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SUMMARY 

A new equation of state for gases at high densities 

ang temperatures is formulatedo This is based on Monte-Carlo 

calculated compressibilities for rigid non-attracting spheres 

determined elsewhereo The equation of state for a gas mixture 

is taken to be that of a pure hard sphere gas with a 

temperature-dependent diametero This diameter is expressed 

in terms of the gas composition and the Lennard-Jones(6-12) 

pair potential constants of the constituent gas species. 

This equation of state is applied tc the calculation of 

detonation front behaviour and tc the adiabatic expansion 

of, and Taylor wave in, the products following detonation 

in TNT at loading densities of 1.0 and 1~5 g/cco At the 

higher loading density, agreement of the calculated with 

the observed detonation wave speed is to better than l%e 

At the lower loading density, the departure of the 

calculated from the observed wave speed is about 4 times as 

qreato 

The computations are also carried out using a 

co-volume formula, originally due to Jones and Miller, but 

rnodifieg here so as bet~•t tD match the observed detonation 

wave speed at cast densities. 

The computations are presented in a form applicable 

tc the products of any condensed explosive of the CHON typee 

The composition, however, is only treated in a manner suitable 
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for strongly oxygen-negative explosives~ The detailed equation 

of state relations are given, not only for the two equations 

mentioned, but also for a real gas virial equation of stateo 

In this case the composition is assumed to be fixed. 

The validity of the approximations recommended for 

use at very high pressures by Jones and Miller are examined 

in detail for each successive stage of approximation proposed 

and the calculations are carried out for each stage so as to 

separate the numerical errors of Jones and Miller from their 

acknowledged approximationso 
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SYMBOLS 

second virial coefficient 

(21f/3)No3 

third virial coefficient 

specifie heat at constant pressure 

detonation wave speed 

internal energy 

fugacity 

enthalpy 

ideal gas condition equilibrium constant 

mass 

number of molecules, number of moles 

pressure 

chemical energy released 

universal gas constant 

radius 

entropy 

temperature 

time 

centre-of-mass velocity 

volume 

co-volume 

pb';RT 

compressibility factor (=pV/RT) 



- v -

Y Ad adiabatic exponent 

6 - a small quantity 

A loading density 

' - he at of reaction 

a ' potential constant - paJ.r 

a pair potential constant 

p density 

Modifying Symbols 

( ) 0 standard state 

( ) f 1 ( ) 0 ideal gas condition 

( )r attributable to non-ideal behaviour 

( >g gas 

( ) j of species j 

( )i for reaction i 

( ) th thermal component 

(-) per mole 

( ) 1 per unit mass 

( >e in unreacted explosive 

( ) * a dimensionless variable 



- vi -

TABLE OF CONTENTS 

SUMMARY 

ACKNOWLEOGEMENTS 

LIST OF SYMBOLS 

CHAPTER l GENERAL INTRODUCTION 

lol Purpose 

Preliminary Discussion 

References 

CHAPTER 2 GAS EQUATION OF STATE 

2.1 Introduction 

2~2 The Intermolecular Potential 

2.,4 

Table 2ol 

Table 2o2 

Table 2o3 

Molecular Oiameters 

High-Temperature Pair 
Potential Constants 

Pair Potential Constants 

The Detonation Front Relations of HoJones 

Table 2.,4 

Table 2o5 

Detonation Front Properties 
(Estimated) 

Third Virial Coefficient 

Virial Equations of State 

The co-volume and Internal Energy 

The Lennard-Jones and Devonshire Equation 
of State 

Gas Mixture Equation of State by Rigid 
Sphere Simulation 

Table 2.,6 

Table 2o7 

Compressibility Factors 
For Hard Spheres 

Simulation of Third Virial 
Coefficient 

i 

iii 

iv 

l 

3 

27 

30 

35 

45 

46 

47 

49 

54 

49 

60 

63 

68 

69 

77 



- vii -

Inverse Equations 

References 

CHAPTER 3 THERMODYNAMIC RELATIONS FOR THE PRODUCT 
MIXTURE 

3.1 General Relations 

General Adiabatic Relations 

Table 3el Constants for the Calculation 
of Pure Species Properties in 
the Ideal State 

Special Relations 

References 

CHAPTER 4 EQUILIBRIUM COMPOSITION 

Table 4ol Calculation Scheme for 

Page 

78 

82 

85 

94 

lOO 
101 
104 

109 

110 

Equilibriurn Constants 119 

Table 4o2 Fitted Constants for the 
Calculation of the Equilibrium 
Constants 120 

CHAPTER 5 COMPUTATION OF THE TAYLOR WAVE 

References 

CHAPTER 6 HIGH PRESSURE APPROXIMATIONS 

6.1 High Pressure Composition 

6.2 The Jones and Miller Computations for TNT 

Table 6ol Constants for Approximate 
Detonation Front Relations 

Table 6.,2 Effect of Approximations 
on the Calculated CJ 
Conditions 

References 

CHAPTER 7 APPLICATION TO TNT AND FINAL DISCUSSION 

7.1 Introduction 

7o2 Conditions at the Detonation Front (CJ 
Conditions) 

121 

126 

127 

132 

138 

140 

144 

145 



- viii -

7o3 Properties and Composition in Adiabatic Expansion 
Following Detonation and the Spherical Taylor 
Wave 149 

References 

Table 7.1 Calculated Properties and 
Composition at the (CJ) Detonation 

152 

Front 153 
154 

Table 7.2 Composition in Adiabatic 
Expansion 155 

Table 7o3 Detonation Product Properties 
in Adiabatic Expansion 156 

157 

Table 7o4 Spherical Taylor Wave for TNT 158 

Figure 7.1 Spherical Taylor Wave for TNT 
at loSg/cc Loading Density 159 

Figure 7o2 Spherical Taylor Wave for TNT 
at l.Og/cc Loading Density 160 

Figure 7o3 Adiabatic Composition of TNT 
Detonation Products for loS 
g/cc Loading Density Using the 
HM Equation of State 161 

Figure 7e4 Adiabatic Composition of TNT 
Detonation Products for loO 
g/cc Loading Oensity Using the 
Modified JM Formula 162 



- 1 -

THE ADIABATIC EXPANSION OF DETONATION PRODUCTS 

AND THE SPHERICAL TAYLOR WAVE FOR TNT 

1.1 Purpose 

CHAPTER 1 

GENERAL INTRODUCTION 

When a column of condensed explos1ve is struck a 

sharp blow, or a section of 1t 1s suddenly heated by sorne 

means such as a shock wave, a steady detonat1on wave may 

develop. This is characterized by a nearly plane front 

moving at constant speed, one very much higher than for 

similar behaviour in reactive gases. Accord1ng to the 

accepted view, this is a wave of react1on cons1st1ng of a 

leading non-reactive shock, followed by a react1on zone in 

which conditions are invar1ant in a frame of reference 

moving at the velocity of the wave front, followed, 1n turn, 

by a non-st·eady wave where the react~on products expand 

into the space behind the advanc1ng front. The pressure 

behind the detonation front 1n condensed explos1ves 

generally exceeds 105 atmospheres. 

The speed of the steady detonation wave 1s observed 

to depend on the chemical and physical nature of the explos1ve, 

on its loading density (dens1ty 1n the unreacted state) and on 

the diameter of the column. When th1s diameter alone is 

varied, the steady wave speed is found to 1ncrease with it, 
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the rate of increase ultimately becoming very slow. When 

the detonation front speed is specified without reference 

to the diameter, it generally refers to the limiting speed 

obtained from an extrapolation to zero inverse-diameter 

using a plot of observed values or an equivalent fitted 

curve. When a detonation wave is properly init1ated in a 

sphere of high explosiv~ the speed of the spherical wave 

is observed to approach this upper limit as the wave expands. 

Attempts to provide quant1tative theories 

accounting for the behaviour observed have furnished a 

considerable body of literature. Most of this has dealt 

only with the detonation front in columns of explosive, 

assuming no lateral expansion in the reaction zone. There 

have been very few studies devoted to the more general 

problem of the thermodynamic behaviour of the products 

as they expand behind the front and of the instantaneous 

distribution in space of the thermodynamic and flow 

variables in this expanding wave. Such a d1stribution is 

here called a Taylor wave when it refers to a hypothetical 

wave of constant speed in which the mot1on 1s adiabatic, 

non-viscous and one-dimensional,though it may well be 

reactive. One-dimensional motions may, of course, be only 

plane, cylindrical or spherical. 

As just stated, there have been relatively few 

studies dealing with this more general problem in h1gh 
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explosives. In these, certain formulae are used which are 

alleged to be equations of state suitable for the products 

of condensed explosives. However, only one study[lol] is 

known to the author in which the general problem (or certain 

features of it) was treated using an equation having 

sufficient generaJity asto deserve the term equation of 

state, although such general equations have seen wider 

application to the calculation of detonation front 

t
. [1.2,1.3,1.4] proper 1es • 

The primary purpose of this dissertation is to 

discuss the calculation of the adiabatic behaviour o~ and 

Taylor wave i~ detonation products using a general gas 

equation of state not previously used. While the numerical 

computations given here are confined to TNT products, the 

gas equation of state, being very general, is in no way 

restricted to such products, nor to any gas mixture, provided 

only that it is composed primarily of non-polar molecules of 

not grossly different sizec A secondary purpose of the 

discussion is to carry out the same computations using a gas 

formula applicable only to TNT products, due originally to 

Jones and Miller[l.Sl, but slightly modified here to ensure 

that calculated detonation wave speeds agree with those 

observed for the loading densities characteristic of cast TNT. 

lo2 Preliminary Discussion 

The remarks which follow immediately are intended 

to outline the main notions and restrictions involved in the 
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subject matter which is 1ater treated mathematica11yo 

These remarks are intentionally kept free of formulae so 

that the reader may better appreciate the arguments without 

reference to any particu1ar habituation to symbo1so The 

problem of habituation to adjectives remains and for this 

reason a rough guide is given to the author 0 s terms 

expressing magnitude in the present discussiono 

Adjective 

ultra-high 

very high 

high 

modera te 

low 

Pressure 
(atmospheres) 

>106 

>105 

>104 

>103 

<10 2 

Temperature 
('cK) 

>300 

The following table lists the best known solid 

explosiveso 
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Table lol 

Sorne Pure Sol id Ex~losives of the CHON T~J2e 

Explosive Abbo Empirical Crystal Mol ar 
Name Formula Density Mass 

cc 

2,4,6,-Trinitrotoluene TNT C7HSN306 lo654 227 

2,4,6,-Trinitrophenyl- tetrylu c7H5N 50s L73 351 
methylnitramine CE 

Pentaerythritol PETN c5H8N4o12 lo77 316 
tetranitrate 

Cyclomethylene RDX; C3HfiN606 lo816 228 
trinitramine cyclonite 

The gas equation of state employa the best available 

compressibility factor calculations for a gas of identical 

rigià non-attracting spheres[lo6]o The results of these 

calculations, which involved the use of Monte-Carlo methods, 

are here fitted by an equation relating the compressibility 

factor to a parameter which is proportional to the product 

of the volume of the hard sphere and the pressure-temperature 

ratioo In a gas of identical rigid non-attracting spheres 

of immutably fixed diameter, the imperfection component of 

the interna! energy is zeroa Furthermore, if the volume of the 

sphere is calculated from the low-velocity collision diameter 

(not the "diameter" of the older kinetic theory), it will 

be found that the minimum volume required to accommodate these 

spheres, namely the close-packing volume occupied by spheres 

all in contactp exceeds that which may confidently be stated to be 
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available to the gas behind detonation fronts ~n condensed 

explosives. 

Accordingly, the available rigid sphere data may 

be applied only if the sphere d~ameter can be defined in a 

plausible way. To this end, ~t is ~mag~ned that the sphere 

is rigid only at a particular temperature, adJust~ng 

instantaneously to smaller values as the temperature 

increases. To be more spec~fic, the behaviour of the gas 

phase of the product m~xture (at high pressures and 

temperatures) is assumed to be represented by that of a 

hypothetical gas of ~dentical r~g~d sphere molecules of 

diameter taken to be equal to a value approx~mat~ng the 

most probable closest-approach distance ~n a pure gas of 

non-polar spherical molecules having symmetr~cal force 

fields described by species-averaged ~ntermolecular 

potential constants and coll~d~ng with a Boltzmann 

distribution of velocities. 

It should be borne in m~nd that a theoret~cally 

rigorous equation of state for a mixture of real gases 

has yet to be developed, even for the s~mplest mixture 

imaginable, namely a 2-component one conta~n~ng an equal 

number of d~fferent sized r~g~d non-attract~ng spheres. 

At high temperatures and pressures the cho~ce l~es between 

simulating the gas mixture by a hypothetical pure 

hard-sphere gas, the compressibility factor for which has 
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been precisely calculated over a wide range of conditions, 

simulating it by a pure hypothetical non-polar gas of 

spherical molecules with fields of force, the compressibility 

factor for which is difficult to calculate and but poorly 

represents observed behaviour except at liquid densities,* 

or representing the compressibility factor for the gas 

mixture by virial terms involving virial coefficients which 

are species-averaged combinations of the virial coefficients 

for the pure species, a procedure without theoretical 

foundation and limited to low densities. The present 

seemingly artificial proposa! might be viewed with more 

charity in this light. 

The main detonation products of condensed pure 

CHON explosives of oxygen-negative balance are the gaseous 

species CO, co2 , CH4 , H2 , N2 , H2o: for strongly oxygen­

negative explosives like TNT and tetryl, considerable 

quantities of solid carbon are also present. For other 

CHON explosives the composition is relatively invariant 

with pressure and temperature. However, even in the case 

of explosives which are strongly oxygen-negative, the 

dependance of the diameter of the mixture-equivalent 

hypothetical hard sphere gas on the composition is so 

slight that the approximation of a common fugacity for the 

gas species may be used without serious error. 

Practically nothing is known about the size of 

the solid carbon particles in detonation product mixtures. 
1That is, when the Lennard-Jones and Devonshire equation of 
state or other cell theory equations are usedo 



- 8 -

It is assumed that they are in the form of graphite, that 

they are sufficiently small that their motion is identical 

with the centre-of-mass velocity of the mixture and that 

they have negligible coefficients of thermal expansion and 

barie compressiono 

Subject to the above assumptions, the adiabatic 

behaviour of the gas-solid mixture at, and following 

detonation, is described by equations quite generally 

applicable to the products of any condensed pure CHON 

explosiveo As stated earlier, the numerical computations 

are here confined to TNT. For conciseness, only two 

loading density values are treated, namely, loO and l.S g/cco 

The former is typical of lightly pressed TNT, the latter 

of low-density cast TNTo 

A moderately high degree of agreement between the 

calculated and the observed detonation wave speed is a 

necessary (but not sufficient) condition for establishing 

the validity of a detonation product equation of stateo The 

agreement obtained for TNT or loS g/cc (ioeoQ 1%) is 

comparable to the uncertainty in the observed detonation 

wave speedo At loO g/cc the departure of the calculated 

from the observed wave speed is about 4%o In view of 

the assumptions made regarding the solid carbon, it is 

possible that a similar degree of agreement would not be 

obtained were application of the (gas) 



- 9 -

equation of state extended to the (gas) products of any 

condensed explosive. 

Any hard sphere equation of state is less 

plausible than a real gas virial equation of state when 

the concentration of molecules becomes sufficiently low 

that use of the latter becomes valid. This is, of course, 

particularly true at temperatures below the Boyle 

temperature of the mixture. Accordingly, the adiabatic 

computations for a real gas virial equation of state are 

also described. However, a virial equation of state for a 

pure real gas cannot be reliably specified beyond the third 

virial coefficient·: this coefficient itself is somewhat 

uncertain. As stated earlier, the virial coefficients for 

a gas mixture are rouch less certainly specified. It is 

found that when the calculated gas concentration on the 

adiabats (calculated with the hard sphere gas equation of 

state) falls to a leve! permitting the use of such a 

truncated real virial, the temperature is sufficiently low 

that the composition may be regarded as fixed. Accordingly, 

the adiabatic computations using the real virial are 

described only for the case of invariant compos1tion. 

All treatments here are based on a choice of 

temperature (T) and pressure (p) as the independent state 

variables. However, the virial coefficients for pure gases 

are most readily calculated for a (temperature, volume) 

system. In such a system the representation of p/T 1s an 
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infinite power series in the molar density. For a (T,p) 

system the corresponding expression is a representation 

of the molar volume by a power series in p/T. The relation 

between the virial coefficients in the two forms is well 

known. 

In the hard sphere computations, the intermolecular 

potential constants used are those suitable at high to 

moderate temperatures, and the assignment of a single set of 

constants to describe a species~averaged potential for the 

gas mixture requires that the potential for water, the only 
f' -w •••"'\ 
(:. i,,.,;;lpolar molecule concerned, be represented by an 

orientation-independent or orientation-averaged equivalent 

non-polar potential. In the present application, the 

Lennard-Jones (6-12) two-constant potential is used 

throughout for the non-polar molecules, and a suitable pair 

of {non-polar equivalent) constants is chosen for water. 

However, in the virial relations the polar character of water 

is formally accounted for. 

For application of the virial equation all potential 

constants must be reassigned, at least for the calculation of 

the second coefficient. The scheme proposed here is to 

calculate the second coefficient for the gas mixture using 

the potential constants obtained from measurements of the 

second virial coefficients for the pure gas species, and to 

calculate the third coefficient for the gas mixture using the 

~· ~-----------------
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high-temperature species-averaged potential constant, values 

as for the hard-sphere case. Simple mathematical expressions 

for the virial coefficients for a pure gas are known for an 

LJ (6-12) representation of the intermolecular potentials 

for non-polar molecules and for the corresponding Stockmayer 

(6-12) representation for polar molecules. An approximate 

expression fitting numerically calculated values for the 

third coefficient is also available for the LJ (6-12) form. 

Accordingly,these potentials are advocated on the grounds of 

mathematical simplicity. No similar expressions are available 

for more complicated potentials. 

The third virial coefficient for water is not 

successfully represented by any potential suggested to date. 

Furthermore, the intermolecular potential for a pair of unlike 

molecules is also unknown, as are the true expressions for the 

second and third (and higher) virial coefficients for a 

mixture. For this reason, it appears justifiable to replace 

the usual, {but theoretically unsupported), expression for 

the second virial coefficient - - which involves the pair 

potential constants not only for like but also for unlike 

molecules - - by the simpler approximate expression involving 

potentials only for pairs of like molecules. The same 

uncertainties also underlie the advocated replacement of the 

complicated relations for the third virial coefficient for a 

gas mixture by the simpler expression for a representative 

pure species. 
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While the treatment for the virial form is 

completely described in terms of general relationsp the 

numerical computations for this form are not given hereQ 

although some values are given for the mixture virial 

coefficients for TNT gas products in frozen equilibriumo 

In transferring from the hard sphere to the virial equation 

of state on the adiabats, a smoothing technique or similar 

procedure must be used because if, as appears most desirable, 

the transfer is made at that point at which the calculated 

compressibility factor is the same for bath equations of 

state, then a (weak) discontinuity is generatedo This must 

be so because, at the transfer point, the imperfection 

component of the internal energy changes from a (small) 

positive to a (small) negative valueo 

The transfer point defined above occurs at a 

temperature of about ll50°K for bath the high and law 

loading density adiabatso Here the calculated compressibility 

factors are less than lolS, so that one might be tempted to 

calculate the continuedadiabats (continued dawn to a 

pressure of one atmosphere) by treating the gas phase as a 

mixture of ideal gases were it not for the contained water 

vapeur which increasingly dominates the mixture second 

virial coefficiento The latter rapidly assumes a negative 

value, causing the compressibility factor to fall below unity 

near the Boyle pointo The error involved here in using the 

hard mol~ule equation throughout is very small, but it is of 

course true that, in principle, below the Boyle point (about 

450°K for TNT products of frozen composition), the hard 
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molecule equation, or any hard molecule equat1on of state, 

is very poor, being worse even than that for a mixture of 

ideal gases. 

The co-volume of the gas portion of the mixture 

may be defined quite generally as that volume which must 

be subtracted from the volume available to the gas phase 

so that the perfect gas law appears to apply in the volume 

remaining. Jones and Miller assumed that the co-volume 

per mole of gas mixture could be defined as a function of 

pressure only, and for TNT, they expressed this function as 

a second degree polynomial. The three (constant) coefficients 

given by Jones and Miller lead to calculated detonation 

velocities which are grossly in excess of those observed[l.?] 

at high loading densities. Accordingly, the power series is 

extended and two additional constant coefficients are 

determined by matching the calculated to the observed 

detonation wave speed at loading densities of 1.5 and 1.52 

g cc-1 TNT. The improved co-volume so obtained now reproduces 

the observed detonation velocity to within the experimental 

uncertainty for all loading densities of TNT that may be 

realized in low pressure casting. 

Chemical equilibrium is assumed to obtain in the 

adiabatic expansion until a certain point is reachedo For 

the modified JM co-volume equation, the calculated mole 

number of carbon passes through a minimum at about 2100°K 
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for a l~Oq/cc loadinq densityo This agrees with the Jones and 

Miller value· of the carbon minimum temperatureo The same 

value of the carbon minimum temperature is found with the 

hard molecule equation of stateo For this equation the 

minimum occurs at l800°K at a loading density of loS g/cc, 

whereas Jones and Miller calculated this minimum to be at 

l600°K 1 and assumed frozen equilibrium below this temperatureo 

In the present application; the composition is assumed to be 

frozen at the value attained at l450°K in all caseso 

Other physical and mathematical approximations of 

Jones and Miller are discussed and the errors consequent 

on their use are calculatedo However, in the present 

computations no siqnificant approximations are made ether 

than the use of the JM equation itselfo The JM assumptions 

reqardinq the solid carbon were identical to those given 

aboveo The same assumptions have been made by Brinkley and 

Wilson[l 8 8l, Jo Taylor[lo2], Paterson[la3], and Cook[lo9]o 

However, Fickett[loll has used a compressible solid equation 

of state for carbon obtained from the analysis of shock data 

in solid graphite roda, but assumes carbon particle 

entrainment by 1 and thermodynamic and chemical equilibrium 

with, the surrounding qas mixtureo 

Sorne thought was given to the desirability of usinq 

Fickett's carbon compressibility dataa HoweverQ in view of the 
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fact that Jones and Miller obtained the coefficients in 

their expression for the co-volume on the assumption that 

the carbon was incompressible, it was felt essential to 

continue with the same assumption for this form. Furthermore, 

it was also felt better not to introduce th1s add1tional 

variable in a first examination of the effect of the hard 

sphere equation of state, especially s1nce, in order to 

appreciate the effects of the different equations, it is 

important to ensure that no other factors, either physical 

or numerical, are significant. This 1s probably the f1rst 

study in.which such a comparison has been made. Here the 

entire computations for both equations were carried out 

within the same computation program, us1ng the same physical 

constants and the same numerical procedure throughout 

Conditions at the equ1l1brium detonation front 

are established conditional on the usual assumptions that 

the mass motion is one-dimensional and adiabatic, that the 

Chapman-Jouguet postulate applies, and that the width of 

the reaction zone is negligible compared with the instantaneous 

radius of the detonation front. The available data on the 
[1.10] . . .. width of the reaction zone for TNT , together w1th the 

approximate analysis of Eyring and coworkers [l.ll], indicates 

that, were it possible, in fact, to 1nit1ate a stable 

detonation wave 1n a sphere of TNT by a central spherical 

detonator of negligible volume, errors arising from this 
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assumption would be insignificant at detonat1on front 

radii exceeding 5 cm; A more realistic consideration would 

have to recognize that, in practice, TNT is usually init1ated 

by a two-stage detonator-booster combination, consisting of 

a small detonator fired centrally in a booster sphere of 

tetryl/TNT mixture which is placed concentric w1th the main 

charge of TNT. 

Another practical consideration 1s that 1n a cast 

explosive, the local loading density tends to be h1gher at 

the surface than at the centre. Reasons for this are well 

known[ 1 · 12 l. One may conclude that computat1ons of the 

kind given here cannet be expected to be in accord with 

actual behaviour unless the radius of the explos1ve charge 

be on the one hand sufficiently large that the radius of 

the (smallest available) central booster be small compared 

with it, and on the ether hand be sufficiently small that 

the gradient in the local loading density may be safely 

ignored. The latter deficiency may be ameliorated by 

casting large charges in relat1vely small sections and 

joining them in the geometry des1red. Th1s has been done 
[1.13] 

for sorne time at the Suffield Experimental Station • 

In these large TNT charges, the (smooth-faced) subsections 

were merely placed together and it 1s interesting to note 

that the measured detonation wave speed[l.14j (measured to 

0.5% uncertainty) agreed in all cases with the Bruceton data[l.?] 

to within 1%. 

*That is~ for a loS g/cc loading densityo 
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For a Taylor wave, the partial differentia! 

equations of motion and continuity may be replaced by 

ordinary differentiai equations. This was first shown 

by G.I. Taylor[l.lS] and Sedov[l.lGJ. Thermodynamic 

behaviour in adiabatic non-viscous motion is not affected 

by the motion at all since the thermodynamic properties 

of an element of the mixture depend only on the initial 

(i.e., CJ point) state variables and on the equation of 

state. Accordingly, the instantaneous centre-of-mass 

velocity of an element of mixture may readily be calculated 

from the state variables by numerical integration of the 

ordinary differentiai equations relating the mass motion to 

the thermodynamic properties. If this is attempted as a 

separate calculation after the properties on the adlabat 

have been tabulated, large errors are difficult to avoid. 

Such was the case for G.I. Taylor's[lolS] calculations for 

TNT using the tabulated adiabatic values of Jones and Miller. 

When, as in the present case, integration of the equations 

of motion is carried out simultaneously with the computation 

of the properties on the adiabat, this type of error does 

not arise. 

The Taylor wave calculations are given here only 

for spherical detonations. Those for plane and cylindrical 

detonations could have been calculated with relatively llttle 

additional effort, but these cases are of less practical 

interest for condensed explosives. 
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In cylindrical and spherical Taylor waves, the 

assumption of a zero-width reaction zone (impl1cit in 

that of an invariant detonation front speed) leads to a 

singularity in the differentia! equations at the CJ point. 

This is due to the artificial contiguity of the non-reactive 

and reactive Hugoniots inherent in this assumption. Such 

artificial detonation fronts demand infinite reaction rates 

and are sometimes referred to as "reactive shocks". 

Mathematical methods of c1rcumventing the difficulty 

occasioned by this singularity have been descr1bed by 

G.I. Taylor and by practically everybody who has d1scussed 

the Taylor wave problem. Too rouch has been made of this 

relatively trivial issue. In the present formulation, 

special measures at this point are not necessary. A 

Runge-Kutta representation of finite differences correct to 

4th order is used: sorne difficulty would ex1st only in a 

first order representation. 

In the equations about to be described, such 

extensive quantities as the energy, enthalpy, etc., are 

represented as the sum of a component which would arise 

were the gas state ideal, together with an additional 

component attr1butable to intermolecular forces. The ideal 

component is, in turn, represented as a sum over the species 

contributions. It is a necessary preliminary step to obtain 

a concise and precise representat1on of the 1deal gas 
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functions required for the pure species concerned, Such 

representations were obtained by least squares fits of 

suitably chosen functions to the constant pressure specifie 

heats given in the (1961) JANAF[l.l?] tables. Expressions 

representing the ideal gas equilibrium constants for the 

reactions concerned were also derived from these tables ~n 

the same way. The heats of formation for the product species 

were also taken from the JANAF tables. 

Sorne discussion is devoted to ether equations of 

state. However, only slight attention ~s paid to detonation 

front formulae. Such formulae have already received considerable 

publicity[l.lBl. Cook[l.g] describes several of these. In the 

absence of proofs to the contrary, these formulae appear to 

be merely effective fits to reproduce the detonation front 

speed. The JM equation belongs to this class but it appears to 

have a more general basis than most. 

The present lack of experimental h~gh pressure data 

from sources ether than detonation has, so far, prevented the 

establishment of reliable cr~teria by which the validity of 

equations of state may be judged. The degree of agreement 

obtained between calculated and observed detonation velocity 

the most frequently used criter~on - - ~s not adequate, 

nor is the observed first shock velocity in the med~um 

surrounding the explosive, because ne~ther of these is very 

sensitive to the equation of state. For example, it is a 

consequence of a general argument due to Jones [l.l9 ] that 
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regardless of the equation of state used, the calculated 

detonation wave speed will not be in accord w~th that 

observed in condensed explosives at high loading density 

unless the calculated adiabatic exponent has a value close 

to 3 at the equilibrium front. Considerable use has been 

made of this well known empirical requirement, and if ~he 

viewpoint is taken that that value of the adiaba~~c exponent 

obtained by inserting the observed detonation wave speed 

in the simple Jones formula for it is more rel~able ~han 

any other, then a gamma law gas equation of s~ate might be 

said to have been constructed. 

Arguments essentially of this inverse or 

hydrodynamic nature underlie all the so-called 11 inverse 

equations of state". Conversely, it follows that, for the 

limited purpose of describing cond~tions no~ far from ~hose 

obtaining at such detonation fronts, the very simple 

assumption that the products will behave like a gamma law 

gas with the exponent equal to 3 ~s adequate to reproduce 

the observed detonation speed with reasonable precision when 

a value for the chemical energy is assumed The latter may 

also be taken to be constant, However, it would be absurd 

to argue that it is such a gas and th a~ the gamma law 

relation assumed ~s a general equation of state simply 

because the observed detonation wave speed is thereby 

reproducedo 
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Furthermore, when it is borne in m1nd that 

thermodynamic conditions in a Taylor wave lie within a fairly 

narrow range on the calculated adiabats, (volume changing 

only by about 60%), it may be appreciated that even fairly 

good agreement between an instantaneously observed spatial 

distribution of one of the properties and that of the Taylor 

wave would not be an adequate criterion of the validity of 

an equation of state. Alternatively expressed, the Taylor 

wave may be said to be insensitive to the equation of 

state. That this is so will be illustrated in chapter 7 

by comparing the Taylor waves calculated here with those 

calculated by others using very different equations. 

Observations of the kind referred to have not so 

far been obtained for condensed explosives but in gaseous 

detonations, where the pressure is fairly low, the 

instantaneous spatial distribution of pressure may be 

readily deduced from pressure gauge records. Such 

distributions agree with the corresponding Taylor wave. 

In gaseous detonations, the product mixture is almost 

invariably assumed to be a gamma law gas, but agreement 

of the Taylor wave so deduced with that observed is 

quite unremarkable (except in so far as the agreement 

obtained supports the hydrodynamic assumptions) and only 

indicates that the adiabatic exponent does not change 

greatly over the fairly limited range of temperatures 

obtaining in the Taylor wave, a feature known in advance. 
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It is now opportune to clarify the dist1nction drawn 

here between an equation of state and ether formulae used for 

the same purpose. A protracted and dangerous discussion can 

only be avoided by admitting that any relation allow1ng the 

calculation of all thermodynamic propert1es in terms of two of 

them may be regarded as an equation of state. However, we are 

not concerned with detailed classifications, but rather with 

attempting to draw a clear distinction between equations 

applied to detonation products which are based on phenomena 

ether than detonation and are free from the related general 

hydrodynamic assumptions,and those which are deduced from 

observed detonations with all the necessary assumptions that 

this entails. As indicated earlier,the former are here called 

equations of state and the latter are called detonation front 

formulae or simply formulae. It is generally agreed that an 

equation of state should be applicable to several kinds of 

phenomena and to a fairly wide range of cond1tions. To 

attempt to define just how wide is out of the question: all 

that one may do is to describe sorne as more general than 

ethers, the generality referring particularly to the range of 

conditions~ Finally, since virtually all practical equations 

of state are empirical - - and, indeed, should be so if they 

are to describe reality - - the term theoret1cal equation of 

state will generally be avoided except where the 1ntention 1s 

to emphasize the process of derivation rather than the final 

application. 
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Returning now to the topic of criteria of val1dity, 
[1.20] 

Lutzky has proposed that the second shock in the blast 

wave in the fluid surrounding a spher1cal charge of explos1ve 

be used to judge the order of merit of equat1ons of state. A 

series of computations of the trajectory of the second shock 

would be made using the equation of state as the only variable. 

The degree to which these agreed with the observed second 

shock trajectory would decide their relative validity< However, 

as Lutzky pointed out, it would have to be taken 1nto cons1der-

ation that all calculations of product behaviour (including the 

present ones) neglect the reaction zone and other possibilities 

such as turbulence and incomplete combustion. Nevertheles~ the 

second shock twice traverses the product mixture before passing 

into the surrounding fluid and the calculated path should be 

a sensitive function of the product equation of state. It is 

noteworthy that for spherical blast waves in air init1ated by 

high explosives, the second shock calculated using hitherto 

d d 
' . [1.20] propose pro uct equat1ons of state differs more 

strikingly from that observed than is the case for any 

other reliably observed phenomenon. 

This paper is concerned with calculations that may 

be made only requiring specification of the explosive and of 

its loading density. Thus, observed phenomena are not 

required except in so far as they relate to already calculated 

values. For the JM formula, the observed detonation wave speed 
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is used, as described earlier, to correct the formula. Those 

more interested in observed phenomena are referred particularly 

to Cook[l. 9 J, which is also a good ~eneral reference on 

condensed explosives. Others are J.Taylor[l. 2 ] and Kistiakowsky 

[1.21] Data on detonation wave speeds have been released by 

the Bruceton[l.?] laboratories. Reaction zone phenomena are 

described in Combustion, Flame, etc. [l.lB]. Of particular 

interest with regard to TNT are the data of CybulskiL1.22), 

Jacobs[l. 23J, and Urizar[l.lO]. Details on the properties of 

unreacted explosives, on their manufacture, and on the history 

of their discovery and development, are given in Davis[l.24] 

and Urbanski[1 • 25 l and by PennieL1 •26 1. 

The gas equation of state is dealt with in chapter 2, 

and the general thermodynamic relations for the mixture are 

treated in chapter 3, the detailed relations for the composition 

being given in chapter 4. The calculation of the Taylor wave is 

described in chapter 5 and chapter 6 deals with high-pressure 

approximations. The numerical results for TNT are g~ven in 

chapter 7, which also contains a brief concluding discussion. 

It may be noted that the references are to be found immediately 

following the text in each chapter. 

The main feature of the notation used is that the 

nature of a function or thermodynamic property Y is consistently 

denoted by an appropriate modifying symbol. In addition to Yr, 

denoting that component attributable to real or non-ideal 

conditions, and Yth denoting the thermal or ideal condition 

component, the following are used: 
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. per mole of species j 1 Y* dimensionless 

yo,y# - in the ideal gas state YC,Yl - solid carbon 

Y - per mole yg gas phase 

Y0 - at 0° Absolute y unreacted explosive e state 

In the computations, and generally in the text, energy 

is expressed in kilocalories (kcal) , temperatures in large 

degrees (1 DEG = 1000°K) in computations and in cK at various 

parts of the text, and pressure is expressed in beth kilobars 

(kbar) and in kcal/cc units. The last named is the natural 

pressure unit in the computations with the energy unit chosen, 

but the kbar unit is more familiar and is used in the text and 

especially in the tables. Mass is expressed in grams (g), 

length in centimetres (cm) and time in microseconds (~sec). 

If the detonation wave speed and loading density are expressed 

in these units the corresponding pressure is obtained in 

megabar units if no conversion constants are applied. 

Considerable computation is involved. Several short 

preliminary computation programs were written so as to calculate 

the required functions used in the later main programo This 

was designed to handle all the calculations described in the 

present paper. All features relating to programming and 

computation were carried out by the author: this involved a 

very considerable time. The program however, is quite fast. 

The entire computations for a prescribed loading density 

including the iteration to the Chapman-Jouguet conditions, 
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the Taylor wave, and the continued computations along the 

adiabats at temperature intervals of Oo25 DEG down to Oo3 DEG 

takes about loS minutes using the (McGill University) IBM 7044 

computer. The method of regula falsi was used exclusively 

for iterative calculations because, unlike other methods, 

slopes are not needed, divergence cannot occur, and convergence 

is fast. For quadrature, a Runge-Kutta relation correct to 

4th order is usedo Functions were represented as power 

series wherever their nature permitted such a representationo 
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CHAPTER 2 

GAS EQUATION OF STATE 

2.1 Introduction 

Particular attention will be paid to high pressure 

equations of state which are in no way dependent on observed 

detonation front behaviour. The effect1ve experimental data 

for such equations are the constants entering into the various 

formulae that have been proposed to describe the spec1es-

dependent instantaneous potential energy existing between a 

pair of like molecules, also called the intermolecular or pair 

potential. 

In the detailed relations for the composition, only 

the six gaseous species co, co2 , CH 4 , H2 , N2and H2o(g} are 

assumed to be present in non-negligible quantities. In order 

to be able to concentrate more strongly on the main gaseous 

products of CHON explosives, attention will be conf1ned to 

only these gases, together with o2 , which is present in the 

products of oxygen-positive explosives, such as n1troglycerineo 

2.2 The Intermolecular Potential 

Comprehensive references on such 1nformation are the 

textbooks by Hirschfelder, curt1ss and Bird (HCB} L
2 · 1 J and by 

Taylor and Glasstonel2 • 21. More recent information on the 

molecules with wh1ch we are particularly concerned is given by 

Fickettf2 • 3 , 2 · 4 Jo Among the recent reviews of high pressure 
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physics and chemistry containing ~nformation relating to 

intermolecular potentials are those of Bradley and co-authors 

[2 • 5]and Hamann[ 2 • 6]. 

Our immediate concern is to present a necessarily 

brief appraisal of existing information on ~ntermolecular 

potentials, restricting attention to the spec~es ment~oned 

and to the simplest realistic representat1ons wh~ch have been 

proposed, that is, to those for spherical molecules. The 

constants in these relations have been derived from observed 

phenomena. We are most particularly concerned w1th potential 

constants determined from phenomena observed at high 

temperatures. 

It is now well established that intermolecular 

forces arise from Coulomb interact~on between the nuclei 

and electron clouds representing the separate molecules, 

so that if it were possible to state the pos~tion of all 

nuclei and electrons at every instant, the t1me-averaged, 

or macroscopically observable potent~al energy aris~ng from 

the configuration of space change could be derived from 

Coulomb's law. The potential energy between the nuclei and 

electrons within a g1ven molecule could also, 1n principle, 

be calculated ~n the same way. 

rn practice, an inverse procedure must be used. 

Invariably, a very simple model ~s assumed for the molecule. 

Unless it is known to be grossly non-spherical, the molecule 
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is generally taken to be a sphereo The electronic charge 

distribution of a rare gas atom in 1ts ground state 1s 

spherically symmetrical and therefore, although the atom 

has an instantaneous dipole moment Liei;i due to charges e 1 
~ 

at positions ri, the permanent d1pole moment 1s zeroo The 

same is so nearly true for many diatomic and polyatom1c 

molecules that they may be classed as non-polar. Except for 
L2.7] 

the H2o molecule, which is strongly polar, the molecules of 

present interest belong to this class. 

The inverse procedure referred to is as follows. 

For a given pure gas of spherical non-polar molecules, the 

pair-potential is symmetric and therefore depends only on the 

pair spacing. A formula approximat1ng the potential is assumed 

which consists of a sum of functions of the spac1ng. These 

functions contain certain unknown constants, wh1ch are 

obtained from a set of experimental data by a perturbat1on 

fitting procedure. A guess is made as to the value of all 

the potential constants, the potential so obtained is employed 

in a calculation of the observed phenomenon which 1s then 

compared to all the observations. The comparison 1s repeated 

until a set of constants is found wh1ch best reproduces or 

fits the available set of data, The same procedure is used 

for polar molecules, or for potent1als describ1ng non-spherical 

molecules, except that the potential formula now requ1res that 

orientation-dependent terms be included. 
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For sorne of the molecules with wh1ch we are concerned, 

certain potential representations recognizing their 

, [2ol) 
non-spher1cal shape have been compared to data so as to 

determine the corresponding potential constants. Since the 

labour involved using such potentials 1s rouch greater, it is 

not surprising to find that little information is available 

regarding potential constants for such representations. The 

(polar) H2o molecule 1s less non-spherical than C02 . 

The potential, however, is non-spher1calo For spherical, but 

polar molecules, a simple pair potential formula consists of 

that for a pair of non-polar spherical molecules modified by 

a term which is dependent on the relative or1entation of 

the pair of permanent dipoles imag1ned to be ~mbedded in the 

spheres. Potential constants for a model more sophisticated 

than this are not available for water. 

For these, and ether, practical reasons the adoption 

of a symmetric potential for our non-polar molecules, and 

of a non-symmetric potential for a sphe.rical molecule of 

water of the type just descr1bed, appea.rs to be JUStlfied, 

provided that it is kept in mind that the corresponding 

potential constants perta1n, not to the molecule itself, but 

to the equivalently behaving spherical model. 

When it is imag1ned that a sphe.rical molecule has a 

definite diameter (at a prescr1bed temperature), this can only 

refer to a hard sphere or to the collision-averaged mean 
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diameter of a soft sphere, collisions be~ng perfectly elastic 

in bath cases. It is evident that this diameter can be defined 

in terms of intermolecular potential constants. 

At very high pressures, rotation of non-spherical 

molecules is expected to be inhibited[ 2 · 81 to a degree dependent 

on the departure from spheric~ty, and at inf1nite pressure, 

rotation of such molecules may be presumed to be zero. 

Accordingly, if it is possible to construct a three-dimensional 

model of the nearly incompressible hard core of a molecule, 

then the low-velocity collision diameter of the molecule may be 

placed within rough bounds on the expectation that it 1s 

somewhere between the diameter of that sphere which has the 

same volume as the core, and of that sphere swept out in space 

by a freely rotating core. An approximate madel of the core 

may be constructed using the bond-distances and angles of the 

atoms in the molecule, and their "van der ïlllaals rad~~": this 

has been done by Fickett[ 2 · 31 using the values given in 

Pauling[ 2• 9 ]o His estimates of the1r volume-equivalent 

diameters are given below. The ratio of these diameters is 

an indication of the degree to which the shape 1s non­

spherical. Also shawn for compar~son are room temperature 

handbook[ 2 olO) values and the low veloc~ty collision d~ameters c 

which were used in the calculation of the TNT product equation 

of state. 
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Table 2.1 

Mole cul ar Diameters (in Angstroms) 

Molecule Diameter [2 • 3] 0 Handbook 
(a) (b) Diameter*w 

non-rotating rota ting v VDW K 

CO* 3.5 4.1 3.706 3.19 3.12 

co2 3.7 Sel 3.sg7 3.34 3.23 3.40 

CH 4 3.5 4c6 3.796 

H2 2o7 3o5 2.915 2o4Û 2.34 2.32 

N2 3.5 4,1 3.749 3.15 3.15 3.53 

H20 3.2 4.3 2. 97 0 

02 3.3 4oÛ 2c98 2 C• 92 

Presumed to be equal to Fickett•s values for N2 
** 

v-viscosi t::u VDW-van der t~aals egn. ; K-heat conductivity. 

The best known realistic symmetric pair potentials 

(for spherical non-polar molecules) are the Lennard-Jones 

(LJ(6-12)) and the modified Buckingham(MB) representations. 

In these, the force potential ~(r) between a pair of molecules 

at a spacing E is represented as 

LJ(6-12): !p(r) = 4ke[(o/r) 12-(cr/r) 6 ] 

MÈ: (<P(r) 
( 

= ke (a-6) -l [6ea (l-r/ro)_a (:rc,/r) 6 ], r~rm~ 
) • if. •• ., Il 

(<t> (r) = oo 

where cr is the low-velocity collision-diameter defined by 

the value of r for which ~=0, k is Boltzmann's constant, 

( 2 .1) 

(2.2) 
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! is a parameter with the dimensions of temperature, ke being 

the well-depth or minimum in the pair potential occuring at 

the (force-free) spacing r 0 , a is a number lying between 

14 and 17 for our molecules, and rm is that value of r at which 

a maximum occurs in the MB potential, which, were it not for 

the modification $=~ for r<rm, would fall to a value -oo as 

r-+0. The MB potential is also referred to as the "exp-six 11
, 

the Mason-Rice[ 2 · 111, or the Mayer-Careri potential. 

Values of the potential constants for a pair of 

unlike molecules are not known from experiment and are not 

provided by theory. Guggenheim[ 2 • 12 ] lays considerable 

emphasis on this point. Certain empirical combining rules 

are generally used: these are empirically not contradicted 

only at low densities, i.e., at large average spacings. 

These rules are: 

cr
1
, . = (ail.' +cr,,) /2 

J JJ 
. 
1 

1/2 
e., = (s,,·e,,) 
l.J 1.1. JJ 

provided that 

) •••• (2.3) 
) 
) 

where the double subscript refers to the potential constants 

for a pair of like molecules. 

For o2 , and for a sphericalized (i.e., non-polar 

equivalent) high-temperature representation of H2o, Fickett 

suggests potential constants only for a modified Morse (MM) 

potential 

MM: ~ = ke(a-6)-1[6ea(l-r/ro>-ae6(1-r/ro)] •••••• {2.4) 
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While the LJ and MB potentials are infin~te at r=O, the MM 

potential is positive and finite. 

The inverse 6th power terrn accounting for the long 

range, weakly attractive, so-called "van der I.Vaals forces" 

has long been known to be fairly realistic at r>>r0 • These 

forces are known to include the London[ 2 · 13 l or dispers~on 

forces, accounting for the dispersion of light, and the 

induction and orientation forces, which, for non-polar 

molecules are rouch less important[ 2 · 2 ,P301 1. Representation 

of the strongly repulsive forces that obtain for r<r0 is rouch 

less certain. These forces are also referred to as "overlap 

forces" because at such close spac~ngs the previously separate 

electron clouds overlap or become distorted, or "exchange 

forces", because in the Heitler-Londonl 2 • 14 J treatment of 

intra-molecular forces in a hydrogen molecule, the principal 

contribution to the repulsive potential was shawn to be 

accompanied by the exchange between the atoms of a paJ.r of 

spin-parallel electrons. 

The available information indicates that the choice 

of 12 for the inverse power of the spacing to represent the 

repulsive term in the LJ potential must be regarded merely 

as the best overall choice for the representation of low 

temperature data when (for mathematical convenience only) 

choice is restricted to multiples of 3 in a more general 

LJ{6-n) potential 
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It cannet be said that there is any correct value of n 

because the power law funct1onal forrn is known to be not 

correct. h f ' ' 11 Sl . 1 [2ol5] 1 o T e MB orm 1s essent1a y ater s repu s1ve 

term 

( 2 '6) 

added to the inverse 6th power attract1ve terme The success 

of his well known application of (2 .6) to helium indicates 

that this repulsive term is functionally more correcto This 

is supported by molecular bearn scattering datac Repulsive 

potentials thus obtained from various sources are reported 

by Fickett[l. 3 l for N21 CH 4 and o2 : such h1gh-velocity 

collison data are equ1.valent to hl.gh-temperature values. 

However, that the MB funct1onal form 1s not fully correct 

at close spacing may be deduced from the fact that,as 1.n 

the case of LJ constants, the potential constants obta1.ned 

differ sign1ficantly not only accord1ng to the k1nd of 

behaviour from which they are determined but also with the 

temperature range over wh1ch the phenomena are observed. 

The MB form must be regarded as the superior form 

not only for this reason, but also because the additional 

constant prov1.des greater flex1.b1lity in f1tt1.ng data than 

the (2-const) LJ fermo However, with the except1on of the 

recently reported molecular bearn data, wh1ch are 

qualitatively most 1mportant,but so far fragmentary, most 
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'2 1 e 

of the data from which readily availableL c J constants have 

been obtained appear to have been derived at temperatures we call 

low, so that the relat1ve physical advantage of the MB form is 

diminished. The mathematical simplicity of the LJ form is, 

of course, the major reason for its formulat1on and continued 

widespread use. Not only have far more data been fitted by 

the latter, but its use results in simple power series 

expressions for the second virial coeff1cient and 1ts 

derivatives. It is also much simpler to use in our 

approximate, temperature adjusted, hard molecule equation of 

state: indeed, use of a more sophisticated potent1al relation 

in this equation of state would be difficult to justifye 

However, in selecting LJ potential constants from those 

available, we must keep in m1nd that the 1nverse 12th power 

term gives too steep a repulsion for most of our non-polar 

gases and that, in order to compensate for th1s, extra 

weight must be given to constants derived from high-temperature 

data. 

For polar gases, the best known potential of the 

kind dlscussed earlier is that of Stockmayerl 2 "16 l. The 

original potential suggested for a spher1cal, but polar, 

molecule was that of Keesom l 2 .l7}, who v1sual1zed a polar 

molecule as a hard sphere contain1ng an embedded po1nt dipole: 

for this mode! the pair potential is ent1rely due to the 

strength of the dipoles, their spacing and their orientation 

with respect to the intermolecular axis or line J01ning their 



- 40 -

centresc The original Stockmayer potential consisted of 

Keesom's term added to the general LJ (6-n) potent1al (2ID5), 

and using this, he found potential constants for water by 

fitting to virial coefficients at temperatures between 

400° and 700°K. He also found potential constants for 

ammonia (NH 3 ) , only traces of wh1ch have been calculated 

to be present in the products of TNTo 

Here, the less general, but more widely applied, 

Stockmayer form, the Stock(6-12) relat1on, for which 

more recently determined constants are available[ 2 l], is 

used. This consists of the LJ {6-12) component (2.1) added 

to the Keesom orientation dependent polar term, but we may 

note that how far the n=l2 assumption is in doubt is indicated 

by Stockmayer's choice of n=24 for water, a value he defends 

as most likely among multiples of 6. The Stock(6-12) 

potential for a pair of like polar molecules, each 1magined 

to contain an &mbedded point dipole: of strength or moment E, 

is 

St k(6 12) ( .. • ) ilk' "( ·· .12 1 ;··6, 2-3 oc - : <P r, q> 1, (/) 2 , lji 1 -1p 2 =-: tJ L 1 r J - \cr r J J - ·,_ r g 1 

( 2. 7) 

where ~, w are respectively the polar coordinates of latitude 

and longitude specifying the 1nstaneous orientations of the 
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two dipole moments with respect to the intermolecular axis 

-+ r 12 between the molecules 1, and 2 in the pair. 

A high-temperature angle-1ndependent (i.e., non-polar 

equivalent, or spherical) approximation for polar molecules 

is ascribed to Krieger[ 2 .18l. Such high-temperature spherical 

approximations are needed for our temperature-adjusted hard 

molecule equation of state. Krieger's approximation refers 

to a model in which the angle-dependent term ~2g 1s replaced 

by one due to the interaction of two dipoles which are 

perfectly aligned on the axis ~12 • It follows from (2.7) that 

the potential may now be expressed 

Krieg(6-12): $(r) = 4ka[(o/r) 12-(a/r) 6-o*(cr/r) 3] 

where 8* = 2~2/4kacr 3 

For water (~=1.83 debyes), Krieger's values are 
0 

a = 2.834A , a* = 2.333 

) •• (2.8) 

...•. (2.8a) 

It is evident that the Krieger potent1al may, 1n 

turn, be approximated over a chosen range by any of the 

non-polar potentials described: this merely requ1res that 

suitable constants be assigned. For a range of ~/k from 

1000° to 4000°K, one read1ly finds adequate constants for the 

LJ(6-12) form for water, viz., 

~ 2.97Â ( 2. 8b) 



- 42 -

It is not suggested that these values are unique, nor is 

it suggested that either (2.8b) or (2.8) be used for 

a calculation of the second virial coefficient for water, 

even at high temperatures. However, it 1s proposed that 

an approximation of the kind given in (2.8b) is adequate 

for use in an approximate equation of state at high 

temperatures, when water is the only polar gas present 1n 

a mixture containing a preponderance of non-polar molecules. 

Fickett[ 2 ~ 3 l, using a Lennard-Jones and Devonshire 

equation of state, and an MM tspherical) potential for water, 

has attempted to find corresponding potent1al constants for 

water by successively calculating shock Hugoniots and 

comparing these to those obtained by Rice and Walshl 2 ·19] 

from an approximate equation of state devised to fit very 

high pressure shock data for water. The potent1al constants 

thus obtained, assuming a=l4 are 
«:1 

r 0 = 3. 35A e = 138"'K •••••••• (2.9) 

It cannot be said that these values successfully fit the 

Rice and Walsh temperature-pressure Hugoniot, nor does 

Fickett claim this, but the pressure-volume Hugon1ot in the 

range 200 to 350 kbar 1s not more than about 10% 1n error 

at a given volume: here the temperatures accord1ng to ce 

and Walsh are from about l600:.K to 2700"K. The constants 

(2.9) are subject to errors arising from the thermodynamic 

assumptions made by Rice and Walsh. 
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The principal data for the determination of po~ential 

constants are measurements of second virial coefficients, 

Joule-Thomson coefficien~s and v1scosity in pure gases, the 

density and energy of sublimation of cryst:.als, and, more 

recently, (reactionless) shocks and the scatter1ng of 

molecular beams. Measurements of transport phenomena other 

than viscosity, such as diffusion and thermal conduct1v1ty 

are generally less precise and fewer constants appear to 

have been derived from them., Viscosity data have generally 

extended to higher temperatures than for ot:.her observat1ons 

and are therefore of particular 1nterest here. Shocks in 

dense gases appear to be the most promis1ng source of 

high-temperature high-pressure equat1on of state data but 

little is so far available for the spec1es concerned here. 

The purpose of th1s appra1sal has been not only 

to review, but to engender a real1st1c attltude to the present 

state of pair potential informat1on, particularly in regard to 

the strongly repulsive portion of potentials, wh1ch 1s most 

important for hlgh-velocity collisions, and, therefore, at 

high temperatures. It is not realist1c to regard the 

potential relat1ons which have so far been proposed, 

particularly those ment1oned here, as more than funct1onally 

approximate representations, stric~ly applicable only to pure 

gases, the constants in which are subject to cont1nuous, and 

sometimes drastic, review as fresh data become available. The 
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last remark is particularly supported by the recent Stockmayer 

potential constants for water[ 2 • 20 l. A summary of recently 

obtained potential constants is given in the new (1964} 

edition[ 2 • 21 ] of HCB. 

Table 2 2 contains the LJ(6-12) potential constants 

which were used in the determination of the hard molecule 

equation of state for the gaseous detonation products of TNT. 

When Fickett is claimed as a source, this means that his 

constants for the MB (or the MM) potential were assumed to 

apply to the LJ(6-12) potential in the following way: 

, aLJ = aMB 

Whereas for the LJ(6-12) relation cr/:r 0 =const=2-l/6 , for the 

MB relation cr/r
0 

depends on o.. The fol1ow1ng values are taken 

from HCB[ 2 o2l,p34] 

o. cr /r0 (MB) 

13 0.88320 
14 0 88910 
15 0.89417 

It is not claimed that the choice of constants made is the 

best, especially in the 1ight of recent"'* informat1on~ 

However, the best choice of constants for a particular 

** 
The author did not become aware of the summaries of pair 
potential constants reported in the new edit1on of HCB 
until the computations were completed" 
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calculation is a matter here regarded as of less importance 

than the general notions of the equation of stateo Sorne of 

the LJ(6•12) constants obtained at the highest temperatures 

reported[2c21,p1212] are given in Table 2e3 for comparison4 

Table 2o2 

LJ (6-12~ Hiih•Tem~erature Pair Potential Constants 

Species Run (a) Constants Data(b) 
.. 

a (Â) e ( °K~ 

co (A) 2 3o706 88 v 
(B) 1 3~621 120 V,B 

C02 (A) 2 3o897 213 v 
(B) 1 3o755 200 V pB 

CH4 (A) 1,2 3œ796 144 v 

H2 (A) 1,2 2o915 38 v 

N2 (A) 2 3o749 79o8 v 
(B) 1 3o621 120 V,B 

H20** (C) 2 2~97 52 
(B) l 2o978 138 Shock 

(a) In TNT product computations: !-initial; 
2-final calculationsa 

** Sphericalized potentialo 
(b) v-viscosity, B-second virial coeff~ 
A-HCB(ref 2œl) 1 B-Fickett(ref 2o3); C-this paperc 
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Table 2.3 

Lennard-Jones and Stockmayer (6-12) Pa1r Potentia1 Constants 

Species Constants Found from Second 
Viria1 Coeffic1ent 

Constants Found from Other 
Data 

(a) 

co 

H2 

N2 

H20 

(b) (c) (d) 

3.763 

4.07 
3.9T(N) 
4.47(N) 

100.2 

205 
203.3 
187.5 

3.817 148.2 
3.809(N) 148.1 

2.928 
2.959(N) 

3.71 
3.698 

2.65 
**2o99(S} 

3.58 
3.46 

37 
36.7 

95.9 
95.05 

380(1.2) 

117.5 
118 

600-900 
300-500 

300-450 

100-430 

300-700 
300-700 

o (A) 
(e} 

3.92(N) 
3.706 
3.59 

4.00(N) 
4.07(N) 
4.11 IN) 
3.897 

3.697(N) 
3.822 
3.796 
3o808(N) 

2.915 
2.968 

3.85(N) 
3.749 
3.681 

2 52(N) 
2.76(S) 
2.53(S) 

3.541 
3.433 

6 ( "K) Data 
(f) (g) 

32.8 
88 

110 

190 
150 
221 
213 

156.7 
137 
144 
140 

38 
33.3 

47.6 
79.8 
91.5 

D 
V(H) 
v 

v 
D 
c 
V (H) 

K 
v 
V(H) 
v 

V (H) 
v 

D 
V(H) 
v 

775(0.707) v 

88 
113 

x 
V(Suth.) 1 

V(H) 
v 

Note (1) Except where the a column shows (N) or (S), values are 
from the 1954 edition of HCB(ref2.1}; (S)-values from 
Stockmayer (ref2.16); (N)-values from {1964) addendum 
to HCB(ref2.21J 

(2) Symbols under column (g) refer to: D-dJ..ffusJ..on; 
V-viscosity; C-third vir1al coeffic1ent; K-heat 
conduct1vity; X-X-Ray scatter1ng; V(Suth.)-vJ..scosJ..ty 
using Sutherland potential. (H) here refers to a 
higher temperature range 300-lOOOaK generally, extend1ng 
still higher for co, N2 

(3) **Using Keesom potential for a hard polar molecule. (o*;l2) 
{4) Under1ined values are those used in the computation of 

the second virial coefficient for TNT gas product mixture 
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2.3 The Detonation Front Relations of H. JonesL 2 • 22 i 

The following well-known relations due to Jones are 

the basis of most inverse equations of state. For the 

immediate present, we are interested only in the values 

derivable directly from these relations as a reference 

magnitude which equations of state must explain, rather than 

in inverse equations of state. 

Jones showed that fairly precise estimates of the 

pressure, mass density and adiabatic exponent at the equilibr~um 

detonation front in a column of explosive could be made without 

invoking any equation of state provided that precise values of 

the observed detonation front speed D~ and its derivative w~th 

respect to loading density are available. His relations are 

(1) ) 
) 
) 

( 2) ) (2.11) 
) 

yAd - (alogp/âlogç)s = a 2;pv1 = (2+S)z -1 
00 

) 
(3) ) 

where l+dlogD00 /d1ogi1 

and where L1 is the explosive 1oading density, ( )e refers 

to the unreacted explosive, v1 is the specifie volume of 

the product mixture and R its density, and ~ ~s a parameter 

defined by 

S:: p/[a(E-Q)/âV]p = [yAdCV/Vl(êJp/ilT)v-1]-l ..• (2.lla) 

where Cv is the product specifie heat at constant volume, 
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~ is the internai energy of the products and Q is the chemical 

energy released in the detonation reaction. 

As Jones has pointed out, no results may be obtained 

from these relations without formulating sorne equation of state, 

but even a very approximate form is adequate to give reasonably 

precise estimates of p, v 1 and y, because it may confidently 

be estimated that 

B << 2 .....••. (2.llb) 

Jones estimated that S ~ 0.2 for PETN. It is here found that 

for the modified Jones and Miller formula for TNT, B ~ 0.12. 

Cook[ 2 • 23 ,P67 l gives estimates for B in PETN ranging from 

0.05 to 0.65 according to the loading dens1ty and the equation 

of state assumption made. For present purposes, it is adequate 

to estimate 
B ~ 0.2 + 0.15 

(2.llc) 
so that (2+B) ~ 2.2+ 7% 

which is a fair estimate of the reliability of values estimated 

from (2.11) 

Observed detonation wave speeds Doo are generally 

fitted by a polynomial 

rn 
L k ~n-1 

n 
n=l 

(2.12) 

and for high loading densities, ~ > O.Bg/cc, the Bruceton 

laboratory observations[ 2 • 24 l are given as linear in the 
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density 

) ..••••.. (2.12a) 

so that 

Estimates of properties derived from (2.11) using (2.llc) and 

(2.12a) are given in the following table. These serve as an 

adequate guide to the magnitude involved. 

Table 2.4 

Estima tes For an Explosive Loading Density ~ of 1.6g/cc 

Explosive Observed Quantities Derived Values 
kl k2 Doo zoo p V/Ve-=A/p 

.~rn/sec .. rn cc/g sec .rn/sec kbar 

TNT 1785 3225 6945 1. 74 202 0.739 

tetryl 2375 3225 7535 1. 69 245 0.732 

PETN 1600 3950 7920 LBO 253 0.748 

RDX 2490 3590 8234 1. 70 290 0.733 

2.4 Virial Equations of State 

That expression which represents the pressure as a 

power series in the inverse volume is known as a v1rial The 

coefficients of V-n are functions of temperature only because 

they are defined by conditions in the l1mit p~o. The v1rial 

expression for p/RT for a pure gas is 

00 

y 

2.82 

2.70 

2.95 

2.72 

\- -n 
p/RT = L Bn (T) p . 

1 p _ 1;v .•....•• (2.13.1) 
n=l 
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where (-) refers to one mole of gas, and Bn is the nth virial 

coefficient, so that B1=1. The corresponding expression for 

the compressibility factor z is therefore 

z 
00 

pV/RT = 1+ L Bn(T)pn-l 
n=2 

1 

where the coefficients have the meaning 

1 

••••••• (2.13.2) 

•••••••• (2.13.3) 

which establishes their significance as coefficients in a 

Taylor series 
oc 

f (p, T) = f(O,T)+ L (anf ;a;n)Tpï'ljn! 
n=l 0 

•••••••• (2 13.4) 

While expressions of the form (2.13.2) have been 

in use for the representation of pV at near-ideal condit1ons 

since at least the time of Onnes(l901), recognition that they 

have a sound theoretical basis has been more recent. In 

principle, the coefficients Kn are calculable by the methods 

of statistical mechanics from the pair potential formulae 

In practice, difficulties 1n computations, together w1th the 

previously outlined uncertainties in these potential formulae 

have so far prevented rel1able computations beyond B3 , the 

third coefficient. It follows that, in practice, only such 

relatively low densities p as permit the use of the truncated 

form 
•••••••• (2.14.1) 
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may be treated by a virial equation of state with realistic 

coefficients Bn(T). 

When the (non-polar) gas pair-potential is 

represented by the LJ(6-12) formula, the second coefficient 

is given by 

i32 (T) = b B* ) 
0 

) 

2'1TNo 3/3 
) 

where bo - ) 
) 

<Xl ) 
B* (T*) = L g*T* (l-2k) /4 ) . . 

k=l k ) 
) 

- [2k-3/2 /(4k-4)! l r [ (2k-3) /4] 
) 

where g* = ) 
k ) 

) 
T* = T/a 

and r is the gamma function. Values of g* are available 
k 

up to k=41[2.ll. It may be noted that the term b
0 

is 

{2.14.2) 

equal to 4 times the volume of N molecules~* It the re fore 

a van der Waals type co-volume, though it is not equal to 

the van der Waals co-volume b, nor to the general co-volume 

defined earlier. \~en a is 1n À units, the value of b0 is 

given by 

...•.•.. (2.14.2a) 

For polar molecules, the second virial coefficient 

may be represented by 

of collision diameter a 
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B(T) = b0 [B*(T*)-P*{T*,t*)J 

where t* = ~ 2;a 112 kecr3 = ô*/21/2 
.••.•••• (2.14.3) 

Here, B* is the dimensionless non-polar component and -P* is 

the polar component. When the Stockmayer(6-12) pair potential 

is used, B* is defined by (2.14.2). We are only concerned 

with the term P* for water, where t*=l.2. The theoretical 

expression for P* is an· infinite s.e:rh:!so At high temperatures 

the correction is small, and since Rowlinson's calculations 

of B*-P* are available[2.1] for a number of values of t*, 

including t*=l.2, it seemed more practical to fit the 

correction term by a simpler expression. Examination of the 

tabulated values of 

B*(T*,t*) : B*(T*)-P*(T*,t*) {2.14.4) 

shows that P* is nearly linear in 1/T* for a particular polar 

gas, i.e., for a particular value of t*. Accordingly the 

expression 
4 

P~ = L w* T*-k 
J k=l jk 

may be fitted to the values of 

B*(T*)-B*(T*,t~) 
J 

..•.•••• (2.14.5) 

where each of these functions is available. It is found 

here that 
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w* = 1. 02539 3 

W4 = 7.89453 

) 
)for H2o 
) 
) (t*=l.2) 

) 
) 
) (2.14.6) 
) 

when fitted over the range 0.8 to 20ofT*, or 304 to 7600°K 

for water. The relative error in B for water using (2.14.5) 

with the values (2.14.6)is less than 10-4 , a trivial 

departure compared with uncertainties in observed values 

of B(T). 

For the third virial coefficient for a non-polar 

gas, usually represented, not as B3 (T) but as C(T), no 

expression comparable to the infinite series for B* arises 

out of the integral in a statistical mechanical formulation, 

even for an LJ(6-12) pair potential representation. The 

only values available are those found by quadraturec Taylor 

and Glasstone [2.2,p.350] 0 th ' g1ve e express1on 

3 

C*(T*) = C(T)/(b
0

)
2 = L h*T*(l-k} 

k=l k 

where hi = 0.268 h2 = 0.086 , 

) 
} 
) (2.15) 
) 

h* - Oc488) 
3 

obtained by fitting to the values calculated by deBoer and 

Michels[ 2 • 251 • The more recent and more accurate calculations 

of C*[ 2 · 26 1 given in HCB[ 2 •11 could readily be fitted by 

a comparable or higher power expression, but (2ol5) appears 

sufficiently accurate for T*=l.S to 10*, as illustrated below. 
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Table 2o5 

C*(T*) 
Eqno2.1sj Ref.2.l,Table ~-c 

0.542 
0.433 
0.320 
0.296 
0.286 
0.282 
0.274 

0.54339 
0.43710 
Oo32662 
Oo30771 
Oo29618 
0.28610 
0.24643 

Error % 

0.26 
0.92 
2.0 
3.8 
3.5 
1.4 

10 

The temperature range of adequacy of (2.15) is thus about 

150° to 1000°K for the TNT product gas mixture, for which 

ëgas~l00°K using the high temperature constants given in 

Table 2.2. These temperatures cover the range of application 

of the virial on the detonation product adiabatics. 

The compressibility factor Z may also be expressed 

as a power series in (p/RT) , that ~s, by 

Z = 1+ L Dn (T) (p/RT} n-l •••••••• (2.16.1) 
n=2 

The coefficients On(T) may be determined from Bn(T) by 

demanding that 

One readily obtains the following relations 

02 = 132 } 

03 
_2 ) 

= B3-B2 ) 

- - -3 
) 

D4 = B4-3B2B3-2B2 ) • Cl 4 • e • $ • 

os - - - -2 -2- -4 
) 

= B5 -4B2B4 -2B 3+10B
2

B
3

-SB2 ) 

(2.16.3) 
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However, since Bn>3 are not known, the on1y practica1 virial 

of the form (2.16) with rea1istic coefficients is the truncated 

form 

...•••.• (2.16.4) 

which may be expressed more simp1y by 

Z = 1+ (b0 p/RT) B* (T*) + (b0 p/RT) 2 [C*-B* 2) ••••..•• (2.16.4a] 

when the same pair potentia1s are used for both B and ë. 

This cannot be the case except for a pure gas, and is not 

necessari1y the case even then, because of the uncertainty 

in the pair potentia1s. The conventional notation 

B for B2 

C for B3 

has now been adopted. 

The empirically adequate expression for the second 

viria1 coefficient of a mixture of rn non-polar gases is 

rn rn 
- -2 \ \ -
Bg = ng .~1 .~ n1njboijB*ij(T*ij) 

~= J 

where o .. = [(o .. ) 1/3+ (b . , ) 1/3] 3a-1 
) 
) 

O~J 0~~ OJJ 

T*, . = (T*" • T'il" ) 1/ 2 = T/e 
~J ~~ JJ ij 

1 J2 ) 
where e , = ( e .. • e , . ) 1 ) 

~J ~~ JJ ) 
rn 

n. 
j=1 J 

where nj is the number of moles of species j in the mixture. 

) 
) 
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For an invariant composition, the only one of present concern, 

we may write Bg=Bg(T). It is known that the mixed terms 

B*ij involving a non-polar and a polar gas are non-polar so 

that for a gas mixture containing a single polar gas, the 

expression for Bg remains unaltered, except that 

2 = einB •••••o•• (2.17.2) 

where k denotes the polar gas and i, n denote non-polar** 

gases and 

••...•.• (2.17.2a) 

where ai is the polarizability of the non-polar molecule 
0 -

in cubic AngstrOms and boii is in cc/mole. Thus the only 

polar term in Bg is (nk/ng) 2bokkBkk(T~k,t~). 

The expression (2.17) for Bg is unsat1sfactory 

bath theoretically and numericallyo When the number of 

gase,ous species rn is large, calculations are not only time-

consuming but inaccurate because of accumulation of round-off 

errors. The number of different terms in (2.17) is 

(rn) (m+l) /2 ••..••.. (2.18.1) 

so that even the 6 gas species detonation product mixture 

with which we are concerned (say, j=2 to 7 where j=7 is water, 

j=l being solid carbon) contains 21 unl1ke terms, i.e., 

** n denotes a hypothetical non-polar gas with pair potential 
constants identically equal to those of k, polar one. 
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= 2-b B* (T* . . 2b- B* (T* t*) n2 022 22)++n7 o77 77' 7 

+ 2(n2n3bo23B*(TÎ3)++n2n7bo27B*{TÎ7)) 

+ 2{4 terms)+2(3 terms)+2(2 terms) 

+ 2n6n7Eo67B*(T*67) 

) •• (2.18.2) 

The representation of B* by the series (2.14.2) requires an 

increasing number of terms as T* decreases. In the present 

application the first 21 terms were used in order to avoid 

a relative mathematical error exceeding 10-6 at T*=l(T,l50"'K 

for most pairs): At T* exceeding 20, the first 5 terms in 

(2.14.2) would give about the same accuracy. Nith cho1ce of 

kmax=21 we may therefore discount mathematical errors. However, 

the accuracy with which (2.14.2) represents the observed 

physical quantity cannet exceed experimental uncertaint1es. 

The latter may confidently be assumed to be 1n excess of 1%. 

For the 6-species mixture virial coeffic2ent representation 

(2.18.2) the physical error may well be 20%. More important 

is the fact that the pair potentials for unlike molecules are 

unknown. It is known[ 2 • 2 ,P· 351 ] that the additive rule for 

diameters, true for hard spheres, is supported by crystal 

data, but the combination rule for potential well depths (8J 

is an upper limit, 1.e., we are justif1ed only in the 

statement 

e 1~ J. < < e . , e , , > 1/2 
~ 11 JJ .•••..•• (2.19) 

G h ' [2.27] .. 1 . uggen e1m conta1ns a notab y 1nsistent den1al of the 

theoretica1 va1idity of the comb1nati.on :rules. 



- 58 -

The combination rules are better regarded as 

physically adequate than as physically supported because 

other combination rules give equally good agreement with 

observations. For example, representation of Bg for a 

mixture of the non-polar gases concerned here by the 

coefficient for a mixture-cepresentative pure species 

is not significantly different from that given by the 

conventional expression. The mixture representative 

species was defined to have pair potentials 

-2 I: L ninjoij = (cr , , +cr " , ) /2 ) crg = ng cr , , 
i j ~J ~~ JJ ) 

) 

-2 \' [ < e ii· e , , ) 112 
) 

ag = n L, n1njeij eij = g i j JJ 

(2.20) 

as in Fickett's study of detonation using the Lennard-Jones 
• 2 4" 

and Devonshire equation of stateL · J. These defin~tions 

were suggested by Nosanow[ 2
o
28 l. The labour in applying 

(2.20) is very rouch less than for (2.17): it has additional 

advantages for our application. These will be described 

presently. 

When one of the gases in the mixture is polar, 

the relations (2.17) are even more doubtful because experimental 

data on second virial coeff~cients are lacking for such cases. 

Bearing all these factors in mind, and noting that (2.20) is 

relatively poor when one of the gases present is polar, except 

at high temperatures where the necessary sphericalization of 
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the polar pair potential is acceptable, it appears preferable to 

calculate Bg from the relation involving only like molecular 

pair potentials,viz., 

j 
n , -b- · ,B* (T* t*)' 

J j OJ J j j, j 

where B* (T~. ,t'!) = 
JJ J 

B*(T~.)-P*(T~.,t*) 
JJ JJ 

j(non-polar)P* = 0 ; j(polar)P* = 
4 

L w*/T*k 
k=l k 

Furthermore, when one bears in mind that the truncated 

virial (2.14.1) is not applicable unless 

C/V << B 1 

) 
) 
) (2.21) 
) 
) 
) 

we may replace the extremely complicated (and theoretically 

unjustified) expression for Cg given in Hirschfelder's text 

(reference 2.1, Tables r-e, I-D) by the simpler one for a 

pure species with pair potentials defined by (2.20) using 

the fitted expression (2.15) and the sphericalized pair 

potential constant for water given in table 2.2. To summarize, 

the expression here recommended for representation of the 

compressibility factor for the detonation product gas phase 

on the adiabatics after the composition has become fixed 

(T < 1000°K) becomes 

Z = l+{p/RT)Bg{T)+(p/RT) 2 [C(cr ,T*)-B (T) 2] g g g ••••.••• (2.22) 

where Bg is found using (2.21) and the pair potential constants 



- 60 -

given in table 2.3 and c is found using (2.15), (2.20) 

and the constants given in table 2.2. 

2.5 The Co-Volume and Internal Energy 

As stated earlier, the co-volume, here denoted 

by X, is essentially the imperfect component of the gas 

volume, that is, for a pure gas 

X(p,T) _ v-vo = v-RT/p 
(2.23.1) 

= (RT/p) (pV/RT-1) = RT/p(Z-1) 

where z is the compressibility factor pV/RT. Also for a 

gas mixture 

•....... (2.23.2) 

by definition, where ( ) refers to the gas mixture. Thus g 

the co-volume X, as here defined, and the compressibility 

factor z, are mutually definitive. In the hard molecule 

equation of state, X is defined by numerically calculated 

values Z(cr
0

,p,T), where, for practical application, o 0 , the 

hard molecule diameter, must be related to intermolecular 

potentials, and in the Jones and Miller formula an assumption 

Xg=Xg(p) is made, the coefficients in a power series 

expression for it are calculated from relations of the 

type (2.11) and Z is defined by X(p). For a vir1al equation 

of state with realistic (i.e., temperature-dependent) 

coefficients, X(p,T) or X(T,V) is defined by Z, and when, 

as here, a p,T system is used, 



- 61 -

Virial: 

from 2.22. 

In the statistical treatment of an ideal gas the 

separability of the interna! energy into a sum of translational, 

rotational, vibrational and electronic terms (the sum total 

of which is here referred to as Ethermal) is based on the 

provable assertion that spacings of permiss1ble energy levels 

in each mode are so widely different that they may be 

regarded as uncoupled. For a real gas of molecules with force 

fields, the separability of the energy into a sum of thermal 

and real components, neither of which affects the ether, is an 

assumption that cannet be avoided if a quantitative solution is 

to be obtained. This assumption is justified only if the 

interaction of the force fields does not distort the shape of 

the potentials and is therefore poorest at high densities. 

Presently available information[ 2 · 2 , 2 · 4 l indicates that the 

assumption is not seriously unsound even at the highest 

pressures encountered in detonation and that complete 

breakdown does not occur until a pressure of about 1 megabar** 

is reached. Accordingly, we assume, for a pure gas 

E = E0 +E r 

and for a mixture of gases 

oo••••« (2.25.2) 

where ( >r refers to the real component and ( )th to the 

thermal component. The thermal component is 

For hydrogen, it 1s argued that this (metall1c state) occurs 
at not less than 250 kbar (ref.2.l,p.271). 
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ooo•o••• (2 26} 

where 

and Er is defined by invoking the general thermodynamic relation 

(ôE/ap)T = -[p(aV/ôp)T+T(ôV/ôT)p] 

which, from the definition of X becomes 

(ôE/ôp}T = -[p(aX/ôp)+T(ôX/ôT)] 

so that 

Er= - ~p(ôX/êp)T+T(aX/âT) ]dp! 
_.{,

1 

P IT 

(2.27) 

•••••••• (2.27a) 

ococoo•c (2.28) 

In particular, the imperfection component of the 

interna! energy for a nearly ideal pure gas (X=B(T)) 

coc•e••• (2.28a) 

and if the gas is non-polar with an LJ(6-12) pair potential, 

00 

, • 0 ( 2 • 2 8b) 

and since dB*/dT* ~ 0 for T* :;: 25, Er is positive ze:ro, or 

negative depending on T*. Typically T* ~ 150 K for the 

molecules concerned here (see Table 2 3) so that were B(T) 

the only force field component in i, the imperfection component 

ngËr of the gas mixture would be near zero at about 3700'~'K 

and negative at temperatures below this value, which is 

typical of detonation front temperatures in condensed explosives. 
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Near T*~25, the slope dB/dT is very slow so that 

more generally one may say that for such a co-volume the 

imperfection component of the internal energy is virtually 

zero at the detonation front, even though here the 

compressibility factor Z is typically about 10. Such a 

co-volume is hardly credible for high loading density 

detonation products. HirschfelderL 2 · 29 ) has used such a 

form for gun powder gas at densities less than about 0.85 

g/cc, where the approximation \appears to be justified. 

Paterson[ 2 • 30 1 and J. Taylor[ 2 · 31 l have applied a v~rial 

form Z=Z(B,V) to the high explosives listed in table 2 4 

up to near-crystal loading densities. In such cases, the 

imperfection component of the internai energy appears to 

be rouch too small. We shall return to this point shortly" 

Finally, for a pure gas of hard spheres of immutably flxed 

diameter without force fields, the imperfection component 

of the internal energy is, of course, exactly zero because 

intermolecular forces are absento 

2.6 The Lennard-Jones and Devonshire Cell Theory Equation of State 

A virial equation of state is lncreasingly valid 

as ro/r ~ 0, where r is the average spacing of molecules, and 

r 0 is the equilibrium pair spac~ng described earlier. At the 

opposite extreme, the equation of state for a crystal becomes 

increasingly valid as r 0 /r exceeds unity. Here a molecule 

spends most of its time in a repulsive force f~eld and the 
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imperfection component of interna! energy must be positive. 

However, even at high densities, a gas lacks the perfect 

arder of a crystal and is expected to resemble a liquid more 

closely. 

The best known equations of state for liquids are 

essentially those for imperfect crystalso In a (pure) crystal, 

each atom may only vibrate about a fixed posit1on. As the 

average spacing r in a gas decreases below an equivalent hard 

sphere diameter o 0 (as yet undefined) each molecule tends to 

become locked in the cell formed by its nearest neighbours. 

In the cell theories of Lennard-Jones and Devonsh1re (LJDI [2 • 32 ] 

and of Eyring, each fixed lattice-site in a crystal is replaced 

by a cell centred at it. Each molecule has more freedom than 

the atom in a perfect crystal in that it may move freely in the 

cell of its neighbours regarded as f1xed, but like a perfect 

crystal, every site, or cell, is supposed occupied by a molecule. 

In hole theories attempts are made (without notable success) to 

extend the notion of imperfect crystals to lower densities by 

allowing sorne cells to be unoccupied. 

The LJD equatlon of state is fully descrlbed in 
. . ·2.4] standard texts and F1ckettl · has demonscrated ~ts application 

to the calculation of detonatlon front behavlour so that a 

description of it here is not requlred. Flckett's successful 

reproduction of observed detonatlon front speeds for a number 

of explosives leaves little doubt as to its appllcability to 
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detonation front conditions. Thus, we are here concerned 

merely with estimating the density range of its application, 

with emphasis on the low density limit, so as to appreciate 

how its application mi~tdescribe adiabatic expansion 

following detonation, 

It is evident that description would begin to be 

poor when the average spacing r of molecules is such that 

a molecule of diameter cr
0 

may just squeeze its way past its 

neighbours out of its cell into the next, giv~ng double or 

triple occupancy of sorne cells and leaving holes in others. 

This problem has been described by Buehler et al[ 2 • 33 l for 

rigid sphere molecules, where the essential argument is 

most simply demonstrated. 

If, for simplicity, we take the high-density ordered 

disposition of (hard sphere) molecules to be a simple cubic 

lattice, each molecule has 26 nearest neighbours. If these 26 

are regarded as fixed and the central one, the "wanderer", is 

allowed to move freely in the cel! formed by its nearest 

neighbours, the space that the centre of the wanderer may 

occupy before the surface collides w~th that of one or more 

cell spheres is the free volume vf per molecule. This has 

a very complicated shape (see Hirschfelder's text[ 2ol], Fig. 

4.6-2). If~ <=r> is the lattice spac~ng and a0 the hard 

sphere diameter, it is apparent that the smallest spacing at 

which the wanderer may just escape through a cell wall is 
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a escape • • o • o • o • {2c29.1) 

Since a 3 =v, the specifie volume (per molecule), then the 

gas molar volume at escape is 

- = 23/2Ncro3 = V escape • o o o o, o o (2c29.2) 

The main difficulty in hard sphere arguments is to relate 

the hard sphere diameter cr 0 to the potential constants o,6 

so that relations may be made quantitatively relevant to a 

particular gas or mixture. This tapie has received little 

attention in the literature. For the immediate present we 
c 

shall assume that a0 3.15A, the van der Waals hard diameter 

for nitrogen given in table 2.1: this is approximately 

representative of a TNT detonation product gas. Accordingly, 

Vescape "' 38cc;mole Pescape ~ 0.52g/cc 

•••••••• (2.29.3) 

The rare gases crystallize in a face-centred cub~c 

lattice, as do nitrogen and methane. Here, molecules are to 

be found, not only at the corners of a cube, but also at the 

centre of each of the 6 faces. The same dispos~tion ~s 

obtained by imagining the neighbours to be at the centr.e ~of 

each of the 12 edges of a cube. The escape cond~tion 

a/cr 0 = 12 is of course the same, but here the cell is formed 

by 12 nearest neighbours and 

so that v -2 3 
escape - 0 o (2.29.4) 
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and making the same choice of cr 0 and of the molecular we1ght 

of the gas, 

vescape - 32 cc/mole - ~ 0.74 gjcc ;.·escape 

•••••••• (2.29.5) 

J. Taylor[ 2 • 31 l recommends 0.5 g/cc as the lower lim1t of 

application of relations derived from cell theories: this 

is in fair agreement with the present values. A table 

comparing LJD calculated properties to those observed, is 

available for nitrogen at densities not greater than 0.25 g/cc 

(see ref.2.1, Table 4.7-6). This shows that for this density, 

and for a temperature of socc, the LJD equation g1ves errors 

of 30% in the compressibility factor, 12% in the imperfection 

component of the internal energy and 22% in the imperfection 

component of the entropy. 

It may be noted that for a hard sphere gas, the 

compressibility factor given by cel! methods is 

z = pv/kT = (v/vf) (dvf/dv) •••••••• {2.30) 

and that this must be 1nfinite at the tightest possible 

packing a = cr 0 , which, for a face-centred cubic lattice 1s 

v= a6!l2 or V(ccjmole) -~ 0.43o; when o
0 

1s expressed in 

Angstrom unitsc For N2 , taking a
0 

~ 3.15Â as before, 

p ~ 2.1 g/cc, a value about equal to that of detonation 

products at the equilibrium front at high loading dens1ty 

(see table 2.4) < 
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2.7 Gas Mixture Equation of State by Rigid Sphere Simulation 

It has been seen that a satisfactory equation of state 

is available for a pure gas at very high and very low densities 

but not at intermediate values. A suitably chosen hard sphere 

equation of state may represent both the compress~bility factor 

and the imperfection component of the internal energy of a pure 

gas over a very wide range of densities with reasonable prec~sion 

if the diameter of the hypothetical hard sphere gas can be 

properly defined in terms of sorne observed property of the real 

gas. If the definition of the pure hard sphere gas diameter 

can be plausibly extended to a mixture of gases, an equation of 

state suitable for the description of gaseous behaviour in 

detonation and subsequent expansion will have been found. 

There are therefore three stages in devising the equation of 

state, viz., choosing the immutably rigid sphere relation, 

allowing the diameter to vary both with the temperature and 

with the gas, and finally extending this definit~on of the 

diameter to a gas mixture. 

Choosing an equation of state for rigid spheres 

merely requires judgement" Compressibil1ty factors calculated 

for a rigid sphere gas by Monte-Carlo methods are the yardstick 

by which lesser methods are judged. This must be so, because 

this method of quadrature allows integrals to be determ~ned 

which are normally discarded, not because they are not 

important, but rather because they cannet be solved by other 
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methods. The Monte-Carlo method merely requires expensive 

computer time. The Monte-Carlo calculations of Rosenbluth 

and Rosenbluth[ 2 • 34 1 covered a range of 29 dimensionless 

densities {b0 /V), not all of wh1ch were tabulated in their 

paper. Their compressibility factor computations dealt 

with the random motion of 256 spheres after each had been 

moved 100 times to ensure statistical equilibrium. An 

earlier paper by them[ 2 • 35 1 dealt w1th a two-d1mens1onal 

molecular madel. Their calculated compressibi ty factors 

are compared to other calculations in the following table. 

Table 2.6 
Compressibility Factors for Non-Attracting Hard Spheres 
Dimensionless 1-u~~Z~-~p~v~/~k_T __ = __ ~p~~~BwT __________________ ___ 
De!!_ si ty l Monte. 
w=b0 /V Carlol2o34] A B 

0.1 
0.2 
0.4 
0.6 
0.740 
1.185 
1.481 
1. 692 
1. 975 
2.370 
2o69Q 
2.920 
2.962 

A - Virial 

(2o2l) 
{3.82) 
{5.25) 
( 6. 50) 
(8.85) 

(14.80) 
3200 
59 

1.1065 
L2275 
L5213 
L 9019 
2.2 
3~8 
5.35 
6,80 
9.40 

14.60 

3o3 
4.25 
4.95 
6.1 
7.85 

B - Superposition approximat1on, K1rkwood(2.36] 
C - Eyring ce11 theory, face-centred latt1ce 

c 

L5 
1.65 
2.0 
2,4 
207 
3 8 
4.9 
5.9 
7.9 

14.2 
31.4 
57 

{ ) - Monte Carlo values selected for representation 
by fitted equationo 

The column B values were interpolated from a table 

given in Hamann[2 .3 71. It 1s evident that the Kirkwood results 



- 70 -

are very poor. The Eyring cell theory express1.on for the 

compressibility factor for non-attracting hard spheres is 

where c 113 = 0.6962 for a face-centred cub1c latt1ce assumpt1on 

and 0.7816 for a simple cubic lattice" It may be seen that 

these values are very poor below b0 /V ·~ 1. 2, and i t may be 

noted that with the previous assumpt1ons regard1ng the hard 

sphere diameter for nitrogen, 

0 3 
= l,2615[a 0 (A)] - 40 cc/mole ... (2.3la) 

so that here V . ., 33 cc/mole, in agreement w1th (2.29.5). 

The Eyring compressibilities are 1ncreasingly rellable 

as w + 2.962, the limiting value for a face-centred cub1c 

lattice. The series expression for (2.31) 1s 

Z = 1-r L (cw)k/3 

k=l 
(2. 3lb) 

This together with the Vlrial expression for Z for hard spheres 

:x. 

Z = l+w+Oc625w2+0"2869W3'"~<( }0 115w 4 '"~<Ll?nwn 
k~5 

• • o • < < o • (2c32} 

suggests that the Monte-Carlo compressib1.l1ty factors m1.ght 

be fitted over a w1de range by relat1ons of the form 

rn 
z = l+yexp ( L aky (k-1) /3) 

k:l 

or by Z = l+yF(yJ 
rn 

F(y) = l+ I Akyl/3 
k=l 

( 2 33) 

····~··· {2,34) 
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where (2. 34a) 

This is obviously possible bec a use if z = z (b0 , V) , th en 

v = f(pb0 /RT) = f(y) 

so that z = g(y) 

This kind of representation is required in a (p, T) system. 

Now since, 
, •••••••• (2.34b} 

(2.33) would be a suitable choice if a plot of 

loge[(Z-l)/Zb
0

/V] ••o•••• (2.34c) 

relative to (Zb0;~J') 11 3 were linear. Th1s 1s ver. y nearly 

the case. The data g1ven 1n brackets in table 2,6 wer.e 

therefore fitted by (2,33) with m=3c The f1t was excellent; 

however it was no better than (2.34) also WJ.th m=3c This 

form is far more conven1ent than the fir.st, part1cularly in 

regard to the relation 

}(p,T)dp •••••••• (2.34d) 

which enters into the express1on for the fugac1ty The 

second relation (2.34) was adopted for this reason and it 

was found that 

Al= -0.174417 A2 = -0.062245 A3 ;;; 0.0180363 

........ (2.34ej 
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The standard deviation for this 6-point fit is 0.35% in the 

quantity 

-1 y {Z-1) -1 f (2.34f) 

3 
~ k/3 

and the deviation of the fitted relation L Aky from this 
k=l 

data function does not exceed 1%. A suitable equation of 

state for rigid non-attracting spheres of diameter o0 and 

*** molar volume br has now been obtained. The forrn of I+'(y) 

was chosen so as to ensure application all the way to the 

ideal gas state Z=l. 

It may be noted that J. Taylor and Paterson in their 

application of the hard sphere virial to detonations, follow 

Hirschfelder et al[2.38] in replacing the hard sphere 4th 

virial coefficient O.llsb: by that derived from Eyring's 

-4 expression (2.31), viz , 0.1928br. The Rosenbluths deduce 

= (8.6) (2.962)- 4 = 0.119 ( 2. 35) 

from their Monte Carlo results. These were presented in the 

form of a table of (Z-1) relative to (v;v0 )-1. The argument 

v/v0 may be transformed to the more familiar one br/V using 

(2.35a) 

where v is the specifie volume (per molecule) and v0 1s that at 

the closest possible packing. 

*** It is now necessary to emphasize the distinction to be drawn 
-. -3 - ... -3 between b0 ~(2w/3)No {cr~crLJ( 6 _ 12 )say), and br~(2n/3)No 0 

where cr 0 is the hard sphere diameter, as yet undefined. 
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At close packing, most collisions are nearly head 

on. For consistency, it must be assumed that the distribution 

of molecular velocities is of the Maxwell-Boltzmann type. 

This has already been implied by acceptance of the JANAF ideal 

state properties. The most probable spacing of molecules at 

point of closest approach should then be close to that value 

obtained by inserting 3/2 kT, the most probable translational 

energy, into the pair potential relat1on. The same result is 

obtained formally from the Boltzmann-weighted express1on for 

the rebound spacing when the relation for the spacing (with 

xT* substituted for l.ST*) is expanded, and high arder terms 

are discarded: here x is a dimensionless kinet1c energy 

varying from 0 to oo. The approximate closest approach 

spacing thus obtained is taken to be the hard sphere d1ameter 

crr(~cr 0 ). Replacing tin the LJ(6-12) pa1r potent1al by 3/2kT 

one readily obtains 

so that 
b* r 

or(T*)/oLJ = (2/[l+F*]J 1/ 6 

where F* = (l+l.ST*)l/2 

where 

T* - T/Ei 

...••••. (2.36) 

At the closest pack1ng, the dimens1onless temperature 

derivative db~/dT*, which, as may be noted, is always negative, 

is probably too srnall1 because here, molecules spend most of 

• in absolute value 
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their time in a repulsive field. However, the slope is rouch 

greater than that of the second virial coefficient dB*/dT*. 

Furthermore, the relation (2o36) gives the correct value 

crr/cr~l as T*~O. It will have been noted that the notation 

cr 0 to represent a hard sphere has been discarded in favour 

of or in order to obviate the possible misconception that 

it is fixed at all temperatures. 

The justification that has been presented for 

(2.36) is by no means theoretically rigorous: it is better 

justified by its performance relative to other definitions. 

At least two other definitions of an equivalent hard sphere 

diameter are known. The oldest, that due to van der Waals 

was devised long before the notion of intermolecular potentials 

was put forward in its modern form, and in his equation of 

state 
00 

Z = 1-a/RTV+ L (b/V)n 
n=l 

•••••••• (2.37) 

the terms b, representing the hard sphere diameter, and 

-a, associated with the average attractive force (at near-ideal 

dilution) were purely empirical constants. At h1gh 

temperatures, the term aïRTV is negligible and his equat1on 

degenerates to the Abel-Nobel relation 

co 

Z = 1 + L (5/V) n ioe., p(V-b) = RT b = const. 
n=l 

(2.38) 

used in early studies of detonation at low loading densities. 
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When the first term in a real gas virial is compared to that 

in (2.37) it is seen that 

is an inverse linear approximation to b0 B*{T*), which, 

when plotted against T*-l, is nearly a straight line at 

temperatures not too far removed from the Boyle temperature, 

where, by definition B* = O. This occurs at T* = 3.42 

for non-polar molecules in the LJ(6-12) representation and 

at T* = 4.9 for water with t* = 1.2. Thus, if a straight 

line A*+D*x* (with x*:l/T*) is f1tted to B* 1n any selected 

interval Ax* the appropriate dimens1onless van der Waals 

diameter b* =A* may be found. It is thus evident that VDW 

van der l..Vaals constants, being dependent on the temperature 

interval AT* selected for fitting, are not uniquely defined. 

Nothing can be obtained from them that cannat be better 

obtained directly from B*. 

Hirschfelder[ 2 • 29 l applied a hybrid virial form 

to 

Z=l+Bg (T, nj) /V g+O. 625 (~/V g) 2+0. 2869 (Ï)g/V gJ 3+0. 1928 (bg/V g) 4 

•••••••• (2.40,1) 

the gas mixture resulting from the combustion of gun powder. 

Here, m m 
n-l [n.b .B*(T* ·>· Ln. Bg(T) -- ng :::. g , J OJ J , j=l J J 

) .... (2.40.2) 

- 3 (2'1TN/3) a ; 
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where cr, e are LJ(6-12) pair potential constants, and 
rn 

- -1 ~ -b 9 = n L njb0 . 
g j=l J 

He argued that the approximation 

b* = B*(T*) r 

. ...•..• {2.40.3) 

..•.•... (2.40.4) 

at least in the first term, appeared to be reasonable at 

high temperatures (T"'l500-5000°K) because, at such 

temperatures the second virial coefficient is fa~rly constant 

(B*~O.S for 20<T*<50) and appears to play the role of a van 

der Waals bvow· Paterson and J. Taylor extended the associat~on, 

bi= B*, to all coefficients using the same equation of state, 

that is, using 

z = l+x+0.625x2+0.2869x3+0.l928x4) 

where x = B /V g g 

) 
) 

·····~···(2.41) 

and Bg is the mixture virial coefficient def~ned as in (2.40.2). 

We may justify the choice (i) b* = b*(Eqn.2.26) 
r r 

relative to the choice (ii) b~ = B* (at least at high densities) 

by noting that 

(a) Er is wrongly < 0 for (ii), regardless of the dens~ty, 

if T* 25. Er for (i) is always o. 

(b) (ii) gives worse transport coefficients than rig~d 

spheresof immutably fixed diameter: the choice (i) 

gives better ones. That is, if n is. the viscosity -
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coefficient, then 

(c) 

Y= (n/n
0

)/(T/T0 ) 112 = const for perfectly rigid spheres 

dY/dT > 0 , observed 

dY/dT < 0 for choice (ii) for T*<25 

dY/dT > 0 for choice (i) for all T* 

The identification 0.625 b*2+-+ r C* (T*) is very po or 

indeed by {ii) . For (i) it is quite good, as shown 

in the following table. 

Table 2.7 

Simulation. of Third Viri.al Coe.fficient by 0. 625 (bhard) 2 

0.625 b~2 
T* C*LJ{6-12) (T*) 

~.,.;noJ.ce UJ 1 ~.,.;noJ.ce \J.J.) 

1 0.42966 0.485 4.02 
2 0.43710 0.415 0.245 
4 0.32662 0.342 0.0083 
6 0.30771 0.300 0.065 
8 0.29618 0.271 0.107 

10 0.28610 0.250 0.133 
20 0.24643 0.191 0.172 
30 0.21954 0.161 0.173 

An equation of state for a pure gas particularly 

suited to high densities and temperatures has now been 

devised. We must now extend the equation to include gas 

mixtures before it is of practical value for the problem 

concerned here. It should be borne in mind that the 

Monte-Carlo data refer to a gas of identical hard spheres. 

We cannat use the data at all for mixtures of non-identical 

rigid spheres, that is for mixtures of spheres of different 

diameters. Thus a single diameter crg must be defined for 

the complete gas mixture. Sufficient has ·been said ·to justify 
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its definition by 

where cr 1·J· = (cr .. +cr .. )/2 
ll JJ 

} 
) 
) 
) 
) 
) 
) 

cr* g [2/(l+F*)]l/6; F* = 11+1. 5T* 
) 
)(2.42) 
) 

and e 
g 

where T* = T/9 g 
m rn 

L L n.n.e .. 
i=l j=l l J lJ 

) 
) 
) 
) 

The equation of state for the gas mixture is now defined. 

It may be noted from table 2.7 that the simulation 

of C* by 0.625b; with b~ defined by (2.42) is sufficiently 

good as to warrant its use rather than the expression (2.15) 

in a real gas virial equation of state. For T*>lO it is 

increasingly better than (2.15) and is therefore to be 

preferred for those problems in which the truncated virial 

is applicable at these temperatures. 

2.8 Inverse Equations 

The best known of these are the relations due to 

Jones and Miller[ 2 · 39 land to Wilson and Kistiakowsky[ 2 • 40 l. 

The Jones and Miller equation, which refers to TNT only, is 

3 

x = X(p) = L dkpk-l 
k=l 

d1 = 25 4cc mole-l ; d 2 = -4.43715cc mole-l(kcal/cc)-l 

d 3 = 0.424129cc mole-l(kcal/cc)-2 

) 
) 
) 
}(2.43) 
) 
) 
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These coefficients were obtained by fitting to the detonation 

speeds given by Friedrich at loading densities <lo5g/cco 

For reasons stated earlier, this relation was here modified 

to 

X(p) = 
5 

L: d pk-1 
k=l k 

d4 = -4o66272•lo-3cc mole-1 (kcal/cc)-3 

ds = -5o01624•lo-5cc mole-l(kcal/cc)-4 

) 
) 
) 
) 
) 
) (2~43a) 
) 
) 
) 

The value of d4 was found by matching to the observed detonation 

front speed at l~Sg/cc loading density, iterating at constant 

temperature from that final CJ temperature obtained using 

the 3 constant relationt The value of d5 was then found by 

matching in the same way for a loading density of 1.52g/cce 

For this purpose an approximate composition was used. The 

resulting 5 constant relation reproduces the observed detonation 

speed particularly for loading densities greater than loSo The 

error in wave speed at 1.0 g/cc loading density is about 4% 1 

only slightly better than that using the original 3 constant 

relation. 

It is immediately evident, purely from logic, that 

the relation X= X(p), cannet be both true and at the same 

time be limited only to TNT productso Jones and Miller were 

not explicit about how they obtained the first constant d1 • 

It appears to have been obtained from sorne method other 

than detonation. The notion X = X(p) is evidently a result 
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of Jones' earlier calculations using a direct equation of 

state, i.e., one not based on observed detonation wave 

** speeds. This equation was apparently based on a solid 

state equation due to Bridgeman (see Cole[ 2 • 41 l, p.82). 

This in turn was fitted by a set of constants dk using 

the same virial form, i.e., 

3 
X(p) = L d'pk-1 

k=l k 

where dk are not reported. This gave detonation front 

speeds about 17% too high. Then the dk were adjusted to 

fit the Friedrich's data as described earlier, but it 

would appear that di was retained at the value given in 

(2.43). Detailed speculation as tc precisely what might 

have been assumed is inappropriate. What is important 

is that the functional form X(p), while approximate, has 

sorne basis not related tc observed detonations. It is 

interesting to compare the following quantities. 

cc/mole 

(A) 25.4 

(B) 24.4 

0 
- d1 of JM equation (2.43a) 

- constant term obtained if one expands the 
H. Jones equation given on p.82 of Coleo 

**The wartime reports of H. Jones are listed in Cole but 
it was not possible to obtain themo 

~ For brevity the Jones and Miller equation with modified 
constants (2.43a) will be referred to as JM, while the 
hard sphere or hard molecule equation of state (2.34), 
(2.42) will be referred tc as HM. 
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(BgNR+B9R)/f 2500<T<4000 using high pressure 
composition of chapter 6o Here R refers to 
the normal rotating molecule pair potential 
constants and NR refers to OLJ adjusted to a 
non-rotating value using column 1, 2 of table 
2ol~ 

The basis for the formula,or inverse equation of 

state, of Wilson and Kistiakowsky is not explained in the 

available literatureo It appears to be a general purpose 

detonation front fit in that a set of specially defined 

species co-volumes have been devised by trial and error 

adjustment so as to reproduce the observed detonation 

front velocity for a number of condensed explosives. A 

description is given in Cole (p.84). A somewhat different 

account is given in Hirschfelder (Ref$2.l-Eqn.4e3-3). Its 

description of adiabatic expansion at low and moderate 

temperatures is bound to be poor because at constant 

composition the compressibility factor is 

Z = l+(const/Tl/4)exp(const/Tl/4) a•o•ooo (2e44) 

Fickett[2o4] has given a table relating the WK detonation 

front species co-volumes to equivalent pair potential 

constantso The WK equation is probably the most flexible 

of the detonation front formulaeQ 
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CHAPTER 3 

THERMODYNAMIC RELATIONS FOR THE PRODUCT MIXTURE 

3.1 General Relations 

The equation of state for a two-phase gas/solid 

mixture consists of an equation of state for the solid, (here 

graphite), an equation of state for each gaseous species or 

one for the gas mixture as a whole, together with an assumption 

relating the chemical potential of a species in the mixture to 

its value when pure. Taylor and Glasstone[ 3 • 11 give a complete 

review of the three main methods that have been proposed to 

deal with the chemical potential. These are (i) the general 

limit method proposed by Gillespie[ 3 · 21 and Beattie[ 3 • 3], (ii) 

the Lewis and Randall rule and (iii) the Gibbs-Dalton rule (or 

"law"). The present computations conform to the general limit 

(GL) method. 

In the GL method an equation of state for the mixture 

as a whole is required in order to solve the definite integrals 

appearing in the general relations. The resulting general 

relations may be cons1dered 'exact', inaccuracies in numerical 

solutions being introduced only by errors in the equation of 

state for the mixture and by the numerical approximations 

necessary in any computation of physical behaviour. The 

general relations resulting from either the Lewis-Randall rule 

or the Gibbs-Dalton rule are approximate, the former generally 

holding to h1gher pressures than the latter. As pointed out 
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earlier we do not, and cannet, assert a gas equation of state 

based on the Monte-Carlo data except in terms of a pure 

hypothetical gas representative of the gas phase of the 

mixture, so that the GL method is not only the best for our 

purpose, but is also the only permissable approach. The 

Jones and Miller equation also falls into this category. 

Since chemical reactions are involved, a standard 

state must be defined. Standard conditions are generally 

taken to be p 0 =1 atm, T0 =298.1°K, so that we may replace 

) dp ......... (3.1.1) 
Po T 

by zero without significant error, for an integrand which is 

zero for an ideal gas. Here p 0 indicates an arbitrarily low 

pressure. For simplicity in notation, we shall represent 

the internal energy by two symbols U, and E, related by 

E = u-u 
0 

and shall represent 

U 0 
1 by E0 

0 0 

......... (3.1~2) 

......... (3.1.3) 

when T=0° absolute, which is now taken to be the standard 

temperature to which the heats of formation shall refer. 

The formal procedure for obtaining an expression 

for the internal energy is well known. For a pure gas, the 
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expression for a molar enthalpy increment 

, •••...... (3.2.1) 

in which, from general thermodynamics 

....... (3.2.2) 

may be integrated, first at constant standard temperature T0 

to sorne arbitrarily low (ideal) gas pressure p 0
, then at 

this pressure to the final temperature !, and then at this 

temperature to the final pressure E· As indicated earlier, 

(-) indicates one mole and ( ) 0 indicates ideal gas conditions. 

Using (3.1.1), and then setting T0 =0°absolute, one readily 

obtains 

where, 

= H#(T)-RT+E r 

T 

(T)-E;= f C~(T)dT 
0 

P=po 

) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 

•••.•.•.• (3.2.3) 

Here, ( >r refers to the imperfect or real component arising 

from intermolecular forces, and ( >th refers to the remainder 

or thermal component. As noted earlier, it follows from our 
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definition of the gas co-volume X that 

p 

-Er = l (p8X/8p+TaxjaT) dp 
0 

•••••.••• (3.2.4) 

The internal energy U of a detonation product 

mixture at the equilibrium, or Chapman-Jouguet, front is 

related to the energy of the unreacted explosive by the 

well-known relation for the Hugoniot, viz., 

u-u e = (p+pe) (Ve-V)/2 

= p(Ve-V)/2 - - closely 

) 
) , 
) 

•• (3.3.1) 

where the subscript ~ refers to the unreacted explosive. 

The second expression is amply justified by the relative 

triviality of Pe in the case of condensed explosives. 

This relation, of course, refers to a definite mass, which 

we shall hereafter take to be one mole of explosive, 

initially occupying the volume Ve at temperature Te. The 

energy U of the product mixture includes the chemical 

energy released. The above relation may now be expressed 

where the additional subscript ~ refers to a standard 

state p0 , T0 • If we now define the heat of reaction rr, 
the energy of the products above that at the standard 

state ~, and the initial {thermal) energy above the standard 



--
- 89 -

state of the unreacted explosive Ee by 

E = u-u 0 

the expression for the Hugoniot becomes 

••••••••• (3.3.3) 

••••••••• (3.3.4) 

The quantity Q represents the interna! energy 

change in a hypothetical transformation of explosive 

into Chapman-Jouguet (CJ) composition products at the 

standard state p0 , T0 , and may be expressed 

rn 

Q = Ln· (p,T) e, -e: 
, 1 J J e 
J= 

••••••••• (3.4.1) 

where the mixture contains ~ products of species j=l, 2, •• m, 

and e:j are the heats of reaction 

E: " - -Eo . 
J OJ 

• •••••••• (3.4.2) 

a convenient change in notation, because the product heats 

of formation E~j must be negative if heat is to be evolved 

at the detonation front. The initial thermal energy of 

the explosive Ee(Te) is not regarded as a variable in the 

later calculations. The energy E of the products relative 
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to the standard state may be expressed 

, ••••••••• (3.4.3) 

where Eth is the ideal component of the interna! energy 

of a two phase solid-gas mixture, and Er, Erc are the 

imperfection components of the interna! energy of the 

gaseous and condensed phases respectively. 

If the explosive is pure and of the CHON type, 

the only solid that can be present is carbon. If, as we 

now assume (for reasons stated earlier), the carbon, taken 

to be in the form of graphite, has zero coefficients of 

thermal expansion and barie compression, then 

Erc = 0 1 •••••.••• (3.5.1) 

and if we assign the species label j=l to carbon, the energy 

E may be expressed 

where 

and 

p 

= ~ [p3X/3p+TaX/aT] 
0 

rn 

T 

= .I nj (p 1 T) H~ (T) -ngRT 
J 

1 

) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 

......... (3.5.2) 

where nj is the number of product moles of species j, and 

where the standard temperature is now taken to be the 
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absolute zero so that H~(T) is defined by (3.2.3). Here 

ng is the total number of moles of gas defined by 

and X is the co-volume of the gas phase. 

where, 

The total volume of the products is 

V = vsolid+Vgas ) 
) 
) 
) 
) 
) 
) 

.•...•... (3 .. 5.3) 

••••.•... (3.6.1) 

and where kc is the molar volume of crystal graphite of 

value 

kc = 5.338 cc/mole •....•.•• (3.6.2) 

and nc(:n1 ) is the mole number of carbon per mole of 

unreacted explosive. When an explicit expression for the 

gas co-volume X(p,T) is available, the equation of state 

of the product mixture is completely define9 by (3.5) and 

(3.6). 

The Hugoniot relation (3.3), and that for the 

Chapman-Jouguet condition, together with the equations for 

chemical equilibrium, may be solved simultaneously to 

·-determine the independent variables PcJ, TCJ' \Afuen this has 

been achieved, the equilibrium properties at the front, the 
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çentre-of-mass velocity ~ and the detonation wave speed D 

are completely determined. Thermodynamic conditions in the 

following expansion may then be obtained using the adiabatic 

assumption dQext=O, and the Taylor wave may be determined 

by integrating the hydrodynamic equations. 

The CJ condition may be expressed 

,- -~cJ ~ dV = 
_dp_ Ad 1

-dv-lcJ -- -<ve-v>;p 
_dp_ RH 

, •••.••••• (3. 7.1) 

where RH refers to the (Rankine)-Hugoniot and Ad to the 

adiabatic curve in the V,p plane. When the pressure and 

volume have been found, the equilibrium front velocity u 

and the speed of the wave front D may be determined from 

o2 = p(V!/Me)/(Ve-V) 

u* _ u/D = 1-V/Ve 

) 
) 
) 

......... (3.7.2) 

which follow immediately from the well-known relations 

expressing the conservation of mass and momentum at the 

detonation front. Here Me is the molar mass of the 

unreacted explosive, and 

•••..•••• (3.7.3) 

where ~ is the explosive loading density. 

lt may be shown[ 3• 4 l that, when the force field is 

the same for all molecules, an assumption which applies 

approximately ~f the co-volume X is only slightly dependent 
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on the composition, the partial pressure·derivative of the 

chemical potential ~j of any species j in the mixture is 

~~j 
!P_ 

= •• ti' •••••• (3.8.0) 

T,n.(all j) 
J 

The fugacity is new common to the species, and the expression 

for it is readily obtained. 

The fugacity !, an effective pressure, is a notion 

due to Lewis[3.5]. for an ideal gas it is known that 

(3.8.1) 

is a function of temperature only. The fugacity is 

essentially that idealized pressure[ 3 - 6 l which leaves this 

function unaltered for a real gas. That is, the expression 

(3.8.2) 

is equal to the same function of temperature as (3.8.1), 

provided that we define the fugacity by 

•.••.••.• (3.8.3) 

where l.l~ is the partial potential in the ideal gas 
J 

condition, so that 

·-all_o-
_l 

_llP - T,n, (all j) 
J 

= RT/p ••..•.•.• {3.8.4) 
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Accordingly, the fugacity is given by the relation 

p 

loge(f/p) = (RT)-1 Jx(p,T)dp 
0 

.•••• (3.8.5) 

The equilibrium condition for the reaction 

LJ'm.A, = 0 
J J 

mj>O, 'reactants' 

mj<O, 'products' 
••••• (3.8.6) 

in a mixture of ideal gases may be expressed 

L J'rn .log n. + ( L .m.) log (p 0 /ng) = logeKP0 (T) 
J e J J J e 

••••• (3.8. 7) 

where K0 (T) is the (constant pressure) equilibrium constant 
p 

for the reaction, and mj are the stoichiometric coefficdents 

for the species taking part in it. Thus, for the detonation 

product mixture, the same equilibrium constant is equal to 

the above expression with f substituted for E0
• That is, 

or 

) ** 
) 
) 
) 
) 
) 

The detailed relations for the composition are treated 

(3.8.8) 

in the next chapter. We now consider the adiabatic relations. 

3.2 General Adiabatic Relations 

Nhen the CJ point on an adiabat has been found, 
** Here fis relative to one atmosphere, ioeo, fis 

dimensionlesso 
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all thermodynamic properties at every ether point may be 

determined by quadrature in finite steps of one of them. 

This is so regardless of whether the thermodynamic system 

is in motion or not, provided that the previously stated 

assumption of zero entropy production by viscosity applies. 

Here nT is assigned and the other finite steps are calculated. 

The adiabatic relations now given below are later integrated 

from the starting values PcJ' TCJ dawn to 0.3 DEGREES** for 

TNT products. They are also used in the determination of the 

CJ values. 

When, as implied by the assumption of a Taylor wave, 

the reaction zone thickness is negligible, and conditions in 

the unreacted explosive are uniform, ther: veloci ty ._of the 

detonation wave, and the equilibrium or CJ properties at the 

wave front are invariant, so that specification of the 

loading density completely establishes a particular adiabat 

in the products of a given explosive provided that- the 

initial pressure, which is here neglected, is not grossly 

in excess of atmosphe:r:·ic pressure. Deviations of the initial 

explosive tempex:·ature from 0. 3 DEG may generally be discounted. 

The present relations deal only with the equation of state 

variables on the adiabats. The instantaneous spatial 

distribution of these variables, and of the centre-of-mass 

** 
Note: 1 DEGREE = l0 3°K. 
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velocity in one-dimensional adiabatic motion, here called a 

Taylor wave, is treated in chapter So 

It is assumed that chemical and thermal equilibrium 

applies in the initial stages of expansiono This is consistent 

with the notion of infinite reaction rate at the equilibrium 

front demanded by a Taylor waveo When this assumption is 

applied, the calculated composition eventually changes sc 

slowly that the assumption of chemical equilibrium becomes 

increasingly questionableo Jones and Miller[3.4] suggested 

that since the calculated mole number of solid carbon 

eventually passes through a minimum, this point appeared 

to be a reasonable lower limit for the equilibrium assumption 

because in this vicinity the reaction rates must be slowo 

In the present computations for TNT, the onset of frozen 

equilibrium was arbitrarily assumed at a temperature of 1450°Ko 

This temperature was chosen as the end of reactions purely tc 

be sufficiently below the temperature at the carbon minimum 

as tc allow its study and yet tc be not sc low that the 

composition would be seriously different from that at the 

minimumo 

The adiabatic condition 

eocoooe 

allows us tc express the total derivative dp/dT in terms 
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of (p,T) along the adiabat. 

For conciseness, we define the following 

hl - a(E-Q)/ap fl 

h2 - ô(E-Q)/ôT f2 

where 

- pôV/ôp 

- pâV/ClT 

) 
} 
) 
) 

. . . . . . . . . 

) 
) 

(3.9.2) 

rn 

= d( L nj[H~(T}-~J·l)+d(n [Er-RT]) 

) .•..... (3.9.3) 
) 

and d(E-Q) 
j=l J g 

) 

The adiabatic relation (3.9.1) now becomes 

where the expressions for these terms are evident from 

their definitions. They are 

rn 

h 1=_L (H~(T)-Ej)anj/ap+(Er-RT)ang/ap+ngaEr/ap 
J=l J 

f 1=pk
0

an
0

/&p+(RT+pX)8ng/ap+ng(-RT/p+pax;ap) 

so that using (3.5.2), 

, ....... . 

h 1+f1 = pk0 an 0 /ap+(pX+Er)ang;ap-ng(RT/p+TaX/aT) 

rn 

(3.9.4) 

(3.10.1) 

(3.10.2) 

+ L (H~(T)-E.)ôn.jap 
j=l J J J 

, .... (3.10.3) 
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m m 

h 2 = L (H~(T)-e.)an./aT+ L një0
• (T)+(Ë -RT}an /aT 

j=l J J J j=l PJ r g 

+n
9

(aEr/aT-R) •••••• (3.10.4) 

(3.10.5) 

so that 

h 2+f2 = pkcanc/aT+(pX+Er}an
9

;aT+n
9

(aEr/aT+pax;aT) 

m m 

+ L njC 0
• (T)+ L (H~(T)-eJ·)ânJ.jaT .•. (3.10.6) 

j=l PJ j=l a 

The species mole numbers nj and their partial derivatives 

are obtained from the relations expressing the equilibrium 

chemical composition described in the next chapter. 

The expressions used here to describe the pure 

-# -species ideal gas condition functions H. (T), C0
, (T) (and 

J PJ 
Sj (T)) are: 

6 

ë 0 .(T)/R = La. Tk- 3 
PJ k=l Jk 

••.•.•.• (3.11.1) 

so that the thermodynamically consistent expressions for 

If# and sc are, 

T 7 
H;(T)/R=H;(0.3)/R+~(Cpj/R)dT=bjlloge:+ L bjkTk-

3 

0.3 k=2 

and 
T 7 - :l- \ k-4 SJ~(T)/R:S~(0.3)/R+, (CPJ·/RT)dT=qj11ogeT+ L qJ.kT 

J .3 k=2 

(3.11.2) 

(3.11.3) 
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The primary coefficients ajk were obtained by least squares 

fits ta the (1961) JANAF[3.7] tabulated data for ëp• The 

secondary coefficients bjk and qjk were found from the ajk 

and from the tabulated values of H~ and 8j at 0.3 DEG by 

suitably choosing the coefficients bj 3 and qj 4 . The 

coefficients ajk, bjk' and qjk are given below for the main 

product species of oxygen-negative explosives. While the 

coefficients qjk for the (ideal condition) entropies were 

derived as a matter of general interest, the entropy of 

the product mixture was not calculated in the detailed 

computations because it does not appear explicitly in the 

relations necessary ta describe the Taylor wave. 

It may be noted that terms in T- 2 are required in 

arder ta fit ë~ near Q.3 DEG, which is not far above the 

rotational temperatures. For temperatures above 0.8 DEG, 

a power series without inverse T terms is adequate. Fickett 

~ and Cowan[J.S] used such a form, but their fits are poor below 

0.5 DEG. The expression (3.11.1), with the coefficients 

given below, describes the JANAF ëo values for the species 
p 

concerned over the fitted range 0.3-3.9 DEG ta an approximation 

generally small compared ta the reliability (~1%) of the data 

fitted. The tabulated data are g±ven at 0.1 DEG intervals: 

the maximum departure of fits from the JANAF values are also 

given in the tableo 



• 
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Table 3.1 

Constants(A) for the Calculation of Pure Species Properties in 
the Ideal State 

Part 1: Fitted Constants for Cpj in (3.11.1) Max Rel Dev'n 610 

. B 
a .. T<l. 2 T>1.2 

JJ -
J 

k=1 k=2 k=3 k=4 k=5 k=6 (Ta J (T ) 0 

+ (-6) - (-5) + (-5) - (-6) + (-6) - ( -7) 

1 o.5! 1 186349 163126 459734 696707 151776 111995 52 9 1.3 
+ ( -7) - (-6) + (-5) + (-6) - (-6) + (-7) 

1 0.4
1
23 2 910299 447289 377445 801214 260733 289263 66 1.3 

+ ( -6) - ( -5) + (-5) + (-6) - (-6) + ( -7) 
3 189515 162840 769303 424442 170442 211447 40 0.4 14 1.3 

+ ( -6) - (-5) + (-5) + (-5) - ( -5) + (-6) 
4 496476 295807 718931 539754 166388 174408 140 0.4 37 1.3 

- (-6) + (-6) + (-5) + (-5) - (-6) + ( -7) 
5 126479 853108 155395 168409 361000 309246 60 0.5 35 1.3 

+ ( -7) - (-6) + ( -5) + (-5) - (-6) + ( -7) 
6 607703 230364 330173 110492 343807 370788 64 0.4 24 3.9 

- (-7) + (-6) + (-5) + (-5) - (-6) + ( -7) 
7 697706 668493 158224 361476 915786 850045 17 0.9 16 3.9 

Part 2: Derived Constants for H~ in 
J Constants jk 

k=1 k=2 k=3 k=4 k=5 k=6 k=7 
-5 -6 -5 + -5 -6 + -7 -8 

1 163126 186349 256420 459734 348354 505919 279988 
- ( -6) - ( -7) - ( -6) + (-5) + (-6) - ( -7) + ( -8) 

2 447289 910299 351457 377445 400607 869110 723156 
- (-5) - ( -6) - ( -5) + (-5) + (-6) - ( -7) + ( -8) 

3 162840 189515 252008 769303 212221 568140 528616 
- (-5) - (-6) - ( -5) + (-5) + ( -5) - (-6) + (-7} 

4 295807 496476 307779 718931 269877 554626 436021 
+ ( -6) + (-6) + (-5) + (-5) + (-6) - (-6) + ( -8) 

5 853108 126479 109182 155395 842044 120333 773116 
- ( -6} - ( -7} - ( -7) + (-5) + (-6} - (-6) + ( 8) 

6 230364 607703 627737 330173 552460 114602 926970 
+ ( -6) + ( -7) + ( -5) + (-5) + (-5) - (-6) + (-7) 

7 668493 697706 114170 158224 180738 305262 212511 

Note 
---rA> For temperature 1n DEGREES~ 

The number in the bracket is the power of 10 by which 
the rele~ant integer must be mu1tip1ied. 

B Species j 1 2 3 4 5 6 7 
C(s) CO co2 CH4 H2 N2 H2o 

4 
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Table 3.1 (continued) 

Part 3: Derived Constants for s~ 
J 

in (3.1L3) 

j Constants qjk 

k-1 ~=2 ~-~ ~-~ ~-~ ~-6 k-7 
+ (-5) -7} + - ) + - ) - - ) + -7) - (-8) 

1 459734 931746 163126 202552 696707 758879 373317 
+ (-5) - (-7) + ( -6) + (-4) + (-6) - (-6) + ( -8) 

2 377445 455150 447289 271113 801214 130366 964208 
+ ( -5) - ( -7) + (-5) + ( -4) + (-6) - (-7) + (-8) 

3 769303 947575 162840 304958 424442 852210 704822 
+ ( -5) - ( -6) + (-5) + {-4) + (-5) - (-6) + (-7} 

4 718931 248238 295807 223777 539754 831939 581361 
+ ( -5) + ( -7) - (-6) + ( -4) + ( ) - (-6) + (-7) 

5 155395 632394 853108 192491 168409 180500 103082 
+ ( -5) - ( -7) + (-6) + (-4) + (-5) - (-6) + (-7) 

6 330173 303851 230364 262830 110492 171903 123596 
+ (-5} + ( -7) - (-6) + {-4) + ( -5) - (-6) + ( -7) 

7 158224 348853 668493 254249 361476 457893 283348 

The relations (3.9), (3.10) and (3.11), together with 

the expressions for the mole numbers and their partial 

derivatives are a11 that is necessary to describe al1 adiabatic 

properties once the CJ values have been determined for each 

loading density (8) selected for examination. All other 

functions of interest may then readily be determined from 

relations in terms of p, T, f1, f 2 , h 1 and h 2 • In particular, 

expressions for the adiabat1c exponent yAd' the (chemical 

equilibrium) speed of sound ~, and the related der'ivative 

(dV/dp)Ad are immediately ev1dent" They are: 
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(dV/dp)Ad - (dV/dT)/(dp/dT) = (f 2+p'f1 )/pp' 

where p' is (dp/dT)Ad' and p is the mass-density of the 

product mixture. The CJ condition (3.4.1) may now be 

expressed 

) 
) 
) 
) (3.12) 
} 
) 
) 

' .....• (3.13) 

and the CJ pressure and temperature are found by simultaneously 

solving this relation and (3.3), (3.5.2), (3.6), {3.9) 1 (3.10) 1 

(3.11) and the composition equations and their derivatives 

subject to (3.8.5) and (3.8.8). 

The method of regula falsi may be applied to an 

iterative solution of these equations to find the properties 

at the equilibrium front in the following way. A pair of 

values Pa' Ta are assumed and the pressure is adjusted at 

constant T until 

z = 0 ............. (3.14.1) 

changes sign. The values of p,V before and after the sign 

change are classed as A or B type depending on whether z is 

less than or greater than 0 and the sign of 6p until this 

stage is reached is set equal to that of the first z. When 

the sign change in z has occurred, the next value of p 
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chosen is 

0 0 0 0 0. 0 0 (3.14o2) 

This is very close to the correct value and is classified 

in turn as A, orB type depending on whether z(p,Ta) is 

negative or positive. The iteration is continued until 

j z/Ve 1 ~ 6 RH 
(3ol4.3) 

where ôRH is a defined relative error, here chosen as 10-
4

. 

The point thus found is on the Hugoniot but is 

not the CJ point unless y=O, where 

The temperature is now changed, and the Hugoniot pressure is 

again found as described above until y changes signo Again, 

if A, B represent classes for which y<O, y>O respectively, 

then the CJ point is close to that at which 

p = pA+(pB-pA). IYAI!<IYAI+IYBI> 

T = TA+(TB-TA)• IYAI!<IYAI+IYBI> 
0 0. 0 0 00 0 (3ol4.5) 

These values are classed A or B depending on the sign of 

y subsequently calculated, and the iteration is continued 

un til 
0 00.0 00 0 (3.14o6) 

where ôslope is a defined relative error, here chosen as 

2"10- 4 • 
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The (computer) time required for such computations 

is reduced considerably by the use of approximate forms in 

the initial stages such as those described in chapter 6. 

Estimates of start values Pa' Ta may be found in a number of 

ways. When the explosive is one for which observations Doo 

and dDoo/dT are available, then start values Pa' (vl)a' Ya 

are available using the H.Jone?[ 3 · 91 relations given in 

chapter 2, and hence a start value Ta may readily be found 

using the equation of state. However, it is possible that 

the explosive considered is a new one. In this case the 

start values may be taken to be those of the most chemically 

similar explosive. 

3.3 Special Relations 

Here, the special relations for Z, X, Er, f and 

their derivatives for the hard molecule gas equation of state, 

for the truncated virial equation of state with temperature-

dependent coefficients, and for the Jones and Miller formula 

are summarized for ready reference. The relations follow 

from the definitions given in chapter 2. 

For the hard molecule equation of state 

0 00 0 0 0 0 0 (3.15.1) 
aX/ap ~ (bg/p)ydF/dy = (bg/RT) (dF/dy) 
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- (bg/T) [H*•F+(l+H*)ydF/dyJ 

where 
H* = 0 o 37S[F* (l+F*)] -l T* 

3 

) 
) 
) 
) 
) 
) 
) 

•.•••.•• (3.15.la) 

ydF/dy = L (k/3)A yk/3 
k=l k 

aËr/ap = (l+dlogF/dlogy)XH* 

aEr/âT = [1-(H*/F*) (2+5F*)-(l+H*) (dlogF/dlogy)] (p/T)H*X 

Y. 3 

1 \ -1 k/3 
loge(f/p) = F{y)dy =y· {1+ L 3(3+k) Aky ) 

0 k=l 
) 
) 
) 

) 
) 
) ( 3. 15. 2) 
) 
) 

alogf/ap 

alogf/aT 

= (l+pX/RT) /p ) ••. (3.15.3) 
) 

= -(l+H*)yF/T = - (l+H*) (Z-1) /T ) 

For the truncated virial equation of state with 

temperature-dependent coefficients, the virial expression 

for the compressibility factor of the gas phase is 

where B, ë are respectively the second and third virial 

coefficients when p/RT is represented as a power series 
00 

p/RT = (V) -l+B(T) (V) - 2+ë(T) {V) - 3 + L Dn (T) (V) -n 
n=4 

(3.16.1) 

(3.16.la) 

For reasons given earlier, this equation is only applied when 

the composition becomes fixed. ~hen the intermolecular 

potentials are described by the Lennard-Jones (6-12) pair 

potential formula for the non-polar gas species, and by the 

Stockmayer (6-12) pair potential for polar molecules, 
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approximate expressions for these coefficients are 

m 
B(T) ~ ng-l L n.b

0
. [B*(T~J)-P~(T~,t~)] 

j=2 J J J J . J 
•••••••• (3.16.2) 

and C (T) •••••••• (3.16.3) 

where Pj is the correction term required when the species 

is a polar gas, and C is the third virial coefficient for 

a pure non-polar gas having species averaged LJ(6-12) pair 

potential constants. For reasons given earlier, the 

LJ(6-12) pair potential constants used in C(T) are not 

necessarily the same as those used for the calculation of B, 

and in addition, in c the pair potential constants for polar 

molecules are those for sphericalized potentials. 

Using the well known expression for B~ when the 
J 

LJ potential is used, viz., 

•••...•• (3.16.4) 

and using the fitted expression to the third virial 

computations of de Boer and Michels, 

3 
C* = L h* T*(l-k) 

k=l k 
•••••••• (3.16.5) 

and the functions fitted to the Rowlinson calculations of 

the correction term P* for water (j=7), - - and for any other 

polar molecules that may be taken into consideration such as 

NH 3 - - 4 
P~ = Lw~ (T*)-k 

J k=l Jk 
p~ 7= 0 

J< 
••••• (3.16.6) 
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According1y, one may readi1y obtain the fo11owing expressions 

) 
) 

x = B (T) + (p/RT) [ë (T) -B2] 

pâX/âp = X-B 

TâX/aT = TB'+(p/RT) [(TC'-2BTB')-(c-B2)l 

) .....•• (3.16.7) 
) 

where 

and 

where 

where 

) 

) ' means d ( )/d'!!. From these expressions, 

pâX/âp+TâX/aT = TB'+(p/RT) (TC'-2BTB') 

E = -p[TB'+(p/RT) (Të'/2-BTB')] 
r 

P* 
j1 

rn 

"' n - 1 L n ·b · e. (B* -P* ) 
g j=2 J OJ J j1 j1 

-2 ~· - 2 "'ng L nJ.b0j€l.(B~ 2-P~) j=2 J J ]2 
00 

- T~dB~/dT~ = (1/4) L (1-2k)g*T*< 1- 2k)/4 
J J J k=1 k 

= (1/16) L (1-2k) 2g*T*(1-2k)/4 
k=l k 

4 

= L (-k)w~ (T~)-k 
k=1 Jk J 

4 

_ T~ 2d2PtJ/dT~ 2 = L k2w* (T~)-k 
J J k=1 Jk J 

All the relations required for the calculation of the 

(3.16.B) 

) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) (3.16.9) 
) 
) 
) 
) 
) 
) 
) 
) 

adiabatic properties are now determined for this equation 

of state. 
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For the modified Jones and Miller form of X, 

5 
x = X(p) = L dkpk-l 

k=l 
5 

••..•... (3.17.0) 

ax;aT = o = 2: <k-1) d pk-l 
k=2 k 

..•. (3.17.1) 

and therefore 

5 

E = - L (k-l)k-ldkpk 
r k=2 

.....•.. (3.17.2) 

Since these forms are applied both when the composition is 

fixed and when it is variable, expressions are also required 

for the fugacity and its derivatives. It is evident that 

5 ) 
(RT)-l L k-ldkp k 

loge(f/p) = ) 
k=l ) 

) 
) 

alogf/ap = [l+{p/RT)X]/p = Z/p = Vg/RT ) ..... (3.17.3) 
) 

5 ) 

-R(RT) - 2 L k-ld pk 
) 

alogf/ôT = ) 
k=l k 



( 3 .1) 

( 3. 2) 

( 3. 3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

( 3. B} 

( 3. 9) 

- 109 -

Chapter 3 References 

TAYLOR, H.S., and GLASSTONE, S., ~ Treatise on Physical 
Chemistry, Volume Two, States of l\1atter, D. Van 
Nostrand Co., Inc., Toronto (1951) 

BEATTIE, J.A., Phys. Rev., ~' 132 (1930) 

GILLESPIE, L.J., J. Am. Chem. Soc., !l' 305 (1925) 

JONES, H. and MILLER, A.R., Proc. Roy. Soc. Al94, 
4B0-507 (194B} 

LEWIS, B., Proc. Amer. Acad., 36, 145 (1900}; 37, 
49 {1901} 

PARTINGTON, J.R., An Advanced Treatise on Physical 
Chemistry, Volume One, Longmans, Green and Co., 
Toronto, ( 194 9) 

JANAF Thermochemical Data, The Dow Chemical Co., 
Thermal Lab., Midland, Michigan (1961) 

FICKETT, W., and COWAN, R.D., Los Alamos Sc. Lab. 
Report LA-1727, (1954) 

JONES, H., Third Symposium on Combustion and Flame 
and Explosion Phenomena, p.590 Williams and 
Wilkins Co, Baltimore (1949) 



- llO -

CHAPTER 4 

EQUILIBRIUM COMPOSITION 

The reaction expressing the chernical transformation 

of a pure CHON explosive into detonation products may be 

represented 

Crn(C) Hrn(H) Orn(O) Nrn(N) L n.A. 
. J J 
J 

( 4 .1) 

where Aj are the detonation products, nj are the nurnber of 

moles of species Aj per mole of unreacted explosive, and 

rn( ) are srnall nurnbers descriptive of the explosive concerned. 

In order to examine the influence of the equation of state 

on the calculated therrnodynarnic properties of the product 

mixture, it is most desirable to elirninate all rare product 

species from consideration and to consider the sarne set of 

possible products for each equation of state. The product 

mixture resulting from the detonation reaction in strongly 

oxygen-negative CHON explosives is assurned to contain only 

the following 7 species: 

j 1 2 3 4 5 6 7 
•••••••• (4.2) 

All other products are assurned to be present only in negligible 

proportions. For convenience in notation and in rnathernatical 

treatrnent, the species will hereafter be described by the 

subscripts assigned. All but the first of these products 
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are gaseous. That is, 

7 

= L n· J .... •••. (4o2a) 
j=2 

is the total number of moles of gas present in the product 

mixture. 

It is apparent from (4.2) that only seven relations 

are required to determine the composition. Four elementary 

relations, including the trivial one for n6 , are provided 

by atom balance requirements for C, H, 0 and N. That is, 

C) : nl+n2+n3+n4 = m (C} (= 7 for TNT) (4.3.1) 

H) : 2n4+n5+n7 = m(H)/2 a (= 2.5 " " ) (4.3.2) -

0) : n 2+2n 3+n7 = m(O) y (= 6 Il Il ) (4.3.3) -

N) : n6 = constant = m{N)/2 (= 1.5 " " ) (4.3.4) 

Any three of the four following reactions are 

independent, and these three, together with the atom 

conservation relations (4.3), determine the equilibrium 

composition complete1y for a given pressure and temperature. 

Reaction 1 . H2+C02 +--4- CO+H 20(g) (4.4.1) . < • • • • • • 

" 2 CH 4 
+,_.., C(s)+2H2 (4.4.2) (p •• "' ••• 

lt 3 co2 +-+ CO+l/2 02 (4.4.3) ~ () ..... 
" 4 co +--+ C(s)+l/2 02 (4.4o4) ....... 

Thus, at equilibrium, 



Kip(T) 

K2p(T) 

Kjp(T)/K4p(T) 

= 

= 
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n2n7/n5n3 

Cn 5
2/n4) (f/ng) 

2 (n2 /n 3) (f/ng) 

(4.5.1) 

(4.5.2) 

(4.5.3) 

where Kip(T) is the (constant pressure) equilibrium constant 

for the ith reaction in the ideal gas condition and f is 

the (common) fugacity. It is useful to define an additional 

equilibrium constant for another (dependent) reaction, viz., 

Reaction 5 +-+ 

= 0 oo 0 0 0 o {4.5o4) 

lifuen the fugaci ty is common to all species i ts 

value is given by 

log (f/p) 
e = (RT)-l 

p I X(p,T)dp 

0 

••••••••• (4.6) 
T=const. 

For the two equations of state with which we are concerned 

5 

JM: x X(p) L dkp 
k-1 ( 4. 7) = = ......... 

k=l 

HM: ( x = X(p,T) = bg(T)F(y) 
( 
( where y ~ pbg(T)/RT 
{ . . . . . . . . . ( 4. 8) 
( 3 
{ 

1+ [A yk/3 { and F(y) = 
k=l k 



so that, 

and, 

{ 
( 
( 

JM { 
( 
( 

( 
( 

loge{f/p) == 

{alogef/ap)T = 

(alogef/aT)P = 

y. 

(loge(f/p) = 
( 
( 
( 

JF(y)dy 

0 
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5 

(RT)-l I k- 1d pk 
k=l k 

. . . . . (4.7.1) 

( l+Xp/RT) /p = Z/p • • • • e (4.7.2) 

-R{RT)-2X == -(Z-1)/pT (4.7.3) 

3 

== y [.1+ ~ 3 ( 3+k) -lAkyk/3] 
k=l 

.• (4.8.1) 

HM ((alogef/êp)T = (l+Xp/RT)/p = Z/p 
( 

(4.8.2) 

((alogef/êT)
0 

= -(y/T)F(y) (l+H*) = -(Z-1) (l+H*)/T (4.8.3) 
( -
(where H* = l.ST*/4 and F* ==[l+l.ST*]l(~ •..• (4.8.3a) 
( F*(l+F*) 

where all symbols have been defined earlier. The relations 

for the partial derivatives are given here because they will 

be needed presently. 

Since the relations between the mole numbers nj are 

non-linear, a solution must be found by an iterative method. 

The general procedure in common practice is to express the 

nj in terms of one of them (nk=w) and to determine w by 

successive adjustments until the correct values are found, at 

which point the ether nj are determined by the dependent 

relations nj=nj(w). 

An oxygen-balanced CHON explosive may be defined 

as one the detonation products of which are entirely carbon 
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dioxide and water vapour. Accordingly, in a generally 

applicable treatment of the equilibrium composition of 

the products of all condensed CHON explosives it appears 

advisable to select the mole number of one of these as 

the primary unknown w. We choose water vapour. 

(w - nH20(g) - n7 a1 (T) - 4K5-l ) 
( ) 

Let ( ) . . . . . ( 4. 9) 
(a2 (T) - 1-2/Kl ; a 3 (T) - l-2K1K2 ) 
( ) 

Then, from (4.5), 

........ (4.10.1) n2 - nco = [alw2+(8+y}w-Sy]/(a2w-S) 

. . . . . . . . (4.10.2} n5 - nH2 = [a1w2+(S+y)w-Sy]/(a3w-y) 

. . . . . . . . (4.10.3) n3 - nco2 = (y-n2-w)/2 

........ (4.10.4) n4 - ncH4 = (e-n5-w)/2 

. . . . . . . . (4.10.5) n6 - nH2 = m(N)/2 = const. 

7 

ng - Ln. = n6+(S+y)/2+(n 2+n 5 )/2 
j=2 J 

(4.10.6) 

nl - nc(s) = m{C)-(B+y)/2+w+(n5-n2)/2 ...•.... (4.10.7) 

where w is the solution to 

The well-known method of regula falsi may be 

applied to the solution of (4.10). It is apparent that 

the absolute upper limit to w is s. Thus, in order to 



• 
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find a first pair of start values, it is merely necessary 

to start with the value for w and to decrease this by 

a definite amount until the function 

•.••• (4.10.9) 

changes sign. If gA, gB are the values just before and 

after sign change, then 

(4.10.10) 

is very close to the value for which g(w)=O. The new g(w) 

is defined to be gA if g(w)<O, and to be gB if g(w)>O and 

the iteration is continued until lg(w) l~ow where ow is a 

relative accuracy which has been decided on. In the 

application to TNT ôw was set at 10-4 . The same procedure 

is, of course, applicable in the computation of the 

composition in the adiabatic expansion except that here, 

in proceeding from the kth to the (k+l)th pair of (p,T), 

provides more economy in computation. 

When the composition has been found, the partial 

derivatives (anj/aT)P, (anj/ap)T may be readily determined. 

The partial derivatives of three of the species n7 , n3 , n4 

are first calculated. The derivatives of the remaining 

three variable species and of the gas mixture are then found 

from the eight secondary relations 
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( an2;ay) z = -[(an7;ay)z+2(an3/ay)z] ) 
) 

= ) (ans/a y) z -[(an7;ay)z+2(an4;ay)z] 
) ••••• (4.11) 

(an1;ay) z = -[(an2;ay)z+(an3/ay)z+(an4;ay)zl ) 
) 

( an9 ;ay) z = -[(an7;ay)z+(an3/ay)z+(an4;ay)z] ) 

where Z=T or p when y=p or T. The primary derivatives 

(i.e., of n 7 , n 3 , n4) are readily found using the six 

relations 

(an7;ay) z 

( an3;ay) z 

( an 4;ay) z 

= 

( aB1;ay) z 

(aB2/ay) z 

(aB 3;ay) z 

........... (4.12) 

l_ 

where A- 1 is the inverse matrix of 

(n2n 5;n7)+n2-n1 , -n5 [2+(n2;n3}] , 2n2 

[A] = n4 [ (ns/ng) -2] , n4 (n5!ng) , (n4n 5/ng) -n5-4n4 (4.12a) 

, 1 

and ( aB1/ap) T = 0 ) 
) 

(aB2/ap)T = -n4n5 ~a1ogef/ïlp ) 
) 

( aB 3/ap) T = 0 ) 
) ••••••• (4.12b) 

(3Bl/3T)p = n2n5 ·dlogeKs/dT ) 
} 

(aB2/aT)p = n4n5 [dlogeK2/dT-alogef/aT] ) 
) 

( aB 3/aT) p = n4 ·dlogeKs/dT ) 
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It may be noted that the form of [A] has been 

chosen so as to be quite generally applicable with precision 

to oxygen-negative CHON explosives because the only inverse 

species terms n3-l, n7-l appearing in the matrix elements 

are for those which are always present in considerable 

quantities in the products of such explosives. 

Expressions representing the ideal gas equilibrium 

constants Kfp(T) were obtained in the following manner. The 

JANAF data for the species equilibrium constants Kpj(T) were 

combined in accordance with the various reactions i=l, 2, .. 

•• , and the resulting combinations were fitted by functions 

thermodynamically consistent with those which were chosen to 

represent the ideal gas species specifie heats at constant 

pressure. 

Fits were made for each reaction rather than for 

each species so as to obtain the greatest possible accuracy. 

Bearing in mind the fact that reactions above 1.0 DEG* are 

of most importance, thermodynamically consistent representations 

of the equilibrium constants are: 

•••••• (4.13.1) 

where •••.•• (4.13.2) 

Note 1 DEG - 1000°K 
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and where mij are the coefficients in the reaction equations 

when these are expressed in the form 

8 

Lm .. A. = 0 
j=l 1) J 

ffi• • >0 
1) 

m .. <0 
1) 

'products' ) 
) • 0 (4.13.3) 

'reactions' ) 

Here E0
• are the species molar energies of formation at 

OJ 

absolute zero temperature, and j=8 refers to o2 . The 

constants are found by fitting 

.••.•.••. (4.13.4) 

to functions Yi derived from the JANAF tables. These 

are defined by 

Yi(T) = 

8 

(L'lE~) i/RT+ L mij logeKpj (T) . . • • • • . ( 4.13. 4a) 
J=l 

The scheme which was used is set out in the following table. 



• 
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Table 4.1 
j 1 2 3 4 5 6 7 8 

A· J 
C (s) co co2 CH4 H2 N2 H20(g) 02 

-Ë 0
• {kcal) 

OJ 
0 27.2 93.965 15.991 0 0 57.103 0 

logeKpj 0 JANAF JANAF JANAF 0 0 JANAF 0 

Reaction 1 mlj 0 1 -1 0 -1 0 1 0 

2 m2j 1 0 0 -1 2 0 0 0 

3 m3j 0 1 -1 0 0 0 0 1/2 

4 m4j 1 -1 0 0 0 0 0 1/2 

5 msj -2 0 1 1 0 0 -2 0 

The values thus obtained for the coefficients 

Gik are given in the following table. These constants 

refer to temperature expressed in the large DEGREE and to 

the natural logarithm. The reaction energies (8E~)i, 

referred to the absolute zero of temperature, are also given. 

The precision with which the expression (4.13.1) provides 

the equilibrium constants Ki, using the constants below, 

is comparable to that obtained for the representation of 

ëpj(T) given earlier • 
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Fitted Constants for the Calcu1ation of the Equilibrium Constants 

• (àEo)i Gik J. 

kcal/mole k=l k=2 k=3 k=4 k=5 

1 9,662 -0,302177 + 5.02601 -0.634430 +0.116390 -0.00898004 

2 15,991 +4.95325 +12c8451 -2.77100 +0.318756 -0.0176849 

3 66e765 +L 31287 +11. 1607 -1.25739 +0.173080 -0.0113621 

4 27o20 -1.12219 -11.4991 +1.26202 -0.174263 +0.0120058 

5 4.25 -1.91254 .. 0.236031 +1.51859 -0.203934 +0.0122437 
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Chapter 5 

COMPUTATION OF THE TAYLOR NAVE 

The equation of motion for one-dimensional, 

spherically symmetric, non-viscous flow and the equation of 

continuity are 

) .••..••• (5.1) 
ap/at+uap/âr+p (aujar+2u/r) = o 

where r is the radial position of a spherically symmetric 

element of fluid, u is its (entirely) radial velocity, p is 

its mass density, and t is time. In the equation of motion, 

ôp has been replaced by a 2ôp, where a is the speed of sound 

defined earlier. 

Assuming initiation at r=O t=O to the constant 

detonation speed D which thereafter leaves the products at 

rest at this point, the motion is self-similar. In this case 

all the quantities behind the front are functions only of 

r/t. Accordingly, the partial differentiai equations (5.1} 

can be reduced ta ordinary differentiai equations. This was 

first shawn by G.I. Taylor[5.1] in his application ta the 

tabulated adiabatic properties calculated by Jones and 

Miller[ 5 - 21**· The reduced equations are 

**Although Taylor gave Jones and Miller as his reference, it 
appears that, in fact, he obtained his values from an 
earlier wartime report of H. Jones (see Cole[5.3], p.97). 
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dlogu = 2a2 ) 

dlogx (u-x) 2-a2 ) 
) 
) •••••••• (5.2) 

dloga2 2u(x-u) f* 
) 

= ) 
dlogx (u-x) 2-a2 ) 

where x - r/t 

and f* _ dloga2/dlogp 

a form similar to that originally derived. 

It follows from (5.2) that 

= {x-u)f* •.••••.• (5.2a) 

These equations are not in a form suited to the 

present calculations where the quadrature is best effected 

with temperature chosen as the prime variable. Using the 

first of (5.2) and replacing f* in (5.2a) by its defining 

terms 

dlogu = a2 ) 
dlogp (x-u) u ) 

) 

(u-x) 2-a2 
) . . . . . . . . 

dlogx = ) 
dlogp 2u (x-u) ) 

It is convenient to use the dimensionless quantities 

u* = u/D 1 a* = a/D , r*=x/D=r/r CJ 

where D is the constant speed of the wave front, and to 

eliminate dlogp using 

( 5. 3) 

(5.4) 

dlogp = -dlogV = v-l(dV/dT)Ad•dT .•..•••• (5.5) 
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The differentia! equations (5.3) may now be expressed 

u* 1 = -(V' /V) (a*) 21 (r*-u*) 
•.•... (5.6) 

r* 1 = (V' /V) (r*/2u*) [(a*) 2- (r*-u*) 211 (r*-u*) 

where ( ) 1 means (d( )/dT) Ad" Now from (3.12), 

V'/V = (f2+p 1 f 1 )/pV ) 
) 

(a*)2 -(V2/K)pp'/(f2+p 1 fl) 
) 

= ) 
) 

where K - M o2 ) e 

•..••••• (5.7) 

so th at 

u*' = (V/K) p' 1 (r*-u*) ) 

r* '=- [r* /2u* (r*-u*)] [(V /K} p' + (r*-u*) 2 (f2+p' f1) /pV] 
). (5.8) 
) 

The relations (5.8) may be integrated numerically 

down the adiabats starting at the equilibrium front where the 

conditions are 

•••••••• (5.9) 

At the CJ position r*'=O, as may be noted most readily from 

(5.6). This will occasion no difficulty unless a first order 

relation is used to determine the finite steps ~u*, ~r*. 

Let Y represent any of the variables p, u*, or r*. 

If ~T is a small assigned temperature increment, the value of 

Y after N auch steps have been made is 

N 

Y = YcJ+ L ~Yn 
n=l 

•••••••• (5.10) 
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where ~Yn is the nth increment arising from the nth temperature 

step ~Tn· The Runge-Kutta relation between ~Yn and ~Tn which 

is correct to the 4th order is 

~Yn = (c/3) [Yi+2Y2+2Yj+Y4] 

where c = ~Tn/2 
and if Y' = Y' (T,p,q,s) 

th en Y' 1 - Y' (T,p,q,s) 

Y' -

) 
) 
) 

....•.••• (5.11.1) 

{5.11.2) 

(5.11.3) 

2 Y' (T+c,p+cpi,q+cqi,s+csi> 
) ...•.•.• (5.11.4) 

Y' 3 -

Y' 4 -

so that 

Y' (T+c, p+cp2, q+cq2, s+cs2) 

Y' (T+2c,p+2cp),q+2cqj,s+2csj) 

~P = (c/3) [pi+2p2+2pj+p41 

l:.u* = (c/3) [u*i+2u*2+2u*j+u*4l 

~r* = (c/3) [r*i+2r*2+2r*j+r*4] 

) 
) 
) 

•••••••• (5.12.1} 

Pi = p' (T,p) where ) 

u* 1 = u*(T,p,u*,r*) 

r* = r*(T,p,u*,r*) 
1 

- - -

P4 = p' (T+2c,p+2cpj) 

u*' 4 = u*(T+2c,p+2cpj,u*+2cu*j,r*+2cr*j) 

r*' = 4 r*(T+2c,p+2cpj,u*+2cu*3,r*+2cr*j) 

) 
) 
) 
) 
) 
) 
) •••• (5.12.2) 

In the application to TNT, the complete calculations 

described in chapters 3 and 4 were carried out for each 
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Runge-Kutta substage, and ~T was assigned the value -0.025 DEG 

until the value of u* became sufficiently small that it could 

be regarded as O. Here, the Taylor wave calculations are 

complete because the conditions at smaller radii are the same 

as those at this point. The calculations continued to lower 

temperatures on the adiabats were made with ~T=-0.050 DEG as 

the assigned step. Checks were made to ensure that smaller 

steps gave no significant change in the numerically integrated 

values. 



(5. 1) 

( 5. 2) 

(5. 3) 
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CHAPTER 6 

HIGH PRESSURE APPROXIMATIONS 

6.1 High Pressure Composition 

It was pointed out by Jones and Miller[G.l] that 

the chemical equilibrium relations show clearly that high 

fugacities (and hence high pressures) tend to suppress the 

formation of carbon monoxide and hydrogen. This conclusion 

is obviously not limited to TNT products nor to any 

particular equation of state. The very large values of the 

fugacity for pressures greater than about 150 kbar indicates 

that the approximation 

••••••••• (6.1) 

is fairly accurate at the head of the wave when the explosive 

loading density is high. Under these conditions it follows 

th at 

n · = n · (T) J J 
. 
1 ng = constant . . . . . . . . . 

It will be shown that, for TNT at ~ > 1.5 g cc-l, this 

approximation leads to errors of less than 1% in ng and 

similarly small consistent errors in the thermodynamic 

properties on the Hugoniot. 

The rapidity with which the fugacity rises with 

pressure is evident from the exponential nature of its 

(6.la) 

pressure dependance (see 2.6). The following values for the 

JM equation of state emphasize this point. 
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Table Golo Fu~acity for T = 3.0 DEG 

1:ressure <i:> f/p 

kbar kcal cc·1 

10 ol 0.,24 2.75 

50.5 lo2 1.01•102 

101 2o4 4.45o1o3 

155 3.7 1o33•lo5 

188 4o5 8.,9•105 

210 5.0 2.68•106 

The calculated equilibrium temperature at the 

head of the wave changes s1owly with increasing loading 

density for both the equations of state considered hereo 

This changes the fugacity loading-density dependence only 

sliqhtly, and it is evident that for equilibrium pressures 

aorresponding to high loading densities (the last 3 rows 

in the table above) 1 the Jones and Miller approximation (Gel) 

ia very goodo 

In the limit f = œt where ns = 0 = n2, the 

equi1ibrium relations of Chapter 4 show that 
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ng = n6+(S+y)/2 = constant 

n 7 - w = y-2n 3 = s-2n4 

a 1w2+(!+y)w-Sy = 0 

••••••••o {6.3) 

It is now more convenient to express the species in terrns 

of n 4 , which we now represent as 1 (as did Jones and 

Miller). Thus, 

nl = m(C)-{y-S)/2-24> ) 
) 

n3 = (y-S) /2+4> ) 
) . . . . . . . ~ . 

n4 - 4> n7 = S-2cp ) 
) 

ng = n 6+S+y = const. ) 

and cp is the positive root of the quadratic obtained by 

replacing n3, n 4 , and n7 by these expressions in (4.5.4). 

Thus, 

cp= tp(T) 

(6. 4) 

(6.4a) 

The expression for 4> is easily determined. It is 

cp{T) = [y 2+2yS(8K5-l)+S2]l/2 - [y+S(8K5-l)] 

4 (l-4K5 > 

and for TNT (y=6, S=2c5, m(C)=7, m(N)=3) , 

cj>(T) 
TNT 

= (49/4+240K5)112 - (7/2+2oK5) 

4 (l-K5 > 

•••••• (6.5) 

••••o•••• (6o6} 
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and nl = 5.25-2~ n3 = 1.75+~ ) 
) 

n4 - ~ n6 = 1.5 ) . . . . . ( 6. Ga) 
) 

n7 = 2.5-2tp . ng = 5.75 ) 1 

The special relations (6.6) for TNT were given previously 

by Jones and Miller. 

The parameter ~ is very insensitive to 

temperature in the case of TNT. The general expression 

for its temperature derivative is 

.•....•.• (6.7) 

where G=y-13+8BK5 ...••.•.. (6.7a) 

Now K5 = 1 at 3000°K, and here, 

~ = 0.6349 (d~/dT) = 1.207•10- \J.egK-1 • • . (6. 7b) 
TNT TNT 

Accordingly, the high pressure composition is not only 

virtually independent of the pressure, but is nearly 

invariant with temperature also. In addition, the 

chemical energy Q becomes constant to a remarkable 

degree. In this case 

) 
) 
) 
) 
) 

.....•... (6.8) 
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The applicability of these high pressure 

approximations is, of course, confined to detonation front 

pressures obtained with explosives at high loading density 

and to pressures in this vicinity. The calculated 

detonation front temperatures for TNT under these conditions 

are found to differ by less than 300°K, and, in practice, 

one may put $cJ ~ 0.64 to obtain a very good first 

approximation to the product composition and chemical 

energy, viz., 

n1=3.97 n 3=2.39 n4=0.64 ) 
) 

n7=1.22 , n2=n5=o , n6=1.5 )per mole TNT ...... (6.9) 
) 

ng=5.75 Q=Q0 =291.5 kcal ) 

Such approximate composition estimates are of 

considerable value in saving computation in an iterative 

determination of the CJ conditions. The gross iteration 

may thus be carried out rapidly and the final delicate 

iteration without constraints then requires only one or 

two additional steps. In this context, one should note 

that a clear distinction must be drawn between the validity 

of the high pressure JM approximation (6.1) and the 

accuracy of their published calculations. The former 

appears to be sound. The latter are poor, but only a small 

part of their total errors are attributable to (6.1}. 
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6.2 The Jones and Miller Computations for TNT 

Jones and Miller only applied their equation of 

state 
3 

X(p) = L dkpk-1 
k=l 

to TNT at two loading densities, 1.0 and 1.5 g cc-1 . For 

the former case, and along the adiabatic for the latter, 

they carried out a general computation using 

but introduced considerable numerical errors by using linear 

representations of non-linear functions. That is, they used 

Ej(T) ~ a1 j+a2 jT 

7 7 

Ethermal ~ Ln .al.+T Ln .a2. 
j=l J J j=l J J 

( 6. 10) 

. •.•..•• (6.10a) 

....•..• (6.11) 

where akj' bki are constants. In addition, they integrated 

along an approximate adiabatic 

d(E-Q)+pdVg 0 i 0 •......• (6.12) 

rather than along the correct adiabatic 

•••.•... (6.13) 
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It might be thought that the approximation {6.12) 

is reasonable because, as the earlier discussion has shown, 

at high pressures, n0 ~ nc(T), and therefore, (aVc/&p)T ~ 0, 

whereas at low pressures (i.e., large gas volumes) the 

volume of solid carbon becomes increasingly negligible 

compared tc that of the gas phase. However, dVc/dVg is 

by no means negligible compared with unity. For example, 

at very high pressures, where nj ~ nj(T), ng = 5.75, and 

at a temperature near 3.0 DEG 

dVc/dVÇ ~ (aV6/aT)/(&V~/aT) = p.2kc. (d~/dT)/ngR ~ O. llp 

..•.•..• (6.13a) 

where the pressure E is expressed in kcal cc-l units. As 

shown earlier, the latter may have a value of about 4 tc 5 

such units near the detonation front in TNT at high loading 

densities. 

In their computations of the CJ conditions for 

the higher loading density (1.5 g cc-l) of TNT, Jones and 

Miller introduced two approximations in addition tc the 

approximation nj=nj(T). The first of these is really a 

consequence of (6.1) and of (6.10a). The thermal energy 

on the high pressure portion of the Hugoniot is expressed 

as a linear relation. That this follows from their ether 

approximations is evident because 
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i.e., RH 
(Eth) TNT (5.25-24>) (a11+a21T)+(l.75+1j>) (a13+a23T) 

+lj>(al4+a24T)+l.5(al6+a26T) 

+(2.5-21/1) (a17+a27T) 

= C1+C2T+C31j>+C4T<P 

(Cl+0.64C 3)+(C2+0.64C4)T 

= K1+K 2T 

The values of K1 and K2 they obtained are based on the 

(1938) thermodynamic data of Lewis and Von Elbe[6.2l. 

These are, per mole of TNT, 

( 6. 14) 

K1 = -38.0 kcal K2 = 87.5kcal DEG-l •••••••• (6.14a) 

A linear representation of the thermal component 

of the energy on the Hugoniot at high pressures is 

certainly useful in making slide-rule accuracy initial 

computations, but it is by no means acceptable for a final 

one. Furthermore, any such linear representation must be 

based on a definite temperature range: the authors do not 

state their choice of range. For TNT, all detonation 

temperatures calculated wi.th the improved JM equation of 

state 5 

- \ k-1 x ::; Ld p 
k=l k 

•••••••• (6.15) 
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lie between about 3.8 and 3.0 DEG for ~ > 1 g cc-1 • 

Choosing a fairly bread range, 2.5 ~ TcJ ~ 3.5 DEG, and 

calling on the JANAF[ 6 • 3 1 data, one obtains the following 

Hugoniot thermal energy constants: these appear ta be 

considerably better than the JM values. 

K1 = -50.67 kcal K2 = 93.08 kcal DEG-1 ....•.. (6cl5a) 

The second high loading density detonation front 

approximation of Jones and Miller arises in the following 

way. A set of approximate relations describing the CJ 

properties is sought and it is assumed that beth 

•..••.... (6.16) 

apply, and that the covolume is 

3 

x= 'L dkpk-1 
k=l 

Accordingly, for TNT, 

(an invariant) 

= 5.75 ne = 5.25-2q, 

{6.17) 

•.•...... (6.18) 

The two primary unknowns sought are the independant 

variables p, T at the equilibrium front. The two equations 

tc be solved simultaneously tc determine these are, of course, 

the Hugoniot and the equation for the CJ condition. That is, 
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(1) 

c •••••••• (6.19) 
(2) 

where the subscript ~ refers to the state of the unreacted 

explosive. The linear form (6.14) for the thermal energy, 

together with the ether approximations, allows one to 

eliminate the temperature from the Hugoniot. Equating 

the expressions for the temperature obtained from the 

Hugoniot and from the equation of state 

{6.20) 

where ; ••.•.•••. (6.20a) 

This gives immediately 

(A2+1/2) (Ve-V) = -A1/p+A2Veg-ng[A2d1+(A2+1/2)d2p 

+(A2+2/3}d3p2] ••.. (6.20b) 

where the intermediate parameter veg is defined by 

The equation for the CJ condition is readily obtained 

by differentiating (6o20b} with respect to E' subject 

to (6.19(2)). That is, 

(6.20c) 

(6.21) 
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If, as appears to have been assumed, 

..••.... (6.22) 

then, the expression (6.21) for the CJ condition becomes 

ve-V = veg-vg = 2A1/(1+2A2)p-ngd2p 

- ( 4ng/3) [ (2+3A2) / (1+2A2}] d3p 2 • • . . (6. 23) 

When, using this expression, v and Ve-v are 

eliminated from the expressions for the equation of 

state and for the Hugoniot, one readily obtains the 

following simple approximate relations. 

d3p3 = G1+G2T (1) ) 
) 

2 veg = ngd1+G3/p+G4d3p (2) ) . . . . . . . . 
) 

v = veg+ngd2p+Gsd3p2+Gs/P (3) ) g 

where the Gk are constants defined by, 

Gl = 3A1/ng G2 = -(3/2)A2R(l+2A2)/(l+A2) 

G3 = 2A1/A2 G4 = -ng(2+3A2)/3A2 

Gs = (4ng/3) (2+3A2)/(1+2A2) . G = -2A1/(1+2A2) 1 6 

It may also be noted that when the thermal 

energy is approximated by the linear relation (6.14), 

the quantity ScJ required when seeking to estimate 

) 
) 
) 
) 
) 

the pressure and specifie volume from the observed 

detonation velocities ~ using the Jones relations[ 6 • 4 l 

(6.24) 

(6.24a) 
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given earlier is 

,- =jcJ BcJ - E = p(3V/3T)p = 1 
_(dU/ClV)p (dU/3T) p A2 

..••..• (6.25) 

The various constants given by Jones and Miller, 

and the improved values found using (6.15) are summarized 

below. 

Table 6 ol 

Constants For ApEroximate Detonation Front Relations 

Constant Jones and Miller[ 6 .l] Improved 

Kl kcal (mole TNT)-l -38.0 -50.67 
MK2 kcal (mole TNT)-lDEG-1 87.5 93.08 

Qo kcal (mole TNT)-1 289.9 291.5 
Al kcal (mole TNT)-1 327.9 342.2 
A2 - - - - - - - - - 7.658 8.146 
13(::1/A2) - - - - - - 0.1306 0.1228 
Gl kcal (mole gas)-1 171.1 178.5 
G2 kcal (mole gas)-lDEG-1 -43.48 -45.91 
G3 kcal (mole TNT)-1 86.27 84.01 
G4 maies gas (mole TNT)-1 -6.254 -6.221 
Gs moles gas (mole TNT)-1 11.74 11.72 
G6 k cal (mole TNT)-1 -40.47 -39.57 

K 

Note: 1 DEG = 103 deg K 

The approximation involved in neglecting the 

dimensionless function (6.22) may be seen from the following 

2 CJ 2 CJ ô - p (A2/A1 ) [dVeg/dp]RH = p (A2/A1 [dVeg/dp]Ad 

= -p2(A2/Al) (dVc/dT) (dT/dp)Ad 

= 2k
0

p2 (A2/A1 ) (d$/dT) (dT/dp) Ad ••••••• (6.26) 
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Now, when (6.1) applies, 

so that 

(dT/dp) = 
Ad 

6 = 
l+ngR(l+A2 }/[pkcd~/dT] 

[2Kc/A1 (1+8CJ)]pT{d~/dT} 

= 0.028 pT(d~/dT) .•••••• {6.26} 

The quantity T(d~/dT) increases with decreasing temperature, 

and using its values for 3.0 DEG as an upper limit, 

Td~/dT .::_ 6 .::_ O.Olp .••..•• (6.26a) 

where E is in kcal cc-1 units. If we estimate Pmax from 

the observed detonation velocity using the maximum possible 

loading density 1.654 g cc we obtain 

..•.. (6.26b) 
Pm a x ~ 225 kbar = 5.35 kcal cc-1 

so that ômax - 0.054 

The approximation ê = 0 thus appears to be fairly sound. 

The overall effect of these high pressure approximations 

on the calculated detonation front properties and flow 

variables may be seen from the following table. 
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Table 6.2 

Effect of Approximations on the Calculated CJ Conditions 
for TNT at 1.5 q/cc Loading Density 

C()mp~tation**. p T V1 
kbar DEG cc/q 

Y Ad D* u/D 
cm/lJsec 

... --
(Aa) 

(Ab) 

(Ac) 

-
158.8 3.400 0.5136 3.36 0.6790 Oœ2296 - ~ - - - - - - - - - - - - - - - - - - - - - - ~ -
159o0 3e387 0.5089 3.225 

159o0 3.388 Oo5088 3o224 

163.7 3.357 0.5069 3.174 

Oe6692 0.2367 

0.6692 0.2367 

0.6750 0.2396 
- - ~ ~ - - - ~ - - - - - - - - - - - - - - - - - - - - - - -
(Ba) 

(Bb) 

(Be) 

165.2 3.386 0.4953 2~890 

165.2 3.387 0.4953 2.890 

169.6 3.359 0.4930 2.838 

0.6545 0.2570 

0.6545 0.2571 

0.6587 0.2605 

* Observed[6o5] value is Dœ = 0.6622 cm/lJSec 

** Code& A Original covolume of JM 

B Improved covolume 

(a) Approxima ting nj=nj(T), 
(6~24) 0 

(b) Approxima ting nj=nj (T) • 

( c) General case nj=nj(T,p)a 

3 

x= Id pk-l 
k=l k 

5 

x= I dkpk-1 
k=l 

and Eth=K1+K2T but not using 

No other approximations. 

No approximations. 
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On the adiabatics, the accurnulated effect of the 

Jones and Miller approximations is that their published 

values but poorly represent the effect of their equation 

of state. The departure of their results for TNT at a 

loading density of 1.5 g cc-1 from the corresponding 

values calculated here (with the improved form of the 

same equation of state) is so great as to indicate that, 

in addition to the approximations which have already 

been described, large errors were incurred in quadrature 

also. This is to be expected because this involved the 

choice of large temperature steps (~T=200°K) in conjunction 

with a first order relation to describe finite differences 

in the pressure in terms of its slope in the temperature. 

In G.I. Taylor's[ 6 •6 l well-known application of 

the tabulated adiabatic properties of Jones and Miller 

(to the calculation of the instantaneous spatial distribution) 

additional, and rouch larger, numerical errors were introduced. 

Nurnerical errors, but not necessarily of this magnitude, are 

unavoidable unless the spatial distribution is calculated in 

parallel with the adiabatic properties in a manner such as 

described in the previous chapter. 

It has been known for sorne time[ 6 • 71 that G.I. 

Taylor's computations were seriously in error. That most of 

the errors in his calculated spatial distributions are due 

to his numerical errors rather than t~ those of Jones and 
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Miller was demonstrated by the recalculation of the spatial 

distributions for a spherical detonation wave in TNT at a 

loading density of loS g cc-l by Dasgupta and Penney[6o8l, 

also using the Jones and Miller adiabatic properties but 

using a more refined numerical procedure. The difference 

of these from those originally calculated by GoiQ Taylor 

is a striking example of the importance of numerical 

pracisiono It will shortly be demonstrated that the 

oaloulated instantaneous pressure-radius distributions 

behind a spherical detonation wave in TNT - - according 

to (a) Dasgupta and Penney, (b) the author, using the 

improved JM equation, (c) the author, using the hypothetical 

hard sphere equation of state, and (d) Lutzky[6o9], using 

the Landau-Stanyukovich-Zeldovich-Kompaneets crystal-based 

equation - - are all in fair agreemento The numerical 

procedures in these cases were of similar precisiono This 

indioates not only that the calculated distribution is 

relatively insensitive tc the equation of state used, but 

that one must beware of ascribing calculated differences 

to the effect of the equations of state that may be used 

unless the numerical procedures are of such precision that 

this effect may safely be ignorede Brode's[6ol0] 

calculations of the air blast wave arising from the expl~sion 

of a sphere of TNT are based on G.Io Taylor's calculations 

and are, therefore, unreliable tc at least this extento 
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However, Brode introduced more serious errors in calculating 

the blast wave proporties by misrepresenting the ideal 

component of the total interna! energy on the adiabatic 

as a linear relation in the temperature, a general notion 

he incorrectly ascribes to Jones and Miller. Empirical 

corrections to Brode's computations that allow quantitative 

use of his charts are discussed elsewhere[6.11) • 
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CHAPTER 7 

APPLICATION TO TNT AND FINAL DISCUSSION 

7el Introduction 

We now describe the resulta obtained when the 

relations discussed earlier are applied to TNT (C7H5N3o6) o 

For conciseness, only loO and loS g/cc loading densities 

are treatede For the former loading density, the detonation 

front, the adiabatic and the Taylor wave are calculated both 

for the hard molecule (HM) equation of state and for the 

(modified) formula of Jones and Miller (JM) • The same 

calculations are applied to the higher loading density using 

only the HM equation of state but the detonation front 

properties and speed are also calculated using the modified 

JM formulao Sufficient has been stated as to now require 

specification only of the heat of formation of TNT and the 

initial thermal energy of the unreacted TNTo The following 

value is derived from Cook[7ol] 

0 0 0 0 0 

7o2 Conditions at the Detonation Front (CJ Conditions) 

Tables 7olA, B show the values obtained here 

compared with those calculated by Jones and Miller[7o2] using 

the 3-constant formula described earlier, by Fickett[7o3] 

using the LJD equation of state, by Lutzky[7.4] using the 



• 

- 146 -

Landau-Stanyukovitch-Zeldovitch-Kompaneets crystal-based 

formula and by Jo Taylor using the virial form (2.41). The 

observed detonation wave speeds due to Urizar[7c6l agree 

wall with the Bruceton[7~7] values here called the "observed" 

values (symbol D.) and in the absence of adequate criteria 

we must regard agreement of the calculated detonation speed 

with these values as a strong index of merit of the equation 

of state usedo This does not, of course~ apply to the 

detonation front formulaeo The departure of formulae­

calculated wave speeds from those observed is merely an 

indication of imperfect fitting: this is pronounced in the 

case of the original unmodified (3-constant) formula of 

Jones and Miller as demonstrated in Chapter 6 for the loS 

g/cc loading densityo This deficiency persista at the lower 

density of loading as shown in Table 7olA and the improvement 

designed to be effective at high loading density has little 

affect at low densities of loadingo That this is the case 

may be saen from the following comparison for lcO g/cc 

3-constant JM 

5-constant JM 

Dcalc P v1 
m/sec kbar cc/g 

El 
kcal/g 

y 

5226 82o00 Oo6998 lo468 2o331 6o390 3e244 

5218 82o39 Oo6974 lc473 2o304 6o387 3o248 

3-constant JM[7o2] 5266 82o24 Oo7035 2o43 6o453 3ol04 

It may be noted from these values that the difference 

due to the change introduced into the formula for X (the 



• 

- 147 -

covolume) has far less effect than that due to the different 

calculation procedures used by Jones and Miller and by the 

authoro The JM formula, either in the 3 or the 5-constant 

form, appears to be of little merit as regards the calculated 

properties for low loading densitieso However, the composition 

is in fairly close agreement with that by the HM equation of 

state and this agreement persista along the adiabats as will 

be illustrated presentlyo 

The HM calculated wave speed agrees with that observed 

to better than l% at the higher loading densityo Here$ it 

surpasses even the LJD equation of state, the wave speeds from 

which, as Fickett's calculations demonstrate, depart from that 

observed by over 3o5% at lo4 and by 2o5 at lo64 g/cc loading 

densitieso Another factor, of course, is the different choice 

of pair potential constants and pair potential formulae in 

the two caseso It will have been noted that at high loading 

density the dominant gases at the CJ front are co2, N2 and 

H20(g): for the HM equation of stateg choice of larger diameteiS 

~~ particularly in the first two species would be expected to 

increase the calculated pressure while choice of smaller e 

values would be expected to increase the imperfection component 

of internal energy and reduce the calculated temperaturee 

However the calculated temperature - - which is very 

insensitive to loading density for this equation of state 

and the value of a have less effect on the imperfection 
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oomponent of energy than does the pressureo Confirmation of 

these expectations is provided by the following comparison 

for loS g/cc loading density using the HM equation of state 

and the initial and final pair potential constants given in 

Table 2o2o 

p vl T 
kc!l;g 

Er Dcalc 
kbar cc/g OK kcal rn/sec 

Initial choice l40ol 0., 5160 3616 lo5l0 58o86 6429 
Final choice l43o6 Oo5182 3594 lo5l7 62ol0 6557 

At the lower loading density the LJD calculations 

appear to be far superior to those using the HM equation as 

may be noted from Table 7olAo Here CO becomes a major 

component and variation of its pair potential constants 

would more profoundly affect the resultsc The (small) effect 

of the change of constants at loO g/cc loading density is 

illustrated belowo 

p 
kbar 

Initial constants 62o22 Oo7238 3484 
Final constants 62o88 Oo7242 3488 

El 
kcal/g 

Er n
1
calc 

kcal rn sec 

lo309 36o70 
lo319 38.04 

4746 
4775 

It may be concluded that if, as appears to be the case, the 

relation b~(T*) is at fault (by virtue of its dependance on 

the LJ(6-l2) pair potential formula), then use of a more 

realistic pair potential in the calculation of bq should 

improve agreemento This must await further investigation. 
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The calculations are summarized in Tables 7.1, 7o2 

and 7.3 and in Figures 7o3 and 7o4, as regards properties 

and composition and in Table 7o4 and Figures 7.1 and 7~2 

as regards the Taylor waveo 

It may be noted that, considered as functions of 

temperature, the properties and composition are very similar 

for the HM and JM equation of state except at the lowest 

temperaturesc For the lower loading density, the temperature 

at the first graphite minimum is the same in both cases 6 

vizo 2l00°K in agreement with Jones and Miller. At the 

higher density, the HM equation of state determination of the 

minimum occurs at l800°K: this is in fair agreement with 

the Jones and Miller calculation of 1600°K for this caseo 

These authors quote the experimentally determined nc0/nco2 

final equilibrium values as lo66 for a loading density of 

1.5 g/cco This is in precise agreement with the value 

obtained here using the HM formula at 1800°K for this 

loading densityo We have 

HMJ nco/nc02 • 2o 254/1.361 • 1.66 

This is a significant improvement over the value calculated 

by Jones and Miller at their minimum (1600°K) vizo lo33. 

The agreement is strong support for the assumptions made 

regarding the fugacity and more generally supports the 
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HM equation of stateo In view of the fair agreement in 

composition according to the HM and JM equations, the JM 

estimates of the mole number of the gases NH3 and HCN appear 

acceptableo These are 

; 

at 2000°K 1 which supports our initial assumption regarding 

~he unimportance of reactions involving nitrogeno 

The Taylor wave calculations are only tabulated 

(Tables 7o4) for the HM equation of state, while the JM 

calculations are presented only graphically (Figure 7o2) 

because the CJ values are most unreliable for this case 

and these start values, more than the equation of state, 

determine the shape of the pressure and particle velocity 

curvese It may be noted that the pressure falls much more 

rapidly according to the JM than to the HM equation of 

state. This appears to be due to the rapidly decreasing 

imperfection energy for the former equation. For the loS 

g/cc loading density, the fair agreement between the 

normalized pressure for the different equations illustrates 

the remarks made earlier in Chapter 6o 

While computations of air blast propagation 

resulting from the explosion of a sphere of TNT using the 

HM equation of state have not yet been carried out, the less 

sharply peaked pressure, energy and particle velocity 
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distributions of this equation offer promise that the 

initial air shock velocity, which is calculated to be too 

high when other equations are used, will be more faithfully 

calculated when the detonation products are assumed to 

obey ito 
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Table 7.1A 

Calculated Properties and at the (CJ) Detonation 

( 1. 0 
• [7 0 3] 

Item Lutzky (b) Fickett ........... " ......... 

o1aÈcCm/sec) 4775 5218 5030 5266 5001 
p k ar) 62.88 82.39 72.2 82.24 70o93 
T (°K) 3488 3782 2357 3800 3631 
Vl(cc/g) Oo7242 0.6974 0.7142 Oo7035 Oo7164 
Y Ad 2o625 2.304 2.55 2o43 2o526 
El (kcal/g) 1.319 1.473 1.27 .. 
01 (kca1/g) 1o112 1.175 (1.018) 1.111 1.108 
Er(kcal/mole TNT) 38o04 41.49 
u*•l•a*=1-V/Ve 0.2758 0.3026 0.286 0.2965 0.2836 

Product Com:osition 
·· · ~moles/mole TNT) 

j•1 Graphite 2.8665 3.2480 3.104 3.807 
2 co 1.8858 1.1924 1 .. 286 1.9978 
3 C02 1.5646 1.8768 1.889 lo0731 
4 CH4 0.6831 0.6828 0.721 0.0122 
5 H2 0.1488 0.0805 0.122 Oo0400 
6 N2 (1.5000) (1.5000) (1.500) 1.4997 
7 H20 0.9850 1.0539 0.937 1.8555 

total gas 6.7673 6.3865 6.453 6.9492 

( ) assumed or invariant values 
(a) ca1culated here 
(b) - original calculations of Jones and Miller [7 • 2] ~ . 

• 
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Table 7.1B 

Calculated Properties at the (CJ) Detonation 

(1.5 cc loadin 

Item 

Dcjilc (rn/sec) 
p (kbar) 
T(OI<) 

Vl (cc/g) 
Y Ad 
El (kcal/g) 
01 (kcal/g) 
Er(kcal/mole TNT) 
u••l-a*==l-V/Ve 

Product Composition 
lmo!es/mole TNT 

j•l Graphite 
2 co 
3 co2 
4 CH4 
5 H2 
6 N2 
7 H20 

total gas 

6557 
143.6 
3594 
0.5182 
3.491 
1.517 
1.,262 
62ol0 
0.,2227 

3.8048 
Oo2336 
2.3010 
0.6605 
0.0146 
(1.5000) 
lo 1644 
5.,8741 

6587 
169.6 
3359 
0 .. 4930 
2.838 
1.625 
1.274 
108.0 
0.2605 

3.8921 
0.1065 
2.3508 
0.6506 
0.0069 
(1.5000) 
1.1918 
5.8067 

( ) assumed or invariant values 
(a) calculated here 

sec) 
[7 0 5] 

Je Taylor 

6480 
111 
3870 
0.55 

1. 295 

0.3666 

4.88 
0.68 
1. 43 
(0 .. 00) 
0.023 
(1.50) 
2.48 
6 .. 11 
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Com~osition in Adiabatic Ex12ansion (moles/mole TNT) 

T 
1 

Gas Carbon co 
°K/l000 a b c a b c a b c 

3.7 6.46 3.17 134 
3.6 6o56 5.87 3.07 3.80 l. 51 0.233 
3.5 6.65 5.93 2,98 3,75 lo68 0,336 
3.4 6e75 6.85 5~94 2.89 2 .. 79 3.74 1.85 2 .. 03 0.362 
3.3 6o85 6.94 5.99 2 .. 79 2.70 3.70 2,04 2.19 0.457 
3.2 6 .. 95 7.,04 6.03 2 .. 70 2.61 3.67 2.21 2.37 0.,516 
3.1 7,06 7 .. 14 6.07 2 .. 61 2.52 3.63 2.39 2.53 0.597 
3.0 7.16 7.24 6ol2 2.51 2.43 3 .. 59 2.56 2.70 0.694 
2.8 7.36 7.43 6.,27 2.35 2.27 3.46 2.88 3.02 0.950 
2.6 7.55 7.,63 6 .. 45 2.20 2.13 3.30 3.18 3.31 1.27 
2.4 7.72 7.80 6.62 2.09 2.02 3 .. 16 3.42 3.55 1.56 
2.2 7.87 7.95 6.80 2.03 1.96 3.01 3.60 3.72 1.86 
2.0 7.97 8.05 7.00 2.03 1.957 2.91 3.68 3.80 2.10 
1.8 7.80 8.09 7.10 2.11 2.04 2.87 3.62 3.76 2.25 
1.6 7.93 8,02 7.16 2.30 2.22 2.93 3.40 3.54 2.25 

'l'able 7.2 (Continued) 

T 
1 

co2 H20 
°K,1000 a b c a b c 

3.7 1.81 1.04 
3.6 1.73 2o301 1.03 1.,16 
3.5 1.65 2o25 1.01 1.16 
3.4 1.58 1.50 2.24 0.993 0.,970 1.,16 
3.3 1.49 1c42 2.19 0,974 0.953 1.16 
3.2 1.42 1.35 2 .. 16 Oo956 0.933 1.16 
3.1 1.34 lo27 2 .. 12 0.936 0.913 1.16 
3.0 1.,26 1o20 2.08 0.915 0.893 1 .. 16 
2.8 1.12 1.,07 lo95 Oo873 0.850 1.14 
2.6 0.995 0.943 1.80 0.,830 0.807 1o12 
2.4 Oo893 0.,843 1 .. 67 0.790 0.765 1.10 
2.2 0.822 0.772 1o54 0.757 0.730 1.01 
2.0 0.,792 0.743 1.43 0.738 0 .. 709 1 .. 04 
1.8 0.818 0.,763 1 .. 36 0.740 0 .. 709 1.02 
1.6 0.917 0.863 1 .. 36 0.770 0.736 1.02 

<. • 5-constant JM formula7 1.0 g/cc 1oading density 
b HM equation of state; 1.0 g/cc 1oading density 

• c HM equation of state1 1.5 g/cc 1oading density 
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Detonation Product Pro12erties in Adiabatic Ex;eansion 

T 
1 

p (kbar) V!(Cc/g) 
0 I</1000 a b c a b c 

3.7 75c80 0.7228 
3.6 68.73 Oo7536 
lo4 56o33 57 .. 80 115.5 0. 8169 0.7467 o.55oa 
3.2 45.76 46 .. 89 90o90 0,8856 Oo8063 0.5906 
3.0 36.60 37o29 70.57 0.9619 0.8780 0.6376 
2.8 28.62 28 .. 87 53.94 1.049 0,9673 Oo6954 
2,6 21.68 2lo56 39 .. 71 1.154 1.083 0.7714 
2.4 15.78 15o32 28.87 1.288 1 .. 242 0.8616 
2,2 10.73 10e13 19.86 1.479 1.479 0.9870 
2,0 6.664 6.127 12.63 1.789 1.868 1.174 
1.8 3.612 3.236 7.097 2.389 2.613 1.496 
1..6 1.590 1o397 3.275 3.855 4 .. 392 2ol9l 
1.4 0.5728 Oo5156 1.245 7.906 8 .. 936 3.915 
1.2 0.2358 0.2437 0.5498 15 .. 46 15-38 6.737 
1.0 o.o855 0.1038 0.2184 34.34 29.06 13 .. 05 
o.8 0,0260 0.0382 0 .. 0746 88 .. 74 61.82 29.13 
0.6 0.0061 Oo0112 0.,0203 280 .. 7 155.7 78.42 
0.4 Oo00093 0.0022 Oo0037 1231. 525 .. 6 286.9 
0.3 0 .. 00026 Oo00072 OoOOll 3280 1212 691.9 

a 5-constant JM formula,. 1.0 g/cc loading density 
b HM equation of state; 1.0 g/cc loading density 
c HM equation of state; loS g/cc loading density 

• 
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• Table 7.3.2 

Detonation Product Properties in Adiabatic Expansion 

·r y EI(kcal/g) 
.:I<L-h9PO a b c a b c 

3.7 2.341 1.412 
3.6 2 .. 390 1.343 
3.4 2.506 2o608 3o276 lc216 1.272 1.396 
3.2 2o635 2.578 3.111 1.099 1.164 1.273 
3.0 2.766 2.550 2.985 Oc9914 1o058 1.154 
2.8 2.874 2o515 2.874 0. 8920 0.9558 1.,040 
2.6 2.923 2o460 2.781 0.7999 0.8570 0.9236 
2.4 2. 869 2 0 369 2.704 0.7158 0.6720 0.,8196 
2.2 2o673 2.223 2.606 0. 6 36 7 0.6707 0.7183 
2.0 2o338 2.016 2.451 0.5630 0.5858 0.6221 
1,8 1.928 1.756 2.194 0.4940 0.5069 0.5318 
1.6 1.550 1.490 1.830 0.,4285 0.4342 0.4487 
1.4 1o 368 1.410 1.585 0.3646 
1.2 1o293 1.359 1 .. 445 0.3001 ... 
1,0 1.261 1.332 1.363 0.2382 
o,8 1.255 1.325 1.325 0.1798 
0.6 1.270 1.335 1.321 Ocl258 
0,4 1.306 1.360 1..344 Oo0777 
Oo3 1.327 1.370 1.,356 0.0561 

d 5-constant JM formula, 1.0 g/cc loading density 
HM equation of state7 1.0 g/cc loading density 

c ... HM equation of state1 1.5 g/cc loading density 

• 
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s herical Ta for 1.0 
e HM Egua 

10 4r* 104u* p T Vl y 
kbar OK CCLi 

10000 2758 62.88 3488 0.7242 2.626 
9996 2665 60.75 3453 0.,7333 2.617 
9974 2535 57.80 3403 0.7461 2.608 
9877 2285 52.17 3303 Oo7751 2o592 
9706 2045 46.89 3203 0.8063 2.578 
9459 1812 41.94 3103 0.8405 2.564 
9132 1582 37.29 3003 0.,8780 2o550 
8721 1352 32.94 2903 0.9201 2 .. 534 
7620 881 25.08 2703 1.021 2.491 
6903 632 21.56 2603 1.083 2 .. 460 
5914 334 17.96 2491 1.164 2.415 
5236 158 16.16 2432 1.215 2.385 
4756 55 15.23 2399 1.245 2 .. 367 

Table 7.4B 

,~~--<;;bove - but for 1.5 iLCC TNT Loadini Densit;:t~ 

10000 2227 143.6 3594 0.5182 3.,491 
9993 2135 137.7 3559 0.5240 3.452 
9958 2013 129.9 3509 Üo5337 3.347 
9896 1898 122.5 3459 0.5420 3 .. 314 
9810 1786 115.4 3409 Oo5508 3o276 
9564 1577 102.6 3309. 0. 5703 3.177 
9225 1378 90.90 3209 0.5906 3.111 
8798 1185 80.24 3109 0.6130 3o046 
8290 996 70.57 3009 0.6376 2.985 
7707 810 6lc83 2909 0.6647 2. 929 
7053 623 53.94 2609 0 .. 6954 2o874 
6324 433 46,85 2709 Oc7292 2.827 
5378 208 39.71 2597. 0.7714 2.781 
4220 1 34.36 2505 Oo8107 2.745 

• 
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Figure 7ol 

Sa;herica:l',Taylor. Wave l'for TNT' at 1. Sq/cc L6ading 
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LSZK Equation of .State (Lutzky) 
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0,24 

• Figure 7o2 

Oc22 

p ... pressure (kbar) 

Oc20 u* - particle velocity _lOO 

- HM Equation of State 

Ûol8 -- - Modified JM Formula 
-- 90 

Ool6 80 

l 
Oe14 -+ 70 

1 
1 

Ocl2 60 

OolO 50 

Ûe08 40 

- 30 
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Figure 7o3 

• 
moles per mole TNT 
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Adiabatic Comtosition of TNT Detonation Products 
For loO g/cc oad~ng Density Using the Modified 
· JM Formula 

n· 
J 

moles per mole TNT 


