81 = 1, 82 = 2, a = 0.6, and 
c = 2.4. The density was obtained Irom equation (4.35 J. 

4.3.1 Application to a neural network. 

ft should be clear that equation (4.35) is a valid expression for the density along a trajedory 

no matter what the dynamieal system generating z(t). We explain here how formula (4.35) 

can be generalized for an N-dimensional set of O.D.E's describing the dynamies of a simple 

neural network eonsisting of N interacting particles, examined by Lewis and Glass as a 

paradigm for a class of complex biological networks [42]. 

The set of O.D.E's is 

(4.36) 
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Figure 4.11: Analytic solution of equation (2.3) for T - 1, 81 - 1, 82 = 2, Ct - 1, and 
c = 4. The density was obtained from equation (4.35) . 
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where G is a function describing the response of each element to an input, p, is a parameter 

interpreted as the response threshold, and w'J gives the weight of the input of element j to 

eJement i. Lewis and Glass [42J assumed that there is no self input (i.e. w .. == 0). Usually, 

G is defined as a nonlinear monotonically increasing function. Lewis and Glass considered 

G to be the limit of infini te slope of the sigmoidal function, in which the functions GJ are 

piecewise constant witb a single discontinuity at :t = 0, so that 

with the condition 
N 

{
a if:l;) < 0 

GJ(:tJ ) == b; if:t
J 
~ 0 

L W'J GJ(zJ) =1 PI i = 1,'" ,N. 
J=I 

(4.37) 

(4.38) 

System (4.36) can be integrated analytically, and the solution is piecewise exponential: 

(4.39) 

where the constant "f' (the asymptote) is given by 

J = p, ... , q, 1 ~ p < q ~ N. ( 4.40) 

Labeling the times at which each ZI crosses 0 carefully, it is straightforward to construct 

the analytic density along an N dimension al trajectory for tbis system [42]. The use of such 

a density facilitates a simple classification orthe network's dynamics. 

4.4 Summary. 

The purpose of this chapter is to illustrate the insight that can be gained by studying the 

statistical evolution of D.D.E's rather than by simply investigating single solution behavior. 

In Section 4.1 we review some of the techniques used to characterize the probabilistic 

properties of finite dimensional dynamicai systems. 

Section 4.2 is a numerical investigation of the dynamics of densities constructed along 

the trajectories of a delay difFerential equation which is the singular perturbation of a weIl 

studied one dimension al map known as the "hat map". The behavior of solutions generated 
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by ensembles of initial functions is discussed along with the efl'ect of sampling a "gas" of 

delay equations. 

In Section 4.3, we present a technique to obtain the analytic expression {or the density 

along the trajectory oC an integrable D.D.E. The technique is also applled to a simple neural 

network framed as an N -dimensional set of O.D.E's. 

"', 
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Chapter 5 

PROBABILISTIC DESCRIPTION 
OF DELAYED FEEDBACK 
SYSTEMS. 

As we pointed out in the previous chapter, !rom a mode};:1! perspective it May be crucial to 

understand the statistical behavior of deterministic systems. Modern statistical mechanics 

is based on this apparently contradictory observation. This chapter is motivated by the 

absence of a theoretical framework with which to treat delayed dynamics statistically. 

We present a way to Itatistically investigate the dynamics of delay difl'erential equations 

extending techniques introduced by E. Hopf [26] to study the statistics of turbulent flows 

generated by the Navier-Stokes equation. The approach is illustrated with a clus of delay 

difl'erential equations (with discrete delay) introduced in Section 1.5. 

The c:entrl.. .dea is based on the observation that these equations can be viewed as 

functional operators acting the elements o{ the function space C([O, 1]) (defined in Chapter 

1) since at time t > 0, the D.D.E has trans{ormed an initial function defined everywhere on 

[-1,0] into a function defined everywhere on [t -l,t]. 

As the formalism used throughout this chapter is that of probability theory in function 

spaces, there is a strong analogy between the presentation here, the quantum theory of fields 

(QFT), and the functional description of fluid mechanics. In particular perturbation theory, 

and the graphical methods used in QFT and in the study of stochastic wave propagation are 

applicable to the study of delay difl'erential equations. 
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In this chapter, the generating functional Z for n-point correlation fundions is fint 

introduced in Section 5.1. The quantity Z allows one to directly obtain all the n-point 

correlation {unctions via {unctional difrerelltiation. 

The application of this probabilistic concept to the statistical study of D.D.E'a is then 

developed in Section 5.2. A functional difl'erential equation for Z is obtained from the 

original delay equation. 

The hierarchy equations for the first and second order moments are obtained explicitly 

in Section 5.3 and the proble'm oC obtaining a moment of order le is reduced to solving 

successive hyperbolic partial difrerential equations and ordinary difrerential equations. This 

simplification of the problem ia possible when the generating functional can be expanded in 

a power series, eaeh term oC which can then be represented by a Feynman graph. 

In Section 5.4 the connection with the quantum theory of fields is established. The 

transition amplitudes calculated with the Feynman rules used in particle physics are obtained 

from a functional, which is a special case of Z when the dynamies are given by the field 

equations obtained {rom the principle of least action. 

5.1 Introductory deftnitions. 

The core of this chapter is the presentation of a formalism with which to study the behavior 

of a D.D.E {rom a statistieal point of view. The spirit of this approach is that of claaaieai 

statistieal mechanies in which, since the work of Gibbs and Boltzmann, physiciat& have grown 

aceustomed to dealing with densities describing the thermodynamie states of a given system. 

We are interested here in examining the evolution of a density of {unctions. 

This evolution is described by a family of probability meuures defined on a function 

space, and it is shown how this family of measures ean be described by a {unctional difJ'erential 

equation. We start by introducing sorne concepts {rom measure theory and probability 

theory. 
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5.1.1 u-algebras, measures and measure-spaces. 

An important idea used in the following sections is that a density of functions can be de­

scribed by a meuure defined on a function space. We start with the definition of a a--alsebra. 

Definition 5.1.1: A collection A of subsets of a set X is called a D'-algebra if: 

(a) When A E A then X\A E Aj 

(h) Given a sequence (finite or not) {AA:} of subsets of X, AA: E A, then UA: AA: E A, 

(c) XE A. 
With this, we now define a meuure defined on a D'-algebra. 

Definition 5.1.2: A real valued function p. defined on a D'-algebra is called a mealure if: 

(a) p.(0) = 0 

(h) p.(A) > 0 for all A E A; and 

( c) p. (UA: AA:) = LA: 1'( At) if {At} is a finite or infinite lequence of pairwise disjoint 

lubsets of A, that il, A. nAj = 0 for i:/: j. 
Finally, we have the concept of a measure space. 

Definition 5.1.3: If A is a D'-algebra of lubsets of X and if p. is a measure on A then, the 

triple (X, A, p.) is called a meallure Ipace. The sets belonging to A are cal1ed measurable 

sets because, for them, the meuure is defined. 

A limple example of a meuure space is the real line X = R in which the a--algebra 

is a partition of mutually disjoint subsets oC X. If the mealure l' is defined by ascribing a 

non-negative number to each element of A, then the measure describes a piecewise constant 

distribution of points on the realline, each conltant legment correlponding to an element 

of A. This example illultrates the fact that a meuure delcribes a density. The same is true 

when the measure space is infini te dimensional. The Wiener mecuure il an example of such 

a measure. It has been discusled in detail in the context of stochastic wave propagation 

[74, 43], and used to study a clus of partial dift'erential equations encountered in lome cell 

population dynamics problems [40]. 
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5.1.2 Generating functions and the functional Z. 

In this section, we introduce the basic tool used to derive the P.D.E's for the moments of 

the distribution of initial functions: the generating functional. The origin of the generating 

functional is most easily understood by realizing that it is the infinite dimensional analogue 

of the generating function. 

In probability theory, the moments of all order of a given probability distribution p~ can 

be obtained from a so-called genertJting function. If we have a ralldom vector (e l , .•• ,en) 

and a vector (111"'" l1n), the characteristic function is (with i 2 = -1) 

E (el(Vl~l+'''+lIn~")) = /'" el(l'l~I+"'+V"~") Pe(dw), 

= /'" el{v,(} dP~, 
= ~(11). 

Difl'erentiation of ,p( 11) yields 
8,p 
811 = i E(e), 

v=o 
and, in general, 

8
n,p1 = in E(vn ). 

8vn 
v=o 

(5.1 ) 

(5.2) 

(5.3) 

In other words, difFerentiation of the generating function ~ yields all the moments of the 

distribution p~, when the vectors e are finite dimensional. 

We now consider the eue when e is a function j defined on an interval Â (finite or 

not). Let C be a function space with the topology given by the suppremum norm defined in 

Definition 1.4. (I.e. the distance between two functions is the LI norm of their difference). 

pis a probability measure (I.e. it is properly normalized) defined on this space and fer) is 

an element of C. If j is defined for all r E A, the chtJrtJcterubc junctlontJl Z of the measurf' 

p [or the generating functiontJl for the correlation functions associated with the distribution 

of functions I( r)] is defined by 

Z[J] - lr exp [i L J(r)f(r) dr] dp(/) 

- (exp [i L J(r)/(r) dr]). 

127 

(5.4) 



, 
,,J 
~a , 

J( r) is called the .. ource of the function I( r). [This terminology will become transparent 

when the formalism is applied to the theory of quantum fields in Section 5.3]. 

The set of ail pOlsible functions 1 is known as a rtlndom field of junction!. The situation 

here is that a first realization of the process will yield a function Il, a second realization 

will yield a another function /2' etc ... Throughout this chapter, the term field will be used, 

unlees otherwise specified, to denote a set of functions. It is not a field in the physicallf:nse, 

which is just a single function. 

Functionally difl'erentiating Z with respect to the source J( r) gives: 

~~i:] - (6J~e) exp [i L J(r)f(r)dr] ) 

- i (/(e) exp [i L J(r)/(r)dr] ). (5.5) 

[For a precise definition of the functional (or 11fJritltionfJij derivative see Appendix C.] In 

general, we have 

(; 6J~el)) ... (~6J~en)) Z[J] = 

(/((1)' .. /(en) exp [i L J(r)/(r) dr]) . (5.6) 

Thus, we have the following important result: 

(5.7) 

In other words, functional difl'erentiation of Z with respect to the sources yields the n-point 

correlation functionl 

giving the complete Itatistical description of the distribution of functions in the space C of 

which / is a fixed but arbitrary element. Remember that this distribution of functions is 

allO described by the probability measure /J defined on C. Hence, Z is sometimes called the 

charaderi.tic Cunctional oC the mealure /J. 

We can generalize these ideu to the case where Z = Z, is time varying, describing a 

( family of meuurel p,. In particular, Z, can delcribe the evolution of a denlity of functions 
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chuging under the action of a prescribed dynamical system. For example, a D.D.E will 

transforrn a density of initial funetions with measure Ilo into another density of funetions 

with measure Ilh for t l > O. The functional differential equation derived in the {ollowing 

section will be an evolution equation for the characteristic functional of the family of measures 

generated by the action of a D.D.E on an initial density of funetions. 

In conclusion, we define the characteristic {unetional of a two variable density. The 

usocÏated measure is defined on a "two-dirnensional" function space E, the elernents of which 

are pairs of functions (f1(rd,f2(r2»' If these functions are defined for (rlt r2) E al x ~2 

the characteristic functional is defined by 

where the brackets indicate integration with r~5pect to the probability measure of the random 

field (fI (rd, f2( r2»' This measure is called a Joint probo.bility meo..9ure [43]. We can now 

apply the above definitions to the study of delay difl'erential equations. 

5.2 Characteristic Functionals and D.D.E's. 

Here, we restrict our attention to equations of the form 

dtt 
dt = -att(t) + F(tt(t - 1», (5.9) 

with the initial function 

tt(t) = !p(t) if tE [-1,0]. 

Sorne care should be taken to choose a proper notation because the formalism gets somewhat 

involved! From now on we consider equation (5.9) rewritten as 

for s E [0,11, 
(5.10) 

for s E (1,2]. 

By S" we denote the corresponding semidynarnical system 

S, : C([O, I]) t--+ C([O, 1]) 
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given by 

S,V(z) = U.,(z + t), (5.11) 

where u,,(,,) denotes the solution of equation (5.10) corresponding to the initial function v. 

We make use of the term !emidynamical !y!tem, because a D.n.E is noninvertible, i.e. it 

cannot be run unambiguously forward and backwards in time. We note here that all the 

dynamicallaws of physics are invertible. (These laws do not indude Schrodinger's equation 

which is analogous to a F'.lkker·Planck equation, and therefore is not a dynamical equation 

per !e [68]). 

From (5.10) and (5.11), we have the following relations 

~S v z _ { v(z + t) for z E [0,1 - t], 
8t 1 ( ) - -au,,(z + t) + F(u.,(z + t - 1» for z E (1 - t,l]. 

(5.12) 

Thus, we consider a function f(z) [which is a segment of a solution of 5.10] defined on an 

in terval l, = [t, t + 1], as t increues (continuously). The above definition states that tbis 1 
is the initial condition v when the argument (z +t) is less than 1, and the solution u" of the 

equation otherwise. 

We next introduce the characteristic functional Z, of a Borel probabiUty measure P.u 

defined on the space of initial functions. This space is the Banach space C([O, 1]), again 

with the topology given by the suppremum norm (see the notation ab ove Definition 1.2 for 

details). We define 

Z,[J.,J2 ] = [exp [i fol Jt(z)S,v(z)dz+i fol J2(z)v(z)dz] dpu(v). (5.13) 

The source functions J) and J2 are elements of C([O, 1]). 

B"fi're deriving the functional difl'erential equation satisfied by Z, it is useful to define 

the family of meuures p, referred to earlier. If Pu is the probability measure on the space 

of initial functions, and A is a subspace of C([O, 1]), then 

p,(A) == Po(S,-l(A». (5.14) 

In other words, the probabiUty that a randomly chosen function belongs to A at time t equals 

t the proba\bility that the counterimage of that function (under the action of S,) belonged to 
.. 
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the counterimage of the set A. This conservation of probability equation defines the Camily 

of measures characterized by the solutions Zt of the Hopf funetional difFerential equation. 

As l&.cntioned, this type of equation has been used in the quantum theory of fields and in 

the study of stochastic partial dift'erential equation [69, 74, 78]. Work by Capinski [7] seems 

to be the first attempt to use this technique to investigate the dynamics of delay difl'erential 

equation. 

5.2.1 A functional differential equation for Z. 

If f( z) and g( z) are two funetions defined on an interval l, we define 

To simplify the notation we write 

(5.15) 

ris used from now on to denote the funetion of J"J2 and v defined in (5.15) We begin with 

the following relations 

6Z, 
6J2(e) 
6nZ, 

6Jr{e) 

- i (T loi JI (e)S,v(e) de) 
= i (T 10

1

-' J1(e)v(e) de) 
+i (T l~t JI(e)[-auv(e) + F(uv{e - 1))] de) 

= i (T li J 2(e)v(e) de) , 
= in (T li J~(e)s,v(e) de) , 

where it is uIlderstood that 

( () ) = / (:) dp,,(v). 

Time differentiation of the charaderistic functional Zt yields 

8Z, 
8t 
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( 

( 

= i(T fol-tJl(Z)V(z+t)d~+ T l.~tJl(:r)Uv(z+t)dz) 

+(T l.~tJl(~)F(u,,(~+t-l))d~) (5.19) 

Therefore, from (5.16) - (5.18), we obtain a functional difl'erential equation for the char­

acteristic functional 

8Z, 
8t fo

l-t 8 ( 6Z,) 1.1 6Z, 
- Jl(~)-8 6J( ) dz-a Jl(~)6T( )d~ o ~ 1 Z + t 1-1. 1 Z + t 

+ (T 1.:, Jt(z)F(u,,(z + t - 1» d~). (5.20) 

Equation (5.20) contains all the statistical in{ormdion describing the evolution of a 

density of initial {unctions under the action of the delay difl'erential equation (5.12). It is 

not possible to go any further without restricting F. 

For illustrative purpOlel, usume that the feedback F function in the D.D.E is a polyno­

mial expression in the delayed variable 
n 

F(z(t - r» = E ClkZ(t - r)k. 
k=1 

Using (5.21), equation (5.20) becomes 

8Z, 
8t 11-' 8 ( 6Z,) (1 6Z, 

- U Jl(~) 8~ 6J
1
(z + t) dz - a J1-, JI(~) 6Jl(~ + t) d~ 

n 1.1 dZ " '(1 k) () fJ , + ~, - Clk JI Z cJk( 1) dz. 
k=1 1-' fi 2 ~ + t -

We illustrate this analysis with a linear delay difl'erential equation. 

Example 5.1. Conlllider the linear D.D.E, 

du 
d~ = -Qu(~) + ~u(~ - 1), for ~ E (1,2] 

(5.21) 

(5.23) 

with initial condition vas in (5.10). The corresponding semidynamicalsystem is defined by 

(5.11). For this equation, the definition (5.13) for the charaderistic fundional holds and the 

relations (5.16) to (5.18) are valid. The Hop{ difl'erential equation becomes 

8Zc ,1-' 8 ( 6Z,) r 6Z, 
8t - Jo JI(~) 8t 6Jt(~ + t) dz - a JI -., JI(~) 6J

1
(z + t) d~ 

I I 6Z, 
+ JI(~) 6) ( 1) d~. • 

I-C 2 Z + t - (5.24) 
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Example 5.2. A continuous analogue of the quadratic map 

(5.25) 

is the dift'erence equation 

(5.26) 

where again the initial conditions, and the corresponding semidynamical system are defined 

as in (5.11). Note that (5.26) is the singular perturbation of the quadratic map (5.25) as 

defined in Section 1.5.1. The characteristic functional is defined by (5.13), and the preceding 

analysis holds. The functional dift'erential equation corresponding to (5.26) is 

BZ, 
8t 

= ,1-' {} ( 6Z,) 1.1 6Z, 
Jo J1(z) 8z 6J

1
(z + t) dz - Q ._, J.(z) 6J

1
(z + t) dz 

11 6Z, 11 . 62Z, '7 

+r JI (z)6J ( )dz-r 1 JI (Z)6J2( l)dz .• (5.21) 
1-' 2 Z + t - 1 1-' 2 Z + t -

Finding a generalsolution for these equations is not possible at present. A correct method 

of solution should make use of integration with respect to measures defined 'O~ function 

spaces. At present, the theory of such integrals does not allow their consistent utilization 

in solving functiona\ dift'erential equations. These observations presently limit the role to be 

played by Hopf functional equations in the study ofinfinite dimensional dynamicalsystems. 

Nevertheless, relatively mild assumptions about their solutions allow one to gain significant 

insight into their dynamics. 

5.2.2 Moment functions of JLt: 

The statistical properties of the random field of functions v and 'Uv are described by thf' 

infinity of moments of the measure p,. It is possible to write the moment evolution equationr, 

(and, in sorne cases, to solve them) in the spirit of the preceding analysis. For fixed t, the 

average value of the function defined on l, = [t,t + 1] (i.e. v on [t,l] and 'U" on (1,1 + t]), 
wmch is just the firat order moment of the measure p" is 

M~(t,z) == 1 vez + t) d#'<J(v) 
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( 

( 

M~{t,z) = f Uv{Z + t) dp.o(v) for z E (1 - t, 1]. (5.29) 

These two equations can be written as one relation: 

M~(t,z) == ju(z + t) dl't(u) for z E [0,1]. (5.30) 

The definition of the second order moment (or covariance function) M2(t,z,y) is, with the 

lame notation, 

M 2(t,z,y) = f vez + t)v(y + t) dp.,,(v) == M~v(t,z,y) for z,y E [0,1 - t] x [0,1- t], 

M'l(t,z,y) = / uv(z + t)v(y + t) dl'u(v) = M~,,(t,z,y) for z,y E (1 - t, 1] x [0,1 - t], 

M 2(t,z,y) = / vez + t)uv(Y + t) dl'o(v) = M:u(t,z,y) for z,y E [0,1 - t] x (1 - t, 1], 

M 2(t,z,y) = / uI,(z + t)uv(Y + t) dl'o(v) = M~u(t,z,y) for z,y E (1 - t, 1] x (1- t, 1]. 

The lubscripts of the various components of M 2 refer to the segments of the solution whose 

correlation is given by the particular component. For example, MJv describes the correla­

tion between U and v segments of the solution. This notation is made clearer by Figure 5.1. 

Remember that the initial function is defined on an interval [0,1] so that to complete the 

description of the statistical dependence of the solution u on the initial function, it is nec­

essary to introduce the functions M;u' Of course, M~ is the first order moment of measure 

l'u, M;, is the second order moment of 1'0 etc. The relatively mild condition imposed on the 

lolution of equation (5.22) is that it be an analytic functional with respect to J1 and J2• [In 

other words, we require that Zt can be expanded in a "power series about the functions JJ' 

J2"]. 

The expression for the series expansion of a functional can be understood with the fol­

lowing argument. Let 

be a function of le variables. The power series expansion of this function is 

(5.31) 
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solution 

o 

"0" 
1 
1 
1 
1 
1 
1 
1 

/M!.~ 

.. 

"u" 

t+l 2 

1 • 
lime 

Figure 5.1: A discrete delay D.D.E trans{orms a (unction delined on [0, Il into a function 
delined 011 l,. Illustration of the "0", "v" and "u" segments of the solution. 

where 
8n F(y) 

En = . 
8Yl ... {}Yn y=u 

Going over to the case of infinitely rnany variables, 

1 ~ z" 

y,(i = 1, ... ,1e) ~ y(z), 

-00 < Z <00 

L ~ f dz (5.32) 

we obtain the corresponding series expansion of a fundional 

(5.33) 

where 
cSn F[y] 

En = . 
cSY(Zl)···cSy(zn) y=U 

(5.34) 

F[y] is called the genero.ting functiono.lof the functions En. Therefore, the expansion of the 

characteristic functional is 

Z. IJ" J,l = ~ t. J .. , J E .. ( t, "" ... '''p) (!J J, (",) Ik,) (ft. J,(",) d", ) (5.35) 
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The kernels Cpq in the expansion are proportional to the moment lunctions of the measure 

p.,. From equations (5.17), (5.18) and (5.34) they are given by 

1 6"Z, 
Cpq = p! 6J~ 6J:-q = 

(5.36) 

(5.37) 

ThereCore, the HopC equation (5.22) is equivalent to an infinite number oC partial difl'erential 

equations for the moments. [This observation is the infinite dimensional generalization oC the 

weil known expansion of a distribution Cunction in terms of the corresponding probability 

moments (or their Legendre transforms, the cumulants)J. 

Consider the firllt and second order moments of the measure p.,. If we substitute the 

definitions (5.36)-(5.37) along with the expansion (5.35) into equation (5.22), we obtain a 

P.D.E for the moment Jl./~(t,z): 

- ! M~(t,z) for z E [0,1 - t], :tM~(t,z) 
:tM~(t,z) -

n 

-aM~(t,z) + L aIeM!,,(z + t - 1,.~.,:I: + t - 1) 
Ie='l 

for z E (1 - t, 1], (5.38) 

the n arguments of M:" indicating that this quantity is the k-point autocorrelation function 

of the initial Cunction distribution described by p.o. What we have done in (5.38) is simply 

rewrite the Hopf equation (5.22) for the fint order moments. It is important to realize 

that the Hopf equation is equivalent to an infinity of moment equations. The equation of 

evolution of the kth moment is given by substituting the definition of the moment under 

consideration into (5.22) and then use Cormulae (5.35) and (5.37) to the appropriate order. 

N. B. To illustrate the notation, 

Mo~tl(t, W, z, y, z) = M!ot, f v(w)v(:I: )v(y)v(z + t) dp.u. 

for W,:I:.y E [0,1 - tJ and z E (1 - t, 1J .• 

To continue the example, the second order moment function M2(t,:I:) are given by the four 
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equations 

:t M;v(t, z, y) - :z M;v(t, z, y) + :y M;v(t, z, y) 

for (x,y) E [0,1 - t) x [0,1 - t), (5.39) 

:tM~v(t,z,y) - :yM~v(t,z,y) - aM.:,,(t,z,y) + 
n 

+ L 4k M !<"-l).,(t, x + t - 1, (~:-!),z + t - 1, y) 
k=2 

for (x,y) E (1 - tl x [0,1 - t], (5.40) 

:t M;u(t, z, y) - :z M;u(t, x, y) - aM;u(t, x, y) + 
n 

+ L 4kM!o("-1) (t, x, y + t - 1, (~:!), y + t - 1) 
k=2 

for (x,y) E [0,1 - t] x (1 - t, 1], (5.41 ) 

:tM~u(t,z,y) = -2aM:u(t,x,y) + 
n 

+ L 4k{ M!<"_l)Jt,x + t - 1, (~:!),x + t - l,y) + 
1e=1 

+M!o(Ir-1) (t, x,y + t - 1, (~:!),y + t - 1) }, 

for (x, y) E (1 - t, 1] x (1 - t, 1]. (5.42) 

The functions M;u and M!u are given by 

:tM;u(t,Z,y) - -aM;u + 
n 

+ L 4kM:,,(X,y + t - 1, .~.,y + t -1), (5.43) 
1e=2 

!M!u(t,z,y,z) - -aM!u(t,x,y,z)+ 
n 

+ L4kM:"(X,y,z+t -1,.~.,z +t-1). (5.44) 
k=3 

The functions whose label does not contain u are given moments of the initial measure. 

Therefore the solution of each equation gives us tbe initial condition for the next one. 

A pattern clearly emerges (rom the preceding 8~nalysis: The moment MP(t,xI!'" ,x,,) = 

MP(t, x) is given by 2" partial differential equatiom. of the same form as the ones given above 

because it is a function of p variables each of which .:an belong to one of two possible intervals 
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([0,1- t] or (1- t, 1]) . The first of these equations (when aU the Zk 'a belong to [0,1 - t]) is 

lJ
lJtM:,,(t,x) = t lJ8 M:,,(t, x). 

,=1 Z, 
(5.45) 

We caU the equations which give the moments of the form M:' uc,,_,) mixed equations because 

they yield funetions which correlate mixed u and v segments of the solution. For the moment 

of order p, there are (2" - 2) mixed equations and 2 pure equations. The pure equations 

give M:,. and M!", the 1'-point correlation funetions of the" and u segments of the solution. 

If Z; E [0,1 - t] for j = 1'''',1 and ZJ E (1 - t, 1] for j = l,'" ,p, then when the forcing 

term F of equation (5.10) is the polynomial (5.21), the generit form of the mixed equation 

for M".uc,,-.) is 

- t (}8 M:' uCP-I)(t,X) - a(p -1) M~. UC,,-I) (t,x) + 
,=1 z, 
n-l 

E 4, {M~r!'!(p_.)(t, x) + M~r!<~_I) oi(t, x)} . 
i=o 

(5.46) 

Once again, this equation il one representative of the (2" - 2) mixed equationa to be lolved 

to obtain the moment of order p. Deriving these equations il tedious, but the task is greatly 

simplified by the "Iimilarity" existing between the systems of equations for moments of 

diff'erent ordera. In fad, it il possible to derive the equation for the pth moment graphicallll, 

with the introduction of Feynman di.grams uled to reprelent each term in a moment 

of given order. Before proceeding, we derive the partial dift'erential equation~ analogous to 

(5.38) and (5.39)-(5.42) in the eue of the linear D.D.E considered in Example 5.1. 

Example 4.3: When the D.D.E il 

dz 
dt = -az(t) + (Jz(t - 1), 

the firat order moment equations are given by 

8M~(t,z) 
lJt 

(}M~(t,z) 
lJt 

= 

= 

8M~(t,z) 

8z 

-aM~(t,z) + (JM~(t,z). 
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The four equations of evolution of the second or der moments are 

OM:v(t,z,y) OM:v(t,z,y) OM:.,(t,z,y) 
Bt = Oz + 8y , 

OM!u(t,z,y) BM!u(t,z, y) 2 ( ) 2 ( 
Bt = 8z - aMvu t,z,y + {JMvo t,z,y), 

OM~v(t,z,y) OM~v(t,z,y) 2 ( ) 2 ( ) 
8t = 8y - aMuv t,z,y + {JMo1, t,z,y , 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

To solve these equations, one needs to solve first for the moments M;u and M~o' which satisfy 

OM~o(t,z,y) M2() IJM2 ( ) Bt = -Ct uot,z,y+,., oot,z,y, (5.54) 

OM;u(t,z,y) M2 ( IJM2 ( ) Bt = -Ct out,z,y)+,., oot,z,y. (5.55) 

Remember that M:v and M~o are given, hence the moments can be obtained by solving 

successive ordinary or hyperbolic partial difFerential equations .• 

Before we proceed, it is interesting to note that these equations can be obtained from a 

graphical analysis. 

5.3 Perturbation theory and the diagram technique. 

In this section, a technique to graphically represent a functional expansion is explained and 

used to simplify the derivation of moment equations. Recall that the generating functional 

can be represented by a series expansion. Each term in the series ;s proportion al to a 

probabllity moment (the exact proportionality factor is given by equation (5.37». Each one 

of these moments is a cOrTelGtion function, as is illustrated by the definitions of the second 

order moment, and each moment can in turn be represented by a unique Feynman-like 

graphe The exact form of the equation for this moment is then determined by the number of 

vertices and loops in the diagram. This graphical method oC investigation has rnany Ceatures 

in common with the methods of quantum field theory. In Section 5.4, the connection between 

the formalism presented here and quantum field theory is explained. We first investigate the 

application of diagrams to the study of wave propagation in strongly ftuduating continuous 

media. 
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5.3.1 Diagrams in stochastic wave analysis. 

The diagram technique is presented here in the context of wave analysis in a continuous 

medium [74]. More precisely, we consider the propagation of a harmonic scalar wave in an 

unbounded medium characterized for illustrative purposes by a Gaussian random field. The 

function characterizing this field (the ItochtJ!tic Green'! fundion) satisfies 

(5.56) 

where e is called the stochastic forcing term and IL is some control parameter. The 

Laplacian operates on the variable r, and the field is therefore generated by a function 

at point ru. Writing equation (5.56) as an integral equation and applying the method of 

successive approximations, we obtain, 

G(r, roi IL} = Go(r,ro) _1e2 
/ Go(r,rt)e(rt}Go(rltro) drt 

+( -1e2)2f Go(r,rd(rdGo(rt,r2)e(r2)GO(r2' ro) dr} dr2 

+(1e2)3f Gu(r, rt)e(rt}Go(r., r2)e(r2)GU(r2, r3) 

(r3)GO(r3' ro) dr dr2 dr3 + "', (5.57) 

where Gu(r, ru) satisfies the Helmholtz equation with a point source 

(5.58) 

(i.e. it is a Green's function for the free field problem). As is weIl known, the solution of 

this equation is 

(5.59) 

In order to determine the stochastic Grecn's function Go(r,roil') we must take the average 

of the integral equation (5.57). The first term in relation (5.57) (i.e. the Green's function for 

the {ree field problem) is not afFected by the averaging procedure because it is by definition 

unrelated to any stochutic perturbations (the interest of this function is precisely that it 

represents the response of the system when the source is point-like in the purely deterministic 

( eue; the problem is then solved u a perturbation around this known solution). Since the 
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fundion (( r, Il-) is Gaussian we have the identities 

(5.60) 

and the sum is taken over ail possible partitions of 2n points into couples. We use these 

identities to rewrite the average of equation (5.57). Using the ab ove identities we obtain the 

following expression 

< G(r, ru; IL) > = Gu(r, ru) + 

+k~ J Gu(r, rdG.,(rJ' r2)GO(r2' rll)Ke(r" r2) + 

+kg J Gu(r, rI )GU(rl' r2)GlI(r2, r3)GlI(r3, r.j)Gu(r.j, rll) x 

x [Ke(rltr2)Ke(r3' roi) + Ke(rlt rJ)Ke(r2' rI) + 

+Kdrl!r .. )K((r2,rJ)]dr, ... dr-l +"', (5.61) 

The second term of (5.61) is the average of the third term in (5.57). The first term of (5.57) 

does Dot appear in (5.61); it vanishes according to the two identities given before (5.61). 

The structure of relation (5.61)can be easily understood with the introduction of Feyn­

man Diagrams. They were first introduced in quantum electrodynamics, but have proven 

useful in Many other fields over the past 30 years. To represent the series (5.61) we express 

the functions Gu by a graph: 
x-- X Gu(r"r) : r, rJ 

Furthermore, the coefficients k~ are represented by dots (.) placed at those points of the 

graphs to which correspond the coefficients JL(rJ)' These dots are the vertices oC the graph. 

The points for which the functions (r,) and (rJ) are contained under a common averaging 

symbol are cODnected with a dotted line: 

kjKe(rJ , r,): * - - - - - - - ~ 
fJ '1 

In addition, integration is performed with respect to the coordinates of intrinsic vertices of 

the graph. The number of all such vertices in a graph is called the order of the graph. To 

illustrate these definitions, the first term of series 4 is represented by graph (1) 
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( 

)( )( 

r 

and the second term is expressed in graph (2) 

.' . 
)( )( 

r 

The third term in the series is represented by graph (3) . .. ... 

x )( 

. ' . .' . 

X K X )( 
ri r2 r3 r4 ri r2 r3 r4 

The advantage of reprelenting the mean field < G(r,roil') > in the form of a sum oC 

graphs lies not only in the clarity of the presentation, but also in the observation that it 

is possible to transform the series using the topological features of the difl'erent graphs. In 

addition, introducing an appropriate clusification of the graphs it is possible to express the 

sum oC the perturbation series (5.61) as the sum of a certain subseries. 

These ideas are far reaching and their applications to fluid dynamical problems lies be­

yond the scope of this work. Nevertheless, they are applicable to the derivation of the mo­

ment equations presented above, and a graphical description of expansion (5.35) reduces the 

algebraic work and helps clarify the structure underlying the Corm oC the moment equations. 

5.3.2 Feynman graphs and the moment equations. 

The kernels in the functional expansion (5.35) are now expressed as Feynman-like graphs, 

and sorne topological properties of ther.e graphs are used to write down the equation for the 

corresponding moment. 

Consider the moment M!"-'ul' The diagram to represent it is made up of semicircles 

(Ioops) and lines. Loops can both be plain or dotted. The dotted part of the diagram 

represents the v contribution to the moment. The plain part of the diagram represents the 

u contribution to the moment. Diagrams corresponding to moments which are pure in the 

sense of the previous sections (i.e. moments of the form M!" or M~,,) contain plain loops 
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Figure 5.2: From top to bottom, and Jett to right, the graphs for the moments 
M;7' M:2' l\f;u, M:4 u' and M:4 u~ • 

only, or dotted loops only. Every diagram is made up of loops connected to a plain horizontal 

line (the base line). The points at which loops intersect this plain line are called the vertices 

of the graph. The number of vertices in a graph equals the order of the moment it represents. 

When the order of the moment is odd, the topology of the graphs is modified in order to 

accommodate an odd number of intersections between a number of semicircular loops and a 

straight line, which is an impossible constraint. The point of intersection of a plain (dotted) 

loop with the bue line is called a plain (dotted) apex. The number of plain (dotted) vertices 

in a graph equals the exponent of u (v) in the subscript of the moment corresponding to the 

graph. These definitions are illustrated in Figure 5.2. 

Deriving the moment equations. 

Suppose the delay equation under consideration has a polynomial forcing term given by 

(5.21). We enumerate the following rules, to write down the equations for a moment repre­

sented as a diagram. 
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1. The number le - 1 of dotted vertices in the diagrams equals the number of partial 

diff'erential terms on the right hand side of the moment equations (i. e. the first sum on the 

right hand si de of (5.46)). 

2. The number (1) of plain vertices equals the coefficient of terms of the form 

(i.e. the second term on the right hand aide of (5.46)). 

3. When le and 1 are determined in a graph, the third term in the equation of evolution 

of the corresponding moment is 

Therefore, to write down the partial difl'erential evolution equation for a given moment, the 

first step is to draw the Feynman diagram. The second step is to analyze the diagram with 

the three rules enumerated above. It is clear that the diagrams presented here do not possess 

the topological properties allowing a significant simplification of (5.35) via straightforward 

graphical manipulation. The purpose of introducing diagrams to Itudy delayed dynamicl 

is to illustrate the potential relevance of this powerful technique in dynamicallystems the­

ory. They have proven to be extremely useful for the statiltical investigation of p.n.E's in 

phylÎcs and it can be expected that their use to investigate delayed dynamics will be just as 

rewarding. 

5.4 Connection with the quantum theory of fields. 

There is a strong analogy between the formlLlism prelented here and the theory of quantum 

fields. We now explore this connection. The starting point is the observation that the char­

acteristic, or generating, functional plays a fundamental role in the formulation of quantum 

field theory. More precisely, the path antegral& wed to quantlze field theory are generahng 

fundional&. 

Before proceeding, it is necessary to clarify the nomenclature. In this lection, unlike in 

( the preceding on~s, a field ia understood in the physical lenle, i. e. it is just a function (or 
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alternately, a path or a trajectory). In the statistical study of D.D.E's, Z[j] is the generating 

Cunctional for the n-point correlation functions oC a distribution in a Banach space. The 

evolution of this distribution oC Cunctions (the "random field" in the mathematics sense) is 

prescribed by the Hopf equation. Analogously, in quantum field theory, the concept of a 

generating functional is used to study the statistics of a distribution of Cunctions (a physicist 

would say a "distribution oC fields"). 

The problems oC interest in quantum field theory are mainly scattering processes. The 

generic situation is the following. A particle is observed at (q., t l ). To calculate a scattering 

cross section, it is necessary to know with what probability it will be observed al (qJ, t J ). In 

other words it it important to calculate the tran!itaon probabilaty amplitude from (qllt l) to 

(qJ' t,). We now show how transition amplitudes are related to generating functionals. The 

presentation Collows closely that given in Ryder [69J. 

5.4.1 Path integral formulation of quantum mechanics. 

The concept of a prop8gator K(qftf;q,t,) is oC central importance here. Given a wave 

Cunction ~(q., t.) at time tl! the propag8tor /C gives the couesponding wave function at timf' 

tf: 

(5.62) 

where Cor simplicity, only the spatial dimension is considered. /C( q" tJ; ql' t l ) is the probability 

amplitude for a tran!ition Crom (q., t l ) to (q" tf). Given that the particle is observed at (q" t.), 

the probability that it is at q, at time t, is 

(5.63) 

In reality, the propagator is just < qft/lqltl >. To see this, note that the state Vf'ctor IlJrt >.<, 

in the Schrodinger picture is related to that in the Heisenberg picture (1 q, > 1/) by 

(5.64 ) 

Define the vector 

(5.65) 
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We then have 

Completenels of Itates enables UI to write 

which uling (5.66) is 

'fl(9"t,) = / < 9,t,lq,t, > 'fl(9,t,) d9,' 

Therefore, on comparison with (5.62) we see that 

If the in terval [t., t, 1 il split into (ft + 1) equal pieces of length r, then 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

/ ... / dql .. ·dqn < 9,t,lqntn >< 9ntnlqn-l tn-l > ... < 9ItI19,t, > (5.70) 

Note that the integral il taken over all poslible "trajectories" (they are not trajectories in the 

normal sense since each segment (9JtJ;91-1t,-d can be subdivided into smaller intervals and 

so there are no derivatives: they are Markov chains). Now, over a segment of one possible 

path, it is possible to calculate the propagator 

< q,+ltl+t1q,t, > - (9,+Ile,Hr/AlqJ) 

- 2!1i J dp exp [ip(9,+1 - 9j)] - ii < 9j+1IH19j >. (5.71) 

Here, P, is the momentum between 9j and 9,+1 or, equivalently between t, and t,+l' 

As an example, if the Hamiltonian is of the form 

(5.72) 

where p and 9 are the generalized conjugate variables, then the propagator, [or alternately, 

the path integral expression for the transition amplitude from (q" t,) to (9" t, )] il, when the 
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number ol divisions of (qlt., qlt,) goes to infinity, 

n n d 
n~~! II dqJ II :1 x 

J=I J=U 

X exp { ~ t,iP,( q1+1 - q,) - T H(p" 9,») } , (5.73) 

with q" = q. and qn+J = q,. This can be written symbolically as 

J 1>q1>p i [1'" ] < q,t,lqltl >= -h- exp h '. dt[pq - H(p, q)] . (5.74) 

In the above, each lunction q(t) and p(t) defines a path in phase space and (5.74) is an integral 

over aIl pOlsible paths. Thus it is a path integral. The integral is infinite dimensiona} in the 

sense that the integration is performed over a function. If the Hamiltonian (5.72) has the 

form 
p2 

H(p,q) = 2m + V(q), 

the p-integration in (5.73) can be performed and we arrive at the famous result 

(5.75) 

and proper initial/houndary conditions are given by q(t,) = q, and q(t l ) = 91' L = T - Vis 

the clast:ical Lagrangian. The integral 

s = J Ldt 

is called the action. 

For simplicity we focus attention on systems for which (5.74) holds. The houndary con­

ditions given above are apprpriate when studying the motion of classieal partides, but they 

are not uselul to study the evolution of fields where the condition analogous to [q(t,) = qf 

and q(t l ) = q,] would be ,p(t,) = ..p. and ",,(t,) = .,pl' This is because actual particles 

are created, they Interact and t,hey are then destroyed. In other words, the simple bound­

ary conditions at t l and t, &le no longer satisfactory physically, because they "bypass" the 

creation-annihilation processes taking place at intermediate times. For example, in deter­

mining the dift'erential croll section of 1rN scattering, the pion is created by an NN collision 
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and it is destroyed when it is detected [73]. The "object" responsible for the creation and 

annihilation of particles is called a 60urce (for creation) or a 6&nk (for annihilation). The 

source J(t) is added as a "perturbation" to the Lagrangian L: 

L -- L + liJ(t)q(t). 

When 10,t >J is the ground state (the vacuum) in the presence of source J, the transition 

amplitude is related to a functional of J, Z[J] by 

Z[J] - J Vqexp [~[:oo L + hJq + !itq2 dt] 

ex < 0, +0010, -00 >J . (5.76) 

The actual derivation ofthe functional Z[J] is lengthy, and the complex perturbative term 

~i!'q2 is added to the Lagrangian because a small imaginary part is added to the Hamiltonian 

to isolate the ground state's contribution when performing the complex integrals involved in 

deriving formula (5.75). It is now straightforward to obtain the vacuum expectation value 

of the time-ordered product < 0, +oolq(t.) ... q(tn)IO, -OC) >, with t l > t, if i > j which is 

sometimes called the n-point function of the theory. To obtain an expression for this n-point 

function, one functionally difl'erentiates the functional Z, 

6JI(tl~n'~~~~n(tn) IJ=o ex in < 0, +oolq(tl) .. · q(tn)IO, -00 > . (5.77) 

This relation is interesting because it illustrates the fact that the n th order functional difl'er­

entiation of Z with respect to the source function yields the expectation value of the time 

ordered product of operators (q(t.)·.· q(tn», which is proportion al to the nth moment of the 

distribution of paths q. The idea that Z is the generating functional for the correla~ion fun~­

tions will be taken up in the next section in the context of field theory, and the connection 

with the statistical study of D.D.E's is then made explicite 

5.4.2 Generating functionals for scalar fields. 

If the scalu field tP has a source in the sense of the previous section, then the vacuum-to­

vacuum transition amplitude in the presence of that source is 
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oc < 0, +0010, -00 >J . (5.78) 

This relation is analogous to (5.75) with the substitution 'Dq --+ 'D4>{z") and li = 1. ACter 

coarse-graining Minkowski space I.e. breaking it up into four dimensional cubes of volume 

6', and assuming that the field tP is constant in a unit cell, it is possible to obtain the vacuum­

vacuum transition amplitude in the case of a free particle. The fact that the particle is free 

cornes in the definition of the Lagrangian which is, in this case, 

(5.79) 

The derivation is again quite tedious and it can be found in [69]. The resulting expression 

for the transition amplitude is 

Zo[J] = N exp {-~ / J(z)ÂF(z - y)J(y) dz dY}, (5.80) 

where ÂF(Z - y) ie the Feynman propagator which satisfies 

(5.81) 

and the right hand si de of the equation is the Dirac delta function. Expanding this (unctional 

yields 

Zo[J] - N {1 - if J(Z)ÂF(Z - y)J(y) dz dy 

1 . 2[ ]2 + 2! (~) 1 J(Z)ÂF(Z - y)J(y) dz dy 

1 . 3 [ ]3 } + 3! (;!') ! J(z )b.F(z - y)J{y) dz dy +... . (5.82) 

This equation is analogous to (5.35) in Section 5.2.2. The /eth order term in the above 

expression is the k-point function or the theory or, to use the language of quantum field 

theory, it is the Green's function for the k free partides problem_ 

To make the connection with the previous sections more obvious, functionaUy differentiate 

Zu with respect to the source term, 

(5.83) 
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The right hand si de of this equation is the nth moments of the "distribution of fields". 

Therefore, Zo is the generating functional for the n.point correlation functions describ· 

ing the evolution of a distribution of funetions. Following the evolution of these correlation 

functions tells us how the transition amplitudes evolve in time. Since these transition am· 

plitudes are necessary to calculate the scattering cross sections, we have the tools to follow 

the evoiution of the scattering cross sections. 

Remlrk 5.2. The correlation funetions, as in stochastie wave analysis, are the quantities 

represented with Feynman diagrams, and a diagrammatie study of the funetional expansion 

greatly simplifies the problem at hand. 

Remlrk 5.3. The above presentation only holds for free fields. When the fields are interading, 

the Lagrangian takes the form 

L = Lu + L.nt • 

One can then derive an evolution equation for the generating functional (analogous to the 

Hopf equation) and solve it approximately by treating the interaction as a perturbat.ive term. 

Having the generating functional for the Green's functions of the free field problem is then 

essential to approximate an exact solution of the more interesting interacting field problem. 

5.5 Summary 

This chapter is an attempt to construct a theoretical framework with which to deal with 

delay differential equation in the spirit of classical statistical mechanics. 

lntroductory definitions from measure theory and probability theory are givt!n in Section 

5.1. The concepts presented in Section 5.1 are applied in Section 5.2 to the statistical 

investigation of D.D.E's. ln particular, we derive a functional difl'erential equation describing 

the evolution of a density of functions under the action of a delay differential equation. Partial 

differential equations describing the evolution of the statistical moments of these functionals 

are also presented. 

ln Section 5.3 we illustrate how the Feynman diag:-am technique can be applied to derive 

the moment equations {rom the fundional differential equation presented in Section 5.2. 
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In Section 5.4 we illustrate the analogy between the statistical study of D.D.E's and the 

quantum theory of fields. 
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Chapter 6 

Conclusion 

This thesis studies the dynamics of nonlinear delay dift'erential equations (D.D.E's) used as 

models for control loops with delayed feedback. 

ln Chapter 1, we first recall the formai equivalence between models formulated as ini­

tial/boundary value problems for hyperbolic partial dift'erential equations and models formu­

lated as delay difFerential equations. It is demonstrated that systems with memory can be 

interpreted as being nonlocal, and that this nonlocality is the buis for the equivalence be­

tween some partial dift'erential equations and delay dift'erential equations. In fad, in Chapter 

5, the tools used by physicists to statistically study the dynamics of P.D.E's are extended 

to the statistical investigation of D.D.E's. Finally, the singular perturbation limit proce­

dure, and the reduction of a dus of V.D.E's to shift operators is discussed and applied to a 

nonünear integrable D.D.E with piecewise constant nonünearities (PCNL). 

In Chapter 2, we present the design of an electronic &nalog computer, built to simulate 

the dynamies of a clalis of D.D.E's discussed in Chapter 1. Multistable solutions are ob­

served when the system's control parameters are changed continuously, and when the initial 

preparation of· he circuit varies. 

Chapter 3 is a numerical investigation of multistabiüty in the delay dift'erential equation 

simulated electronically in Chapter 2. The results of these numerical simulations demonstrate 

the presence of higher order multistabiüty in the system (I.e. tristability, quadristabiüty 

etc.). White bistability in delay difl'erential equations has been the lubject of intense Icrutiny 

during the past decade, this is the first evidence of higher order multistability. In addition, 
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we present the fint systematic attempt at charaderizing the boundary of basins of attraction 

in the space of initial fundions. Pathological dependence of solution behavior on changes in 

the initial functions is demonstrated {or bislable and tristable limit cycles. 

In Chapter 4, we numerically explore the behavior of densities for a delay differential 

equation which is the singular perturbation of the weil known "hat map". Densitif's along 

the trajectories are fint constructed. It is seen that the number of peaks in the density equals 

the period of the density cydes in the map. Because the phase space of D.D.E's is a normf'd 

function space, we then follow the evolution of a density which is the projection of a segment 

(of length 1: II. "buffer") oi the solution z(t) on the z axis as this segment slides along the 

trajectory. A cycling of the densities constructed in this fashion is observed and appears to 

ofl'er one possible way to extend the concept of asymptotic periodicity to continuous timf' 

systems. Cyding is also observed when the density is the average of ensembles of bufl'ers 

generated by ensembles of D.D.E's. Finally, we look at the evolution of the distribution 

of points obtained by sampling a large collection of solutions, each generated by a specifie 

initial function, at discrete times. This lut construction is of particular interest from an 

experimental point of view, for it simulates the measurement of a gas of noninteracting 

D.D.E's with a sampling device. 

In Chapter 5, we present a theoretical framework with which to investigate D.D.E's 

statistically. We extend some techniques applied to the study of turbulent fluid flows to 

the statistical study of delayed dynamics. Because the phase spaces of D.D.E's are function 

spaces, phase space densities for these systems are density functionals. We derive a functional 

difl'erential equation specifying the evolution of density functionals (I.e. it is an infinite 

dimension al analogue of the Liouville equation). This equation is then reduced to an infinite 

number of linear partial differential equations using perturbation theory. The connection 

between Feynman graphs and the statistical study of D.D.E's is demonstrated and used to 

obtain sorne rules concerning the derivation of the partial differential equations. Finally, 

because the Fourier transCorm of the density Cunctional for a D.D.E can be interpreted as a 

path integral, we illustrate the analogy between the statistics of D.D.E's and the methods 

of quantum field theory. 
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Appendix A 

Regrouping the parameters in 
equation (2.3). 

First of aU, equation (2.3) can be written 

dz(t) (» ( ) H( ) {l if z,. E [81,82], 
~ = c H(z t - r - az t where z,. = 0 otherwise. 

ln addition, time can be scaled by the delay r: 

t 
.. (t) = -, y(,,) = z(t). 

r 

This gives 

(A.l) 

(A.2) 

Note that the delay is still present in the equation, and its parametric influence on solution 

behavior can be studied in the new equation (A.2): it is completely equivalent to the original 

one (A.l). Further, it is possible to eliminate one of the thresholds by setting: 

Therefore, 

Defining 
re/a, 
a8 I /e, 
82 /81, 
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studying the original system (A.I) is completely equivalent to studying 

dz: 
dt = c5[G(z:(t - 1)) - fz:(t)], 

with 

G(e) = {I if e E [~,l'], 
o otherwlse. 

(A.3) 

These new parameters are the three independent parameters of equation (A.1). Being aware 

of this reduction of the number of apparent parameters is important because varying one of 

the original parameters (BI! Q, etc.) is equivalent to varying several intrinsic parameters. 
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Appendix B 

Error analysis. 

B.l Error on measured quantities. 

The systematic error on the values of the meaaured parameters is due to the uncertainty 

of the measurements. We can estimate this error from the known accuracy of the various 

pieces of equipment . 

• Error on the mealured thresholdl: They were measured with a digital voltmeter, 

therefore the error is the meter resolution: 

~,h = ±0.5 x 10-3 volts. (B.l) 

• Error on tlae mealured gain a: The gain was ohtained from a digital oscilloscope 

reading. The finest division reading 0.1 volts, the error associated with the measurement is 

of order 0.1/11'. Let (V. ± ~I) he the lignal at the input of the amplifier and (Va ± ~o) be the 

measured output of an amplifier stage, so the gain a is given by 

Va 
a= -. 

V. 
Therefore, the error on the gain is 

[(
lJ)2 (8 2 ](1 /

2) 

ira = lJ~ ~! + 8~) tT? (B.2) 

where, tTo = ~I ~ 0.03 volts. Difl'erentiating a, 

0.03 [(\t~)2 ] (1/2) 
tTo = - - + 1 

V. V. 
(B.3) 
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• Errors on the gain and offset of the delay box: The error on the measured gain of 

the delay box is the same as the error on cr of amplifier 2. The error on the measured gain 

i5 the lame as that on the threshold because offsets are obtained by comparing input and 

output Itagel on an oscilloscope sereen. Therefore uofJ ::: 0.03 volts. 

• Error on the values of the passive eomponents: The resistors were measured using 

a digital Ohmmeter. The error on their value is equal to 1ts resolution. (fil = 0.5 (0) for all 

reliltances smaUer than or equal to 10 KO. For Rs, the error is (filA = 50 (0). 

The value of the capacitor C) was determined with a Wheatstone bridge. The error on 

this measurement is 
-6 eTc 1 ::: 0.15 x 10 Fd. 

• Error on the height of the Feedback function: Once again, this parameter was 

obtained with a digital voltmeter and the error in its measurement is (fc ~ 0.005 volts. 

• Error on the delay: 

The doek frequency was determined with a frequency counter aecurate to within 1 Hz. 

The delay calibration curve (see Figure 2.7) was fitted with the equation 

1 
T = -" -(2073 ± 10) 1. (BA) 

clnck 

50 for aU practical purposes, (ffe/oel. = 0 and u.,. = 10/ Jclnck' ln aU measurements, J"'HIr = 

10315Hz, therefore 

(f.,. ::: 0.001 1. (8.5) 

B.2 Errors on effective parameters: 

• Error on the effective gain cr~: 

Remember, 

so 

(B.6) 
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• Error on the effective height of the feedback function cf!: 

We had 

Thus 

2 
tTr" 

• Error on the value of the effective threshold: 

(B.7) 

The two effective thresholds 8i and 82 are given in terms 81 and 82 by relation (2.11). 

The errors on 8. and 82 are equal and we therefore have 

(B.8) 

where i = 1,2. 

The errors on the effective parameters, derived above, are used to minimize the discrep­

andes between the electronic and numerical solutions preslnted in Figures 2.11-2.19. 
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Appendix C 

Functional deri"latives. 

The concept of a functional is well knownj a functional is a mapping whose arguments are 

functions and whose values are real numbers. U sually functionals are defined by integrals: 

t[~l = lb F[.\(r)] dr (C.I) 

where Fis a given function. A variation 6t[,x] of the functional c)[,x] is defined by: 

6t[,x] = {t[,x + 6,x]- c)[~]} 

where the brackets indicate that we only consider the part of the difference which is linear 

in 6~, and 6À( r) is zero everywhere except in a neighbourhood A( z) of sorne point z lying in 

the interval [a, b]. The runctional derivative (or variational derivative) of the functional 

t[,x] at the point II: is defined by 

6.[À] = lim {.[~ + 6,x] - .[.\]}. 
6,x(:e) L\(r)-U J~(z) c5.\(r) dr 

As an example consider the linel1r functional 

t[À] = l' ,x(r)g(r) dr. 

Its derivative is calculated according to the definition as follows: 

hence 

+[,x + 6À] = Lb ~(r)g(r) dr + Lb 5À(r)g(r) dr, 

t[,x + 6,x] - +[,x] = r 6,x(r )g(r) dr, 
J~(z) 
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and we can calculate the fundional derivative 

_6t_[~_J _ lim -..:;:;J~~(.r),--6_~(_r~)_g_(r.;.....) d_r 
U(z) - à-O Jà(.r) 6~(r) dr • 

(C.4) 

If g( r) is continuous, then by virtue of the mean value theorem, 

1 6~(r)g(r) dr = z' 1 6~(r) dr, 
Jà(.r) Jà(.r) 

z' E A(z). 

Because z' - z as A(z) -+ 0, one finally gets, for the functional derivative of (C.3), 

5A~Z) [1.' A(r)g(r) clr] = g(z). (C.5) 

It is possible to define functional derivatives of higher order, in analogy to the finite di men­

sionalsituation. In fad, rnany well known results concerning the differential calculus of finite 

dimensional objects have analogues in the infinite dimensional case. For a lIummary of the 

main results of functional calculus we refer the reader to Sobczyk (1988) [74]. 

Rem.rk. The concept of a functional derivative presented here is a special case of the 

differentiation of a mapping of a topological space into another. If this space is the Banach 

fundion space, then the derivatives can be Fréchet or Gâteaux derivatives. Furtherrnore, if 

the mapping under study is a functional wholle arguments are elements of the Banach space 

C, then its Fréchet derivati ve is the fundional derivative defined in this section. 
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Appendix D 

Prograrn listings 

Due to space constraints all the programs used in the calculations in this thesis could Dot 

be presented. The programs given here are: 

1) The program used to compute Figures 3.3·3.6 illustrating the multistability in equation 

(2.3). This analytic integration algorithm was used to obtain the other simulations labelled 

"Analytic solutions" in Chapter 4 and the Figures related to equation (2.3) in Chapter 3. 

2) The numerical integration of equation (4.16). 

3) The program used to produce Figures (4.5) and (4.6). 

A complete listing of all programs used is available on request. 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

program gadapcmf 
This program integrates the MeM-ADH equation using an 
algorithm which solves the equation analytically. The 
Initial Functions can cross th! and th2 once at wl-tau 
and w2-tau (fi-l) or remain in [thl,th2) (fi-O). In 
both cases the I.F is at th2 at t-v. The arrays are 
first initialized, then the type of initial function 
is selected. The solution i5 computed in the loop ending 
at line 1000 (the counter for the loop being j). On line 1100 
the period of the signal is computed (using the extrema (E(j)'s)). 
Every time time the slope changes the proqram goes through the entire 
j-loop (ending at line 1000). The program checks whether or 
not it knows the crossing time corresponding to the extremum it 
wants to compute. It then computes E(j) and checks for 
new crossings between E(j-l) and E(j), and stores these crossings 
for later use in computing extrema. Inside the "j-loop", the proper 
indexing of the new crossing times is done with the 
counter k which depends on the type of initial function used. 
The density is then analytycally computed until line 1800 and 
stored in the array ds(l). 

E(j) contains the extrema corresponding to a given palameters/I.F 
set. T()) contains the cros5ing times with th1 and/or th2. x(j) 
contains an array of point obtained with the E's and T's r~presenting 
the solution in a way such that it can be plotted by any exterior 
graphies package. In this edition of the program the graphies are 
performed by MGS, a set of FORTRAN routines written by J.S. 
Outerbridge. The routines are called directly in the program @very 
time plottin9 of an array i5 desired. Newd was also written by J.S.O. 
It is used for input/output. 
"initst" and the "include" statement are necessary for MGS ta work 
properly. 

real*S c,alpha,thl,th2,w1,w2,accur,dnextr 
real*S E(10000),T(10000),x(100000),tag(3),ds(2S1) 
real*S tau,gamma,Tpriml,Tprim2,fi,btime,inifar(lS) 
real*S k,Elast,i,w,del,inter,dt,~ime,nl,nt 
real*8 n,flag(8),flags,v,s,nmax,np,fin 
real*8 ntrans,na,npossible,difl,dif2,period 
real*8 deltal,delta2,delta3,delta4,transplot,length 
real*8 de,Emin,Emax,sstart,ssttoopp 
integer intrans,ina,inposslble,m,kounter,label,nextr,mn,in 
integer idif,b,isstart,issttoopp 
include 'st$exe:STDEF.' 

call ini tst 

open(4S,file-'ct.dat',status-'new') 
open(5S,file-'et.dat',status-'new') 
open(60,file-'dens.dat',status-'new') 
0pfn(63,flle-'per.dat',status-'new') 

open(64,file-'sol.dat',status-'new') 
calI newd( 'non-constant IC', fi, O., 1.) 
calI newd('first crossing time', wl, O., 1.) 
calI newd( 'second crossing time', w2, O., 1.) 
calI newd('enter the delay', tau, O., 5000.) 
call newd('enter thl', thl, 0.,5.) 
call ne'oid( 'enter th2', th2, O., 5.) 
calI newd('enter the gain', alpha, O., 40.) 
calI newd('enter height of the feedback', c, O., 200.) 
calI newd('enter total number of crossings', n, O., 1000000.) 
calI newd('enter length of transient', ntrans, O., 1000000.) 
calI newd('enter transplot', transplot, O., 1000000.) 
calI newd( 'enter length of plot', length, O., 1000000.) 
do 5 1-1,3 

tag ( 1 ) -O. OdO 162 
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5 

10 

15 

20 

continue 
do 10 1-1,1000 

T(l)-O.OdO 
continue 
do 15 1-1,8 

fla9( 1 )-O.OdO 
continue 
do 20 1-1,1000 

E(l)-O.OdO 
continue 
gamma-c/(a1pha) 
v-O.OdO 
in-int(n) 
na-n-ntrans 
npossible-n/2.0dO-10.0dO 
inpossible-in/2-10 
intrans-int(ntrans) 
accur-O.000000000000001 
if(fi.eq.1.0dO) then 

T(1)-w1-tau 
T(2)-w2-tau 
T(3)-0.OdO 
Tprim1-w1 
E(1)-th2*dexp(-alpha*w1) 

else 

if(E(1).lt.th1) then 
T(4)- (1/(alpha»*log(th2/th1) 
k-4.0dO 

else 
k-3.0dO 

endif 

T(l)-O.OdO 
k-1.0dO 
Tpriml-tau 
E(1)-9amma+(th2-9amma)*dexp(-alpha*tau) 

endif 

c--------WE NOW COMPUTE THE SOLUTION FOR T>O-----------­

do 1000 j-2,n 

c-------the 

c-------the 

v-v+1 

if«(v/2)-idint(v/2».eq.0.OdO) then 
if(fi.eq.1.0dO) then 

s-O.OdO 
else 
5-1. OdO 

endif 
slope leading to extremum E(j) is negative. 

else 
if(fLeq.1.0dO) then 
s-1.0dO 

else 
s-O.OdO 

endif 
endif 

slope is positive. 

i f( (TC j) .9t. O.OdO) .or. (j .le. 3. OdO» then 
tag(l)-l.OdO 

endif 
if ( ( tag ( 1) . eq.1. OdO ) • and. ( fi. eq.1 • OdO » then 

tag( 2 )-1. OdO 
endif 
1~(T(j).9t.O.OdO).and.(fi.eQ.0.OdO» then 
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tag(3)-l.OdO 
endif 
if«tag(2).eq.l.OdO).or.(tag(3).eq.l.OdO» then 

c----------- crossing time is known. 
flags-l. OdO 
Tprim2-T(j)+tau 

c----------- that's the time of the extremum corresponding to the 
c----------- jth crossing. 

if(s.eq.O.OdO) then 
E(j)-E(j-l)*dexp«-alpha)*(Tprim2-Tpriml» 

else 
E(j)-(c/(alpha»+(E(j-l)-c/(alpha»*dexp(-(alpha)*(Tprim2-Tpriml» 

endif 

c---------- If ~ij) and E(j-l) are in the same region no crossing occurs 
r.---------- between them. You can then go on to the next j. If this is not 
c---------- the case, we have to find the new crossings by performing tests 
c---------- on the extrema. He do this now. 

if ( ( E ( j ) . gt. th2) . and. (E ( j-l ) • gt. th2» then 
flag( 1 )-1. OdO 

endif 
if«E(j).lt.th2).and.(E(j-ll.lt.th2» then 

flag(2)-1.0dO 
endif 
if«E(j).gt.thl).and.(E(j-l).gt.thl» then 

flag( 3 )-1. OdO 
endif 
if«E(j).lt.thl).and.(E(j-l).lt.thl» then 

flag( 4 )-1. OdO 
endif 
if«flag(2).eq.l.OdO).and.(flag(3).eq.l.OdO» then 

flag( 5)-1.0dO 
endif 
if«flag(1).eq.l.OdO).or.(flag(4).eq.l.OdO» then 

flag( 6 )-1. OdO 
endif 
if«flag(5).eq.l.OdO).or.(flag(6).eq.l.OdO» then 

fin-1. OdO 
else 

i-k+l 
fin-O.OIO 

endif 
c---------- we now find the new crossings: c---------- "in will label properly any newly discovered crossing time 
c---------- between E(j) and its predecessor. For simplicity the search 
c---------- for crossings is split in two depending on whether the 
c---------- derivative is positive or negative. 

else 
flags-O.OdO 
fin-O.OdO 

endif 
do 70 1-1,8 

flag( 1 )-0. OdO 
70 continue 

do 75 1-1,3 
tag(I)-O.OdO 

75 continue 

if(fin.eq.O.OdO) then 

if(s.eq.O.OdO) then 
c---------- The slope is negative . 

if(E(j-l).gt.th2) then 
c If there is a crossing it will be on a decreasing exponent~al 
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c segment with th2: 
if«flags.eq.l.OdO).and.(E(j).lt.th2» then 

T(i)-Tpriml-(1/(alpha»*dlog(th2/E(j-l» 
endif 
if(flags.eq.O.OdO) then 

T(j)-Tpriml-(1/alpha)*dlog(th2/E(j-l) ) 
Tprim2-T(j)+tau 
E(j)-th2*dexp(-(alpha)*(tau» 

endif 

if«flags.eq.l.OdO).and.(E(j).lt.thl» then 
T(i+l)-Tpriml-(l/alpha)*dlog(thl/E(j-l» 
k-k+l 

endif 
if«flags.eq.O.OdO).and.(E(j).lt.thl» then 

T(j+l)-Tpriml-(l/alpha)*dlog(thl/E(j-l» 
Tprim2-T(j)+tau 
k-k+l 

endif 

endif 

endif 

if«E(j-l).lt.th2).and.(E(j-l).gt.thl» then 
if«flags.eq.l.OdO).and.(E(j).lt.thl» then 
T(i)- Tpriml-(l/(alpha»*dlog(thl/E(j-l» 

endif 
if(flags.eq.O.OdO) then 

T(j)-Tpriml-(l/alpha)*dlog(thl/E(j-l» 
Tprim2-T(j)+tau 
E(j)-thl*dexp( (-alpha)*(tau» 

endif 
endif 
if(E(j-l).lt.thl) then 
flag(7)-1.OdO 

k-k+l 
Tpriml-Tprim2 

else 

c----------DETERMINE CROSSINGS WHEN THE SLOPE IS POSITIVE: 

c----------the slope is positive 
250 if(E(j-l).lt.thl) then 

if«flags.eq.l.0dO).and.(E(j).gt.thl» then 
T(i)-Tpriml-(l/alpha)*dlog«thl-c/alpha)/(E(j-l)-c/alpha» 
endif 

c--------- crossing of a rising exponential segment with thl. 

if(flags.eq.O.OdO) then 
T(j)-Tpriml-(l/alpha)*dlog«thl-c/alpha)/(E(J-l)-c/alpha» 

Tprim2-T(j)+tau 
E(j)-c/(alpha)+(thl-c/(alpha) )*dexp«-alpha)*(tau» 

endif 
325 if«flags.eq.l.OdO).and.(E(j).gt.th2» then 

T(i+l)-Tpriml-(1/alpha)*dlog«th2-c/alpha)/(E(j-l)-c/aIpha» 
k-k+l 

endif 
if«flags.eq.O.OdO).and.(E(j).gt.th2» then 

T(j+l)-Tpriml-(1/alpha)*dlog«th2-c/alpha)/(E(j-l)-c/aIpha» 
Tprim2-T(j)+tau 
k-k+l 

endif 
elseif«E(j-l).gt.thl).and.(E(j-l).lt.th2» then 

if«flags.eq.l.OdO).and.(E(j).gt.th2» then 
T(i)-Tpriml-(1/alpha)*dlcQ«th2-c/alpha)/(E(j-l)-c/alpha» 
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1000 
1001 

c 
c 
c10S0 
c 
c 
cl070 

1005 

1010 

1081 

1082 

endif 
if(f1a9s.eq.O.OdO) then 

T( j ) -Tpr iml- ( l/alpha ) *dlc'9 ( ( th2-c/alpha) /( E( j-l ) -c/a1pha) ) 
Tprim2-T( j )+tau 
E(j)- c/(a1pha)+(th2-c/(alpha»*dexp(-(a1pha)*(tau» 

endif 
else 

flag(8)-1.0dO 
n-v 

endif 

k-k+l. OdO 
Tpr iml-Tprim2 
endif 

else 
Tpriml-Tprim2 

endif 

continue 
w-O.OdO 
i-O.OdO 
do 1050 m-l,n 

write(45,*) T(m) 
continue 
do 1070 m-1,n 

write(55,*) E(m) 
continue 

if(flag(7).eq.l.OdO) then 
do 1005 1-1, n 

w-w+l 
x (w)-O. OdO 

continue 
endif 
if ( flag ( 8 ) • eq.l. OdO) then 

do 1010 l-l,n 
w-w+1 

x(w)-4.0dO 
continue 

endif 
if ( ( flag ( 7 ) • eq. O. OdO ) • and. ( flag (8) • eq. O. OdO » then 
do 1080 j-transp1ot,transplot+1ength 

if ( j . eq .1) then 
if (fLeq.l. OdO) then 

np-idint(250*w1) 
del-w1/np 
do 1081 l-l,np 

w-w+l 
x(w)-th2*dexp(-(alpha)*1*de1) 

continue 
else 

np-idint(250*tau) 
del-tau/np 
do 1082 1-1,np 

w-w+l 
x(w)-9amma+(th2-9amma)*dexp(-(alpha)*1*de1) 

continue 
endif 

else 
if(j.eq.transp1ot) then 
sstart-w 

endif 
if(E(j).lt.E(j-l» then 

inter- (1/(a1pha»*dlog(abs(E(j-l)/E(j») 
np-idint(250.0dO*inter) 

if(np.eq.O.OdO) then 
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1085 

1090 

1080 

c 
c 

1095 
c 
c 
c 
c 

1500 

w-w+1 
x(w)-(E(j-1»*dexp(-(alpha)*inter) 

e1se 
del-inter/np 
do 1085 1-1, np 

w-w+1 
X(W)-(E(j-1»*dexp(-(alpha)*1*del) 

continue 
endif 

else 
inter-(-1/(alpha»*d1og«E(j)-gamma)/(E(j-1)-gamma» 
np-idlnt(250.0dO*inter) 

if(np.eq.O.OdO) then 
w-w+l 
x (w)-gamma+( E (j-l) -gamma) *dexp( -( alpha) * inte r) 

else 
del-inter/np 
do 1090 1-1, np 

w-w+1 
x(w)-gamma+(E(j-l)-gamma)*dexp(-(alpha)*l*del) 

continue 
endif 

endif 
endif 
if(j.eq.(transplot+length» then 

ssttoopp-w 
endif 

continue 
endif 
iSoitart-sstart 
issttoopp-ssttoopp 

nmax-w 
call mcinit( 'default',STDOUT) 
call mdwindow(10.OdO,SO.OdO,O.OdO,5.0dO) 
calI merase 
call mdport(0.OdO,O.8SdO,O.OdO,.40dO) 
cal! mtsi ze ( 2 ) 
calI CXYAX(' "Analytic" solution:'.' ',1, l,' '.5,1,' inside' ) 
call mdwindow(sstart,ss~toopp,O.OdO,S.OdO) 
calI mdmove(O.OdO,2.0dO) 
time-sstart 
do 1095 l-sstart,ssttoopp 

time-time+1.0dO 
call mddraw(time,x(time» 

continue 
call mdwindow(-1.OdO,O.OdO,O.OdO,3.0dO) 
call mdport(0.8dO,1.3dO,O.7dO,l.OdO) 
call mtsize(l.OdO) 
call CXYAX( 'Initlal Function:',' , ,1,1,' ',3,1, 'inside') 

mn-int(n-1.0dO) 
in-int( n) 
do 1500 l-2,inpossible,2 

de1ta1-(T(in)-T(in-l» 
delta2-(T(in -1)-T(in-2*l» 
dif1-dabs(delta2-deltal) 
delta3-(T(mn)-T(mn-l» 
delta4-(T(mn-I)-T(mn-2*l» 
dif2-dabs(delta4-delta3) 
if ( (di f1.lt. accur) . and. (di f2.lt. accur» then 

nextr-l 

endif 
continue 

goto 1600 
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1600 

1900 
1800 

c 
2000 

6000 

2100 

nextr-inpossib1e 
T(3)-T(3) 

Emin-thl*dexp(-a1pha*tau) 
Emax-gamma+(th2-gamma)*dexp(-alpha*tau) 
de-(Emax-Emin)/250 

do 1800 1-1,251 

ds(l )-O.OdO 

do 1900 m-intrans,intrans+nextr-l 

if«int(m/2)-(m/2».eq.0) th en 

if ( ( (Emi n+ (1-1) *de) . gt • E (m-1 ) ) . and. ( (Emin+ ( 1-1) *de ) .lt. E (m) » then 

ds(I)-ds(l)+(-l/a1pha)*(1/«Emin+(I-l)*de)-gamma»*(T(m)-T(m-1»/deltal 

endif 

endif 

if «int( (m-l )/2 )-( (m-1 )/2» .eq. 0) then 

if«(Emin+(1-l/*de).gt.E(m».~nd.«Emin+(1-1)*de).lt.E(m-l») then 

ds(1)-ds(1)+(l/a1pha)*(I/(Emin+(1-l)*de»*(T(m)-T(m-1))/deltal 

endif 
endif 

continue 
continue 

call mdwindow(O.OdO,2.9dO,0.OdO,1.0dO) 
call mdport(0.OdO,O.4dO,O.42dO,0.78dO) 
call mtsize(2) 
call CXYAX('Ana1ytic density:',' ',1,1,' ',1,1,'inside') 
calI mdwindow(O.OdO,253.0dO,O.OdO,1.50dO) 
call mdmove(O.OdO,O.OdO) 
btime-O.OdO 
do 2000 1-1,251 

btime-btime+1.0dO 
call mddraw( btime, ds (btime) ) 
write(60,*) ds(l) 

continue 
caU mflush 
caU endst(OK) 
do 6000 j-sstart,ssttoopp 

write(64,*) x(j) 
continue 

end 
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e this pro9ram inte9rates the "hat" DDE usin9 a 4th 
e order Runge-Kutta al90rithm. 
e the inte9ration step is deI t. 
e deidiv is the Iength of the delay in units of the step. 
e is the real time length of the delay. 

real.a xdel(SOl),x,dxdt,xh,delt,tau,x1tau,xtinit,eondn,ttime 
real.a realt,a,solution(SOlOOO),time,xl,x2,y1,y2,wxl,wx2,wyl,wy2 
real·a ntau,ntaumax,deldiv,delpr,t1,t2,ltrans,pxl,px2,pyl,py2 
real.a pos(2S0),den(250),kountp,th,kountn,alpha,th1,th2,k,s 
real.a swxl,swx2,swyl,swy2,spxl,spx2,spyl,spy2,slol,sl02 
real.a temps,xmin,xmax,eif,up,down,trans 
inelude 'st$exe:STDEF.' 

eommon/eqparam/a,xdel,delt,tau,tl,t2,alpha,thl,th2,s,slol,slo2,cif 
eommon/deloop/k 

e open(35,file-'den.dat',status-'new') 
eaU initst 

write(STDOUT,*) 'enter world co-ords' 
read(STDIN,.) x1,x2,yl,y2 
wri te (STDOUT, *) , enter down, up' 

read ( STDIN, .) down, up 

write(STDOUT,*) 'enter port co-ords' 
read(STOIN,.) (.ixl,px2,pyl,py2 
wri te (STDOUT,·) , do you want the 1. F? (1/0)' 

read(STDIN,.) condn 
if ( condn. eq. 1) then 

write(STDOUT,.) 'enter inset-world co-ords' 
read(STDIN,*) wxl,wx2,wyl,wy2 
write(STDOUT,.) 'enter co-ords of inset port' 

read(S'!'DIN,*) pwxl,pwx2,pwyl,pwy2 
endif 

write(STDOUT,*) 'enter a' 
read( STDIN,·) a 
write(STDOUT,*) 'enter tl' 

read ( STDIN, .) tl 
write(STDOUT,*) 'enter t2' 

read ( STDIN, .) t2 
write(STDOUT,*) 'enter ntaumax' 

read ( STDIN, .) ntaumax 
write(STDOUT,*) 'enter thl' 

read ( STOIN, .) thl 
write(STDOUT,*) 'enter th2' 

read ( STDIN, .) th2 
write(STDOUT,.) 'enter 5101 (posi)' 

read ( STOIN, .) 5101 
write(STDOUT,*) 'enter sl02 (ne9a)' 

read ( STOIN, .) 5102 
write(STOOUT,*) 'enter 9ain' 

read(STOIN,.) alpha 
write(STDOUT,.) 'enter s-WORLD co-ords' 

read(STDIN,.) swxl,swx2,swyl,swy2 
write(STDOUT,.) 'enter s-port world' 

read(STDIN,.) spxl,spx2,spyl,spy2 
write(STDOUT,.) 'enter xm1n' 

read ( STDIrl,.) xmin 
write(STDOUT,.) 'enter xmax' 

read(STDIN,.) xmax 
write(STDOUT,.) 'enter delay' 

read ( STDIN, .) tau 
wri te (STDOUT, .) , ci f' 

read (STDIN, *) cif 
wr i te ( STDOUT , *) , ENTER TRANS.' 

read ( STDIN, *) trans 
wr i te (STDOUT, *) , ENTER DELT' 

read( STDIN, *) delt 1~9 
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deldiv-SOO.OdO 
delpr-deldiv+l 

c------- FILL-UP THE INITIAL AR RAY 
do 104 ttime-l,tl 

xdel(ttime)-a*(ttime/SOO)+cif 
104 continue 

Jo 204 ttime-tl+l, t2 
xdel(ttime)-a*tl/500+«ttime/SOO)-tl/SOO)+cif 

204 continue 
do 304 ttime-t2+l,SOl 

xdel(ttime)_(a*tl/500+(t2-tl-a*t2)/SOO)+a*(ttime/SOO)+cif 
304 continue 
c do 104 ttime-l,SOO 
c xdel(ttime)-cif 
cl04 continue 

calI mcinit('default',STDOUT) 
calI mdwindow(-l.OdO,O.OdO,O.OdO,I.OdO) 
calI merase 

c-------PLOTTING THE I.F 
if(condn.eq.l.OdO) then 

calI mdport(pwxl,~wx2,pwy1,pwy2) 
call mtsize(2) 
calI CXYAX('I.F',' ',1,1,' ',2,1,'inside') 
calI mdwindow(wxl,wx2,wyl,wy2) 
calI mdmove(0.8dO,0.8dO) 
do 63 ttime-l,SOl 

calI mddraw(ttime,xdel(ttime» 
63 continue 

endif 
time-O 

calI mdwindow(trans,trans+1S.0do,down,up) 
calI maport(pxl,px2,pyl,py2) 
call mtsize(2) 
calI cxyax('Solution',' ',15,0,' ',1,2,'inside') 
call grid(15,1) 
calI mdwindow(trans*SOl,trans*SOl+7SIS,xmin,xmax) 
calI mdmove{O.OdO,xdel(SOI» 

do 100 ntau-l.ntaumax 
x-xdel (deldi v~·l) 
do 101 k-l,deldiv 

timt'-time+1 
tnext-(ntau-l+k*delt)*tau 
realt-tnext-delt*tau 
xltau-xdel(k) 
calI derivs(realt,x,dxdt,xltau) 
calI rk4(x,dxdt,realt,xh) 
xdel(k)·x 
x-xh 
solution(time)-xh 

if«time.qe.(trans*SOl+l) ).and.(time.le.trans*SOl+7S1S» then 
calI mddraw(time,solution(time» 

endif 
101 continue 

xde1(deldiv+l)-xh 
100 continue 
C----------GETTING A DENSITY ALONG THE TRAJECTORY: BINNING. 

do 173 j_trans*SOl+1,trans*SOl+7SlS 
solution(j)_dint(lOO*(solution(j)-xmin)/{xmax-xmin» 

173 continue 
temps-O.OdO 

do 183 k-l,99 
temps-temps+l.OdO 
do 180 1-1,trans*SlS+7S1S 
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180 
183 

350 

c 
c 
c400 

if(solution(l).eq.temps) then 
den(k)-den(k)+I.OdO 

endif 
continue 

continue 

calI mdwindow(down,up,swyl,500.0dO) 
calI mdport(spxl,spx2,spyl,spy2) 

caU mtsize (2) 
calI cxyax('Density',' ',1,2,' ',l,O,'inside') 
calI mdwindow(swxl,swx2,swyl,swy2) 
calI mdmove(O.OdO,den(l» 

time-O.OdO 
do 350 j-I,99 

time-time+l.OdO 
calI mddraw(time,den(time» 

continue 

caU mflush 
calI endst(OK) 
do 400 j-I,249 

write(35,*) DEN(J),solution(j) 
CONTINUE 

end 

SUBROUTINE DERIVS(realt,x,dxdt,xltau) 
double precision a,xltau,x,dxdt,xdel(SOl),delt,tau,realt 
double precision tl,t7.,alpha,thl,th2,k,s,slol,slo2 
include 'st$exe:STDEF.' 
common/eqparam/a,xdel,delt,tau,tl,t2,alpha,thl,th2,s,slol,slo2,cif 
common/deloop/k 

if ( (xltau. ge. O. OdO) . and. (xl tau .le. thl» then 
dxdt--alpha*x+slol*xltau 
else if«xltau.gt.thl).and.(xltau.le.th2» then 
dxdt--alpha*x+slol*(l-xltau) 
else 
dxdt--alpha*x 
endif 

end 
SUBROUTINE RK4(x,dxdt,realt,xh) 

double precision a,x,dxdt,xh,xdel(SOl),realt,delt,tau 
double precision xt,dxt,dxm,hh,h6,th,tprime,xltau 
double precision tl,t2,alpha,thl,th2,k,s,slol,slo2 
include 'stSexe:STDEF.' 
common/~qparam/a,xdel,delt,tau,tl,t2,alpha,thl,th2,s,slol,slo2,cif 
common/deloop/k 

hh-delt*tau/2 
h6-hh/3 
th-realt+hh 
xt-x+(hh*dxdt) 
xltau-(xdel(k)+xdel(k+l»/2 

calI derivs(th,xt,dxt,xltau) 
xt-x+hh*dxt 

calI derivs(th,xt,dxm,xltau) 
xt-x+delt*tau*dxm 
dxm-dxt+dxm 
xltau-xdel(k+l) 
tprime-realt+delt*tau 

calI derivs(tprime,xt,dxt,xltau) 
xh-x+h6*(dxdt+dxt+2*dxm) 

end 
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e this program integrates the "hat" DDE uslng a 4th 
e order Runge-Kutta algorithm. 
e the Integration step ls deit. 
e deldiv is the length of the delay in units of the step. 
e i5 the real tlme 1ength of the delay. 
e Once the equation is simulated, the program bins 20 buffers 
e containing a segment of 1ength 1 of the solution. 
e The points at which the 20 buffers begin are the sb's. 
e There is only 1 Initial Function since this program simulates the 
e procedure explalnea in section 4.2.2b which consists 
e in followlng a segment of solution of length tau and 
c binning this "buffer" as it slides along a solution. 

real*8 xdel(SOl),x,dxdt,xh,delt,tau,xltau,xtin~t,ttime 
real*8 realt,a,solution(SOlOOO),time 
real*8 ntau,ntaumax,deIdiv,delpr,t1,t2,ltrans 
real*8 kounter,th,kountn,alpha,th1,th2,k,s 
real*8 slol,slo2,buf(501),x1(20),x2(20),y1(20~ .y2(20) 
real*8 xmin,xmax,cif,start,bufden(50),heit,temp~,sb(20) 
include 'st$exe:STDEF.' 

common/eqparam/a,xdel,delt,tau,t1,t2,alpha,th1,th2,s,slol,slo2,cif 
eommon/deloop/k 
calI initst 

write(STDOUT,*) 'enter a' 
read(STDIN,*) a 
write(STDOUT,*) 'enter tl' 

rea1(STDIN,*) t1 
wr~te(STDOUT,*) 'enter t2' 

reao(STDIN,*) t2 
write(STDOUT,*) 'enter ntaumax' 

read(STDIN,*) ntaumax 
write(STDOUT,*) 'enter th1' 

read(STDIN,*) th1 
write(STDOUT,*) 'enter th2' 

read(STDIN,*) th2 
write(STDOUT,.) 'enter 5101 (posi)' 

read(STDIN,*) slol 
write(STDOUT,*) 'enter 5102 (nega)' 

read(STDIN,.) sl02 
write(STDOUT,*) 'enter gain' 

read(STDIN,.) alpha 
wrlte(STDOUT,.) 'enter xmin' 

read(STDIN,.) xmln 
wrlte(SDOUT,*) 'enter xmax' 

read(STDIN,.) xmax 
write(STDOUT,*) 'enter delay' 

read(STDIN,.) tau 
write(STDOUT,.) 'cif' 

read(STDIN,.) cif 
write(STDOUT,*) 'ENTER TRANS.' 

read(STDIN,.) start 
write(STDOUT,*) 'ENTER DELT' 

readCSTDIN,.) delt 
write(STDOUT,*) 'enter height' 

read(STDIN,*} heit 
do 37 j-l,20 

writeCSTDOUT,.) 'enter sb' 
read(STDIN,*} sb(j) 

~7 continue 
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) 

c------- FILL-UP THE INITIAL ARRAY 
do 104 ttime-l,tl 

xdel ( t tA.me )-a * (ttime/500) +ci f 
104 continue 

do 204 ttime-tl+1, t2 
xdel(ttime)-a*tl/500+CCttime/500)-t1/500)+cif 

204 continue 
do 304 ttime-t2+1, 501 

xdel ( t time). (a *tl/500+ C t2-tl-a*t2) /500) +a * C ttime/500) +ci f 
304 continue 
c do 104 ttime-l,SOO 
c xdelCttime)-cif 
c104 continue 
C--------FILLING-UP THE X AND Y ARRAYS(COORDS OF THE 20 PORTS) 

do 250 j-l,5 
xlCj)-Cj-1)*0.26dO 
x2 ( j ) - j * 0 .26dO 
yl(j)-0.75dO 
y2(j )-1.0dO 

250 continue 
do 251 j-6,10 

xlCj)-xlCj-5) 
x2(j)-x2(j-5) 
yl(j)-O.5dO 
y2(j)-0.75dO 

251 continue 
do 252 j-ll,15 

x1(j)-x1Cj-5) 
x2(j)-x2(j-5) 
y1(j)-O.25dO 
y2(j)-O.50dO 

252 continue 
do 253 j-16,20 

xl(j)-xl(j-5) 
x2(j)-x2Cj-5) 
y1(j)-O.OdO 
y2(j)-O.25dO 

253 continue 

101 

100 

call IIlcinitC 'default' ,STOOUT) 
ca11 merase 

time-O 

do 100 ntau-l,ntaumax 
x-xdel(deldiv+1) 
do 101 k-l ,deldi v 

time-time+1 
tnext-Cntau-l+k*delt)*tau 
~ealt-tnext-delt*tau 
:11.1 tau-xdel (k ) 
cali derivsCrealt,x,dxdt,xltau) 
cali rk4ix,dxdt,realt,xhl 
xdel(k)-x 
x-xh 
solutionCtime)·xh 

continue 
xdelCdeldiv+l)·xh 

continue 

do 750 k-l, 20 
.-0 

do 102 j_sb(k),sb(k)+SOO 
m-m+l 
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) 

( 

102 

114 
103 

105 

750 

buf(m).solution(j) 
buf(m)-dint(50*(buf(m)-xmin)/(xmax-xmin» 

continue 
temps-O 
do 103 1-1,50 

bufden( 1 )-0. OdO 
temps-temps+1 
do 114 j-l, 501 

if (buf ( j ) • eg. temps) then 
bufden(l)-bufden(1)+1 

endif 
continue 

continue 

calI mdwindow(xmin,xmax,O.OdO,heit) 
cal! mdport(xl(k),x2(k),yl(k),y2(k» 
cal! mtsize(2) 
calI cxyax(' ',' ',1,2,' ',l,l,'inside') 
calI mdwindow(O.OdO,SO.OdO,O.OdO,heit) 
calI mdmove(O.OdO,O.OdO) 
kounter-O 
do 105 n-l, 50 

kounter-kounter+l 
calI mddraw(kounter,bufden(kounter» 

continue 

continue 

caU mflush 
caU endst (OK) 

end 

SUBROUTINE DERIVS(realt,x,dxdt,xltau) 
double precision a,xltau,x,dxdt,xdel(50l),delt,tau,realt 
double precision tl,t2,alpha,thl,th2,k,s,s101,slo2 
include 'st$exe:STDEF.' 
common/eqparam/a,xdel,delt,tau,tl,t2,alpha,thl,th2,s,slc1,slo2,cif 
common/deloop/k 

if«xltau.ge.O.OdO).and.(xltau.le.thl» then 
dxdt--alpha*x+slol*xltau 
else if«xltau.9t.th1).and.(xltau.le.th2» then 
dxdt--alpha*x+slol*(l-xltau) 
else 
dxdt--alpha*x 
endif 

end 
SUBROUTINE RK4(x,dxdt,realt,xh) 

double precision a,x,dxdt,xh,xdel(SOl),realt,delt,tau 
double precision xt,dxt,dxm,hh,h6,th,tprime,xltau 
double precision tl,t2,alpha,thl,th2,k,s,slol,slo2 
include 'st$exe:STDEF.' 
common/eqparam/a,xdel,delt,tau,tl,t2,alpha,thl,th2,s,slol,slo2,cif 
common/deloop/k 

hh-delt*tau/2 
h6-hh/3 
th-realt+hh 
xt-x+(hh*dxdt) 
xltau-(xdel(k)+xdel(k+l»/2 

calI derivs(th,xt,dxt,xltau) 
xt-x+hh*dxt 

calI derivs(th,xt,dxm,x1tau) 
xt-x+delt*tau*dxm 
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) 

xltau-xdel(k+l) 
tprime-realt+delt*tau 

call derivs(tprime,xt,dxt,xltau) 
xh-x+h6*(dxdt+dxt+2*dxm) 

end 
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