# Animal Manures and Urea as Nitrogen Sources

for

i

Corn Production

in Quebec

C Rongjing Xie

by

## A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science

4

Department of Renewable Resources Macdonald College of McGill University Ste Anne de Bellevue P.Q.

1

August, 1985

# ABSTRACT

Rongjing Xie

1.

Renewable Resources

Fresh (FC) and composted cow (CC) manures, hog manure (HM) and urea (U) were applied as N sources for corn (W 844) production on a Chicot soil (sandy clay loam) and a St Benoit soil (sandy loam) at rates of 60 to 240 kg N/ha.

More soil water was conserved by CC and FC manures than by HM. Soil organic matter and bulk density were not affected by manures over the three years of the experiment. Soil  $NO_3-N$  levels were significantly increased by N additions. An application of 240 kg manure-N/ha produced less  $NO_3-N$  in the soils that one of 180 kg urea-N/ha.

Significant correlations existed between corn dry-matter yields and N or P contents of corn ear leaves at silking. Dry-matter yields and N uptake were higher with HM than with CC or FC manures. Differences between surface spreading or incorporating of manure on corn dry-matter yields were not signifcant. Cumulative effects of the treatments on yields were higher on the sandy loam soil than on the sandy clay loam soil.

i

RESUME

Rongjing Xie

Ressources renouvelables

Du fumier de bovins frais (FC) et composté (CC), du fumier de porcs (HM) et de l'urée (U) furent appliqués comme sources d'azote pour la production de maïs (W844). Ces produits ont été appliqués à des taux de 60 à 240 kg N/ha sur un loam sablo-argileux Chicot et sur un loam sableux St Benoit.

L'humidité du sol était supérieure avec l'application du fumier composté qu'avec le fumier frais de bovins et le fumier de porcs. A court terme, la matière organique du sol et la densité apparente n'ont pas été affectées par les applications de fumier. Le contenu en nitrates  $(NO_3-N)$  du sol a été significativement augmenté par une augmentation des doses d'azote. Une dose de 240 kg N/ha venant du fumier de porc n'a pas augmenté le contenu en nitrate du sol autant que 180 kg N/ha venant de l'urée.

Des corrélations significatives ont été obtenues entre le rendement en matière sèche du maïs et la concentration en N et P dans les feuilles au niveau de l'épi. Le rendement en matière sèche et les prélèvements en azote étaient supérieurs avec le fumier de porcs qu'avec le fumier de bovins frais ou composté. Les rendements en matière sèche du maïs n'étaient pas très différents, que le fumier fut appliqué en surface ou

ii

incorporé dans le sol. Les effets cumulatifs des différents traitements étaient supérieurs dans le cas du loam sableux que dans celui du loam sablo-argileux.

a

iii

**.** 4

J

ş

Ţ3

 $\hat{J}_{j}$ 

#### ACKNOWLEDGEMENTS

The author would especially like to express his appreciation to Dr. A. F. MacKenzie, Professor of Soils, under whose guidance this research work was done and this thesis was prepared.

Greatful appreciation from the author is extended to Peter Kirby for help in field techniques, to Brian Purcell and Michel Remillard, and the Soil Fertility field crew for their interest in field work, to John Pedersen for laboratory techniques and assistance, and to Eddy St-George for his generosity in the use of Department facilities.

The convivial atmosphere created by staff and graduate students contributed to the success of this project.

Financial support from the Ministry of Education in the People's Republic of China in the form of a scholarship is acknowledged and greatly appreciated.

Special thanks are given to the author's wife, Jian, for her patience and encouragement from our homeland, China.

iv

# FOREWORD

١

٠,

ŋ.

This thesis contains an overall introduction, three chapters, and ends with general conclusions. Chapter 1 is a review of literature. Chapter 2 discusses effects of manures or urea on soil properties and Chapter 3 presents effects of manures or urea on corn production.

ν

# TABLE OF CONTENTS

Table of contents .....

¢

.7',

| List of    | tables  | ·                                             | ** 1 1 1 |
|------------|---------|-----------------------------------------------|----------|
| DISC VI    | Cabics  | · · · · · · · · · · · · · · · · · · ·         | V 1 1 J  |
| Introdu    | ction   |                                               | 1        |
|            |         |                                               |          |
| Chapter    | . 1     | Literature Review                             | 3        |
| onapter    | 1       | Ser:                                          | ι.j      |
|            | 1.1     | Manure as a nutrient source                   | 3        |
|            | 1.2     | Effects of manure on soil properties          |          |
|            |         | and plant nutrition                           | 7        |
| ~          | 1.2.1   | Soil properties                               | 7        |
|            | 1.2.2   | Crop production and plant nutrition           | 8        |
|            | 1.3     | Relative value of manure as fertilizer        | 11       |
|            | 1.4     | Efficiency of manure use                      | 12       |
|            | 1.5     | Manure as a source of nitrate-N               |          |
|            |         | contamination                                 | 13       |
|            | 1.6     | Summary                                       | 13       |
|            |         |                                               |          |
| <b>0</b> 1 | 0 000   |                                               |          |
| Chapter    |         | ect of manures and urea on soil bulk density, |          |
|            |         | nium- and nitrate-N, and organic matter       | 16       |
|            | Cont    | ent                                           | 10       |
|            | 2.1     | Introduction                                  | 16       |
|            | 2.2     | Materials and methods                         | 18       |
|            | 2.2.1   | Field methods                                 | 18       |
|            | 2.2.1.1 | Soils                                         | 18       |
| •          | 2.2.1.2 | Manures                                       | 19       |
|            | 2.2.1.3 | Field experimental procedure                  | 19       |
|            | 2.2.1.4 | Soil sampling methods                         | 23       |
|            | 2.2.2   | Laboratory methods                            | 24       |
|            | 2.3     | Results                                       | 25       |
|            | 2.3.1   | Soil water retention                          | 25       |
|            |         | Chicot Soil                                   | 25       |
|            |         | St Benoit soil                                | 32       |
|            | 2.3.2   | Soil organic matter and soil bulk             |          |
|            |         | density                                       | 33       |
|            | 2.3.3   | Ammonium and nitrate-N                        | 33       |
|            | 2.3.3.1 | Chicot soil                                   | 33       |
|            |         | Ammonium-N                                    | 33       |
|            |         | Nitrate-N                                     | 46       |
|            | 2.3.3.2 | St Benoit soil                                | 49       |
|            |         |                                               |          |

Page

vi

vi

TABLE OF CONTENTS (cont'd)\_

# Page

|          |         |                                             | 49       |
|----------|---------|---------------------------------------------|----------|
|          |         | Nitrate-N                                   | 54       |
|          | 2.4     | Discussion                                  | 64       |
|          | 2.4.1   | Soil water retention, organic matter        |          |
|          |         | content and bulk density                    | 64       |
|          | 2.4.2   | Soil mineral N                              | 65       |
|          | 2.5     | Conclusions                                 | 69       |
|          |         | <i>8</i>                                    |          |
| Preface  | to cha  | apter 3                                     | 71       |
|          |         |                                             |          |
|          |         |                                             | •        |
| Chapter  | 3 Ef    | ffect of manures or urea on corn dry-matter |          |
|          |         | yields and nutrient uptake                  | 72       |
|          | 3.1     | Introduction                                | 72       |
|          | 3.2     | Materials and methods                       | 74       |
|          | 3.2.1   | Field arrangement                           | 74       |
|          | 3.2.2   | Sampling procedure                          | 74       |
|          | 3.2.3   | Laboratory analysis                         | 74       |
|          | 3.3     | Results                                     | 75       |
|          | 3.3.1   | Ear-leaf composition                        | 75       |
| ¢        | 3.3.2   | N uptake by corn                            | 78       |
|          | 3.3.4   | Chicot Soil                                 | 78       |
|          |         | St Benoit Soll                              | 83       |
|          | 3.3.3   |                                             | 86<br>86 |
|          | 3.3.3   | Nutrient balance                            |          |
|          | 3.3.4   | Corn dry matter yields                      | 86       |
|          |         | Chicot Soil                                 | 86       |
|          |         | St Benoit Soll                              | 89       |
|          | 3.3.5   | Cumulative effects                          |          |
|          | 3.4     | Discusion                                   | 97       |
|          | 3.4.1   | Corn ear-leaf composition                   | 97       |
|          | 3.4.2   | N uptake and corn dry-matter yields         | 98       |
|          | 3.4.3   | Cumulative effects                          | 99       |
|          | 3.5     | Conclusions                                 | 100      |
|          |         | i de                                        |          |
| General  | conclus | sions                                       | 102      |
| *        |         | <b>₽</b> *                                  |          |
| Referenc | :es     | •••••••••••••••                             | 104      |
|          |         | • • • • • • • • • • • • • • • • • • • •     | 1        |

vii

# LIST OF TABLES

æ

v

Page

r

D)

| Table 1.1              | Numbers of livestock and poultry on farms<br>at July 1, 1978 and 1982 in Quebec and<br>Canada (thousands)                                                                      | - 4 |   |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| Table 1.2              | Fresh manure production and manure<br>total nitrogen content estimated for<br>various types of livestock used to<br>calculate total manure and nitrogen                        |     |   |
|                        | production                                                                                                                                                                     | 5   |   |
| Table 1.3              | Estimated total manure production and nitrogen contained in manures in 1982                                                                                                    | 6   |   |
| Table 2.1              | Characteristics of the experimental soils                                                                                                                                      | 20  | ٥ |
| Table 2.2              | The properties of the manures used in the                                                                                                                                      |     |   |
|                        | study in 1984                                                                                                                                                                  | 21  |   |
| Table 2.3              | N application as related to treatments                                                                                                                                         | 22  |   |
| <b>Tab</b> le 2.4      | Effect of manures or urea on moisture<br>content of soils in 1983                                                                                                              | 26  |   |
| Table 2.5              | Effect of manures or urea on moisture content<br>of soils at 30 and 60 days after seeding in<br>1984                                                                           | 28  |   |
| Table 2.6              | Probability associated with the main effect<br>of manures (CFH) and nitrogen rate (NR) on<br>gravimetric moisture content of soils at<br>30 and 60 days after seeding in 1984  | 29  |   |
|                        | JU and UV days after securing in 1904                                                                                                                                          | 29  |   |
| Table <sup>°</sup> 2.7 | Effect of manures or urea on moisture content of soils at 90 and 125 days after seeding in 1984                                                                                | 30  |   |
| Table 2.8              | Probability associated with the main effect<br>of manures (CFH) and nitrogen rate (NR) on<br>gravimetric moisture content of soils at<br>90 and 125 days after seeding in 1984 | 31  | - |
| Table 2.9              | Effect of menuner on uner on sail entering setter                                                                                                                              |     |   |
| Laple 2.9              | Effect of manures or urea on soil organic matter content and bulk density in 1984                                                                                              | 34  |   |

viii

# LIST OF TABLES (cont'd)

β

|            |                                                                                                                                                                                             | Page            |    |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|
| Table 2.10 | Probability associated with the main effect of<br>manures (CFH) and nitrogen rate (NR) on soil<br>organic matter content and bulk density in<br>1984                                        | <sup>°</sup> 35 |    |
| Table 2.11 | Effect of manures or urea on ammonium- and<br>nitrate-N content of Chicot soil in 1983                                                                                                      | 36              |    |
| Table 2.12 | Effect and residual effect of manures or<br>urea on ammonium- and nitrate-N content<br>of Chicot soil in 1983 and 1984                                                                      | 37              | ر. |
|            | Probability associated with the residual<br>main effect of manures (CFH) and nitrogen<br>rate (NR) on ammonium- and nitrate-N content<br>of Chicot soil (5/26/1984)                         | 138             |    |
| Table 2.14 | Effect of manures or urea on ammonium- and<br>nitrate-N content of Chicot soil at 30 and<br>60 days after seeding in 1984                                                                   | <b>,</b><br>39  |    |
| Table 2.15 | Probability associated with the main effect<br>of manures (CFH) and nitrogen rate (NR) on<br>ammonium- and nitrate-N content of Chicot soil<br>soil at 30 and 60 days after seeding in 1984 | 40              |    |
| Table 2.16 | Effect of manures or urea on quantity of<br>ammonium- and nitrate-N of Chicot soil at 30<br>and 60 days' after seeding in 1984                                                              | 41              |    |
| Table 2.17 | Probability associated with the main effect of<br>nitrogen rate (NR) and manures (CFH) on quantity<br>of ammonium- and nitrate-N of Chicot soil at 30<br>and 60 days after seeding in 1984  | 42              | J  |
| Table 2.18 | Effect of manures or urea on ammonium- and<br>nitrate-N content of Chicot soil at 90 and<br>125 days after seeding in 1984                                                                  | ,<br>43         |    |
| Table 2.19 | Probability associated with the main effect<br>of manures (CFH) and nitrogen rate (NR) on<br>ammonium- and nitrate-N content of Chicot soil<br>at 90 and 125 days after seeding in 1984     | \$<br>44        | 1  |

A

ix

.

# LIST QF TABLES (cont'd)

 $^{2}$ 

n, ·

あたいたち いち ちんない

|        |                    | 3.<br>                                                                                                                                                                                        | Page      |
|--------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| U<br>U | Table 2.20         | Effect of manures or urea on quantity of<br>ammonium- and nitrate-N of Chicot soil at<br>90 and 125 days after seeding in 1984                                                                | 45        |
|        | Table 2.21         | Probability associated with the main effect<br>of nitrogen rate (NR) and manures (CFH) on<br>quantity of ammonium- and nitrate-N of Chicot<br>soil at 90 and 125 days after seeding in 1984   | 48        |
|        | Table 2.22         | Effect of manures or urea on ammonium- and<br>nitrate-N content of St Benoit soil in 1983                                                                                                     | 50        |
|        | <b>Tab</b> le 2.23 | Effect and residual effect of manures or urea<br>on ammonium- and nitrate-N content of St Benoit<br>soil in 1983 and 1984                                                                     | 51        |
| •      | Table 2.24         | Probability associated with residual main<br>effect of nitrogen rate (NR) and manures (CFH)<br>applied in 1983 on quantity of ammonium- and<br>nitrate-N of St Benoit soil (4/28/1984)        | 52        |
|        | Table 2.25         | Effect of manures or urea on ammonium- and<br>nitrate-N content of St Benoit soil at 30<br>and 60 days after seeding in 1984                                                                  | 53        |
|        | Table 2.26         | Probability associated with the main effect<br>of manures (CFH) and nitrogen rate (NR) on<br>ammonium- and nitrate-N content of St B@noit<br>soil at 30 and 60 days after seeding in 1984     | 55        |
|        | Table 2.27         | Effect of manures or urea on quantity of<br>ammonium- and nitrate-N of St Benoit soil at<br>30 and 60 days after seeding in 1984                                                              | 56        |
|        | Table 2.28         | Probability associated with the main effect of<br>nitrogen rate (NR) and manures (CFH) on quantity<br>of ammonium- and nitrate-N of St Benoit soil at<br>30 and 60 days after seeding in 1984 | . 57      |
|        | Table 2.29         | Effect of manures or urea on ammonium- and<br>nitrate-N content of St Benoit soil at 90<br>and 125 days after seeding in 1984                                                                 | ¢<br>♦ 58 |

Q

Į

# LIST OF TABLES (cont'd)

----

. .

,

Į

٩

1

1

.

Page

3

| •          |                                                                                                                                                                                                   |    |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2.30 | Probability associated with the main effect<br>of manures (CFH) and nitrogen rate (NR) on<br>ammeonium- and nitrate-N content of St Benoit<br>soil at 90 and 125 days after seeding in 1984       | 59 |
| Table 2:31 | Effect of manures or urea on quantity of<br>ammonium- and nitrate-N of St Benoit soil<br>after 90 and 125 days after seeding in 1984                                                              | 60 |
| Table 2.32 | Probability associated with the main effect of<br>nitrogen rate (NR) and manures (CFH) on quantity<br>of ammonium- and nitrate-N of St Benoit soil<br>after 90 and 125 days after seeding in 1984 | 61 |
| Table 2.33 | Precipitation recorded at La Station de Ste<br>Anne de Bellevue, Service de la météorologie,<br>Ste Anne de Bellevue, Quebec                                                                      | 68 |
| 'Table 3.1 | Effect of manures or urea-N on composition of corn ear-leaf at silking stage in 1984                                                                                                              | 77 |
| Table 3.2  | Probability associated with the main effect<br>of manures (CFH) and nitrogen rate (NR) on corn<br>ear-leaf composition at silking stage in 1984                                                   | 79 |
| Table 3.3  | Effect of manures or urea on N content of corn during 1983 and 1984                                                                                                                               | 80 |
| Table 3.4  | Effect of manures or urea on N uptake by corn                                                                                                                                                     | 82 |
| Table 3.5  | Probability associated with the main effect<br>of manures (CFH) and nitrogen rate (NR) on<br>accumulation of corn dry-matter (CDM) and<br>nitrogen content (NC) and uptake (NUP) in<br>1984       | 84 |
| Table 3.6  | Probability associated with the main effect of<br>manures (CFH) and nitrogen rate (NR) on final<br>yield (Y) in 1983 and 1984 and nutrient uptake<br>by corn in 1984                              | 85 |
| Table 3.7  | Balance of nutrients added in manures & fertilizers and removed by corn in 1984                                                                                                                   | 87 |

xi

# LIST OF TABLES (cont'd)

. 🛛

۵.,

Page

| Table 3.8         | Effect of manures or urea on accumulation of<br>(corn dry matter yield                                                                                                                                              | 88 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 3.9         | Comparison of effect coefficients of treatment<br>of dry matter yield (DMY) and nutrient uptake<br>on the Chicot soil in 1983 and 1984                                                                              | 90 |
| Table 3.10        | Comparison of effect coefficients of treatment<br>of dry matter yield (DMY) and nutrient uptake<br>on the St Benoit soil in 1983 and 1984                                                                           | 91 |
| Table 3.11        | Combined effect of manures and urea effect<br>coefficients of dry matter yield (DMY)<br>and uptake of nutrients in 1983 and 1984                                                                                    | 92 |
| Table 3.12        | Effect of manure or urea on the effect<br>coefficeints of dry matter yield (DMY) and<br>uptake of nutrients in 1983 and 1984                                                                                        | 94 |
| <b>Table 3.13</b> | Probability associated with the main effect of<br>manures (CFH) and nitrogen rate (NR) and the<br>effect coefficients of manures on dry matter<br>yield (DMY) and uptake of nutrients by corn<br>from Chicot soil   | 95 |
| <b>Table 3.14</b> | Probability associated with the main effect of<br>manures (CFH) and nitrogen rate (NR) on the<br>effect coefficients of manures of dry matter<br>yield (DMY) and uptake of nutrients by corn<br>from St Benoit soil | 96 |

xii

¥

#### Introduction

Organic wastes have been used as soil amendments and sources of plant nutrients for many centuries. Research on use of barnyard manure to improve soil productivity decreased after World War II, when N fertilizers became abundant and inexpensive. In recent years, large amounts of manure have been produced by animal production units concentrated in feedlots and large poultry operations. Problems in disposing of this manure coupled with increased fertilizer costs have renewed interest in using organic wastes as nutrient sources for crop production.

There are numerous varieties of animal manures. Different manures have different compositions (Gilberstson et al. 1974; Peng and Pen 1979). Fresh manures contain various substances which could be toxic, such as ammonia, sulfides, soluble salts, and harmful organisms (Hong et al. 1982; Lund and Nissen 1983). For this reason, it may be necessary to aerate manures to remove toxic substances before putting manures to use. When applied to soils, variation in composition of manure can exert different effects on soil properties, and subsequently, nutrient uptake and crop growth can be affected.

Inorganic N fertilizers have been reported to increase soil acidity (Jaakkola 1978; Barnard and Folscher 1980) when applied alone in longterm monoculture without ameliorating management practices being adopted. Compared with inorganic fertilizers, manure can not only supply plants with necessary nutrients, but also improve soil physical

1

I

properties, such as soil water retention capacity (Tiarks et al. 1974; Meek et al. 1982).

One of the problems with manure use is that manure can be a source of contaminants, such as  $NO_3-N$ , which can reach ground water or waterways by runoff or leaching (Young and Mutchler 1976; Bashkin and Kudeyarov 1983).

Thus it is hypothesized that various manures, compared with urea, may have different effects on soil physical parameters, such as water retention capacity and bulk density, and on chemical properties, such as  $NH_4$  - and  $NO_3$ -N levels and on organic matter contents. These soil properties, in turn, may influence crop yields.

Work has been done on the management of animal manures (Calvert 1979; Vanderholm 1979) and their influences on soil properties and crop growth in recent years (Evans et al. 1977; Higgins 1984). In Quebec, however, work on animal manures as soil amendments and crop nutrient sources has been inadequate to assess appropriate manure management practices. Therefore, the purposes of this project were to study:

- 1. The effect of manures on soil moisture content, organic-matter content and bulk density.
- 2. NH<sub>4</sub>- and NO<sub>3</sub>-N<sup>°</sup> contents in soil profiles resulting from different application methods of manure-N.
- 3. Corn silage yield response to different kinds of manure and urea-N treatments.
- 4. Cumulative effects of different kinds of manure and urea-N on corn yields and nutrient uptake by corn.

Chapter 1

Literature Review

1.1, Manure as a nutrient source

In Quebec, the total livestock and poultry population was over 28 million in 1982, and in Canada, 116 million, according to Agriculture Canada (1983) (Table 1.1).

The estimated manure production in Quebec was 26 million tonnes, and in Canada 135 million tonnes annually. These quantities of manures contain approximately 129 and 710 thousand tonnes of N (Tables 1.2 and 1.3). In addition, it is estimated by the author, based on the average manure nutrient contents of different sources (Mathers et al. 1973; Gilbertson et al. 1974; Peng and Pei 1979), that manures also contain about 75, 150 and 23 thousand tonnes of P, K, and Ca, expressed as  $P_2O_5$ , K<sub>2</sub>O, and CaO in Quebec, and 443, 887, and 133 thousand tonnes in Canada, respectively.

Besides plant nutrients, manures are sources of organic materials. Generally manures contain about 60% organic matter and 17.5% moisture as has been reported by Meek et al. (1982). Thus, it is estimated by the author, that in Quebec at least 10 million tonnes, and in Canada 80 million tonnes, of organic materials are excreted by animals annually, and are available for land application.

3

| 3                 |                                           | -      |         | -               |
|-------------------|-------------------------------------------|--------|---------|-----------------|
| ,<br>             | Q                                         | uebec  | Car     | nada            |
| Kind of<br>animal | 1982                                      | 1978   | 1982    | 19 <b>7</b> 8 · |
| Dairy cow         | 695                                       | 729    | 1,765   | 1,863           |
| Heifer, beef co   | w 490                                     | 452    | 5,623   | 5,784           |
| Steer or bull     | 98                                        | 89     | 1,874   | 2,123           |
| Calf              | 365                                       | 275    | 3,790   | 3,583           |
| Sow               | 320                                       | 257    | 1,047   | 835             |
| Weaner (<20 kg)   | 1,145                                     | 746    | 3,279   | . 2,459         |
| Hog (20-90 kg)    | 1,860                                     | 1,337  | 5,475   | 4,080           |
| Hen               | 3,858                                     | 3,810  | 24,096  | 23,377          |
| Pullet            | 17,139                                    | 14,556 | 59,601  | 36,363 🧳        |
| Turkey            | 1,942                                     | 2,340  | 8,718   | 11,049          |
| Lamb 4            | 120                                       | 58     | 817     | 587             |
| Total             | 28,032                                    | 24,649 | 116,083 | 92,102          |
|                   | بر چین زالد دورد قدران کار ورم روی وزو در |        |         |                 |

Source : Agriculture Canada, Selected agricultural statistics Canada and the Provinces. 1983.

~

67

Table 1.1

ŧ

ا. Numbers of livestock and poultry on farms at July 1, 1978 and 1982 in Quebec and Canada (thousands) َ

T

Table 1.2 Fresh manure production and manure total nitrogen content estimated for various types of livestock used to calculate total manure and nitrogen production

|   | ind of           | Manure production | -    |
|---|------------------|-------------------|------|
|   |                  |                   |      |
| 1 | Dairy cow        | 16.6              | 3.8  |
| 1 | Heifer, beef com | 10.3              | 5.4  |
| 1 | Steer or bull    | 7.7               | 5.4  |
| 1 | Calf             | 3.4               | 5.4  |
| 1 | Sow              | 4.1               | 6.3  |
| 1 | Weaner (<20 kg)  | 0.6               | 6.3  |
| 1 | Hog (20-90 kg)   | 1.9               | 6.3  |
| 1 | Hen              | 0.05              | 10.4 |
| 1 | Turkey           | 0.09              | 10.4 |
| ĩ | Pullet           | 0.03              | 10.4 |
| ĩ | Lamb             | 0.5               | 7.1  |

Adopted from Culley and Barnett (1984).

3

ł

ł

---- -----

5

|                  | Manure pro | oduction | Nitrogen co | ontent   |
|------------------|------------|----------|-------------|----------|
| Kind of          | Quebec     | Canada   | Quebec      | Canada   |
| animal           | million    | tonnes   | thousand    | tonnes - |
| Dairy cow        | 11.5       | 29.3     | 44          | 111      |
| Heifer, beef cow | 5.0        | 57.9     | 27          | 313      |
| Steer or bull    | 0.8        | 14.4     | 4           | 78       |
| Calf             | 1.2        | 12.9     | 7           | 70       |
| Sow              | 1.3        | 4.3      | 8           | 27       |
| leaner (<20 kg)  | 0.7        | 2.0      | 4           | 12       |
| log (20-90 kg)   | 3.5        | 10.4     | 22          | 66       |
| Ien              | 0.2        | 1.2      | · 2         | 13       |
| Pullet           | 0.5        | 1.8      | 5           | 19       |
| furkey           | 0.2        | 0.8      | 2           | 8        |
| amb              | 0.1        | 0.4      | 4           | 3        |
| fotal            | 26.0       | 135.0    | 129         | 710      |

Table 1.3 Estimated total manure production and nitrogen contained in manures in 1982

ì

Ą

5

ť

 $\mathcal{O}$ 

# 1.2 Effects of manure on soil properties and plant nutrition

## 1.2.1 Soil properties

After being incorporated into soil, manure has an effect on soil properties due to the various components it contains.

Increased soil moisture has been observed due to reduced soil surface and subsurface temperatures and decreased evaporation following the application of manures (Unger and Stewart 1974; Hornick 1982), and has resulted in more water intake by crops during the growing season (Meek et al. 1982).

Increased yields with manure applications were attributed to enhanced response of crop to nutrients or soil nutrition status (Cope

et al. 1958; Carlson et al. 1961; Herron and Erhart 1965; Dubetz et al. 1975; Evans et al. 1977; Mathers and Stewart 1981; El-Attar et al. 1982), and in some cases, the decreased evaporation of water from soil due to manure application was the main cause of the substantially increased yields (Hall and Coker 1982; and Gupta et al. 1983).

Application of manures was observed to be effective in increasing soil microbial activities (Karpova and Petrova 1966) and crop nutrient levels (Bishop et al. 1962; Olsen et al. 1970; Swarup 1982). According to Swarup (1982), working with a calcareous, sandy loam soil at Karnal, India, additions of farmyard manure markedly increased levels of extractable Fe and Mn from a submerged sodic soil in comparison with the control and were more effective in reducing the decrease of available P than other treatments employed during the growth period of rice crops. Manure tended to increase soil pH and the contents of organic N, available P and exchangeable K, Ca and Mg, particularly at the higher application rates (Olsen et al. 1970). From Nova Scotia it was reported that application of manure at 70 t/ha to a clay loam soil every third year almost maintained initial levels of total soil N (Bishop et al. 1962).

#### 1.2.2 Crop production and plant nutrition

Į

4

Manure has direct and indirect effects on crop yield. Direct effects depend on the amount of nutrients it contains, and manure can substitute for mineral fertilizers in this aspect. An indirect effect of manure, as detailed earlier, is to improve the physical properties of

the soil, to intensify microbiological and enzymatic soil activities, and to enrich the air above the soil with carbon dioxide (Karpova and Petrova 1966; Tiarks et al. 1974; Mazurak et al. 1977). Thus manure may increase crop yields more than expected on the basis of manure nutrient contents.

Many authors have noted increased crop yields with manures over control or inorganic fertilizers (Cope et al. 1958; Bishop et al. 1964; Black and White 1973; Dubetz et al. 1975; Kiver and Kiver 1976; Cheng 1982; Higgins 1984; Stomberg et al. 1984). Comparison among different manures and between manures and inorganic fertlizers indicated that liquid manure (liquid hog manure and liquid beef manure) resulted in slightly higher yields of corn than solid beef manure (Evans et al. 1977). According to Evans et al. (1977), working with a silt loam soll in Minnesota, yields associated with manures were higher than those with inorganic fertilizer, but in a short term experiment conducted in Quebec, increased, yields with manure were not evident (Miller and MacKenzie 1978). Different climatic conditions and different soils involved in these experiments could account for the variable effects on crop yields.

Cumulative benefits of manure and N fertilizer may become apparent during the second application and increase with advancing years (Bishop et al. 1964; Dubetz et al. 1975). The residual effect of manures lasted 6-8 years depending on loading rate, variety of crops and climatic conditions (Cope et al. 1958; Kiver and Kiver 1976).

Manure must also have an influence on nutrient uptake by crops

since it can improve soil fertility and raise yields of crops. A few examples illustrate a general trend.

According to Cheng (1982) in Quebec, the content of N, P, K, Ca, Mg, Cu, Fe, Mn and Zn in raspberry leaves from plots manured at 70 tonnes/ha were higher than those from plots manured at 35 tonnes/ha. From it was reported that with the application of 15 tonnes/ha India. farmyard manure to a wheat crop grown on an Aridisol soil with a sandy loam texture, grain yield increased from 1.40 to 1.92 tonnes/ha and Zn uptake increased from 48 to 79.9 g/ha (Srivastava and Sethi 1981). Studies in Iowa indicated that manure addition to subsoil resulted in substantially higher P uptake by maize, and K concentration in roots and shoots was consistently high and not as limiting as N and P according to Aina and Egolum (1980) from Iowa. Working with corn grown on a subsoil, Carlson et al. (1961) from North Dakota indicated that manure increased the ability of the plant to absorb P. Data obtained in Nova Scotia by Bishop et al. (1964) showed that N content of corn leaves was higher at the rate of 50 tonnes manure per hectare than that at the rate of 25 tonnes per hectare. In Ontario, Culley et al. (1981), working with sandy clay loam, obtained the same results as Bishop et al. (1964), but their further pointed out that uptake of nutrients was not affected by work time of application. Similarly, P, Ca and Mg contents of sweet-corn grain were about the same on control and waste-amended plots, although N contents of the grain on waste-amended plots were significantly higher than those on control plots (Hornick 1982). No significant change in uptake of trace elements was observed in the grain as a result of the

amendments. As reported by Reddy et al. (1982)," manure had no effect on Fe concentration and uptake by rice or wheat in any of the soil typesresearched in India.

#### 1.3 Relative value of manure as fertilizer

Manure has numerous benefits for soils and crops. However, in most cases, it is thought of as a N source because N content is higher than other mineral nutrients (Heck 1931; Herron and Erhart 1965; Follett et al. 1981).

Research in Quebec has shown that 4 kg manure-N was approximately equivalent to 1 kg ammonium nitrate-N for corn production (Miller and MacKenzie 1978). As reported by Herron and Erhart (1965), each tonne of high quality manure was equivalent to 10 kg of N from ammonium nitrate • as measured by equivalent grain sorghum yields over a 4 year period. Cope et al. (1958) pointed out that each 5 tonne application of manure was equivalent to 26 kg of commercial N for corn, and 28 kg for cotton.

According to Beauchamp (1983), with respect to corn grain yield and soil NO<sub>3</sub>-N concentration, the availability of liquid cattle manure N (LCM) was appoximately one-half that of urea or anhydrous ammonia N. Comparison between application methods (surface vs. injection) showed injection of LCM resulted in LCM N being about 60% as available as inorganic fertilizer N, while LCM application to soil surface resulted in LCM N being approximately one-third as available as anhydrous ammonia

N.

#### 1.4 Efficiency of manure use

Loss of ammonia and soluble N from manure can reduce the effectiveness of manure as a source of N.

Work conducted in Ontario (Beauchamp et al. 1982; Beauchamp 1983) showed that one-half of the total N in manure was made of ammoniacal N, which may be subject to potential volatilization. Over periods of 6 or 7 days following manure surface application, between 24 and 33% of the ammoniacal N applied in liquid dairy cattle manure was lost by volatilization (Beauchamp et al. 1982). Similarly, Lauer et al. (1976) reported that from 17 to 316 kg N/ha can volatilize depending on the application rate and total ammoniacal N content of the manure. Between 10 and 75% of the ammoniacal-N may be lost from applied manure if it is not incorporated into the soil within a week or so following application (Beauchamp et al. 1978).

Besides ammoniacal N volatilization, soluble N contained in manure can be lost by runoff or leaching (Young and Mutcher 1976; Evans et al. 1977).

To reduce losses of N contained in manure, incorporating animal wastes into soil has been shown to be effective. In Minnesota, up to 20% of the N and 16% of the ortho-P in manure was carried away in spring runoff while no more than 3% of the N and 4% of the ortho-P were lost from manured fall-plowed plots (Young and Mutchler, 1976).

#### 1.5 Manure as a source of NO<sub>3</sub>-N contamination

Ground water NO<sub>3</sub>-N content may be increased by manure application to the soil (Bashkin and Kudeyarov 1983). As noted by Evans et al. (1977), working on a silt loam soil at Morris, Minnesota, NO<sub>3</sub>-N levels in soil treated with liquid beef manure were generally greater than those treated with liquid hog manure or solid beef manure. Soil treated with manures had higher NO<sub>3</sub>-N levels than soil treated with ammonium nitrate. In Quebec (Miller and MacKenzie 1978), the total extractable NH<sub>4</sub>- and NO<sub>3</sub>-N in soil profiles was higher with ammonium nitrate and urea than with solid beef manure and liquid hog manure soon after their application. Slightly higher NH<sub>4</sub>- and NO<sub>3</sub>-N contents were found with solid beef manure later in the growing season. According to Phillips et al. (1981), however, pollution potential of manure was the same as that of chemical fertilizer.

The time of application of manure affected the NO<sub>3</sub>-N content of the soil in Pennsylvania (Marriott et al. 1977), and of runoff water in Ontario (Phillips et al. 1981). Fall- (Marriott et al. 1977) and winter-(Phillips etal. 1981) applied manure resulted in higher soil or runoff water NO<sub>3</sub>-N levels than spring-applied manure throughout most of the period. Therefore, spring application was "safe" as regards potential NO<sub>3</sub>-N pollution.

1.6 Summary

Animal manure can be a source of crop nutrients, can improve soil

physically, and can act as a source of  $NO_3-N$ , a potential contaminant to our environment.

Application of manures to agricultural land is a communon manure management practice. Soil physical properties, such as water holding capacity, bulk density, and chemical properties, such as organic-matter and levels of crop nutrients, content have been improved bv incorporating manures into soils. In return, the enhancement of soil properties leads to increases in crop production. Despite these studies, precise crop-manure response results are lacking. This is due to problems of predicting the value of manures in relation to their properties. Storage and handling influence N forms and quantities, as well as C/N ratios, and subsequent release of N of manure. In addition, soil properties may be changed in relation to kind of manures. Thus it seemed appropriate to study the following problems to propose the hypothesis that changes in handling procedure and methods of application would influence manure value for crop production, specifically:

1. Surface applied manures would act as mulches, increasing soil moisture content and increasing crop yield.

- 2. Composting manure would convert N to more resistant and nonavailable forms, thus, reduce N losses due to ammonia-N volatilization. When applied to soil, composted manure could result in less NO<sub>3</sub>-N, compared with fresh manure.
- 3. Losses of ammonia-N would be more pronounced on surface applications and lead to low soil NO<sub>3</sub>-N level, as compared with incorporation of manure.
- 4. Liquid hog manure should have more available N due to the higher NH4-N content found in this manure compared with solid manure.

5. Due to changes in soil physical properties and due to nutrient content of manures, uptakes of nutrients other than N would be greater from soil amended with manures than from soil with inorganic fertilizer.

õ

6. The effects of manure would be cumulative, whereas inorganic N, effects would not be cumulative.

## Chapter 2

### Effect of manures and urea on soil bulk density, ammoniumand nitrate-N, and organic matter content

#### 2.1 INTRODUCTION

Application of animal manures to agricultural land has been reported to result in higher levels of mineral N in the soil profile and improvement of soil properties.

Comparisons made among ammonium nitrate, solid beef manure, liquid beef manure, and liquid hog manure have indicated that soil NO<sub>3</sub>-N level's from liquid beef menure were higher than those from liquid hog manure (Evans et al. 1977). Solid beef manure had the lowest soil NO3-N levels, but' all manure treatments resulted in higher NO<sub>3</sub>-N levels than ammonium The effects of ammonium nitrate, S-coated urea, "liquid hog, nitrate. manure, hog manure plus straw and solid cow manure on total extractable  $NH_4$  - and  $NO_3$ -N to a depth of  $l \mod so il$  were studied by Miller and MacKenzie (1978), They found cow manure and S-coated urea were potentially more serious as NO<sub>3</sub>-N pollution hazards than ammonium nitrate and liquid hog manure, assuming mineral N in the soil profile as the source of ground water pollution. Leaching of NO3-N below the root zone of corn grown on manured soil was recorded by Evans et al. (1977). Cooper et al. (1984) determined the distribution of NH4-, NO3-, NO2- and

total N to a depth of 6 m in a clay loam soil under the influence of cattle and poultry manures with the rates from 32 to 121 tonnes ha. They found the recovery of applied N in the upper 6 m of the soil profile generally decreased with the increased manure N application, although the quantity of N present increased with increased N application. The primary inorganic N component in the soil profile was NO<sub>2</sub>-N and the cone of maximum accumulation was between 2 and 2.5 m. Quisenberry et cal (1981) suggested that if N losses by Leaching are to be minimized; N additions of dairy wastewater to a sandy textured soil must be based on the same criteria as that used to determine N applications of mineral fertilizers.

ື່ຍ

Soil water holding capacity was significantly increased and soil bulk density was decreased by incorporation of digested or undigested sludges in the soil in the Netherlands (Hall and Coker 1982), by feealet waste in Texas (Unger and Stewart 1974, and by farmward manureassociated with urea in western Rajasthani of Indian (Supta et el 1983). The use-efficiency of soil moisture reserves was increased by manure applications in Alberta (Hoyt and Rice 1977). These increases were considered to be due to increased soil organic matter content and improved physical condition of the soil. Application of feedlot manure increased soil organic matter content and hydraulic conductivity at Bushland, Texas (Mathers and Stewart 1981). Soil organic matter and aggregation increased and evaporation decreased as feedlot waste application rates increased (Unger and Stewart 1974). For plots tilled 10 cm deep, the manure applications of 360 tonnes/ha increased the soil organic carbon content from 2% to 5% after 2 years and bulk density

decreased from 1.05 g cm<sup>-3</sup> to 0.90 g cm<sup>-3</sup> in Nebraska (Tiarks et al. 1974). However, the most efficient manure rate was 22 tonnes/ha incorporated into the soil immediately after spreading for crop production. Higher manure rates more effectively improved soil physical properties but large N losses reduced the fertilizer efficiency of high manure rates (Mathers and Stewart 1981) and elsewhere resulted in risks of NO<sub>3</sub>-N poisoning and base-imbalance in the soil (fro and Miyazawa 1984). However, the effects of manure on soil properties decreased with increased depth of tillage (Tiarks et al. 1974) due to a dilution effect.

Although considerable work has been done on effects of manure applications to soil, comparison of effects of different kinds of manures on soil physical and chemical properties are limited. This study was an attempt to determine :

- 1. Soil moisture conservation, bulk density and organic matter content influenced by additions of cow and pig manures and by urea.
- 2. Soil NH4- and NO3-N contents as affected by manures and urea N sources.

#### 2.2 MATERIALS AND METHODS

#### 2.2.1 Field methods

### 2.2.1.1 Soils

Two soils, a St Benoit and a Chicot, described by Lajoie (1960), were

selected on two sites (Table 2.1. Both sites were on the Macdonald College farm of McGill University, Ste Anne de Bellevue, Quebec. The two sites were under the same general climate conditions and the distance between them was 1 km.

#### 2.2.1.2 Manures

Three kinds of manures were used, varying in chemical composition (Table 2.2,. Fresh cow manure (FC) was collected from the Macdonald College farm. Composted cow manure (CC) was prepared by agrating fresh cow manure for two months before application. Composting was accomplished by piling fresh cow manure and turning it over every other day. Hog manure (HM) in liquid state was collected in a retaining tank from the hog facilities on the Macdonald College farm, and applied immediately.

#### 2.2.1.3 Field experimental procedure

Research was initiated in 1982 and continued in 1983 and 1984. Only the experimental data collected in 1983 and 1984 are included in this discussion.

Twelve treatments were applied for each of the 3 years (Table 2.3). Each of the manures was applied at two levels, level 1 was 120 kg N/ha, and level 2 was 240 kg N/ha. The manure N rate of 240 kg N/ha of FC or HM was applied either on the surface (FC2S, HM2S) or incorporated into the soils (FC2, HM2). Urea (U) at rates of 60 (level 1), 120 (level 2),

| Parameter                  | -         | Se                            | oil series                           |  |
|----------------------------|-----------|-------------------------------|--------------------------------------|--|
|                            | <u> </u>  | Chicot                        | St Benoit                            |  |
| Parent materia             | 1         | Loamy sand or<br>calcareous t | ver Sand over<br>ill calcareous till |  |
|                            | clay      | 21                            | 13                                   |  |
| Particle size<br>range (%) | silt      | 25                            | 18                                   |  |
|                            | sand      | 54                            | 69                                   |  |
| Texture                    |           | Sandy clay<br>loam            | Sandy loam                           |  |
| pH (soil:water=            | =1:2)     | 7.0                           | 5.3                                  |  |
| Organic carbon             | (%)       | 2.33                          | 2.34                                 |  |
| Total-N (%)                |           | 0.23                          | 0.19                                 |  |
| C/N                        |           | 10                            | ° 12                                 |  |
| Bray-2-P (kg P/            | 'ha)      | 286                           | 176                                  |  |
| Extractable K              | (kg K/ha) | 198                           | 110                                  |  |
| Extractable Ca             | (kg Ca/ha | ) 2860                        | 2283                                 |  |
| Extractable Mg             | (kg Mg/ha | ) 633                         | 290                                  |  |

Table 2.1 Characteristics of the experimental soils

ł

h

|                |      |      | Manure          |      |   |
|----------------|------|------|-----------------|------|---|
| Parameter      | ţ    | CC1  | FC <sup>2</sup> | НМз  |   |
| Dry matter     | (%)+ | 21.4 | 17.4            | 5.1  |   |
| Organic matter | (%)* | 81.1 | 85.9            | 67.1 |   |
| Organic carbon | (%)* | 46.7 | 50.9            | 52.8 |   |
| Total-P        | (%)* | 1.13 | 1.06            | 2.32 |   |
| K              | (%)* | 3.33 | 2.71            | 3.59 |   |
| Ca             | (%)* | 3.53 | 2.24            | 2.79 |   |
| Mg             | (%)* | 0.62 | 0.51            | 0.44 |   |
| Ammonium-N     | (%)* | 1.10 | 1.53            | 1.15 |   |
| Total-N        | (%)* | 2.2  | 2.0             | 2.50 |   |
| C/N            |      | 21   | 25              | 21   | , |

Table 2.2 The properties of the manures used in the study in 1984

a.,

on wet weight basis. based on dry matter . +

\*

1 ) composted cow manure .

2) fresh cow manure .

.

3) hog manure in liquid state .

| Treatment | CC1     | FC <sup>2</sup> | HW3  | ° <b>U4</b> |
|-----------|---------|-----------------|------|-------------|
|           | Kg N/Ha |                 |      |             |
|           |         |                 |      |             |
| Ctrl      | 0       | 0               | 0    | 0           |
| CCl       | 120     | 0               | 0    | 0           |
| CC2       | 240     | 0               | 0    | 0           |
| FCh       | 0       | 120             | 0    | 0           |
| FC2       | 0       | 240             | 0    | . 0         |
| HM1       | 0       | 0               | 120  | 0           |
| HM2       | 0       | 0               | 240  | 0           |
| Ul        | 0       | , O             | 0    | 60          |
| U2        | 0       | 0               | 0    | 120         |
| U3        | 0       | 0               | 0    | 180         |
| FC2S      | 0       | 240*            | 0    | 0           |
| HM2S -    | 0       | 0               | 240* | 0           |

Table 2.3 N application as related to treatments

\* :

Surface application. Composted cow manure. 1)

2) Fresh cow manure.

\* 3) 4) Liquid hog manure.

Urea.

and 180 (level 3) kg N/ha was applied for comparison with manures. A control treatment was included. Based on soil test values, in each of the 3 years, the Chicot soil was fertilized with 75 kg P2Os/ha as triple superphosphate, and 110 kg K2O/ha applied as muriate of potash, the St Benoit soil with 145 kg P2Os/ha and 180 kg K2O/ha. The field treatments were arranged in a randomized complete block design with four replications, using a treatment plot size of 3.0 X 5.0 m. Manures and urea were disked into the soils once they were applied, prior to sowing. For surface application treatments, manures were not disked.

Corn (Zea mays L.) CV W844 was sown June 16, 1983, and May 28, 1984. Plant populations were controlled at 60,000 plants/ha in 1983, and 80,000 plants/ha in 1984, and harvested for silage on September 26 and September 28 in 1983 and 1984 respectively.

#### 2.2.1.4 Soil sampling methods

Soils were sampled once a month after seeding in 1983 at three depths, 0-20, 20-40, and 40-60 cm, for the St Benoit soil, and at two depths, 0-20, and 20-40 cm, for the Chicot soil during the growing season, and in 1984, at four depths, 0-10, 10-20, 20-40, and 40-60 cm, for the St Benoit soil and at three depths, 0-10, 10-20, and 20-40 cm, for the Chicot soil. Soil samples were taken with an auger, placed in cans, covered, and taken to the laboratory for determination of gravimetric moisture content, NH<sub>4</sub>-N and NO<sub>3</sub>-N.

Prior to application of manures and urea in 1984, soil samples were taken for the measurement of 1983 treatment residual effects on  $NO_3-N$ 

and NH4-N contents.

Soil bulk density was measured in August, 1984 by taking an undisturbed core sample using an aluminum cylinder, 8.5 cm in diameter and 7.8 cm in height. The top 5 cm soil was removed and the cylinder was hammered into the soil, external soil removed, and the soil in the cylinder carefully removed for moisture content determination at 105°C. A subsample was taken when the soil was dried for the measuremen't of soil organic matter content.

### 2.2.2 Laboratory methods

Ô

From the auger soil samples of each depth, a 100-g subsample of soil was transported to the laboratory. A further subsample of 10-15 g fresh soil was shaken with 100 mL IM KCl for one hour, filtered and analyzed for NH<sub>4</sub>-N and NO<sub>3</sub>-N according to the procedure suggested by O'Brien and Fiore (1962) and Kamphake et al. (1967), respectively. The rest of the soil was dried at  $105^{\circ}$ C for gravimetric moisture measurements.

Total soil N content was measured by using the semi-micro Kjeldahl method described by Bremner (1965). Soil pH was determined in a 1:2 soil - water ratio using a glass-calomel electrode (Peech 1965). Organic carbon was analyzed by employing the Walkley-Black procedure detailed by Allison (1965). Available P was determined by the Bray-2 method (Bray and Kurtz 1945). Exchangeable K, Ca and Mg were extracted with 1M NH4OAc, and K was determined by flame photometer, Ca and Mg by atomic

absorption (Hunter 1974). Soil texture was determined based on the procedure described by Bouyoucos (1951).

The NH<sub>4</sub>-N content of wet (fresh) manures was determined in an 1M KCl extraction. The semi-micro Kjeldahl method (Bremner 1965) was used to determine total-N content of fresh manure samples (CC, FC and HM).

Manure samples were dried in the oven at 105°C. Organic C was analyzed by the method of Allison (1965). For the determination of P, K, Ca and Mg, the wet digestion method outlined by Thomas et al. (1967) was used. R was determined colorimetrically (Thomas et al. 1967), Ca and Mg by atomic absorption and K by flame photometer (Hunter 1974).

Duncan's multiple range test was employed to locate differences among the 12 treatments. Also, the treatments, CCl, CC2, FCl, FC2, HM1, HM2 were analysed statistically as a 3 X 2 factorial arrangement (Steel and Torrie 1980).

2.3 RESULTS

2.3.1 Soil water retention

Chicot Soil

Ð

In 1983, measurements made 61 days after sowing indicated the surface soil treated with FC2S and FC2, retained significantly more water than soil treated with CC2, HM1, HM2, U1, U2, U3 and HM2S. The treatment effect was not reflected 103 days after sowing (Table 2.4).



| ,                | Chi                                                                                                 |       |        | pth (cm)  | St E  | eno:            | it                  |
|------------------|-----------------------------------------------------------------------------------------------------|-------|--------|-----------|-------|-----------------|---------------------|
| <b>Treatment</b> | 0-20                                                                                                | 20-40 |        | 0-20      | 20-40 | ) ,<br>         | 40-60               |
|                  | ه همی درمان البالی میرد هما الله میرد البان میرد البان میرد البان میرد میرد البان میرد البان میرد ا | 61    | days   | after s   |       |                 |                     |
| Ctrl             | .16 abc <sup>1</sup>                                                                                | 14    |        | 1         | 6 1   | 1.              | , 9 <b>≉</b>        |
| CCl              | 16 abc                                                                                              | 14    |        | 1         |       | 2               | 12                  |
| CC2              | 15 bc                                                                                               | 14    |        | 1         |       | 4               | ìī                  |
| .FC1             | 16 abc                                                                                              | 15    |        | 1         |       | 2               | 11                  |
| FC2              | 17 a                                                                                                | 14    | *      | 1         | R 1   | .4 <sup>°</sup> | 10                  |
| <sup>°</sup> HM1 | 14 d                                                                                                | 14    |        | 1         | 7 1   | 1               | 7                   |
|                  | 15 cd                                                                                               | 11    |        | . 1       |       | 3               | 9.                  |
| Ul               | 15 cd                                                                                               | 12    |        | . I.      |       | .2              | 8                   |
| U2               | 15 cd -                                                                                             | 13    |        | 1'        |       | 3               | 11 .                |
| U3               | 15 cd 3                                                                                             | 13    | ;      | 1         |       | 3               | 9                   |
| FC2S             | 17 a -                                                                                              | 14    |        |           |       | 3               | · 9 .               |
| HM2S             | 17 a<br>14 d                                                                                        | 13    |        | 11        |       | 0               | . 8                 |
| 111-10-0         | 17 U                                                                                                | 10    |        | T,        | , I   |                 | • •                 |
| Ę -              | 3.63**                                                                                              | 1.37  |        | . ·       | L.68' | 0.61            | 2.07                |
| CV(%)            | 7.4                                                                                                 |       |        |           |       | 9.1             |                     |
|                  | ~ ~ ~                                                                                               |       |        |           |       | •••             |                     |
|                  |                                                                                                     | 103   | days a | after see | eding |                 |                     |
| Ctrl .           | 19                                                                                                  | 14    |        | 16        | 5 1   | 4               | 13                  |
| CC1,             | 19                                                                                                  | 14 °  |        | 16        |       | 2 ` ~           |                     |
| CC2              | 20                                                                                                  | 15    |        | 17        |       | 5               | 10                  |
| FC1              | 19                                                                                                  | 14    |        | 16        |       | 3°              | 10                  |
| FC2              | 21                                                                                                  | 15    | •      | 16        |       | 2               | 12                  |
| HM1              | 20                                                                                                  | 15    | ٥      | °14       | í ĵ   |                 | 11                  |
| HM2              | 18 /                                                                                                | 19    | *      | 14        |       | 3<br>3          | 13                  |
| Ul               | 20                                                                                                  | 16    |        | 14        |       | õ 🛸             | 8                   |
| U2               | 19 ~                                                                                                | 16    |        | 16        |       | ž               | · 10                |
| U3               | 20                                                                                                  | 16    |        | 15        |       | ī               | 9                   |
| FC2S             | 21                                                                                                  | 15    |        | 17        |       | <b>5</b> .      | ∝ 10 <sup>°</sup> ° |
| HM2S             | 19                                                                                                  | 15    |        | 13        |       |                 | . 11                |
| F                | 1.04                                                                                                | 1 12  |        | -         | 21    | 0 57            | ۰ ۱ <b>۸</b> ۹      |
| F<br>CV(%)       | 1.94                                                                                                | 1.13  | -      |           |       |                 | · 1.02              |
| UV(3)            | 5.9                                                                                                 | 17.1  |        |           | 9.3 2 | 3.0             | 30.3                |

Table 2.4 Effect of manures or urea on moisture content of soils in 1983

 means in the same column followed by the same letters are not significantly different at the level of 0.05 by Duncan's Multiple Range Test.
 \*\* : Significant at the level of 0.01.

# : in this thesis, means not followed by a letter in a column within a block in a table are not significantly different at the level of 0.05 by Duncan's Multiple Range Test.

26 、

•

In 1984, 30 days after seeding (June 27, 1984), the gravimetric water contents of soil treated with FC2S and FC2 were significantly higher than that of the control, U1, U2 and HM2S treatments at the depth of Q-10 cm. Differences among manures were not significant. At depths of 10-20, 20-40 cm, no significant differences were found (Tables 2.5, 2.6 and 2.7).

In measurements of the top 10 cm layer made 60 days after sowing (July 26, 1984), the FC2S and FC2 treatments had moisture contents of 23% and 22% which were significantly greater than other treatments with values of 20% or less (Table 2.5). At depths of 10-20 cm, the effects of the FC2S, and FC2 treatments resulted in moisture contents significantly higher than those of the control, CC1, FC1, HM2, U2 and HM2S treatments. At depths of 20-40 cm, little moisture content difference was found. The moisture content of the HM2S treatment was the lowest among the treatments through the soil profile. When analyzed as a factorial arrangement, the moisture content associated with FC manure treatments was significantly higher than that with CC manure treatments (Table 2.6). High manure application rates resulted in significantly more water in the soil.

Significant treatment or manure effects on soil water content were not detected at 90 days after seeding (August 28, 1984; Table 2.7).

At 125 days after seeding (October 4, 1984), at 0-10 cm, significantly higher moisture contents were found with the FC2S treatment compared with other treatments, except for the FC2 treatment (Tables 2.7 and 2.8). The FC2 treatment had a higher water content than

27 .

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                       | Chicot - |                                 |               | St Be    | noit                  |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|----------|---------------------------------|---------------|----------|-----------------------|-----------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Treatm</b> ent                        | 0-10                                  | 10-20    | 20-40                           | 0-10          | 10-20    | 20-40                 | 40-60           |
| Ctrl       23 b <sup>1</sup> 25       21       24 cd       27 a       24 abc       11         CC1       24 ab       26       24       26 abc       27 a       25 abc       24         CC2       24 ab       27       22       27 a       28 a       24 abc       27         FC1       24 ab       26       22       25 abc       27 a       27 a       20 c       12         FC2       26 a       27       22       26 abc       28 a       23 bc       12         FM1       24 ab       25       22       26 abc       27 a       20 c       12         HM2       24 ab       26       21       25 abc       27 a       20 c       12         U2       23 b       27       22       25 abc       26 a       21 c       14         U2       23 b       27       24       25 abc       27 a       22 c       14         U3       24 ab       27       24       25 abc       27 a       22 c       14         FC2s       26 a       28 b       27       24       25 abc       27 a       23 bc       14         Ctr1       19 bc       20 cd </th <th></th> <th></th> <th></th> <th>و هو دان اور دارد می و در اور ا</th> <th> *</th> <th></th> <th>ف مر در ان مر مر مر م</th> <th></th> |                                          |                                       |          | و هو دان اور دارد می و در اور ا | *             |          | ف مر در ان مر مر مر م |                 |
| CC1       24 ab       26       24       26 abc       27 a       25 abc       27         CC2       24 ab       27       22       27 a       28 a       24 abc       27         FC1       24 ab       26       22       25 abc       27 a       28 a       24 abc       27         FC2       26 a       27       22       26 abc       28 a       23 bc       17         BM1       24 ab       25       22       26 abc       27 a       20 c       17         HM2       24 ab       26       21       25 abc       27 a       25 abc       26 a       21 c       18         U2       23 b       27       22       25 abc       26 a       21 c       17         U3       24 ab       27       24       25 abc       27 a       22 c       18         FC2s       .26 a       28       24       27 a       28 a       28 a       23       16         FC4s       2.05       1.22       2.52*       2.46*       3.01***       16       17         FC4s       2.05       1.22       2.52*       2.46*       3.01***       16       16       17       1                                                                                                                                      | <del>مر ، میں این کر برای کر کر کر</del> | · · · · · · · · · · · · · · · · · · · |          | 30 day                          | ys after so   | eeding - |                       |                 |
| FC1       24 ab       26       22       25 abc       27 a       27 ab       21         FC2       26 a       27       22       26 abc       28 a       23 bc       13         HM1       24 ab       25       22       26 abc       27 a       20 c       14         HM2       24 ab       26       21       25 abc       27 a       25 abc       27 a       25 abc       26         U1       22 b       25       21       23 d       24 b       21 c       14         U2       23 b       27       22       25 abc       26 a       21 c       14         U2       23 b       27       24       25 abc       27 a       28 a       28 a       21 c       14         U3       24 ab       27       24       25 abc       27 a       28 a       28 a       21 c       14         W2S       23 b       25       23       24 cd       26 a       23 bc       16         F       2.455*       2.05       1.22'       2.52*       2.46*       3.01**       16         W2S       23 b       25       23       24 cd       26 a       23       21                                                                                                                                              | Ctrl                                     |                                       |          | 21                              | 24 cd         | 27 a     | 24 abc                |                 |
| FC1       24 ab       25       22       25 abc       27 a       27 ab       22         FC2       26 a       27       22       26 abc       28 a       23 bc       13         HM1       24 ab       25       22       26 abc       27 a       20 c       14         HM2       24 ab       26       21       25 abc       27 a       25 abc       27 a       25 abc       26         U1       22 b       25       21       23 d       24 b       21 c       14         U2       23 b       27       22       25 abc       26 a       21 c       14         U3       24 ab       27       24       25 abc       27 a       28 a       28 a       21 c       14         W2S       23 b       25       23       24 cd       26 a       23 bc       16         F       2.45*       2.05       1.22'       2.52*       2.46*       3.01**       16         CV(*)       6.1       5.1       9.4       5.9       4.6       12.1       14         Cv(*)       6.1       5.1       9.4       5.9       2.6       12       16         CV(*)                                                                                                                                                       |                                          | 24 ab                                 | 26       | 24                              | 26 abc        | 27 a     | 25 abc                | 20              |
| FC1       24 ab       26       22       25 abc       27 a       27 ab       21         FC2       26 a       27       22       26 abc       28 a       23 bc       13         HM1       24 ab       25       22       26 abc       27 a       20 c       14         HM2       24 ab       26       21       25 abc       27 a       25 abc       27 a       25 abc       26         U1       22 b       25       21       23 d       24 b       21 c       14         U2       23 b       27       22       25 abc       26 a       21 c       14         U2       23 b       27       24       25 abc       27 a       28 a       28 a       21 c       14         U3       24 ab       27       24       25 abc       27 a       28 a       28 a       21 c       14         W2S       23 b       25       23       24 cd       26 a       23 bc       16         F       2.455*       2.05       1.22'       2.52*       2.46*       3.01**       16         W2S       23 b       25       23       24 cd       26 a       23       21                                                                                                                                              |                                          |                                       |          | 22                              |               |          |                       |                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 24 ab                                 | 26       | 22                              | <b>25 abc</b> | 27 a     | 27 ab                 | 22              |
| HM2'       24 ab       26       21       25 abc       27 a       25 abc       26 a       21 c       18         U1       22 b       25       21       23 d       24 b       21 c       19         U2       23 b       27       22       25 abc       26 a       21 c       17         U3       24 ab       27       24       25 abc       26 a       21 c       16         FC2S       .26 a       28       24       27 a       28 a       28 a       28 a       23       27         FC2S       .26 a       28       24       27 a       2.52*       2.46*       3.01**       16         FCV(*)       6.1       5.1       9.4       5.9       4.6       12.1       14          60 days       after seeding        14       14       14          60 days       after seeding        14       14         Ctrl       19 bc       20 cd       18       21       22       20       15         Ctrl       19 bc       20 cd       18       21       22       20       16       16         FC2                                                                                                                                                                                                 | FC2                                      | 26 a                                  | 27       |                                 | 26 abc        | 28 a     | 23 bc                 | 19              |
| HM2'       24 ab       26       21       25 abc       27 a       25 abc       26 a       21 c       18         U1       22 b       25       21       23 d       24 b       21 c       19         U2       23 b       27       22       25 abc       26 a       21 c       17         U3       24 ab       27       24       25 abc       27 a       22 c       14         FC2S       26 a       28       24       27 a       28 a       28 a       28 a       23 bc       16         FC2S       26 a       23 b       25       23       24 cd       26 a       23 bc       16         FC2S       26 a       28       24       27 a       28 a       28 a       28 a       27         FC2S       26 a       23 b       25       23       24 cd       26 a       23 bc       16         FCV(x)       6.1       5.1       9.4       5.9       4.6       12.1       14          60 days       after seeding        60 days       after seeding       16       17         CC1       19 bc       20 cd       18       21       22                                                                                                                                                           | HM1                                      | 24 ab                                 | 25       | 22                              | 26 abc        | 27 a     | 20 с                  | 17              |
| U2       23 b       27       22       25 abc       26 a       21 c       17         U3       24 ab       27       24       25 abc       27 a       22 c       14         FC2S       .26 a       28       24       27 a       28 a       28 a       28 a       22 c       14         FC2S       .26 a       23 b       25       23       24 cd       26 a       23 bc       14         F       2.45*       2.05       1.22'       2.52*       2.46*       3.01**       14         F       2.45*       2.05       1.22'       2.52*       2.46*       3.01**       14         F       2.45*       2.05       1.22'       2.52*       2.46*       3.01**       14         F       6.1       5.1       9.4       5.9       4.6       12.1       14                                                                                                                                                                                                                                                                                                                                                                                                                                        | HM2                                      | 24 ab                                 | 26       | 21.                             | 25 abc        | 27 a     | 25 abc                | 20              |
| U2       23 b       27       22       25 abc       26 a       21 c       17         U3       24 ab       27       24       25 abc       27 a       22 c       14         FC2S       .26 a       28       24       27 a       28 a       28 a       28 a       22 c       14         FC2S       .26 a       23 b       25       23       24 cd       26 a       23 bc       14         F       2.45*       2.05       1.22'       2.52*       2.46*       3.01**       14         F       2.45*       2.05       1.22'       2.52*       2.46*       3.01**       14         F       2.45*       2.05       1.22'       2.52*       2.46*       3.01**       14         F       6.1       5.1       9.4       5.9       4.6       12.1       14                                                                                                                                                                                                                                                                                                                                                                                                                                        | U1                                       | 22 Ь                                  | 25       | 21 🎽                            | 23 d          | 24 Ь     | 21 c                  | 19 <sub>B</sub> |
| U3       24 ab       27       24       25 abc       27 a       22 c       14         FC2S       26 a       28       24       27 a       28 a       28 a       28 a       22 c       14         HM2S       23 b       25       23       24 cd       26 a       23 bc       16         F       2.45*       2.05       1.22       2.52*       2.46*       3.01**       14         CV(*)       6.1       5.1       9.4       5.9       4.6       12.1       14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U2                                       | 23 b                                  | 27       | 22                              | 25 abc        | 26 a     | 21 C                  | 17              |
| F $2.45*$ $2.05$ $1.22^{\circ}$ $2.52*$ $2.46*$ $3.01**$ CV(%) $6.1$ $5.1$ $9.4$ $5.9$ $4.6$ $12.1$ $14^{\circ}$ Ctrl 19 bc 20 cd 18 20 23 21         CCl 19 bc 20 cd 18 21 $22$ 20 $15^{\circ}$ CC2 20 b $21$ bc 19 22 $23$ 20 $20^{\circ}$ FC1 19 bc 19 cd 19 21 $22$ 23 $20$ 20         FC2 22 a 23 ab 18 21 $23$ 16 $14^{\circ}$ HM1 19 bc 21 bc 19 21 $22$ 20 $16^{\circ}$ HM2 20 b 20 cd 18 18 $18$ 21 $23$ 16 $14^{\circ}$ U1 19 bc 21 bc 19 21 $22$ 20 $16^{\circ}$ HM2 20 b 20 cd 18 18 $18$ 20 16 $13^{\circ}$ U1 19 bc 21 bc 19 cd 18 21 $21$ 16 $11^{\circ}$ U2 19 bc 19 cd 18 21 $21$ 20 $16^{\circ}$ U2 19 bc 19 cd 18 21 $21^{\circ}$ $21^{\circ}$ $16^{\circ}$ U2 19 bc 19 cd 18 21 $21^{\circ}$ $16^{\circ}$ $15^{\circ}$ FC2S 23 a 26 a 18 $23^{\circ}$ $24^{\circ}$ $20^{\circ}$ $16^{\circ}$ <                                                                                                                                                                                                                                                                                                                                                                    | U <b>3</b>                               | 24 ab                                 | 27       | 24                              | 25 abc        | 27 a Ì   | 22 с                  | י 18 י          |
| F $2.45*$ $2.05$ $1.22$ $2.52*$ $2.46*$ $3.01**$ CV(*) $6.1$ $5.1$ $9.4$ $5.9$ $4.6$ $12.1$ $14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FC2S                                     | 26 a                                  | 28       | - 24                            | 27 а          | . 28 a   | 28 a                  | 23              |
| CV(%)       6.1       5.1       9.4       5.9       4.6       12.1       14        60 days after seeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HM2S                                     | 23 Ъ                                  | 25       | 23                              | 24 cd         | °26 a    | 23 bc                 | 18              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                        | 2.45*                                 | 2.05     | 1.22                            | 2.52*         | 2.46     | * 3.01**              | 1.9             |
| Ctrl       19 bc       20 cd       18       20       23       21       18         CC1       19 bc       20 cd       18       21       22       20       15         CC2       20 b       21 bc       19       22       23       20       20         FC1       19 bc       19 cd       19       21       22       16       12         FC2       22 a       23 ab       18       21       23       16       14         HM1       19 bc       21 bc       19       21       22       20       16         HM2       20 b       20 cd       18       18       21       23       16       14         HM2       20 b       20 cd       18       18       20       16       13         U1       19 bc       21 bc       21       20       20       18       14         U2       19 bc       19 cd       18       21       21       16       11         U3       19 bc       21 bc       18       21       22       19       18         FC2S       23 a       26 a       18       23       24       20       1                                                                                                                                                                                  | CV(%)                                    | 6.1                                   | 5.1      | 9.4                             | 5.9           | 4.6      | 12.1                  | 1.4.1           |
| Ctrl       19 bc       20 cd       18       20       23       21       18         CC1       19 bc       20 cd       18       21       22       20       15         CC2       20 b       21 bc       19       22       23       20       20         FC1       19 bc       19 cd       19       21       22       16       12         FC2       22 a       23 ab       18       21       23       16       14         HM1       19 bc       21 bc       19       21       22       20       16         HM2       20 b       20 cd       18       18       21       23       16       14         HM2       20 b       20 cd       18       18       20       16       13         U1       19 bc       21 bc       21       20       20       18       14         U2       19 bc       19 cd       18       21       21       16       11         U3       19 bc       21 bc       18       21       22       19       18         FC2S       23 a       26 a       18       23       24       20       1                                                                                                                                                                                  | · -                                      |                                       | d        | 60 day                          | vs after se   | eding    |                       |                 |
| CC1       19 bc       20 cd       18       21       22       20       hs         CC2       20 b       21 bc       19       22       23       20       20         FC1       19 bc       19 cd       19       21       22       16       12         FC2       22 a       23 ab       18       21       23       16       14         HM1       19 bc       21 bc       19       21       22       20       16         HM2       20 b       20 cd       18       18       20       16       13         U1       19 bc       21 bc       21       20       20       18       14         U2       19 bc       19 cd       18       21       21       16       13         U3       19 bc       21 bc       18       21       21       16       14         U3       19 bc       21 bc       18       21       21       16       14         U3       19 bc       21 bc       18       21       21       16       14         U3       19 bc       21 bc       18       21       21       16       15                                                                                                                                                                                            |                                          |                                       |          |                                 | •             |          | 21                    | 18              |
| FC1       19 bc       19 cd       19       21       22       16       12         FC2       22 a       23 ab       18       21       23       16       14         HM1       19 bc       21 bc       19       21       22       20       16       14         HM2       20 b       20 cd       18       18       20       16       13         U1       19 bc       21 bc       21       20       20       18       14         U2       19 bc       19 cd       18       21       21       16       13         U2       19 bc       19 cd       18       21       21       16       14         U3       19 bc       21 bc       18       21       21       16       11         U3       19 bc       21 bc       18       21       22       19       18         FC2S       23 a       26 a       18       23       24       20       15         HM2S       17 d       18 d       16       20       21       20       16         F       8.72**       5.31**       1.03       1.61       1.15       0.89     <                                                                                                                                                                              | CC1                                      | 19 bc                                 | 20 cd    | 18                              | 21            | 22       | <b>20</b> '           | \s_/            |
| HM1       19 bc       21 bc       19       21       22       20       16         HM2       20 b       20 cd       18       18       20       16       13         U1       19 bc       21 bc       21       20       20       18       14         U2       19 bc       19 cd       18       21       21       16       11         U3       19 bc       21 bc       18       21       22       19       18         FC2S       23 a       26 a       18       23       24       20       15         HM2S       17 d       18 d       16       20       21       20       16         F       8.72**       5.31**       1.03       1.61       1.15       0.89       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CC2                                      | 20 Ъ                                  | 21 bc    | 19                              | 22            |          | 20                    | 20              |
| HM1       19 bc       21 bc       19       21       22       20       16         HM2       20 b       20 cd       18       18       20       16       13         U1       19 bc       21 bc       21       20       20       18       14         U2       19 bc       19 cd       18       21       21       16       11         U3       19 bc       21 bc       18       21       22       19       18         FC2S       23 a       26 a       18       23       24       20       15         HM2S       17 d       18 d       16       20       21       20       16         F       8.72**       5.31**       1.03       1.61       1.15       0.89       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | 19 bc                                 | 19 cd    | 19                              | <b>2</b> 1 ·  | 22       |                       | 12              |
| HM1       19 bc       21 bc       19       21       22       20       16         HM2       20 b       20 cd       18       18       20       16       13         U1       19 bc       21 bc       21       20       20       18       14         U2       19 bc       19 cd       18       21       21       16       11         U3       19 bc       21 bc       18       21       22       19       18         FC2S       23 a       26 a       18       23       24       20       15         HM2S       17 d       18 d       16       20       21       20       16         F       8.72**       5.31**       1.03       1.61       1.15       0.89       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                       |          |                                 | 21            | 23       | 16                    | 14              |
| HM2       20 b       20 cd       18       18       20       16       13         U1       19 bc       21 bc       21       20       20       18       14         U2       19 bc       19 cd       18       21       21       16       11         U3       19 bc       21 bc       18       21       22       19       18         FC2S       23 a       26 a       18       23       24       20       15         HM2S       17 d       18 d       16       20       21       20       16         F       8.72**       5.31**       1.03       1.61       1.15       0.89       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                       |          |                                 | <b>2</b> 1    |          | 20                    | 16              |
| U2       19 bc       19 cd       18       21       21       16       11         U3       19 bc       21 bc       18       21       22       19       18         FC2S       23 a       26 a       18       23       24       20       15         HM2S       17 d       18 d       16       20       21       20       16         F       8.72**       5.31**       1.03       1.61       1.15       0.89       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HM2                                      | 20 Ъ                                  | 20 cd    | 18                              | 18            | 20       | 16                    | 13              |
| U2       19 bc       19 cd       18       21       21       16       11         U3       19 bc       21 bc       18       21       22       19       18         FC2S       23 a       26 a       18       23       24       20       15         HM2S       17 d       18 d       16       20       21       20       16         F       8.72**       5.31**       1.03       1.61       1.15       0.89       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U1                                       | 19 bc                                 | 21 bc    | 21                              | 20            | 20       | 18                    | 14              |
| U3       19 bc       21 bc       18       21       22       19       18         FC2S       23 a       26 a       18       23       24       20       15         HM2S       17 d       18 d       16       20       21       20       16         F       8.72**       5.31**       1.03       1.61       1.15       0.89       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U2                                       | 19 bc                                 | 19 cd    | 18                              | 21            |          | 16                    | 11              |
| HM2S       17 d       18 d       16       20       21       20       16         F       8.72**       5.31**       1.03       1.61       1.15       0.89       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U3                                       | 19 bc                                 | 21 bc    | 18                              | 21            | 20       | 19                    | 18              |
| HM2S       17 d       18 d       16       20       21       20       16         F       8.72**       5.31**       1.03       1.61       1.15       0.89       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FC2S                                     | 23 a                                  | 26 a     | 18                              | 23            | 24       | 20                    | 15°             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                       |          |                                 |               | 21       | 20                    | 16              |
| CV(x) 19.6 8.6 11.0 8.6 11.3 18.6 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                       |          |                                 |               |          |                       | 1.1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                       |          |                                 |               |          |                       |                 |

Table 2.5 Effect of manures or urea on moisture content of soils at 30 and 60 days after seeding in 1984

ı

1) means in the same column with the same letters are not significantly different at the level of 0,05 by Duncan's Multiple Range Test.

**\***, **\*\*** : significant at the levels of 0.05 and 0.01 respectively.

| · ·            |                                       | of manure<br>gravimetr<br>30 and 60 | es (CFH) ai<br>fic moistu<br>) days aft | re content<br>er seeding | en rate (N<br>c of soil<br>g in 1984  | R) on                |                      |
|----------------|---------------------------------------|-------------------------------------|-----------------------------------------|--------------------------|---------------------------------------|----------------------|----------------------|
|                | Cł                                    | ncot Soil                           | . @                                     |                          | St Beno                               | it Soll -            |                      |
| Main<br>effect | 0-10                                  | 10-20                               | 20-40                                   | epth (cm)<br>0-10        | 10-20                                 | 20-40                |                      |
|                |                                       | 6/2                                 | 27/1984 (30                             |                          |                                       |                      |                      |
|                |                                       |                                     | prol                                    | ,<br>pability –          |                                       |                      | <br>>                |
| CFH<br>NR      | 0.5319<br>0.0611                      | 0.1684<br>0.0608                    | 0.3744<br>0.4472                        | 0.4821<br>0.7311         | 0.0574<br>0.3826                      | 0.1232<br>0.9578     | 0.120                |
| •              |                                       |                                     | 8.6                                     |                          |                                       |                      |                      |
| i.             |                                       |                                     |                                         | *                        |                                       |                      |                      |
| CC<br>FC       | 24.3<br>24.9                          | 26.3<br>26.6                        | 22.7<br>22.2                            | 26.2                     | 27.5<br>27.6                          | 24.1<br>24.8         | 20.5                 |
| HM             | 24.0                                  | 25.4                                | 21.3                                    | 25.4                     | 26.6                                  | 22.3                 | 18 <b>.3</b>         |
|                | 23.7<br>25.1                          |                                     | 22.4<br>21.8                            |                          | 27.1<br>27.4                          | 23.7<br>23.8         | 19.9<br>19.7         |
| σ.             |                                       | 6/2                                 | 7/1984 (60                              | ) days ate               | r seeding)                            | )                    |                      |
| -              |                                       |                                     | prob                                    | abilıty -                |                                       |                      |                      |
| CFH<br>NR      |                                       |                                     | 0.9877,<br>0.5138                       |                          |                                       | 0.2039               |                      |
| CV(%)          | 5.6                                   | 8.5                                 | <b>14.</b> 1                            | 8.9 -                    | 9.3                                   | 22.9                 | 26.6                 |
| -              |                                       |                                     |                                         | ` %                      | · · · · · · · · · · · · · · · · · · · |                      | ·                    |
| CC<br>FC<br>HM | 19.3b <sup>1</sup><br>20.8a<br>19.8ab | 20.6<br>21.4<br>20.7                | 18.5<br>18.7<br>18.6                    | 21.5<br>21.2<br>20.5     | 22.6<br>22.4<br>21.3                  | 20.0<br>16.1<br>18.3 | 16.4<br>13.4<br>14.1 |
| N120<br>N240   | 19.3b<br>20.7a                        | 20.2<br>21.6                        | 19.0<br>18.3                            | 21.1<br>21.0             | 22.3<br>21.9                          | 18.8<br>17.5         | 13.7<br>15.6         |

¥

۳۱

i) means followed by different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

.

| ۲.<br>۱۳۰۰ – ۱ | <u> </u> | – Chicot | :        |                                   | - St Benoi    | t'    |       |
|----------------|----------|----------|----------|-----------------------------------|---------------|-------|-------|
| Treatment      | 0~10     | 10-20    | 20-40    | Depth (<br>0-10 .                 | (cm)<br>10-20 | 20-40 | 40-60 |
| •              |          |          |          | %<br>ر ۲                          |               |       |       |
|                |          |          | 90 da    | ys after s                        | seeding       |       |       |
| Ctrl           | 17       | ,<br>21  | 20       | 23 abc <sup>1</sup>               | 24 bcd        | 22    | 19    |
| CC1            | 17<br>21 | 17       | 17       | 23 abc <sup>1</sup><br>23 abc     | 24 bcd        | 21    | 15    |
|                | 24       |          | 19       | 25 a                              | 25 ab         | 20    |       |
| FC1            | 21       | 22       | 20       | 23 abc                            | 23 bcde       | 17    | 12    |
| FC2            | 21<br>23 | 23       | 20       | 23 abc<br>25 a                    | 24 bcd        | 20    | 16    |
| HM1            | 21       | 22       | 21       | 22 bc                             | 23 bcde       | 19    | 14    |
| HM2            | 22       | 22       | 24       | 24 ab                             | 22 def        | 18    | 15    |
| Ul             | 21       | 22<br>21 | 18       | 24 ab<br>20 d                     | 20 g          | 14    | 12    |
| U2             | 21       | 22       | 21       | 22 bc Ň                           | 122 def       | 17    | 12    |
| U3             | 22       | 22       | 23       | 22 bc                             | 22 def        | 15    | 13    |
| FC2S           | 23       | 24       | 18       | 25 a 🕠                            | 26 a          | 27    | 18    |
| HM2S           | 20       | 22       | 20       | 22 bc<br>25 a<br>21 cd            | 21 f          | 15    | 12    |
| F              | 1.29     | 1.15     | 0.63     | 4.89**                            | 8.93**        | 1.48  | 1.8   |
| CV(%)          | 15.0     | 15.1     | 23.8     | 6.4                               | .4.6          | 30.4  | 26.2  |
|                |          |          | 125 days | after see                         | ding          |       |       |
| Ctrl :         | 22 bc    | 21       | 18       | 22 cde<br>26 abc                  | 23 ab         | 17    | 15    |
| CC1 :          | 22 bc    | 22       | 17       | 26 abc                            | 22 abcd       | 15    | 12    |
| CC2 :          | 22 bc    | 21       | 22 ,     | 27 ab<br>23 cde<br>25 abcd        | 23 ab         | 15    | 10    |
| FC1 :          | 22 bc    | 22       | 18       | 23 cde 🗉                          | 19 d          | 13    | 9     |
| FC2            | 24 ab    | 23       | 21 *     | 25 abcd                           | 23 ab         | 16    | 12    |
| HM1 :          | 22 bc    | 21       | 17       | 22 cde                            | 22 abcd       | 12    | 11    |
| HM2            | 21 bc    | 20       | 17       | 21 de                             | 19 d          | 15    | 13    |
| Ul :           | 20 с     | 21       | 20       | 22 cde<br>21 de<br>20 e           | 19 d          | 12    | 9     |
| U2 2           | 22 bc    | 21       | 21       | 22 cde                            | 19 d          | 12    | 9     |
| U3 2           | 22 bc    | 21       | 19       | 23 cde                            | 21 bcd        | 11    | 11    |
| FC2S 2         | 25 a     | 25       | 19       | 29 a                              | 25 a          | 18    | 11    |
| HM2S 2         | 22 bc    | 20       | 18       | 22 cde<br>23 cde<br>29 a<br>21 de | 20 bcd        | 13    | 9     |
| F              | 2.22*    | 1.57     | 1.00     | 3.87**                            | 3.53**        | 1.14  | 1.55  |
| CV(%)          | 7.3      | 10.4     | 18.7     | 12.3                              | 10.3          | 29.7  | 27.1  |

Table 2.7 Effect of manures or urea on moisture content of soils at 90 and 125 days after seeding in 1984

 means in the same column followed by the same letters are not significantly different at the level of 0.01 by Duncan's Multiple Range Test.

, \*\* : significant at the levels of 0.05 and 0.01 rspectively.

| Tabl           | (<br>1 | of manures<br>gravimetri | s (CFH) an<br>ic moistur | ted with t<br>d nitrogen<br>e content<br>er seeding | rate(NR<br>of soils | ) on      |        |
|----------------|--------|--------------------------|--------------------------|-----------------------------------------------------|---------------------|-----------|--------|
|                | Cl     | nicot Soil               |                          |                                                     | - St Beno           | it Soll - |        |
| Main<br>effect | 0-10   | 10-20                    | 20-40                    | epth (cm)<br>0-10                                   | 10-20               | 20-40     | 40-60  |
|                |        |                          |                          | er seeding                                          | (8/28/19            | •         |        |
| ٢              |        |                          | pro                      | bability -                                          |                     | <b>•</b>  | ,      |
| CFH            | 0.4190 | 0.7543                   | 0.4361                   | 0.5416                                              | 0.0023              | 0.7585    | 0.5517 |
| NR             | 0.0428 | 0.1913                   | 0.5340                   | 0.0145                                              | 0.5070              | 0.9431    | 0.2757 |
| CV(%)          | 8.7    | 20.5                     | 29.2                     | 6.2                                                 | 3.5                 | 28.9      | 28.2   |
|                |        |                          |                          | %                                                   |                     |           |        |
| сс             | 22.6   | 20.9                     | 18.4                     | 23.9                                                | 24.2a <sup>1</sup>  | 20.3      | 16.4   |
|                |        |                          |                          | 24.0                                                |                     |           |        |
| HM             | 21.3   | 22.0                     | 22.2                     | 23.2                                                | 22.4b               | 18.3      | 11.2   |
| N120           | 21.2Ъ  | 20.6                     | 19.3                     | 22.9Ъ                                               | 23.3                | 19.0      | 13.8   |
| N240           | 22.9a  | 23.1                     | 20.9                     | 22.9b<br>24.5a                                      | 23,5                | 19.2      | 15.7   |
|                |        |                          |                          | er seeding                                          |                     |           |        |
|                |        |                          | prot                     | pability -                                          |                     |           |        |
| CFH            | 0.1658 | 0.1004                   | 0.4315                   | 0.0056<br>0.5512                                    | 0.1493              | 0.7117    | 0.4090 |
| NR             | 0.4253 | 0.8051                   | 0.1831                   | 0.5512                                              | 0.4354              | 0.4169    | 0.4512 |
| CV(%)          | 6.5    | 6.9                      | 25.0                     | 10.3                                                | 11.1                | 28.2      | 19.6   |
|                |        |                          |                          | %                                                   |                     |           |        |
| сс             | 21.9   | 21.6                     | 19.3                     | 26.7a                                               | 22.7                | 15.0      | 11.0   |
| FC             | 23.0   | 22.3                     | 19.1                     | 24.4ab                                              | 21.3                | 14.0      | 10.4   |
| HM             | 21.7   | 20.6                     | 16.6                     | 21.9Ъ                                               | 20.3                | 13.4      | 11.9   |
| N120           | 22.0   | 21.4                     | 17.0                     | 24.0                                                | 21.0                | 13.5      | 10.8   |
| N240           | 22.4   | 21.5                     | 19.6                     | 24.6                                                | 21.8                | 14.8      | 11.4   |

1) means followed by different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

.

.

í

L

31

.

the Ul treatment, which had the lowest water content.

St Benoit soil

In 1983, measurements conducted 62 and 107 days after sowing showed no significant differences in water content among the treatments (Table 2.4).

In 1984, 30 days after seeding (June 27, 1984), moisture contents of the top 10 cm of soil associated with the FC2S and CC2 treatments were significantly higher than those of the control, Ul, and HM2S treatments. At 10-20 cm, the Ul treatment had a significantly lower water content than other treatments. At a depth of 20-40 cm, significantly higher moisture contents with the FC2S treatment compared with the FC2, HM1, Ul, U2, U3 and HM2S treatments were observed. At 40-60 cm, no treatment differences were detected (Tables 2.5 and 2.6).

At 60 days after seeding (July 26, 1984), only small differences were found among the treatments through the soil profile (Tables 2.5 and 2.6), while at 90 days after sowing (August 28, 1984), the CC2, FC2 and FC2S treatments had significantly higher moisture contents than the HM1, U1, U2, U3 and HM2S treatments in the top 10 cm layer (Table 2.7). Higher manure application rates resulted in significantly higher soil water contents than the lower rates at 90 days (Table 2.8). At 10-20 cm, the highest soil moisture content was found with the FC2S treatment, the lowest with the U2 treatment. CC or FC manure treatments had greater effects on conserving soil moisture than HM treatments. Differences among treatments were not detected at depths of 20-40 and 40-60 cm.

The last measurement was made 125 days after seeding October 1, 1984; Table 2.7). At depths of 0-10 and 10-20 cm, the highest moisture content was found with the FC2S treatment, lower values with the HM2, U1 and HM2S treatments. Differences disappeared at soil depths of 20-40 and 40-60 cm. When analyzed as a factorial arrangement, CC manure treatments resulted in significantly higher soil moisture contents than HM treatments at the top 10 cm soil layer (Table 2.8).

## 2.3.2 Soil organic matter and soil bulk density

"There was no significant treatment effect on soil organic matter content and soil bulk density for the soils sampled at a depth of 5.13cm (Tables 2.9 and 2.10).

### 2.3.3 Ammonium- and nitrate-N

## 2.3.3.1 Chicot soil

#### Ammonium-N

Treatments with added manures (CC, FC, HM) and urea (U) had higher contents of NH<sub>4</sub>-N in the first two months after application, compared with the control treatment (Tables 2.11 to 2.20). This trend gradually disappeared with time. Among the 3 measurements in 1983 and 5 in 1984, the only significant treatment effects on soil NH<sub>4</sub>-N contents were found in June, 1984. At that time, the CC2 and FC2 treatments resulted in higher NH<sub>4</sub>-N contents in the soil profile. For the top 40 cm soil, the

|           | Orgai  | nic matter     | Bulk densssity |                   |  |
|-----------|--------|----------------|----------------|-------------------|--|
| Treatment | Chicot | St Benoit      | Chicot         | St Benoit         |  |
|           | 0      | 6              | 8              | {/cm <sup>3</sup> |  |
| Ctrl      | 3.82   | 3.93           | 1.33           | 1.18              |  |
| CC1       | 3.96   | 4.07           | 1.36           | 1.17              |  |
| CC2       | 4.11   | 4.12           | 1.28           | 1.12              |  |
| FC1       | 3.75   | 3.85           | 1.34           | 1.12              |  |
| FC2       | 3,89 , | 4.07           | 1.41           | 1.17              |  |
| HM1       | 3.81   | · <b>3.</b> 89 | 1.33           | 1.14              |  |
| HM2       | 3.78   | 4.02           | 1.39           | 1.13              |  |
| U1        | 3.90   | 3,56           | 1.34           | 1.22              |  |
| U2        | 4.14   | 3.89           | 1.34           | 1.21              |  |
| U3 "      | · 3.86 | 3.92           | 1.34           | 1.14              |  |
| FC2S      | 3.71   | 4.03           | ' 1.35         | 1.19              |  |
| HM2S      | 3.60   | 4.03           | 1.35           | 1.17              |  |
| F         | 0.38   | 0.56           | 1.31           | 0.51              |  |
| V(%)      | 130    | 10.1           | 4,3            | 7.9               |  |

Table 2.9Effect of manures or urea on soil organic matter<br/>content and bulk density in 1984

1

· '...' +-

1

λ'

|             | Organ  | ic matter | Bulk density |                    |  |
|-------------|--------|-----------|--------------|--------------------|--|
| Main effect |        | St Benoit |              |                    |  |
|             |        | probabi   |              |                    |  |
| CFH         | 0.5713 | 0.6286    | 0,0925       | 0.9705             |  |
| NR          |        | 0.3313    |              | 1.0000             |  |
| CV(%)       | 12.6   | 8.2       | 3.7          | 6.8                |  |
|             | 9      | ¥         | 8            | {/.cm <sup>3</sup> |  |
| сс          | 4.04   | 4.09      | 1.32         | 1.14               |  |
| FC          | 3.82   | 3.96      | 1.37         | 1.14               |  |
| HM          | 3.80   | 3.95      | 1.36         | 1.13               |  |
| N120        | 3.84   | 3.93      | 1.34         | 1.14               |  |
| N240        | 3.92 , | 4.07      | 1.36         | 1.14               |  |

23

Table 2.10 Probability associated with the main effect of manures (CFH) and nitrogen rate (NR) on soil organic matter content and bulk density in 1984

35

પ્રે

|           | Ammon                            | ium-N   |        | Nitra                         | ate-N |     |
|-----------|----------------------------------|---------|--------|-------------------------------|-------|-----|
| Treatment | 0-20                             | 20-40   |        | 0-20                          | 20-40 |     |
|           |                                  | mg N/kg |        | soil                          |       |     |
|           |                                  | 7/11/   |        |                               |       |     |
| Ctrl      | 1.3                              | 0.8     |        | 2.7 bc <sup>1</sup><br>2.3 bc | 1.4   |     |
| CC1       | 1.7                              | 1.2     |        | 2.3 bc                        | 1.2   |     |
| CC2       | 2.0                              | 1.2     |        | 2.4 bc                        |       |     |
| FC1       | 1.3                              | 2.1     |        | 1.7 bc                        | 1.5   |     |
| FC2       | 2.9                              | 1.6     |        | 1.2 c                         | 1.1   |     |
| HMl       | 1.6                              | 1.2     |        | 2.5 bc                        | 1.6   |     |
| HM2       | 2.6                              | 1.5     |        | 3.5 abc                       | 2.4   |     |
| <b>U1</b> | 2.1                              | 2.5     |        | 2.5 bc                        | 1.4   |     |
| U2        | 1.3                              | 1,3     |        | 3.9 ab                        | 2.0   |     |
| U3        | 1.7                              | 1.0     |        | 2.2 bc                        | 0.8   |     |
| FC2S      | 1.9                              | 1.2     |        | 2.4 bc                        | 1.7   |     |
| HM2S      | 2.5                              | 1.0     |        | 5.7 a                         | 1.8   |     |
| F         | 1.10                             | 0.67    | ¢      | 2.21*                         | 0.98  |     |
| CV (%)    | 53.6                             | 88.1    |        | 58.0                          | 54.7  |     |
| ı         | ، عب ہے کہ بچر کہ کہ کہ کہ ہے کہ | 8/15/   | 1983 - |                               |       | -   |
| Ctrl      | 3.3                              | 1.2     |        | 1.4                           | 2.0   | ్రి |
| CC1       | 2.3                              |         |        | 1.0                           | 1.1   |     |
| CC2       | 2.6                              | 1.4     |        | 1.2                           | 1.5   |     |
| FC1       | 2.9                              | 0.9     |        | 0.9                           | 1.1   |     |
| FC2       | 4.0                              | 0.8     |        | 1.3                           | 0.5   |     |
| HM1       | 3.6                              | 1.7     | •      | 1.0                           | 0.9   |     |
| HM2       | 4.1                              | 1.1     |        | 2.8                           | 1.0   |     |
| Ul        | 4.0                              | 2.8     |        | 1.4                           | 1.4   |     |
| U2        | 2.0                              | 5.3     |        | 1.3                           |       |     |
| U3        | 3.3                              | 1.7     |        | 1.6                           | 1.5   |     |
| FC2S      | 5.6                              | 1.3     |        | 1.3                           | 0.8   |     |
| HM2S      | 2.6                              | 0.9     | ,      | 1.0                           | 1.0   |     |
| F         | 0.48                             | 0.85    |        | 0.91                          | 1.77  |     |
| CV(%)     | 85.5                             | 70.2    |        | 76.5                          | 51.8  |     |

4

Table 2.11 Effect of manures or urea on ammonium- and nitrate-N content of Chicot soil in 1983

 means in the same column followed by the same letters are not significantly different at the level of 0.05 by Duncan's Multiple Range Test.

\* : significant at the level of 0.05.

1

| Treatment   | Ammonium-N Nitrate-N<br>mg N/kg dry soll |            |                     |                     |             |             |  |  |  |
|-------------|------------------------------------------|------------|---------------------|---------------------|-------------|-------------|--|--|--|
| *           | · · · · · · · · · · · · · · · · · · ·    | 9/30/1983  |                     |                     |             |             |  |  |  |
|             | 0-20                                     | 20-40      |                     | n (cm)<br>0-20      | 2(          | <br>)40     |  |  |  |
| 041         | 2.4                                      |            | 2                   | 0.0                 |             |             |  |  |  |
| Ctrl<br>CCl | 2.4<br>2.0                               | 2.0<br>1.9 |                     | 0.9<br>1.8          |             | ).0<br>).9  |  |  |  |
| CC2         | 2.0                                      | 2.8        |                     | 2.1                 |             | ).8         |  |  |  |
| FC1         | 2.3                                      | 1.7        |                     | 0.8                 |             | ).3         |  |  |  |
| FC1<br>FC2  | 3.3                                      | 2.3        |                     | 2.1                 |             | ).5         |  |  |  |
| HM1         | 2.2                                      | 1.7        |                     | 2.8                 |             | ).5         |  |  |  |
| HM2         | 2.2                                      | 2.9        |                     | 2.7                 |             | .1          |  |  |  |
| Ul          | 1.8                                      | 2.1        |                     | 3.1                 |             | 6           |  |  |  |
| <b>U2</b>   | 1.8                                      | 1.9        |                     | 2.4                 |             | .0          |  |  |  |
| . 03        | 2.0                                      | 2.3        |                     | 4.7                 |             | 7           |  |  |  |
| FC2S        | 2.3                                      | 1.8        |                     | 1.2                 |             | 0.5         |  |  |  |
| HM2S        | 2.3                                      | 1.4        | 2.7                 |                     |             | .6          |  |  |  |
| F           | 1.27                                     | 1.00       |                     | 1.82                |             | .60         |  |  |  |
| CV(%)       | 31.8                                     | 43.2       | 7                   | 0.2                 | 99          | 9.3         |  |  |  |
| -           |                                          |            |                     | f manures           |             |             |  |  |  |
|             |                                          | urea app.  | meu in i            | 983 (5/18           | 0/1304)     | -           |  |  |  |
| • -         |                                          |            |                     | (cm)                |             |             |  |  |  |
|             | , 0-10                                   | 10-20      | 20-40               | 0-10                | 10-20       | 20-40       |  |  |  |
| Ctrl        | 0.4                                      | 0.5        | 0.4                 | <sup>°</sup> 4.8    | 6.9         | 2.8         |  |  |  |
| CC1         | 0.4                                      | 0.6        | 0.4                 | 5.1                 | 5.4         | 3.3         |  |  |  |
| CC2         | 0.4                                      | 0.5        | 0.4                 | 4.5                 | 5.0         | 3.2         |  |  |  |
| FC1         | 0.4                                      | 0.4        | 0.3                 |                     | 6.8         | 2.9         |  |  |  |
| FC2         | 0.4                                      |            | 0.5                 | 3.9                 | 4.6         |             |  |  |  |
| HM1         |                                          |            |                     | 4.3                 |             | 2.6         |  |  |  |
| HM2         | 0.4                                      | 0.4        | 0.6                 | 5.5                 | 6.9         | 3.5         |  |  |  |
| Ul          | 0.7                                      | 0.4        | 0.3                 | 4.4                 | 4.9         | 3.4         |  |  |  |
| U2          | 0.5                                      | 0.4        | 0.3                 | 6.4                 | 7.4         | 3.7         |  |  |  |
|             | 0.4                                      | 0.5        | 0.3                 | 3.5                 | 4.7         | 3.5         |  |  |  |
| <b>U3</b>   | 0 E                                      | 0.8        | 0.4                 | 4.0                 | 4.6         | 2.5         |  |  |  |
| U3<br>FC2S  | 0.5                                      |            |                     |                     | ~ ~         |             |  |  |  |
|             | 0.5                                      | 0.4        | 0.3                 | 5.5                 | 6.5         | 3.4         |  |  |  |
| FC2S        |                                          |            | 0.3<br>0.64<br>65.9 | 5.5<br>1.19<br>31.9 | 6.5<br>1.72 | 3.4<br>0.61 |  |  |  |

ł

Í

# Table 2.12 Effect and residual effect of manures or urea on ammonium- and nitrate-N content of Chicot soil in 1983 and 1984

| M              |                   |                   |                    |                      | N accumulation -                      |  |  |
|----------------|-------------------|-------------------|--------------------|----------------------|---------------------------------------|--|--|
|                |                   |                   | Depth (cm<br>20-40 |                      |                                       |  |  |
|                |                   |                   | Ammonium-          |                      |                                       |  |  |
|                |                   |                   | - probabilit       | у                    |                                       |  |  |
|                |                   |                   | 0.9665<br>0.2087   |                      |                                       |  |  |
| CV(%)          | 17.0              | 20.7              | 75.4               | 14.6                 | 40.4                                  |  |  |
| ſ              | m                 | g N/kg so         |                    | kg N/                | /ha                                   |  |  |
| CC<br>FC<br>HM | 0.4               | 0.5<br>0.4<br>0.4 | 0.4                | 1.2<br>1.1<br>1.1    | 2.4<br>2.3<br>2.3                     |  |  |
| N120<br>N240   | 0.4<br>0.4        |                   |                    | 1.1                  | 2.5                                   |  |  |
|                |                   |                   | Nitrate-N          |                      | · · · · · · · · · · · · · · · · · · · |  |  |
| ٠              |                   |                   | - probabilit       | y                    |                                       |  |  |
| CFH<br>NR      | 0.6250<br>0.6236  | 0.3857<br>0.9591  | 0.6924<br>0.5357   | 0.6399<br>0.7613     | 0.7637<br>0.9285                      |  |  |
| CV(%)          | 33.0              | 25.5              | 30.1               | 26.6                 | 25.9                                  |  |  |
|                | mį                | g N/kg so         | il                 | kg N/                | 'ha                                   |  |  |
| CC<br>FC<br>HM | 5.2<br>5.7<br>6.1 | 4.8<br>4.1<br>4.9 | 3.3<br>2.9<br>3.0  | 13.0<br>12.8<br>14.4 | 22.1<br>20.7<br>22.8                  |  |  |
| N120<br>N240   | 5.9<br>5.5 /      | 4.6<br>4.6        | 3.2<br>3.2         | 13.6<br>13.2         | 21.8<br>22.0                          |  |  |

A TAT A STATE A TAT AND A STATE

2.200

ĺ

Ţ

**38**°

n,

Ô

e

|            |            | Ammonium      | -N       | Ni<br>epth (cm)                 | trate-N  |                     |
|------------|------------|---------------|----------|---------------------------------|----------|---------------------|
| reatment   | 0-10       | 10-20         | 20-40    | 0-10                            | 10-20    | 20-40               |
| , ,        |            |               |          | kg dry soil                     |          |                     |
|            |            | 30 d          |          | seeding (6/                     |          |                     |
| Ctrl       | 0.8        | 1.1 b         | 0.8      | 11.8 d                          | 11.7     | 5.7 bc <sup>1</sup> |
| CC1        | 0.9        | 1.3 b         | 1.0      | 13.2 d<br>13.3 d<br>14.3 d      | 13.3     | 6.3 abc             |
| CC2        | 2.3        | 3.0 a         | 2.4      | 13.3 d                          | 14.7 '·  | 7.5 abc             |
| FC1        | 1.°2       | 1.1 b         | 2.0      | 14.3 d                          | 13.8     | 6.7 abc             |
| FC2        | 2.5        | <b>2.8</b> a  | 1.6      | 12.7 d                          | 9.3      | 6.4 abc             |
| HM1        | 1.2        | 1.5 b         | 1.1      | 17.9 cd                         | 14.3     | _ 8.9 a`            |
| HM2        | 1.4        | 1.3 b         | . 0.8    | 12.7 d<br>17.9 cd<br>28.5 ab    | 15.5     | 9.1 a               |
| U1         | 1.6<br>0.8 | 0.8 Ъ         | 0.6      | 19.1 bcd<br>24.4 abc            | 15.7     | 7.4 abc             |
| U2         | 0.8        | 1.0 b         | 0.9      | 24.4 abc                        | 16.9     | 7.7 ab              |
| ´ U3       | 1.8        | 1.4 b         | 1.1      | 28.1 ab                         | 15.3     | 8.4 ab              |
| FC2S       | 1.5        | 1.2 b         | 1.0      | 8.5 d                           | 8.8      | 4.6 c               |
| HM2S       | 1.0        | <b>1.</b> 1 b | 0.9      | 8.5 d<br>32.3 a                 | 17.8 .   | 8.l. ab             |
| F          | 1.54       | 4.04**        | 1.28     | 5.88**<br>34.4                  | 1.37     | 2.21*               |
| CV(%)      | 63.5       | 47.2          | 79.1     | 34.4                            | 34.4     | 25.0                |
|            |            | - 60 days     | after se | eding (7/26/                    | 1984)    |                     |
| Ctrl       | 4.2        | 4.4           | 4.3      | 10.7 d                          | 11.6 c   | 12.5                |
| CC1        | 5.0        | 5.1           | · 5.7    | 14.7 cd<br>22.2 bcd             | 16.1 bc  | 14.3                |
| CC2        | 7.8        | 11.1          | 4.8      | 22.2 bcd                        | 14.3 bc  | 17.4                |
| FC1        | 5.1        | 5.8           | 6.3      | 20.2 bcd<br>15.8 cd<br>22.8 bcd | 18.0 bc  | 16.0                |
| FC2        | 3.4        | 4.3           | 4.8      | 15.8 cd                         | 13.9 bc  | 16.8                |
| HM1        | 3.7        | 4.4           | 3.2      | 22.8 bcd                        | 15.7 bc  | 14.3                |
| HM2        | 4.7        | 5.3           | 5.7      | 43.9 a                          | 29.2 a   | 22.3                |
| Ul         | 2,6        | 3.6           | 2.9      | 43.9 a<br>19.9 bcd<br>22.5 bcd  | 17.2 bc  | 14.3 .              |
|            | 4.7        | 4.2           | 4.2      | 22.5 bcd                        | 18.1 bc  | 18.2                |
| U <b>3</b> | 4.2        | 4.2           | 2.9      | 36.4 ab                         | 23.9 ab  | 21.5,               |
| FC2S       | 2.9        | 2.2           | 2.3      | 36.4 ab<br>13.7 cd              | 12.9 bc  | 17.4                |
| HM2S       | 4.6        | 5.2           | 4.1      | 30.4 abc                        | 22.6 abc | 19.8                |
|            |            |               |          | 2.91**                          | 2.15*    |                     |
| CV (%)     | 73.3       | 97.1          | 59.9     | 50.3                            | 39.3     | 29.6                |

Table 2.14 Effect of manures or urea on ammonium- and nitrate-N content of Chicot soil at 30 and 60 days after seeding in 1984

s.)

l

1) means in the same column followed by the same letters are not significantly different at the level of 0.05 by Duncan's Multilple Range Test.

\*,\*\* : significant at the levels of 0.05 and 0.01 respectively.

| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                  | nd nitrate<br>O days'aft |                  | of Chicot<br>in 1984 | soil                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|--------------------------|------------------|----------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | ,                |                          |                  | C.)                  | و مرد بی دو آوی می وی می ورد. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                               | Ammonium-N       |                          |                  | Nitrate-N            |                               |
| Main<br>effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0-10                            |                  | Depth<br>20-40           |                  | 10-20                | 20-40                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                  | after see                |                  | /1984)               |                               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | ,<br>            | prob                     | ability          |                      |                               |
| CFH<br>NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3193<br>0.0083                | 0.2377<br>0.0093 | 0.3739<br>0.6718         | 0.0272<br>0.3344 | 0.3956<br>0.7689     | °0.0483<br>0.6545             |
| CV(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.6                            | 46.2             | 85.2                     | 44.7             | 36.9                 | 26.0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>,</u>                        |                  | mg N/k                   | g soil           |                      |                               |
| CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6                             | 2.1              | 1.7                      | 13.3 Ъ           | °14.0                | ` 6.9 b <sup>1</sup>          |
| FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9                             | 2.0              | 1.8                      | 13.5 b           |                      | 6:6 b                         |
| HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3                             | 1.4              | 1.0                      | 23.2° a          | 14.9                 | 9.0 a                         |
| N120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.16                            | 1.3 b            | 1.4                      | 15.1             | 13.2                 | 7.3                           |
| N240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | 2.3 a            |                          |                  |                      | 7.7                           |
| `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 60 days          | after se                 | eding (7/2       | 6/1984)              |                               |
| Set and the set of the | <u> </u>                        | `                | ^ Probab:                | ility            |                      |                               |
| CFH<br>NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5059<br>0.6785                | 0.5702<br>0.5327 | 0.7329<br>0.9877         | 0.0080           | 0.0601<br>0.3213     | 0.4882                        |
| CV(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.0                            | 112.1            | 58.6                     | 40.9             | 34.2                 | 25.0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ی اور اور بین میں میں ہے۔ میں و | u                | — mg N/kg                | soil             |                      |                               |
| CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.4                             | 8.1              | <b>5.3</b> ,             | 18.4 b           | 15.2                 | /15.9                         |
| FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.2                             | 5.0              | 5.6 ~                    | 18.0 Ъ           | 16.0                 | 16.4                          |
| , HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2                             | 4.9              | <b>4.4</b>               | 33.3 a           | 22.4<br>°            | 18.3                          |
| N120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.6                             | 5.1              | 5.1                      | 19.2             | 16.6                 | 14.9 в                        |
| N240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | 6.9              | 5.1                      |                  |                      | 18.8 a                        |

ł

\$ 2

 $(\mathbf{C})^{\dagger}$ 

,'

 means followed by different letters in the same column
 within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

|              | , Yumo                                 | onium-N           | epth (cm)    |               |                                                                         | -N    |   |
|--------------|----------------------------------------|-------------------|--------------|---------------|-------------------------------------------------------------------------|-------|---|
| reatment     | 0-20                                   | 0-40              | 0-           | -20           | 0                                                                       | -40   |   |
|              | •••••••••••••••••••••••••••••••••••••• |                   | - kg N/ha    |               | اللغة الثلثة اللغة في المنا عنه<br>المن الثلثة اللغة اللغة المن المن ال |       |   |
| -            | 30                                     | ) days afte       | er seeding   | g (6/27       | /1984                                                                   | )     |   |
| Ctrl         | <b>́2</b> b                            | 5 с               |              | ef            | 47                                                                      | ef1   |   |
| CC1          | З Ь                                    | 6 bc              |              | def           |                                                                         | def   | • |
| CC2          | 7 a                                    | 13 a              | , 37         | cdef          | 57                                                                      | bcdef |   |
| FCl          | З Ъ                                    | 9 abc             | 37           | cdef          | - 55                                                                    | cdef  | 0 |
| FC2          | 7 a                                    | ll ab             | 29           | ef            | 46                                                                      | ef    |   |
| HM1          | 4 Ь                                    | 7 Ъс              | , 42         | bcdef         | 67                                                                      | abcde |   |
| HM2 (        | 3 b                                    | 6 bc              | 57           | ab            | 82                                                                      | ab    |   |
| Ul           | 3 Ь                                    | 5 c               | °45          | abcde         | 66                                                                      | abcde |   |
| U <b>2</b>   | 2 Ь                                    | 5 c               | 54           | abcd          | 75                                                                      | abcd  |   |
| U <b>3</b> , | 4 Ь                                    | 7 bc              | 56           | abc           | 80                                                                      | abc   |   |
| FC2S         | 4 Ь                                    | 6 <sup>,</sup> bс | 23           | f             | 35                                                                      | f     |   |
| HM2S         | `З Ь                                   | 5 bc.             | 65           | а             | 87                                                                      | a     |   |
| F            |                                        | 2.17*             | 4.           | 6 <b>0</b> ** |                                                                         | .42** |   |
| CV(%)        | 46.1                                   | 54.0              | ້ 28.        | 8             | 24                                                                      | .8    |   |
|              | 60 d                                   | lays after        | seeeding     | (7/26/        | 1984)                                                                   |       |   |
| Ctrl         | 11                                     | 23 🦯              | ັ 29         |               | 64                                                                      | с.    |   |
| CC1 .        | 13                                     | 29                |              | bcd           | 80                                                                      |       |   |
| CC2          | 25                                     | 38                |              | bcd           | 96                                                                      |       | · |
| FC1          | 14                                     | 32                |              | bcd           | 94                                                                      |       |   |
| FC2          | 10                                     | 23                |              | cd            | 85                                                                      |       |   |
| HM1          | 11 -                                   | 20 /              |              | bcd           | 90                                                                      |       |   |
| HM2          | 13                                     | 29 🖌              | \′ <b>95</b> |               | 157                                                                     |       |   |
| Ul           | 8                                      | 17 /              |              | bcd           | 83                                                                      |       |   |
| U2           | 12'                                    | 23 \              |              | bcd           | 103                                                                     |       | r |
| U <b>3</b>   | 11                                     | 19 👌 🌾            |              | ab            | 138                                                                     |       |   |
| FC2S         | , <b>7</b>                             | 13                |              | cd            | 83                                                                      |       |   |
| HM2S         | 13                                     | 24                | 69           | abc           | * 124                                                                   | ab    |   |
| F            | 0.75 ·                                 |                   |              | 68*           |                                                                         | 37*   |   |
| CV(%)        | 84.6                                   | 64.0              | 44.          | 1             | 34.                                                                     | .4    |   |

Table 2.16 Effect of manures or urea on quantity of ammonium-<br/>and nitrate-N of Chicot soil at 30 and 60 days<br/>after seeding in 1984

こう ひょうちょうちょうないろうちょう

**(**\_),

means within the soil in the same cullume followed by a the same letters are not significantly different at the level of 0.05 by Duncan's Multiple Range Test.
 \*,\*\* : significant at the levels of 0.05 and 0.01, respectively.

| •                | of ammonium-<br>and 60 days a                     | e (NR) and manures<br>and nitrate-N <sub>,</sub> of<br>after seeding in | 1984                 | 1 at 30 ;                         |  |
|------------------|---------------------------------------------------|-------------------------------------------------------------------------|----------------------|-----------------------------------|--|
| •                | Ammor                                             | nium-N                                                                  | Nitrate-N            |                                   |  |
| Main .<br>effect | Depth (cm)<br>0-20 0-40                           |                                                                         | 0-20                 | 0-40                              |  |
|                  |                                                   | lays after seeding                                                      |                      | -                                 |  |
|                  |                                                   | probabili                                                               | ty                   | ** *= *= ** ** *                  |  |
| CFH<br>NR        |                                                   | 0.2464<br>0.1227                                                        |                      | 0.0403<br>0.5895                  |  |
| CV(%)            | 38.2                                              | 55.9                                                                    | 37.2                 | 29.7                              |  |
|                  |                                                   | kg N/ha                                                                 |                      |                                   |  |
| CC<br>FC<br>HM   | 5<br>5<br>4                                       | 10<br>10<br>6                                                           | 36<br>33<br>49       | 55 b <sup>1</sup><br>51 b<br>74 a |  |
| N120<br>N240     | 3b<br>6a                                          | 7<br>10                                                                 | 38<br>41             | 58<br>62                          |  |
|                  | 60                                                | days after seedin                                                       | ng (7/26/198         | 84)                               |  |
|                  | ن<br>                                             | probabili                                                               | ity                  | <b>--</b>                         |  |
| CFH<br>NR        | 0.5399<br>0.5803                                  | 0.6284<br>0.6812                                                        |                      | 0.0332<br>0.0420                  |  |
| CV(X)            | <sup>°</sup> 99.3                                 | 68.4                                                                    | 36.8                 | 27.1                              |  |
|                  | ante Mille altan suma antendete la superior a sup | kg N/ha                                                                 | a                    |                                   |  |
| CC<br>FC<br>HM   | 19<br>12<br>12                                    | 34 ,<br>28<br>24                                                        | 44 b<br>44 b<br>72 a | 88 b<br>90 b<br>123 a             |  |
| N120<br>N240     | 17<br>16                                          | 27<br>30                                                                | 47<br>60             | 88 b<br>113 a                     |  |

( >-

1

means followed by different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

ŧ.

|            | ***  | - Ammonium-       | -N       |                         | Nitrate-   | N                |
|------------|------|-------------------|----------|-------------------------|------------|------------------|
| Ireatment  |      | 10 00             | ~~ ~~    |                         | 10 00      | 20-40            |
|            |      | 1                 | шд (N,   |                         | I          | 20-40            |
|            |      |                   |          |                         |            |                  |
| Ctrl       | 2.7  | 2.3               | 2.3      | ա<br>6.8 Ե <sup>1</sup> | 6.5        | 6.2 abcd         |
| CC1        | 4.5  | 7.1               | 1.9      | 6.0 b                   | 7.9        | 4.0 bcd          |
| CC2        | 2.6  | 2.5               |          |                         | 7.1        | 5.3 bcd          |
| FC1        | 4.5  |                   | 20       | 075                     | 9.0        | 70.1.            |
| FC2        | 2.7  | 4.7<br>2.4<br>2.2 | 2.5      | 10.8 b                  | 9.0<br>6.4 | 4.8 hcd          |
| . HM1      | 2.4  | 2.2               | 2.1      | 10.3 b                  | 7.3        | 6.4 abcd         |
|            | 5.7  | 3.0               |          | 10.3 Ь<br>11.2 Ь        | 8.4        | 4.3 bcd          |
| Ul         | 2.0  | 2.0               | 2.0      | 7.8 Ъ                   | 5.7        | 5.0 bcd          |
| U2         | 2.2  | 2.7               | 2.9      | 23.5 a<br>6.3 b         | 13.6       | 9.7 ab           |
| U3         | 2.3  | 2.7<br>3.0        | 2.0      | 6.3 b                   | 4.1        | 9.7 ab<br>3.4 cd |
|            | 3.7  | 3.6               | 2.4      | 5.3 b                   | 5.0        | 1.6 d            |
|            | 3.6  | 3.8               | 3,5      | 15.8 ab                 | 19.2       | '11.3 a          |
| F          | 1.01 | 0.85              | 0.59     | 2.70*                   | 2.06       | 2.35*            |
|            |      | 95.2              |          | 62.5                    | 69.9       | 61.1             |
|            |      |                   |          |                         |            | cef.             |
|            |      | 125 da            | ys after | seeding (1              | 0/04/1984  | ·                |
| Ctrl       | 1.5  | 2.0               | 1.6      | 3.4 e                   | 3.4 Ь      | 0.5              |
| CC1        | 1.6  | 2.2               | 2.1      | 4.6 de                  | 4.6 b      | 0.9              |
| CC2        | 2.2  | 2.3               | 3.0      | 7.9 bcd                 | 7.4 ab     | 1.8              |
| FC1        | 2.1  | 2.1               | 1.8      | 6.9 bcde                | 6.2 Ь      | 1.2              |
| FC2        | 3.9  | 1.9               | 2.0      | 9.6 abc                 | 7.4 ab     |                  |
| HMl        | 1.6  | 2.1               | 2.1      | 5.1 de                  | 4.5 Ь      | 1.4              |
| HM2        | 2.8  | . 2.1             | 1.7      | 8.2 bcd                 | 6.5 b      | 2.6              |
| Ul         | 1.6  | 1.8               | 1.7      | 3.6 e                   | 3.3 b      | 3.0              |
| U <b>2</b> | 2.2  | 1.8               | 1.8      | 8.2 bcd<br>5.6 cde      | 7.1 ab     | 3.5`             |
| U3         | 2.2  | 1.6               | 1.3      | 5.6 cde                 | 5.4 b      | 1.8              |
| FC2S       | 6.4  | 4.2               | 1.5      | 10.2 ab                 | 7.6 ab     | 2.6              |
| HM2S       | 2.8  |                   | 1.7      | 13:3 a                  | 11.0 a     | 4.9              |
| F          | 1.23 | 1.15              | 1.58     | 5.29**<br>35.6          | 2.67*      | <b>'1.5</b> 8    |
| CV (%)     | 97.8 | 56.4              | 36.3     | 35.6                    | 42.9       | 92.8             |

Table 2.18 Effect of manures or urea on ammonium- and nitrate-N . content of Chicot soil at 90 and 125 days after seeding in 1984

 means in the same column followed by the same letters are not significantly different at the level of 0.05 by Duncan's Multiple Range Test.

**\***,**\*\***: Significant at the levels of 0.05 and 0.01 respectively.

| Mai-      |      |           | -N               |        |                    |        |       |
|-----------|------|-----------|------------------|--------|--------------------|--------|-------|
|           | 0-10 |           |                  | n (cm) |                    | 10-20  | 20-40 |
|           |      |           | ys after se      | eding  | (8/28/1            |        |       |
|           |      |           | prob             | abilit | у                  |        |       |
| CFH<br>NR |      |           | 0.3349<br>0.9857 |        |                    |        |       |
| CV(%)     | 85.2 | 108.6     | 61.3             |        | 47.1               | 39.5   | 56.4  |
|           |      |           | mg N/k           | g soll |                    |        |       |
| сс        | 3.5  | 4.8       | 1.9<br>3.1       | r      | 6.7                | 7.5    | 4.6   |
| FC        | 3.6  | 3.6       | 3.1              |        | 10.3               | 7.7    | 6.3   |
| H™        | 4.0  | 2.6       | 2.6              |        | 10.7               | 7.8    | 5.4   |
| N120      | 3.8  | 4.7       | 2.6              | -      | 8.7                | 8.1    |       |
| N240      | 3.6  | 2.7       | 2.6              |        | 9.8                | 7.3    | 4.8   |
| -         |      | - 125 day | vs after se      | eding  | (10/04/]           | 1984)  |       |
| ÷         |      |           | probab           | ility  |                    |        |       |
| CFH<br>NR |      |           | 0.1767<br>0.5611 |        |                    |        |       |
| CV(%)     | 64.1 | 32.3      | 35.8             | :      | 33.9               | 32.4 1 | .36.0 |
|           |      |           | mg N/            | kg soi | 1                  |        |       |
| cc        | 1.9  | 2.3       | 2.5              |        | 6.2                | 6.0    | 1.3   |
| FC        | 3.0  |           | 1.9              |        | 8.3                | 6.8    | 2.8   |
| HM        | 2.2  | 2.3       | 1.9              |        | 6.7                | 5.5    | 2.0   |
| N120      | 1.8  | 2.2       | 2.0              |        | 5.5 b <sup>1</sup> | 5.1 Ь  | 1.1   |
|           | ·2.9 | 2.1       | 2.2              |        |                    | 7.1 a  |       |

đ

.

ſ

ł

 means followed by the different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

| Nu          | Ammo |                   | Nitra                           |                   |
|-------------|------|-------------------|---------------------------------|-------------------|
| [reatment , | 0-20 | <sub>°</sub> 0–40 | Depth (cm)<br>0-20<br>- kg N/ha | 0-40              |
| · ·         | 90   |                   | seeding (8/28/1984)             |                   |
| Ctrl        | 7    | 13                | 1 <b>7</b> b                    | 35 Ъ <sup>1</sup> |
| CC1         | 15   | 20                | 18 b                            | 33-5<br>29-5      |
| CC2         | 7    | 12                | 10 b                            | 33 b              |
| FC1         | 12   | 23                | 25 b                            | 46 b              |
| FC2         | 7    | 14                | 20 b                            | 35 b              |
| .HM1        | 6    | 14                | 22 b<br>23 b                    | 41 b              |
| HM2         | 11   | 20                | 25 b                            | 37 b              |
| Ul          | / 5  | 11                | 18 b                            | 31 Б              |
| U2          | 7    | 15                | 48 a                            | 75 a´-            |
| U3          | 7    | 13                | - 13 b                          | 23 b              |
| FC2S        | 10   | 16                | 13 b                            | 18 b              |
| HM2S        | 10   | 19                | 46 a                            | 77 a              |
| 11422       | 10   | 13                | 40 a                            | ii a              |
| F           | 0.86 | 0.75              | ° 4.06**                        | 4.22**            |
| CV(%)       | 77.3 | 59.4              | 47.3                            | 44.8              |
|             | 12   | 5 days afte       | er seeding (4/10/1984           | 4)                |
| Ctrl        | 5    | 9                 | 9 d                             | 10 d              |
| CC1         | 5    | 11                | 12 cd                           | 14 cd             |
| CC2         | 6    | 14                | 20 bc                           | 25. bcd           |
| FC1         | 6    | 11                | 17 bcd                          | 20 bcd            |
| FC2         | 8    | 13                | 22 abc                          | 34 ab             |
| HM1         | 5    | 11                | 12 cd                           | 16 cd             |
| HM2         | 6    | 11                | 19 bcd                          | 26 bcd            |
| <b>U1</b>   | 4    | 9                 | 9 d                             | 17 bcd            |
| U2          | 5    | 10                | 20 bc                           | 30 abc            |
| <b>U3</b>   | 5    | 9                 | 14 bcd                          | 19 bcd            |
| FC2S        | 14   | 18                | 23 ab                           | 30 abc            |
| HM2S        | 7    | 11                | 32 a                            | 45 a              |
|             | 1.80 | 1.33              | 4.37**                          | 3,36**            |
| F           |      |                   |                                 |                   |

Table 2.20 Effect of manures or urea on quantity of ammoniumand nitrate-N of Chicot soil at 90 and 125 days after seeding in 1984

1) means within the soil in the same culumn followed by the same letters are not significantly different at the level of 0.01 by Duncan's Multiple Range Test. \*\* : significant at the levels of 0.05 and 0.01, respectively.

ĺ

1

CC2 and FC2 treatments had values of more than 13 and 11 kg  $NH_4-N/ha$  respectively, while other treatments had values which varied from less than 9 to less than 5 kg  $NH_4-N/ha$  (Table 2.16).

## Nitrate-N

In 1983, the only significant treatment effect on NO<sub>3</sub>-N content was detected in July at a depth of 0-20 cm. Of the 12 treatments, the HM2S resulted in significantly higher NO<sub>3</sub>-N contents than the other treatments, except for the HM2 and U2. The FCl and FC2 treatments had lower NO<sub>3</sub>-N values. NO<sub>3</sub>-N contents in general were lower in August (silking stage) than in July or September (Tables 2.11 and 2.12).

In 1984, residual effects of manures or urea applied in previous years on soil NO<sub>3</sub>-N content were not significant (Tables 2.12 and 2.13). Treatment effects were reflected in NO<sub>3</sub>-N contents measured one month after seeding (June 27, 1984). NO<sub>3</sub>-N contents of 32.3, 28.1 and 28.5 mg/kg soil for the HM2S, U3 and HM2 treatments, respectively, were significanly greater than those for the control, CC1, CC2, FC1, FC2, HM1 and FC2S treatments at 0-10 cm depths. At 10-20 cm depths, no differences were observed among the treatments. Significantly higher NO<sub>3</sub>-N contents than the control and FC2S treatments at 20-40 cm were observed with the HM1 and HM2 treatments (Table 2.14). For the top 40 cm soil, the accumulations of NO<sub>3</sub>-N for the HM2S, HM2, U3 and U2 treatments were aproximately 87, 82, 79 and 75 kg/ha, respectively, while those for other treatments were less than 70 kg NO<sub>3</sub>-N/ha (Table 2.16). HM treatments had significantly higher NO<sub>3</sub>-N content or accumulations than

CC and FC manure treatments at depths of 0-10 and 20-40 cm and in the top 40 cm soil respectively (Tables 2.15, 2.16 and 2.17).

At 60 days after seeding (July 26, 1984), NO<sub>3</sub>-N contents of HM2 and U3 treatments were significantly higher than those of the control, CCl, FC2, and FC2S at depths of 0-10 cm, and that of the control at depths of 20-40 cm (Table 2.14). Values of approximately 157, 138, and 124 kg NO<sub>3</sub>-N/ha for the HM2, U3, and HM2S treatments, respectively, were much greater than those for the control (Table 2.16). HM treatments resulted in higher NO<sub>3</sub>-N contents at 0-10 cm and more NO<sub>3</sub>-N in the soil profile, compared with CC, or FC manure treatments. Higher manure application rates resulted in higher contents or accumulations of NO<sub>3</sub>-N in the soil (Tables 2.15, 2.16 and 2.17).

At 90 days after sowing (August 28, 1984), the only significantly higher NO<sub>3</sub>-N content at 0-10 cm was found with the U2 treatment, which was not significantly higher than the other treatments, except for the HM2S treatment. Treatment effects were not significant at 10-20 cm. At 20-40 cm depths, the U2 and HM2S treatments had significantly higher NO<sub>3</sub>-N contents than the U3 and FC2S treatments (Table 2.18). Thus significantly more accumulation of NO<sub>3</sub>-N was found with the U2 and HM2S treatments in the soil profile, compared with other treatments (Table 2.20). Differences among manures and between manure application rates were not significant (Tables 2.19, 2.20 and 2.21).

At 125 days after seeding (October 4, 1984),  $s^{9}$  ignificantly higher NO<sub>3</sub>-N contents at 0-10 cm were observed with the HM2S, FC2S, FC2, CC2, HM2 and U2 treatments, compared with the control and U1 treatment. At

| Table 2.:      | nivrogen ra<br>of <b>ammonium</b>                | associated wit<br>te (NR) and manur<br>- and nitrate-N o<br>s after seeding i | es (CFH) on qu<br>f Chicot soil                                                                                     | antity                    |  |  |
|----------------|--------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| ,              | Aumon                                            | ium-N                                                                         | Nitra                                                                                                               | Nitrate-N                 |  |  |
| Main<br>effect | 0-20                                             | Depth (c<br>0-40                                                              | m)<br>0-20                                                                                                          | 0-40                      |  |  |
|                | 90 da                                            | ays after seeding                                                             | (8/28/1984) -                                                                                                       |                           |  |  |
| ,              |                                                  | probabili                                                                     | ty                                                                                                                  |                           |  |  |
| CFH<br>NR      | , 0.8611<br>, 0.4182                             | 0.9155<br>0.5118                                                              | 0.2816<br>0.9269                                                                                                    | 0.2087<br>0.4609          |  |  |
| CV(%)          | 90.7                                             | 65.3                                                                          | 33.4                                                                                                                | 29.1                      |  |  |
|                | و بربه هذا بالا این من وی نگا الله خو بر         | kg N/ha                                                                       | و مربع وجو جود بروا بروا بروا بروا بروا بروا بروا بروا                                                              |                           |  |  |
| cc             | 11                                               | 16                                                                            | 19                                                                                                                  | 31                        |  |  |
| FC<br>HM       | 9<br>9                                           | 18<br>16                                                                      | 23<br>24                                                                                                            | 39<br>41                  |  |  |
| N120           | 11                                               | 18                                                                            |                                                                                                                     | 39                        |  |  |
| N240           | 8                                                | 15                                                                            | 22                                                                                                                  | 35<br>35                  |  |  |
|                | 125 da                                           | ys after seeding                                                              | (10/04/1984)                                                                                                        |                           |  |  |
|                |                                                  | probabili                                                                     | ty                                                                                                                  |                           |  |  |
| CFH<br>NR      | 0.5530                                           | 0.5819<br>0.1500                                                              |                                                                                                                     | 0.4014<br>0.0301          |  |  |
| CV(%)          | 34.5                                             | 26.5                                                                          | 31.8                                                                                                                | 51.5                      |  |  |
|                | میں عملہ اور | kg N/ha                                                                       | 5.<br>1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 |                           |  |  |
| сс             | 6.                                               | <u>1</u> 3                                                                    | 16                                                                                                                  | 20                        |  |  |
| FC<br>HM       | 7<br>6                                           | 12<br>11                                                                      | 20<br>16                                                                                                            | 27<br>21                  |  |  |
| N120<br>N240   | 5<br>7                                           | 11<br>13                                                                      | 14 b<br>20 a                                                                                                        | 17 b <sup>1</sup><br>29 а |  |  |

 means followed by different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

(n

P

ŧ

ł,

48

ŀ

10-20 cm, only the HM2S treatment had significantly higher NO<sub>3</sub>-N contents in comparison with the control. At 20-40 cm, no significant treatment differences were observed (Table 2.18). Different manures showed no significant effect on NO<sub>3</sub>-N content of the soil (Table 2.19). The HM2S, HM2, FC2S and U2 treatments resulted in much more NO<sub>3</sub>-N accumulation than the control treatment in the top 40 cm, soil (Table 2.20). Higher manure application rates gave significantly more NO<sub>3</sub>-N in the soil profile (Table 2.21).

## 2.3.3.2 St Benoit soil

Ammonium-N

NH<sub>4</sub>-N content of the soil was not affected consistantly by treatments. In 1983, significant differences were detected one month after treatment applications at depths of 40-60 cm where the HMl and U3 treatments had higher NH<sub>4</sub>-N levels than the control, CC1, CC2, FC1, FC2, U1 and HM2S treatments. No residual effect of manures or urea applied in the previous years on NH<sub>4</sub>-N content measured in 1984 was significant (Tables 2.22, 2.23 and 2.24).

The significant treatment effects on NH<sub>4</sub>-N content in 1984 were observed the first month after treatment applications (Table 2.25)! The U3 treatment had a very high NH<sub>4</sub>-N content at depths of 0-10 cm, compared with other treatments. At 10-20 cm, significantly higher NH<sub>4</sub>-N contents were observed with the CC2 and U3 treatments, compared with the control, CC1, FC2, HM1, U1, U2 and HM2S treatments. The HM2 treatment had a high NH<sub>4</sub>-N content but was not greatly different from the control.

|        |       |       |              |                | - Nitrate-N                 |                                        |
|--------|-------|-------|--------------|----------------|-----------------------------|----------------------------------------|
| ,<br>, |       |       |              |                | 20-40                       |                                        |
|        | ****  |       |              |                | il                          |                                        |
| ,      |       | ·     | 7/]          | 3/1983         |                             |                                        |
| Ctrl   | 1.4   | 1.0   | 0.8 c        | 10.2 bc        | 9.2 bc1                     | 5.0                                    |
| CC1    | 1.9   | 1.2   | <b>0.8</b> c | 13.7 bc        | 12.3 bc                     | 7.7                                    |
| CC2    | 2.3   | 0.7   | 0.7 с        | 11.4 bc        | 8.5 c<br>9.9 bc             | 7.7                                    |
| FC1    | 1.4   | 0.8   | 0.7 с        | 10.7 bc        | 9.9 bc                      | 6.2                                    |
| FC2    | 2.4   | 1.6   | <b>0.8</b> c | 16.1 Ь         | 14.2 abc                    | 7.1                                    |
| HM1    | 3.3   | 6.1   | 2.8 a        | 22.9 a         | 19.7 а<br>8.7 с             | 14.0                                   |
| HM2    | 3.2   | 0.8   | 1.9 abc      | 10.3 bc        | 8.7 c                       | 7.9                                    |
| Ul     | 1.4   | 0.8   | 0.8 c        | , <b>7.8</b> c | 7.5 c<br>12.0 bc<br>11.7 bc | 7.5                                    |
| Ų2     | 6.0   | 2.3   | 2.2 abc      | 12.9 ab        | 12.0 bc                     | 7.9                                    |
| U3     | 14.5  | 5.2   | 2.5 ab       | 16.8 ab        | 11.7 bc                     | 8.8                                    |
| FC2S   | 1.5   | 1.4   | 0.6 c        | 15.2 Ь         | 11.9 bc                     | 6.6 ,                                  |
| HM2S   | 5.3   | 6.9   | 1.2 bc       | 14.9 b         | 11.9 bc<br>15.8 ab          | 5.8                                    |
| F      | 1.37  | 1.51  | 2.56*        | 3.59**         | 2.78*<br>35.4               | 1.76                                   |
| CV (%) | 172.8 | 155.4 | 77.1         | 31.2           | 35.4                        | 59.2                                   |
| -      |       |       | 8            | /16/1983       |                             | ······································ |
| Ctrl   | 1.2   | 1.2   | 0.7          | 3.7 c          | 3.2 c                       | • 4.2 bc                               |
| CC1    | 1.2   | 0.7   | 0.5          | 3.5 c          | 3.8 с<br>4.2 с              | 4.0 c                                  |
| CC2    |       |       |              |                |                             |                                        |
| FC1    | 1.5   | 0.9   | 0.7          | 4.6 c          | 3.9 c<br>4.1 c              | 4.0 c                                  |
| FC2    | 1.4   | 0.8   | 1.1          | 4.2 c          | 4.1 c                       | 3.9 c                                  |
| HM1    | 2.5   | 1.7   | 0.6          | 6.2 с          | 5.3 c<br>10.3 ab<br>3.9 c   | 4.5 bc                                 |
| HM2    | 1.8   | 1.1   | 1.5          | 18.1 ab        | 10.3 <u>a</u> b             | 10.3 a                                 |
| U1     | 1.9   | 2.8   | 0.6          | 5.0 c          | 3.9 c                       | <b>3.</b> 9 c                          |
| U2     | 3.0   | 5.3   | 2.7          | 25.9 a         | 14.9 a                      | 8.6 ab                                 |
| U3     | 1.4   | 1.7   | 0.8          | 27.4 a         | 11.2 ab<br>4.2 c            | 5.8 bc                                 |
| FC2S   | 1.7   | 1.3   | 1.0          | 4.1 c          | 4.2 c                       | 4.7 bc                                 |
| HM2S   | 1.7   | 0.9   | 2.1          | 13.1 bc        | 8.4 bc                      | 4.3 bc                                 |
| F      | 0.79  | 1.10  | 1.33         | 8.19**         | 5.85**                      | 2.32*                                  |
| CV (%) | 66.9  | 151.1 | 108.1        | 62.9           | 48.9                        | 51.4                                   |

Table 2.22 Effect of manures or urea on ammonium- and nitrate-N content of St Benuit soil in 1983

1

4.

1) means in the same column followed the same letters are not significantly different at the level of 0.05 by Duncan's Multiple Range Test.

\*, \*\* : significant at the levels of 0.05 and 0.01 respectively.

|                                                                           |                                                                                  | Ammoniu                                                                   | m-N                                                                                                                                                                                                                                                 |                                                                                                                                                                                                 | Nitrate                                                                   | e-N                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treatment                                                                 | 0-20                                                                             | 20-40                                                                     | De<br>40-60                                                                                                                                                                                                                                         | epth (cm)<br>0-20                                                                                                                                                                               | 20_40                                                                     | 40-60                                                                                                                                                                                                                                                           |
|                                                                           |                                                                                  | 20-40                                                                     | mg N.                                                                                                                                                                                                                                               | /kg dry soll                                                                                                                                                                                    |                                                                           | 40-00                                                                                                                                                                                                                                                           |
|                                                                           |                                                                                  |                                                                           | <u>3</u>                                                                                                                                                                                                                                            | 9/30/1983                                                                                                                                                                                       |                                                                           |                                                                                                                                                                                                                                                                 |
|                                                                           |                                                                                  |                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                           |                                                                                                                                                                                                                                                                 |
| Ctrl                                                                      | 1.9                                                                              | 1.0                                                                       | 0.9                                                                                                                                                                                                                                                 | 3.7 c                                                                                                                                                                                           | 2.0 t                                                                     | ) 1.5 b <sup>1</sup>                                                                                                                                                                                                                                            |
|                                                                           | 2.2                                                                              | 1.3                                                                       | 2.3                                                                                                                                                                                                                                                 | 4.9 c                                                                                                                                                                                           | 3.4 b                                                                     | э 2.3 b                                                                                                                                                                                                                                                         |
| CC2                                                                       | 2.0                                                                              | 1.0                                                                       | نه ۱۰                                                                                                                                                                                                                                               | 6.3 C                                                                                                                                                                                           | - 4.4 D                                                                   | 1.3D                                                                                                                                                                                                                                                            |
| FCl                                                                       | 3.7                                                                              | $\begin{array}{c} 1.2 \\ 1.4 \end{array}$                                 | 1.1                                                                                                                                                                                                                                                 | 5.1 c                                                                                                                                                                                           | 2.5 b                                                                     | 2.7 Б                                                                                                                                                                                                                                                           |
| FC2                                                                       | 2.3                                                                              | 1.4                                                                       | 1.1                                                                                                                                                                                                                                                 | 5.9 c                                                                                                                                                                                           | - 4.4 b                                                                   | - 2.8 Б                                                                                                                                                                                                                                                         |
| HM1                                                                       | 2.7                                                                              | 1.4                                                                       |                                                                                                                                                                                                                                                     | 8.4 bc                                                                                                                                                                                          | 5.4 b                                                                     | 3.5 Ь                                                                                                                                                                                                                                                           |
|                                                                           | 2.2                                                                              |                                                                           |                                                                                                                                                                                                                                                     | 13.3 abc                                                                                                                                                                                        |                                                                           |                                                                                                                                                                                                                                                                 |
| U1                                                                        |                                                                                  |                                                                           |                                                                                                                                                                                                                                                     | 8.0 c                                                                                                                                                                                           |                                                                           |                                                                                                                                                                                                                                                                 |
|                                                                           |                                                                                  |                                                                           |                                                                                                                                                                                                                                                     | 20.0 ab                                                                                                                                                                                         |                                                                           |                                                                                                                                                                                                                                                                 |
| ប <b>់</b>                                                                | 3.7                                                                              | 1.3                                                                       | 1.2                                                                                                                                                                                                                                                 | 24.0 a                                                                                                                                                                                          | 22.1 a                                                                    | 11.3 a                                                                                                                                                                                                                                                          |
| FC2S                                                                      | 2.0                                                                              | 1.2                                                                       | 0.7                                                                                                                                                                                                                                                 | 6.0 c                                                                                                                                                                                           | 3.1 b                                                                     | 2.3 Ъ                                                                                                                                                                                                                                                           |
| HM2S                                                                      | 2.3                                                                              | 1.1                                                                       | 1.5                                                                                                                                                                                                                                                 | 10.1 bc                                                                                                                                                                                         | <b>7</b> .3 b                                                             | 4.8 b                                                                                                                                                                                                                                                           |
| F                                                                         | 0.97                                                                             | 0.34                                                                      | 0.64                                                                                                                                                                                                                                                | 2.94**                                                                                                                                                                                          | 2.59*                                                                     | 3.28**                                                                                                                                                                                                                                                          |
| CV (%)                                                                    | 52.9                                                                             | 48.9                                                                      | 89.6                                                                                                                                                                                                                                                | 77.1                                                                                                                                                                                            | 105.0                                                                     | 73.0                                                                                                                                                                                                                                                            |
| -                                                                         |                                                                                  | aphl                                                                      | lied in 198                                                                                                                                                                                                                                         | t of manures $(4/27)$                                                                                                                                                                           | /1984)                                                                    |                                                                                                                                                                                                                                                                 |
| -                                                                         |                                                                                  |                                                                           |                                                                                                                                                                                                                                                     | h (cm)<br>60 0-10                                                                                                                                                                               |                                                                           |                                                                                                                                                                                                                                                                 |
|                                                                           |                                                                                  |                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                           |                                                                                                                                                                                                                                                                 |
| Ctrl                                                                      | 3.8                                                                              | 1.3                                                                       | 4.1 2.                                                                                                                                                                                                                                              | 4 . 4.4                                                                                                                                                                                         | 4.6                                                                       | 3.8 28                                                                                                                                                                                                                                                          |
|                                                                           | 3.8<br>2.7                                                                       | 2.2                                                                       | 2.8 2.                                                                                                                                                                                                                                              | 1 2.9                                                                                                                                                                                           | 3.7                                                                       | 3.8 28                                                                                                                                                                                                                                                          |
| CC1                                                                       | 3.8<br>2.7                                                                       | 2.2                                                                       | 2.8 2.                                                                                                                                                                                                                                              | 4 4.4<br>1 2.9<br>5 4.5                                                                                                                                                                         | 3.7                                                                       | 3.8 28                                                                                                                                                                                                                                                          |
| CC1<br>CC2                                                                | 3.8<br>2.7<br>4.0                                                                | $2.2 \\ 2.8$                                                              | 2.82.2.52.                                                                                                                                                                                                                                          | 1 2.9<br>5 4.5                                                                                                                                                                                  | 3.7<br>5.4                                                                | 3.8     2.8       3.1     2.4       4.4     3.2                                                                                                                                                                                                                 |
| CC1<br>CC2<br>FC1                                                         | 3.8<br>2.7<br>4.0<br>3.0                                                         | 2.2<br>2.8<br>2.6                                                         | 2.82.2.52.2.32.                                                                                                                                                                                                                                     | 1 2.9<br>5 4.5<br>3 3.2                                                                                                                                                                         | 3.7<br>5.4<br>4.1                                                         | 3.8     2.8       3.1     2.4       4.4     3.2       3.1     2.1                                                                                                                                                                                               |
| CC1<br>CC2<br>FC1<br>FC2.                                                 | 3.8<br>2.7<br>4.0<br>3.0<br>2.6<br>3.0                                           | 2.2<br>2.8<br>2.6<br>2.5<br>2.7                                           | 2.8       2.         2.5       2.         2.3       2.         1.9       1.         2.5       2.                                                                                                                                                    | 1 2.9<br>5 4.5<br>3 3.2<br>7 3.2<br>0 4.0                                                                                                                                                       | 3.7<br>5.4<br>4.1<br>4.1<br>4.3                                           | 3.8       2.8         3.1       2.4         4.4       3.2         3.1       2.1         2.3       1.6                                                                                                                                                           |
| CC1<br>CC2<br>FC1<br>FC2.<br>HM1                                          | 3.8<br>2.7<br>4.0<br>3.0<br>2.6<br>3.0                                           | 2.2<br>2.8<br>2.6<br>2.5<br>2.7                                           | 2.8       2.         2.5       2.         2.3       2.         1.9       1.         2.5       2.                                                                                                                                                    | 1 2.9<br>5 4.5<br>3 3.2<br>7 3.2<br>0 4.0                                                                                                                                                       | 3.7<br>5.4<br>4.1<br>4.1<br>4.3                                           | 3.8       2.8         3.1       2.4         4.4       3.2         3.1       2.1         2.3       1.6         6.1       2.8                                                                                                                                     |
| CC1<br>CC2<br>FC1<br>FC2.<br>HM1<br>HM2                                   | 3.8<br>2.7<br>4.0<br>3.0<br>2.6<br>3.0                                           | 2.2<br>2.8<br>2.6<br>2.5<br>2.7                                           | 2.8       2.         2.5       2.         2.3       2.         1.9       1.         2.5       2.                                                                                                                                                    | 1 2.9<br>5 4.5<br>3 3.2<br>7 3.2<br>0 4.0                                                                                                                                                       | 3.7<br>5.4<br>4.1<br>4.1<br>4.3<br>6.0                                    | 3.8       2.8         3.1       2.4         4.4       3.2         3.1       2.1         2.3       1.6         6.1       2.8         4.8       4.9                                                                                                               |
| CC1<br>CC2<br>FC1<br>FC2.<br>HM1<br>HM2<br>U1<br>U2                       | 3.8<br>2.7<br>4.0<br>3.0<br>2.6<br>3.0<br>2.9<br>2.6<br>3.1                      | 2.2<br>2.8<br>2.6<br>2.5<br>2.7<br>2.3<br>2.2<br>2.9                      | 2.8       2.         2.5       2.         2.3       2.         1.9       1.         2.5       2.         2.7       4.         2.6       2.         2.4       2.                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                           | 3.7<br>5.4<br>4.1<br>4.1<br>4.3<br>6.0<br>4.1<br>5.7                      | 3.8       2.8         3.1       2.4         4.4       3.2         3.1       2.1         2.3       1.6         6.1       2.8         4.8       4.9         3.1       3.1         3.1       3.1                                                                   |
| CC1<br>CC2<br>FC1<br>FC2.<br>HM1<br>HM2<br>U1<br>U2                       | 3.8<br>2.7<br>4.0<br>3.0<br>2.6<br>3.0<br>2.9<br>2.6<br>3.1                      | 2.2<br>2.8<br>2.6<br>2.5<br>2.7<br>2.3<br>2.2<br>2.9                      | 2.8       2.         2.5       2.         2.3       2.         1.9       1.         2.5       2.         2.7       4.         2.6       2.         2.4       2.                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                           | 3.7<br>5.4<br>4.1<br>4.1<br>4.3<br>6.0<br>4.1<br>5.7                      | 3.8       2.8         3.1       2.4         4.4       3.2         3.1       2.1         2.3       1.6         6.1       2.8         4.8       4.9         3.1       3.1         3.1       3.1                                                                   |
| CC1<br>CC2<br>FC1<br>FC2.<br>HM1<br>HM2<br>U1<br>U1<br>U2<br>U3           | 3.8<br>2.7<br>4.0<br>3.0<br>2.6<br>3.0<br>2.9<br>2.6<br>3.1<br>2.9               | 2.2<br>2.8<br>2.6<br>2.5<br>2.7<br>2.3<br>2.2<br>2.9<br>2.7               | 2.8       2.         2.5       2.         2.3       2.         1.9       1.         2.5       2.         2.7       4.         2.6       2.         2.4       2.         2.0       2.                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                           | 3.7<br>5.4<br>4.1<br>4.3<br>6.0<br>4.1<br>5.7<br>5.3                      | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                            |
| CC1<br>CC2<br>FC1<br>FC2.<br>HM1<br>HM2<br>U1<br>U1<br>U2<br>U3           | 3.8<br>2.7<br>4.0<br>3.0<br>2.6<br>3.0<br>2.9<br>2.6<br>3.1<br>2.9               | 2.2<br>2.8<br>2.6<br>2.5<br>2.7<br>2.3<br>2.2<br>2.9<br>2.7<br>3.8        | 2.8       2.         2.5       2.         2.3       2.         1.9       1.         2.5       2.         2.7       4.         2.6       2.         2.4       2.         2.0       2.                                                                | 1       2.9         5       4.5         3       3.2         7       3.2         0       4.0         9       3.2         4       2.5         6       4.7         1       3.1         1       3.7 | 3.7<br>5.4<br>4.1<br>4.3<br>6.0<br>4.1<br>5.7<br>5.3<br>5.5               | 3.8       2.8         3.1       2.4         4.4       3.2         3.1       2.1         2.3       1.6         6.1       2.8         4.8       4.9         3.1       3.1         3.1       3.1                                                                   |
| CC1<br>CC2<br>FC1<br>FC2.<br>HM1<br>HM2<br>U1<br>U2<br>U3<br>FC2S<br>HM2S | 3.8<br>2.7<br>4.0<br>3.0<br>2.6<br>3.0<br>2.9<br>2.6<br>3.1<br>2.9<br>3.6<br>2.2 | 2.2<br>2.8<br>2.6<br>2.5<br>2.7<br>2.3<br>2.2<br>2.9<br>2.7<br>3.8<br>2.7 | 2.8       2.         2.5       2.         2.3       2.         1.9       1.         2.5       2.         2.7       4.         2.6       2.         2.4       2.         2.0       2.         2.7       2.         2.7       2.         2.1       2. | 1       2.9         5       4.5         3       3.2         7       3.2         0       4.0         9       3.2         4       2.5         6       4.7         1       3.1         1       3.7 | 3.7<br>5.4<br>4.1<br>4.1<br>4.3<br>6.0<br>4.1<br>5.7<br>5.3<br>5.5<br>4.4 | 3.8       2.8         3.1       2.4         4.4       3.2         3.1       2.1         2.3       1.6         6.1       2.8         4.8       4.9         3.1       3.1         3.4       2.8         4.7       2.8         4.9       3.3         3.0       1.8 |

Table 2.23 Effect and residual effect of manures or uses on ammonium- and nitrate-N content of St Benoit soil in 1983 and 1984

₿

ł

ţ

V

 means in the same column followed by the same letters are not significantly different at the level of 0.05 by
 multiple Range Test.

**\***,**\*\*** : significant at the levels of 0.05 and 0.01 respectively.

。 51

Table 2.24 Probability associated with residual main effect of nitrogen rate (NR) and manures (CFH) applied in 1983 on quantity of ammionium- and nitrate-N of St Benoit soil (4/28/1984)

|                |                                           |           |        |                                                  | N accum          |                                       |
|----------------|-------------------------------------------|-----------|--------|--------------------------------------------------|------------------|---------------------------------------|
| Main<br>effect |                                           |           |        | th (cm)<br>40-60                                 | 0-20             | 0-60                                  |
|                |                                           |           | Annor  | 11um-N                                           |                  | · · · · · · · · · · · · · · · · · · · |
|                |                                           |           | probat | oility                                           |                  | ,<br>,                                |
| CFH            |                                           |           |        |                                                  | 0.6995           |                                       |
| NR             | 0.5501                                    | 0.9704    | 0.7380 | 0.2710                                           | 0.6799           | 0.4488                                |
| CV(%)          | 33.0                                      | 22.6      | 33.4   | 73.72                                            | 25.9             | 37.3                                  |
|                |                                           | mg N/kg   | soil   |                                                  | kg N,            | /ha                                   |
| CC             | 3.4                                       | 2.5       | 2.6    | 2.3                                              | 6.5              | 18.6                                  |
| FC             | 2.9                                       | 2.5       | 2.1    | 2.0                                              | 5.9              |                                       |
| HM             | 2.8                                       | 2.5       | 2.5    | 3.2                                              | 6.0              |                                       |
| N120           | 2.9                                       | 2.5       | 2.5    | 2.1                                              | 5.9              |                                       |
| N240           | 3.2                                       | 2.6       | 2.3    | 2.9                                              | 6.3              | 19.1                                  |
|                |                                           | ·         | Nit    | rate-N                                           |                  |                                       |
|                | `                                         |           | prob   | ability                                          |                  |                                       |
| CFH            | 0.6669                                    | 0.6125    | 0.0069 | 0.0831                                           | 0.6050           | 0.0509                                |
| ` NR           | 0.5831                                    | 0.1973    | 0.6924 | 0.2614                                           | 0.6050<br>0.2469 | 0.4677                                |
| CV(%)          | 32.1                                      | 43.6      | 35.3   | 56.1                                             | 34.9             | 36.6                                  |
|                | ۱۱<br>ـــــــــــــــــــــــــــــــــــ | – mg N∕kg | soil   | ین وی بزن این این این این این این این این این ای | kg N/            | 'ha                                   |
| cc             | 3.7                                       | 4.5       | 3.7b1  | 2.8                                              | 9.2              | 25.3 <sup>°</sup>                     |
| FC             | 3.2                                       | 4.1       | 2.7Ъ   | 1.8                                              |                  | 19.3                                  |
| HM             | 3.7                                       | 5.0       | 5.5a   | 3.8                                              | 8.1<br>9.7       | 32.3                                  |
|                | 3.4                                       | 4.0       | 3.8    | 3.0                                              | 8.2              | 24.2                                  |
|                | 3.7                                       | 5.1       | 3.8    | 3.0                                              | 9.8              | 26.5                                  |

1) means with the same letters in the same column within the same block are not significantly different at the level of 0.05 by Duncan's Multiple Range Test.

|                     |                   | Апто    | n <b>ium-</b> N |             |                              | Nitrat                          | e-N +         |         |
|---------------------|-------------------|---------|-----------------|-------------|------------------------------|---------------------------------|---------------|---------|
| Treat-<br>ment      | 0-1Ó              | 10-20   | 20-40           | D<br>40-60  | epth (cm) -<br>0-10          | 10-20                           | ,20-40 '      | 9 40-60 |
|                     | <u></u>           |         |                 | mg N/l      | kg dry soil                  | ، حصر مقرد میں میں ہیں۔ حصرہ حص | - <i></i> ``` |         |
| <u>├────</u><br>\ - |                   |         |                 |             | seeding (6/                  |                                 |               |         |
| 1                   |                   |         |                 | ,           |                              |                                 |               |         |
| Ctrl                | `4 <b>.5Ъ</b> ¹   | 4.1b    | 4.0             | 4.1         | 24.8d                        | 24.8e                           |               |         |
|                     |                   | 4.4b    |                 |             |                              | 34.4de                          |               |         |
|                     |                   |         |                 |             | 64.8bcd                      |                                 |               | 15.9    |
|                     |                   | 9.0ab   |                 |             | 64.4bcd                      |                                 |               | 14.4    |
|                     | 7.9Ъ              | 4.Ob    | 4.8             | 3.0         | 49.0cd                       | 53.1bcd                         |               | 14.8    |
| HM1                 | 9.3b              | 4.4b    | 4.0             | 3.6         | 69.2bc                       | 32,2de                          | 20.5          | . 14.7  |
| HM2                 | 15.7Ъ             | 17.2ab  | 9.0             | 6.6         | 110.3a<br>67.8bc<br>91.4ab   | 62.9abc                         | 23.5          | 19.0    |
| U1                  | 7.5b              | 3.4b    | 3.4             | 1.8         | 67.8bc                       | 46.1bcde                        | 18.5          | 11.4    |
| U2                  | 20.6Ъ             | 5.5b    | 3.3             | 3.0         | 91.4ab                       | 59.labcd                        | 19.1          | 12.9    |
| U3                  | 50.3a             | 21.0a   | , 9.1           | 8.8         | 116.5a                       | 84.5a                           | 25,3          | 21.7    |
| FC2S                | 8.3P/             | 9.1ab   | 8.1             | 7.2         | 55.3bcd                      | 44.1cde                         | 28.2          | 15.3    |
| HM2S                | 9.9b\             | 5.7b    | 5.1             | 4.8         | 79.3abc                      | 72.3ab                          |               | 17.7    |
| F                   | 4.34*             | * 2.36* | 1.06            | 2.00        | 4.48**                       | 4.11**                          | 0.65          | 1.50    |
|                     | 84.9              |         |                 |             | 36.7                         |                                 |               | 30.6    |
| ,                   |                   | 60      | ) days          | after s     | seeding (7/                  | 26/1984) -                      | -             |         |
| ~ L . ]             |                   | 4.0     | 2.0             | 0 7         | 15 63                        | 19.01                           | 10 5          |         |
|                     | 2.6               | 2.9     | 3.0             | 2.7         | 15.6d                        | 13.9d                           |               |         |
|                     | 5.2               |         | 3.1             |             |                              | 14.0d                           |               |         |
|                     | 5.9               | 2.9     | 4.2             | 3.1         | 29.8DCd                      | 24.labcd                        |               |         |
|                     | 5.1               |         | 3.2             | 4.6         | 53.4ab                       |                                 |               |         |
| 102                 | 3.8               | 2 6     | 2.2             | 2.0         | 58.9a                        | 38.9ab                          | 12.0          | 10.0    |
| HM1<br>HM2          | ა. <u>2</u><br>ვე | 2.0     | 2.0<br>15       | 2.1         | 59.9aDCu                     | 21.9bcd<br>31.0abcd             | 15.9          | 10.4    |
| Ul                  | 3.4<br>9.9        | 3 3     | 1.5             | 1.4         | 39.9abcd<br>68.3a<br>29.0bcd | 18.0bcd                         | 17.4          | 12.7    |
| 112                 | 4.0               | 4.1     | 2.2             | 2.1         | 58.7a                        | 27. School                      |               |         |
|                     | 4.5               |         |                 | 4.1         |                              | 17.3cd                          |               |         |
|                     | 4.0               |         |                 |             | 43.9abcd                     |                                 |               |         |
|                     | 2.7               |         |                 | 1.8         |                              | 43.1a                           |               |         |
| -                   |                   | 0.04    |                 | <b>a</b> aô | 0 0 4 <b>5</b> 44            |                                 | 0.00          | 1 00    |
| F                   |                   | 0.84    |                 |             | ° 3.45**                     |                                 | 0.83          |         |
| JV (%)              | 71.6              | 67.7    | 82.5            | 10.3        | 41.3                         | 40.0                            | 40.2          | 52.5    |
|                     |                   |         | <u>i</u>        |             |                              |                                 |               |         |

さらんだ

かいていしん ねんき さいまたいものち

53

For the top 60 cm of soil, levels of 105, 88, 75 kg\_NH4-N/ha with the U3, CC2 and HM2 treatments, respectively, were significantly greater than those with the control, CC1, FC2, HM1 and U1 treatments. Different manures did not have different effects on NH4-N contents or accumulations in the soil profile to a depth of 60 cm (Tables 2.26, 2.27 and 2.28). Measurements in July (July 26, 1984), August (August 28, 1984) and October (October 4, 1984) indicated that soil NH4-N status was not significantly affected by treatments (Tables 2.24 to 2.32).

## Nitrate-N

In 1983, at the first sampling (July 13, 1983), at 0-20, 20-40 cm sampling depths, NO<sub>3</sub>-N associated with the HML treatment was significantly higher than that found with other treatments, except for the U2 and U3 treatments at 0-20 cm and the FC2 and HM2S at 20-40 cm (Table 2.22). At depths of 40-60 cm, there were no significant differences. At the second sampling (August 16, 1983), the HM2, U2 and U3 treatments resulted in higher  $NO_3 - N$  contents at depths of O-20 and 20-40 cm, compared with the other treatments, except for the HM2S treatment. Significantly higher NO3-N content at 40-60 cm depths than other treatments except U2 was found with the HM2 treatment, indicating leaching of NO<sub>3</sub>-N from HM into the soil profile (Table 2.22). By the end of the growing season (September 30, 1983), the U3 treatment had resulted in significantly higher NO<sub>3</sub>-N content in the soil profile than had the other treatments. The HM2 and HM2S treatments had slightly higher NO<sub>3</sub>-N contents but were not significantly different from the control (Table 2.23).

| •                      |                         | Ammon                | ium-N   |                |                    | Nitr               | ate-N                                 |                                      |
|------------------------|-------------------------|----------------------|---------|----------------|--------------------|--------------------|---------------------------------------|--------------------------------------|
| Main<br>effect         | t 0-10                  | 10-20                | 20–40   | Dept.<br>40-60 | h (cma) -<br>0-10  | 10-20              | 20-40                                 | 40-60                                |
| و هم چرو بروگ اناره می |                         | 30                   | days af | ter seed       | ing (6/2           | 7/1984)            | · · · · · · · · · · · · · · · · · · · |                                      |
|                        |                         |                      | · · ·   | — probal       | bility —           |                    |                                       |                                      |
| CFH<br>NR              |                         | L 0.5715<br>7 0.0994 |         |                |                    |                    |                                       |                                      |
| CV(X)                  | 63.5                    | 109.5                | 101.3   | 84.7           | 41.0               | 32.5               | 35.5                                  |                                      |
|                        |                         | •                    | mg      | N/kg so:       | il                 |                    |                                       | · · ·                                |
| CC                     | 9.6                     | 11.9                 | 6.7     | 7.9            | 52.4b <sup>1</sup> | 44.0               | 19.1                                  | 16.6                                 |
|                        |                         | 6.5<br>10.8          |         | 4.9<br>5 1     | 567b               | 48.2               | 25.8                                  | 14.6<br>16.9                         |
|                        | 12.5                    | 10.0                 | 0.0     | 2.1            | 69.7 <b>a</b>      | 49.7               | ,22.0                                 | 10.9                                 |
| N120 -                 | 9.8                     | 5.9                  | , Ĝ.O   | 4.9            | 57.8               | 37.0 Ъ             | 22.0                                  | 15.5                                 |
|                        |                         | 13.5                 |         |                |                    |                    |                                       |                                      |
| ` <u>-</u>             |                         | 60                   | days af | ter seed:      | ing (7/20          | 5/19 <b>84</b> ) · |                                       | بر<br>مرجد معرجہ میں م               |
| -                      | ' •<br>————             | ·                    |         | probabi        | lity               |                    | Þ                                     | · ·                                  |
| сгн                    | 0.4602                  | 2 0.7567             | 0.5121  | 0.2430         | 0.0004             | 0.0033             | 0.2939                                | 0.2007                               |
| NR                     | 0.8871                  | 0.7732               | 0.7897  | 0.3822         | 0.0172             | 0.0019             | 0.2614                                | 0.0684                               |
| CV(%)                  | 78.6                    | ,76.2                | 99.0    | 77.2           | 28.48              | 25.8               | 31.5                                  | 59.4                                 |
|                        |                         |                      | 1       | ag N/kg s      | soil               |                    |                                       | in and the state of the state of the |
| CC                     | 5.6                     | 4.8                  | 3.7     | 2.8            | 25.6 Ь             | 19.0 Ъ             | 13.9                                  | 11.9                                 |
| FC                     | <b>4.5</b> <sup>×</sup> | 3.9                  | 2.7     | 3.5            | 56.1 a             | 33.0 <b>a</b>      | 17.8                                  | 18.6                                 |
| HM                     | 3.2                     | 3.7                  | 2.0     | 1.7            | 54.1 a             | 26.5 a             | 15.0                                  | 11.6                                 |
| N120                   | 4.5                     | 4.3                  | 3.0     | 3.1            | 38.2 Ь             | 21.0 Ь             | 14.4                                  | 10.7                                 |
| N240                   | 4.3                     | 3.9                  | 2,7     | 2.3            | 52.3 a             | 31.3 a             | 16.7                                  | 17.3                                 |

17 means followed by different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

.

. 55 Λ.

| freatment                                                                        | Anno     |                 | Nitra<br>Depth (cm) |                    |
|----------------------------------------------------------------------------------|----------|-----------------|---------------------|--------------------|
| li ea <b>ts</b> ent                                                              | 0-20     | 0-60            | 0_20                | 0-60               |
| ,                                                                                | <u> </u> |                 | kg N/ha             |                    |
| یر <u>بری میں اور برا میں میں اور میں میں میں میں اور میں اور میں اور میں می</u> | 3        | 0 days afte     | r seeding (6/27/19  | 84)                |
| Ctrl                                                                             | 10 Б     | 28 de           | 54 e                | 144 c <sup>1</sup> |
| CC1                                                                              | 12 Ь     | 31 de           | 82 de               | 166 c              |
| CC2                                                                              | 36 b     | 89 ab           | 130 bcd             | 222 bc             |
| FC1                                                                              | 25 Ъ     | 67 <b>ab</b> cd | 118 cd              | 223 bc             |
| FC2                                                                              | 13 Ь     | 32 de           | 113 cde             | 206 bc             |
| HM1                                                                              | 15 b     | 34 de           | 118 cd              | 206 bc             |
| 78.40                                                                            | , 37 Ь   | 75 abc          | 189 ab              | 294 ab             |
| Ul                                                                               | 12 Ь     | 25 e            | 125 cd              | 198 bc             |
| U2                                                                               | 28 Ь     | 44 cde          | 165 abc             | 243 ab             |
| U <b>3</b>                                                                       | 77 a     | 1 <b>05 a</b>   | 220 a               | 341 a              |
| FC2S                                                                             | 19 Ь     | 57 bcde         | 109 cde             | 216 bc             |
| HM2S                                                                             | 17 Ь     | 41 cde          | 167 abc             | 308 ab             |
| F                                                                                |          | 4.39**          | 5.93**              | 2.49*              |
| CV (%)                                                                           | 67.9     | 46.4            | 28.33               | 30.34              |
| -                                                                                | 60 d     | ays after se    | eeding (7/26/1984)  |                    |
| Ctrl                                                                             | 6        | 20              | 33 c                | 99 cd              |
| CC1                                                                              | · 13     | 27              | 39 c                | 91 d               |
| CC2                                                                              | 10       | 28              | 59 bc               | 134 bcd            |
| FC1                                                                              | 10       | 2 <del>9</del>  | 88 ab               | TPD apco           |
| FC2                                                                              | 9        | 20              | 107 a               | 214 a              |
| HM1                                                                              | 6        | 18              | 67 abc              | 127 bcd            |
| HM2                                                                              | 9        | 16              | 108 a               | 179 ab             |
| U1                                                                               | 6        | 16              | 51 bc               | 123 bcd            |
| U2                                                                               | 9        | 22              | 93 ab               | 163 abcd           |
| <b>U</b> 3                                                                       | 9        | 25              | 67 abc              | 134 bcd            |
| FC2S                                                                             | 7        | 18              | 88 ab               | 169 abc            |
| HM2S                                                                             | 6        | 16              | 92 ab               | 187 ab             |
| F                                                                                | 0.69     | 0.60            | 3.36**              | 2.59*              |
| CV (%)                                                                           | 59.3     |                 | 37.2                | 30.7               |

Table 2.27 Effect of manures or urea on quantity of ammonium- and nitrate-N of St Benoit soil at 30 and 60 days after seeding in 1984

 means within the soil in the same column followed by the same letters are not significantly different at the level of 0.01 by Duncan's Multiple Range Test.
 \*,\*\* : significant at the levels of 0.05 and 0.01, respectively.

| Table 2.:      | of ammonium-     | e (NR) and manu  | of St Benoit se    | lantity      |  |  |
|----------------|------------------|------------------|--------------------|--------------|--|--|
|                |                  |                  |                    | Nitrate-N    |  |  |
| Main<br>effect | 0-20             | 0-60             | m)<br>0-20         | 0∸6 <b>0</b> |  |  |
|                | 30 days          | after seeding    | (6/27/1984)        |              |  |  |
| o              |                  | probabilit       | y                  |              |  |  |
| CFH<br>NR      | 0.6257<br>0.0697 | 0.7524<br>0.0746 | 0.0978<br>0.0385   |              |  |  |
| CV(%)          | 62.2             | 49.8             | 31.8               | 23.4         |  |  |
|                |                  | kg N/h           | a                  |              |  |  |
| сс             | 24               | 60               | 106                | 194          |  |  |
| FC             | 19               | 50               | 115                | 215          |  |  |
| HM             | 26               | 54 .             | 158                | 256          |  |  |
| N120           | 17               | 44               | 105 b <sup>1</sup> | 198          |  |  |
| N240           | 28               | 65               | 144 a              | 241          |  |  |
|                | 60 day           | rs after seedin  | g (7/26/1984) -    |              |  |  |
|                | probability      |                  |                    |              |  |  |
| CFH            |                  | 0.4254           | 0.0001             |              |  |  |
| NR             | 0.7947           | <b>0.6242</b>    | 0.0013             | 0.0040       |  |  |
| CV(%)»         | 64.0             | 70.8             | 21.4               | 23.6         |  |  |
|                |                  |                  | ha                 |              |  |  |
| сс             | 11               | 27               | 49 b               | 113 Ь        |  |  |
| FC             | 9 <sup>*</sup>   | 25               | 97 a               | 187 a        |  |  |
| HM             | _ 8              | 17               | 88 a               | 153 a        |  |  |
| N120           | 10               | 25               | 65 b               | 126 b        |  |  |
| N240           | , 9              | 21               | 91 a               | 175 a        |  |  |

1) means followed by different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

Port of the state of the state

| Treat-       | Ammonium-N Depth (cm) |       |            |                  |                    |                                            |                    |          |  |
|--------------|-----------------------|-------|------------|------------------|--------------------|--------------------------------------------|--------------------|----------|--|
|              | 0-10                  | 10-20 | 20-40      | 40-60<br>- mg N/ | ر0−10<br>kg dry so | )<br>10-20<br>pil                          | 20-40              | 40-60    |  |
|              |                       |       |            |                  |                    | g (8/28/198                                |                    |          |  |
| Ctrl         | 5.1                   | 4.8   | 2.8        | 3.2              | 5.3 b              | 3.7 d                                      | 3.3 c <sup>1</sup> | 5.0      |  |
| CCl          | 4.9                   | 6.7   | 4.6        | 2.4              | 6.8 b              | 6.8 d                                      | 5.8 c              | 4.2      |  |
| CC2          | 8.0                   | 8.9   | 3.1        | 4.9              | 4.4 b              | • 4.1 d                                    | 3.0 c              | 3.0      |  |
| FC1          | 8.4                   | 8.0   | 4.9        | 4.6              | 6.8 b              | 6.8 d<br>4.1 d<br>8.8 cd<br>18.1 bcd       | 4.9 c              | 4.8      |  |
| FC2          | 8.7                   | 7.1   | 4.9        | 3.6              | 16.4 b             | 18.1 bcd                                   | 13.8 ab            | 8.4      |  |
| HM1          | 3.4                   | 5.0   | 3.0        | 2.3              | 15.1 Ь             | $10.0  \mathrm{cd}$                        | 6.3 c              | 6.2      |  |
|              |                       |       |            |                  |                    | 35.8 ab                                    |                    |          |  |
| Ul           | 7.0                   | 4.2   | 2.9        | 3.0              | 6.6 b              | 8.9 cd                                     | 6.3 c              | 8.6      |  |
| U2           | 6.7                   | 7.8   | 3.1        | 2.8              | 37.7 ab            | 18.6 bcd                                   | 7.5 bc             | 7.8      |  |
| U3 🕚         | 7.0                   | 9.0   | 4.9        | 4.5              | 61.6 a             | 57.6 a                                     | 8.8 abc            | 6.0      |  |
| FC2S         | 5.2                   | 6.2   | 3.8        | 3.1              | 9.7 Ъ              | 11.7 bcd                                   | `6.0 c             | 9.8      |  |
| HM2S         | 4.9                   | 4.9   | 2.3        | -1.6             | 52.3 a             | 18.6 bcd<br>57.6 a<br>11.7 bcd<br>34.4 abc | 6.0 c              | 7.5      |  |
|              |                       |       |            |                  |                    | 4.28**<br>87.0                             |                    |          |  |
|              |                       |       | - 125 (    | days af          | ter seedi          | ng (10/04/                                 | (1984)             |          |  |
| 7++1         | 36                    | 5 ົ 0 | <b>•••</b> | 12               | 175                | 1.5 b                                      | 0 6 b              | 0.4.0    |  |
| CC1          | 4 1                   | 5.7   | 2.5        | 1.2              | 10.8 5             | 4.2 b                                      | 1.2 b              | 0.6 de   |  |
|              |                       |       |            |                  |                    | 5.2 b                                      |                    |          |  |
| FCl          | 4.2                   | 5.8   | 2.4        | 1.2              | 9.1 b              | 6.6 b                                      | 1.9 b              | l.l cde  |  |
| FC2          | 3.8                   | 4.8   | 2.6        | 2.1              | 23.5 Ь             | 13.2 Ь                                     | 6.4 ab             | 3.7 ab   |  |
| HM1          | 3.3                   | 5.1   | 2.2        | 0.9              | 16.7 Ь             | 14.0 Ь                                     | 3.3 b              | 1.5 cde  |  |
| HM2          | 2.9                   | 4.2   | 2.2        | .1.2             | 9.2 Ъ              | 13.2 Ь<br>14.0 Ь<br>21.7 Ь                 | 6.0 ab             | 2.5 bc   |  |
| Ul           | 3.4                   | 3.7   | 1.6        | 1.6              | 2.5 b              | 4.4 Ъ                                      | 1.4 ь              | 0.6 de   |  |
|              | 3.9                   | 4.0   | 1.9        | 1.5              | 6.0 Ь              | 7.0 Ъ                                      |                    |          |  |
| U3           | 3.3                   | 4.8   | 2.3        | 1.1              | 49.6 a             | 63.4 a                                     | 9.3 a              | 2.4 bcd  |  |
| FC2S         | 6.2                   | 5.8   | 2.8        | 1.3              | 16.6 Ь             |                                            |                    | 2.1 bcde |  |
| HM2S         | 2.8                   | 2.6   | 2.9        | 1.6              | 16.2 Ь             | 20.8 Б                                     | 10.5 a             | 5.1 a    |  |
| F            |                       |       |            |                  |                    | 3.40**                                     |                    |          |  |
| <b>V(%</b> ) | 39.55                 | 33.90 | 39.95      | 50.00            | 91.51              | 125.83                                     | 82.82              | 60.12    |  |

3y

|       |                  |            |          |             | Ňitrate-N          |          |        |        |
|-------|------------------|------------|----------|-------------|--------------------|----------|--------|--------|
|       | 0-10             | 10-20      | 2040     | 40-60       | 0-10               | 10-20    | 20-40  | 40-60. |
| ·     |                  | {          | •        |             |                    |          |        |        |
|       |                  |            |          | ہ<br>probab | ilıty              |          |        |        |
|       | 0.1039<br>0.2197 |            |          |             |                    |          |        |        |
| CV(%) | 54.7             |            |          | )           |                    |          |        |        |
|       |                  |            | J        | ng N/kg :   | soil               | <b></b>  |        |        |
| CC    | 6.4              | 7.8        | 3.8      | 3.7         | 5.6 c <sup>1</sup> | 5.4 b    | 4.4    | 3.5    |
| FC    | 8.6              | 7.5        | 4.9      | 4.1         | 11.6 Ь             | 13.5 b   | 9.3    | 6.6    |
| HM    | 4.5              | 4.8        | 3.7      | 3.1         | 25.6 a             | 22.9 a.  | 10.4   | 8.8    |
| N120  | 5.6              | 6.6        | 4.2      | 3.1         | 9.6 b              | 8.5 b    | 5.6Ъ   | 5.1    |
| N240  | 7.'4             | 6.8        | 4.1      | 4.2         | 18.9 a             | 19.4 a   | 10.4 a | 7.6    |
|       |                  | 125        | days afi | ter seed:   | ing (10/0          | )4/1984) |        |        |
|       |                  |            |          |             |                    |          |        |        |
| CFH   | 0.1263           | 0.6190     | 0.8289   | 0.1563      | 0.2431             | 0.0540   | 0.0263 | 0.0033 |
| NR    |                  | 0.4775     |          |             |                    |          |        |        |
| CV(%) | 38.8             | 39.9       | 39.0     | 61.48       | 63.1               | 91.4     | 66.7   | 49.9   |
|       | <u>-</u>         |            |          | mg N/kg     | soil               |          |        |        |
| CC    | 4.7              | 5.7        | 2.4      | 1.0         | 9.2                | 4.7      | 1.4 ь  | 0.7 Ь  |
|       | 4.0              |            |          |             |                    |          |        |        |
| HM    | 3.1              | 4.1        | 2.2      | 1.0         | 12.9               | 17.9     | 4.6 a  | 2.0 a  |
| N120  | 3.9<br>4.0       | 5.5<br>4.9 | 2.4      | 1.1         | 12.2               | 8.3      | 2.2 b  | 1.1 Ь  |

.

1

÷,

1) means followed by different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

59

,

|                          |          |            | Nit                             |             |
|--------------------------|----------|------------|---------------------------------|-------------|
| reatment                 | 0-20     | 0-60       | Depth (cm)<br>0~20<br>- kg N/ha | 0-60        |
|                          | 90 da    |            | seeding (8/28/1984              |             |
| Ctrl                     | 11       | 26         | 10 d                            | $30 \ de^1$ |
| CCl                      | 13       | 30         | 15 d                            | 40 de       |
| CC2                      | 19       | <b>3</b> 9 | 9 d                             | 24 e        |
| FCl                      | 18       | 42         | 17 d                            | 41 de       |
| FC2                      | 17       | 38         | 38 cd                           | 93 bcde     |
| HML                      | 10       | 22         | 28 cd                           | 58 cde      |
| HM2                      | 11       | 32         |                                 | 143 ab      |
| Ū1                       | 12       | 27         | 17 d                            | 54 de       |
| U2                       | 16       | 31 .       | a 61 bcd                        | 99 bcd      |
| U3                       | 18       | 41         | 132 a                           | 168 a       |
| FC2S                     | 13       | 30         | 24 cd                           | 63 cde      |
| HM2S                     | 11       | 28         | 95 ab                           | 128 abc     |
| F                        | 1.12     | 1.09       | 4.43**                          | 4.62**      |
| CV (%)                   | 45.2     | 37.8       |                                 | 56.2        |
| . –                      | 125      | days af    | ter seeding (10/04/             | 1984) '     |
| Ctrl                     | 10 abcd  | 18         | 4 b                             | бс          |
| CC1                      | ' ll abc | 20         | 16 b                            | 21 bc       |
| CC2                      | 12 ab    | 20         | 14 b                            | 20 bc       |
| FÇ l                     | ll abc   | 20         | 17 Ь                            | 25 bc       |
| FC2                      | 10 abcd  | 21         | 40 Ь                            | 65 bc       |
| HM1                      | 9 bcd    | 17         | 34 Ь                            | 46 bc       |
| HM2                      | 8 cd     | 6          | 35 b                            | 56 bc       |
| U1                       | 8 cd     | 16         | 8 b '                           | 13 c        |
| U2                       | 9 bcd    | 17         | 14 b                            | 22 bc       |
| ່ ປ3                     | 9 bcd    | 17         | 126 a                           | 154 a       |
| <ul> <li>FC2S</li> </ul> | 13 a     | 23         | 30 Ь                            | 49 bc       |
| HM2S                     | 6 d      | 17         | 41 b                            | 79 Ъ        |
| F                        | 2.41*    | 1.46       | 4.09**                          | 4.77**      |
| CV (%)                   | °27.1    | 20.3       | - 101.0                         | 80.9        |

Table 2.31 Effect of manures or urea on quantity of ammonium- and nitrate-N of St Benoit soil after 90 and 125 days after seeding in 1984

1

 means within the soil in the same culumn followed by the same letters are "not significantly different at the level of 0.01 by Duncan's Multiple Range Test.
 \*,\*\* : significant at the levels of 0.05 and 0.01, respectively.

| Table 2.32     | nitrogen ra<br>of ammonium                       | ite (NR) and m<br>- and nitrate | uth the main e<br>anures (CFH) o<br>-N of St Beno:<br>ter seeding in | on quantity<br>it soil              |
|----------------|--------------------------------------------------|---------------------------------|----------------------------------------------------------------------|-------------------------------------|
|                | Ammoni                                           | .um-N                           | Nitra                                                                | ate-N                               |
| effect         | 0-20                                             | 0-60                            | m)<br>0-20                                                           | 0-60                                |
|                |                                                  |                                 | ing (8/28/1984                                                       |                                     |
|                |                                                  | proba                           | bility                                                               |                                     |
| CFH<br>NR      |                                                  |                                 | 0.0008<br>0.0058                                                     |                                     |
| CV(%)          | 40.2                                             | 35.4                            | 54.9                                                                 | 55.0.                               |
|                |                                                  | kg N                            | /ha                                                                  |                                     |
| CC<br>FC<br>HM | 16<br>18<br>10                                   | 34<br>40<br>27                  | 12 b<br>28 b<br>53 a                                                 | 32 b <sup>1</sup><br>67 ab<br>101 a |
| N120<br>N240   | 14<br>16                                         | 31<br>36                        | 20 b<br>42 a                                                         | 46 b                                |
|                | 125 d                                            | ays after see                   | ding (10/04/19                                                       | 184)                                |
|                |                                                  | probab                          | ility                                                                |                                     |
| °CFH<br>NR     |                                                  |                                 | 0.0417<br>0.2268                                                     |                                     |
| CV(%)          | 30.1                                             | 21.0                            | 53.9                                                                 | 44.4                                |
| -              | میں بند میں بیند میں بین ایک میں ایک میں ایک ایک | kg 1                            | N/ha                                                                 |                                     |
| CC<br>FC<br>HM | 12<br>10<br>9                                    | 20<br>21<br>17                  | 15 b<br>29 ab<br>34 a                                                | 20 b<br>45 a<br>51 a                |
| N120<br>N240   | 11<br>10                                         | 19<br>19                        | 22<br>30                                                             | 30 b<br>47 а                        |

**\***S-

1\_

\$

 means followed by different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

----

· · ·

The residual effect of the treatments on soil  $NO_3-N$  contents and  $NO_3-N$  accumulations in the soil profile measured after the winter were not significant (Tables 2.23 and 2.24).

1984, treatment effects were reflected in soil NO3-N contents In (Tables 2.24-2.32). One month after treatment applications (June 27, the U3 treatment had the highest NO<sub>3</sub>-N content at 116 mg N/kg 1984). soil at 0-10 cm depths, followed by the HM2, U2, HM2S, HMl and Ul treatments with values of 110, 91, 79, 69 and 68 mg NO<sub>3</sub>-N/kg soil, respectively. These values were significantly more than that of the control, which had 25 mg  $NO_3 - N/kg$  soil. The same tendency was observed at 10-20 cm. There was no evidence suggesting significant treatment effects on NO<sub>3</sub>-N contents at depths of 20-40 and 40-60 cm (Table 2.25). Significantly more NO<sub>3</sub>-N accumulation in the entire soil profile was found with the U3, HM2S, HM2 and U2 treatments, compared with the control (Table 2.27). The  $NO_3-N$  content associated with the HM treatment was significantly higher than contents of CC and FC manure treatments in the top 10 cm soil (Table 2.26). Higher manure application rates resulted in more NO<sub>3</sub>-N accumulation in the, top 20 cm of soil (Table 2.28).

Sampling conducted in July (July 26, 1984; Table 2.25) indicated significantly higher NO<sub>3</sub>-N contents were found with the HM2, FC2, U2, FC1 and U3 treatments at 0-10 cm depths, and with the HM2S, FC2 and FC2S treatments at 10-20 cm, compared with the control at each depth. At depths of 20-40 and 40-60 cm, treatment effects remained non-significant (Table 2.25). A significantly greater NO<sub>3</sub>-N accumulation over the

control in the entire soil profile was noted with the FC2, HM2S, and HM2 treatments (Table 2.27). Among the three manure sources, HM and FC manures gave significantly higher NO<sub>3</sub>-N contents in the upper soil layers and in the entire soil profile than did CC manure. Higher manure application rates resulted in higher NO<sub>3</sub>-N accumulations (Table 2.26 and 2.28).

Three months after treatment applications (August 28, 1984), significantly higher NO<sub>3</sub>-N contents over the control were associated with the U3 and HM2S treatments at the 0-10 cm layer, with the U3, HM2 and HM2S at the 10-20 cm layer (Table 2.29), and with the HM2 and FC2 at the 20-40 cm layer. NO<sub>3</sub>-N contents of 40-60 cm soil depths were not significantly affected by treatments (Table 2.29). The highest NO<sub>3</sub>-N accumulation in the top 20 cm soil was with the U3, followed by the HM2S and HM2 treatments, and the control had the lowest NO3-N accumulation, but was not significantly lower than the CC, FC, HM1, U1, 'U2 and FC2S treatment. In the top 60 cm soil, significantly higher NO3-N accumulation than the control was found with the HM2, HM2S and U3 treatments (Table 2.31). Comparison among the manures indicated significantly higher NO<sub>3</sub>-N contents or accumulations were found with HM treatments. / Higher manure application rates resulted in higher NO3-N contents or accumulations in the soil profile (Tables 2.30 and 2.32).

By the end of the growing season (October 4, 1984) at depths of 0-10 and 10-20 cm, only the U3 treatment had significantly higher  $NO_3-N$ contents or accumulations compared with the control. At 20-40 cm, higher

63

ł

 $NO_3 - N$  contents were associated with the HM2S, FC2, HM2 and U3 treatments. The highest  $NO_3 - N$  accumulation in the soil profile was with the U3 treatment, followed by the HM2S treatment. The lowest  $NO_3 - N$  content was found with the control (Tables 2.29, 2.31). HM and FC manure treatments resulted in higher  $NO_3 - N$  contents or accumulations at the lower depths, compared to CC manure, and higher manure application rates resulted in significantly higher  $NO_3 - N$  accumulations. (Tables 2.30 and 2.32).

2.4 DISCUSSION

## 2.4.1 Soil water retention, organic matter content and bulk density

The effects of CC and FC treatments on conservation of soil water were greater than HM and U treatments. This was probably due to higher contents of straw bedding, or of organic matter in CC or FC manures than in HM. Thus CC and FC manures would have had a greater mulching effect. This is consistent with results of Unger and Stewart (1974), who observed larger reductions in evaporation at higher rates of feedlot waste. In the field increased effective moisture content with added manure has been noted by Hoyt and Rice (1977). On the other hand, lower moisture contents associated with HM plots could also be attributed to the greater crop growth extracting more water.

Also, high soil water retention resulting from manure application has been related to changes of soil conditions, such as decreased bulk

density and increased organic matter content (Khaleel et al. 1981). In the experiment reported here, however, soil organic matter and soil bulk density were not significantly different among the treatments. This was probably due to low loading rates of manure, and a sampling depth of 5-13 cm, which would not have picked up all the applied manure. Assuming applied organic matter decomposition at the rate of 40 to 50% during the first year of application, 10 to 20% the second year, and 5% the third year (Pratt et al. 1976), no more than 20 tonnes/ha of applied organic matter during the three years remained in the 20 cm tilled surface soil at the time of sampling, or less than 1% of the soil. Thus the impact of manures on soil organic matter and bulk density would be expected to be minimal. On the other hand, manures were disked into the soils to a depths of 15 cm, and experimental plots were ploughed to 20 cm every Thus the effects of manures on soil properties may have decreased fall. with increased depth of tillage as noted by Tiark et al. (1974) due to a dillution effect.

## 2.4.2 Soil mineral N

Soil NH<sub>4</sub>-N levels were affected by soil texture. For example, on the Chicot soil with a finer texture, higher NH<sub>4</sub>-N was found with higher application rates of cow manure (CC2 and FC2), compared with HM or urea, while on the St Benoit soil with a coarser texture, treatments of higher rates of composted cow manure (CC2), hog manure (HM2) and the highest rate of urea (U3) resulted in significantly greater quantities of NH<sub>4</sub>-N in the soil profile than with fresh cow manure (FC). This effect was attributed to the more rapid decomposition of manures or hydrolysis of

urea in the coarser textured soil than in the finer textured soil. Treatment effects on soil  $NH_4$ -N disappeared one month after manure or urea application, indicating most of the N was converted to  $NO_3$ -N, as noted in other studies (Quisenberry et al. 1981). Also, ammonia volatilization from the applied manures or urea could have contributed to NH4-N loss (Chin and Kroontje 1962; Elliott et al. 1971; Lauer et al. 1976; and Makarov and Gerashenko 1981).

Fresh cow manure spread on soil surfaces (FC2S) gave slightly lower soil NO<sub>3</sub>-N contents than cow manure incorporated into soil (FC2) at both research sites, indicating that volatilization of ammonia N contained in the manure may have occurred (Elliott et al. 1971; Lauer et al. 1976; Beauchamp et al. 1978; Beauchamp et al. 1982; Hutchinson et al. 1982; Beauchamp 1983).

The residual effects of manures or urea applied in 1983 on soil  $NO_3-N$  content in 1984 were not significant. For example, on St Benoit soil, among the treatments, significantly different  $NO_3-N$  contents detected in September of 1983 were not evident in the spring of 1984 in spite of the higher  $NO_3-N$  contents found in the spring of 1984. The higher  $NO_3-N$  contents after the winter season were attributed to mineralization of organic N and nitrification of  $NH_4-N$  during the fall and winter seasons (Campbell and Biederbeck 1982; Malhi and Nyborg 1983).

Soil with finer texture may have increased the adsorption of NH<sub>4</sub>-N because of larger adorption capacity. Nitrification, thus, may have been delayed. Delayed nitrification was evidenced by the fact that a relatively high accumulation of NO<sub>3</sub>-N in the soil profiles occurred one and two months after treatment applications to the St Benoit and the Chicot soil, respectively.

On the Chicot soil, significantly more NO<sub>3</sub>-N in the soil profile was associated with the HM2S treatment late in the growing season, compared with the treatments of cow manure left on the soil surface (FC2S) and hog manure incorporated into the soil (HM2) probably due to greater nitrification and less denitrification in the HM2S plot than in the FC2S and HM2 plots. On the St Benoit soil, however, this phenomena was less evident. These observations revealed that to increase N for crop utilization, manure in solid state should be incorporated into the soils, while manures in liquid state could be spread on the surface of soils with finer textures.

Soils with urea at more than 120 kg N/ha had equivalent or greater NO<sub>3</sub>-N levels to manures at higher N application rates. For example, NO<sub>3</sub>-N accumulation in the St Benoit soil with the U3 treatment was as much as 2 to 3 times those of other treatments, measured at the end of the growing season (October 4, 1984). This was not consistent with the findings of Evans et al. (1977), who indicated that soil with beef manure was consistently higher in NO<sub>3</sub>-N content than soil with solid beef manure, liquid hog manure and ammonium nitrate fertilizer.

Higher manure application rates gave significantly more  $NO_3-N$  in both soils than the lower rates at the end of growing season. Lower application rates, thus, would be preferred, considering  $NO_3-N$  as a potential ground water pollutant (Ito and Miyazawa 1984).

| ,<br>,<br>,  | · · · · ·                                               | 1983                                                                                        | D                                                                                                                                                           | 1984                                                                                        | <br>               | ,      |
|--------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|--------|
| •<br>•<br>*  | Period                                                  | Precipitatu<br>(mm)                                                                         | on Period                                                                                                                                                   | Precipitation<br>(mm)                                                                       | `<br>~             |        |
|              | 15/06-13/07<br>14/07-16/08<br>17/08-30/09<br>1/10-31/12 | 45.4<br>71.7<br>97.8<br>312.1                                                               | <ul> <li>1/01-26/04</li> <li>27/04-18/05</li> <li>19/05-28/05</li> <li>29/05-27/06</li> <li>28/06-26/07</li> <li>27/07-28/08</li> <li>29/08-4/10</li> </ul> | 64.9<br>36.4<br>5, <sup>**</sup> 110.3<br>85.2<br>3, 114.0                                  | -<br>0             |        |
| جو           | Totąľ -                                                 | -527.0                                                                                      | · · ·                                                                                                                                                       | 648.9                                                                                       | , `<br>0           | ł      |
| • • •        | · · ·                                                   | e<br>}                                                                                      |                                                                                                                                                             | , e ,                                                                                       | ар<br>( (          | F      |
| •            | · ī                                                     | • •                                                                                         | - · · ·                                                                                                                                                     | · ·                                                                                         | a<br>4             |        |
|              | · · · · · · · · · · · · · · · · · · ·                   | · · · · · · · · · · · · · · · · · · ·                                                       | a<br>                                                                                                                                                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | · · ,              | ١,     |
|              |                                                         | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | 1<br>5<br>7<br>7<br>7<br>7                                                                                                                                  | •<br>• •                                                                                    | ,<br>,<br>,        | ,<br>• |
| ۰ .<br>۲۰۰۰, | ·                                                       | °<br>, , , , , , , , , , , , , , , , , , ,                                                  | °'<br>',<br>}                                                                                                                                               | ,<br>,                                                                                      | '<br>'120 <b>9</b> | •      |
|              | ;<br>;<br>,<br>,                                        |                                                                                             | <b>,</b><br>,                                                                                                                                               | · · · ·                                                                                     | •                  | 1      |
| , ') '       |                                                         | ·                                                                                           |                                                                                                                                                             | ,<br>, 0                                                                                    | ۲.                 |        |

14

N.

.

And the second second 1.01

· · · · ·

١

", '∳" <u>,</u>

アス・ いまく ι

~ 、「「「「「「「「」」」」をいていないないです。こと、

•

٤ -

Leaching of  $NO_3 - N$  from the various treatments and nitrification of NH4-N were obvious through the growing season in the St Benoit soil, where only in the upper layers was the soil  $NO_3-N$  content significantly affected by the treatments in the early season. With the increase in cumulative precipitation with time (Table 2.33), soil  $NO_3-N$  content of deeper soil layers varied with the treatments. More  $NO_3-N$  was found at lower depths in U or HM plots than in the control, and CC, or FC manure plots, perhaps due to less organic matter contained in the hog manure used in this research and to the fact that there was no addition of organic material to the urea plots.

NO<sub>3</sub>-N leaching problems have been recognized by many people (Adriano et al. 1971; Evans et al. 1977; Lembke and Thorne 1980; Cooper et al. 1984). Thus to reduce the pollution potential and to limit N losses by leaching, it was suggested that N application rates of animal wastes be based on the same criteria as those used to determine N additions of mineral fertilizers (Quisenberry et al. 1981).

## 2.5 CONCLUSIONS

Soil moisture was significantly higher following applications of semi-solid CC and FC, especially when it was applied on the soil surface, compared with the control, HM or U treatments. Soil organic matter contents and bulk densities at the depth of 5-13 cm were affected little by the treatments, probably due to the low manure application rates.

Manure or urea additions increased soil NHA-N content only briefly after treatment application, but soil NO<sub>3</sub>-N contents or accumulations were increased by application of manures or urea. Obvious NO<sub>3</sub>-N leaching was observed on both soils. On the St Benoit soil, urea applied at the rate of 180 kg N/ha was found to have a greater potential for NO<sub>3</sub>-N accumulation than liquid hog manure or cow manure at the rate of 240 kg N/ha. Manures ranked in decreasing order as to NO<sub>3</sub>-N accumulation were as follows: HM  $\rightarrow$  FC  $\geq$  CC. Higher N levels with the St Benoit soil, compared with the Chicot soil, indicated N applied to the coarser texture soil had greater potential to increase NO<sub>3</sub>-N level and possible pollution of ground water than N applied to the finer texture soil.

Experimental data also suggested that liquid manure should be spread on the surface of soils with finer textures in order to avoid N losses. For coarser textured soils, either incorporation or surface application could be adopted for manure management.

## PREFACE TO CHAPTER 3

**۰** 

(

In Chapter 2, the effects of animal manures or urea on soil mineral N, soil water retention capacity, bulk density and organic matter content were discussed. Thus, it seemed logical to discuss the impact of these properties on plant growth. In Chapter 3, crop yields, N uptake and cumulative effect of manures and urea on dry-matter yields and nutrient uptake will be discussed.

#### Chapter 3

## Effect of manures or urea on corn dry matter yields and nutrient uptake

## 3.1 INTRODUCTION

Experiments have shown that manures can be more effective than inorganic fertilizers in increasing crop yields (Cope et al. 1958. Bishop et al. 1964, Dubetz et al. 1975). Growth and dry matter yields of corn and ryegrass increased finearly with increasing farmyard manure (FYM) application rates up to 200 t FYM/ha with, however, a simultaneous deficiency in Ca and Mg (Evans et al. 1977; Ito and Miyazawa 1984). Manure applications of 22 t/ha annually supplied sufficient elements for maximum crop yields on a Pullman loam soil (Mathers and Stewart 1981). In other studies, however, manure resulted in lower crop yields than inorganic fertilizers (Hoyt and Rice 1977; Miller and MacKenzie 1978).

Comparisons made among manures have indicated that yields with beef manure were higher than with hog manure, and liquid manures were more effective than solid manures although reasons for these differences were not clear (Evans et al. 1977; Miller and MacKenzie 1978).

Different manures have different properties (Loehr 1974; Peng and Pei 1979). The process of manure storage or composting has been indicated to be accompanied by great N losses (Vanderholm 1975), but composted manure normally has a C/N ratio of about 15/1 (Singley et al. 1975; Stombaugh and White 1975), indicating that no problems should be encountered with plant N deficiencies when the composts are added to soil. Thus differently treated manures may be expected to have different effects on crop growth, when they are applied at the same N levels. Crop nutrition status can be reflected in the analysis of the composition of plant tissue.

For evaluating soil fertility and estimating corn yields, nutrient compositions of ear leaf of corn have been related to yields. Tyner (1946) proposed critical nutrient concentrations of 2.90% N, 0.295% P and 1.30% K on a 6.6% moisture basis for the 6th leaf from the plant base selected at silking. Melsted et al. (1969) considered 3.0% N, 0.25% P and 1.90% K, 0.40% Ca and 0.25% Mg for the ear leaf at tasselling. However, for a given percentage of N in the leaf, yields may vary markedly among experiments, even when leaves from the same hybrid at the same stage of physiological development are selected for sampling (Viets et al. 1954). However, ear leaf studies can indicate potential nutrient deficiencies, or nutrient interactions that are not evident otherwise.

Thus, based on information in the literature, it was decided that the objectives of this research were to study :

- 1. Nutrient concentrations of ear leaf as affected by different N sources and rates.
- 2. Dry-matter yields and N uptake by corn grown on plots amended with various manures or urea.
- 3. Cumulative effects of manures or urea on dry-matter yields and nutrient uptake.

## 3.2 MATERIALS AND METHODS

## 3.2.1 Field arrangement

Chicot soil and St Benoit soil, fresh (FC) and composted solid cow (CC) manure, liquid hog manure (HM) and urea (U) as N sources, were used. The characteristics of the soils, and manures and the experimental methods were described in Chapter 2 (Tables 2.1, 2.2 and 2.3).

## 3.2.2 Sampling procedure

Plant samples were taken on July 16 and August 17, 1983, and June 16 and July 16, 1984. Two plants selected at random from the side rows of each plot were sampled for total N content and dry matter accumulation determinations. In 1984, at the silking stage, a dozen corn ear leaves from the two side rows of each plot were taken for leaf composition analysis. For computing the final dry matter yields (DMY) and nutrient uptake, plants from the centre 3 m of the centre two rows in each plot were harvested using a mechanical forage chopper.

## 3.2.3 Laboratory analysis

Corn tissue samples were oven-dried at 80°C, and ground in a stainless-steel Wiley mill to pass a 0.2 mm mesh sieve prior to digestion. The wet digestion method outlined by Thomas et al. (1967) was

used. N and P were determined colorimetrically (Thomas et al. 1967), K by flame photometer (Thomas et al. 1967), and Ca and Mg by atomic absorption (Hunter 1974).

Duncan's multiple range test was employed to locate differences among the 12 treatments. Further, the CCl, CC2, FCl, FC2, HMl, and HM2 treatment results were analysed statistically as a 3 X 2 factorial experiment (Steel and Torrie 1980).

To discuss the cumulative effect of manures or urea on DMY or nutrient uptake, the effect coefficient of treatment (ECT) was defined as follows:

$$ECT = Prt / Prc$$

where  $P_{rt}$  was DMY or nutrient uptake from each treatment in each replicate,  $P_{rc}$  was DMY or nutrient uptake from the control plot within each replicate. The advantages of introducing ECT were to control the yield variations among years and sites due to variations in weather, plant population, seeding date, and management practices. The values of ECT are dimensionless.

#### 3.3 RESULTS

## 3.3.1 Ear-leaf composition

The ear-leaf N content ranged from 2.38% to 2.94% for corn grown on the Chicot soil, and from 2.93% to 3.34% for corn grown on the St Benoit soil (Table 3.1). Leaf. N contents associated with the U2 and HM2S treatments on the Chicot soil were significantly higher than those from the control, FC2S, CCl and FCl treatments. There was no significant treatment effect on corn ear leaf N content on the St Benoit soil.

Significantly higher P levels of ear leaves were noted with the HM2, HM1, HM2S, U2, FC1, FC2 and FC2S treatments on the Chicot soil over the control, and with the HM2S, FC2S, CC2, FC2 and HM1 treatments over the control on the St Benoit soil (Table 3.1).

Lowest K contents were found with the Ul treatment on the Chicot soil, and with the HM2 treatment on the St Benoit soil (Table 3.1). On the Chicot soil, ear leaf K contents associated with the CC2 and FC2S treatments were significantly higher than those associated with the control, U2, U3 and Ul treatments, while on the St Benoit soil, no significant difference was found between any of the manured or urea-N treatments and the control. However, ear leaf K contents of corn receiving the CC1, FC1 treatments were significantly higher than those of the HM2, U1, U2, U3 and HM2S treatment on the St Benoit soil.

Leaf Ca contents were generally not affected by the treatments (Table 3.1). Significantly higher leaf Mg contents were found with the U2, U1 and HM2S treatments, compared with the FC2, HM2, HM2S treatments on the Chicot soil. Treatments had no significant effect on corn ear leaf Mg levels on the St Benoit soil.

Comparison among manures indicated that on the Chicot soil, HM treatments resulted in significantly higher leaf P contents than CC or

| Treatment  | N                    | Р                                | К                   | Ca    | Mg           |
|------------|----------------------|----------------------------------|---------------------|-------|--------------|
|            |                      |                                  |                     |       |              |
|            |                      | Cł                               | nicot soil          |       |              |
| Ctrl       | 2.40 c <sup>1</sup>  | 0.32 e                           | 1.85 bc             | 0.79  | 0.37 abod    |
| CC1        | 2.60 bc              | 0.35 bcde                        | 1.91 abc            | 0.56  | 0.36 bcde    |
| CC2        | 2.77 ab              | 0.35 bcde<br>0.35 bcde           | 2.08 a              | 0.65  | 0.36 bode    |
| FCl '      | 2.62 bc              | 0.36 abcd                        | 1.96 abc            | 0.69  | 0.35 cdef    |
| FC2        | 2.77 ab              | 0.36 abcd<br>0.38 ab             | 2.00 ab             | 0.63  | 0.32 ef      |
| HM1        | 2.78 ab              | 0.38 ab                          | 1.90 abc            | 0.81  | 0.37 abcd    |
| HM2        | 2.84 ab              | 0.39 a                           | 1.95 abc            | 0.62  | 0.34 def     |
| Ul ···     | 2.75 ab              | 0.33 de                          | 1.75 c              | 0.67  | 0.39 ab      |
| U2         | 2.94 a               | 0.37 abcd                        | 1.80 bc             | 0.87  | 0.40 a       |
| U3 1       | 2.83 ab              | 0.33 de<br>0.37 abcd<br>0.34 cde | 1.86 bc             | 0.73  | 0.37 abcd    |
| FC2S       | 2.38 c               | 0.36 abcd                        | 2.09 a              | 0.52  | 0.31 f       |
| HM2S       | 2.92 a               | 0.36 abcd<br>0.38 ab             | 1.93 abc            | 0.63  | 0.38 abc     |
| F          | 4.09**               | 3.18**                           | 2 42*               | 1 18  | 4.74**       |
| CV ?s>     | 6.6                  | 6.3 ,                            | 6.8                 | 28.1  | 7.0          |
|            |                      | St Be                            | enoit soil          |       |              |
| Ctrl       | 2.93                 | 0.29 d                           | 2 70 'abod          | 0.74  | 0 19         |
|            | 3.01                 | 0.29 d                           | 2.20 0000           | 0.7.1 | 0.19         |
| CC1<br>CC2 |                      | 0.30 DCu                         | 2.32 a<br>2.20 abcd | 0.04  | 0.20         |
| EC1        | 2 11                 | 0.32 ab<br>0.30 bcd              | 2.32 a              | 0.70  | 0.20         |
| FC1        | 3.26<br>3.11<br>3.30 | 0.30 bcd<br>0.32 ab              |                     | 0.00  | 0.18<br>0.18 |
| FC2<br>HM1 | 3.30                 | 0.32 ab                          | 2.01 aD             | 0,00  | 0.18         |
| HM1<br>HM2 | 3.23                 | 0.32 ab<br>0.31 abcd             | 2.22 aDCu           | 0.04  | 0.19         |
|            |                      |                                  | 2.11 0              | 0.00  | 0.21         |
| U1<br>U2   | 3.10                 |                                  | 2.10 Ca<br>2 12 4   | 0.13  | 0.21         |
| U2<br>U3   | 3.10                 | 0.30 bcd<br>0.30 bcd             | 2.12 u<br>2 17 bad  | 0.03  | 0.10         |
| FC2S       | 3.14<br>3.31         | 0.30 bca<br>0.33 a               | 2.11 DCU            | 0.74  | 0.19         |
| HM2S       | 3.31                 | 0.33 a<br>0.33 a                 |                     |       |              |
| F          | 1 26                 | 3.09**                           | 3 10**              | 1 99  | 1 10         |
| CV (%)     | 7.1                  | 5.3                              | 4.1                 | 14.8  | 11.8         |

Table 3.1 Effect of manures or urea-N on composition of corn ear leaf at silking stage in 1984

1)

\_îŧ

means of the same soil in the same column followed by the same letters are not significantly different at the level of 0.05 by Duncan's Multiple Range test. significant at the levels of 0.05 and 0.01 respectively. \*,\*\* :

FC manure treatments (Table 3.2). Corn receiving higher manure application rates was higher in ear leaf N and Mg contents. On the St Benoit soil, FC manure treatments were more effective in raising leaf K content than HM treatments, while significantly higher leaf Ca levels were found with HM treatments, compared with CC or FC manure treatments.

By correlating final DMY with nutrient contents of corn ear leaves, it was shown that significant partial correlations existed between DMY and N content of corn ear leaves on the Chicot soil (r=0.58, p=0.0001), and P content of corn ear leaves on both the Chicot soil (r=0.38, p=0.0077) and the St Benoit soil (r=0.52, p=0.0002).

## 3.3.2 N uptake by corn

In the following sections, the word "corn" refers to total corn above the ground.

#### Chicot Soil

In 1983, corn grown on the CCl and U3 plots had significantly higher N contents measured 26 days after sowing, compared with that on the control, CC2 and FC2 plots (Table 3.3). The N contents of corn determined 61 days after sowing in 1983 were not significantly different among manure or urea plots, but a significantly higher N content was noted with the U2 treatment, compared with the control. By harvest time in 1983, corn N contents associated with the U2 and HM2S treatments significantly exceeded those of the control and CC1, FC1, FC2 and FC2S

| Table 3.2   | Probability - associated with the main effect of<br>manures (CFH) and nitrogen rate (NR) on corn ear<br>leaf composition at silking stage in 1984 |                  |                  |                                       |                  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|---------------------------------------|------------------|--|--|--|
|             |                                                                                                                                                   |                  |                  |                                       |                  |  |  |  |
| Main effect | N                                                                                                                                                 | Р                | € K              | Ca                                    | Mg               |  |  |  |
| <br>·       |                                                                                                                                                   | c                | hicot soll       | · · · · · · · · · · · · · · · · · · · |                  |  |  |  |
|             |                                                                                                                                                   | p                | robability       |                                       |                  |  |  |  |
| CFH<br>NR   | 0.1737<br>0.0419                                                                                                                                  | 0.0081<br>0.3725 | 0.6383<br>0.2089 | 0.4622<br>0.4911                      | 0.0748<br>0.0436 |  |  |  |
| CV (%)      | 5.2                                                                                                                                               | 4.9              | 7.8              | 25.9                                  | 5.9              |  |  |  |
|             |                                                                                                                                                   |                  | a                |                                       |                  |  |  |  |
| cc          | 2.68                                                                                                                                              | 0.35Ъ            |                  | 0.60                                  | 0.36             |  |  |  |
| FC<br>HM    | 2.69<br>2.81                                                                                                                                      | 0.36b<br>0.38a   | °1.98<br>1.92    | 0.71<br>0.71                          | 0.35<br>0:35     |  |  |  |
| N120        | 2.66b <sup>1</sup>                                                                                                                                |                  | 1.92             | 0.68                                  | 0.36a            |  |  |  |
| N240        | 2.79a                                                                                                                                             | 0.37             | 2.01             | 0.63                                  | 0.34b            |  |  |  |
|             |                                                                                                                                                   |                  |                  | 1                                     | · .              |  |  |  |
| ۰ - ۲       |                                                                                                                                                   | p                | robability       |                                       |                  |  |  |  |
| CFH -<br>NR | 0.5983<br>0.0873                                                                                                                                  | 0.6678<br>0.1249 | 0.0231<br>0.0520 | 0.0156<br>0.5519 •                    |                  |  |  |  |
| CV (%)      | 6.1                                                                                                                                               | 4.4              | 4.3              | 15.9                                  | 10.'0            |  |  |  |
|             |                                                                                                                                                   |                  | %                |                                       |                  |  |  |  |
| CC          | 3.13                                                                                                                                              | 0.31             | 2.26ab           |                                       | 0.19             |  |  |  |
| FC          | 3.21                                                                                                                                              | 0.32             | 2.32a            | 0.65b                                 |                  |  |  |  |
| HM          | 3.23                                                                                                                                              | 0.31             | 2.17Ъ            | 0.83a                                 | 0.20             |  |  |  |
| N120        | 3.12                                                                                                                                              | 0.31             | 2.29             |                                       | 0.18             |  |  |  |
| N240        | 3.26                                                                                                                                              | 0,32             | 2.21             | 0.73                                  | 0.20             |  |  |  |

1)

4

means follwed by different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

| Treatment                                                        |                                                                                                                    |                                                                                                                                                                                                                                   | *                                                                                                                      | St B                                                                                                  |                                                                                                                                 |                                                                                                                   |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                                  |                                                                                                                    | Day                                                                                                                                                                                                                               | s after see                                                                                                            | eding (1983)<br>27 61                                                                                 |                                                                                                                                 |                                                                                                                   |
| CC1<br>CC2<br>FC1<br>FC2<br>HM1<br>HM2<br>U1<br>U2               | 3.14 bc<br>3.63 a<br>3.12 bc<br>3.32 ab<br>2.89 c<br>3.28 ab<br>3.20 ab<br>3.21 ab<br>3.24 ab<br>3.65 a<br>3.24 ab | <ul> <li><sup>1</sup> 1.72 b</li> <li>1.88 ab</li> <li>1.82 ab</li> <li>1.83 ab</li> <li>1.93 ab</li> <li>2.02 ab</li> <li>2.36 ab</li> <li>2.36 ab</li> <li>2.55 a</li> <li>2.25 ab</li> <li>2.25 ab</li> <li>1.96 ab</li> </ul> | 1.41 bc<br>1.35 c<br>1.53 abc<br>1.38 c<br>1.36 c<br>1.53 abc<br>1.57 abc<br>1.56 abc<br>1.63 a<br>1.58 abc<br>1.41 bc | 3.22 b<br>3.39 ab<br>3.13 b<br>3.68 a<br>3.39 ab                                                      | 2.04 c<br>2.24 bc<br>2.20 bc<br>2.25 bc<br>2.18 bc<br>2.35 ab<br>2.36 ab<br>2.36 ab<br>2.36 ab<br>2.36 ab<br>2.36 ab<br>2.36 ab | 1.36 d<br>1.70 bc<br>1.66 bc<br>1.63 bc<br>1.55 c<br>1.80 at<br>1.80 at<br>1.70 bc<br>1.74 at<br>1.93 a<br>1.58 c |
| F<br>CV (%)                                                      | 2.66*<br>8.4                                                                                                       | 3.88 <b>**</b><br>12.5                                                                                                                                                                                                            | 2.96 <b>**</b><br>8.2                                                                                                  | 2.13* 2<br>7.8 6                                                                                      | 2.79*<br>53                                                                                                                     | 5.72**<br>7.5                                                                                                     |
| a., -                                                            | <br>40                                                                                                             | Day:<br>69                                                                                                                                                                                                                        | s after see<br>120                                                                                                     | ding (1984)<br>40                                                                                     | 69                                                                                                                              | 120                                                                                                               |
| CC1<br>CC2<br>FC1<br>FC2<br>HM1<br>HM2<br>U1<br>U2<br>U3<br>FC2S | 3.09<br>3.25<br>3.15<br>3.10<br>3.29<br>3.34<br>3.26<br>3.53<br>3.22<br>3.01                                       | 1.44 cd<br>1.35 d<br>1.46 bcd<br>1.36 d<br>1.60 abc<br>1.34 d<br>1.70 a<br>1.42 cd                                                                                                                                                | 1.01<br>1.07<br>0.99<br>1.05<br>1.11<br>1.11<br>1.05<br>1.09<br>1.32<br>1.05                                           | 2.79 d<br>2.94 abcd<br>2.93 abcd<br>3.15 a<br>2.97 abcd<br>2.82 cd<br>2.86 bcd<br>2.81 cd<br>2.86 bcd | 1.66 cd<br>2.15 ab<br>2.03 abc<br>2.13 ab<br>2.05 abc<br>2.24 a<br>1.77 bcc<br>2.05 abc<br>2.00 abc<br>1.98 abc                 | 1.14<br>1.14<br>1.16<br>1.16<br>1.28<br>1.27<br>1.02<br>1.23<br>1.16<br>1.10                                      |
|                                                                  |                                                                                                                    | 3.84**<br>9.9                                                                                                                                                                                                                     |                                                                                                                        | 2.50*<br>5.6                                                                                          | 2.78*<br>12.9                                                                                                                   |                                                                                                                   |

# Table 3.3 Effect of manures or urea on N content of corn during 1983 and 1984

significant at the level of 0.05 and 0.01 respectively. \*\* : \*

treatments (Table 3.3).

there were no significant differences in N contents among In 1984, treatments, analyzed 40 days after sowing (Table 3.3). Treatment effects corn N content became apparent two months after sowing as indicated on significantly higher N contents of corn from the U2, HM2S and HM2 by treatments compared to those from the control, CCl, FCl, HMl, Ul and treatments. No significant treatment effects on final corn N FC2S content were detected. The differences between the FC2 and FC2S and between the FM2 and HM2S were small, indicating that manure application methods had no effect on corn N content. However, significantly higher N content was noted with the HM2S treatment than with the FC2S treatment at 70 days after planting, indicating HM was more effective than FC manure when they both were applied on the soil surface.

Final N uptake values by corn were significantly affected by the treatments. In 1983, the highest N uptake was from the HM2S plots, the lowest from the FC2S. The N uptakes of greater than 215 kg N/ha for the HM2S, U2, U3, CC2 and HM2 treatments, were significantly more than those for the control, CC1, FC1, FC2 and FC2S treatments, which were less than 171 kg N/ha (Table 3.4). In 1984, the highest N uptake was 210 kg N/ha with the U3 plots, and the lowest 108 kg N/ha with the  $\frac{1}{control}$ . N uptakes from all manured or urea applied plots except for the FC2S plot were significantly higher than the control, and N uptake from the U3 plot was much higher than that from the CC1, FC1, FC2, U1 and FC2S treatments.

| noit soll                                       |                                                              |
|-------------------------------------------------|--------------------------------------------------------------|
|                                                 | یے جب کر بند کر در میں ہے۔<br>بے جب کر بیا جہ جر میں میں ہے۔ |
| 61                                              | 97                                                           |
| 111 c                                           | 1 <b>19</b> c                                                |
| 111 с<br>154 аb                                 | 193 ab                                                       |
| 154 ab                                          | 191 ab                                                       |
| 139 bc                                          | 174 ab                                                       |
| 139 bc<br>145 b                                 | 192 ab                                                       |
| 186 a                                           | 188 ab-                                                      |
| 160 ab                                          | 214 a                                                        |
| 141 cd                                          | 157 Ь                                                        |
| 145 b<br>186 a<br>160 ab<br>141 cd<br>142 bc    | 173 ab                                                       |
| 170 ab                                          | 192 ab                                                       |
| 137 bc                                          | 169 b                                                        |
| 170 ab<br>137 bc<br>186 a                       | 195 a                                                        |
| <b>4.44**</b><br>13.4                           | 3.75                                                         |
|                                                 |                                                              |
| 4)                                              |                                                              |
| 9                                               | 120                                                          |
| 76 de<br>70 e<br>84 de                          | 92 d                                                         |
| 70 e                                            | 144 bc                                                       |
| 84 de                                           | 172 abc                                                      |
| ,95 cde<br>145 ab                               | 172 abc                                                      |
| 145 ab                                          | 182 ab                                                       |
| 128 abc                                         | 161 abc                                                      |
| 155 a                                           | 205 а                                                        |
| 145 ab<br>128 abc<br>155 a<br>99 cde<br>111 bcd | 130 cd                                                       |
| 111 bcd                                         | 161 abc                                                      |
| 109 bcde                                        | 142 bc                                                       |
| 109 bcde<br>131 abc<br>155 a                    | 165 abc                                                      |
| 155 a                                           | 190 ab                                                       |
| 5.71**<br>22.0                                  | 3.92*                                                        |
| 2                                               | 5.71**<br>2.0                                                |

Table 3.4 Effect of manures or urea on N uptake by corn

٢

1)

そうない しょうしょう しょうしょう しょう しょう かいないない かいかい しょうちょう

1

۱\_

Č,

means of the same year in the same column followed by the same letters are not significantly different at the level of 0.05 by Duncan's Mutiple Range Test. **\***,**\*\*** : significant at the levels of 0.05 and 0.01 respectively.

## St Benoit Soil

Corn N content associated with the control was consistently lowest of all treatments in the two years (Table 3.3). In 1983, significantly higher N contents than that of the control were found with the FC1, FM2 and HM2S treatments at 26 days after sowing, with the HM1, HM2, U1, U2, U3 and HM2S treatments at 61 days after sowing, and with all monure or urea treatments at 97 days. In 1984, a comparison with the control showed that N contents were higher with the FC2, FC2S and HM2S treatments at 40 days after sowing in 1984, and with all other treatments, except for the CC1 and U1 treatments, at 69 days after seeding. At the last sampling (97 days after sowing) in 1983, N contents associated with the FC2 and FC2S were exceeded by those with the U3, HM2S, HM1 and HM2 treatments. However, final analyses made in 1984 showed no significant treatment effects on corn N content Table 3.3.

As with corn N content, the lowest N uptake was found with the control and the highest with HM in the six estimations made in the two years. A comparison made 69 days after sowing in 1984 indicated N uptake among the three manure N sources was significantly different with highest N uptake from HM plots and lowest from CC manure plots (Table 3.5). The final N uptake ranged from 119 to 214 kg N/ha in 1983 and from 92 to 205 kg N/ha in 1984. Differences among the manures on final N uptake were not significant though HM tended to provide more N for, corn plants than CC or FC manures. The high manure application rates resulted in significantly higher N uptake (Tables 3.4 and 3.6) compared to the lower application rates.

83

|            | (CFH) and n<br>matter (CDM | I) and nit | trogen com<br>1n 1984 | ntent (NC)       | and uptak | e (NUP)                               |
|------------|----------------------------|------------|-----------------------|------------------|-----------|---------------------------------------|
|            |                            |            |                       | er seeding       |           |                                       |
| Main effec | t                          | - 40       |                       |                  | 69        |                                       |
|            | - CDM                      | NC         | NUP                   | CDM              | NC        | NUP                                   |
|            |                            |            | τ.                    |                  |           |                                       |
|            |                            | ,<br>      | probat                | ility            | ·         | · · · · · · · · · · · · · · · · · · · |
| CFH<br>NR  | 0.0626<br>0.4563           |            | 0.0234<br>0.3145      | 0.7098<br>0.1737 |           |                                       |
| -          |                            |            | St Ber                | oit soil -       |           |                                       |
|            |                            |            | probab                | ility            |           |                                       |
| CFH<br>NR  | 0.0532<br>0.0678           |            |                       | 0.0024<br>0.1441 |           |                                       |

Table 3.5 Probability associated with the main effect of manures

 $\zeta'$ 

84

Table 3.6 Probability associated with the main effect of manures (CFH) and nitrogen rate (NR) on final yield (Y in 1983 and 1984 and nutrient uptake by corn in 198 ---------- Y ---------- Uptake 1983 1984 Ν Ρ K Main Ca Mg effect ----- Chicot soil ---------- probability -----0.0872 0.5773 0.0818 0.5781 0.2375 CFH 0.2753 0.0930 0.0621 0.5304 0.4011 NR 0.5523 0.0733 0.7360 0.1594 31.6 CV (%) 9.3 13.1 14.6 16.6 14.1 21.5----- t/ha ---- kg/ha -----CC 13.4 15.6 162 43 204 81 36 FC 12.0 14.9 153 43 192 63 33 180 79 42 13.0 16.0 185 46 ΗM Ŀ, 161 35 N120 12.3 15.2 43 181 73 15.8 202 • 76 N240 13.3 171 45 40 ----- St Benoit soil ----------- Generation probability -----0.3680 0.0193 0.1522 CFH 0.8866 0.3634 0.2125 0.5481 0.1025 0.0127 0.0282 0.0609 0.0007 0.0136 NR 0.0129 CV (%) 14.0 13.0 18.4 18.5 12.6 17.516.4 ----- t/ha --- -kg/ha ---26 242ab1 23CC 11.5 13.9 158 51 28 FC 11.6 15.3 177 275a 55 24 28 HM 11.2 14.4 183 225Ъ 62 25 N120 25 22Ъ 10.8 13.4b 159b 220b 56Ъ 15.6a 187a 29 N240 12.0 274a 62a 26a

1) means followed by different letters in the same column within the same block are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

ţ

## 3.3.3 Nutrient balance

On the Chicot soil, it was found that N uptake from the control, CC1, FC1, HM1, U1 and U2 treatment plots exceeded N added (Table 3.7). Negative values of P, K and Ca balances were found with the U plots (U1, U2 and U3). For Mg, positive values with cow manures at higher application rates (CC2, FC2) were noted.

On the St Benoit soil, the same trends as on the Chicot soil were observed with N, K, Ca and Mg balances. Added P could accumulate in the soil with some treatments, especially with HM due to a positive P balance.

#### 3.3.4 Corn dry matter yields

Only the final total DMY in each year will be discussed.

Chicot Soil

ħ

Corn dry matter yields on Chicot soil ranged from 10.1 to 14.4 t/ha in 1983, and from 11.8 to 16.6 t/ha in 1984 (Table 3.8). Yields associated with the HM2S, CC2, HM2, U2 and U3 treatments were significantly higher than those with the control and FC2S treatments in 1983. In 1984, all treatments except for the FC2 and FC2S treatment had significantly higher yields than the control, which had the lowest yields. Yield differences among manures were not significant (Tables 3.6 and 3.8).

| Ireatment | N     | Р             | K           | Ca    | Mg     |
|-----------|-------|---------------|-------------|-------|--------|
| Treatment |       |               | kg/ha       | >     |        |
|           |       |               | Chicot soi  | 1     |        |
| Ctrl      | -108  | 1             | -50         | -61   | - 301  |
| CC1       | - 29  | 53            | 82          | 110   | - 1    |
| CC2       | 64    | 113           | 238         | 306   | 312    |
| FCl       | - 34  | 52            | 72          | 72    | - 2    |
| FC2       | 88    | 118           | 215         | 204   | 28     |
| HM1       | - 67  | 102           | - 92        | 59    | ·- 15  |
| HM2       | 56    | 204           | 246         | 184   | - 7    |
| Ul        | -105  | - 7           | - 65        | - 76  | - 42   |
| U2        | ´- 55 | - 5           | - 80        | - 93  | - 46   |
| U3        | 30    | - 7           | - 97        | - 80  | - 42   |
| FC2S      | 105   | 116           | 231         | 207 - | 31     |
| HM2S      | 58    | 210           | 229         | 185   | - 2    |
|           |       |               |             |       | Q      |
|           |       | ~             |             |       |        |
|           |       |               | St Benoit s | oil   |        |
|           |       | ٩             |             |       |        |
| Ctrl      | - 92  | 45            | 13          | - 40  | - 16   |
| CC1       | - 24  | 102           | 123         | 146   | 14     |
| CC2       | 64    | 159           | 235         | 328   | 43     |
| FC1       | - 52  | 100           | 49          | 82    | 18     |
| FC2       | 58    | 162           | 187         | 210   | 36     |
| HM1       | - 41  | 150           | 130         | 80    | - 1    |
| HM2       | 35    | 255 .         | 233         | 199   | * 13   |
| U1        | - 70  | 39            | - 19        | - 52  | - 21   |
| U2        | - 41  | 40            | - 36        | - 71  | - 23   |
| U3        | 38    | 40            | - 34        | - 54  | - 19   |
| FC2S      | 75    | ° 16 <b>2</b> | 186         | 213   | / - 35 |
| HM2S      | 50    | 255           | 217         | 182   | 15     |

## Table 3.7 Balance of nutrients added in manures & fertilizers and removed by corn in 1984

1) negative value means nutrient uptake exceeded nutrient added.

2) positive value means nutrient added was more than nutrient uptake.

| Treatment |       | Chicot | soil                                                                                                                                                   | t/ha            | St Benoit    | soil       |
|-----------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------|
|           | 26    | 61     | - Days afte<br>97                                                                                                                                      | r seeding<br>26 | (1983)<br>61 | 97         |
| Ctrl      | 0.31  | 7.5    | 10.8 de <sup>1</sup>                                                                                                                                   | 0.14            | 5.5 d        | 8.9 d      |
| CC1 ·     | 0.28  | 7.4    | 12.7 abcd                                                                                                                                              | 0.17            | 6.9 abc      | 11.4 abc   |
| CC2       | 0.32  | 7.0    | 14.2 ab                                                                                                                                                | 0.23            | 7.0 abc      | 11.5 ab    |
| FC1       | .0.26 | 7.5    | 10.8 de <sup>1</sup><br>12.7 abcd<br>14.2 ab<br>12.0 cde<br>12.1 bcde<br>12.3 bcd<br>13.7 abc<br>12.8 abcd<br>13.7 abc<br>13.6 abc<br>10.1 e<br>14.4 a | 0.21            | 6.2 cd       | 10.7 abcd  |
| FC2       | 0.26  | 7.4    | 12.1 bcde                                                                                                                                              | 0.20            | 6.7 c        | 12.4 a     |
| HM1       | 0.27  | 9.0    | 12.3 bcd                                                                                                                                               | 0.26            | 8.0 a        | 10.4 abcd  |
| HM2       | 0 33  | 7.6    | 13.7 abc                                                                                                                                               | 0.27            | 670          | 12 0 ab    |
| U1        | 0.32  | 7.1    | 12.8 abcd                                                                                                                                              | 0.16            | 6 0 cd       | 9.2 cd     |
| U2        | 0.35  | 7.5    | 13.7 abc                                                                                                                                               | 0.20            | 6.0 cd       | 10.0 bcd   |
| U3        | 0 24  | 7.8    | 13.6 abc                                                                                                                                               | 0 21            | 6 8 hc       | 9 9 hcd    |
| FC2S      | 0.24  | 6.6    | 10.1 e                                                                                                                                                 | 0.17            | 6.3 cd       | 10 8 abcd  |
| HM2S      | 0.36  | 8.3    | 14.4 a                                                                                                                                                 | 0.22            | 7 9 ah       | 10.7 abcd  |
| 14 16 6   | 0.00  | 0.0    | Littu                                                                                                                                                  | 0.22            | 110 00       | IV. i ubca |
| F         | 1.71  | 0.80   | 4.35 <b>**</b><br>10.0                                                                                                                                 | 1.62            | 4.00**       | 2.45*      |
| CV (%)    | 21.5  | 18.2   | 10.0                                                                                                                                                   | 30.4            | 11.1         | 12.7       |
|           | -     |        | Days after s                                                                                                                                           | pooding (       | 1094)        |            |
|           | 40    | 69     | 120                                                                                                                                                    | 40              | 69           | 120        |
| Ctrl      | 0.75  | 6.6    | 11.8 c <sup>.</sup>                                                                                                                                    | 0.21 c          | 5.1 bcd      | 9.7 e      |
| CC1       | 0.91  | 6.0    | 14.7 ab                                                                                                                                                | 0.25 bc         | 4.3 cd       | 12.7 cd    |
| CC2       | 0.94  | 9.1    | 16.4 a<br>15.5 ab<br>14.3 abc                                                                                                                          | 0.23 bc         | 3.9 d        | 15.1 abc   |
| FCl       | 0.75  | 7.6    | 15.5 ab                                                                                                                                                | 0.22 c          | 4.7 bcd      | 14.9 abc   |
| FC2       | 0.69  | 8.4    | 14.3 abc                                                                                                                                               | 0.29 bc         | 6.8 ab       | 15.6 ab    |
| HM1       | 0.92  | 7.2    | 15.4 ab                                                                                                                                                | 0.27 bc         | 6.4 abc      | 12.7 cd    |
| HM2       | 1.20  | 7.0    | 16.6 a                                                                                                                                                 | 0.50 a          | 7.0 ab       | 16.1 a     |
| U1        | 0.96  | 7.5    | 15.4 ab<br>16.6 a<br>15.7 ab                                                                                                                           | 0.25 bc         | 5.6 bcd      | 12.7 cd    |
| U2        | 0.99  | 7.4    | 16.0 a                                                                                                                                                 | 0.28 bc         | 5.4 bcd      | 13.2 bcd   |
| <b>U3</b> | 0.81  | 7.9    | 16.2 a                                                                                                                                                 | 0.23 bc         | 5.4 bcd      | 12.3 d     |
| FC2S      | 0.61  | 6.9    | 16.0 a<br>16.2 a<br>12.9 bc                                                                                                                            | 0.29 bc         | 6.7 ab       | 14.9 abc   |
| HM2S      | 0.90  | 7.0    | 16.3 a                                                                                                                                                 | 0.41 ab         | 7.9 a        | 16.2 a     |
| F         | 1 28  | 0 46   | 2.83*                                                                                                                                                  | 2 43±           | 3 08**       | 6 03**     |
| CV (%)    |       |        | 11.6                                                                                                                                                   |                 |              |            |
|           |       |        | 1110                                                                                                                                                   | 30.0<br>@       | 20.1         | 7712       |

Y

## Table 3.8 Effect of manures or urea on accumulation of corn dry matter yield<sup>°</sup>

 means of the same year in the same column followed by the same letters are not significantly different at the level of 0.05 by Duncan's Multiple Range Test.
 \*, \*\* : significant at the levels of 0.05 and 0.01 respectively.

q

#### St Benoit Soil

The control had consistently lowest yields of all treatments ın both 1983 and 1984. The highest yields were with the FC2 treatment 1n 1983 and with the HM2S treatment in 1984. The yields associated with the FC2. HM2, CC2 and CC1 treatments were significantly higher than that of the control in 1983. The effects of manures or urea were more obvious in 1984, as indicated by significantly higher yields from all manured or urea treated plots compared to the control. Yields from urea treatments were exceeded by those from the FC2 treatment in 1983, and the HM2S and HM2 treatments in 1984. In terms of DMY, the effect of manures incorporated into the soil was not significantly different from that of manures left on the soil surface. Plots receiving higher manure application rates yielded significantly more dry matter than lower manure application rates. Differences among the manures were not significant when analyzed as a factorial experiment (Tables 3.6 and 3.8).

## 3.3.5 Cumulative effects

Treatment effects as expressed by effect coefficients of treatments (ECT) on DMY and nutrient uptake were found to be greater in 1984 compared with 1983 (Tables 3.9, 3.10 and 3.11). On the Chicot soil, the average ECT of all treatments of 1.29 for DMY of 1984 was significantly higher than that of 1.18 for 1983. A larger difference of ECT for DMY between 1984 and 1983 was noticed on the St Benoit soil, compared with that of the Chicot soil (Table 3.11).

|        | _       | DMY             | ,<br>     | Up       | take   |      | t                    |
|--------|---------|-----------------|-----------|----------|--------|------|----------------------|
| Year 1 | [reatme | nt              | N         | Р        | · K    | Ca   | Mg                   |
| 1983   | Ctrl    | 1.00ef          | 1.00gh    | 1.00d %  | ⊷~1.00 | 1.00 | 1.00def <sup>1</sup> |
| 1983   | CC1     |                 | 1.12efgh  | 1.03cd   | 1.31   | 0.85 | 0.98def              |
| 1983   | CC2     | 1.32abcd        | 1.44bcdef |          | 1.49   | 1.28 | 1.17bcdef            |
| 1983   | FC1     | 1.12cdef        |           | 1.15bcd  | 1.11   | 0.71 | 0.88f                |
| 1983   | FC2     | 1.12cdef        | 1.09fgh   | 1.18bcd  | 1.21   | 1.04 | 0.88f                |
| 1983   | HM1     |                 | 1.24defgh | 1.00d    | 1.38   | 1.19 | 1.10cdef             |
| 1983   | HM2     | 1.27abcd        | 1.43bcdef | 1.08bcd  | 1.39   | 1.49 | 1.10cdef             |
| 1983   | Ul      | 1.19abcde       | 1.32cdefg |          | 1.19   | 1.24 | 1.12cdet             |
| 1983   | U2      | 1.28abcd        | 1.47bcde  | 1.12bcd  | 1.29   | 1.21 | 1.14bcdef            |
| 1983   | U3      | 1.26abcd        | 1.45bcdef | 1.01d    | 1.08   | 0.96 | 1.05cdef             |
| 1983   | FC2S    | 0.93f           | 0.95h     | 1.00d    | 1.28   | 0.89 | 0.91ef               |
| 1983   | HM2S    | 1.34abcd        | 1.55bcd   | l.39abcd | 1.56   | 1.15 | 1.34abcde            |
| 1984   | Ctrl    | 1.00ef          | 1.00gh    | 1.00d    | 1.00   | 1.00 | 1.00def              |
| 1984   | CC1     | *1.25abcd       | 1.40bcdef | 1.36abcd | 1.42   | 1.54 | 1.19bcdef            |
| 1984   | CC2     | 1.38 <b>ab</b>  | 1.64abc   | 1.41abcd | 1.60   | 1.39 | 1.22abcde            |
| 1984   | FC1     | 1.32abcd        | 1.45bcdef | 1.47ab   | 1.35   | 1.11 | l.llcdef             |
| 1984   | FC2     | 1.22abcde       | 1.41bcdef | 1.35abcd | 1.47   | 1.25 | 1.llcdef             |
| 1984.  | HM1     | 1.31abcd        | 1.53bcd   | 1.36abcd | 1.25   | 1.39 | 1.19bcdef            |
| 1984   | HM2     | 1.41a           | 1.71ab    | 1.62a    | 1.40   | 1.46 | 1.62a                |
| 1984   | U1      | 1.34abcd        | 1.55bcd   | 1.26abcd | 1.15   | 1.53 | 1.46abc              |
| 1984   | U2      | 1.36abc         | 1.64abc   | 1.21abcd | 1,27   | 1.69 | 1.56ab               |
| 1984   | U3      | 1.38 <b>a</b> b | 1.94a     | 1.26abcd | 1.42   | 1.58 | 1.42abcd             |
| 1984   | FC2S    | 1.09 <b>def</b> | 1.24defgh |          | 1.39   | 1.02 | 0.98def              |
| 1984   | HM2S    | 1.39a           | 1.71ab    | 1.41abcd | 1.53   | 1.55 | 1.49abc ,            |
| F      | r       | 3.28**          | 5.28**    | 2.21**   | 1.18   | 1.21 | 2.68**               |
| CV (%) | ł       | 12.1            | 16.0      | 20.0     | 23.5   | 39.0 | 22.1                 |

Table 3.9Comparison of effect coefficients of treatment of<br/>dry matter yield (DMY) and nutrient uptake on the<br/>Chicot soil in 1983 and 1984

5

1

 means in the same column followed various letters are significantly different at the level of 0.05 by Duncan's Multiple Range Test.
 \* : significant at the level of 0.05.

**\*\*** : significant at the level of 0.01.

|          |         | DMY                  |           |               | Uptake -  | •         |                    |
|----------|---------|----------------------|-----------|---------------|-----------|-----------|--------------------|
| rear T   | reatmer |                      | N         | P             | K         | Cạ        | Mg                 |
| 1983     | Ctrl    | 1.00g                | 1.00g     | 1.00cd        | 1.00h     | 1.00e     | 1.00c <sup>1</sup> |
| 1983     | CCI     | 1.32cdef<br>1.32cdef | 1.63cdef  | 1.66a         | 1.49 defg | 1.46 bcde | 1.54ab             |
| 1983     | cc2     | 1.32cdef             | 1.60cdef  | 1.51abc       | 1.77abcd  | 1.53abcde | 1.50ab             |
| 1983     | FC1     | 1.24efg              | 1.48def   | 1.44abcd      | 1.75abcde | 1.12de    | 1.35ab             |
| 1983     |         | · 1.41abcde          |           |               | 1.92abc   |           |                    |
| 1983     | HM1     | 1.20efg              |           |               |           | 1.60abcde |                    |
| 1983     | HM2     |                      | 1.79bcde  |               |           |           |                    |
| 1983     | U1      |                      | 1.32fg    |               |           | 1.27cde   |                    |
| 1983     | U2      |                      | 1.46def   |               |           | 1.88abc   |                    |
| 1983     | U3      |                      |           |               | 1.20fgh   |           |                    |
| 1983     | FC2S    |                      | 1.41ef    |               |           | 1.13de    | 1.28bc             |
| 1983     | HM2S    |                      | 1.64cdef  |               |           | 1.27cde   | 1.43ab             |
| 1984     | Ctrl    |                      | 1.00g     |               |           | 1.00e     | 1.00c              |
| 1984     | CC1     |                      | 1.59cdef  |               |           | 1.13de    | 1.27bc             |
| 1984     | CC2     | 1.58abc              | 1.91abcd  | 1.47abcd      | 2.04ab    | 1.42bcde  | 1.59ab             |
| 1984     | FCl     | 1.55abcd             | 1.90abcd  | 1.50abc       | 1.92abc   | 1.31cde   | 1.51ab             |
| 1984     | FC2     | 1.62ab               |           |               | 2.13a     | 1.45bcde  | 1 59ab             |
| 1984     | HM1     | 1.32cdef             | 1.76bcde  | 1.29abcd      | 1.40defg  | 1.33bcde  | 1.38ab             |
| 1984     | HM2     | 1.69a                |           | 1.73a         |           | 1.74abcd  | 1.89a              |
| 1984     | U1      | 1.32cdef             | 1.44ef    | 1.30abcd      | 1.24fgh   | 1.30cde   | 1.35ab             |
| 1984     | U2      | 1.37bcde             | 1.77bcdef | 1.29abcd      | l.36efgh  | 1.76abcd  | 1.45ab             |
| 1984     | U3      | 1.27defg             | 1.57cdef  | 1.29abcd      | 1.35efgh  | 1.35bcde  | 1.22bc             |
| 1984     | FC2S    | 1.56abcd             | 1.83bcde  | 1.58ab/       | 2.11a     | 1.39bcde  | 1.67ab             |
| 1984     | HM2S    | 1.67a                | 2.10ab    | 1.72a         | 2.02ab    | 2.14a     | 1.69ab             |
| F        |         | 5.02**               | 5 00++    | 1 02*         | 0 77**    | 1 73**    | 1 97+              |
| r<br>(%) |         |                      |           | 1.94*<br>22.3 |           |           | 22.3               |

Table 3.10 Comparison of effect coefficients of treatment of dry matter yield (DMY) and nutrient uptake on the St Benoit soil in 1983 and 1984

1

 means in the same column followed various letters are significantly different at the level of 0.05 by Duncan's Multiple Range Test.

\* : significant at the level of 0.05.

1

**\*\*** : significant at the level of 0.01.

| arameter | 1983        |          | F values | CV (%) |  |  |  |
|----------|-------------|----------|----------|--------|--|--|--|
|          |             |          |          |        |  |  |  |
|          | Chicot soil |          |          |        |  |  |  |
| DMY      | 1.18 b²     | ° 1.29 a | 14.28**  | 11.5   |  |  |  |
| N        | 1.26 b      | 1.53 a   | 36.45**  | 15.2   |  |  |  |
| Р        |             |          | 20.66**  |        |  |  |  |
| K        | 1.27        | 1.35     | 1.75     | 22.5   |  |  |  |
| Ca       | 1.09 Ь      | 1.38 a   | 9.45**   | 37.6   |  |  |  |
| Mg       | 1.05 b      | 1.28 a   | 18.57**  | 21.8   |  |  |  |
| ,        |             | St Benoi | t Soil   | ×=     |  |  |  |
| DMY      | 1.22 b      | 1.44 a   | 35.32**  | 13.7   |  |  |  |
| N        | 1.51 b      | 1.76 a   | 21.32**  | 16.4   |  |  |  |
| P        |             |          | 2.58     |        |  |  |  |
| K        |             |          | 13.78**  |        |  |  |  |
| Ca       |             |          | 0.03     |        |  |  |  |
|          |             |          | 0.99     |        |  |  |  |

Table 3.11 Combined effect of manures and urea effect coefficients of dry matter yield (DMY) and uptake of nutrients in 1983 and 1984<sup>1</sup>

are significantly different by Duncan's Multiple Range Test at the level of 0.05. 1

**\*\*** : significant at the lelvel of 0.01.

2

٢·

The ECT of N uptake by corn from the Chicot soil in MH3 was 1.26 which was significantly exceeded by that in 1984 with the value of 1.53 (Table 3.11). Similarly, on the Chicot soil, cumulative effects of treatments were also reflected by larger ECT values in 1984 compared to 1983 for P, Ca, and Mg uptake. No significant cumulative effect was detected with K uptake, although a slightly larger ECT was noted in 1984, compared with that in 1983. On the St Benoit soil, significantly larger ECTs of N and K uptake were associated with 1984 in the two years. Slightly higher ECTs of P, Ca and Mg uptake were observed in 1984, compared with those in 1983 (Table 3.11).

Table 3.12 shows the various effect coefficients of manure and urea for DMY and nutrient uptake. On the Chicot soil, effect coefficients of manures were not different from those of urea for DMY and uptake of K and Ca. The ECT value for manure was larger than that of urea for P uptake while the reverse was true for Mg uptake. On the St Benoit soil, manure generally had significantly higher effect coefficients for dDMY and uptake of N, P and K, The differences of effect coefficients between manure and urea for uptakes of Ca and Mg were not pronounced.

Comparisons of ECT values among the manures indicated that the manures had significant cumulative effects (as noted by greater ECT values in 1984 compared with 1983) on DMY, N, P and Mg uptake on the Chicot soil, and on DMY and N uptake on the St Benoit soil (Tables 3.13 and 3.14). On the Chicot soil, the differences of ECTs between 1984 and 1983 were 0.12, 0.30, 0.30 and 0.22 for DMY, N, P, Mg uptake, respectively, and on the St Benoit soil, the differences were 0.20 for

| Parameter | 198                                                                                                                  | 1983    |            | 1984   |                                       | s CV (%) |
|-----------|----------------------------------------------------------------------------------------------------------------------|---------|------------|--------|---------------------------------------|----------|
|           |                                                                                                                      | Urea    | Manure     | Urea.  |                                       |          |
|           | میں ہوتے ہیں ہوتے ہیں ہوتے ہوتے ہوتے ہوتے ہیں ہیں ہے۔<br>1996ء کی ہوتے ہیں ہوتے ہوتے ہوتے ہوتے ہوتے ہوتے ہوتے ہیں ہی |         | Chicot so  | oil    | · · · · · · · · · · · · · · · · · · · |          |
| DMY       | 1.19 c <sup>2</sup>                                                                                                  | 1.24 bc | 1.31`ab    | 1.36 a | 4.29**                                | 12.2     |
| N         |                                                                                                                      |         |            |        | 10.51**                               |          |
| Р         |                                                                                                                      |         | 1.43 a     | 1.24 Ь | 7.35**                                | 20.7     |
| K         | 1.32                                                                                                                 | 1.18    | 1.41       | 1.28   | 1.63                                  | 22.9     |
| `Ca       | 1.09 Ь                                                                                                               | 1.14 Ь  | 1.36 ab    | 1.60 a | 3.33*                                 | 38.8     |
| Mg        | 1.02 c                                                                                                               | 1.10 bc | 1.24 b     | 1.48 a | 8.30**                                | , 23.1   |
|           |                                                                                                                      | S'      | t Benoit S | oil    |                                       |          |
| DMY       | 1.30 b                                                                                                               | 1.11 c  | 1.51 a     | №.32 Б | 12.32**                               | 14.4     |
|           |                                                                                                                      |         |            |        | 8.36**                                |          |
| P         |                                                                                                                      |         |            |        | 4.84**                                |          |
| ĸ         |                                                                                                                      | 1.18 b  | 1.82 a     | 1.32 b | 17.75**                               | 18.1     |
| Ca        | 1.51                                                                                                                 |         |            |        | 0.45                                  |          |
|           |                                                                                                                      |         |            | 1.34   |                                       |          |

Table 3.12 Effect of manure or urea on the effect coefficients of dry matter yield (DMY) and uptake of nutrients in 1983 and 1984<sup>1</sup>

B

و کمبر م

N.L.

į

¢

( t

I.

\* : significant at the level of 0.05.

**\*\*** : significant at the lelvel of 0.01.

۰, ک

Table 3.13Probability associated with the main effect of<br/>manures (CFH) and nitrogen rate (NR) and the<br/>effect coefficients of manures on dry matter<br/>yield (DMY) and uptake of nutrients by corn<br/>from Chicot soil1

Q

()

| Main<br>effect | DMY         |            |            | - Uptake<br>K | Ca                | Mg                  |  |  |
|----------------|-------------|------------|------------|---------------|-------------------|---------------------|--|--|
|                | probability |            |            |               |                   |                     |  |  |
| 3              |             |            | > <b>#</b> |               |                   |                     |  |  |
| YR             |             | 0.0001     |            |               |                   |                     |  |  |
|                |             | 0.0085     |            |               |                   |                     |  |  |
| NR             | 0.1336      | 0.0521     | 0.1867     | 0.1474        | 0.1980            | 0.1212              |  |  |
| CV (%)         | 11.7        | 14.9       | 21.8       | 21.2          | 40.0              | 20.7                |  |  |
|                |             | - effect ( | coefficie  | nts of ma     | nures             |                     |  |  |
| 1983           | 1.19 Ь      | 1.24 b     | 1.13 ь     | 1.32          | 1.09              | 1.02 b <sup>2</sup> |  |  |
| 1984           |             | 1.54 a     |            |               |                   | 1.24 a              |  |  |
| cc             | 1.28        | 1.40 ab    | 1.29       | 1.46          | 1.27              | 1.14 ab             |  |  |
|                |             | 1.26 b     |            |               |                   |                     |  |  |
| HM             | 1.28        |            | 1.27       |               |                   |                     |  |  |
| 111.1          | 1.20        | 1.01 d     | ± en tie f | 1.00          | 1.00              | 1,60,0              |  |  |
| N120           | 1.22        | 1.32 b     | 1.23       | 1.30          | 1.13              | 1.08                |  |  |
| N240           | 1.28        | 1.45 a     | 1.34       | 1.43          | <sup>°</sup> 1.32 | 1.18                |  |  |
|                |             |            |            |               |                   | •                   |  |  |

1) means are expressed as the effect coefficients of manures.

 means followed by different letters within the same block are significantly different by Duncan's Multiple Range Test at the level of 0.05.

95

| Table 3.14 | Probability associated with the main effect of |
|------------|------------------------------------------------|
|            | manures (CFH) and nitrogen rate (NR) on the    |
|            | effect coefficients of manures of dry matter   |
|            | yield (DMY) and uptake of nutrients by corn    |
|            | from St Benoit soil <sup>1</sup>               |

ŧ

when it the right

AND STATE

| Main<br>effect |                   | Uptake           |                  |                  |                  |                  |  |  |
|----------------|-------------------|------------------|------------------|------------------|------------------|------------------|--|--|
|                | DMY               | N                | Р                | K                | Ca               | Mg               |  |  |
| Y              | probability       |                  |                  |                  |                  |                  |  |  |
| YR<br>CFH      |                   | 0.0010<br>0.2449 | 0.9519<br>0.9140 | 0.0862           | 0.3440<br>0.0287 |                  |  |  |
| NR             | 0.0041            |                  |                  |                  | 0.0300           |                  |  |  |
| CV (%)         | 14.0              | 16.2             | 23.4             | 15.8             | 27.0             | 19.9             |  |  |
|                |                   | effect           | coeffici         | ent of ma        | nures            |                  |  |  |
| 1983<br>1984   | 1.31 b²<br>1.51 a | 1.61 b<br>1.91 a |                  | 1.68<br>1.82     | 1.40<br>1.51     | $1.52 \\ 1.54$   |  |  |
| CC<br>FC       | 1.38<br>1.45      | 1.68<br>1.75     |                  | 1.71 b<br>1.93 a | 1.39 b<br>1.30 b |                  |  |  |
| HM             | 1.39              |                  |                  | 1.61 b           |                  |                  |  |  |
| 1120<br>1240   |                   |                  | 1.41<br>1.51     | 1.61 b<br>1.89 a |                  | l.44 b<br>1.62 a |  |  |

1) means are expressed as the effect coefficients of manures.

 means followed by different letters within the same block are significantly different by Duncan's Multiple Range Test at the level of 0.05.

dry matter yield, and 0.33 for N uptake.

## 3.4 DISCUSSION

### 3.4.1 Corn ear leaf composition

The significant correlations between DMY and N of corn ear leaves on the Chicot soil, and P content of corn ear leaves on both the Chicot and the St Benoit soil probably mean that N and P were deficient although this deficiency could not be determined in the case of P (Tyner, 1946; Krantz and Chandler, 1951; Bennett et al. 1953; Viets et al. 1954).

On the Chicot soil, corn ear leaves had a range of N content from 2.38 to 2.94% which showed "sufficient" or "high" N levels according to the classification system of Jones (1967). However, these values were somewhat below the critical level of 2.9% found by Tyner (1946). P, K, Ca and Mg contents of ear leaves were all above the critical levels proposed by Tyner (1946) and Melsted et al.(1969); indicating the soil was probably not deficient in these elements.

Treatment effects on ear leaf composition were not consistent between soils. On the St Benoit'soil, N applications did not affect N contents of ear leaves, most likely because the soil had high\_\_\_\_\_ extractable NH<sub>4</sub>- and NO<sub>3</sub>-N before silking (Chapter 2), indicating that N levels of the soil were not a limiting factor for corn production. The non-significant treatment effect on the Ca content of the ear leaf on both the Chicot soil and St Benoit soil could have been due to the high Ca contents in the soils, 2860 and 2283 kg exchangeable Ca/ha for the Chicot and the St Benoit soils respectively. The Ca applied from the manures, ranging from 130 to 380 kg/ha, was only a small fraction of the Ca contained in the soil and was considerably higher than that removed by the corn crop (data were not presented here). Mg contents of ear leaves on the St Benoit soil below the proposed critical level (Melsted et al. 1969) could be due to low available Mg of the soil and the low 'Mg added from the manures (21-68 kg/ha) although the initial extractable Mg levels of the soil was reasonably high (290 kg/ha).

## 3.4.2 N uptake and corn dry-matter yields

I

N uptake by corn exceeded the applied N in the plots with lower N application rates. In the long term, this could lead to a decrease in N uptake and crop yields. Thus in order to avoid the appearance of N deficiency, moderately higher N application rates should be recommended.

Increased corn yields and N uptake by manure applications have been reported by Dilz et al. (1984) from the Netherlands, Lembke and Thorne (1980) from Illinois, and Evans et al. (1977) from Minnesota, and by the others (Cope et al. 1958, Dubetz et al. 1975, and Sugihara et al. 1979). In this research, manure applications enhanced both DMY and N uptake by corn on both soils. The treatment effects of manures on the St Benoit soil were more significant than those on the Chicot soil, probably due to the reduced available N in the Chicot soil and improved moisture

supplement in the St Benoit soil (Chapter 2).

Different manures (CC, FC, HM) had similar effects on DMY, which was similar to previous findings (Miller and MacKenzie 1978), or on N uptake. Increased manure N application rates, however, improved DMY and N uptake, especially on the St Benoit soil, where higher manure application rates, compared with the lower application rates, resulted in an increase of 20% in DMY, and an increase of 17% in N uptake, suggesting manures were more effective for corn production on the St Benoit soil, which was a coarser textured soil with lower pH values and lower available P and K than the Chicot soil.

Although DMY increased with increasing rates of manure high application, rates application, could have resulted in an imbalance of nutrients and more N losses (Lauer et al. 1976; Sugihara et 1979; Phillips et al. 1981). Mathers and Stewart (1981) found that al. the most efficient manure rate was 22 tonnes/ha incorporated immediately into the soil after spreading. In the experiment reported here the manure application rates ranged from 5 to 12 tonnes/ha on a dry weight base and little danger of unbalanced nutrient supplement was shown. With respect to DMY, the optimum rate of N application was 120-240 kg N/ha for manure-N, and 0-60 kg N/ha for urea-N.

## 3.4.3 Cumulative effects

The experiment showed that ECT in 1984 compared with 1983 was larger with the coarser textured soil than with the finer textured soil. This greater cumulative effect could be due to greater improvement in plant nutrient levels, such as available N levels (Chapter 2), or in physical properties or chemical properties of the coarser textured soils compared to those of the finer textured soil (Olsen et al. 1970; Dubetz et al. 1975; Mazurak et al. 1977; Meek et al. 1979; Chandra and De 1982).

Some work has been published on manure cumulative effects on corn yields (Cope et al. 1958; Evans et al. 1977; Kiver and Kiver 1976; Turchin et al. 1972). By analyzing the published data of Dubetz et al. (1975), it was found, in the short term, that treatments of manure plus inorganic N had the highest cumulative effect on corn grain yields, inorganic N had the medium effect, and manure the lowest effect. The differences in cumulative effects among manures were not obvious, based on the data of Evans et al. (1977), and the results of this experiment reported here provide further evidence of similarity among the manures applied on the both soils as to yield increases, and in addition, it was shown that manure had larger ECT values than urea on the coarse textured soil, compared with the fine textured soil.

# 3.5 CONCLUSIONS

Significant positive correlations existed between DMY and N or P contents of corn ear leaves, indicating soil deficiencies in N and possibly P.

No difference was found due to manure spreading techniques, perhaps due to compensating effects of increased N volatilization and of improved soil moisture levels with surface applied manures.

Dry matter yields were unaffected by different manures. Hog manure was more effective in supplying corn with N than cow manure (CC, FC). This may have related to the higher moisture content of HM, and thus more efficient penetration of inorganic N compounds into the soil.

Higher manure application rates increased DMY and N uptake.

Cumulative effects of manure or urea on yields were more pronounced with the coarser textured soil than with the finer textured soil. On the coarser textured soil, larger ECT values were noted with manure compared with urea for DMY, and uptakes of N, P and K. This may have been a result of the improved P and K supplements with manure, and the longer term effects of organic N found with manures.

#### GENERAL CONCLUSIONS

Cow manures (CC, FC) showed a greater potential for conserving soil water than liquid hog manure or urea.

In the short-term, soil organic matter content and soil bulk densities at the depth of 5-13 cm were not significantly affected by the manure or urea applications.

Manures applied at 240 kg N/ha had less potential for polluting groundwater than urea applied at 180 kg N/ha. Among the manures, liquid hog manure accumulated more  $NO_3 - N$  in the soil profiles than FC or CC manure. Coarse textured soil had a higher  $NO_3 - N$  content, probably due to the rapid decomposition and nitrification of applied N in manures and urea than fine textured soil.

Optimum N application rates were 60 kg N/ha for urea-N, and 120-240 kg N/ha for manure-N. Thus 1 kg of urea-N was approximately equal to 2 to 4 kg of manure-N.

Manure application may have to be accompanied with application of certain nutrients, such as Mg.

Liquid hog manure was slightly more effective in increasing corn silage yields than semi-solid cow manures.

Both manurés and urea had a cumulative effect on corn dry matter

yields and nutrient uptake. The cumulative effect associated with coarse textured soil was larger than that with fine textured soil, and larger effect coefficients were noted with manure on the coarse textured soil, compared with urea, perhaps due to the greater improvement of the soil water and available N, and possibly other nutrient supplements such as P or K.

#### References

- Adriano, D.C., P.F. Pratt, and S.E. Bishop. 1971. Nitrate and salt in soils and ground waters from land disposal of dairy manure. Soil Sci. Soc. Am. Proc. 35:759-762.
- Agriculture Canada: Regional Development Branch. Selected Agricultural Statistics Canada and the Provinces 1983. Minister of Supply and Services Canada 1983. Cat. No. Al-7/1983. ISBN 0-662-52523-X. p.45-49.
- Aina, Patrick 0., and Emeka Egolum. 1980. The effect of cattle feedlot manure and inorganic fertilizer on the improvement of subsoil productivity of Iwo soil. Soil Sci. 129:212-217.
- Allison, L.E. 1965. Organic carbon. p. 1367-1396. In (C.A. Black ed.) Methods of Soil Analysis. Agron. 9. part. 2 Am. Soc. Agron., Inc., Publisher. Madison, Wisconsin.
- Barnard, R.O., and W.J. Folscher. 1980. Acidifying effect of urea applied to soil in the presence or absence of grass. Fertilizer Soc. of South Africa J. 1:1-5.
- Bashkin, V.N., and V.N. Kudeyarov. 1983. Nitrate content of ground waters in agricultural areas of the Oka River Basin. Soviet Soil Sci. 15(1):41-47.
- Beauchamp, E.G. 1983. Response of corn to nitrogen in preplant and sidedress applications of liquid dairy manure. Can. J. Soil Sci. 63:377-386.
- Beauchamp, E.G., G.E. Kidd and G. Thurtell. 1982. Ammonia volatilization from liquid dairy cattle manure in the field. Can. J. Soil Sci. 62:11-19.
- Beauchamp, E.G., G.E. Kidd, and G. Thurtell. 1978. Ammonia volatilization from sewage sludge applied in the field. J. Environ. Qual. 7:141-146.
- Bennett, W.F., G. Stanford, and L. Dumenil. 1953. Nitrogen, phosphorus, and potassium content of the corn leaf and grain as related to nitrogen fertilization and yield. Soil Sci. Soc. Am. Proc. 17:252-258.

- Bishop, R.F., L.P. Jackson, C.R. MacEachern, and L.B. MacLeod. 1964. A long-term field experiment with commercial fertilizers and manure. III. Fertility levels, crop yields, and nutrient levels in corn, oats, and clover. Can. J. Soil Sci. 44:56-65.
- Bishop, R.F., L.B. MacLeod, L.P. Jackson, C.R. MacEachern, and E.T. Goring. 1962. A long-term field experiment with commercial fertilizers and manure. II. Fertility levels and crop yields in a rotation of potatoes, oats and hay. Can. J. Soil Sci. 42:49-60.
- Black, W.N., and R.P. White. 1973. Effects of nitrogen, phosphorus, potassium, and manure factorially applied to potatoes in a long-term study. Can. J. Soil Sci. 53:205-211.
- Bouyoucos, G.J. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron. J. 43:434-438.
- Bray, Roger H., and L.T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39-45.
- Bremner, J.M. 1965. Total nitrogen:semi-micro Kjeldal method. p. 1171-1175. In (C.A. Black ed.) Methods of Soil Analysis. Agron. 9. part 2. Am. Soc. Agron., Inc., Publisher. Madison, Wisconsin.
- Campbell C.A., and V.O. Biederbeck. 1982. Changes in mineral N and numbers of bacteria and actinomycetes during two years under wheatfallow in southwestern Saskatchewan. Can. J. Soil Sci. 62:125-137.
- Calvert, C.C. 1979. Use of animal excreta for microbial and insect protein synthesis. J. Anim. Sci. 48:178-192.
- Carlson, C.W., D.L. Grunes, J. Alessí, and G.A. Reichman. 1961. Corn growth on Gardena surface and subsoil as affected by applications of fertilizer and manure. Soil Sci. Soc. Am. Proc. 25:44-47.
- Chandra, Subhash and S.K. De. 1982. Effect of cattle manure on soil erosion by water. Soil Sci. 133:228-231.
- Cheng, B.T. 1982. Farmyard manure and chemical fertilizers as a source of nutrients for raspberry. Commun. Soil Sci. Plant Anal. 13:633-644.
- Chin, Wei-Tsung, and Wybe Kroontje. 1962. Mechanisms of urea adsorption by soils. Soil Sci. Soc. Am. Proc. 26:479-481.
- Cooper, J.R., R.B. Reneau, Jr., W. Kroontje, and G.D. Jones. 1984. Distribution of nitrogenous compounds in a Rhodic Paleudult following heavy manure application. J. of Environ. Qual. 13:189-193.
- Cope, J.T.Jr., D.G. Sturkie, and A.E. Hiltbold. 1958. Effects of manure, vetch, and commercial nitrogen on crop yields and carbon and nitrogen contents of a fine sandy loam over a 30-year period. Soil

lä,

Sci. Soc. Am. Proc. 22:524-527.

- Culley, J.L.B., and G.M. Barnett. 1984. Land disposal of manure in the Province of Quebec. Can. J. of Soil Sci. 64:75-86.
- Culley, J.L.B., P.A. Phillips, F.R. Hore, and N.K. Patni. 1981. Soil chemical properties and removal of nutrients by corn resulting from different rates and timing of liquid dairy manure applications. Can. J. Soil Sci. 61:35-46.
- Dilz, K., B.A.T. Hag, H.W. Lammers, L. Cremer, and L.C.N. DeLa. 1984. Fertilization of forage maize in the Nertherlands. Netherlands Nitrogen technical Bull. No. 14 25pp.
- Dubetz, S., G.C. Kozub, and J.F. Dormaar. 1975. Effects of fertilizer, barnyard manure, and crop residues on irrigated crop yields and soil chemical properties. Can. J. Soil Sci. 55:481-490.
- El-Attar, A., M. El-Halfawi, and E. El-Haddad. 1982. Response of maize to farmyard manure and zinc. FAO Soils Bulletin. 45:221-224.
- Elliott, L.F., G.E. Schuman, and F.G. Viets, Jr. 1971. Volatilization of nitrogen-containing compounds from beef cattle areas. Soil Sci. Soc. Am. Proc. 35:752-755.
- Evans, S.D., P.R. Goodrich, R.C. Munter, and R.E. Smith. 1977. Effects of solid and liquid beef manure and liquid hog manure on soil characteristics and on growth, yield, and composition of corn. J. Environ. Qual. 6:361-368.
- Follett, Roy H., Larry S. Murphy, and Roy L. Donahue. 1981. Fertilizers and soil Amendments. p.72. Englewood Cliff, N.J.: Pretice Hall, Inc.
- Gilbertson, C.B., J.A. Nienaber, J.R. Ellis, T.M. McCalla, T.J. Klopfenstein, and S.D. Farlin. 1974. Nutrient and energy composition of beef cattle feedlot waste fractions. Res. Bull. Nebraska Agric. Exp. Sta. No. 262. 20pp.
- Gupta, J.P., R.K. Aggarweel, G.N. Gupta, and P. Kaul. 1983. Effect on continous application of farmyard manure and urea on soil properties and the production of pearl millet in Western Rajasthani, Indian. J. of Agric. Sci. 53:53-56.
- Hall, J.E., and E.G. Coker. 1982. Some effects of sewage sludge on soil physical conditions and plant growth. p. 43-60. In (G. Catrous, P. L'Hermitt, E. Suess eds.) The Influence of Sewage Sludge Application on physical and biogical properties of soils. D. Reidel Publishing Company. Dordrecht, Netherlands.
- Heck, A. Floyd. 1931. Conservation and availability of the nitrogen in farm manure. Soil Sci. 31:335-363.

Herron, G.M., and A.B. Erhart. 1965. Value of manure on an irrigated calcareous soil. Soil Sci. Soc. Am. Proc. 29:278-281.

- Higgins, Andrew J. 1984. Land application of sewage sludge with regard to cropping systems and pollution potential. J. Environ. Qual. 13:441-448.
- Hong, J.H., J. Matsuda, and Y. Ikeuchi. 1983. Composting characteristics of mixed dairy manure with bulking agent. Soil and Fertilizers 46:365-366. Abstract form J. of the Faculty of Agric. 61:13-43.
  Department of Agricultural Engineering, Faculty of Agriculture, Hokkaido University, Sapporo 060, Japan.
- Hornick, S.B. 1982. Crop production on waste amended gravel spoils. p. 207-218. In (W.E. Sopper, E.M. Seaker, R.K. Bastian eds.) Land Reclamation and Biomass Production with Municipal Wastewater and Sludge. Pennsylvania State University. Rennsylvania USA.
- Hoyt, P.B., and W.A. Rice. 1977. Effects of high rates of chemical fertilizer and barnyard manure on yield and moisture use of six successive barley crops grown on three Gray Luvisolic soils. Can. J. Soil Sci. 57:425-435.
- Hutchinson, G.L., A.R. Mosier, and C.E. Andre. 1982. Ammonia and amine emissions from a large cattle feedlot. J. Environ. Qual. 11:288-293.
- Hunter, A.H. 1974. International soil fertility evaluation and improvement program: Laboratory procedures. (Mimeo). Soil Sci. Dept., N.C. State Univer., N.C.
- Ito, Y. and K. Miyazawa, 1984. Effect of long-term heavy application of fresh farmyard manure on yield and nutrient status forage crops. Japan Agric. Research Quarterly 17:242-247.
- Jaakkola, A. 1978. Nitrate, ammonium and urea nitrogen as fertilizers for wheat and rye in a field experiment. J. of the Sci. Agric. Soc. of Finland 50:346-360.
- Jaiyebo, E.O., and D.R. Bouldin. 1967. Influence of fertilizer and manure additions, and crop rotations on nonexchangeable ammonium content of two soils. Soil Sci. 103:16-22.
- Jones, J.B.Jr. 1967. Interpretation of plant analysis for several agronomic crops. p. 49-58. In (G.W. Hardy et al. eds) Soil Testing and Plant Analysis: part 2, Plant Analysis. Special Rubl. No.2. Soil Sci. Soc. Am. Madison Wis.
- Kamphake, L.J., S.A. Hannah, and J.M. Cohen. 1967. Automated analysis for nitrate by hydrazine reduction. Water Research. 1:205-216.
- Karpova, E.S., and L.I. Petrova. 1966. Influence of long-term manure and mineral fertilizer application on fertility of a sandy-coarse clay

loam Sod-podzolic soil. Soviet Soil Sci. 1966:921-927.

- Khaleel, R., K.R. Reddy, and M.R. Overcash. 1981. Changes in soil physical properties due to organic waste applications: a review. J. Environ. Qual. 10:133-141.
- Kiver, F.V. and Ye.F. Kiver. 1976. Duration of the effect of manure on irrigated Dark Chestnut soil in the Ukraine. Soviet Soil Sci. 8:310-313.
- Krantz, B.A., and W.V. Chandler. 1951. Lodging, leaf composition, and yield of corn as influenced by heavy applications of nitrogen and potash. Agron. J. 43:547-552.
- Lajoie, Paul G. 1960. Soil survey of Argenteuil, Two Mountains and Terrebonne Counties, Quebec. Research Branch, Canada Department of Agriculture in co-operation with Quebec Department of Agriculture and Macdenald College, McGill University.
- Lauer, D.A., D.R. Bouldin, and S.D. Klausner. 1976. Ammonia volatilization from dairy manure spread on the soil surface. J. Environ. Qual. 5:134-141.
- Lembke, W.D., and M.D. Thorne. 1980. Nitrate leaching and irrigated corn production with organic and inorganic fertilizers on sandy soil. Trans. Am. Soc. Agric. Eng. 23:1153-1156.
- Loehr, R.C. 1974. Agricultural Waste Management: Problems, Process, and Approaches. Academic Press. New York and London. p.517-550.
- Lund, E., and B. Nissen. 1983. The survival of enteroviruses in aerated and unaerated cattle and pig slurry. Agric. Wastes. 7:221-233.
- Makarov, B.N., and L.B. Gerashenko. 1981. Gaseous nitrogen losses from soil upon application of various amounts and forms of nitrogen fertilizers. Soviet Soil Sci. 13:51-57.
- Malhi, S.S., and M. Nyborg. 1983. Release of mineral N from soils: influence of inhibitors of nitrification. Soil Biol. Biochem. 15:581-585.
- Marriott, L.F., H.D. Bartlett, and M.J. Green. 1977. Effect of manure on plant growth and nitrate N in soil water. p. 693-700. In (R.C. Loehr ed.) Food, Fertilizer and Agricultural Residues. Proceedings of the 1977 Cornell Agricultural Waste Management Conference. Ann Arbor Science Publishes Inc. Ann Arbor, Michigan.
- Mathers, A.C., and B.A. Stewart. 1981. The effect of feedlot manure on soil physical and chemical properties. p.159-162. In (ASAE ed.) Livestock Waste: A Renewable Resource. St. Joseph, Michigan, USA. Am. Soc. Agric. Eng.

- Mathers, A.C., B.A. Stewart, and J.D. Thomas. 1977. Manure effects on water intake and runoff quality from irrigated grain sorghum plots. Soil Sci. Soc. Am. J. 41:782-785.
- Mathers, A.C., B.A. Stewart, J.D. Thomas, and B.J. Blair. 1973. Effects of cattle feedlot manure on crop yields and soil conditions. p. 1-3. In Proc. Symp. on Animal Waste Management. Jan. 18, 1973. USDA Southwestern Great Plains Research Center, Bushland, Tex. Tech. Rep. 11.
- Mazurak, A.P., Leon Chesnin, and A.Amir Thijeel. 1977. Effects of beef cattle manure on water-stability of soil aggregates. Soil Sci. Soc. Am. J. 41:613-615.
- Meek, B., L. Graham, and T. Donovan. 1982. Long-term effects of manure on soil nitrogen, phosphorus, potassium, sodium, organic matter, and water infiltration rate. Soil Sci. Soc. Am. J. 46:1014-1019.
- Meek, B.D., L.E. Graham, T.J. Donovan, and K.S. Mayberry. 1979. Phosphorus availability in a calcareous soil after high loading rates of animal manure. Soil Sci. Soc. Am. J. 43:741-744.
- Melsted, S.W., H.L. Motto, and T.R. Peck. 1969. Critical plant nutrient composition values useful in interpreting analysis data. Agron. J. 61:17-20.
- Miller, P.L., and A.F. MacKenzie. 1978. Effects of manures, ammonium s nitrate and S-coated urea on yield and uptake of N by corn and on subsequent inorganic N levels in soils in southern Quebec. Can. J. Soil Sci. 58:153-158.
- O'Brien, R.T, and J. Fiore 1962. Ammonium determination by automated analysis. Wastes Eng. 33:352-353.
- Olsen, R.J, R.F. Hensler, and O.J. Attoe. 1970. Effect of manure application, aeration, and soil pH on soil nitrogen transformations and on certain soil test values. Soil Sci. Soc. Am. Proc. 34:222-225.
- Peech, M. 1965. Hydrogen-ion activity. p. 914-926. In (C.A. Black, ed.) Methods of Soil Analysis. Agron. 9. part 2. Am. Soc. of Agron., Inc. Publisher. Madison, Wisconsin.
- Peng, Ke-ming and Bao-yi Pei, 1979. Agricultural Chemistry (in Chinese).<sup>o</sup> Agricultural Press, Beijing. p. 261-298.
- Phillips, P.A., J.L.B. Culley, F.R. Hore and N.K. Patni. 1981. Pollution potential and corn yields from selected rates and timing of liquid manure applications. Trans. Am. Soc. Agric. Eng. 24:139-144.

Pratt, P.F., S. Davis, and R.G. Sharpless. 1976. A four-year field trial with animal manures. I. Nitrogen balances and yields. II. Mineralization of nitrogen. Hilgardia. 44:99-125.

- Quisenberry, V.L., J.S. Rice, A. Hegerb, and C.L. Barth. 1981. Manurial nitrogen management in the Southeastern Coastal Plain. p. 174-177. In (ASAE ed.) Livestock Waste: A Renewable Resource. St Joseph, Michigan, USA; Am. Soc. Agric. Eng.
- Reddy, K.C.K., K.P.R. Vittal, T.G. Sastry, and B.V. Subbiah. 1982. Iron nutrition of wheat and rice as influenced by soil application of zinc, phosphorus and farmyard manure in Lateritic, Black and Alluvial soils. J. Plant Nutrition. 5:761-768.
- Singley, M.E., M. Decker, S.J. Toth. 1975. Composting of swine waste. p. 492-496. In (ASAE ed.) Managing Livestock Wastes: Proceedings 3rd International Symposium on Livestock Wastes-1975. Am. Soc. Agric. Eng., St. Joseph, Michigan.
- Srivastava, O.P., and B.C. Sethi. 1981. Contribution of farm yard manure on the build up of available zinc in an Aridisol. Commun. Soil Sci. Plant Anal. 12:355-361.
- Steel, R.G., and J.H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd edition. McGraw-Hill Book Company, N.Y. p. 187-188.
- Stombaugh, D.P., and R.K. White. 1975. Aerobic composting-new built-up bed technique. p. 485-489. In (ASAE ed.) Managing Livestock Wastes. Proceedings 3rd International Symposium on Livestock Wastes-1975. Am. Soc. Agric. Eng. St. Joseph, Michigan.
- Stomberg, A.L., D.D. Hemphill, Jr., and V.V. Volk. 1984. Yield and elemental concentration of sweet corn grown on tannery waste-amended soil. J. Environ. Qual. 13:162-166.
- Sugihara, S., K. Ishii, and H. Konodo. 1979. Studies on annual heavy applications of dairy cattle manure to a field of humus rich <sup>d</sup> volcanic ash soil. 1. The influence of annual heavy application of dairy cattle manure on the growth, yield and nutrient uptake of some field crops and on soil properties. Bulletin of the Tohoku National Agricultural Experiment Station (1979) 60:18-40. (Japan).
- Swarup, A. 1982. Availability of iron, manganese, zinc and phosphorus in submerged sodic soil as affected by amendments during the growth period of rice crop. Plant Soil 66:37-43.
- Thomas, R.L., R.W. Sheard, and J.R. Moyer. 1967. Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agron. J. 59:240-243.
- Tiarks, A.E., A.P. Mazurak, and Leon Chesnin. 1974. Physical and chemical properties of soil associated with heavy applications' of

manure from cattle feedlots. Soil Sci. Soc. Am. Proc. 38:826-830.

- Turchin, V.V., G.P. Zhemela, and O.T. Gladysh. 1972. Effect of manure and mineral fertilizers on winter wheat yields and grain quality in the Central Ukrainian Steppe. Soviet Soil Sci. 4:47-51.
- Tyner, E.H. 1946. The relation of corn yields to leaf nitrogen, phosphorus, and potassium content. Soil Sci. Soc. Am. Proc. 11:317-323.
- Unger, Paul W., and B.A. Stewart. 1974. Feedlot waste effects on soil conditions and water evaporation. Soil Sci. Soc. Am. Proc. 38:954-957.
- Vanderholm, D.H. 1979. Handling of manure from different livestock and management systems. J. Anim. Sci. 48:113-120.
- Vanderholm, / D.H. 1975. Nutrient losses from livestock waste during storage treatment, and handling. p. 282-285. In (ASAE ed.) Managing <sup>®</sup>Livestock Wastes: Proceedings 3rd International Symposium on Livestock Wastes-1975. Am. Soc. Agric. Eng., St. Joseph, Michigan.
- Viets, F.G., Jr., C.E. Nelson, and C.L. Crawford. 1954. The relationships among corn yields, leaf composition and fertilizers applied. Soil Sci. Soc. Am. Proc. 18:297-301.
- Young; R.A., and C.K. Mutchler. 1976. Pollution potential of manure spread on frozen ground. J. Environ. Qual. 5:174-179.

1

ķ

¥.

Ġ