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ABSTRACT 

The problem of automatically extracting information from web pages is becoming 

very important, due to the explosion of information available on the vVorld \Vide 

vVeb. In this thesis, we explore and compare hand-crafted information extraction 

tools with tools constructed using machine learning algorithms. The task we consider 

is the extraction of organization names and contact information, such as addresses 

and phone numbers, from web pages. Given the huge number of company web pages 

on the Internet, automating this task is of great practical interest. The system we 

developed consists of two components. The first component achieves the labeling or 

tagging of named entities (such as company names, addresses and phone numbers) in 

HTML documents. We compare the performance of ha'nd-coded regular expressions 

and decision trees for this task. Using decision trees allows us to generate tagging 

rules that are significantly more accurate. The second component is used to establish 

relationships between named entities (i.e. company names, phone numbers and ad­

dresses), for the purpose of structuring the data into a useful record (i.e. a contact, 

or an organization). For this task we experimented with two approaches. The first 

approach uses an aggregator that implements human-generated heuristics to relate 

the tags and create the records sought. The second approach is based on Hidden 

Markov Models (HMM). As far as we know, no one has used HMM before to es­

tablish relationships between more than two tagged entities. Our empirical results 

suggest that HMMs compare favorable with the hand-crafted aggregator in terms of 

performance and ease of development. 
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RESUME 

Le problème d'extraction d'informations de sites web est devenu très important 

réçamment à cause de l'explosion d'information. Dans cette theèse, nous explorons et 

nous comparons des méthodes crées par des personnes aux méthodes d'apprentissage 

automatique. Le domaine auquel nous nous intéressons est spécifiquement lié à 

l'extraction des noms d'organisations ainsi que leurs coordonnées (leurs adresses et 

leurs numéros de telephone, par exemple). Vu le nombre très élevé des compagnies 

qui possèdent des sites sur Internet, l'automatisation de cette procédure s'avère être 

d'un grand intérêt. Le système qu'on utilise consiste en deux étapes: l'étiquetage 

des entités prédéfinies (une" entité prédéfinie" est un mot ou un groupe de mots qui 

dénotent un concept spécifique dans le domaine considéré) dans les documents web et 

l'établissement de relations entre les différentes entités étiquetées. l\"ous comparons la 

performance des expressions régulières générées la main celle des arbres de decision 

dans la classification des entités prédéfinies dans les documents web. La seconde étape 

consiste établir des relations entre les entités étiquetées (noms, numéros de téléphone 

et adresses) sur des sites web, dans le but de structurer et d'orgraniser l'information 

d'une facon utile (un contact, ou une orgarnization). Dans ce but, nous avons conduit 

des expériences selon deux approches. La première approche fait usage d'un ensemble 

de techniques de recherche qui implémente celles performées par les humains et qui 

consiste relier ensemble les étiquettes et créer des ensembles d'informations qui seront 

requises plus tard. La deuxième approche utilise les Modèles de Markov Cachés. Selon 

nos recherches, ces modèles n'avaient pas été utilisés, auparavant, dans le but d'établir 

des relations parmi plus que deux entités. Nos resultats basés sur lexpérimentation, 
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suggèrent que les techniques de l'apprentissage machine performent aussi bien que 

les solutions désignées la main en ce qui concerne la performance et la facilité de 

développement . 
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CHAPTER 1 

INTRODUCTION 

Information Extraction (lE) is concerned with extracting domain relevant data 

from a corpus of documents. For instance, an lE system could be used to extract 

patient information from medical records (e.g. age, diagnosis, etc.). Generally, in­

formation extraction systems take free-form text documents as input and produce 

structured data as the output (e.g. records in a database). Traditionally, information 

extraction systems have been used more in research than in actual daily operation. 

The development of lE systems during the 1990s was stimulated by the yearly ~lessage 

Cnderstanding Conferences (:\fCC), sponsored by DARPA [5, 6, 4]). Tasks proposed 

for the MCC conference included: 

• Health care delivery: summarizing medical records by extracting diagnoses, 

symptoms, test results and treatments; such systems can provide doctors with 

easy access to information regarding their patients, and also assist in statistical 

and medical research. 

• Monitoring technical and scientific literature: lE systems were used to 

analyze technical articles in the do main of microchip fabrication, in the are as 

of layering, lithography, et ching and packaging. These systems helped advance 

the industry by providing a good knowledge base for research, manufacturing 

and distribution of equipment. 

• Intelligence gathering: lE systems were used ta summarize information 

about terrorist activities from news articles. The specifie information gath­

ered included terrorist organization, location, and casualties. lE systems are 
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also used in this domain by government agencies to identify potential threats 

by monitoring certain web sites and the people who access them . 

• Business intelligence: Business newspapers were analyzed using lE to find 

information about major business events such as buyouts, mergers. and joint 

ventures. The goal of the lE system was to find out who the parties involved 

were, the purpose of the event, and the amount of money involved. 

In the last five years, because of the information overload, industrial interest in 

information extraction has grown a lot. lE systems have been implemented and are 

currently used in research (e.g., finding computer science papers [11], extracting infor­

mation about pro teins [10]) as weIl as in everyday business. For instance, \Vhizbang 

Labs has set up the (allegedly) largest collection of job advertisements on the Internet. 

by automatically extracting relevant fnformation from web pages. 

In order to obtain good performance, lE systems are designed to work within a 

certain domain, to which they are dependent to a large extent. Therefore, applying 

an lE system to a domain of interest different from the one it was originally designed . 

for requires additional work. The extent of the work required to change domains 

depends on the design of the system, and can vary from the construction of new 

training data (if the system uses machine learning for producing the extraction rules) 

to completely rewriting various modules (if the system is hand-crafted). In this thesis 

we present an lE system that retrieves organization names, and their relevant contact 

information (person names and titles, phone number, address, etc.) from web pages. 

Our focus is on comparing machine learning techniques to hand-coded solutions, in 

terms of performance quality and ease of design. 

1.1 Structure of lE systems 

The pro cess of information extraction (lE) from the World vVide Web (WWVV) 

involves three steps [15]. The first is the harvesting of web pages that are related to 
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the topic of interest. This is usually done by a standard se arch engine and will not 

be discussed in this work. 

The second stage is not specifie to IE from the W"V\V, and is that of tagging named 

entities in the HTML/text document. l\"amed entities are words or phrases that have 

been identified by the designer of the system as being of interest. For example, for 

a system collecting research papers, the named entities would be title, author, date, 

venue where the document was published etc. [9]. In general, the domain can be very 

structured, and thus easy for information extraction, or it can be unstructured, which 

makes lE difficult. For example, phone numbers or postal codes are very structured~ 

while person names or symptoms of an illness are unstructured. In a structured 

domain, it is easy to find generally applicable rules to extract information. Hence, 

hand-crafted approaches are adequate. In a very unstructured domain, with a lot of 

variability, rules are much harder to find. 

Tagging can be achieved by a multitude of methods: word dictionaries, hand coded 

regular expressions or heuristics, various machine-Iearning techniques, or an ensemble 

of these methods (see, e.g., [9, 16, 3]). Word dictionaries are lists of words and their 

meta-definition. An example of such a dictionary would be a list of country names. 

\Vhen a word from the dictionary (e.g., Canada) appears in the text, it is identified as 

being a country. Regular expressions and heuristics are used to either give context to 

words identified by the dictionaries, or match patterns that are very likely to occur. 

An example of using context to label words properly would be the following rule: if 

the word London appears preceded by another capitalized word, then it is labeled as 

a surname, and not a city (e.g. John London). An example of using the structure 

of the text would be the labeling of postal codes in Canada, by defining a pattern: 

letter, number, letter, option al space, number, letter, and number. 

The third stage of an lE system involves the grouping of labeled/tagged named 

entities to form structured records containing the information we are trying to extract. 

3 
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This can be do ne either by creating a dictionary of word patterns that might establish 

a relationship between two labeled named entities, such as a typical pattern of words 

that relates an organization and its location [1], or by establishing heuristics that 

identify such a relationship [7, 8]. vVe will discuss tagging and relationship finding in 

greater detail in the following chapters. 

1.2 The Task Addressed in This Thesis 

The task that we are addressing in this thesis is the extraction of corporate infor­

mation from web pages. Our system uses a labeling step followed by an aggregating 

step, as described above. For instance, for the labeling step we will analyze a web page 

where we may label Coca-Cola as an organization name, Mike Anderson as a person. 

12 St. Atlanta as an address, (614) 876-4532 as a phone number, and NIicrosoft as an 

organization name. Following this, we will have to establish the relationship between 

the proper entities, and extract the information in a record. It may be established 

that one of the named entities, for instance Microsoft, is irrelevant, and thus does not 

belong to the relationship. In this case, the named entity should be left out of the 

record produced. 

In our work, we use both machine learning and hand-crafted techniques to perform 

lE. Labeling is produced using existing software, the lnfotagger system, developed 

by Joel Martin at NRC, which uses both regular expressions and word dictionaries 

to label data. lnitially, we wrote a number of regular expression for lnfotagger based 

on common-sense heuristics. Because we discovered that these regular expressions 

were insufficient for getting good results in certain cases (e.g., tagging organization 

names), and because the pro cess of creating such regular expressions was very tedious 

and time consuming, we used an algorithm for decision tree construction, C4.5, to 

generate additional rules. These new rules made the system more robust and improved 
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performance, and at the same time were faster to construct. These two approaches 

will be discussed in Chapter 2. 

For establishing relationships between relevant labeled named entities, we used 

two methods that will be explained in detail in Chapter 3: a hand-crafted aggregator 

and a Hidden Markov Model. The hand-crafted aggregator uses a distance heuristic 

to establish relationships. The H~IM bases the relationships that it establishes on a 

natural probabilistic modellearned from training data. vVe compare the performance 

of these two systems, and we also study the behavior of the H:YIM technique under 

different parame ter settings. . 

The thesis is structured as follows. Chapter 2 discusses tagging and provides an 

overview of related work on classifying documents. We provide a detailed description 

of the methods that we used in this work to solve the labeling problem. Chapter 3 

gives an overview of the work done in the field of relationship pattern matching, as 

weIl as a detailed description of the hand-crafted aggregator, Hidden Markov Models 

in general, and the particular Hidden Markov Model that we used in this thesis. 

Chapter 4 contains conclusions and avenues for future work . 
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CHAPTER 2 

TAGGING 

Tagging, also known as named entity recognition/classification or labeling [6], is 

the process of identifying named en titi es, i.e., words or phrases of interest in a given 

domain (such as person names, locations, phone numbers etc.). A word is a sequence 

of characters delimited by predefined separators (such as, e.g., spaces, tabs, punctu­

ation marks, or HTML tabs). A phrase is a sequence of two or more words. Tagging 

is generally the easièst and most successful sub-task of information retrieval systems. 

However, the performance of taggers is still very dependent of the domain at hand . 

Tagging requires the ability to define the class of a word and couple this knowledge 

with the context in which the word appears. By class we mean, for instance, whether 

a word is a country or a person's first or last name. Defining the class of a word can be 

achieved using word dictionaries. A dictionary is a collection of words of a certain type 

(e.g., country names, or company names). The collection can containjust the words. 

or additional information as well (such as the definition of a word). Even if we can 

define such dictionaries, ambiguities can still arise when certain words are defined in 

more then one dictionary. For instance, a person's last name may also be the name of a 

country. In this case, the context of the word has to be used in order to disambiguate 

between its possible classifications. Finally, certain classifications cannot be easily 

identified by using word dictionaries, because the dictionaries needed would be too 

extensive. In sorne of these cases, such as phone numbers, postal codes or street 

addresses, there is a lot of syntactic structure in the named entities being sought. If 

this is the case, syntactic patterns (e.g., regular expressions) can be defined in order 
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to achieve proper tagging. In other situations (such as seeking titles of computer 

science papers, for example), simple patters are not sufficient and more sophisticated 

methods, using both patterns and context, need to be used. 

People are of course very good at tagging, largely due to the fact that they have 

large word dictionaries, and a lot of background knowledge regarding possible patterns 

that can appear in text. For instance, it is easy to recognize John Smith as a person's 

name, if we know that John is a first name and Smith is a last name. Similarly, 

identifying 12 Tapuz road as a street address is easy by using the suffix "road". Now 

consider a situation in which the text was in a foreign language that used Latin 

characters, but in which we could not understand the meaning of the words. \Vould 

we know that Xhi Yan was a name, and that avienda Tapuz 12 was a street address? 

vVe would need to know sorne rules that are followed by the foreign language, and 

which would allow us to infer the proper labels of the named entities in the examples 

above . 

Most programs -that perform tagging use the same basic ·tools (dictionaries and 

pattern mat ching performed on the context of a word) in order to perform their 

task. A tagging application needs to be told about rules of the language or domain 

of interest in order to make the proper inferences, just like a human would. For 

example, the application can be given a dictionary of street suffixes, along with a 

regular expression pattern matcher. The regular expression engine cou Id infer, for 

instance, that if a street suffix appears in the text, then aIl capitalized words before it 

are part of a street name, and the first number encountered before the street name is 

the civic code of the building. This approach works very weIl in structured domains, 

but is very difficult to implement for unstructured types of information, because rules 

are difficult to formulate. Renee, a lot of recent research focuses on machine learning 

techniques, which can extract rules automatically from a corpus of documents . 
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In this chapter, we compare machine learning and traditional approaches to tag­

ging. Section 2.1 summarizes a couple of successful pieces of related work. Section 2.2 

describes a hand-crafted tagger based on regular expressions and ward dictionaries. 

Section 2.3 describes a machine learning approach, based on decision trees. In section 

2.4, we show how the machine learning approach can supplement hand-crafted rules 

in order to achieve better results. 

2.1 Related Work 

In sorne languages and domains of interest, the words may have certain textual 

characteristics that offer hints regarding their meaning (e.g., capitalization, bold or 

italics font in HT\;IL documents, etc.). The presence of such characteristics greatly 

facilitates tagging. Certain languages contain a lot of textual and syntactic structure. 

which makes them good candidates for lE systems. For instance, Japanese is a very 

structured language, in which different types of script are used to write different types 

of words. Sekine et al. [16] successfully used machine learning in order to build a 

J apanese morphological analyzer. The system first performs part-of-speech tagging. 

Then the part of speech, the character type used in the text for the given word, 

and specifie word dictionaries are used to define attributes for every word. These 

attributes are used to construct input instances for a decision tree, which returns the 

classification for each ward. The definition of the input attributes for the decision tree 

is specific to the Japanese language. However, the system could be modified for use in 

English, if an interested party would create language-specifie attributes of the same 

sort. However, this task would be very time-consuming, since the system depends 

heavily on word dictionaries that have to be manually constructed. At the same time, 

one would expect that the performance of a similar system used for English text would 

be significantly worse, given the reduced amount of structure and the large number 

of irregularities and ambiguities that is typical for English . 
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One problem that could occur with this system is that, because decisions are made 

locally for each tag, there could be inconsistencies on a globallevel. In order to solve 

this problem, the authors use two approaches. In the first approach, a heuristic tag 

priority scheme is defined, which is then used to modify certain sequences of tags. In 

the second approach, each leaf of the decision tree is allowed to output a probability 

distribution over tags, rather than just a single tag. Then, taking into account the 

previous, current and following tag, a Viterbi-style algorithm is used to calculate the 

highest global probability for the string of tags while maintaining a constant tag type 

throughout the string. This technique is very useful when constructing larger tagged 

entities (e.g., company names) out of several tagged sub-entities (corresponding, for 

instance, to each word). 

The system was trained with 100 manually tagged articles. The average accuracy 

over aIl the named entities was relatively high, reaching 85% when the system was 

trained and tested in the same domain. Curiously enough, decreasing the size of the 

training data to 9 articles only reduced the average accuracy to 79%. This is an 

indication that the manually constructed dictionaries actually play an important role 

in the performance. One would anticipate the performance of the system to degrade 

considerably if the system was tested on a corpus from a different domain than the 

one it was trained on. 

A different machine learning approach to tagging is based on using Hidden Markov 

Models (HMM). Unlike the previously described system, the H:VIM approach does not 

require the language to be structured in any way. It does require, however, that the 

application domain be known in advance. HMMs (which will be discussed in detail 

in the next chapter) are computationally efficient and fairly easy to implement. In 

addition, because HMMs rely on statistics, they can be constructed easily, and with 

little prior knowledge, as long as large quantities of documents are available [9] . 
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An example of a tagging system based on HMMs is the Cora engine, developed 

by NlcCallum et al [11]. Cora's goal is ta tag the words that appear in the header of 

computer science papers as belonging ta one of the following categories: title, author. 

address, note, affiliation, email, date, abstract and body. Two of these categories, 

email and date, can be easily tagged using regular expressions. For the other cate­

gories, the authors experimented with four types of HMMs: a fully connected learned 

model, a hand-crafted learned model, an M-merged model, and a V-merged model. 

The best fully connected model achieved a maximum accuracy of 64.5%. The hand­

crafted model had learned parameters, but the structure of the H~nI was designed 

with the domain in mind .. Multiple states per possible named entity were allowed, 

and the connectivity was based on the observed structure of the data. This model 

achieved a significantly better accuracy, 92.4%. In the M-merged model, each ward 

in the training data was assigned its own state, which in turn was associated \Vith 

the category of that ward (i.e. persan name, affiliations, etc.). Once this was done . 

connected states with the same class were merged together, and a self-transition loop 

was introduced. The NI-merged model achieved an accuracy of 92.9%. The V-merged 

model merged any two states that had the same class, and that share a neighbor. 

This model achieved an accuracy of 92.7%. The success of merging is important 

because this technique allows learning the structure of the model directly from the 

data. Merging can be accomplished via a technique like Bayesian model merging, 

which seeks ta maximize the probability of a model given the training data. 

Another system that u~es HM Ms for tagging text is the Nymble system [2]. 

Nymble uses bath ward identity and ward features (capitalized, containing digits, 

etc.). Ward identity is established by using a large corpus of labeled data: 100000 

labeled words (about 750 pages). This amount of training data is quite expensive 

ta obtain, but the authors claim that it is still reasonable ta handle when switching 

domain. However, even though no ward dictionary is used, it is clear that the large 
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amount of labeled data would make this system harder to port to different domains 

than Cora, which requires only approximately 100 labeled pages for training. In terms 

of the structure of the H:\tE\I, ~ymble uses a single HMM for aH named entities of 

interest. There is a single state for every named entity, and the structure is fully 

connected. A special feature is that the transition and emission probabilities are 

connected not only with the state, but also with the previous observation. 

Both Cora and Nymble are HM:\tls used for tagging, but their design is quite 

different, and leads to different trade-offs. Cora relies heavily on the relationships 

between words in the text, where as Nymble relies mainly on features of the individu al 

words. The two system also have different trade-offs in terms of their requirements. 

Cora extracts information from very structured documents, and this allows it to use 

a fairly small training corpus. ~ymble, on the other hand, uses free-form documents, 

but requires significantly more human-Iabeled data . 

2.2 Heuristic Approach: InfoTagger 

Our heuristic tagger is built using as a basis the InfoTagger system, developed 

by Joel yIartin at NRC. InfoTagger takes as input the contents of a web page and 

a list of labels, and returns an HT:YIL document in which named entities have been 

tagged. InfoTagger uses a user-defined word dictionary, a user-defined regular ex­

pression dictionary and a general inference engine, which uses the two dictionaries 

in order to accomplish the task at hand. In a first phase, InfoTagger uses the word 

dictionary and attempts to find every word from the document in the dictionary. For 

every match identified, the label corresponding to the class of the word is inserted 

into the text. For example, if the named entity England appears in the text, and 

this word is found in the dictionary under the classification Country, then the label 

<Country> will be inserted into the text. Note that if England also appears in the 

word dictionary under the classification LastName, then the <Last Name> label will 
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be inserted as weIl. Once this phase has been completed, a regular expression engine 

pro cesses the tagged text. 

The regular expressions that we provided were aimed toward two tasks. The first 

was the identification of simple patterns, such as emails and phone numbers, that 

were not covered in the dictionaries. The second task was to solve ambiguities, in the 

case in which the same word had more than one classification (like in the example 

above). In the second case, the regular expressions are based on the context of the 

word. 

Our system contains 11 regular expressions, ranging from very simple ones (e.g., 

Email) to complex ones (e.g., Organization Name and Street Address). The time 

needed to evaluate a regular expression depends on the number of different branches 

that the corresponding finite state machine can take. If the automaton has a long 

sequence of branching points, each with many possible branches, then evaluating the 

regular expression over an entire page will take longer. As a result, in our system, 

tagging a single web page can take up to 5 seconds, if we look for organization names, 

or just 0.1 seconds, if we are looking for postal codes. 

InfoTagger is capable of handling multiple threads, for tagging multiple docu­

ments. It takes regular expressions written in Perl syntax, and translates them into 

non-deterministic finite state machine automata (NFA). The performance of an NF:\. 

degrades exponentially with the increase in complexity of the regular expressions. In 

the future, we hope to use deterministic finite state machines (DFA) instead. The ad­

vantage of using a DFA is that regardless of the complexity of the regular expression, 

the upper bound on the execution of the regular expression through a DFA is the 

longest path through the DFA. In this way polynomial and even linear performance 

can be achieved . 
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2.3 Machine Learning Approach: Decision Trees 

\Vriting the extraction patterns (regular expressions) is a complicated iterative 

task, which is extremely expensive in terms of time, and possibly money. In essence, 

a programmer needs to write the regular expression, test it, see where it fails, and 

then tweak it to improve the performance of the system. 

Instead of refining the regular expressions by hand, a machine learning approach 

can be used to generate either regular expressions or extraction rules that may oth-

erwise be missed by human programmers. Automating this tedious task can be ben­

eficial both in terms of cost and in terms of the performance of the system. Our 

approach was to use the C4.5 algorithm for learning decision trees [13] in order to 

generate extraction rules that could latter be applied directly, or converted into reg-

ular expressions. 

In this work we focused on learning to identify organization names in HT\IL 

documents. vVe chose to learn the organization names because this is the only kind 

of named entity in our do main for which a dictionary cannot be used, due to the 
. . 

diversity and large number of names. For other named entities, such as countries or 

even person names, dictionaries of reasonable size are readily available and they are 

sufficient to achieve acceptable performance. 

Generally, organization names are easy to discern due to context. For example, 

Yaya Inc. is easily identifiable as an organization, because of the suffix "Inc" that 

is part of the name. However, we also encountered very often (approximately 50% 

of the time according to our data), situations in which suffixes are not added to 

organization names. In these instances, additional criteria must be added to the 

labeling system in order to be able to determine that a particular word or phrase 

is indeed an organization. This makes the development of regular expressions very 

difficult. We now describe decision trees in general, and our approach to using decision 

trees for classifying organization names. 
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2.3.1 Decision Trees 

Decision tree construction is an inductive inference learning method for approx­

imating discrete valued functions [12]. The functions learned are represented either 

as trees, or as if-then rules. Instances are classified by sorting them down the tree 

from the root to a leaf, where each internaI no de (including the root) represents an 

attribute, and the branches represent possible values of the attribute. An instance 

(example) is classified by starting at the root, testing its value and then transcending 

down the branch that corresponds to the value of the attribute to the next node in the 

tree. This pro cess continues until a leaf is reached, at which point the tree generates 

a classification. 

ldeally, the attributes in a decision tree should be ordered from the most important 

at the root, to the least important ones, further down the tree. The importance of 

an attribute is usually defined by the information gain that is achieved by using that 

attribute for classification. Information gain is a statistical property of an attribute 

that shows how well any given attribute separates the training examples according 

to the target classification [12]. A lot of related measures have also been developed 

in the decision tree literature, all with similar results [12]. 

Decision trees appear to be a good machine learning technique for this problem 

for several reasons. First, the rules induced by the decision tree are easily understood 

by humans, and can be (almost) directly incorporated into any rule-based labeling 

system. Secondly, decision trees can be learned off-line, before the information ex­

traction system is operation al. Off-line learning is the preferred approach for this 

application, because it would be very difficult to come up with a proper supervision 

scheme with which to teach the system online. Third, decision trees are fairly robust 

to noise and their performance is comparable to other classification techniques [12]. 

Finally, the training set required is relatively small, and thus cheap to obtain. This 

14 



• 

• 

• 

is especially important in our case, because the training set has to be generated by a 

person tagging documents by hand. 

2.3.2 Using Decision Trees for Tagging 

In order to learn decision trees for tagging organization names, we need to identify 

elements of the HTML document, besides the organization suffix, that can predict 

that a word or phrase is an organization name. After looking at several web pages, 

we decided on using the attributes described below. These attributes are Boolean 

unless otherwise noted. 

• InCaps: the word is capitalized 

• InBold: the font used is bold 

• InEmail: the name appears in the domain of an email address. \Ve allowed 

sorne leeway as to the exactness of the match. For instance, if the organization 

name isl'iortel Networks and the email is hr@nortel.com then a match would 

still be positive. This attribute is continuous-valued. 

• InLink: similar to InEmail. 

• InTitle: do es the phrase appear in the are a marked up as <TITLE> in the HT~IL 

document. 

• AdjToLocation: is the word at a distance of up to three words before a location 

(e.g., Shell Canada) 

• Adj ToOrgSuffixStrong: is the word at a distance of up to three words before an 

organization suffix that provides a strong indication of the phrase/word being 

an organization (e.g., inc, ltd, etc.) . 

15 



• 

• 

• AdjToOrgSuffixvVeak: : is the word at a distance of up to three words before an 

organization suffix, that provides a weak indication of the phrase/word being 

an organization. (e.g., Corporation, etc.). 

• InCell: do es the phrase appear in a cell of an HTML table, marked by <TD>. 

• InList: does the phrase appear in an HTNIL list, marked by <LI>. 

• NoDef: true for words that are not in capitalletters. 

• OrgName: the classification of each example, either yes or no (i.e. this phrase 

is an organization, or not). 

AlI organizations in the corpus were manually tagged. vVe wrote regular expres­

sions for cOqIputing each attribute. These regular expressions \Vere applied to the 

text using InfoTagger. For example, the text "in the last quarter Bell Canada inc. 

reported profits", was tagged as follows: 

<NoDef>in~/NoDef> <NoDef>the</NoDef> <AdjToLoc><NoDef>last<NoDef/> 

<NoDef>quarter</NoDef> <OrgNamel><AdjToOrgSuffix><InCaps>Bell</InCaps> 

<InBold><InCaps>Canada</InCaps></InBold></AdjToLoc> 

inc.</AdjToOrgSuffix></OrgName> <InBold><NoDef>reported</NoDef> 

<NoDef>profits</NoDef></InBold> 

~ote that the OrgName tag was inserted manually, as it is the classification action. 

Once the attribut es were tagged in the text, we extracted aIl the tags with the 

TagExtractor module, producing a list of tag objects. Each tag object maintains the 

tag type, its start and end indices in the text, and the text content itself. Because 

the tag objects are independent, and overlapping of indices exists between different 

tag objects, multiple occurrences of a single-named entity may appear in the tag list 

(once for each tag that overlaps the named entity). In order to capture aIl valid 

attributes for every given named entity, we compressed and converted the tag list 
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into an Instance list, where the information from overlapping tags is used to generate 

an Instance object. 

The instance object represents the data that will be used by the learning algorithm. 

For this application, having one instance for every word, and only for words is not a 

good idea, since it does not allow considering the context of a word. Csing phrases of a 

fixed length is also not feasible, since organization length can vary in size. Therefore, 

we adopted a heuristic approach, in which instance generation is guided by the existing 

tags. 

Initially, one instance object is generated for each tag. The instance object main­

tains all the information from the tag, but in addition it has a list of attributes. The 

value of each attribute in the list is set with respect to the examined named entity. For 

example, if a named entity were tagged as being capitalized, then an instance would 

be produced where all attributes are set to no (or default values) and the InCaps 

attribute is set to yeso \Vhen an instance is created, it inherits aH the information 

from aH the instances that overlap it. For example, in the above text fragment" Bell 

Canada Inc." the instance corresponding to the word Bell, would have two attributes 

set: InCaps corresponding to the word Bell, and AdjToOrgSuffixStrong which corre­

sponds to the entire text fragment. Similarly, the instance corresponding to the word 

"profits" in the tagged text would have the InBold Attribute set, as the InBold tags 

overlaps the phrase of which the word "profits" is a part of. 

Only instance objects corresponding to the InCaps, NoDef, and AdjToOrgSuf­

fixStrong/Weak, InLink and InEMail are created (InBold, InCell, etc. are not). Once 

aIl the instances have been created, instances with overlapping indices are merged. 

For example, in the tagged text above, three of the initial instances corresponding to 

three attributes would be AdjToOrgSuffixStrong containing the text Bell Canada inc., 

InCaps containing the text Bell, and InCaps containing the text Canada, which would 

have the InBold attribute set as well. Given this setup, the instance corresponding to 
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the AdjToOrgSuffixStrong attribute would become a union with the information from 

instances of the Bell and the Canada corresponding instances, and those instances 

would be removed from the list. In other words, one instance would remain which 

would have the AdjToOrgSuffixStrong, InCaps, and InBold Attributes set to yes, and 

the contents of the remaining instance would be Bell Canada Inc. The instances that 

are enclosed by an OrgName form the positive examples, while the instances that 

were not overlapped by an OrgName tag form the negative examples. 

As discussed in detail below, we experimented with keeping the instances at word 

level, as well as allowing for phrase instances. Originally, we conjectured that some­

times only part of a phrase enclosed by a tag may be an OrgN ame, and therefore 

classification would be more accurate if we kept the instances as atomic as possi­

ble. In this case, adjacent words that were classified as being organizations would 

be aggregated together into a single organization name. This approach showed good 

results for classification by C4.5, but was not as successful when actually inserting 

the tags into the text. 

Our second approach allowed the cr~ation of instance objects for tags that enclosed 

phrases in the text. Initially, we created instances for all tags. This however, proved 

to reduce performance, as sorne tags may encompassed very long phrases (e.g. InCell 

and InBold), and may also encompass many other tags that are mutually exclusive: 

Since phrase instances contain all the information from component word instances, 

inaccuracies are bound to occur. For example, if the word Canada is in bold but 

the word Bell is not, the entire phrase would still have the Inbold attributes set to 

true. Another example is the phrase: "Barney loves children". This phrase would be 

tagged as: 

<InBold><InCaps>Barney</InCaps> <NoDef>loves</NoDef> 

<NoDef>children</NoDef></InBold> 
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which in turn would form an instance object corresponding to the entire phrase where 

both the InBold and the InCaps attributes would be set. This setting would not be a 

proper reflection of reality as only one word in the phrase is actually capitalized. Such 

occurrences would bring about the creation of instance objects that would confuse 

the classifier. After noticing this phenomenon, we restricted the number of tags that 

were used to create phrases. This allowed for a good trade-off between the gain in 

performance due to allowing phrases, and the imprecision introduced. 

vVe also experimented with a system where overlapped instances were removed 

from the instance-list only when the overlap was exact (i.e. the text start and end 

indices were equal). This approach, however, skewed the precision and recall measured 

by C4.5. The cause of this skewing was that most of the time phrases rather than 

words turn out to be organizations. Therefore, multiple instances for each OrgXame 

appear in the instance list (i.e., one instance for the phrase and one for each word in 

the phrase). This multiplicity causes the weight of the positive examples to become 

heavier, and as a result the classification as weIl as the cou nt of correct classifications 

became distorted. 

2.3.3 Classification and insertion of tags into the text 

The classifier module built by C4.5 consists of a set of rules that can be applied 

to instances, and pro duces class labels for those instances. However, once labels are 

known, OrgName tags still need to be introduced in the text in order to achieve the 

purpose of the system. This step is done by a greedy algorithm, which attempts to 

aggregate as many instances as possible in order to create an organization name. 

For example, a negative instance whose content is a stopword, but which appears 

between two positively labeled instances, will also be deemed part of the organization 

name. This design decision ensures that organization names will not be incomplete 

in cases such as, e.g., A. Gold and Sacs., where the stop word "and" would probably 
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not be classified as being part of an organization name, resulting in two separate or­

ganizations. One draw back of this design decision is that if there are two consecutive 

organization names that may or may not be separated by a stop word, they would be 

aggregated into one organization name. For example, the phrase "yesterday rvIicrosoft 

Inc and Apple Corp. announced .... " would generate <OrgName>Mierosoft Ine and 

Apple Corp. </OrgName>. This design also results in the possibility of misclassifying 

words that precede an organization name as being part of the organization. ü nfor­

tunately, this is a frequent phenomenon, because instances in a close vicinity tend 

to share the same attribute values (e.g., InCell, InBold, AdjToLocation, etc.) which 

means that they often are classified similarly. However, we felt that in this particular 

application, getting too mu ch text is better then not capturing a complete name, 

since incomplete organization names would be quite useless to end-users. 

2.4 Results 

In order to measure performance of the tagger, we use precision and recall, which 

are two standard metrics from the information extraction literature[15]. Precision is 

defined as the ratio of the number of correctly tagged named entities out of the total 

number of named entities tagged. Recall is defined as the ratio of the number of 

correctly tagged named entities out of the total number of instances of named entity 

of the type that was tagged in the corpus. Ideally, both precision and recall should 

be close to 1.0. However, one measure usually decreases as the other increases. 

vVe trained the system on a corpus of 100 web pages, which produced approxi­

mately 17000 instances, 273 of them being positive (i.e., organization names). In­

stances were either words and/or phrases depending on the experiment. We used 

ten-fold cross validation to generate rule-sets [13, 12]. Each page was tagged by the 

system based on a rules set learned by C4.5. After that, an evaluator was used to 

compare the machine tagged data to hand tagged data. We present two types of 
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results: the precision and recall as computed by C4.5 on test data, and the preci­

sion and recall measured by the text evaluator after the <OrgName> tags have been 

inserted. As seen below, there is a discrepancy between these two measures. This 

is due partly because of our design decisions regarding the tag insertion mechanism, 

and partly to a difference in what is being measured. 

First, we evaluated the precision and recall of the hand-crafted system. Precision 

was 66.9% and recall was 51.9%, using the same folds as the decision trees. However, 

we would like to point out that the hand-crafted system was tuned to roughly 70% 

of the files under consideration. "Vhen evaluating the system on the files that we 

considered when designing the regular expressions, precision and recall were 90% and 

62% respectively. On the other files, these figures dropped drasticaIly, to 59% and 

33% respectively for precision and recall. This makes us believe that the performance 

of the hand-crafted system would be even worse if it was used on new pages. 

In the second experiment, we used decision trees constructed by using instances 

that are limited to individual words only. In this case, the precision and recall eval­

uated by C4.5 on training data were of 77.8% and 68.9%, while on test data they 

dropped to 65% and 62.1%. The estimates of the text evaluator were slightly worse: 

70.4% and 54.9% on the training data, an'd 54.1% and 46.8% on the test data. It is 

worth noting that in this system, the post-processing phase, during which the tags 

are inserted, proved to be especially harmful. This is due to the fact that no phrases 

are allowed, and the aggregation of words into organization names is hence based on 

very weak information. 

In the third experiment, we used both words and phrases as instances. In this case, 

the precision and recall measured by C4.5 (averaged over the folds) were of 74.7% 

and 54.7% on the training data, and 63.8% and 45.7% on the test data. However, the 

performance reported by the evaluator is in fact better in this case: 80.2% and 57.1% 

for precision and recall on the training data, and 68.2% and 51.9% on the test data. 
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The classification done by C4.5 indicates that allowing phrases degrades the per­

formance. This seeming degradation is due to the fact that when no phrases are 

allowed, there are more positive instances. Instances benefit from the information 

that is inherited from tags that encompass them, and as a result the word-based in­

stances are still likely to be classified most of the time the same as if they were part 

of a phrase (excluding stop words). Due to these two facts, the proportion of cor­

rectly classified instances is likely to increase, while the actual number of organization 

names that were classified correctly does not actually change. 

Overall, however, the performance increased as a result of allowing instances to 

include phrases. This confirms our initial assumption that phrases are more robust, as 

they contain more information. Also, allowing phrases to form instances means that 

fewer instances need to be aggregated, which in turn means that there is a sm aller 

likelihood for errors that result from our particular greedy strategy for aggregation. 

\Ve also want to emphasize the fact that, although overall the performance of 

hand-crafted and machine learning systems are roughly the same on the average, 

the hand-crafted system seems particularly tuned to the documents that were used 

during its construction. The learning systems seems a lot more robust in this respect: 

although its performance do es degrade on unseen data, as expected, the reduction 

is not nearly so drastic. This makes us suspect that the learned tagger would be 

significantly more useful in practice. 

It is also worth comparing the two systems in terms of development time. The 

hand-crafted system took approximately three months to construct, while using learn­

ing allowed achieving similar results in a much shorter time period (approximately 

three weeks). Also, the pro cess of constructing a detailed regular expression for the 

hand-crafted system was an extremely painful iterative process, which was mostly 

avoided by using machine learning. Rence, we feel that there are good reasons to use 

learning for named entity recognition. 
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CHAPTER 3 

RELATIONSHIP FINDING 

We will now focus on the third step of our lE system: creating a relationship 

between different named entities in the text. Them goal of our system is to create a 

business directory from the web. To do this, we must be able to establish relationships 

between different named entities on web pages, such as company names, addresses 

and phone numbers. Finding these relationships is also referred to as entity-relation 

recognition [6]. The process consists of filling out pre-specified patterns, with the 

named entities identified in the text. The implementation details of this step are 

discussed in Section 3.1. The difficulty of this step consists in the fact that more that 

one named entity of the desired type is usually present on the web page. For instance, 

a company may list its address as weIl as a list of partners on the same page. Ho\\' 

can we identify which of the company names should be associated with the address? 

The naive approach would be to use adjacency information, as weIl as the specific 

order in which the named entities appear in the text. This is the basic idea behind 

the first approach to solving the problem, presented in Section 3.2. This approach 

is based on adjacency heuristics, and human knowledge of the problem. In Section 

3.3, we present an alternative approach, based on Hidden Markov Models (HMMs). 

In Section 3.4, we present empirical results comparing the performance of the two 

approaches. 

3.1 Aggregation Pro cess 

The goal of the aggregation pro cess in our system is to build organization, contact 

and address objects from HTML documents. There are two kinds of objects that 
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we are going to manipulate: basic objects (corresponding to named entities), and 

composite objects (corresponding to the desired patterns that we want to fiIl out). The 

tagging pro cess , described in the previous chapter, inserts simple tags into the text, 

such as Email, Phone, StreetAddress, etc. Once tagging is complete the TagExtractor 

module takes as input the tagged page, extracts the tags from the page and stores the 

relevant information in tag objects, which in turn are inserted into an ArrayList. Each 

tag object contains the tag type (e.g., Email, Phone, etc.), the start and end indices 

in the original text, and the actual text contained within the tag. The TagCoIlector 

module takes the ArrayList containing the tags in order, and constructs from it 

separate ArrayList objects for every tag type. This allows tags of particular kinds to 

be rapidly accessed. 

Composite objects are created during the aggregation process, based on the basic 

tags already assigned during the named entity recognition phase. For example, the 

street address, city, and region basic objects (tagged previously) can be used to com­

pose the Address object. The construction of composite objects always st arts with 

a seed basic object. Then, other basic objects are added, to the composite object, 

depending on the aggregation rules. The fact that the TagCoIlector creates lists with 

aIl the tags of specifie types allows seed objects to be located quickly. For example, 

the seed for building an Organization composite object is an Organization~ame tag 

object. The TagCollector will use the ArrayList containing OrganizationName tags 

to locate a seed organization. Afterwards, contact information will be added to the 

Organization object, based on the specific aggregation rules used. 

An object, whether basic or composite, can only be used in the assembly of a 

single composite object. In our system, we have three types of composite objects: 

Address objects, Contact objects, and Organization objects. These correspond to the 

three kinds of templates we need to fill out . 

Address objects can be defined by one of the following patterns: 
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• S treetAddress, City, Region (optional), Country, Postal Code (optional) 

• (for U.S. addresses) StreetAddress, City, Region, PostalCode (optional) 

A.n Address object is valid if aIl this information can be fiIled out. Otherwise, there 

is not enough information for the address to be useful, and the object is deleted. 

A Contact is a composite object representing a contact person within the orga­

nization (e.g., sales representative, production manager, etc.). A valid Contact must 

follow one of the following patterns: 

• PersonName, Email, Phone, Fax (optional), PersonTitle (optional) 

• PersonName, Phone, Fax (optional), PersonTitle (optional) 

• PersonN ame, Email, Fax (optional), Person Ti tle (optional) 

An Organization is a composite object that must have an organization name, and 

this name must be related to either an address object or a contact object, or sorne 

other contact information. Organization objects are valid if they satisfy one of the 

following patterns: 

• Organization0;ame, Address, Contact (Phone or Email are also accepted) 

• OrganizationName, Address 

• OrganizationName, Contact (Phone or Email are also accepted) 

Composite objects are built in a bottom-up manner: first the Address and Con­
tact objects are constructed from basic tag objects, then Organization objects are 
constructed. As an illustration of this process, consider the excerpt below, from an 
HTML document that was tagged: 

<TD width=133%"><FONT color=#OOOOff face=Arial size=4> 
<STRONG><PersonTitle>Advertising Manager</PersonTitle>:</STRONG> 
</FONT><FONT color=#OOOOOO face=Arial><STRONG><BR>Mr <PersonName><FirstName>Anthony T 
</FONT><FONT color=#OOOOff face=Arial size=3><STRONG><Phone>(0414) 

788-900</Phone></STRONG></FONT><FONT face=Arial size=2><BR></FONT><FONT 
color=#800000 face=Arial size=3><STRONG>Fax:</STRONG></FONT><FONT 
face=Arial size=3> </FONT><FONT color=#OOOOff face=Arial 
size=3><STRONG><Fax>(03) 9432 1177</Fax></STRONG></FONT><FONT face=Arial size= 

<P align=center><IMG height=5 src=IA5A_files/Turquoise_and_Gray6043.gif" width=536></ 
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The composite objects that would be extracted from the text are the following: 

• Address1: StreetAddress(P.O. Box 1117), City(Bundoora), Region(Victoria) , 

Country(Australia), PostalCode(3083). 

• Contact1: PersonName(Anthony T. Schmidt), Address(Address1), Email(ats@epcgroup.cOl 

Phone((03) 9432 1166), Fax((03) 9432 1177), PersonTitle(Advertising Man-

ager). 

• Organization1: OrganizationName(EPC Audio-Visual), Contact(Contact1). 

Above, we use the notation Object(Content) to denote the type of the objects involved 

and their textual content. The objects are generated in the order in which they are 

listed above (Address, then Contact, then Organization). The construction of the 

composite objects is a greedy process, which means that even though an email by 

itself might suffice to create a valid contact, if there is other information available 

(such as phone or fax, in the example above), we prefer to include that information 

as weIl. 

In the next two sections, we described two different approaches for constructing 

composite objects: a heuristic approach, and an approach based on Hidden Markov 

'\;Iodels. Both approaches use the data structures and composite objects described 

above. 

3.2 Heuristic Aggregator 

The creation of composite objects always st arts with a seed basic object. Seed 

basic objects are of type OrganizationName for Organization abjects, PcrsonName for 

Contact objects, and StreetAddress for Address objects. Seeds are found by looking 

at the ArrayList objects for tags of the corresponding types. Once a seed is found, a 

composite object is created, and the aggregator attempts ta fill out its fields. Only 

objects whose indièes are greater than that of the seed may be added to the composite 
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object. As noted above, the aggregator first constructs Address objects, then Contact 

objects, and finally, Organization objects. 

The main idea behind the algorithm is to use adjacency information in order to 

determine which objects should be aggregated together. The algorithm maintains 

an abject baundary, which corresponds to the ending index of any tag included in 

the object. Every time a tag is added to a composite object, the boundary of the 

object is expanded to include the new tag. Only tags that start within a pre-specified 

maximum distance from the object boundary can be added. For example, suppose 

that a Contact object is currently being constructed, and that currently its start 

index is 100, and its end index is 180. suppose that the Phone slot of this contact 

object is still empty. If the next basic object on the general tag list is a Phone 

object whose start and end indices are 190 and 200 respectively, and if the maximum 

distance allowed for aggregation is set to 10, then the Phone object will be added to 

the Contact object. The new boundary of the Contact object would have the start 

index set to 100 and the end index set to 200. The maximum distance is a parameter 

f the algorithm, and we used exploratory experiments in order to set it. 

The detailed outline of the aggregation algorithm is given below: 

1. Identify a basic seed tag 

2. Initialize the boundary of the object to the start index of the basic seed tag. 

3. Use the templates to identify what tag objects are necessary in order to create 

a valid composite object 

4. For each type of tag needed, do: 

(a) Search in the ArrayList corresponding to this type of tag for tags that 

occur after the seed. If such tags can be found, compute their distance to 

the boundary of the object. 
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(b) Take the tag cIosest to the boundary of the object. If this tag is within a 

maximum distance from the boundary: 

1. Add the tag to the composite object 

11. Update the boundary of the composite object to incIude the new tag. 

( c) Continue for the next type of tag 

5. If a composite object was not completed, backtrack, as long as there are tags 

within the required maximum distance to the object 

6. If aIl the required slots of the object have been fiIled, check if optional slots are 

available. If so, fill them in the same manner described above. 

7. If a valid composite object was created, add it to the appropriate ArrayLisL 

and to the basic tag lisL Remove aIl the tags used by the new object from the 

general tag lisL 

The algorithm described above is based on the empirical observation that in gen­

eral, company web pages tend to cIuster contact information together. This algorithm 

is entirely domain-specifie, and we would not expect it to work weIl for other infor­

mation extraction tasks. 

3.3 Using Hidden Markov Models for Aggregation 

Hidden Markov Models (HMMs) have initially emerged from the speech processing 

community as a useful tool for performing speech recognition. The main intuition 

was that we observe a set of output symbols (sounds) produced by the speaker. The 

speaker has an internaI model of what they want to say. This model stochastically 

determines the observations. HMMs are a formalization of this idea. HMMs have 

been very successfully applied to speech processing for many years. With the growth 

of the Internet and the information overload that we are facing, HMMs have, in 
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recent years, been applied to various aspects of information extraction. vVe will no\\' 

introduce briefly the theory of HM~Is, foIlowing the main ideas of Rabiner's tutorial 

on the topic [14]. Then we will describe how we applied H~Evls to construct an 

aggregator for our task. 

3.3.1 Definition 

A Hidden Markov Madel (HMM) consists of a finite set of hidden (internaI) states 

5 = {SI,'" Sn} and a finite set of observations symbols 0 = {Ol,"" om}. vVithout 

10ss of generality, we will denote the states and observations by their indices from 

now on. The H:YI~I evolves on a discrete time scale t = 0,1,2.... At the initial 

time t = 0, the initial state of the H:YL\f is drawn according to a starting probability 

distribution 11": 

11"i = Pr(so = i). 

On each time step t, and observation symboi k is emitted according to a probability 

distribution bi dependent on the internaI state i at that time step: 

\Ve denote by B the n x m matrix containing the emission probabilities for aIl states. 

After the emission, the system transitions to another internaI state j. The tran­

sitions between hidden states are governed by transition probability matrix A: 

The Markov property means that both the state transitions and the probabilities of 

different observations depend only on the state at time t and not on any other events 

before time t. 
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This pro cess continues until a terminal state is entered. The result is a sequence 

of observations 00,01, . . . OT. The state transition probabilities A, the emission prob­

abilities B and the starting probabilities 7r form the model of the HMM, denoted 

À .. 

lvlodels in which aU states can be revisited are caUed ergodic. A special case of 

ergodic model is the fully connected HMM, in which any state is accessible from any 

other state (Le., aij > O'Vi,j = l, ... n). 

Sorne applications require imposing constraints on the H~'IM. Constraints are 

implemented by forcing transitions between sorne states and/or disaUowing transitions 

between others. Most of the time this leads to non-ergodic models. An important 

special case are upper-triangular or left-to-right models, where transitions are only 

possible to states with a higher index (i.e., aij = 0 if i 2: j). These models impose a 

temporal order on the H~L\1 . 

3.3.2 Algorithms for HM Ms 

Rabiner (1989) discussed three problerils of interest for H1L\Is: 

1. Given an observation sequence and a model, compute the probability that the 

given model produced the observation sequence 

2. Given an observation sequence, and a model, compute the most likely state 

sequence that would generate the observed sequence 

3. Given several observation sequences, determine the model that is most likely to 

generate the sequences. 

Each of these problems has a standard solution algorithms, briefly described below. 

Given an observation sequence (0001 ... OT), and a model À of the HMM, we want 

to compute the probability that the observation sequence was generated by the mode!' 

30 



• 

• 

• 

Pr( (0001 . .. Or) lÀ.). Knowing this probability is important if we are currently con-

sidering several candidate models. By computing this probability, we can see which 

model is most likely to generate the sequence. 

Consider a fixed state sequence (SOSl" .. sr), with Sr being a terminal state. The 

the probability of the observation sequence given the state sequence is: 

The probability of the state sequence occurring under the model is: 

The probability of the observation sequence being generated under any state trajec-

tory can be obtained by summing over aIl possible trajectories: 

Pr((OOol" .or)IÀ) L P( (00 01'" or)l(soSl"" Sr), À)P( (SOSl"" sr)IÀ 
(SOSI, ... ST) 

L 7rsobso(oo)aso,sl bSI (od ••• aST_I,STbST(or) 

(SOSI, ... ST) 

This algorithm would need 2T· W+ 1 multiplications and W additions to perform the 

computation, since at every time step t = O ... T there are N possible states and 2T 

computations are required for each. A more efficient approach is the forward-backward 

method [14], which uses dynamic programming to compute partial probabilities and 

each step, and then uses these intermediate variables to compute the cumulative 

probabiIity of the next transition. We refer the reader to Rabiner's tutorial for details. 

The most likely state sequence for a given observation sequence can be computed 

by the Viterbi algorithm. However, a more important algorithm for us is the Baum­

vVeIch algorithm, which allows learning of the parameters of the HMM mode!. The 
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algorithm is a special case of expectation maximization [12]. The algorithm requires 

a set of observation sequences, which are used to estimate probabilities based on 

empirical counts. Then, the model is changed in such a way as to maximize the 

probability of the set of observations being produced. This is an iterative process, 

and it converges to locally optimal setting of the model parameters. 

3.3.3 Applying HMMs to Aggregation 

The main hurdle in applying H},IMs to our information extraction task is formu­

lating the model of the system. Previous work in tagging using H},IMs (discussed 

in Chapter 2) used raw words as observations. However, this relies on a large data 

corpus, which we do not have at our disposaI. The only previous work on H:YI~ls for 

information extraction that we are aware of is Leek's thesis [10], in which he used 

H},I:YIs to extract information regarding genes from scientific papers. Leek uses a 

hierarchical structure of HM:Yls, in which the HMM at the top level has only a few 

states, corresponding to the main parts of a sentence. At the low level, he uses finite 

automata and simple HMMs, to recognized simple word structures. 

At sorne level, we can regard our system structure as similar. Our H:YI:YI builds 

on the results of the tagger (which is recognizing simple entities in the text). So 

our HM~1 plays the role of a higher-Ievel decision maker. unlike Leek's work, which 

uses as observations a combination of raw words and symbols generated by lmver­

level HMMs, we use only tags as observation symbols. This allows us to build a 

more corripact HMM, and to use less data. However, the disadvantage is that the 

observation sequences are less precise, and tagging mistakes will affect the aggregation 

pro cess too. Another difference between our work and Lee~'s is that we try to relate 

several basic objects in order to create composite objects, whereas Leek looks only for 

relationships between pairs of entities (genes and positions at which they are located 

on chromosomes) . 
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vVe use two HMMs, one for each composite object to be constructed (Address and 

Contact). An extra HMIvI would be used to recognize organizations, but this is left 

for future work. The output symbols of our H1I~Is correspond to the tagged named 

entities (i.e., PersonName, StreetAddress, Phone, Email, Fa..x, City, Region, Country, 

). There are five output symbols corresponding to the ~ull tag (~ullO, Nulll,Nu1l2, 

null3, ~ u1l4), which indicates text that is irrelevant to the domain of interest. vVe have 

several N ull symbols in order to be able to measure the distance between the relevant 

tags. Every sequence of four non-relevant words is replaced with a corresponding null 

symbol, such that the first four words in a non-relevant sequence are replaced with the 

~ullO symbol, the second four are replaced with Nulll, etc. There is also an output 

symbol for the start of a sequence, and two symbols corresponding to the negative 

and positive termination of an observation sequence. For instance, the Address H~nI 

has a positive termination symbol, which is emitted in the positive termination state 

and indicates that an Address composite object can be created with the information 

contained in the observation sequence. This is similar for the Contact H~I1I. 

Each state "corresponds" to one observation symbol. This correspondence is 

achieved by forcing the emission probabilities of exactly one observation symbol in 

each state to be close to 1.0, while setting all other emission probabilities for that 

state close to 0.0. For example, in state 7 the emission probability of the Phone ob­

servation symbol would be 0.99, and all other emission probabilities would cumulate 

to 0.01. This approach makes it easier for a human to interpret the model of the 

HlVL\!I, and the results it produces, e.g. when finding the most likely state sequence 

for an observation. We also trained and tested a model where the emission probabil­

ities were randomized. As we will discuss in the next section, the results were very 

similar, but in this case, the prediction of the HMM was harder to interpret, and 

hence harder to use to actually build the composite objects . 
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Given the correspondence between states and observation symbols, the HM~ds we 

are using have eighteen states (for Addresses), and nineteen states (for Contacts). 

State 10 is always the start state, and state 11 is the negative terminal state. States 

12 and 18 are the positive terminal states for Addresses and contacts respectively. 

States 0-4 correspond to the NuU tag symbols. 

The initial models are fully connected, which means that revisiting sorne states 

can occur. This structure is needed for our application because tags can appear in 

different orders, and sorne of them may appear twice (e.g., a contact may have more 

then one phone number). 

3.3.4 Training the HMMs 

The H:YI:Y!s are trained using labeled data produced by a person. He/she needs 

to identify the composite objects on tagged web pages, then use the manual-tagger 

to insert tags corresponding to the composite object on the web page. The document 

is then processed by the TagExtractor module, which creates a list of objects, as 

described in Section 3.1. This list is then passed to the ObservationSymbolGenerator 

module, which pro cesses it and produces a list of observation symbols for the HYIYI. 

The ObservationSequence Generator module creates symbol objects from the tag 

objects produced by the TagExtractor. A symbol object contains aU the information 

from the corresponding tag object, as weIl as the code of the symbol. AlI the attribute 

tags that were inserted into the document during the tagging phase are removed from 

the symbol list. The InCaps and NoDef attributes are removed when a relevant tag 

encapsulates them. Otherwise, since these attributes isolate single words, they are 

used in order to create Null symbols. These symbols encode the number of words in 

a non-relevant sequence, as described above. 

For example, the tagged text: 

<InCaps>Contact</InCaps> <NoDef>us</NoDef>: <OrgName><InCaps>Yoyo</InCaps> 
<InCaps>Inc</InCaps>.</OrgName><NoDef>head</NoDef> <NoDef>office</NoDef> 
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<NoDef>located</NoDef> <NoDef>at</NoDef> <NoDef>address</NoDef> 
<StreetAddress>66 <InCaps>Avenue</InCaps> rd.</StreetAddress> 
<City>"<InCaps>Toronto</InCaps></City> 
<Region> Il <InCaps>Ontario</InCaps></Region> 
<Country> Il <InCaps>Canada</InCaps></Country> 

would be converted into the following observation sequence: 

<NullO><OrgName><NullO><Nulll><StreetAddress><City><Region><Country> 

Like the heuristic aggregator, the H'MM aggregator also makes three passes on the 

data with the objective of creating composite objects bottom-up. In the first pass, 

Address objects are created. In the second pass, the tags that compose the addresses 

are removed (because the addresses have already been found and the basic tags that 

compose them are no longer useful) and Contact objects are created. The third pass, 

which is not currently implemented, would be similar to the second one, except for 

Organization objects. For instance, the observation sequence in the example above 

would be converted after the first pass in: 

<NullO><OrgName><NullO><Nulll><Address> 

The second pass would have no effect in this case, as there is no contact to aggre­

gate in this observation sequence. However, a third pass would create the observation 

sequence: 

<NullO><Organization> 

as the OrgName and the Address are enough to form an Organization object. 

Null tags that appear inside the tag string corresponding to a composite object are 

discarded. 

Our initial idea was to train the system using both positive and negative examples, 

generated based on the human-classified data. The OnbservationSequenceGenerator 

extracts several examples from each document, in the following way. The system 

identifies the last observation symbol from the document that could be part of the 
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composite object being sought (Contact or Address). This becomes the last symbol 

of the sequence, l. The first symbol of the sequence is then set to be the first symbol 

in the document (with index 0). the start symbol is inserted in the beginning, and 

a positive or negative termination symbol is inserted at the end, depending on the 

manually labeled data. Then the start symbol is moved by one position and a new 

sequence is generated. The process continues until the start and end symbol are at the 

same location. Then, the generator looks for the next symbol in the text that could 

potentially be part of the composite object, by decrementing l until such a symbol is 

found. The process of creating sequences resumes in the same way. This algorithm 

generates aIl the possible sequences from the document that· have the potential of 

creating composite objects of the sought type. 

Once aIl the observation sequences from aIl documents are generated, the model 

of the H.\I.\I is learned using the Baum-Welch algorithm, described in Section 3.3. 

In order to classify a new observation sequence from an unlabeled document, we 

generate two sequences which ware identical except the terminal symbol: one has 

a positive terminal symbol, the other has a negative terminal symbol. vVe present 

both sequences to the HMM, and compute the probability of each sequence using the 

forward-backward algorithm (described in Section 3.3). If the positive sequence has 

higher probability, the we assign a positive lal?el to the sequence, otherwise we assign 

a negative label. If the sequence is assigned a positive label, then the corresponding 

composite object tags are inserted in the text. As before, the H.\IM will be asked to 

classify aIl sequences that could possibly contain a composite object. 

The problem with this approach is that due the large ratio of negative to pos­

itive examples and the nature of the forward-backward algorithm, the probability 

of transition to the positive terminal state al ways approached 0.0, on aIl sequences. 

This results in the positive classification never being made. To overcome this prob­

lem, we decided to use only positive observation sequences to train the HMM. The 
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identification of composite objects is then achieved by presenting the model with aU 

possible positive observation sequences (generated as described above). The sequence 

with the highest probability of being emitted is then classified as a composite object, 

provided that its probability is above a threshold. If several sequences have similar 

probability of being emitted, and aIl are above threshold, then aIl will be converted 

into composite objects. 

3.4 Empirical Results 

vVe compared the performance of the HMM aggregation method with the heuristic 

aggregator on a benchmark of 96 HT~IL documents, which generated 112 addresses 

and 93 contacts. Since the aggregator is not a learning system, we tested it on aIl the 

data. The results are summarized in table 3.1. vVe note that the heuristic aggregator 

was created based on 76 of the files, and manuaUy creating regular expressions that 

would fit this data. Hence, we did expect it to have very good results . 

Tested on True Total Guesses Correct Precision Recall 
Addresses 112 104 104 1.000 0.928 
Contacts 93 81 61 0.753 0.656 

Table 3.1. Performance of the heuristic aggregator 

Since the HNLMs are learning systems, in order to assess their performance, we 

need to use cross-validation. We used k-fold cross-validation, with k = 5 for the 

Address HNIMs and k = 3 for the Contact HMMs. Note that, sinee we are dealing 

with document processing, we constructed the folds by dividing the documents into 

5, respectively 3 groups, then using the documents in each group to generate data. 

This means that our folds do not contain the same number of examples, as is usuaIly 

the case in experiments run on supervised learning tasks. 

For both HMMs, we first trained models in which each state "corresponded" to an 

observation symbol. In this case, the emission probabilities were fixed and only the 
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transition probabilities were trained. We then performed a subsequent experiment. in 

which both the emission and transition probabilities were initially chosen at random, 

and they were aH trained. 'oVe trained models with different numbers of states in this 

case. The goal of this experiment was two-fold. On one hand. we wanted to see if the 

initial structure we provided helped or hindered in terms of precision and recall. On 

the other hand, previous work by McCallum and his colleagues [11] suggested that it 

can be useful to build sorne mount of redundancy into the model of the H:\IM. 'oYe 

wanted to see if this was the case in our task as weIl. 

Fold True Total Guesses Correct Precision Recall 
1 16 16 16 1.000 1.000 
2 36 36 35 0.972 0.972 
3 19 19 17 0.895 0.895 
4 29 26 25 0.962 0.862 
5 12 12 12 1.000 1.000 
:\;Iean ± St.Dev 22.4 ± 9.86 21.8 ± 9.44 21 ± 9.14 0.966 ± 0.043 0.946 ± 0.063 

Table 3.2. Precision and recall for Address H:\;I:\;I with fixed emission probabilities. 
as a result of 5-fold cross-validation 

Table 3.2 shows the precision and recall of the H:\;I1Is with predefined structure, 

in terms of the emission probabilities. Both precision and recall are very similar to 

the hand-crafted aggregator, with precision being slightly lower, and recall slightly 

higher. The differences are not significant. lndeed, the address construction task is 

quite easy, so it is not surprising that both techniques can achieve it weIl. 

Table 3.3 shows the precision and recall of the HMMs for which both the emission 

and the transition probabilities are randomized. The data shows that both precision 

and recall improve with the number of states and then reach a plateau. c"sing more 

than 18 states improves recall a bit, but the difference is not significant. There does 

not seem to be any benefit in having more than 30 states. Again, we attribute this 

to the fact that we are dealing with a fairly simple problem. A paired t-test shows 

that the only statistically significant difference is between 6 states and more. 
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Number of States Correct Guesses Precision Recall 
6 14.6 29.6 0.451 ± 0.208 0.588± 0.216 
8 20.8 23.6 0.901 ± 0.118 0.937 ± 0.065 
13 21 23.6 0.921 ± 0.087 0.952 ± o.on 
18 21 22 0.963 ± 0.034 0.9-19 ± 0.071 
25 22 23.2 0.961 ± 0.037 0.98-1 ± 0.02-1 
30 22 23 0.966 ± 0.031 0.98-1 ± 0.024 
40 22 23 0.966 ± 0.031 0.98-1 ± 0.024 
50 22 23.2 0.961 ± 0.037 0.98-1 ± 0.024 

Table 3.3. Precision and recall (based on 5-fold cross-validation) for Address H:"L\Is 
with different numbers of states. Both the emission and transition probabilities are 
estimated from data 

vVe performed a similar set of experiments for aggregating contacts, using 3-fold 

cross-validation. Initially we trained the Contact H:\D.I on aIl positive examples. 

This approach however resulted in very poor results, so we restricted the training 

to positive examples in which the first named entity in the relationship is a person 

name. This restriction resulted in a significant improvement in performance. The 

main reason for the po or results is that in a page with multiple contacts, an error in 

the aggregation of the first contact would propagate onwards and cause errors in the 

aggregation of the other possible contacts examined. As an example, consider the' 

following sequence: 

<NullO><PersonName><Phone><NullO><Nulll><PersonName><Nul10> 

<Email><PersonName><Phone><NullO> 

The correct aggregation of the contacts is: 

<NullO><Contact><PersonName><Phone></Contact><NullO> 

<Nulll><Contact><PersonName><NullO><Email></Contact> 

<Contact><PersonName><Phone></Contact><NullO> 

However, because the HMM st arts analyzing the observation sequence from the end, 

the first contact found would be: 
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<Contact><Email ><PersonName><Phone></Contact> . 

Because the Email symbol was related to the wrong contact, the error would propagate 

and the next Contact object found would be: 

<Contact><Phone><NullO><Nulll><PersonName></Contact>, 

which is incorrect as weIl. This propagation would likely continue throughout the 

document, resulting in a complete misaggregation. Since most Contacts start with a 

person name (or, put differently, since most of the time when a person name appears 

followed by contact information, this really constitutes a contact) training a contact 

to always start with a person name lowers the chance of errors as described ab ove 

and thus improves precision. 

Table 3.4 shows the precision and recall obtained when using 18 states, each 

associated with a particular observation symbol. As cau be seen from the table, both 

precision and recall are superior to the ones obtained by the hand-crafted aggregator, 

although the difference is not statistically significant. 

Fold True Correct Guesses Precision Recall 
Total 

1 16 7 8 0.875 0.437 
2 42 33 34 0.971 0.786 
3 35 33 50 0.660 0.943 

Mean ± StD. 24.33 ± 15.01 30.67 ± 21.20 0.835 ± 0.159 0.722 ± 0.258 

Table 3.4. Precision and recall for the Contact HMM, where the emission probabil­
ities are fixed and the transition probabilities are learned 

In order to analyze the effect of the structure we built into the HMM on it per­

formance, we also trained one HMM with the same number of states (18), but with 

random initial emission probabilities. The results are presented in table 3.5. As can 

be seen from the table, there is a significant drop in precision, but an improvement 

in recall. 
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Fold True Correct Guesses Precision Recall 
Total 

1 16 12 44 0.272 0.750 
2 42 40 50 0.800 0.952 
3 35 31 49 0.632 0.886 

Mean ± StD. 27.67 ± 14.29 47.67 ± 3.21 0.586 ± 0.269 0.862 ± 0.103 

Table 3.5. Precision and recall for an HMM with 18 states but in which both the 
transition and emission probabilities were trained 

Fold True Correct Guesses Precision Recall 
Total 

1 16 15 34 0.441 0.938 
2 42 41 51 0.804 0.976 
3 35 31 39 0.794 0.886 

Mean ± StD. 29.00 ± 13.11 41.33 ± 8.73 0.680 ± 0.207 0.933 ± 0.045 

Table 3.6. Precision and recall for an HM:\I with 30 states in which both the 
transition and emission probabilities were trained 

Finally, we trained an H~I:\I with 30 states, in which both the transition and 

emission probabilities were randomized. The goal of this experiment was to test 

again the hypothesis that building redundancy into the HMM can help. The results 

are shown in Table 3.6. 

As can be seen, both precision and recall are better than those for the random­

ized HMM with 18 states. However, the result is not statistically significant. Paired 

t-tests show that the precision of the randomized HM~I with 18 states is significantly 

worse than that of the structure 18-state HMM. The recall of the 30-state model si 

significantly better than the one for the structure 18-state HM~I. The data supports 

the hypothesis that indeed having extra states is beneficial. However, more experi­

mentation would be needed to truly confirm this hypothesis. It would be necessary 

to try several randomized HMMs for each number of states. We did not perform this 

sort of experiment in the thesis because in the current setup of our system, assessing 

precision and recall requires a person to analyze the documents and decide whether 
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the contacts extracted are valid. This is a very tedious and time-consuming operation, 

and should be automated in the future. 

It is clear that aIl the learning systems have better recall then the hand-crafted 

aggregator. The difference is statistically significant at the 0.05 level for the 30-state 

randomized H),iIM. The superiority in recall is not too surprising. Our hope from the 

beginning was that the H:YL\Is would be able to identify patterns that are missed by 

human programmers. This was indeed the case, as shown by a more careful analysis 

of the data. Fro example, the hand-crafted system was not able to associate a person 

name with a phone number if the name of an organization appeared in between, while 

the H:YIM aggregators handled this case correctly. On the other hand~ the precision of 

the hand-crafted system is excellent for addresses and quite good for contacts. This 

is also not too surprising, sinee programmers tend to "debug" their systems to fit weIl 

a restricted range of cases. 

Introducing structure in the HM:YI (in terms of the emission probabilities) helped 

the precision but hindered the recall. Again, intuitively this is due to the fact that the 

completely randomized systems are capable of covering a broader range of structures. 

However, introducing structure was very helpful in terms of interpreting what kinds of 

contact structure the H:YI:\JI had identified. This is not possible with the randomized 

H}"L\lIs. 

3.5 Discussion 

In this chapter, we presented two approaches to information extraction: a hand­

crafted aggregator, and a learning approach based on HMMs. Both approaches per­

formed weIl in terms of precision and recall, and we cannot assert that one system 

clearly outperformed the others in aIl respects. The learning systems did however 

outperform the hand-crafted system in recall alone when extracting contacts, which 
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indicates the potential superiority of such systems for information extraction ",hen 

the problem is complex. 

In simple problems such as the extraction of addresses, it is easy for a programmer 

to identify most of the cases that are to be solved, and thus a hand-crafted system 

can attain both good precision and good recall. More complex problems require an 

extensive analysis of the data in order to identify aIl the possible cases, and thus 

achieve good recall. \Vhen there are many such cases, it is expected for a person to 

miss a few. A learning algorithm on the other hand, given an extensive training set, 

will have the opportunity to coyer more possibility, and thus achieve better recall then 

the hand-crafted system. Good precision on the other hand is easier to achieve for a 

hand-crafted system as long as a few good rules can be identified and incorporated 

into the system. 

One of the major advantages of using machine learning to solve this problem is the 

time savings in building the system. Nlachine learning only requires the construction 

of a system that will interface with the data and prepare the examples for the learning 

algorithm. Of course, data needs to be labeled manually, but this is a less time­

consuming pro cess than building aIl the rules of the system. In developing the hand­

crafted aggregator, we ended up analyzing lots of documents anyway. Overall, the 

development of the HM~1 aggregator (induding the labelling of the training data and 

the evaluation of the system), took half as much time as the development of the hand­

crafted aggregator. This is partly due to the fact that in the hand-crafted system, 

several passes were necessary to refine and debug the regular expressions. No such 

iterative process was necessary for the HMM aggregators. The most time-consuming 

part in the case of the HMYIs was designing the model, in terms of emission symbols 

and state connectivity. Of course, representation is always a major problem in such 

systems, and in this case we did not find it too difficult to tune. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

vVe have seen that the difficulty of information extraction is in finding the heuris­

tics that will be used by the machine to extract information from web pages. There 

are two fundamental approaches to composing such heuristics. The first is for a 

human to evaluate the do main and specify the rules for the machine. The second 

approach involves using machine-Iearning algorithms to determine the rules that are 

to be used to perform lE. Advantages and disadvantages of such approaches were 

discussed throughout this work . 

In this thesis we investigated two aspects of information extraction, classification 

of named entities and the establishment of relationships between named entities for 

the purpose of creating meaningful records. For each of these aspects we compared 

the performance of a hand-crafted system and a machine learning system. For named 

entity classification we compared a system that uses decision trees (i.e., C4.5) to 

a hand-crafted approach that relies completely on regular expressions written by a 

human. The decision tree tried to identify elements within the HTML script that 

would provide evidence that a word or phrase is an organization name. The hand­

crafted approach was construéted by following an iterative process where regular 

expressions were written and then tested and tweaked iteratively until acceptable 

levels of performance were achieved. Both systems performed at the same level, but 

the regular expressions took significantly longer to develop. 

For finding relationships between named entities with the purpose of identifying 

addresses and contacts we compared a hand-crafted aggregator and a learning system 
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using Hidden Markov i\Iodels. The empirical evidence suggests that more complex 

problems benefit more from machine learning than simple problems. vVe also found 

that, if a large variety of patterns has to be covered (as is the case for contact infor­

mation) a human developer willlikely miss sorne of those, while a learning algorithm 

that is given a sufficiently large training set will be able to identify them. 

In summary we have seen that the machine learning systems equaled or improved 

upon the results of the hand-crafted system. The machine learning systems also took 

significantly less time to develop than the hand-crafted systems, and are likely more 

adaptable to work in new domains in which the same solution is applicable. However, 

new heuristics need to be found by training on new corpuses, so porting a learning 

system to a different application domain would still require a person to generate 

labeled training data. 

Several aspects of this problem have not been thoroughly researched in this thesis 

and may prove interesting for future work. For instance, when learning to identify 

relationships we used only positive examples to train the H~nIs, which resulted in 

lower precision (due to aggregating too much information). vVe believe that using 

negative examples would help prevent such errors. Further, we taught the system to 

extract only addresses and contacts. The problem of extracting organization objects 

is less challenging than the extraction of contacts, so we did not tackle it in this 

thesis. However, creating a training corpus for organizations and training an H~I~I 

on it would provide a sense of closure for the problem, although we do not anticipate 

that it provide any more insight into the problems discussed in the thesis. 

The information extraction systems presented in the thesis were always trained 

and evaluated on human tagged data at every stage. To get a better feel of how 

the system we created really works it would be necessary to put the named entity 

extraction and the aggregation steps together and apply the entire system to the 

data. We know that doing so will reduce the performance of both the hand-crafted 
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and the learning systems. vVe expect however that the performance of the machine 

learning systems would degrade less than that of the hand-crafted system. H~INIs 

are probabilistic models, and thus one would expect them to be less sensitive to noise 

in the data than deterministic models. 

Of course, we also picked particular learning techniques for the experiments re­

ported here. It would be interesting to experiment with other learning techniques as 

weIl. In particular, recent results in machine learning suggest that ensemble methods 

improve over the performance of any single algorithm, and they have been success­

fully applied to text processing. It would be interesting to see if using an ensemble 

of decision trees for the tagging step of our system would significantly improve per­

formance . 
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