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ABSTRACT
ULANG - AN EXTENSIBLE USER-LANGUAGE

A new approaﬁh for implementing application systems has been
developed. The properties for a generalized user-language, called ULANG,
have Leen defined. This language allows a user of an application to com-
municate with the computer in & natural-language like wa‘y and with the
terminology of his profession.

For the application programmer, ULANG is a tool that eases and
speeds up the implementation coﬁsiderably. It provides an “"intelligent"

interface between the users and the problem-solving logic. It is parti-

HT o wa

cularly‘well suitg& to interactive system implementation. For each user-
request, this interface obtains the values of the required prdcessing-
parameters from the user's iy\put,‘fro- prest?red default-values, or other-
wise, and transmits them to the p'rocessing routines. ULANG alsc provides
an overall control and commmication framework for all the processing
routines of an application systea. »
ULANG can be used interactively or in a batch mode for command-
lmgﬁaze applications requiring a natural-language like user-‘interface.
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SOMAIRE

t

ULANG - un langage extensible pour les applications

Une nouvelle méthode pour faciliter 1'implantation des systdmes
d'information et de gestion a §té développée. Les caractéristiques d'un
langage de commande, appel& ULANG, ont &té& d8finies. Ce langage est des-
tiné aux utilisateurs d'applications mécanisées diverses. Il permet aux
utilisateurs de communiquer avec 1'ordinateur d'une manidre asser proche
des langues neturelles ot d'employer le vocabulaire habituel de leur pro-
fession.

Pour les programmeurs, ULANG est un aide de progranmation; qui
va simplifier considérablement 1'implantation des applications. ULANG
met & leur disposition un interface "intelligent " entre 1'utilisateur
ot la logique du traitement. Pour chaque commande A'un utilisateur, cet
interface obtient les valeurs de tous les paramdtres nécessaires pour
traiter la demande, Z partir de l'information offerte par l'utilisateur,
ainsi qu'l partir de valeurs préassignfes. Ces, paramdtres sont transmis
sux modules de traitement.’ En plus, ULANG rend dispopible une structure
de contrSle et de commmication entre tous les ‘modules faisant pertie du

systine. '
) ULANG peut ltrp utilisé d'une manidre intersctive ou traduc-
tive pour les applicatioms q\;i ,‘;wloimt des langages de commande et qui
.+ nicessittent un uscnu proche du langage nsturel.
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¢ PREFACE ' )
This dissertation makes a contribution to the methodology of
designing and impiementing interactive application systems. In parti-
cula}, a new language and an efficient system have been implemented,
which provide

- a) general interfacing capabilities between users and problem-
)

1

solving logic, ]
b) a data structure for processing parameters, and ) \
c) an overall control and communication framework.
é - i This research synthes&zes the knowledge from several areas in ‘

Computer Science: language—design, data structuring and system design

) into a new and useful tool, called ULANG. N
In chaéter 1 the communication and implementation problems of

application packages are examined and and an overview of the solutions
implemented in this work is given. This is followed in chapter 2 by a
survey of other interfaces and implementation systems. In chapters 3
and 4 a user-language and the implementation system for applications
are presented. Then in chapter 5 the design and 1nylenentation expe- o
rience of the ULANG system itself is given, the capabilitie§ of which
;ro demonstrated on three application examples in chapter 6. The con-
clusions and suggestions for further research of chapter 7 are followed
by two appendices A and B, the first containing a metalinguistic de-

) \saiption of the syntn of the user and implementation languages herein
providod and the other containing cglplato PORTRAN IV source listings
of the ULANG ‘system. . )




. ClePTER 1 - INTRODUCTION

| Conguter's have proven themselves able to carry out many tasks

with efficiency and exactitude. This accounts for their widespread use.
According to the annual survey by Computers and Automation (Berkeley (72)) '

computers have been used in qver 2300 different fields oi‘ applications,

such as engineefir{g, finance, accounting, manufacturing, to name a few.
As the use of computers spreads into all fields of humen endeavor,

more and more applications are reaching an. increasingly less sophisticated
- .

user base. A user here means the end-user of an application,that is an en-
C~ gineer, a manager, a clerk, or other, who in general is not familiar with

,computers and programming. An application is ne'ant to be an integrated

system, consisting of a collection of procedures, capable of performing a

variety of tasks ; in many cases it is called an application package.

At present, there e:i\sts a dual problem of communication and
implementation :

1) The communication px;oblem : non-technical users have diffi-
culty in communicating with the et;q)uter, unless this can be done in a
language natural to the users' .profession (Thompson & Do?tert (72)). Com-
puter here is synonylou; with virtual machine, that is what t'he user ''sees'',
namely the intprface of the appllcation package, with various levels of
software and hafdware behind.

2) The implementation problem : as the demand for spplication
packages grows, implementers find it costly and difficult to supply soft-
wayre with ﬂox'iblc' us& 1nt6rfacu(8mt (69)). An implementer is a pro-
foqsignu programmer or snalyst, who is setting up the éplic:ution and

» making it operationsl on the computer.
AN " J




This work attempts to solve the communication problem by pro-
viding language facilities to the user and to solve the implementation
problem by providing programming facilities to the implementer. The whoie
concept is called ULANG, an acronym for user-language.

ULANG is a way of quickly implementing interactive application
systems. The user-interface aspects are clearly separated out from problénl—
solving functions. The. interfacing functions are standardized and para'm%
trized into an "intelligent" inteface module. The problem-solving activgitles
are different for each application and can be adequately described by ¢xis-
ting programming languages. In addition, ULANG provides a data-stmctux“e
and a control framework, where the various problem-logic modules can be
"plugged-in". In short, ULANG is nk}nterfaco "generator'.

Although sysfus, wit.l{ similar goals have been proposed before,
.relatively little'has actually been accomplished (Sammet (72)). The present

system has been i,lplenontegi and proves that it is practical and efficient.

1.1 The commumication problem

The exactitude ’f a computer, while being one of the assets of
its performance, becomes a liability when the machine exp;cts to receive
instructions from humans with the same exactitude. ‘This inhe.x;ent man-
sachine eo.ntication ptoblon has caused many frustrations, delays, and'
s0 cnlled- "machine blunders". Becsuse of this, the 'instructing of computers
has been rcl.egatcd to programmers having th‘e sppropriate mental attitude.
In the oarly days eo-puurs were mostly used by higmy trained engineers
mnd sclentists, who cauld sasily adapt themselves wa sathonatical and
sysbolic wiy of commmication. This is no Wr trus, as pro;pocm. users
now intlude_sccountants, doctors, nenagesent ma. Wu, ste., vho do

1}

not ‘havs the Wﬁﬁrﬂﬁﬁﬁ% mummﬂ linguage.
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These users communicate with the machine via application packag-
es. It is therefore crucial that the user-interfaces of packages Accept
a language of communication which is natural for a given profession. The
user-language for most applications is close to ordinary English (Thompson
& Dostert (72)). ‘

To solve the communication problem, the use of natural languages
has been advocated for applicatioﬂs (Halpern (67), Sammet (69)), whereby
a user would be able to define his problem and data to the machine in plain
English, and then ask it to carry out various tasks, with additional infor-
mation supplied as needed. For this reason a great deal of effort has gone
into English sentence parsing and their syntactic structure representation
by computéys. /

In practice, natural-langu:?ge processing efforts have run into
difficulties with semantics, or the difficulty for the machine to get at
the meaning of sentences. Recent effqrts by Dostert (71) and Thompson,
Woods (70), and Winograd (71) have tried ;o overcome the semantics problem.
At this stage thoir‘work remsins at an expearimental level and one may safely
say that it is going to be a long time before general p\:rpc;se natural-
langusge processing systems bhcome practical enough to be used in every
day applications. '

Yet the need for sppliocations software is growing and cannot wait.
A recent survey'by Booz, Allen, and Hamilton (71) of the data comsumications -
spplications for seven major U.S. industries 1ndicftes-cn annual compound
growth rate of sbout 40 % for the first haif of the decade. A good indicater
of sgfmro' needs _i: ﬂ‘\e forecasted number of tordulsn, which would increase
by 600,000 in 1975 over 19‘;1 levels. Similar views have been expressed by
others: Jean Sammet (69) poiwts cut that st the ratlit which hardware and
. M"n ! -
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. . applications are both developing, the programmers may well have to out-

number the people who have problems to solve.

Working under the pressure of time to get more applications
computerired, the implementers may have to impose restrictions on the
format of the user commands in order to ease the. job of t!}e machine
;nd of the programmer, at a/corresponding expense on the part of the
users.lAn example of a user interface, difficult to master, is the

Job Control Language for IBM 360, of which it has been said that "the

language is both complex and demanding of extreme accuracy. Mistakes =
can result in anything from annoyance to near catastrophe in processing"
(Canning (71a , p. 7)). Another example is the STRESS structural analysis
package. A frequent user complaint sbout STRESS ig its rigid and demanding
interface (Pemfe. (66)) . The importance of ease of uge for applications

i
software cannot be overemphasized to assure that a package will be useful

to the largest number of users (Slﬁ-et (69, p. 34), Nelson (73)).

1.2 The implementation problem

Assuming that the commumication problem can be overc;me by
" additional implementation efforts, what is the solution to.the implemen-
tation problem ?
’ One solution would pa to let the users become the implementers
of their own applications, but for that they would need education and
systems with utu_nl-lansuagc processing upcbiliti;s beyond what is '

¢

0 pr:mtly wﬁihbh. h
- W. Another solution, advocated

by Frask (68), Ross (fn. ‘and am. h for the W to rely more
~ow m ﬁnu‘tlw programming tools, which twm& fmplesentation
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job. In practice, this has been the trend over the years. The implementers
rely more and more on general purpose packages to perform those tasks which

are not directly related to the logic of the application. Successively the

programmers have become familiar with the use of different types of pro—

gramming aids :

i) Compilers for problem—oriented languages, which have made the de-
scription of the problem-logic less mlt;hine-dependent.

ii) Operating systems, which have relieved programmers of the details of -
input and output, of interrupts, and in general of machine operating
details.

iii) General-purpose file-management systems (iDS, ASAP, Mark IV), which
have facilitated the task of data-management.

The work presented in this thesis adds another general-purpose
)ptograming aid to those already available. This is in agreement with the

view eipruaed by Halpern (68) :
-~

"The principle by which progress has traditionally been

made in programming technology is that of the replacement
of the special by the general. Programmers discover from
time to time that they have been repeatedly rewriting
substantially the same routine for one job after another ;
when the underlying identity of these several versions be-
comes apparent, a single general routine, needimg nothing
more than suitable parametrization to adapt it to each
particular application, is produced to replace all of them".

From the implementer's point of view, a computerized application
" usually consists of three parts, as shown in Fig. 1-1 : a man-machine inter-
2 A !.co‘, proccluing-lo;ic of the problem, and a file-msnsgesment system.
The prqeucing logic can be ldcqu.tcly described by aigorith-
mic languages such as PL/I, Fortran, Cobol. The logic is so different for
each spplication, that it would m difficult, at this stage, to provide

LR 3
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moxre generalized, yet practical tools to further automate this aspect of

applh‘._g}.ion writing. This does not imply however that no further progress
is desirable for algorithmic languages. Evidently, all advances in pro-

gramming methodology, such as structured, modular, or top-down programe

-ming, help the application programmer to systematize and to improve the

quality and efficiency of his algorithmic activity.
‘ An alternative to the algorithmic approach would be to ask
the user to define his problem and his requirements in a "problem
statement language" PSL and then have a "problem statement analyser"
PSA decompose these and decide on the best method of achieving them.
This is the approach taken by the ISDOS project under D. Teichroew at
the University of Michigan (Hershey et al- (73)) for business information
system applications. »

General purpose modules can be used for the other two components
of an applic.:ation. A number of general-purpose file-manage-ment systems are
already available (ASAP, Mark IV, TDMS). On the other hand, there is little
evidence of generalized man-machine interfaces having been implemented,
specifically designed for application packages (Sammet (72)). In this
research such an interface generator has Peen implemented..

Greater use of generalized programming tools, such as file-
management gystems and user—interfaces will simplify the implementation
job by allowing the programmer to' comcentrate only on the part which is
d_iffctent for each api)lication, namely the processing-logic.

- Ewpirical support for a generalized interface. When analyzing

the total implementation effort for an application pack;ge, the author's

own experience, corroborated by that of other implementers (Homa (70)),
shows that well over 50 % of it will go into implementing input and output

%
3
Y,
i
N



interfaces between the user and the processing-logic proper. The percent-

age is even higher for interactive time-sharing applications. This is
understandable, since it is the quality and success of the man-machine
interface which in the end determines the acceptance of the application
by its intended users. As a result, the implementers spend a great deal
of effort in deciding on the terminology, syntax, and semantics of the
interface, and in programming it.

Since 1965, the author has participated in the development of
several application-aystems, both for batch-processing, and for time-
sharing, e. g. the AMECO (70) structural engineering design system and
the BCS (70) financial portfolio evaluation package. It was observed that
although the terminology a;d the processing-logic for each application
were different, the man-machine interfacing requirements were about the
same. It seemed that it would be poasibie to set up an efficient front-
end, valid for many types of applications, having the same basic struc-

ture, but accommodating different terminologies. This has been now achieved.

1.3 A formal model

The uaer-inteffnce translates user-requests intd calls on appro-
priate procedures and'activates certain parameters. By considering this
translation process in a more formal manner we can show the important steps
-involved therein.

The yodel. Given a user-language L for some agplicagion, with
its associated rules of ;rannlr G, the user U formulates a request r ,
by applying the rules of grnmi: G to produce & sentence I to the

computer d
U (r, 8)"+1

This iupat I 'is processed by the spplication system functiom
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'C and produces results R . The function C may also require some addi-

tional stored file data F ,
cC (I, P) + R

There is a tradeoff between the complexity of C , which repre-
sents the work to be done by the machine, against G , the complexity of
the rules of grammar, which represents the work and memorization to be done
by the user U . From a user's point of view, G should be at the lowest
level of complexity GO g which represents the minimal set of rules ‘and
conventions for U to remember. User experience in this respect is summari-
zed by Sammet (69, p. 32) : "If a language has many specific and strict
rules about spacing and punctuation, there is more of a tendency for error
in writing the program". Nelson et al. (73) report user experience with a
statistical language, STATf’AC, designed "to aid users by relieving them of
all unnecessary blunders". But the package is run on GE computers with a
separate system language "which is quite cryptic ... ukoughly half of the
user problems come from errors in these cards". Software firms have found
it worthwile to develop user interfaces that use "clean, easy to read

language", which is then converted to IBM's JCL. Several of these (JoL,

JCL-OMATIC) are listed in the ICP Software Directory (74).

We decompose the processing function C into three components,
at each step producing some intermediate output, which then becomes input
to the next step. The components of C are \cnlled SYN, SEM, and PR. SIN
is a lexical and -yntadtic recognition function, SEM is a semantic inter-
pretation function, PR is a computationad function. Two storage functions

D and T are also introduced. D is a dictionary of terminology, T is a

N LK e T Mg Sy s e

tamplate of valid processing paremeter names and values defining the con-

tent lo:l: Pﬁ. . - o



The first step is the lexical and syntactic interpretation of -
the input sentence I. The words used in I are recognized and identifigc-l.
An output string A, consisting of a set of atoms (a} is produced by
applying the function SYN to the input stx—-ing I and by making use of D
for the terminology. This is shown as

SYN (I, D) +~ A

The next step is the semantic interpretation of A. Here an
attempt is made by SEM to assign meaning and values to the atoms of A
by matching them with the parameter information in the template T. The
function SEM outputs the set of active parameters P, such that P CT.
This step can be represented as

SEM (A, T) » P

Finau)" the computational function PR is applied to- the para-
meter string P ; it may also use some additional file information F to
produce the results R, i.e.
| PR (P, F) + R

Ne have not specified here how the file data F is obtained;

this could be part of the PR function, but preferably the files are handled ' ‘

by a separate file management package.

To summarize, we have decomposed the formulation and processing
of a user-request r into four logical steps, shown in Table 1-1.

The pfoeossing ﬁnction C 1is equivalent to ;:he successive appli-

cation of SYN, SEM, and PR, i.e.
PR(SBM(SYN(I,D),T),F) + R

10
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TABLE 1-1 FORMULATION AND PROCESSING OF A

USER-REQUEST I
Step Function Responsibility of
1) U (r, G) 1 formulation User
(2) ‘SYN (I, D} + A Recognition Interface
(3) v SEM (A, T) * P Recogni tion Interface
4) PR (P, F) * R Processing Computer

The responsibilities for the steps (1) to (4) of Table 1-1 are
divided between the user U and the computer. The first step, namely the
decision as to what request r to formulate, is clearly the user's respon-
sibility. Likewise the last step, doing the logic, once all the necessary
parameters have been supplied, is a task for the computer.

The relative emphasis on the user or on the nachin:a in steps (2)
and (3) in between may vary considerably as to how much latitude is allowed
in the terminology and the syntax, and how much of the semantic interpreta-
tion should be done by the user. They also vary widely for different appli-
cation systenms, depen’ding on the ability of the implementers to produce a
workable system within a limited time and budget, as well as on the inten-
ded use of the application.

Levels of user-grammars.At the lowest level of user-orientation,

the user has the responsibility of adhering to strict syntai rules, such ds
fixed-field format, rigid delimiter structure, and exact keywor;i spelling
and position in the sentence. He is also responsible for supplying all the
thon each time, in a prescrided sequemcs, with all their attributes.
An example of this spproach is the Job Cantrwl Lenguage for the IBM 360,

which is only understood by experienced systems programmers . (Camning (71a)).

‘The user has to assums the fimctions m i 9B md resiesber the contents

\ .
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of the dictionary and of the template. The rules of grammar corresponding
to this level of stating requests can be denoted by G2 » where

G, = SEM (SYN (I,, D), T)

2’
The user formulates his request r as an input sentence Iz, written

according to the rules of 62 .

U (r, Gz) -+ I2

and then, as before,
PR (I,, F) >R i
. \\
At the highest user-oriented level, the user is free to formulate
a request in almost any way ; an attempt will be made by theﬂsystem to in-
terpret his request in proper context and to supply missing information if
- \
necessary. This corresponds to a GO' level grammar, with as few artificial
rules as possible beyond the grammar rules of natural languages, such as'

Bnglish. Of cours‘e, all the intermediate levels between Go and Gz are\\

possible. n - \\

Granted the desirability to provide the user &ith o tYpe of
grammar rules, it is the' implementer's responsibil to ‘supply the equiva-'

lent of the functions SYN and SEM and of the tables D and T for eacH}
i

!
i
1

spplication system. He has to construct a.processing function PR2 such

that,
U(r, Gy) +I and then PR, (I, F} + R

Pn25(1‘

\
!
Here Plfé is equivalent to C, i.e. . \\\
|

Plece of ULANG in the forwsl model. The interfacing functions SYN
and SBM are basically the same for meny spplications, whereas the processing-
iouc éll is not. The purpose of ULANG°is to tske over the functions of SYN

L 4
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and SEM - to build them into an interface, valid for many types' of

applications. Variability between different applications, or different

procedures of a same application, is provided for by the tables D

and T.

Making ULANG as part of an application-system, the user

expresses his request, as before
A

->

U (r, Go)
this is accepted by the ULANG preprocessor,
ULANG (I) -+
and then, as before
PR (P,F) -~

which gives the equivalenée relation

I

P

R

ULANG (1) ®SEM (SYN (I,D), T)

An electrical analogy. To use an electrical analogy, the

ULANG system can be viewed as a plugboard, or common frame. The user

sees only one side of the board, with labeled switches and buttons

Gbleué:ts of user-language), which he may activate. Each of the switches

and buttons eventually emerges as a socket on the other side of the

board. The implementer works on the other side of the plugboard, where

[&}

he plugs in‘units of processing-logic (procedures). The prc;ngs of

the logic units are analogous to parameters; the implementer is respon-

sible for matching them with the sockets of the board, and also for

labelling the switches and buttons properly on the user's side.

The plugboard remains the same for different applicatioms.
For each application the switches and buttons are relabeled on the
user's side. The implementer ukos up the appropmto logic units and

wots up the prong and socket cotrupondnneo.

The plugboard itself has

13




cértaiﬁ built-in active logic units (ULANG system-functions, e.g. for
\ -
expression processing).

Place of ULANG in system software. It helps to situate

\ :
ULANG within the software levels of a system, as shown in Fig. 1-2.

All prdéessingﬂis eventually done by the hardware at level 0, enhanced
by an operating system at level 1.

A user-program (level 3) generally has access to functions of
levels 0 and 1 via software at level 2, such as compilers and loaders.
A user interacts with the system only at level i, through the data and

commands which the user-program at level 3 accepts (see Fig. 1-2a).

The aim of ULANG is to fac?litate the work at levels 3 and 4,

namely to replace parts of- the user-programs by $tandard modules and to
ease the formulation of user-commands and data (see Fig. 1-2b). 1t is
not meant to be a substitute for an operating system or for a compiler

(level 1 and 2 functions).

1.4 The user-interface: practical aspects

In section 1.1 the communication aspects were eonsidered in
general. Now we focus on specific user-needs and we describe the user-

language implemented and its scope.

1.4.1 OQObservations about user needs

As pointed out by Halpern (67), full English text processing
and understanding capabilities are not needed for most computer appli-
cations, as would bebtho‘casa for, say, language translation. The area
of discourse is 11-1£3a to the framework of the application. Moreover
the user knows thst he is talking to a machine, 30 that he would not
expect to have to use well formed literary sentences. On the contur}.

14
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he has the right to expect to be conciie, since this represents less
effort on his part, even to the point where some of the information of
a request remains implicit (Joyce (72), Weiss (70)). \

What the user does not like, is havi;lg artificial vocabu-

J.Qiy and rigid syntax restrictions imposed on him, which place heavy

’\v.

demands on his memory. He likes/ to use and define his own "active'
language subset, appropriate t,o/the application. That means that the
user has to be able to define his own vocabulary and to make requests
in a reasonably natural way (Balpern (67), Joyce (72)).

r l‘i\e user may expect the machine to "memorize" for him a
certain amount of information about a request, so that if he does not
'supply it explicitly, then the appropriate processing context is
supplied automatically by default. To avoid mce;tainty, the machine
has to /echo b;ck' its explicit interpretation of ﬁw request, if asked
to do so (Joyce (72)5- Jj‘ g

For most applicatgons, the user wants the computer to carry
out for him some activity which he knows to be within its capabilities.
For this, the imperative mode, or the equivalent query mode, are ade-
-quate. The declarative mode can be restricted to combinations of
pr;\;iwsly defined items, as for arithmetic and logical expressions, or
fc;r limits and conditions. The users are not expected to define their
own applications' and data-bases in natural language and then make un-
prodicuble i'equests. lt' is assumed that they will be satisfied with

being able to mske spoc:lfic requasts in a reumbly natural way of an

spplication which has been previou!ly set up by programers (Weiss (70)).

It is further obumd that the lmut number of current ,
mliutim sre of the "M ~-language” ma, where diffonnt acti--

I k23
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vities have to be carried out in a sequence specifized by the user -

requests. The canonical form of all user-requests can be reduced to :

COMMAND, PARAMETERI, PARAHETERZ, ooy PARAHETERn -

t

which agrees vith the conclusion reached by Halpern (68). This does

not mean that the command has to be the first word of a sentence, nor

B

-
that it has to be part of ew.nentg&mf Any generalized interface has

to be able to satisfy the above user-language needs.

1.4.2 The user-language implemented

In this work a user-laﬁguage has been implemented, attempting to
answer the user needs of the previous section, and to demonstrate the scope
of the system. A sentence of this language consists of a command-word, and
of a number of parameters, that are necessary to define the context for
the task specified by the command. Typical parameters could be data-names,
values, expressions, ranges for values, or conditions. The language is des-

cribed in more detail in chapter 3. This user-language is of general
usefulness, since it i; not limited to any single npplication, but is "
valid for a whole range of applicationl. as outlined’in the next section.

Tbe user-language inle-tnced can be used as a éront-ond to h

applications vhere activities have to be performed in sequence. Each

sctivity is’ initiated by a keyword, usually d, followed ‘by data,
or paramsters, which are transmitted to molving' procedures
selacted by the’ co-md These procedurss are either written by the

implementer, or glu provided by the vANe system. Thers is no predefined
vocabulary ; tha hasic tanimlm is- dﬁ!imd by the implemanter when

..‘

the application is &k wp. m«m mﬂm ﬂ& mn owvn synonyms.
WWW%Q& mﬂuﬁium :
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a) An immediate mode, where each request is immediately exe-
cuted. This is most appropriate for an interactive environment.

b) A delayed mode for building up more complex requests. In
this mode all commands are analysed and stored as successive steps in
the Command Table. They would be only executed when the EXECUTE command
is given.

For applications, where the user-requests cannot be reduced to
the'fom COMMAND , PARAHETER,. ooy PARAHETER;
different systax analysers have to be provided. It may even be necessary
for several analysers, of varying capabilities, to co-exist, each handling
a different sublanguage of an application.

Tl;is does not in any way lessen the usefulness of the ULANG con-
cept. The lexical and syntactical analysis modules each account for omly
10 2 of the Frtran statements constituting the ULANG system. The remai-
ning 80 I of the statements make up the modules for data structure
organisation, for‘ input semantics, and. for value-functions. The different
facets of the system are summarized in section 1.5.2 below. The syntax
ml‘yser implemented is described in section 5.4.3. A comparison of ULANG

vith translator writing ‘systems is given in section 2.3.2.

1.4.3 Applicability of the user-language implemented

The type of user-language deséribed in the previous section is
valid for many types of mliutimu.

A very large proportion of all computerized applications
inwilve queries, updating, aud’upox:u from dats-banks of variows kinds.
ULANC is well suited for ﬂhil_a type of applicition, y_‘:;iéulary in an
{ntsractive mods. Nare the terainology ssd m screal date used are

‘o
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diflferent, but the underlying processing and the nature of the requests
are similar., Some e*amples : customer actounts, policyﬁoldet accounts,
n;dical histories ; inventories, skills catalogues, securities positions ;
student records, medical records, accounting records. .

The user-language could also be used for applications which
require a flexible‘user interface, with or without data-banks, as for

parametric studies and simulations for decision making, performance

‘calculatidn studies, optimization studies, cash flow studies, investment

1N

JEsage

policy decisions, engineering design, statistical packages, or systems
for solving numerical and scientific .problems.

) In certain situations there would be little advantage in
using a generalized interface. These include one-time programs, appli-
cations not requiring much interaction with the user (i. e. where the r
amount of input is small, or ;hera there i8 no need for flexible input),‘
and situations where there is not much variation in the possible inter-
action. It is also not suitable for applications where full natural-
language processing capabilities are required, as in language translation, .

I

or in deductive question-answering systems.

1.5 The gumu:ion system : practical aspects

In section 1.2 the implementation \iroblen was discussed in
goneral terms. Now we look at specific needs of the inpleucnteri of
.applicatfion packages and we desctibe the fmcﬂ'fons assumed by the ULANG

implementation system.

.

Fi¥er, v ssmme thet a programesr Ls atfll nesded to set up

’ . +
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an application and to define the types of requests which the users will
be able to make. The programmer is also responsible for providing the
processing'logic for the application, either by coding it,or else by

. assembling the appropriate subroutines from a standard subroutine library.

A study of business application package utilisation in 100
French firms was conducted by a team from the Department of Computer
Science of the University of Montpellier for the French Ministry of
Indu:}ry & Research (Etude (74)). One of their conclusions was that an
application package will be succesful within a company only if it has
the support and cooperation of the programming staff. In fact, the most
succesful packages have been those of the programmer-aid type, such as
automatic flowcharters, or report generators. This conclusion is corro-
borated by an EDP Analyser surve; about application package usage in
44 U.S. firms (Canning (71)). The French study also concluded that the
firms would rather use software, which helps their programmers to imple~-
ment packages, tailor-made to their specific requirements, as opposed to
generalized packages, which require standardisation and modifications in .
their operating procedures.

It will help the implementers to have a programming aid which
relieves them of the details of interfacing the problem logic with the
users and which looks after the lexical and the syntax analysis of user-

"rcqueltn. That task could in theory be alsoc handled by other language-
extension tools, such as macro-processors or compiler-compilers, bdbut,
in practién these are ill suited and rarely, if ever, used for applica-
tion programming (Sammet (72)). They have béen designed to implement
known programming-langusges rather than as a tool for developing new

¢

user-languages.
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Lexical and syntactical handling of input, however, repre-
sents only part of the interfacing job. The other part is semantic
handling, namely assigning of meaning to the tokens (words, numbers,
operators), which make up the input string. The semantic handling is
a matching process of the input tokens with the possible parameters
for the corresponding processing-logic routines. In an English-like
interface this presents a difficult task, since the tokens do not have .
to be in any particular order. Some of the required processing para-
meters may even be omitted on input, in which case default values have
to be found. The validity of the input tokens has to be checked, for
instance to see if numeric values are within allowable ranges. Mode
conversion may also be necéssary.

Few programming tools have been reported which do the input
semantics for application packages in a systematic way. The GIS data
base management system checks the validity ranges of updating infor-
mation against those specifigd with file definitions (GIS (68)).
Recently, in the programming language PASCAL, variables such as integers
can be given certain ranges. However for applications not using GIS or

PASCAL the prograsmmer has to incorporate these tasks as part of his

logic routines, together with default values of parameters, and with

the logic for parameter matching. For most applications, documentation
sbout parameter structures and values is sketchy and any changes in t?e
structure and vnlua%gré difficult to make (Ross (67)).

Froa an overall system point of view, a general framework
would be helpful to the implemen¥sr, to coordinate and to call into
sction the appropriate problem-solving procedures and to transfer infor-
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' . mation between them. Such a central program would be the main-program
of an application, and would look after the branching off to the appro- g
priate processing routines. The programmer could build up the appli- v
cation in a modular way, by adding successive logic modules, corre- 4
sponding to the various user-requests.

In order to be used by implementers, a system has to be
simple enough to use and to understand. The specifications fer setting
up an application and for accessing parameters within the logic proce-
dures writlen by the programmer have to be clear and concise. There is
a certain reluctance among application programmers to use "super-tools'
claiming many capabilities. By experience, such tools are too complex
to understand and to adapt and they require too much of the machine's
resources to be of practical value (Etude 27&), Canning (71b)). %

For reasons of economy, the interface cannot be too denanding
on core memory and processing time. Both of these systems resources are
expensive, gnd moreover all u;or-pmgras compete for them. Usually
programs with high memory and processing time requirements receive a low
priority, which would résult in an unsatisfactory response time for the
users of such an application. This means that the interface cannot be
embedded in a large complex system, but it has to be modular and self-
contained. ’

A serious problem is the transportability of applications
f£yom one machine to another. For organizations which buy computer
services from computer utilities, there is a great variety of compe-
titive services available, and machine independence makes it possible
10 use the service which offers tho’ lowest cost. Por organizatioms

Y




using in-house computers, the transportability problem still exists,
since the average life span of a computer system, before its replace-

ment by another one is less than four years.

1.5.2 The system implemented

In this thesis a pragmatic approach has been taken. A
system has been implemented that is reasonably simple and structured
to begin with, but can be easily modified and extended. A number of

important features are at the disposal of the application programmer:

1) A lexical analyrer, based on finite state automats
techniques. The meaning of input characters isﬂlocalized within one
table and can be easily redefined. The finite state approach permits
the removal or addition of lexical processing states.

2) The vocabulary of the application is kept in a user-
dictionary, which is automatically ¢reated when the application is
defined. The vocabulary can be augmented and synonyms can be added
by simple ULANG system commands. .

3) A syntax analyzer, valid for the user-language described
earlier. For languages with a different syntax, this analyzer can
be modified or replaced. ’ 1

4) An input-semantics module checks, matches and converts
modes of input parameters, .a'nd supplies dofauit values. It sets up
the proper context for processing the user-requests.

5) An underlying data structure for the paraloters,'cnpable
of accommodating various application and data types. A ULANG setup-

langnsge sllows the implementer to easily define this structure.
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6) Table ‘building routines which assemble the active parameters
of a user-request, and functions which transmit their values to problem—
solving procedgtes. The value~functions can be customized by the imple-
menter and their use simplifies the program logic considerably.

7) A .control framework that coordinates the processing sequence
and facilitates the addition of new operations.

The ULANG system was first implemented on the CDC 6600 in FORTRAN
IV, by taking special care to parametrize the system to make it easily
transferable to othér systems. It has proven to be efficient in core
memory (10500 words) and in processing time -~ it costs only one cent to
process an average user-request. Several actual apﬁlication examples are
presented in chapter 6; 'f

The transportability of the ULANG system has been demonstrated
by transferring it to IBM 360 computers. The only changes necessary were
due to differences in internal character representation (BCD vs. EBCDIC),
and in direct—-access prdcedurea. The required changes are well isolated

vifhin a few tables andlaubroutine:.

t




CHAPTER 2 - OTHER SYSTEMS

2. | Other interface systems ‘

%

Since ULANG is designed with the capability of supporting user-
languages that use a subset of English, other systems having user-interfaces
with similar characteristics are surveyed next. Thede include systems
which communicate wich data-files in natural language, and command lang-

uages. ULANG draws on the experience gained with such systems.

Natural language question-answering systems. Systems of this |

type take English sentences as input, subject to various constraints; and ’
attempt to answer questions from a data-base, which is stored in form of |
a list structure. Developments in this area have been reviewed by Simmons
(65, 70). The ambitions of the question—anavering systems are set high,
namely to provide a general framework for atgring, "understanding", and
intelligently retrieving unpredictable information.Their organization is

correspondingly complex ; at this stage they remain as large and slow

Tty S

experimental systems, dependent on LISP for the associative storage needed
for the syntactic and semantic information they use.
In practice, it is difficult to say how well these systems would

»

- perform beyond the very limited areas of discourse and subsets of English

SR g

on wvhich they sre based and which hve been reported in the literature.

The grammir of the language cubn::,cotrcspanda more to the deta structures
chosen than to Buglish. ¥Yor instance the BASEBALL system of Green (63)
.was limited to the description of specific baseball games, and the SIR
system by Raphael (68) was limited to the recognition of s small number

of fauily relationships. The ELIZA program of Weizenbsum (66) imitates

5
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conversation with a psychotherapist. It operates on the basis of rEco%f
. nizing certain keyword patterns.

Although doubts have been expressed by Guilliano (65) and #Lllogg !
(68), as to whether these experimental systems can be generalized to other

applications of significantly different nature, they have nonetheléss

T TT TR TR TR e

proven that a limited English subset ingefface can be succesful gﬁthin

a given application. This fact is used for defining the ULANG inéerface.
Kellogg (68) has developed an on~line data base management

system which, among other things, accepts a less restrictive English

subset than the previous systems. Kellogg has added an important feature :

an anomalous input sentence, lying outgilde of the acceptable English
subset, causes the compiler to construct an appropriate f;edback message
to the user. This makesﬂghe user aware of the current Yimitations of the ’
subset. User feedback is an important aspect of the ULANG interface.

All of the above natural-language systema/have been able to
handle only subsets of English ‘ecau;e of the complexity of the full
grammar and lack of adequate machine representa@ion for it. If an
interface is to be kept reasonably simple, it/has to recognize this
difficulty and content itself with a subsgﬁ of the language, chosen in
a suitable way:this is done for ULANG. ’

More recently, several systems are in thg/experimental stages,
attempting to deal with the fuil couplcxity of the language. Thompson |
(69) and Dontort (71) at Caltech are d-valoping~the REL system to facili-
tate conversational intcru:t% with highly interrelated data-bases,\
used by social cciutiau. /it has powerful Ruglish grammsr facilities,

unittiu inwv“uln }o commindcate with tbc ecqmttr in a fairly
A § -
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natural language. It has its own operating system closely integrated
with 8 single language processor. Woods (70) and Winograd (71) are
focusing their efforts on the representation of the English grammar as
transition networks and as procedures, respectively.

A common characteristic of all the natural-language systems
is that, because of their aims of a high level of‘generality at being
able to accept and store declarative information, they remain rather
complex, list-language embedded systems. Since the user of an average
application has no need to significantly alter the data-base structure,
most of the semantic and data-base organization problems can be avoided and
a much simpler implementation can be achieved, as shown in this work.

Data-base inquiry systems. Interactive data-base inquiry

systems aim at providing a system for creation and maintenance of

master files and an inquiry language for interrogating their contents.

A number of data-base systems are in existence, for instance ASAP (70},

or the inquiry system described by Holland (70). The user-interfaces of -
such systéms are usually natural-language oriented, usable by a clerk

or a manager.

. The type of inquiry sllowed is simple and restricted to operations
on the contents of the master file. Some definitionmal facil'ities are pro-
vided for naming fields and records of the file, or for performing arithmetic
op;rltions on the items of the file, prior to displaying them.

The user-interfsce is an integral part of these systems, and it
has been specifically developed for it. By using a generalized interface,

the implementation of such data-base inquiry systems would be greatly
facilitated. '
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Numerical-problem stating languages. Usef-languages have been

proposed for stating scientific and numerical problems in standard mathe-
matical notation for formulas and equations, and in plain English for
organizational instructions. Examples of such systems are: the MIRFAC
scientific compiler proposed by Gawlik (63), the numerical problem
description languages NAPSS by Rice § Rosen (66), and POSE by Schlesinger
§ Sashkin (67). Such systems have been called "non-procedural" since the
user does not have to specify a method for their solutions, but the system
itself supplies some general purpose method from a subroutine library.

Here again, a generalirzed user-interface could be used, which
the implementer could tie to a numerical method subroutine library or
to a statistical library.

Command-languages for, specific applications. A number of command-

languages have been implemented in specific areas with natural-language
like user-interfaces, such as AMECO (70) for structural engineering, or

Synthesis § Analysis by Samuel (69) for debugging in a time-shared envi-

ronment. .

ULANG could be used for these and other applications to provide
the user-interface. At the same time thi; would speed up.the implementation
process and_would“insure that future grqgfh and changes in the language
can be more easily handled. -

e ’ \

2.2 Other methods of implementation

Presently s number ?f methods exist for implementing application
packages. It is appropriate to compave them .ter the ULANG approach, -
. keeping in mind the place of ULANG in the system softwsre hiernr@hy,

as shown in ?13. 1-2(0). |

»
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Interactive systems. Conversational systems such as APL,

ITF PL/1, or BASIC, may be used to create interactive applications.,

In the same sense any })rograming language can be used to create 2
batch applications. If this approach is taken, then the programmer has

to figure dut and inplement‘ for. each application the interfacing, data

orémizing and context checking, and control functions assumed by ULANG.

Of course, some systems make these tasks easier than others,
=

e.g. APL, nonetheless the logic has to be figured out and tested for o
each application. The principal aim of this work is to avoid this X
continuous duplication of effort. ULANG itself could be coded in any .

of these interactive languages. ‘ . ‘ ’ ‘

System command-languagés. Most of the present operating systems

have command-languages of the form

< command >'< paraml > < param2 > ...
This is also the form of usér-commands. Examples of system command-languages
are the Job Control Language (JCL) for 0S/360 and the Cambridge Monitor
System (CMS) for IBM 360/67 (IBM(69)).

' (o perlits setting up of a series of other CMS commands and then
filing them under a < filename >, which can be subsequently all executed
by simply typing ‘_ "

EXEC < £ilename >, < arguments >
The OMS commands may have symbolic arguments, designated as &1, 82, otc.,
for which the real arqﬁents of the EXEC command are substituted at run-
time. This is somewhat §m1u to the REQUEST mode operation of ULANG,
with input value substitution for the defsult values of the parmt;rs.
Theoretically, it should bs possible to adapt ,ssy,the JCL
command pmosm to luudh new uur-cm for appnmim, oboyinz

,
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éhe same syntax. In practice this is almost never done for several reasons.
If would be extremely difficult for an applications programmer to obtain -
sufficient documentation and familiarity with the operating system modules
in order to be able to incorporate the necessary changes to handle the
additianal commands. Also most installations are extremely Treluctant
in allowing modifications to their operating systems software (level 1)
in a production environment.
‘However, even assuming that these practical difficulties could
be overcome, the language facilities available are far beloﬁ the level
~of flexibility desirable in a user-language. The parameter sequence is
rigid, missing parameters have to be accounted for, and punctuation is ¢
usually critical, It is a well-known fact that joﬁ control languages
are difficult to master and lead to frequent syntax errors. This work
tries to overcome precisely some of these deficiencies. In fact ULAﬁG ‘
could be used to advantage to impl more easily useable system
control-languages than some of the existing ones. _ -
Another diSadvantage of tying an aﬁplication info some control
language processor, such as CMS’, is its reduced mobility. Whereas a level
3 program (see Fig. 1-2) is easily transportable, a level 1 system is

very closely tied to its level O hardware.

Systems using subroutine calls., In some application systems
the user himself 'states his requests in a programming language, say
PORTRAN, ss a series of subroutine calls with predefined arguments, of
the form - * . o ,

WL(MC')(‘II"I),( g2 >,...) ,

An szsmple of such a systsm is_the Investment Am‘iysis Languago\

(IAL) daerihi';y Duytryshak -(72), which has been uudia forecasting




and corporate planning applications. IAL is a FORTRAN subroutine package
’ for Management Science and Financial Analysis,’ to be used by analysts
having knowledge of programming as well as of their ;pecial field.

While this approach may be advantageous to a fairly sophisticated
user who knows programming and who can take advantage of the capabilities
offered through the programming language, it has several disadvantages to
the average, less knowledgeable user. First, he would need to master some

) programming concepts, and to obtain some familiarity Qith the compiler.
Moreover, he would be restricted to a rigid command and parameter struc-
ture, subject to the criticisms given for system command languages.

As Sammet (72) points out, while subroutines undoubtedly serve

a very useful purpose in making additional functional:itapability available,

they are no substitutes for a language. She gives examples of application

PRy

*+ areas, where subroutines for specific tasks had existed for a while, but !
people did not "rush to use the computer" until a language became avai-

lable (Sammet (69, p. 733).

2.3 Systems for lagxggge extension

One of thproblm of computerizing applications is the develop-
ment of specialized ‘anguages'tnilored to particular users. Theoretically,
these lnnguages could be implemented by extending programming languages to

’ lcconnodat:c the special requirements of each application, although no one
seams to be doing this in practice (Sammet (72)). Programming tools, des-—
cribed in the literature, which clainm this capability, are macro—processors,

translator writing systems, and extensible languages.

2.3.1 Magro-processors
‘ Brown (69) defines a macro-processor s "a piscea of software

designed to allow the user to add new facilites of his own design to
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existing software". The purpose of macro-processors is to provide

the programmers with a precompiler, which recognizes certain extensions

to the base-language and replaces them by some previously defined replace-
ment text in the base-language. The modified text, together with por-
tions of intermixed base-language text, becomes input to the base-language
compi ler.

The emphasis of macro-processors is to simplify and to expand the
existing programming facilities, e.g. a shorthand notation for COBOL, or

~r
high-1level loop control statement in assembly language, or mathemafﬁéal func-
tion definition, such as factorial (n).

ULANG is different from macro-processors in that it is not a pre-
compile facility, but rather a run-time preprocessor and controller. Its
emphasis is not on simplifying base-language programming by text replacement,
but rather on providing the run-time procedures with all necessary parameters
and values.

In macro-processors, the macro-definition and macro-call faci-
lities can'beé intermixed and nested within each other, together with base-
language text, which results in a complex system. In ULANG, user-commands
are the equivalent of ucro-callé. These are issued by the end-user of an
application at run-time only. The equivalent 6f macro-definitions for
ULANG is the set-up subsystem, which is used by the implementer only. This
allows the separation of the definition and of the call functions into two
separate and simpler modules.

From the definition point of view, ULANG is different from macro-
processors in that, instead of htvi;lg t;;‘daﬁne replacement instruction text,
th; equivalent of macro "code body™ has to consist of parameter patterns
and their values, which have to be Il"’:ch!d against input supplied by ’he

users at run-time. In otheér words, the emphasis is on data structures

v
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rather than instruction text.

. 2.3.2 Translator writing systems

During the past decade, development of programming languages has
received a great deal of attention, in particular syntax-directed compila-

tion techniques. In order to automate the compiler writer's task, a number

of automatic translator-writing systems (TWS), or compiler-compilers, have
been introduced. The state-of-art of compiler-compilers has been surveyed
by Feldman § Gries (68), and by Cheatham § Standish (70).

Compiler-compilers and ULANG are programming tools with similar
aims : to automate the programmer's job ; in one case the implementation
of programming systems and in the other case the implementation of appli-
cation systems. Similarities can be expected to exist between the two ; . s
these are examined in this section. g

While earlier TWS were constructed in an ad-hoc fashion, lately
the compiler writing task has become more formalized, and it3 different
aspects have been isolated and studied. Some of the concepts used in compiler-
compilers and the lessons learned are valid for other, non-translator, tasks
and for user-languages in particular. Although most compiler-compilers have
been built specifically for programming languages, some systems were designed
at the outset to be general purpose syntax-directed symbol brocessprs, such
as the AED system, described by Ross (67), and the APAREL system of Balzer
& Parber (69).

Compiler-writing can be considered simply as another computer
spplication, consisting of a syntax phase, a semantics phase, and a
processing-logic phase PR. The PR fha_sa is in this case code-generation
for some particular machine. In ULANG the PR phase is to be done by the
. ' implementer, since it iz differsnt for each spplication. On the other hand,

' i€ the spplication is restricted to compiler writing, it is possible to




provide a generalized "semantic-language" for describing code-generation,
compile-time data structures, tables, and optimization. Such a semantic-
language ties in closely with the syntax phase, and distinguishes compiler-
compilers, such as the one of Brooker gt al. (63), or PSL of Feldman (66),
from other syntax-directed symbol processors. This semantic-language ’
makes compiler-compilers unsuitable for non-translator applications.

Lexical analysis. The syntax phase can be broken up into two

parts : a lexical analyser, and a syntax analyser proper. In early systems
the lexical processing had been incorporated as part of the syntactic-
analysis programs. The advantages of separating the two functians have been
pointed out by Johnson et al. (68), amd by Cheatham § Standish (70) ., Expe-
rience has shown that a large portion of time of any symbol processor is
spent in lexical analysis of the input strings. Separating out that function
allows this problem to be attacked more effectively. It also allows the
investigation of lexical properties of languages per se, and the development
of systems for efficient lexical analysis. Separate 1éxica1 recognizers
allow to accept input from different devices (terminals, graphics, voice)
and to produce the same token string for the syntax parser.

ULANG draws on the experience gained with lexical analysers in
translator systems. It has a separate lexical phase, which i$ based on finite
sutomata and makes use of the hardware representation of a character as an
index in a class membership table, as advocated by Cheatham § Standish (70),
and Gries (71).

Some systems, such as AED, have speci_aliz;d languages for speci-
fying regular expressions and class membership of characters. ULANG d;aes
aot have such a meta-language at this stage, but class membership of
characters can be easily accessed and changed difoctly within a table of

the scanner phase. This is less general but more efficient (Lec;me (713)).

A t
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In ULANG, the lexical analysis has been extended by adding a
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post-scan phase, which does a Dictionary lookup for names of the input
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string. This approach allows to look after synonyms, noise-words, spelling

errors, features not essential for programming languages, but important

e A
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to user languages. The post-scan phase could also handle text expansion
and replacement, e.g. the word ALL might be expanded to FROM FIRST TO LAST

BY 1. This is somewhat similar to the macro-processing phase, between the

it .

lexical and syntax phases, of the AED system (Ross (67)).

Syntax analysis. Syntax recognition has been the most extensively

E studied aspect of TWS. One of the characteristics of such systems is
the presence of a meta-language by which the syntax of the language to be
developed, called target-language, can be described. Usually the target-
language description is in a format close to the Backus-Naur Form (BNF).
The BNF-like des;:ription is input into a constructor phase of the compiler-
compiler, which produces either &arsim algorithm in the form of a pro- N
gram to be executed, or else a set of table@which are combined with the
basic parsing routines of the constructor to form the syntax phase for
the target-language processor.

. This approach has the advantage of providing a ready-made syntax
phase for the target-language processor. It also permits exp'erimentation
with the grammar of the proposed target-language and removal of ambiguous
forms. Such features are of considerable interest to user-languages as
well as to programming-languages.

In spite of these advantages automatically constructed syntax
recognizers have not, until recently, enjoyed ¥iderspread popularity,
mostly because of difficulties.in describing the full syntax of the target-

® lenguage (Foldmsn § Gries (68)) snd because of imefficiency.
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Recent advances in formal language theory have permitted effi-
cient parsers, based on deterministic pushdown automata techniques, to be
constructed. DeRemer (71) has devised a method to produce LR parsers of
practical size. Lalonde, Lee, and Horning (71) have built a parser gene-
rator based on these principles. McKeeman, Horning, and Wortman (70) have
implemented the XPL parser generator for simple mixed-strategy precedence
gfammars. Lecarme (72) has described a generator for uniquely invertible
weak precedence grammars.

Since different syntax analysers may be required for different ;
user-languages, it appears advantageous to use a TWS to automatically
generate parsers for them. This may be possible in some cases, but with )
severe restrictions, and at the cost of accepting, what McLure (72) calls,
a "gtiff, prescribed ﬁold".

First, the grammar of the user-language to be parsed must be y
cast in the form required by the TWS, which may be a difficult task in
practice, and requires someone traiﬁed in formal language theory to do it.
Even so, the resulting grammir may be awkward to use, since this seems to
happen even with programming languaées (Aho & Ullman (72)). !

Next, a single parsing strategy is manda“ory for the entire gram—
mar, vhereas it may be better to partition it into amalle; subgrammars, for
which more efficient parsers can be built and then merged (Aho & Ulman (73,
P. 632)). McLure (72) reports that grammar splitting for improved efficiency
is current pucticc: in a number of actual éoapilers. The Automatic Transla-
tion Group at the University of Gremoble have aiso found it more practical
to decompose natural-language grammars into networks of elementary grammars,
each parssble by the parser of the lowest power possible gmmuch& (74))..

‘ The single strategy of the TWS may thus be too pav¢¥£u1 and

-~
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wasteful for cases where finite-automata would suffice, and on the other
hand it may be insufficient for parts of the language that are context-

sensitive. For ULANG, a mixed parsing strategy is also used, based on

S e e R T

finite-state automata for the most part, except for expressions, when
operator-precedence is usﬁd.

Then,usually the TWS uses a "bottom—up" parsing scheme, which
looks for a limited class of primitive tokens, and uses tables to deter-
mine whether or not arrangements of tokens are legal. For many applica-
tions, the tok;ns fit together in a limited number of ways and the most
efficient parsing scheme is "top-down" - having recognized the command,
look for the appropriate parameter values. With top-down parsing, calls
to semantic routines can be made much earlier (Aho & Ullman (73)). Another
disadvantage with bottomup parsing for applications is the difficulty to
vary thg scanning rules as the context varies (Martin & Guertin (73)).

Finally, the newer, more efficient TWS, mentioned above, are
still in the experimental stages and are tied to the systems on which

they were developed. XPL of McKeeman, Horning, and Wortman is destined for

' PL/I like languages on the IBM 360. The TWS of Lecarme (72) requires the
target-language compiler to be implemented in PASCAL.
The current situation of WS with respect to user-languages has

been aptly summarized by Sammet (72) :

"In theory, sny compiler-compiler, meta-compiler or similarly
designated system could used for this purpose. However,
thare is 2 different emphasis in most of those developed to
date. They have been designed primarily to provide an easy .
means of implementing known and widely used languages rather

. than as a tool for the development of new languages with

: uncomon requiremsnts, and their processors. Thus the major
‘ considerations have pertained to efficiency of the resulting
o, ‘ compiler, with an easy way to make minor changes in the
P i o/ syatax". s

i
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Semantic preprocessing. There is no direct equivalent in TWS

to the next phase of ULANG, the semantic preprocessor, which checks the
user-gsupplied input information for validity in a given context, and
r f ' supplies default values if the user has not done so. Thig phas& also ‘
rearranges the input information into the rigid sequence required by the
processing-logic phase PR.
In other syntax—directed symbol processors, such as APAREL,
the programmer simply has access to the raw output of the syntax phase
in the form of strings and some indicators sbout the outcome of the parse.
In the AED system the parsed output is placed into global "plex" structures,
e d

which are data structures whose elements can be links as well as data.

The processing and construction of the plexes are accomplished with macro-

, %

routines.

fﬁ{‘ v 2.3.3 Extensible Languages

= Extensibility means definition of new language facilities in
terms of existing ones. In general, extensions could occur along four
directions : syntax, data types, operations, and control, as defimed by
Wegbreit (71) for the ECL system, now under development. Usually the
extension capabilities are limite to one or two of these ‘aspects. Notley
(71) also remarks that the "cut" at which the extension is to take place,
whether by user or by programmer, is to be noted. For instance in the REL
system, Dostert (71) defines extensibility as the ability of the user to
define terms which modify relationships in the data. It is too early to
say if any of the proposed extensible languages will be implemented and
used for spplications, but “there is not wich evidence of practical systems

Py or significant usage as yor® (Samet (72)).

.



In ULANG, extension of vocabulary can take place at the user
level. Also existing parameters or previously defined expressions can
be combined into new expressions. At the moment, only arithmetic, rela-
tional, and logical operators have been implemented, but others can be

*

added. The LINK and CLASS facilities of the setup language are also

potentially powerful data type extension facilities for the user.

2.4 Criteria for language design .

" piler", which will do text scanning, syntactic analysis, and will allow

Criteria for programming language design have been formulated
by McKeeman (66). Although McKeeman addresses himself to algorithmic lang-
,uages, an extrapolation can be made to ugser—languages.

First, he points out that the major responsibility for -computer
language design should rest with the language user, i.e. the programmer.
This is in agreement with the objectives of this work, namely that the

responsibility for an application-language should rest with the end-user,

~who should define his requirements and his vocabulary jointly with the

implementer.
McKeeman aims to provide a tool, which would reduce the compiler

writer's task to manageable proportions, in his case an "extendable comr-

the progrmr/'to e,bncancrate on translating the ﬁyntax to semantics.
ULANG in turn aims/ to provide a tool which will //feiiuce the application

writer's tu# to gesble proportions, by prc;/vidi-g him with a tool

‘uvﬁl, vis a !;ﬁcml lan; ", more powerful than EULER,

wireh and Wéber ‘(6K). Sitcy the forw of & language is deter

]
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mined by its grammar, Mc Keeman investigates the possibilities of auto-

matically constructing parsers for some classes of deterministic context-—
free grammars, in particular for the (1, 1) and (2, 1), (1, 2) bounded-
coritext grammars of Floyd (63) and of Wirth & Weber (66). He concludes
that", although the grammars are sufficient for describing existing
c;rntext-free languages, the tableg generated are too large for practical

purposes (p. 50).

A compiler generator based on Mc Keeman's work on bounded-
context grammars has been implemented for the IBM 360 and is kinown as
the XPL compiler writing system. It is documented in the book A Compiler
Generator (1970) by McKeeman, Horning, and Wortman. Il should be noted
that XPL was not implemented in the kernel langu;age éroposed in McKeeman's
thesis, but in a dialect of PL/I, and in turn generates PL/I based

languages.

In comparison, the purpose of ULANG is not to devise a new
algorithmic kernel language, but to provide means of using existing
algorithmic languages more effectively. By analogy, a kernel user-

language is defingd, together with some basic operators and functions

for applications.

In conclusion, whereas McKeemsn has defined programming lang-
.uage design criteria, in this thesis criteria for user-language design

hatve been postulated.




CHAPTER 3 - A USER-LANGUAGE

3.1 Intrdduction

In this chapter, the user-language aspects are discussed.

- General guidelines for the formulation of user-requests are given. In
this work, the syntax of a commonly encountered type of language for
specialized applications is presented. The user-requests in this language
are of the form

COMMAND, PARAHETERI, veease g PARAHETER“
The range of applications for a language having this syntax is outlined
in section 1.4.3.
Some examples follow, shoving otﬁer types of application lan-
guages, which have a different syntax :
a) Craphical applications. In the GRAF language, described
by Hurwitz and Citron (675, the statement
K72A(2,1,3) = PLACE(0,1) + PRINT 13,(YY(I), I=1,8)
indicates that the value of point K72A is obtasined by taking each of
the graphic orders PLACE and PRINT in turm. The + sign indicates se-
quencing.
b) D.claratlvc'laugutgcs. A typical statement ?f DATA-TEXT
(67) for social science research might be
VA!(I) « SEX OF SUBJECT (HAL!/P!HAil)
| ¢) A movie scammer language, described by Knowlton (64), has
" statements 1ike TP ANY (B,C,10), (3,A,C) ,(A.E,7),--.
When stating user-requests, rules of formation of syntactic

[

entities on several levels have to be considered. First there is the

"
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lexical level : the meaning of characters, and rules of formation of
words, or tokens. Next, the sentence levelkz the meaning of words and
tokens, and the rules of formation of sentences. Finally there is the
request level, or grouping of sentences into paragraphs.. This is ana*r
logous to rules of grammar in natural-language.

For illustrative purposes, some examples of sentences have
been taken from applications described in chapiter 6. Capital letters
are used for actual examples and for ULANG keywords. To designate
syntactic entities, the usual metalinguistic notation with angular bra-
ckets is used, e.g. <integerd designates any integer.

First, the general characteristics of the implemented user-
language are given, followed by the rules for formation of words, sen-
tences, and requests. A metalinguistic description of the user-language

is presented in Appendix A.
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3.2 General specifications for a user-language

L]

In the language implemented, the user converses in an English
language subset, limited to the framework of his appl‘icati;n. The under-
lying assumptions about la;guage needs have been stated in ‘'section 1.4.1.
The user is to take an active role in stating requests. The input word
order is not important, except for certain keywords. Extraneous words
and prepositions may be used at will to improve the readibility of input.
If deemed de;irable, input spelling mistakes may be 'correct‘ed (this as-
pect is not impleme:ted here). v

The user, in collaboration with the implementer, defines his
own terminology. Synonyms and abbreviations are allowed. As Jean Sammet
points out (69, p. 728), there are‘almost as many ways to say "ADD A TO
B" as there are people capable of saying it. Fach user's terminology is
kept in the user-dictionary, which can be updated at any time. As a side
benefit, this approach permits one to easily adapt the same ap‘plication
to different natural languages, say Franch, or German.

To relieve the user of repetitive and lengthy input specifica-
tions, liberal use is made of default options for the unspecified param ~
eters. A command and its associated parameters remain in effect until
changed by a subsequent command.

As in an incremental compiler, the user-language analyzer ac‘-
_tempts to interpret a string of information érom all available context,
namely the string itself, default values, and previo;u commands. If tl;e
input is still qudccﬂablt or inadequate, additional information may be
requested from the usar in an interactive uyitu. This is similar to
"incremsutal computation”, as defised by Lombardi & Raphael (66).

Although ULANG is not mesnt to be a general problem-solving




system, certain language processing facilities of general usefulness are
provided. These include specifications for conditional execution of com-
mands, restrictions on the range of values of items, use of arithmetic

expressions, and grouping of data-names into classes.

[

3.3 Lexical elements

Characters. The smallest unit of input is the éharacter. For
a given application, the set of characters used will depend on the inter- "
nal organization of the machine (BCD, EBCDIC, ASCII), as well as on the H
symbols available on the keyboard of the terminal device used for input.
Whatever the external form of a character may be, its hardware represen- n
tation is used as an index in a table to obtain the corresponding inter-
nal lexical class. In this way any number of different character repre-
sentations may be handled with appropriate tables.

Atoms. Groups of characters having some meaning are called

tokens, or atoms, similar to the usage established by LISP (62). An atom

consisting of lette}s only is synonymous with "word" in the usual sense,
e.g. PRICE, PRINT, are words, or atoms. ﬁowever “gtom" is more general:
then “wbrd", since it also inéludes numbers, and special-character com-
binations, such ;s NOT =, Atoms may be composed of several characters :
names are composed of lctto;;. and numbers are composed of digits; an

atom may also consist of a single character, such as an arithmetic oper- Y

L4

stor,+ , or *.
Atoms in the inpue striig luaz be separated from each other
watlmtmmww,dm“am, m.m In general, al-
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delimiter synbol,'suéh as a semicolon (;), is encountered. Alternatively,
from graphical, voice, or function-button driven input devices, the input
may be in atomic form already, thus simplifying the job of the scanneg,

Lexical classes. In this implementation, the scanner classi-

fies an input character into one of the following lexical classes: letter,

token-separator, minus sign, operator, digit, decimal-point, string delim-

.iter(quote),label delimiter(colon),end-of-sentence delimiter (semi-colon).

The assembled atoms are in turn assigned to one of the follow-

ing parameter categories:

i) MNumeric constants; integers,.e.g. 37, -150, or decimal num-
- bers, e.g. 123.46, .5, -3.0.

ii) Operators, e.g. +, (, <.
iii) Strings of any available characters, enclosed between
quotes; usually used for names, or identifiers, such as 'XEROX',
iv) Names, consisting of alphabetic characters; these are looked
up in the user-dictionary by the post-scan phase.
v) Line numbers, or labels, that is numbers followed by a colon
). |

Atoms which have been tagged as "names" by the scanner are further clas-

sified by a post—scannbr with the help of the user-dictionary.

- The user-dictionary. The Dictionary contains all the appropri-

ate terminology for an application. The basic vocabulary, compitible with

‘the processing logic, is defined at set-up time. Later, the users may add

mumtmmhmsmm«ma o

T~ There is no inherent nmia; to a given word, its usage is

Mcttykmtyiu catccorxathnmm The word REPORT
could be used as ¢ cowmgiid, as in




as an item-name, as in

PRINT TRANSACTION REPORT;

Words such as FROM, TO may be defined as limit-descriptors as in

DISPLAY STOCKS FROM 'A’' TO 'GM';

However if they have not been defined in t.he Dictionary, they will be
simply ignored.

A Dictionary entry can be defined as belonging to one of the
following basic categories:

1. Item-name, or class-name.

2. Value (descriptive-constant).

3. Command, keyword.

4. Descriptor: of limits, "of conditions,’ marker, etc.

5. Operator: logical, relatlonal arithmetic.

An input-name 1s looked up in the Dictionary and is replaced
by its category designatdon and by a standard keyword. If the input word
is not found in the Dictionary, it is classified as a "noise-word" and is
given the category tero. Noise-words may be used freely to make the input

\lore readable. For instance, if in the sentence
\

DISPLAY THE LATEST MARKET PRICE FOR STOCK 'ABC' ;
only the underlined words are relevant, then it is a;luivslent to the more
concise form

DISPLAY STOCK 'ABC' PRICE ;
Goumlly, mmwhnudusntands tohomonrbou W the
oap-rimd user wants » concise imput.

mm Wtic actions lly be taken for certain noise-words
;wmmwm !nmny. some words may be considered as
W &u, ,' W !u' euuu M :ltm théy have ‘some

with the meaning "produce a report”. Alternatively REPORT could be defined




specific meaning. Examples of user-dictionary entries are given in section
6.1.

Although not done in the present implementation, for some ap-
plications it may be useful to attempt probabilistic matching of input
words with the closest Dictionary entries. This would be useful for rec-
ogniring misspelled and incompletely formed words. For instance, words
such as DIVS, DAVE (misspelled), DVD, could all be recognired to mean
DIVIDENDS, and be replaced by the same standard éntry DIVI.

Text replacement could also be handled via the Dictionary. For
instance, the descriptor. ALL might be replaced by the equivalent expanded

string FROM FIRST TO LAST BY 1.

!
-

3.4 Elements of sentences

The basic atomic components, described above, are fonbined into
syntactic units, or sentences. Sentences are made up of a keyword, usual-
ly a command, and of some other paranete;: necessary for the execution of
the task specified by the keyword.

Thevparaneters may be data-names, values, arithmetic ox Boolean

expressions, limits, or conditions. These elements of sentences will now

be described in more detail.

3.4.1 Keywords

A keyword is defined to be an entry of type 3 in the Dictionary.

It is usually s command-verb. Its primary function is to activate the ap-
propriate processing module. A keyword resains active until its effects are

\

changed by s subswquent keyword. )

A-keyword may sppesr snywhers in the n-entonco.-or not st all,
If it bas been givem in & previtus sentence. Usually the keyword is ac-

7 " ’ -~
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3.4.2 Data-names

Data-names are names of parameters of different types. Item-
names are names which have been entered into category 1 of the Diction-
ary, defined at set-up time, Values of these items are to be found in
data-files, or in the templates, or else they follow the item-name in

the input string. Expression-names are names of arithmetic or Boolean

expressions, defined by the user at run-time. The value of such expres-
sions is evaluated and transmitted to the processing-logic module. Class-
names are names for collections of items. This is a shorthand notation,

which enables the user to refer to several quantities with one name. The

preprocessor expands a class-name into‘its‘individpal components .

3.4.3 Values

In general, there are one or more vglues associated with a data-
name. Values can be of three different types: numeric constants, strings,
and descriptive-constants.

Item-names in a sentence may be followed by values, e.g.

CHANGE PRICE TO 23.5 ; |
which means that the value of the item PRICE is to be set to 23.5. An
item may have multiple values, e.g.

DISPLAY NAMES OF STOCKS ‘A', 'MN' and 'TX' ;
which refers to three vgaues of the item STOCK, namely to.'A’, to 'MN'
and to 'TX'. v

In some cases, where no smbiguity is likely, an item-name may be
implied, s in | '

PRINT ‘GN' PRICE ;

. which Teally means
PRINT STOCK = '@’ PRICE ; o




An item-name may be implied if the item is a required input-
parameter and not an optional one. The implied name is established by the
semantic routine SEMIMPL by considering the value in context with other
atoms in the string, the parameter sequence in the template, and the type
of the value (numeric, alphabetic, of descriptive-constant).

Implied item-names allow for a shorter inputistriné, and may
nn}e it more readable. For instince, let us consider tA; sentence

DESIGN CONCRETE BEAMS ;

Here CONCRETE is descriptive-constant for the item-name MATERIAL which
is implied. To a user this is more regdable and preferable to a more
rigid syntactic form, such as

DESIGN BEAMS, MATERIAL CONCRETE ;
or even

DESIGN BEAMS, MATERIAL =1 ;

where 1 would mean CONCRETE, 2 STEEL, etc..

3.4.4. Qualification of names and subscripting

Multiple values of items may be thought of as entries in a table
of one or more dimensions. Depending on tpe size of the table, it may be
physically an array in core or a data file. A specific value can then be
selected by specifying all the appropriate coordinates, or s;bscripts.
Such a data-name has to be gualified by its subscripts.

As an exsmple, the item PRICE may be considered as a two-
dimensional table, with stock symbols along one dimension, and the time
periods (weeks) along the other, as shown in Fig. 3-1. A unique value
of PRICE is specified as

© PRICE OF STOCK = 4, OF WEEK = 3,
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Figure 3-1. Table of stock prices for N weeks.
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In oxrder to acéess a particular PRICE, the values i and j have to be
known. To insure this, when the application is set up, the implementer
must specify that STOCK and WEEK are required parameters, whenever the
item PRICE is mentioned in a request,

The user does not have to follow any specific syntax in his
request to ﬁdicate that PRICE is a ;ubscripted variable when he wants
to access a particular value of PRICE. The subscripts STOCK and WEEK
may appear anywhwere in the séntence, and in any order. They are re-
cognized by name, and the usual rules for names and values apply. In
this example, the item-name STOCK and the item-name and value of WEEK may
be implied, in which case the default valué of the current week would be
used by USERSEM. Valid requests might be: ‘

DISPLAY PRICE OF 'CH' ;
or FOR STOCK 'CH’, TYPE THE PRICE OF WBEK 2;.

If the commend .

DISPLAY PRICE;
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was given, the user might be asked to supply the stock-symbol, unless it
can be otherwise determined.

Instead of referring to a specific subscript, such as WEEK : 2,
the subscript may be variable, in which case certain rules of syntax must
be followed.

The name of the subscript may be followed by a position-marker,

such as THIS, NEXT, PREVIQUS, optionally modified by a signed integer,
e.g. THIS-2, NEXT + 1, or the name of the subscript may be preceded by the
markers THIS, NEXT, PREVIOUS only. Alternatively, the name of the sub-
script may be preceded by an unsigned integer and followed by a direction-
marker, such as AGO, HENCE. Some examples of variable subcripting are
shown in Table 3-1.

TABLE 3-1 EXAMPLES OF VARIABLE SUBSCRIPTING

Effective value
WEEK NEXT + 1 T +2
WEEK THIS - 5 T -5
THIS WEEK T
| PREVIOUS WEEK T -1
3 WEEKS AGO T -3
2 WEEKS HENCE T +2

Instead of the suggested position-marker THIS to stand for the current
valuo; the user may of eaur;c use othb; synonyms, say T, or I, Before
the subscript can be evaluated, the position-marker must either be given
s . valus, or else s default value is used.

. When using o quMlified ites-name in arithmetic expressions,
the itew-name and the subscript must be sdjscent gnd commected with

L Y
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the keyword OF, as in

DISPLAY = PRICE OF THIS WEEK / PRICE OF PREVIOUS WEEK * 100;
(not implemented at present).

If name qualification is to be used, then the position-markers

and direction-markers have to be entered in the user-dictionary with a

UDICT command.

3.4.5 Limit-loops

Limit~loops are used to indicate the range of validity of the
command for the items specified, e.§.

DISPLAY STOCK PRICES FROM 'ccM' TO 'GM', 'MB', FROM 'X' YO 'Z';
vhich would limit the range of stocks for which prices are to be displayed
for those with stock symbols between 'CCM' and 'GM'H then 'MB' by itself,
and finally those between 'X' and 'Z'.

Another example :

RESTRICT DIAMETER TO MIN 5 MAX 10;
which places minimun and maxiwmum limits for the item called DIAMETER.

Por numeric values, an increment can also be specified, e.g.

FROM -2 TO 75.3 ). § 2.580

3.4.6 Expressions

Arithmetic of Boolesh expressions may be used id a sentence,
fa the general format
<omprumd> = <exprassion>
Exaiple : .
® ‘ nm:mm-mmonm)/m"mm'mh
uish-t{e expression -
. M qimiom ia mw ot s mcuzm section,

o
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Expressions are composed of itemnames and of constants, sepa—
rated by operators and by parentheses. The operators implemented are
given by entries of category 5 in Table 4-1. Boolean expressions are com—
posed of predicates connected by logical operators OR, AND, NOT. A
predicate is a relation consisting of two arithmetic expressions con-
nected by a relational operator, such as GREATER, =, LESS. The complete
syntax for arithmetic and Boolean expressions is given in Appendix A.3.

Expressions are evaluated from left to right in the sequence
implied by the priorities of operators. In Jecreaaing order, the opera-—
tor priorities are : exponentiation, multiplication/division, addition/
subtraction, relational operations (such as =, <, >), logical NOT, lo-

gical AND, logical OR. The implied priorities of operations can be

explicitly modified by the use of parentheses.

3.4.7 Conditions

Conditional sentences are used to make the execution of a com-
mand dependent upon certain relations that must hold, otherwise that
command is skipped, e.g.

PRINT NAME FOR STOCK 'AP' IF PRICE / COST > 1 A DIVS > O; ’

A condition is composed of the keywords IF or WHILE, followed
by a Boolean expression. The Boolean expression is cvalua;od at run -
time, and if it il'ttun then the command is executed, otherwise it is h
skipped.

The WHILE condfition is similar, but it also acts as a limit
based ou sows condition being trus, e.g.

PRINT ALL STOCK PRICES WHILE STOCK IS NOT EQUAL TO 'M’;
which would print all the stock prices wntil the stock 'MW’ was encqun-
tered, st which time the esmmand weuld become insctive.

*
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The end of a condition is recognized in a sentence either by
the final semicolon, by the keywords THEN or DO, or else by the command-
verb, as in

FOR ALL EMPLOYEES; IF SALARY IS LESS THAN # 1500, WRITE REPORT;
If a condition is part of a sentence, then the special name

ULCOND is entered into the special-name section for that sentence.

3.5 Requests

‘ For a given application, the complete specification of a prob-
lem to be solved is a request. For example, in a structural engineering
application, a request may be as simple as to display some information,
or to do some simple calculations, or as complex as to design a complete
building.

If- the request is a simple one, it may consist of a single sen-

. tence, e.g.

TYPE X = PRICE / EARNINGS FOR 'ABX';

The command is executed immediately after the delimiter (;) is
encountered. The control after each command reverts to the user. This
1s called the immediate mode, and is most appropriate for interactive
use. Unless otherwise indicated, this is the normal mbdelof operation.

If the user wishes to formulate more complex requests, he may

enter a delayed request mode. It is signaled by the keyword REQUEST H

followed by ome or more sentences, as needed, to formulate the request.
It is terminated by the keyword EXECUTE;. In this mode the commands are
scanned and analysed but they are not 1iq-dincoly executed. They are
simply stacked for exscution -nbnequuncly: The delayed request mode has
Bot been implemested st the time of writing.




CHAPTER 4 - IMPLEMENTATION OF APPLICATIONS

4.1 Introduction

In this chapter, the ways of using ULANG for the implementa-
tion of application-systems are presented. First, the steps of the im-
plementation procedure are examimed, in the context of the ULANG system.
An example is used to illustrate the implementation procedure and the
resulting templates and user-requests. Additional examples can be found
in chapter 6.

The setup-language is then presented, together with the rea-
sons for the choice of the setup commands. The representation of the data-
structures of the templates, Command Table steps, and user-dictionary is
explained. Finally, the methods for accessing values and other attributes

of parameters from the problem-solving procedutes are given.

= ‘The use of ULANG results in better-defined applications and
avoids misunderstandings between users and implementers. The setup facil-
ities require them to work together right from the early stages to define
the area of discourse of the application and its problem-solving capabil-'
fties. The implementer can immediately concentrate on the problem-solving
aspects, without being sidetracked by user-language specifications, since

a language is already available as part of the ULANG system.

4.2 Implementation steps for an application

. The implementation procedure of an applications package with
the assistance of ULANG can be analysed into several distinct steps, shown
in. Pig. 4-1:

..

-




Define the application
and the user-commands.

Group them into k requests.

Do for all requests
i=1 to k

!

Define parameter template 'l‘i

i with ULSETUP
and

program the logic of procedure PRi

. ‘ Enter template T

Test PRi.
Modify Ti and PR
Joo if necessary.

—=~=~()
- . 3

¢

(N
1 ~

Pigure 4-1. The implementstion procedure for an spplication.

— ¢

. . e “ '
\ . . 1 A . -
PERY TR CRY B “"1'3"‘1:‘41."5;" ’}U‘Y’VJY“ PARUE I ' "
~ oL o

i ‘

[
‘i
AL




1) Firsf there is a planning pg§se, where the scope«of the
application and the needs of the users are examined. From this, the type
and number of user-requests is deternined.‘ A user-request is a certain
probl8a solving activity, that a user may aﬁi the system to carry out.It
is initiated by a command. Each user-request i has to be supported by a
problem-solving procedure PRi' ‘

ii) The next step is to define in more detail the processing
énraueter requirements for each PRi and to define a parameter template 'l'i
correspongingly.

iii) The parameter template '!‘i is entered into the system by

the setup-language. Af the same time the user-dictionary is built-up with‘

the terminology of the application.

iv) The problem-solving procedure PRi is programmed or is

" obtained from a subroutine library.~ The processing parameters are used
directly through special ULANG system functions.
Steps ii) to iv) are repeated for all user-requests.

e
Defining the parameter templates. Each template and its cor-

responding problem-solving procedure PRi is' identified by a keyword. In
addition, each PRi Tequires parameters, some mandatory, some optional.
The implementer has to decide which parameters are required in order to
properly interpret all uSe;-roqQosts.\‘

How this is done, is best illustrated by an example. Additien-
81  examples can be found in chapter 6. Let us consider a financial ap-
plication, besed on some data about securities. Let us assume that # user-
request ccﬁlhu: of predicting the price, earnings, or dividends for a
stock or for an Mséy. by an mrlpol;tin technique, such as regres-
:sion or lovin;»wmﬁl, over a mumber of tiwe-periods. ;

-

!
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The required parameters might be:

i) the entity for which the extrapolation is to be done, either
a stock, or an industry,

ii) the name of the entity, either the stock symbol, or the
name of the indusery,

iii) the item on which the extrapolation is to be done, either
price, earnings, or dividends,

a iv) the method of extrapolation to be used, either regression,
ioving-averages, or exponential-smoothing. It is decided to restrict
‘ exponential-smoothing to di;idends only,

v) the limits on the time-periods to be encompassed in the
extrapolation, namely the first point and the last point.

In this case, s'x parameter classes are required to define the
parameters needed for a PREDICT request. >

Having thus decided on all possible input parameters, the im-
pienentogﬁenters their description into the template PRED by the setu£
.language statelcnt; shown in Fig. 4-2. The resulting contents of the
PRED template are displgyed in Pig. 4-3. The format of the display is
explained in more detail in chapter 6.

The implementer also proceeds te write a procedure which will
carry 6ut the extrapolation, using the aéttxe‘parithers provided by the ,
ULANG 1ntarfacr. To obtain the values of ;hese parameters, he makes use
of certain run-time functions, descridbed in section 4.5. Typical user-
requests are shownu(uaiarlined) in Fig. 4;6. with the corresponding ac-

tive parsmeters and informative warning messages.
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LINK KWD TO ENTITY, METHOD TO LIMITS*2

LINK ENTITY TO C=NAME, ITEM

A
D

DCLASS KWD IS PREDICTS
ENTITY= STOCK, INQDUSTRY
ITEM= PRICE FOR STOCK,EARNINGSs DIVIDENDS

B e anareae e e A

METHCO=(REGRESSION,MOVING~-AVG) FOR (PRICE . EARNINGS)

_METHOD IS EXP=-SMOOTHING FOR DIVIDENDS

CLASS C~NAME= SYMBOL®*A FOR STOCK,NAME®A FOR INGLSTKY

CLASS LIMITS FP,LP

CATEGCRY I=FP,LP}

VALUE FP 1 LL 1 UL 15

VALUE LP 15 LL 1 UL 20
UDICT BEGIN 431 END 432 OPTION 373§

DISPLAY

Figure 4-2. Setup statements for PREDICT command.
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TEMPLATE PRED
= 9 KNWD NPR = 1 S = ENTI g =
M = 15 K PRED IV = 1 ‘
N :
C = & ENTI NPR = 1 S = CNAME 8 = METH
M = 18 D STOC IV = 1
M= 7D INDU IV = 2 . L _
= 1 CNAME NPR = 1§ = B = ITEM '
M = 19 A SYMB IV = 0 FOR STOC
M = 14 A NAME IV = 0 FOR INOU
= 8 JTEM NPR = 1 5= O B=_ . _
M = 16 D PRIC IV = 1 FOR STOC
M= 3D EARN IV s 2
M= 2DDIVI IV=_3
= 12 METH NPR = 1 S = LIMI 8 =
M = 17 D REGR IV = 1 FOR PRIC EARN
M = 13 D MOVIAV IV = 2 FOR PRIC EARN
M= S D EXPSMO IV = 3 FOR DIVI
= 10 LINI NPR = 2 S= 8 =
M= 61FP IV = 0
N = 1 R N S U | 15
M= 11 ILP IVv = @
vV = 15 LL = UL = 20
+299 SEC.
Figure 4-3. Template for PREDICT command.
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OPTIANS FECHO=0UITS

| PRENTCT #ARC#}

ACTIVE PARAMETERS.
CNAME - TYPE VALUE __ MEANING _

SV T PR

KWD K 1 PRED
ENTT c 1 sToC
SYMR A ARC
ITFM c 1 PRIC
METH € ] REGR L
FF 1 1
LP 1 15
E AN TRES TRDTSTRY WARFS¥FIOD=PRORESSTRGE BY EXPSSMOOTH,FROM 3 T0 10| -

FXPSMO USED IN WROMG CONTEXT

ACTIVE PARAMETERS
NAME TYPE VALUE MEANING

RWO K Y PRED
ENTY c 2 INDY
NAMF A FOONpP=PRNCE ~ N
A SSING
ITEM C 2 EARN
METH c 3 EXPSMO
% FP 1 )
LP 1 10

PRFNTCT PRICES FOR STNCKS REGIN zMAL# END #0TL# WITH MOVING-AYG

ACTIVE PARAMETERS ) B
NAME ~ TVPE VALUE MEANING

. 2
._;a?:‘,

. Kwn K 1 PRED o ) !
p ENTT c 1 SToC
, SYuR D FROM o
* A MAL
D TO
A OTL
17’ @ € )} PRIC
METH [o T2 MOVIAV
FP 1 1
LP 1 15

*121 SEC,

Figure 4-4. Typical PREDICT requests and active parameters.




4.3 The setup language

4.3.1 Introduction

In order to make use of the facilities available through ULANG,
the implementer must first set up his application using the subsystem
ULSETUP.

The setup phase consists in defining the contents of‘ two
types of tab’es\: _

a) The basic terminology for the application, to which the
users may later add their own synonyms. This terminology is used to build
up the .pDictionary D. -

b) A template Ti for each procedure PRi ,i=1, 2, ..., k.

In general therc; would be a PRi for each type of user request r,. Each
template Ti has the names, values, and relationships of all the parameters
{p}i, which are necessary to be able to interpfet and to process the re-
quest ..

The implementer is given some basic ULANG commands, which enable him to
do this setup, such as DEFINE, LINK, CLASS, VALUE. These commands are
used when first défining the application, or later, when adding capabil-
ities to it, or modifying it. They should not be confused with user-

commands, which are commands that allow a user to formulate his requests

at run-time.

4.3.2 Relationships between paraseters

There are two ways in which relationships between parameters
can exist:
u - they may posess a common property, in which case they can
’ .’bcgrmpodinmmny,orluble;

r
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- they may posess a hierarchical relatio;?hip, which can be
expressed ‘by a tree structure.
In general, both types of relationships are present, making up a compound
data structure, which has to be built up at set-up time and accessed at
run-time. The data structure has to be retrieval oriented, since that
is by far- the most frequent mode of usage.

An additional requirement is that the parameter structures
should be easily modifiable by the implementer, in o'rder to add new com-
mands, or to change or to add capabilities to an existing command. How-
ever the efficiency in processing ‘time for this activity is of lesser
importance, since it is relatively infrequent as opposed to run-time use
of the parameter structure. R

If two parameters XA and YA are dependent on each other in
some way, in ULANG this dependency is shown by linking together the clas-
ses to which they belong, say CA and CB, by LINK CA TO CB. All relations
between parameters are expressed b); assigning them int? classes and then
by linking these classes together. ’
‘ The parameters are referred to as members of the classes, i.e.
XA is a member of CA and YA is a member of CB. Parameters posessing some
common property, or different alternatives of the same parameter can be
grouped as members XA, XB of the same class CA, by the statement CLASS
CA = XA, XB;.

Unless otherwise specified, the members of a given class are
dependent on all the members of higher classes to which they are linked.
If this is not so, the restriction in dependency can be shown by quali-
fying the member name with FOR<restriction>; e.g.

DCLASS CB = YA POR XA, (YB, YC). FOR XB:
which weans that YA relates to XA only, and YB, YC to XB only.

-
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Each member or parameter posesses a value. FPFor descriptive-
constants this value is only a switch-value, 1, 2, 3, ... representing
the different alternatives. Descriptive-constant classes are identified
by the keyword DCLASS. Por items, the values can be numbers or strings.
To assign the value 17.5 to XA, with lower limit 1, and upper limit 20,
the statement VALUE XA = 17.5, LL = 1, UL = 20; could be used. .

Nithin a template, the classes (also called families), members,
restrictions, and values are represented by F-cells, M-cells, R-cells,
and V-cells, respectively.

Next, the important setup commands are described in more detail,
followed by a description of the template representation in storage. A

complete description of the syntax of setup statements in metalinguistic

BNF notation is given in Appendix A.

4.3.3. LINK

The general purpose of this system command is to define all the
names and hierarchical relations between classes (or families) of parame-
ters. All the possible parameters of a command have to be assigned into
classes, and the hierarchy of classes must be shown with the LINK commands,
of the general form:

LINK<class-name-1> TO0 < class-name-2> [g<npr > ]....

'which indicates that parl-eteis of class-2 are dependent on parameters

of class~1 ,optionally followed by the number of pafifeters required.

The highest class of the hierarchy is the keyword (KWD) class.
It does not have to be specifically mentiomed. Any other class, which is
not explicitly linked to a higher class, is sssumed to be linked directly

to the KWD class.

R .
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One LINK command can show either horizontal or vertical relations

between parameter classes ; for instance the following class structure

AN

can -hbe expressed by the statement
LINK ATOB, C, D, E;
The relation
A—» B =—»=(C > )
can be expressed by
:LINKA'IOB- TCTOD ;

The relation
A

SIN
B C D
N
can be shown by
LINK ATOB, C,DTOE, F;

Given a more complex relation, it can be expressed by several

LINK clauses, e.g. .

—_— AT s
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For reasons of simplicity of input, it was decided not to allow

a general nesting of classes, to any level, with a single LINK clause.

This would require another delimiter, say END, in addition to TO, or else
a parentheses notation as in LISP, which would make the input hard to read.
For example the last structure would become

LINKATO BTOC, DEND, ETO F TOG, H END, END, I ;
or LINK A(B(C,D), E(F(G,H)),I);

Either of these forms is harder to read than the three simple LINK state-
ments above.

Sammet (69, p.406) reports user experience with the LISP yotation:

"It is extremely difficuit to read and write because of the exis-
tence of large number of parentheses and the problem of matching them; as
a result it is extremely error pronme.’

This view is supported by Harrison (70).

To summarize, class relations on the same level (brothers) are
shown by listing their n:unl together, following the TO0. Relations in
depth are ahowﬁ by nesting the TO's. Only one class-name is allowed
between LINK and the first TO,

In addition to the class relations, the LINK statement allows
one to specify the number of required parameters of each.class, shown as
{class-name~2 D#€ipr>> . The indicator énpt) can be an
lnuget.‘ ¢.g; #1, or some <class-name-3 >which has been defined previously.
This means that the number of required parameters of class=~2 has to be
the same as the numbar of parsssters of class-3. If no Cnpr> is specified,

it 1s assumed that one parameter of that class is required.

4.3.4 CLASS

The paramsters making up s given class, vhich has been previousty

+ L !




defined with a LINK statement, are defined by the CLASS and DCLASS commands,
having the following syntax:

CLASS < class-name > = < member-namel > [#<cat>] [FOR <member-

name 2 >]...
or DCLASS < class-name > = < member-namel > [FOR < member-name2 >]... '

Unless otherwise specified, the members of a given class relate
to all the members of higher classes to which they are linked. If this
is not the case, then.the restrictions can be shown by qualifying the
member-name by the keyword FOR followed by the class or member names to
which the restriction applies. A FOR, with a restriction following it,
is assumed to apply to the member preceding the FOR. If the qualification
applies to more than one preceding member, parentheses may be used to in-
dicate the proper grouping.

For example, assume that in the PREDICT request, regression and
moving-averages can only be used for prices and earnings predictions, and
exponential-smoothing only wifh dividends; this is shown as,

DCLASS METHOD = (REGRESSION, MOVING_AVG) FOR (PRICE, EARNINGS),

EXP_SMOOTHING FOR DIVIDENDS;

' The members of ; class can be of three types: commands, descrip-
tive-constants , or item-names. All the members of a given class must
be of the same type. DCLASS identifies descriptive-constant and keyword
classes. Item-names are defined with the ;:LASS command. Items can be

‘integers, floating-point numbers, or strings, corresponding respectively

o

oy

to the optional #<cat> specifications I, F, or A, F is the category by

i

default.

:

4.3.53 VALUE
While commands and descriptive-comstants have no inherent r

’
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value, except as switches, item-names do have actual values which can be
. numeric, or alphabetic. These values are either in soﬁe data-files, acces-
sible through a file-management system, or they are provided by the user
on input, or they can be stored in the V-cells of the template, if the
number of values to be saved in the template is not too large.

To enter the values in the template, the implementer uses the
VALUE clause, having the following form:

VALUE < item-name > [FOR < restriction 5] =<valuel> [LL<value 2> ]

[UL<value 3>]
The item < item-name > must be the name of a previously defined member.
The values can be numbers or strings or else they can be procedure names,
where the values would be computed, looked-up, or otherwise arrived at.
Repetitive specificatjj’n of the same value can be shown by enclosing the
value to be repeated in parentheses and preceding it with a numeric repe-
tition-factor, e.g.

3(150) means 150, 150, 150.

If the user is going to be responsible for providing values of
some items on input, the implementer should provide default values for
these items whenever possible. At the same time validity range for the
input values can be specified by following the value specification with
the keywords LL and UL, for lower limit and upper limit, respectively.
Example:

VALUE WEBEK = 1, LL 1, UL 15;
means that the default value of NEEK is 1, which is also the lower limit;
the upper limit is 15. A user-supplied week is checked to see if it is
& mmber between 1 and 15. If not, & warning message is printed and the
. limiting v;lue is used. If none is supplied by the user, thenl is used.

g
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Instead of being constants, the limits could also be procedure

names, where some more involved lookup or computation could be done to
check if a given value is witkin the acceptable range. This option has
not been implemented in the present version. To restrict values to certain
items only, the names of the qualifier items (grouped within parentheses

if more than one) are given, following the keyword FOR.

4.3.6 Other setup commands

CATEGORY. This command i's used to assign or to reassign cate-
gories to previously defined items. The format of the command is

< cat-spec > = < item-namel >,< item-name2 >, ...
where < cat-spec > is I for integer, F for floating-point, and A for al-
phabetic string. The default category "of an item is F. Cate\‘gories for
individual items can also be specified in the CLASS clause.

Q_B;_lf}_l}l_g. To open a template the command DEFINE <keyword >
is used. If the template < keyword > exists, it is brought in from disk
storage and opened. If the template does not yet exist, it is created.

If anothex" template is open at the time, it is first elosed, before
opening the new template.

DISPLAY is used to Tist all classes of an open template in family-
order, with their members and values. The format of the displayed template
is' described in chapter 6.

DUMP-T is used to dump in numeric form all the subfields of all
the cells of an open template. This command is used primarily for debugging.

The next Ehreo commands can be useful to the implementer as well
as to the users. | ’

- OPTIONS. Intermediate printouts can be activated and deactivated
with this comsand. The following keywords.can be used in conjuction with




OPTIONS: ECHO-IN, ECHO-OUT and DUMP-P.

BCHO-IN is designed to provide an optional echo-print of an input
sentence at the end of the lexical analysis phase. The atom and category
strings are displéyed.

! ECHO-OUT provides a printout of the active parameters in the
C‘T-stg;i aﬁtﬁr the ULANG syntax and semantic analysis phases. The name,
categoryh:‘:nd value are displayed for all active parameters.

DUMP-P is used to dump in numeric form all the subfields of the
active parameter cells: in a CT-step.

By default, all three above options are deactivated. They can
also be specifically deactivated by specifying NOECHO-IN, NOECHO-OUT, or
NODUMP-P,

SYNONYM has the format:

SYNONYM < name > = < synonyml >, <synonym2 > ...

It is used to add synonyms to an existing<name > in the user-dictiomary.

UDICT has the format:

UDICT < namel >, < catl >,< name2 > < cat2 > ...

It is used to enter new words in the user-dictionary. These words are not
entered in any template. Similarily tile DICT commsnd can be used to enter
new words in the setup-dictionary. ’ '

Although it is an important aspect for an appl‘ic;tion system, no
" passwords or other security aspects have been incorporated at this time.
This is an intricate problem, vhich is being studied by others (Conway (72)).
Security has to be provided at di¥ferent levels, from system ndifiut,ion,
dictionary and template updating, to the ability of using differemt user-
commands by different user classes, to different users being able to access
different types of data if a dats-bsuk is part of the application.
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" complex storage structure. This approach allows a data structure to be P

‘structure. However this would remove some of its usefulness and generality

4.4 Representation of parameter structures in storage

4

4.4.1 Lists and rings

Data structures have been expressed as lists, processable by
languages such as LISP (62), if they can be grouped in classes having some
common property and if relations between members of different lists can be
expressed through their c1ass-—’h&der functiotns, Lists can be t;raversed in
one direction.

'l?xis pro;“ed to be insufficient for computer-aided design and
graphic-display applications, where relations between objects of different
classes have to be expressed without passing through the headers. The .
general data structure in such systems is in the form of .1;_1_!_1_&8_,[ where
objects having a common property are placed on a ring, which is essential-

ly a two-way list. Many rings may pass through the same element, which

implies a variable size cell for each element, and consequently a more

entered at any point as well as an unbounded number of relations to be
cxpre;sed between objects. Examples of ring stmcturgd data ofganization
schemes are SKETCHPAD, CORAL, APL at GM Research, and ASP systems. These
have been revicwed by Gray (67).

‘ ‘ 'ﬂu full capabilities of ring-structure systems are not required
in ULANG, because the accessing of parsmeters is carried out in systematic:
way. List processing languages could be used for i-pla-enting the template

from ULANG, since most hns‘talmmu, such as Fortras or Cobol, do mot
support 1ist processiag, and even in PL/1 its use qamm: be generally rec-
ommended, because of the sdditional atou;c and mniu overheads incur-
red, mmmu.pohtusium;mqu'dtm, vhereas one byte

i

.
.
f ! B Al ¥ .
N . N - Te ¢’
A : + :

- « f o ’




%?ﬂﬂﬂnuqul!ll.!-Hlllll!ll!lu-Innl-inuum-iullIllhiln!llllIlIll!lI.-lllllll.......l..lll.l'

.valus-cells (V-cells) snd restrictich-cells (R-cells),

72
pointers are sufficient for the templates. 3
4.4.2 Template organiration %
j0ne of the mwost difficult problems of -implementation has been 1

the struc:}ring of the templates, to satisfy the following criteria:
- ability of accommodating an unpredictable number of classes, ;
members, restrictions, and values, ;
- efficient retrieval of information at run-time,
= compact representation in storage,
~ simplicity of access mechanisms to insure portability and
independence from the peculiarities of any .specific system.
. The key to accessing a class or a member is its name. The class-
names and the member-names are stored together in TNAME. The index of a
name in TNAQE immediately identifies its corresponding F-csll or M-cell a
(see Fig. 4-5). The type of cell is indicated by the TYP subfield of a
ccil.
In this version the names are arranged alphabetically and TNAME is
accessed by binary-search, which insures efficient retrieval at run-time.
An alterhative would be to hash the names. This could be easily done, only
the routines FIND and INSERT would have to be modified.
The F-cells form a one-way list through all the parameter familiesc
The M-cells form tw&-uay lists thfough all the members of a family. Elch\
M-cell points back to its family. There is one list of M-cells for each
F-cell. BEach M%cell in turn ‘'may point to miablo lonéth sublists of

Corresponding to & nams in TNAME there is only ewe F-cell or
u«»u. hut.two uy bs nome or u\nwl R-cells and V-culu. A template
mu m of a wm mum of lmth mn ommam ﬁa B~eolh
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and M-cells, plus a variable-size section of length MAXV, containing the
R-cells and V-cells. All cells are two machine words long and have bet-
ween 2 and 8 subfields. A subfield is either 8 bits long, or else one
machine word long. In this way all cells can be uniformly accessed by
the same functions T and TSET.

A template is built up from both ends. In this way only a single °
area of size MXTCEL has to be reserved to take care of the variable storage
needs for classes, members, restrictions, and values.

Each template is saved on disk, together with T+AME and a KWDNAME
that identifies it. Subsequently the template cgh be reoﬁened with a DEFINE
command and information can be aqpedAto it.

No facilities for modifying or deleting information from a template
have been provided at this time. It has been found simpler to modify the
original setup-language statements and to re-create the template. The crea-
tion of a template ;nd of the user-dictionary, including display of their
contents, takes only between 0.2 and 1.0 cpu-seconds on the CDE 6600.

Examples of template contents can be found with the examples in

chapter 6.

4.4.3 Command Table organisation

éb At Tun-time, a user's input line triggers the consultation of
a template and the creation of a step in the Command-Table CT. Each step
of & request is identified by a LABEL. Each parameter occupies one or

more P-cells within a CT-step.
The P-cells have to satisfy the following criteria:

- rapid creation by merging information from: the user's input
‘ and from s template, k :
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- efficient retrieval of inforn;tion by the problem-solving

proc;.edure PR, during the execution phase,

- compact representation in storage,

- ability of accommodating multiple-values of parameters of

different types,

- ability of accepting previously undefined parameters, such

as expression - names,

- simple mechanisms, for machine independence.

The first requirement implies that no time can be wasted on
parameter positioning in the CT-step. The index of a parameter-name in
TNAME immediately determines its position in the CT-step (see Fig. 4-5).
Each P-cell is two machine words long. One word contains the value of the
parameter, and the other word has type, status and pointer information.
For a single-valued parameter only one P-cell is used. For multiple-
valued parameters, or for strings several words long, as many additional
cells are allocated in the variable P-stack section ;s needed.

To allow for user-defined parameters, not in TNAME, a special-
name section SPNAME is provided. A maximum of MXSPNAM specisl-names are
allowed, 10 by default., To each SPNAME also Eorresponds a P-cell.

In REQUEST mode, the successive CT-steps are save;i on disk.
The informstion kept for each CT-sto.p consists of its identifying KWDNAME
and LABEL, SPNAMES, P-cells, and P-stack, for a maximum of 512 words (in
this implementation). The latest CT-svep remains in core, ready to be used
by the PR procedures. ‘

During the preprocessing phase, one template and one CT-step
are in cors simultaneously, with TNAME being shared between them (see
Fig. 4-8). During the exscution phase, the template is no longer used.

~
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Its space may be used by another CT-step, allowing information transfers
between two CT-steps.

Examples of CT-step contents, for various user-requests, can be
found in chapter 6. The preprocessing and displaying of a user-request

varies between 30 and 45 cpu-msec. or the CDC 6600.

4.4.4 Dictionary organisation

The Dictionary contains the vocabulary used by the users when
formulating requests, The basic terminology of an application is defined
by the implementer, since all class-names, item-names, decriptive-constants
and keywords are automatically entered into the user-dictionary at the same
tine[as the template is being built up. In addition, descriptors and opera-
tors may be entered separately with the UDICT command. A user may add his
own synonyms to the existing terminology with the SYNONYM command (not yet
implemented).

In the current implementation, a dictionary eniry consists of
two machine words. The first word, DNAME, contains the name, reduced ta
standard-form by SPELL. The second word, DCAT, contains the type of the
entry, which is one of the types described in Table 4-1. Additional in-
formation could be added to the segpnd word, for instance some information
about the 1;en if it is in some file, such as pointer to the file, file-
type, position of the item within/a record, etc. In that case, a dictionary-
cell (D-cell) could be accessed in a way similar to the T—celis and P-cells,
‘with D-functibns. X

The user-dictionary /UDICT/ is kept on disk. The setup-dictian-
ary is part of BLOCKDATA CONSET. It has 22 entries, whith have bé¢en defined
in the labeled COMMON /ULDATS/. \
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4.5 Facilities for accessing parameters

The Command-Table steps contain values and other information
of parameters which the application-programmer needs when writing the PR
procedures. This information is wasily accessible within the framework
or the host-language in which the application is coded. In this section

methods are outlined for obtaining this information.

4.5.1 Access to values by global variables

If it is known that all parameters are single-valued and of

known types, and if no special-names or expressions are permitfed, then
only MAXM P-cells are used in a CT-step. The implementer could then
simply include the global data-area /CTSTEP/ in his procedures. The
value of the Ith parameter is at the address PCELL(2*I-1). In this.way
the values of all parameters can be accessed directly from the PR proce-
dures.

The index I of a parameter in the P-cells may be obtained by
displaying the template. It can also be obtained in the PR proceduré\by
calling the integer fuﬁction FINDP as ~

I= FINDé(‘ < param-name > ', STATUS)

STATUS is returned as 1 if the parameter-name was found.
The programmer can EQUIVALENCE the varisbles used in the PR

R

procedures and the parsmeters in PCELL, if he wishes. y

4.5.2 Access to values by value-functions

Access to values by globsl variables permits single-valued
perameters only, and comsequently, & simple user-language. To allow
for s richer user-langusge, the value-functions have been provided.They

dbtain successive values of a multiple-valued parsmeter, or successive

L1
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words of a string. Ranges of parameters and expressions are also handled.
" The value-functions (V-functions) are used in the host language
in the same way as any other function. Their usage in FORTRAN is shown

here.

The V function. This function returns the current value of a

parameter, either a number or one word of a string. V is a one-pafameter
function, V( < param > ), where < param > is either the parameter-name
or its index in the template.

To allow for both integer and real values of parameters, af
alternate entry point IV is provided. The usage of V ané 1V functions
is illustrated in section 6.1.

If a parameter has multipie values, these are stored in P-stack,
and successive references to V obtain them all. Suppose that a user has
specified the following input values for some parameter X:

7, FROM 2 TO 15 BY 3, 27
Successive references to V('X') return the values 7, 2, 5, 8, 11, 14, 27,
BOV to the calling procedure. EOV is a special end-of-value marker, °

similar in concept to an end-of-file marker.

i
To obtain the previous value of a parameter, a special indicator ‘
VPREV is used as argument, e.g.
¥
IF(V('X').EQ.BOV) X = V(VPREV) .
?

. keeps returning 27 after all the values are used up. Similarly the special
indicator VFIRST always returns the first value, e.g. X = V(VFIRS&D;jmnrns )
7, in the abbve example. VPREV and VFIRST do not alter the internal current-
value pointer CV. ﬁey are part of the labeled COMMON /RUNDAT/.

The VM function. To obtain at once all the values of a parameter,

ERETIEE . - R0 R S

or all the words of s string, the W function can be used. If the calling




procedure has reserved an array of N words, then the call to VM(< param >,
< array > ,N) will transfer all the values of < param > to < array > and

VM contains the number of words transferred. For instance, the call to

VM('X', Al, 10) transfers all the values of argument X to the array Al1(10).

The VP function. Upon each reference to the value stack, the

next value is given to the calling procedure, until all values become
exhausted. Internally a pointer keeps track of the current value, CV,
for each parameter.

If it becomes necessary to go through the sequence of values
of a parameter more tgan once, this internal pointir may be reset to a
previous wvalue again by invoking the function VP(< param >,< index >).
For instance, CALL VP('X', 1) will point again to the first value 7 in

the above example, so that the next reference to V('X') returns 7.

The VS function. Sonetl&es the programmer may want to change

the values of a parameter from one of his procedures. This can be done
by the function VS(< param >,< value >). For instance, VS('X', 53)
would change the current value of X to'53. The programmer should be
careful to adjust the current-value pointer with the VP function, prior
to affecting the value.

If a parameter is used in a user-defined arithmetic or Boolean
expression, thg VS function may hive to be used to set its current value
from the program, prior to the evaluation of; the expression.

The VXA and VXB functions. To obtain the values of user-defined
e T :

arithmetic or Boolean expressions, the functions VXA(< index >) and

VXB(< index >) are in\voked, respectively. m SPNAME section is consulted,

and the firu.rnca’id; etc., expression or condition 1s evaluated,
and the value is returned to the calling program.

&
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It is the calling program's responsibility to ascertain that any

parameters used in such expressions have the appropriate values in them.
They may have to be set first by the VS function, described above. The
status of a parameter can be tested to see whether it is used in an ex-
pression by the user.

Other V-functions. It should be noted that the V-functions

described here do by no means exhaust all the possible forms of value-
functions which may prove useful for certain applications. The appli-
cations-programmer can easily extend himself the existing value-functions
provided.

For instance, where the host language permits it, a two-parameter
functioh VL(< param >,< label >) may be implemented, where branch to< label>
would be taken if the values of <param > have become exhausted. This would

eliminate the need for checking the EOV marker status.

4.5.3 Access to other attributes of parameters

Besides values, the programmer may need some additional attributes
of parameters. To obtain additional information about parameters, the index
I of the parameter has to be known first. The index can be obtained by cal-
ling on the integer function FINP as

I = PINDP('< param-name >', STATUS) .

STATUS is returned as 1 if the para-efer was found.

Parameter name. TNAME(I) is the name of a parameter that has '

been defined in a template. SPNAME(I) is the ndme of a parameter defined

by the user at run-time, such as sn oxpgossion«nlll: To access these names,
the global asreas /IBNPL/ and /CISTEP/ luv‘ to be included in the cal-

ling procedures. /‘
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Parameter status. By invoking P(I, STAT) the status of a para-

meter 1 in the current request can be obtained. The meanings of the value
of P returned are as follows:

0 = inactive

1 = active-

2 = used in arithmetic expression

4 = used in Boolean expression .
8 = value of pa{a;éter has been set by the VS function from a

PR procedure.

The status settings are additive .,

Parameter type. By calling on the integer functions P(I,TYP)

and P(I, TYP2) the ujox and minor categories of a parameter ] can be
obtained. The meaning of the TYP and TYP2 subfields is shown in Table
4-1. -

-
4

To obtain the proper values for the subfield indicators STAT,
TYP, TYP2, the labeled COMMON /RUNDAT/ EOV, TYP, NXT, CV, TYP, TYP2, VALUE,
VPREV, VFIRST should be included in the calling procedure.
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TABLE 4-1 DESCRIPTION OF PARAMETER TYPES

Major category Minor category
TYP | ID | Meaning TYP2 Meaning
0 * | undefined 00 .
1 V | name 00 variable, used in expression
10 item-name
20 class-name
30 arithmetic-expression name
31 Boolean-expression name
40 qualifier name
2 C | descriptive-| 00
constant
3 K keyword} 00 to 50} user-command or keyword
command 71 REQUEST
72 EXECUTE
73 OPTIONS
8y Dictionary building commands
9y Setup commands
4 D | descriptor 01 "OF, WITH
11 THIS
12 NEXT, THIS + 1
13 PREVIOUS, THIS - 1
21 HENCE, THIS +<integer >
22 AGO, THIS -< integer >
31 FROM
32 { T0
33 BY
.
41 FIRST
42 LAST
43 ALL, from first to last
50 FOR
1 1r
WHILE
THEN
bo
LL, lower limit indicqtor "
W, upper "
1, inupr category indicator
4 . F, veal category indicator
M category iadicator
. . .
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TABLE 4-1 (continued) DESCRIPTION OF PARAMETER TYPES 83
Major category Minor category
. TYP | ID| Meaning TYP2 Meaning
5 0 operator 10 logical OR
20 logical AND
i 30 logical NOT
41 less than
42 less or equal
43 | equal
44 greater or equal
45 greater than
46 not equal
51 plus
52 minus i
. 61 multiply
62 divide
63 unary minus
64 separation operator
70 exponentiation
80 ), right bracket '1
90 (, left bracket
6 I integer 00
7 F floating-point | 00
number
8 A string Xy x increases by one for each
successive word of the string;
y is the number of characters
in word x
9 L label 00

\
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CHAPTER S - THE ULANG SYSTEM

=

5.1 Introduction

.

This chapter contains a description of the ULANG system in its
current inplementatién, together with a discussion of the pioblens encoun-
tered and the techniques chosen, and of the performance attained. . ‘

In the remainder of this section, the general design goals are
considered. The next section contains an overview of the components of
the system. This is followed by 2 discussion of the. implementation, and
by more detailed descriptions of the preprocessor and of the run-time
modules. Complete source listings of the system are given in Appendix B.

One of the prime goals of this thesis is to make the ULANG system
attractive to the implementers of application systems by providing them with
a powerful programming tool, which will make gpe implementation and the design
of applications much faster and easier. )

s To achieve this,‘the following subordinate design goals were
set: '
- perspicuity, since no programmer will trust a t?ol which he
P cannot understand, | (
- portability, to make applications moré machine independent,
- ofticiency in procouhtj‘ time and storage space,
. - extensidility, to enable 'm iq).lumtor. to substitutwe and to
| C 843 sasily his owtwodules to the system,
- Wm td ﬂiit!y separate the different functions
Mlm in user-request praea»m. This also helps per- ~

A T mwum»mmwum

. e
PR
‘». “M mf o :}},r-.yv:
FEREE
‘ Sy
i




512 Components of the ULANG system

The ULANG system is made up of three separate modules, only one.
of which is active at a given time. ULSETUP is used by the implementer to
set up an appliéation. The pre-processor ULPREP and the run-time module
ULRUN are active in processing user-requests. A brief systems-summary

follows.

jf"zii— The setup module ULSETUP

ne The flow of control and of data at setup-time is shown in Fig.

S-1. The task of ;§§s module is to define or to redefine parameter tem-

ﬂplates and to build up the user-dictiog;ry. The usage of the setup com- (

mands and the organisation of the templates and of the déer-dicfionary

hav; been described in sections 4.3 and 4.4. The complete source program

listings aré\given in Appendix B. “ ’ ~

The setup subsystem consists of severa{ parts:

a) A control procedure ULSETUP.

b) The lexical analysis phase ULSCAN which reads the progranne;'s
input string and assembles it into an atom string.

c) A s;tup—dictionary cantaining the terminology and the keywords
used for building up the templates and the dictionaries.

d) A number of systems procedures, one for ;ach setup cquan?.
Bach procedure does a syntax aﬁ;lysis of the input and takes )
the associated semantic table building actions. The setup

‘m,mius of 'r?gnlu expressions, so that each ﬂanalys'er
s¢ts 1ike a finite automaton, driven by the input-string tokens.

5 The jirincipal setup procedures are the following:

1) W.m.{ mm ~1n\£iwiad & Emlttn‘ and dic‘ttodgriei;
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Programmer's input
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Y |
Setup .
@ —a——] ULSCAN ~—*Pictionary
A H .
L - - ~
3 ’ 1 %ﬂ
. Atom string
, ULSETUP — f - g
k=< peFINE - .
Y ' .
ATy !
3 Y—H-—=* cLass —— - | {
. | ‘ ! \J * ' “
> VALUE - — o t
1 ] ] :
F=a®=] DISPLAY - Template
T
. .. r
- ; T
. ] !
s Control £low UDBUILD Usqr- ‘
— = = Data flow DiCtI‘f"“‘Y

Q

Figure 5-1. :fjet-up data and control flow.
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(i1) CLINK and INSERF form the linkages between classes .
and build the F-cells of the template, ' P
(iii) CLASS and QUALR define’the members of a class with

restrictions; they build the M-cells and R-cells.

..
g et o s eS -
TR T AT S R e e, -

(iv) DVALUE and QUALV build the V-cells.
) DI\SPLAY and DUMPTC are service procedures to display
4  the contents of a template, “
(vi) UDBUILD and INSERX build the user-dictionary. f
(vii) INSERT builds TNAME. N
5.2.2 Run-time operation 4 \ ‘3

The flow of control and of data at run-time is shown in Pig. /

5-2. Two separate phases are involved, the preprocessing phase and the

execution phase.

The preprocessor ULPREP. This phase accepts and analyzes

Sl AR

successive user-requests r, where r . 1,2, ..., N. It consists of:

- the control procedure ULPREP, which calls in turn,

- & procedure INPUT, to get the usez:'s input string I in a buffer,

- the lexical analyser ULSCAN, which scans t};e string I, as'senblos symbols
into tokens, outputs the tokens into an atom string, and looks up names
in the Dictionary,

- the sﬁtu analyser USERCOM, which parses the atom string, transforms
expressions into postfix notttion,’ and builds up the CT-step r,

- the semsntic analyser USERSEM, for user-comsands, which scans the’

template 'rr, supplies missing parsmeters and checks the validity of
user-supplisd pnrh«'ms.

R e A’?J f‘y L4
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by the preprocessor phase.

In the immediate mode, control is passed directly to the
appropriate PR from ULPREP. In the request mode control passes to
& control procedure ULRUﬁt“which has to get the successive steps of
CT and to call on the appropriate PRs to process them.

Included in this phase are value-functions, callable from PR
to obtain or to set values of parameters in CT, and to evaluate arith-

metic and Boolean expressions.

5.2.3 Information flow

The ULANG system i;‘fﬁble-driven. A number of data-tables
exist in the system. Their representation in storage has been discus-
sed in section 4.4. ‘

The interactions among the data tables are shown in Fig. 5-3.
As the implementer is defiﬁing the parameters for the templates, the
parameter-names used are reduced to a standard form by a procedure SPELL
and then entered into the TNAME table and in the Dictionary. Values of
the parameters nre‘enterod into the template. -

When a user 1; making a request, the preprocessor reduces the
nsmes used to the standard form again by SPELL, and then looks them up ., . .
in the Dictiqn:ry. The st;ndard dictionary names are assembled into an
intérmediate string ATOM, which is matched and combined with the template
- information to make up & step of the Command Table CT. Values corresponding
to the parameter-name are obtuinod from T or from the ATOM string and are
also stored in thc CT-step.

At run-time, the PR procedures may access tho paxsmeters in a

cr-stop by using the pursmeter-nawss in standeid form as argusents of the
Vﬂmthm, i elu sanner dumm in section 4,8.,

.
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$.3 ULANG implementation

5.3.1 Choice of programming language

The implementation was dictated by the hardware and software

nvni.lablc, as wvell as considerations of machine independénce and comple- 5
tion within the shortest possible ciim. The system availabls was a CDC
6600 with a batch monitor, assembler, FORTRAN IV and ALGOL compilers.
The ALGOL compiler being rather inefficient and unreliable, a choice
had to be made between FORTRAN and assembly-language of CDC 6600. Por
reasons o£ program readability, portability, and speed 6f impYemenca-
tion, it was decidc'dn to use FORTRA!;I., which is efficient and widely used
on the CDC 6600.

In June 1972 a PASCAL compiler also became available, bwt by
then 501 of the implesmentation vas already completed in PORTRAN. A
subsequent version of ULANG could be iuplmi\tod in PASCAL or i&l PL / I

Translation from a lower—level language such as FORTRAN, to one with more

features such as PASCAL would be sasier than tr{ntlathn in the*other

dil,r-ction.' o

Amother advantage of FOKTRAN is that it still remains the most

videly known language, in spite of its dravbacks. Many _c'sf the applications

which could qh use of ULANG are lihty to be {aplemented in FORTRAN for
soms time to cowe (‘ﬂwlpm (72)), and Prograsmers are more likely to

£y

uss a mutm tool vhich they can rmuy understand.




The different modules are self-contained as much as possible.

The design decisions and internal data structures of one module are
hidden from the other modules. It has been suggested Sy Parnas (71),
that in large systems, connections between modules shauld contain as
little information as possible. In this way changeﬁ in one module
have the least chance of affecting the otﬁbrs. , ) ] N
For indtance, any template information is accessed in a

uniform way as T(i,j), where i is the index of the cell and j is

the indéx“of the subfield within the call. In this implementation

T is a function, but it could also be a two-dimensional array. The

size and order of subfields within a cell is hidden and can be easily . ¢
changed, same as the length of a cell in é;chine words. The index i
“is obtained as the position of the parameter name in TNAME by a func-

tion FIND. Here again the organisation of TNAME is hidden.

Global varisbles are used instead of constants as much as
possible. AI} these variables are grouped into three labeled COMMONS
and they are defined by BLOCf;ATA routines. Blank COMMON has not been
used, so as not to interfere with blank COMMON usage by the user pro-
grams. The value of a global variable can be easily redefined by
simply changing its ddfinitidh in the BLOCKDATA routine. éor inétance,
the machine wor; length, LENALF, is set to 10 characters for the CBC
6600; it can be :i-pri‘iedcfinad as 4 for the IBM 360.

. The labeled Ms are called ULDATI, ULDAT2, and ULDAT3.
. They con:un the 'folmmg ceﬁnqu: '
* 1) ULDAT1 has constants used b9‘¥ho‘ic:nnor module only'
- mmmmoftbmmintw’of lexical
- classes. An incoming chavacter is used as an index

.
L e
g
.
.
¥
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in this table of lexical classes, CHARCL. -
- ‘Word length, LENALF, token length, LENTOK, paddin.g
character, EOL.
~ Identifiers for lexical classes, eo.g. ALPHA is 1, DIGIT
is 6. -
o e
2) ULDAT2 contains constants used by both the pxkﬁ’rocess\q-
and the setup modules:
- Table dimensions that are used in the program for checking
table capacities.
L e - Token category names, e.g. CLNAME is 12.
- 'Field and type identifiers for templates.
3) ULDAT3 defines constdnts used by the setup module only, in
particular the ir;itial setup dictionary and its categories.
of cou.i'se, local variables, used strictly within 'the context of
a’ single ;ui:routiﬁe,-‘lre defined locally, e.g. stack depth and precedence
function values for the arithmetic-expression analyser AEX.
All inputs and outputs are isolated within specific routines
designed for that purpose, for instance display and dump routinesto echo
“print the user's imput lnd computational parameters or to provide dumps
‘of the ATOMs and tunpiutu. Brrors are processed by specific error
tgutinu. At this stqic simple diagnostic, only‘ is printed and the
m.::ml continues, if pongibilo. In an interactive version the
. ervor routine would have to be modified to allow for user interaction
to correct the offending Ltem. .
' Décisions 4in the progrsa logic flow are taken on the basis
of comparisons made between tiw utnz»riu of atoms (integers) rather
than the stoms themselves (cherscter strings).

.
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Comparisons depending on the machine collating sequence of
.\ characters are localised within one subroutine FIND, which in this
version looks up keyword names in the templates and in the Dictionary
by a binary-search method. A simple arithmetic comparison works for
the CDC 6600, but has to be replaced by a logical-compare routine for
the IBM 360. . (

The programming has been done at a generally available FORTRAN
IV level;caxre was taken not to use features unique to the CDC 6600. For
packing and unpacking of words c;nly the logical functions SHIFT, AND,

OR are used. These are available onmost machines, or ‘they can be easily
supplied in assembly language.

Direct access files are used for Dictionary and template
storage. The direct access resd and write statements of the CDC 6600
may have to be modified for other machines,

It has been pointed out by Dijkstra (68a) that statement num-
bers and GOT0Os render a FORTRAN program difficult to understand, if in-
discriminately used. .In this work care has been éaken to systematise
the usage of statement numbers and to structure the programs ?.n such a

way as to minimize the use of GOTOs as much as possible.

Statement nu-bez's have been assigned in a systematic way. They

have been arranged in an ascending sequence. The high-order digit of a

. statement number indicates usu/a,uy a t{roader program segment. It} most
.cases the mmbers also é@rﬁspmd to category d;??iht&m?:‘z.g. 600 series
statements deal with integers.

The programs are structured in such a way as to make the static
structure of the program agree with’the dynamic flow of control at run-

9 time. This makes most of the transfers into forward references. Exceptions

[y
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to this rule are transfers back to the beginning of a loop, e.g.:
) I

NEXTV=< initial-value >
c L0oP ) o
20 NEWPTR = P(NEXTV,NXT)

IF(NBWTR.BQ.Q GOTO 50

NEXTV = NEWPTR

GOTO 20
c PROGRAM SECTION USING NEXTV . '
50 s emee e !

This loop follows a chain of pointers in NEXTV until it finds ong equal
to zero, indicating the last one in the chain. In a language having
* statements of the form
WHILE NEWPTR # 0 DO ...

the statement numbers 20 and S0 of the above example could be eliminated.
. An attempt was made to strike a reasonabde balance gyegarding
the usage of comment statement; to improve pro‘grai readability. A program
becomes unreadable if it is overloaded with comments on every second line,
in the sense that this detracts from following the logic of the progrdm

statements themselves. In this work, brief but meaningful one-line com-

ments are inserted over small program sections of about five statements.

S

5.3.3 Progrsm structuring

(
There is a hierarchical structure between the program modules

in the sense illustrated by Dijkstra (68b); a relation of partial ordering
exists between them. The levels of the hierarchy are shown in Pig. 5-4.

GETCHAR at level 1 obtains characters from the input string and

-
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Pigure 5-4. Hierarchical program structuring.
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categorites them. The scanner ULSCAN uses characters from level 1 and
outputs atoms with their categories. ULSCAN functions on level 2. The
user command analyser USERCOM is on level 4 if templates are used, on
level 3 otherwise. It uses the categorized atoms from level 2 and the
templates to put parameters in PCELLs. Similarly USERSEM is on level
4; it only uses template information. The problem logic modules PR
are on level 6 if the V-functions are used, else on level 5.

The hierarchical tree can be cut off at any level and a new
tree can be started on the old trunk. For instance, the scanner alone
has been sucessfully used in several appliéation; to assemble character
strings into categorized atoms. At a higher leyel, the parameter in-
formation in PCELL can be used via the V-functions, or else it can

be used directly by PR modules of different kinds.

5.3.4 Information structuring

A great deal of thought was given to the problems of information

structuring and machine word length. The CDC 6600 has anunusually long

word of 60 bits. Decisions had to be taken regarding the representation

of the internal structures of the ATOMs and of the templates.

- Atoms. Atoms can con;ain information of three}types: identifiers,

‘mumbers, and character strings.
i) Identifiers can be ften—nnlesyfélass-nnnes, descriptive
constants, keywords, descriptors, or'operutors (classes 1 to 5 of the .

Dictionsry). Each identifier occupies one machine word (maximum of

LENALF characters). A1l identifiers ave left justified within a word
B t *
and the unused positions are padded with the HOL psdding character,which .

is xero for the CDC 6600, .

97
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All identifiers are reduced to a standard form by a procedure

SPELL, which can be easily adapted to different spelling algorithms of
varying complexity according to the needs of a particular applicaiiqg.
In this implementation, SPELL simply takes the first four characters of‘
an input word unless it is a composite word, in wpich case the two first
letters of the next twd input words are also appended, e.g. DIVIDENDS
becomes DIVI and DIVIDEND-RATE becomes DIVIRA.

SPELL can be lodified without difficulty to build identifiers
several machine words long. In that gase the procedure NEXTA which obtains
the next atom has to be modified accordingly. '

ii) Numbers can be integer or real (classes 6 and 7). They are
converted directly to their internal representation by the scanner and
occupy one machine word éach. No double-precision constants have been
implemented in this version, but there is no difficulty in allowing a
number to extend o:;} several machine words.

iii) Strings (class 8) are stored into as many successive machine
words as necessary.

b ZAd

Templates and Command Table steps. The templates and CT-steps _

consist of cells containing each between 2 and 8 subfields. Except for
the subfields containing the actual values of parameters, tﬂe information
“content 6f the other subfields does not exceed B bits (ome byte). Thus
each cell can be contained within two machine words, for most machines
(excepting lini-:ml).

However in languages like FORTRAN, mo provision is made for
addressing subfields within & word, and sllocsting one word per subfield
would be sxtremely muM on atnun In this implementation the
subfields are packed mxua a «n of two mdo 'nny are mund by

i
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a function T(i}j), where i is the index of the cell, and J is the indgp
of a subfield. To set the value of a subfield the routine:TSBT(i,j,J;lue)
is called. Similarly the functions P(i,j) and PSET(i,j,value) are used

" for accessing the cells of the Command-Table.

5.3,5. Core-storage requirements

The core-storage requirements have met the design goal:.‘The
total c;re storage required an the CDC 6600 by the setup and the prepro-
cessor modules is only 10.5 K words each. This includes space for all
tables, buffers, programs, and FORTRAN library routines.

This space requirement could be easily reduced further by prog-
,ram overlays. This can be done because of the hierarchical nature of the
programs, as shown in Fig. 5-4. Only one of the program levels is re-
quired at a t%ye, together with three data tables, through which the levels
communicate. For instance, the syntax analyser phase USERCOM needs only
the atom string /TOKEN/ and a template /TEMPL/ for data input and uses
/CTSTEP/ for output. The coﬁplete data-table requirements for the various
program phases are shown in Table 5-~1. o

This aspect makes the ULANG system particularly interesting to g
small systems having a'liﬁ;tcd amount of core storage. Moreover, t&e table

dimensions can be adjusted, if needed,

5.4 The preprocessor module

In this section the components of the preprocessor phase are

described in more detail. The gereral f¥w of control and of data for

o

the preprocessor is shown in rig. 5-2.
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TABLE 5-1 MAXIMUM STORAGE NEEDS FOR DATA-TABLES ‘:
Data-table Total
Program phase name Words wrds
Lexical analyser { INBUF 80 3136
ULSCAN UDICT 128 N
p TOXEN 128 I~ >
Syntax analyser TOKEN 128 1052 N
USERCOM TEMPL 512 v
CTSTEP 412
Semantic analyser | TEMPL 512 | 924
USERSEM CTSTEP - 412
R - :
- Run-time phase
UN ( E
Inmediat¥ mode TNAME 111 523 . L
CTSTEP 412 '
Delayed mode (2 CT-steps) 1026
Legend:
PO 1 »
» INBUF input buffer
TOKEN atom string
UDICT user-dictionary
TEMNPL . template (includes ‘Q[AME)
CTSTBP Command Table step
mﬁj‘;
«
* i “'

- . PP
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5.4.1 Preprocessor control

ULPREP is the main-program of a ULANG application. It is a small ‘
control procedure, whose‘;grpose is to monitor the flow of control between
the various phases of the preprocessor for each user-request.

In the immediate mode, ULPREP also passes the control to the
processing-logic, to éxecute the request in the CT-step. In the request
mode, ULPREP simply stores the successive CT-steps on disk, until an

EXECUTE command is sensed, at which point control passes to the run-time

control routine ULRUN.

ULPREP first calls TABLOP to ¢pen the userjidictionary and at
the end TABCLO is called to close it.

The remainder of the procedure consists of a loop over all
user-requests. Inside of this loop, fi and ULSCAN are called
to do the lexical analysis of\the inp n ah auxiliary procedure
ULKWD is called, which analyses t ens a template if necessary,
and calls in turn on the appropriate keyword cessing routine. For

user-commands, USERCOM and USERSEM are ¢

5.4.2 Lexical analysis

The lexical analysis phase is separate from the syntax analysis
phase, which makes the system more modular. The advantages of separating
the two have been pointed out by Johnson et al. (68), Gries (71), and others.

The loxical anslysis phase is made up of two parts, INPUT which
reads the input string into an input buffer; and ULSCAN which analyses it.

"INPUT. This procedure obtains the user's imput character string
and its length in a buffer INBUE,

-~

. .
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INPUT is device-dependent. Its logic is different depending

. whether the input cames from cards, tape, paper-tape, Teletype, IBM
2741, or other type of terminal ., In this version, INPUT obains the in-
put simply by a formated FORTRAN READ statement. °

ULSCAN. The task of the scanner is to read successive cha-
racters from INBUF, to classify them into lexical categories, and to
assemble them into tokens, or atoms.

The different internal representation of characters (BCD,
EBCDIC,ASCII) is isolated within the table CHARCL of /ULDAT1/ . When
ULSCAN needs the next.’ input character, it calls on a procedure GETCHAR,
which uses the hardware representation of the character as an index
in CHARCL to obtain 4ts lexical class. In this way it is easy to
change the lexical classes of characters for different applications
and for different machines, by simply changing the table CHARCL.

The scanner fuctions as a deterministic finite state automaton.
Its new stat: is determined by its current state Q, and -the incoming
chracter T fro! the input string. It can be described by a quintuple
(K, VT; M, S'i'ART, Z), where Kk is the set of possible states of this
sutomaton, VT is the input alphabet, START is the start state, Z is the
set of terminal states, and M is a mapping of K x VT into K'of the form
M(Q, T) *R.

The input slphabet VT can be divided into & number of lexical
clus&s, to be chosen by the implementer. At least one state of the
automaton ' has to-correspond to each lexical class. In practice, the
number of lexical classes is 1imited. In this implementation the fol-

lowing lexical classss have besn defined:
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e ALPHA, letters to be used for names
) . SEPAR, ‘separators, for use with compound names or as special |
. -, |
- operators |

DASH, sign of a negative number, or subtract operator
OPER, an operator
DIGIT, digits to ﬁorm integer or real numbers
. DBCiM, decimal point, }ndicat;s a real number
_ QUOTE, delimiter for strings
’ COLON, delimiter for labels
‘ TERMIN, end of sentence indicator -
| ‘ IGNORE, any other character, not defined else;hére.
If for some applic;tion all of these categories are not needed, then the
corresponding states can be removed from tﬁe scanner.
The state transi@ion diagram of the scanner is shown in Fig.
5-5. The scanner remains in the START stdate while IGNORE characters
are being encountered. Terminal states are shown by double lines. The
number inside the double-lined circle has the same meaning as the TYP
subfield for a parameter, shown in Table 4-1. )
| Sa‘antic actions assqciated with a state are shown by rectangles
with the name of the procedure called to perform ;he action. In the case
of a name, the SPByg.procednre is called to reduce the nase to some stan-
dard form, and the AFTSCAN procedure is called to assign a type to the
name. ‘
For every terminal state (except the EOS state) a token is
output to the ATOM string, with its type in CAT. Wae scamner then re-
tur:u'toq'the START state, ready to build the next ato;. State EOS signals

] the end of the input string, which terminstes the lexical analysis.
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The finite automata approach allows one to design the scanner
as a set of modular units, where each unit is associated with a node. The
logic of the scanner is simplified in this way, since at each node it is

only necessary to test for the input characters which are legal at that

point.

AFTSCAN. In order to arrive at a final state for the scanner

-state NAME, a semantic procedure AFTSCAN is called (see Fig. 5-5), which

looks up the name in the user-dictionary, UDICT. The final state depends
then on the dic;tionary category DCAT.

A NAME which is not found in the Dictionary is of type O,
and is considered to be a noise-word. A synonym is replacdﬂy the

main Dictionary entry. - If NAME is a keyword, and no keyword has been

~

encountered yet, then it is placed in position 2 of the ATOM string.
Pro:e‘ntly the user-dictionary is organised alphabetically and
it is accessed by the procedure FIND, which uses a binary-search method ;

to locate a name.

5.4.3 Syntax analysis

_ CAT strings from the lexical analysis phase. These atoms c;;nstitute the

" at frem the ATON string to the Cl-step.

, The input to the syntax analysis phase consists of ATOM and

terminal alphsbet for syntax snalysis.

_ The syntax snalysis phase can be made up of a number of inde-
pendent Mnm,' which nkn it easy to change them and to adapt them
to different 'uws? The task of each syntax analyser is to parse the
atom string, according to some rules of gromsar, Imd) at appropriate points
tie - in with sementic routines to transfer the information being looked

¥
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The auxiliary control-procedure ULKWD determines’ from the
keyword type in CAT(2) which syntax analyser procedure is to be activated.
Nithin the same application there may be different kinds of user-commands,
each based on a different grammar, and each requiring a different analy-
ser. Categories 300 to 350 have been reserved for various types of user-
commands (see Table 4-1).. Besides user-commands, there may also be VULANG
system-commands, such as REQUEST, EXECUTE, etc.

| At present, one type of user-syntax analyser has been imple-
mented, called USERCOM, based on the rules of grammar described in
chapter 3 and in Appendix A. USERCOM and its auxiliary routines are
briefly described next. Complete source listings are presented in Ap-
pendix B. ) .

USERCOM. The main objective of the parser is to parse the
sent®nce in a single pass from left to right, without more than one
symbol lookahead and without backing up. Other objectives are simplicity
and perspicuity. .

The user-language, as deflr;ed in Chapter 3 and in Appendix A,
iends itself to a division into two parts, and each part can be analysed
by a different method: | .

1) for lrithne;ic; and Boolean expressions, operator precedence
functions and a pushdown stack,

2) for the rest, simple finite-state recognizers, without
recursion. '
| The r';cotnizu' is shown in Pig. 5-6, in the form of a transition-
diagram, as do!inodﬂ'by Comway (65). The omly difference is that there is |
. 0o recursion involved. The syntax of the langusge can be easily followed

from the di;sru. Bach sdge coumécting two nodes lsbelled with & terminal




R

Pigure 5-6. State transition diagram for USERCOM 107
E
usercom f;? ;
300 *
eos 4
1800 000 Exit ‘j
- > _i
— :
Itname 110
- INSERP QUAL
110
-
clname 180 )
Lo SEMCLA @ REPEAT; )\
1200 \%/ 590 5
'fnuh
! StLINE I ApPENP >
5 700
800
lg ' 140 > :
430 |LLM
descon,
kwd 200 >-
.V »
200500 | INSERP -
descﬂ.ptor m : -

400 S .

>
318
gla
'
=
' oo
"
PO R ™ . W TS Y

o o Q:
430 SEMIMPL . j
P\

er  feon\
)




Lo 4 m‘ g

Rl

symbol (ATOM) corresponds to a state~transit%ion and acceptance of that
‘ symbol. The iircles represent states in the program. The single-framed
rectangles are calls to semantic actions. Double-framed rectangles in-
voke other finite-state recogniters, AEX, BEX, LIM, QUAL, or REPEAT. The
numbers in the circles and rectangles correspond to statement numbers

-

in the program.

R W

Tie-in with semantics. In order to extract all the information

from the atom string in a single p:ss”, tie-in with semantics takes place
on each edge of the graph and involves transfer of information to the
P-cells. .

Fhen it is known or suspected that a parameter P is encountered
for the first time,) INSERP is called. It activates the status of P in

PCELL. To store a value of P, APPENP is invoked. SEMCLA expands a class-

e TR

name into a string of item-names. The expansion is zmndled by EXPAND.
SEMIMPL attempts to connect a numeric or string value (types

6, 7, 8) with an item-name which is not present in the input string.

This is done by looking at all classes in turn, in family order, starting

from the .currently active class. If the number of required parameters

of a class F has not yet been reached, and the type of a member M of F

agrees with the type of the input value, then M is taken as ‘the parameter

to which the value belomngs.

LIM, QUA‘L, REPEAT. These are finite-state recognizers, shown
by transition-diagrams in Pig. 5-7. Each recognizer analy;es a portion
of the input strin‘*. LIM parses limit ranges of the type FROM a TO b
BY ¢, QUAL analyses name qualification, specified by OF. REPEAT expands
a strinz of values, _encloied in parentheses and preceded by an integer
. repetition factor. EXPAND is called to do the expansion.

1
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Pigure 5-7. State transition diagrams for LIM, QUAL, REPEAT 109
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AEX and BEX. These are entry points to the arithmetic and
Boolean expression parser, which uses a different method of syntax

analysis from the finite-state recognirers, used elsewhere.

AEX is called when a "noise-word" atom (TYP = 0) followed .

by an equal sign is encountered. The noise;word is taken as the name
of a user-defined expression, and is entered into SPNAME. BEX is the
entry point for user-defined conditions, starting with the keywords IF,
WHILE.

For expi'essions, it is sufficient to represent the precedence
relations between operators by precedence functions f(X) and g(X),
given in Table 5-2. Floyd has shown that if pregeden;e functions £(X)
and g(Y) caﬁ bé found for two operators X and Y, then if f(X) = g(Y),
this also implies that X S Y.

For an ;)perator, the second digit of CAT is the index for the
precedence function table, so that there is no lookup time involved. The
precedence function table only requires 24 entries, instead ;Jf 144 which
would be reéquired for the full precedepce matrix.

The précedence algorithm for fursing expressions has been
described and flowcharted by Floyd (63) and by Gries (71, p.130).

» An incoming symbol is assigned an index R for g(R). In.

o

the Euo‘pf operators, R is the second digit of CAT. Names and values

are terminal symbols VT, (R = 11). The end of the expression is signaled

by & spociai EOS marker (R = 10). If g(R) < £(S) for the top stack-
sysbol S, then the incoming symbol is stacked, otherwise the head of the
prime-phrase is found in the stack, and the prime-phrase is reduced to
a non-terminal symbol VN, (R = 12). .

Certain Semantic actimm are perfomd at the time of this

y .
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TABLE 5-2 OPERATOR PRECEDENCE FUNCTIONS

-
CAT | Meaning Index X | £(X) g(X)
A
510 | logical &{‘ 1 5 4 o
520 | logical AND 2 7 6
| 530 | logical NOT 3 7 8
540 | relational operator 4 9 8
550 | add/subtract operator 5 11 10 |
4
$60 | multiply/divide operator 6 13 12
570 | exponentiation 7 13 14
580 | right bracket ) - 8 15 3
/
$90 | left bracket ( 9 3 14
EOS matker 10 2 0 ' %
L, »
110 | item-name vi| 1 16 16 | ‘
130 | arithmetic expr. name
131 | Boolean expr. name .
600 | integer
700 | real .
800 | string
non-terminal symbol VN 12 1 1
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reduction, namely a Polish string is being built-up in P-stack by

APPENP. For item- names, the index of the 'item in TNAME is stored in
the value subfield of the P-stack cell. At run-time this index is

used to obdtain an actual value for the item before evaluatiﬁg the

expression.

5.4.4 Semantic analysis of user-commands

At the end of the syﬁtax analysis phase, all the information
from the user's input string has been transferred to.the P-cells. The
next step is to check if the information supplied is valid and fforeover
to provide default values from the template for those parameters for

which the user has not done so.

This checking is done in a single pass through the template,
-
by visiting all the classes in "family order". First, the values of the

active members M of a class F are checked for validity and if more para-
meters are required, then the inactive ;enbers of F are consulted. This
work is carried out by a procedure USERSEM, shown in Fig. 5-8.

. Inside the loop over the active M-cells (labels 200 to 500),
Mis che&ked first to see if it odkht to be active in the present context.
If M's presence is conditional upon other members of hig?er classes, this

i

is indicated by thé R-cells. If one of the members pointed to by the R-

" cells is active, then M may be aijive as well. This is why the "family

e s

~

order” is important.

For items, values may exist in the V-cells. A value of M is

, .
acceptable if it has no restrictfgns, or if a restriction is active. If

St BV sy

the user has not sqppliod an input value for M, then a default value is
obtained and inserted into the P-cell by APPENP. If the user has supplied
values, they axe cheeked by PBOUNDS ., flowcharted in Fig. S-9. (\_J S
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PBOUNDS checks and converts, if necessary, the modes of all inpat
values to that of the M-cell in the template. The input values are also
chpcked to see if they fall within the lower an upper limits, if specified.

At this point, further processing extensions may be incorporated.
Specific procedures might be called to perform some more complex checking,
or to obtain values form a .data-bank, for instance.

At the end of the active M-cell loop, a check is made to.see if
the number of user-supplied parameters satisfies the parameter requirements
for execution (label 620). If such is not the case, then a loop is entered
over all the inactive M:cells of F (label 650). Again, dependencies on
higher classes are checked before obtaining a default value for an M, which
is inserted into the P-cells by INSERP.

At the end of USERSEM, all the processing parameters have been

obtained and checked, and the current CT-step is ready for execution.

5.5 The run-time module

»

Run-time control. The flow of control and of data at execution

time is shown in Fig. 5-1. In the immediate mode, each CT-step is imme-
diately executed directly under the control\of\ULPREP. In the request
mode, all CT-steps are stored on disk, until the EXECUTE command is sensed.
Control then switches to a control procedure ULRUN, responsible for'h;ing-
ing in the successivé CT-steps and Qfssing the control on to the proce-

dures specified by the KNDNAME of each step.

Value-functions. The purposgﬂgf the value-functions is to set
or te return successive values of parameters to & calling procedure PR,
Usage of the value-functions has been discussed in section 4.5.2 and is
11lustrated in Chapter 6. - S

+

Mo

iymrrg W v w .y . N4 # As, M - v - mm e Ate et g

g i

i

FEEPPR T o
[ 3 L s St




The logic of the value-functions is straight forward. The
function V calls on two auxiliary functions, on FINDP to find the index
in TNAME of an argument ARG, and on VLIM to expand limit-loops of the
type FROM & TO b BY ¢, VXA and VXB evaluate arithmetic and Boolean
expressions. ,

During the implementation of value-functions.three problems
had to be resolved: conversion of values to appropriate modes, effi-
ciency of value retrieval, and serial reasability.

\\ Modes. In order to be able to return both a reﬁl and an integer
value to the same calling program, two entry points V and 1V have'been
provided. Strings are considered as integers. The V-function itself
considers all values as integers, so that no mode conversions are neces-
sary internally. '

In VLIM, where values have to be incremented and tested, separate

coding is necessary for integer and for real arithmetic. For strings and

descriptive-constants no incrementing or testing is done, only the lower

117

‘1imit is returned, followed by the upper limit, folloved by the EOV marker.

In VXA, separate co&ing would also be required for real and for
integer expressions. For now, all integers are converted to real mode
and floating-point arithmetic is used .throughout. '

Value retrieval efficiency. If the index I of an argument ARG
is known; its va}uo can be lllediately obt;ined, otherwise FINDP has to

find the. index firdt. ARG is saved in s local variable ARGPR so that

successive cslls to the same ARG do not require tﬁis lobkup more than

once.

The £irst call to VIIN with an ARG Tequires the initialisation
of the 1imits LIV M,)m?,;w of the incfemeat INC. It has to be -

3, 4

(PR

R
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checked that if ULV > LLV then INC is positive, and if ULV < LLV
then INC is negative. This initialisation is bypassed for subsequenf

calls to VLIM with the same ARG. The current value of the limit-loop
) - »

is kept in LLV. At each reference it is incremented, tested against

ULV; and stored.

Serial reusability. The value-functions are serially. rensable,'

since several arguments may be referencedin random order from different

places in the calling procedures. All information pertinent to an argument

has to be kept in P-cells, The current value subfield CV of PCELL(I) is
used to point to the current value of ARG. After yeturning a value, the
next value pointer is stored in CV. ¢

To effect serial reusability, a switcﬂxlﬁéYES is needed for
each limit-loop. INIYéS = ] means that this loop has been accessed

before, and the current value of LLV is reloaded, instead of the orig-
inal lower limit as specified by the user. ULV and INC have to be
‘reinitialised also. '

Of course, the complexity of the run-time module is directiy:
related to the user-language capabilities. ﬁor a si-éle language,
allowing only a single value per parameter, no V-functions are needed,
since JCYSYEP/ can be directly included in the PR procedures. For a
language where limit-loops are not sllowed there would be no need:for
VLIN. Similarly if no user-expressions are to be handled, then VXA
and VXB are not required. On the other hand, more c&plox languages
requirortxt-nizgns to the value-functions developed here.
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5.6 ULANG performance.

4

The performance of the ULANG system can be evaluated on the
basis of several criteria, such as iwplementation effort for an appli-
cation, efficiency in processing of user-requests, and portability
of the system.

In order to have a basis of comparison, a ;ubsystem of a
large scale application was redonme with ULANG. The application chosen
vas thg AMECO (70) Structural Design System for concrete structures.
The AMECO system contains over 20,000 FORTRAN statements -- it is
comparable in size and in complexity to software systems for which
implementation efforts have been evaluated by'others. AMECO has a
flexible command language, described by Palejs & Freibergs (73), and
user=command analysis and interpretation is an important aspect of
the system. .

The nppucation'comilts' of several subsystems, of which
the horizontal member analyui; subsystem was selected, consisting of
3000 FORTRAN statements. The lexical analyzer and two command analysis
procedures were redons with ULANG. The lexical amly‘ur was chosen,
because it -wu);ot sufficiently flexible nor efficient, and it wvas
difficult to ‘transport it to amother system. The two analysis proce-
dures wers chosen because thay were becoming too large and unvicldy.'
They are subject !.0 pcriﬁic chtatu and ddit{onl, and had proven
to be difficule to fapleisint sod to uinuiu. Five prograsmers hm
contributed m the did mﬁu of the programe st various times, .u

_with uumm mgzmu. or M8, 484 having at least four
yoars 0! mu- or .ammiw-m mﬁn« ,
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'

To describe the command syntax, the following metalinguistic
n;:ta:fon is introduced:

= braces indicate a choice; only one item must be chosen
among the alternatives pteu‘nted.f . .

- brackets also indicate a choice, but omne or more of the

nlte’rmtivclmy be chosen,

= items enclosed in parentheses are optional, that }0 one
or none may be selected, . . s

- a + sign after a closing bracket or parenthesis indicates
that one or more repetitions of the enclosed items are allowed,

7

= upper case indicates actual item—names, whereas lower
case indicates values of items.

an of the commands specifies design parameters.. Its syntax
is as follows:

use [duign purmtars] ;

‘The different design parameters are presented in Fig. 5-10. The other

command specifies horizontal member geometry and properties. It follows

-

the syntax:
BEAM rark

’ SLAB mark! TO wmark2
WALL

(X ( xft (x-in) wmark-x )‘ )} (labeled dat;) :
The labeled data are shown in Fig. 5-i1.

‘ W It {s- reasonsble to take the number’

of soures tuw as & mm- of the iuplmutioa effort. Studies

s

m«mmem mm»&rm (64) and by Wein-
mm;mm;&wuummu—

R

(span—-ft). (span—in)
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cope { act §70)
71

NBC (60
65
70
§usc 6n P

MIL (68)

TOR §65
67

NYC (68)
/

CONCRETE | fe'
WEIGHT
DENSITY
STEEL fy [Ps1
KS1
STIRRUP-FY fy
COVER cv
STRESS-FACTOR fr
DU-RAT&O r
_ TRUSSED-BARS
STRAICHT~BARS

LL~REDUCTION r

i.l. “ PEY
Gor
m. . .
_ WIDTE bf (bi)
» P8, o (ef)
- b gf :
00 at  (ad)

WSD
usp

PSI
KS1
wt

w

)

)

E
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¥
FLOOR-WIDTH bf  (bi) - "
SLAB ¢
RIGIDITY g
' :|LEFT gl
RIGHT rg2
o
FRAME ACCURACY .} .
ITERATIONS  {|
CONSTRUCTION  (SIMULATION)
R .
o ™ +
SUBGRADE k ( COLS |mk )
FROM mka THROUGH mkb
VERTICAL , kv
| ROTATIONAL  kr
o ]
FOOTING ~‘| x ~
ﬁE;TM x] >
(EDIM Yy
kX & 7
KY k
FORMULA n
;FFY r . , J

Figure 3-10 (continued). Design parameters for USE command.
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® C WEB b () "
FLANGE bfl  (tfl)
Reqd! =

RIGIDITY rg

LEFT  rgi : ;
RIGHT rg2
DUMMY 1
THICKNESS b ‘

WIDTH bf  (bi)

DEPTH ¢
FLOOR-THICKNESS  t
FLOOR-WIDTH u. ) ) ,
FLOOR-DL > NS ul 5
FLOOR-LL s w2

~

DL load specifications

LL load specifications

Figure S-1). Labelaed data for BEAM/SLAB/WALL command.
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Effort = constant x (number of instructions) 1.5

The exponent 1.5 is introduced by increased communications problems
between implementers for large systems. This data is confirmed by
F. ;, Brooks Jr. (74), ex—manager of IBM 360 software production. J
Brooks also summarizes data on programmer productivity from five sour-
ces, stated in "debugged' statements per man-year. An iﬁpottant result
of these studies is that productiyity stays constant in terms of
source ltatcn;ntl, whether Assembler, Fortran, PL/I, or Cobol, at
about 2200 to 2400 statements per year.

Programmer productivity can be thgn increased by as much
as five times vhen a high-level language is used, since each line

' expands into 3 to 5 words of assembly code. Cooke (74) further re-

ports experimental evidence showing that another productivity factor
of at least two can be obtained over Fortran and Algol by using a
suitable problem-oriented language. An article by Boehm (73) mentions
tvo more studies on software productivity, which come to similar con-
clusions. Halstead (735 also points out that economies may be realiz-
ed by using higher-level languages (tgln the current languages of
Yortran or Algol type), if the given class of applications represents
a non-trivial programming work lgad. ‘

In Table 3=3, the number of programming statements in the
old version is compared with the corresponding ULANG version, for
the modules investigated in this work. The saving in prograsming
effort may be estimated as (1165/470)' % = (2.5)""3 = 4, 1.4, 1¢
takes four times less progu'uh{g effort to produce the same sofr®
vare with ULANG. On the basis of programmer productivity data, one
might say that the saving of 695 statements represents 3 1/2 man-

months of effort.
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TABLE 5-3 COMPARISON OF NUMBER OF PROGRAMMING STATEMENTS

Module name 0ld ULANG Saving
version | version

Lexical analyzer

Portran sta. 230 50 } 280
Assembler sta. 100 -

USE command
Fortran sta. 550 224 } 300

ULANG setup sta. - 26

BEAM/SLAB/WALL command

Fortran sta. 285 154 } 115
ULANG setup sta. - 16
TOTAL 1165 470 695

Another advantage of the reduced program length is increased
perspicuity. In Fig. 3-13 two program sections petforuigg the same
task are exhibited, namely the setting of RIGIDITY LEFT and RIGIDI-
TY RIGHT for the global variables CONSTS(1) and CONSTS(2), respecti-
vely. The parameter syntax is shown in Fig. 5-10. The value can be
between 0 and 1. The cowmplexity of the old program version (Fig. 5-13a)
is largely dus to checking order of words, cheking range of values,
obtaining the next word of the input and determining its type and
vn%gs. In the ULANG version (Fig. 5-13b) most of these tasks have

]
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. - - SUBJECT TO UNITS*#0, MODIFIER®Q  T==== = 'j’_.:".“f-*““ -

CLA‘S KkD I35 USE ) "i_'»ﬁfééf”:7‘fft3:?:'“u'm-_
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" “SUEJECT=SUBGRADE, VER T ICAL,ROTATION, FOOTIRG, XDIM, YDIM - -

- T=SUBJECT=FRAME,_ ACCURACY.rlTERATIUNS, CCNSTRUCTIUN,_STIRRUP-FY

S SUBJECT= KX7 KV, FORMULA, Xv ::;'t:*“_“—::fj‘;i ‘

“ncuss*rmt-mnf_ IS [ACIyNBC,MTL,RYC,TOR,UBGY FIR CODE — -~~~ ==~

P e e - [

—tuss—mumm 15 YEARH CFORSCODE. = osm o =& ===~ T

“DCLASS _UNITS= _{WSD,USD) FOR CODE, fPSFgKﬁfI_fPR_}DE}EE}ﬁA S

=== UNITS= [PSI,KSI) FOR {STIRRUP~FY,CONCRETE, STEEL) T
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“VALUE WEIGHT=150_LLIN=50 ULIM=350_- :jjizzzﬁg;?_:gﬁgg;:f’“é???“"

?VFE§E7EBVER=1.5 LLIM=0s5 ULIM=3

-
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. !_gurg_ 3~-12. &) Setup statements for USE command.
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o Bl

L4,

ZLINK KWL YO MKA TO MKB*0 TO SHAPE YO BSPAN*TC .TRANS*0 TO LABEL*O 16

S e HODIF*O
-CLASS KWD IS BM,SLAB, WALL ' e

R B
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=TI 15 R TR ST e e e e

" |=CUASS.LABEL= WED, FLANGE, REQD:_ RIGI, LEFT,=RIGHT, DUMMY, THICKNESS
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)
|
l
|
t
i
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:;,_»?AIEE‘ MARK LLIM IOI\ULIM 3015 .- ‘_::E_::ij;*ti—.zfim_:—:——:? -

ZE=_=TKRU LLIM 101 uu?rsms.- N Tl

_"VALUE RIGICITY Ut ULTH=1. T L iiERsmcTameeeeamee e e

3o P CLT*I"O ULTA=L. . o= e s

I Te LLIN=0 DU, S T e

. A _
Figure 5-12 (continued). b) Setup statements for BEAM/SLAB/WALL command.
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Figure 5-~12 (continued). ¢) User-dictionary for AMECO commands.
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Figure 5-13 (continued). b) ULANG version for setting

RIGIDITY.




already been done by the preprocessor ULPREP, according to the defini-
tions from the template USE (FPig. 5—12a). ’
The increased gain in program simplicity helps to avoid
programming errors and to make additions and modifications simpler.
For instance, in analysing the old version of the program for steel

strength specifications, an error in the existing program logic was

discovered, vhich had crept in because of the complexity of the logic.

Run-time efficiency. The old lexical analysis module, al-

though using IEM Assembly language subroutines to improve fegister
usage, wvas judged to balincfficicnt, hard to comprehend and to change,
and difficult to tr}naler to another system. The ULANG scanner module
was substituted in its place, with a 50 statement interface to trans-
fer ULANG tokens to AMECO tokc?s. The performance of the two scanners
vas compared on the IBM 360 to; 206 typical AMECO commands, taken

from the AMECO User's Manual (;0). The following results were obtained:

= old version 8.34 sec.

- = ULANG version . 2,96 sec.

- base time for reading and printing .
of cards, without scanning 2.82 sec.

The lexical ‘aulyph times are 5.352 sec. vs. 0.14 sec., giving an
improvement factor of 5.52/0.14 = 39.4.

‘ To check the commend analysis timing, the lexical analysis
effect was tiut:olininnd by nsi;g the ULANG scanmer for both, ’the
old,and the ULANC versions. Since the USE and BEAM/SLAB/WALL cowmands
are smbedded ,m other commands, their effect is difficult to iso-
late. The total runaing tiwes obtained for a sample, consisting of

-
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10 examples from the AMECO User's Manusl, were comparable (20 sec. vs.
15 sec.), as expected .

The execution times were also measured for the ULANG
examples of Chapter 6. On the CDC 6600 it takes between 25 and 45

msec of CPU time to validate and to analyse an input command, to supply

AR e AR wiea® LAk Ak R 1

missing parameters from tﬁe template, to build up a CT~step and to

display or to execute it. The corresponding cost is batween 0.5 and
0.75 cents per command.

This low cost confirms the validity of the principle u;ed
in the design of ULANG: never to look up the same information twice.
" This principle has been adhered to at all levels. T

The hardware representation of input characters is used
directly as an index in the CHARCL table to assign lexical categories
to characters. The input character string itself is scanned only once +
by the scanner ULSCAN, which functions as a deterministic finite-state
automaton. The nyntnx analyser Ui&pCOH in turn makes only a single

’plll over the catcgori:ed atom string, output by the scanner. Tie-in
vith semantics occurs at appropriate points by calls to the semantic
routines INSERP and APPENP, which build up the CT-step. At the end
of the scan over the atom string, all the user supplied intoﬁution
has baen extracted and transfered to the CT-step.

The semantic analyser usznm makes one pass over the classes
of the template. If the minimum mumber of parameters of a ¢lass has
been supplieg: by the user, then th‘%u parameters are checked for con=
ahtomxg ‘ » and converted the appropriate mode if necessary.

If the user has not supplied all the required parmmeters, then default

®
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values are taken from the template and inserted into the CT-step.
To summarize, a user's input line is processed in one pass
over the character string, one pass over the atom string, and one

pass through thé template.

Portability. As mentined above, the old lexical analyser
of AMECO vgt' hardly transferable to the CDC 6600, because it was re-
lying ¢n /the IBM 380 character sequence (special characters before
l;ttcrs), vhereas it is the reverse for CDC 6600. Also the special
IBM 360 Assembler routines had to be li-llltld on the CDC 6600.

As a result, the scanning time was increased by a factor of two over
the IBM version. )

On the other hand, the ULANC version of the scanner was
easily tunsferui from CDC 6600 to IBM 360.-0n1y one table, CHARCL,

defining the lexical classes of characters had to be redefined, to-

gether with a few constants from /ULDAT1/ , such as word length and

padding character. Among the procedures, only basic character handling

routines, such as logileal OR, AND, shifting, and word packing rou-
tines GET and PUT, had to be replaced to account for the differences
between 6-bit and 8-bit. code.

The vhole ULANG system, developed on the CDC 6600, vas
transfersd to the IEM 36? by doin; the lexical changes just indi-
cated, pl\tl’ changes in the diroet-mcegao statenents, vhichf are loca-
u-_-a in table opening and c_lo-ing routines, and in template opening
and closing rowtines. N

-




5.7 Treatment of user-errors

Several options are open for treating errors in user-re-
quests. One choice has been made in the present version of ULANG, but
-odification- to suit each application would be normally required.
Errors can be detected and corrected at different levels. The various
error considerations are discussed in this section.

A basic premise to keep in mind, is that the context and
the area of discourse of a gchn application is limited, as discussed
in section }.4.1. The user works with a predefined vocabulary, which
-is entered into the user-dictionary at setup time (see for instance
Fig. 5-12¢ for the vocabulary of the two AMECO commands). Any ambigui-
ties and conflicts of usage are detected and g}ininuted at setup tim?.
If a user subsequently tries to add lynonyns,wconflicting with prior

definitions, this is also detected.

-

5.7.1 Standardization of names -

In order to make matching possible with dictionnr; entries
snd with problem-solving procedure variables, all names have to be
standardized according to some rule (see Fig. 5-3). In the present
vor.iéﬁ all names are truncated to a length of 4, except for compound
names, mainly because this has been defined as an acceptable practice
for the AMECO lapgungc (Palejs & Freibergs (73)). In the eight years
of AMECO usags, wﬂ‘cn-glaintn have bsen voiced by users about this
feature. Brevity i.o a duinblc featura,. for experienced users (Joyce
(72)), and it is eo-nnly used in command languages for on-line text
editing. )
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If at the setup time of an application it turns out that
unavoidable ambiguity may arise, e.g. for DIVI DE and DIVI_DEND, then
the standard length can be increased to 6 or to 8, as necessary (t}:o
eliminate the ambiguity. This is done by redefining the value of the
parameter LENTOK in /ULDATI/.

Alternatively, some other method of standardization might
be used. A plausible scheme, used in some applicitions (BCS (70)),
is to eliminate vowels, except at the beginning of a word, i.e. one
would obtain DVD and DVDND for the words above. It suffices to change

the subroutine SPELL of the scanner to compare the current character

agai:;st a list of letters to be eliminated.

5.7.2 Correction of spelling errors

In the present work no spelling error correction is attempted,
this being a somewhat controversial topic. It may be envisaged to do
probabilistic matching of names with user-dictionary entries, so that
if no exact match has been obtained, then the closest matching neigh-—
bouring entry is taken, provided that the match reaches some prede-
finail level, say 80X. To do such matching, a aco;ing function has to
be added to th’c AFTSCAN mt&c of the scanner.

Ba“:m PL/C exparience at Cornell University, Morgan (70a)
reports that over 80X of all spelling errors fall into one of four
classes of single error:

. = one letter wrong,’

- one letter missing,

¢

~ an sxtra lettar inserted,
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- two adjacent letters transposed.

L SRt

He also provides a detailed algorithm and an IBM 360 Assembler pro-

—ra

cedure for correcting these errors. As an alternate approach to pro-
babilistic matching, Morgap's spelling algorithm could be called in i

-

AFTSCAN. -

$.7.3 Discarding of superfluous words

Different attitudes may be adopted regarding superfluous
words from the user's input sentence. Such words may be kept or dis-

carded at the lexical, syntactical, or semantical level.

Lexical analysis level. Three possibilities are open: N
&) Any unrecognized word is rejected and a user-error is

indicated. This usually terminates the processing of the request.

» R

b) Certain words may be specifically designated to be ig-
nored. In ULANG this is done by giving such words the category zerq )2
in the dictionary. .

c¢) If a word is not marked to be specifically discarded, and///
e

if after all standardization and/or spelling correction treatments

. /s
it still remains unrecognizable, then a choice has to be nade,/uﬁether

to

i) ‘keep it for further processing, //'
ii) discard f%, and wvarn the user nbous/iéz

e

"




137

The ULANG system option ECHO-IN permits the user to obtain
feedback of his input, i.e. the words in standard form, with categories
attached. As an alternative, the original, non-standardized word could
be displayed.

Syntax analysis level. Unrecognized words at the lexical --

level (category zero), may be useful in certain contexts at the syn-
tax analysis level. In the present version of ULKNG, the user-command

syntax analyser USERCOM discards such words, except in the case of

«R'r

arithmetic expressions, when the name preceding‘the = sign is taken
as the name of the axpression. As an alternative, a message could, be
printed at this point.

For some commands, such words may have a local meaning
(Notley (71)). Calls on special procedures can then be inserted.

On the other hand, simply because a vord is recognized at
the lexical level, say as being an integer, does not guarantee that
it is used correctly, from the point of view of syntax and of seman-
tics. For instance, in ULANG item-names may be implied under certain
conditions, as discussed in section 3.4.3. If the implied item—name
routine SEMRMPL camnot associate a name with a value, then an error

message is printed.

$.7.4 Rejection of user-supplied values

Another reason for a user-supplied value to get rejected,
{s that it may be outside of the allova$1¢ range, as defined at setup
tima. For instance, in the AMECO USE command, a RIGIDITY specification

has to be within the range 0 to 1.



R

The range limitation may be a result of the nature of the
application or of the computing equipment used. All calculating ma-
chines have a limited word length, so that numbers can be represented
up to a certain magnitude and precision. For a pocket calculator this
limit may be 8 digits, or 108, whereas for the IBM 360 this limit is
l075. Thus, in example 6.1, factorials may have to be limited to 11!
for a pocket calculator and to about 70! for the IBM 360. This is
illustrated in Fig. 6-2, where in the setup statements for the CALCU-
LATE command, input values for factorials are limited between ! and
10 == of course, the upper limit UL could have been specified as 70
for the IBM 360.

Yet another reason for rejecting a user's input value is
that it is not used in the appropriate context. Within a given
application, the usage of certain parameters may bé conditional upon
the presence of others. In the example of chapter 4, it was specified
that the method of exponential smoothing be used for projecting divi-
dends only (Fig. 4-2). If tﬂe user forgets this, he gets warned about
it. The procesliné may be terminated at this point, or it may be
carried out regardless, at the implementer's choice.

Thc‘vnluc ranges and processing contexts of parameters are
defined at setup time, and they have to be made known to the users,
or better yet, defined in conjunction with the users. The important -
point is that error checks of this type, if not done by the ULANG

interface, have to be incorporated into the logic of the application,

- resulting in rather intricate logic, as illustrated in Fig. 5-12a.

The a&vantagé of ULANG is to separate out such verification functions

in the interface, and to provide them sutomatically.

ri:,;‘;h
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In a truly interactive version of ULANG, which)aue to the :
" equipment availasle,could not be implemented as yet, the user may be
permitted to interrogate the ranges of validity anﬁ the processing
contexts, and possibly override them.
- Boehm (73) stresses the importance of vali§ation—oriented
languages, which require the programmer "to specify such items as
allowable limits on variables:hinadmilsible states and relations bet-

ween variables", for increased software productivity.

5.7.5 Default values P

" ULANG will supply default values for mandatory processing
parameters, if asked to do so at setup time. If no default values
have been set-up, and the usér has not provided all the neéecessary
values either, then an error indication is given.

The system option ECHO-OUT permits the user to display
l;d to check all the active parameters an& their values for his re-

quest before execution. From this he can clearly tell how his reqﬁe-t

has been interpreted, what, if anything, has been deleted, and what
» I

!

has been added by default. )

/
|
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CHAPTER 6 - SPECIFIC APPLICATION EXAMPLES

L 2
In the previous chapters the various aspects of ULANG haye been

described from the usgr's as well as from the programmer's points of view
without the restriction to any specific application. The range of appli-
cations for which ULANG would be useful was outlined in section 1.4.3,
In general, it benefits applic;tions requiring a flexible user-interface,
where activities have to be performed in a certain sequence and where

!

each user-request can be reduced to the canonical form < command >,

< parameter, >, ...,< paramet:ern >.

1
In this chapter the use of ULANG is illustrated on three specit;ic
applications, in order to provide 2 more integrated view of the concept.
.The examples chosen are somewhat simplistic for illustrative purposes,
and a«s such, they do not represent an exhaustive view of all the capa-
bilities or advantages of ULANG. Only one type of user-request is shown
in each example in order to avoid repetition and to keep the illustrations
simple,
First, the scope of each example is described.Thls is followed
by some typical user-requests. Then the parameter structure is discussed.
The corresponding ULANG setup statements and the resulting femplate contents
are show:. Finally, the active pﬁraleters in CTSTEP are examined for a few
requests and, in the case of two examples, the FORTRAN source statements
of the problem-solving procedure are given, illustrating the usage of ,,;
ULANG run-time facilities. ‘ k
The format of displays for templates needs more explanation. It
consists of one line for each class, member, and value. All classes are

+

listed in family-order. Below each clia;s sre listed the members of that

[a]
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class. Below each member its values may be listed, in turn.
Format of a class-name line:;

C = < index > < class-namel > NPR = < integer > S =<class- B = < class-
name2 > namne3 >

where

»

< index > = index of < class-namel > in TNAME
< class-namel > = name of this class

< class-name2 > = name of son's family

< class-name3 > = name of brother's family 3

NPR =<integer > indicates the number of parameter_; required for this class,

Format of a member-name line:

-

M = <index > < type > < member- IV =< iniplicit {FOR < member—}
namel > value > name2 >

where v -~ ‘
< index > = index of < member-namel > in TNAME
< type > has the foliowing meanings D = descriptive constant,
K = keyword,
'-,- integer,
F = floating-point,
: A = alphabetic string
< member-namel > name of this member
< implicit-value > an integer, meaningful only for Tlascriptive constants
’ and keywords
FOR < member-name2 > restriction specifications (optional, as indicatedd
by (). °
Format of a value line, for item-names; '
V =<value > {FOR < member-riané >} 1L = < value> UL = < value >

swhere - )
y ‘ , -

"k

- oo R, .
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< value > = an iteger, a floating-point number, or a string
. LL, UL are lower and upper limit values

{POR < member-name'DBindicates an optional restriction.

h g

6.1 Simple mathematical calculations application

This application consists of a single command to compute and

display the values of some mathematical functions, such as sine, cosine,
square root, factorial, integral, for an argument X, or for a range of
arguments. In this case the entire application consists of a single pro-

» cedure PR, which calls on subroutines to evaluate the specific functioms.

User-requests. Typical user-requests are shown (underlined) in
Fig. 6-1, together with the calculated results. The keyword CALCULATE

needs to be entered on the first line only, since the previous keyword

e WA

is implied for subsequent lines.

o 5
%

s
¥ i

Parameter-structure. The parameter structure for this command

> 2
Lt

is summarized in Table 6-1. The corresponding setup statements, to be
v ' entered by the implementer, as well as template contents and the user-

dictionary, printed out by the system, are given in Fig. 6-2.

TABLE 6-1 PARAMETER STRUCTURE FOR CALCULATE REQUEST

Command Function Arguments Units
Calculate | 1. Sine X Degrees, radians
2, Cosine X Degrees, radians
3. Sqrt X L -
4. Pactorial X -
5. Integral X,Y -

e e a e e At AP P v ma eairie g e et Bema vl o gl ‘vyr . - - —_— Rl » Ry ey oy
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CALCULATE SINE FOR X=50%

» T

.‘872 .766
SQUARE-ROOT OF +5 1, 2 4.75%

+500 707
1.000 1.000
2,000 1414
4,750 2.179
FACTORIAL FOR X FROM | TO 20 BY 2}
X INPUT VALUES OUT OF RANGE
1,000 1,000
3,000 6,000 .
5,000 120,000
7.000 50404000 o

f— 9, 000 362880,000—————————
INTEGRAL FOR X FROM ] TO 5 AND Y=a7,39y 13342549 45.2 603

-

1,000 0.000
2+000 3.000
3,000 «600
4,000 58.150‘\?
55000—— 1104750

CALC SINE FOR X=12.2 RADIANS,COSINE X=15

12,200 -.358'

15,000 —  «,760
FACTORIAL “‘Xu5y 7, SQUARE=ROOT X=3,456%

5,000 120,000

/

74000 5040.000

0155 SéCo‘

Figure 6-1. Typical user-requests for CALCULATE command.
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. L A. SETUP STATEMENTS

LINK KWD TO FUNCTICN TO ARG TO UNITSS

| CLASS KWD IS CALCULATE

DCLASS FUNCTION SINE,COSINE,SQUARE-ROOT,FACTORIALINTEGRAL

CLASS ARG= X, Y FOP INTEGRAL; -

DCLASS UNITS IS (DEGREES,RADIANS) FOR (SINE,CGSINE)

VALUE X FOR SQUARE-ROOT LL=D

VALUE X FOR FACTORIAL tL={ UL=10" ~ ~ 777"~ T T e s e e

UDICT FROM 431 TO 432 BY 433 IF 461 THEN 463 OPTION 3733

T B. TEMPLATE CALC

C = 8 KHD NPR = 1 S = FUNC B =
S M= 2 K CALC IVv= 1
N
C = 6 FUNC NPR = 1 S = ARG 8 =
M = 10 D SINE Iv = 1
M= 3 0 CcoSI Iv= 2
M = 11 D SQUARO IV = 3
M = S D FACT IV = &
B 7 U INTE IV = -
c = 1 ARG NPR = 1 S = UNIT 8 =
M= 13 F X IV = 0 T e e
vV = 0.000 FOR SQUARO LL = 0,000
V = 0.000 FOR FACT AL = 1.000 UL = 10.000
M= 14 FY IV = 0 FOR INTE
C = 12 UNIT NPR = 1sSs=" "7 " ~ B=
M= 4 D DEGR IV = 1 FOR SINE cos1
M= 9 D RADI . IV = 2 FOR SINE CoSI
«198 SEC,
‘ T TIUINTE 200 '
‘ C. USER DICTIONARY 11 KWD 100
12 O0OPTI 373
1 ARG 120 - |7 713 " RADI! 200
2 8y 433 14 SINE 200
3 CALC 300 15 SQUARO 00
% COSY R4 L] [ 16  THEN 63
S DEGR 200 17 10 832
6 FACT ' 200 18 UNIT 120
T FROM 634 LT T T T T 140 (
8 FUNC 120 il 20 Y 110 '
9 1IfF 461 ‘

Figure 6-2. | Parameter structure for ( CALCQJL_A‘!'B command. -

V.4
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d
OPTIONS ECHO=0UT .
>______-, [N -
CALC INTEGRAL FOR X FROM ¢5 TO 7.6 BY .759% Y=]le2 Je65 7.89 9.241
ACTIVE PARAMETERS 28 52 45,6 45)
NAME TYPE VALUE MEANING ' p
| ) K- ' }—CALC
FUNC c s INTE
X D FROM
F 500
0 10
y F Teb0 |
F ———————D—8Y¥
F 0750 !
Y F 1,20
F 3.65
F 7.89
F 9.24 “ 1
¥ 240
F 52.0
F 4546
F 4540 -
«500 0,000
1,250 1.819
2,000 -~ 0elb6 ~ -
2.750 124570
3,500 25,035
S E— -4 4250 - - B3eH3S -
5,000 90.135
8,750 124¢110
e e «077 SEC,

Figure 6-3. Active parameters for a CALCULATE request.
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SUBRCUTINE CALC

70 BE WRITTEN 8Y THE IMPLEMENTER

USES FORTRAN LIBPARY FUNCTIONS SIN COS SGRT
A USER-WRITTEN FUNGTION FACT
AND AN SSP LIBRARY SUBROUTINE OTFG

| DIMEASICA AL(10),A2(10),A82(10)

« «a 4 &

COVMMON /RUNDAT/EQV
EQUIVALENCE (EOV, IFov%
¥ SELECT A FUNCTION e e — —
1 I=0
L=IV(4LFUND)
_ IF(L.EC.IEOV) RETURN

-

* LOOP OVER ALL VALUES
10 ARG=V(ILX)
IF(PRGL.EC.EOV) GOTO 1§ .o
GOTC (4100,100,300,400,500),L
* SINE COSINE
L 3100 JUNIT=IV(LLUNITD)

IF(IUNITL.EG.1) ARG=ARG*3.iu/180.
IF(L.EQs1) Z=SIN(ARG)
IF(L.EC.2) 2=COS(ARG)
GOTC €00
* SQUARE RCCT
200 2=SCRT(ARG)

GOTC €00
¥ FACTCRIAL
400 Z=FACT (ARG) e e e e e
GOT0 600
¥ INCREMENTAL INTEGRAL
| S00 ARGZ=V.(ILY)

IF(ARGZ2.EGC.ECV) GOTO 1
I=T+1

A1(I)=ARG .
A2(1)2ARG2
| CALL OTFG(A1,A2,47,1)

IF(1.6GT.10) GOYO 1 - - e e o e

Z=A2(1)
¥ cCUTPUT &

€11 FORMAT(IHO+5X42F15.3)
GO0TC 10

END

600 PRINT 611,ARG,2 .

o

Figure 6-4. Problem Logic for CALCULATE comsand

#:

ot
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Parameter usage. The active parameters for a typical request

are shown in Fig. 6-3, together with the results. The user’s input is

o mkh Wl s g e o T
s S res it
= e N R e

-
"

shown underlined. The values of X are stored in the form of a limit-loop

and the values of Y are simply stacked as encountered in the input. The

>

calculation of the integral terminates when all th; Y-values have been
exhausted. '
The corresponding problem solving procedure CALC is shown in :
Fig. 6-4. This procedure illustrates simple use of the V-functions by
the programmer, as described in section 4.5.2. The value of FﬁNC is used
as a switch to select the appropriate function. In this case the function
evaluation is to be done by the built-in functions SIN, COS, and éQRT,
by a programmer-written function FACT, and by a standsr& SSP library sub-
routine QTFG for the integration. The argumenés to QTFG have been set up

in the standard way required by this library routine. The EQOV marker in-

dicates when all the values of a parameter have become exhausted.

6.2 A design application

‘ In a certain structural engineering application, an engineer
may request the design or the analysis of the structural members of a
building. o
Typical usar-requosis agy be stated as follows:
DESIGN BEAMS;
DﬁSIGN CONCRETE COLUMNS SQUABE, LENGTH = 12
A SLAB OF THICKNESS 12 INCHES IS TO BE ANALYSED;
_J WANT TO DESIGN A BEAM, L SHAPED, USING CONCRETE FC = 3500,
A number of design g;rmtm are required in oxder to process
such roquoits. The d»‘i‘gn parsmeters can be grouped into classes, gs shown
in Fiﬁ. -5, and one or more parsmeters are required of each class; if not

A

Lo, o
T4 g T '
o
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- supplied by the user’s input, then default values must be given instead.

e, e

Dim-1

Dim-3

Dim-2 Progert ies

b

Figure 6-5. Parameter structure for DESIGN command.

This application illustrates a more complex parameter structure
than in the previous example. This is typical of design applications with
numerous restrictions and default values.

The setup statements to be entered by the implementer are given

- in Pig. 6-6. The corresponding DESIGN template generated by the system
is displayed in Fig. 6-7. Since no cate’gories have been specified, then
all numeric values are floating-point by default.

Parameter usage. Although the DESIGN template 'is reasonably
coqlex, the active parameter structure is simple, as shown in Fig. 6-8 v
for some typical design requests. The user’'s input is underlined. If o

| the input values sre out of range, then appropriste lawer or upper limits
‘ ‘ are substituted and an informative message is printed.




L LINK_MEMBERS_TO_SHAPEs MATERIAL}
 SHAPE TO OIM=ONE) DIMeTwOy DIM=THREE}
MATERTAL TO PROPERTIES®3%

|__CODE TO METHOD3

DCLASS KWDw DESIGNs ANALYSES
DCLASS MEMBERS® BEAMS)COLUMNS (WALLS+SLABS) FOR ANALYSE}
| OCLASS MAYERIAL= CONCRETE, STEEL FOR(ANALYSE«BEAMS:COLUMNS)§ |
CLASS PROPERTIESm FSy(FCsDENSITY) FOR CONCRETES
DCLASS SHAPE= (FLAT/ONE=WAY» TWO=WAY) FOR SLABS

SHAPE= (T,U, PRISMATIC,L) FOR BEAMS

SHAPE® (SQUAREIRECT¢ROUND) FOR COLUMNSs SHEAR FOR WALLS
CLASS DIM=ONE=THICKNESS FOR (SLABS.WALLS)+ DIAMETER FOR ROUND
DIMeONEx X=OIM FOR (SQUARE,RECTANGULAR) 4OEPTH FOR BEAMS}

DIM=TWO®s Y«DIM FOR RECTANGULAR WIDTH FOR BEAMI
DIM=THREE sLENGTH FOR COLUMNS,SPAN FOR (BWS.§LQB§.UALLSH

DCLASS CODE IS ACI» NBC: NYCH
DCLASS METHOD = wSD, USD}
VALUE FC FOR MEMBERS®»3000,3000+250003500 LL 4(1000) UL 4112000)
_FS FOR (BEAMS,COLUMNS)#60000+50000 LLa2(20000) UL 2(90000) |
DENSITY= 145 LL 100 UL 200

‘THICKNESS FOR (ONEWAY(FLAT) %848 Lﬂnzcaz uL®2(20)

|__THICK FOR (TWOeWAY,WALL)® 2(10)s LL®2(6) UL '2420)

OIAMETER 12 LL 8 UL 100
LENOTHe 9 LL 2 Wb 20 7 S

. XeDINw 12 LL 8 UL 120
'YeDIN® 12 LL § UL 180

o o rird RO L St hhoamy Aenbs e e v k= = e

| XIOTH 1849LLe10,50 WL 2408 .

A%



C = 17 KwD NPRy = 1S & MEMB 8w
M s 9 K DESI Ive 1
M s 2K ANAL Ivs 2
C = 2] MEMB NPR = 1’s = SHAP B = CODE
M s 3D BEAM IV »
M= S0 COLU IV = z
M= 41 0 WALL IV = 3 FOR ANAL
M= 320 SLAB IV a4 FOR ANAL
C = 30 SHAP " NPR = 1 S = DIMONE 8 = MATE
M e 150 FLAT IV e« ) FOR SLAB
M = 25 D ONEWAY IV= 2 FOR SLAB
M a 38D TWOWAY IV = 3 FOR SLAB
M= 36DT \ IV = 4 FOR BEAM
Ms 390U IV s 8 FOR BEAM
M.a 26 D PRIS IVe ¢ FOR BEAM
| Mw JBRDL = IVvs 7 FOR BEAM Te
M.w 34D SQUA Iv e 8 FOR COLY
M:s 28 D RECT IVse 9 FOR COLU
M = ‘29 D ROUN iv = 30 FOR .COLY
M:x 31 0 SHEA IV = 1] FOR WALL
| C.m 11 DIMONE NPR = 1S.» B » DIMINQ
M s 37 F THIC IV s 0 FOR SLAB wALL
Ve 84000 FOR ONEWAY L = 4,000 UL ® 20,000
V= B+000 FOR FLAT L = 4,000 UL = 20,000
Ve 104000 FOR TWOWAY W = 6,000 UL = 20,000
Ve 10,000 FOR WALL (R 6,000 UL = 20,000
M s 10 F DIAM IV s 0 FOR ROUN
Ve 124000 (A 8,000 UL = 100,000
- M-m 44 F XOIM Ive 0 FOR SQUA RECT
Ve 12,000 (WA 8,000 UL = 120,000
. M= 8F DEPY Ive 0 FOR BEAM ‘
Ve 120000 (IR 6,000 UL = 180,000
C® 13 DIMTNO NPRw 18w 8 = DIMTHR
!V-—_o_£na_a.cr ~
Ve 124000 s 8,000 UL = 150,000
- .. Mu 42 F NIDY IVe 0 FOR BEAM
Ve 184000 LL = 10,500 UL = 240,000
C = 12 DINTHR NPRs 18w 8w
Ma 198 LENG Ive 0 FOR COLUY
e VW 00000 . e L 24000 UL ® 20,000
M 33 F SPAN, & Iv:a 0 FOR SEAM SLAB  WALL i
141* 20008 ren il w 1.000 UL = 30,000

d
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TEMPLATE DESI

N
-

C n 20 MATE NPR ®» 1 S = pROP Be
M.» 6 D CONC ivs |
Mw 3% D STEE IV s 2 FOR ANAL BEAM coLu
| Cm_ 27 PROP..~  NPR B8 3 S m B w
Ms 16 FFS Ivse o
Ve 60000,000 FOR BEAM LL = 20000,000 UL = 90000,000
Vs 50000,000 FOR COLU LL 20000.000 UL = 90000,000
M=s 14 FFC "1V = 0 FOR CONC
_— V= 3000,000_FOR _BEAM LL w__ 1000,000 UL = 12000,000
Vs 3000,000 FOR COLU LL » 1000,000 UL = 12000,000
Ve 2500,000 FOR WALL LL @ 1000,000 UL = 12000,000
Ve 35000000 FOR SLAB LL ® 1000,000 UL = 12000,000
Mw 7 F DENS Ive O FOR CONC
V s 1454000 LL = 100,000 UL = 200,000
C» 4 CODE NPR ®» 1 S = MNETH B =
M:u 1 D AC] Ivse |
Ms 23 D NBC Ive 2
| M s 24 0 NYC AV a3
Cu 22 METH NPR = 1Sw» Be
M= 43 0 WSD Ivse 3} —
M= 40 0 USD Ive 2
0991 SEC,

Figure 6-7 (continued).

Template for DESIGN command.

o
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CPTIONS ECKC=CUT?

| DESIGA BEANS:

ACTIVE FARAMETERS

_DESIGN CCLUMNS,. LENGTH=15 USD3

NAME  TYFE VALUE MEANING — -
KHD K 1 DESI
_MEMB c 1 BEAM
SHAP c 4 1
DEFT F 12.0
WIDT F 18.0 i e
SPAN F 20,0 .
MATE c 1 CONC
_FS F__6.000E+04
FC F 3.000F+03
DENS F 145
CODE C 1 ACIT B}
METH c f WSD

ACTIVE FARAMETERS

«107 SEC.

NAME  TYFE VALUE MEANING
KWD K 1 DESI
_MEMB____C 2 CoLy
SHAP c .. 8 SQUA
XDIM F o 12.0
LENG F o 15.0 '
MATE c 1 CONC
FS F 5.000€+04
FC f_ 3.000E+03
DENS F 145
COOE c 1 ACI
METH c 2 Uso e o

Figure 6-8. Typical DESIGN requests.
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OPYIONS ECHO=0QUT}$ .

ANALYSE L HFAMS, SPAN 34,5}

k
>

SPaN INPUT VALUES OUT OF RANGE

NAME

KWD
MEMB
SHAP
DEPT
WIDT
SPAN
MATE
FS
F¢
DENS
conk
METH

ACTIVE PARAMETERS

P AR S g

TYPE VALUE MFANING .
K 2 ANAL
c 1 BEAM
o] 7L
F 1240
F 18,0 L B
F 30,0
c 1 CONC

F  6.,000E+04

F73,000€403 o

F 145
C 1 ACI
o 1 WSD

I WANT A FLAT SLAB, THICK 30, CONCRETE FC=3500 FS=5,5E4

T THIC "TINPUT VALUES OUT OF RANGE

ACTIVE PARAMETERS

NAME  TYPE VALUE MEANING
KWD K 2 ANAL
"ME MG jo § SUAH
SHAP C 1 FLAT
THIC F 2040

SPAN F 20,0

MATE c 1 CONC
FS F S5.500E+04

FC F 3, 500E+03

DENS F 145

CODE C 1 ACI o
METH c "7 1 WSD

«113 SEC,

Pigure 6-8 (continued). Typical DESIGN regpests.
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The processing logic is too lengthy and too complex to be shown
here. - All the required parameter values can be obtai;ed very simply by
the V-functions. Since all the parameters are sinéie valued, an alterﬁative
would be to inclugf the /STSTEP/ directly in the procedure, as described

in section 4.5.1.

6.3 A aata—bank application

A common business application is to query a data-base. In this
example there is a financial data-bank containing information about secu-
rities. One of the user-activities for this application maf be to display

or to change some of the data-bank information. Since the parameter struc-

. ture is similar for both of these activities, the same setup statements

may be used initially, but two templates are generated, DISPLAY and CHANGE.
The key to accessing any stock in the data-bank is its stock
ticker-symbol. Each stock has several items of information in the data-
bank, such as:
a) A classification index
- by industry
- by growth
- by volatility. ' o o
b) Basic information about the security
-‘nano of stock )
- purchase cost.
¢) Actual dividends distributed, for the last 20.quarters
- divid;nd amount ’ )

« dividend record date,
/ .. . :

gty dighhets o tmvap gt o o Wi oY APt o g Gyt i santven shtanitn T o o



d) Periodic information, for the 15 most recent weeks
- market price
- dividend rate
- earnings.
For the purpose of this example, financial data for five stocks has been

entered, with periodic information for five weeks.

User-requests, Typical user-requests are shown in Fig. 6-9,

where the user's input is underlined. Simple requestsinvolve only pa-
rameters defined at setup time, as in th; case of the first two requests.
The user may also make more complex requests, involving arithmetic expres-
sions and conditions, which would screen the securities to be displayed, as
in the last request where only three of the stocks mentioned meet the price
to earnings ratio threshold specified.

‘The fifth request illustrates the useage of a class-name t;
shorten the inpui: PERIODIC-INFO stands for PRICE, DIVIDENDS and EAR-
NINGS. '

v
. Parameter structure. The parameter structure closely parallels

the strucgureiof the data-bank. The setup statements, entered by the
implementer, are shown in Fig. 6-10. The template contents are displayed
by the system in Fig. 6-11. The oinly mandatory parameters for a request
are the keyword and a stock symbol. The*PBRIOD parameter is activated only
yif any of th? periodic information parameters are active.

N-\'q
Parsmeter usage. The active parameters for two requests are

shown in Pig. 6-12. For the first request the option ECHO-IN prints the
atom and citogory strings at the end of the lexical snalysis phase. Before
execution of a request begins, the values and types of data bank items, such
as PRIC, EARN, are undoftnad. The sﬁg?aga in Polf¥h string form of user-
defined conditions is 11}ustr¢tod in the second request.

wlve
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DISPLAY ¥AEY NPMF, CCOST, PRICES
| STCCK. . NAME _ __GOST___ PRIC.

AE ASEESTCS CORP 24,€2 27.5€C

* #ABt FAFMNINGS, PRICE WEEK 33 . e e e
STCCK NAME PRIC EARN

_AB. _ __ ASBESICS CCRP__ 22,50 . 2.88

zpAB? EBRNINGS, PRICE, FP=-RATIO=FRICE/EARN, WEEK 43

. STCCK NAVE PRIC EARN EPRATI
AB ASEESTOS CQRP 23.00 2.88 7.99

e Wb, Bt o,

STCCK NAVME DIVIAM
AB ASBESTOS CORP ¢ 25
. #CP# NAVME, PERIODIC-INFOS £
STCCK NANME PRIC 0IVI EARN
cP CANACIANMN PACIFIC 79.50 3.00 5.2€ . -

DISPLAY 2ENS? OIVI-AMT,FRICE,COST, XX=(PRICE+LIVI)/COST*100

TSTOCK  NAM ' DIVIAM COST FRIC XX

eNS «70 20,00 25.00 138.50

NAME FRICE FARN FOR STOCKS #AC? #BNS# #2CAEZ #2CFz IF PRICE/EARMNINGS>20

P

_STCCK NAME__ __ . _PRIC _ EARN

AC ATLANTIC SUGAR 6.50 .03

STCCK NBME PRIC EARN . e

BNS SCCTIARANK 25,00 1.10 k

_STCCK . _NAVE PRIC EARN

CAE CAE INDUSTPIES 10.62 .10

e25¢% SEC,

Figure 6-9. Typical user-requests for DISPLAY command,
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r
LINK KHO T0 SECURITY TO CLASSIFICATION®S

SECURITY TO0 BASIC~INFO*

N

( SECURITY T0 PERIODIC-INFO* TO PERIOD*PERIOOIC-INFOS

SECURITY TO ACTUAL-DIVIOENDS* TQ ODIVI-PERIQCD¥ACTUAL~DIVI}

CLASS KWD= DISPLAY, CHANGE

CLASS CLASSIFICATION=INOUSTRY, GROWTH,VOLATILITY

SECURITY IS STOCK®AS e

BASIC~INFORMATION IS NAME®A, COST;

ol an SO AP

PERIOOIC~-INFQO FRICE, DIVIDENDS,EARKINGSS
ACTUAL-DIVIDENDS= DIVIDEND-AMOUNT, DIVIDEND-DATE+I};

PERIOD IS WEEKS

DIVIDEND-FERIOD IS QUARTER
CATEGORY I= WEEK,QUARTER,INOUSTRY,GROWTH,VOLATILITY}

VALUE WEEK= 1 LLl=1i, UL1S

QUARTER =1 LL=1 UL 20
UDICY BY 433 EXEC 320 FROM 431 OF 401 REQU 310 TO 4323
IF 461 WHILE 62 THEN 463 DU 464 OPTIONS 3733

DISPLAY

Figure 6-10. Parameter structure for DISPLAY command.

-
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L B. TEMPLATE DISP
C = 14 KWD NPR = 1 S = StCU g =
M= 6 KDISP Iv = 1
e M = 3 K GHAN Iv = 2
C = 20 SECU NPR = 1 S = CLAS B =
M = 21 A STOC Iv = 0 .
C = 4 CLAS NPR = 0 S = B = BASIIN
M= 13 I INDU IV = 0
M = 12 1 GROW Iv = 0
- M= 22 1 VOLA Iv = ¢
C = 2 BASIIN NPR = 0 S = B = PERIIN
M = 15 A NAME Iv = 0 i
M= S5 F COST Iv. = 1o ﬁ
C = 17 PERIIN NPR = 0 S = PERI 8 = ACTUDI .
M = 18 F PRIC Iv = 0 _ .
M= 7 FDIVI Iv = 9 ,
M = 11 F EARN Iv = 0 4
C = 16 PERI NPR = =17 S = B = y
M = 23 1 WEEK iv = 0 .
vV = 1 o tL= 1 UL = 15
C = 1 ACTUEDI NPR = 3 S = DIVIPE 8 = ’
M= 8 F DIVIAM IV = 0 .
M= 9 IDIVIDA IV = 0 ;
€= 10 DIVIPE ~ 'NPR =2 =1 § = R B
M= 19 I QUAR IV = }
- vV = 1 LL = ‘4 UL =
«384 SEC.
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OPTINNS ECHO=IN ECHO=NIT}
L DISPI Ay STOCKS #RNS# #CAF# NAMFs DIVI-AMT, PRICE WEEK 10}
DISP STOC RNS CAF NAMF DIVIaAM PRIC WFEK )0
300 110 803 803 110 110 110 110 600 —
ACTIVE PARAMETERS
| NAME TYPF VALUE MEANING.
KWD K 1 DISP
STnC A BNS . e e e e
A CAE
NAME 0
_PRIC 0
WEEK 1 10 ’
DIVIAM % 0
QUAR 1 1 o
STnCx NAME " DIVIAM PRIC
| BNS  SCOTTABANK. 70 25,00
STACk  NAME DIVIAM PRIC ,
CAF CAE INDUSTRIES 15 10,62 :

DPTIONS NOECHO=INY

1F PRICE/FARNDINAPRICF/COST>Y THEN FOn #2AR#Z #2AC# PRICEEARNING,

. ACTIVE PARAMETERS cosT
NAME TYPE VALYE MEANING
wn K 1 DISP P
STnC A AB
A AC
cosT 0
PRTC 0
EARN 0
| WEEK 1 1
ULEOND vV 0 .
v 18 PRIC
v 11 EARN
0/
1 10
0>
v 18 PRIC
. V) S CcOsT
-0/ - ) - e .
1 3
0>
0.A
sSTocK NAME coSsT PRIc .EARN

Ac e n e veeem e o amevewre . 1050 6.50 103 R .

e 6-12. L. ors for DISPLAY r sts.




160

The problem solving procedure DISPLAY Msgshown in Fig. 6-13.

It consists of 38 executable FORTRAN statements. This procedure illus-

trates the use of some additio;al run-time facilities, beyond the simple
V-functions used in example 6.1. Numbers in parentheses refer to state-
ment numbers in the source listing, in the description that follows.

The major ioop (10) runs‘bver all the stock symbols to be dis-
played. For eath symbol mentioned in the input, another loop (200) exam-
ines each of the 10 items in the data bank.

First, the index M of each item is found in TNAME by FINDP. The
first argument of QINDP is the standard-name of the item. The status of
item M in' this request is given by P(M, STAT).If rero, then the user has
not mentioned this item, and it is inactive. If the status is one, then
the item is to be displayed.

For active items, values have to be obtained from the financial
data-bank (100). For certain items, the time period has also to be known
(50,80). V(VPREV) is called if an EOV condition is detected, to return the
preceding value of WEEK or QUARTER. Procedure GETPDlis fhe interface with
a data-base management system. In this example, only sample dat; for a
few stocks has been entered, which is returned in VAL.

Some items are allowed to be operands of arithmetic expressions
and of conditions. This is indicated by a status of 2 and of 4.  For these
items the value obtained from the duta-b‘ank‘is stored in the P-cell of M
by the function VS.

Finally, item M is entered into the output buffer by procedure
PUTFD, which could be some standard report generator. Here, PUTFD makes
use of global data areas /TEMPL/ and /CTSTEP/ to obtain the standard-names
of items and of expressions for the headings of items.
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% .PPORLEM LOGIC FCR EXAMPLE &,.3 . §
>.___.._.__..___..._ . = =
SUPESYTINE QISPLAY Ic : 0|
¢ wOELEP SCLYING PROCEDURE FCR EXAFMPLE S.2 IC OK DISPLAY THE LINE G
. COMMEN ZRUNDATZEQV,TYP NXY CV,STAT,,TYP2 ,VALUE,VPREY . 1 SF (FOL(1) .NE.SYMBOL) COTO 10 o [
COUTVALENCT (FOV,I20V) 1 PRINY 311, (FOH(J) sJ=L, NIT) ;
| I CONNCN /FCLIMF/ZRIYFOMTL3) ,FOL(13) I 311 FORMAT(1MO,348,10(2%,A46)) LY
o LN TEGER- Py FINDP o STATUS s PERINL NS, SYMBOL FLLLVBREY T P3TAT 313, (FOL L) a1 HITY %
‘ DIFENSICH FOMAN(LO) ,VAL(2) I 313 FORMAT(iM +3A8,10F8.27) X
: OATA, fD%lﬂl\LIﬂOUnbLﬁﬂew.htvotl.ktlluk.SLCIV!‘H.&LDIIIDI 1 NIT=3
y 1oALCTSTLALORIC, ALDTVI, GLEARN/ j 1 GOTQ 10
] - * IC ERRCRS
f. zr::tt&c&no).ur 1) RETURN A . I 910 PRINT 911,SYNBOL
: aYS ; I_.S11 FORKAT(INN.Rk.* HAS MO INFORMATION IN DATA-BANK®)
Q~tﬂeﬁ SYEL SYREALS TQ 92 OISPLAYED 1 GOTOo 10
; £8 SYRECLsTY (MLSTCE) 1l END ‘
t IBESYPBCLEO.TFOY) RETURN R - IR ET Y L R P Y Y Oy R T T Y Yy P N Y Y N R et X LY PR S
i1 & LE6OP GVER ALL FIKANGIAL DATA ITEWS OF SYnsoL ) S -
T Do 208 1TEMsg, 10 T
1~§Jﬂ&4ﬂﬂ&dutmm: 1
2 WeFIMOPLFCNAFLITEM) ,STATUS) H s SYNBOL+ITEN FERIODLWVAL +STATUS)
- TFESTATUS .KQ.B) GOTO 208 IC CALLLD BY DISPLAY .
% 18 TYEM ACTIVE Im TRES REQUTST IC INTERFACE TO FILE MANAGEMENT SYSTEM
i KSTAT=PIN ,STAYY. IC OBTAINS VALUES OF L.TEMS FAOM FINANCIAL DATA-3ANK
! IECPSTAT.E0.0) GOYD 280 1 INTEGER SYMBOL,FERIOO.STATUS,STOCK(5)
P GOTC E1 880108 ¢ 1880 3885584580000, 80, 08.,08) ,11E0 I DIMcNSTON FOL21 %) 4vAL (1)
T-C 3CHIAL QIVICZINAS Nio D QUARTER 1C SAMPLE FINANCIAL OATA
. %€ PPRIONSTY LML CUAR) IC ITEX WCRC OESCKIPTION
- IRERFIREC EO.TECY) PERIDD=IVIVPREV) AT { S 1 INDUSTRY CLASS
‘ - S4YC sus 1Ic 2 -  GROWNTH CLASS
. @ PER ;u!ctwktrnk. NEEDS WEEX IC 3 ~  VOCLATILITY CLASS
pomeremanc B P ‘I & 2,3 MNANME
xftﬁ!alcz.te.ttcvx PEPINC=TVIVPREY) Ic s & DBIVI-AMT (QUARTER 1) - .
€ CET WALUY FRON OATA BANK IC 6 5  DIVI-DATE ‘{QUARTER 1)
198 CALL CEIFCUSYPOLTIYER,PERTIOD VAL ,STATUS) . . IC 4 6 CCST
rssYaTHS . E0. 1) GOYO 910 Ic s 7T-11 ORICE (WEEKS 1-5)
: IFEITErP A P.6) GCTD 183 C IC 9 12-16 DIVIOENC-RATE (WEEKS 1-5)
L IF(RSTAT.EG. 1) .GOTO 3150 IC .10  17-23 FARNIMOGS IMEEXS 1-%) -

€ RONE ITErS COWLD & IN EXPPESSIENS 1 DATA STUCK/2HAU,2nACs 3HBNS ) 3HCAE , 2HCP/
1. © MXYRYS L UM o B B I DATA (FO (J)sJ21921) /2143.,8HASBESTCS,8M CORP  ,.25,7133314
| I I TS TAT 21 NE.1) GOTO 284 o R 1 12h.62427.50123,62422.50+2343252+:904:90,.9045.+1.,5%2,88/
.2 JTEM IS YO P& OISMLAYID . 1 OATA (FD(J)4J=22,02) /1372..8HATLANTIC.8H SUGAR ,.25,710703
T 150 GML PUTFOUISYMRCLLITEN, VAL \K) 1 21.5096.596e25:6.87964056.3213%¢2554550593%.035435,.35/ 3
:‘-—-us_a - 5 1 OATA (FL{J) b3, 63) 22320, ,8HSCOTIAIALAFNK L. 7d,71a521 1%
i S!'! tF “' !}SER-ElPﬁESSIOﬂS. MAX S I 3200’25-925.25'25.12'2005023003’207092.9‘2-9.1.30101.3’ 1.164/
HEXPPxQ . T DATA (FD(J) sJ=64+88) /2218.+8HCAE INDU+ShSTRIES +.15,710731
80 2%0 I1TEM=11,15 . —— e I ¢ 49.25,10062)8.75,8e87,7.5097¢255359435,3%.65,.1,4%,3/
NEXPFaNEXPR1 1 OATA (FD(J),J=85,135) /2330.,8HCANADIAN,8H PACIFIC,2¢2,
INDER®PEXFO 1 560.37379.:5+84¢988,22,75.12:75.+3,52.9,3%2.85,5.26,2%5.18,2 5.
foimerc W AL ¢ £ Y YR AL TR0 X3 3
TFCINCEX.ENL.0.0R.VAL(3) +EQ.EOV) GOTO 258 IC FIND STCCX SYNBOL
CALL PUTFLISYYBCL ,ITEM, VAL INDEX) 1 D0 10 K=1,5
250. COFTINUP SO | IF(SYRBOL.LO.STOCK{X)) GOTD 20 :
€ CHECK IF DISPLAYING SUBJECT YO USER-GONOIthuS 1 10 CONTINUE E
NDEXs1 I STATUSsD 2
e T E AU XD CIKCEX) «F Q0 3)—GOTO—20 ;a RETURM S .

~—

Centre de calcul

Figure 6-13. Problem-solving procedure DISPLAY. . UNIVERSITE DE MONTREAL
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OF 0BLEM LOGIC FOR EXAMPLE 6.3

[ © GET THE BATA TTiM SPECIFIED
28 STATUSs1

138 WAL PB(1,K)
e RETLEN

IF(FEBZGD-LTotoOR.PfRIOO.GT.S) PERJOCS{ ... ..
GOTC(130¢2204130+200+150,180,170+180,198,200),1ITEN

IC NUMERIC JTEMS

I

NEIVENRTIR S SRR

60 NIT=NIT+1
IFINITL61.43) RETURN . .. . I
FOM(MIT) aTNAME (INCcX)

IFCITEM.GT.30) INDEX=INOEX=MAXM
IFCITEM.GY.40) EDH(NTT) eSPNAME (INOFX)

4

120 VAL{s)=D g
RETLAN
- 198 VML [1)=0 .-
RETUSN
188 VALC1)3FB(2,K)

FOL(MRIT)=VAL(1)
RETURA
END. —— .

3

e AL (20280 (3, X3
T ORETCRY

£36 VAL (1)3FD (M K)
RETLEN

168 VAL(1)=FD(S5.X)
RFTUEN

1320 WALL1)IARE R K) =

RETLPN
1.8 'ﬂ.mtﬂi (EPTO0V6, K)

I8 VALUSIRFC(PEFIODY11,X)
RETLRN

s
i
!

388 VAL [1)2FB.(PERIOLE16.,X).

RETURN
ENg

.'.".'O....."'.'....l..‘."...O...'.‘“'.‘O.'.l.‘.lw}‘..”.’0.0*‘

3

Ot d e et 0t P e e BN 4 0t el S D0 e e g L B g

DINEASICN VAL(1)
INTEGEF SYMNBCL.FOLL

Eﬂzﬁsuéxgs_ziiistevnan&.xvsv.vnu.xnosx)
c USED #7 TTSFLAY IN EXAMPLE 5.2

L © TO YO PUY A FINANRTAL OATA=ITEM IN OUTPUT LINE e .

FOUIVALENCE (FOLL1),FOLES.

-J-C—IMIEIALISL. (INF FOR M .4 STPOK .

CONNON JTENPLZUAX M AXY s TNAMNE (109)

COFEON /CTSTFP/HAXP, SPP AME (10)

COMMCA /FCLINE/ZKI T, FOR(L3),FOL L)
¢

IFLSYMBCL .FO.FOLL)Y GOTH S0

FDLi=SYPECL
FOL(2)=FCL3) =1
FAMC1) aSHSTOCK
POHE2) =AHRAE
FOH(3)=1M

€ 00 TMIS JTEN TO LINE
S8 IF(TTFM.NE.4) GOTO 60

€ RANE
FOL(2)myAL(Y)
FCL(3)mvAL (2)
\—  __RETUAN ———

bt 1t e 0t ot e e gt e slalalae X S TR RN e X

Figure 6-13

(continued)

Problem-solving procedure DISPLAY,

T Y s
Centre de calcul
UNIVERSITE DE MONTREAL




Once all the standard ten items have been examined, user-defined
expressions are evaluated (250) by the VXA function. INDEX is returned as
zero 1f no expression is active. Finally VSB is called to check if tha
displaying is subject to a user-defined condition e.g. IF PRICE/EARNINGS > 5. .4

VXB of rero means that the condition is false and the displaying is bypassed,

else the line assembled by PUTFD is printed out. k4
6.4 Summary A
The above examples of applications show that ULANG is capable of S

handling simple and complex data structures. which can be easily specified

by the implementer with a small number of setup statements. The coding of

(RN

the problem solving procedures is reduced to a minimum. The execution times
and costs are small.

The setup and execution statistics for the examples of this chapter
are summarized in Table 6-2.

The examples have been presented here to illustrate the diffe-
rent aspects and ways of using ULANG, rather to demonstrate its full
capabilities. It has been noted by Ross (67) and by.llalstead (73) that
data based on comparisons between small programs tends to underestimate
the advantage of higher—-level languages for large programs and that it
is difficult to compare conventional systems with the new systems, because
the old systems have less power and less comparable features. Nonetheless
a cowparison of a conventional system with ULANC is presented in section
5-6- When he is not using ULANG, the implementer has to provide himself
a programming effort equivalent to fvroducc the interface logic, repre-

sented by 1425 Fortran statemants.

> !
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TABLE 6-2 SETUP AND EXECUTION STATISTICS

E
i~
|
,s
ﬁE
g
|
F

one request (cents)

. EXAMPLE 6.1 6.2 6.3
' DESIGN DISPLAY

1. Names of t?mplates generated CALCULATE ANALYZE CHANGE

2. Number of setup statements 8 20 17
entered by implementer

F

3. Template site
(number of cells used) 22 123 S 2

4. CPU time (msec) to generate and
to display template and user- 200 1000 400
dictionary

5. Total cost of generation and
display (cents) 5 19 15

6. Number of executable FORTRAN ﬁot\avai-
statements in problem solving 25 lable 38
procedure

7. Average CPU time (msec) to
process one user-request 26 30* 37
(*preprocessing only ) a

8. Total cost of processing 0.9 1.2¢° 0.9

e
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CHAPTER 7 - CONCLUSIONS « -

7.1 Summary of the work

In this thesis a new system for implementing computerired
application systems has been introduced. At this time, the range

of applications to be computerized appears to be too wide in order

Zer

to be attacked by general problem-solving systems. The need exists
for many different systems, each using its own terminology of trade
and easily usable by people having little programming knowledge.
ULANG provides a tool that is flexible enough to allow
for the differences between various applications, yet at the same <
time remains practical enough to be of assistance to application-
programmers. This @proach allows to implement packages at a

considerable savings in time and manpower. At the same time it eases

D v R

the dynamic future growth and the maintenance of systems.

ULANG is an assertion in the belief "of power of tools
rather than in large number of people in programming", voiced by
Cheatham § Standish (70), Merrett (71), and others. It is this same
belief which has prompted the introduction of other programming tools,
such as input-output control systems, file management systems, and
translator writing sxstels.

ULANG I;as a dual orientation: toward the users of appli-
cations, and toward the i-pleunpors.' It helps them to do their
jobs more efficiently and allows them to concentrate on the solution
of their problems, instead of having to worry about side-issues,

, Advantages to users. The user is assured of good man-

suchine commmication. The language for making requests uses a subset of
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terms from the user’'s profession, with emphasis on reducing programming detail.
The application is easy to use at all levels of pefsonnel. The
vocabulary is the user's own, and it can be modified at any time.

Synonyms and misspelled words may be allowed, extraneous words can be

o

P TR R byl L A gt 3P

ignored.

Some of the input information for processing a request may
be implicit, reducing the amount of input to be entered. All input
is systematically checked for validity and context before being pro-
cessed. This will cause fewer erroneous runs and sa%e on the costs

of processing. In other words, the user can concentrate on his

L]
request, instead of how to state it, and of where to place the commas.

[-Y

Advantages to the implementers. First of all, the inter-

s VR

f ace problem with the users is taken care of. The writiﬁt of the

i

processing-logic routines is simpler and shorter, because the values
of all processing parameters are readily available. There is no need
to check for missing parameters, or for checking of parameter validity.

ULANG provides an organizationai framework for coordinating
the efforts of several programmers, Qorking on the sane\npp%ication.
This makes the system modular since each programmer has to concentrate
only on his logic, and there is a uniform way of communication between
them. Automatic documentation is provided about the structures and
values of parameters. Mainienanco, changes, and i-pro§elents are
easy to make, permitting growth of the system.

ULANG enables application systoms to be generated with a

considerable savings over the customary cost in time and resources.




A tool is hereby provided, which permits the programmer to tailor an
appli&ation package to suit the exact needs of his users, a wish ex-
pressed by many of them (Etude (74)), who find standard packages sold
too general for their purpose. By defining the templates first, together
with the users, the implementer is also forced to a "top-down" approach,
proven valuable in software production (Boehm (73) ¢ Baker (72)).

A certain amount of reluctance in using application writing
systems such as this one can be expected initially from those program-
mers who in general have the tendency to personally "reinvent the
wheel" for each new application. This has proven to be the case with
programming tools introduced previously, which nonetheless have
become widely accepted. Similarly, the savings in implementation
efforts and the ease of use are expected to wi'n acceptance of this
system. Other key factors in gaining programmer acceptance are sim-
plicit‘y, perspicuity, and extendibility, which are also among the design
goals of ULANG.

The usual argument of operating efficiency of custom-made
applications versus those based on a genera'l system will probably be
made. 1t iay be argued that the generaﬁy of systems such as ULANG
must be paid for by increased costs in computer time and in r'ne-ory.

All general programming aids, beginning with compilers and with
operating systems, have been subject to this criticism, yet very few
users program in machine langusge and run stand-alone programs today.
The continuously reducing unit-costs and increasing capabilities of
the available technology are working against th; argument for the need
of maximum hardware efficiency. On the other hand, the cost of pro-

gramming services is continuously rising at a rapid rate, so that the

N2
i, Fu

&
%
#
Wy




A K

.
ror S— A o UIUREO—em—————————— 1 "

~ g

(- #

o/ 168 ‘

f 5,

*

H

] =

’ 2

¥

H

balance is definitely in favor of tolerating some additional operating

gt

costs due to the use of general tools, but which do reduce the need

T B

P

of human effort.

In the light of the implementation experience with ULANG, it

- is even doubtful that a system is necessarily more inefficient by
being more general. Such syst;sns can be more carefully designed and -
incorporate efficient techniques based on recent theoretical advances,
beyond the immediate reach of an ordinary programmer. This is the case
here. The cost of generating a template is only 15 cents, and the cost

of processing a user-request is of the order of one cent.

7.2 Further research

There are two general directions open for further research,

RN < g

3
K

reflecting the two problems addressedg: comunication and implementation.

On the communication side, the addition of metalinguistic
facilities, as described by Lecarme (72), for the definition and auto-
matic construction of syntax recogniters would allow to experiment with
and to implement differeut user-languages. As an application of this,
a second-generation setup-language could be produced for the imple-
menters.

Addition of morphological analysis of word stems, as describ-
od by Winograd (71, p. 172), would allow for a greater fl\exibility in
word endings, and would reduce the number of synonyms in the Dictionary.

The addition of more formsl macro-processing facilities would
add transformationsl grammsar, text expansion, and text rcplwceiquxt
capabilities to the system. This would allow for even more unrestricted
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and concise user-languages than in the present version.
. Incorporating and extending the template setup facilities
to run-time would alloQ the users to make declarative statements as
well as requests. This implies facilities for creating templates at
run—time.‘ The feasibility of extracting and storing information from
declarative statements for the purposes of subsequent retrieval and )
display, has been shown by Kellog (68) in a data-base management
systems, and‘by Thompson (69) in the REL system. A 4

Generally, the transferring of implementer's facilities over!
to the users at run-time would make the system more extensible, in
the sense defined by Wegbreit (71) for the ECL system. This necessi-
tat;s additional ULANG system commands.

Interfacing ULANG with some existing Data-Base Management
system (ASAP, Mark IV) would extend the capabilities of both systems.
Another. possibility would be to develop an interface to a data-base
management system based on the recommendations of the CODASYL systems
committee (71).

A number of features, not original yet useful, could be built
into the ULANG system. One of these is the security and password
aspect. An aﬁpliéation system has to be accesse& at different levels
by different classes of users. This requires different layers of
capabilities for accessing and changing the contents of the system.
Another useful feature would be the addition of repdrt definition and

generation capabilities by the user. Of related interest are capabi-

llgios for browsing, or inspecting output produced by the processing-

¢
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9 logic. The user should be able to inspect parts of the total output

generated, and to select portions of it to be printed in hard-copy

form. This would save on unnecessary printing costs.

These proposed run-time features can be presently provided P
by the programmers for each application. However making them general
and placing them at the users' disposal would remove this burden from

"the programmer, in line with the extendibility objectives of the systenm.

Examination of the characteristics of a generalized appli- {
cation system generator, such as ULANG, points to certain hardware ’
features which may be useful, and about uhicﬂ further investigations //////;
are warranted. It may be advantageous to use associative memory for / |

tables such as the Dictionary, the parameter templates and the Command J/
Table, where the entries are located by content, i.e. by name. A small
block of associativememory could be loaded with the appropriate poption
of a table, which would then be searched by content. S
For activities where the execution is dependent/pﬂ/certain

conditions, specified by an IF or WHILE clause, hardwa é/;onitoring of
the status of variables would be useful. This has/bé:i investigated
by Morgan (70), and he has proposed a solution cailed Yevent sequenced
programming’.

) Finally, the lexical, syntactic and semantic functions of
the user-interface could be handled on a local basis, reducing the
connect~time with the central quputer. in a time-sharing environ-

ment. The interface functions could be carried out by a mini-computer

based local terminal. The interface functions can be microprogrammed

’ ’ 1
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" . into i;gh"a terminal. The table information could be stored on casettes,

ed to the terminals. In order to use an application, the user
ould simply insert th; appropriate casette, and then begin to compose
his/ requests, which would be analysed locally by the ULANG interface,
and the CT-steps would be again stored on casette. At that stage the

central computer would be called to handle the processing-logic and

to access data-banks, if necessary.

The increasing ca#abilities of mini-computers also make
pos; ble the handling of complete applications on the mini-computer
alonel. Here again, a system such as ULANG would be essential for

A ]

assisting in the implementation' of mini-computer based applications.

y
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APPENDIX A - FORMAL DESCRIPTION OF SYNTAX

The syntax is formally described, in a metalinguistic notation,
similar to BNF. In the notation used, < x > stands for certain strings of
symbols, collectively referred to as 'x". Anything enclosed in the angu-
lar braces < > is c¢alled a non-terminal symbol, meaning that it can be
composed of other symbols, either non-terminal or terminal. Any symbol to
the right of a : =sign, which is not enclosed in < > is a terminal symbol ‘
at that level of syntax. The méta-symbol ! = means ''may be composed of",
and | indicates a choice. .

To avoid recursive definitions for an arbitrary number of ele-
ments in a definition, and to make the definition more readable, braces
{ } and square brackets [ ] are introduced, with the meaning that any-
thing enclosed in braces { } means zero or more occurrences of the contents
of the ?races, and anything enclosed in square brackets [ ] is optional,
that is, it may occur once, or it may be omitted.&denotes the mll string.
This notation is used by Gries (71), and others. Por instance, given the
definition .

v * <x m < |<2>
<y> = {A[B} -
<z> := C|D ™
then valid input‘ strings of x would be :
¢, A, B, C,°D, A, BA, BBB, ABBBAAB, or any combination of A and B.

First, the syntax for the lexical anslyzer is defined in section
A.1. Capital letters and special characters denote actual symbols of the -
input string. The meaning of the symbols suggested here may of course be
changed to suit s particular spplication by simply redefining the lexical

o .
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classes in the CHARCL table of -/ULDAT1/. The output from the lexical phase
is a categorize;.aton string. These atoms become terminal symbols at the -
next syntax level ; there they are denoted in lower-case without angular
‘ braces, ¢.g. item-name stands for any item-name.
The syntax of the user-language implemented in this "work is
defined in section A.2. The syntax of arithmetic and Boolean expressions
is shown separately in section A.3. The syntax of the setup language is

giv02 in section A.4.
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A.l D Lexical syntax

<letter> := A|B|C .....|Z

L]
<separator> = -|_

<name> := <letter>{<separator>|<letter>} )

«digit> 2w 1/2]3)4]5/6]7]8[9]0 , e
<integer> := <digit>{<digit>}

<fraction> := {<digit>}-{<digit>}

<exponent> := E[<aop>]<integer> .

<real> := <fraction>[<exponent>]|<integer><exponent>
<numeric-cons> := [-]<integer>|[-]<real>
<string> := '{any input“sy'nbol}'
<position-marker> := THIS|NEXT|PREVIOUS - _
<direction-marker> := AGO | HENCE
<limit-descriptor> := FROM|TO|BY SR
<cond-descriptor> = IF|WHILE Co-
“cond-trailer> := THEN|DO|e . o
<equals> := -Iﬂls o |
<or> = V

<and> = A

aot> = .

<relop> ='-' <oquales|<|>
. <pop> 1w 4|~ ‘ .

wopie 0|)

<axop> 1= 4y, . -




i - & i e o

A.2 User-language syntax

<request> := <immediate-request>|<delayed-request> .

<immediate-request> := <sentence>

<delayed-requast> := REQUEST ; {<senténce>}EXECUTE ;

<sentence> := {<data} [keyword] {<data>i ;

<data> := <data-name>|<value>|<expression>|<integer ({item-name|<value>})
|item-name <limit>|<condition> . u

<data-name> :=» item-name [OF<qualifier >]|expr—nam|class—nm

<value> := descriptive-cons Istﬁng |numeric-cons

<limit> := {limit:descr:lptor <value>}

<condition> = oond-descriptor <bool -expression> cond-traile*r

<e?cpr;ssion> ‘= nams aquals <arith-expression>

<qualifier> := <qualifier-constant>|<qualifier-variable>

<qua;1fier—cmst§\t> ‘= item-name <value>

<qualifier-varisble> := position-marker item-name

{item-name position-marker [aop integer)

|integer item-name direction-marker

A.3 Arithmetic and Boolean expression syntax

<bool-oxprgss’§‘on> 1= <bool-terw> {or <bool-ters}

<bool-ter-: ;:-" <bool-factor> {snd<ool-factor>} ”
dool-futo:"‘» 1=  <predicate>| (<bool-expression>)|not <bool-factor>
<predicite> :w «rlth-oapmsiw nlop <arith-expression> ‘
<arith-expression> iw m{np <ur->)

<term> = <p-factor>( iop <p~factor>}

<p-factor> := <factor> {exop <factorr}

-

<factor :’R«r&ﬁ-ﬂgﬁéﬂ’) ltmwﬁn 31 c:pr-nln

184




A.4 Setup-language syntax

DEFINE keyword ; ' ) -
LINK <class-spec> TO {<class- spec>[<n1;r>)){m{<class -spec> [<n1;r>]}}
qur> - # integer | #<cless-spec> ”
<class-spec> := cJ:ass-nameIKND
CLASS class-name [equals][<item-spec>[FOR<restrict:spOC>]~} H
<item-spec> := item-name [#<cat-spec>lI((item-name[kt;at-specﬂ})
<¢at-spec> :-QVA | P I I SN
<restrict-spec> :m= <c1?s-spec>|<menber-spec>l ({<member-spec>| <class-spec>})
<-enber-spec> i= item-name|descriptive-cons |keyword
DCLASS( <class-spec> [equals] {<dck-spec> [FOR<restri ct-spec>]} ;
<dek-spec> := descriptive-cons | keyword | .
VALUE' item-name [FOR<restrict-spec>] equals{<value-spec>5~[LL{<va1ue-spec>}]
Ca [UL{ <value-spec>}) ; \
<va\1uq-spec> = nuqeric-donslstringl integer ({numeric-cons|string})
CA Y {<eat-spec> [aquals](iten-nime}} ! ’
DISPLAY ;
busp-T ; .
OPTIONS [ECHO-IN] (ECm-OUT ] (DUHP-PI {NOBCHO-IN] [NOECHO-OUT] [NODUMP-P] ;
SYNONYM dictionury-nm loquahlhxnmyn} ' -

BDICT{ dictiémny-nm dictichary- y} | '




APPENDIX B - LISTINE:_Q&»SOURCE-PROGRAM

In this appendix the FORTRAN IV pz;ogram listings of the
ULANG system ‘are presented. The programs are group;d into five
modules, summarized in Table B-1. Within each ‘module the principal
prdg;am is listed fIrst, followed by other subroutines in alphabetical
order. Within each module the pages are numbered consecutively., The

number of cards given does not include comments cards.

TABLE B-1 SOURCE PROGRAM STATISTICS

Cards g::;?t’ s Paze; i
1. General purpose routines, used by the 309 9 4
other modules
2. Lexical analyser module 1 256 6 4
3. Preprocessor or interface module 860 20 - 12
4. Value-functions for run-time I m 9 .
5. Setup module - 7 oo 119 | 12-
L
Totels = o e | es | s

%
!



PNV —

{
L R e e e - ——
- I.““...'.’.’."‘."...‘..’...,’..Q’.'.4.0!."0‘..Qv.‘.”""“~ v
B ANG SCANNER ANDE USER-INTERFACE B - J
\ . . I L'y
_ - JOLOATL/ MAS SCAKNER CONSTAMTS ONLY 1
A ,mmew.s.s.smoz.cnecc,cnnncw.nu.nt.m. 1 suencznne ERROE (I4N)
* IC IC PRINY & Mt SSAGLS - -
S o TESCR ¢ DIGIT sDEC Ty CLO TE LECLON, TERRIN I1C FCR ERRCN NUNBER N :
,S:ﬂsims.ﬂmns.:ms.smv,ntss.unuss IC CETERWIANE ERRCR TYPE .
1. NNENZ7100
© LEMMLE JLENTOK JCHIRCE CFARCL oKL BoKLEJEOL ,MXTCK I NENZ A~ NN
M&mmgnﬁthzmcume'ccmu.mnxu 1 TFINMA.LE.O) GuUTO 9008
SYRTWE X 1 IF(AK.EQ.3) GOYC 304
. 1 IF(KX.EC.H) GOYC &8
t mmrms me BY BOTF ULFREP AND SETLP ~ 1 IFIKK.EC.5) GOTC 54¢
wmfllevmm.nmns.nul..cv'un.uue b ¢ . IFCNN.EQ.10) GUTO 108¢
NEDIC T+ FXSPEAN L WX TRAF . FXTCEL ,MXPCEL 1 G0 TC 9808 -
" ,m.usm, ntchtnunz.cume 1c .
‘ 0F_IC_USER SYNTAX & ERORS - —_—
1 388 IfsY-1
” ¢ PRINT 341,11 -
-y n.m:utmu. ROLCL»ITHANE CLNANE I 341 FCREAT(® <ewe MCRC *,13,) : i_ ‘
ey, ﬂﬂ.g d"'i‘t"m"m’!mvzw.L +10,0F 1 GOT0(351,3524353,354:355,356,357,9000,9000,360) »udhn .
Y tfvv. ECYLECVCAT 1¢ CALLED FROM LSERCOP
”- . . 1 351 PRIMNI 301 e e ]
e 1 - I 30t FORMAT(1H+,T715,*UNRECCGNIZAEL: MAML®)
SOsY1 1 REYURN
DN KL B KLE o ECL M wn.h.au.xu.-.u/ Ic CALLED FROM USERCOP N
EET IN TERPS OF CHAR CLASSES SMD OPERATCRS I 252 PRINT 302 . :
Gt ‘ T 302 FOPMAR(1H+,T15,ILLEGAL LEFT BRACKET*)
b 4 I had ——
1c - CALLED FROM LSERCON
1 3%3 PRINT 303
- I 303 FORMAT (444 ,71S,%ILLEGAL OFERATOR+)
£ M.ntscn.nxsn.nsctn.c&cte.cmcu.turn 1 RETURN
l@w‘:“ IC CALLED FROM USERCOR
J N ] 356 PRIAY _30& e
Y g.stums,nws,xm.sests,#wss.nxnuss T 334 FORMAT(1KH+,T15,*UNBALANCED BRACKETS®)
?n‘sn.su.ssz.sszl 1 Re TURN
- S —- 1c CALLED FROM LIN . A oy
wxnmns FOR CLDAYZ -~ I 355 PRINT 385 '
,tcms Aw LS I 305 FORMAT (1H+,T15,*ILLEGAL LINIT RANGE SYNTAX®)
’ p2 3 REILRA e e
»KHANE 7 3L RR0/ 1C CALLED FROM SEMCLA
PO *!X SMUPCEL GIVE CNLY 272 OQiRENSICN) 1 356 PRINT 306
m.u unu,uxna..ux#csue:.u.109.zcu.¢na/ 1 306 FCREAT(iHe,T15,*CLASS~NAME BOES NOT EXIST*)
1 RETLRA
m twaﬁmma,nu.o\esccnunﬁ.:nun;.cumexc CALLED FROM SEMIMPL
»EIKUSJA0RLEQUAL o 30,0F 1 357 PRIKY 307 [
"l«-mdhmm.st.xr1.s=n.su.s5z,ss.su.uz I 307 FCRKAT(1H+,115,¥ITER IGNOREC*)
: .1 RETURA
MhEMﬁJ.bU . - Ic CALLED FROM ULKWD
i3 tmr. THRE 38S- S EOV HARKER I 3€0 PRIMY 310
btﬂ nstvn,m.m,u.m nss,zst,zs;'.zcu.ecun/eseqn.enw 1 310 FORMAT (1Ko ,T15,2ILLEGAL xewoau, LINE IGNOREOD*)

RM

53
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1 RETLRA

I 566 PRIKT 516
I, S1% FORMAT(1X,T15,°ILLEGAL CtLL SLEFI.LLD SPeC-) -
I RETURN .3

1C CAPACLITY EXCEELED, SHOULD -IMCREASE CIHENSIONS

1808 PRINT 1050,7

1858 FORNAT(® ---= *,15) * .
sotc(iosx,xosz.xusx.snou.1o=s.xose.9acc.1osa,9onotsonn.1051.:
210631 ,MNN

1051 PRINT 1001

RETULRK
1852 PRIKY 1802
10092 FORMAT (1X,715,*T00 MANY V—CELLS‘)
I Re TLRM
1053 PRIKY 1003
_ 3 3843 FCRMAY(4X, T15,9100 MAMY DICYICNARY ENTRIES®Y . _ . _
RETURK
1055 POIKY 1805
1865 FORMAT(1X,715,%T00 MAAY PARAMETER-CLASSES®)
RETLEK ‘s -
1856 PRIANT 1806
1lna;znznAI11x;J;i.Tlna_zAxx_x;xunans_Enzﬁxuxs.t9euxcAlznuﬂl___~_,~_
RETURN
¢ CALLED FROM EXPAND, ULSCAN #
1858 PRIAT 1008 . .
1688 FOPMAT(1X,T15,9T00 MANY MCRCS IN THIS LIN.*)
Rt TURN
1861 FRINY 1811
1011 FORPAT (1X,715,%T00 MANY SFECIAL NAMES®)
RETURM
1862 PRIAT 1012
1012 FORNAT(1X,T15,%T00 MANY VALUES FOR THIS STEF®)
RETLRM
c CALLED BY AEX, BEX B
I 18€3 PRINY 1013 :
1 2813 FOPFAT(IX,T15,%EXPRESSION TCO LUNG®)

el 8 0 4 e S Bl g P

[ ]

b3

dalelal okl el ke LS XU NN

I RETLRA .
1c UNCEFINEQ ERROR )
I 9886 PRIKT 11,N,T : .

I 11 FCEMAT(SX,SUMRECDGNIZABLE ERRCR %,2I8)  _ _ _ .. _ . .

1 RETURM - ]
1 END .
x.‘......l‘.OGODOOCOOQQOOQOOQQQOOQQO000'0065000O~ S8ree sy OOOO 2 b O

. a N
1 - % ] N

1 SUBRCLTINE EXPAND (NSWELL ,%QND)

1€ 10 PUSH ATOMS RIGHT BY NSkcLl PLACES

I . COMMCh ZTOKEM/ATON(63) JCAT(63) oA JNAXSy Ky KK

Ic

r CONBCK ZULOAT1/ DUMMY (69) JMXTOK. I .

1 Ill;ﬁ;l_llniqCJ14A4IAXA+R,!I; —— 22T

< 2
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IF(ECF;5) 28,10
FORNAT (8DR 1)
MAXI=88

IPTR=0

]
[*Y

. 10

o

3

L4

SRIAY 13,INBUE
FORMAT (1M0,80R1)
RETLRM
OF FILE
IEOF =3
RETCRN
END

Y
(7]

o
m
a8

.
A

9

LI L L L T

) 4

SUB DS LVOSISSRIBUISEIIIVIVISOIS SIS ICUIBUTIPSSIVIVSSVLTIISPBIFIBIGS

j

[

SUBRCUTINE NEXTA . |
L Ic C - LAY

Py
™

-

= ¥

- B
SERESVEIBERFBSI VU FUB IV TIIFL VSV IRSFIBENRINSISIISS

o

1
I
1

C CAT IS DECOWPOSLD INTO COMPONENTS, X AND KK
CORNMCN ZULQAT2/ DUMNY (19),E0S
INTEGER ECS

COMPECN /TOKEN/ATOM(E3) +CAT(E3) oA,
INTEGER ATOM,CAT A K, KiG

v

MAXA s K 9KK

kY

K=ECS
Axhel ~
IF(A.GT.MAXAY RETURN

> .

(2]

~

KK=CAT(A)/10

™
XKxCAT(AY Z100

a

IF(KLT.0,0R.K.GT.EQS) 6070 90 _
RETLRM
C ERRCR® I\ .CATEGORY
90 CAT(A)3KK=K=0
RETURK

T END R

©

g bot bot- 3 g bbb 0of Dud Dol bt bl bt Bt

by e e

.'.I’.".“.O,QQQ0.0QO.D.OOQO’Q.OOQ..OQ0.0.003"0.00'009000v0vvvvv’

FUNCTJION KEXTF (F)

Py
-
2
=]

Aqtut!!!iﬂﬁli.ttiblﬁt&.&agi'nv.o.ct.w'.'c'tooutocc.oovooibcocvvoooo

B

COMMCR/ULDAT2/TYP,NXT ,8R0,S
2,STAT,TYF 2 4 XKNANE ’
CCPECA Z1EMPL/NAXN PAXY ,TRAPE(109) ,TCELLCGDD)
INTEGER T FINDsSTATUS P+S,SONNY, BROTH,,STK(Z®)

-

Y ORQER -
CH’NPQ;FIHoRESvHVAL'PKO-LIH;VALUE

(4]

IF(F.GTI.B) GOID 108

-

3

ped bl bl ol bt ek bt bk el ek el Bl

C FIRST VISIT
S0
PFINCUTNAME JMARM KNAME o STATUS)
IF(STATUS.EQ. 1) 6OTO %88
CaLL ERROR(0,602)
RETURN

’
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T€60 _ CALL AEXTA
1 IF(CAT(A) .EQ.PPAREN) £OTO 680
5 1 IF(K.EG.BOS) RETURN
1 6are esoz
IC RIGHT EXFAND l2RACKET
- 4 1888 RPzA-3 _—
- . . 1 NSHELL=(RP-LP+1) *NREP~-1
1 CALL EXPANCINMSHELL 4XOAD)
I IF(KCAD.EC.0) KETURNK
IC EXPAND AKEP TIMES
I AzRE
. s I DO, 690 MRz §NREE -
< 1 0O €90 LzLP,RP
£> I IFCCATILY .FQ.3) GOTC €93 .
N 1 AzAeq
) T . ATOM LAY ATOMIL)
1 CAT(A)I=CAT(L)
’ 1690  COXIIAUE — S
X A=LP
- ) - . K=CAT (A} /100
.o .- . 1 KK=CAT(A) /710
. : I RETLRM
" . I END ’
z 3TN UTIVAIINEITIILVIIVIITISIUSIIVSSSUSSIIBEIRUI SIS SURIBRISIREINS
et 1 .
. . 1
- . 1
1 NTLGER FUNCTION T{MK,IPOS)
‘ 7 IC YO EXTRACY BYYE I GF CELL K OF TCELL
- IC EACH CELL IS .2 WORUS LOKG S, - .
o § COMMCN /TEMPL/MAXMMAXY o TRANE (10'9) s TCELL (4 00)
. 1 INTEGER TCELL
W‘OOCUICDO“OQOQQ.C.OC0'0.."..!!0'0.§c . ngn'p“
1 I=sIPCS .
L3 I IF(I-LE &) 60TI0 18 N - —m I S
: IC ZhD MORE
F: o ’ 1 KsK=1
OF A1ONS SETMEEN PAREMTHESES 1 IF(1.EQ.20) GOTC 20
1 [21-&" !

b/ Mtni" ‘

IC RIGHT SHIFT M BYTES

LEYTESS «-8%(Twi)

% »i!!u.trlntu,apla!n T = suxFTtTcELth).uavrzsx.Apo 255
- 3 PO % I " RETLERMN ©
2 . IC GET THE WPOLE 2ND NCRD
. tﬂ&.cliltsﬁ,n,vaxi.x,-n 128 T=YCELL (K) -
< . - & tlt;iful#a.l.tx I RETURN - 1
-——_mn« 1 END. B 4 -
J € - . - e - - 1 u
€ ) I ,
- e~ LPukeg T N - . ” 1 ks
. ~I  RPEFSAICR(A=1Y<1 . % 1
CAT(A~S)ng 1
e CATLALR G 1
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i ——— e . - I

300 ATCR(B)=IKCAR
CALL GETCHAR
IF(IMCLAS.EQ.DLGIT.CR.INCLAS.EQ.DECIN) GOTO 310
SUBTRACT cP
CAT (A) sHINUSS
LENZ3
CALL FAGD
60 1C 20
KEG NUMBER -
310 ATOr(MA)=D

SICh=t
601C 38

(2]

z;f ' .Fuuus.x&n?s.stact.stt!s.nx«uss
ey ;*‘uyfggggg"em‘gﬁi,bﬁlﬂctv‘LlolLEcEOL|P’7CK
SRS QR OCH  AICTT MECIN; CUDTE COLON, TERRIA :
;Fiulisx!aﬁ§'8!vtr'vxtss.nx-uss

L& ]

A+ R ) 3.=' 2

-y mus‘. v.u‘hs.:x
A

o

UNDEF IKFD
&80 INCLAS=D
inkeg
&0 TF 18

CPERATCR

S80 ATOP{D)SINCAR
LEN=g
CaLL Fabo

tMxL CPOP
S0Y¥0. 18 - B L

§ o -

i

e e e e oo ey :-h\, v asman

Ry

ap

©

on

INTEGER

688 ATON(A)=18*ATOM(A) ¢ (DICLAS-KLO) '
CALL GETCHAR
IFUIKCLAS.EC.DIGIT) GO TO 600
CAT (AL SINUNS e e
SCALE=0
IFCINCLAS.EQ.DECIN.OR.INCLAS .EQ.COLUN) Gu Tu 30
IFISIGNJEC.1) ATOM(A) = -ATCR(A)
IF(DICLAS.NE.KLE) €O TO 28

EXPOMENT ¢ )
EAICE(ALSATOM(A) R
CaT (A)aFNUMS
GO T0 2w

h +

P -
,Stifétt:iil,!ta.tnc.ruu.acc.qsc.zc:s:. INCLAS

. -
Py ;. B
.
. s 1 . y

.G%.Lt!&t.nn.:uCL JLEC.SEFARY GCIC $80
‘!u.ntiu: 60 t0 1€ -

no

REAL NLPEER
8 SCALE=D _
rnv:pu;uan e -
718 CALL GETCHAR
LEUINCLAS . NE.DLCIT) GC to 720 &
FATCF (R)x10.0%FATOM(A) & (DICLAS-KLD) "
SCALE*SCALE~1
G0 T0 718
728_1E4S16 CM(A)z _~FATOM(R) e
- IFC(CICUAS.NE.XLE) 6C TO 750 Y
SCALE FACTOR €
724 SIGN2Q
CALL GETCHAR
IF(INCLAS.EQ.OASH) SIEN=1 )
IE(IKCLAS.EQ.OASH.OR.OICLAS.E2.PLUSS) CALL GETCHAR = _ . __ J

[ 4]

P e ol e e O o O N T L L L L L I ey eI R Y PO oo
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5

“a
\\V‘

s

1 IF(ITCH(I).EQ g) Asl-l
I ATOF 1) =ATOM(A)

1 ATON{A)=2D

4 Azp=i

1 60 10 1t¢

1c

o e g e e

IC- ENDO OF SENTENCE

1 1000 A=A~}

1 MAXAZA .
I RETULRK

IC ATGNR STRIAG FULL

1.1018 CALL ERROR(AL100A8)

Lalt 2 W

ese

: «oseme -
:wv:z¢;§ ¥ I“b’b s ""cvw-« -
TRRENERL -

1 GCTC 1000

I ENC

P L Y P Ny Y Y Y 2 Y T TY R Y TN PR T TR T RY Y T
I

I

1

¥

1 SUBKCUTINE AFY >
IC PCSTSCAL FHASL, LOOKS UP CICTIONKARY

KNOCL , ITNANE ,CLNAME

. - S COMFCA /ULDBAT2/ DUMNKY (19) —
1 3, ECS,STRING,FRUP ,INUN,OPER, KNC,D CcN,
1 INTEGER EOS,STRINGFNUA,INUN,CPEK K¥O,DESCON
Ic . —
S - 1 CONPCN/TOKENS ATOM(63),CAT(63) sA,HAXA
INCLAYER.0U01% 60 ra ess > 1 INTEGER ATONLCAT,A
: +S8.0088) SO0TO SAC - - 1 Cerrch /LICT/ CMABE(63) yOCAT (€3) +HAXD »D,0UNMYD(24)
1' .QS!W Qﬂ to s I INTEGER OMAME ,OCAT,%AX0,0,STATUS,FIND,OICTCL
s b o e ettt ittt L DL L g
IC
IC LCokuP GICT

CAT(a)=B
0= FIND(ONARE yMAXD,ATCH(A) »STATUS)
IF(STATUS.EQ.0) RETURM
FCUND, FCR SYNONYM> OCAT IS -VE
IE(OCATL(C) LT3} 0=TAESCOCATLONY —

(2]

2 e

DICTCL= CCAT(D)/100,

IF{CICTCL.EU.0) GO 1O 38

IF(CICTOL.EC.KNC.ANC.CAT(2) .EQ.0) GO TO
ELSE .

CAT{4)=0CAT(D)

ATCE (A)=DMAME (D)

33

(4]

1F(CICTCL .NE.OPER) RETURN .
CAN TEST FOR COUBLc OPELRATAR SEGUENCc HeRE
20 CONTINUE. & -~
CALL OPOP
RETLRA A

0 o

1]

el od 0o b bed Qo oot Dk g bl P4 B el P et D g o Bed ) S et

(2]

PUT XNN. . Ih Ax2 - 2
36 CAT(2)=0CAT(D)
ATOM{2) =DMAME (D)
IF(A.6T.2) GO TC 80 . .
RETLR
_BACXUP BY ONE ATOM
80 ATOM(AI=D L - e

ot

™~
o,
3
-
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"ULAKG LEXICAL AKALYSER

e - El

£ 904 oxtmu ATes

R SeEs- xm FCR RCI.DXNG OUTFUT BNt

o Em«mxuuntuunwunm».m S o INLFS
. m.uﬁn

- — _— — e e —_— e 4_<
I 41 FORFAT(IMBI5X,63R1)
. 1 PRINT 13, (CAT(A) 4A=2,FAXA)
: t BN 1 13 FCRMAT (1M ,5X,1EI4)
L ".”""".!.C'C..."".".‘.l..'l....'....I."...’I...'.U.ll'l...! RETLRR ¥
K I END
z - > 'Q."Q!'".!'(!..’.30'0'.".'....'l0!.‘..".OIQ.‘OOC.'..C.‘I. LA LX) ._.!
“ - I
-1

¢
b § RCLTINE GETCHAR
IC GETAINS THE KEXT CHARACTER FRCM INPUT BUFFEA

e s 1c —_— i
2t Y o 7. 1 COMFCN/ULCATL/LENALF  LENTCK » CHARCO »CHA CL{63) 4KLO,KLo 3. OL
LONECN I:umnm;n).nxx.nn 1 1, MXTOK
- COPRCh I3CREN/ ATOMLG3) sCATCEI) A AXA 1 24 ALFFA,SEPAR,OASH,DESCR,0IGAT,06CiMy0X0TE,COLON,y TERM, N
!it“ﬁEl! AYON,CAT, 8, TOKTN I 32ECSSLABELS ySiRINGS ) FNUMS , INUMS , 5 EFOPLPLUSS y HINUSS
- cenccccrcnn 1 INTEGER LENALF JLENTCK sCHARCO s CHARCL o KL 0 oKL _ o2 0L 44X TOK
1 2448 nmsmmsa.nssnn +DIGIT,DECIN,OUUTE .CLLUN, TERNI
MEXTug _ I 34ECSSHLABELS, STRINGS, FNUMS ,, INLNS,SEPOP,PLUSS, HiNUSS
£0 388 ‘ang nax 1c
g TRy Q. 160 TQ Eci & 1 COMMCN /INBUF/ INBUF (80) ,MAXI,IPTR /
- TESREBT €8) 80, } GO Yo 7060 1 COMMCN/TOKEN/ATCM(63) sCAT(63) oA, MAXA,LEN,L FATUK,
THACT "CHAURL AN0 HOLD IN Ni 1 1 INCAR,INCLAS,DICLAS
ASLNING 8. 2L1S FFE CHAR 1 INTEGER DICLAS . U
j L0 123 Ksf L FHALF IC eom=mm oot mc e e e c e e caccnan .
1 Lt RBTTSeEE UEKALE=K) . . Ic
y- e MESEUTFT(ATONIA) JNOTTS) L ANC.63 S . 1 IPTR=EPTR+L
wFi o IFINILEC.E) 60 10 139 1 IF(IFIR.GY.MAXT) GO TC 100
z nnx'nuu , 1 INCAR=INBUF (IPTR) ;
2 S _ / N DICLASSCHARCY (INCARY e e .
R 1Y SoNTIMGE ) Y I 1 INCLASsDICLAS/100——7
€0 ¥C 330 / ' A§\ 1 RETLRA
- SUFERTC ICHXD OF LINE
mamul,ﬁu.tmgur ATOM(D) 1 180 INCAR=EOL
M! rmmuno . s 1 pICLAS=EOSS
. ~ ’ 1 INCLAS2DICLAS 23] e e
%gst R 1 RETURM 7
£nr-czcuhns.tcx€m ATON(S) . 1 - END
'm‘f‘ﬁ!l.l) & 1 Sa s i sl d i dd a2 I IR TR I R R YT VY PR FEFTVYY (TR papgupes J
1
m 00 728 Ks g LEMALF 1 ’
Sxel® {LENALEwX). 1 e e
RASEFTFTCTONPNLABTTS) JAND.E3 I SUBKCLTINE SPELL ¢
L IF(NI.FC.IR ) 60 TO 72¢ IC TC RECUCE A NAME 70 Sib FCRM
N HAXTSKAXT 41 1 COMPGN/ULCATI/LcNALF oLENTOK ¢CHARCO 5 CHARCL (63) oKL 0 oK Le s OL
INELFIMEX TInpy 1 T 1.MXTCK
. 72! COXTIALUE 1 2,ALPFA,SEPAR, BASH,0ESCR,0iCLT,DECLM,QUITE, COLON, TERMLN
y S 1 - INMYEGER _ LE“‘L‘QLE"“DCH“CGICH‘RCL"L"KLE.EOLOA‘YO‘
36 FXIF SPACE EEINECEN woR0S, I 24ALPHA JSEPAR,DASHDESCRLDIGIT,02CIM,QUOT. ,COLON, TL RHIN
" . 336 WAXY=NAXT 44 ' 1 COFMCN/TCKEN/ATCMU63) ;CAT(E3) yAsrtAXALLEN,LIATUK, iNCAr
- -‘*w%_ INRLF(RAXI)= IR I 1,IKCLAS,CICLAS
- £ OTRE LOPTINUE 1 INTEGER ATOM,A

¢ FRIRY oLy
Ay BRIAY 33, LINBUF LK) (X 22 MAXT)

IC wecvvrncrcnmcnrvnnrrcvscrc e e vt rccracr e ee e em.

b & - [ ——

Centre de calcul
UNIVERSITE DE MONTREAL

© g Gl L o o . e a4 NENDY




-

-y .

TVIEINOW 30 FLISYIAINN
11D sp suURD

e W . ) » . . . u M
1 d .
-1 ' ;
I . . : } !
1 . . 0
- — H E:
N . .
1 . : s :
) 4 R
I .
I ‘ "o ) .
T mmme—m— e T e s e - _ ﬁ < -
» N H i - - -
1 .
N H *
I . .
H 3
- T T T
. : 1
L | ‘ H . '
¢ ] -
. B I ~ ~ .
:H * \ -
B — 1 < .
1
I . . -
- H -
i 1 .
” \ 1 A _ AN
- = = T 1 - " B Ly B8
‘ I - - B
) 8
X 1 - 1WI*A0* (9 CYINDLYIL JT A5V
. 1 C SN I
LI : :
D ﬂ w 09T
m 103 41In 4T¥NEY O) 5
-l 1 . .
I -- )
~ ¢ i - - iﬂn’. A
I ﬂ uﬁﬁuwﬁxusa % ot
v 1 NEN13e (AVNIT IS XIRIVESK 4
1 . - NOIVaYIES w..uu b S E
3 1 APWIN . ,
i c-o.:._.o..‘..«w:v—ﬁﬁw..m»ﬁ,. RN mm
— - T 1 4 W
1 . © nunL3E O0LdIY uu.._uduw WM o
¢ ¢ i ' i
1 - ¢ auu:u s
1 .qn 01 29 (NSYQ*D3°SYTIINI YO BVGIS UI*SYTININAX
L 1 98t 01 09 :.nﬁ..ow.u-._uwnnmu .
‘ UISATIYNY T¥IIX3T v L] .wu.... a
| o o
L ) — —_




® ; o
PAGE 1 ULANG PREPROCESSCR FCOULE ’
q PRCCRAF ULARFP (INPUT,OQUTPLT, TAFES=INFUT ,TAFEL2512) 1 DATA €/ &, B, 8, 8,10,12,1hs 3,14y 0,16, 1/
g mn‘%ﬁﬂ'&ﬁﬂ‘eeunm IC ~evocecea- eeeeeeessccacrccccecccccacn e ———— -
- . Sl 1C
. CALL SECOMI(TK1) g . v 1C ACD EXPRZYSION NAMc TO SPECIAL-AAMES
CALL TAaRLCW . . 1 XTYP=2 . »
h 4 » I Mzg _
1€ IR Leer L. 1 MVASLE=Q
. 18 CALL INPQYCIEQF) Joo 1 CALL INSERP(ATOM{A=1) MVALUE 4CAT{A=1),M,DUN)
—-- - FFCLIECF.ECL1) €C TO 188" - ~ - Ic

. .m
o -4
LR

“w

i MU

Ed

S SN CL_RECLESYS 1 10 JIF(KK.N NAME) GOIC 33 .
* 10 CALL SECCADISEND) 1 IF(R.EQ.¥TX GOTC 90
- - SEMsSTxRetECg - 1 1T=g - -
e - BRIRY 18f, SFX ) 1 CALL INSERP(ATUM(A),XTYP,KK,IT,DUN)
:J AL FORPAT(IFB,A0K,.F8.3,50 SEC.) - I ATOV (R)=1T
. .- CML THECLO 1 GCTC €0 2
) . ; “ IC PESCRIPIONG, MAYRE ThEN, 0C
T BN ) : I 40 IF(CAT(A) . EQ.THENJOR.CAT(A) .EC.DU) CALL NEXTA
" :methiﬁ,!'ymtctioct‘cvc63.:.:!.0100.'00!oaucucoooo000vtoo.vt GCTC SO
I - T I1C CPERATOR
Taoet I 50 RaKK-50
N S 1 6GYC 110
§ S ) IC KAMF O VAL UE
Tm; I 60 IF(R.EQVT) GOIC 90 - :
€ - £aLLen By usSFrRCON 1 R=vV?Y ’ )
4 !,G;{I: CHERLIOR PRLEEDENCE FUKCTICNS 1 GOTC 10
J € S42 ARE INLICES CF STACK SYHBGLS IN F,G < IC EMD CF EXFKESSION, INSExT MARKER
[ £ & ZEINCEX IK Fy6 OF IMCOMING SYPEOL. T 90 R=MARKER
: . > I cceommecerecceormecesnvnccccconean bttt o ol - e
‘& 4-IS TRIL OF SRIFE OHRASE PTR IN STACK IC LCOK FOR TAIL OF PRIME-FHRASE IN STACK
$6 JE IS BEAC CF PRIPE PHRASE PTR IN STACK ic -
i ¥ SR - I 11d J=I
g 3 CRENMCR /ULDAT2/ OUHMY(19) 1 IFCSTX(I}.EQ.VN) Jal-}
YECS.STNIBGFRUY, INUM,OPER ,KNC,0ESCON, KBCCL,ITNAME(CLNAME T 200 S=STK(J)
JS—YS 4 Y T EOL, LEAREN JRPAREM JMIALS JACP ,EQUAL L IC.LE Y IF(F(S).Gl.GE2)) GOIG 1080
INTEGER IC STACK ThIS AICM
1 EOSSTRING,FAUPTNUM,OPER (UND ,0€ SCOM JXMECL o ITHANE , CLNAPE 1 IaTsy
ZyEXRANE JONAME oL XEC, FEQUS LPAREN ,RPARENMINLS JACP ,EQUAL , TC.CF I IF(I.LE.28) GUTC 204
1 CALL ERROR (I,1013)
COPECK ZTCKEPZATOMIRZ) CAT (B3] 24, FAX ALK, KK 1 GOTC 8
ER_ATICH MAXA M XK 1 204 SIXK(I)=R - —
INTEGER STKE28) 4STKAC20) oF (212)i6(12) yCoReSo¥T,VN,SA,XTYP 1 STKA(I)=A ’
1 INTEGER THEN,00 © I GOTC &
- - BATA TREN,D0/4R1,464/ - IC LCOK FOR HEAD OF PRIME-PHRASE IN STACK
€ TEFIRITICNS FCR FRFCENENCE FUNCTIONS « 1 380 9=STX(J)
T % DATS LEFRAQMARKER,VT,¥N/9,10,11,12/ 1 Je=y
: 39 2418,-32 ' 1 Jzgmq ? e

g R

93 . -

CALL ULSCRN
- CRLL LLEME CNANE)

- -

IC IMITIALISE

1 STK(1)=MARKER
1z1

f CALLS TC LSER SUBRGCYINSS TO BE INSERTED FERE

>

- JFOARELECLAHMLEALL)Y CALL CaLC
CIRARSPE LECALDISPY CALL QISPLAY. . _ .

.

«

NNHH el
(2]

3

T ROTE 30

c

GET NEXT avOPr

8 CALL NEXTA
IF(K.EQ.0) GOTO 91
Go"c‘ioogc'900“"50150350050190090)’K

ANAME
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PAGE 2 ULANG PREPRCCESSCR PCOLLE
— : ! oo - R
' IFCSTRE) «BQVN) Jxd=1 I NXV=NFTR
-~ E=xSTRLD) 1 GCTC 20
w— - < IF{F{S)RE.G6(Q)) GOTO 300 IC ACD NEXT VALUE - -
€ RECUCE FRIPE-FHRPSF IN STACK sncr (J+1) 10 1 1 50 MAXFzMAXP#+1 ! T
IFCC.ECLLFFPAP)} §OTO 500 b IF{MAXP,LceMXPCcL) GQTO 6@ = ™~
ELL 4 CALYL FRRCA(MAXyr,10312) - 3
SA=STXA{JC) 1 RETLRA
CAtL A::Euﬂcr.lton(sn).cAr(sn») 1 €0 CALL FSET(NXV,NXT,HAXF) ?
€ EQJUST STACK #ox&r[n »~ NXVzMAXP . ¢
QGC T=3+1 IC ‘
21 43¢ 1" B I70 XK1=FCAT/1CO R
1. 601C 288 1 X2=MCD(PCAT .100)
. RETLRN . » 1 CALL FSETINXV,TYP,K1)
g : ’ . I IF(K2.6T.0) CALL PSET(NXV,TYPZ,K2) -
£ vreceserscasmcananccsrcccrsnsacrccreracanasana 1 CALL FSET(NXV,VALUE,RyALUE) :
- . . I 1 CALL FSETINXV,CV,L) f
| o TENT 3 ) 1¢ RETURN VALUE-PTR IN PVALUE
IRESSIONS —eseJE COABITICA THEN ... 1 PYALKESNXY — — .
| 4 CALLEL EY USFRCEM I RETLRM
- XTYF=A 1 END ,
) ”" Il.l'.'l.'.l'll!.'U‘&'!.'....0"'.'.’&.‘.l.'..‘..‘."“.0."!‘66'6.6
PYALLERG . 1
ECATIEXMAPES 1841 1 ’ . o
MARE I0-SOPELTAL AAMES b { — SRR
CALL IKSERP(ELULCCND,MVALUE JMCAT, N,0UN) 1 SURRCLTIN: DUMPE
: 607C 13 4 IC TG DUMF CCHHAND TAoLE CONTENTS
.. . -ENC - Ie CALLED BY ULKNWD
W“."...'....C"”......IO..!.'O0‘!O'O.O".l"’.!.’l&o!‘l’000406!0.Ic
1 COMMCN/ULCAT2/TYP NXT ,BROLSCN,NPR,FAM,RES,MVYALCV,sLIA,VALUE
1 24STAY  IYEZ, KNAME, MXLICT MXSENAMGMATNAMGZMXTCEL y MXPCEL - - —
- ] 1 3,ECS,STRING,FNUP 3 INUM,OPER 3 XN s UESCCN,y KAUCL, A TNAME,CLNAME
- AE AFPENP A 1¢
£ 10 i§¥§§§ ANQINES® VALUE YO PARAM = I INTLGER
¢ CALLEC BY REX,INSERO,LIH,QUAL SENINFLUSERCCH,USERSEN 1 1 EGS+STRING,FNUM,INUMOPER,KKD,0ESCONy KWOCL )y ITNANKE, CLNAME
¢ YEAKIKG OF ARGUMERTS 1 INTEGER BYTE(5) ,T,P,PNAME,TAANE ,SPNANE,PVALUE ,OT YPE
F FARAM IN Ik INAME CR SPAAME 1 ccuzcA_jxzuszquu,nnxv41AAz511n31 . I
| € € MUSY P2 6T O . I COMMCN/CTSTEP/ MAXP,SFENAME (10)
¥ € PYALUE Ik, FARAM VALUF IC .
1€ CUY, PARAP INDEX IN PCELL 1 PRIMNT 113
j € o1 Ih, FARAMM TYFE I 11 FORMAT (1k )
- - b MAXMSF=MAXM+MXSFNAM
3 e PRJFAM  RESFYAL JCHLIP VALLE I 00 108 I=1.,MAXMSE - [
2sSTAT,TYFPZ, WRAVE, MXDICT,FXSPNAM,PXTNAP,FXTCEL,MXPCEL . b IF(F(I,STAT).EQ.0) GOTO t00O
INTEGER C.PVALUF,0CAT,P ) 1 IF(F(I,TYP)4«GE.10) GOTO 108
COMMON/CTSTEP/ MAXP,SPNAME (10) ,PCELL (400) 1 ITYPE=T(I,TYP)
c . ” 1 IF(F({IsTYF)eEQel¢ANCe (ITYFELEC,DESCONOK+uTYPE.EQe KNV} )
. 1“(6.61.1) 6CT0 10 I i1 GCYC 100
EEECELPVALLE (£31) 1€ ACYIVE FARAM o
PETURK ) 1 Iv=1
C FINC LAST VaLLE 1 ISP= I-MAXM
1C NxvsC I IF(I.LE.MAXM) PMAMESTAAMELI) .
IF(FIC,TYR).EN.C0) GOTO 78 I IF(I.GT.MAXM) PNAME=SFNAHE(ISP) )
20 MFYR=ZF (AXV,NXT) £ IC PRINT LCCF
\—— IFIAETR.EC.0) GOIO S50 . 1

10 00 1k IB=1,5
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. . BAGE 3} ULANG PREPROCESSCR PODLULE ’ J

- N - - _— ———
16 BYTECIEISF(IV,I®) 1 )

- . BYBLUE=F(IV,VALYE) I F=NcXTF (F)

-F — 1 OTvEE=gN T, 1 10 IF(F(F,STAT).EQ.8) GO10 200

] . IF(EYTF(1).EC.DFSCON.OF.BYTE(1).EC.KND) GCTC 16 I» ACTIVE CLASS . ’

ok IFCEYTEC(1) .EC.FNUM) GOTO 24 PYYFE=P(F,TYP) ‘
e 3RLEYTELL) L EC.SIRING) SOYO 2€ M=E

3 torc 22

. IF(FTYPE.GE.10) GCYO 100 .
-& FOR LESC CCAS OBRTAIN NAME

N

«
Fod pol 0t b et bt B £t beg Pk Bt b b Bl bt ot g bt et g bl e Py bt

» -
] -~ 36 1T=X . ®* DESC COMS OR KNWOD
-k - 18 ITeR{IT.A0TY NAMc = TNAME (F)
IF(IT.IC. 8} GOYO 22 ) KTYFE=1H -
<] 2 ; IE(PIYPE.GY.0) KYYPEaWCAT(PTYPE) -
CYYPR=TMAPFLIT) KM .

“f - 22 PRINR 21, 1V,PNANS,BYTELPVALUE,OTYPE

4 ) 20 KVALUE=P (KyVALUE)
1 231 Forri €1X 3Tk ot X A8,5Th,1X,110,3X,A8) .

FIND PEANLNG .CF VALLE

X Gere I8 IT=F . .

7 e @ BRIA T 234 TN KANE LBYTE LR YALUE 30 IT=T(IT,KXT) = ; — ]
K 2T FORFATUAX + o oI X, K%, 5T0,1X,F10.3) ; - IF(IT.EQ.0) GDTC 32 )

}33 66TC ¥¢ T (KVBLUE.NE.T(IT,MVAL)) GOTO 3§ , ’

i 26 PRIRY 2%,1V,EKANE ,3YTE,PVALUE

KPVEANSTTINAME (1)
Fo IS POREATIIX sI0 41X A% 5Ths2X ¢818)

32 FRINT 13,NAMC,KTYPE ,KVALUC +KM_ANS
13 FORPAT(1X,A8,1XsA2+110+1X,A8)
XsP (K NXT) . -
IF(K.EQ.0) GOT0 230

TNREYTEL2)

. PEAVEs LM . e NAME=IH

. GOTO 18 - GoTo 20

§ . aen contTInLe ] -

& | " RETURN * ITEM-VALLE

" 2 100 MzT(¥ NXT) -

. ..“i“’.m.‘.‘.‘..‘.‘0...“!0“".'..."'.""'.“’.C...’.'..C... ’F(H.Eq.u, GOTO 200 N \ -
RE . . - IFsF(r,s1a¥).€Q.0) GOTO 10 h .
25 S .. NAPEzTNAME (M)

. . - =M
e {3 b 4 »
r ERS OF._ A& _CCMEAND 120 PIYEEzP(K,TYP) L

KTIYFE=z1H

IF(FTYPLGTa0) KTYPLFCAT(PTYPL)

KVALUE=P (K ,VALUE)

IF(FTIYPE.EO.FNUF) GCTC 104 L Y
IF(PTYPE.EQ.STRING) GCTO\iDG

IE(FIYPELEQ.4) GOIO 110

® C USER-CEFIMEL AMD CPFAULY VALLES
K

CMGOHILL:‘T?"Y’!NXT.PROQSCR.NpﬂvfﬂﬂoassoﬂVALQCVvLIHnV‘LLE
LeSTAYLIYPZ, KNAME, MXOTCT,PXSPNAM KX TNAP ,FXTCEL , MXPCEL
3.805;373!!5;F‘UH,!NUH,OPERpKHO.DESCD"' KMCCL, ITNAME s CLANZNME
INISGER

1 EOS,SYRING, FNUK, INUM,OPER ¢KKO ,0ESCON,KhDCL + ITNAME sCLNAME

alalulo No RN Ko NN o N VN DR NS T Sy Sy Sy
«
~5

. PRINY 13,MNANE,KTYPE,KVALUE R -
: COMREN 2T EMPL/MAXM (MAXY ,, TNAME (109) GCTC 130
¢ COFMCAICISYEP/ MAXP,SPNANE (10) 104 PRINT 15 ,MAML ,KTYPL ,XVALUL
INFEGER FCAT(9) ,F P, T,PTYPE, TNAME , SPNAME 15 FORMPAT(IX,A8,1X,A2,610.3)
b CATA MCATZIHY G IHC o THK, AML, 1HO , $HY L IHE 1b 4, 1HS/ 60 _1C_130 _ .
. 106 PRINT 17 ,NAME,KTYPE,KVALUE -
® smrnecssccsccscarrsccncccnnrecastcncca e e, aamea 17 FORMAT(1X A8,1X,A2,A10)
L I GOTC 130 R
ERINT 24 * DESCRIPICR L
15 FORPAT(INE,6X,217HACTIVE PARAFETERS/ 110 X22F(K,1YP2)
- 3 KVALLERIH . e J
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*-? !%’ia;t SEECIM ~NAVE SENTION

g SN £O 480 Tai MYSPEAN

) PAGE & ULANG PREPRQCESSO? MODLLE
¥ “IF(R2.EC.31) RVALURSANFRON I IF(NERRLEC.401) GOTC &g1 )
s T TEIRZLEC.32) XVALUER2HTO 1 IF(MNERR.EQ.402) GOTO 402
TF(K2.EC. 33} KVALUSa2MBY 1 IF(NcRRecCo4DBY%) GOTC 404
. PRINT 17,MAMF,KTYDE (KVALUE 1 RETLRA
- I 401 PRIMY 1401,TNARE(IT)
xL3 I 14601 FORMAT(SX AB8.% USED IK #BONG CONIEXI®) —_—
0 IPIK.EC.Q) GOTO 100 . 1 RETLRN
o NANERLH I 402 PRINT 1602,TNAME(IT),K ,
-~ 0 -GOTC 28 1 1402 FORMAT(5X,A8,% MNOT ENCUGH PARAMEIERS *,14,* xEQU®) f
* 1 RETURA
. K!)J CLASS : I 4O0& PRINT 1404 ,TNAMI(IT)
1E(E} I 1406 FORMATY(SX A8, * INFUY WAl UES LUY OF KANGE®) .
AF(F.ST.0) GOTO 10 1 RETLRN i
1 END -

IQ‘.C..‘l‘Q'Q".C.."O..‘.CO‘..‘..CO.QQOQ.QQ..“.“...“'...‘...".l

1
1 -

\

% lﬁ m:-s 5 ,TYPY
! KTYPEady

1 SUBRQUTINE INSERP(PNAME,PVALUE,PCAT,C,F}

IC TC INSERT FIRST VALLE OF A MEMBEN IN PCELL

Ic CALLED BY AEX,QUAL,SEPCLA,SEMIMFL USEKCOM USERSEM
1c

IC MEANING OF ARGUMENTS

b, 3 . AILEIYPE) IC EAAME In, FARAM NAME [ —
JF . RMMLEsPER,VALUE) IC FVALUE IN, PARAM VALUE
Tx ERFARSalh 1c IF FARAM LSED IN AEX PVALUE=2 ,
Loos o L MR TIIREL £, 87 GOTO 228 ~ 1c IF FARAM LSED IK BEX PVALUE=4
;;. IF(FYYPE LEQ,. INUN) GOTO 268 ic ' QUT, FCELL LADEX OF VALUE (IF APPENP CALLED)
ttgvtvv!.!c.rnur} garo 27¢ 1C FCAT 1IN, PARAM TYFE
b ALUE Ic BCAT=0 MEANS NC VALUS (APB_NE NOT QALLZD) .
. 2‘&ﬂ,§xg.:is“ \§?" .7 1c ¢ IN, OUT PARAM INDEX IN TMNAME uR SrNAHE
, fi}’ (BN, 1YF2)uF0.10) !;EANS’I&JHE(KVALCE) IC IF C=0 TFrEN FIMND, EWLSE IF C GT 0 THEN LN
A T ,“ggi& ;iz,st«f,ntrps.nvugus.xrrAns 1I¢ F CuT, PARAM CLA3S IxDEX
- $orL Ic
- ,;il-tiitt ST DANE LKTYPE RV AL LE 1 COPFPCN/ULCAT2/TYPNXT »BROySCNINPR,FAN,RES MVAL ,CVsLIrt,vALUE
1 25STAY,TYP2Z, KMAPE, MXCICT ,MXSENAM,MXTNAM,HXTCEL yMXPCEL_ . . _ __
!!‘f 2§84 tﬁ.ttﬂE,KT?PE,KVALUE I J9ECS ySTRING,FNUMSINUM4OPER KL yDESRCN, XWuCL, ITNAME (CLNAME
T ¥ 1 Lo EXNAFE,ONAME ,EXEC,RECULLFARLN,RPARLN yHINUSAOP, _QUAL ,T0,OF
Mats !!!ttpﬂ!?) . SyRESTYP.ULTYR,LLTYP, EOV,EOQVCAT,LIMIT,KGuD
; IFIR.EC.4) GCTID &Q0 1 INTEGER
: .,51“ ui;tizp I 1 EOS,STRING,FANUF,1RUM,DPER,XNL ,GESLCON, KKUCL , I1 NAME , CLNAHE
3 ot . b o e e
¥ & btl*thﬂit!ﬂ! 1 INTEGER PNAME,PVALUE,FCAT,CoFIND,STATUS,ToPFoPSTATSTTYP
3 M SETURN 1 INTEGER SPNAME,CSTAT,FTYP
;:33-t~, g . - 1 COPFCM /TEMFL/MAXM,FAXV,TRAFE(109) .
. @Ijﬂ@lt"t"&".u.toutu.;uvto;oa-o&uswu;co;cau!»ot«;.&t;»qou&.;ox COMPFCN/CTSTEP/ PAXP,SFNAME(1D)
< b b b L T T T T P ey
o T S — b & ol e e
- - IC PARAN KAVE -
% P EIT Ky NFRR) 1 IF(C.6T.0) GOTO 13 '
c-10 §¥§nht L§t§ Eg;%rt!éﬁ ?*FEE?" 1 C=FIMC(TNAME sHAXM,PNAYc 4 STATUS)
c CRLLED RY PROUNIS, USERSEM I IF(STATUS.EQ.1) GOTO 10
COPFCN JTENMPL/VAXM,MAXY, TNANE (109) IC NAME NOT FOUKC IN T ,CHECK SPECIAL NAMES
bond 1 Fxg — e e S

B

e .

v,
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PAGE S ULANG PPEPROZESSOR MOOLLE

o A

] CALL FESETIC,STaT, 1)
.~ . IFTFCAT.EY.8) CALL APPENP(C,PVALUE,PCAT)
KETLAM

06 & IC31 MXSFNAR I 80 IF(FVALUE.EC.2) CSTAT=CSTAT.AND.5.0r.2
CapEAXP4IC I IF(PVALUE.EQ.4) CSTAT=CSTAT.AND.3.0R. &
- TFISFRAPE(ICI.EC. D) GOTO € S 1 CALL FSET(C,STAT,CSTAT)
: TFCSPEMBPE (IC)  MELPNRME) GO0 & 1 LF(F.EQ.0) RETURN
CSTAY=R (€ ,4TAT) 1 FTIYP=T(F,TYP) ¢
I CALL ESEI(F,TIYP,FIYF) U
GOTC %8 1 RETURN b
& CONTINCE ' . 1 END
o~ - c‘. . .. . - Il.l'l!l—.l.lll.!l!ll&l.!‘:"lllll!ll‘...'.‘IO!'..!!I.&!'Ul.‘l..‘!lll‘
CALL EFRGR(IC, 1811} I
BETLRM 1
-y © < 1
€ SPRNAFELIC)s PNANE 1 SUPRCLTINE LIti(M)

IC TC FARSE VALUE RANGES ... FROM X TO v BY 2
Ic CALLEL BY U>ERCOM

I¢

COMMCK ZULDATRZ/ DUMMY(19)

X3 Fﬂ;ziiltl;slz!.EXISJS_ilssuaE_II.IS_ICI“J—CLASS~Alﬁ"

34ECS o STRING,ENUP,INUM,OPER 4K KO ,DESCON, KaDCL, L TNAME,CUNAME _ .
by EXNAPE, ONAME ,EXEC, RECU,LPAREN,RPAREN, MINUS,AGPEUUAL TO,0OF
INTEGER

1 EOS,STRING,FNUF,INUMOPEFR » KWC yDESCUN s KNOCLy ITHAAE ¢CLNAME
Z;EXBAFE,OHME,EXEC ,RECU,LFA«EA,APM«EN,H‘NUS,AOP, EQUAL’T0.0F

(o]

-y (R0 CRECHE BRF WADE FDR CLASS-KARES)
3 18 TYYERTIC,TYP) .
o - PaTLiC Fan) .
ER CSTAT=FLC ,STAT)
Ay . FFICSTATCT. ) GOTO il
o BB ACLUNMULATE AC_OF ACTIVE P2S
;- TFEF.LF.8) RI TURN
: PESYAT2P(F ,STAT) 41
:ﬁ .- CALL PSET(F,STAL,PSTAT)

‘t4 IF(FCST.EC.ITNPE) GOTO 87
- 1 ¢ #x-1xput FaoARETFR
> I 1E(®fOICSIAT,2}.EC.1) COIO St

P0HﬁC&_AICKEMLALQHL511+CA1L£
INTEGER ATOM,CAT A, MAXA, KKK

o0

LIMIT MARKER
CALL APPENP{M,0,CAT(A))

CS!&?‘G!V!T.C‘?. 1
®, C“t FSF! (8,51" ;CSTQT‘
L SN IFCYITYP.EC.OFSCONLORLTTYF,EQ.KND) GOTC 3¢
-} € vALLE
- FIYFST(F,1YP)

CALL MEXTA

IF(K . EQ. IAUN.O 100 —
" IF(K.EQ.DESCON.CR.K.EC, STRING) GOl0 100 ‘/

CALL ERRCR(2,305) ..

RcTLRN - ) \
C LIMIT VALLE $

100 CALL APPENP(M,ATOM(A) ,CAT(A))

- SETLF,TYP,FIY¥YP) KKS=KK -
AFIFCATLGT.8) CALL APPENP(C,PYALUELPCAT) CAaLL NEXTA
- FILEM IF(KK,EQ.KKS+1) GOTC 100 ’
€ CESCR) RCAS CR KT RETLRA ) - .
1 38 PYMLLEST(C,mvaAL) ENO - )

CALL APFERD(F,PYALUELPCAT)

et b el 0ot et Bl bl et bt St e D e et et e

e .‘.l“"i.ll.l!!‘..'.‘l"ll".”'.."O'..l"'..f".'.'.‘..6‘0;'.
1

C KANE ALREADY EXTSTS
58 IVALUCSRVALUE
IFCTTIVYP.EC.OFSCON) CxF
CALL AFFEMPIC,ENV,EOVCAT)
poe—J E LR CAT LEC D) RETURN

CALL APEERP{C ,IVALUE,PCAT)
FVALLE=TIVALUF
RETLRN
[ o o
€ ITEM IS PART CF tXPRESSION OR CONCITION
"L SET-STANLS I6-2-CR_T0 &

< . ' B :
L (VIR N aw L N R Y

I .

I .

1 INTEGER FLNCTION P(K,1) -

IC TO EXTRACY FIELD I CF CELL 2*K CR WOrD 2®K-1 .

Ic CALLEC BY MOST ROUTINES CF ULPREP

b3 COFMCA/CISTIER/ PAXP JSENAME (10) 4PCELL(%30) o

I INTEG: R PCELL,MBSKG(5) {NBITS(5) Ve .

1 DATA FASKG/155255,255,31,127/ Ny

I DATA NBITS/3,-ly~12,-23,-25/

1C

1 IF(l.cQs2¢) GOTC 20 . g
IC RIGHISHIFT I I
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FAGE ¢ ULANG PPFPROCFSSCX MOOULE l
. ] - N O /
E PaSEIFTEPCFLL(22K) (NBITS(I)) .AND. MASKG(]) H IF(T(VL,RES).EU.ULTYP) GOTO &0 2 N
g RETURN IC INTEGER OF ALPHA LL - v l
€ CETY THF 1ST sORN " 1 IF(FVALUE.GE,LVALUE) GOTQ 50 - T
i 28 .P3PCELL (2%~ 1} I GOTC €3
Rf!tlw ' IC INTEGER CR ALPHA WL }
4 €0 IF(EVALUE . LFE.LVALUE) GOTQ S0 A
‘“."‘.",’."'.".'!”‘0“‘!.""'OI..!.O.'.!....l‘.ll..ll'!.l..lr GGTC %] ( {
. ic
e ' I 70 IF(T(VL,RES).EQ.ULTYP) GOTO 838 \ \ !
i . - 1C REAL LL \ i
S e TIRE BEAUNDSIMN, V) 1 IF(FPVAL.GE.FLVAL) GCTQ S0 !
< AF ¥ - I LCYIC €0 . —— e i
1 €. 180 10 LFECY POOFS IC REAL Ul
§€ (CALLED BY USESEM 1 80 IF(FPVAL.Lt.FLVAL) GOTO 58 .
5 -y IC - 5

v JOBER JENE JOES
Ry OURMT T12) JULTYPOLL FYP,EQV,EOVCATLINIT

COPPONIULEATAZTYP NXToRRC s SO o APRFAP JRES FPVAL,LCV,LIF,VALLE
ZySTAT . IYRZ, ERKAYE, RXDICT,PXSPNAM,MXTNAF,PXTCEL,MXPCEL

1€ SEY PVALUE TO LIMIT
1 S0, CALL ERRORP(M,PVALUE,4Q4)
CALL FSET (MU, VALUE (L VAL'UEY — v - -

16
INIECEP IC. BC CHECKING FCR ALL AINPUT VALLES ”
3 €OL,ITRING,FRUM,INUN,OPER, KNE, DESCOM ,KACCL » ITNANE , CLNAPE I 200 PVY=F(FV,NXT) ° -
"t;ﬁt&vv.tatrP.Eav.Eovcnv 1 IF(FV.6T,0) GOTC 10 -
, THYRGESR WL T P4PVALUE,PTYP,V 1 © RETLEN - -
+EPVALY fLYALUF FILVAL) 1 END - ol el
- PUE R Y P N YR R T D P Y R I.".'........“....'."...".‘.."'*.““‘Q.’..0'..07....0.00v.v—3v0—’
€ I
4. .. RYYERT(P,TYP) 1 7
TR 1
“E'tocx at ttcr PARAP VALUF- 1 SUBRCLTINE PSET(K,I,ITEM
‘ LUES IC Y0 INSERT TTEM IM FIELD I _OF CELL 27K OR IN WORD 2°K~-1. . .
PTYRSP (PY,TYF) o Ic CALLED BY APFENP, INSERP, FBOUNDS
;c CHECX MECES : 4 COFMCAN/CTSTEP/ FAXP,SFNAME(10) ,PCELL (400)
- IF(BYYP.EC.NTYP) GOTO &0 1 INTEGER FCELL  MASKS(5),NSITS(5)
TFECFTYF.EC.IMUM AND.MTYP.EC.FKUN) GOTO 20 1 DAYA MASKS/377777777608,377277700178,377740077778
IE(PYYP.COLFRUM ANDMTYP EC, INUM) GOTO 30 1 »,376837777TR7B\1722777778/
b &, 60TC..286 1 0ATA NBITS/0,k,12,20,254 L _ —
C CONVERT IC REAL - Ic A /
T8 FRVSLsFVALUE 1 IF(I1.EQ.20) GOTE 20
CaLt FSEHW,T‘.TIYP) IC LEFTSHIFTY
- CALL FSFT (MV,VALUE,PVALUE) I KK=Z %K
. . GOTC &9 1 PCELL (XK)=REELL (KK) AND. MASKS (I) .OR.SHIFT(ITEM,NBITS(I))
B ® = JOUNCAYE X SEILRAN
38 PYMALE=FPVAL- - IC PUT THE 1ST WORD
CALL FSET(MV,TYP.MTYP) I 20 PCELL(2®°K=1)=1TEM
CALL FSET (MV,VALUE,PVALUE) 1 RETLRA
N
g C“E’:‘ LI”ITS _ §¢0.v!Ustevlvv;l'uv..v!l#oavovluloci..Qv.to;o.o‘vo»‘vocv&ooo!0.o&u.o
L 1 R
80 IFtv.EC.0) GCYC 200 I .
ViLzy 1
.88 VLETVL,L,LIM . 1 SUPRELTINE QUAL (M,F) . N
1 TF(vL.EC. 6) COTO 260 IC TC FROCESS QUALIFIERS CF, WITH
LVALLE=T(V¥L,VALLUF) Ic ) CALLEC BY USERCON
e IF(NIYE EC.FAUMI GOTO 20 1c ¢ - e
Y Centre de colcu!
UNIVERSITE DE MONTREAL
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- PAGE 7 ULANG PREPROCESSOR FMODLLE <
—— m——— _— ——. — o — e e e e — - — e m ,.___.__<
COrrCN 7LLOAT2/ DUMMY(19) i I GOTC 2000
. pECSSSTRING, FAUY, INUM,0PER ,KNC,DESCON, XhLCL, ITNAME,CLMNANE IC CF C THIS AOP ...
e BgEXRARE JCNAMF JFXECREQU,LFAREN JRPRRENSHINLS JACP,EGUAL . TCHCF  T400  CALL MNzXTa .
SyRESTYPLULTYPLLLTYP, ZOV,ECVCAT,LIMIT,KCNE 1 IF(K.EQ.INUM) GCYO 4240
INYEGER - 1 GGYC 1000 N
Gy EKUL, INUM, ORER ,KNC ,DESCOK KRECCL 2 TINAME ,CONAPE . IC CE C.THIS ACE N —_— ——
ZIEXMAME JCAAME JEXFN JREQUGLPARER JRPAREN JHINLS ,AOP,ECUAL,TC,CF T420 IF(CAT(A~1).EQ.MINUS) ATONM(A)= ~ATOM(A)
T, RESTYPLULTYP,LLTYP, EOV,ECVCAT 1 PMOFF=ATOM(A)
L. - -1 CALL MNEXTA
COPFCN ZTCXEKR/ATOMISIN JCAT(BI) A, PAXD, K, Bk & 1 GOTC 1330
INTEGER ATOM,CAT,A,MAXA K XK IC )
e EMIE TR B PR L ENC L BUOEE - If semwacercmnrr oo e tesemceommamn o
1€ CLALIFYIER CCNSTAMT, OEFINITICAS CKLY IC 2AD FCRMAY OF THIS oo >
INTEGER PCSMARK THIS NEXTFREV,DIRMARK, 2GC 1500 PMC=zCAT (A) -
N - -- GAYR chnlnt.ruxsausxt.PnEv.cxluanx.Aco ; 1 PMCFF=g
f tn:.uz.u:.tu,vunl I CALL NEXTA
-~ " ?g W O D Y P B e WS 1 IF(KK.EQ.ITNAHE‘) G 0 510 hal
W 1 CAY(A=2)=4 e e e
R B S { S 1 CAT(a-1)=0
N 1 EALL NEXTA 1 RETURN
# 3w - TFIRR.EC.ITHAMF) GOTO 200 - - - IC OF THIS C
N IFIRKEC . FASPARK) GOYO 580 1519 ¥C=g
- I - IF LR EC.INUYPI GCTO 609 1 CALL INSERP(ATOM(A)PVALUE,0,4Q,F) 1
2 SRR X ) S CAT(A)=CNAM:E®1Q 119
TFECF € ... 1 CALL NEXYA ]
200 rosxg 1 GoTC 1000
Z7F. GALL INSERPGATOMCA) , PYALUE, 0,M0,F) L R el D TR e -
TEATERY=CONBNFO 1D 1€ 3RO #onunr CF N «.s
CALL NFXTA . 1€00  FMOFF=ATCM (R)
E 3N IELCATIA) EB L EQUAL)_CALL NEXTA i CALL AEXTA . - _
«} TF(RK.FC.FOSKFAPK) GOTO 300 I IF(KK.EG.ITNANE) GOTC 708
“ IFIR.EC.INUM.OR, K. ZQ.FNUM) GOTO 210 . 1 CAT(A-2)=0 . -
- IFLK . EC.OFSCEN.CR.K.EQ.STRING) 6ovTg 218 1 RETLRA
RETILRN ICCF M Q
- jECFC = 1700 HC=0 N
' .z;:_._clLL~Ap££xPxan.:lnnLAlAcArtllr 1 CALL INSERP(ATOF(A)4PUVALUE,Q0 #QFY . . _
KKS= KK . 1 CAT(A)=ONANE®*1( d
CALL MEXTS 1 CALL MEXIA
- IF(RK.EC.KKS¢1) GCOTO 21D 1 IF(XKK.EQ.CIRMARK) GCTIC 710
CRLL ‘PPEK"H‘"Q’O” I CAT(A=-3)=0
RFTLEA 1 AzA=-2 ,
L. samewe R RS NP N N AR B R MWW ' 1 RETLRN —
c CF € THIS oee IC OF X C ACC -
PPFE IS PQSHARK CATEGORY 1710 IFC(CAT(A) .EG.AGC) PMOFF= -PHOFF P
c ) FrCFF IS FCSMARK OFFSET 1 CALL MEXTA .
308 EECsCAT(N) 1 GOTC 1010
PRCFF=g IC ADJUST OFFSEY \
CALL REXTA 1100808  IF(FMCLEC.IHIS) GOYL 1810 e
IE(RK.EC.ANPY GOTN &0O 1 IF(FPC.EC.NEXT) PMGFF=PMOFF+1
IFIK.EC.INUM) GCTO 310 I IF(FFC.EC.PREV) PMOFF3PMOFF-1
60TC 1333 . IC FCRM LIANKS
CCF C THIS =\ 11010 PHAs4LLTHIS 2
3318 PMOFFaATCM(R) ) 4 cPr=0 _HJR
. CALL-AEXTA 11028 ﬂALL,lNSEREi2HA+n+lHlh,ﬁﬁ!,LULJ____p.fAﬁ____"~____ _—
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TS TR TR G e e TS AR e T e T e

PACE 8 ULANG PREPROCESSCR PCOLLE
19 CALL AFFERR(10,CPY, THISY I TCOMPCA ZTCKEN/ATCHIB3) ;CAT(ES) yA MAXA K KK
X CGALL APSPENP (MG, FHOFF , INUN) 1 INTEGER ATUM,CAT,ApMAXA KKK
tm . . CARL AFPERPLPHC,0F) 1 CFPCN /TEMPL/ZMAXM,MAXV, TAAFME(169) , TCELL(400)
- oL _RETLES 3 1 INTEGER F,Ci;P,TTYP,TNAME ,FNAME ,FBEG,FIND,STATUS,T
OQE .UO.",.‘O‘O‘.“..O...O‘.‘...0.!.'..'.."..‘5'.-"0‘!".ig
1 I FBEG=F
- 1 IF(¥.6T.0) GOTO 110
PN \ IC LCOK AT MEXT CLASS .
- ¥ wELALF 1100 F=NEXTF(F)
€ CLASS aant I IF(F.EQ.FBEG) GCTC 104
- LA I IFIF.FO.Q) GOIN 1440 —
) 4 1 M= T (F NXT)
- CORNONALLATZ/TYO NXTBROLSCNNPRFAN RES MVAL,CV,LIN,VELLE 1 GOTQ 110 :
-} ree. CORRER FYERPL/MAX M MAXY o THOME 11093, TCELL (K008) - IC EACK FLLL CIRCLE .
-~ CEOVFCR STCKERZRTCNOAS) JCAT(B3) JApPAX S, K KK I 104 CALL ERRCR(A,3)7)
TUTEGUER STCHCAT Ao MAXA X o KK I CALL MEXTA
e TATUS , ETMO, T4 INAME 1 RETURN. e e
IC ARE MCRE FARAMS NEECEQD
f.f:t!t!ﬁhﬂ:,n&xu.lfoucn),;TlTUSI I 110 NPRC=T(F,APR)
—-  JFLSTATUSECQ.1) GOTC 1242 - - - 1 IF(NFRO.LE(MAXH) GGTO 120
Tae T EML EPRORIALIEE) I NF=TINPRG,2)
f 1 NPEC=F (NP,STAT) '
I 123 IFCECE,STAL) .GENPRQ) GOTLC 133 ] S

% ,;,,,;w,mmmﬂuunm

1150 IF(M.EG.G) GOTO 100
i
1 IFIF(F,TYP).GT.C0) GOTC 15€
IC CCNOITICANS OF ACCEPTING IFPLICIT FARAM
1 YTYE=T(M,TYP)
1 IFLIIYP.EQ.KY GOTO 31560
tS&EQIt.ttﬁlt eruna 1 IF(TIVP.EC.INUM.AND.K.EG.FNUM) GOTD 160
: I IF(TTYP.EGC.FNUM.AND.K.EQ.INUM} GOTO 160

IC THIS NEXT CASE IS D:zBATABLe

; CRETLAINILP  TYR) 510 b IF(XK.EQ.LIMIT) GOTC 160
*mc InNSERY YTER RANE IN P I IF(TTYP.EC.G) GOTOC 168
¥ Ll IASERRCATOMCA) JPYALUE 4 Qo4 E) . IC LCOK AT _KEXT N e
;pi e TN ARTY I15€  M=T(M,NXT) .
¥ tﬁ!t 1228 1 GOTC 150 -4
: IC FCUND OMNE
¥ .n..u‘tt‘.ltlt’lu.t.vq;co‘tttcvoo-actostouloov--tblootatcooov;ooo.l150 PRANME=TNAFE (M)
4 1 caLt lNSEFP(PNlPL.lIOF(A)9ClTlA$.H.F)
I1C CHECK FOR VALUE STRING
- 1170 CALL MEXTA
SUPRCLTIN Pl (M 1 IF(TTYP.EC.K) GCTO 172
e ﬁxuc§g§F?L1cxr TTFM NAES 1 IF(TTYP.EC.INUM,AND.K.EQ.FNLH) GOTO 172 .
1€ CALLED Y USERGCOM 1 IF(TTIYP.EQ.FNUMLANDLX.EQ.INLM) GOTO 172
e 1 IFIXK.EQ.LINIT) 60TC 172° ,
3 TYR A NXT,BRO(SON, NPR oFAY JRES , MVAL4CV o LI 4 ¥ALLE . T —RETLRM .
ZeSTAT,TYFZ, ENAHE, MXDICT,PXSFHAM FXTNAP FXTCEL ,MXPCEL 1172 CALL APPENP(M,ATOM({A) ,CAT(A))
3:563.57':&6.Fkur,tnuw.open.xu0'0£scon' KCCL, ITNAME +CLNAME 1 GOTO 170 ’
v G BUFPY(16) L INTIT 1 END
- INSEGER ) ~og IO USSRV IBIIVSIIBIITIFIVEIIIBINIIIFIBNNIFINL0- 220004838800 v v v e
e 3 ECS,8INIE, Fnun.tuun.opta KKD ,DESCOR KNCCL s TTNAME JCLAANE 1 ’ ’
. [ PEDEEE S, R - -
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. BRGE § ' ULANG PREPROCESSCR POOULE J
2 1¢ar IC FIND FEFFLATE
18 CL 1 IF(KWCNAM.NE.0) GOTD 12
SR cutmza,ay . pREe - IC FIRST TEMFLATE
USES CIRECT ACCESS REAO/MRITE I IF(K.EQ.KhD) GOTO &
| JCorEeK. chrtluﬂnﬂttaxr,nc11¢53).nlxn.o,05101 1 CALL ERROR(A,310) —_
g D¢21) I »REIUEA \_ -
IC A TEMPLAT: IS OPEN
1 12 IFCKMCNAM.EQ.ATCM{2)) GOTC 24
. 1 * IF (K RE.KRD) GOTO 24
1C READ NEW TEMPLATE
1% KWCAAM=ATOM(2)
b 4 CALL FEAOPS(1.HMAXM,S511. KMENA)
1 MXPz¥XPCEL*2
IC \ .
- IC INITIALI2E CCNTAB ,
. CAMLLEL ®Y uULERES I’ 26 00 30 I=1.MXP
t:tt»E!!'Ct Acczss ktnnluixrs I 30 PCELL(I)=g .
P 3 1 MAXFsFAXM+ HXSPNAR .
1 DO 34 I=1,MXSPNAN
T 3% SFMAPE(I)=D
CAgEL =S I LABEL=LABEL+12 .
o JFEIRY 343 I IF(ATCM(1) .GT.0) LABEL=ATCHM(1)
= iﬁ FOREMTLING) 1 NAME=KWONAM
U v . b ATCH {2} sKNONAM —
v NG . 1 CAT (2)=KWC*103d
'WW”“‘O“O‘OQD_C‘Q.“IOOQ?Q‘#.'..OQO!.OQ.O.”.QOO.'}‘OOOOOGOIC
I Azl .
i 1 CALL LSERCOM
- . - . I CALL LSERSEM
r——‘——m§!£§£L§1BEnELEELLEQHELr 1 TE(KCET2.EQ.1) CALL FCHOUY
e m FOP- KEYNOPN ANG TO ANALYSL RECLESY 1 IF(KCFT3.£0.1) CALL DLMPP
£ T CBLLEC 7Y ULPRES 1 RETURN
€. LSES CIRECT ACTESS FEAD/WRITE Ic )
€ . IC ULANG SYSTEM KEYWORC
| eaué%n:tteirzltvn,uxt.aao.son.uua.r;n.aas.nVAL.cv.Lln.vALte I %0 IF(CAT(A) .NLobLLCPTI) RETURN
fo o B STATSIYP 2. KRANE, MIDICT EXSEMAM JVXINMAP PXICEL ,MXPCEL . XIC CMLY TCFIIONS® IS HANMCLED NUM e - e
o 3, €05 STRI MG, FAUP , INUM,OPER ,KKD,DESCON, IhtCL.ITNlPE.CthlE I &0 CALL MNEXTA
: S EXMMFCRANE KEYUL 1 IF(K.EQ.ECS) RETURN
3 INTEGLN ECS i 1 IF(ATOM(A) .EQ.ELECHCIN) KOFT1s1
1 IF(ATGM(A) .EG.ELECFGCU) KOPT2z}
COPPCK CIGT/ONANE(AS) ,0CATIE2) 4MAXD,C,CETAT 1 IF(ATOM(A) LEC.SLOUMPF ) KOPI3=1 -
: meszil 1 IE (uﬂﬂw4ELELquJﬂptl=ﬂ —_—— o —— e =
INTECER OWAME ,DCAT,HAXN,0,CSTAT 1 IF(ATOM(A) JEQ.ELNOECCU) KOFT23]
COMPER ZTTRERZATOM(BI) SCATLE3) »AAXA K kK, FILL(Z) 1 IF(ATOM(A) .EQ.5LNOCUF ) KOPT3=0
INRTEGER " ATOMGCAT, A, HAXA I IF(A10M(A) .NE.LLVTES) GOTC 62
T COPPCK FTEMPL/ZMAXM MAXY . TNANE(189) ,TCELL (400} IC VIESTY IS 8 TEST PROCEDURE
‘ COHMON/CTISTEPZ MALP ,SPNAME (10) ,PCELL(400) 1 CALL VTESY
e DATA KCETL KCRT2,XORTILI®B) 1 REYLRA [
€ =vmeccscercrcsrnnicrncacsrasscsccnscececasmneoe 1 ENC
c I.GO.'.‘O0.0.000..0.00'00000.0000000'0000.00 IR TR EEEN R EE N EE -~ . - »
asy’/ 1
CALL KEXTH 1 " -
IFI(KK.FC.XKEYUL) GCTO S0 1
" TF(KLETI.EQ.4) CALL ECHOIN 1 — . e
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FAGF 10 ULANG PRFPROCESSCR PCOLLE
;gn&;%?;hg usreces 112€ IF(CAT(A+1). NE.;PAFEN) GoTo 130 3
c USEE COPPANT ANALYSER 1 CALL MEXTA
¢ CALLED 8Y ULKNWO 1 CALL REPEAT
€ . IC FINC M TC WHICH THIS VALUE BELOAGS
COMNCN ZULDATY/ DUMMY2(19) 14130 IF(LEM.EQ,0) GU TO 134
XAC,DESCOK, XWCCL,IYMAME,CLAAME  IC ITEM NMAPE LIST
A EXNBVE CAAME JEXEN ,REQU, LPIREN ,RPAREN ,MIALS JACP L ECUAL s TCHCF 1132 IF(MM. LT LBM) MF=LBNM-1
1 CoRESTYPLULTYPLLTYP, ZOVLECVCAT,LIMITLKCAC 1 MMz=MM+1
. INTFGER 1 IF(PP.GT.RBM) GCTC 20
¥ 3 EQS e STRING FNUN,INUM,OPER,KHD ,DESCON XhGCL s ITNAME , CLNANE 1 IF(CAT(MM)/10.NE.ITNAFE) GOYO 132
htxtlrhﬁllnhf)ﬂ‘okml}.LFIEEUJPA!Q‘!.H}MSolCP.EOUlL TCHCF 1 MMM
.[[]!E. EQH.SCMCAT IC. . STIORFE VAILFE IK P e e e e
R 1136 CALL BPPEKPIM,ATOM(A) ,CAT(A))
¥ COMPCN FTCKER/ATOMEE3) ,CAT(63) A MAXA,K, KK, CUMMY (3) b KKS=KK
: INTEGER ATOMGCAT A, NAXA oK KK 1 CALL REXTA
IRTLEEP REY 1 TF(KK.EQ.KKS¢1} GCTO 134
L = - D T PR 1 GCTGC 120
§ -4 IC LIMIYT FCLLOKS N o = — - -
FC IsITIMIZE 1140  CALL LIM(F)
] i\ L BB th= g 1 607C 120
: FaMsFVALUE =S - 1c
>4 IC CLASS NAPE
§ C SCAN INFLT RTCM STRING - 1180  IF(LEP.LE.O) LBMaA.
ST CALL NEXIA I CALL SEMCLALE) . ; .
e FFIR.EC.8) GO YO 10 » 1 REM=A
€ CASE LATIAY} CF Y 1 CALL MEXTA
¢ GC TCC1€0,200,200,6008,5030,603,730,738, 10,1000),K 1 60TC 118
. 1C
C mawe IC EXPRESSICMA NARE
C.ITIAMMEY _6OTO 110 1190 . CONTIAUE —— L~ S
IFCRR EC.CLNANE) GOTO 188 I GOTC 10
IFERX . EC.EXNANE) COTO 190 Ic
CALL ZRRCE(A,301) IC DESCRIPTIVE CONSTANT OR CCMMAND
-6OTC 10 I 200 »=0
c I CALL INSERP(ATOF(A) PVALUE,CAT(A) 4M,F)
J-C SIPELE YIEFN NAME b ¢ GaIcC 10
118 H=® 1C
CALL INKSERPUATONM(A} PVALLE.G-H F) IC DESCRIPTCR
IF(LEP.GT,.0) RBP=A I 400 IF(KK.EQ.LIMIT) GCI0 430 ’
. CHLL KEXTA 1 IF(KK.EG.KOND)} GOTO 4Z0
€ CUMLIFIER PEY FOLLONW T G070 10
fdih.  TELCAYL I _4&20 CALL EFX P
CALL CULSL (M, F) i GQC1C 2¢
6C0TC 11 I 430 CALL SEMIHKPL(M,F)
€ EQUSL MAY FCLLOM 1 - GOTC 26 .
118 IF(CAT(AY EC,EQUAL.NR.K.EC.0) CALL NEXTA {1 -
c : I€ CPERATCR .
¥ ECLLON 1500  TE(CAY(A).EQ.LPAREN) GO YC 528 _ e
128 (K.EQ.INUMN) 6OTOD 126 I IF(CAT(A) .tQ.RPAREN) GOYO S30
1 C.FAUM.OP K. EQ.STRING) GOTO 130 1 IF(CAT(A) .EQ.EQLAL) GC TOD 540 T~
IF(RRBEC.LIMIT) GOTO 148 1 CALL ERRCR{A,302) T~ o
60TC 20 1 GOTC 10
C WALUE FCLLCRS . IC LEFT PAREN
AY. FOLLOK 1820 (BMz-1 e _ ___J
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FAGE 11 ULANG PﬁFPROC%SSCR PCOULE

"“'r“

CALL NEXTR

I ecccccarcnnccncnvrancccccrccrrrerccnvecnnecrene

C AEREAT SasckeT
€58 CALL MEXTA

I IF(PT.EQ.CESCON.OR.MT.EQ.KKC) GOTO S08
IC ITEr VvALLES ASE CH.CKiD

CRLL RLFEAT
28

I

V=T (MyMVAL)

JC IF ¥ HAS VALLES

£ CECIFAL, CTRING

I 310 IF(v.LT.MAXYV) GCTO 360

IC CHECK FCR ACTIVE R_SRTICTIONS, OR NO RESTRICTIONS

738 CALL -SEPIFPL (M, F)
. SOt 28

X
€ -INC QF SEMTENCE
1 S843 . AETURA

I VR=T(V,RES)
I IF(VR.EQ.0) GOTC 350
I IF(F(vR,STAT) .uT.3) GCTO 350

IC LCOK AY NEXT v

€8N0

PTRSPUPIFENVEITVAESSSINSS SIS “.“‘..."..l.'.l...‘.'4......."'.01 -

IC
IC KAS

I 350
IC GEY

V=T {VsNXT)
GCTYC 310

USER SUPFLIED A P
IF(P(M,TYP).GT.0) GCTC 360

o chifssuTINe UseRsEn, :
4 K LSER SUPPLIED PARAMFTERS

SN TO SVFPLY MISSIAG ONES BY CEFAULT
CALLEC 7Y OLXMD

MILLCCY?ITYP PNXT,ERO, SON,NPR JFAP ,RESPVAL,CV,LIV,VALLE

T+EQS s STRINGFNUP . TNUM, OPER (K0 + DE SCON, KMCCL,ITNAME,CLNAME
INTECER
1 FOS.STHIkG,FhUH,INUH,DPER.KHG.DiSCON.KhUCL.ITNAHE,CLhArE
c -
COMROM ZTEMPL/MAXM,MAXY o TNAME (109) ,TCELL (400)
N INTEGER F o Tof oV oVR UL ,EVALLE ,PCAY

1
I
I

CEFALLY VvALUE

PYBLLEST(v,VALUE)
PCAT=T(M,TYP)*100 + T(V,TYP)
CALL APPENP(M,PVALUE.FCAT)
GOTC 500

I
IC CrECK POCES AND LIMITS

—_-_—2+$1114I!224m11135o.HXDICJ;&XSELAH;!1IKA£4111C£L4HXEEEL_____._l__.én.IE(I(P TYP).6T.8) CALL PBCUNDS(M,M) _ _ _

IC LCOK AT NEXT M

I 500
1
IC

IC ecrronccccmcmerancconcaanana -

IC CHECK NO CF REQUIRED PARANS

¥=T(F,NXT)
IF(®.GT.0) 6010 203

IFIRNECe ITRANE ,00,KK.EQ o CLNANE) co 10 524 1c
{ — - CML ERECE(A-1,182) 1 F=0 .
3 © LER=y - IC GET NEXT CLASS - ,
: 60 TC 28 I10 F=AEXTF(F)
o 1 IE(F.GT.0) _GOID. 20 e W
€oIc 2o 1 RETLRA
3 € BISFY PagEX 1 23 M=T (F,NXT)
- 38 IF(LEN.KE.0) GOTO $34 ° 1 IF(M.EQ.0) GOTO 600
| S CALL EANOR(A,384) IC LOOK AT MEMBERS OF THIS CLASS
&0TIC 18 1260 IFC(P(P,STATI.EQ.0) GOTO 5(¢
i 10 > IS ACTIVE
S34  LOF=REPaFruD 1 MRzT (F,RES)
] €8Te 3¢ . 1 IF(MR.EQ.0) GOTC 300
"¢ foun Al IC ¥ HAS KESTKICTIONS, SEE 1F PRESENT
Sht  IF(CAT¢A-1).£0.0) GOTO SS9 1 00 240 12,8
CALL ExsCEiR, 301 1 KR2T(FR,I) -
1 IFI(XR.EQ.B) GOIC 258 . e —_
S5¢  CATUE-1)sEXNANE®1D 1 * IF(F(XR,STAT).6T.8) GCYO 200
ehLL AFX I 240 CONTIMUE #
GBYC 28 IC P SHOULC MOT BE ACTIVe THzN
-6 I 250 CALL ERRORP(M,F,&401)
‘€ INTEGER 1 GOTC S09
I1cC
< . BML SEVIEPL(N,F) IC CHECK VALLES
_.--GOTC 28 I 300 MT=T(r,TYF)
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PAGE 12 ULANG PREPRCCFSSCR FCOULE

E838 APRCET(F,2PH)
INFRCLE.®BXN) - GOTO 620
QvtFt CF AMCTINER CLASS

uPe] (NFRQ,2) 890 CALL ERRORP(F'NFROokUZ)
NPRCeP (KP ,SYATY) - GOYC 10
END.

AL

IF(r.GT.0)GOTO €50
IF(F(F,STAT) ,GE.HLNO(FCOUNT,NPRQ)) GOTO 10
€ MCT ENCLGH

ol
E2E IFIPLF,2TAT) GE . NPRO} GOTO:-10

€ \

L€ EXTAA PARAMS KEECED
W=TCF KXTY
37!'.;‘.!} GCYoO 890

€53 XCCUATarCCUNTes ’
. !F(P(H.!YAY!.GY:!) Got0 soe
L& & INACYINE

nExt (kALY 5 s
JFLPR.EC. Q) COTG a8

-BO 218 Ix2,8

RRRTIFR;1)Y

IF(XR.EC.3) GOTO &80
IFLP (KN, STRTILCT.0) "6OT0 700
TR CONTINUS

a“f st iR, A1}
- TRIN.EG.N) GOTO 19
é;«='*4ﬁﬁrc £350 - ’

‘€ GEY & VALUE

f ¢ IvEr_ DEFAULY

RS 2T | fF¢I¢L1.$lXV! GOTO neo
e SRET L WG RESX

3
IFEFY EC. LOSPON,OR . MT,E0. KAD) GOTO 769

Vol iP,NuiL) >

. IF(. EC.0) GOTo 720
IF(FIVRSTAT)I.CT.0) GOTO 720
¢ SOCK AT MAEXT V¥
L« raT (v, NxT)
€0¥C 71c
E.

T2 PUALLEmY(V,VALDE)
PCAYsT (R, TYP)*LO08 + T(V,TYR)

‘GOT¢ age
c _ 2
CEFALLY

L INSERPUTMAME (M) JPVALUELFCAT, P FCLM)

[rse ™ peavsriv,1vPr=to0
CALL IKSERP(TRANE (M) ,PVALUE,PCAT,¥,FLUN)

|
G SEF IF PCRE PADAMS NEEDED

A0Q IFIF(F STAT) .GE.NPRQ) GOTO 10
<hX1)

I
I
I
I
I
1
1
I
1
1
1
b4
1
1
1
1
1
b 4
I
I
I
1
I
I
1
1
1
I
I
I
I
1
1
I
I
h ¢
I
1
1
I
1
L
I
1
I
I
I
b ¢
1
I
I
I
1
I
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FAGE ULANG VALUE-FLACTIOMNS FCR RUM-TIME
W
— _ - - o e e 2 Y
8 »F £ (496, ST I NXV=F (MyCV) ‘ I
. to FIND FAFAR no ™ TNAHE( 1 .
T€ . . _ CMLFD 9Y y=FUACTIONS - % I 50 IF(NXV.EQ.0) GOTO 500
2 INTEGEE ARGC,STATUS, TNANE ) I IF(FINXV,TYP) .EC.4) GCTO 402
) CONFCN ZTENPL/ZMAXN,MAXY , TNANE (109) - I* NEXT VALUE
1= - 1 V=P (NXV,VALUE) -=
STATLSst 1 NXVPzAXY
IFLIABSLARG) (LE . MAXMN) GOTO 508 b4 NXVEP (NXV,NXT)
* JEARCRH TARPE . - 1 CALL FSET{H,CV,AXV)
KEYxI=g - 1 Iv=y
Jarhxy 1 RETLRN '
1 *
138 IFtJS.LT.I) GO TC 338 ) I 400 IF(F(NXV,TYP2).EQ.1) GOTO 420
KEY: (Ie4)/2 I+ FROM, 1O, BY , N
IFIBEG LT .YNAHF (KEY)) J=KEY~{ 1 N=VLIB(AKG 4NXV)
IPLAGE LY . THAHE (KEY)) I=KEYed I CALL FSET(M,CV,AXV) i
. IF (ARG .NE .THARF (XFY)) GGYO 1080 1 IF(V.EQ.EO0V) GOTO 50
1 Ivsy “ T, -
FINCFsKEY 1 RETLRN
RETUEK : - I® QUALIFIER .
EHSE 8CT POLRL I 420 MG=F (NXV,VALUE) '
] ¥ FiNpPs} I GALL FSET(MO,CV,MQ)
i STATLS=O . 1 NXV=P (NXV,NXT) .
‘ RETLES b 4 CALL ESET (M CV AXY) S
ﬂ KUNERIC- APS 1 60 10 S@
389 FINLFaARG 1
~) IFCPINCF.LTY,.4) STATUSsS I* NOT ACTIVE, OR VALUES EXHAUSTED °
RETURE I 500 vsECv
. ENG 1 ARGFR=0 .
;&ofqtltttlbno‘0:00‘00;00'1.:o‘o;.a“uvo‘l.“.!l'll‘u'l‘litUI!IUUOL IV=y - o J
) - 1 RETURN \
. I EXC
. - - !‘Q.“Q!.O.ll.““0‘000.““0..0ODOO0000..000,‘40 L X R R X R LR - ve‘
- INTEESD EUNCTYION ¥(ARG) ™ 1 ,
-1 CALLEC mY USER PROGPAMS 1 .
.9 I8 REIRIEVE PARAY VALUES TO USER PROGRAM 1 i e — . — [ . e
‘¢ WFREY SCIKTS 10 FOFYIOUS VALUF, VFIPST TC FIRSTY 1 INTEGER ng?jxgh VLIM(ARG,NXY)
INTEGER ARG, AOGPR P EOV,FINEP, STATUS WL IF  VFREV VFIRST I1#710 GEY CURRLNT VALUE , SFECIFIED AS FROM LLV TO ULV BY INC, 2
comnnce funnuatzecv.vve.uxt.cv.str.rvpz.viLLE.vvntv.vFIﬁst 1c CALLED BY V-FUNCTICNS X
BATA FCV,TYP RXV,CV,STAT, TYP2,VALLE, VFREV,VFIRST 1 INTEGER ARG, AKGFR ULV ULSTAT ,F3PTYP,ECY
«FBYEE90,3,2,3¢8,%5,20,~1,1/ 1 EQUIVALENCE (LLV,FLLV),(ULY,FULV), (INC,FINC)
& _ARCPRZBY 1 COMMON /RULNDATZEOV TYE NXT,CV STAT,TYP2,VALUE .
. 1 DATA ARGPR/O/
ENTRY 1V 10
IF (ARG ,FQ . APGPP) GOTO SO IF(ARG.EC.ARGPR) GOTO 408
. IF(BRG.EQG.VPPEY) NXV2NXVP 1‘ INITIALISE LIMIY
IF(ARG.EC.VFIAST) NXVsH I LLVELLYEINC=0
e JELARG (EC MPREV Q2 ARG .EQ . MFIRSTY GOTD S8 1 LLSTAL: e -
~ PefINCF{AEG,STATUS) I* INIPTR FCINTS TO INIYeS (=1 IF INITIALIZcO)
’ IFISTATUS ,EG.08) GOTO 3500 - 1 INTFTR=P (NXV,NXT)
- ' 1 INIYESaP(INIPTK,STAT)
IF(P(r,STAT) .FO.0) GOTO 500 1 IFCINIYES.EQ. 1) LLVsP(Nxv VALLE)
* ACTIVE FARAY b ARGPR=ARG
. ARGREaARS I NXE=NXY ! J

f
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* ULANG VALUE=-FUNCTIOAS FCR KLA=TIME

PAGE 2

['»
® LECF CVEE LIVIT SPECS
316 LIYPRP (KXF ,TYP2) 3
KXPF (hXP (NXT)
IFInXP EC.8) GOTYO SO0
- 3

1 RETULRM -
1% REAL VALLLS -

1 W10 IFiFTYP.NE.?) GCTO 43¢

) IF(FIMCSGT.O0.ANC.FLLY.GT.FULY) GOTO SG0O
IF(FI?C.LT.D.QNE.FLLV-LT-FULV) 60i0 5390
FLLVZFLLY+EING

N IFIRIYP.EC. 0. 0P.PTYP.EQ.T7) GCTO 328
' IFL(PTIYF.EC.8.0R.PTYP.EQ.2) GQTO 328
g SCTC Suc

v.«‘ o
“FELINTT MERKER.

-

"CALL FSETINXV,VALUE,FLLV)
- RETURNM
* FCR STRINGS AND OC2S RETURN LL AND UL ONLYs NO INCREMENTS
430 IF(PTYP.NZ.B8.ANC.PTYP,Nc.2) GCTO 588
IF(LLV.EC.EOV) GCTO 500
IFLLLV LT ULYY LLVRLLY

¥ SFOLTYF.EC.32) GOTO 35)
IF(LIVE.EC.3T) COTO 360

IF(LLV.EQ.ULV) LLV=EOV -
CALL FSET(NXV,VALUL,LLV) .

Pt b et v el Bt Dl bed Bt 0t B bt e et B ek g bl 0 bt e

G0TE 588 RETLRA //
& LOWER LIFIT FRCH ’ , * NC FPORE
. 388 IFILLETAY EQ.2) 6070 380 530 VLIrM=EOV
d LLSTAY S - NXVZAXP -
) IFCINIVES.EG.1) 6070 378 ARGPR=0
- - i VsF ENIF JVALLE) RETLRM
- CALL PSEY(INIPTR,STAY, 1) ENC
- " " ¢8re 1re 2 X Y Y Y Y Y Y Y S RN P YYY P RYY Y Y PYRY Y PRy Y Oy iy S Y T X ¥ 7 ¥ I SUn G
%1ﬁ§‘£!ffl LIFIT 10
L 3 IR ILLSTAT LEQ. 1) GOTO 380 . S
_ T ULYTIATSY ’
$ “ULUSF EAXP S VALUE) INTEGER FUNCYTOM VM(ARG,TABLE,N)
E L. eore 376 1c CALLED BY USER PROGRAM
-} ® INCSENFRT CY IC TC RETRIEVE ALL VALLES CF ARG IN TABLE(N)
| X838 IFLIRCSTAT,.EC.1) GOTO 380 IC vP IS SET TO NO OF VALUES RETRIEVED
F- INCSTATRY IC_CVY POINTER IS NOY MOVED _ e
‘ TRC=F INXP J¥ALUF) I INTLGER TABLEL (1) yARG,F4SOV+FINOP,STATUS,vVLIN
1 ¥ LOUDE AT AEXT VALLE SPFC 1 COMMCN /RUNDAT/EQV,TYF,NXT,CV,STAT,TYP2,vALUE
' 378 RXPSEB(AXP ,NXT) Ic
IF(AXF,.£C.8) GOTQ 380 1 I=0 .
TF(PINXF,TYP) . EC. %) GOTO 310 1 IF(N.LE.O) GOTO 500 <
'y I XaFIACPLARG,STATUS) U
® CMECK IACREFEAT : b1 IF(STATUS.EQ.J) GOTO S0 1
1 3A0 TE(FTIYF.EC.7) GCTO 362 I. IF(P(M,STAT).£U.0) GOTO 500
IF(INGEC.8) INCa1 3}C ACYIVE ARC
TFLINC.LTLALAND.LLV.LT.ULY) INC=IABS(INC) ) NXVaNm
IF(INC.GT.3.ANO.LLY.GT . ULY) INC=~INC 1C
1 S8 IF(AXV.:0o0) GOIO 508
362 IF(FIKC.EC.8) FINC=1,.0 . 1 IF (FINXV,TYP),EC.4) GCTO 400
JFE(PINC.LTLBANCLFLLV.LTLFULY) FIKCZABS(FING) IC NEXT VALLE
TE(FIMC.ET.0.ANDLFLLV.GT .FLLV) FINC=-FIKC I IzTe1
. I IF(I.GT.N) GOTO 518 .
* KETURN VALUE. AND RDVANCF CV 1 TABLE(I)=F (NXV,VALUE)
ARG COMTINLE 1 NXVEP (NXV, NXT} —— -
viIrzLLY I 5070 50
IFCFTYF.AE.6) GCTO 410 1c
IFCINC.GT o8, AND.LLVL.GT,ULY) GCTD 500 T3 400 IF(P(AXV,TYP2).EC.1) GOTO 420
TFIINC.LT.8.AND,.LLY.LT.ULV) GCTO SO0 1c LIFIT LoOOP
LLVSLLV4INC I 10 IV=VLIM(ARG,NXV) 9
N CALL PSET(NXV,VALUE,LLY) 1 IF(IV.EQ.cO¥) GBYO SO /3
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PAGE 3 ULANG VALUE-FUNCTIONS FOR RLN-TIM,

. SR e
I=let 1 INTEGER FLMCT.OM VS(BRG,AVALUE,ACAT,ACAT2) ‘
IF(1.GT.N) GCTO 513 e 1c CALLED BY USER PROCRANRS

. TERLE(I)s 1V - - IC T8 SET Cv OF ARG TO AVALUE, ACAT IS ITS TYPE
GOTC 410 - . I INTEGER FoFINDP,STATUS,AVALUE,ACATACAT2,ASTAT,FNUN
€ CUMIFIFR : 1 COFPCN /RUNDAT/ZECV,TYF,NXT,CV,STAT ,TYF2,VALUE

] ¢ n 1 DATA_ENUMZZ/ e

. govC 58 )
-G 'NOT ACFIVE, CR VALUES EXHAUSTED 1 _¥=FINCP(ARG,STATUS) *
500 vl 1 IF(SYATUS.EQ.0) GOTC 500
RETLRA 1 NXV=F (H,CV)
€ TARLE FULL 1 TF(NXV.EQ.0) NXv=H )
218 IzYa} _ IL SEY VALLE
RETLRK, 1 CALL FSET(NXV,VALUE,AVALUE)
END I1C SET TYPES, FLOATINGL PT IS OcFAULT -

Ki=ACAY
IF(KL.LEO.OR.KE.GT.15) K1zFNUM
CALL FSET(NXV,iYP,K1)

X2sALCAT2

NTEGER FLNCYION VP (APG, INCEX)
¢ CALLEC BY USER=-PROGFAMS
€ 70 SET Cv FCINTER TC THF INDEX-TH. VALLE

INTECER ARG «F+FOV.EFINOP,STATUS ,VLIN
COVPCER /RUNBGAT/COV,TYP  NXTLCV.STAT,TYP2,VALLE

IF(K2,LE.0.0R.K2.GT,99)
CALL FSET(NXV,TYP2,K2)
C CHANGE STATUS OF M
- ASTAT=P(M,STAT)
ASTAT=ASTAT.GR.2

KZ2=Q

S0 IFCICT.EQ.INCFX) GOTO 500

 od - CALL FSFT(H,SIAI,AQTAIJ S
NXysQ e CALL FSET(M,CV,NXV) N
PSFIKCEEARG, STATUS) VS=NXY
IF(STATLS.EQ.B) GATO 580 RETURN
NAVzP ! € €ERRCR EXIT, VS SET TGO 2ERO
s ICT=1 5008 vS=¢
o T EAIACEX,LE . £) . INOE X RETURA e _
C LOOP ANC CCUNT IN INT NO OF VALUES ENCOUNTELRED ENC

(22 A2 22 X2 R R 222 22X R R R 2 2 22 2 X R S 22 PRI R R SRS PR SR S PPN R RN R YN R REY YAy

Pt bl ek $t nd bt Bt B Pl el Bt B bk et Bt 4 g B B

.
..b.l"‘.'......l.‘."...‘..“...IO.'.'.U'l..""..'...‘.'l‘.O'.Dl.

K¥aF (KXY, AXT)
. IF(M.EC.B) €OTC S
ICT=2IC T8 ,
e KXVEhy FUNCTION YXA(IWCEX) . [
IF(E (KR  TYP) FC.0) GOTO 4Ce ic CALLEL BY USER PRCGRAM
GOIC %50 IC TC EVALULATE USER-QEFINED EXPRESSION(INDEX)
c - IC INDEX IS S&T TO POSITICK IN SFNAME
400 IFL(R(NXV,TYP2) . EQ.1) GOTO SO _/f IC RETURNS VXA=vXB8=EQv IF UNDEFINED
€ A LIMIY LCCF COUNTS AS ONE Ic vXBz4 IF TRUE, ¥XB=0 4F FALSE
MLIMLARG , KXV} Ic e NXA= FIT PY RESULY IF COMPUTABLE _ . __ _ . __ __ __ _
JF(IV.AELEQV) GOTNH &iD IC
' Q0TC S8 1 INTEGER EXNAME,XTYP,FNUM
¢ - < e INYEGER STK(20) ,KINB(Z0),F
$08 CALL FSET (M, CV,AXV) - 1 OIMENSION FSTK(Z0) )
L {19 7'] : I eGUIVALENCL {STKFSTK)
e RETLRN - I CCMMCN /TEMPL/ZMAXN . e - . —
ENG 1 CCMFCN /RUNDAT/EQV,TYF,NXT,CVySTAT,TYP2,VALUE

1 OATA PXSPNAM,EXNAME s KCNAME  INUM,FNUM/10,30,3146,77

IC .
b XTYP=2 ’
I GCTC 2
N IC [
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FAGE & . ULANG VALUE-FUNCTIOAS FCR FUN=TIHE

"] € BOGLEAN EXFRESSION ENTRY POINT
, Y
e

Z TFCINDEX.LE.O,0R, INDEX.GT.MXSPNAM) 60TO 90
RIEx L. -

wRyzg -
K2zP (K, TYP2) :
IF(x2.EQ.10) GOTO 510

IF(K2,£G.20) GOTQ 520

IF(XK2.EQ.41) GuTO Sut
IE(X2.ED.k3) GOIC 643

1=
e FTUD EXF IN SENANES
Ao BD 1B K1 NXSPMAN
HaEeANK R
'"""F,J")

£.3) GCID 183

IF(K2.EQ.45) GOTO 545
fF(K2.20:51) GOTO 551
IF(K2.€Q.52) GOTQ 552
IF(K2.E0.E1) GOTO 561
IF(K2.EQ.62) GOTO 562 .
IF(K2..0.20) GQIO K20 o

TFUXTYP ECL2.AND,PIM,TYP2) EC.EXNAME) MSFzFSPe1
o IF(XTVF.QC-k .lND.P(Ng Tvp 2) . EC o RONAME) MEF=NSPed
R IEArSPEC.INCEX) GOTO 20

GOTC 900
C LCGICAL CFERATORS b
510 IFC(FSTK(I=1) . EU+1..CR.FSTR(I).EQ.1,) TRU=1

IF(KIYPLEC.0) GOTH @0
CCTCC18C,908,900,203,500,1€0,1€0,163,930),KTYP

4 18 COMIINUE GOTC EBD . .
o INOEXs=E " 520 IF(FSTK(I-1),EQ.1..ANC.FSTK{1),EC.1.) ThU=1
. -&-——--—‘-nm—g‘! GDIL_ ﬁ.no - - ———— PR—
-G FCURL, ¥ IS INDEX TN SPN‘NF ° € RELATIONAL OPERATORS
g 28 INDEXN=NM : - 541 IF(FSTK(I-1) . LT.FSTK(I)) TRU=!
k& KaP M NXT) GOTC €00
CJFLELEC.LY GCTO 900 2 S43 1F(FSTK(I-1).EQ.FSTX(I}) TRL=1
e L GOTC €00 -
PSIACK 845 TF(FSIX(I=1).GY . FSTIX(I}) IRL=Z1 . o —— -
%0 NTYPaP{K,TYP) GOTC €00

C ARITHMETIC OPERATOKS -
551 FSTK(I-1)=FSTK(I-1)+FSTK(I) T

B4 - et et e S g = Dt et bt g B bt e el =t e Bl B Bt et g e et g P g Pt e

C CORSIOER EVFRYTHWING FLOATING=FCINT
580 IFCRINC(I-1) JEC.INUM) FSTR(I-1)=STR(I-1)
IF(RINCCT) JEC. INUM) FSTK(I)=STK(I)
KIND(I~1)sKIND(T)sFNUN
€

C FYEM-NANF, INEFX TS STOQED IN VALUE GOTC €10 -
‘ 88 RITF{N,. ¥ LUMN 6§52 FSTK(I=-1)zFSTK(I=1)-FSTK(I)
e JELEINTL, STAYY . EO.0) GOTO G0 GOIL £18 e
- KXYRE{FIT ,0V) T 561 FRIK(I=1)=FSTK(I=1)*FSTK(I)
IFENXVLEC.D) GO 998 GOYC E10
IF(PINXY, TYP)Y.PC.8) GOTO 900 562 FSTK(I-1)=FSTK(I-1)/FSTK(I)
C STACK 11 GCTC €10 3
- TaYey IC EXPCNENTIATION
. f—— ITE£1.61.2L) COTC ADA IC _INTEGER FORERS ONLY FOR AOW ———— -
STREIV =P OKXV 4 YALUD) 1 S70 IEXP=FSTK(I)
KINCCT)=P (NXY,TYP) 1 FSTK({1-1)=FSTK(1=1)**IEXP
- 60TC 31%¢ 1 GOTO €10
- Et;!utsce!‘>l€lt. STRING VALUF IC ATJUST S7aCK
160 IsI¢} I 600 FSTK(I=-1)}=TRU
g > 1 810 I=I~1 . —
STRCYIIxPLK,VALUE) 1 K=P(K,NXT)
* RIRCLDIE (K TYP) : - 1 IF(K.GT.0) GOTO 50
€ MEXT PSTECK EXTRY b IC FINISHED
2190 K3PER,KXT) 1 IFC(I.NE.1) GO TC 900
IF(r.€T.0) GCTO SO b IF(XTYPLEC.2) VXA=FSTK(1)
L0IC So8 1 IF(XTYP L 0oht) YXB=ESTK(1) e e
T CPERATOR 1 RETURM

IC ERRCR ExIT

I 900 VXA=gECY

b VXBEECVY

1 RETURN

s END - _ e
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§ - Faee g ULANG SETUP FOCULE

<

£ - LRCERAP ULSETUP (INPUT,OUTPUT ,TAPES=INPUT ,TAPE1=512)
g ULANG SETUP MCOULE X

S T

COPPC“ILLCRT‘/DIPVAN.TENHIR.IYCAToULpLL;FCﬁ.SETHAQK

?;’ . 24MEXES ySEAAME(22) 4SNCAT(22)
X

920 CALL CLIMkK
6GTC 10

930 CALL CLASS(1)
§CTC 13 .

940 CALL CLASS(2)
GOoTC 10

> TeMARCS +SCAAME , SECAT

7. . ImrECER KMOTYR,STATUS,FIND
' COMPON ZTOKEN/ATOM{63) sCAT(63) oAy MAKA LK KK FILL(3)
INTEGER BI04 CAT A MAXA

0,0, LS14Y

950 CALL CVALLE
GCTC 10
c60 CALL CATEG
6070 10
970 GO0TC 10

CAg CALL AEXTIA

INTEGER DRANE ,OCAT MAXDsD»0STAT

L L L e ettt e UL L P LS L LD L Ll T

CALL CUMPTC(ATOP (R))
GOTC 10

4 . te.cm} tu903¢1rcr:
‘ IFCIECF.EC.1) GC TO 108

€-- - C END OF REGUESTS
CALL SFCCKOB(SFK1) )! CALL SECCND(SEKZ)
CALL STARCP SEK=SEK2~SEK1
e S EQE XD PRIAT 101, SEK
. AENDACT el - 101 FORMAT(4O0X,F8.3,* SEC. *)
€ INFLT LCCP 4 CALL STAECLO

STCP
END

< IFCCAT() LV.0) GOTO 20

| ¢ tF %o xne IKPLT, USE PREVIO
' T ATOPARYSRAOACT
e LOREIME LB KAME L MAXD , KNOAC T 4 STAXUS)

CALL tRSCANM SUS B4 FPUIUENSIBSISISSPINIPFITSETITPIFIDIVPISITLISSITSFIIPISSIBIIESISPIVIRILNLS
" -
€ SEYLP PCUTINES .

iny

CCKCATA CONSET
C CEFINES CCNSTANTS USED Y SETLP ONLY

COPPCN/ULDAT3/0LCMAN, TEMMAON, L TCAT UL, LL s FOr, >ETMARK
2+ MAXCS SONKAME(22) ,S0CAT(22)

IFISTATLS (FQ. 1) CAT(2)=DCAT(
e CALL MEXIA

INTEGeR DICMAN,TEMMAN,ITCAT,UL,LL.FCR, SETMARK
2+MAXLS, SBNAHE,SDCAT

[ S A O S R N I S N N N e N ]
.
o
[~ ]

GO¥0(834,828,%30)y KWOTYP
L0

KNDYYF=PCLICATLA) ,10) A IC eememvcccccnmccnnnn cseevoncan T -

KNOECT=ATCM{2) ” N I¢ OEFINITICNS FOR LLDAT3

IFIRXK.EQ.CICPAN) GOTO 3300 . IC MISCEL CATEGORILS

XL ECLIEMRANY_GOTO 3900 , 1 DATA DICMAL, TEMRAN ¢ITCAT pUL oL L oFGrey SETHARK L
c carc .10 I 2/38,3C,69,482 484,450,568/
1c '

1 C CICTIONARY CONSTAUCTION IC INITIAL SeTUP DICTICNARY CF SIZ:. MAXOS /
‘3 3888 IFERMCTIVP.LT.1.O0R.KHOTYP.GT.3) GOYO 10

I CATA MAXCS 722/
DATA SDNAFE -
1/3L A ILALL L CATE L LLCLAS 4LOCLALLLDEFI+4LOICT +4LJOISP - —

éoTC 1¢
828 CALL UCRUILO

&0 1C 138 -
838 CALL CICSYN

GOCTC 10 i
f o

1sSLELFPT,ILF,3LFOR, 1LY 2LIS,LLLINK,2LLL,2LOF,4LSEQU, kLSYNO
2+2LTC,4LUDBIC, 2LLL,&LVALU/

DATA SDCAT/098,443,39¢, 39.,.9&,390,331;@91,398,&97,k50,h96
1,563, 392.“61-#01'397.333oﬁ32'362|“62.3

YT IS STV IS IS I VSRV IVS LIV IS ISURIIPSR SIS SIS DIIIPBSISIIVILISGRE S

C TEFFLATE CCASTRUCTICN

3600 IF(RNOCTYF .£0,.0) CALL DEFINE(2)
IF(XRCTYF . LT41,CR.RKMDTYP.GT.8) GOTO 10
GOYC(910,€28,930,948,950,9€0,970,980) XKMCTYP

_§10 CALL CISFLAY
< L0IC S0

<

R 2

1
I
I
1
b
I
1 NG
I
I
1
I
1
1
1
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PAGE 2 » uLang slupr roouLes

““#

YN 7 )

TB ¥ ] PEMRE RS

¥ - S clu.tc BY uv.snup
Gm@untcnznw.un.sno.son.amz.nnmes.nvu.wuo.LIn.m.ue

e

I EXNBFE.CNAHE;EXEC RECU-LFARFN;RVAREN MINUS,AUP,EQUAL , Tu,uLF
I INTEGER

1 1 ECS,STRING,FNUK,INLM,0PER,KKC,0ESCCN, XWOCL,ITNAHE,CLNAHE
I SvEXNAME ,CNAML L XECyRSCUILFARENyRPARLN s MINUSyAOP s L WUAL » TO,OF
I COMMCN/ULOATI/DICMAN o TEHMAN  ITCAT UL LL oFUR, SETHARK

PXTCEL 4MXP Ny JEMMAN,TTCAT Ui 4lu oFCx , SETHARK _
s, !,te"s“:wgFm&;tw".o’fﬂ,*ﬂa,oﬁscou. I‘CCL,I?N‘HE:CLN‘HE Ic
e Ao EXMEBE W CRANE JEXEC JREQU s LPAREN JRPAREN s MINLS o ACP ,EQUAL 4 TC,CF I INTcGER FoFINO,STATUS,T,REA,CLTYPz {SWALUC »FCAT
‘Fame — INTEGER z!. I COMMCN /TCKEN/ATOM(63),CAT{E3),A,MAXA,K,KK
: $. ECE,STRING (FAUP, INUN,OPER 4 KT ,DESCON, KNCCL,ITNAFE,CLMAN I INTEGER ATOM,CAT,A,K,kK
%.; a.mus,;mnc.txtc'kﬂw-Lnazu,RMREL nuus.lcvgcuu,tc.cr I COMHCN /TENPL/MAXMMAXY,TAAME (109) 4 TCELL (200)
-l !C B B Sy e D R D A S Gy D G A G WS P W S G G M PSS E R W - -
Fr ,jt > Rl - IC
£ cavrts lvcurmflvohtasr.cnt¢631.n.raxl.x.ur IC CLASS-NAPE .
- t‘fﬁﬁf‘ﬁ ltc"’e“".'"“ 1 CALL MEXTA
- - CCPFEN JTEMPLZNARNMAXY ¢ TNARE (109) (TCELL (400) 1 Fx FIND(TNAME ,MAXM,ATCM(A) ,STATUS)
i - . INTEGER FING,STATUS.T I IF(STATUS.EQ.1.AND.T(F,TYF)/10.EQ.1) GOTu 20
: - e S 1 CALL _ERROR(A,5011) . _
. a I RETLRM - .
= CALL WEXTR . 1C .
g SO IFLRR. N2, ITCAT) GOTO 99 . I 20 FCATsT(F,TYP) . ,
'+ £ € GEYT JYPE ‘ 1 CALL NEXTA -
s B &Iﬁnxeﬂtﬂut,:u 1 IF(CAT (A) .NE.EQLAL) AzA-~1
y = 20411 EQLEQUALY CALL NFXTA 1 Mzl EAsRBAS| AF =0 L _
25 t w WANE LCOP - ) 1C
: KLL NEXTS 7 IC PEMEER MAPES
-~ - - TFURLEC.ECS) RETUIN I109 CALL MEXTA s
= TF(RK.2§.1TCAT) GOTO 28. 1 IF(K.EQ.KWD) K=Q
+.8, 1 IF(X.EQ.0) 60TQ 200
g MEEIAR CYKAME,MAXM ATOH(A) (STATUS) 1 IFACATLA) EG.EQR) GCTC 400 S
fo T T IFESTATUSLEQ.L) GOTO 1h0 I IF(CAT(A) .EQ.LPAREN) GOTO 290
T emL sncnﬂ.nu I IF(CAT(A) .EQ.RPAREN) COTO 280
.- GOTC t48 1 IF(K.EQ.ECS) RETURN
| ShE MTYR=T (N, TYP) I CALL ERROR(A,502)
IFCPTYP.0E.18) GOTQ 190 N 1 RETLRN
\{ ) IC KAME _
. GoYo 1e¢ I 200 MTYPE=Q
g rancas I IF(CLTYFPELEQ.2) MTYFE=DESCON
$2 CALL mne:u.sm - ! IF(FCAT.EC.KWOCL) MTYFE=KWD
WETUM b M= INSERT (BTOM(A) yMTYPL,F)
‘1. 290 CALL ERROR(A,502) 1 IF(K.GT.0) GOTO 206
< - - b d CAaLL _ERROR(A;503)

c
1€

N0 >

2 4
‘-1 QQO&&OCQO.Q"{'Q0000b015¢¢ocloOlt&oo..;'o#totco#o,o»ootoOOOJOOOOQQOIC

I

RETLRN

CTINE. CLASS(CLTIYPF)
€ CEFIKE. PuPBERS OF A CLASS WITH RESTRICTICNS

c EC 8Y ULSETUP

COPPCR/LLCAT2/TYP JNXT BRO 1 SONSNPR JFANGRES yMVAL 4 PNO L IV »yVALUE
eSTRT,IVYP 2, KNAME ¢ MXDICT FXSPHNAMMXTNAP MXTCEL ,MXPCEL
: UM, OPER 4 XKD ,DESCON, KMCCL,ITNAME ,CLAANE

’

AN

- R T T I Oy ST L e

1206 IF(LBA.LT.0) LBA=A

1 REA=a

I CALL TSET(M,FANR,F)

I ME=T (F,NXT) - -
1 IF(MB.GT.0) GOTC 210

IC FIRSY MEPEER 1IN CLASS

1 CALL TSET(FyNX1 , M)

I IF(CLTYPELEQ.1.ANQ.FCAT.NE KKWECL) GOTO 230

IC FIRST DESCON CR KWD

1

CALL TSET(M,MVAL,1)

I

Centre de calcul
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% PAGE 3 ULING SETUP YOCULE

CALL ISET(M,TYP ,MTYPE

ny coTe tae o

‘B BRIRC LAST nEnafR In CLASS .
181» KXPEs F(PE MXY)

IC CLASS=-NAM: RESTRIGTION
1720 ° MR= T{HRNXT)

k. GOTC 23¢ .
FEIN CCALL TSETIME.NYT,v)
“FS FOR OFS CONS $ET vALUE

1 IF(FR.EQ.G) GOTC 730 -
1 CALL CUALR(MR,LEA,REA)
1fianmp.CC.8) COTO 220 1 GO0TC 720
; ) 4 730 IF{(LPE.NE.Q) GOIN SO0
I LBAZQ
1 GOTC 100

IC LEFT PAREM

- TECCLTYPE«NE 2o ANC.FCAT . NELKWCCL) GOTOD 237 T€90  IF(LEF.LT.0) CALL ERRCR(A,504)
" SHALLE= YEOME,MVAL) + 1 . b¢ LBF=-{
g : - 3 I GLIC 508 ——
. CTRLL TSEY (M, TYR ,ATYPE) IC RIGHT PAREN -
60TC¢ 100

“[C.FOR IVEYS SET TYFE, F IS DEFAULT-TYPE

-1 T 3% RYYRESEMIR .

1. IFLCATERe1) AT SETHARK) GOTO 240.
i SRR MEX T A

1€80 IF(LBF.EQG.0) CALL ERRLR(A,504)

EALL NEXTS
TFERR.EC.ITCAT) RYYPEXNOOICAT(A),30)
. EuB CBLL YSET (M, TYP NTYPE) -

F © GRYO sa¥

1 LBF=LEA=REA=)

b GOTC 120

1 END N
JPSZSUBEIVIISBIRLENR S SISV BN l‘y.l.!_.__._t_!!_‘v._i_‘
1

1

1

1 SUBRCLIINE CLINK

1C TC FORM LINKAGES BETWEEN CLASSES AND TO ASSIGN FCELLS
ic CALLEQ BY ULSETUE

R J
*
*
-
«
-
«
*

.

.

Rd
.
-
L]
Y

!C

A8 JFO.EALT .81 CALL ERROW(A,%34) 1c
45 BN EAT Y . b corncwuwnz/np.uxr.sno.scu.NPR.FAH.RES.MVAL.PNO.an.mua
e GOTE 108 - 1 2.STAT,TYFZ, KNAME, MXTICT,MXSFNAM,MXTNAM,MXTCEL ,MXPCE.
€ WIGHrT PEREX 1 3sECSySTRING,FNUP ) INUM,OPER g KHC s GESCONy KWLCL,1TNAME,CLNAKE
IEILAAFO. 0% CaLL ewgopu.sau 1 boEXKAME JONANE yEXEC,RECUSLFAREN ,RPARLN, HINUS,AOP , _QUAL , TO , OF
-3 1 INTEGER — e
R 1 1 EOS,STRING,FNUF,INUM,OPER yKNEC,DESCON, KWOCL o LTNAME,CoNAME
€ #E% PARXER b 29EXNAFE,CNAME JEXEC)RECUSLFAREN yRPAREN, RINUS, A0P, EQUAL 5 | J,0F
. «d) SCW0 %32 IC
k(4 ,505) 1 INTEGER FoFSyT,FIND,STATUS
- 3 . . 3 1 COMFCN /TCKEN/ATOM(E3) ,CAT(E3) JA, MAXA,K,KK
LS EPALY SESTRICTIION - I INTEGER ATOM,CAT,A,K, KK : —— ——
= ESOE.  CALL MEXTS 1 COVMMCN /TEMPL/MAXH MAXV 4 TRAME(108) »TCELL (%00)
L DR UELEC. NN K= . - IC ~ercccrcermcmccmrccc e et cc e e maes
"} -5 L TRF.ECE) CRTO GO0 Ic -
T T T FRECAT{R) JEQAPAREN) GOTO €99 1 IF(FBXM.CT.0) GCTO 10§ ,
-~ EFLCAT (Y XD APAREN) GOTO €88 o IC NC ENTRIES, KWD CLASS IS FIRST BY DEFAULT
: 4 1 FaINSERTAXNAM: JKKOCL L) . - |
CALL ERRCREIR,58D) . . I CALL TSET(F,TYP,KMDCL) ’
, RETLEN I CALL TSEY(FyNPK,1)
1 € FIKC RESIRICYION 1c

€88 MRs FINCCINAPF ,MAX'H,ATOMIA) ,STATUS)
IF(STATUS.EQ.1) GOTO 610
1

| Bl

IC CLASS-1, F IS INDEX

- RETLEN -
€10 IFCT(PR,TYPI/10.E0.1) GOYO 728
- CALL CUALR(MR,LEBA,RBA)

IFCLEBF AE.%) GOTO 508

LEsxg

a

1100 CALL NEXTA

I IF(K.EQ.KhD) K=zg

1 IF(K.ME.0) RETURN .
1 F=FIND(TNAME,MAXN,AYON(A),STATUS)

-1 IF(STATUS.EQ.1) GOTO 120

IC MAME NOT YET ENTEREC, ATTACH YO Fs (KWD CLASS)

- I
1

FaFINC(TNAME, MAXM,KNANE » STATUS)

CALL INSLRFLF,FSLATOM{A))

Centre de calcul
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ULANG SCTUP POCLLE

 SBTC 288
‘xnieﬁttﬁxaut;taa *eTURN
TPy,

v

\ ¥

FsFS - ARG (1) zATCM(A) ] -
salc. 132 1 ARG{2)sATOM(A+1)
TS SLREADY - I D2INSERX (UDNAME yHXOICT 4MAXUD »2 s ARG)
AF J¥B) 718, N€E. 1) GOTO 1120 I 200 CONTINUE
Ak 28 2 i 1 UCSTAT=1
- . . 1 REIUERAM
:iﬁt~ xr«cnrent.n!.vu) nzvunu 1 END
E # I'.ll".I!..‘“....ll!'!".l"l.".!l..l.‘!..OU!..0.0‘O.G'OO!"D.'!!
: »me: cuats-w .. - I
1
#tt.!c.snat ROI 1
T EERS 1 SUBRCLTINE DEFINE(KEY)
©EMLL "TREER .Ea.atnncnzx : IC TC CPEN AND CLOSE TEMPLATES

1Cc KEY=1 CLOSE ONLY
Ic KEY=2 CLOSc FIRST THEN OPcN

4
a3 XL 3

8384393059353 %33588

é/»v t,f!ﬁ!ﬁﬁﬁt?ﬂﬂ{&Si‘cnttasﬁ.A.nAxn.rrttcsw
BT 41&;:::,&.«&:&
4 FORANE CAEY OCATLES) ,HAXD ,0,CST1AT
K a_"‘ DL MAXD .. D RCL2) . LSTAY

Ic CALLED BY ULSETUF, STABCLO. USE DIRECT ACCESS READ/WRITE
1C -
I IDFPCLLULQAIZJ1124MXI,ERQ,SCN,822+EAufRES4huAL4PNQ.LLM;MALUEﬁ___
I 2+STAT,TYP2, KNANEy MXCICT MXSENAMYMXTNAM,HXTC.L s 1XPC_L
I 3,ECS,STRINGsFNUF, INUS ,OPER, KWD,DESCONs KADCL ¢ ITHAHE ,CL.JANE
1 INTEGER,
1 1 ECS,STRING,FNUP ,INUM,OPER,KNO ,DESCON, KWOCLy ITRAME CLNAME
1c )
OMMCN ZUDTCT/ZUCNAME (E3) JUOCAT(63) 4HMAXUDLUDLUDSTAT
1 “LgKMCMNAM,KR]I, TABIND(21)
I INTEGER UCNAME ,UDCAT,UD,UCSTAT,TASIND .
1 COMMCN /TEMPL/RAXM,MAXV,FAAFE(109) ,TCELL (400)
1 COPMCN STCKEM/ATOMCES) oCAT(E3) Ao MAXA K, KK
1 INTEGER ATOM,CAT A KKK
1 INTEGER FINO,STATLS,T
JC =wweccecccarrcnccinrerccncccncecen o, e a—a e
1C

IC CLOSE OLT OPEN TEMFLATE
IF(XMCNAM.EC.0) GOTO Sa

M= FINC(TNAME sHAXM KWOKAMSTATLS)
IF(STATUS.EQ. 1) GATO 26

ftﬂ?!ﬂ:ﬂt:lueisaz.tccarcssx.nnxut.t:.uestir
&titirlixsotz:;
uetuncnr.ud%uosrnr.rAexnc

L T L L L LYy
-

AIERE 1 1% e |

RETURX
CALL ARITFS(L+MAXM511KHENAN)
MF=T(r,FAN)
IF(MF.GT.L) GOTC 26
A RETLEN

CALL ERROR(1,512)
<.

4 T pe RN IRINETRT 26 MF=T(MF,NXT)
x M l!!tzrntttﬂxi} IF(M.NE.MF) GOTC S50.
°} - . MGEIImRYONCEeL) C IT IS THE FIRST KWOD
' CINEERN (ERANEMXDTCTMAXD 529 ARG) 30 PET(FNXT)
: 108 CORTIKUE . IF(M.£C0.0) GOTO .50 -
3 DSIAtxy d 00 34 I=6,20,2 - - -
' RETLAN . IF(TAEIND(I).EQ.0) GOTO 4@ - ¢
fE we=e- - cetmmisecaccccccracaccans IF(TABING(I) .EC.TNARE(M}) GCIC 30D
€ 34 CONTINUE

ENTRY LCEBLILE

€ Y0 EUILL USER NICTICKARY
e 0028 AR,

AXA,2

c

40 CALL WRITMS(1,MAXM,511,TNANE (M))
GOTC X2

Pt 0t bt bt et b B Do O Bt et =t 0t g g bt e g

- N Y T R T
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UNIVERSITE DE MONTREAL




J¥ERLYYRy ECV.ECVCAT

T/BICFAN, TENRANR ,ITCAT,UL,LL »FCR,SETHARK
N B TCTAUDNANE (83) JUDCAT(63) ¥AXUD JUD,UOSTAT:
ERAN I&?lﬂfﬂﬁiit! ,

R

I 23 FOPPAT(1h+,35X,*FOR *,7A107
1 00 232 I=1,7
I 232 AMRME(I)=1H

1€
IC. 11EM VALLES

PrsE S TULANG SETUP FOCULE
. A ' 1 CALL ERROR(2,501) 3
L LPES. MES TEFBPLATE IF ASNED TO I RETLRN -
',_Stx t:n.t:.n RETURN IC CLASS HEALER
‘Egtt NEWLA I 10 ANAME(1)=BNAME(2)=1M
xti&‘gc.itSJ ntfnan I X=T(F,SON)
N 5 X T IFIK.ET.0) Aunwsmx
mawxmn § I K=T (F ,BRO)
1 TF(K.GTe0) ANAME (2) xTMAME (K)
128 RN Ivb, 2042 . 1 1 K=NNZT (F 4 NPR)
CTRETHE (NN YD L EG.0) GOTO ETY I 1 IFIN.GT.HAXM) MRz =-T(K,2)
ns:!!ttnxl.zc.lfh‘pll) 6070 130 I PRINT 11,F, TNAPE(F), hN,AhANE(L) ANAHE (2)
iy 111 snnnA111an+_n_x."13.41.A4n*1a_uez_;_.zg,su_s~=,+g4a,__
tllﬂ'il‘!as) : 1 1° B = %,A10)
e I NLshL¢2
FE ’gzgr b4 IFINL.GT.56) PRINT 3,XWOMNANM
L st}:g’ﬂhcstz.ltonct)) 1 IF(NL.GT.56) NL22
i 1C
3 10 _MEMEEES o
1 ANAPE (1) =ANAME(2) =1M
r NN=Q
1 N=Y (F4NXT)
1 IF(».€Q.0) GOTO 1000 v
1 200 XT=T(r,TYF)
1 IF(KY EQ.DESCON.OR, KT, EQ . KMC) MMaT (MyMVALD S
1 MTYP=iH®
1 IFI(KT.GT,0.AND. KT LY. 10) PTYP=MCAT(KT)
I PRINT 21,M,MTIYP,TNAPE (M) KN
I 21 FORMAT (LR o4X,*F = *,I3,1XsA141X,AL0,3X,*IV 3+,13)
. 1 MR=T (M4RES)
1 IF(rR.EQ.8) GOTC 308
§1.13!1f~tturtgqn;axct,rxepuun PXIRAY ,FPXTCEL 4 MXPCEL IC RESTRICTICNS
TRIN,OPER ENO ,OESCON, KMCCLoTTNARE,CLAANE I 00 z20 I=1.7 -
2 EXEC,MEGU ¢ LOAREK RPAREN JHIKUS JACPECUALZTLHCE I KR=T(MRs1¢1)
~_~§i§¢ung?§;;uxvﬁy EOV 4ECNCAT 1 IF(KR.EQ.0) GOTC 230
YLy ‘ 1 ANAME(I) =T NAME (KR)
iafl‘ & i3 1 %m T INYE e — —
qlﬂiﬂi-Exsrgtznu.apueen.nona~a.nxuus‘uov EQUAL,TC,CF I 230 PRIKT 23, (ANAME(K),K=1,I)

Eﬂ¥t¢r~Attuttzsxtu.unuv.tnant(109).rcsLL(aonx
. THTECER ARARELT) JF T TNAME oV ¥R VL »4CAT (9)
I E BATS NCHYZAINBL1RC J1HK 1HO o ERC 1HT S AKF oI FA L1 b "/ )

c o O 0D DD Bh G A NP W W - ceveeoswesowesan -

£

300 NL=hL 4%
IF(AL.GT.56) PRINT 3J,KNONAM
IFCNL.GT.56) NL=2 ¢
IF(XY.EQ.DESCONOKRXT.EC. kWD) GOTO 500
V=T (M, MVAL) .

PRINT J.KUONAN

'S FORWATLSH I SXFTENPLATE *,A10/)

- L3 - - -
B ':;2 “ > \
F=KEXTF(F)

310 IVALET(V,VALUE) t\\v/ -
TFkY.E0.FNUM) GoTO 320
IF(KT.EQ.STRING) GOTQ 330 ‘
PRINT 311,IVAL

'ax"‘ z= %, 110} -

311 FORMAT(1H

G0Y0 3480

I
I
b4
I
)4
X TEAv.LT MAXV) $CTO0 500 |
I
I
)3
I
I
I
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ULANG SETUF PCCULLE

G!!l! 3:1 +TUBL ™
ETEEH 8NV = % ,F10.3)

i e
:tw' +8% %y = %,A18)

Ic

IC GET NLXT MEMBER

I S00 H=T(F,NXT) .
1 IF(r.67.49) GOT0 200
IC

IC GEY NEXY CLASS

e

! u.ﬂm )

&Hl? 23 u'rc 0
L 3

Wmum.-sa Soh18)

1 2000 FREXTF(F)
IF(F.6T.J3) GOTO 10

- RETILEM =
END

'."”l"'.’..""Q....'..""..‘"..l.."l.Cl‘.l‘..l!".ll’l..Ql..

o
e

SUBRCUTINE DUMPIC(PART)
TC OUMP TCELLS) 0=BCIH FAxTS, 1=M=CELLS, 22v-CELLS

CALLED BY ULSETYP
COMMCHZUL CAT2/ OUMMY(17) (MXTCFL R R

[ Nal

: .W e 354
.1!%.(1*? .G‘
EFII 138K 45 ¢ 110)

¥

INTEGER FIELD{5)»T,PART
COMMCM ZTEMPL/MAXM PAXY ,TAAVE(109) y1CELL(4DD)

©

PRINT 21
FORMAT (1N )
IF(PARTLELL2) GCTO 12D

Lat]
-

—

DC 100 M=1,MAXNM

Do 30 J=1,5
30 FIELC(JY = T(M,J))

PRIMY 31, M,TNAPE(NM), (FIELD (V) yu=1,5)
31 FORMAT(® M= »,13,2X,48,514)

sARs

100 CONTINUE ——
IF(FPART.EC.1) xETURN
FRINT 21
c
120  IF(MAXV.GT.MXTCEL) RETURN

00 20C Ma MAXV,PXTCEL
Do 133

H Qlfi”;f'.t
.i}“’g’\tg"tli.)

130 FIFLCCD) = TiM,Q)
PRINT 131, M.FIELD
131 FCRMAT(® V= *,.3,10X,514)

FEBY LTYP, IVAL 230 CONTINUE
L3¢SRy A8 oF18.3) RETURM
T END_ R o

»LTYP+ TVAL
mt.!hx‘ l’l"."

GET Kﬂ! ruuz
- MBS NiskL+$
3

l."".'..'l.!.‘!'0‘.!.!."’..l.'.."".0.0...""......05....0!0"

-

04 ot ek ot et Bt bl B et bl e et bk Bl B Bl bt b Dok D bt b P bt et bl ol Sl ot Sd Bl bl el el P bl bed Bk B

SUBRQUTINE DVALLE
IC IC QEFINE . DEFAULY VALUES AND LIMITS OF 1TEM-NAMES —

TFOML.ET,96) MLw2
ItV RxT)

= -~ FFEY.GEMAXY) GOTO 318 - - -
: PEINT &8

“RPTFORFAY (IR )

JLukt £3

Ic CALLED BY ULSETUP
IC
I COMMCA/ZULDAT2/TYP 4, NXT sBRO)SCN NPy FAM nESy MVAL 3 PNO LA M; VALUE

I 2:STAT,TYPZ, KNAFPE, MXCICT,MASFNAM,MXTNAM,MXICEL, sXPCEL
I 3+EOS +STRINGFNUM, INUN,OPERKWEL,OESCON, KADCL,ITNAM. LCUNA'f_
3 e EANAFE CNAME EXEC JRECUGMEPAREN JRPAREN 4 HINUSLALP +EQUAL s T F

L S ATl S e R, L
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a =S
1T BAGE 7 ULANG._ SETUP FPOOULE .
o sgmt.mwnunﬂ. EOV ,ECVCAT 1260 IF(T(vyTYF).EQ.RESTYP) GOTO 283 9
¢ 1 KRXVE T(VhXT)
- R A m.nlzx 2FNUP, INUM,OPER L KND (OESCON, KWCCL,ITNAME (CLNAME I IF(RXV.EQ.0) GUTO 278
QO :M.ﬁnﬁnr.ﬂtﬁ.lsw'unnm.&vush.ums.Aur.zcuu,rc.cr 1 VENXY
ntstna;uw.nuw. EDV,ECVCAT 1 6orc 260
= RELK IC AQB NEW VALU: CELL
“Mﬁﬁ utcﬁw-tmm.rrcu.m.u.ron.sswme 1278 CALL NEXTV(NV)
L e 1 CALL YSET(V.NXT.NvJ
e 3 V=NV
STE - GOFFER FTCKENZATON(ST) ,CAT(63) JA, FAXS,K, KK Ic PUT vaLLE 3
i nﬂem ltau,rn,t.m IC POSSIELY CONVERT I, F
- G - P I 280 MIYF=TI(M,TYP])
e t’wrane uﬂm.ﬂmx 1 IFCPTYP.EC.INUM.AKRD.K.EQ.FNUN) ATOM(A) xFATOM(A)
mﬂtﬂmuﬁ,@xn‘lnﬂcus),Tttl.uua) 1 IFCPTYPLEC.FNUM.AND.K.EQ.INLH) FATOMCA) =A) OH(A)
- : csmmenesca I CALL TSET(VIVALLEATON(A))
1 VCAT3MOD{CAT(A) 4100)
zmummm . 1 CALL TSET(V,TYP,VCAT)
- PRLIES 1 IE(LBN.EQ.0) LBYRY . —
o m'u . - 1 GCre 200
N }mﬁ.tnwn eaLL mexTa - 1c \
v TN A XM JATON (R ) (STATUS) IC ~eecccccccncccna [L AND UL ==r===rmceccocan
b ;!#.ﬂ GO0Y0 1019 IC LIMITS
> Mmm‘!bg !ﬂ 1300 CALL NEXTA
’ '?‘“* T &L OR MTYPLE 1 IE(K.£0.E s SN
e xvm F;!c.asscou.n.mw EC.HND) ioro 1160 1 IF(K.EQ.INUM) GCTO 30€
1 IF(CAT(A) ,EC.LL) GOTQ 302
m B4 v‘lu.! CR LIPIT 1 IF(CAT(A).EQ.UL) GOTO 304
A CALE. NFXY 1 IF{K.EQet0S) R.TURN
A Jtiﬁkﬂn .Eﬁ.!ﬂuu ctu. NEXTA I IF(CAT(A) .EQ.EQLAL) GCTO 200
- 218 1 G0aIC 13100
i g .ee.an cet0 258 IC LCHER LI -
_ ERICATAY EQ,LLLY GOTO 302 1302 LIYF:LLYYF
- IFACATER) GEQ. ). GOTO 384 1 IF(LBYV.GT.0) Vv=LBV
- -YF4CaT £8) L X0 FOOY GOTO S48 1 GCeYC 380
ZFER.EC,ECHE RETUN IC UFPER LIV
» ; . 1306 LIYFPsLLTIYE
wwsonwee YULUE ~eevcccercnanccea 1 IF(LBY.GT.0) V=LBY
y REFEAT PRACKET MAY FCLLCh 1 GCYC 388
; A1) XF.LPAREN) GOTC 210 IC IMTEGER, REPEAT BRACKET MAY FCLLONW
: ﬂ'l I 306 IF(CAT(A+1).Nu.LPARZN) GQTO 310
< %ﬁ:ﬂ 14 CALL NEXTR
2 -3 b CALL _=EPEATY I
'}Mt vatLEs : 1C LIMIT VALLE .
258 IFLLEVLEC.H) GOTO 220 I 310 IF(V.GT.0) GOYO 330
P L 1 . I V=T (M, HVAL)
T GAYe 264 . I IF(v.6T.0) GOTG 33D
228 ATV, PeaL) IC GET FIRST v-CELL
1 CALL MEXTNLY) . ——
C FIRSY VALEL, FORNM We¥ LTNK 1 CALL TSET(M,MVAL,V)
CALL NEXTW(V¥) 1 IF(T{P,TYP)EQ.0) CALL TSET(M,TYPyK)
CALL TSEY(M,PVAL,V) ' 1 IF(LBV.EQC.O0) LBV=V
‘ TE(T(P,TYF) . €0, 00 CALL TSET(M,TYP,X) 1 coTC 380
. G0Y0 288 1c
\ L . EURINER NALLES IC VALLUE CELL EXISIS - - —
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- JRALWECL 85 EATO o8
17 CELL EXISTS -

I LBY=g

I 607C 208

JC CLASS-NAYE RESTRICTION
1720 ERx= T (MR, MXT)

1 IF(FR.EQ.0) GOTC 738
s — 1 CALL CUALVM{MR K. LBY)
n . 1 60TC 720
t.u; scto 3!: I 730 IF(LEF.NE.D) GOTOQ 530
e et e e 4+ e o e e 1 .  LBvsg .
" I GOvT0 200
R IC LEFT PAREM -
HENTNLNEL 1648 xgugz.‘,/é.m‘ CALL EBRER(A,S04)
L TRET 1V, 0RY V) 1 LBFsx-}
1 G0TC S0
SRCM LBVAY L e o o I1C RIGhT PARE
1680 IF(LEBP.EC.Q) CALL ERRCR(A,504)
: 1 LEFaLEveREN=] :
S EELE 1 G0T0 280
T ”mtbwt) IC ERRCRS
Lzm’»élhh 1§%lttv.txv,vz) 11010 CALL ERKOR (A,53%)
. 1‘ _ 1 RETLRA
: !5:%, 11108 CALL ERROR(A,509)
f !!fﬁl!l! ¢ RETURM
BALLY: 1 EXD
i #, )‘m‘) CALL TSETHN,TYP,.K) TEORIBIBUBSIIINIISIBSESIIIIPEII NP I PRI ISI RPN -2 184 +RBRS 0y 2
. . ) 1 M
"\i;” .!Y . o 1
: 1
ti’tﬁ.ﬁ;m.m-x.ta.rmm ncnm-;ncnm 1 BECUTIA FLF¢

IC 10 APBENR k__CLASS-*_BlLLEL_BLCLI&K_

TS mvme« NLUE, ATOR( A) )
SRR
TERE TRV 8 :Lﬂﬂ ot
a7 381

IC F IS INDEX OF CLASS TO WHMICH CLASE FS IS APPfNOED

1€

COMMCN/ULCAT2/TYP JNXT +BROSSCNyNPRs FAR RES MVAL P40 LINy VALUE
29STAT,TYP2, KNAPE, MXDICT,MXSPNAM,MXTNAM,MXTCEL,MXPCEL
J,)ECS,STRING,FNUF ,INUM,0PER,KWC,DESCCN, XWDCL ITNAME CLNAME

o' RSN SPRe PO T CRROnREn e

‘“ tﬁnmamx Kwg
=
Lol eia‘nm : 688

REMY _GLIC €98

GoEXKANE JONAMc o XECoReCULLFARCN S RPARCLN MINUS,AOP, _LUALTO,0F
SyRESTYPLULTYPLLLYYF, EQV,EQUCAT

INTECER
.1 ECSySTRINGFNUR,INUMOPER,KWD,DESCON, KWOCL»ITNAME,CLNANE
29EXNAFL  CMAME 9t XLCyRGCUWLFARCN yRPARCN +MINUSIAOP . QUAL «TO,OF
3,RESTYP,ULTYP,LLYYP, EQV,EOVCAT

COPPCA/ZULDAYI/CICHAK TEMMEN , s JCAT L UL, LL,FOR,SETHARK

{ gﬂ tt‘nnaem GOTO €8
< u&t ECS) ®FTUTR
m "ENRCH R, 50D)

1 i
c nxc arsuxcneu
8085 R EIRC CINANE S NAXN L ATON (AL 4 STATUS).

INTEGER CICMAN, TEMMAN,ITCAT UL ,LL +FCR(SETHARK

INYEGER F,FS'FS,T'FI~C’ST‘TUSQSUﬂNY’BRUIl‘qv
COMPCN /TCKEN/ATOM(EI),CAT(E3) A, HAXA,) Ky KK
INTEGER ATOM,CAT,A,K,KK

COMMCN /TEMPLANAXM MAXM4TAAP, (109) ,IC-LL (L00)

IFLSTAILS . £C. 1) GOTO 618
CALL FRSLCE (A ,506)
RETLRM
€18 IFLT(rFR,TYP) 720.8Q.1) 6OTO 728
CALL GLALV NP ML IV)
e TF LLBF LAE.B)

C ~meemua P T T A R L L L L L I T T PR T T T T Y
c

FS=INSERT (LINK,CLNAVME,F)
IF(FS.6T.C) GOTC &0

.CALL ERROK(R,507)
RETLEN

b=t 0=t 0t ot Ped Sod Prd 8 Bt g e St o bl G O Bt 0T Pt et
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ULANG SETUP PCDULE

BET TYFEs CLASS 1. S RESTYPLULTYP,LLTYP, cOV,cOVCAT
Qt GALL TSET(FS,TYP,CLNANE) 1 INTEGER
T»iww!a§£1s TLF 50N} T . 1 1 ECSsSTRINGFRUM yINUM OPER KD 4DESCONy XHUCL, LT NAME,CLNANE
.' - EFESCRRY LY. 8) 9070 100 1 2yEXNANE JCNAME JEXcCoRECUSLFARIN RPARCNHINUS,AOP, _QUAL »T0,0F
.3 ﬁnt !ui iha-sxux - 1 3,RESTYPLULTYP,LLTYP, EOV,EOVCAT
Oi.ES) 15
- saxc zil 1 COMMCM /TEMPL/HAXM,MAXV,TNAPE(209) ,TCELL(%0D)
ﬁﬁ"03=l !ﬁtrvel~ttlt 1 INTEGER FIND,STATUS,PTR«T,ThNANLTCELL +ARG(2) yACPTR
;%; ARE . P . N 1 CTHMON ZUCICT/UCNAME(€3) ,UDCAT(63) ,MAXUD,UD,UDSTAT
= XY !lﬂtﬁ- r«ra.vau: 1 1. KNENAM, KNI, TABIND(21)
3 MR !!(lsexn.etgia corTn 12e 1 INTEGER ULSTAT
,uii?c tt 1c
tttt TSET (FE PO PS) 1 IF(PAXM.LT.MAXVLANDMAXM.LT.HXTNAN) GOTO 10
Hii i ’&Eet PIRARS, REFAULT. IS XPR=i . ; glLLpERRQR(rAxvpinﬁi)
ETURA

. NEXTS IC FIND INCEX FOR THIS *NAMc*
i R 1] b .} MzD P,
I MzFINCITNAME ,MAXM,INAFE,STATUS)
;rt:x; 1 IF(STATUS,.EG.2) GOTO 233
NENTR .. 1 IF(M.GT.MAXH) GOTQ &0 g
: _:ﬁfﬁsmnﬂt %o IC MAKE ROCM «
o !Ffsaut.rxurx $CTO 318 1 DC 30 MMM, MAXM
S 1 _KzsMAXF & ¥ - MM
#!!ca FICP A 130 TNAPE(K#1) = TNBML(K)
TALL WEXYA 180 MAXM= MAXM+1

w*

Fe
c

s, . - o

XN 3«1«“’3 358 -
- WO 6F sapAYS Cf lman CLASS PAYEE
iﬁ !ftx.uf.n setn 3%0

LA .SIATUS)S

b4 IF{ITYPELEQ.XKND AND.KRDONAM.EQ.0) KWONAM3LNAKE

IC INSERT MNAPE

cmm.n.t.a.nw.nruu.nt 1) GOTC IS8

S gm KEFTIV )
X - ety 1setw.m.~ssfvm

7 eML TSEY (¥, 2ukF)

Gigt TSETIFSRPR NPROD

mt.ttﬁ) g
f:‘! :i <

e L B A I

3929533585335 3833803888300033008090%0383830880Y

1 TNAME (M) = INAME

L ARGLL) =INAME - —
1 IF(ITYPE.E0.0) ITYPE=ITNAME “
1 ARG (2)=1T1YPE®*1)

1 IF (ARG (2) .LT,100) ARG (2)38RG(2)*10

1 UQ=INSERX (UDNAHE 4NXDICT 4HAXLD,24ARG)

1 UOSTATa ,

b 4 IE{r.EQ.MAXN)Y _GCIC 204 -

IC PUSH DOWN M-CELLS

1 MAXMIzMAXH =1

1 DO 120 MMzM,MAXF1

1 K= 2¥(MAXFL ¢ M = HF)

1 TCELL(K+2) = TCELL(K)

_ICELLAK#1) = JCELL (K=-1)

-

i
¥

35 SR TYPE LACPIR)
-1e 10 ﬁ%s i?cl!hgsﬁ-nﬁ. oR ns'nusn-iuiule IN TWAPE AND 1N USER CICT IC ADJUST FCINTERS
£ AN T0 ACJUST TCELLS MO POINTERS

4 %

I120 CONTINUE

IC ZERO CUT TCELL (M)

1 K=2%p

1 TCELL(K)=TCELL (X-1)=0

DO 150 Kxi MAXM

Cllt!ﬂ BY CLASS, CLINK, INSERF

X S COK!CNILLtit!l"’.ﬂ!f.ﬂ!ﬂ.SON;NPR:FIP,RE‘;FVAL,PNO.LI! VALUE I

] 2:8TAT TYPZ, ENAVE, MXDICT,PXSPNAN,MXTRAP ,PXTCEL JMXPCEL 1
. FECS oSTRTAG o FRUF INUK,OPER (XWO JDESCON, KNOCL,ITNAME,CLAIME I

o oWl W Ty . .- = . e iy

I 00 140 I%2,3
PIR=Y (K, I)
IF(PTR.LT.M) GOTO 140
PIRzFIRSL

CALL TSET(KeILPIR)

=
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FAGE 10 ULAnG SFTUF PCCLLF

- ?

- TFETERK,TYFI/13.K5.8) GOTC 150
o PYORT(KN)

I 220 NS=sAS+1
IC INSERT CR REFLACE ARG

_— U

‘an*w~IF¢Ftlolt.P} ¢ato 158 e = - -~ 1 300 BC 310 MC=i,NC
=T . PIRsPIRGY I MENRMAX®(PC=1) +K
',I CtLL tszttl.h.rtﬂl I IF(ARG(MC) ,NE<0) T{(M)=ARG(NC)
I 3310 CONTINUE . __
& 3#4&!? lGTII! POINTER 1 INSERX =K
. JFLACPIR.EQ. ) GOTO 200 I RETLRA
3 - IFIACFER, . CE. M) ACPTIRSACPTReL . . . I I END
- ADJUST RESTRINTION POINTERS (PSS IBEUS NSNS SA IS EISSITITSSIIIFSIISIIISBISIIIBIISIILISIIIIINIINSS
", IPARAXV,GT.MITCEL) GOTO 208 1 -
XILEL I s
¥ IF(?(K.??F)-N! FFSTYP) GCOTC 164 I
: 3 00 1EE 122,68 1 SYBRCUTINE NEXTV(V)
§o— FIRNT(RGI) - - -o- IC 1C ALLOCATE NEXT V-CELL
3 N JFLPTR AT M) GHTO 150 Ic CALLED BY DVALUE,INSERF, UUALR, GUALY
“PIRSRIf s I COMMCN ZTEMPL/MAXM ,MAXV , TAAX, (109) ,TCLLL (400)
R) S INTEGER ¥ e e+ o —
FEOKTINLE S , —T MAXVzE MAXV=-1
BT geVe 17e S -1 VEHAXY
‘;iiﬁ FTRSTY (K SES) - I IF(MAXH4 LT .MAXY) ReTURN
3 T (PTRAT M PP PTR,GT.NAXNH) GCTO 178 1 CaLL FRROR(V,1002)
: c LL TSET (K FES,FTIR L) 1 RETURM
Al oty B IAL I ENC I —— —— ———
.g"‘g IAEEX . < IR 20325383¢32B4BH30 5235300300080 Y A
% IWSERTsP I
o RETLER I
k 1

$: Q.‘".Q'm".l“.ﬁ..."“..'.“'.'..'ll"l‘.ll.‘..l S¥EIPILBIINSNENTY

SUBRCUTINE QUALR(MK,LEA,REA)
IC I0 APPLY EESIRICTIOMN MR 1C MEFBERS FROM LBA IO RBA.

) RX LT MRHAX 3 NR JNC , ARG )
emn xa¥§§§ §Eﬁt5§ ;é?%mfibt! TINR,NC) AT POSITICN K

¢ MFAX = PAX BC OF POUS (A CONSTANT)
“ NO.OF S80S, NC_x CURDENT NO OF CCLUMNS

I1C RA IS CURRENT PTR TC ATCOMS
1c CALLED BY CLASS
COMHCN/ULCATR2/TYP yNXT yBRO,SCNy NPy FAM,xES,MVAL,PNO,LL M, VALUE
2,0UNMrY(29) ,RESTYP

INTEGER REBA,T,v,MsSTATUS,FIND,RA

COMMCE /TICKEN/ATOM(E3) JCAT(EZ) (A HAXA KKK .

CALLED BY BBUILD, UDBUILD, INSERT
INVEGER V(1) ;4RGEL) ,FIND,STATUS

IFTNSLLT.NRNAX) GOTO 10
CALL ERFCRNE,1MQY) ,

COMMCN /TEMPL/MAXM ,MAXY ,TRNAME(109),iCELL(WID)

IF(LEA.EC.Q) LEAZRBA
RAxzLEA

. !t 1213
- EsPLIND{ T N, MR6(1),STATUS)
TFESYATLEEQ.3) GOTO 300

100 M=FINOD(TNAME MAXM,ATOR(RA) ,STATUS)
IF(STATUS.EC.1) GOTC 110
CALL ERROR(RA,;5(06)
RETLRA

€ NOT FOUKO 110 ¥s T(M(RES)
o L R LR+ 6T oK 836030220 - IF(V.GT.0) .G0TC 280 e o
€ PARE ROCP FOR ARC * - C FIRST RESTRICTION
nc 218 rPaN,NR CALL MeXTVW(W)
NREKReK=PI CALL TSET(M.RES,V)
00 210 PC=i,NC CALL TJSET(V,TYP,RESTYP)
¥z ARVAXS (MO.1) & MR CALL TSET(V,2,MR)
e s e oS S ERES A 5010 N —

bt el bt ot Bl Bnd e Dot bl Sk o bnd el Ded Bt e gl ped

500 —
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Page 11 ULANG SETUP MODULE ’ ,
€ 2!(15 YO TIn RESTRICTIONS 1 COMMCN /ULDAT3/ DUMPYI (7} ,MAXLS,>UNANE (22),5uCAT (22) A
8% 00 258 103,48 ’ 1 INTEGER SONAME,SDCAT
T IFE TEV.I1.EC.8) GOTO 380 . ic .
58 CONTINUE I CUMMCN /DICT/ONAME(E3),0CAT(63),MAX0,0,0STAT
€ UL 1 INTEGER CKAME,uCAT,PAXD,0,05i 4T
- ) 1 COMPCA /UCICTZUCNAME (£33 LOCAY(63) 4MAXUO,UDLUNSTAT
G0TC 588 1 1, KNONAM KA TABIND(21)
Q MIO NPy RESIRIZTION 1 INTECER UCNAME,LCCAT,L0,UCSTAT,TASLND
m CALL TSEY(N,1,n2) 1 COMMCN /TEMPL/MAXM,MAXV,TNAYE(109) ,iCELL {«dd)
C LOCE OVER PEFEFRS- 10 ecmacceticececocnmcenmmccccerce s e e canen -
ﬂl IFERDGEBOA) RETURN 1c
; RAsEA2 s I IF(CSTATLEQ.L) CALL WRELIMS(1,CuAME,127,80SspCYy
£OTC 180 . 1 20 CONYIMNUE
et 4 IF(LDSTAT,.EG.O0) GOTC 30 .-
| YA YSG USRIV OBR ISR EPVLSPPIE SR FLSBITIVISEBIUIIIBIBN R3304 03003088 PRINY 21 B
- I 21 FORMAT(iM1,6X,*LSER CICTICNARY®/)
L : . 1 PRINT 13, {UD,UDMAME(UC) ,UCCAT (UD) yUL=1,MAXUL)
- " 1 13 FORMAT{iIX ,1ho2X . A8,15) S
s 1 - . 1 CALL WRITHMS(1,UCNAME,127,5LLDICT)
€ o ON MR TO B Ic
@,-.. . :aun nvu, 130 IF (XWENAM.EQ.0) GATO 40
tm&;g&nl’twmﬂ,uo.son.m.nr,n!s.nvn.Pno.un VALUE 1 CALL CEFINE(1) .
T 2. mery ma.n T &0 CONTINUE
ol 1 RETURA . e
(3 R Ic
b . - nﬂhmu IC wermcececcermcecemcccccorccccr st e e can e na e
i‘wi IPeEv ST 1) G0TO 200 e e e e S I { RY STAEQP
L% FINSY VALUE RE3TP 1C OPEN TAELES
. CALL NEXTULNV) IC CALLED BY ULSETUP
) 1 CALL CPENMS(1,T48IND,21,1) ——e -
‘w 4 OSTAT=UDSTAT=KWCNAM=D
m NALUE WESTR 1 MAXUDETKMIzMAXM=2]
o o ﬁgv TEYMETH : 1 MAXVZPXTCEL *4
TFELRYV.EC .4} SOVD 2958 I 00 120 I=1,MXTNAM
va I 120 TNAME(I}=0
1 MXT=MXTCEL®2 e
l!t m.uumu&) 1 00 $30 I=i,MxY
o CAEL YSET (WoWXT,NV).. I 130 TCELL(I)=D
; -SEY RESYRICTICN 1 PRINT 101
A . CRL TSETINYRES,NR) 1 101 FOPMAT(1M{)
b 5 GALE unmsdvniesnm IC READ BICTIONARIES :
- I IF(TABINGLL2) 4 EQ.SLSOICT) GOIB 1850 een
, IC SYS DICY BOES NOT EXIST YET, GET S DEFAULT SODICT
: N 1 MAXO=HAXDS
VUSSP ENBVVAY AT FRBSOPUN IS UTSF SV I ISR TIS RSB IIS AN SIS ISSESSIRINIISIST DC 140 Iaf,MAXD
. I ONAFE (1) =SDNAME (1)
I 140 OCAV(I)=SCCAT(I)
. 1L 0SYTAl=y — —— -
Egg%gsyg! §negg 1 GCYC 200
g e ; gLFe IC REAC EXISTING SYS UICT
[ SO €ALLEC 8Y ULSETUP I 150 CALL REAOMS(1,0MAME.1Z7,5LSCICT)
€ LSES UIPErT MCCESS REAG/WRITE 1C READ USER DICY
§ 1200 IF(TAEIND(4).EQ.SLUBICT) CALL READMS(1,UONAME,127,5.UD.CT)
e SOERCESULOATZ L DUMMY (163 o EXT AN XTCEL. b S RETLRA [ Y,
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