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SUMMARY

A new equation of state for gases at high densities
and temperatures is formulated. This is based on Monte=Carlo
calculated compressibilities for rigid non-attracting spheres
determined elsewhere. The equation of state for a gas mixture
is taken to be that of a pure hard sphere gas with a
temperature~dependent diameter. This diameter is expressed
in terms of the gas composition and the Lennard-Jones (6=12)
pair potential constants of the constituent gas species.

This equation of state is applied to the calculation of
detonation front behaviour and to the adiabatic expansion
of, and Taylor wave in, the products following detonation
in TNT at loading densities of 1,0 and 1.5 g/cc. At the
higher loading density, agreement of the calculated with
the observed detonation wave speed is to better than 1%.

At the lower loading density, the departure of the
calculated from the observed wave speed is about 4 times as
great,

The computations are also carried out using a
co-volume formula, originally due to Jones and Milier, but
modified here so as betkat to match the observed detonation
wave speed at cast densities.

The computations are presented in a form applicable
to the products of any condensed explosive of the CHON type.

The composition, however, is only treated in a manner suitable



for strongly oxygen-negative explosives. The detailed equation
of state relations are given, not only for the two equations
mentioned, but also for a real gas virial equation of state.
In this case the composition is assumed to be fixed.

The validity of the approximations recommended for
use at very high pressures by Jones and Miller are examined
in detail for each successive stage of approximation proposed
and the calculations are carried out for each stage so as to
separate the numerical errors of Jones and Miller from their

acknowledged approximations,
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SYMBOLS

second virial coefficient
(2w/3)No3

third virial coefficient

specific heat at constant pressure
detonation wave speed

internal energy

fugacity

enthalpy

ideal gas condition equilibrium constant
mass

number of molecules, number of moles
pressure

chemical energy released

universal gas constant

radius

entropy

temperature

time

centre-of-mass velocity

volume

co=volume

pb/RT

compressibility factor (=pV/RT)



Yad - adiabatic exponent

) - a small quantity

A - loading density

3 - heat of reaction

0 - pair potential constant
g - pair potential constant
p - density

Modifying Symbols

(o - standard state

(¥, (e ideal gas condition

(g - attributable to non-ideal behaviour
( )g - gas

()5 - of species j

()i - for reaction i

( Y¢n - thermal component

M) - per mole

(), - per unit mass

(g - in unreacted explosive

()* - a dimensionless variable
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THE ADIABATIC EXPANSION OF DETONATION PRODUCTS

AND THE SPHERICAL TAYLOR WAVE FOR TNT

CHAPTER 1

GENERAL INTRODUCTION

1.1 Purpose

When a column of condensed explosive 1s struck a
sharp blom or a section of 1t 1s suddenly heated by some
means such as a shock wave, a steady detonation wave may
develop. This is characterized by a nearly plane front

moving at constant speed, one very much higher than for

similar behaviour in reactive gases. According to the
accepted view, this is a wave of reaction consisting of a
leading non~reactive shock, followed by a reaction zone in
which conditions are invariant in a frame of reference
moving at the velocity of the wave front, followed, in turn,
by a non-steady wave where the reaction products expand
into the space behind the advancing front. The pressure
behind the detonation front in condensed explosives
generally exceeds 10° atmospheres.

The speed of the steady detonation wave is observed
to depend on the chemical and physical nature of the explosive,
on its loading density (density i1n the unreacted state) and on
the diameter of the column. When this diameter alone is

varied, the steady wave speed is found to increase with it,



the rate of increase ultimately becoming very slow. When
the detonation front speed is specified without reference
to the diameter, it generally refers to the limiting speed
obtained from an extrapolation to zero inverse-diameter
using a plot of observed values or an equivalent fitted
curve. When a detonation wave is properly initiated in a
sphere of high explosive the speed of the spherical wave
is observed to approach this upper limit as the wave expands.
Attempts to provide quantitative theories
accounting for the behaviour observed have furnished a
considerable body of literature. Most of this has dealt
only with the detonation front in columns of explosive,
assuming no lateral expansion in the reaction zone. There
have been very few studies devoted to the more general
problem of the thermodynamic behaviour of the products
as they expand behind the front and of the instantaneous
distribution in space of the thermodynamic and flow
variables in this expanding wave. Such a distribution is

here called a Taylor wave when it refers to a hypothetical

wave of constant speed in which the motion 1s adiabatic,
non-viscous and one-dimensional, though it may well be
reactive. One-dimensional motions may, of course, be only
plane, cylindrical or spherical.

As just stated, there have been relatively few

studies dealing with this more general problem in high




explosives. In these, certain formulae are used which are
alleged to be equations of state suitable for the products
of condensed explosives. However, only one study[l°l] is
known to the author in which the general problem (or certain
features of it) was treated using an equation having
sufficient generality as to deserve the term equation of
state, although such general equations have seen wider
application to the calculation of detonation front
properties[l'2'1'3'l°4]°

The primary purpose of this dissertation is to
discuss the calculation of the adiabatic behaviour of and
Taylor wave in, detonation products using a general gas
equation of state not previously used. While the numerical
computations given here are confined to TNT products, the

gas equation of state, being very general, is in no way
restricted to such products, nor to any gas mixture, provided
only that it is composed primarily of non-polar molecules of
not grossly different size. A secondary purpose of the
discussion is to carry out the same computations using a gas
formula applicable only to TNT products, due originally to

Jones and Miller[l°5]

, but slightly modified here to ensure
that calculated detonation wave speeds agree with those
observed for the loading densities characteristic of cast TNT.

1.2 Preliminary Discussion

The remarks which follow immediately are intended

to outline the main notions and restrictions involved in the



subject matter which is later treated mathematically.

These remarks are intentionally kept free of formulae so
that the reader may better appreciate the arguments without
reference to any particular habituation to symbols. The
problem of habituation to adjectives remains and for this
reason a rough guide is given to the author's terms

expressing magnitude in the present discussion.

Adjective Pressure Temperature
{atmospheres) (°K)

ultra-high >10° -

very high >10° >104

high >104 >103

moderate >103 >300

low <102 -

The following table lists the best known solid

explosives.,



Table 1,1

Some Pure Solid Explosives of the CHON Type

Explosive Abb., Empirical Crystal Molar
" Name Formula Density Mass
g/cc g
2,4,6,~Trinitrotoluene  TINT C7H5N 404 1.654 227
2,4,6,-Trinitrophenyl~- tetryl, C9HgNg50g 1,73 351
methylnitramine CE
Pentaerythritol PETN CsHgNygO15 1,77 316
tetranitrate
Cyclomethylene RDX, C3HgNgOg 1,816 228
trinitramine cyclonite

The gas equation of state employs the best available
~compressibility factor calculations for a gas of identical
rigid non-attracting spheres(1:6] . fThe results of these
calculations, which involved the use of Monte=Carlo methods,
are here fitted by an equation relating the compressibility
factor to a parameter which is proportional to the product

of the volume of the hard sphere and the pressure~temperature
ratio, In a gas of identical rigid non=-attracting spheres

of immutably fixed diameter, the imperfection component of

the internal energy is zero. Furthermore, if the volume of the
sphere is calculated from the low=velocity collision diameter
(not the "diameter" of the older kinetic theory), it will

be found that the minimum volume required to accommodate these
spheres,; namely the close=packing volume occupied by spheres

all in contact, exceeds that which may confidently be stated to be



available to the gas behind detonation fronts in condensed
explosives.

Accordingly, the available rigid sphere data may
be applied only if the sphere diameter can be defined in a
plausible way. To this end, it is imagined that the sphere
is rigid only at a particular temperature, adjusting
instantaneously to smaller values as the temperature
increases. To be more specific, the behaviour of the gas
phase of the product mixture (at high pressures and
temperatures) is assumed to be represented by that of a
hypothetical gas of identical rigid sphere molecules of
diameter taken to be equal to a value approximating the
most probable closest-approach distance in a pure gas of
non-polar spherical molecules having symmetrical force
fields described by species-averaged intermolecular
potential constants and colliding with a Boltzmann
distribution of velocities.

It should be borne in mind that a theoretically
rigorous equation of state for a mixture of real gases
has yet to be developed, even for the simplest mixture
imaginable, namely a 2-component one containing an equal
number of different sized rigid non-attracting spheres.
At high temperatures and pressures the choice lies between
simulating the gas mixture by a hypothetical pure

hard-sphere gas, the compressibility factor for which has



been precisely calculated over a wide range of conditions,
simulating it by a pure hypothetical non-polar gas of
spherical molecules with fields of force, the compressibility
factor for which is difficult to calculate and but poorly
represents observed behaviour except at liquid densities, *
or representing the compressibility factor for the gas
mixture by virial terms involving virial coefficients which
are species-averaged combinations of the virial coefficients
for the pure species, a procedure without theoretical
foundation and limited to low densities. The present
seemingly artificial proposal might be viewed with more
charity in this light.

The main detonation products of condensed pure
CHON explosives of oxygen-negative balance are the gaseous
species CO, CO,, CHy, H2' N2' H,0: for strongly oxygen-
negative'explosives like TNT and tetryl, considerable
quantities of solid carbon are also present. For other
CHON explosives the composition is relatively invariant
with pressure and temperature. However, even in the case
of explosives which are strongly oxygen-negative, the
dependence of the diameter of the mixture-equivalent
hypothetical hard sphere gas on the composition 1s so
slight that the approximation of a common fugacity for the
gas species may be used without serious error.

Practically nothing is known about the size of

the solid carbon particles in detonation product mixtures.

*That is, when the Lennard-Jones and Devonshire equation of
state or other cell theory equations are used.




It is assumed that they are in the form of graphite, that
they are sufficiently small that their motion is identical
with the centre-of-mass velocity of the mixture and that
they have negligible coefficients of thermal expansion and
baric compression.,

Subject to the above assumptions, the adiabatic
behaviour of the gas=solid mixture at, and following
detonation, is described by equations quite generally
applicable to the products of any condensed pure CHON
explosive, As stated earlier, the numerical computations
are here confined to TNT. For conciseness, only two
loading density values are treated, namely, 1.0 and 1.5 g/cc.
The former is typical of lightly pressed TNT, the latter
of low=~density cast TNT,.

A moderately high degree of agreement between the
calculated and the observed detonation wave speed is a
necessary (but not sufficient) condition for establishing
the validity of a detonation product equation of state. The
agreement obtained for TNT or 1.5 g/cc (i.e., 1l%) is
comparable to the uncertainty in the observed detonation
wave speed. At 1.0 g/cc the departure of the calculated
from the observed wave speed is about 4%. In view of
the assumptions made regarding the solid carbon, it is
possible that a similar degree of agreement would not be

obtained were application of the (gas)
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equation of state extended to the (gas) products of any
condensed explosive.

Any hard sphere equation of state is less
plausible than a real gas virial equation of state when
the concentration of molecules becomes sufficiently low
that use of the latter becomes valid. This is, of course,
particularly true at temperatures below the Boyle
temperature of the mixture. Accordingly, the adiabatic
computations for a real gas virial equation of state are
also described. However, a virial equation of state for a
pure real gas cannot be reliably specified beyond the third
virial coefficient: this coefficient itself i1s somewhat
uncertain. As stated earlier, the virial coefficients for
a gas mixture are much less certainly specified. It is
found that when the calculated gas concentration on the
adiabats (calculated with the hard sphere gas equation of
state) falls to a level permitting the use of such a
truncated real virial, the temperature is sufficiently low
that the composition may be regarded as fixed. Accordingly,
the adiabatic computations using the real virial are
described only for the case of invariant composition.

All treatments here are based on a choice of
temperature (T) and pressure (p) as the independent state
variables. However, the virial coefficients for pure gases
are most readily calculated for a (temperature, volume)

system. In such a system the representation of p/T 1s an
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infinite power series in the molar density. For a (T,p)
system the corresponding expression is a representation

of the molar volume by a power series in p/T. The relation
between the virial coefficients in the two forms is well
known. |

In the hard sphere computations, the intermolecular
potential constants used are those suitable at high to
moderate temperatures, and the assignment of a single set of
constants to describe a species-averaged potential for the
gas mixture requires that the potential for water, the only
é_lépolar molecule concerned, be represented by an
orientation-independent or orientation-averaged equivalent
non-polar potential. In the present application, the
Lennard-Jones (6-12) two-constant potential is used
throughout for the non-polar molecules, and a suitable pair
of (non-polar equivalent) constants is chosen for water.
However, in the virial relations the polar character of water
is formally accounted for.

For application of the virial equation all potential
constants must be reassigned, at least for the calculation of
the second coefficient. The scheme proposed here is to
calculate the second coefficient for the gas mixture using
the potential constants obtained from measurements of the
second virial coefficients for the pure gas species, and to

calculate the third coefficient for the gas mixture using the
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high-temperature species-averaged potential constant values
as for the hard-sphere case. Simple mathematical expressions
for the virial coefficients for a pure gas are known for an
LJ (6-12) representation of the intermolecular potentials

for non-polar molecules and for the corresponding Stockmayer
(6-12) representation for polar molecules. An approximate
expression fitting numerically calculated values for the
third coefficient is also available for the LJ (6-12) form.
Accordingly, these potentials are advocated on the grounds of
mathematical simplicity. No similar expressions are available
for more complicated potentials.

The third virial coefficient for water is not
successfully represented by any potential suggested to date.
Furthermore, the intermolecular potential for a pair of unlike
molecules is also unknown, as are the true expressions for the
second and third (and higher) virial coefficients for a
mixture. For this reason, it appears justifiable to replace
the usual, (but theoretically unsupported), expression for
the second virial coefficient - - which involves the pair
potential constants not only for like but also for unlike
molecules - - by the simpler approximate expression involving
potentials only for pairs of like molecules. The same
uncertainties also underlie the advocated replacement of the
complicated relations for the third virial coefficient for a
gas mixture by the simpler expression for a representative

pure species.
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While the treatment for the virial form is
completely described in terms of general relations, the
numerical computations for this form are not given here,
although some values are given for the mixture virial
coefficients for TNT gas products in frozen equilibrium,

In transferring from the hard sphere to the virial equation
of state on the adiabats, a smoothing technique or similar
procedure must be used because if, as appears most desirable,
the transfer is made at that point at which the calculated
compressibility factor is the same for both equations of
state, then a (waak) discontinuity is generated. This must
be so because, at the transfer point, the imperfection
component of the internal energy changes from a (small)
positive to a (small) negative value.

The transfer point defined above occurs at a
temperature of about 1150°K for both the high and low
loading density adiabats. Here the calculated compressibility
factors are less than 1l.15, so that one might be tempted to

calculate the continued?diabats (continued down to a

pressure of one atmospﬁére) by treating the gas phase as a
mixture of ideal gases were it not for the contained water
vapour which increasingly dominates the mixture second

virial coefficient. The latter rapidly assumes a negative
value, causing the compressibility factor to fall below unity
near the Boyle point., The error involved here in using the
hard molecule equation throughout is very small, but it is of

course true that, in principle, below the Boyle point (about

450°K for TNT products of frozen composition), the hard
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molecule equation, or any hard molecule equation of state,
is very poor, being worse even than that for a mixture of
ideal gases.

The co-volume of the gas portion of the mixture
may be defined gquite generally as that volume which must
be subtracted from the volume available to the gas phase
so that the perfect gas law appears to apply in the volume
remaining. Jones and Miller assumed that the co-volume
per mole of gas mixture could be defined as a function of
pressure only, and for TNT, they expressed this function as
a second degree polynomial. The three (constant) coefficients
given by Jones and Miller lead to calculated detonation
velocities which are grossly in excess of those observed[1°7]
at high loading densities. Accordingly, the power series is
extended and two additional constant coefficients are
determined by matching the calculated to the observed
detonation wave speed at loading densities of 1.5 and 1.52
g cc™l TNT. The improved co-volume so obtained now reproduces
the observed detonation velocity to within the experimental
uncertainty for all loading densities of TNT that may be
realized in low pressure casting.

Chemical equilibrium is assumed to obtain in the
adiabatic expansion until a certain point is reached. For

the modified JM co-volume equation, the calculated mole

number of carbon passes through a minimum at about 2100°K
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for a 1l.0g/cc loading density. This agrees with the Jones and
Miller value of the carbon minimum temperature, The same
value of the carbon minimum temperature is found with the
hard molecule equation of state. For this equation the
minimum occurs at 1800°K at a loading density of 1.5 g/cc,
whereas Jones and Miller calculated this minimum to be at
1600°K, and assumed frozen equilibrium below this temperature.
In the present application, the composition is assumed to be
frozen at the value attained at 1450°K in all cases.

Other physical and mathematical approximations of
Jones and Miller are discussed and the errors consequent
on their use are calculated, However, in the present
computations no significant approximations are made other
than the use of the JM equation itself. The JM assumptions
regarding the solid carbon were identical to those given
aboves The same assumptions have been made by Brinkley and
wilson(ls8], g, Taylor[l:2], paterson[l-3], and cook[1.9],
However, Fickett[1:1] has used a compressible solid equation
of state for carbon obtained from the analysis of shock data
in solid graphite rods, but assumes carbon particle
entrainment by, and thermodynamic and chemical equilibrium
with, the surrounding gas mixture.

Some thought was given to the desirability of using

Fickett's carbon compressibility data. However, in view of the
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fact that Jones and Miller obtained the coefficients in

their expression for the co-volume on the assumption that

the carbon was incompressible, it was felt essential to

continue with the same assumption for this form. Furthermore,

it was also felt better not to introduce this additional

variable in a first examination of the effect of the hard

sphere equation of state, especially since, in order to

appreciate the effects of the different equations, it 1is

important to ensure that no other factors, either physical

or numerical, are significant. This is probably the first

study in.which such a comparison has been made. Here the

entire computations for both equations were carried out

within the same computation program, using the same physical

constants and the same numerical procedure throughout.
Conditions at the equilibrium detonation front

are established conditional on the usual assumptions that

the mass motion is one~dimensional and adiabatic, that the

Chapman—Jouguet postulate applies, and that the width of

the reaction zone is negligible compared with the instantaneous

radius of the detonation front. The available data on the

. .  1.101 : ,
width of the reaction zone for TN'I‘[1 1 J, together with the

approximate analysis of Eyring and coworkers[l‘ll], indicates
that, were it possible, in fact, to initiate a stable
detonation wave in a sphere of TNT by a central spherical

detonator of negligible volume, errors arising from this
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assumption would be insignificant at detonation front
radii exceeding 5 cm* A more realistic consideration would
have to recognize that, in practice, TNT is usually initiated
by a two-stage detonator-booster combination, consisting of
a small detonator fired centrally in a booster sphere of
tetryl/TNT mixture which is placed concentric with the main
charge of TNT.

Another practical consideration 1s that in a cast
explosive, the local loading density tends to be higher at
the surface than at the centre. Reasons for this are well

[1°12]o One may conclude that computations of the

known
kind given here cannot be expected to be in accord with

actual behaviour unless the radius of the explosive charge

be on the one hand sufficiently large that the radius of

the (smallest available) central booster be small compared

with it, and on the other hand be sufficiently small that

the gradient in the local loading density may be safely

ignored. The latter deficiency may be ameliorated by

casting large charges in relatively small sections and

joining them in the geometry desired. This has been done

for some time at the Suffield Experimental Station[l°13].

In these large TNT charges, the (smooth~-faced) subsections

were merely placed together and it 1s interesting to note

that the measured detonation wave speed[1°14](measured to

[1.7]

0.5% uncertainty) agreed in all cases with the Bruceton data

to within 1%.
*That is, for a 1.5 g/cc loading density.
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For a Taylor wave, the partial differential
equations of motion and continuity may be replaced by
ordinary differential equations. This was first shown

[1.15] ang Sedov[l‘ls]o Thermodynamic

by G.I. Taylor
behaviour in adiabatic non-viscous motion is not affected
by the motion at all since the thermodynamic properties

of an element of the mixture depend only on the initial
(i.e., CJ point) state variables and on the equation of
state. Accordingly, the instantaneous centre-of-mass
velocity of an element of mixture may readily be calculated
from the state variables by numerical integration of the
ordinary differential equations relating the mass motion to
the thermodynamic properties. If this is attempted as a
separate calculation after the properties on the adiabat
have been tabulated, large errors are difficult to avoid.

[1.15] calculations for

Such was the case for G.I. Taylor's
TNT using the tabulated adiabatic values of Jones and Miller.
When, as in the present case, integration of the equations
of motion is carried out simultaneously with the computation
of the properties on the adiabat, this type of error does
not arise.

The Taylor wave calculations are given here only
for spherical detonations. Those for plane and cylindrical
detonations could have been calculated with relatively little

additional effort, but these cases are of less practical

interest for condensed explosives.
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In cylindrical and spherical Taylor waves, the
assumption of a zero-width reaction 2zone (implicit in
that of an invariant detonation front speed) leads to a
singularity in the differential equations at the CJ point.
This is due to the artificial contiguity of the non-reactive
and reactive Hugoniots inherent in this assumption. Such
artificial detonation fronts demand infinite reaction rates
and are sometimes referred to as "reactive shocks".
Mathematical methods of circumventing the difficulty
occasioned by this singularity have been described by
G.I. Taylor and by practically everybody who has discussed
the Taylor wave problem. Too much has been made of this
relatively trivial issue. In the present formulation,
special measures at this point are not necessary. A
Runge-Kutta representation of finite differences correct to
4th order is used: some difficulty would exist only in a
first order representation.

In the equations about to be described, such
extensive quantities as the energy, enthalpy, etc., are
represented as the sum of a component which would arise
were the gas state ideal, together with an additional
component attributable to intermolecular forces. The ideal
component is, in turn, represented as a sum over the species
contributions. It is a necessary preliminary step to obtain

a concise and precise representation of the ideal gas
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functions required for the pure species concerned. Such
representations were obtained by least squares fits of
suitably chosen functions to the constant pressure specific

(1.17] tables. Expressions

heats given in the (1961) JANAF
representing the ideal gas equilibrium constants for the
reactions concerned were also derived from these tables in
the same way. The heats of formation for the product species
were also taken from the JANAF tables.

Some discussion is devoted to other equations of
state., However, only slight attention 1s paid to detonation
front formulae. Such formulae have already received considerable

publicity[l°18]n Cook[l'9]

describes several of these. In the
absence of proofs to the contrary, these formulae appear to

be merely effective fits to reproduce the detonation front
speed. The JM equation belongs to this class but 1t appears to
have a more general basis than most.

The present lack of experimental high pressure data
from sources other than detonation has, so far, prevented the
establishment of reliable criteria by which the validity of
equations of state may be judged. The degree of agreement
obtained between calculated and observed detonation velocity
- - the most frequently used criterion - - 1is not adequate,
nor is the observed first shock velocity in the medium
_ surrounding the explosive, because neither of these is very
sensitive to the equation of state. For example, it is a

[1.19]

consequence of a general argument due to Jones that



- 20 -
regardless of the equation of state used, the calculated
detonation wave speed will not be in accord with that
observed in condensed explosives at high loading density
unless the calculated adiabatic exponent has a value close
to 3 at the equilibrium front. Considerable use has been
made of this well known empirical requirement, and if the
viewpoint is taken that that value of the adiabatic exponent
obtained by inserting the observed detonation wave speed
in the simple Jones formula for it is more reliable than
any other, then a gamma law gas equation of state might be
said to have been constructed.

Arguments essentially of this inverse or
hydrodynamic nature underlie all the so-called "inverse
equations of state". Conversely, it follows that, for the
limited purpose of describing conditions not far from those
obtaining at such detonation fronts, the very simple
assumption that the products will behave like a gamma law
gas with the exponent equal to 3 1s adequate to reproduce
the observed detonation speed with reasonable precision when
a value for the chemical energy is assumed. The latter may
also be taken to be constant. However, it would be absurd
to argue that it is such a gas and that the gamma law
relation assumed 1s a general equation of state simply
because the observed detonation wave speed is thereby

reproduced.
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Furthermore, when it is borne in mind that
thermodynamic conditions in a Taylor wave lie within a fairly
narrow range on the calculated adiabats, (volume changing
only by about 60%), it may be appreciated that even fairly
good agreement between an instantaneously observed spatial
distribution of one of the properties and that of the Taylor
wave would not be an adeguate criterion of the validity of
an equation of state. Alternatively expressed, the Taylor
wave may be said to be insensitive to the equation of
state. That this is so will be illustrated in chapter 7
by comparing the Taylor waves calculated here with those
calculated by others using very different equations.

Observations of the kind referred to have not so
far been obtained for condensed explosives but in gaseous
detonations, where the pressure is fairly low, the
instantaneous spatial distribution of pressure may be
readily deduced from pressure gauge records. Such
distributions agree with the corresponding Taylor wave.

In gaseous detonations, the product mixture is almost
invariably assumed to be a gamma law gas, but agreement
of the Taylor wave so deduced with that observed is
quite unremarkable (except in so far as the agreement
obtained supports the hydrodynamic assumptions) and only
indicates that the adiabatic exponent does not change
greatly over the fairly limited range of temperatures

obtaining in the Taylor wave, a feature known in advance.
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It is now opportune to clarify the distinction drawn
here between an equation of state and other formulae used for
the same purpose. A protracted and dangerous discussion can
only be avoided by admitting that any relation allowing the
calculation of all thermodynamic properties in terms of two of
them may be regarded as an equation of state. However, we are
not concerned with detailed classifications, but rather with
attempting to draw a clear distinction between equations
applied to detonation products which are based on phenomena
other than detonation and are free from the related general
hydrodynamic assumptions, and those which are deduced from
observed detonations with all the necessary assumptions that
this entails. As indicated earlier, the former are here called
equations of state and the latter are called detonation front
formulae or simply formulae. It is generally agreed that an
equation of state should be applicable to several kinds of
phenomena and to a fairly wide range of conditions. To
attempt to define just how wide is out of the question: all
that one may do is to describe some as more general than
oghers, the generality referring'particularly to the range of
conditions. Finally, since virtually all practical equations
of state are empirical - - and, indeed, should be so if they
are to describe reality - - the term theoretical equation of
state will generally be avoided except where the intention 1is
to emphasize the process of derivation rather than the final

application.



- 23 -

Returning now to the topic of criteria of wvalidity,
Lutzkyll.zo} has proposed that the second shock in the blast
wave in the fluid surrounding a spherical charge of explosive
be used to judge the order of merit of equations of state. A
series of computations of the trajectory of the second shock
would be made using the equation of state as the only variable.
The degree to which these agreed with the observed second
shock trajectory would decide their relative validity. However,
as Lutzky pointed out, it would have to be taken i1nto consider-
ation that all calculations of product behaviour (including the
present ones) neglect the reaction zone and other possibilities
such as turbulence and incomplete combustion. Nevertheless, the
second shock twice traverses the product mixture before passing
into the surrounding fluid and the calculated path should be
a sensitive function of the product equation of state. It is
noteworthy that for spherical blast waves in air initiated by
high explosives, the second shock calculated using hitherto
proposed product equations of state differs[l‘ZO] more
strikingly from that observed than is the case for any
other reliably observed phenomenon.

This paper is concerned with calculations that may
be made only requiring specification of the explosive and of
its loading density. Thus, observed phenomena are not

required except in so far as they relate to already calculated

values. For the JM formula, the observed detonation wave speed
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is used, as described earlier, to correct the formula. Those
more interested in observed phenomena are referred particularly
to Cook[l‘gl, which is also a good general reference on

[1.2]

condensed explosives. Others are J.Taylor and Kistiakowsky

[1'21]. Data on detonation wave speeds have been released by
the Bruceton[l°7] laboratories. Reaction zone phenomena are
described in Combustion, Flame, etc.[l‘lgl. 0f particular

interest with regard to TNT are the data of Cybulskiil*223,

[1.23], [l.lO].

and Urizar Details on the properties of

Jacobs

unreacted explosives, on their manufacture, and on the history

of their discovery and development, are given in Davis t1-24]

[1.25] and by Pennie[l°26].

and Urbanski

The gas equation of state is dealt with in chapter 2,
and the general thermodynamic relations for the mixture are
treated in chapter 3, the detailed relations for the composition
being given in chapter 4. The calculation of the Taylor wave 1is
described in chapter 5 and chapter 6 deals with high-pressure
approximations. The numerical results for TNT are given in
chapter 7, which also contains a brief concluding discussion.

It may be noted that the references are to be found immediately
following the text in each chapter.

The main feature of the notation used is that the
nature of a function or thermodynamic property Y is consistently
denoted by an appropriate modifying symbol. 1In addition to Yoy
denoting that component attributable to real or non-ideal

conditions, and Y.y denoting the thermal or ideal condition

component, the following are used:




Y* - dimensionless H ?j - per mole of species j
Y°,Y# - in the ideal gas state ; Yc,Yl - solid carbon

Y - per mole o - gas phase

Yo - at 0° Absolute H Ye - unreacted explosive

state

In the computations, and generally in the text, energy
is expressed in kilocalories (kcal), temperatures in large
degrees (1 DEG = 1000°K) in computations and in °K at various
parts of the text, and pressure is expressed in both kilobars
(kbar) and in kcal/cc units. The last named is the natural
pressure unit in the computations with the energy unit chosen,
but the kbar unit is more familiar and is used in the text and
especially in the tables. Mass is expressed in grams (gj,
length in centimetres (cm) and time in microseconds (usec).
If the detonation wave speed and loading density are expressed
in these units the corresponding pressure is obtained in
megabar units if no conversion constants are applied.

Considerable computation is involved. Several short
preliminary computation programs were written so as to calculate
the required functions used in the later main program. This
was designed to handle all the calculations described in the
present paper. All features relating to programming and
computation were carried out by the author: this involved a
very considerable time. The program however, is quite fast.
The entire computations for a prescribed loading density

including the iteration to the Chapman-Jouguet conditions,



the Taylor wave, and the continued computations along the
adiabats at temperature intervals of 0.25 DEG down to 0.3 DEG
takes about 1.5 minutes using the (McGill University) IBM 7044
computer, The method of regula falsi was used exclusively

for iterative calculations because, unlike other methods,
slopes are not needed, divergence cannot occur, and convergence
is fast. For quadrature, a Runge=Kutta relation correct to

4th order is used, Functions were represented as power

series wherever their nature permitted such a representation.
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CHAPTER 2

GAS EQUATION OF STATE

2.1 Introduction

Particular attention will be paid to high pressure
equations of state which are in no way dependent on observed
detonation front behaviour. The effective experimental data
for such equations are the constants entering into the various
formulae that have been proposed to describe the species-
dependent instantaneous potential energy existing between a

pair of like molecules, also called the intermolecular or pair

potential.

In the detailed relations for the composition, only
the six gaseous species CO, C02, CH4, H2, Nzand H,0(g) are
assumed to be present in non-negligible quantities. In order
to be able to concentrate more strongly on the main gaseous
products of CHON explosives, attention will be confined to
only these gases, together with 02, which is present in the
products of oxygen-positive explosives, such as nitroglycerine.

2.2 The Intermolecular Potential

Comprehensive references on such information are the

textbooks by Hirschfelder, Curtiss and Bird (HCB)[Z”lJ

(2.2]

and by
Taylor and Glasstone More recent information on the
molecules with which we are particularly concerned is given by

Fickett[2'3’2°4]o Among the recent reviews of high pressure
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physics and chemistry containing information relating to
intermolecular potentials are those of Bradley and co-authors
[Z'S]and Hamann[2°6].

Our immediate concern is to present a necessarily
brief appraisal of existing information on intermolecular
potentials, restricting attention to the species mentioned
and to the simplest realistic representations which have been
proposed, that is, to those for spherical molecules. The
constants in these relations have been derived from observed
phenomena. We are most particularly concerned with potential
constants determined from phenomena observed at high
temperatures.

It is now well established that intermolecular
forces arise from Coulomb interaction between the nuclei
and electron clouds representing the separate molecules,
so that if it were possible to state the position of all
nuclei and electrons at every instant, the time-averaged,
or macroscopically observable potential energy arising from
the configuration of space change could be derived from
Coulomb's law. The potential energy between the nuclei and
electrons within a given molecule could also, in principle,
be calculated in the same way.

In practice, an inverse procedure must be used.

Invariably, a very simple model is assumed for the molecule.

Unless it is known to be grossly non-spherical, the molecule
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is generally taken to be a sphere. The electronic charge
distribution of a rare gas atom in 1i1ts ground state 1s
spherically symmetrical and therefore, although the atom

-

1T5 due to charges ey

has an instantaneous dipole moment Z&e
at positions ;i' the permanent dipole moment is zero. The
same is so nearly true for many diatomic and polyatomic
molecules that they may be classed as non-polar. Except for
the HZO molecule, which is strongly poléii7{he molecules of
present interest belong to this class.

The inverse procedure referred to is as follows.
For a given pure gas of spherical non-polar molecules, the
pair-potential is symmetric and therefore depends only on the
pair spacing. A formula approximating the potential is assumed
which consists of a sum of functions of the spacing. These
functions contain certain unknown constants, which are
obtained from a set of experimental data by a perturbation
fitting procedure. A guess 1s made as to the value of all
the potential constants, the potential so obtained is employed
in a calculation of the observed phenomenon which is then
compared to all the observations. The comparison is repeated
until a set of constants is found which best reproduces or
fits the available set of data. The same procedure is used
for polar molecules, or for potentials describing non-spherical

molecules, except that the potential formula now requires that

orientation-dependent terms be included.
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For some of the molecules with which we are concerned,
certain potential representations recognizing their
non—spherical[zel] shape have been compared to data so as to
determine the corresponding potential constants. Since the
labour involved using such potentials is much greater, it is
not surprising to find that little information is available
regarding potential constants for such representations. The
(polar) H,0 molecule 1is less non-spherical than CO; .

The potential, however, is non-spherical. For spherical, but
polar molecules, a simple pair potential formula consists of
that for a pair of non-polar spherical molecules modified by
a term which is dependent on the relative orientation of

the pair of permanent dipoles imagined to be imbedded in the
spheres. Potential constants for a model more sophisticated
than this are not available for water.

For these, and other, practical reasons the adoption
of a symmetric potential for our non-polar molecules, and
of a non-symmetric potential for a spherical molecule of
water of the type just described, appears to be justified,
provided that it is kept in mind that the corresponding
potential constants pertain, not to the molecule itself, but
to the equivalently behaving spherical model.

When it is imagined that a spherical molecule has a

definite diameter (at a prescribed temperature;, this can only

refer to a hard sphere or to the collision-averaged mean
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diameter of a soft sphere, collisions being perfectly elastic
in both cases. It is evident that this diameter can be defined
in terms of intermolecular potential constants.

At very high pressures, rotation of non-spherical

[2.8] to a degree dependent

molecules is expected to be inhibited
on the departure from sphericity, and at infinite pressure,
rotation of such molecules may be presumed to be zero.
Accordingly, if it is possible to construct a three-dimensional
model of the nearly incompressible hard core of a molecule,
then the low-velocity collision diameter of the molecule may be
placed within rough bounds on the expectation that it is
somewhere between the diameter of that sphere which has the
same volume as the core, and of that sphere swept out in space
by a freely rotating core. An approximate model of the core
may be constructed using the bond-distances and angles of the
atoms in the molecule, and their "van der Waals radii": this

has been done by Fickettf2°3]

Pauling[2°9]o His estimates of their volume-equivalent

using the values given in

diameters are given below. The ratio of these diameters is
an indication of the degree to which the shape is non-
spherical. Also shown for comparison are room temperature

handbook[2°101

values and the low velocity collision diameters ¢
which were used in the calculation of the TNT product eguation

of state.
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Table 2.1

&

Molecular Diameters (in Angstroms)

Molecule Diameter [2« 3] o Handbook
(a) (b) Diameter**
non-rotating rotating v VDW K

Co* 3.5 4.1 3.706 3.19 3.12 -
Co, 3.7 5.1 3.897 3.34 3.23 3.40
CH4 3.5 4.6 3.796 - -~ -
‘H2 2.7 3.5 2.915 2.40 2.34 2.32
N, 3.5 4.1 3.749 3.15 3.15 3.53
H,0 3.2 4.3 2.970 - - -
02 3.3 4.0 - 2,98 2.92 -

—

Presumed to be equal to Fickett's values for N,

* %

v-viscosity; VDW-van der Waals egn.; K-heat conductivity.

The best known realistic symmetric pair potentials

(for spherical non-polar molecules) are the Lennard-Jones

(LI (6~12))

and the modified Buckingham(MB) representations.

In these, the force potential ¢(r) between a pair of molecules

at a spacing r is represented as

LJI(6-12):
MB: (¢(r)
(¢ (r)

where ¢ is

o(x) = 4ko[(o/r) 2~ (a/1) %] e, (2.1)

k6 (a-6) "L[6e® (1T Tol g (x /r) 61, rax )
Jeoaoos (2.2)
o0 7 r<rm)

]

the low-velocity collision-diameter defined by

the value of r for which ¢=0, k is Boltzmann's constant,
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g is a parameter with the dimensions of temperature, k& being
the well-depth or minimum in the pair potential occuring at
the (force-free) spacing r,, o is a number lying between

14 andl7 for our molecules, and L is that value of r at which
a maximum occurs in the MB potential, which, were it not for
the modification ¢=« for r<rp, would fall to a value -= as
r-0. The MB potential is also referred to as the "exp-six",

the Mason-Rice[2°11],

or the Mayer-Careri potential.
Values of the potential constants for a pair of
unlike molecules are not known from experiment and are not
provided by theory. Guggenheim[2'12] lays considerable
emphasis on this point. Certain empirical combining rules
are generally used: these are empirically not contradicted

only at low densities, i.e., at large average spacings.

These rules are:

172
R s o dg L, . , . = s 0 * 8.,
035 (044 ojj)/2 P84 (654 ejj) (2.3)

N
®
®

oij = (roii+rojj)/2 provided that o;. = 255

where the double subscript refers to the potential constants
for a pair of like molecules.

For O,, and for a sphericalized (i.e., non-polar
equivalent) high-temperature representation of H,0, Fickett
suggests potential constants only for a modified Morse (MM)
potential

MM: ¢ = ko(a-6) T[6e® (1 E/To) _ o601 x/T0)y o g
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While the LJ and MB potentials are infinite at r=0, the MM
potential is positive and finite.

The inverse 6th power term accounting for the long
range, weakly attractive, so-called "van der Waals forces"
has long been known to be fairly realistic at r>>r,. These

forces are known to include the London[2‘l3]

or dispersion
forces, accounting for the dispersion of light, and the
induction and orientation forces, which, for non-polar

molecules are much less important[2°2’p3Ol].

Representation
of the strongly repulsive forces that obtain for r<ry is much
less certain. These forces are also referred to as "overlap
forces" because at such close spacings the previously separate
electron clouds overlap or become distorted, or "exchange
forces", because in the Heitler—London[2'14] treatment of
intra-molecular forces in a hydrogen molecule, the principal
contribution to the repulsive potential was shown to be
accompanied by the exchange between the atoms of a pair of
spin-parallel electrons.

The available information indicates that the choice
of 12 for the inverse power of the spacing to represent the
repulsive term in the LJ potential must be regarded merely
as the best overall choice for the representation of low
temperature data when (for mathematical convenience only)

choice is restricted to multiples of 3 in a more general

LJ(6-n) potential

LI(6-n) = ¢(r) = Ar M-Br=6 . ceeeenen. (2.5)
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It cannot be said that there is any correct value of n
because the power law functional form is known to be not

[2.15]

correct. The MB form is essentially Slater's repulsive
term

@:Ae-r/rs ® e e 0o 0 e 00 (246)

added to the inverse 6%h power attractive term. The success
of his well known application of (2.6) to helium indicates
that this repulsive term is functionally more correct. This
is supported by molecular beam scattering data. Repulsive
potentials thus obtained from various sources are reported

by Fickett[1°3] for N CHy and 0yt such high-velocity

2
collison data are equivalent to high-temperature values.
However, that the MB functional form 1is not fully correct
at close spacing may be deduced from the fact that,as in
the case of LJ constants, the potential constants obtained
differ significantly not only according to the kind of
behaviour from which they are determined but also with the
temperature range over which the phenomena are observed.
The MB form must be regarded as the superior form
not only for this reason, but also because the additional
constant provides greater flexibility in fitting data than
the (2-const) LJ form. However, with the exception of the

recently reported molecular beam data, which are

gqualitatively most important, but so far fragmentary, most
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of the data from which readily available[2°l] constants have
been obtained appear to have been derived at temperatures we call
low, so that the relative physical advantage of the MB form 1is
diminished. The mathematical simplicity of the LJ form 1is,
of course, the major reason for its formulation and continued
widespread use. Not only have far more data been fitted by
the latter, but its use results in simple power series
expressions for the second virial coefficient and its
derivatives., It is also much simpler to use in our
approximate, temperature adjusted, hard molecule equation of
state: indeed, use of a more sophisticated potential relation
in this equation of state would be difficult to justify.
However, in selecting LJ potential constants from those
available, we must keep in mind that the inverse 12th power
term gives too steep a repulsion for most of our non-polar
gases and that, in order to compensate for this, extra
weight must be given to constants derived from high-temperature
data.

For polar gases, the best known potential of the

[2016]‘

kind discussed earlier is that of Stockmayer The

original potential suggested for a spherical, but polar,

molecule was that of Keesom[2°17j

, who visualized a polar
molecule as a hard sphere containing an embedded point dipole:
for this model the pair potential is entirely due to the
strength of the dipoles, their spacing and their orientation

with respect to the intermolecular axis or line joining their
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centres. The original Stockmayer potential consisted of
Keesom's term added to the general LJ (6-n) potential (2.5},
and using this, he found potential constants for water by
fitting to virial coefficients at temperatures between
400° and 700°K. He also found potential constants for
ammonia (NH3), only traces of which have been calculated
to be present in the products of TNT,

Here, the less general, but more widely applied,
Stockmayer form, the Stock(6-12) relation, for which
more recently determined constants are availableiz”l], is
used. This consists of the LJ (6—12) component (2.1} added
to the Keesom orientation dependent polar term, but we may
note that how far the n=12 assumption is in doubt is indicated
by Stockmayer's choice of n=24 for water, a value he defends
as most likely among multiples of 6. The Stock(6-12)
poteﬁtial for a pair of like polar molecules, each imagined
to contain an dmbedded point dipole: of strength or moment j,
is

1 2_-3

Stock (6-12) : ¢(rr¢lr¢21¢l—q»’2)=4ke[(O/Ar) 2_(0/1)6]'}- r g,

where g = 2C0S¢;C05¢,-SiN¢;S1N$p3COS (Y ~U,)

where ¢, y are respectively the polar coordinates of latitude

and longitude specifying the instaneous orientations of the
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two dipole moments with respect to the intermolecular axis
¥,, between the molecules 1, and 2 in the pair.
A high~temperature angle-independent (i.e., non-polar
equivalent, or spherical) approximation for polar molecules
is ascribed to Krieger[2”l8]. Such high-temperature spherical
approximations are needed for our temperature-adjusted hard
molecule equation of state. Krieger's approximation refers
to a model in which the angle-dependent term 13& is replaced
by one due to the interaction of two dipoles which are
perfectly aligned on the axis ¥;,. It follows from (2.7) that
the potential may now be expressed
Krieg(6-12): ¢(r) = 4ke[(o/r) %= (o/r)0-6*(o/r)31 )
oo (2.8)
where 6* = 2u2/4keo0> )
For water (u=1.83 debyes), Krieger's values are

o = 2.8348 , 8 = 231°K , &% = 2.333  ..... (2.8a)

It is evident that the Krieger potential may, in
turn, be approximated over a chosen range by any of the
non-polar potentials described: this merely requires that
suitable constants be assigned. For a range of ¢/k from
1000° to 4000°K, one readily finds adequate constants for the

LJ(6-12) form for water, viz.,

opg * 2.97A , 6y = 52°K versene. (2.8b)
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It is not suggested that these values are unique, nor is
it suggested that either (2.8b) or (2.8) be used for
a calculation of the second virial coefficient for water,
even at high temperatures. However, it is proposed that
an approximation of the kind given in (2.8b) is adequate
for use in an approximate equation of state at high
temperatures, when water is the only polar gas present 1n
a mixture containing a preponderance of non-polar molecules,

Fickettr2°3], using a Lennard-Jones and Devonshire
equation of state, and an MM (spherical) potential for water,
has attempted to find corresponding potential constants for
water by successively calculating shock Hugoniots and
comparing these to those obtained by Rice and Walsh(2-19]
from an approximate equation of state devised to fit very
high pressure shock data for water. The potential constants
thus obtained, assuming a=14 are

r, = 3.35% 6 = 138°K e (2.9)

It cannot be said that these values successfully fit the
Rice and Walsh temperature-pressure Hugoniot, nor does
Fickett claim this, but the pressure-volume Hugoniot in the
range 200 to 350 kbar 1is not more than about 10% i1in error
at a given volume: here the temperatures according to Rice
and Walsh are from about 1600°K to 2700°K. The constants

(2.9) are subject to errors arising from the thermodynamic

assumptions made by Rice and Walsh.
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The principal data for the determination of potential
constants are measurements of second virial coefficients,
Joule-Thomson coefficients and viscosity in pure gases, the
density and energy of sublimation of crystals, and, more
recently, (reactionless) shocks and the scattering of
molecular beams. Measurements of transport phenomena other
than viscosity, such as diffusion and thermal conductivity
are generally less precise and fewer constants appear to
have been derived from them. Viscosity data have generally
extended to higher temperatures than for other observations
and are therefore of particular interest here. Shocks in
dense gases appear to be the most promising source of
high-temperature high-pressure equation of state data but
little is so far available for the species concerned here.

The purpose of this appraisal has been not only
to review, but to engender a realistic attitude to the present
state of pair potential information, particularly in regard to
the strongly repulsive portion of potentials, which is most
important for high-velocity collisions, and, therefore, at
high temperatures. It i1s not realistic to regard the
potential relations which have so far been proposed,
particularly those mentioned here, as more than functionally
approximate representations, strictly applicable only to pure
gases, the constants in which are subject to continuous, and

sometimes drastic, review as fresh data become available. The
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last remark is particularly supported by the recent Stockmayer

[2.20]

potential constants for water A summary of recently

obtained potential constants is given in the new (1964,

[2.211 4f ues.

edition

Table 2.2 contains the LJ(6-12) potential constants
which were used in the determination of the hard molecule
equation of state for the gaseous detonation products of TNT.
When Fickett is claimed as a source, this means that his

constants for the MB (or the MM) potential were assumed to

apply to the LJ(6-12) potential in the following way:

013 = Sy ¢ OLJ = OMB  eeeeeeses (2.10)

Whereas for the LJ(6-12) relation c/ro=const=2_1/6, for the

MB relation o/ro depends on ao. The following values are taken

from HCB[2.21,p34]

o Oﬂ/ro (MB)
13 0.88320
14 0.88910
15 0.89417

It is not claimed that the choice of constants made is the
best, especially in the light of recent** information.

However, the best choice of constants for a particular

* %

The author did not become aware of the summaries of pair
potential constants reported in the new edition of HCB
until the computations were completed.




calculation is a matter here regarded as of less importance
than the general notions of the equation of state. Some of
the LJ(6=-12) constants obtained at the highest temperatures

reported(2:21,p1212] are given in Table 2.3 for comparison.

Table 2.2

LJ(6=12) High=Temperature Pair Potential Constants

Species Run (a) Constants pata(b)
) o (R) 8 (°K)
co (A 2 3,706 88 v
' (B) 1 3,621 120 v,B
co, (a) 2 3,897 213 v
(B) 1 3,755 200 V,B
CHy (A) 1,2 3.796 144 '
Hy  (A) 1,2 2.915 38 v
Ny  (A) 2 3,749  79.8 v
(B) 1 3.621 120 V,B
Ho0** (C) 2 2.97 52
(B) 1 2,978 138 Shock

(a) In TNT product computations: l=initial;
2=final calculations.
** Sphericalized potential.
(b) V=viscosity; Be=second virial coeff.
- A-HCB(ref 2,1); B=Fickett(ref 2.3); C=this paper.
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Table 2.3

Lennard-Jones and Stockmayer (6-12) Pair Potential Constants

Species Constants Found from Second Constants Found from Other
Virial Coefficient ) Data
o (R) 6(°K) _ Data Range(°KJ o (&) 5(°K) Data
(a) (b) (c) (d) (e) (f) (g}
Cco 3.763 100.2 3.92(N) 32.8 D
3.706 88 V(H)
3.59 110 v
co, 4.07 205 4.00(Nj 190 v
3.91(N) 203.3 600~-900 4.07(Ny 150 D
4,47(N) 187.5 300-500 4.11(N; 221 C
3.897 213 vV (H)
CH4 3.817 148.2 3.697(N) 156.7 K
3.809(N) 148.1 300-450 3.822 137 \
3.796 144 V (H)
3.808(N) 140 v
H, 2.928 37 2.915 38 V(H)
2.959(N) 36.7 100-430 2.968 33.3 v
N, 3.71 95.9 3.85(N) 47.6 D
3.698 95.05 3.749 79.8 V(H)
3.681 91.5 \Y
H50 2,65 380(1.2) 300-700 2.52(N) 775(0.707) V
**2,99(8) 300-700 2.76 (8} X
2.53(S) V(Suth.)
0, 3.58 117.5 3.541 88 V(H)
3.46 118 3.433 113 \'

Note (1) Except where the ¢ column shows (N) or (S), values are
from the 1954 edition of HCB{ref2.l); (S)-values from
Stockmayer (ref2.16); {(N)-values from (l964) addendum
to HCB(ref2.21)

(2) Symbols under column (gj refer to: D-diffusion;
V-viscosity; C-third virial coefficient; K-heat
conductivity; X-X-Ray scattering; V(Suth.)-viscosity
using Sutherland potential. (H) here refers to a
higher temperature range 300-1000°K generally, extending
st1ll higher for CO, N3 _

(3) **Using Keesom potential for a hard polar molecule. (§*/v2)

(4) Underlined values are those used in the computation of
the second virial coefficient for TNT gas product mixture
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2.3 The Detonation Front Relations of H. Joneslz°22]

The following well-known relations due to Jones are
the basis of most inverse equations of state. For the
immediate present, we are interested only in the values
derivable directly from these relations as a reference
magnitude which equations of state must explain, rather than
in inverse equations of state.

Jones showed that fairly precise estimates of the
pressure, mass density and adiabatic exponent at the equilibrium
detonation front in a column of explosive could be made without
invoking any equation of state provided that precise values of
the observed detonation front speed D, and its derivative with

respect to loading density are available. His relations are

p = D2a/(2+8) z,, (1)
g
Afp = (le) = V/Ve = a/D, = 1-1/(2+B8)k_ (2) )(2.11)
)
)
Yag = (3logp/3loge)g = az/pvl = (2+8)z_-1 (3) )
where z, ¥ l+dlogD,/dloga

and where A is the explosive loading density, ( ) refers
to the unreacted explosive, vy 1is the specific volume of
the product mixture and ¢ its density, and 8 is a parameter
defined by

8 2 p/16(B=Q)/aV], = [y4Cy/vy (ap/0T) 1177 ... (2.11a)

where CV is the product specific heat at constant volume,
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E is the internal energy of the products and Q is the chemical
energy released in the detonation reaction.

As Jones has pointed out, no results may be obtained
from these relations without formulating some equation of state,
but even a very approximate form is adequate to give reasonably
precise estimates of p, v; and y, because it may confidently
be estimated that

B << 2 ceeeeees (2.11b)

Jones estimated that 8 = 0.2 for PETN. It is here found that
for the modified Jones and Miller formula for TNT, 8 = 0.12.

Cook [2+23,p67]

gives estimates for 8 in PETN ranging from
0.05 to 0.65 according to the loading density and the equation
of state assumption made. For present purposes, it is adequate
to estimate
B = 0.2 + 0.15 )
) ceeneees (2.11c)
so that (2+8) = 2.2+ 7% )
which is a fair estimate of the reliability of values estimated
from (2.11)

Observed detonation wave speeds D_ are generally

fitted by a polynomial
m
Dy = Eknan'l , N - Y
n=1

and for high loading densities, A > 0.8g/cc, the Bruceton

[2.24]

laboratory observations are given as linear in the
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density
Do = ky+kya )
%
so that z, = (kl+2k2A)/D°° = (2Dm—kl)/Dw )
Estimates of properties derived from (2.11) using (2.1llc) and
(2.12a) are given in the following table. These serve as an

adequate guide to the magnitude involved.

Table 2.4

Estimates For an Explosive Loading Density A of l.6g/cc

5 e s 8 0 0 00 (2.12a)

Explosive Observed Quantities Derived Values
k) ko Do 2, | P V/Ve=4/¢ Y
.m/sec ..m cc/g sec . .m/sec - |kbar - -
TNT 1785 3225 6945 1.74 202 0.739 2.82
tetryl 2375 3225 7535 1.69 245 0.732 2.70
PETN 1600 3950 7920 1.80 253 0.748 2.95
RDX 2490 3590 8234 1.70 290 0.733 2.72
2.4 Virial Equations of State
That expression which represents the pressure as a
power series in the inverse volume is known as a virial. The
coefficients of V' " are functions of temperature only because
they are defined by conditions in the limit p+0. The virial
expression for p/RT for a pure gas is
p/RT = ZB‘n(T)En : c =1V, ceesreses (2.13.1)

1

n
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where () refers to one mole of gas, and Eh is the n

th

virial

coefficient, so that B;=1. The corresponding expression for

the compressibility factor Z is therefore

Z = pV/RT = 1+ Z:E'(T)En'l ,

where the coefficients have the meaning

Bn+1 = (1/n1) lim(a%z/28™),,
p+0

c e o 8 e

(2.13.2)

(2.13.3)

which establishes their significance as coefficients in a

Taylor series

£(7,T) = £0,)+ L ("¢ /350) e /nl
n=1 ©

While expressions of the form (2.13.2)

(2.13.4)

have been

in use for the representation of pV at near-ideal conditions

since at least the time of Onnes(1901), recognition that they

have a sound theoretical basis has been more recent.

In

principle, the coefficients B, are calculable by the methods

of statistical mechanics from the pair potential formulae.

In practice, difficulties in computations, together with the

previously outlined uncertainties in these potential formulae

have so far prevented reliable computations beyond §3, the

third coefficient. It follows that, in practice, only such

relatively low densities p as permit the use of the truncated

form _ _ 5
z = 1+By (T) /V+B3(T) /V

(2.14.1)
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may be treated by a virial equation of state with realistic
coefficients B, (T).

When the (non-polar) gas pair-potential 1is
represented by the LJ(6-12) formula, the second coefficient

is given by

b B*

EZ(T) o)

where bo

2wﬁ63/3 '

B* (T*) s (1-2k) /4 .. (2.14.2)

i
?‘Pﬂs

g*
1 k

~1257372 jqk-an 1T [ (2Kk-3) /4]

where gﬁ

T* = T/6

and T is the gamma function. Values of g; are available

up to k=41[2:11 1t may be noted that the term by 1s

equal to 4 times the volume of N molecules** It is therefore
a van der Waals type co-volume, though it is not equal to
the van der Waals co-volume b, nor to the general co-volume
defined earlier. When o is in X units, the value of by is
given by

b, = 1.26150% cc mole™  ....... (2.14.2a)

For polar molecules, the second virial coefficient

may be represented by

% % B . .
of collision diameter ¢
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B(T)

By, [B* (T*) ~P* (T*,t*) ] )

here er o u2/81/2k603 _ su21/2 ) ceseeees (2.14.3)
Here,lB* is the dimensionless non-polar component and -P* is
the polar component. When the Stockmayer(6-12) pair potential
is used, B* is defined by (2.14.2). We are only concerned

with the term P* for water, where t*=1.2., The theoretical
expression for P* is an infimite series. At high temperatures
the correction 1s small, and since Rowlinson's calculations

of B*-P* are available[z'l] for a number of values of t*,
including t*=1.2, it seemed more practical to fit the

correction term by a simpler expression. Examination of the

tabulated values of
B* (T*,t*) = B*(T*)-P* (T*, t*) cetesees (2.14.4)

shows that P* is nearly linear in 1/T* for a particular polar
gas, i.e., for a particular value of t*. Accordingly the

expression 4
5 = kgiwng*'k ceeeee. (2.14.5)

P
may be fitted to the values of

B* (T*) ~B* (T*, £3)

where each of these functions is available. It is found

here that ’
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wi = 0.0565796 w§ = 1.02539 ) )

) for HZO )

) ) (2.14.6)
w§ = 5,08838 WZ = 7.89453 ) (t*=1.2) )

when fitted over the range 0.8 to 20 of T*, or 304 to 7600°K
for water. The relative error in B for water using (2.14.5)
with- the values (2.14.6)is less than 10—4, a trivial
departure compared with uncertainties in observed values

of B(T).

For the third virial coefficient for a non-polar
gas, usually represented, not as §3(T) but as C(T), no
expression comparable to the infinite series for B* arises
out of the integral in a statistical mechanical formulation,

even for an LJ(6-12) pair potential representation. The

only values available are those found by quadrature. Taylor

and Glasstone[2°2’p°350] give the expression
3
C* (T*) = E(T)/(Eo)2 = L hrrx(1-K) )
k=1 ¥ )
) (2.15)
)
where h{ = 0.268 , h§ = 0.086 , hg = 0.488)

obtained by fitting to the values calculated by deBoer and

Michels[2°25]o The more recent and more accurate calculations

of C*[2°26] given in HCB[2°1]

could readily be fitted by
a comparable or higher power expression, but (2.15) appears

sufficiently accurate for T*=1.5 to 10*, as illustrated below.
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Table 2.5
T* C* (T*) | Error %
Eqn.2.15] Ref.2.1,Table I-C |

1.5 0.542 0.54339 0.26
2 0.433 0.43710 0.92
4 0.320 0.32662 2.0

6 0.296 0.30771 3.8

8 0.286 0.29618 3.5
10 0.282 0.28610 1.4
20 0.274 0.24643 10

Ihg temperature range of adequacy of (2.15) is thus about
150° to 1000°K for the TNT product gas mixture, for which
géas:lDO°K using the high temperature constants given in
Table 2.2. These temperatures cover the range of application
of the virial on the detonation product adiabatics.

The compressibility factor Z may also be expressed

as a power series in (p/RT) , that is, by

7z = 1+ L B, (T) (p/RT) "% ceeeeees (2.16.1)
n=2

The coefficients D, (T) may be determined from B, (T) by

demanding that

X n ,_..n_ ,._n
Lim [872(T,p/RT)/or | _ = Lim (8 2(T,r) /37 ] .. (2.16.2)

One readily obtains the following relations

Dy = By )

= — 2 )

D3 = B3"B2 2

_ - - — 3 ; «
D4 = B4_3B2B3_2B2 3 e c s 029305 0 (2016@3)
- - 2 . o

D5 = Bg-4B,8,-283+10855,-55, )
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However, since §h>3 are not known, the only practical virial
of the form (2.16) with realistic coefficients is the truncated

form

z = 1+B (p/RT) +(C-B2) (p/RT) 2 ceeeee.. (2.16.4)
which may be expressed more simply by

2 = 1+(Bop/RT)B* (T*)+ (b p/RT) 2 [C*-B*2]  ,....... (2.16.4a]

when the same pair potentials are used for both B and C.
This cannot be the case except for a pure gas, and is not
necessarily the case even then, because of the uncertainty
in the pair potentials. The conventional notation

B for B,

C for B,
has now been adopted.

The empirically adequate expression for the second

virial coefficient of a mixture of m non-polar gases is

By = _2 Z; Z nin;

* (T ) )
i=1 §=1 ) Poi P13 (713 )
_ )
where By;s = [(Boij) 3+ (Byyq1/3) 381 )
)
_ 1/2 1/2 /!

T* . = (T, .T%. = , = (8. .6 .
i3 (T*, 5 TJJ) T/eij , where elj (ell ejj) g
m )
ng = X:nj )

j=1

s e cc e 0 (2¢l701)

where n; is the number of moles of species j in the mixture.
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For an invariant composition, the only one of present concern,

we may write Bg=§§(T). It is known that the mixed terms
B*ij involving a non-polar and a polar gas are non-polar so
that for a gas mixture containing a single polar gas, the

expression for Eé remains unaltered, except that

boik = boin/B 7 8ix = 8inB ceveeces (2.17.2)

where k denotes the polar gas and i, n denote non-polar**
gases and

B = 1+0.892 (o, t%/b )(ek/ei)l/2 . (2.17.2a)

oii
where oj is the polarizability of the non-polar molecule

[=] —
in cubic Angstr®ms and b is in cc/mole. Thus the only

i
polar term in §§ is (nk/ng)zﬁbkkBﬁk(Tﬁk,tﬁ).

The expression (2.17) for B_ is unsatisfactory

g
both theoretically and numerically. When the number of
gaseous species m is large, calculations are not only time-

consuming but inaccurate because of accumulation of round-off

errors. The number of different terms in (2.17) 1is
(m) (m+1) /2 cscesees (2.18.1)

so that even the 6 gas species detonation product mixture
with which we are concerned (say, J=2 to 7 where j=7 is water,

j=1 being solid carbon) contains 21 unlike terms, i.e.,

**n denotes a hypothetical non-polar gas with pair potential
constants identically equal to those of k, polar one.
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25 _ 2+ 2= ,
+ 2(n2n3b023B*(T§3)++n2n7b027B*(T§7)) (2.18.2)
+ 2(4 terms)+2(3 terms)+2{(2 terms)

* *
+ 2n6n7bo67B (T 67)

.

The representation of B* by the series (2.14.2) requires an
increasing number of terms as T* decreases. In the present
application the first 21 terms were used in order to avoid

a relative mathematical error exceeding 1078 at T*=1(T=160°K
for most pairs). At T* exceeding 20, the first 5 terms in
(2.14.2) would give about the same accuracy. With choice of
kmax=2l we may therefore discount mathematical exrrors. However,
the accuracy with which (2.14.2) represents the observed
physical quantity cannot exceed experimental uncertainties.
The latter may confidently be assumed to be in excess of 1%,
For the 6-species mixture virial coefficient representation
(2.18.2) the physical error may well be 20%. More important
is the fact that the pair potentials for unlike molecules are

[2.2,p.351]

unknown. It is known that the additive rule for

diameters, true for hard spheres, is supported by crystal
data, but the combination rule for potential well depths (6§
is an upper limit, i.e., we are justified only in the

statement

172 ;
eij s(eile ) 6 & & 2 0 0 & o (2019)

33

[2.27]

Guggenheim contains a notably insistent denial of the

theoretical validity of the combination rules.
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The combination rules are better regarded as
physically adequate than as physically supported because
other combination rules give equally good agreement with
observations. For example, representation of Eé for a
mixture of the non-polar gases concerned here by the
coefficient for a mixture-representative pure species
is not significantly different from that given by the

conventional expression. The mixture representative

species was defined to have pair potentials

Og = n;Z %: % ningoj 5 ; 054 = (oy4+05.)/2
(2.20)

P N A

3172

33

- a2) L . o (g
6g nq N ; nln]el:J ; 615 (611°6

as in Fickett's study of detonation using the Lennard-Jones

and Devonshire equation of state[2‘4j. These definitions

[2@28], The labour in applying

were suggested by Nosanow
(2.20) is very much less than for (2.17): it has additional
advantages for our application. These will be described
presently.

When one of the gases in the mixture is polar,
the relations (2.17) are even more doubtful because experimental
data on second virial coefficients are lacking for such cases.
Bearing all these factors in mind, and noting that (2.20) is

relatively poor when one of the gases present is polar, except

at high temperatures where the necessary sphericalization of
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the polar pair potential is acceptable, it appears preferable to

calculate Bg from the relation involving only like molecular

pair potentials,viz.,
— _l —_

B *n bOJ]

. * (T *
g " g N5 B (T34, t3)

where B* (T*.,t%*) = B*(T*_ )-P* (T*,,6 t* 2.21
( 340 J) ( 33) ( Y ) 4 ( )

j (non-polar)P* = 0 ; j (polar)P* = z:w]’:/T*k
k=1

N N vt " V? N s F

Furthermore, when one bears in mind that the truncated
virial (2.14.1) is not applicable unless

C/V << B ,

‘we may replace the extremely complicated (and theoretically

unjustified) expression for Eé given in Hirschfelder's text
(reference 2.1, Tables I-C, I-D) by the simpler one for a

pure species with pair potentials defined by (2.20) using

the fitted expression (2.15) and the sphericalized pair
potential constant for water given in table 2.2. To summarize,
the expression here recommended for representation of the
compressibility factor for the detonation product gas phase

on the adiabatics after the composition has become fixed

(T < 1000°K) becomes
= = 2 .= = 2
Z = 1+(p/RT)Bg(T)+(p/RT) fC(og,Tg) Bg(T) i coceenes (2.22)

where Eg is found using (2.21) and the pair potential constants
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given in table 2.3 and C is found using (2.15), (2.20)

and the constants given in table 2.2.

2.5 The Co-Volume and Internal Energy

As stated earlier, the co-volume, here denoted
by X, is essentially the imperfect component of the gas
volume, that is, for a pure gas
V-V°e = V-RT/p j

) eeeeiaen (2.23.1)
RT/p(2-1) )

X(p,T)

(RT/p) (pV/RT-1)

il

where Z is the compressibility factor pV/RT. Also for a
gas mixture

X (PsTyng,= = = ng) = RT/P(3g-1)  ....e... (2.23.2)

by definition, where ( )g refers to the gas mixture. Thus
the co-volume X, as here defined, and the compressibility
factor Z, are mutually definitive. In the hard molecule
equation of state, X is defined by numerically calculated
values Z(oo,p,T), where, for practical application, og, the
hard molecule diameter, must be related to intermolecular
potentials, and in the Jones and Miller formula an assumption
§§=§g(p) is made, the coefficients in a power series
expression for it are calculated from relations of the

type (2.11) and Z is defined by X(p). For a virial equation
of state with realistic (i.e., temperature-dependent)
coefficients, X(p,T) or X(T,V) is defined by Z, and when,

as here, a p,T system is used,
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virial: Xy (p,T) = By (T)+(p/RT) [E(cg,T*g)——B—g(T)z] . (2.24)
from 2.22,
In the statistical treatment of an ideal gas the
separability of the internal energy into a sum of translational,
rotational, vibrational and electronic terms (the sum total

of which is here referred to as E l) is based on the

therma
provable assertion that spacings of permissible energy levels
in each mode are so widely different that they may be

regarded as uncoupled. For a real gas of molecules with force
fields, the separability of the energy into a sum of thermal
and real components, neither of which affects the other, is an
assumption that cannot be avoided if a quantitative solution 1is
to be obtained. This assumption is justified only if the
interaction of the force fields does not distort the shape of
the potentials and is therefore poorest at high densities.

[2.2,2.4] indicates that the

Presently available information
assumption is not seriously unsound even at the highest
pressures encountered in detonation and that complete
breakdown does not occur until a pressure of about 1 megabar*=*
is reached. Accordingly, we assume, for a pure gas

E = E°+E, Ceereeee (2.2501)
and for a mixture of gases

E, = Expt+E, ’ ceceeeee (2.25.2)

g

where ( ), refers to the real component and ( )th to the

thermal component. The thermal component is

%
For hydrogen, it 1s argued that this (metallic state) occurs
at not less than 250 kbar (ref.2.1,p.271;.



m
E = z n:E¢ )
th j‘=l 173 )
) ccescees (2.26)
)
o — To mo "o o
where Ej = B2 .nstBrottEvibtEal )

and E, is defined by invoking the general thermodynamic relation
(aE/ap)T = —[p(aV/ap)T+T(aV/aT)p] ceecases (2.27)

which, from the definition of X becomes

(aE/ap)T = —[p(3X/3p)+T (3X/5T) ] cevesese (2.27a)
so that

- B - —

E, = —%{}p(BX/Bp)T+T(BX/BT)p]dp . . coceeens (2.28)

In particular, the imperfection component of the

internal energy for a nearly ideal pure gas (X=B(T))

Er

]

-ﬁTdE/dT)dp = -pTdB/dT sesecees (2.28a)
O

and if the gas is non-polar with an LJ(6-12) pair potential,

E, = -p6b,T*dB*/dT* = (p6by/4) )3 (1-2k)gfT* , ..(2.28Db)
k=1

and since dB*/dT* 2 0 for T* $ 25, E,. is positive zero, or
negative depending on T*. Typically T* = 150*K for the
molecules concerned here (see Table 2.3) so that were B(T)

the only force field component in X, the imperfection component

ngﬁr of the gas mixture would be near zero at about 3700°K

and negative at temperatures below this value, which is

typical of detonation front temperatures in condensed explosives.
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Near T*=25, the slope dB/dT is very slow so that
more generally one may say that for such a co-volume the
imperfection component of the internal energy is virtually
zero at the detonation front, even though here the
compressibility factor Z is typically about 10. Such a
co-volume is hardly credible for high loading density

[2.29] has used such a

detonation products. Hirschfelder
form for gun powder gas at densities less than about 0.85
g/cc, where the approximation ‘appears to be justified.

[2.30] and J. Taylor[2”31]

Paterson have applied a virial
form 2=%(B,V) to the high explosives listed in table 2.4
up to near-crystal loading densities. In such cases, the
imperfection component of the internal energy appears to
be much too small. We shall return to this point shortly.
Finally, for a pure gas of hard spheres of immutably fixed
diameter without force fields, the imperfection component

of the internal energy is, of course, exactly zero because

intermolecular forces are absent.

2.6 The Lennard-Jones and Devonshire Cell Theory Equation of State

A virial equation of state is increasingly wvalid
as ro/f + 0, where r is the average spacing of molecules, and
Y, is the equilibrium pair spacing described earlier. At the
opposite extreme, the equation of state for a crystal becomes
increasingly valid as rO/F exceeds unity. Here a molecule

spends most of its time in a repulsive force field and the
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imperfection component of internal energy must be positive.
However, even at high densities, a gas lacks the perfect
order of a crystal and is expected to resemble a liquid more
closely.

The best known equations of state for liquids are
essentially those for imperfect crystals. In a (pure) crystal,
each atom may only vibrate about a fixed position. As the
average spacing r in a gas decreases below an equivalent hard
sphere diameter o, (as yet undefined) each molecule tends to
become locked in_;£e cell formed by its nearest neighbours.

In the cell theories of Lennard-Jones and Devonshire (LJD)[2532]
and of Eyring, each fixed lattice-site in a crystal is replaced
by a cell centred at it. Each molecule has more freedom than

the atom in a perfect crystal in that it may move freely in the
cell of its neighbours regarded as fixed, but like a perfect
crystal, every site, or cell, is supposea occupied by a molecule.
In hole theories attempts are made (without notable success) to
extend the notion of imperfect crystals to lower densities by
allowing some cells to be unoccupied.

The LJD equation of state is fully described in

[2:4) pas demonstrated its application

standard texts and Fickett
to the calculation of detonaticn front behaviour so that a
description of it here i1s not required. Fickett's successful

reproduction of observed detonation front speeds for a number

of explosives leaves little doubt as to its applicability to



- 65 -

detonation front conditions. Thus, we are here concerned
merely with estimating the density range of its application,
with emphasis on the low density limit, so as to appreciate
how its application midht describe adiabatic expansion
following detonation.

It is evident that description would begin to be
poor when the average spacing r of molecules is such that
a molecule of diameter 0, May just squeeze its way past its
neighbours out of its cell into the next, giving double or
triple occupancy of some cells and leaving holes in others.
This problem has been described by Buehler et a1E2*33] for
rigid sphere molecules, where the essential argument 1is
most simply demonstrated.

If, for simplicity, we take the high-density ordered
disposition of (hard sphere) molecules to be a simple cubic
lattice, each molecule has 26 nearest neighbours. 1If these 26
are regarded as fixed and the central one, the "wanderer", is
allowed to move freely in the cell formed by its nearest
neighbours, the space that the centre of the wanderer may
occupy before the surface collides with that of one or more
cell spheres is the free volume Vs per molecule. This has
a very complicated shape (see Hirschfelder's text{2°1], Fig.

4.6-2). If a (zr) is the lattice spacing and ¢, the hard

O

sphere diameter, it is apparent that the smallest spacing at

which the wanderer may just escape through a cell wall is
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_ al/2 \
aescape = O  eeees . (2.29.1)
Since a3 = v, the specific volume (per molecule), then the
gas molar volume at escape 1is
T _ 53/25 3 _ ,3/2. e 023 3
Vescape = 2 No, = 2 6.023°10 Og eomesccs (2.29.2)

The main difficulty in hard sphere arguments is to relate
the hard sphere diameter o, to the potential constants g¢,6
so that relations may be made quantitatively relevant to a
particular gas or mixture. This topic has received little
attention in the literature. For the immediate present we
shall assume that 0023.15X, the van der Waals hard diameter
for nitrogen given in table 2.1l: this is approximately

representative of a TNT detonation product gas. Accordingly,

Vescape * 0.52g/cc

= 38cc/mole ; pescape

ceneaens (2.29.3)
The rare gases crystallize in a face-centred cubic

lattice, as do nitrogen and methane. Here, molecules are to

be found, not only at the corners of a cube, but also at the

centre of each of the 6 faces. The same disposition is

obtained by imagining the neighbours to be at the centre-of

each of the 12 edges of a cube. The escape condition

a/cO = Y2 is of course the same, but here the cell is formed

by 12 nearest neighbours and

v =a3//7 , so that v =203 (2.29.4)

escape o '
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and making the same choice of ¢, and of the molecular weight

of the gas,
Vescape = 32 cc/mole ’ ‘escape * 0.74 g/cc
vecesses (2.29.5)
J. Taylor[2°3l] recommends 0.5 g/cc as the lower limit of

application of relations derived from cell theories: this
is in fair agreement with the present values. A table
comparing LJD calculated properties to those observed, 1is
available for nitrogen at densities not greater than 0.25 g/cc
(see ref.2.1, Table 4.7-6j. This shows that for this density,
and for a temperature of 50°C, the LJD egquation gives errors
of 30% in the compressibility factor, 12% in the imperfection
component of the internal energy and 22% in the imperfection
component of the entropy.

It may be noted that for a hard sphere gas, the

compressibility factor given by cell methods is
Z = pv/kT = (v/vg) (Avg/dv) ceecesas (2.30)

and that this must be infinite at the tightest possible
packing a = oo, which, for a face-centred cubic lattice 1is

v o= og//f or V(cc/mole) = 0,4303 when . is expressed in

o

ﬁngstrom units. For N, taking o, = 3.15A as before,

o
p = 2.1 g/cc, a value about equal to that of detonation
products at the equilibrium front at high loading density

(see table 2.4).
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2.7 Gas Mixture Equation of State by Rigid Sphere Simulation

It has been seen that a satisfactory equation of state
is available for a pure gas at very high and very low densities
but not at intermediate values. A suitably chosen hard sphere
equation of state may represent both the compressibility factor
and the imperfection component of the internal energy of a pure
gas over a very wide range of densities with reasonable precision
if the diameter of the hypothetical hard sphere gas can be
properly defined in terms of some observed property of the real
gas. If the definition of the pure hard sphere gas diameter
can be plausibly extended to a mixture of gases, an equation of
state suitable for the description of gaseous behaviour in
detonation and subsequent expansion will have been found.

There are therefore three stages in devising the equation of
state, viz., choosing the immutably rigid sphere relation,
allowing the diameter to vary both with the temperature and
with the gas, and finally extending this definition of the
diameter to a gas mixture.

Choosing an equation of state for rigid spheres
merely requires judgement. Compressibility factors calculated
for a rigid sphere gas by Monte-Carlo methods are the yardstick
by which lesser methods are judged. This must be so, because
this method of quadrature allows integrals to be determined
which are normally discarded, not because they are not

important, but rather because they cannot be solved by other
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methods. The Monte-Carlo method merely requires expensive
computer time. The Monte-Carlo calculations of Rosenbluth
and Rosenbluth[2°34] covered a range of 29 dimensionless
densities (by/V), not all of which were tabulated in their
paper. Their compressibility factor computations dealt
with the random motion of 256 spheres after each had been
moved 100 times to ensure statistical equilibrium. An
earliexr paper by them[2°35] dealt with a two-dimensional
molecular model. Their calculated compressibility factors

are compared to other calculations in the following table.

Table 2.6

Compressibility Factors for Non-Attracting Hard Spheres

Dimensionless Z = pv/kT = LTF/RT

Density Monte T

w=bg/V Carlol2-34] A B c
0.1 - 1.1065 - 1.5
0.2 - 1.2275 - 1.65
0.4 - 1.5213 - 2.0
0.6 - 1.9019 - 2.4
0.740 (2.21) 2.2 - 2.7
1.185 (3.82) 3.8 3.3 3.8
1.481 (5.25) 5.35 4.25 4.9
1.692 (6.50) 6.80 4.95 5.9
1.975 (8.85) 9.40 6.1 7.9
2,370 (14.80) 14.60 7.85 14.2
2,690 32.0 - - 31.4
2.820 59 - - 57
2.962 o - - x

A - Virial i

B - Superposition approximation, Kirkwood L2« 36]

C - Eyring cell theory, face-centred lattice

( ) - Monte Carlo values selected for representation

by fitted equation.

The column B values were interpolated from a table

given in Hamannr2ﬁ37]. It 1s evident that the Kirkwood results
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are very poor. The Eyring cell theory expression for the

compressibility factor for non-attracting hard spheres 1is

Z = 1/[1- (cw) /3] el (2.31)

where cl/3 = 0.6962 for a face-centred cubic lattice assumption
and 0.7816 for a simple cubic lattice. It may be seen that
these values are very poor below bg/V = 1.2, and it may be
noted that with the previous assumptions regarding the hard

sphere diameter for nitrogen,

B, = 1.2615[0g(A)1° - 40 cc/mole , ... (2.3laj

so that here V = 33 cc/mole, in agreement with (2.29.5).
The Eyring compressibilities are increasingly reliable
as w > 2.962, the limiting value for a face-centred cubic

lattice. The series expression for (2.31) 1is
2 = 1+ ) (cwjX/3 cereese. (2.31b)
k=1

This together with the virial expression for Z for hard spheres

7 = 1+w+00625w2+0;2869w3+(-)0@115w4+z:bnwn .. (2.32)
k=5

suggests that the Monte-Carlo compressibility factors might

be fitted over a wide range by relations of the form

m
Z = 1+yexp(z:aky(k’l)/3) ceescae. (2.33)
k=1
m
or by 2 = liyF(y), ; Fly) = L+ L ayd/3 L .. ... (2.34)

k=1
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where y = (byp/RT) ceeeee.s (2.34a)
This is obviously possible because if % = Z(b,,V), then

v

f (pbg/RT) = £(y) ;

so that 2

g(y) )
This kind of representation is required in a (p,T) system.

Now since, o
bo/V =(bgop/RT) /2 = y/% , ceveeces (2.34Db;

(2.33) would be a suitable choice 1f a plot of

log, [(2-1)/2b,/V] cevceee. (2.34c)

relative to (ZB&/V51/3

were linear. This 1s very nearly
the case. The data given in brackets in table 2.6 were
therefore fitted by (2.33) with m=3. The fit was excellent;
however it was no better than (2.34) also with m=3. This

form is far more convenient than the first, particularly in

regard to the relation

J?%(p,T)dp ceeceess (2.344d)
(o}

which enters into the expression for the fugacity. The
second relation (2.34) was adopted for this reason and 1t

was found that

Ay = -0.174417 ' A2 = -0.062245 ’ Ay = 0.0180363

s o e e e o (2.346)
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The standard deviation for this 6-point fit is 0.35% in the

guantity
ylz-1)-1 ’ cevesees (2.34f)

3

‘ k

and the deviation of the fitted relation Z:Aky
k=1

data function does not exceed 1%. A suitable equation of

/3 from this
state for rigid non-attracting spheres of diameter o, and
molar wvolume 5& has now been obtained.*** The form of F(y)
was chosen so as to ensure application all the way to the
ideal gas state Z=1.

It may be noted that J. Taylor and Paterson in their
application of the hard sphere virial to detonations, follow
Hirschfelder et a1l2.38] jn replacing the hard sphere 4th

virial coefficient 0,1155§ by that derived from Eyring's

expression (2.31), viz., 0¢19285i, The Rosenbluths deduce
4 _ \ -4 _
b4/br = (8.6)(2.962) = 0.119 coess (2.35)

from their Monte Carlo results. These were presented in the
form of a table of (Z-1) relative to (v/vo)—l. The argument

v/Vo may be transformed to the more familiar one b,/V using

- 3 ,
br/VO = br/VO = (2w/3)oo/vo = 2.962 ' ceeecea. (2.35a)

where v is the specific volume (per molecule) and Vo 1s that at

the closest possible packing,

*** Tt is now necessary to emphasize the distinction to be drawn
T e a3 N =L a3
between byz(21/3)No (O“OLJ(G—IZ)say)' and br:(2n/3)Noo
where o, is the hard sphere diameter, as yet undefined.
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At close packing, most collisions are nearly head
on. For consistency, it must be assumed that the distribution
of molecular velocities is of the Maxwell-Boltzmann type.

This has already been implied by acceptance of the JANAF ideal
state properties. The most probable spacing of molecules at
point of closest approach should then be close to that value
obtained by inserting 3/2 kT, the most probable translational
energy, into the pair potential relation, The same result is
obtained formally from the Boltzmann-weighted expression for
the rebound spacing when the relation for the spacing (with
XT* substituted for 1.5T*) is expanded, and high order terms
are discarded: here x is a dimensionless kinetic energy
varying from 0 to ». The approximate closest approach
spacing thus obtained is taken to be the hard sphere diameter
0pr(205). Replacing ¢ in the LJ(6-12) pair potential by 3/2kT

one readily obtains

0p (T*) /o, 1 = (2/[1+F*])1/8
where F* = (1+1.5T*)1/2 ; T* = T/6
so that
= — L i1/2
bx = b, (T) /By = [2/(1+F*)]

where Bf/og z 56/03 = 1.2615 cc mole ! fingstroms-3

........ (2.36)

At the closest packing, the dimensionless temperature

derivative db;/dT*, which, as may be noted, is always negative,

is probably too small$ because here, molecules spend most of

¢ in absolute value



- 74 -

their time in a repulsive field. However, the slope is much
greater than that of the second virial coefficient dB*/dT*.
Furthermore, the relation (2.36) gives the correct value
or/o+l as T*»0., It will have been noted that the notation

0o to represent a hard sphere has been discarded in favour

of o, in order to obviate the possible misconception that

r
it is fixed at all temperatures.

The justification that has been presented for
(2.36) is by no means theoretically rigorous: it is better
justified by its performance relative to other definitions.
At least two other definitions of an equivalent hard sphere
diameter are known. The oldest, that due to van der Waals

was devised long before the notion of intermolecular potentials

was put forward in its modern form, and in his equation of

<0

7 = 1-a/RTV+ & (b/M)™ .. (2.37)
n=1

state

the terms b, representing the hard sphere diameter, and

-a, associated with the average attractive force (at near-ideal
dilution) were purely empirical constants. At high
temperatures, the term &/RTV is negligible and his equation
degenerates to the Abel-Nobel relation

Z = l+§: (b/7) 2 , i.e., p(V-b) = RT , b = const.
n=l

used in early studies of detonation at low loading densities.
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When the first term in a real gas virial is compared to that

in (2.37) it is seen that

B-3/RT = By b} - (3/RB, )T 1]
is an inverse linear approximation to EOB*(T*), which,
when plotted against T*'l, is nearly a straight line at
temperatures not too far removed from the Boyle temperature,
where, by definition B* = 0. This occurs at T* = 3.42
for non-polar molecules in the LJ(6-12) representation and
at T* = 4,9 for water with t* = 1.2. Thus, if a straight
line A*+D*x* (with x*=1/T*) is fitted to B* in any selected
interval Ax* the appropriate dimensionless van der Waals
diameter b§DW=A* may be found. It is thus evident that
van der Waals constants, being dependent on the temperature
interval AT* selected for fitting, are not uniquely defined.
Nothing c¢can be obtained from them that cannot be better
obtained directly from B*.

Hirschfelder[2°29] applied a hybrid virial form

3 4

_ — - — .2 - - 3 - = .
Z= 3 . < <
1+Bg(T'nj)/vg+0 625(bg/Vg) +0 2869(bg/Vg) +0 l928(bg/Vg)

Ceeeiaan (2.40.1)

to the gas mixture resulting from the combustion of gun powder.

m m

Here,
- -1 —

B (T) = D .B*(T*

g( ) ng g:n b_.B*(T

cee. (2.40.2)

o2

- 5 3
oj = (271N/3)0 ;o T3 = T/8
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where ¢, 6 are LJ(6-12) pair potential constants, and

m
= -1 —
By = ng jzgnjboj e e (2.40.3)

He argued that the approximation
b* = B*(T*) ' ceeeeea. (2.40.4)

at least in the first term, appeared to be reasonable at

high temperatures (T=~1500-5000°K) because, at such
temperatures the second virial coefficient is fairly constant
(B*~0.,5 for 20<T*<50) and appears to élay the role of a van

der Waals b%D Paterson and J. Taylor extended the association,

W'
b; = B*, to all coefficients using the same equation of state,

that is, using

3

Z = 1+x+0.625%2+0.2869x°5+0.1928x4)

- = ) creeeea..(2.41)
where x = B_/V )
g g

and Eé is the mixture virial coefficient defined as in (2.40.2).
We may justify the choice (i) b: = b;(Eqn,2.26)
relative to the choice (ii) b; = B* (at least at high densities)
by noting that
(a) E& is wrongly < 0 for (ii), regardless of the density,
if T* <« 25, E& for (i) is always - O.
(b) (ii) gives worse transport coefficients than rigid
spheresof immutably fixed diameter: the choice (i)

gives better ones. That is, 1f n is the viscosity
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qoefficient, then
| Y = (n/no)/(T/To)l/2 = const for perfectly rigid spheres
dY/dT > 0 , observed
dY/dT < 0 for choice (ii) for T*<25
dy/dT > 0 for choice (i) for all T*
(c) The identification 0.625 bk’ C*(T*) is very poor

indeed by (ii). For (i) it is gquite good, as shown

in the following table.

Table 2.7
Simulation.of Third Virial Coefficient by 0.625 (bﬁard)z
2
T*| C* (T*) 0.625 b}
LJ(6-12) Choice (1) <+ Choice (ii)

1 0.42966 0.485 4.02

2 0.43710 0.415 0.245

4 0.32662 0.342 0.0083

6 0.30771 0.300 0.065

8 0.29618 0.271 0.107

10 0.28610 0.250 0.133
20 0.24643 0.191 0.172

30 0.21954 0.161 0.173

An equation of state for a pure gas particularly
suited to high densities and temperatures has now been
devised. We must now extend the equation to include gas
mixtures before it is of practical value for the problem
concerned here. It should be borne in mind that the
Monte-Carlo data refer to a gas of identical hard spheres.
We cannot use the data at all for mixtures of non-identical
rigid spheres, that is for mixtures of spheres of different
diameters. Thus a single diameter o must be defined for

g
the complete gas mixture. Sufficient has been said to justify



its definition by

Og = oogoa ;
)
)
_ —2 -
where o = X: z:n n. ; o0:2 = (o..+0..)/2 )
Og lljlljl] lj 11 jj )
)
- )
o = [2/(1+F*)]11/6; F* = /I+1.5T* ) (2.42)
)
where T* = T/e )
)
)
= -2 . 0, = o o TR
and €~)g = g lii ;Zlnln]elj ! el] /611 eJJ )

The equation of state for the gas mixture is now defined.

It may be noted from table 2.7 that the simulation
of C* by 0.625b; with bf defined by (2.42) is sufficiently
good as to warrant its use rather than the expression (2.15)
in a real gas virial equation cf state. For T*>10 it is
increasingly better than (2.15) and is therefore to be
preferred for those problems in which the truncated virial

is applicable at these temperatures.

2.8 1Inverse Equations

The best known of these are the relations due to

[2.39] [2.40]

Jones and Miller and to Wilson and Kistiakowsky

The Jones and Miller equation, which refers to TNT only, is
3

X = X(p) Z:dkp
k=1

-1

-1

25.4cc mole t i d, = -4.43715cc mole~! (kcal/cc) (2.43)

o}
[
]
Al S L N )

= 0.424129cc mole'l(kcal/cc)—2

[o})
w
|
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These coefficients were obtained by fitting to the detonation
speeds given by Friedrich at loading densities <l.5g/cc,
For reasons stated earlier, this relation was here modified

to
5

X(p) = Ez dkpk-l
k=1

dy = =4.6627210"3cc mole™L(kcal/cc) ™3

4 (2.43a)

dg = =5,01624°10"%cc mole~l(kcal/cc)”

dl' dz' d3 as in (2o43)

The value of d, was found by matching to the observed detonation
front speed at l.5g/cc loading density, iterating at constant
temperature from that final CJ temperature obtained using
the 3 constant relationg The value of dg was then found by
matching in the same way for a loading density of 1l.52g/cc.
For this purpose an approximate composition was used., The
resulting 5 constant relation reproduces the observed detonation
speed particularly for loading densities greater than 1.5. The
error in wave speed at 1.0 g/cc loading density is about 4%,
only slightly better than that using the original 3 constant
relation.

It is immediately evident, purely from logic, that
the relation X = X(p), cannot be both true and at the same
time be limited only to TNT products. Jones and Miller were
not explicit about how they obtained the first constant dye
It appears to have been obtained from some method other

than detonation. The notion X = X(p) is evidently a result
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of Jones' earlier calculations using a direct equation of
state, i.e., one not based on observed detonation wave
speeds. This equation was apparently** based on a solid
state equation due to Bridgeman (see Cole[2'41], p.82).
This in turn was fitted by a set of constants di using

the same virial form, i.e.,

3

X(p) = 2 4
k=1

where dy are not reported. This gave detonation front

speeds about 17% too high. Then the di

fit the Friedrich's data as described earlier, but it

were adjusted to

would appear that 4 was retained at the value given in
(2.43). Detailed speculation as to precisely what might
have been assumed is inappropriate. What is important
is that the functional form X(p), while approximate, has
some basis not related to observed detonations. It is

interesting to compare the following quantities.

cc/mole
%
(A) 25.4 - d; of JM equation (2.43a)
(B) 24.4 - constant term obtained if one expands the

H. Jones equation given on p.82 of Cole.

**The wartime reports of H. Jones are listed in Cole but
it was not possible to obtain them.
For brevity the Jones and Miller equation with modified
constants (2.43a) will be referred to as JM, while the
hard sphere or hard molecule equation of state (2.34),
(2.42) will be referred to as HM.
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ccémole -
() - (BgNR+§gR)/? 2500<T<4000 using high pressure
composition of chapter 6. Here R refers to

the normal rotating molecule pair potential

constants and NR refers to opy adjusted to a

gsg:rotating value using column 1, 2 of table

The basis for the formula,or inverse equation of

state, of Wilson and Kistiakowsky is not explained in the
available literature. It appears to be a general purpose
detonation front fit in that a set of specially defined
species co=volumes have been devised by trial and error
adjustment so as to reproduce the observed detonation
front velocity for a number of condensed explosives., A
description is given in Cole (p.84). A somewhat different
account is given in Hirschfelder (Ref,2.l1-Eqn.4.3-3). Its
description of adiabatic expansion at low and moderate

temperatures is bound to be poor because at constant

composition the compressibility factor is
Z = l+(const/Tl/4)exp(const/T1/4) cececco (2.44)

Fickett[2:4] has given a table relating the WK detonation
front species co=volumes to equivalent pair potential
constants., The WK equation is probably the most flexible

of the detonation front formulae.
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CHAPTER 3

THERMODYNAMIC RELATIONS FOR THE PRODUCT MIXTURE

3.1 General Relations

The equation of state for a two-phase gas/solid
mixture consists of an egquation of state for the solid, (here
graphite), an equation of state for each gaseous species or
one for the gas mixture as a whole, together with an assumption
relating the chemical potential of a species in the mixture to

[3,1] give a complete

its value when pure. Taylor and Glasstone
review of the three main methods that have been proposed to
deal with the chemical potential. These are (i) the general

[3.2] and Beattie[3'3], (i1)

limit method proposed by Gillespie
the Lewis and Randall rule and (iii) the Gibbs-Dalton rule (or
"law"). The present computations conform to the general limit
(GL) method.

In the GL method an equation of state for the mixture
as a whole is required in order to solve the definite integrals
appearing in the general relations. The resulting general
relations may be considered 'exact', inaccuracies in numerical
solutions being introduced only-by errors in the equation of
~state for the mixture and by the numerical approximations
necessary in any computation of physical behaviour. The
general relations resulting from either the Lewis-Randall rule

or the Gibbs-Dalton rule are approximate, the former generally

holding to higher pressures than the latter. As pointed out



earlier we do not, and cannot, assert a gas eguation of state
based on the Monte-Carlo data except in terms of a pure
hypothetical gas representative of the gas phase of the
mixture, so that the GL method is not only the best for our
purpose, but is also the only permissable approach. The
Jones and Miller equation also falls into this category.
Since chemical reactions are involved, a standard
state must be defined. Standard conditions are generally
taken to be po=l atm, T,=298.1°K, so that we may replace

pO
j[( ) dp
Po

ceereeess (3.1.1)

T

by zero without significant error, for an integrand which is
zero for an ideal gas. Here p° indicates an arbitrarily low
pressure. For simplicity in notation, we shall represent

the internal energy by two symbols U, and E, related by

E=U—U ’ EEEEREEEEN (30192)
and shall represent

U; , by Eg , ceeeneses (3.1.3)

when T=0° absolute, which is now taken to be the standard
temperature to which the heats of formation shall refer.
The formal procedure for obtaining an expression

for the internal enerqgy is well known. For a pure gas, the
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expression for a molar enthalpy increment

dH = CTLdT+(3H/3p) qdp , cereeeee. (3.2.1)

in which, from general thermodynamics
(aﬁ/ap)T = [a(E4pV)/ap]T = V—T(aV/aT)p b eeesee. (3.2.2)

may be integrated, first at constant standard temperature T,
to some arbitrarily low (ideal) gas pressure p°, then at

this pressure to the final temperature T, and then at this
temperature to the final pressure p. As indicated earlier,

(7) indicates one mole and ( )° indicates ideal gas conditions.

Using (3.1.1), and then setting T, =0°absolute, one readily

obtains
E = B, +E, = Y (T)-RT+E, ;
T )
where, s _ _ _ )
H (T)EH°(T)-E8§ Ce(T)daT ) ceessness (3.2.3)
o
pP=p° ;
f
P | )
_ _ _ )
E = -_[[pBV/8p+T8V/8T]dp‘ )
(o) )
T
Here, ( ). refers to the imperfect or real component arising

r

from intermolecular forces, and ( )th refers to the remainder

or thermal component. As noted earlier, it follows from our
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definition of the gas co-volume X that
P
-—E-r = ‘,'(pai/ap'*'Tai/aT)dp e o o0 000
o

The internal energy U of a detonation product
mixture at the equilibrium, or Chapman-Jouguet, front is
related to the energy of the unreacted explosive by the

well-known relation for the Hugoniot, viz.,

U-Ug = (p+pg) (Vo-V) /2 ;
)

p(Ve-V) /2 - - closely - -

where the subscript e refers to the unreacted explosive.
The second expression is amply justified by the relative

triviality of pg in the case of condensed explosives.

(3.2.4)

(3.3.1)

This relation, of course, refers to a definite mass, which

we shall hereafter take to be one mole of explosive,

initially occupying the volume V. at temperature T,. The

energy U of the product mixture includes the chemical

energy released. The above relation may now be expressed

P(Vg-V) /2 = U-U, = (U=Ug) = (Ug=Ugg) = (Ugo=Ug)  evrnennn

where the additional subscript o refers to a standard
state pgy, Tg. If we now define the heat of reaction Q,

the energy of the products above that at the standard

(3.3.2)

state E, and the initial (thermal) energy above the standard



state of the unreacted explosive Ep by

Q =0_.-U

eo o g
E = U-Ug ; ' ceesseaes (3.3.3)
Ee (Tg) = Ug=Ugq )
the expression for the Hugoniot becomes
E-Q-E, = p(V,-V)/2 . ceesennan (3.3.4)
The quantity Q represents the internal energy
change in a hypothetical transformation of explosive
into Chapman-Jouguet (CJ) composition products at the
standard state p,, T,, and may be expressed
m
Q: jglnj(p,T)Ej_ee ’ ® s 08 08 0 080 (3.4.1)

where the mixture contains m products of species j=1, 2,..m,

and sj are the heats of reaction

Ej = _Egj r t s 8 s 0 08 80 (3.4.2)

a convenient change in notation, because the product heats
of formation Egj must be negative if heat is to be evolved
at the detonation front. The initial thermal energy of
the explosive Ee(Te) is not regarded as a variable in the

later calculations. The energy E of the products relative
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to the standard state may be expressed
E = Exp+tEp+Epg ’ cevessses (3.4.3)

where E¢h is the ideal component of the internal energy
of a two phase solid-gas mixture, and Ery Erc are the
imperfection components of the internal energy of the
gaseous and condensed phases respectively.

If the explosive is pure and of the CHON type,
the only solid that can be present is carbon. If, as we
now assume (for reasons siated earlier), the carbon, taken

to be in the form of graphite, has zero coefficients of

thermal expansion and baric compression, then
E =0 ' ceseesses (3.5.1)

and if we assign the species label j=1 to carbon, the energy

E may be expressed

i ;
where Er = -J, [poX/3p+T3X/3T] ’ ) IR (3.5.2)
o) )
T )
)
m )
_ )
and Eep = jglnj (p,T)H;?(T)—ngRT ' )

where nj is' the number of product moles of species j, and

where the standard temperature is now taken to be the
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absolute zero so that ﬁg(T) is defined by (3.2.3). Here

Ny is the total number of moles of gas defined by
m
n_ = E:rmﬂ ' ceseeaess (3.5.3)
g j=23

and X is the co-volume of the gas phase.

The total volume of the products is

V = Vso1iatVgas ;
_ _ )
= nckc+ngvg ) ’ ceeeesese (3.6.1)
)
_ _ )
where, Vg = RT/p+X(p,T) )
and where k. is the molar volume of crystal graphite of
value
k. = 5.338 cc/mole ’ ceeeseses (3.6.2)

C

and nc(snl) is the mole number of carbon per mole of
unreacted explosive. When an explicit expression for the
gas co-volume X(p,T) is available, the eqguation of state
of the product mixture is completely defined by (3.5) and
(3.6).

The Hugoniot relation (3.3), and that for the
Chapman-Jouguet condition, together with the equations for
chemical equilibrium, may be solved simultaneously to
determine the independent variables Pcyr Tegye When this has

been achieved, the equilibrium properties at the front, the
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centre-of-mass velocity u and the detonation wave speed D
are completely determined. Thermodynamic conditions in the
following expansion may then be obtained using the adiabatic

assumption dQ =0, and the Taylor wave may be determined

ext
by integrating the hydrodynamic equations.

The CJ condition may be expressed

‘gy_‘CJ = |"av ‘CJ = c (VgD e (3.7.1)
dp Ad dp

where RH refers to the (Rankine)-Hugoniot and Ad to the
adiabatic curve in the V,p plane. When the pressure and
volume have been found, the equilibrium front velocity u

and the speed of the wave front D may be determined from

2

D2 = p(V2/M)/ (Vg-V) )

’ ceeeenees (3.7.2)
u* = u/D = 1—V/Ve )

which follow immediately from the well-known relations

expressing the conservation of mass and momentum at the

detonation front. Here Me is the molar mass of the

unreacted explosive, and

Vg = M_/A Ceeraene. (3.7.3)

where A is the explosive loading density.
It may be shown[3'4] that, when the force field is
the same for all molecules, an assumption which applies

approximately if the co-volume X is only slightly dependent
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on the composition, the partial pressurerderivative of the

chemical potential b of any species j in the mixture is

il
<

ceceeeee. (3.8.0)

T Tyng(all 3)

The fugacity is now common to the species, and the expression
for it is readily obtained.
The fugacity £, an effective pressure, is a notion

due to Lewis[3‘5]. For an ideal gas it is known that
°- ° 2 * o o . .
u RT logg (p nj/ng) oo (3.8.1)

is a function of temperature only. The fugacity is

[3.6]

essentially that idealized pressure which leaves this

function unaltered for a real gas. That is, the expression

uj-RT loge(fnj/ng) ceeresses (3.8.2)

is equal to the same function of temperature as (3.8.1),

provided that we define the fugacity by
lOge(f/p) = (Uj-pg)/RT ’ LRI S SR (3.8.3)

where u; is the partial potential in the ideal gas

condition, so that

— °o—

ou’
-
up

= RT/p . ceeeeees. (3.8.4)

T,n,(all 3)
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Accordingly, the fugacity is given by the relation
p
log, (f/p) = (RT)'l_[YKp,T)dp . ceee. (3.8.5)
o)

The equilibrium condition for the reaction

Z:umqu =0 ; m:>0, 'reactants' )
733 ) ) even. (3.8.6)
mj<0, 'products’ )
in a mixture of ideal gases may be expressed
° = o . & & o - L]
ijjlogenj+(§:jmj)loge(p /ng) loger(T) ’ . (3.8.7)

where K;(T) is the (constant pressure) equilibrium constant
for the reaction, and my are the stoichiometric coefficdents
for the species taking part in it. Thus, for the detonation

product mixture, the same equilibrium constant is equal to

the above expression with f substituted for p°. That is,

L] o ° : ¢ = 1~
ijjlogen]+(zjmj)loge(f/ng) log K2 (T)

cr ceseseses (3.8.8)

Im= .
(£/n )3 7T ] (ny"3 = Re(T)
g9 3 J p
The detailed relations for the composition are treated
in the next chapter. We now consider the adiabatic relations.

3.2 General Adiabatic Relations

When the CJ point on an adiabat has been found,

** Here f 1s relative to one atmosphere, 1i.e., f 1s
dimensionless.
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all thermodynamic properties at every other point may be
determined by guadrature in finite steps of one of them.

This is so regardless of whether the thermodynamic system

is in motion or not, provided that the previously stated
assumption of zero entropy production by viscosity applies.
Here AT is assigned and the other finite steps are calculated.
The adiabatic relations now given below are later integrated
from the starting values Pogr TCJ down to 0.3 DEGREES** for
TNT products. They are also used in the determination of the
CJ wvalues.

When, as implied by the assumpticon of a Taylor wave,
the reaction zone thickness is negligible, and conditions in
the unreacted explosive are uniform, thelvelocity.of the
detcnation wave, and the equilibrium or CJ properties at the
wave front are invariant, so that specification of the
loading density completely establishes a particular adiabat
in the products of a given explosive provided that. the
initial pressure, which is here neglected, is not grossly
in excess of atmospheric pressure. Deviations of the initial
explosive temperature from 0.3 DEG may generally be discounted.
The present relaticns deal only with the equation of state
variables on the adiabats. The instantaneous spatial

distributicn of these variables, and of the centre-of-mass

* %
Note: 1 DEGREE = 103°K.
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velocity in one-dimensional adiabatic motion, here called a
Taylor wave, is treated in chapter 5,

It is assumed that chemical and thermal equilibrium
applies in the initial stages of expansion, This is consistent
with the notion of infinite reaction rate at the equilibrium
front demanded by a Taylor wave. When this assumption is
applied, the calculated composition eventually changes so
slowly that the assumption of chemical equilibrium becomes
increasingly questionable., Jones and Miller[3.4] suggested
that since the calculated mole number of solid carbon
eventually passes through a minimum, this point appeared
to be a reasonable lower limit for the equilibrium assumption
because in this vicinity the reaction rates must be slow.

In the present computations for TNT, the onset of frozen
equilibrium was arbitrarily assumed at a temperature of 1450°K,
This temperature was chosen as the end of reactions purely to
be sufficiently below the temperature at the carbon minimum

as to allow its study and yet to be not so low that the
composition would be seriously different from that at the
minimum.

The adiabatic condition

= 0 = d(E~-Q

dQexternal l) +Pd(Vg+Vc) co0ocoo06 e (30901)

interna

allows us to express the total derivative dp/dT in terms
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of (p,T) along the adiabat.

For conciseness, we define the following

hy = 3 (E-Q)/3p ; f1 z pavV/a3p )
) I, (3.9.2)
)
h, = 3(E-Q)/3T ; £, = pav/a3T )
where V = vc+vg = ncEc+ng[RT/p+i(p,T)] ;
m ; ....... (3.9.3)
and d(E-0) = a( L ng (8% (1) -¢ 1) +d(n, [E,-RT]) )
j:l J J 9 r
The adiabatic relation (3.9.1l) now becomes
(@p/dT) 4 = -(hy+£,) /(hy+£y)  ..o.o.e... (3.9.4)

where the expressions for these terms are evident from

their definitions. They are

m
hl=c2:(ﬁg(T)-ej)an/ap+(§r-RT)ang/ap+n

BEL/3D 4 eenns (3.10.1)
j=1

g
f1=pkcanc/8p+(RT+pX)ang/ap+ng(—RT/p+p8X/ap) | eaeaasas (3.10.2)
so that using (3.5.2),

hy+f) = pfcanc/8p+(pi+§£)Bng/ap—ng(RT/p+T8§/8T)

m
+ L (@ (T)-e.)en./ep  , .... (3.10.3)
=103 3’00y
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m m
h, = )3 (A4 (T)-c.)on./5T+ )3 n.C° (T)+(E_-RT)5n_/3T
2 j=1 ] ] =1 J PJ r g
3
+ng(3Er/3T—R) e s 00 00 (3.1004)
£, = pkcanc/aT+(RT+pX)ang/aT+ng(R+pax/aT) ........ (3.10.5)
so that

h2+f2 = pkcanc/BT+(pX+Er)3ng/8T+ng(BEr/8T+p8X/3T)

m m
o —# -
+j§lnjcpj (T)+j§l(H|j(T) e5)ony /0T ... (3.10.6)

The species mole numbers Ny and their partial derivatives

are obtained from the relations expressing the equilibrium
chemical composition described in the next chapter.

The expressions used here to describe the pure
species ideal gas condition functions ﬁg(T), E;j(T) (and

§§(T)) are:
6
= k-3
ce.(T)/R = T T c i e 3.11.1
o5 (T)/ kglajk ( )

so that the thermodynamically consistent expressions for

A* and S° are,

.
T

— - . 5 k-3

H#(T)/R:Hj(oe3)/R+6/;}cpj/R)dT_bjlloge¢+ Z:bjkT ,  (3.11.2)

k=2

-

and

7
T,

go =Qo co. —y . k"4
Sj(T)/R_Sj(0.3)/Rf6{;(CpJ/RT)dT—qulogeT+é§2qjkT . (3.11.3)
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The primary coefficients ajk were obtained by least squares

fits to the (1961) JANAFI[3:7] tabulated data for C° The

p*
secondary coefficients bjk and qjx were found from the ajy
and from the tabulated values of ﬁ# and S$ at 0.3 DEG by
suitably choosing the coefficients bj3 and qj4. The
coefficients agkr bjk' and qjk are given below for the main
product species of oxygen-negative explosives. While the
coefficients qjk for the (ideal condition) entropies were
derived as a matter of general interest, the entropy of

the product mixture was not calculated in the detailed
computations because it does not appear explicitly in the
relations necessary to describe the Taylor wave.

It may be noted that terms in 72

are required in
order to fit EB near 0.3 DEG, which is not far above the
rotational temperatures. For temperatures above 0.8 DEG,
a power series without inverse T terms is adequate. Fickett

and Cowan[3‘8]

used such a form, but their fits are poor below
0.5 DEG. The expression (3.11.1), with the coefficients

given below, describes the JANAF E; values for the species
concterned over the fitted range 0.3-3.9 DEG to an approximation
generally small compared to the reliability (=1%) of the data
fitted. The tabulated data are given at 0.1 DEG intervals:

the maximum departure of fits from the JANAF values are also

given in the table.
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Table 3.1

Constants(A) for the Calculation of Pure Species Properties in
the 1deal State

Part 1: Fitted Constants for Cp§ in (3.11.1) [Max Rel Dev'n s104

— 1.2, T51.2
B 253 T

3

k=1 k=2 k=3 k=4 k=5 k=6 - (Ty) (Tg)

+ (-6) - (=5) + (-5) - (-6) + (-6) - (-7)
1 (186349 163126 459734 696707 151776 111995 52 0.5 9 1.3
+ (-7) - (-6) + (-5) + (-6) (-6) + (-7)
2 1910299 447289 377445 801214 260733 289263 66 0.4|23 1.3
+ (-6) - (-5) + (-5) + (-6) - (-6) + (-7)
3 (189515 162840 769303 424442 170442 211447 40 0.4|114 1.3
+ (-6) - (-5) + (-5) + (-5) (-5) + (-6)
4 |496476 295807 718931 539754 166388 174408 |140 0.4|37 1.3
- (-6) + (-6) + (-5) + (-5) - (-6) + (-7)
5 (126479 853108 155395 168409 361000 309246 60 0.5|35 1.3
+ (=7) - (-6) + (-5) + (-5) - (-6) + (-7)
6 1607703 230364 330173 110492 343807 370788 64 0.4(24 3.9
- (=7) + (-6) + (-5) + (-5) - (-6) + (-7)
7 1697706 668493 158224 361476 915786 850045 17 0.9|16 3.9

Part 2: Derived Constants for ﬁ§ in (3.11.2)

J Constants bjk
k=1 k=2 k=3 k=4 k=5 k=6 k=7
- (-5) - (-6) - (-5) + (-5) - (-6) + (-7) - (-8)
1 163126 186349 256420 459734 348354 505919 279988
- (-6) - (-7) - (-6} + (-5) + (-6) - (=7) + (-8)

2 447289 910299 351457 377445 400607 869110 723156
- (-5) - (-6) = (=5) + (=5) + (-6) - (-7) + (-8)
3 162840 189515 252008 769303 212221 568140 528616

- (=5) - (-6) - (=5) + (=5) + (=5) - (-6) + (=7)
4 295807 496476 307779 718931 269877 554626 436021
+ (-6) + (-6) + (-5) + (-5) + (-6) - (-6) + (-8)
5 853108 126479 109182 155395 842044 120333 773116
- (-6) - (-7) - (=7) + (-5) + (-6) - (-6) + (-8)
6 230364 607703 627737 330173 552460 114602 926970
+ (-6) + (=7) + (-5) + (-5) + (-5) - (-6) + (-7)

7 668493 697706 114170 158224 180738 305262 212511

Note

(A) For temperature in DEGREES:
The number in the bracket is the power of 10 by which
the relevant integer must be multiplied.

B Species j 1 2 3 4 5 6 7

C(s) CO CO, CHy Hy N, HZO
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Table 3.1 (continued)

Part 3: Derived Constants for §§ in (3.11.3)

j Constants 4k
k=1 k=2 k=3 k=4 k=5 k=6 k=7
+ (-5) - (-7 + (-5) + (-5) - (-6) + (-7) - (-8)
1 459734 931746 163126 202552 696707 758879 373317
+ (-5) - (=7) + (-6) + (-4) + (-6) - (-6) + (-8)
2 377445 455150 447289 271113 801214 130366 964208
+ (-5) - (-7) + (-5) + (-4) + (-6) - (=7 + (-8)
3 769303 947575 162840 304958 424442 852210 704822
+ (-5) - (-6) + (-5) + (-4) + (-5) - (-6) + (-7)
4 718931 248238 295807 223777 539754 831939 581361
+ (-5) + (=7) - (=-6) + (-4) + (-5) - (-6) + (=7)
5 155395 632394 853108 192491 168409 180500 103082
+ (-5) - (-7) + (-6) + (-4) + (-5) - (-6) + (=7)
6 330173 303851 230364 262830 110492 171903 123596
+ (-5) + (=7) - (-6) + (-4) + (-5) - (-6) + (=7)
7 158224 348853 668493 254249 361476 457893 283348

The relations (3.9},

(3.10) and (3.11),

together with

the expressions for the mole numbers and their partial

derivatives are all that is necessary to describe all adiabatic

properties once the CJ values have been determined for each

loading density (A) selected for examination.

functions of interest may then readily be determined from

relations in terms of p, T, fj, f2, hl and h2.

expressions for the adiabatic exponent Yaqr the (chemical

equilibrium) speed of sound a, and the related derivative

_(dV/dp)Ad are immediately evident.

They are:

All other

In particular,
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(AV/dp) nq = (dV/AT)/(dp/AT) = (£,+p'f;)/pp’ )
)
vag * -(dlogp/dlogV),g = -Vp'/(£,+p'fy) ;(3‘12)
)
a® = (dp/de) g = (vpqp/e) = - (V2/M)pp'/(£,+p'£1) )

where p' is (dp/dT)Ad, and ¢ is the mass-density of the
product mixture. The CJ condition (3.4.1) may now be

expressed
(dV/dp)Ad+(Ve-V)/p =0 = (f2+h2)(ve—V)+flh2—f2hl y eeeeaes(3.13)

and the CJ pressure and temperature are found by simultaneously
solving this relation and (3.3), (3.5.2), (3.6), (3.9), (3.10j,
(3.11) and the composition equations and their derivatives
subject to (3.8.5) and (3.8.8).

The method of regula falsi may be applied to an
iterative solution of these equations to find the properties
at the equilibrium front in the following way. A pair of

values p,, T, are assumed and the pressure is adjusted at

a

constant T until

RH
z = (Ve)calc—ve = 2(E-Q-Eg) /p+V(p,T) -V, SO < P I T

changes sign. The values of p,V before and after the sign
change are classed as A or B type depending on whether z is
less than or greater than 0 and the sign of Ap until this

stage is reached is set equal to that of the first z. When

the sign change in z has occurred, the next value of p
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chosen is

p = pa-(Pa=pp) 2, [/ Uzal+l2g) . ..ol (3.14.2)

This is very close to the correct value and is classified
in turn as A, or B type depending on whether z(p,Ta) is

negative or positive. The iteration is continued until
lz/V_ | < § ceeeeee. (3.14.3
[2/Ve| < Spy ( )

4

where GR is a defined relative error, here chosen as 10 .

H
The point thus found is on the Hugoniot but is

not the CJ point unless y=0, where

slope

Y = (Ve) ga1o Ve = (£,h1=£105) /(£,4hy) 4V (R, T) =V .... (3.14.4)

The temperature is now changed, and the Hugoniot pressure is
again found as described above until y changes sign. Again,
if A, B represent classes for which y<0, y>0 respectively,
then the CJ point is close to that at which

p = pa+(pg-Pa) * lyal/lyal+]yal) )
ATTEBFAT 1A AlTB ) .. (3.14.5)

L=
|

= Ta+(Tp=T,) * [val/(ly, [+ly ) )

These values are classed A or B depending on the sign of
y subsequently calculated, and the iteration is continued

until
[¥/Vel 2 8g10pe ceeeees. (3.14.6)

where § is a defined relative error, here chosen as

slope
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The (computer) time required for such computations
is reduced considerably by the use of approximate forms in
the initial stages such as those described in chapter 6.
Estimates of start values Py Ta may be found in a number of
ways. When the explosive is one for which observations De
and dD»/dT are available, then start values pg,, (vl)a, Ya

[3.9] relations given in

are available using the H.Jones
chapter 2, and hence a start wvalue T, may readily be found
using the equation of state. However, it is possible that
the explosive considered is a new one. In this case the

start values may be taken to be those of the most chemically

similar explosive.

3.3 Special Relations

Here, the special relations for Z, X, E_, f and

r!
their derivatives for the hard molecule gas equation of state,
for the truncated virial equation of state with temperature-
dependent coefficients, and for the Jones and Miller formula
are summarized for ready reference. The relations follow

from the definitions given in chapter 2.

For the hard molecule equation of state

X = (2-1)RT/p = BgF(y) x Bg(T)‘F(y)

)
- _ _ ) ceeeseas (3.15.1)
9X/3p = (b /p)ydF/dy = (bg/RT) (dF/dy) )
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3X/3T = —(Eé/T)[H*'F+(l+H*)de/dy] )
)
where -1 )
H* = 0,375[F* (1+F*)] ~ 7% ) P (3.15.1a)
)
3 )
ydr/dy = L (k/3)2 93 )
k=1
E,. = pXH* ;
9E,/3p = (l+dlogF/dlogy) XH* ) (3.15.2)
_)
aﬁi/aT = [1-(H*/F*) (2+5F*) - (1+H*) (dlogF/dlogy) ] (p/T)H*X )
3
¥ X: -1 k/3
log (£/p) = [ Fly)dy = y-(1+ & 3(3+k) "By = ) )
() k=1 )
_ )
3logf/sp = (1l+pX/RT)/p = 2/p = Vg/RT ) (3.15.3)
)
3logf/3T = - (l+H*)yF/T = - (1+H*) (2-1)/T )
For the truncated virial equation of state with
temperature-dependent coefficients, the virial expression
for the compressibility factor of the gas phase is
2 = 1+(p/RT)B(T)+(p/RT) % (E(T)-B2] = .vvee... (3.16.1)
where B, C are respectively the second and third virial
coefficients when p/RT is represented as a power series
ol = "2, = =, —3 S !
p/RT = (V) “+B(T) (V) “+C(T) (V) ~+ Dy (T) (V) (3.16.1a)
n=4

For reasons given earlier, this equation is only applied when
the composition becomes fixed. When the intermolecular
potentials are described by the Lennard-Jones (6-12) pair
potential formula for the non-polar gas species, and by the

Stockmayer (6-12) pair potential for polar molecules,



- 106 -

approximate expressions for these coefficients are

B(T) = n 'Y n.b { [B* (T) -4 (T¥, £4) ] cereene. (3.16.2)

and C(T) = (Bbg)zc*(T*g) ceeeeess (3.16.3)

where P; is the correction term required when the species
is a polar gas, and € is the third virial coefficient for
a pure non-polar gas having species averaged LJ(6-12) pair
potential constants. For reasons given earlier, the
LJ(6-12) pair potential constants used in C(T) are not
necessarily the same as those used for the calculation of B,
and in addition, in C the pair potential constants for polar
molecules are those for sphericalized potentials.

Using the well known expression for B§ when the

LJ potential is used, viz.,
21
)} g*kTg(l‘Zk)/4 , e (3.16.4)
k=1

and uSing the fitted expression to the third virial

computations of de Boer and Michels,
3
2: s e (1 k) , ceveeen. (3.16.5)

and the functions fitted to the Rowlinson calculations of
the correction term P* for water (j=7), - - and for any other
polar molecules that may be taken into consideration such as

NH, - -,
> . wr ()T

; =0 . veess (3.16.6)
k=1

*
Pj<7
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Accordingly, one may readily obtain the following expressions

X = B(T)+(p/RT) [T(T)-B?] )
)
pdX/3p = X-B ) I (
)
T3%/3T = TB'+(p/RT) [(TC'-2BTB')- (C-B2)] )
where ( )' means d()/dT From these expressions,
- 3Er = pdX/dp+TaX/3T = TB'+(p/RT) (TC'-2BTB"')
op
and Er = —p[T§'+(p/RT)(TE'/2—§T§')]
3E,_/3T = - (p/T) ((£2E")+(TB')+(p/RT) [T2C"/2- (18" ) %-B(T°B
m . s (
— -1 —
TB' = b..0.(B* -p*
where ng ;gzn]boj 5 % jl)
2% -2 ff = 2
T2B" = 'n.b..8%(B* -P*
ng j=2n3 0 j( 22 j2)
where Bf, = T*dB*/dT* = (1/4) L (l-2k)grr+(172K)/4
J J ] J k=1 k
B = T#2a2p%/daT* = (1/16) L (1-2k)2g*r*(1-2k)/4
J2 ] s, k=1 k
4
P* = T* dP*/dT* = Z:(-k)w* (T*) K
Jl 5 I k=1 k3
pr_ = mx2a2pk/arx? = L k2wx, (T%) K
32 ] 37773 k=1 ¥ 73

All the relations required for the calculation of the
adiabatic properties are now determined for this equation

of state.

3.16.7)

el e e N P et e

" )] }

3.16.8)

(3.16.9)

N N N Nt N Nl sl it Nl Nt N N el i s N Nl i et
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For the modified Jones and Miller form of X,

viz.,

5

% =X(p) = 2 dkpk_l ........ (3.17.0)
k=1

— _ — = _ v k-

2%/3T = 0 ; pa%/ap = -3E,_/3p = (k-1)d, p el (3.17.1)

and therefore
5
T = - X:(k—l)k_ldkpk s 3E/AT = 0 ernnnnn. (3.17.2)

T k=2
Since these forms are applied both when the composition is
fixed and when it is variable, expressions are also required
for the fugacity and its derivatives. It is evident that

5

log, (f/p) = (RT)'lgglk'ldkpk

N N N e

3logf/sp = [1+(p/RT)X]/p = Z/p = \_/"g/RT ..... (3.17.3)
)
: ;
31ogf/sT = -R(RT) 2 Zk_ldkpk )

k=1



(3.1)
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CHAPTER 4

EQUILIBRIUM COMPOSITION

The reaction expressing the chemical transformation
of a pure CHON explosive into detonation products may be

represented

Cm(C) Hm(H) Om(o) Nm(N)» -> %:njAj s e e s e (4.1)

where Aj are the detonation products, ny are the number of
moles of species A4 per mole of unreacted explosive, and
m( ) are small numbers descriptive of the explosive concerned.
In order to e#amine the influence of the equation of state
on the calculated thermodynamic properties of the product
mixture, it is most desirable to eliminate all rare product
species from consideration and to consider the same set of
possible products for each eguation of state. The product
mixture resulting from the detonation reaction in strongly
oxygen-negative CHON explosives 1is assumed to contain only
the following 7 species:

J 1 2 3 4 5 6 7

cvenes..(4.2)

Aj C(s) CO C02 CH4 H

5 Ny H,0(9)
All other products are assumed to be present only in negligible
proportions. For convenience in notation and in mathematical

treatment, the species will hereafter be described by the

subscripts assigned. All but the first of these products
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are gaseous. That is,
2

n = Z ny ceeveee. (4.2a)
j=

is the total number of moles of gas present in the product
mixture.

It is apparent from (4.2) that only seven relations
are required to determine the composition. Four elementary
relations, including the trivial one for ng, are provided

by atom balance requirements for C, H, O and N. That is,

C): njy+n,+na+ny = m(C) (= 7 for TNT) (4.3.1)
H): 2n4+ng+ng = m(H)/2 = B (= 2.5 " ") (4.3.2)
0): ny+2n3+n, = m(0) =y (=6 " ") (4.3.3)
N) : ng = constant = m(N) /2 (= 1.5 " ") (4.3.4)

Any three of the four following reactions are
independent, and these three, together with the atom
conservation relations (4.3), determine the equilibrium

composition completely for a given pressure and temperature.

Reaction 1 : H,+COy <~ CO+H,0(g) ceceaas (4.4.1)
" 2 CH4 g C(S)+2H2 c o8 ce e (4»402)
" 3 : Co, <+ CO+1/2 O, cevvee. (4.4.3)
" 4 H CO haind C(S)+l/2 02 s o0 00 0 (40404)

Thus, at equilibrium,
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Kip(T) = n2n7/n5n3 ....... (4.5.1)

RS, () = (ns?/ng) (£/ny) ...l (4.5.2)
0 0 - 2

Kp(M/KGp(D) = (np/m3) (f/mg)  .e... (4.5.3)

where Kip(T) is the (constant pressure) equilibrium constant
for the ith reaction in the ideal gas condition and f is
the (common) fugacity. It is useful to define an additional

equilibrium constant for another (dependent) reaction, viz.,
Reaction 5 : 2C(s)+2H20 «> COp+CHy

K;p(T)

K°/KZ = n3n4/n72 cesnane (4.5.4)

=] 2 -]
(K7) “K3

When the fugacity is common to all species its

value is given by

T=const.

P
loge(f/p) = (r7) % ‘[ X(p,T)dp
(@]

For the two equations of state with which we are concerned

5

gM: X = R(p) = E: "™t (4.7)
k=1

HM: ( X = X(p,T) = by (T)F(y)

where vy = pbg(T)/RT

P e e W e e e
N e e N N o
.

.

.

.

.

.

—

S~

3
and F(y) = 1+ZAkyk/3
k=1
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so that,
5
( logg (£/p) = (rp)7? Ez:k‘ldkpk ..... (4.7.1)
( k=1
( _
JM E (3loggf/op)p = (1+Xp/RT)/p = Z/p  ..... (4.7.2)
( (2loge£/8T), = -R(RT)™2X = -(2-1)/pT ... (4.7.3)
and,
( Y 3
( }: -1, .x/3
(loge (£/p) = [F(y)dy = y[.l+k 13(3+k) Ay 71 L. (4.8.1)
( =
( o
(
HM ((3log £/3p)p = (1+Xp/RT) /P = Z/P  ceeesss (4.8.2)
(
((3logg£/3T), = = (y/T)F(y) (1+H*) = -(2-1) (1+H*)/T (4.8.3)
( I
(where H* = 1.5T*/4 and F* =[1+1.5T*11/2. ... (4.8.3a)
( F* (1F¥)

where all symbols have been defined earlier. The relations
for the partial derivatives are given here because they will
be needed presently.

Since the relations between the mole numbers ny are
non-linear, a solution must be found by an iterative method.
The general procedure in common practice is to express the
ny in terms of one of them (ny=zw) and to determine w by
successive adjustments until the correct values are found, at
which point the other ny are determined by the dependent
relations nj=nj(w).

An oxygen-balanced CHON explosive may be defined

as one the detonation products of which are entirely carbon
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dioxide and water vapour. Accordingly, in a generally
applicable treatment of the equilibrium composition of
the products of all condensed CHON explosives it appears
advisable to select the mole number of one of these as
the primary unknown w. We choose water vapour.
Ew z nHzo(g) = ny ; al(T) = 4K5-1 ;
Let ( ) veee. (4.9)
)
)

(az (T) = l"2/Kl H a3(T) = 1-2K1K2
( .

Then, from (4.5),

ny, = ngg = lagw?+ (B+y)w-8y1/(agw-8)  ........ (4.10.1)
ng = ny, = [alw2+(8+y)w—6y]/(a3w—y) ceeeeees (4.10.2)
n3 = ngo, = (y-npy-w) /2 ceeesees (4.10.3)
ng = ncmy = (8-n5-w)/2 ceeeee.. (4.10.4)
ng = nH2 = m(N)/2 = const. wecesess (4.10.5)
7
ng = ;g;nj = n6+(8+y)/2+(n2+n5)/2 ceereees (4.10.6)
ny = ng(g) = M(C)=(B+y) /24w (ng=np) /2 .en.... . (4.10.7)

where w is the solution to
C(p,T) = loggf+logg (K4/K3) = 1ogen3+1ogeng—210gen2 (4.10.8)

The well-known method of regula falsi may be
applied to the solution of (4.10). It is apparent that

. the absolute upper limit to w is 8. Thus, in order to
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find a first pair of start values, it is merely necessary
to start with the value B for w and to decrease this by

a definite amount until the function
g(w) = C—loge(n3ng/n22) ceees. (4.10.9)

changes sign. If gp, gp are the values just before and

after sign change, then
w = wy- (wa-wg) |apl (laal+logD) 7t ve... (£.10.10)

is very close to the value for which g(w)=0. The new g(w)
is defined to be gp if g(w)<0, and to be gz if g(w)>0 and
the iteration is continued until [g(w)|<é  where §y is a
relative accuracy which has been decided on. In the
application to TNT §, was set at 10-4. The same procedure
is, of course, applicable in the computation of the
composition in the adiabatic expansion except that here,

in proceeding from the kth to the (k+l)th pair of (p,T),

wmax(pk+l' Tk+1) = wfinal(pk’Tk) s e s (4. lOgll)

provides more economy in computation.

When the composition has been found, the partial
derivatives (anj/aT)p, (anj/ap)T may be readily determined.
The partial derivatives of three of the species Ng, N3, N4
are first calculated. The derivatives of the remaining
three variable species and of the gas mixture are then found

from the eight secondary relations
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(d3ny/3y), = =0[(3n7/3y)z+2(3n3/3y) 4] )
)
(dns/3y), = -[(3n9/3y)gz+2(3ny/3y) gzl )
)eeons (4.11)
(3ny1/3y)lg = -—[(3n3/3y)z+(3n3/3y)z+(3ny/3y) g1 )
)
(ang/ay)Z = -[(3n9/3y)g+(3n3/03y) s+ (3n4/03Y) gl )

where Z=T or p when y=p or T. The primary derivatives

(i.e., of ny, nj, ny) are readily found using the six

relations
(31'17/3Y)Z ' (aBl/ay)z
(3ng/0y), | = | a7% (3B5/38Y) g | eeveerencns (4.12)
(3n4/8y)z (333/3Y)Z

where a~1 is the inverse matrix of

(npng/n,)+ny-n; , -ngl2+(ny/n3)1 , 2n,

[A] = n4[(n5/ng)—2] ' n4(n5/ng) ’ (n4n5/ng)—n5—4n4 (4.12a)
—2(n4/n7) ’ ng/ny , 1
and (3By/3p)p = O
(3By/3p)p = -nyng-3logf/a3p

(aB3/3p)qp = 0
(aBl/BT)p = n2n5~dlogeK5/dT

(BBZ/BT)p = n4n5[dlogeKz/dT—alogef/aT]

)
)
)
)
)
) eeeeeen (4.12b)
)
)
)
)
(3B3/3T) = ny°dlogeKg/dT )
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It may be noted that the form of [A] has been
chosen so as to be quite generally applicable with precision
to oxygen-negative CHON explosives because the only inverse

1 appearing in the matrix elements

species terms n3_l, ny~
are for those which are always present in considerable
quantities in the products of such explosives.

Expressions representing the ideal gas eguilibrium
constants Kgp(T) were obtained in the following manner. The
JANAF data for the species equilibrium constants ng(T) were
combined in accordance with the various reactions i=l, 2, ..
.., and the resulting combinations were fitted by functions
thermodynamically consistent with those which were chosen to
represent the ideal gas species specific heats at constant
pressure.

Fits were made for each reaction rather than for
each species so as to obtain the greatest possible accuracy.
Bearing in mind the fact that reactions above 1.0 DEG* are

of most importance, thermodynamically consistent representations

of the equilibrium constants are:

5
logoK? (T) = -(aE2). +G;qlo T+ZG %2 (4.13.1)
ge ip - (o) i ll ge k=2 ik ¢« o 8 008 ¢ . .
RT
where (AEQ); = zmijﬁgj ' cee...(4.13.2)

Note 1 DEG = 1000°K
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and where m. . are the coefficients in the reaction equations

ij
when these are expressed in the form

~e

8
— mij>0 'products'’

mij<0 'reactions'’

m..A, =0
. i35

i=1

§.°(4.l3.3)
)
Here Egj are the species molar energies of formation at
absolute zero temperature, and j=8 refers to O,. The
constants are found by fitting

5

k-2
GillOgeT+zGikT ¢ 00 8 a0 0 (4.1394)

k=2
to functions Yi derived from the JANAF tables. These
are defined by
8
yi(T) = (AEg)i/RT+;§;mijl°gerj(T) ceeces. (4.13.4a)

The scheme which was used is set out in the following table.
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Table 4.1
3j 1 3 4 5 7 8
Aj C(s) CO Co2 CH4 H, N2 H20(g) O2
—Egj(kcal) 0 27.2 93.965 15.991 0 O 57.103 0
logerj 0 JANAF JANAF JANAF O 0 JANAF O
Reaction 1 mlj 0 1 -1 0 -1 0 1 0
2 m2j 1 0 0 -1 2 0 0 0
3 m3j 0 1 -1 0 0 O 0 1/2
4 m4j 1 -1 0 0 0 0 0 1/2
5 mSj -2 0 1 1 0 0 -2 0

The values thus obtained for the coefficients

Gjx are given in the following table.
refer to temperature expressed in the large DEGREE and to

the natural logarithm.

The reaction energies (Aﬁg)i,

These constants

referred to the absolute zero of temperature, are also given.

The precision with which the expression (4.13.1) provides

the equilibrium constants K;, using the constants below,

is comparable to that obtained for the representation

Egj(T) given earlier.

of
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Table 4.2

" Fitted Constants for the Calculation of the Eguilibrium Constants

13

i (sEQ); Gik

kcal/mole| k=1 k=2 k=3 k=4 k=5
i 9.662 -0,302177 + 5.02601 =0.634430 +0.116390 -0,00898004
2 15,991 +4,95325 +12.8451 -2,77100 +0.318756 ~0.0176849
3 66,765 +1.31287 +11.1607 «1,25739 +0,173080 =-0,0113621
4 27.20 -1,12219 =11.4991 +1.26202 =-0.174263 +0.0120058
5 4,25 -1,91254 = 0,236031 +1.51859 =0.203934 +0.0122437
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Chapter 5

COMPUTATION OF THE TAYLOR WAVE

The equation of motion for one-dimensional,
spherically symmetric, non-viscous flow and the equation of
continuity are

8u/8t+u8u/3r+(a2/p)ap/ar = 0 )
)Q.Il‘... (5.1)
3p/ot+udp/or+p (u/3xr+2u/r) = 0 )
where r is the radial position of a spherically symmetric
element of fluid, u is its (entirely) radial velocity, p is
its mass density, and t is time. 1In the equation of motion,

S§p has been replaced by a2

8p, where a is the speed of sound
defined earlier.

Assuming initiation at r=0 t=0 to the constant
detonation speed D which thereafter leaves the products at
rest at this point, the motion is self-similar. In this case
all the quantities behind the front are functions only of
r/t. Accordingly, the partial differential eguations (5.1)
can be reduced to ordinary differential equations. This was
first shown by G.I. Taylor[s'l] in his application to the

tabulated adiabatic properties calculated by Jones and

Miller[s'zl**. The reduced equations are

**ATthough Taylor gave Jones and Miller as his reference, it
appears that, in fact, he obtained his wvalues from an
earlier wartime report of H. Jones (see Colel5.3], p.97).
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dlogu = 2a? g
dlogx (u-x) 2_a2 )
) ' ceeenses (5.2)
dloga2 = 2u(x-u) £* ;
dlogx (u—x)z—az )
where X = r/t
and f* = dloga2/dlogp
a form similar to that originally derived.
It follows from (5.2) that
da? = (x-u) £* cseeesss (5.2a)

du

These equations are not in a form suited to the
present calculations where the quadrature is best effected
with temperature chosen as the prime variable. Using the

first of (5.2) and replacing f* in (5.2a) by its defining

terms
dlogu = a2 )
dlogp {x-u)u )
)
) ceeeenss (5.3)
dlogx = (u-x)z—a2 )
dlogp 2u(x-u) )
It is convenient to use the dimensionless.quantities
u* = u/D ’ a* = a/D ;, r*=x/D=r/r (5.4)

CF  ccrreree

where D is the constant speed of the wave front, and to

eliminate dlogp using

dlogr = -dlogV = V™ 1(av/dT)ng*dT ........ (5.5)
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The differential equations (5.3) may now be expressed

— (V' /V) (a*) 2/ (r*-u*)

u*!

)
) +eeee. (5.6)
)
)

(V' /V) (x*/2u*) [ (a*) 2= (r*-u*) 2]/ (r*-u*)

r*!
where ( )' means (4( )/dT)Ad. Now from (3.12),
Vt/v o= (£,+p'£9)/PV

(a*)2 = - (V2/K)pp'/ (£,+p" £;)

where K = MeD2

so that

u*' = (WK)p'/(r*-u*) )
2 ). (5.8)
r*'=-[r*/2u* (r*-u*)] [(V/K)p'+(r*-u*)“ (£,+p'£;)/pV] )

The relations (5.8) may be integrated numerically

down the adiabats starting at the equilibrium front where the

conditions are

=1 ’ uéJ = l—aéJ = l—VCJ/Ve ceeseess (5.9)

*
tca
At the CJ position r*'=0, as may be noted most readily from
(5.6). This will occasion no difficulty unless a first order
relation is used to determine the finite steps Au*, Ar*,
Let Y represent any of the variables p, u*, or r¥*,

If AT is a small assigned temperature increment, the value of

Y after N such steps have been made is

N

Y=YCJ+ZAYn ceeseees (5.10)
n=1
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th th

where AYp is the n increment arising from the n temperature
step ATp. The Runge-Kutta relation between AY, and ATL which

is correct to the 4th orger is

AYp = (c/3)[Yi+2Yé+2Yé+Ya] ceseseeea(5.11.1)
where ¢ = ATL/2 ceseeee. (5.11.2)
and if Y' = Y'(T,p,q,8) ceseeses (5.11.3)
then Y{ = Y'(T,p,q,8) )
Y = ¥ (Tre.propi qreqj stesy) ; ceeeeess (5.11.4)
Yé = Y'(T+c,p+cpé,q+cqé,s+csé) ;
Y& z Y'(T+2c,p+2cpé,q+20qé,s+2csé) )
so that Ap = (c/3) [py+2p,+2p3+p,] ;
Au* = (c/3)[u*i+2u*é+2u*é+u*a] ; ceeesess (5.12.1)
Ar* = (c/3)[r*i+2r*é+2r*§+r*&] )
where p; = p'(T,p)
ui = u*(T,p,u*,r¥)
ri = r*(T,p,u*,r*)

py = p' (T+2¢c,p+2cp3)

s
*
I

u* (T+2c¢,p+2cp! ,u*+2cu*l ,r*+2cr*})
3

3

)
)
)
)
)
)
)
)eeoo (5.12,2)
)
)
)
)
;
r*(T+Zc,p+2cp§,u*+2cu*§,r*+2cr*§) )

R
*
Ul

In the application to TNT, the complete calculations

described in chapters 3 and 4 were carried out for each
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Runge-Kutta substage, and AT was assigned the value -0.025 DEG
until the value of u* became sufficiently small that it could
be regarded as 0. Here, the Taylor wave calculations are
complete because the conditions at smaller radii are the same
as those at this point. The calculations continued to lower
temperatures on the adiabats were made with AT=-0.050 DEG as
the assigned step. Checks were made to ensure that smaller
steps gave no significant change in the numerically integrated

values.




(5.1)

(5.2)

(5.3)
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CHAPTER 6

HIGH PRESSURE APPROXIMATIONS

6.1 High Pressure Composition

It was pointed out by Jones and Miller
the chemical equilibrium relations show clearly that high
fugacities (and hence high pressures) tend to suppress the
formation of carbon monoxide and hydrogen. This conclusion
is obviously not limited to TNT products nor to any
particular equation of state. The very large values of the

fugacity for pressures greater than about 150 kbar indicates

that the approximation
nCO=O ; nH2=0 ® & 5 82 5 0 2 08 (6-1)

is fairly accurate at the head of the wave when the explosive
loading density is high. Under these conditions it follows
that

Nz

j = nj(T) i ng = constant ceeeesess (6.1a)

It will be shown that, for TNT at A > 1.5 g cc'l, this
approximation leads to errors of less than 1% . in Ny and
similarly small consistent errors in the thermodynamic
properties on the Hugoniot.

The rapidity with which the fugacity rises with
pressure is evident from the exponential nature of its

pressure dependence (see 2.6). The following values for the

JM equation of state emphasize this point.
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Table 6.1, Fugacity for T = 3,0 DEG

pressure (p) £/p

kbar kcal cc~l -
10.1 0.24 2,75
50,5 1.2 1.01+102
101 2.4 4,45103
155 3.7 1.33+103
188 4.5 8,9¢10°
210 5.0 2.68°10°

The calculated equilibrium temperature at the
~ head of the wave changes slowly with increasing loading
‘density for both the equations of state considered here,
This changes the fugacity loading-density dependence only
slightly, and it is evident that for equilibrium pressures
corresponding to high loading densities (the last 3 rows
in the table above), the Jones and Miller approximation (6.1)
is very good,

In the limit £ = ,, where ng = 0 = np, the

equilibrium relations of Chapter 4 show that
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n n6+(3+y)/2 = constant

| )
n, = w= y—2n3 = 8-2ny ; ......... (6.3)
alw2+(B+y)w—By =0 )

It is now more convenient to express the species in terms
of ny, which we now represent as ¢ (as did Jones and

Miller). Thus,

ny = m(C)-(y-8)/2-2¢ )
)
ny = (y-8)/2+¢ )
) Cesece (6.4)
ng = ¢ ; n, = g-2¢ ;
ng = ng+B+y = const. )

and ¢ is the positive root of the quadratic obtained by
replacing nj, ny, and n- by these expressions in (4.5.4).
Thus,

6 = ¢(T) ; ng= gD . e (6.4a)

The expression for ¢ is easily determined. It is

6 (T) = [y2+2y8(8Kg-1)+821%/2 = [y+8 (8K -1)]

A(1-4K; )

and for TNT (y=6, B=2.5, m(C)=7, m(N)=3) ,

6 (T) = (49/4+240K5) /2 - (7/2+20K;)

® o8 e 000 e (606)
TNT IIKs) !
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and n, = 5.25=2¢ ; n; = 1.75+¢ )
)
nyg = ¢ : ng = 1.5 ) . cesee. (6.6a)
)
n, = 2.5-2¢ : ng = 5.75 )

The special relations (6.6) for TNT were given previously
by Jones and Miller.

The parameter ¢ is very insensitive to
temperature in the case of TNT. The general expression

for its temperature derivative is

d¢ = Kg(dloggKs/dT) .88 (1-y/F) - (G=F) ceveeeees (6.7)
T (1-4K) 2
where F=[(y-8)2+16v8Kg11/2 ; G=y-g+88K;  ......... (6.7a)

Now K5 = 1 at 3000°K, and here,

¢ = 0.6349 ,  (d¢/dT) = 1.20710 %egr~1 ... (6.7b)
TNT TNT
Accordingly, the high pressure composition is not only
virtually independent of the pressure, but is nearly
invariant with temperature also. In addition, the
chemical energy Q becomes constant to a remarkable

degree. In this case

Q = E3(Y‘B)/2+€78+¢[€3+e4—2e7]—ee

ceeieees. (6.8)

N e s N et

dag/4dT = e3+e4—2€7
d¢/dT
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The applicability of these high pressure
approximations is, of course, confined to detonation front
pressures obtained with explosives at high loading density
and to pressures in this vicinity. The calculated
detonation front temperatures for TNT under these conditions
are found to differ by less than 300°K, and, in practice,
one may put ¢cg = 0.64 to obtain a very good first
approximation to the product composition and chemical

energy, viz.,

n1=3.97 , ny3=2.39 , n4=0.64 )
)

n,=1.22 , n2=n5=0 ' n6=l.5 )per mole TNT ...... (6.9)
)
)

ng=5.75 , 0=Q,=291.5 kcal

Such approximate composition estimates are of
considerable value in saving computation in an iterative
determination of the CJ conditions. The gross iteration
may thus be carried out rapidly and the final delicate
iteration without constraints then requires only one or
two additional steps. In this context, one should note
that a clear distinction must be drawn between the validity
of the high pressure JM approximation (6.1l) and the
accuracy of their published calculations. The former
appears to be sound. The latter are poor, but only a small

part of their total errors are attributable to (6.1).
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6.2 The Jones and Miller Computations for TNT

Jones and Miller only applied their equation of

state

to TNT at two locading densities, 1.0 and 1.5 g cc”l. For
the former case, and along the adiabatic for the latter,

they carried out a general computation using
ny = nj(p,T)

but introduced considerable numerical errors by using linear

representations of non-linear functions. That is, they used

=0 .
Ej(T) alj+ 2jT ceeesees (6.10)
7
Ethermal Z +TZn a, ceeeeees (6.10a)
0 ~
logK pl-KAE u/RT = bli+b2il°geT teeeenss (6.11)

where akj' bki are constants. In addition, they integrated

along an approximate adiabatic

av = 0 ceeenee. (6.12)

d(E-Q)+pdV, = 0 o

g

~e

rather than along the correct adiabatic

d(E-Q)+p (dVg+dVy) = 0 ; AV, = kg dng cevveees (6.13)

C
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It might be thought that the approximation (6.12)
is reasonable because, as the earlier discussion has shown,

at high pressures, n, = n,(T), and therefore, (avc/ap)T = 0,

c
whereas at low pressures (i.e., large gas volumes) the
volume of solid carbon becomes increasingly negligible
compared to that of the gas phase. However, ch/dVg is
by no means negligible compared with unity. For example,

at very high pressures, where ny = nj(T), ng = 5.75, and

at a temperature near 3.0 DEG

ch/dVg = (avb/aT)/(avg/aT) = p.zl?c. (d¢/dT)/ngR = 0.1lp
cieeeee. (6.13a)

where the pressure p is expressed in kcal cc™l units. As
shown earlier, the latter may have a value of about 4 to 5
such units near the detonation front in TNT at high loading
densities.

In their computations of the CJ conditions for
the higher loading density (1.5 g cc'l) of TNT, Jones and
Miller introduced two approximations in addition to the
approximation nj=nj(T)o The first of these is really a
consequence of (6.1) and of (6.10a). The thermal energy
on the high pressure portion of the Hugoniot is expressed

as a linear relation. That this follows from their other

approximations is evident because
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7

. RH
l.€. ¥ (Eth)TNT - (5025—2¢) (all+a21T)+(l.75+¢) (al3+a23T)
+¢(a14+a24T)+l.5(al6+a26T)

+(2.5-2¢) (a),+a,,T)

C1+C2T+C3¢+C4T¢

1]

(cl+0.64c3)+(c2+0.64c4)T

K1+K2T cesesses (6.14)

The values of K., and K2 they obtained are based on the

1
(1938) thermodynamic data of Lewis and Von Elbel[6:2],

These are, per mole of TNT,
K, = -38.0 keal ; K, = 87.5kcal pEG™L  ........ (6.14a)

A linear representation of the thermal component
of the energy on the Hugoniot at high pressures is
certainly useful in making slide-rule accuracy initial
computations, but it is by no means acceptable for a final
one. Furthermore, any such linear representation must be
based on a definite temperature range: the authors do not
state their choice of range. For TNT, all detonation
temperatures calculated with the improved JM equation cof

state

5
%= E:dkpk-l ceeveens (6.15)
k=1
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lie between about 3.8 and 3.0 DEG for 4 > 1 g cc™ L,
Choosing a fairly broad range, 2.5 < Tecy < 3.5 DEG, and

calling on the JANAF[6'3] data, one obtains the following
Hugoniot thermal energy constants: these appear to be

considerably better than the JM values.

K; = -50.67 kcal ; K, = 93.08 kcal pec~l ....... (6.15a)

The second high loading density detonation front
approximation of Jones and Miller arises in the following
way. A set of approximate relations describing the CJ

properties is sought and it is assumed that both

nj = nj(¢(T)) and Eip = Kl+K2T ceessseee (6.16)

apply, and that the covolume is
3
X = zildkpk_l , so that, E, = -p?(d,/2+2d3p/3) , (6.17)
k=1

Accordingly, for TNT,

Q = Qg (an invariant) )

n, = 5,75 ; n, = 5.25-2¢ )

The two primary unknowns sought are the independent
variables p, T at the equilibrium front. The two equations
to be solved simultaneously to determine these are, of course,

the Hugoniot and the equation for the CJ condition. That is,
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U-U, = Egp+E-Q = p(Vg-V)/2 (1)

(av/ap)TY = (aV/ap) 7 = = (V=) /P (2)

where the subscript e refers to the state of the unreacted
explosive. The linear form (6.14) for the thermal energy,
together with the other approximations, allows one to
eliminate the temperature from the Hugoniot. Eguating
the expressions for the temperature obtained from the
Hugoniot and from the equation of state

ngRT = p(vg—ngi) = [p(ve—V)/2+Al—ngEr]/A2 creresae. (6.20)

where Al = QO_Kl ; A2 = K2/Rng . s 6 600 00 00 (6.20a)

This gives immediately

(A2+l/2)(Ve—V) = —Al/p+A2Veg—ng[A2d1+(A2+l/2)d2p
+(Ay+2/3)d3p%]  .... (6.20Db)

where the intermediate parameter Veg is defined by
Veg = Ve—Vc (T) = (Ve"V) - (VC—V) = (Ve‘V) +Vg s 5 00000 s (60 ZOC)

The equation for the CJ condition is readily obtained
by differentiating (6.20b) with respect to p, subject

to (6.19(2)). That is,

(By+1/2) (Ve=V) /p = (A1/p?) [1+p% (Ap/A}) (aVgy/dp) M1

“ng[(Ay+1/2)d, (3,+2/3)d3p]  ..u.. (6.21)
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If, as appears to have been assumed,

p2(B,/A)) AV g/ap) R << 1,

then, the expression (6.21) for the CJ condition becomes

V-V = V__-V_ = 2Al/(l+2A2)p-n

eg g dzp

g9

2

-(4ng/3)[(2+3A2)/(1+2A2)]d3p oo

When, using this expression, V and V. -V are

eliminated from the expressions for the equation of

state and for the Hugoniot, one readily obtains the

following simple approximate relations.

dyp> = G1+G,T (1)
_ 2

Veg = ngdl+G3/p+G4d3p (2)
= 2

Vg Veg+ngd2p+G5d3p +G6/p (3)

where the G, are constants defined by,

Gy = 321/ny, i Gy = -(3/2)A,R(1+2A,)/(1+2,)
Gy = 2A1/A; ; Gy = -ny(2+3R,)/3A,
G5 = (4n./3) (2+3R,)/(1+2h3) ; Gg

= —2Al/(l+2A2)

It may also be noted that when the thermal

energy is approximated by the linear relation (6.14),

the guantity BCJ required when seeking to estimate

the pressure and specific volume from the observed

detonation velocities D, using the Jones relations

[6.4]

(6.23)

(6.24)

(6.24a)
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given earlier is

- — CJ

SPGBV, = 1 ... (6.25)
_BU7aV) g GU/ATI, B

The various constants given by Jones and Miller,
and the improved values found using (6.15) are summarized

below.

Table 6 .1

Constants For Approximate Detonation Front Relations

Constant Jones and Miller[6'l] Improved
K; kcal (mole TNT) 1 -38.0 ~50.67
¥K, kcal (mole TNT)-1lDEG™! 87.5 93.08
Qo kcal (mole TNT)-1l 289.9 291.5
A7 kcal (mole TNT)~1 327.9 342.2
Ay - = == = = = -~ - - 7.658 8.146
B(=1/A3) - - - - - = - - 0.1306 0.1228
Gl kcal (mole gas)~l 171.1 178.5
Gy kcal (mole gas)~lDEG™1 -43.48 -45,91
Gy kcal (mole TNT)-! 86.27 84.01
Gz moles gas (mole TNT) 1 -6.254 -6.221
Gg moles gas (mole TNT) 1 11.74 11.72
Gg k cal (mole TNT)~1 -40.47 -39.57
®

Note: 1 DEG = 103 deg K

The approximation involved in neglecting the

dimensionless function (6.22) may be seen from the following

s = p2(By/A)) [aV, /dplgy = P (Ry/A) [aVeg/dplGd
~p2 (Ay/A1) (AVe/AT) (AT/dp) , 4

2Ecp2(A2/Al)(d¢/dT)(dT/dp)Ad ceveee. (6.26)
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Now, when (6.1l) applies,

(dT/dp)Ad = RTng/p
ngR(l+A2)+pEc(d®/dT

so that § = 2(A2/A1)RT
l+ngR(l+A2)/[pEEd¢/dT]

[2k /Ry (148, ) 1pT (d¢/dT)
= 0.028 pT(d¢/dT) ceveees (6.26)

i

The quantity T (d¢/dT) increases with decreasing temperature,

and using its values for 3.0 DEG as an upper limit,

Td¢/dT i 0.036 H 6 _<_ OuOJ.p o R EEEE (6.26&)

where p is in kcal cc’l

units. If we estimate py,, from
the observed detonation velocity using the maximum possible

loading density 1.654 g cc we obtain

225 kbar = 5.35 kcal cc™L )

Pm =
ax ) vvv.. (6.26b)
so that Smax = 0.054 )
The approximation § = 0 thus appears to be fairly sound.

The overall effect of these high pressure approximations
on the calculated detonation front properties and flow

variables may be seen from the following table.
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Table 6,2

on the Calculated CJ Conditions
g/cc Loading Density

** Code: A Original

B Improved

(a) Approximating
(6.24)

(b) Approximating nj=nj(T)o

(c) General case nj=nj(T,p).

covolume of JM

3
2 = Z dkpk-l
k=1

covolume

5
3{' = Z dkpk"l
k=1

Computation** p T vl Yad D* u/D

B ~_kbar DEG c¢cc/g - cm/usec -
(JM[6°1]) 158.8 3.400 0.5136 3.36 0.6790 0,2296
(Aa) 159.0 3.387 0.5089 3,225 0.6692 0.2367
(Ab) 159.0 3.388 0.5088 3,224 0.6692 0.2367

"(Ac) 163.7 3.357 0,5069 3.174 0.6750 0,2396
(Ba) l65.2 3.386 0.4953 2,890 0.6545 00,2570
(Bb) 165.2 3.387 0,4953 2.890 0.6545 0.2571
(Be) 169.6 3.359 0.4930 2,838 0.6587 0.2605
* Observed[6:5] value is D, = 0.6622 cm/usec

ny=n4(T), and Ey,=K;+K,T but not using

No approximations.

No other approximations.
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On the adiabatics, the accumulated effect of the
Jones and Miller approximations is that their published
values but poorly represent the effect of their equation
of state. The departure of their results for TNT at a
loading density of 1.5 g ccl from the corresponding
values calculated here (with the improved form of the
same equation of state) is so great as to indicate that,
in addition to the approximations which have already
been described, large errors were incurred in quadrature
also. This is to be expected because this involved the
choice of large temperature steps (AT=200°K) in conjunction
with a first order relation to describe finite differences
in the pressure in terms of its slope in the temperature.

In G.I. Taylor's[6’6]

well-known application of
the tabulated adiabatic properties of Jones and Miller
(to the calculation of the instantaneous spatial distribution)
additional, and much larger, numerical errors were introduced.
Numerical errors, but not necessarily of this magnitude, are
unavoidable unless the spatial distribution is calculated in
parallel with the adiabatic properties in a manner such as
described in the previous chapter.

It has been known for some time[6'7] that G.I.
Taylor's computations were seriously in error. That most of

the errors in his calculated spatial distributions are due

to his numerical errors rather than to., those of Jones and
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Miller was demonstrated by the recalculation of the spatial
distributions for a spherical detonation wave in TNT at a
loading density of 1.5 g cc~! by Dasgupta and Penney[6.8],
also using the Jones and Miller adiabatic properties but
using a more refined numerical procedure. The difference
of these from those originally calculated by G.I. Taylor

is a striking example of the importance of numerical
precision. It will shortly be demonstrated that the
calculated instantaneous pressure-radius distributions
behind a spherical detonation wave in TNT = = according

to (a) Dasgupta and Penney, (b) the author, using the
improved JM equation, (c) the author, using the hypothetical
hard sphere equation of state, and (d) Lutzky[6°9], using
the Landau=Stanyukovich=Zeldovich-Kompaneets crystal=-based
equation - = are all in fair agreement. The numerical
procedures in these cases were of similar precision. This
indicates not only that the calculated distribution is
relatively insensitive to the equation of state used, but
that one must beware of ascribing calculated differences

to the effect of the equations of state that may be used
unless the numerical procedures are of such precision that
this effect may safely be ignored. Brode's [6:10]
calculations of the air blast wave arising from the explosion
of a sphere of TNT are based on G.I., Taylor's calculations

and are, therefore, unreliable to at least this extent.
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However, Brode introduced more serious errors in calculating
the blast wave proporties by misrepresenting the ideal
component of the total internal energy on the adiabatic

as a linear relation in the temperature, a general notion

he incorrectly ascribes to Jones and Miller. Empirical
corrections to Brode's computations that allow qguantitative

use of his charts are discussed elsewhere[6°1l].
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CHAPTER 7

APPLICATION TO TNT AND FINAL DISCUSSION

7.1 Introduction

We now describe the results obtained when the
relations discussed earlier are applied to TNT (C7H5N306)o
For conciseness, only 1.0 and 1.5 g/cc loading densities
are treated. For the former loading density, the detonation
front, the adiabatic and the Taylor wave are calculated both
for the hard molecule (HM) equation of state and for the
(modified) formula of Jones and Miller (JM). The same
calculations are applied to the higher loading density using
only the HM equation of state but the detonation front
properties and speed are also calculated using the modified
JM formula. Sufficient has been stated as to now require
specification only of the heat of formation of TNT and the
initial thermal energy of the unreacted TNT. The following

value is derived from Cook[7°1]

€ - Ee(Te = 300°K) = 13 kcal/mole TNT s 0000 (7@1)

e

7.2 Conditions at the Detonation Front (CJ Conditions)

Tables 7.1A, B show the values obtained here
compared with those calculated by Jones and Miller[7.:2] using
the 3-constant formula described earlier, by Fickett [703]

using the LJD equation of state, by Lutzky[7°4] using the
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Landau=Stanyukovitch=-Zeldovitch~Kompaneets crystal-based
formula and by J. Taylor using the virial form (2.41). The
observed detonation wave speeds due to Urizar(7.:6] agree
well with the Brucetonl7:7] values here called the "observed"
values (symbol Dw) and in the absence of adequate criteria
we must regard agreement of the calculated detonation speed
with these values as a strong index of merit of the equation
of state used. This does not, of course, apply to the
detonation front formulae. The departure of formulae-
calculated wave speeds from those observed is merely an
indication of imperfect fitting: this is pronounced in the
case of the original unmodified (3-constant) formula of
Jones and Miller as demonstrated in Chapter 6 for the 1.5
g/cc loading density. This deficiency persists at the lower
density of loading as shown in Table 7.1A and the improvement
designed to be effective at high loading density has little
effect at low densities of loading. That this is the case

may be seen from the following comparison for 1.0 g/cc

Dcalc P vl El Y Ny ng

m/sec kbar c¢c/g kcal/g - - -
3-constant JM 5226 82,00 0.6998 1.468 2,331 6.390 3.244
5-constant JM 5218 82,39 0.6974 1.473 2,304 6,387 3,248
3-constant JM[7-2] 5266 82.24 0.7035 - 2.43 6,453 3,104

It may be noted from these values that the difference

due to the change introduced into the formula for X (the
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covolume) has far less effect than that due to the different
calculation procedures used by Jones and Miller and by the
author. The JM formula, either in the 3 or the 5=constant
form, appears to be of little merit as regards the calculated
properties for low loading densities. However, the composition
is in fairly close agreement with that by the HM equation of
state and this agreement persists along the adiabats as will

be illustrated presently.

The HM calculated wave speed agrees with that observed
to better than 1% at the higher loading density. Here,; it
surpasses even the LJD equation of state, the wave speeds from
which, as Fickett's calculations demonstrate, depart from that
observed by over 3,5% at 1.4 and by 2.5 at 1.64 g/cc loading
densities. Another factor, of course, is the different choice
of pair potential constants and pair potential formulae in
the two cases., It will have been noted that at high loading
density the dominant gases at the CJ front are CO,, N3y and
Ho0(g) s for the HM equation of state, choice of larger diameters
¢, particularly in the first two species would be expected to
increase the calculated pressure while choice of smaller 6
values would be expected to increase the imperfection component
of internal energy and reduce the calculated temperature.
However the calculated temperature - = which is very
insensitive to loading density for this equation of state = =

and the value of 6 have less effect on the imperfection
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component of energy than does the pressure, Confirmation of
these expectations is provided by the following comparison
for 1.5 g/cc loading density using the HM equation of state
and the initial and final pair potential constants given in

Table 2:20

p Vi1 T E E Dcalc
kbar cc/g °K kcai/g kcgl m/sec

Initial choice 140.1 0.5160 3616 1,510 58,86 6429
Final choice 143.6 0.5182 3594 1.517 62.10 6557
At the lower loading density the LJD calculations
appear to be far superior to those using the HM equation as
may be noted from Table 7.l1A., Here CO becomes a major
component and variation of its pair potential constants
would more profoundly affect the results. The (small) effect
of the change of constants at 1.0 g/cc loading density is
illustrated below,
kgar cZ}g 3K kcgi/g kggl 37252
Initial constants 62,22 0.7238 3484 1.309 36,70 4746
Final constants 62.88 0.,7242 3488 1,319 38.04 4775
It may be concluded that if, as appears to be the case, the
relation ba(T*) is at fault (by virtue of its dependence on
the LJ(6-12) pair potential formula), then use of a more
realistic pair potential in the calculation of ba should

improve agreement. This must await further investigation,
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7.3. Properties and Composition in Adiabatic Expansion
Following Detonation and the spherical Taylor wave

The calculations are summarized in Tables 7.1, 7.2

and 7.3 and in Figures 7.3 and 7.4, as regards properties
and composition and in Table 7.4 and Figures 7.1 and 7.2
as regards the Taylor wave.

It may be noted that, considered as functions of
temperature, the properties and composition are very similar
for the HM and JM equation of state except at the lowest
temperatures, For the lower loading density, the temperature
at the first graphite minimum is the same in both cases,
viz, 2100°K in agreement with Jones and Miller, At the
higher density, the HM equation of state determination of the
minimum occurs at 1800°K: this is in fair agreement with
the Jones and Miller calculation of 1600°K for this case,
These authors quote the experimentally determined nCO/nCOz
final equilibrium values as 1.66 for a loading density of
l.5 g/cc, This is in precise agreement with the value
obtained here using the HM formula at 1800°K for this
loading density. We have

HM; nCO/ncoz = 20 254/10361 = 1066

This is a significant improvement over the value calculated
by Jones and Miller at their minimum (1600°K) viz. 1.33.
The agreement is strong support for the assumptions made

regarding the fugacity and more generally supports the
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HM equation of state., In view of the fair agreement in
composition according to the HM and JM equations, the JM
estimates of the mole number of the gases NH3 and HCN appear

acceptable., These are

ey = 02021 7 nyyy = 0001

at 2000°K, which supports our initial assumption regarding
the unimportance of reactions involving nitrogen,

The Taylor wave calculations are only tabulated
(Tables 7.4) for the HM equation of state, while the IM
calculations are presented only graphically (Figure 7.2)
because the CJ values are most unreliable for this case
and these start values, more than the equation of state,
determine the shape of the pressure and particle velocity
curves. It may be noted that the pressure falls much more
rapidly according to the JM than to the HM equation of
state. This appears to be due to the rapidly decreasing
imperfection energy for the former equation. For the 1.5
g/cc loading density, the fair agreement between the
normalized pressure for the different equations illustrates
the remarks made earlier in Chapter 6.

While computations of air blast propagation
resulting from the explosion of a sphere of TNT using the
HM equation of state have not yet been carried out, the less

sharply peaked pressure, energy and particle velocity
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distributions of this equation offer promise that the
initial air shock velocity, which is calculated to be too
high when other equations are used, will be more faithfully
calculated when the detonation products are assumed to

Obey it.
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Table 7.1lA

Calculated Properties and Composition at the (CJ) Detonation
Front

(1.0 g/cc loading density; D, = 5010 m/sec)

(a) (ay  [7.4] [7.3]
Item HM JM Lutzky (b) Fickett
Dealc (m/sec) 4775 5218 5030 5266 5001
p(kbar) 62.88 82,39  72.2 82,24 70.93
T (°K) 3488 3782 2357 3800 3631
v1(ce/qg) 0.7242 0.6974 0.7142 0.7035 0.71l64
Yad : 2,625 2.304 2,55 2,43 2,526
Ej(kcal/qg) 1.319 1.473 1.27 - -
Q1(kcal/g) 1,112 1,175 (1.018) 1.111 1.108
Ey (kcal/mole TNT) 38.04 41,49 - - -
u*m=lea*=1-V/Vq 0.2758 0.3026 0,286 0.2965 0.2836
Product Composition
- (moles/mole TNT)
j=1 Graphite 2,8665 3.2480 - 3,104 3.807
2 CO 1.8858 1.1924 - 1.286 1,9978
3 CO2 1.5646 1.8768 - 1.889 1,0731
4 CHy 0.6831 0.6828 - 0.721 0.0122
5 Hjp : 0.1488 0.0805 - 0.122 0.0400
6 N2 (1.5000) (1.5000) - (1.500) 1.4997
7 H20 0.9850  1.0539 - 0,937 1.8555
total gas 6.7673 6.3865 - 6.453 6.9492
() - assumed or invariant values
(a - calculated here

(b) = original calculations of Jones and Miller(7.2]..
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Table 7.1B

Calculated Properties and Composition at the (CJ) Detonation
Front

(1.5 g/cc loading density; Do = 6622 m/sec)

(a) (a) [7.5]
Item HM JM J. Taylor

Dcalc(m/sec) 6557 6587 6480
p(ﬁbar) 143.6 169.6 111
T (°K) 3594 3359 3870
vl(cc/qg) 0.5182 0,4930 0,55
Ya 3,491 2.838 -
El?kcal/g) 1,517 1.625 -
Q1 (kcal/g) 1l.262 1.274 1,295
E;(kcal/mole TNT) 62,10 108.0 -
u =l-a*=1-V/Ve 0.2227 0.2605 0.3666
Product Composition
ThoTes froTe TRT — —
j=1 Graphite 3.8048 3.8921 4,88

2 CO 0.2336 0.1065 0.68

3 €Oy 2.3010 2.3508 1.43

4 CHy 0.6605 0.,6506 (0.00)

5 H2 0.0146 0.0069 0.023

6 N3 (1.5000) (1.5000) (1.50)

7 HZ0 1.1644 1.,1918 2.48
total gas 5.8741 5.8067 6.11

()

(a)

- assumed or invariant values
- calculated here
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Table 7.2

Composition in Adiabatic Expansion (moles/mole TNT)

iy Gas [ Carbon co
°K/1000 a b c a b c a b c
3.7 6,46 - - 3.17 - - 134 - -
3.6 6.56 - 5.87 3.07 - 3.80 1.51 - 0.233
3.5 6.65 - 5.93 2,98 - 3.75 1.68 - 0.336
3.4 6:75 6.85 5.94 2.89 2.79 3.74 1.85 2,03 0.362
3.3 6.85 6.94 5.99 2,79 2.70 3.70 2,04 2.19 0,457
3.2 6,95 7.04 6.03 2,70 2.61 3.67 2,21 2.37 0.516
3.1 7,06 7.14 6,07 2,61 2,52 3.63 2,39 2,53 0,597
3.0 7.16 7.24 6,12 2,51 2.43 3.59 2,56 2.70 0,694
2.8 7.36 7.43 6,27 2,35 2.27 3.46 2.88 3,02 0.950
2.6 7.55 7.63 6,45 2,20 2.13 3.30 3,18 3.31 1.27
2.4 7.72 7.80 6.62 2,09 2.02 3.16 3.42 3.55 1l.56
2.2 7.87 7.95 6.80 2,03 1.96 3.01 3.60 3,72 1.86
2.0 7.97 8,05 7,00 2,03 1.957 2.91 3.68 3.80 2.10
1.8 7.80 8.09 7.10 2.11 2.04 2.87 3.62 3.76 2,25
l.6 7.93 8,02 7.16 2,30 2.22 2,93 3.40 3.54 2.25

Table 7.2 (Continued)

T CO2g L H20
°K/1000 a b c a b c
3.7 l.81 - - 1.04 - -
3.6 1,73 - 2,301 1.03 - 1.16
3.5 1.65 - 2,25 1.01 - 1.16
3.4 1,58 1,50 2,24 0.993 0,970 1.16
3.3 1.49 1.42 2,19 0.974 0.953 1.16
3.2 l.42 1.35 2,16 0.956 0,933 l.16
3.1 l,34 1.27 2,12 0.936 0.913 1.16
3.0 1.26 1.20 2,08 0.915 0.893 l.16
2.8 1.12 1.07 1.95 0.873 0.850 1.14
2.6 0,995 0,943 1.80 0.830 0.807 1.12
2.4 0,893 0.843 1.67 0.790 0.765 1.10
2,2 0.822 0.772 1.54 0,757 00730 1.07
2,0 0,792 0.743 1.43 0.738 0.709 1.04
l.8 0.818 0.763 1l.36 0.740 0,709 1.02
1.6 0.917 0.863 1l.36 0.770 0.736 1.02

- 5=constant JM
b =~ HM equation of state; 1.0 g/cc loading density
c - HM equation of state; 1.5 g/cc loading density

formula; 1.0 g/cc loading density
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Table 7.3,1

Detonation Product Properties in Adiabatic Expansion

T p (kbar) vi(ce/qg)

°K/1000 a b c a b c
357 75,80 - - 0.7228 - -
3.6 68,73 - - 0.7536 - -
3.4 56,33 57.80 115,5 0.8169 0.7467 0.5508
3.2 45.76 46 .89 90,90 0.8856 0.8063 0,5906
3.0 36,60 37.29 70.57 0.9619 0.8780 0.6376
2.8 28,62 28,87 53:94 1.049 0.9673 0,6954
2,6 21.68 21,56 39,71 1.154 1.083 0.7714
2.4 15.78 15,32 28,87 1.288 1.242 0.8616
2,2 10.73 1013 19,86 1.479 1.479 0.9870
2,0 6.664. 6,127 12.63 1.789 1.868 1.174
1.8 3.612 3.236 7.097 2.389 2,613 1.496
1.6 1.590 1.397 34275 3,855 4,392 2,191
1.4 0,5728 0:5156 1.245 7.906 8.936 3.915
l.,2 0,2358 00,2437 0.5498 15.46 15.38 6,737
1.0 0,0855 0.,1038 0.2184 34.34 29,06 13,05
0.8 0,0260 0.0382 0.,0746 88,74 61,82 29.13
0.6 0,0061 0.0112 0.,0203 280.7 155.7 78.42
0.4 0.00093 0.0022 0,0037 1231. 525.6 286 .9
0,3

0.00026 0.00072 0,0011 3280 1212 691.9

5-constant JM formulaj; 1.0 g/cc loading density
HM equation of state; 1.0 g/cc loading density
~ =  HM equation of state; 1.5 g/cc loading density

Quoe
1
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Table 7.3.2

Detonation Product Properties in Adiabatic Expansion

T Y Ej (kcal/qg)
°K/1000 a b c a b c
3.7 2,341 - - 1.412 - -
306 26390 ol - 16343 - -
3.4 2,506 2.608 3:.276 l.216 1.272 1.396
3.2 2,635 2,578 3,111 1.099 l.1l64 1.273
3.0 2,766 2.550 2,985 0.9914 1,058 1,154
2.8 2,874 2,515 2,874 0.8920 0.9558 1.040
2,6 2,923 2,460 2,781 0.7999 0.8570 0.9236
2.4 2.869 2,369 2,704 0.,7158 0.6720 0.8196
2.2 2,673 2,223 2,606 0.6367 0.6707 0.7183
2.0 2,338 2,016 2,451 0.5630 0.5858 0.6221
1.8 1,928 1,756 2,194 0.4940 0.,5069 0.5318
1.6 1.550 1,490 1.830 0.4285 0.4342 0.4487
104 10368 10410 10585 0.3646 - -
l.,2 1,293 1.359 1,445 0.3001 - -
1,0 1.261 1.332 1.363 0.2382 - -
0.8 1.255 1,325 1,325 0.1798 - -
0,6 1.270 1.335 1.321 0.1258 - -
0.4 1,306 1.360 1,344 0.0777 - -
0.3 1.327 1,356 0.0561 - -

1.370

(¢}

5-constant JM formula; 1.0 g/cc loading density
HM equation of state; 1.0 g/cc loading density
HM equation of state; 1.5 g/cc loading density
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Table 7.4A

Spherical Taylor Wave for 1.0 g/cc TNT Loading Density
Using the HM Equation of otate

104r* 104ux P T vy Y

- - kbar °K cec/qg -
10000 2758 62.88 3488 0.7242 2.626
9996 2665 60,75 3453 0.,7333 2,617
9974 2535 57.80 3403 0.7461 2.608
9877 2285 52,17 3303 0.7751 2,592
9706 2045 46 .89 3203 0.,8063 2,578
9459 1812 41,94 3103 0.8405 2.564
9132 1582 37,29 3003 0.8780 2,550
8721 1352 32,94 2903 0.9201 2,534
7620 881 25.08 2703 1.021 2,491
6903 632 21.56 2603 1,083 2,460
5914 334 17.96 2491 1,164 2,415
5236 158 16.16 2432 1,215 2,385
4756 55 15,23 2399 1.245 2,367

Table 7.4B

(As above = but for 1.5 g/cc TNT Loading Density)

10000 2227 l43.6 3594 0.5182 3.491
9993 2135 137.7 3559 0.5240 3.452
9958 2013 129.9 3509 0.5337 3.347
9896 1898 122,5 3459 0.,5420 3.314
9810 1786 115.4 3409 0.5508 3.276
9564 1577 102.6 3309. 0.5703 3.177
9225 1378 90.90 3209 0.5906 3.1l1
8798 1185 80.24 3109 0.,6130 3.046
8290 996 70,57 3009 0.6376 2.985
7707 810 61.83 2909 0.6647 2.929
7053 623 53.94 2809 0.6954 2.874
6324 433 46 .85 2709 0.7292 2.827
5378 208 39.71 2597. 0.,7714 2.781

4220 1 34.36 2505 0.8107 2.745
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Figure 7.1

Spherical Tayloxr Wave For TNT at 1l.5g/cc Lbading Density -

p - pressure (kbar)

—T - temperature (deg K/lOO)‘
vy - specific volume (cc g';‘lOO)
u* - particle velocity (x103)

- HM Equation of State

— - LSZK Equation of State (Lutzky)
1.45 gcc~l TNT

- normalized to ppg=l44kbar _
- - - - G.I. Taylor~(based on Jones and Miller) ]
normalized to pcg=l44kbar ]

o+ = pressure - Penney and Dasgupta
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Figure 7.2

Spherical Taylor Wave

For TNT at 1.0 g/cc
Ldading Density

pressure (kbar)
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HM Equation of State

Modified JM Formula
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Figure 7.3

4.4 Adiabatic Composition of TNT
- Detonation Prod for 1.5 g/cc

ocading Density :
Equation O tate

- moles per mole TNT
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Figqure 7.4
Adiabatic Comgg§ition of TNT Detonation Products
For 1.0 g/cc Loading Density Using the Modified
: JM Formula
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