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Abstract 

English 

Protein-protein interactions, or PPIs, are important phenomena, essential to proper protein 

function, and present in virtually all biological pathways of cells. Accordingly, in recent years, 

numerous experiments have been performed to survey all proteins that interact in a given species, 

as well as to uncover the molecular structure and 3D mechanisms of interactions between 

individual proteins. So far, this extensive work has generated large amounts of data, which now 

allows us to study the evolution of PPIs, a feat that was previously difficult due to a lack of high- 

quality experimental results. An investigation into the evolution of PPIs is essential to try and 

uncover the evolutionary design principles behind variations in PPIs, both within and between 

species. Here, we take advantage of PPI datasets made recently available for two yeast species, 

Saccharomyces cerevisiae (S. cerevisiae), and Schizosaccharomyces pombe (S. pombe), and 

perform their thorough analysis using bioinformatics tools. We first design a custom script pipeline 

to automate the curation of high-quality protein-protein interaction data from online databases and 

organize this data into structural models of PPIs for the two yeast species, S. cerevisiae, and S. 

pombe. These structural models are subsequently used to investigate the relationship between PPI 

structure and PPI evolution in yeast at the single residue level. This analysis yields significant 

insight into the design principles and structural mechanisms governing PPI evolution in yeast, 

uncovering several structural properties directly correlated with the evolutionary rates of PPIs. 

Finally, we use structural models of S. cerevisiae and S. pombe PPIs to construct structurally-

resolved interactome networks for the two yeasts and compare PPIs that are preserved and PPI that 

are different between the two yeast species. This analysis yields further insight into the 

evolutionary design principles of PPIs and the mechanisms by which interactions are preserved or 
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rewired between species, improving our understanding of the molecular evolution of PPIs at the 

residue level. Overall, this work establishes a better picture of the evolution of PPIs, both (1) at 

the molecular level, by uncovering small-scale structural properties that influence the evolution of 

PPIs within a species; and (2) at the phylogenetic level, by identifying mechanisms leading to 

large-scale differences in PPIs between species. Our findings have wide-ranging applications to 

the study of mis-regulation and disruption of PPIs, two processes that are commonly associated 

with various diseases.  
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Résumé 

Français 

Titre de la thèse :  

Analyse structurelle à haute résolution de l’évolution des interactions protéine-protéine et des 

changements de réseaux d'interactions chez les levures. 

 

Les interactions protéine-protéine, ou IPPs, sont des processus importants qui jouent un rôle 

fondamental à tous les niveaux de la cellule, elles sont essentielles au bon fonctionnement des 

protéines. De nombreuses expériences ont donc été menées récemment afin de cataloguer les 

protéines qui interagissent dans une espèce donnée, et pour déterminer la structure moléculaire et 

les mécanismes d’interaction 3D entre ces protéines. Ces travaux approfondis ont généré de 

grandes quantités de données, qui permettent désormais d’étudier l’évolution des IPPs. Le manque 

de résultats expérimentaux de qualité rendait auparavant cette tâche difficile. Étudier l’évolution 

des IPP est nécessaire pour découvrir les principes de conception évolutive qui expliquent les 

variations qui peuvent être observées entre différentes IPPs au sein d’une même espèce, mais aussi 

entre différentes espèces. Nous utilisons donc les données d’IPP récemment rendues disponibles 

pour deux espèces de levures, Saccharomyces cerevisiae (S. cerevisiae) et Schizosaccharomyces 

pombe (S. pombe), et effectuons leur analyse approfondie à l'aide d'outils bio-informatiques. Nous 

concevons d’abord une succession de scripts informatiques afin d’automatiser la collecte de 

données d’interaction protéine-protéine de haute qualité à partir de bases de données. Cette tache 

permet alors l’organisation de ces données d’IPP en modèles structurels pour les IPPs des deux 

espèces de levure S. cerevisiae et S. pombe. Ces modèles structurels sont ensuite utilisés pour 

étudier la relation entre la structure d’une IPP et son évolution chez les levures, à haute résolution. 
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Cette analyse produit des informations pertinentes sur les principes de conception et les 

mécanismes structurels qui régulent l'évolution des IPP chez les levures, et révèle plusieurs 

propriétés structurelles directement corrélées avec les taux d'évolution des IPP. D’autre part, nous 

utilisons les modèles structurels des IPP chez S. cerevisiae et S. pombe pour construire des réseaux 

d’interactions structurels pour les deux levures, et ainsi comparer les IPPs qui sont préservées et 

les IPPs sont différentes entre les deux espèces de levures. Cette analyse produit des informations 

supplémentaires sur les principes de conception évolutive des IPPs, et quant aux mécanismes par 

lesquels certaines interactions sont préservées et d’autres sont différentes entre les espèces. Ceci 

améliore notre compréhension de l'évolution moléculaire des IPPs. En conclusion, ce travail établit 

une meilleure image de l'évolution des IPP à deux niveaux : (1) à l’échelle moléculaire, en 

découvrant des propriétés structurelles à petite échelle qui influencent l'évolution des IPP au sein 

d'une espèce. (2)  à l’échelle phylogénétique, en identifiant les mécanismes conduisant à des 

différences à grande échelle d'IPP entre espèces. Nos résultats ont de nombreuses applications pour 

l’étude du dérèglement et de la perturbation des IPP, deux processus fréquemment associés à 

diverses maladies. 
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Contributions to Original knowledge 

This work is divided into three separate aims, each with associated deliverables and 

original contributions:  

 

The first aim focuses on the automated curation of protein-protein interaction (PPI) data 

from online databases, and its organization into molecular models of PPIs for two yeast species, 

Saccharomyces cerevisiae (S. cerevisiae), and Schizosaccharomyces pombe (S. pombe). This first 

step gathers and combines large amounts of PPI data from very different experimental fields, 

therefore allowing for novel analysis.  

 

This aim utilizes a large amount of data obtained through extensive experimental work 

over the last decade. Records of all interactions between pairs of proteins in a given organism (also 

called interactomes) curated from numerous experimental projects are currently available on the 

BioGRID and IntAct databases. Additionally, over 25 000 molecular structures (detailed, atom-

resolution, three-dimensional descriptions of individual PPIs) obtained from various experiments 

are currently available on the PDB database. For this aim, a custom script pipeline was, therefore, 

developed to automate the gathering and quality control of the PPI data described above for both 

S. cerevisiae, and S. pombe. Both S. cerevisiae and S. pombe PPI data have been successfully 

curated. Following data collection, additional processing and combining steps were automated to 

systematically store and organize the data into what we call molecular models of PPIs for both S. 

cerevisiae and S. pombe. The custom script pipeline designed to gather and combine large amounts 

of PPI data from very different experimental fields is novel and could be applied to future works 

in the two yeasts or in other species. Moreover, the detailed molecular models of PPIs in S. 

cerevisiae and S. pombe generated here, combine PPI data at two very different scales in a unique 
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manner, enabling novel future analysis. The pipeline and molecular models of PPIs generated in 

this aim are publicly available as a GitHub repository published in Research Article No. 1: 

Structural Determinants of Yeast Protein-Protein interaction Interface Evolution at the 

Residue Level, as well as further detailed in Chapter 3. 

 

The second aim of the project focuses on utilizing the data gathered in Aim 1 to study the 

relationship between PPI structures and their evolution in yeast. Evolutionary rates are known to 

vary widely, even within the same PPI protein, with some residues  being conserved during 

evolution, and others being much more variable. However, the design principles and structural 

mechanisms governing PPI evolution and responsible for those observed differences in 

evolutionary rates remain mostly unknown. In this aim we, therefore, uncover some of those 

principles and further our understanding of the evolution of PPIs. This feat broadens our 

knowledge of cellular mechanisms, and has practical applications to disease diagnosis and 

treatment, synthetic biology, and genome engineering. 

 

Extensive work in identifying structural determinants (i.e., measurable quantities, 

characteristic of the structure of the microenvironment surrounding a residue) correlated with 

residue evolution in S. cerevisiae PPIs was performed. The final structural determinants selected 

in this aim are the change in relative solvent accessibility upon PPI binding (ΔRSA), the number 

of residue-residue contacts across the PPI interface (interRRC), and the distance from the center 

(dCenter) or the periphery (dEdges) of the PPI interface. Several significant correlations between 

these structural determinants and residue evolutionary rates in S. cerevisiae PPIs were uncovered. 

The relationships uncovered, while supporting results from previous work using single protein 

structures, also identified determinants uniquely important to the investigation of PPI structures. 
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Additional analysis aiming to estimate the relative importance of those determinants, as well as 

quantifying their overall contribution to our understanding of the relationship between structure 

and evolution of PPIs data was also performed. The following important conclusions were 

established: (i) interfacial residues in PPIs are subject to continuous, structure-based selective 

constraints proportional to their degree of interface involvement, (ii) interfacial burial (as measured 

by the structural determinant ΔRSA) is selectively equivalent to non-interfacial burial, (iii) in 

addition to ΔRSA, other measures of interface involvement (structural determinants interRRC, 

dCenter, and dEdges) independently constrain residue evolution, and (iv) in addition to these 

continuous structure-based selective constraints, interfacial residues are subject to a fixed function-

based selective constraint independent of their degree of interface involvement. Those findings are 

published in Research Article No. 1: Structural Determinants of Yeast Protein-Protein 

interaction Interface Evolution at the Residue Level, as well as further detailed in Chapter 3. 

 

The third aim of the project focuses on the comparison of PPIs between S. cerevisiae and 

S. pombe to uncover possible drivers for observed differences in interactomes between the two 

yeasts. We classify PPIs according to whether they are preserved or different between the two 

yeast species and compare site-specific evolutionary rates of interfacial versus non-interfacial 

residues for these different categories of PPIs. This last aim of comparative analysis between two 

species’ interactomes uncovers some of the molecular mechanisms behind the phylogenetic loss 

or gain of an interaction between two species. Moreover, insights gained from studying the 

phylogenetic loss or gain of interactions could have wide-ranging applications to the study of 

misregulation and disruption of PPIs associated with various diseases. 
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Work towards this aim uncovered the following important trends: (i) residues in PPI 

interfaces evolve significantly more slowly than non-interfacial residues when using lineage-

specific measures of evolutionary rate, but not when using non-lineage-specific measures, (ii) both 

lineage-specific and non-lineage-specific evolutionary rate measures can distinguish interfacial 

residues from non-interfacial residues for preserved PPIs between the two yeasts, but only the 

lineage-specific measure is appropriate for PPIs that are different between the two yeasts, (iii) both 

lineage-specific and non-lineage-specific evolutionary rate measures are appropriate for 

elucidating structural determinants of protein evolution for residues outside of PPI interfaces. 

Overall, our results demonstrate that unlike tertiary structures of single proteins, PPIs and PPI 

interfaces can be highly volatile in their evolution, thus requiring the use of lineage-specific 

measures when studying their evolution. These results yield insight into the evolutionary design 

principles of PPIs and the mechanisms by which interactions are preserved or different between 

species, improving our understanding of the molecular evolution of PPIs and PPI interfaces at the 

residue level. Those findings are published in Research Article No. 2: Structure-guided 

evolutionary analysis of interactome network rewiring at single residue resolution in yeasts, 

as well as further detailed in Chapter 4. 

 

Overall, this project establishes a better picture of the evolution of PPIs, both at the 

molecular level, by uncovering small-scale structural properties that influence the evolution of 

protein interactions in a species; and at the phylogenetic level, by identifying mechanisms leading 

to large-scale differences in PPIs between species.  
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1. Introduction 
 

Proteins are a vital component of all living organisms. In fact, next to water, they are the 

most plentiful substance in the human body 1. These molecules can be found in all cells, where 

they perform many essential functions, such as allowing motion, distributing oxygen, clotting 

blood, fighting infections, transporting substances, controlling chemical reactions, and carrying 

messages from one part of the body to another. Proteins rarely act alone when accomplishing these 

complex tasks. Instead, they tend to cooperate with one another in a process termed protein-protein 

interaction (hereafter referred to as PPI) 2. 

 

For instance, many major cellular processes, including DNA replication, transcription, 

translation, splicing, secretion, cell cycle control and signal transduction are carried out by stable 

protein-protein complexes, which behave as molecular machines, composed of protein 

components and organized by tightly regulated PPIs to ensure proper function 2–4. Moreover, all 

manner of fundamental cellular processes, including cell growth, cell cycle, metabolic pathways, 

and signal transduction are controlled and regulated by more transient interactions such as the 

interactions of protein kinases, protein phosphatases, proteases and other enzymes with their 

substrate proteins 3,5. Finally, transient protein-protein interactions are also crucial in the 

recruitment and assembly of the transcription complex to specific promoters, the transport of 

proteins across cellular membranes, the proper folding of proteins, and various individual steps of 

the translation cycle and cell cycle 3,6. As such, mis-regulations and disruptions of the normal 

patterns of PPIs in human have been linked to various diseases including cancer, 

cardiomyopathies, diabetes, microbial infections, and genetic and neurodegenerative disorders 7–

9. 
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Accordingly, in recent years, numerous experiments have been performed to try and survey 

all proteins that interact in a given species, as well as to uncover the molecular structure (detailed, 

atom-resolution, three-dimensional description of a PPI) and three-dimensional (3D) mechanisms 

of interactions between individual proteins. Records of all proteins that interact in a given species, 

also called interactomes, were obtained with high confidence for human 9, baker's yeast 

(Saccharomyces cerevisiae) 10, and as of recently, fission yeast (Schizosaccharomyces pombe) 11. 

The BioGRID database 12 and IntAct database 13 are large databases aggregating such protein 

interactions curated from various high-throughput datasets and primary literature 14. In addition, 

ongoing investigations into the molecular structures, or 3D shapes, of individual PPIs have so far 

yielded over 25 000 structures of complexes containing more than one protein. Those structures 

are currently accessible on the PDB database 15. 

 

This wealth of available data now allows us to study the evolution of PPIs, a feat that was 

previously difficult due to a lack of high-quality experimental results. An investigation into the 

evolution of PPIs is essential to try and uncover the evolutionary design principles behind 

variations in PPIs, both within and between species. Moreover, such knowledge could in turn have 

practical applications to the identification of disease-specific patterns of PPIs which could serve 

as diagnostics biomarkers, help in the development of treatments and therapies targeting 

interactions that are functionally relevant to disease progression, as well as provide insights to the 

fields of synthetic biology, and genome engineering 7,8. 

 

Here, we, therefore, take advantage of high-confidence PPI datasets made recently 

available for two yeast species, Saccharomyces cerevisiae (S. cerevisiae) 10, and 
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Schizosaccharomyces pombe (S. pombe) 11 and perform their thorough analysis using 

bioinformatics tools. More formally, we hypothesize that: 

 

Structural determinants influence the evolutionary rate of residues in protein-protein 

interactions and changes in those determinants for interfacial residues could be associated with 

the phylogenetic loss or gain of an interaction between two species.  

 

This study first focuses on creating an automated, custom pipeline to curate, preprocess, 

and build PPI molecular models from the above-mentioned data (Aim 1). Those models are 

subsequently used to investigate the relationship between PPI structures and their evolution by 

studying the impact of various structural determinants on residue evolutionary rates in yeast (Aim 

2). Finally, we compare PPIs that are preserved and PPIs that are different between S. cerevisiae 

and S. pombe, to identify possible drivers for differences in PPIs between the two species. The 

evolution of PPI interfaces is considered more specifically, as this region of contact between 

interacting proteins could be particularly important to PPI evolution (Aim 3). Overall, this work 

yields great insight into the evolution of PPIs. Such knowledge could, in turn, be priceless to guide 

efforts in disease diagnosis and treatment, synthetic biology, or genome engineering. 
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2. Literature review 

2.1 Importance of PPIs 

2.1.1 Cellular function 

Proteins are the main agents of biological function in cells. As such, the association of 

proteins with other proteins is one of the most common interactions in biology 1. The term protein-

protein interaction (PPI), therefore, refers to a variety of different types of interactions between 

proteins that are fundamental to virtually all biological processes within cells, playing critical roles 

in maintaining cellular structure, regulating metabolic pathways, and facilitating signal 

transduction. These interactions are also essential to the functionality of protein complexes that 

carry out various cellular activities 1–8. Here we focus on physical PPIs, the molecular, physical 

contact between two or more proteins within a cell 3. 

 

Physical PPIs can be transient. These interactions are typically short-lived, and are 

temporary and dynamic, allowing for rapid responses to changing cellular conditions, 

environmental cues and internal signals 6. Transient PPIs play crucial roles in signal transduction 

pathways, where proteins must interact and dissociate quickly to propagate signals. For instance, 

ligand binding to a G-protein-coupled receptor (GPCR) triggers a conformational change, allowing 

a transient PPI between GPCR and a G-protein on the inner side of the plasma membrane. This 

transient interaction causes the G-protein to exchange GDP for GTP, activating it and enabling the 

transmission of signals to downstream effectors. The transient nature of this interaction ensures 

that signals are passed quickly and efficiently, enabling cells to respond promptly to external 

stimuli 16. Transient PPIs also play a crucial role in the regulation of enzymes within cells. 

Transient PPIs between protein kinases, protein phosphatases, proteases and other enzymes with 



 

 26 

their substrate proteins are crucial to the control and regulation of fundamental cellular pathways, 

including cell growth, cell cycle, metabolic pathways, and signal transduction 17. For example, the 

phosphorylase kinase transiently interacts with glycogen phosphorylase, phosphorylating it and 

thus activating it to release glucose-1-phosphate from glycogen. This transient interaction ensures 

that glycogen breakdown is precisely regulated in response to cellular energy demands 18. 

Transient PPIs also facilitate the rapid activation and deactivation of immune cells in response to 

pathogens. For instance, the transient interaction between T-cell receptor (TCR) proteins and 

major histocompatibility complex (MHC) proteins  presenting antigenic peptides is crucial for T-

cell activation. This interaction TCR and MHC proteins triggers a cascade of signaling events that 

lead to T-cell proliferation and differentiation. The transient nature of the interaction allows T-

cells to quickly disengage from one antigen-presenting cell and interact with another, enhancing 

the immune response efficiency 19. Overall, transient PPIs are fundamental to cellular 

responsiveness and adaptability, facilitating precise and dynamic control over a wide array of 

biological processes.  

 

Physical PPIs can also be more stable. Stable PPIs are characterized by their long-lasting 

nature and play key roles in the formation and regulation of persistent multi-protein complexes 

that behave as molecular machines and carry out essential structural and functional roles within 

the cell 20. Stable PPIs are crucial for providing structural integrity to cells and their organelles and 

form the basis of cellular architecture. For instance, the cytoskeleton is a network of protein 

filaments and tubules that provide structural support to the cell. Actin filaments, microtubules, and 

intermediate filaments are stabilized by PPIs, ensuring cellular shape, motility, and division 21. 

Stable PPIs are also essential for maintaining the spatial organization of cellular components, 
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ensuring that biochemical processes occur at the right place and time, and facilitating the selective 

and efficient movement of molecules across cellular compartments. For example, the nuclear pore 

complex (NPC) is a stable assembly of nucleoporins proteins that regulates the transport of 

macromolecules between the nucleus and cytoplasm of cells. The stability of the NPC ensures 

selective and efficient transport, essential for cellular function 22. Stable PPIs in regulatory 

complexes also ensure the precise control of critical cellular processes such as DNA replication, 

transcription, and cell cycle progression. For instance, the origin recognition complex (ORC) is a 

stable multi-protein assembly that binds to origins of DNA replication in eukaryotic cells. The 

ORC interacts stably with other replication initiation factors, to form the pre-replication complex, 

which is crucial for the initiation of DNA replication 23. Overall, many major cellular processes 

are carried out by stable protein-protein complexes, which behave as molecular machines, 

composed of protein components and organized by tightly regulated PPIs to ensure proper 

function.  

 

2.1.2 Mis-regulation and disruption in disease 

 Given the crucial and complex roles played by protein-protein interactions (PPIs) to ensure 

proper cellular function discussed above, the misregulation or disruption PPIs can profoundly 

impact cellular function. As such, misregulations and disruptions of PPIs have been associated 

with various diseases and disorders in human. Several disease-causing mutations are known to 

disrupt PPIs and single nucleotide polymorphisms associated with a number of diseases tend to 

occur in sites predicted to mediate interactions. Proper regulation of PPIs is, therefore, essential 

for maintaining normal cellular processes, and the study of PPIs is crucial to the study of various 

diseases. 
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 Disruptions in PPIs have been associated with cancer initiation, progression, and treatment 

resistance. Many types of cancer exhibit dysregulated signaling pathways involved in cell growth, 

survival, and metastasis due to aberrant PPIs. For instance, in breast cancer, overexpression of 

HER2 leads to constitutive activation of downstream pathways by altering its interaction with other 

proteins like EGFR and Src kinases 24. This disruption promotes uncontrolled cell division and 

aggressive cancer phenotypes. Mutations or overexpression of proteins involved in Ras-ERK 

signaling pathways are also known to disrupt normal PPIs, leading to uncontrolled proliferation 

and evasion of apoptosis in cancer cells 25. Moreover, disruption of PPIs can lead to loss of tumor 

suppressor functions. For instance, mutations in the p53 protein, which normally interacts with 

MDM2 to regulate cell cycle and apoptosis, can disrupt these interactions and contribute to 

uncontrolled cell growth in various cancers 26. Additionally, alterations in PPIs can confer 

resistance to cancer therapies. In chronic myeloid leukemia (CML), mutations in the BCR-ABL 

fusion protein alter its interactions with drug-binding sites, leading to resistance against tyrosine 

kinase inhibitors drugs 27. This disruption reduces the effectiveness of targeted CML therapies 

designed to inhibit BCR-ABL signaling. Finally, disruptions in protein complexes critical for DNA 

repair, such as BRCA1 and BRCA2 interactions, can predispose individuals to breast and ovarian 

cancers 28. Mutations in these proteins disrupt their interactions, compromising DNA repair 

mechanisms and increasing cancer susceptibility. 

 

Disruptions in PPIs also play pivotal roles in the pathogenesis of neurodegenerative 

disorders, contributing to protein misfolding, aggregation, impaired cellular function, and 

ultimately neuronal degeneration and neuronal death. For instance, disrupted interactions between 

amyloid-beta and tau proteins in Alzheimer's disease leads to the formation of toxic aggregates, 
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such as neurofibrillary tangles and amyloid plaques, contributing to neuronal dysfunction and cell 

death 29. Disrupted PPIs can also impair protein clearance mechanisms such as autophagy and the 

ubiquitin-proteasome system, exacerbating protein aggregation. In Parkinson's disease, mutations 

in α-synuclein proteins disrupt their interactions with chaperones, proteolytic systems and 

degradation pathways, leading to the accumulation of toxic protein aggregates 30. Moreover, 

dysregulated PPIs can alter cellular signaling pathways critical for neuronal function and survival. 

For instance, disruptions in PPIs involving glutamate receptors and associated proteins contribute 

to excitotoxicity, which is neuronal death caused by overstimulation of glutamate transporters, in 

neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and Huntington's disease 31. 

Finally, genetic mutations affecting PPIs can directly influence disease pathogenesis. In 

Huntington's disease, mutations in the huntingtin protein alter its interactions with cellular 

partners, disrupting processes such as vesicular transport and mitochondrial function, which 

contribute to neuronal degeneration 32. 

 

 Disruptions in PPIs can also affect the pathogenesis of infectious diseases, influencing 

pathogen virulence, host immune responses, and therapeutic resistance mechanisms. Pathogens 

can exploit disruptions in host cell PPIs to facilitate entry into host cells, manipulate host signaling 

pathways, evade immune surveillance, and promote disease progression. For example, viral 

proteins such as HIV-1 gp120 interact with host receptors CD4 and CCR5 to initiate viral entry by 

binding and altering receptor conformation 33. Pathogens can also disrupt host immune responses 

by altering PPIs involved in immune signaling and evasion mechanisms. For instance, bacterial 

pathogens like Yersinia spp. inject effector proteins that disrupt PPIs in host immune signaling 

pathways, suppressing inflammatory responses and promoting pathogen survival 34. Disruptions 
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in pathogen PPIs can also confer drug resistance and enhance virulence. In antibiotic-resistant 

bacteria, mutations in PPIs involved in drug-target interactions reduce antibiotic binding affinity, 

leading to treatment failure 35. Finally, disruptions in host-pathogen PPIs can influence disease 

progression and severity. In malaria, interactions between plasmodium falciparum proteins and 

host erythrocyte receptors mediate parasite invasion and contribute to disease pathogenesis 36. 

 

 Dysregulations of PPIs that affect metabolic pathways, hormone regulation, and cellular 

signaling are also associated with several metabolic disorders. Disruptions in PPIs involved in 

insulin signaling pathways can lead to insulin resistance and impaired glucose metabolism. For 

example, in type 2 diabetes, alterations in PPIs between insulin receptor substrates proteins and 

downstream signaling molecules like PI3K/Akt disrupt insulin-mediated glucose uptake and 

metabolism 37. Disruptions in PPIs can also affect lipid metabolism, contributing to dyslipidemia 

and cardiovascular risk. In familial hypercholesterolemia, mutations in LDL receptor PPIs impair 

receptor-mediated uptake of LDL cholesterol, leading to elevated blood cholesterol levels and 

increased cardiovascular disease risk 38. Moreover, dysregulated PPIs can alter the mechanisms by 

which body energy status is sensed and have been linked to obesity. Leptin resistance, observed in 

obesity, involves disruptions in PPIs between leptin and its receptor, impairing signaling pathways 

that regulate appetite and energy expenditure 39. Finally, disruptions in mitochondrial PPIs can 

impair oxidative phosphorylation and contribute to metabolic disorders. In mitochondrial diseases, 

mutations in proteins involved in electron transport chain complexes disrupt PPIs critical for ATP 

production, leading to energy deficiency and metabolic dysfunction 40. 
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 Overall, PPIs are indispensable for the intricate network of biological processes that sustain 

cellular function and organismal health. From transient associations that enable rapid signaling, to 

stable complexes that maintain structural integrity, PPIs orchestrate essential functions within 

cells. Dysregulation or disruption of these interactions can play a pivotal role in the pathogenesis 

of numerous diseases. Understanding the mechanisms underlying PPI function and dysregulation, 

therefore, offers promising avenues for therapeutic interventions. Targeting specific PPIs involved 

in disease processes holds potential for developing novel treatments that restore normal 

interactions or inhibit aberrant ones. Advances in structural biology, proteomics, and 

computational modeling are enhancing our ability to identify and characterize critical PPIs, paving 

the way for precision medicine approaches tailored to intervene at the molecular level. Studying 

PPIs, thus, not only deepens our understanding of cellular biology but also offers hope for 

innovative strategies to combat a wide range of human diseases. 

 

2.1.3 Applications to disease diagnosis and treatment, synthetic biology and genome 

engineering 

 Better understanding and studying the intricate networks of protein-protein interactions 

(PPIs) within cells offers new perspectives on how disruptions in these interactions contribute to 

disease pathogenesis and how they can be leveraged for therapeutic and technological innovations. 

This offers a wide range of current and future applications which extends beyond fundamental 

biology to various research fields including disease diagnosis, disease treatment, synthetic biology, 

and genome engineering.  
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 PPIs can serve as potential biomarkers for disease detection and prognosis. Aberrant 

interactions or disrupted networks of interactions can indicate disease states or help predict 

treatment response, offering insights into disease mechanisms and guiding personalized medicine 

approaches. For instance, PPI based biomarkers have strong ability in distinguishing normal and 

disease samples in human cholangiocarcinoma dataset and diabetes dataset 41. Studies on clinical 

samples have also shown success in diagnosing metastatic versus non-metastatic breast cancer 

tumors by overlaying a patient's expression profile onto the human protein-protein interaction map 

42. Investigating clusters in PPI networks for early onset colorectal cancer (CRC) patients 

uncovered five functional modules involved in the pathways of signal transduction, carcinogenesis 

and metastasis, that may serve as biomarkers of early onset CRC and have the potential to be 

targets for therapeutic intervention 43. PPI network analysis also uncovered nine crucial proteins 

could form a candidate biomarker panel for esophageal adenocarcinoma, one of the most lethal 

cancers in the world with a very poor prognosis 44. In Alzheimer's disease, altered PPIs involving 

amyloid-beta and tau proteins in cerebrospinal fluid are also being investigated as potential 

biomarkers for disease progression and response to treatment 45. 

 

 Moreover, understanding disease-associated PPIs facilitates the identification of novel 

therapeutic targets. Targeting specific PPIs implicated in disease pathology enables the 

development of more effective and precise therapies. Inhibitors targeting dysregulated PPIs in 

oncogenic signaling pathways have shown promise in preclinical and clinical studies, highlighting 

their potential as therapeutic interventions 46. Several small molecule drugs targeting specific PPIs 

are approved by the FDA or in clinical studies for a wide range of diseases including chronic 

lymphocytic leukaemia 47, head and neck cancer 48, breast cancer 49, small-cell lung cancer 50 and 
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ovarian cancer 51. In Alzheimer's disease, the interaction between beta-secretase and amyloid 

precursor protein is crucial for the production of amyloid-beta peptides. Inhibitors targeting this 

interaction aim to reduce amyloid-beta levels and slow disease progression and  are currently being 

explored in clinical trials 52. A class of drugs targeting the interaction between HIV-1 integrase 

and the host DNA, and therefore preventing the integration of viral DNA into the host genome and 

inhibiting viral replication has also been effective in the treatment of HIV 53. Moreover, therapies 

targeting the interaction between SARS-CoV-2 spike protein and human ACE2 receptor are being 

developed to prevent viral entry and treat COVID-19 infections 54. 

 

Insights from the study of PPIs also have crucial applications to the fields of synthetic 

biology and genome engineering. Synthetic biology harnesses knowledge of the principles of PPIs 

to engineer novel protein complexes or pathways with customized functions. These “designed” 

PPIs can be used to reprogram cellular behavior or create synthetic biomaterials with applications 

in medicine and biotechnology. For instance, synthetic PPIs have enabled the creation of inducible 

dimerization systems like the rapamycin-inducible FKBP12-FRB system, which can precisely 

control cellular functions and gene expression in response to specific stimuli, offering potential for 

targeted gene therapies 55. Chimeric antigen receptors (CARs) are a  new class of immunotherapy 

cancer drugs using synthetic PPIs to direct T-cells to recognize and kill cancer cells 56. CARs have 

shown clinical benefit in patients by providing highly specific and effective treatment options. 

Synthetic transcription factors, such as zinc finger proteins, have also been successfully engineered 

to bind specific DNA sequences and recruit transcriptional regulators to allow precise control of 

gene expression, facilitating advances in gene therapy and functional genomics 57. Moreover, PPIs 

have been utilized to create synthetic biomaterials. Engineered elastin-like polypeptides form 



 

 34 

reversible hydrogels through specific PPIs and can be used in drug delivery systems and tissue 

engineering for medical applications 58. Additionally, genome engineering tools such as CRISPR-

Cas9 utilize PPIs to precisely edit DNA sequences. The efficiency and specificity of these tools 

depend on PPIs involving Cas proteins and guide RNAs, offering powerful capabilities for 

therapeutic genome editing and disease modeling 59. Base editing, a technology which combine a 

catalytically impaired Cas9 with a deaminase enzyme, uses PPIs to introduce point mutations 

without double-strand breaks. This technology allows for precise nucleotide changes, offering 

potential for correcting genetic mutations in various diseases 60. Prime editing involves engineered 

PPIs between a Cas9 nickase, a reverse transcriptase, and a pegRNA, enabling the introduction of 

targeted insertions, deletions, and base conversions with high precision. This tool expands the 

capabilities of genome editing for therapeutic applications 61. 

 

Given the crucial roles that PPIs play in cellular function, the significant impact that their 

mis-regulation and disruption can have on disease, and the practical applications of PPI research 

in disease diagnosis, treatment, synthetic biology, and genome engineering, it is clear that research 

towards obtaining a more comprehensive understanding of PPIs is essential. Consequently, vast 

amounts of PPI data have been collected across various fields, driving advancements and 

applications in multiple scientific disciplines. In the following sections, we will summarize and 

describe the available data on PPIs and the experimental techniques utilized to collect PPI data in 

different experimental fields and at different experimental scales. 
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2.2 PPI data at the species scale 

Understanding protein-protein interactions (PPIs) at the species scale involves the 

comprehensive mapping and analysis of a given species’ interactome: the record of all PPIs which 

occur in an organism. This large-scale approach provides insights into the complex networks of 

interacting proteins that underpin cellular processes, disease mechanisms, and evolutionary 

biology. Here, we discuss various methods used to collect and analyze PPI interactome data at the 

species scale. 

 

Figure 1. Protein-protein interaction network (interactome network). Graphical 
representation of a protein-protein interaction (PPI) network, or interactome network. Proteins in 
a species of interest are represented as circles. Lines illustrate PPIs that have been detected between 
the two connected proteins in the species. 
 

2.2.1  Interactome data 

Interactome data represents the entirety of protein-protein interactions (PPIs) in an 

organism and serves as a fundamental resource for understanding cellular functions and disease 

mechanisms. Accordingly, in recent years, numerous experimental techniques and computational 

predictions have been used to try and survey all proteins that interact in a given species, and thus 
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construct interactomes for various species. Interactomes, or records of all proteins that interact in 

a species, have been obtained with  high confidence for human (Homo sapiens) 62, fruit fly 

(Drosophila melanogaster) 63, mouse (Mus musculus) 64, Arabidopsis thaliana 65, baker's yeast 

(Saccharomyces cerevisiae) 10, and as of recently, fission yeast (Schizosaccharomyces pombe) 11. 

To construct these high quality interactomes, as well as to detect interacting proteins in many other 

species, several experimental systems and computational methods have been used and are further 

detailed below. 

 

2.2.2 Yeast two-hybrid system (Y2H) 

The Yeast Two-Hybrid (Y2H) system is a popular in vivo tool for detecting and studying 

protein-protein interactions (PPIs) in a high-throughput manner. The Y2H system utilizes the 

modular nature of transcription factors to detect interactions between proteins of interest (POIs) 

within the nucleus of yeast cells. It consists of two main components: the DNA-binding domain 

(DBD) and the activation domain (AD). The DBD is fused to a POI, acting as a bait. The AD is 

fused to another POI, serving as the prey 66. 

 

Functionally, the Y2H system operates through the introduction of these bait and prey 

constructs into yeast cells. If the bait and prey proteins physically interact within the yeast nucleus, 

the DBD and AD domains come into proximity, reconstituting a functional transcription factor 

complex. This reconstituted complex then binds to specific DNA sequences upstream of reporter 

genes, such as lacZ for β-galactosidase or HIS3 for histidine biosynthesis, leading to the activation 

of these reporter genes and producing detectable phenotypic changes indicative of positive 

interactions 66. 
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Figure 2. Yeast two-hybrid system (Y2H). Graphical representation of the yeast two hybrid 
system assay used to detect and study protein-protein interactions in vivo. (A) The transcription 
factor (TF) for a reporter gene. DNA-binding domain (BD) and activation domain (AD) are 
represented separately in green and yellow. (B) Cartoon diagram of a pair of proteins of interest 
shown in cross section, in blue. The bait protein is fused to the DNA-binding domain of the 
transcription factor (BD) and represented with a solid outline. The prey protein is fused to the 
activation domain of the transcription factor (AD) and represented with a dashed outline. (C) 
Cartoon diagram of the two proteins of interest physically interacting within the yeast nucleus, 
with AD and BD in close proximity forming a reconstituted functional transcription factor 
complex, activating transcription of the reporter gene. 
 

The Y2H system's ability to screen a large number of potential interactions simultaneously 

makes it invaluable for generating comprehensive interactome maps. This high-throughput 

capability is particularly valuable in the initial stages of interactome mapping, where the goal is to 

identify as many interactions as possible to build a complete picture of cellular protein networks. 

Another advantage of the Y2H system is its relatively low cost and technical simplicity compared 

to other PPI detection methods, enabling many researchers to adopt and implement the system 67. 

However, the method can falsely report proteins as interacting in the Y2H system, when they, in 

fact, do not interact in the species of interest (false positive interactions). Moreover, many true 

interactions may not be traced using Y2H assay or not have been investigated yet using the Y2H 

system (false negative interactions). In particular, only proteins localized to the nucleus of cells 

are appropriate to study using Y2H assays, since they are the only proteins able to activate reporter 

genes. Moreover, proteins that require post-translational modifications to carry out their functions 

are unlikely to behave or interact normally in a Y2H experiment where conditions for proper post-
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translational modifications may not be met. Furthermore, if the proteins are not in their natural 

physiological environment, they may not fold properly to interact 68,69. 

 

2.2.3 Tandem affinity purification combined with mass spectrometry (TAP-MS) 

Tandem affinity purification-mass spectroscopy (TAP-MS) system is a widely used in vitro 

method for studying protein-protein interactions (PPIs) with high specificity and reliability under 

the intrinsic conditions of the cell. This technique leverages the affinity purification of protein 

complexes from cell lysates, followed by mass spectrometry analysis to identify the partner 

proteins interacting with a protein of interest (POI) in the complex 69. 

 

The process begins by tagging a POI (bait) with a dual-affinity tag, typically consisting of 

a calmodulin-binding peptide and a streptavidin-binding peptide, then expressing the POI in the 

cell line of interest 70. The cells are then lysed to release the protein complexes, and the lysate is 

passed through an affinity column that binds the first tag capturing the bait protein and its 

interacting partners while washing away other proteins. The captured complexes are then subjected 

to a second purification step using a column specific to the second tag. This secondary purification 

further refines the protein complex, significantly reducing background noise. Finally, the purified 

protein complexes are analyzed by mass spectrometry, which provides detailed information about 

the protein composition of the complex 71. 

 

The TAP-MS system has several advantages, particularly its high specificity and 

responsivity as it can even detect weak protein interactions. The dual-step purification process also 

leads to high specificity of isolated protein complexes, thereby reducing non-specific binding and 
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background noise 70. Additionally, mass spectrometry allows for the comprehensive identification 

of proteins within the complex, including low-abundance proteins and post-translational 

modifications, providing a detailed view of the protein composition of a PPI complex 71. Another 

significant benefit of TAP-MS is that it can be performed under near-physiological conditions, 

preserving the native state of protein complexes and making the results more biologically relevant 

71. Despite these advantages, the TAP-MS system also has its drawbacks. False negatives can occur 

when some interactions are lost during the purification process due to the stringent washing steps. 

Moreover, false positives can arise, particularly if the bait protein is overexpressed, leading to non-

specific interactions 72 . 

 

2.2.4 Other experimental methods 

 Several other experimental methods have also been successfully used to detect protein-

protein interactions (PPIs) both in vivo and in vitro. Each method having its own set of advantages 

and drawbacks, multiple techniques are typically used in order to crosscheck and verify results 

obtained.  

 

Fluorescence Resonance Energy Transfer (FRET) is a in vivo method for studying PPIs in 

living cells. Proteins of interest (POIs) are tagged with donor and acceptor fluorophores, and 

interactions are detected based on the energy transfer between these fluorophores when they are 

in close proximity 73. FRET, therefore, allows for real-time observation of PPIs in live cells, 

providing dynamic information about interaction kinetics and spatial localization. It is highly 

sensitive and can detect weak and transient interactions. FRET is also non-invasive, preserving the 

physiological conditions of the cellular environment. However, the efficiency of FRET depends 
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on the proper folding and orientation of the tagged POIs, which can affect the accuracy of 

interaction measurements. The method also requires sophisticated instrumentation and expertise 

in fluorescence microscopy. Moreover, the introduction of fluorescent tags may interfere with the 

native function and interaction of the POIs in cells 73. 

 

Bimolecular Fluorescence Complementation (BiFC) is an in vivo method that visualizes 

PPIs by splitting a fluorescent protein (such as GFP) into two non-fluorescent fragments, each 

fused to a protein of interest (POI). When the POIs interact, the fragments come together to form 

a functional fluorescent protein, producing a detectable signal 74. BiFC provides direct 

visualization of PPIs within their native cellular context, offering spatial information about where 

interactions occur. It is relatively simple and does not require complex instrumentation. BiFC is 

also highly specific, as fluorescence is only reconstituted upon protein interaction. However, false 

positives can still occur due to the high affinity of the fluorescent fragments. The irreversible nature 

of the fluorescent fusion to a POI can also prevent the study of dynamic interactions and lead to 

signal accumulation. Moreover, the large size of the fluorescent tags may interfere with the native 

function and interaction of the proteins in cells 75. 

 

The split reporter assay is a similar, powerful in vivo technique used to study PPIs by 

employing a reporter system that consists of two inactive halves, each fused to a protein of interest 

(POI). Upon interaction of the POIs, the halves of the reporter protein (e.g., enzymes such as 

dihydrofolate reductase (DHFR), luciferase, or β-lactamase) reassemble to restore enzymatic 

activity, producing a detectable signal, such as fluorescence or chemiluminescence 76,77. This 

method is versatile and can utilize different reporter systems, allowing for the detection of PPIs 
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with varying sensitivity and signal types. Unlike BiFC, which relies on fluorescence, split reporter 

assays can also measure enzyme activity, making them suitable for high-throughput applications. 

While split reporter assays provide valuable information about protein interactions in living cells, 

they also come with challenges. The size of the reporter fragments can affect the native function 

of the interacting proteins, and false positives may arise if the fragments are too small or have 

intrinsic affinity for each other. Additionally, the reassembly of the reporter can be irreversible, 

limiting the study of transient or dynamic interactions 76. Nevertheless, split reporter assays offer 

a flexible and efficient tool for studying PPIs with high specificity and sensitivity in a variety of 

cellular environments 76,77. 

 

Co-Immunoprecipitation (Co-IP) is a classical in vitro method for studying PPIs within 

their native cellular environment. This technique uses antibodies to capture a protein of interest 

(bait) along with its interacting partners (prey) from a cell lysate. The protein complexes are then 

analyzed using techniques such as Western blotting 78. Co-IP is highly specific and preserves the 

native state of protein interactions. It can validate interactions identified by other methods and 

provides a physiologically relevant context for studying PPIs. However, the technique requires 

high-quality, specific antibodies, as non-specific binding can lead to false positives, and inefficient 

antibody binding or poor lysis conditions can result in false negatives. Therefore, Co-IP is not 

suitable for high-throughput screening 3. 

 

Surface Plasmon Resonance (SPR) is an in vitro, label-free method for studying PPIs. This 

technique measures changes in the refractive index near a sensor surface to detect binding events 

between an immobilized protein of interest (bait) and an interacting partner (prey) in solution. This 
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technique offers high sensitivity and quantitative information on binding kinetics, affinities and 

interaction dynamics in real-time. Moreover, it is label-free, eliminating potential tag-induced 

artifacts 79. However, immobilization of bait proteins on the sensor surface can alter their native 

conformation and affect binding properties. Moreover, SPR is typically limited to studying binary 

interactions and may not capture the complexity of multi-protein complexes 80. 

 

2.2.5 Computational methods 

Alongside experimental methods, computational approaches play a pivotal role in 

predicting, modeling, and analyzing protein-protein interactions (PPIs). These methods offer the 

advantage of high-throughput capabilities and can provide insights that complement experimental 

findings. Computational methods for studying PPIs can be broadly classified into in silico 

predictions based on sequence and structural data, as well as computational modeling and 

simulation techniques. Each approach has its unique strengths and challenges, contributing to a 

comprehensive understanding of PPIs. 

 

Sequence-based prediction methods in silico utilize the amino acid sequences of proteins 

to predict potential interactions. Currently, the two main types of approaches used to predict PPIs 

from sequence data are similarity-based methods and machine learning-based methods 81. 

Similarity-based methods such as PIPE4 82and SPRINT 83 score proteins based on the principle 

that if two query proteins resemble a pair of known interacting proteins, then evidence for an 

interaction between the query proteins can be inferred. Essentially, these methods quantify the 

strength of the interaction evidence under this assumption, using substitution matrices such as 

PAM120 or BLOSUM64 to measure the similarity between the query and interacting protein pairs 
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81. Machine learning-based methods "learn" to identify patterns or features that are commonly 

found in interacting proteins. To make predictions, these models examine query protein pairs for 

the presence or extent of these patterns. Depending on the approach, the predictors may learn from 

the physicochemical properties of protein sequences or simply from the amino acid composition. 

Recent models predominantly use the latter approach, leveraging advanced deep learning 

techniques to capture the "grammar" of protein interactions 84,85. These sequence-based methods 

can handle large-scale datasets and are relatively fast. They do not require structural information, 

making them applicable to a wide range of proteins, including those with unknown structures 2. 

However, the accuracy of predictions can be limited by the quality and size of the training datasets. 

False positives and false negatives are common, necessitating experimental validation. Moreover, 

these methods may not capture the full complexity of PPIs, such as those involving post-

translational modifications 86. 

 

Co-evolutionary analysis in silico leverages the concept that interacting proteins evolve in 

a coordinated manner. By analyzing correlated mutations in protein sequences across multiple 

species, co-evolutionary methods can predict potential PPIs and interaction interfaces. Co-

evolutionary PPI inference techniques can be divided into two types: site-specific and full-

sequence methods 87. The site-specific method detects mutual sequence changes in binding 

interfaces of interacting partners to infer PPIs, but changes in such regions are hard to detect 88–90. 

Full-sequence methods, such as the mirror-tree method compare a distance matrix between two 

proteins and use topological similarity of phylogenetic trees to predict PPIs 91. These methods can 

predict PPIs without the need for structural information, making them applicable to a wide range 

of proteins. Moreover, they can identify evolutionary conserved interaction patterns, providing 
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insights into which PPIs are functionally important evolutionarily 92. However, the accuracy of co-

evolutionary predictions depends on the availability and quality of multiple sequence alignment 

data. Co-evolutionary signals can also be confounded by indirect interactions or phylogenetic 

relationships 93. 

 

Structure-based prediction methods in silico use 3D protein structures to predict PPIs. 

These methods often involve docking simulations, where the physical and chemical properties of 

protein surfaces are analyzed to identify potential binding sites and interaction partners. Structure-

based methods provide detailed insights into the molecular basis of interactions, including binding 

affinities and interaction interfaces. They can also identify specific residues critical for binding, 

facilitating the design of inhibitors or modulators 94. However, high-resolution structures are 

required for accurate predictions, limiting the applicability to proteins with solved structures. 

Moreover, docking simulations can be computationally intensive and may not always accurately 

capture the dynamics of protein interactions. False positives can also occur due to the inherent 

flexibility of proteins 95. 

 

Molecular Dynamics (MD) simulations can also be used to model the physical movements 

of atoms and molecules over time, providing dynamic insights into PPIs. By simulating the 

interactions between proteins in a virtual environment, MD simulations can reveal conformational 

changes, binding kinetics, and interaction stability. MD simulations offer a detailed, atom-level 

view of PPIs, capturing dynamic processes. They can provide insights into the energetics and 

mechanisms of interactions, helping to identify key residues and binding hotspots 96. However, 

these simulations computationally demanding, requiring significant resources and time. The 
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accuracy of simulations also depends on the quality of the force fields used to model atomic 

interactions. Moreover, MD simulations are often not possible for very large protein complexes 

and not appropriate for exploring interactions over long timescales 97. 

 

2.2.6 Databases for PPI data at the species scale  

Comprehensive databases compiling protein-protein interaction (PPI) data at the species 

level, obtained via the various experimental and computation methods described above, are 

invaluable resources for PPI research, providing extensive information on experimentally 

validated and predicted interactions. These databases span various species, offering insights into 

the conserved and species-specific nature of PPIs. Here, we summarize some of the most 

prominent databases for PPI data at the species scale, highlighting their key features, strengths, 

and limitations. 

 

The Biological General Repository for Interaction Datasets (BioGRID) is a comprehensive 

resource that catalogs PPIs across multiple species, including humans, yeast, and model organisms 

12. BioGRID compiles data from high-throughput experiments and individual studies. The database 

offers a wide coverage of species and interaction types, including physical, genetic and chemical 

interactions. It is frequently updated, ensuring access to the latest data. BioGRID is user-friendly, 

allowing easy search and download of interaction datasets. However, BioGRID relies on published 

data, which may introduce publication bias. The quality and reliability of the interactions can also 

vary, necessitating careful validation by users. 
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IntAct is a curated database of PPIs, primarily focusing on experimentally validated 

interactions 13. It includes data from various species, with a strong emphasis on human interactions. 

IntAct provides detailed annotations for each interaction, including experimental conditions and 

interaction types. However, the focus on experimentally validated interactions may limit the 

number of interactions available compared to databases that include predicted data. IntAct’s 

curation process can also lead to delays in data availability. 

 

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) integrates 

known and predicted PPIs from various sources, including experimental data, computational 

prediction methods, and public text collections 98. STRING covers a wide range of species, with 

an emphasis on integrating multiple lines of evidence. The database provides a confidence score 

for each interaction, helping users assess the reliability of the data. It also integrates interactive 

network visualization tools to facilitate the exploration of complex interaction networks. However, 

predicted interactions may include false positives, especially those derived from text mining and 

computational predictions. Users, therefore, need to interpret the confidence scores carefully and 

validate key interactions experimentally. 

 

The Database of Interacting Proteins (DIP) focuses on experimentally determined PPIs, 

providing a curated dataset that includes interaction data for multiple species 99. DIP emphasizes 

the quality and reliability of the interactions, offering a valuable resource for studying conserved 

and species-specific PPIs. DIP provides high-quality, experimentally validated interactions with 

rigorous curation standards. It offers tools for visualizing and analyzing PPI networks, facilitating 

hypothesis generation and experimental design. However, DIP’s exclusive focus on 
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experimentally validated interactions may result in a smaller dataset compared to other databases 

that include predicted interactions. The update frequency may also be lower due to the curation 

process. 

 

The Molecular INTeraction database (MINT) specializes in curated PPI data from 

experimental studies, with a focus on high-quality, manually annotated interactions 100. MINT 

covers interactions from a variety of species, providing detailed information on interaction types 

and experimental methods. MINT offers detailed annotations and high-quality data, with a focus 

on experimentally validated interactions. It supports advanced search capabilities and integration 

with other PPI databases through the IMEx consortium. The focus on high-quality curation may 

limit the number of available interactions, and the update frequency may be lower compared to 

automated databases. Users may need to complement MINT data with other resources for 

comprehensive analyses. 

 

In this study, PPI data at the species level were curated from the BioGRID 12 and IntAct 13 

databases, which are currently the two most comprehensive resources for individual interactions. 

The BioGRID database contains nearly 1.49 million unique interactions derived from over 62,978 

publications 12, while IntAct includes approximately 850,000 unique interactions from more than 

23,462 publications 13. Both databases offer extensive coverage of yeast interactions, further 

supporting their selection for this work. Additionally, the pairwise overlap of yeast PPIs between 

the databases used in this study and other publicly available PPI databases is relatively high 14, 

although incorporating data from additional databases could be a promising direction for future 

research. However, it is important to note that integrating data from multiple PPI databases is not 
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a straightforward task. While many databases provide interactions in a similar format, inconsistent 

or incorrect use of controlled vocabulary is common. Moreover, different gene and protein 

identifiers are used across databases, and sometimes even within a single database 14. Finally, for 

this study, the primary limitation in PPI data was not at the species level, but rather at the molecular 

scale, as discussed in the following section. 

 

2.3 PPI data at the molecular scale  

Understanding protein-protein interactions (PPIs) at the molecular scale involves studying 

the detailed, specific molecular interactions between individual protein molecules within a cell. 

This encompasses studies of the 3D structure of interacting proteins and PPI complexes, the precise 

binding sites between individual proteins, PPI interfaces, and dynamic conformational changes 

that occur when proteins interact. This detailed, small-scale approach provides insight into the 

fundamental mechanisms of cellular functions, the structural basis of protein functions, the effects 

of mutations on interactions, and the mechanisms underlying disease states. Here, we discuss 

various methods used to collect and analyze PPI data at the molecular scale. 

 
Figure 3. Protein-protein interaction (PPI) structure. Graphical representation of the molecular 
structure of a protein-protein interaction (PPI). Two interacting protein partners are illustrated in 
blue and green respectively. The interface of contact between the two interacting protein partners 
is illustrated in red. 
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2.3.1 PPI structure data 

 Protein-protein interaction (PPI) structure data (detailed, atom-resolution, three-

dimensional descriptions of individual PPIs)  provides detailed insights into the three-dimensional 

arrangements and atomic-level features of the interaction between individual proteins. At its core, 

PPI structure data elucidates how proteins physically interact with each other to perform biological 

functions essential for cellular processes. For instance, one of the first solved structure of a protein-

protein complex, the barnase-barstar complex, revealed the precise binding interface between the 

polypeptide inhibitor barstar and its target the bacterial ribonuclease barnase 101. The analysis of 

this solved structure uncovered small structural changes that can dramatically affect interaction 

specificity and affinity between the two proteins. Since then, numerous experimental techniques 

and computational predictions have been used to obtain structural details for a wide range of PPIs 

in numerous species and are further detailed below. 

 

2.3.2 X-ray crystallography 

 X-ray crystallography is a popular method used to obtain high-resolution structural data 

for PPIs, revealing details of molecular arrangements within complex assemblies. This technique 

starts with the crystallization of purified protein complexes, where proteins are induced to form 

ordered arrays in a crystalline lattice. The crystals are then exposed to X-rays, which scatter off 

the electron clouds of atoms within the crystal. The resulting diffraction pattern are subsequently 

deciphered using mathematical algorithms to provide information about the spatial arrangement 

of atoms within the PPI and reconstruct the three-dimensional structure of the protein complex 

102,103.  
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Figure 4. X-ray crystallography. Graphical representation of the x-ray crystallography process 
used to detect obtain high-resolution structural data for protein-protein interactions. (A) Interacting 
proteins are induced to form ordered arrays in a crystalline lattice exposed to X-rays. (B) X-rays 
scatter off the electron clouds of atoms within the crystal resulting in a diffraction pattern. (C) An 
electron density map is generated from the diffraction pattern. (D) The three-dimensional structure 
of the protein complex is reconstructed. 
 

One of the major advantages of X-ray crystallography is its ability to resolve atomic-level 

details, typically achieving resolutions in the range of 1 to 3 angstroms (Å). This high level of 

resolution allows researchers to discern individual atoms, identify key binding interfaces between 

proteins, and understand the specific interactions that stabilize the complex 103. However, the 

technique requires the production of large, homogeneous protein crystals, which can be 

challenging for some protein complexes and may limit its applicability. Additionally, the 

crystallization process itself may induce artifacts or alter protein conformations, potentially 

affecting the accuracy of the structural data obtained. Moreover, X-ray crystallography is generally 

unable to capture transient or flexible interactions that do not form stable crystals, limiting its 

utility for studying dynamic PPIs 102. 

 

2.3.3 Nuclear Magnetic Resonance (NMR) spectroscopy 

Nuclear Magnetic Resonance (NMR) spectroscopy is a method used to study protein-

protein interactions (PPIs) in solution, providing valuable structural insights into their dynamic 

behavior. In NMR spectroscopy, proteins are studied in solution phase, allowing interactions to be 
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observed under near-physiological conditions. NMR detects the nuclear magnetic resonance of 

atomic nuclei in proteins, particularly hydrogen and carbon atoms, which emit signals that are 

influenced by their local chemical environment and interactions with neighboring atoms. By 

analyzing these signals, NMR can elucidate the spatial arrangement of atoms and infer the three-

dimensional structure of protein complexes 104,105. 

 

One of the major advantages of NMR spectroscopy is its ability to study protein dynamics 

and flexibility. Unlike X-ray crystallography, NMR does not require the formation of large protein 

crystals and can analyze proteins in solution, capturing transient interactions and conformational 

changes. This capability makes NMR particularly valuable for studying flexible regions within 

proteins or disordered proteins, which are challenging for other structural techniques 105. However, 

NMR spectroscopy also has limitations. It is generally less sensitive than X-ray crystallography, 

requiring higher concentrations of purified proteins and longer data acquisition times. The 

interpretation of NMR data can also be complex, necessitating sophisticated computational 

methods for structure determination and validation. Additionally, NMR is limited in the size of 

proteins that can be studied effectively, typically up to 30-40 kDa, although advancements in 

technology have extended this limit 104,105.  

 

2.3.4  Other experimental methods 

 Other experimental methods have also been successfully used to elucidate molecular 

details and three-dimensional (3D) structures of protein-protein interactions (PPIs). Each method 

has its own set of advantages and drawbacks, making them most appropriate for the study of 

different types of PPIs. 
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Cryo-Electron Microscopy (Cryo-EM) enables the visualization of large protein complexes 

at near-atomic resolution 106,107. In Cryo-EM, proteins are flash-frozen in vitreous ice to preserve 

their native structure and imaged using electron microscopy. Advanced computational algorithms 

then reconstruct 3D maps of protein complexes and can reveal detailed architectures and 

conformational changes. Cryo-EM is particularly useful for studying flexible or transient 

interactions that are challenging for X-ray crystallography and NMR. However, Cryo-EM requires 

significant expertise, specialized equipment, and computational resources for data processing and 

analysis. Moreover, PPI complexes within samples may exhibit structural variability, making it 

challenging to obtain a uniform 3D structure 107. 

 

 Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) is a method for probing 

protein-protein interactions and dynamics at the atomic level 108. In HDX-MS, proteins are exposed 

to deuterium oxide, and the exchange of hydrogen atoms with deuterium atoms in solvent-

accessible regions is monitored. By comparing the exchange rates between free and complexed 

proteins, HDX-MS can map protein interaction interfaces and identify conformational changes 

upon binding. This technique provides valuable structural information on PPIs in solution without 

the need for crystallization, making it suitable for studying transient or weak interactions as well 

as for membrane proteins and large complexes. However, HDX-MS requires complex data 

analysis and bioinformatics tools for accurate data interpretation. Moreover, while the method 

provides valuable information on PPI dynamics, HDX-MS typically offers lower spatial resolution 

109. 
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 Cross-linking Mass Spectrometry (XL-MS) uses cross-linking reagents to covalently link 

amino acid residues that are in close proximity within protein or protein complexes. Cross-linked 

peptides are then analyzed by mass spectrometry to identify and characterize the cross-linked 

residues. XL-MS data provides distance constraints between cross-linked residues, allowing 

reconstruction of protein structures and mapping of interaction interfaces in protein complexes 110. 

XL-MS is advantageous for studying large and dynamic complexes that are challenging for 

traditional structural methods. Moreover, the method identifies residues involved in interactions, 

aiding in the characterization of binding interfaces. However, interpretation of XL-MS data is 

complex and requires specialized software and expertise in bioinformatics for accurate 

interpretation. Non-specific cross-linking or background noise can also lead to false positives, 

requiring careful validation and control experiments 111. 

 

2.3.5  Computational methods 

Alongside experimental methods, computational approaches play a pivotal role in 

predicting, modeling, and analyzing protein-protein interactions (PPIs). These methods offer the 

advantage of high-throughput capabilities and can provide insights that complement experimental 

findings. Each approach has its unique strengths and challenges, contributing to a comprehensive 

understanding of PPI structural data. 

 

Molecular docking is a computational technique that predicts the preferred orientation of 

one molecule when bound to another, thereby modeling the structure of their complex. This 

method is particularly useful for identifying potential binding sites and understanding the 

specificity and affinity of interactions. It operates by simulating the physical interactions between 
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the molecules and scoring them based on predicted binding affinity. Despite being high throughput 

and cost-effective, molecular docking has limitations in accuracy due to the simplifications made 

in modeling protein flexibility and the scoring functions used. Nevertheless, it remains a powerful 

tool for preliminary screening of large libraries of molecules against target proteins 94. 

 

Molecular dynamics (MD) simulations offer another layer of detail by providing insights 

into the temporal evolution of protein structures and interactions. Unlike docking, MD simulations 

account for the dynamic nature of biomolecules, capturing their movements and conformational 

changes over time. This method involves solving Newton's equations of motion for the system, 

providing a trajectory that shows how the atoms in a protein or PPI move. MD simulations can 

reveal detailed information about the stability of protein complexes, the pathways of molecular 

interactions, and the effects of mutations on protein function. However, these simulations are 

computationally intensive and often limited by the timescales they can realistically cover 96. 

 

Bioinformatics approaches leverage computational algorithms to predict and analyze PPIs 

based on existing sequence and structural data. These methods include co-evolution analysis, a 

technique which examines correlated mutations across protein sequences to infer interaction 

interfaces. The underlying principle is that interacting proteins evolve together, with mutations in 

one protein often compensated by mutations in its interacting partner to maintain the interaction. 

This analysis can reveal which residues are likely to be in contact in a PPI, providing clues about 

the structure of the protein complex 92. However, the accuracy of co-evolutionary predictions 

depends on the availability and quality of multiple sequence alignment data. Co-evolutionary 

signals can also be confounded by indirect interactions or phylogenetic relationships 93. 
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Another approach involves using machine learning algorithms to predict the structural 

details of PPIs. These algorithms are trained on datasets of known protein complexes, learning to 

recognize features indicative of interaction interfaces. Features can include sequence motifs, 

physicochemical properties, and evolutionary conservation. Once trained, these models can predict 

the interaction surfaces of novel protein pairs. For instance, Wang et al. (2017) developed a deep 

learning framework that combines sequence and structural data to accurately predict protein 

interaction interfaces, demonstrating the potential of machine learning in structural PPI prediction 

112 . However, these methods are still relatively new and require extensive testing and experimental 

validation. 

 

Finally, homology modeling is a key bioinformatics tool for predicting the structure of 

protein-protein interactions. This method uses known structures of homologous proteins and PPIs 

as templates to model the structure of a protein complex without a solved structure. By aligning 

the sequences of the target proteins with those of known complexes, structural models for the PPI 

without a solved structure can be built 113. Using homology modeling, researchers have been able 

to generate accurate models of protein complexes, providing insights into their functional 

mechanisms 114. However, the accuracy of homology models is highly dependent on the 

availability of suitable templates. For proteins with low sequence similarity to known structures, 

the models may be unreliable. 

 

2.3.6 Databases for PPI data at the molecular scale 

 Databases compiling large amounts of protein-protein interaction (PPI) data at the 

molecular level, obtained using the various experimental and computation methods described 
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above are valuable resources for PPI research, providing detailed, high-resolution data on the 

structure of PPIs, PPI interfaces, and structural dynamics at play in various interactions. Several 

key databases offer comprehensive structural information for a large number of  protein complexes 

in a wide range of species, each with unique strengths and limitations. 

 

The Protein Data Bank (PDB) is the most established repository for three-dimensional 

structural data of biomolecules, including protein complexes 15. The PDB provides high-resolution 

structures obtained through methods like X-ray crystallography, NMR spectroscopy, and Cryo-

EM. Over 25,000 structures of complexes containing more than one protein are currently available 

on the PDB. This extensive database offers detailed atomic coordinates, allowing researchers to 

visualize and analyze the interaction interfaces at a very high resolution. The major advantage of 

PDB is its comprehensive collection of high-quality, experimentally determined structures. 

However, its limitation lies in the static nature of the structures, which do not capture the dynamic 

aspects of protein interactions. Additionally, the PDB's coverage is limited to proteins and 

complexes that have been successfully crystallized or otherwise structurally resolved, leaving a 

gap for many transient and flexible interactions. 

 

Databases like Interactome3D offer a more specialized resource by integrating structural 

details into interaction networks 115. Interactome3D combines species-level interactome data with 

three-dimensional structural information, derived from PDB and other sources. It annotates 

interaction interfaces and provides models for complexes where experimental structures are not 

available. This combination of data allows researchers to not only confirm whether proteins 

interact but also to understand the structural context of these interactions. A significant advantage 
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of Interactome3D is its ability to provide structural models for interactions, thus filling gaps where 

direct experimental data may be lacking. However, its reliance on existing structural data can be a 

limitation, as not all protein interactions have corresponding structural information available. 

 

Databases of experimentally determined thermodynamic data for PPI complexes are also 

valuable resources to the study of PPI data at the molecular scale 116. These include the Protein–

protein Interactions Thermodynamic Database (PINT), which records thermodynamic data on 

PPIs along with experimental conditions, sequence, structure and literature information 117. The 

Protein–Protein Interaction Affinity Database also contains information on the binding affinity of 

complexes along with the structures of free proteins and complex 118. The PDBbind database 119 

and Structural database of Kinetics and Energetics of Mutant Protein Interactions (SKEMPI) 120 

databases also record experimental binding affinity measures and thermodynamic data for protein 

complexes with known structure. These databases are particularly useful for researchers interested 

in the quantitative aspects of protein interactions. However, their scopes are limited by the 

availability of detailed binding affinity data, which can be challenging to obtain for all interactions. 

 

The Database of Interacting Protein Structures (DIPS) provides detailed structural 

information about protein-protein interfaces 121. It includes not only experimentally determined 

structures but also homology-modeled interactions, offering a broader coverage of the interactome. 

DIPS allows researchers to explore the geometric and physicochemical properties of interaction 

interfaces, facilitating studies on interface evolution, binding specificity, and the effects of 

mutations. A significant advantage of DIPS is its inclusion of modeled structures, which extends 

its applicability beyond experimentally resolved complexes. However, the accuracy of these 
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modeled structures can vary, depending on the quality of the template and the modeling techniques 

used.  

 

In this study, PPI data at the molecular level were curated from the Protein Data Bank 

(PDB) 15, which is the most established and widely recognized repository for three-dimensional 

structural data of protein complexes.  

 

2.4 Species of interest 

 With the large amount of protein-protein interaction (PPI) data available, both at the 

species scale and the molecular scale, we elected to focus our analysis on yeasts, the only group 

of species with two high-quality interactomes currently available 10,11. More specifically we 

elected to study these two yeast species with available interactomes: baker’s yeast, Saccharomyces 

cerevisiae (S. cerevisiae) and fission yeast, Schizosaccharomyces pombe (S. pombe). The large 

amounts of high-quality data in both species allows us to study the evolution of PPIs, and compare 

PPIs between both yeast species, a feat that is essential to try and uncover the evolutionary design 

principles behind variations in PPIs, both within and between species.  

 

2.4.1  Baker’s yeast  

 Saccharomyces cerevisiae (S. cerevisiae), commonly known as baker's yeast, is one of the 

most extensively studied eukaryotic model organisms. Its significance in biological research stems 

from its relatively simple eukaryotic structure, ease of genetic manipulation, and rapid growth rate. 

These attributes make S. cerevisiae an invaluable tool for investigating fundamental biological 

processes such as DNA replication, transcription, translation, and cell cycle regulation 122. The 
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fully sequenced genome of S. cerevisiae and the availability of comprehensive genetic and 

genomic resources further enhance its utility in research 123. S. cerevisiae can serve as a model for 

understanding various eukaryotic processes, including human diseases. Many human genes and 

their corresponding pathways have functional homologs in baker’s yeast, enabling the study of 

proteins and their interactions in a simpler context 124. For instance, S. cerevisiae has been crucial 

in elucidating the regulation mechanisms of the eukaryotic cell cycle, including the identification 

of cyclins and cyclin-dependent kinases which are conserved across eukaryotes 125,126. Research in 

baker’s yeast also uncovered key components of various signaling pathways, such as the 

MAPK/ERK pathway, which is critical for cell growth and differentiation 127.	Moreover, studies 

in S. cerevisiae have led to a deeper understanding of homologous recombination and DNA repair 

processes, with significant implications for cancer research 128,129. Additionally, S. cerevisiae has 

provided insights into chromatin remodeling, histone modifications, and gene silencing 

mechanisms 130. Baker’s yeast has also been pivotal in studying protein folding and degradation 

including the ubiquitin-proteasome system and chaperone-mediated protein folding, processes 

essential for cellular homeostasis 131,132. 

 

 In the context of the study of protein-protein interactions (PPIs), S. cerevisiae is commonly 

used as a model organism for a wide range of applications. Signal transduction pathways are 

crucial for cells to respond to their environment, and the study of these pathways in S. cerevisiae 

has greatly furthered our understanding of how signals are transmitted and regulated by PPIs. For 

instance, the high-osmolarity glycerol (HOG) pathway in baker’s yeast, which responds to osmotic 

stress, involves a series of PPIs that activate the Hog1 MAPK, which in turn regulates gene 

expression to adapt to high osmolarity conditions 133. Studies of the HOG pathway have provided 
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insights into osmoregulation mechanisms that are applicable to higher eukaryotes. The regulation 

of the cell cycle in S. cerevisiae has also been pivotal in understanding cell division processes in 

eukaryotes. For example, studies of the binding of the cyclin Cln2 to the CDK Cdc28, an 

interaction that is essential for the transition from the G1 to the S phase in yeast, helped elucidate 

how similar interactions regulate the cell cycle in higher eukaryotes 134. Baker’s yeast research has 

also highlighted the role of checkpoint proteins that monitor DNA integrity and ensure that 

damaged DNA is repaired before cell cycle progression continues. The S. cerevisiae Rad9 protein, 

for example, interacts with other proteins to halt the cell cycle in response to DNA damage, a 

mechanism that is conserved in humans 135. Moreover, high-throughput PPI studies in baker’s 

yeast have greatly enhanced the functional annotation of a wide range of proteins. Comprehensive 

interactome mapping projects, such as the yeast two-hybrid screens conducted by Gavin et al. 

(2002) or Yu et al. (2008), have identified thousands of PPIs in yeast 10,71. These large-scale studies 

have not only provided a detailed map of protein interactions but also facilitated the prediction of 

protein functions based on their interaction partners. Moreover, functional genomics in baker’s 

yeast has been applied to study human disease genes. For instance, the yeast ortholog of the human 

PARK9 gene, implicated in Parkinson's disease, interacts with several proteins involved in metal 

ion homeostasis. Studying these interactions in yeast has helped elucidate the molecular 

mechanisms underlying Parkinson's disease 136. 

 

2.4.2 Fission yeast 

 Schizosaccharomyces pombe (S. pombe), or fission yeast, has emerged as a powerful model 

organism in biological research more recently. Similarly to S. cerevisiae, S. pombe offers 

advantages such as a well-characterized genome, ease of genetic manipulation, and conserved 
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cellular machinery, making it invaluable for investigating cellular processes like DNA replication, 

transcription, translation, and cell cycle regulation 137,138. Research into these processed uncovered 

some of their key components, providing insights that are applicable to higher eukaryotes, 

including humans. For instance, research in S. pombe helped elucidate crucial aspects of cell cycle 

control in eukaryotes. The identification of core regulators like cyclins and cyclin-dependent 

kinases (CDKs), which govern progression through cell cycle phases in the species, has been 

pivotal 139,140. Studies on DNA damage response pathways, mediated by proteins like Rad3 and 

Chk1, have highlighted mechanisms of genome stability maintenance conserved across eukaryotes 

141,142. Additionally, S. pombe has contributed significantly to our understanding of chromosome 

structure and dynamics, including telomere maintenance and centromere function, processes 

critical for genome stability 143,144. Studies in S. pombe have also elucidated the components and 

mechanisms of the RNA interference (RNAi) pathway, which regulates gene expression through 

small RNA molecules. This pathway is conserved across eukaryotes and plays essential roles in 

gene silencing and genome stability, contributing to our understanding of epigenetic regulation 

and RNAi-based therapeutic approaches 145. 

 

 In the context of the study of PPIs, S. pombe serves as an excellent model organism for 

studying signal transduction pathways and regulatory networks. For instance, studies of the Target 

of Rapamycin pathway, a pathway that regulates growth and metabolism in response to nutrient 

availability, in fission yeast have advanced our knowledge of how nutrient signaling pathways 

integrate with PPI networks to regulate cellular responses in higher eukaryotes 146. Research on 

the components of the spindle pole body in S. pombe also helped further our understanding of how 

protein interactions govern mitotic processes including spindle formation and chromosome 
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segregation, crucial events for proper cell division 147. Moreover, studies in S. pombe have 

provided foundational knowledge about mechanisms that regulate telomere length and function 

across species, informing our understanding of telomere maintenance mechanisms relevant to 

human aging and cancer 148,149. 

 

2.4.3 Comparison of the two model organisms 

 Saccharomyces cerevisiae (S. cerevisiae) and Schizosaccharomyces pombe (S. pombe) are 

prominent model organisms in biological research, each offering distinct advantages rooted in their 

evolutionary history and genetic characteristics. S. cerevisiae and S. pombe belong to different 

fungal clades and diverged from a common ancestor approximately 500 million years ago 142,150. 

Their genomes have since undergone significant changes, including gene duplications, deletions, 

and rearrangements 151. In particular, S. cerevisiae has undergone a whole genome duplication 

during its evolutionary history, and only a small fraction of the genes was subsequently retained 

in duplicates while most were deleted. Gene order was then rearranged by many reciprocal 

translocations between chromosomes 152. In contrast, comparisons of chromosomal sequences and 

searches for conserved gene did not reveal evidence for large-scale genome duplications in S. 

pombe 137. 

 

 S. cerevisiae is known for its ease of genetic manipulation, the species exhibits haploid and 

diploid phases, facilitating genetic screens, knockout studies, and high-throughput assays. Its rapid 

growth and ability to ferment sugars make it valuable for industrial applications and metabolic 

engineering 153. While also genetically tractable, S. pombe offers a different set of experimental 

advantages. The two yeasts show major differences in cell cycles, therefore, the study and 
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identification of similarities in underlying control mechanisms have major implications for other 

eukaryotes such as humans 154,155. While S. cerevisiae and S. pombe share conserved pathways, 

there are notable differences in response mechanisms to DNA damage and oxidative stress 

between the two species, reflecting divergent evolutionary adaptations 11. Moreover, S. pombe is 

an important model organism for studying fundamental biological processes such as RNA splicing, 

cell-cycle regulation, RNAi, and centromeric maintenance, which are conserved in metazoans but 

divergent in budding yeast 11,137. For instance, research on RNAi and epigenetic in S. pombe has 

not only contributed to our understanding of its mechanisms and consequences but also helps to 

explain biological differences between fission and budding yeasts 155. The regulation of 

centromeric silencing also is a well-conserved process in S. pombe and metazoans but is divergent 

in S. cerevisiae 156. Research on centromeric silencing in fission yeast, therefore, helped uncover 

some of the key components of the RNA-induced transcriptional silencing complex 11.  

 

In the context of the study of PPIs, it is estimated that only ~40% of S. pombe interactions 

are conserved in S. cerevisiae, while ~65% of S. pombe interactions are conserved in human 11. 

This is despite the two yeasts species sharing a greater fraction of protein-coding genes than either 

yeast does with human. This suggests that a large fraction of interactions is conserved between 

human and S. pombe but have been lost specifically in the S. cerevisiae lineage. In particular, PPIs 

involved in biological processes such as chromosomal organization, chromosome segregation, and 

cell cycle are far better conserved between S. pombe and human than in S. cerevisiae, and 

accordingly S. pombe has been used as a model organism for studying these processes 137. This is 

highly relevant to the use of both S. cerevisiae and S. pombe as model organisms, as they appear 

to be complementary, with some biological functions that can be better studied using fission yeast 
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and reciprocally. Initial comparisons of PPIs between S. cerevisiae and S. pombe also found 

evidence of co-evolution in a large fractions of interactions that are preserved between the two 

yeasts, with major implications for studies reliant on the expression of human proteins in model 

organisms to identify functional mechanisms 11.  

 

Overall, S. cerevisiae and S. pombe complement each other as model organisms, each 

offering unique strengths rooted in their evolutionary history and genetic characteristics. Their 

distinct genomic structures, evolutionary divergence, and experimental advantages make them 

indispensable tools for studying a wide range of biological processes and disease mechanisms. 

Moreover, the large amounts of PPI data available at the species scale and the molecular scale, in 

both species allows us to compare PPIs, both within and between the two yeasts and study the 

evolution of PPIs, a feat that is essential to try and uncover the evolutionary design principles 

behind variations in PPIs, both within and between species.  

 

2.5 Structure-evolution relationship within a species 

 Protein evolution refers to the process by which protein sequences change over time 

through genetic mutations, leading to the development of new protein functions. Understanding 

the nature of constraints on protein evolution has long been the focus of much scientific interest. 

In particular, the three-dimensional structure of a protein is known to play an important role in 

constraining protein evolution, with different sites, even within the same protein often having very 

different evolutionary rates 157–159. Studying the relationship between protein structure and protein 

evolution has, therefore, been a fundamental aspect of molecular biology, with profound 

implications for understanding cellular functions and the mechanisms underlying various 
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biological processes 160. However, as previously discussed, proteins do not act in isolation in cells, 

but rather act via protein-protein interactions (PPIs). Yet very little is known about how PPI 

structure can shape evolutionary dynamics and influence the evolution of single proteins, PPIs, 

and PPI interfaces. With the available data on PPIs described above for yeast, we can now study 

structural constraints on PPI evolution, and thus better understand the evolutionary design 

principles behind variations in PPIs within a species. Moreover, such knowledge on natural, 

evolutionary, variations in PPIs within a species is crucial when investigating dysregulation or 

disruption of PPIs associated with disease, as well as provides insights to the fields of synthetic 

biology, and genome engineering 7,8. Here, we, therefore, first describe current methods to estimate 

evolutionary rates for individual residue sites within a protein. We then discuss molecular traits 

and structural properties known to influence residue evolutionary rates in the single protein 

literature. Finally, we review previous works investigating the structure-evolution relationship of 

PPIs more specifically. 

 

2.5.1  Site-specific evolutionary rates  

 Evolutionary rates (the speed at which genetic or protein changes accumulate in a species 

over time) are known to vary widely between proteins. Genes encoding highly expressed proteins, 

proteins that carry out crucial functions, or proteins that interact with many partner proteins tend 

to be more conserved (i.e. evolve more slowly) 161–163. For instance, in the genome of the model 

organism Saccharomyces cerevisiae (baker’s yeast), evolutionary rates among the roughly 6,000 

genes are spread out over three orders of magnitude 164. However, in addition to this gene-wide 

variation, and perhaps more interestingly, evolutionary rates can vary significantly among 

different residue sites, even within the same protein. For example, sites in the core of most proteins 
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or regions involved in enzymatic activity typically evolve more slowly than other sites 159. 

Moreover, sites associated with ligand binding activity are also known to be more evolutionarily 

conserved 165.  

 

Estimating site-specific evolutionary rates is a non-trivial task and, thus, various methods 

have been proposed for this inference in the literature 163,166,167. However, broadly 

speaking,  methods to estimate site-specific evolutionary rates compute rates of substitution at each 

individual site in a protein using two pieces of data: a multiple sequence alignment and a 

corresponding phylogeny. The two primary approaches for this estimation differ in the multiple 

sequence alignment data used: codon data, or amino acid data. 

 

 

Figure 5. Site specific evolutionary rate calculation. Graphical representation of the general 
principle behind site specific evolutionary rate calculations. The protein of interest to the 
calculation is illustrated in blue along with its interaction partner differentiated with a dashed 
outline. The protein site of interest to the calculation is represented in red. 
 

In the context of protein-coding sequences, evolutionary rates are typically estimated from 

codon data by calculating the ratio ω = dN/dS, where dN is the evolutionary rate of non-

synonymous substitutions (the rate at which non-synonymous substitution mutations are fixed per 

unit of evolutionary time) and dS, is the evolutionary rate of synonymous substitutions (the rate at 
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which synonymous substitution mutations are fixed per unit of evolutionary time). To make 

dN and dS directly comparable, they are typically normalized to account for the higher likelihood 

that a random mutation is non-synonymous rather than synonymous 166. Older dN/dS inference 

methods calculate dN/dS simply by counting the observed changes either between pairs of 

sequences or along a phylogenetic tree 168,169. Most current inference approaches expand on this 

idea by using a Markov model of sequence evolution to infer evolutionary rate parameters, 

typically in a maximum-likelihood framework 170. For instance, tools like the PAML (Phylogenetic 

Analysis by Maximum Likelihood) software use codon substitution models that incorporate factors 

such as transition/transversion rate bias and codon frequency to estimate dN and dS rates 171. 

PAML then computes the likelihood of the observed codon sequence data given a phylogenetic 

tree and estimates the site-specific dN/dS ratios by maximizing this likelihood. The dN/dS ratios 

obtained provide insights into the selective pressures acting on individual codons. A dN/dS ratio 

less than 1 indicates purifying selection, where non-synonymous mutations are deleterious and 

thus selected against. A ratio greater than 1 suggests positive selection, where non-synonymous 

mutations are advantageous and spread throughout the population.  

 

The primary approach for inferring rates from amino acid data is implemented in 

the Rate4Site algorithm 172. The rate4site algorithm works by first constructing a multiple 

sequence alignment of homologous proteins and a corresponding phylogenetic tree. It then 

calculates the likelihood of the data under different models of rate variation among sites, assigning 

a per-site rate-scaling factor that indicates how rapidly each residue evolves relative to the average 

evolutionary rate for the full protein. Rate4site is implemented using a Bayesian framework with 

a random-effects approach, assuming that evolutionary rate at each site follows a gamma 



 

 68 

distribution while allowing for variability in rates across sites 173. The relative rates are then 

normalized such that the average rate across all sites is 1, with lower rates indicating higher 

evolutionary conservation and higher rates indicating more variable positions 172. Tools like 

ConSurf further extend this approach by mapping these rates onto the protein’s three-dimensional 

structure, facilitating the identification of functional sites, such as active sites or binding interfaces, 

that are evolutionarily conserved 174. Finally, the ConSurf-DB database includes pre-calculated 

estimates of the evolutionary rates for a large number of proteins of known structure obtained 

using the Rate4Site algorithm 175. 

 

Overall, the estimation of site-specific evolutionary rates is a powerful tool for 

understanding the selective pressures and evolutionary dynamics that shape protein sequences. By 

analyzing either codon or amino acid data, researchers can identify conserved and variable regions, 

shedding light on the structural and functional importance of different residues. Moreover, 

conclusions obtained using the two different techniques discussed here are typically correlated 176. 

These insights are crucial for advancing our knowledge of protein evolution, with implications for 

drug design, synthetic biology, and understanding the molecular basis of diseases. As 

computational methods continue to evolve, they will help provide more precise and detailed 

pictures of how proteins adapt and function over evolutionary time. 

 

2.5.2  Structural constraints on evolutionary rates  

Variations in evolutionary rates among different protein sites measured and discussed 

above, are driven, to a large extent, by the requirement that proteins fold properly and stably into 

their required, active conformation, enabling them to interact with protein partners and perform 



 

 69 

important cellular roles. Purifying selection, therefore, ensures that sites at which mutations would 

disrupt folding, stability or interaction are the most conserved. Understanding  the precise nature 

of these constraints and selective forces on sequence evolution has, therefore, long been the focus 

of much scientific interest 164,167,177. 

 

Amongst all possible constraints on protein evolution, constraints imposed by three-

dimensional (3D) structure are of particular interest, as they connect protein evolution with 

fundamental biophysical principles 157,160. Moreover, features directly connected to protein 

structure have previously been estimated to explain roughly 10% of the variation in protein 

evolutionary rate 178. The highest possible resolution for investigating this structure-evolution 

relationship is to correlate structural properties of the micro-environment surrounding individual 

residues with site-specific residue evolutionary rates in order to identify factors influencing 

evolution at this most basic level of fixation and elimination of single amino acid residue 

mutations. These forces are interesting in their own right, and their summed effects on protein 

evolutionary rates contribute to our understanding of system-level evolutionary phenomena.  

 

One of the oldest observations linking protein structure to evolution involved the influence 

of solvent exposure or burial on residue mutations. The homologous proteins hemoglobin and 

myoglobin were observed to differ far more dramatically on their solvent-exposed surfaces, than 

in their cores that are largely buried from solvent 179. Since this initial observation solvent 

accessibility (accessible surface area (ASA), or solvent accessible surface area (SASA)), the 

surface area of a given residue that is accessible to the external environment, has become a well-

known structural correlate of molecular evolution. ASA and SASA values are commonly 
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normalized by the largest possible solvent accessibility for a given amino acid type, resulting in 

relative solvent accessibility (RSA), a relative measure ranging from 0 for completely buried 

residues to 1 for completely exposed residues 180. Numerous works have studied the relationship 

between RSA and residue evolutionary rates using large sequence and structure datasets, and 

universally support the notion that buried residues (for instance residues buried in a protein’s core) 

are under tighter constraint, and therefore evolve more slowly 160,181–186. Moreover, several studies 

established RSA as the dominant structural constraint on residue evolutionary rate. For example, 

when investigating the evolutionary rates of residues in several different types of secondary 

structures including helices, sheets and coils, exposed sites were found to evolve more rapidly than 

buried ones, regardless of secondary structure 182. Other works modeling selective constraints for 

site-specific evolutionary rate predictions found that properties such as secondary structure and H-

bonding information 187, or amino acid hydrophobicity and size 188 had little influence on site rates 

beyond the strong effect of RSA. Finally, more recent works established that the relationship 

between solvent exposure and selective constraint is strong, positive, and linear across its 

parameter range 160,189,190. 

 

Although solvent exposure gets the most attention as a structural driving force in protein 

evolution, it is not the only property to be studied in this context. In recent years packing density, 

or the degree to which residues are surrounded by other atoms, has been investigated as a structural 

correlate for residue evolutionary rate. Similarly to how the extent to which a given residue comes 

into contact with solvent can be quantified using RSA, we can quantify the extent to which a given 

residue comes into contact with other residues in a protein. This idea, known as packing density 

or contact density, represents how densely packed a residue is within a protein structure. Two 
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measures are most commonly used to estimate packing density for a given residue: the contact 

number (CN) and the weighted contact number (WCN). For a given amino acid residue, CN simply 

counts the number of other residues within a local, structural neighbourhood. WCN instead 

considers all residues in a proteins and weighs them by the square of their inverse distance to the 

amino acid of interest to the calculation 191,192. Previous works found a small but significant 

correlation between CN and site-specific evolutionary rates after controlling for RSA, establishing 

that CN influences evolutionary rates independently of RSA 160. Additional studies using WCN 

instead of CN to estimate packing density found much stronger correlations with evolutionary rates 

191,193. Whether solvent accessibility or packing density is a more dominant determinant of site-

specific evolutionary rates remains highly debated in the literature, as both their relative 

performance, and the overall performance of either predictor can vary widely between different 

protein structures 166. 

 

The type of secondary structure in which a residue is located can also significantly 

influence its evolutionary rate. For instance, work on mammalian proteins showed that residues in 

helices and strands evolve more slowly than those in the less ordered loops and turns 184. Increased 

conservation is also observed in immunoglobulin domains, where maintaining the hydrogen-

bonding network is crucial for the structural integrity and proper function of the protein 194. Other 

works investigating the occurrence of different structure elements in conserved sequence regions 

found that stands are often located in highly conserved regions of proteins, highlighting that these 

structural elements could be crucial to a protein's overall architecture and function, and resulting 

in lower evolutionary rates for residues within these regions 195. In contrast, residues in loop 

regions tend to evolve more rapidly. Loops often connect secondary structural elements and are 
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not directly involved in maintaining the core structure of the protein. This flexibility allows for 

greater sequence variability, as seen in surface loops of enzymes that can tolerate changes without 

significantly affecting the overall protein function. The variability of loops can be crucial for 

adapting to new functions or interactions, illustrating a balance between structural conservation 

and evolutionary adaptability 196. Moreover, disordered regions of proteins are generally known to 

evolve more rapidly than their ordered counterparts 197. 

 

Finally, properties related to the dynamics and flexibility of a protein are also thought to 

influence site-specific evolutionary rates. Proteins are not static structures, but instead undergo 

constant conformational changes that are often critical to protein function. For instance, enzymes 

undergo conformational shifts to expose active sites for substrate binding. As such sites in highly 

flexible regions of proteins can be more tolerant to mutations than sites in less flexible regions 

198,199. The overall flexibility of a site can be estimated using measures such as mean square 

fluctuations or B-factors, both measures of the extent to which a given residue changes its position 

over time. Several works have found correlations between these measures of local flexibility and 

site-specific evolutionary rates, where rigid sites are more conserved and evolve more slowly than 

flexible sites 198,200. However, whether flexibility is a structural determinant of residue 

evolutionary rates in its own right or correlates with evolutionary rates simply because it is also 

correlated with other structural determinants such as RSA  or packing density remains debated.  

 

Overall, understanding the relationship between protein structure and evolution provides 

crucial insights into the fundamental mechanisms of biological function and adaptation. Current 

literature highlights that structural properties play a significant role in determining the evolutionary 
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rates of residues in single proteins. However, proteins rarely act alone in cells, and instead tend to 

be involved in protein-protein interactions (PPIs). Yet very little is known about how PPI structure 

can shape evolutionary dynamics and influence the evolution of single proteins, PPIs, and PPI 

interfaces. Studying structural constraints on PPI evolution, could, therefore, help us better 

understand the evolutionary design principles behind variations in PPIs within a species, or 

enhances our ability to predict and manipulate PPIs, with implications for drug design, synthetic 

biology, and understanding the molecular basis of diseases. Continued research in this field 

promises to uncover further intricacies of the structure-evolution relationship, advancing our 

knowledge of protein and PPI and evolution. 

 

2.5.3 Review of work in PPIs 

 In more recent years, studies of the relationship between structure and evolution have 

begun to shift from simply considering single proteins in isolation, to taking protein-protein 

interactions (PPIs) into account. Some proteins in cells are never found as free-floating stable 

monomers in vivo, and instead form obligate PPI complexes 20. Considering the structure of the 

entire PPI, rather than single protein structures when studying evolution for proteins involved in 

such obligate PPIs could, therefore, be crucial. Moreover,  even if involved in stable (although not 

obligate) complexes, or more transient complexes, most proteins in cells perform crucial functions 

via interactions with partner proteins. As new tools become available and become more sensitive, 

a shift in protein studies, from the single structure level to the PPI level is, therefore, underway, 

bringing the science of proteins from the primary, secondary and tertiary structural level to the 

quaternary level 201. 
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 One of the key structural properties studied in the context of PPIs, is the region of contact 

between interacting partners, also referred to as the interface. The interface is a key PPI feature, 

both structurally and functionally,  as mutations to interfacial residues can lead to altered protein-

protein binding affinities and improper PPI function, which can have implications for organismal 

fitness, and health 176,202. Interfacial residues are considered exposed surface residues in most 

structure-based studies that treat the two protein partners of a PPI as free-floating. However, the 

structure of the micro-environment surrounding interfacial residues can be drastically altered upon 

formation of a PPI complex, when they become buried in the interface of contact between protein 

partners. Previous works uncovered that interfacial residues tend to be more evolutionarily 

conserved than non-interfacial residues, establishing the critical role that they play in mediating 

the interactions between protein partners and ensuring proper PPI formation and function 203–206. 

Additional works studying evolutionary rates for interfacial residues in transient and obligate PPIs 

found that residues at the interfaces of obligate complexes evolve more slowly than those in 

transient complexes, highlighting the importance of interface conservation for stable protein 

complexes 207. 

 

Solvent accessibility, a known correlate of evolutionary rates for single proteins, is another 

crucial factor influencing evolutionary rates of residues in PPIs. Generally, buried residues, which 

are less exposed to  solvent, evolve more slowly than exposed residues in single proteins. This 

trend is also observed in protein interfaces, where buried interfacial residues show higher 

conservation than solvent-exposed interfacial residues. For instance, studies of six homodimers 

families uncovered that interface residues, particularly those completely buried in the interface, 

were more conserved than other surface-exposed residues, suggesting that the structural and 
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functional integrity of the interface is maintained by conserving buried residues 203. Moreover, 

sub-divining interfaces into different regions, including a core, a rim, and support regions based 

on solvent accessibility, helped uncover that core residues are typically more evolutionarily 

conserved than other interfacial residues 208,209. Finally, interface involvement, the change in 

solvent accessibility of a residue upon complex formation (as its parent protein transitions from a 

free-floating to a co-complexed state), was also found to independently constrain residue 

evolutionary rates in yeast: if two residues are similarly buried from a solvent accessibility 

standpoint, but one resides in a protein–protein interface, then it will evolve much more slowly 160. 

 

Binding energy, which quantifies the strength of interaction between proteins, can also 

plays a significant role in the evolution of PPIs. Residues that contribute significantly to binding 

energy, often referred to as "hot spots" are typically highly conserved. This conservation is likely 

due to the crucial role these residues play in maintaining high-affinity interactions necessary for 

the stability and functionality of protein complexes 210. Hot spot residues often form hydrogen 

bonds, salt bridges, and hydrophobic contacts that are essential for binding. The evolutionary 

pressure to maintain these interactions results in lower substitution rates for these residues, as even 

minor changes can drastically affect the binding affinity and, consequently, the biological function 

of the complex 211. 

 

 Overall, insight from the study of PPIs have been valuable in improving our understanding 

of the structure-evolution relationship, uncovering various structural properties, including 

interface location, solvent accessibility, and binding energy that influence residue evolutionary 

rates. Understanding these relationships is crucial for unraveling the molecular mechanisms of 
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protein interactions and provides insights into the evolutionary pressures that shape the PPI 

landscape. However, the works discussed here typically only consider a single structural constraint 

on the evolution of interfacial residue at a time. Moreover, these previous studies typically rely 

upon coarse distinctions between “interfacial” and “non-interfacial”, or “core” and “rim” residues. 

Consequently, our knowledge of any continuous structure-based evolutionary constraints on PPI 

and interfacial residues remains limited at the proteome scale. A systematic comparison, 

integrating a comprehensive list of different structural features in terms of their impact on residue 

conservation therefore remains needed in order to settle long-standing debates over which 

structural features are most important at constraining residue evolution in PPIs and PPI interfaces. 

Addressing this blind spot in current literature by systematically studying and comparing structural 

determinants that influence the evolutionary rates of residues in protein-protein interactions in 

yeasts is, therefore, the focus of Chapter 3. This investigation into the evolution of PPIs helps 

uncover some of the evolutionary design principles behind variations in PPIs within a species. 

 

2.6 Evolution of PPI network rewiring between species 

 As discussed in previous sections, the wealth of newly available data on protein-protein 

interaction (PPI), including species-level interactome maps of all interacting proteins in a given 

species, and molecular-level detailed structural data on individual PPIs allows us to better study 

variations in PPIs within a species. Findings from these types of analyses have given us critical 

insights into the structural properties and evolutionary constraints that shape interactions between 

proteins within a species. However, this large amount of PPI data can also be used to examine 

variations in PPIs (or PPI rewiring) between species, an investigation that is essential to fully 

understand PPIs and PPI evolution. Indeed, PPIs can be drastically different even between closely 



 

 77 

related species, reflecting significant lineage-specific and species-specific changes in molecular 

processes during evolution. Comparative analyses of PPIs across different species are, therefore, 

crucial to uncover how PPI networks evolve and rewire over time, to better understand the 

molecular mechanisms driving these changes, and to study implications of PPI rewiring for cellular 

function and adaptation. Moreover, such knowledge on natural, evolutionary, variations in PPIs 

between species is key when investigating dysregulation or disruption of PPIs associated with 

disease, as well as provides insights to the fields of synthetic biology, and genome engineering 7,8. 

Here, we, therefore, first describe the general principles governing the evolution of PPI networks 

(interactomes). We then discuss previous comparative analyses of interactomes across different 

species, summarizing the key findings and conclusions drawn from these studies. Finally, we 

review previous works investigating the molecular evolutionary mechanisms underlying PPI 

rewiring across species.  

 

2.6.1 Evolution of PPI networks 

 Once a large number of protein-protein interactions (PPIs) have been studied in a given 

species, a protein-protein interaction network (or interactome) can be constructed. These 

interactomes are comprehensive maps of all physical binary interactions between proteins detected 

thus far in a given organism, representing the intricate web of molecular interactions between 

various proteins crucial for cellular processes. Over time, interactomes can evolve and change, 

either via protein sequence evolution while interactions are maintained, via gain or loss of genes 

and proteins, or via gain or loss of interactions while proteins are maintained. These different 

mechanisms can lead to extensive rewiring in interactomes between different species.  
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 One mechanism by which interactomes evolve is by accruing changes and mutations in 

protein sequences over time while maintaining PPIs. In order to maintain interactions despite 

sequence changes, protein sites that are particularly important to PPIs are often under increased 

evolutionary pressures. For instance, PPI interfaces tend to be highly conserved and under strong 

purifying selection, while mutations occurring outside of the interaction interface, can often be 

neutral with respect to the interaction 160,162,205. In some cases, a mutation in one protein can also 

be compensated by a nearby mutation in the binding partner, maintaining the interaction through 

a co-evolutionary process 212,213. For instance, ~33% of PPIs that are preserved  between S. 

cerevisiae and S. pombe (i.e. both species have a corresponding, homologous PPI) show evidence 

of co-evolution 11. This fraction could, however, be much smaller for more closely related species 

214. 

 

 Interactome evolution can also be driven the gain or loss of protein-coding genes. In 

eukaryotes, new genes are most often introduced by either small-scale duplication or whole-

genome duplication events which produces a pair of paralogous genes. The resulting paralogous 

protein pairs initially share the same PPIs, but can subsequently undergo sub-functionalization, a 

process by which each daughter protein maintains only a subset of the interactions of the parent 

protein 215. Duplicate proteins can also gain new interactions and acquire new functions in a 

process called neo-functionalization 216. In addition to gene duplication, new genes can also be 

introduced by horizontal gene transfer 217 and de novo gene birth 218. New proteins introduced in 

such a manner are initially subject to tight regulation and gradually integrated into PPI networks 

by forming new interactions 219. 
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 Finally, interactions can be lost, gained, or rewired while the proteins themselves are 

maintained. For instance, it is estimated that only ~50% of interactions are preserved between 

proteins that have homologs in both S. cerevisiae and S. pombe 11. This means that even if a pair 

of proteins in one species has a corresponding orthologous pair of proteins in the other species, the 

interactions between each respective pair of proteins could be different or rewired between the two 

species. Rates of PPI evolution and PPI rewiring also vary greatly among different parts of 

interactomes. For instance, some stable protein complexes in animals that were inherited from 

unicellular ancestors are only modified slightly during evolution 220. On the other hand, some 

domain-motif interactions rewire at much higher rates and can rapidly adapt to lineage-specific 

conditions 221,222. Moreover, interactions connecting different functional modules of the 

interactome tend to rewire faster than interactions within specific functional modules 11. 

 

 Overall, the evolution of PPI networks is a complex and multifaceted process and 

differences in interactome networks between species can be varied, with some interaction being 

preserved despite changes in protein sequences, and some being different or rewired either with or 

without gene gain or loss. Comparing interactomes between species can help uncover the 

principles and molecular mechanisms governing PPI network evolution. Understanding these 

mechanisms provides insights into how organisms can adapt their molecular networks to meet the 

demands of their environments and evolutionary histories. This knowledge could also be applied 

to broader biological contexts, including disease mechanisms and synthetic biology applications. 
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2.6.2 Comparative analysis of interactomes between species 

High confidence protein-protein interactions (PPI) networks (or interactomes) have been 

constructed for a variety of species, including human (Homo sapiens) 62, fruit fly (Drosophila 

melanogaster) 63, mouse (Mus musculus) 64, Arabidopsis thaliana 65, baker's yeast (Saccharomyces 

cerevisiae) 10, and fission yeast (Schizosaccharomyces pombe) 11. These interactomes provide 

valuable insights into the protein networks that underpin biological functions and offer a 

foundation for comparative analyses. With the availability of these detailed interactome maps, 

comparative analysis has become a powerful tool for understanding the evolutionary dynamics of 

PPI networks. By comparing interactomes across different species, researchers can identify 

conserved and divergent interactions, revealing how PPI networks evolve and adapt over time. 

This comparative approach is crucial for uncovering the molecular evolutionary mechanisms 

underlying network rewiring and for understanding the functional implications of these changes. 

Such analyses also inform our knowledge of evolutionary biology, disease mechanisms, and have 

potential applications in synthetic biology and genome engineering 7,8. 

 

For instance, Cesareni et al. (2005) conducted a comparative analysis of interactome 

networks between baker’s yeast  and fruit fly, estimating that only approximately 24% of yeast 

PPIs are present in the fly interactome 223. This substantial difference underscores the extent of 

PPI network rewiring that occurs between species, highlighting the evolutionary adaptability of 

PPI networks. Gandhi et al. (2006) compared interactomes between human, baker’s yeast, worm, 

and fruit fly and found the overlap in protein interactions between the four species to be very small, 

indicating a high level of network rewiring 224. This finding suggests that, while some interactions 

may be conserved, the majority of PPIs undergo significant evolutionary changes, reflecting 
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species-specific functional adaptations. Vo et al. (2016) performed a comparative analysis between 

fission yeast, baker’s yeast and human, estimating that only about 40% of fission yeast PPIs were 

conserved in baker’s yeast, and approximately 65% of fission yeast PPIs were conserved in 

humans 11. This study highlights varying degrees of conservation across species and the 

evolutionary pressures driving the divergence of PPI networks, emphasizing that while essential 

interactions are often conserved, many are rewired to reflect evolutionary adaptations. These and 

other previous works highlight that interactome networks undergo significant rewiring during 

evolution, via either gain or loss of proteins or interactions, leading to lineage-specific and species-

specific changes in molecular processes and cellular functions 225,226.  

 

2.6.3 Molecular mechanisms underlying interactome rewiring  

While interactome networks have been compared between species, uncovering both PPIs 

that are preserved even between evolutionarily distant lineages, and PPIs that are very different 

and extensively rewired between species, the detailed molecular evolutionary mechanisms 

underlying interactome network rewiring, and the site-specific selective pressures acting on 

rewired PPIs are not well-understood, especially on the genomic scale 158. Understanding these 

mechanisms is crucial for comprehending how cellular networks adapt and evolve over time. As 

such, several previous studies have attempted to elucidate molecular evolutionary mechanisms 

underlying biological network rewiring as a whole, and PPI rewiring more specifically for some 

types of interactions.  

 

Studies in the field of graph theory have given us interesting insights on factors that could 

influence evolutionary rewiring in biological networks, including PPI networks. For instance, 



 

 82 

Shou et al. (2011) used computational models to measure the evolutionary rewiring of biological 

networks, including PPIs, across different species 226. They identified key factors influencing 

network rewiring, such as gene duplication, mutation, and changes in regulatory elements. Their 

findings provided a framework for understanding how genetic and environmental factors drive the 

evolution of biological networks, highlighting the importance of functional innovation and 

adaptation in network dynamics. Yamada and Bork (2009) reviewed the evolution of biomolecular 

networks, including metabolic and protein interactions 225. They discussed the conservation and 

divergence of network motifs and modules, showing that while some network components are 

highly conserved due to their essential roles, significant rewiring occurs to adapt to new 

environmental conditions and functional demands. Their review underscored the importance of 

studying network evolution to understand the underlying molecular mechanisms of adaptation and 

innovation. 

 

Other works have aimed to uncover molecular evolutionary mechanisms underlying PPI 

network rewiring for specific types of PPIs. For example, Xin et al. (2013), surveyed and compared 

interactions mediated by 79 SH3 domains in worm, baker’s yeast, and human 227. They observed 

drastic rewiring between worm and yeast. This extensive rewiring was attributed to variations in 

the sequence of the motifs recognized by the SH3 domains, as well as changes in binding 

specificities between orthologous SH3 domains. This study highlighted the role of protein domain 

evolution in PPI network rewiring, showing that even small changes in domain sequences can lead 

to significant shifts in interaction patterns across species. Reinke et al. (2013), experimentally 

compared interactions between 53 human bZIP proteins to their homologs in four other species 

including fly and worm 228. They found significant rewiring of the bZIP interactome, driven by 
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changes to just one or two amino acids. This study demonstrated how minor genetic variations can 

lead to substantial changes in interaction networks, emphasizing the plasticity and adaptability of 

PPIs over evolutionary timescales. While those previous studies are crucial in furthering our 

understanding of the mechanisms of PPI rewiring for these two groups of PPIs, those are specific 

examples of PPIs and a large-scale analysis of the detailed molecular evolutionary mechanisms 

underlying interactome network rewiring on the genomic scale remains needed. We address this 

blind spot in the current literature by studying the detailed molecular evolutionary mechanisms 

underlying PPI network rewiring, and the site-specific selective pressures acting on rewired PPIs 

between the baker’s yeast (S. cerevisiae) and fission yeast (S. pombe) interactomes in Chapter 4. 

This investigation into the evolution of PPI rewiring helps uncover some of the evolutionary design 

principles behind variations in PPIs between species. 
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Preface to Chapter 3 

With this context now in place, the upcoming chapter covers details on Aim 1 and Aim 2 

of this thesis. 

Aim 1 focuses on the creation of an automated, custom pipeline to curate, process and 

organize protein-protein interaction (PPI) data from online databases into molecular models of 

PPIs for two yeast species, Saccharomyces cerevisiae (S. cerevisiae), and Schizosaccharomyces 

pombe (S. pombe). This pipeline gathers and combines large amounts of PPI data from very 

different experimental fields, therefore allowing for novel analysis.  

 

Aim 2 focuses on utilizing molecular models of PPIs in S. cerevisiae to study the 

relationship between PPI structure and PPI evolution, by studying the impact of various structural 

determinants on residue evolutionary rates in yeast. No systematic comparison, integrating a 

comprehensive list of different structural features in terms of their impact on residue conservation 

at the proteome scale has previously been performed in the literature. As such, this aim uncovers 

design principles and structural mechanisms that influence the evolution of PPIs within a species. 

 

The article included here covers the development of a custom script pipeline to automate 

the gathering, quality control and organization of PPI data into molecular models of PPIs for a 

species. Interactome data (records of all interactions between pairs of proteins in a species), and 

molecular structure data (detailed, atom-resolution, three-dimensional descriptions of individual 

PPIs) were successfully curated for both S. cerevisiae and S. pombe, and molecular models of PPIs 

in both species have been constructed. The custom script pipeline designed to gather and combine 

large amounts of PPI data from very different experimental fields is further described in the article 

and could be applied to future works in the two yeasts or in other species. Moreover, the detailed 
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molecular models of PPIs in S. cerevisiae and S. pombe combine PPI data at two very different 

scales in a unique manner, enabling novel future analysis. 

 

The article also covers the use of molecular models of PPIs in S. cerevisiae to investigate 

the relationship between PPI structure and PPI evolution. Extensive work in identifying structural 

determinants (measurable characteristics of the structure of the microenvironment surrounding a 

residue) correlated with residue evolution in S. cerevisiae PPIs was performed. The final structural 

determinants selected are the change in relative solvent accessibility upon PPI binding (ΔRSA), 

the number of residue-residue contacts across the PPI interface (interRRC), and the distance from 

the center (dCenter) or the periphery (dEdges) of the PPI interface. These four determinants are 

further described in the article. Moreover, several significant correlations between these structural 

determinants and residue evolutionary rates in S. cerevisiae PPIs were uncovered and are discussed 

in depth. Estimations of the overall, and relative importance of these determinants to our  

understanding of the relationship between structure and evolution of PPIs were also performed. 

Overall, the following important conclusions were reached: (i) interfacial residues in PPIs are 

subject to continuous, structure-based selective constraints proportional to their degree of interface 

involvement, (ii) interfacial burial (as measured by the structural determinant ΔRSA) is selectively 

equivalent to non-interfacial burial, (iii) in addition to ΔRSA, other measures of interface 

involvement (structural determinants interRRC, dCenter, and dEdges) independently constrain 

residue evolution, and (iv) in addition to these continuous structure-based selective constraints, 

interfacial residues are subject to a fixed function-based selective constraint independent of their 

degree of interface involvement. Those findings help establish some of the design principles and 

structural mechanisms that influence the evolution of PPIs within a species. 
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3.1  Abstract 

Interfaces of contact between proteins play important roles in determining the proper 

structure and function of protein–protein interactions (PPIs). Therefore, to fully understand PPIs, 

we need to better understand the evolutionary design principles of PPI interfaces. Previous studies 

have uncovered that interfacial sites are more evolutionarily conserved than other surface protein 

sites. Yet, little is known about the nature and relative importance of evolutionary constraints in 

PPI interfaces. Here, we explore constraints imposed by the structure of the microenvironment 

surrounding interfacial residues on residue evolutionary rate using a large dataset of over 700 

structural models of baker’s yeast PPIs. We find that interfacial residues are, on average, 

systematically more conserved than all other residues with a similar degree of total burial as 

measured by relative solvent accessibility (RSA). Besides, we find that RSA of the residue when 

the PPI is formed is a better predictor of interfacial residue evolutionary rate than RSA in the 

monomer state. Furthermore, we investigate four structure-based measures of residue interfacial 

involvement, including change in RSA upon binding (ΔRSA), number of residue-residue contacts 

across the interface, and distance from the center or the periphery of the interface. Integrated 

modeling for evolutionary rate prediction in interfaces shows that ΔRSA plays a dominant role 

among the four measures of interfacial involvement, with minor, but independent contributions 

from other measures. These results yield insight into the evolutionary design of interfaces, 

improving our understanding of the role that structure plays in the molecular evolution of PPIs at 

the residue level.  

 

 

 



 

 88 

3.2  Introduction 

Understanding the nature of constraints on protein evolution has long been the focus of 

much scientific interest. Evolutionary rates are known to vary widely between proteins. For 

instance, genes encoding highly expressed proteins, proteins that carry out crucial functions, or 

proteins that interact with many partner proteins tend to be more conserved 1–3. In addition to 

molecular function, three-dimensional structure is known to play an important role in constraining 

protein evolution 4–5. Moreover, evolutionary rates can vary significantly among different sites, 

even within a given protein. For example, sites in the core of most proteins or catalytic residues in 

enzymes typically evolve more slowly than other sites 6–7. In order to develop a complete picture 

of protein evolution, work in this field has focussed on uncovering determinants of site-specific 

evolution, highlighting that site- specific evolutionary rates are under both structural and functional 

constraints in single proteins 8.  

 

However, proteins seldom work in isolation in cells, but rather act via protein–protein 

interactions (hereafter referred to as PPIs). Indeed, protein function tends to be regulated via 

transient interactions with protein kinases and other enzymes 9. Moreover, many cellular processes 

are carried out by stable protein complexes, which behave as molecular machines, composed of 

protein components, and organized by tightly regulated PPIs to ensure proper function 10–11. 

Additionally, changes and mis-regulations in PPIs can have important consequences for 

organismal fitness: several disease-causing mutations are known to disrupt PPIs and single 

nucleotide polymorphisms associated with a number of diseases tend to occur in sites predicted to 

mediate interactions 12–14. Yet, PPIs are typically not considered when investigating proteome-

wide, quantitative agents of selective constraint on site-specific evolutionary rates in the literature. 
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Therefore, little is known about factors influencing the evolution of PPIs at this most basic level 

of fixation and elimination of single amino acid residue mutations.  

 

To contribute to our understanding of PPI evolution, we investigate the region of contact 

between partner proteins in a PPI, also referred to as the interface. The interface is a key PPI 

feature, both structurally and functionally. Interfacial residues are considered surface residues in 

most structure-based studies that treat the two protein partners of a PPI as free-floating monomers 

15. However, upon formation of a PPI complex, the structure of the micro-environment surrounding 

those residues can be drastically altered. Moreover, interfacial residues are functionally unique: 

mutations to interfacial residues can alter protein–protein binding affinities and proper PPI 

function with a wide range of implications for human health 16–17. Interfacial residues also tend to 

be more evolutionarily conserved than non-interfacial surface residues, although debate still 

remains in the literature as this conclusion varies in significance depending on the dataset 

considered 18–21.  

 

While residues in PPI interfaces have both a unique structural context and a specific 

function in mediating crucial interactions between protein partners, structure-based studies of 

protein evolution typically rely upon coarse distinctions between “interfacial” and “non-

interfacial” residues, if considering interfaces at all. The few key studies that go beyond this binary 

distinction and investigate structure-based evolutionary constraints within PPI interfaces, 

uncovered that considering whether an interfacial residue is accessible to solvent in a co-

complexed PPI structure can help further subdivide interfaces into different regions. These regions 

include a core, a rim, and support regions, each with predictable and distinct amino acid 
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compositions, and sequence entropy 22–26. However, these studies only consider a single possible 

structural constraint on the evolution of interfacial residue: the residue’s exposure to solvent. 

Moreover, this structural constraint is discretized to categorize residues into each region: for 

instance, all interfacial residues that are inaccessible to solvent in a PPI structure are assigned to 

the core region of the interface, while residues accessible to solvent in a PPI structure are labeled 

as belonging to the rim or support regions of the interface. Consequently, our knowledge of any 

continuous structure-based evolutionary constraints on interfacial residues remains limited at the 

proteome scale. In the main previous study on such continuous structural constraints, Franzosa and 

Xia developed a quantitative measure of PPI interface involvement based on solvent accessibility 

and investigated its relationship with residue evolutionary rate 27, but no other structural measures 

of interfacial involvement were investigated, and the number of interfaces studied by the authors 

was relatively small.  

 

Overall, interest in uncovering structural features that can influence, or help predict 

evolutionary rates in interfaces is high, as evidenced by several studies on the topic in recent years. 

These previous works uncovered various structural features that correlate with residue 

evolutionary rates ranging from solvent accessibility and interface involvement 27–28, to location 

of a residue within an interface 22–24 and local packing surrounding the residue 8,29–30. However, 

these previous studies have only investigated the relationship between residue evolution and a 

single structural feature for interfacial residues. In contrast, our current work systematically 

compares and integrates a comprehensive list of different structural features of residue interfacial 

involvement, in terms of their impact on interfacial residue conservation. As such, our current 

work settles the long-standing debate over which structural features are most important at 
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constraining residue evolution in PPI interfaces. Here, we, therefore, study interfacial residues in 

a large dataset of Saccharomyces cerevisiae PPI structures and a comprehensive list of structural 

features of PPI interfacial involvement that could influence their evolutionary rates. We elected to 

use S. cerevisiae in this analysis, as the large amount of experimentally derived physical 

interactions reported in the species in recent years, combined to the relatively small size of the 

yeast genome, make it one of the most complete interactomes currently available as well as one of 

the most complete interactome with regards to structural experimental data 31–32.  

 

We find that, on average, interfacial residues in S. cerevisiae PPIs are more conserved than 

non-interfacial residues. Moreover, interfacial residues are systematically more conserved than 

non-interfacial residues with an equivalent degree of total burial, including residues buried at the 

core of a protein. The result is surprising because core residues are thought to evolve under very 

strong constraints to maintain protein structure and stability 33–34. This confirms the existence of 

strong evolutionary constraints associated with the function of the interfacial residue, independent 

of its degree of burial 27–28. In addition, we find a strong relationship between the relative solvent 

accessibility (RSA), or burial, of an interfacial residue in a PPI and its evolutionary rate. This result 

confirms previous work establishing solvent exposure as a major structural determinant of residue 

evolutionary rate in single proteins 27,35. Moreover, we find that residue RSA in complexed state 

is a better predictor of interfacial residue evolutionary rate than RSA in monomeric state. Hence, 

from an evolutionary standpoint, interfacial residues are mainly constrained by solvent exposure 

when the PPI proteins are co-complexed.  
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To further probe the quantitative structural basis of residue-level evolutionary constraints 

in PPI interfaces, we investigate several continuous structure-based measures of residue interfacial 

involvement and their relationship with residue evolutionary rate. These structural features include 

local properties of an interfacial residue’s microenvironment such as the change in its RSA upon 

binding (ΔRSA), and the number of residue- residue contacts it makes across the interface, as well 

as more global properties such as its distance from the center or the periphery of the interface. We 

find significant correlations between the four structure-based measures of interface involvement 

and residue evolutionary rate in PPI interfaces, establishing that, even within the already highly 

constrained context of the interface, different residues may be under different evolutionary 

pressures 23–24,27,36–37. Integrated modeling shows that these measures of interface involvement are 

predictive of interfacial residue evolutionary rate, with ΔRSA playing a dominant role, and minor 

but independent contributions from other measures.  

 

This work yields insight into the evolutionary design principles of interfaces and the 

identification of some of their key features, improving our understanding of the molecular 

evolution of PPI interfaces at the residue level.  
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3.3  Results 

Residues in PPI interfaces are, on average, more conserved than non-interfacial residues  

We gathered a dataset of three-dimensional structures for a list of high confidence PPIs in 

S. cerevisiae. For PPIs with no structure currently available, we used the structure of a closely 

related homologous PPI. This homology-based structural annotation transfer process was 

successfully used in previous work 27,38. The final dataset comprises structures for 718 PPIs 

between 611 S. cerevisiae proteins containing more than 400,000 residues (data curation pipeline 

summarized in Figure 1 and further detailed in Materials and Methods). Interfacial residues in 

our data were defined as amino acids exhibiting a change in solvent accessibility upon formation 

of a PPI complex. 

 

Figure 1. Computational pipeline. Graphical representation of the pipeline used for automated 
curation and homology-based structural annotation transfer of PPIs in S. cerevisiae. The pipeline 
is available in a GitHub repository.  



 

 94 

 

Figure 2. Structural properties of the residue microenvironment. (A) Symbols, names, and 
descriptions of the structural properties of a residue’s microenvironment. (B)-(D) Graphical 
representation of the structural properties of a residue’s microenvironment. For each property, a 
cartoon diagram of a pair of interacting proteins is shown in cross section, in blue, with one of the 
protein partners differentiated with a dashed outline. For local properties ((B), (C)), the residue of 
interest to the calculation is highlighted in darker blue and structural properties are illustrated in 
green (monomer RSA, complex RSA) and yellow (ΔRSA, interRRC). The yellow properties have 
an associated degree of involvement of the residue in the interface. Global properties ((D), (E)) 
are determined by relative positions, so their value and corresponding degree of interface 
involvement are represented by a shade of yellow.  
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We, therefore, computed two measures of relative solvent accessibility (Figure 2, 

monomer RSA, complex RSA) for all residues in our data. For a residue in a PPI protein, monomer 

RSA measures its accessibility to solvent when the protein is in a monomeric state, while complex 

RSA measures its accessibility or burial when the protein is co-complexed with a partner protein. 

ΔRSA, the change in a residue’s burial upon complex formation, was computed as the difference 

between monomeric and co-structured RSA values for each residue (ΔRSA = monomer RSA  –

complex RSA), and any residue with ΔRSA ≠ 0 was labeled as interfacial. This yielded more than 

50,000 interfacial residues. We then assessed the degree of evolutionary constraint on interfacial 

and non-interfacial residues in S. cerevisiae PPIs separately using two techniques: ω = dN/dS ratio 

(hereafter referred to as dN/dS) and ConSurf score (see Materials and methods). These represent 

two popular ways to estimate residue evolutionary rate in the literature.  

 

Figure 3(A) shows the average evolutionary rates for interfacial residues (ΔRSA ≠ 0) and 

non- interfacial residues (ΔRSA = 0) in our data. Interfacial residues are, on average, significantly 

more conserved than their non-interfacial counterparts using both estimates of evolutionary rates 

(dN/dS and ConSurf score). The difference in average dN/dS value between the two groups 

(average difference: 0.0199) signifies that 1 fewer amino acid substitution every 50 silent 

mutations is expected for interfacial residues compared to non-interfacial ones. T-tests for the 

difference in average evolutionary rates between the two groups (Figure 3(B)) indicate a 

statistically significant difference using both evolutionary rate estimates (P-value < 0.01). Previous 

work showed that interfacial residues are under unique evolutionary constraints and tend to be 

more conserved than non-interfacial surface residues, although evaluations of those constraints 

vary depending on the dataset considered 18–20. Here we find that, for proteins involved in S. 
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cerevisiae PPIs, interfacial residues are, on average, more conserved than non-interfacial residues, 

even when including residues buried at the core of a protein in the comparison. This is surprising 

as core residues are under very strong evolutionary pressure to maintain protein structure and 

stability 6,33–34 and confirms the existence of strong evolutionary constraints associated with the 

involvement of a residue in an interface 27–28.  

 

Interfacial residues in PPIs are systematically more conserved than all other residues of the 

same total burial  

As previously noted, residues buried in the core of a protein structure, are typically highly 

conserved. However, this observation is only a single example of a continuous, quantitative trend 

identified in single proteins: the exposure or burial of a residue to solvent is usually correlated with 

its evolutionary rate 27,35,39. 

 

 



 

 97 

Figure 3. The difference in evolutionary rate between interfacial and non-interfacial 
residues. (A) Average evolutionary rates (estimated using both dN/dS ratio and ConSurf score), 
plotted for interfacial and non-interfacial residues from all PPIs in our data. Standard errors for the 
average values of each group of residues are also shown. (B) Results of t-tests for differences in 
average evolutionary rates between interfacial and non-interfacial residues using both evolutionary 
rate estimates. Differences significant at the P-value < 0.01 level are denoted with a double asterisk 
(**). (C) Linear fits between binned measures of solvent accessibility (complex RSA) and 
evolutionary rate (dN/dS) for interfacial and non-interfacial residues. Distributions of the number 
of residues per bin, weighted linear regression lines, and R2 values of the fits are also shown. (D) 
Results of t-tests for differences in slope and intercept between the two fits in (C). Values 
significant at the P-value < 0.01 level are denoted with a double asterisk (**).  
 

Indeed, solvent exposure or degree of burial (quantified by measures such as relative 

solvent accessibility – RSA) has been established as a significant structural predictor of residue 

evolutionary rate in single proteins 27. The difference in average evolutionary rate between 

interfacial and non-interfacial residues in Figure 3 (A) could, therefore, be due to differences in 

the average total burial of residues in the two groups. To test this possibility, we binned interfacial 

and non-interfacial residues in our data separately, in 5% intervals over the range of possible 

complex RSA values, from fully buried residues (complex RSA = 0) to fully exposed residues 

(complex RSA = 1). Evolutionary rate (dN/dS) was then calculated for the residues in each bin by 

concatenating the aligned codons of S. cerevisiae and eight other closely related yeast species.  

 

Figure 3(C) shows the relationship between evolutionary rate and complex RSA for 

interfacial residues and non-interfacial residues binned as described above. Taking into account 

the dN/dS estimation error associated with each complex RSA bin, we generated least-squares 

regression lines with coefficient R2 = 0.968 and R2 = 0.941 for non-interfacial and interfacial 

residues respectively. Both regression lines show a strong, linear, and positive relationship over 

the full range of complex RSA values. The slopes of the two regression lines are not statistically 

different (P- value > 0.05), however, the intercepts are (difference in intercept = 0.0127, P-value 
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< 0.01). These results indicate that interfacial residues are more conserved than non-interfacial 

residues of similar total burial for the full range of complex RSA values considered. More 

specifically, for a pair of interfacial and non-interfacial residues equivalently buried in the PPI 

complex, the interfacial residue will evolve more slowly than the non-interfacial residue (expected 

difference in dN/ dS: 0.0127, i.e., one fewer amino acid substitution for every 79 silent mutations 

for the interfacial residue compared to the non-interfacial one). Previous work showed that 

interfacial residues are more conserved than non-interfacial surface residues 18,20,23,25–26. Here, 

however, we find that, when correcting for total burial, interfacial residues are systematically more 

conserved than all non- interfacial residues, including residues at the core of proteins. This 

surprising result confirms the existence of a strong functional constraint associated with the 

involvement of a residue in an interface, beyond what can be explained by total burial 27. We 

verified these observations using another proxy for residue evolutionary rate: ConSurf score, and 

the results remain consistent. Details of this second regression analysis are available in 

Supplementary material and the resulting plots can be found in Figure S1.  

 

Solvent exposure in co-complexed state better predicts PPI interfacial residue evolutionary 

rate than solvent exposure in monomer state  

Previous work showed that residues at the core of proteins are typically highly conserved, 

while residues on the surface tend to evolve faster 8,27,33–34. Here, we study a third category of 

residues: interfacial residues. These residues are unique as they are buried in the PPI complex 

when two protein members of a PPI come together but remain surface residues if considering the 

two proteins separately, as monomers. Therefore, either of those two structural contexts 

(monomeric or complexed) could be used when investigating structure-based constraints on their 



 

 99 

evolution. Extensive work has already been performed in the monomeric context, uncovering 

structural features such as RSA correlated with residue evolutionary rate in monomeric proteins 4–

5,8,27. RSA can also be computed from PPI complex structures, measuring the accessibility of a 

residue to solvent when co-complexed with a partner protein. Hence, to uncover whether co-

complexed PPI structures should also be considered when studying structure-based constraints on 

interface evolution, we examined and compared the relationship between RSA and site-specific 

evolutionary rates in the monomeric and the complexed contexts.  

 

We computed two measures of RSA for 50,627 interfacial residues in our data: monomer 

RSA using monomeric structures, and complex RSA using co-complexed PPI structures (Figure 

2, monomer RSA, complex RSA). ConSurf score was calculated for each interfacial residue. To 

compute dN/dS, interfacial residues were binned in 5% intervals over the range of possible RSA 

values for monomer RSA and complex RSA separately. dN/dS was calculated for each bin by 

concatenating the aligned codons of S. cerevisiae and eight other closely related yeast species. We 

then correlated RSA values with both estimates of evolutionary rate (dN/dS and ConSurf score). 

The results in Figure 4(A) show significant, positive correlations with dN/dS for both monomer 

RSA (r = 0.957) and complex RSA (r = 0.717), indicating that sites more accessible to solvent 

(either in the complex or monomer state) evolve progressively more quickly. Results remain 

significant when weighting correlations by standard errors on dN/dS calculations for both complex 

RSA (r = 0.952) and monomer RSA (r = 0.964). These trends are confirmed by the ConSurf score 

estimate of evolutionary rate: the correlations remain positive and statistically significant for both 

complex RSA (r = 0.131) and monomer RSA (r = 0.091) when weighted by the standard error on 
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ConSurf score calculations. It is worth noting that correlations with ConSurf scores are smaller 

than the ones with dN/dS.  

 

 

Figure 4. The relationship between solvent accessibility and evolutionary rate in PPI 
interfaces. (A) Results of a Pearson product-moment correlation test between values of solvent 
accessibility and measure of evolutionary rates for interfacial residues in our models. The first two 
rows in the table show standard Pearson correlations, whereas the two last rows, show weighted 
Pearson correlations, taking the standard error on evolutionary rate estimates into consideration. 
Values significant at the P-value < 0.01 level are denoted with a double asterisk (**). (B) Linear 
fits between binned measures of solvent accessibility and evolutionary rate (dN/dS), for monomer 
solvent accessibility (monomer RSA) and complex solvent accessibility (complex RSA). 
Distributions of the number of residues per bin, weighted linear regression lines, and R2 values of 
the fits are also shown. (C) Results of t-tests for differences in slope and intercept between the two 
fits in (B). Values significant at the P-value < 0.01 level are denoted with a double asterisk (**).  
 

This difference in correlation value is expected as ConSurf data are not binned whereas 

dN/dS data are. The difference also indicates that values of correlations with dN/dS may be inflated 

by the binning process. Little import should therefore be placed on the numerical value of 

correlations with dN/dS besides their sign and whether they are significant, and correlation values 

should not be directly compared to each other. Instead, this correlation analysis can be used to 

establish significant linear relationships between both measures of RSA and evolutionary rate. 

While previous work uncovered a direct relationship between residue burial and protein stability 
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40, and a close connection between protein stability and organismal fitness 41, our findings suggest 

that burial in a PPI and PPI stability is also selected for and linked to organismal fitness.  

 

We further investigated the high correlations between solvent accessibility and residue 

evolutionary rate in PPI interfaces using weighted least-square regression. Figure 4(B) shows the 

relationship between dN/dS and both measures of solvent accessibility for interfacial residues 

binned as described above. Taking into account the dN/dS estimation error associated with each 

RSA bin we generated least-squares regression lines with coefficient R2 = 0.934 and R2 = 0.941 

for monomer and complex RSA respectively. Both regression lines share the same intercept 

(difference in intercept is not statistically significant, P-value > 0.05), indicating that fully buried 

residues, either in a monomeric protein or in a PPI, will have the same, low, evolutionary rate. 

Moreover, the slopes of the monomeric and complex regression lines, show a statistically 

significant difference (difference in slope = 0.0298, P-value < 0.01). For monomer RSA, the slope 

of 0.08 indicates that a 1% increase in RSA is associated with a dN/dS increase of approximately 

0.0008 (i.e., one extra amino acid substitution for every 1,250 silent mutations). This result is in 

agreement with previous work in yeast 27. For complex RSA, the slope of 0.1 indicates that a 1% 

increase in RSA can be related to a dN/dS increase of approximately 0.001 (i.e., one additional 

amino acid substitution for every 1000 silent mutations). This large difference demonstrates that, 

during evolution, interfacial residues are mainly constrained by solvent exposure when in 

complexed state rather than in monomeric state. We confirmed these observations using another 

proxy for residue evolutionary rate: ConSurf score. Details of this second regression analysis are 

available in Supplementary material and the resulting plots can be found in Figure S2. Overall, 
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using PPI complex structures to compute RSA values yields a better correlation with interfacial 

residue evolutionary rates than simply considering single protein structures.  

 

The degree of structural involvement of a residue in a PPI interface influences its 

evolutionary rate  

The above observation that complex RSA better correlates with interfacial residue 

evolutionary rate than monomer RSA suggests that the change in RSA upon PPI complex 

formation (ΔRSA) plays an important role in constraining interfacial residue evolution. Moreover, 

ΔRSA is one of several possible structure-based measures of residue interfacial involvement 27. 

To further probe the quantitative structural basis of residue-level evolutionary constraints in PPI 

interfaces, we, therefore, investigate several continuous, structure-based measures of residue 

interfacial involvement, and their relation- ship with residue evolutionary rate.  

 

The first measure of residue interfacial involvement that we considered is ΔRSA. ΔRSA 

quantifies changes in the solvent accessibility of a residue upon formation of a PPI complex. 

Residues with large ΔRSA values could, thus, be particularly important to an interface as their 

micro-environment is significantly affected by complex formation, while residues with small 

ΔRSA values may be less involved in the interaction 27. In addition to ΔRSA, we computed three 

other structural properties designed to estimate the degree of involvement of a residue in an 

interface. These properties, summarized in Figure 2, include the number of contacts that a residue 

makes with residues in the partner protein (interRRC), the distance between a residue and the 

geometric center of the interface (dCenter), and the distance between a residue and the edges of 

the interface (dEdges). The structural properties include local features of interfacial residues’ 
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microenvironment (ΔRSA and interRRC) as well as more global measures estimating overall 

position within the interface structure (dCenter and dEdges). The four properties are only weakly 

correlated to each other (Figure 5), and we, therefore, reason that each has the potential to convey 

some amount of independent information.  

 

We binned the 50,627 interfacial residues in our data in 10% intervals over the range of 

each of the structure-based measures of interface involvement (ΔRSA, interRRC, dCenter, 

dEdges). We correlated the four measures of interface involvement with estimates of evolutionary 

rate (dN/dS for each bin, and ConSurf score for each residue). The first two rows of Table 1 show 

standard Pearson correlation tests between each structural measure of interface involvement and 

evolutionary rate. Results in the last two rows of Table 1 are weighted Pearson correlations, using 

the standard error on evolutionary rate estimates to weigh the correlation analysis. Here, again, 

correlations with dN/dS are performed on binned data, and thus, direct conclusions should not be 

drawn from the numerical values of correlations in Table 1. Furthermore, correlation values should 

not be directly compared to each other. Instead, the significance of the correlations, tested using a 

Pearson product-moment correlation test, can be used to establish linear relationships between 

measures of interface involvement and evolutionary rate.  

 

 



 

 104 

 

Figure 5. Correlation between structural properties of a residue’s microenvironment. 
Pairwise Pearson correlation matrix for the structural properties of interest in this study computed 
for all interfacial residues.  

 

The four structural properties considered here showed statistically significant correlations 

(P-value < 0.01) with at least one measure of evolutionary rate. The correlations with ΔRSA and 

dCenter were found significant regardless of the estimate of evolutionary rate used. These 

significant correlations indicate that interfacial residues are subject to continuous structure-based 

selective constraints which are proportional to their degree of interface involvement: residues with 

a large change in burial upon complex formation, residues which make numerous contacts with 

the partner protein, and residues closer to the geometric center of interfaces evolve progressively 

more slowly.  
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We further investigated the correlations between structural measures of interface 

involvement and evolutionary rate using weighted least-square regression. The blue diamonds and 

blue lines in Figure 6(A)-(D) show the observed dN/dS values of interfacial residues for different 

bins of ΔRSA, interRRC, dCenter, and dEdges (binned as described above), as well as the 

corresponding least-squares regression lines, taking into account the dN/dS estimation error 

associated with each interface involvement bin. The slope of the regression line with ΔRSA (slope 

= -0.02) indicates that, within interfaces, a 10% increase in ΔRSA is associated with a dN/dS 

decrease of approximately 0.002 (i.e., one fewer amino acid substitution for every 500 silent 

mutations). The regression line with dCenter has a slope of 0.001, showing that a 10% decrease in 

the distance between a residue and the geometric center of an interface is associated with a dN/dS 

decrease of around 0.0001 (i.e., one fewer amino acid substitution for every 10,000 silent 

mutations). These are small, incremental changes, but over the whole range of dCenter values, 

residues closest to the geometric center of an interface are, on average, two times more conserved 

than the ones furthest away. The regressions with interRRC and dEdges also indicate a continuous, 

linear relationship with dN/ dS over the full range of interRRC and dEdges values. These results 

confirm the high correlations observed between the four structural measures of interface 

involvement and evolutionary rate (Table 1).  

 

Table 1 Results of a Pearson product-moment correlation test between structural measures 
of interface involvement and evolutionary rate estimates for interfacial residues. Values 
significant at the P-value < 0.01 level are denoted with a double asterisk (**), values significant at 
the P-value < 0.05 level are denoted with a single asterisk (*).  
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In addition to plotting the observed dN/dS values of interfacial residues for different bins 

of ΔRSA, interRRC, dCenter, and dEdges (as blue diamonds and blue regression lines in Figure 

6), we also computed expected dN/dS values for each bin of interfacial residues (as yellow circles 

and yellow regression lines in Figure 6), operating under the assumption that interfacial burial (as 

measured by ΔRSA) is selectively equivalent to non-interfacial burial, and that interfacial residues 

are subject to the same evolutionary constraints as non-interfacial residues with the same total 

burial in PPIs. In other words, we computed the expected dN/dS values for each bin of interfacial 

residues based on the evolutionary behavior of non-interfacial residues in the following way: (i) 

we determined the average total burial (as measured by complex RSA) for each bin, and (ii) using 

the average complex RSA value for each bin, we predicted the expected dN/dS value for each bin, 

based on the dN/dS versus RSA trend for non- interfacial residues in Figure 3(C). We plotted these 

expected dN/dS values as yellow circles and regression lines in Figure 6. Notably, the slope of the 

observed regression line is not significantly different from expected for the trend between dN/dS 

and ΔRSA (P-value > 0.05), suggesting that interfacial burial (as measured by ΔRSA) is indeed 

selectively equivalent to non-interfacial burial. In contrast, the slopes of the observed regression 

lines are significantly different from expected for the trends between dN/dS and interRRC (P-value 

< 0.05), dCenter (P- value < 0.01), and dEdges (P-value < 0.05) respectively, suggesting that these 

three measures of interface involvement make contributions to dN/dS that are independent of 

ΔRSA.  

 

The yellow “X”s in Figure 6 denote the average dN/dS for non-interfacial residues of yeast 

PPIs (average dN/dS for non-interfacial residues = 0.0901). Notably, the yellow “X” for non-

interfacial residues in Figure 6 does not lie on the blue observed regression line for interfacial 

residues for any of the four measures of interface involvement (P-value < 0.01), but rather lies 
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significantly closer to the yellow expected regression line for interfacial residues for all measures 

of interface involvement (P-value < 0.05). In other words, there is a significant difference in 

average evolutionary rate between non-interfacial residues and interfacial residues, even for 

interfacial residues with minimal interface involvement (i.e., residues in the first ΔRSA, interRRC, 

dEdges, or dCenter bin). These observations suggest that, in addition to the continuous structure-

based selective constraints imposed by their degree of interface involvement, interfacial residues 

are subject to a fixed function-based selective constraint which is independent of their degree of 

interface involvement.  

 

In addition to dN/dS, we confirmed all of these observations using another estimate of 

residue evolutionary rate: ConSurf score. Details of this ConSurf-based regression analysis are 

available in Supplementary material and the resulting plots can be found in Figure S2. Overall, 

our results suggest that: (i) interfacial residues are subject to continuous, structure-based selective 

constraints proportional to their degree of interface involvement; (ii) interfacial burial (as 

measured by ΔRSA) is selectively equivalent to non-interfacial burial; (iii) in addition to ΔRSA, 

other measures of interface involvement (interRRC, dCenter, and dEdges) independently constrain 

residue evolution; and (iv) in addition to these continuous structure-based selective constraints, 

interfacial residues are subject to a fixed function-based selective constraint independent of their 

degree of interface involvement.  

 

Among the four structure-based measures of interface involvement, ΔRSA is the major 

determinant of interfacial residue evolution  

To further investigate the quantitative nature of the selective constraints imposed by the 

four structure-based measures of interface involvement (ΔRSA, interRRC, dCenter, and dEdges), 
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we tested several statistical models to combine their respective power in predicting interfacial 

residue evolutionary rates.  

 
Figure 6. The relationship between interface involvement and evolutionary rate for residues 
in PPI interfaces. (A)-(D) Linear fits in blue between binned measures of interface involvement 
and evolutionary rate (dN/ dS), for change in burial upon complex formation (ΔRSA), inter-protein 
residue-residue contacts (interRRC), distance from interface center (dCenter), and distance from 
interface edges (dEdges) respectively. Distributions of the number of residues per bin, weighted 
linear regression lines, and R2 values of the fits are also shown. In addition to the observed fit in 
blue, we also show the expected fit in yellow, assuming that interfacial burial and non-interfacial 
burial are selectively equivalent and that interfacial residues are subject to the same evolutionary 
constraints as non-interfacial residues with the same total burial in PPIs. For each panel, the 
average dN/dS value for non-interfacial residues (average dN/dS = 0.0901) is marked by a yellow 
“X”. (E) Results of t-tests for differences in slope and intercept between observed and expected 
fits in (A)-(D). Values significant at the P-value < 0.01 level are denoted with a double asterisk 
(**), values significant at the P-value < 0.05 level are denoted with a single asterisk (*).  
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We used ConSurf scores as proxies for evolutionary rate, as ConSurf scores can be 

calculated for individual interfacial residues, which is preferable to binned dN/dS for training 

multiple regression models. Multiple linear regression is the natural choice here as we want to 

predict a continuous dependent variable (ConSurf score of residues) by integrating a set of 

heterogeneous features (structural measures of interface involvement described in Figure 2). We 

used all interfacial residues with an available ConSurf score and structural measures of interface 

involvement (17,443 residues) and 10-fold cross-validation to train a multiple linear regression 

model using various residue structural properties, aiming to compare the relative strengths of the 

different residue structural properties for predicting residue evolutionary rate in PPI interfaces.  

Table 2 Regression results for different models aiming to predict residue evolutionary rate 
(ConSurf score) from structural properties in PPI interfaces. All models were trained using 
10-fold cross-validation, and the results shown here are average adjusted R2 values across all cross-
validation trials.  

 

The first row in Table 2 shows our baseline model, where we predict interfacial residue 

evolutionary rates using monomer RSA values only, operating under the assumption that 

interfacial involvement plays no role in constraining interfacial residue evolution. This baseline 

model gives us an R2 value of 8.9%. All subsequent rows in Table 2 show adjusted R2 values for 
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models integrating the baseline model with measures of interface involvement for evolutionary 

rate prediction. Adjusted R2s take the number of predictors in a model into consideration before 

estimating the goodness-of-fit of the regression analysis, to avoid overfitting. Therefore, adjusted 

R2 values will only increase from the baseline model if the addition of one or more structure-based 

measures of interface involvement to the initial model increases prediction fit significantly more 

than expected by chance (i.e., if each additional structural property contributes independent 

information to evolutionary rate prediction).  

 

Among models integrating the baseline model (monomer RSA) with a single structural 

measure of interface involvement (Table 2, rows 2–5), the model integrating monomer RSA with 

ΔRSA has the highest adjusted R2 value (adjusted R2 = 15.50%). The prediction performance of 

the model increases from 8.9% to 15.50% in adjusted R2 following the addition of ΔRSA to our 

baseline, indicating that interface involvement – as measured by ΔRSA – makes a significant 

contribution to evolutionary rate prediction in PPI interfaces. Moreover, the increase in R2 

achieved by including ΔRSA in the model is similar in magnitude to the contribution imposed by 

residue burial in the monomer state (monomer RSA). In contrast, models integrating our baseline 

with each of the other three measures of interface involvement show smaller increases in adjusted 

R2 (2.71%, 1.99%, and 0.11% increase in adjusted R2 value for the addition of interRRC, dCenter, 

dEdges respectively). Therefore, compared to ΔRSA, each of these three other measures of 

interface involvement make a minor contribution to evolutionary rate prediction in PPI interfaces. 

Moreover, since adjusted R2 values increase when integrating our baseline model with each of the 

four measures of interface involvement, their individual contributions are all distinct from the 

constraints imposed by residue burial in the monomer state.  
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The highest adjusted R2 value (adjusted R2 = 16.27%) is achieved when all four measures 

of interface involvement are added to our baseline model (Table 2, row 6). Overall, to predict 

evolutionary rates in PPI interfaces, simply considering non-interfacial structural constraints 

(monomer RSA) yields an R2 value of 8.9%, including the ΔRSA estimate of the degree of 

interface involvement, increases the adjusted R2 value to 15.50%, and the addition of the other 

three measures of interface involvement (interRRC, dCenter, and dEdges) contributes a further 

increase in adjusted R2 value smaller than 1%. We conclude that interface involvement is a 

significant constraint on residue evolutionary rate in PPI interfaces, and ΔRSA is the dominant 

structural measure of interface involvement in PPIs for constraining interface evolution, with 

minor contributions from other measures.  

 

3.4  Discussion 

In this work, we carried out a systematic and quantitative analysis of protein–protein 

interactions (PPIs) structures in S. cerevisiae, aiming to uncover structural determinants of PPI 

interface evolution at the residue level. We found that residue burial in a co-complexed PPI (as 

measured by complex RSA) better predicts interfacial residue evolutionary rate than residue burial 

in the monomer state (as measured by monomer RSA) and that interfacial burial (as measured by 

ΔRSA) is selectively equivalent to non-interfacial burial. These results are surprising because, 

while stable, permanent PPI complexes may be over-represented in our data as they are easier to 

study experimentally 42, many proteins investigated in our study are involved in transient PPIs and 

can mostly be found as free-floating monomers in cells. For all molecular interactions (and 

especially transient interactions), interfacial residues are buried in a PPI complex only when the 

two protein members of a PPI come together as a complex, but remain surface residues, exposed 
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to solvent, when the two proteins are separate monomers. One could, therefore, reasonably assume 

that the structural constraints on interfacial residues’ evolution are a mixture between constraints 

imposed in the monomer state and constraints imposed in the complexed state. In this work, 

however, we discover that the evolutionary behavior of interfacial buried residues mainly 

resembles the behavior of non-interfacial buried residues, and not the behavior of non-interfacial 

surface residues, indicating that interfacial residues are mainly constrained by structure when in 

complexed state. The dominant role of the complexed state (rather than the monomeric state) in 

constraining interface evolution likely reflects the importance of maintaining proper PPI function 

and stability, as disruption and mis-regulations of PPIs are known to have dire consequences for 

organismal fitness 12–14.  

 

Our second surprising finding is that, while interfacial burial is selectively equivalent to 

non- interfacial burial, considering interfacial buried residues to behave similarly to non-interfacial 

buried residues does not fully explain the low evolutionary rate of interfacial residues. Indeed, 

interfacial residues evolve significantly more slowly than non-interfacial residues, even after 

controlling for total residue burial (as measured by complex RSA). Moreover, we investigated 

several structure-based measures of the degree of involvement of a residue in an interface, and 

consistently observed a significant difference in evolutionary rate across the interface boundary, 

going from non-interfacial residues to interfacial residues that are marginally involved in the 

interface, even though there are no large changes in other structural properties (such as residue 

total burial) across the interface boundary. Hence, this jump in evolutionary conservation from 

non-interfacial residues to interfacial residues cannot be fully explained by differences in structural 

properties (such as residue total burial) between the interface and the rest of the protein. These 
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observations are evidence of a fixed evolutionary constraint, associated with the function of the 

interface, and independent of a residue’s degree of interfacial involvement 27.  

 

In addition to this fixed, function-based, evolutionary constraint on any interfacial residue, 

we found evidence of structure-based constraints within PPI interfaces, scaling continuously with 

a residue’s degree of interfacial involvement. In particular, we found significant, monotonic, and 

continuous relationships between interfacial residue evolutionary rate and four structure-based 

measures of residue interfacial involvement (ΔRSA, interRRC, dCenter, and dEdges), with 

residues more involved in the interface evolving progressively more slowly on average. Among 

the four structure-based measures of residue interfacial involvement, ΔRSA plays a dominant role 

in predicting interfacial residue evolutionary rate, with independent yet minor contributions from 

other measures. Surprisingly, despite its simplicity and local nature, interfacial burial (ΔRSA) 

significantly outperforms other local and non-local measures of interface involvement in 

evolutionary rate prediction within the interface. It is known that the choices of sequences included 

in the alignment can have a large effect on evolutionary rate values 25. We have thus repeated our 

analyses using different criteria for including more species and more sequences. While these 

additional analyses yield results that are, in general, consistent with our main conclusions, 

inclusion of more species and more sequences does not necessarily lead to better results due to the 

highly lineage- specific nature of PPI structure and evolution (Supplementary Materials 

Analyses S1-S3, Figures S3- S6, Tables S1-S2). Furthermore, we know that solvent accessibility 

calculations are specific to side chains 43. RSA calculations in our analysis could, therefore, be 

affected when computed and transferred from a PDB structure with low sequence identity to a 

yeast protein sequence. We have thus repeated our analysis excluding all PPIs for which either of 
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the two partner proteins has sequence identity lower than 50% between their yeast protein sequence 

and the PDB protein sequence used to compute structural properties. All conclusions remain 

unchanged (Supplementary Materials Analyses S4, Figures S9-S11, Tables S3-S4).  

 

The data curation process used to construct this large dataset of PPIs with both sequence 

and structure information comes with several caveats. Estimates of the proportion of known 

protein– protein interactions in S. cerevisiae suggest that 50% of yeast PPIs have been identified 

31. Current yeast PPI networks are, therefore, a sample of the complete network, and the PPI data 

used in this analysis comes with the set of biases typically associated with PPI interaction 

measurements. Our data and results may be biased towards proteins from particular cellular 

environments, more ancient and conserved proteins, commonly studied proteins, and highly 

expressed proteins 44. Furthermore, this analysis relied on homology-based structural annotation 

transfer to gather structural data for a large dataset of PPIs. Due to the relatively small number of 

solved protein structures compared to the set of known protein sequences, homology-based 

structural annotation transfer was necessary, but could further bias our dataset toward easily 

structured and often well-ordered proteins. We further assume that differences at the sequence 

level among close homologs do not produce measurable structural differences and align yeast 

homologs to the same three-dimensional structure. But even when the sequence-structure 

alignment is perfect, we cannot be fully confident that a given homology-mapped structure 

accurately reports on in-vivo properties of its residues 27. However, we believe that that the data 

curation process used here is still the best existing and the most reliable method for integrating 

structural details with molecular evolutionary properties of PPIs on a proteomic scale. Moreover, 

this method will only improve as the spaces of known PPIs and known structures grow.  
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In summary, we have presented several strong, proteome-wide relationships between 

residue- level structural properties of PPI interfaces and evolutionary rate in yeast. Moreover, the 

results found here have broader significance as they yield insight into the evolutionary design 

principles of interfaces and the identification of some of their key features, improving our 

understanding of the role that structure plays in the molecular evolution of PPIs at the residue 

level. Our study also has implications for interfacial residue prediction. While residue evolutionary 

rate by itself is a weak predictor for interfacial versus non-interfacial residues, residue evolutionary 

rate information can be used in combination with other weak predictors (based on sequence, 

structure, and co- evolutionary information, among others) to boost accuracy in predicting whether 

a residue is interfacial or not. As more PPI and structural data become available, future work in 

additional species could further help in our understanding and identification of key interfacial 

residues mediating molecular interactions. Such residues, under unique evolutionary pressures, 

even within the already constrained context of PPI interfaces, could be useful in the development 

of drugs aiming to target specific PPI interfaces 12,36,45, the prediction of existing PPIs 46–47 or the 

design of novel protein–protein interactions 48–49.  

 

3.5  Materials and Methods 

Homology-based structural annotation transfer  

First, we curated a high confidence set of physical interactions between Saccharomyces 

cerevisiae (S. cerevisiae) proteins: we filtered the most recent release of the BioGRID database 

(April 2020) for physical PPIs reported in S. cerevisiae by two or more independent experiments 

(determined by different PubMed IDs), yielding 23,272 high confidence PPIs between 4,321 S. 

cerevisiae proteins 50–51. We then individually mapped the proteins involved in the aforementioned 
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PPIs to three-dimensional structures by performing gapped BLAST 52 searches under default 

settings between (i) a database built from the proteins’ translated open reading frame sequences 

(ORFs) obtained on Ensembl 53 and (ii) 510,817 biological unit structure subunit sequences from 

the Protein Data Bank (PDB) 54. For each ORF in the database, we constructed a list of potential 

structural matches by selecting biological unit structures which (i) produced E-values below a 1  

105 cut- off in the alignment, (ii) had high coverage (>50%) in the alignment for both the ORF 

and the subunit sequence, and (iii) showed no inconsistencies (e.g., insufficient atomic detail, 

unreasonable distances between alpha-carbons, non-sensible heavy atom counts). We found 2,212 

S. cerevisiae proteins involved in our high confidence set of PPIs with at least one biological unit 

structure mapped to their ORF meeting those initial conditions, and an average of 11 structures 

mapped to each protein. We further excluded all biological unit structures annotated as “low” or 

“very low” confidence on the QSbio database 55 as those structures could be doubtful biological 

assembly assignments. Moreover, only 25% of the structures mapped in this process were 

annotated as yeast protein structures; all other mappings are, therefore, obtained from between-

species homology. Finally, to select the best structural match to each interacting pair of S. 

cerevisiae proteins, we looked at the list of potential structural matches for each partner protein in 

a high confidence PPI, and retained only the one which (i) met our initial alignment conditions 

above for both protein partners, (ii) showed the two protein partners in physical contact (i.e., 

mapped to spatially adjacent chains in the structure), (iii) had the highest composite coverage (sum 

of the coverage for each partner protein) in the BLAST alignment, and (iv) had a resolution better 

than 3 Å. If more than one potential structure remained for the PPI following the above process, 

the structure with the best resolution was kept. We further note that no homology modeling was 

performed in this analysis: the structures curated as best structural matches for S. cerevisiae PPIs 
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were all obtained directly from the PDB, using the process referred to as homology-based 

structural annotation transfer above. Structures that are not annotated as yeast structures on the 

PDB but are, nonetheless, the best structural match for a known S. cerevisiae PPI were taken as is, 

assuming that with high sequence conservation between two known PPIs, structural conservation 

must also be high. This homology-based structural mapping pipeline yielded structural models for 

718 PPIs between 611 S. cerevisiae proteins and is illustrated in Figure 1 and Figure S7. The code 

pipeline, as well as curated data from this analysis, are available in a GitHub repository.  

 

Calculation of structural properties at the residue level  

Figure 2 specifies basic definitions of the structural properties used here. Solvent 

Accessible Surface Area (SASA) was calculated using the DSSP program 56–57 with hydrogen 

atoms excluded. SASA values were normalized using reliable normalization values from Tien et 

al 58. to produce Relative Solvent Accessibility (RSA). For each residue in our structural models, 

two values of RSA were computed: monomer RSA, which was calculated using the structure of 

monomeric proteins (discarding the chain mapped to the partner protein in a structure), and 

complex RSA, which was obtained from the co-complexed structure of both protein partners (PPI 

structure). ΔRSA, the change in residue burial upon complex formation, was computed as the 

difference between monomeric and co-structured RSA values for each residue in the structural 

models (ΔRSA = monomer RSA – complex RSA). ΔRSA was subsequently used in the definition 

of interfaces: any residue with a change in burial upon complex formation (ΔRSA ≠ 0) was defined 

as an interfacial residue. For interfacial residues in our structural models, inter-protein Residue-

Residue Contacts (interRRC) number was calculated by adapting the Residue–Residue Contacts 

(RRC) definition from the single protein literature 28–29 to the context of PPIs: interRRCs were 
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taken as the subset of all RRCs for a residue which occurs between the chains mapped to two PPI 

partner proteins, ignoring contacts within the same protein. Distance from interface center 

(dCenter) was computed for all interfacial residues as the Euclidian distance between the residue 

and the geometric center of the interface it belongs to. To calculate distance from interface edges 

(dEdges), residues in the 90th percentile of largest values of complex RSA for each interface (most 

exposed interfacial residues upon complex formation) were assigned a distance of zero and defined 

as belonging to the edges of the interface. Distances for all other interfacial residues were 

calculated as the Euclidian distance to the closest edge residue.  

 

Evolutionary sequence analysis  

Estimating residue-level evolutionary rates is a non-trivial task and, thus, various methods 

have been proposed for this inference in the literature 3,8,34. Here, we used an established technique 

that infers rates from codon data: ω = dN/dS ratio 59–60. One additional measure of site-specific 

evolutionary rates, ConSurf score, which uses amino acid data for rate inference was also 

investigated to confirm results obtained from codon data 61. Conclusions obtained using these two 

techniques are typically correlated 62.  

 

For each protein involved in a high confidence S. cerevisiae PPI, we generated alignments 

using ClustalW 63 between (i) its translated ORF, (ii) the sequence of its mapped protein structure 

subunit, and (iii) orthologous translated ORFs in Saccharomyces paradoxus (S. paradoxus), 

Saccharomyces mikatae (S. mikatae), Saccharomyces bayanus (S. bayanus), Naumovozyma 

castellii (N. castellii), Candida glabrata (C. glabrata), Eremothecium gossypii (E. gossypii), 

Kluyveromyces lactis (K. lactis) and Candida albicans (C. albicans) obtained from Ensembl 53. 
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We reconstructed the codon alignments between the nine genomic yeast sequences using the 

protein alignments as guides. This alignment process is illustrated in Figure S7.  

 

The ω = dN/dS ratio compares the rate of amino acid changing substitutions (dN) with the 

rate of silent substitutions (dS) at the codon level. The former is presumed to be more selectable 

than the latter (thus dS acts as a normalization factor). To compute ω = dN/dS, we concatenated 

codons within each yeast species into groups binned according to whether they are interfacial or 

non-interfacial, or in uniform intervals of a given structural property (summarized in Figure 2). 

We then calculated a single ω = dN/dS value for a group using the codeml program within the 

PAML software package 60. We considered a single dN/dS value for the entire tree, which we 

specified as [[[[[S. cerevisiae, S. paradoxus], [S. mikatae, S. bayanus]], C. glabrata], N. castellii], 

[[E. gossypii, K. lactis], C. albicans]] following previous work 27,64–65. The final value of dN/dS 

and associated error for a group of codons was taken as the average and standard deviation of 

dN/dS values obtained for 100 bootstrap resamples (with replacement) from the original codons in 

the group. Other parameters in codeml were left to their default values. ConSurf score estimates 

of residue evolutionary rates were computed from amino acid data using the Rate4Site program 

61,66. This method computes relative conservation scores for each site in a protein using empirical 

Bayesian methods and a multiple sequence alignment of homologous sequences to essentially rank 

residues from most to least conserved within a protein. The ConSurf score obtained from running 

the program is lower for more conserved residues, and higher for less conserved ones. We ran 

ConSurf score calculations for all amino acids in our models using the Rate4Site program, and the 

same closely related species, and phylogenetic tree mentioned above for dN/dS calculations. Other 

parameters in Rate4site were left to their default values. When binning ConSurf scores for plotting 
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in this analysis, the final ConSurf scores value and associated error for a group of residues were 

taken as the average and standard error of ConSurf score values for each residue in the bin.  

 

Statistical analysis  

Correlations between residue structural properties.  

We calculated pairwise correlations between each residue structural property in R using 

the Visualization of a Correlation Matrix (‘corrplot’) package 67. The results in Figure 5 show 

pairwise Pearson correlation coefficients between different residue structural properties. 

Correlations between measures of RSA (monomer RSA, complex RSA, and ΔRSA) are computed 

for all residues in our models. Correlations with the other structural properties (interRRC, dCenter, 

dEdges) are computed for all interfacial residues in our models.  

 

Correlations with evolutionary rate  

We computed Pearson correlation coefficients between structural properties and measures 

of evolutionary rate for interfacial residues in our models (Figure 4(A), Table 1). Correlations in 

the first 2 rows of both Figure 4(A) and Table 1 are standard Pearson correlation obtained in R 

using the Feature Selection (Including Multiple Solutions) and Bayesian Networks (‘MXM’) 

package 68. As dN/dS values are computed for binned residues, all correlations with dN/dS were 

made with the center of each bin. Correlations labeled as “(weighted)” are weighted Pearson 

correlation, using the standard error on each dN/dS and ConSurf score value, respectively, to weigh 

the correlation analysis and were obtained from the Weighting and Weighted Statistics (‘weights’) 

package 69. The structural and evolutionary data used in this analysis does not follow a normal 
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distribution, therefore, significance for each correlation coefficient (as shown in Figure 4 (A) and 

Table 1) was determined from 1,000 rounds of randomizing permutations.  

 

Modeling the relationship between individual structural properties and dN/dS  

We studied the relationship between individual structural properties and dN/dS in PPI 

interfaces using a weighted least-square regression technique that takes the error associated with 

calculating dN/dS for each residue bin into account 27,70–71. One advantage of this approach is that 

residue bins with small dN/dS estimation errors receive greater weight in the line fitting process. 

This technique has been used in previous literature and was adapted in R. The regression model 

takes the following form:  

𝑦(𝑥) = 𝑤! +𝑤"𝑥" + 𝑒#	 

where 𝑦(𝑥) is the dN/dS score of residues in bin 𝑥 (binned according to similar structural property 

as previously described), 𝑥" is the center value of bin 𝑥 for the structural property investigated, 

𝑤!,	𝑤" are the intercept, and the weight associated with the structural feature in the regression 

model, and 𝑒#is a random variable (“noise term”) following a Gaussian distribution with zero mean 

and standard deviation equal to the standard error associated with the dN/dS score for bin 𝑥. This 

method also reports a standard error for the slope and intercept of the resulting linear fit which we 

used in t-tests to compare slope and intercept across different fits (Figure 3(D), Figure 4(C), 

Figure 6(E)). One model was trained for each structural property, and the resulting linear fits can 

be seen in Figures 3, 4, and 6.  
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Integrated modeling of the relationship between structural properties and evolutionary rate  

We investigated the combined influences of residue structural properties on evolutionary 

rate (ConSurf score) in PPI interfaces using a weighted multiple linear regression technique, again 

aiming to take the error associated with calculating ConSurf scores into account 72. The regression 

model was implemented in R with the Classification and Regression Training (‘caret’) package 73 

and takes the following form:  

𝑦(𝑥) = 𝑤! +𝑤"𝑥" +⋯+𝑤$𝑥$ + 𝑒# 

where 𝑦(𝑥) is the ConSurf score of residue 𝑥 (value normalized within each protein so that the 

average score for all residues is zero, and the standard deviation is one, with low scores associated 

with the most conserved positions in a protein),	𝑥", … , 𝑥$ are the values of each structural property 

investigated for residue 𝑥, ),	𝑤!, … , 𝑤$ are the intercept and weights associated with the structural 

features, and 𝑒#is a random variable (“error term”) following a Gaussian distribution with zero and 

standard deviation equal to the standard error associated with the ConSurf score for residue 𝑥. The 

model is trained using a 10-fold cross-validation process: the set of residues is randomly 

partitioned into 10 subsamples of equal size. A single subsample is retained as validation data for 

testing the model and the remaining 9 subsamples are used as training data. This cross-validation 

process is repeated 10 times so that each of the 10 subsamples is used exactly once as validation 

data. The advantage of this method is that all observations are used for both training and validation 

and each observation is used for validation exactly once 74. The overall performance of a model is 

taken as the average performance across all cross-validation trials and compared across models 

including different subsets of structural properties (Table 2).  
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Code Availability  

The code pipeline used to construct structural models of S. cerevisiae PPIs is available as a GitHub 

repository: https://github.com/LeahPollet/ interface_structure_evolution. Curated data underlying 

this article, including a list of high confidence PPIs in S. cerevisiae, and homology mapped PDB 

structures for S. cerevisiae PPIs are also available in the GitHub repository and can be accessed 

using the following https://doi.org/10. 5281/zenodo.4737637.  
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Preface to Chapter 4 

Chapter 3, and the article discussed therein, focuses on utilizing the wealth of newly 

available data on protein-protein interaction (PPI), including species-level interactome maps of all 

interacting proteins in a given species, and molecular-level detailed structural data on individual 

PPIs, to study variations in PPIs within a species. The findings and conclusions from this work 

give us critical insights into the structural properties and evolutionary constraints that shape 

interactions between proteins within a species. However, this large amount of PPI data can also be 

used to examine variations in PPIs (or PPI rewiring) between species, an investigation that is 

essential to fully understand PPIs and PPI evolution. This is the focus of Aim 3 in this thesis. 

 

Aim 3 focuses on the comparison of PPIs between Saccharomyces cerevisiae (S. 

cerevisiae) and Schizosaccharomyces pombe (S. pombe) to uncover possible drivers for observed 

differences in interactomes between the two yeasts. No large-scale analysis of the detailed 

molecular evolutionary mechanisms underlying interactome network rewiring on the genomic 

scale has previously been performed in the literature. As such, this aim uncovers some of the 

molecular mechanisms behind the phylogenetic loss or gain of an interaction between two species. 

 

The article included here covers the use of molecular models of PPIs in S. cerevisiae and 

S. pombe to classify PPIs according to whether they are preserved or different between the two 

yeast species. Site-specific evolutionary rates for residues in these different categories of PPIs are 

then compared. The evolution of PPI interfaces is considered more specifically, as this region of 

contact between interacting proteins could be particularly important to PPI evolution and PPI 

rewiring between species. Overall, the following important conclusions were reached: (i) residues 
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in PPI interfaces evolve significantly more slowly than non-interfacial residues when using 

lineage-specific measures of evolutionary rate, but not when using non-lineage-specific measures, 

(ii) both lineage-specific and non-lineage-specific evolutionary rate measures can distinguish 

interfacial residues from non-interfacial residues for preserved PPIs between the two yeasts, but 

only the lineage-specific measure is appropriate for PPIs that are different between the two yeasts, 

(iii) both lineage-specific and non-lineage-specific evolutionary rate measures are appropriate for 

elucidating structural determinants of protein evolution for residues outside of PPI interfaces. 

These findings demonstrate that, PPIs and PPI interfaces can be highly volatile in their evolution, 

thus requiring the use of lineage-specific measures when studying their evolution. The article also 

helps establish some of the evolutionary design principles and mechanisms that influence the 

evolution of PPIs between species. 
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4.1  Abstract 

Protein-protein interactions (PPIs) are known to rewire extensively during evolution 

leading to lineage- specific and species-specific changes in molecular processes. However, the 

detailed molecular evolutionary mechanisms underlying interactome network rewiring are not 

well-understood. Here, we combine high-confidence PPI data, high-resolution three-dimensional 

structures of protein complexes, and homology-based structural annotation transfer to construct 

structurally-resolved interactome networks for the two yeasts S. cerevisiae and S. pombe. We then 

classify PPIs according to whether they are preserved or different between the two yeast species 

and compare site-specific evolutionary rates of interfacial versus non-interfacial residues for these 

different categories of PPIs. We find that residues in PPI interfaces evolve significantly more 

slowly than non-interfacial residues when using lineage-specific measures of evolutionary rate, 

but not when using non-lineage-specific measures. Furthermore, both lineage-specific and non-

lineage-specific evolutionary rate measures can distinguish interfacial residues from non-

interfacial residues for preserved PPIs between the two yeasts, but only the lineage-specific 

measure is appropriate for rewired PPIs. Finally, both lineage-specific and non-lineage-specific 

evolutionary rate measures are appropriate for elucidating structural determinants of protein 

evolution for residues outside of PPI interfaces. Overall, our results demonstrate that unlike tertiary 

structures of single proteins, PPIs and PPI interfaces can be highly volatile in their evolution, thus 

requiring the use of lineage-specific measures when studying their evolution. These results yield 

insight into the evolutionary design principles of PPIs and the mechanisms by which interactions 

are preserved or rewired between species, improving our understanding of the molecular evolution 

of PPIs and PPI interfaces at the residue level.  
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4.2  Introduction 

Proteins rarely work alone within cells, and instead often act through protein–protein 

interactions (hereafter referred to as PPIs) that are essential to proper cellular function 1. For 

instance, PPIs are crucial to the regulation of protein function, as many proteins are regulated by 

transient interactions with protein kinases and other enzymes 2,3. Moreover, stable protein 

complexes that act as molecular machines and involve numerous PPIs are necessary for most 

cellular processes 4–6. Disruptions in PPIs can also lead to changes in organismal fitness, as 

numerous disease-causing mutations have been shown to disrupt protein interactions 7–11. 

Accordingly, works in recent years have focused on large-scale mapping of PPIs in different 

species, yielding high-confidence interaction networks (also known as “interactome networks” or 

“interactomes”) for various species 12–14, as well as detailed studies of many individual PPIs, 

including the determination of their three-dimensional (3D) molecular structures 15.  

 

This wealth of data allows for better comparative analysis of PPIs between species. In 

previous work, Cesareni et al. (2005) compared interactome networks between yeast and 

drosophila, estimating that only 24% of yeast PPIs are present in fly 16. Gandhi et al. (2006) 

compared interactomes between human, baker’s yeast, worm, and fly, and found the overlap in 

protein interactions between the four species to be very small 17. However, the small overlap 

between interactome networks from different species in these early studies may not be an accurate 

measure of the extent of network rewiring during evolution, as comparative interactomics analysis 

can be significantly affected by inaccuracies in early interactome datasets (both false positive and 

false negative errors). Recently, through careful consideration and controlling of both false 

positive and false negative errors in interactome datasets, and by focusing on comparing 
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interactions where both interacting protein partners have orthologs in two species, Vo et al. (2016) 

13 estimated that only 40% of fission yeast PPIs were conserved in baker’s yeast, and only 65% of 

fission yeast PPIs were conserved in human. These and other previous works 18,19 highlight that 

interactome networks undergo significant rewiring during evolution, via either gain or loss of 

proteins or interactions, leading to lineage-specific and species-specific changes in molecular 

processes and cellular functions. However, the detailed molecular evolutionary mechanisms 

underlying interactome network rewiring, and the site-specific selective pressures acting on 

rewired PPIs are not well-understood, especially on the genomic scale 20.  

 

Several previous studies have attempted to elucidate molecular evolutionary mechanisms 

underlying PPI rewiring for specific types of molecular interactions. For example, Xin et al. (2013)  

21, surveyed and compared interactions mediated by 79 SH3 domains in worm, baker’s yeast, and 

human, and observed drastic rewiring between worm and yeast, attributing this rewiring to 

variations in the sequence of the motifs recognized by the SH3 domains, as well as changes in 

binding specificities between orthologous SH3 domains. Reinke et al. (2013) 22, experimentally 

compared interactions between 53 human bZIP proteins to their homologs in four other species 

including fly and worm and found significant rewiring, highlighting the plasticity of the bZIP 

interactome, which can be dramatically rewired with changes to just one or two amino acids. While 

those previous studies are crucial in furthering our understanding of the mechanisms of PPI 

rewiring for these two groups of PPIs, those are specific examples of PPIs and a large-scale 

analysis of the detailed molecular evolutionary mechanisms underlying interactome network 

rewiring on the genomic scale remains needed.  
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We, therefore, focus on two yeast species with large, high-quality protein interactome 

networks available in the literature: baker’s yeast (S. cerevisiae) and fission yeast (S. pombe). The 

two species diverged from a common ancestor approximately 500 million years ago 23, and their 

genomes have since undergone significant changes, including gene duplications, deletions, and 

rearrangements 24. Estimates of the extent of conservation of PPIs between the two yeasts in the 

literature range from 36.3%25 to 40% 13.Here, we combine high-confidence PPI data, high- 

resolution 3D structures of protein complexes, and homology-based structural annotation transfer 

to construct structurally-resolved interactome networks for the two yeasts. This allows us to 

compute and study the evolutionary rates of specific residue sites in the PPIs, rather than 

evolutionary rates for full proteins 20,25,26. We focus on the region of contact between protein 

partners in a PPI, known as the interface. The interface is a critical feature of PPIs both structurally 

and functionally, as mutations to interfacial residues can lead to altered protein–protein binding 

affinities and improper PPI function, which can have implications for organismal fitness, and 

health 27,28. Interfacial residues are also typically more evolutionarily conserved than non- 

interfacial residues, further establishing the critical role that they play in mediating the interactions 

between protein partners and ensuring proper PPI formation and function 25,29–32. Furthermore, we 

classify PPIs according to whether they are preserved or different between the two yeast species, 

then compute and compare site-specific evolutionary rates of interfacial versus non-interfacial 

residues for these different categories of PPIs. Finally, we investigate the use of lineage-specific 

(ConSurf-rate4site scores computed from closely related species 33,34 and non-lineage-specific 

(ConSurf-DB scores from the ConSurf database 35 evolutionary rates in this work, as they may be 

particularly interesting to the study of PPI rewiring, a highly lineage-specific event.  
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We find that, in both S. cerevisiae and S. pombe, residues in PPI interfaces evolve 

significantly more slowly than non-interfacial residues when using lineage-specific measures of 

evolutionary rate (ConSurf-rate4site), but not when using non-lineage-specific measures of 

evolutionary rate (ConSurf-DB). Furthermore, only the lineage-specific evolutionary rate measure, 

but not the non-lineage-specific evolutionary rate measure, is able to distinguish interfacial 

residues from non- interfacial residues for PPIs that are rewired or different between the two yeasts. 

In contrast, both lineage-specific and non-lineage-specific evolutionary rate measures can 

distinguish interfacial residues from non-interfacial residues for PPIs that are preserved between 

the two yeasts. It is expected that non-lineage-specific evolutionary rates may not be appropriate 

to study certain types of PPIs. For instance, if a PPI only occurs in one specific lineage, using 

species outside of that lineage in evolutionary rate calculations may incorrectly estimate the 

selective pressures acting on some residues, especially those at the interface of contact between 

the two partner proteins. However, the magnitude of the difference in results obtained using 

lineage-specific versus non-lineage specific evolutionary rates in this work is truly surprising and 

shows that PPI rewiring, and the corresponding selective pressure on interfacial residues as 

measured by site-specific evolutionary rates, are highly lineage specific. Finally, both lineage-

specific and non-lineage-specific evolutionary rate measures are appropriate for elucidating 

structural determinants of protein evolution for residues outside of PPI interfaces which are 

expected to be much less lineage-specific, such as residue burial or exposure to solvent.  

 

Overall, this work is the first large-scale evolutionary rate analysis of PPI network rewiring 

between S. cerevisiae and S. pombe at the level of single residues. Our results demonstrate that 

PPIs, PPI interfaces, as well as the selective pressures acting on interfacial residues, can be highly 
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volatile in their evolution and can vary greatly between different species, thus requiring the use of 

lineage-specific measures when studying their evolution. These results yield insight into the 

evolutionary design principles of PPIs and the molecular evolutionary mechanisms by which 

interactomes rewire between species, improving our understanding of the molecular evolution of 

PPIs and PPI interfaces at the residue level.  

 

4.3  Results 

Interfacial residues tend to evolve more slowly than non-interfacial residues, but only when 

using lineage-specific evolutionary rate measures  

We assembled a dataset of high-quality three- dimensional (3D) structural models for a list 

of high-confidence protein–protein interactions (PPIs) in baker’s yeast (S. cerevisiae) and fission 

yeast (S. pombe) (see Materials and Methods). For PPIs with experimentally-determined 

structure in the Protein Data Bank (PDB), we used the experimental structure for all subsequent 

analyses. For PPIs with no experimental structure in the PDB, if they have a homologous PPI with 

experimental structure in the PDB, we transferred the structural annotations from the homologous 

PPI (with available experimental structure) to the PPI of interest via sequence alignment. This 

homology-based structural annotation transfer process was successfully used in previous work and 

is further described in these works 26,44. The final dataset comprises high-quality structural models 

for 717 PPIs between 611 S. cerevisiae proteins containing more than 400,000 residues, and 191 

PPIs between 191 S. pombe proteins containing more than 140,000 residues.  

 

We then used manually curated ortholog mappings 38, and reciprocal BLAST alignments 

39 between proteins in the two yeast species to further classify S. cerevisiae and S. pombe PPIs in 
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our dataset as either preserved, having a missing ortholog, or rewired between the two yeasts. 

Preserved PPIs are PPIs that can be found in both S. cerevisiae and S. pombe. Rewired PPIs are 

PPIs that can be found in only one of S. cerevisiae and S. pombe, despite both protein partners 

having orthologs in the two species. We note that this set of rewired PPIs includes both PPIs that 

were absent in the most recent common ancestor of S. cerevisiae and S. pombe and subsequently 

gained in one species, as well as PPIs that were present in the most recent common ancestor of S. 

cerevisiae and S. pombe and subsequently lost in the other species and does not distinguish 

between those two cases. Missing ortholog PPIs are PPIs where at least one of the interacting 

protein partners has no ortholog or even homolog in either S. cerevisiae or S. pombe, and thus, we 

know that the interaction that is present in one of the yeast species is truly absent in the other 

species. Here we also note that this set of missing ortholog PPIs includes both PPIs where an 

interaction partner was absent in the most recent common ancestor of S. cerevisiae and S. pombe 

and subsequently gained in one species, as well as PPIs where an interaction partner was present 

in the most recent common ancestor of S. cerevisiae and S. pombe and subsequently lost in the 

other species and does not distinguish between those two cases. This process yielded 102 preserved 

PPIs, 447 missing ortholog PPIs, and 202 rewired PPIs between the two yeast species (additional 

details on the number of PPIs curated from each species listed in Table S1).  

 

Next, we identified interfacial and non-interfacial residues in all S. cerevisiae and S. pombe 

PPIs with high-quality structural models. Interfacial residues are defined as amino acid residues 

exhibiting a change in solvent accessibility upon formation of a PPI complex. We, therefore, 

computed ΔRSA, the change in a residue’s relative solvent accessibility (RSA) upon complex 

formation, for all residues in our PPI structural models, and residues with ΔRSA ≠ 0 were labeled 
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as interfacial. This yielded more than 50,000 S. cerevisiae interfacial residues and over 8,000 S. 

pombe interfacial residues (data curation pipeline summarized in Figure 1 and further detailed in 

Materials and Methods).  

 

Figure 1. Computational pipeline. Graphical representation of the pipeline used for curation, 
homology-based structural annotation transfer, and rewiring type classification of PPIs in S. 
cerevisiae and S. pombe. Proteins are illustrated in cross-section as circles. Pairs of interacting 
proteins (PPIs) are illustrated in cross-section as circles connected by a blue line. Proteins that do 
not interact or are missing in a species are highlighted with a blue cross. Proteins and PPIs in S. 
cerevisiae and S. pombe are illustrated with different colors. Detailed description of the pipeline 
can be found in Materials and Methods.  
 

We then assessed the degree of evolutionary constraint on interfacial and non-interfacial 

residues in all yeast PPIs with structural models using two measures: ConSurf-rate4site score and 

ConSurf-DB score (see Materials and Methods). These represent two popular ways to estimate 

residue evolutionary rate in the literature.  

 

ConSurf-rate4site score is a measure of residue conservation in protein structures. It is 

calculated by comparing the amino acid at each site in a protein sequence to the corresponding 

amino acids in a chosen set of aligned closely related species. This measure is lineage-specific as 
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it considers only the evolution of the protein in the species of interest and in a chosen set of closely 

related species 34. In contrast, ConSurf-DB scores available on the ConSurf database are not 

lineage-specific, and instead their calculations use sequence alignments to as many species as 

possible, including species outside the close lineage of the species of interest 35. ConSurf-DB 

scores are calculated by comparing the amino acid at each sites in a protein sequence to the 

corresponding amino acids in all available sequences. While this measure provides a 

comprehensive view of residue conservation in all species containing proteins homologous to the 

protein of interest, it may not be ideal when studying PPIs, as PPIs are highly lineage-specific. 

Indeed, PPIs are often characterized by small changes in amino acid residues that enable or disable 

specific interactions between two or more proteins. These changes are frequently lineage-specific, 

meaning that they have evolved in the species of interest and its closely related species. As a result, 

using a sequence alignment to as many species as possible, including those that are not in the close 

lineage of the species of interest, may fail to capture lineage-specific signals that are important to 

the study of PPIs.  

 

Figure 2(A) shows the average evolutionary rates for interfacial residues (ΔRSA ≠ 0) and 

non-interfacial residues (ΔRSA = 0) in S. cerevisiae PPIs. Interfacial residues are, on average, 

significantly more conserved than non-interfacial residues using the lineage-specific estimate of 

evolutionary rates (ConSurf-rate4site score), but not significantly more conserved using the non- 

lineage-specific estimate of evolutionary rates (ConSurf-DB score). T-tests for the difference in 

average evolutionary rates between interfacial and non-interfacial residues in S. cerevisiae PPIs 

(Figure 2(B)) indicate a statistically significant difference for the lineage-specific measure of 

evolutionary rates (P-value < 0.01), but not for the non-lineage-specific measure of evolutionary 



 

 140 

rates (P-value > 0.05). The results in S. pombe are similar, with interfacial residues, on average, 

significantly more conserved than non-interfacial residues using the lineage-specific measure of 

evolutionary rates (ConSurf-rate4site score), but the difference in evolutionary rates is much 

smaller when using the non-lineage-specific estimate of evolutionary rates (ConSurf-DB score) 

(Figure 2(C)). The t-tests for the difference in average evolutionary rates between interfacial and 

non-interfacial residues in S. pombe PPIs (Figure 2(D)) indicate a statistically significant 

difference for the lineage-specific measure of evolutionary rates (P-value < 0.01) with a larger 

effect size, and a less statistically significant difference for the non-lineage-specific measure of 

evolutionary rates (P-value < 0.05) with a smaller effect size.  

 

Figure 2. The difference in evolutionary rate between interfacial and non-interfacial 
residues. (A) Average evolutionary rates (as measured by ConSurf-rate4site score and ConSurf-
DB score), plotted for interfacial and non-interfacial residues from all S. cerevisiae PPIs in our 
datasets. Standard errors for the average values of each group of residues are also shown. (B) 



 

 141 

Results of t-tests for differences in average evolutionary rates between interfacial and non-
interfacial residues in S. cerevisiae PPIs using both evolutionary rate measures. (C) Average 
evolutionary rates (as measured by ConSurf-rate4site score and ConSurf-DB score), plotted for 
interfacial and non-interfacial residues from all S. pombe PPIs in our datasets. Standard errors for 
the average values of each group of residues are also shown. (D) Results of t-tests for differences 
in average evolutionary rates between interfacial and non-interfacial residues in S. pombe PPIs 
using both evolutionary rate measures. Comparisons significant at the P-value < 0.05 level are 
denoted with a single asterisk (*) and comparisons significant at the P-value < 0.01 level are 
denoted with a double asterisk (**).  

 

Previous work showed that interfacial residues are under strong evolutionary constraints 

and tend to be more conserved than non-interfacial residues, although estimates of those 

constraints vary depending on the dataset considered 30–33,37,44. Here we find that, for proteins 

involved in S. cerevisiae and S. pombe PPIs, interfacial residues are indeed, on average, more 

conserved than non-interfacial residues, when using lineage-specific measures of evolutionary 

rates, with this difference in conservation being much smaller when using non-lineage-specific 

measures of evolutionary rates. This is surprising as the non-lineage-specific measure of 

evolutionary rate used here (ConSurf-DB score) is a popular and widely used evolutionary rate 

measure in the literature. The discrepancy of results observed may, therefore, be evidence that to 

study PPIs, which are highly lineage-specific, using lineage-specific evolutionary rate measures is 

important.  

 

Lineage-specific evolutionary rate measures are required to distinguish interfacial from non-

interfacial residues in rewired PPIs, as well as PPIs with a missing ortholog between species  

To further probe the importance of lineage specificity in studying PPI structure and 

evolution, we studied preserved PPIs, PPIs missing an ortholog, and rewired PPIs in baker’s yeast 

and fission yeast separately, investigating differences in evolutionary conservation between the 

three PPI types. Preserved PPIs are PPIs that are present in both baker’s yeast and fission yeast. 
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As such, preserved PPIs are expected to be more universal and less specific to a given lineage. In 

contrast, rewired PPIs, as well as PPIs where an ortholog is missing in one of the two yeast species, 

are expected to be unique to a particular species and its closely related lineage.  

 

Figure 3(A) and (E) shows the average evolutionary rates for interfacial residues (ΔRSA 

≠ 0) and non-interfacial residues (ΔRSA = 0) in preserved PPIs in baker’s yeast, and preserved 

PPIs in fission yeast respectively.  

 

Figure 3. The difference in evolutionary rate between interfacial and non-interfacial residues 
for preserved, missing ortholog, and rewired PPIs. (A-C) Average evolutionary rates (as 
measured by ConSurf-rate4site score and ConSurf-DB score), plotted for interfacial and non-
interfacial residues from all preserved PPIs, missing ortholog PPIs and rewired PPIs in S. 
cerevisiae respectively. Standard errors for the average values of each group of residues are also 
shown. (D) Results of t-tests for differences in average evolutionary rates between interfacial and 
non- interfacial residues in preserved PPIs, missing ortholog PPIs and rewired PPIs in S. cerevisiae 
using both measures of evolutionary rate. (E-G) Average evolutionary rates (as measured by 
ConSurf-rate4site score and ConSurf-DB score), plotted for interfacial and non-interfacial residues 
from all preserved PPIs, missing ortholog PPIs and rewired PPIs in S. pombe respectively. 
Standard errors for the average values of each group of residues are also shown. (H) Results of t-
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tests for differences in average evolutionary rates between interfacial and non-interfacial residues 
in preserved PPIs, missing ortholog PPIs and rewired PPIs in S. pombe using both measures of 
evolutionary rate. Comparisons significant at the P-value < 0.05 level are denoted with a single 
asterisk (*) and comparisons significant at the P-value < 0.01 level are denoted with a double 
asterisk (**).  
 
 

Preserved PPIs are PPIs where two protein partners have been found to interact in one of 

the two yeast species (S. cerevisiae or S. pombe), and orthologs of the two protein partners also 

interact in the other yeast species. For preserved PPIs in both yeast species, interfacial residues 

are, on average, significantly more conserved than non-interfacial residues using both the lineage-

specific measure of evolutionary rates (ConSurf-rate4site score) and the non-lineage-specific 

measure of evolutionary rates (ConSurf-DB score). T-tests for the difference in average 

evolutionary rates between interfacial and non- interfacial residues in preserved PPIs in baker’s 

yeast (Figure 3(D)) and preserved PPIs in fission yeast (Figure 3(H)) indicate a statistically 

significant difference for the lineage-specific estimate of evolutionary rates (P-value < 0.01), as 

well as for the non-lineage-specific estimate of evolutionary rates (P-value < 0.05). Thus, we 

conclude that lineage specificity is less important for the investigation of PPIs that are preserved 

between the two yeast species. Indeed, as baker’s yeast and fission yeast are very distantly related 

evolutionarily, PPIs that are present in both species tend to be more universally conserved and 

found across many branches of the tree of life. Using lineage-specific measures of evolutionary 

rates to study those types of PPIs may, therefore, be less important.  

 

Figure 3(B) and (F) shows the average evolutionary rates for interfacial residues (ΔRSA 

≠  0) and non-interfacial residues (ΔRSA = 0) in missing ortholog PPIs in baker’s yeast, and 

missing ortholog PPIs in fission yeast respectively. Missing ortholog PPIs are PPIs where the two 

protein partners interact in one of the two yeast species (S. cerevisiae or S. pombe), and at least 
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one of the protein partners has no ortholog or even homolog in the other yeast species. We can, 

therefore, state with high confidence, that the PPI found in one of the yeast species has no 

counterpart in the other yeast species, as at least one of the interacting partners is truly absent. For 

missing ortholog PPIs in baker’s yeast (Figure 3(B)), interfacial residues are, on average, 

significantly more conserved than non-interfacial residues when using the lineage-specific 

ConSurf-rate4site score (P- value < 0.01, Figure 3(D)), but are significantly less conserved than 

non-interfacial residues when using the non-lineage-specific ConSurf-DB score (P-value < 0.05, 

Figure 3(D)), which is completely opposite to the trend expected. In addition, we observed similar 

results for missing ortholog PPIs in fission yeast (Figure 3(F)). Here, interfacial residues are, on 

average, significantly more conserved than non-interfacial residues when using the lineage-

specific ConSurf-rate4site score (P-value < 0.05, Figure 3(H)), but not when using the non-lineage 

specific ConSurf-DB score (P- value > 0.05, Figure 3(H)). Therefore, we conclude that lineage 

specificity is crucial to the study of PPIs with missing orthologs between species. 

  

Finally, we investigated rewired PPIs in both yeast species. Figure 3(C) and (G) shows 

the average evolutionary rates for interfacial residues (ΔRSA ≠ 0) and non-interfacial residues 

(ΔRSA = 0) in rewired PPIs in baker’s yeast, and rewired PPIs in fission yeast respectively. 

Rewired PPIs are PPIs where two protein partners have been found to interact in one of the two 

yeast species (S. cerevisiae or S. pombe), but orthologs of the protein partners do not interact in 

the other yeast species. For rewired PPIs in baker’s yeast (Figure 3(C)), interfacial residues are, 

on average, significantly more conserved than non-interfacial residues when using ConSurf-

rate4site score, the lineage-specific measure of evolutionary rates (P- value < 0.05, Figure 3(D)), 

but not significantly more conserved when ConSurf-DB score, the non-lineage-specific measure 
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of evolutionary rates is used (P-value > 0.05, Figure 3(D)). In addition, we observed similar results 

for rewired PPIs in fission yeast (Figure 3(G)) where interfacial residues are, on average, 

significantly more conserved than non-interfacial residues when using ConSurf-rate4site score, 

the lineage-specific measure of evolutionary rates (P-value < 0.01, Figure 3(H)), but not 

significantly more conserved when ConSurf-DB score, the non-lineage-specific measure of 

evolutionary rates is used (P-value > 0.05, Figure 3(H)). Thus, we conclude that lineage specificity 

is important to the study of PPI rewiring between species.  

 

Overall, these results are surprising and show that interfacial residues in preserved PPIs are 

significantly more conserved than non-interfacial residues in both S. cerevisiae and S. pombe, no 

matter which measure of evolutionary rate is used. However, for missing ortholog PPIs and 

rewired PPIs in both yeast species, the significantly increased conservation of interfacial residues 

is only observed when using lineage-specific evolutionary rate measures, and not observed at all 

when using non-lineage-specific evolutionary rate measures.  

 

Buried residues tend to evolve more slowly than exposed residues for non-interfacial 

residues, when using both lineage-specific and non-lineage-specific evolutionary rate 

measures  

While PPIs and PPI interfaces are highly lineage-specific and can vary significantly 

between different species, residue solvent exposure and burial for non-interfacial residues are 

expected to be more universal and less variable across different lineages. Hence, we hypothesized 

that non-lineage-specific measures of evolutionary rate are more appropriate for the study of buried 

versus exposed residues outside of PPI interfaces. To test this hypothesis, we compared 
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evolutionary rates obtained using both the lineage-specific measure and the non-lineage-specific 

measure for buried and exposed residues outside of PPI interfaces in S. cerevisiae and S. pombe 

PPIs. We computed residue burial as measured by relative solvent accessibility (RSA) for all non- 

interfacial residues in our PPI structural models and investigated evolutionary rates for buried 

residues (RSA < 0.25) and exposed residues (RSA ≥ 0.25) separately.  

 

Figure 4. (A) shows the average evolutionary rates for buried residues (RSA < 0.25) and 

exposed residues (RSA ≥ 0.25) outside of PPI interfaces in baker’s yeast PPIs. Buried residues are, 

on average, significantly more conserved than exposed residues using both ConSurf-rate4site 

score, the lineage-specific measure of evolutionary rates, and ConSurf-DB score, the non-lineage-

specific measure of evolutionary rates (P-value < 0.01, Figure 4(B)). In addition, we observed 

similar results for fission yeast PPIs (Figure 4(C)), where buried residues are, on average, 

significantly more conserved than exposed residues using both the ConSurf-rate4site score and the 

ConSurf-DB score measures of evolutionary rates (P-value < 0.01, Figure 4(D)). These results are 

in agreement with previous works in single proteins showing buried residues are under very strong 

evolutionary pressure to maintain protein structure and stability 41–43. Moreover, solvent exposure 

or degree of burial has been established as a significant structural predictor of residue evolutionary 

rate in single proteins 44.  

 

To further confirm these results, we compared evolutionary rates for buried and exposed 

residues outside of PPI interfaces in all three types of PPIs (preserved PPIs, missing ortholog PPIs 

and rewired PPIs) in both yeast species. We computed residue burial as measured by relative 

solvent accessibility (RSA) for all non-interfacial residues in our PPI structural models and 
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investigated evolutionary rates for buried residues (RSA < 0.25) and exposed residues (RSA  0.25) 

separately in the three PPI types.  

 

Figure 4. The difference in evolutionary rate between buried and exposed residues outside 
of PPI interfaces. (A) Average evolutionary rates (as measured by ConSurf-rate4site score and 
ConSurf-DB score), plotted for buried and exposed residues outside of PPI interfaces from all S. 
cerevisiae PPIs in our data. Standard errors for the average values of each group of residues are 
also shown. (B) Results of t-tests for differences in average evolutionary rates between buried and 
exposed residues outside of PPI interfaces in S. cerevisiae PPIs using both evolutionary rate 
measures. (C) Average evolutionary rates (as measured by ConSurf-rate4site score and ConSurf- 
DB score), plotted for buried and exposed residues outside of PPI interfaces from all S. pombe 
PPIs in our data. Standard errors for the average values of each group of residues are also shown. 
(D) Results of t-tests for differences in average evolutionary rates between buried and exposed 
residues outside of PPI interfaces in S. pombe PPIs using both evolutionary rate measures. 
Comparisons significant at the P-value < 0.01 level are denoted with a double asterisk (**).  
 

Figure 5(A–C) shows the average evolutionary rates for buried residues (RSA < 0.25) and 

exposed residues (RSA ≥ 0.25) outside of PPI interfaces in preserved PPIs, missing ortholog PPIs, 
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and rewired PPIs in S. cerevisiae respectively. Buried residues are, on average, significantly more 

conserved than exposed residues for all three PPI types and using both the ConSurf-rate4site score 

and the ConSurf-DB score measures of evolutionary rates (P-value < 0.01, Figure 5. (D)). 

Moreover, we observed similar results for fission yeast PPIs (Figure 3(E–G)), where buried 

residues are also, on average, significantly more conserved than exposed residues for all three PPI 

types and using both the ConSurf-rate4site score and the ConSurf-DB score measures of 

evolutionary rates (P-value < 0.01, Figure 5(H)).  

 

Overall, these results confirm that non-lineage-specific measures of evolutionary rates such 

as the ConSurf-DB scores are appropriate to study more universally-conserved processes such as 

residue exposure or burial for non-interfacial residues, as well as PPIs that are conserved across 

species. In contrast, when studying lineage-specific processes that can be highly variable between 

different species or lineages (e.g., interfacial residues within rewired PPIs or PPIs missing an 

ortholog between two species), using lineage-specific measures of evolutionary rates is necessary.  

 

4.4  Discussion 

In this work, we study the detailed molecular evolutionary mechanisms underlying 

interactome network rewiring, and the site-specific selective pressures acting on rewired protein–

protein interactions (PPIs) between the interactomes of S. cerevisiae (baker’s yeast) and S. pombe 

(fission yeast).  
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Figure 5. The difference in evolutionary rate between buried and exposed residues outside 
of PPI interfaces for preserved, missing ortholog and rewired PPIs. (A–C) Average 
evolutionary rates (as measured by ConSurf-rate4site score and ConSurf-DB score), plotted for 
buried and exposed residues outside of PPI interfaces from all preserved PPIs, missing ortholog 
PPIs, and rewired PPIs in S. cerevisiae respectively. Standard errors for the average values of each 
group of residues are also shown. (D) Results of t-tests for differences in average evolutionary 
rates between buried and exposed residues outside of PPI interfaces in preserved PPIs, missing 
ortholog PPIs, and rewired PPIs in S. cerevisiae using both measures of evolutionary rate. (E–G) 
Average evolutionary rates (as measured by ConSurf-rate4site score and ConSurf-DB score), 
plotted for buried and exposed residues outside of PPI interfaces from all preserved PPIs, missing 
ortholog PPIs, and rewired PPIs in S. pombe respectively. Standard errors for the average values 
of each group of residues are also shown. (H) Results of t-tests for differences in average 
evolutionary rates between buried and exposed residues outside of PPI interfaces in preserved 
PPIs, missing ortholog PPIs, and rewired PPIs in S. pombe using both measures of evolutionary 
rate. Comparisons significant at the P-value < 0.05 level are denoted with a single asterisk (*), and 
comparisons significant at the P-value < 0.01 level are denoted with a double asterisk (**).  
 

We construct structurally-resolved interactome networks for the two yeasts, and compute 

and compare the site-specific evolutionary rates of interfacial versus non-interfacial PPI residues 

in both species. We find that interfacial residues in both baker’s and fission yeast PPIs are 

significantly more conserved than non-interfacial residues when using a lineage-specific measure 
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of residue evolutionary rates. Those results are in agreement with previous works showing the 

critical role that interfacial residues play in mediating the interactions between protein partners 

and ensuring proper PPI formation and function 26,29–32,37,44. However, when using a non-lineage-

specific measure of evolutionary rate, the difference in evolutionary rate between interfacial 

residues and non-interfacial residues is drastically reduced for both species. Hence, the extent to 

which interfacial residues can be distinguished from other residues depends sensitively on the 

details of the site-specific evolutionary rate measures used, specifically whether the evolutionary 

rate measures are lineage-specific or not. This surprising sensitivity suggests that considering the 

close lineage of a species is important when studying evolutionary rates in PPIs. To explore 

possible drivers for this interesting result, we subdivided all interfacial residues in our data into 

three distinct categories commonly used in the literature: interfacial rim residues, interfacial 

support residues and interfacial core residues 59. We then compared evolutionary rates for these 

three types of interfacial residues to non-interfacial residue evolutionary rates (Supplementary 

material Analysis S2). The results (Figure S3, Figure S4) indicate that interfacial core residues 

appear to be ones most sensitive to the choice of closely related species used in evolutionary rate 

calculation. This interesting observation supports previous works on the evolution of PPIs stating 

that interfacial surface and interfacial rim may be pre-existing in monomeric proteins, and that 

evolving a new PPI could require mutations to form an interface core only 59. Under the above- 

described model of evolution of a PPI, interfacial core residues would indeed be highly lineage- 

specific, and, therefore, particularly sensitive to the choice of closely related species considered 

when calculating their evolutionary rates, which is what we observe here.  
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To further probe the basis of this conclusion, we investigated preserved PPIs, PPIs missing 

an ortholog and rewired PPIs in S. cerevisiae and S. pombe separately. Preserved PPIs are PPIs 

that are present in both baker’s yeast and fission yeast, and thus are more universal and less specific 

to a given lineage. We, therefore, expect that non-lineage-specific measures of evolutionary rates 

may be appropriate to the study of preserved PPIs. In contrast, PPIs that are different between the 

two yeast species, including cases where an interaction is gained or lost but both binding partners 

are retained (rewired PPIs), and cases where a binding partner is gained or lost between species 

(missing ortholog PPIs) may be unique to a species and its closely related lineage, and thus much 

more sensitive to the choice of species and lineages used in evolutionary rate calculations. Indeed, 

we find that interfacial residues in preserved PPIs are significantly more conserved than non-

interfacial residues in both S. cerevisiae and S. pombe when using both lineage-specific and non-

lineage-specific measures of evolutionary rates. In contrast, for residues in PPIs that are different 

between the two yeast species (including rewired PPIs, as well as PPIs where an ortholog is 

missing in one of the yeast species), the increased conservation of interfacial residues is only 

observed when using a lineage-specific evolutionary rate measure, and not observed at all when 

using a non-lineage- specific evolutionary rate measure. These remarkable differences show that 

the loss or gain of an ortholog in a PPI, as well as PPI rewiring are highly lineage-specific events, 

and therefore the choice of evolutionary rate measures used to study these types of PPIs is very 

important.  

 

Furthermore, each rewired PPI in our data is associated with a set of “interfacial” residues 

(in the species with the interaction), and a set of “pseudo-interfacial” residues (a set of non- 

interfacial residues in the species without the interaction that align to the functional interface in 
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the species with the interaction). We therefore compared evolutionary rates for interfacial residues 

and pseudo-interfacial residues in all S. cerevisiae and S. pombe rewired PPIs and their 

corresponding single, non-interacting proteins, and the results show that interfacial residues are, 

on average, more conserved than their pseudo- interfacial Supplementary material Analysis S1, 

Figure S1, S2).  

 

Finally, both lineage-specific and non-lineage-specific measures of evolutionary rates are 

able to distinguish buried residues from exposed residues outside of PPI interfaces in all three 

types of PPIs (preserved PPIs, missing ortholog PPIs, and rewired PPIs) in both yeast species. 

Overall, these results suggest that including more distantly related species in evolutionary rate 

calculations may be appropriate when elucidating structural determinants of protein evolution for 

non- interfacial residues in PPIs, such as residue burial or exposure to solvent, and when studying 

more universally-conserved PPIs such as PPIs that are preserved between S. cerevisiae and S. 

pombe. In contrast, when investigating the loss or gain of an ortholog, or the rewiring of PPIs 

between different species, using lineage-specific evolutionary rates is crucial.  

 

The data curation process used to construct our dataset of PPIs with both sequence and 

structure information comes with several caveats. PPI assays used to determine whether proteins 

interact in a species have associated false positive rates. As such, two proteins can be falsely 

labeled as interacting due to experimental errors. To address this caveat, only high-confidence 

PPIs, detected in at least two independent experiments, were used for subsequent analyses in this 

work. The false positive rate of our PPI dataset is further minimized by removing all PPIs that do 

not map (via sequence homology) to any physically interacting subunits in experimental 3D 
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structures of protein complexes. These multiple validation steps ensure that the false positive rate 

in our PPI dataset is minimal, and that PPIs found to be present in both yeast species (S. cerevisiae 

and S. pombe) can be labeled as “preserved PPIs” with high confidence.  

 

In addition to false positive errors, PPI assays also have associated false negative errors. 

For example, it is estimated that 50% of PPIs in S. cerevisiae have thus far been experimentally 

identified 45. As a result of the incomplete nature of the current yeast PPI networks, our dataset of 

PPIs labeled as rewired in this work not only includes PPIs that are truly present in one of the two 

yeast species (S. cerevisiae or S. pombe) and absent in the other, but also includes some PPIs that 

are truly preserved between the two yeasts but have simply not been detected in one of the two 

yeast species thus far. Indeed, our rewired PPI dataset appears to be enriched in weaker 

interactions, as PPIs in our rewired PPI sets have smaller interfaces and a larger proportion of rim 

to core interfacial residues in the interface than other PPIs in our data 59,60 (Supplementary 

Material Table S2). As weak interactions are significantly harder to detect and study, some 

interactions classified as rewired here could in fact be preserved, and simply not have been detected 

in one of the two yeast species thus far 60. Despite this possible inclusion of some preserved PPIs 

in our rewired PPI dataset, we still observe a significantly better performance of lineage-specific 

evolutionary rate measures over non-lineage-specific evolutionary rate measures in discriminating 

interfacial from non-interfacial residues. Given the similar performance of both evolutionary rate 

measures on the preserved PPI dataset, we expect that the performance of lineage-specific 

evolutionary rate measures for the pure rewired PPI dataset will be even better than observed in 

this work.  
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To further investigate this issue, the set of missing ortholog PPIs was constructed as a gold-

standard dataset of PPIs that are truly missing in one of the two yeast species. Indeed, if a PPI 

occurs in S. cerevisiae, but one of the interacting protein partners has no ortholog or even homolog 

in S. pombe, we can be highly confident that the counterpart PPI does not exist in S. pombe, and 

vice versa. Indeed, we find that the difference in performance between the lineage-specific 

evolutionary rate measures and non-lineage-specific evolutionary rate measures, when 

discriminating interfacial from non-interfacial residues, is the largest and most significant for this 

gold standard dataset. This result further confirms that the choice of lineage used in evolutionary 

rate calculations is highly important to the study of PPI differences and PPI rewiring between 

interactomes.  

 

Finally, the PPI structural data used in this analysis comes with biases typically associated 

with experimental 3D structural measurements. Our PPI structural data may be biased towards 

proteins from particular cellular environments, more ancient and conserved proteins, commonly 

studied proteins, and highly expressed proteins 44,45. To address these caveats, we include in our 

PPI structural datasets not only high- resolution experimental 3D structures of protein complexes, 

but also high-quality homology-based structural models for PPIs with no known 3D structures. 

Including such high-quality homology-based PPI structural models not only increases the cover- 

age but also reduces the biases in our PPI structural datasets. In addition, our results and 

conclusions are based on comparisons of different subsets within our PPI structural data where the 

same biases exist. Hence, these biases are likely cancelled out during the comparisons and unlikely 

to affect our results and conclusions. When performing homology-based structural annotation 

transfer, we assume that differences at the sequence level among close homologs do not produce 
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measurable structural differences and align yeast homologs to the same 3D structure. But even 

when the sequence-structure alignment is perfect, we cannot be fully confident that a given 

homology-mapped structure accurately reports on in-vivo properties of its residues 44. However, 

we believe that the data curation process used here is still the best existing and the most reliable 

method for integrating structural details with molecular evolutionary properties of PPIs on a 

proteomic scale. Moreover, this method will only improve as the spaces of known PPIs and known 

structures grow. To further validate that the use of homology-based structural models does not 

unduly bias our results, we repeat the analysis using only experimentally determined protein 

complex structures, with no homology-based PPI structural models. Despite this additional 

analysis having a significantly reduced amount of data it yields results that are consistent with our 

main conclusions (Supplementary material Analysis S3, Figure S5–S8).  

 

In summary, this work yields insight into the evolutionary design principles of PPIs and 

the mechanisms by which interactions are preserved or rewired between species, improving our 

understanding of the molecular evolution of PPI and PPI interfaces at the residue level.  

 

4.5  Materials and Methods 

Homology-based structural annotation transfer  

First, we curated a high-confidence set of physical interactions between Saccharomyces 

cerevisiae (S. cerevisiae) proteins, and Schizosaccharomyces pombe (S. pombe) proteins 

separately: we filtered the most recent release of the BioGRID database (May 2023) for physical 

PPIs reported in S. cerevisiae or S. pombe by two or more independent experiments (determined 

by different PubMed IDs), yielding 23,272 high-confidence PPIs between 4,321 S. cerevisiae 
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proteins, and 3,627 high-confidence PPIs between 2,059 S pombe proteins 46,47. We then 

individually mapped the proteins involved in the aforementioned PPIs to 3D structures by 

performing gapped BLAST 39 searches under default settings between (i) a database built from the 

proteins’ translated open reading frame sequences (ORFs) obtained on Ensembl 48 and (ii) 510,817 

biological unit structure subunit sequences from the Protein Data Bank (PDB) 15. For each ORF in 

the database, we constructed a list of potential structural matches by selecting biological unit 

structures which (i) produced E-values below a cut-off of 1 ×	10%& in the alignment, (ii) had high 

coverage (>50%) in the alignment for both the ORF and the subunit sequence, and (iii) showed no 

inconsistencies (e.g., insufficient atomic detail, unreasonable distances between alpha-carbons, 

non-sensible heavy atom counts). We found 2,212 S. cerevisiae proteins and 710 S. pombe proteins 

involved in our high-confidence set of PPIs with at least one biological unit structure mapped to 

their ORF meeting those initial conditions. We further excluded all biological unit structures 

annotated as “low” or “very low” confidence on the QSbio database 49 as those structures could be 

doubtful biological assembly assignments. Finally, to select the best structural match to each 

interacting pair of S. cerevisiae or S. pombe proteins, we looked at the list of potential structural 

matches for each partner protein in a high-confidence PPI, and retained only the one which (i) met 

our initial alignment conditions above for both protein partners, (ii) showed the two protein 

partners in physical contact (i.e., mapped to spatially adjacent chains in the structure), (iii) had the 

highest composite coverage (sum of the coverage for each partner protein) in the BLAST 

alignment, and (iv) had a resolution better than 3 Å. If more than one potential structure remained 

for the PPI following the above process, the structure with the best resolution was kept. We further 

note that no explicit structural model building, and refinement were performed in this analysis: the 

structures curated as best structural matches for S. cerevisiae or S. pombe PPIs were all obtained 
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directly from the PDB, using the process referred to as homology-based structural annotation 

transfer above. Structures that are not annotated as yeast structures on the PDB but are, 

nonetheless, the best structural match for a known S. cerevisiae or S. pombe PPI were taken as is, 

assuming that with high sequence conservation between two known PPIs, structural conservation 

must also be high. This homology-based structural mapping pipeline yielded structural models for 

717 PPIs between 611 S. cerevisiae proteins containing more than 400,000 residues, and 191 PPIs 

between 191 S. pombe proteins containing more than 140,000 residues and is illustrated in Figure 

1. This homology-based structural annotation transfer process was successfully used in previous 

work and is further described in those works 26,44.  

 

Ortholog mapping between the two yeast species  

For each protein involved in S. cerevisiae or S. pombe PPIs, we established whether they 

have an ortholog in the other yeast species. First, using a manually curated lists of orthologs 

between the two yeasts, available on the Pombase server 38, we constructed an initial list of 

orthologs between PPI proteins in the two species. As this manually curated list is a S. pombe 

resource, it includes all S. pombe proteins in our data but only 20% of S. cerevisiae proteins in our 

data. No similar manually curated list of orthologs is currently available for the mapping from S. 

cerevisiae to S. pombe. Therefore, to improve our coverage of ortholog mapping from S. cerevisiae 

to S. pombe, we performed Reciprocal Best Hits BLAST (RBHB) using an E-value cut-off of 

1 × 10%& between databases built from proteins’ translated open reading frame sequences (ORFs) 

obtained on Ensembl48 for each yeast species. If two proteins, each encoded in a different genome, 

find each other as the highest-scoring matches among the proteome of the opposite genome, they 

are reciprocal best hits (RBH) and thus inferred to be orthologs 50. This yielded an ortholog 
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mapping for 108 additional proteins involved in structurally modeled S. pombe and S. cerevisiae 

PPIs. Finally, proteins with no homologs in the other yeast species (via BLAST alignment using 

an E-value cut-off of 1 × 10%&) were labeled as proteins that definitely do not have any ortholog 

in the other species. Overall, this ortholog mapping process between the two yeasts yielded an 

ortholog mapping for 191 proteins involved in structurally modeled S. pombe PPIs, and 517 

proteins involved in structurally modeled S. cerevisiae PPIs.  

 

PPI type classification  

Using the ortholog mappings described above, we further classified S. cerevisiae and S. 

pombe PPIs in our dataset as either preserved, missing an ortholog, or rewired between the two 

yeast species. PPIs between two S. cerevisiae or S. pombe proteins that have a corresponding PPI 

between orthologs of the two proteins in the other species were labeled as preserved PPIs. We 

found 102 preserved PPIs in our structurally modeled PPI dataset. Rewired PPIs are PPIs where 

two protein partners interact in S. cerevisiae or S. pombe but orthologs of the protein partners do 

not interact in the other yeast species. Our dataset of structurally modeled PPIs contains 202 

rewired PPIs. Finally, missing ortholog PPIs are PPIs between two S. cerevisiae or S. pombe 

proteins, where at least one of the two interacting protein partners has no ortholog or even homolog 

in the other species. Thus, we know that the PPI observed in one of the yeast species is truly absent 

in the other species. We found 447 missing ortholog PPIs in our structurally modeled PPI dataset. 

The data curation pipeline used to classify PPIs as preserved, rewired, or missing an ortholog is 

illustrated in Figure 1.  
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Calculation of structural properties at the residue level  

Solvent Accessible Surface Area (SASA) was calculated using the DSSP program 51,52 with 

hydrogen atoms excluded. SASA values were normalized using reliable normalization values from 

Tien et al. 53 to produce Relative Solvent Accessibility (RSA). For each residue in our structural 

models, two values of RSA were computed: monomer RSA, which was calculated using the 

structure of monomeric proteins (discarding the chain mapped to the partner protein in a structure), 

and complex RSA, which was obtained from the co-complexed structure of both protein partners 

(PPI structure). ΔRSA, the change in residue burial upon complex formation, was computed as the 

difference between monomeric and co-structured RSA values for each residue in the structural 

models (ΔRSA = monomer RSA − complex RSA). ΔRSA was subsequently used in the definition 

of interfaces: any residue with a change in burial upon complex formation (ΔRSA ≠ 0) was defined 

as an interfacial residue. This yielded more than 50,000 S. cerevisiae interfacial residues and over 

8,000 S. pombe interfacial residues.  

 

Evolutionary sequence analysis  

Estimating residue-level evolutionary rates is a non-trivial task and, thus, various methods 

have been proposed for this inference in the literature 43,54,55. Here, we used an established 

technique to measure site-specific evolutionary rates in proteins, ConSurf score, which uses protein 

multiple sequence alignment data for rate inference 40. Lineage-specific ConSurf scores, termed 

ConSurf-rate4site scores in this analysis, were computed using the Rate4Site program 35. Non-

lineage-specific ConSurf scores, termed ConSurf-DB scores in this analysis, were downloaded 

from the ConSurf Database 35,36.  
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For each protein involved in a high-confidence S. cerevisiae PPI, we generated multiple 

sequence alignments using ClustalW 56 between (i) its translated ORF, (ii) the sequence of its 

mapped protein structure subunit, and (iii) orthologous translated ORFs in Saccharomyces 

paradoxus (S. paradoxus), Saccharomyces mikatae (S. mikatae), Saccharomyces bayanus (S. 

bayanus), Naumovozyma castellii (N. castellii), Candida glabrata (C. glabrata), Eremothecium 

gossypii (E. gossypii), Kluyveromyces lactis (K. lactis) and Candida albicans (C. albicans) 

obtained from Ensembl 48,57.  

 

For each protein involved in a high-confidence S. pombe PPI, we generated multiple 

sequence alignments using ClustalW 56 between (i) its translated ORF, (ii) the sequence of its 

mapped protein structure subunit, and (iii) orthologous translated ORFs in Schizosaccharomyces 

japonicus (S. japonicus), Schizosaccharomyces octosporus (S. octosporus), Schizosaccharomyces 

cryophilus (S. cryophilus), Neolecta irregularis (N. irregularis), Pneumocystis jirovecii (P. 

jirovecii), Pneumocystis murina (P. murina), Saitoella complicata (S. complicata) and Protomyces 

lactucaedebilis (P. lactucaedebilis) obtained from Ensembl 48,58.  

 

ConSurf-rate4site scores were computed from protein multiple sequence alignment data 

using the Rate4Site program 34,35. This method computes relative conservation scores for each site 

in a protein using empirical Bayesian methods and a multiple sequence alignment of homologous 

sequences to essentially rank residues from most to least conserved within a protein. The ConSurf 

score obtained from running the program is lower for more conserved residues, and higher for less 

conserved ones. We ran ConSurf score calculations for all residues in our models using the 

Rate4Site program, with the closely related species and phylogenetic tree mentioned above as 
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inputs. Other parameters in Rate4Site were left to their default values. When binning ConSurf 

scores for plotting in this analysis, the final ConSurf scores value and associated error for a group 

of residues were taken as the average and standard error of ConSurf score values for each residue 

in the bin.  

 

ConSurf-DB scores were downloaded from the ConSurf database 36. The ConSurf database 

provides pre-computed evolutionary rates for structures on the PDB. ConSurf database 

evolutionary rate calculations are performed using the Rate4Site program on multiple sequence 

alignments constructed using PSI-BLAST with an E-value cut-off of 10%'to find all potential 

homologs in the Uni-ProtKB/SwissProt database for proteins on the PDB.  
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Code availability  

The code pipeline used to construct structural models of S. cerevisiae and S. pombe PPIs is 

available as a GitHub repository: https://github.com/LeahPollet/interactome_network_ 

rewiring.git. Curated data underlying this article, including a list of high confidence PPIs in S. 

cerevisiae and S. pombe, and homology mapped PDB structures for S. cerevisiae and S. pombe 

PPIs are also available in the GitHub repository and can be accessed using the following 

https://doi.org/10. 5281/zenodo.10222227.  
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5.  Discussion  

 Protein-protein interactions (PPIs) are crucial for proper protein function and are involved 

in virtually all biological pathways within cells 1–6. As such, numerous recent experiments have 

aimed to catalog the interactions of all proteins in a given species 9–14, and to elucidate the 

molecular structure and three-dimensional (3D) mechanisms of these interactions 15,115–121. This 

extensive research has generated vast amounts of high-quality PPI data,  which now enables us to 

study the evolution of PPIs. Investigating the evolution of PPIs is essential to further our 

understanding of a wide range of biological processes within cells 6,16,17,20, to better understand 

misregulation or disruption of PPIs associated with various diseases and disorders 24–40, as well as 

to inform practical applications in various research fields including disease diagnosis 41–45, disease 

treatment 46–54, synthetic biology 55–58, and genome engineering 59–61.   

 

The work presented in this thesis, therefore, makes use of this newly available PPI data to 

perform large-scale systematic analyses of the detailed molecular evolutionary design principles 

that drive variations in PPIs, first within a species, and then between different species. More 

formally, we hypothesize that structural determinants influence the evolutionary rate of residues 

in protein-protein interactions; and that changes in those determinants for interfacial residues 

could be associated with the phylogenetic loss or gain of an interaction between two species. To 

demonstrate this hypothesis, we first create an automated, custom pipeline to combine high-

confidence PPI data and 3D structures of protein complexes in order to build molecular models 

for all PPIs in a species (Chapter 3). We then show how these molecular models of PPIs can be 

used to investigate the relationship between PPI structures and their evolution, uncovering some 

of the molecular evolutionary design principles driving variations in PPIs in baker’s yeast (Chapter 
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3). Finally, we show how these molecular models of PPIs can be used to compare PPIs across 

species, uncovering some of the molecular drivers leading to difference, or rewiring, of PPIs 

between baker’s yeast and fission yeast (Chapter 4).  

 

The first aim and significant contribution of this thesis is the creation of a custom 

automated pipeline for curating, processing, and organizing PPI data. This pipeline integrates data 

from diverse experimental fields enabling the construction of molecular models for PPIs in S. 

cerevisiae and S. pombe.  The pipeline includes curation of a high-confidence set of physical 

interactions between proteins in a species from the BioGRID database 12 and IntAct database 13. 

PPI datasets, such as the two databases used in this work are known to contain experimental false 

positives (erroneously reported PPIs) 229,230. These inaccuracies arise primarily due to the 

limitations and inherent biases of the experimental techniques used to detect PPIs detailed in 

Chapter 2 of this thesis. For instance, high-throughput experimental methods such as yeast two-

hybrid screens and tandem affinity purification-mass spectroscopy are prone to false positives due 

to non-specific interactions or cross-reactivity 231. Additionally, the stringent conditions of in vitro 

experiments often do not accurately reflect in vivo cellular environments, leading to interactions 

that may not occur under physiological conditions 232. Due to these biases, PPIs reported on online 

PPI databases could be erroneous, including, among others, non-reproducible experimental 

artifacts, in vitro physical interactions that do not occur in vivo, or pairs of proteins from the same 

complex that do not directly interact with each other. We, therefore, used several methods to 

minimize such false positive errors in our PPI data. First, we only considered experimentally-

determined physical PPIs, excluding any computational predictions that can be less accurate 

86,93,95,97. Second, we only use PPIs reported by two or more independent experiments (determined 
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by different PubMed IDs) to ensure reproducibility and mitigate possible experimental artifacts 

233,234. Third, the false positive rate of our PPI datasets is further minimized by removing all PPIs 

that do not map (via sequence homology) to physically interacting subunits in experimental 3D 

structures of protein complexes on the PDB 15. These multiple validation steps ensure that the false 

positive rate in our PPI dataset is minimal. In addition to false positive errors, PPI datasets are also 

known to contain false negatives 230. Some PPIs that do occur in the species could be missing on 

PPI databases due to the incompleteness of interactome networks 235. For instance, estimates of 

the proportion of known PPIs in S. cerevisiae suggest that only ~50% of yeast PPIs have been 

identified thus far 236. True physical interactions that occur in vivo could also not be detected in 

vitro due to experimental biases 230. Current PPI networks are, therefore, a sample of the complete 

networks. To address these biases, we use two of the most comprehensive PPI databases, the 

BioGRID database 12 and the IntAct database 13. We also include PPIs detected using diverse 

experimental methods including, among others, yeast-two-hybrid screens, affinity capture 

experiments, and co-crystal structure experiments. Although incorporating data from additional 

databases could be a promising direction for future research, we note that integrating data from 

multiple PPI databases is not a straightforward task: while many databases provide interactions in 

a similar format, inconsistent or incorrect use of controlled vocabulary is common. Different gene 

and protein identifiers are also used across databases, and sometimes even within a single database 

14. Additionally, in this work, the primary limitation in PPI data was not at the species level, but 

rather due to the availability of high-resolution 3D structure for PPIs, as discussed below. Finally, 

as the space of known PPIs grows this curation method will only improve. More than 20,000 high-

confidence S. cerevisiae PPIs, and more than 3,000 high-confidence S. pombe PPIs were curated 

in this work. 
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 Once a high-confidence set of PPIs is curated in a species, we individually map each PPI 

to a high-resolution 3D structure. We use gapped BLAST searches between the PPI proteins’ 

translated open reading frame sequences (ORFs) obtained on Ensembl 237 and biological unit 

structure subunit sequences from the Protein Data Bank (PDB) 15. Several possible caveats and 

biases with this mapping process were identified and addressed. First, while rare, artifacts in PDB 

structures are possible. For instance, X-ray crystallography experiments can introduce crystal 

contacts artifacts between different chains that usually do not have a binding interface 102. In order 

to distinguish “true” biological interfaces from fortuitous crystal-packing contacts in our data we 

only use structures annotated as biological assemblies on the PDB, and discard asymmetric units. 

We further exclude any biological assembly with “low” or “very low” confidence on the QSbio 

database 238. Finally, we exclude biological assembly structures showing inconsistencies such as  

insufficient atomic detail, unreasonable distances between alpha-carbons, or non-sensible heavy 

atom counts. PPI structural data used in this work also comes with the set of biases typically 

associated with experimental 3D structural measurements. As the space of known structures in a 

species is not complete, PPI structural data may be biased towards proteins from particular cellular 

environments, more ancient and conserved proteins, commonly studied proteins, and highly 

expressed proteins 160,239. To address these biases, for PPIs without a known structure in our species 

of interest, we use the structure of a closely related homologous PPI solved in another species if 

available, assuming that with high sequence conservation between two known PPIs, structural 

conservation must also be high 233,234. We ensure that only structures from PPIs that are closely 

related to our PPI of interest are used, by applying both a stringent E-value cut-off and a high 

coverage cut-off to the alignment. In addition to reducing the above-mentioned biases in our 

structural data, the inclusion of such high-quality homology-based PPI structural models for PPIs 
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without a known structure also increases coverage. More than 700 S. cerevisiae PPIs, and more 

than 190 S. pombe PPIs were mapped to high-resolution 3D structures in this work. 

 

 Overall, we believe that the data curation process described in this thesis is the best and the 

most reliable existing method for integrating structural details with molecular evolutionary 

properties of PPIs on a whole-proteome scale. Moreover, this method will only improve as the 

spaces of known PPIs and known structures grow. The custom automated pipeline for curating, 

processing, and organizing PPI data into molecular models of PPIs for a species described here, as 

well as the molecular models of PPIs generated for S. cerevisiae and S. pombe in this work are 

publicly available and could be applied to future works in yeast or in other species. 

 

The second aim of this thesis makes use of molecular models of PPIs in S. cerevisiae to 

study the relationship between PPI structure and PPI evolution. This analysis uncovers several 

strong, proteome-wide relationships between residue-level structural properties of PPI interfaces 

and residue evolutionary rate in baker’s yeast. First, we find that interfacial residues are primarily 

constrained by their structural role in the complexed state (i.e. when the two partner proteins come 

together to form a PPI) rather than in the monomeric state (i.e. when the two partner proteins are 

free-floating monomers), underscoring their importance in maintaining PPI function and stability. 

Additionally, we observe evidence of a fixed evolutionary constraint associated with the function 

of the interface: if two residues have similar structural micro-environments but one is interfacial 

and the other is non-interfacial, the interfacial residue will typically be more evolutionarily 

conserved. Finally, we investigate structural constraints on residue evolution within PPI interfaces. 

We uncover significant, monotonic, and continuous relationships between interfacial residue 
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evolutionary rate and four structure-based measures of the overall involvement of a residue in an 

interface, with residues more involved in the interface evolving progressively more slowly. These 

results are surprising as interfacial residues experience two very different structural micro-

environments depending on whether the two protein members of a PPI are in complexed state or 

in monomer state. In complexed state, interfacial residues are buried away from solvent, while in 

monomer state interfacial residues are surface residues, exposed to solvent. As such, one could 

expect the structural constraints on interfacial residue evolution to be a mixture between 

constraints imposed in the monomer state and constraints imposed in the complexed state. 

Contrary to this expectation, here, we find that the evolutionary behavior of interfacial buried 

residues mainly resembles the behavior of non-interfacial buried residues, and not the behavior of 

non-interfacial surface residues, indicating that interfacial residues are mainly constrained by 

structure when in complexed state. Moreover, we find structural constraints that are unique to the 

interface, both a fixed function-based, evolutionary constraint on any interfacial residue, and 

structure-based constraints within PPI interfaces, scaling continuously with a residue’s degree of 

interfacial involvement. One possible explanation is that stable, permanent PPI complexes are 

over-represented in our data, and thus interfacial residues in these PPIs are rarely exposed 

constraints imposed in the monomer state 240. However, we find that many proteins investigated 

in our study are instead involved in transient PPIs and can mostly be found as free-floating 

monomers in cells. We, therefore, conclude that the dominant role of the complexed state (rather 

than the monomeric state) in constraining interface evolution, and the unique structural constraints 

within PPI interfaces, likely reflect the importance of maintaining proper PPI function and 

stability, as disruption and mis-regulations of PPIs are known to have dire consequences for 

organismal fitness 12–14. Future works investigating structural constraints on interfacial residue 
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evolution for transient and stable PPIs separately, using a framework similar to the one used in this 

study could be particularly interesting in order to further validate the conclusions reached here. 

 

Work towards this aim also includes results which suggests that considering the close 

lineage of a species is important when studying evolutionary rates in PPIs. To compute 

evolutionary rate for individual residues in a PPI protein, the sequence of the protein is compared 

to aligned sequences of homologous proteins in related species. It is known that the choices of 

species and sequences included in this alignment can have a large effect on evolutionary rate values 

209. Indeed, both the structure of PPIs (e.g., presence or absence of interface) and the evolution of 

PPIs are highly species-specific and lineage-specific. Interactome network rewiring is known to 

be a widespread phenomenon, where PPIs existing in one species may be lost or rewired in another 

species 13. Consequently, interfacial residues that are highly constrained and evolve slowly in one 

species due to the existence of the PPI may be completely free of such selective pressure and 

evolve much faster in a different species where the PPI is lost. Thus, a trade-off exists between 

accuracy and precision when more species are included in evolutionary rate calculations.  

Evolutionary rate estimates are likely more precise when more species are included due to the 

inclusion of additional data, but can be less accurate due to the possibility of PPI rewiring in one 

or more of the additional species included. Therefore, inclusion of more species does not 

necessarily lead to better estimation of evolutionary rates for highly lineage-specific processes 

such as PPI evolution. This point is further investigated in aim 3. 

 

The third aim of this thesis makes use of molecular models of PPIs in S. cerevisiae and S. 

pombe to examine variations in PPIs (or PPI rewiring) between species. This analysis uncovers 
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some of the detailed molecular evolutionary mechanisms, and site-specific selective pressures 

underlying interactome network rewiring between two yeasts. First, we find that interfacial 

residues in both S. cerevisiae and S. pombe PPIs are significantly more conserved than non-

interfacial residues when using a lineage-specific measure of residue evolutionary rates. This 

confirms that the results from our previous work in S. cerevisiae are also true in S. pombe. 

Furthermore, as S. cerevisiae and S. pombe are very distantly related evolutionarily the 

reproducibility discussed here could be evidence that our findings are fundamental and universal. 

Future works investigating structural constraints on interfacial residue evolution for additional 

species, using a framework similar to the one used in this study may be particularly interesting, 

and further establish the conclusions reached in this thesis as universal principles of PPI evolution. 

Additionally, we find that the difference in evolutionary rate between interfacial residues and non-

interfacial residues is significantly less pronounced when using a non-lineage-specific measure of 

evolutionary rate. This surprising sensitivity further highlights that considering the close lineage 

of a species is important when studying evolutionary rates in PPIs. Finally, we establish that 

including more distantly related species in evolutionary rate calculations may be appropriate when 

studying more universally-conserved PPIs such as PPIs that are preserved between S. cerevisiae 

and S. pombe. In contrast, when investigating the loss or gain of an ortholog, or the rewiring of 

PPIs between the two species, using lineage-specific evolutionary rates is crucial. One possible 

explanation is that PPIs that are preserved between the two yeasts are more universal and less 

specific to a given lineage. Indeed, S. cerevisiae and S. pombe diverged from a common ancestor 

approximately 500 million years ago, and their genomes have since undergone significant changes 

13, 23. Non-lineage-specific measures of evolutionary rates may, therefore, be appropriate to the 

study of preserved PPIs. In contrast, PPIs that are different between the two yeast species, may be 
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unique to a species and its closely related lineage, and thus much more sensitive to the choice of 

species and lineages used in evolutionary rate calculations. Another possible biological mechanism 

for PPI rewiring between S. pombe and S. cerevisiae interactomes is that weaker PPIs or transient 

PPIs are more easily rewired between species with fewer amino acid changes 208. Indeed, we find 

evidence of enrichment in weaker interactions for PPIs that are different or rewired between the 

two species’ interactomes. We note that some experimental bias may also exist regarding our 

rewired PPI dataset, where weaker interactions are more likely to be detected in one species and 

not the other, even if they occur in both species. To fully address this possible experimental bias 

regarding our rewired PPI dataset, we constructed a separate dataset of missing ortholog PPIs as a 

gold-standard dataset of PPIs that are truly missing in only one of the two yeast species. Indeed, if 

a PPI occurs in S. cerevisiae, but one of the interacting protein partners has no ortholog or even 

homolog in S. pombe, we can be highly confident that the counterpart PPI does not exist in S. 

pombe, and vice versa. All our conclusions remain unchanged when the analyses are repeated on 

the missing ortholog PPI dataset (for which the above-mentioned experimental bias does not 

apply), demonstrating the robustness of our results and conclusions. Moreover, as highlighted in 

our previous article (Aim 2) and in other works 208–211 there is a high degree of heterogeneity within 

interfacial residues, as well as within non-interfacial residues. As more experimentally-determined 

protein-protein interactions and 3D structures become available, future works further sub-dividing 

both non-interfacial residues and interfacial residues and using a similar framework to the one used 

in this study could be particularly interesting to fully investigate the causes and consequences of 

structural and evolutionary heterogeneity within interfacial and non-interfacial residues in PPIs 

that are preserved and rewired between different species. Overall, this work yields insight into the 

evolutionary design principles of PPIs and the mechanisms by which interactions are preserved or 
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rewired between species, improving our understanding of the molecular evolution of PPI and PPI 

interfaces at the residue level.  

 

This thesis advances our understanding of the evolutionary design principles of PPIs and 

the structural determinants influencing residue-level evolution both within a species, and between 

species. Our findings have wide-ranging applications which extends beyond furthering our 

understanding of fundamental biology and cellular processes, to various research fields including 

disease diagnosis, disease treatment, synthetic biology, and genome engineering. Moreover, the 

methodologies and findings from this thesis can be applied to future works in yeast or in other 

species, providing a framework for studying the evolutionary design principles of PPIs and the 

mechanisms by which interactions are preserved or rewired between species. 
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Conclusion and summary 

In conclusion, this thesis provides a comprehensive analysis of the structural and 

evolutionary principles underlying variations in PPIs, both within and between species. We 

designed a custom script pipeline to automate the curation of high-quality protein-protein 

interaction (PPI) data from online databases and organize this data into structural models of PPIs 

for the two yeast species, S. cerevisiae, and S. pombe. These structural models were subsequently 

used to investigate the relationship between PPI structure and PPI evolution in yeast at the single 

residue level. This analysis yielded significant insight into the design principles and structural 

mechanisms governing PPI evolution. Finally, we used structural models of S. cerevisiae and S. 

pombe PPIs to compare PPIs that are preserved and PPIs that are different between the two yeast 

species. This analysis yielded further insight into the evolutionary design principles of PPIs and 

the mechanisms by which interactions are preserved or rewired between species. Overall, this work 

establishes a better picture of the evolution of PPIs, both (1) at the molecular level, by uncovering 

small-scale structural properties that influence the evolution of PPIs within a species; and (2) at 

the phylogenetic level, by identifying mechanisms leading to large-scale differences in PPIs 

between species. These findings broaden our knowledge of PPI evolution as a whole. Moreover, 

the insights on natural, evolutionary, variations in PPIs both within and between species 

established in this work are crucial to the study of mis-regulation and disruption of PPIs associated 

with disease, as well as have wide-ranging applications to fields such as synthetic biology, and 

genome engineering. 
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Modeling the relationship between individual structural properties and ConSurf score 
 

We studied the relationship between individual structural property and ConSurf scores in 
PPI interfaces using a weighted least-square regression technique that takes the error associated 
with calculating ConSurf for each residue bin into account. For each structural property of interest, 
the regression model follows the equation: 
 

𝑦(𝑥) = 𝑤! +	𝑤"𝑥" + 𝑒# 
 
Where 𝑦(𝑥) is the average ConSurf score of residues in bin 𝑥 (residues are binned in 10% intervals 
over the range of each structural property), 𝑥" is the center value of bin 𝑥 for the structural property 
investigated, 𝑤!, 𝑤" are the intercept, and the weight associated with the structural feature in the 
regression model, and 𝑒# is a random variable (“noise term”) following a Gaussian distribution 
with zero mean and standard deviation equal to the standard error associated with the ConSurf 
score for bin 𝑥. One model was trained for each structural property and the resulting linear fits can 
be seen in Figure S1 and Figure S2. 
 
 
Supplementary analysis performed with additional species included in evolutionary rate 
calculations 
 
Analysis S1 includes additional species in dN/dS calculations.  
Analysis S2 includes additional species in ConSurf score calculations using the rate4site program. 
Analysis S3 uses pre-computed ConSurf scores downloaded from the ConSurf database. 
 
The set related species considered in Analysis S1 and S2 is composed of the 8 original species: 
Saccharomyces paradoxus (S. paradoxus), Saccharomyces mikatae (S. mikatae), Saccharomyces 
bayanus (S. bayanus), Naumovozyma castellii (N. castellii), Candida glabrata (C. glabrata), 
Eremothecium gossypii (E. gossypii), Kluyveromyces lactis (K. lactis) and Candida albicans (C. 
albicans); and 8 additional, and more distantly related species: Fusarium graminearum (F. 
graminearum), Neurospora crassa (N. crassa), Aspergillus nidulans (A. nidulans), 
Schizosaccharomyces pombe (S. pombe), Neolecta irregularis (N. irregularis), Protomyces 
lactucaedebilis (P. lactucaedebilis), Pneumocystis jirovecii (P. jirovecii) and Pneumocystis 
murina (P. murina). The phylogenetic tree used in evolutionary rate calculations is as follows: 
[[[[[[[S. cerevisiae, S. paradoxus], [S. mikatae, S. bayanus]], C. glabrata], N. castellii], [[E. 
gossypii, K. lactis], C. albicans]], [[F. graminearum, N. crassa], A. nidulans]], [S. pombe, [N. 
irregularis, [P. lactucaedebilis, [P. jirovecii, P. murina]]]]];.  
 
Analysis S3, uses downloaded evolutionary rates from the ConSurf database. The ConSurf 
database provides pre-computed evolutionary rates for structures on the PDB. ConSurf database 
evolutionary rate calculations are performed using the rate4site program on MSAs constructed 
using PSI-BLAST with an e-value cutoff of to 10-3 to find potential homologs in the 
UniProtKB/SwissProt database for proteins on the PDB. 
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Supplementary analysis performed with low percent sequence identity PPIs excluded  
 
Analysis S4 excludes PPIs for which either of the two partner proteins has sequence identity lower 
than 50% between their yeast protein sequence and the PDB protein sequence used to compute 
structural properties. Instead, structural property calculations, evolutionary rate calculations, and 
all subsequent analysis were performed for 428 high-percent-sequence-identity PPIs. 
 

  DRSA InterRRC dCenter dEdges 

Correlation with dN/dS ratio -0.889 ** 0.490 0.828 ** -0.545  

Correlation with ConSurf score -0.044 ** -0.075 ** 0.078 ** -0.106 ** 

Correlation with dN/dS ratio 
(weighted) -0.987 ** 0.272 0.897 ** -0.014 

Correlation with ConSurf score 
(weighted) -0.032 ** -0.052 ** 0.046 ** -0.063 ** 

Correlation with ConSurf score 
(ConSurf DB) -0.063 ** -0.138 ** 0.192 ** -0.070 ** 

Table S1. Results of a Pearson product-moment correlation test between structural measures of 
interface involvement and evolutionary rate estimates (computed from a larger set of aligned 
related species - Analysis S1, S2 and S3) for interfacial residues. Values significant at the P-value 
< 0.01 level are denoted with a double asterisk (**), values significant at the P-value < 0.05 level 
are denoted with a single asterisk (*). 
 

  Linear regression 
with ConSurf score 

Linear regression 
with ConSurf DB 
score 

Structural properties 
included in the model R2 R2 

Monomer RSA 8.79% 3.9% 

Monomer RSA + DRSA 15.12% 7.04% 

Monomer RSA + interRRC 12.46% 5.5% 

Monomer RSA + dCenter 10.66% 4.02%  

Monomer RSA + dEdges 9%  3.52% 

Monomer RSA + DRSA + interRRC + dCenter 
+ dEdges  16.61%  7.79% 

Table S2. Regression results for different models aiming to predict residue evolutionary rate 
(ConSurf score, computed from a larger set of aligned related species and ConSurf score from 
ConSurf DB – Analysis S1, S2 and S3) from structural properties in PPI interfaces. All models 
were trained using 10-fold cross-validation, and the results shown here are average adjusted R2 
values across all cross-validation trials. 



 

 196 

 
 

  DRSA InterRRC dCenter dEdges 

Correlation with dN/dS ratio -0.716 ** -0.486 0.827 ** -0.821 * 

Correlation with ConSurf score -0.041 ** -0.069 ** 0.077 ** -0.111 ** 

Correlation with dN/dS ratio 
(weighted) -0.902 ** -0.253 0.855 ** -0.893 ** 

Correlation with ConSurf score 
(weighted) -0.021 ** -0.043 ** 0.040 ** -0.057 ** 

Table S3. Results of a Pearson product-moment correlation test between structural measures of 
interface involvement and evolutionary rate estimates for interfacial residues (for high-sequence-
identity PPIs – Analysis S4). Values significant at the P-value < 0.01 level are denoted with a 
double asterisk (**), values significant at the P-value < 0.05 level are denoted with a single asterisk 
(*). 
 

  Linear regression 
with ConSurf score 

Structural properties 
included in the model R2 

Monomer RSA 8.71%  

Monomer RSA + DRSA 14.9% 

Monomer RSA + interRRC 11.45% 

Monomer RSA + dCenter 9.57% 

Monomer RSA + dEdges 8.9% 

Monomer RSA + DRSA + interRRC + dCenter 
+ dEdges 16.15% 

Table S4. Regression results for different models aiming to predict residue evolutionary rate from 
structural properties in PPI interfaces (for high-sequence-identity PPIs – Analysis S4). All models 
were trained using 10-fold cross-validation, and the results shown here are average adjusted R2 
values across all cross-validation trials. 
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Figure S1. The difference in evolutionary rate between interfacial and non-interfacial 
residues. (A) Linear fits between binned measures of solvent accessibility (complex RSA) and 
evolutionary rate (ConSurf score) for interfacial and non-interfacial residues. Weighted linear 
regression lines, 95% confidence interval, and R2 values of the fits are also shown. (B) Results of 
t-tests for differences in slope and intercept between the two fits in (A). Values significant at the 
P-value < 0.05 level are denoted with a single asterisk (**). 
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Figure S2. The relationship between structural properties and evolutionary rate for residues 
in PPI interfaces. (A)-(F) Linear fits in blue between binned structural properties and 
evolutionary rate (ConSurf score), for relative solvent accessibility in monomer state (monomer 
RSA), relative solvent accessibility in complex state (complex RSA), change in burial upon 
complex formation (ΔRSA), inter-protein residue-residue contacts (interRRC), distance from 
interface center (dCenter), and distance from interface edges (dEdges) respectively. Weighted 
linear regression lines, 95% confidence interval, and R2 values of the fits are also shown. In 
addition to the observed fit in blue, we also show the expected fit in red for the structural properties 
that measure interfacial involvement ((C)-(F)), assuming that interfacial burial and non-interfacial 
burial are selectively equivalent and that interfacial residues are subject to the same evolutionary 
constraints as non-interfacial residues with the same total burial in PPIs. For each panel, the 
average ConSurf score for non-interfacial residues (average ConSurf score = -0.083) is marked by 
a yellow “X”.  (G) Results of t-tests for differences in slope and intercept between observed and 
expected fits in (C)-(F). Values significant at the P-value < 0.01 level are denoted with a double 
asterisk (**), values significant at the P-value < 0.05 level are denoted with a single asterisk (*). 
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Figure S3. The difference in evolutionary rate between interfacial and non-interfacial 
residues with additional species included in evolutionary rate calculations – Analysis S1, S2 
and S3. (A) Average evolutionary rates (estimated using dN/dS ratio and ConSurf score computed 
from a larger set of aligned related species and ConSurf score from ConSurf DB), plotted for 
interfacial and non-interfacial residues in our data. Standard errors for the average values of each 
group of residues are also shown. (B) Results of t-tests for differences in average evolutionary 
rates between interfacial and non-interfacial residues using the three evolutionary rate estimates. 
Differences significant at the P-value < 0.01 level are denoted with a double asterisk (**). (C) 
Linear fits between binned measures of solvent accessibility (complex RSA) and evolutionary rate 
(dN/dS, computed from a larger set of aligned related species) for interfacial and non-interfacial 
residues. Distributions of the number of residues per bin, weighted linear regression lines, and R2 
values of the fits are also shown. (D) Results of t-tests for differences in slope and intercept 
between the two fits in (C). Values significant at the P-value < 0.01 level are denoted with a double 
asterisk (**). (E) Linear fits between binned measures of solvent accessibility (complex RSA) and 
evolutionary rate (ConSurf score, computed from a larger set of aligned related species and 
ConSurf score from ConSurf DB) for interfacial and non-interfacial residues. Weighted linear 
regression lines, 95% confidence interval, and R2 values of the fits are also shown. (F) Results of 
t-tests for differences in slope and intercept between the fits in (E). Values significant at the P-
value < 0.01 level are denoted with a double asterisk (**). 
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Figure S4. The relationship between solvent accessibility and evolutionary rate in PPI 
interfaces with additional species included in evolutionary rate calculations – Analysis S1, 
S2 and S3. (A) Results of a Pearson product-moment correlation test between values of solvent 
accessibility and measure of evolutionary rates (computed from a larger set of aligned related 
species) for interfacial residues in our models. Rows 1,2 and 5 in the table show standard Pearson 
correlations, whereas rows 3 and 4, show weighted Pearson correlations, taking the standard error 
on evolutionary rate estimates into consideration. Values significant at the P-value < 0.01 level are 
denoted with a double asterisk (**). (B) Linear fits between binned measures of solvent 
accessibility and evolutionary rate (dN/dS, computed from a larger set of aligned related species), 
for monomer solvent accessibility (monomer RSA) and complex solvent accessibility (complex 
RSA). Distributions of the number of residues per bin, weighted linear regression lines, and R2 
values of the fits are also shown. (C) Results of t-tests for differences in slope and intercept 
between the two fits in (B). Values significant at the P-value < 0.01 level are denoted with a double 
asterisk (**). (D), (E) Linear fits between binned measures of solvent accessibility and 
evolutionary rate (ConSurf score, computed from a larger set of aligned related species and 
ConSurf score from ConSurf DB), for monomer solvent accessibility (monomer RSA) and 
complex solvent accessibility (complex RSA). Weighted linear regression lines, 95% confidence 
interval, and R2 values of the fits are also shown. (F) Results of t-tests for differences in slope and 
intercept between the two fits in (D) and (E). Values significant at the P-value < 0.01 level are 
denoted with a double asterisk (**). 
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Figure S5. The relationship between interface involvement and evolutionary rate for residues 
in PPI interfaces with additional species included in evolutionary rate calculations – Analysis 
S1. (A)-(D) Linear fits in blue between binned measures of interface involvement and evolutionary 
rate (dN/dS, computed from a larger set of aligned related species), for change in burial upon 
complex formation (ΔRSA), inter-protein residue-residue contacts (interRRC), distance from 
interface center (dCenter), and distance from interface edges (dEdges) respectively. Distributions 
of the number of residues per bin, weighted linear regression lines, and R2 values of the fits are 
also shown. In addition to the observed fit in blue, we also show the expected fit in red, assuming 
that interfacial burial and non-interfacial burial are selectively equivalent and that interfacial 
residues are subject to the same evolutionary constraints as non-interfacial residues with the same 
total burial in PPIs. For each panel, the average dN/dS value for non-interfacial residues (average 
dN/dS = 0.089) is marked by a red “X”. (E) Results of t-tests for differences in slope and intercept 
between observed and expected fits in (A)-(D). Values significant at the P-value < 0.01 level are 
denoted with a double asterisk (**), values significant at the P-value < 0.05 level are denoted with 
a single asterisk (*). 
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Figure S6. The relationship between interface involvement and evolutionary rate for residues 
in PPI interfaces with additional species included in evolutionary rate calculations – Analysis 
S2, S3. (A)-(D) Linear fits in blue between binned measures of interface involvement and 
evolutionary rate (ConSurf score, computed from a larger set of aligned related species), for change 
in burial upon complex formation (ΔRSA), inter-protein residue-residue contacts (interRRC), 
distance from interface center (dCenter), and distance from interface edges (dEdges) respectively. 
Weighted linear regression lines, 95% confidence interval, and R2 values of the fits are also shown. 
In addition to the observed fit in blue, we also show the expected fit in yellow, assuming that 
interfacial burial and non-interfacial burial are selectively equivalent and that interfacial residues 
are subject to the same evolutionary constraints as non-interfacial residues with the same total 
burial in PPIs. For each panel, the average ConSurf score value for non-interfacial residues 
(average ConSurf score = -0.2082) is marked by a yellow “X”. (E)-(H) Identical plots to (A)-(D), 
using ConSurf scores from ConSurf DB, and with average ConSurf score value for non-interfacial 
residues = -0.1130. (I) Results of t-tests for differences in slope and intercept between observed 
and expected fits in (A)-(H). Values significant at the P-value < 0.01 level are denoted with a 
double asterisk (**), values significant at the P-value < 0.05 level are denoted with a single asterisk 
(*). 
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Figure S7. Graphical representation of the homology-based structural annotation transfer and 
evolutionary sequence analysis portion of our data curation pipeline. 
 
 
 
 
 
 
 
 
 

 
Figure S8. The distribution of evolutionary rate for interfacial and non-interfacial residues. 
(A) Distribution of evolutionary rates (estimated using ConSurf score), plotted for interfacial and 
non-interfacial residues in our data. The mean of both distributions is also shown as a filled circle. 
(B) Results of t-tests for differences in average ConSurf score between interfacial and non-
interfacial residues. Differences significant at the P-value < 0.01 level are denoted with a double 
asterisk (**).  
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Figure S9. The difference in evolutionary rate between interfacial and non-interfacial 
residues (for high-sequence-identity PPIs– Analysis S4). (A) Average evolutionary rates 
(estimated using both dN/dS ratio and ConSurf score), plotted for interfacial and non-interfacial 
residues in our data. Standard errors for the average values of each group of residues are also 
shown. (B) Results of t-tests for differences in average evolutionary rates between interfacial and 
non-interfacial residues using both evolutionary rate estimates. Differences significant at the P-
value < 0.01 level are denoted with a double asterisk (**). (C) Linear fits between binned measures 
of solvent accessibility (complex RSA) and evolutionary rate (dN/dS) for interfacial and non-
interfacial residues. Distributions of the number of residues per bin, weighted linear regression 
lines, and R2 values of the fits are also shown. (D) Results of t-tests for differences in slope and 
intercept between the two fits in (C). Values significant at the P-value < 0.05 level are denoted 
with a single asterisk (*). 
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Figure S10. The relationship between solvent accessibility and evolutionary rate in PPI 
interfaces (for high-sequence-identity PPIs – Analysis S4). (A) Results of a Pearson product-
moment correlation test between values of solvent accessibility and measure of evolutionary rates 
for interfacial residues in our models. The first two rows in the table show standard Pearson 
correlations, whereas the two last rows, show weighted Pearson correlations, taking the standard 
error on evolutionary rate estimates into consideration. Values significant at the P-value < 0.01 
level are denoted with a double asterisk (**). (B) Linear fits between binned measures of solvent 
accessibility and evolutionary rate (dN/dS), for monomer solvent accessibility (monomer RSA) 
and complex solvent accessibility (complex RSA). Distributions of the number of residues per bin, 
weighted linear regression lines, and R2 values of the fits are also shown. (C) Results of t-tests for 
differences in slope and intercept between the two fits in (B). Values significant at the P-value < 
0.05 level are denoted with a single asterisk (*). 
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Figure S11. The relationship between interface involvement and evolutionary rate for 
residues in PPI interfaces (for high-sequence-identity PPIs – Analysis S4).  (A)-(D) Linear fits 
in blue between binned measures of interface involvement and evolutionary rate (dN/dS), for 
change in burial upon complex formation (ΔRSA), inter-protein residue-residue contacts 
(interRRC), distance from interface center (dCenter), and distance from interface edges (dEdges) 
respectively. Distributions of the number of residues per bin, weighted linear regression lines, and 
R2 values of the fits are also shown. In addition to the observed fit in blue, we also show the 
expected fit in yellow, assuming that interfacial burial and non-interfacial burial are selectively 
equivalent and that interfacial residues are subject to the same evolutionary constraints as non-
interfacial residues with the same total burial in PPIs. For each panel, the average dN/dS value for 
non-interfacial residues (average dN/dS = 0.0904) is marked by a yellow “X”. (E) Results of t-
tests for differences in slope and intercept between observed and expected fits in (A)-(D). Values 
significant at the P-value < 0.01 level are denoted with a double asterisk (**), values significant at 
the P-value < 0.05 level are denoted with a single asterisk (*). 



 

 207 

 
Figure S12. Correlation between structural properties of a residue’s microenvironment. 
Pairwise Pearson correlation matrix for the structural properties of interest in this study computed 
for all interfacial residues. Pearson correlations are listed in the upper triangle as well as illustrated 
using circles or various shades. The p-values associated with each correlation are listed in the lower 
triangle. 
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Figure S13. The difference in evolutionary rate between interfacial and non-interfacial 
residues. Linear fits between binned measures of solvent accessibility (complex RSA) and 
evolutionary rate (dN/dS) for interfacial and non-interfacial residues plotted on a log-10 scale. 
Weighted linear regression lines, and R2 values of the fits are also shown. 
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Analysis S1. The difference in evolutionary rate between “interfacial” residues and 
“pseudo-interfacial” residues. 
 
For each rewired S. cerevisiae and S. pombe PPIs in our data, PSI-BLAST protein sequence 
alignments were used to transfer interface annotations from the protein in the species with the PPI 
(query), to the orthologous single protein in the species without the PPI (subject). Gapped positions 
in the query were ignored. Non-interfacial residues in one species that align to the functional 
interface in the other species were labeled as “pseudo-interfacial residues”. ConSurf-rate4site 
scores and ConSurf-DB scores were then computed for all interfacial and pseudo-interfacial 
residues as described in the main paper. Comparisons of average evolutionary rates (computed 
using both ConSurf-rate4site and ConSurf-DB scores) for all interfacial residues and all pseudo-
interfacial residues within a species (S. cerevisiae and S. pombe) can be seen in Figure S1. Direct 
comparisons between an individual interfacial residue evolutionary rate (in one species) and its 
corresponding pseudo-interfacial residue (in the other species) using both ConSurf-rate4site and 
ConSurf-DB scores can be seen in Figure S2. 
 
Analysis S2. The difference in average evolutionary rate for non-interfacial surface and 
interior residues and interfacial rim support and core residues. 
 
For each residue in our structurally-resolved interactome networks for S. pombe and S. cerevisiae, 
solvent Accessible Surface Area (SASA) was calculated using the DSSP program with hydrogen 
atoms excluded and SASA values were normalized to produce Relative Solvent Accessibility 
(RSA). For each residue, two values of RSA were computed: monomer RSA, which was calculated 
using the structure of monomeric proteins (discarding the chain mapped to the partner protein in a 
structure), and complex RSA, which was obtained from the co-complexed structure of both protein 
partners (PPI structure). ΔRSA, the change in residue burial upon complex formation, was 
computed as the difference between monomeric and co-structured RSA values for each residue in 
the structural models (ΔRSA = monomer RSA − complex RSA). ΔRSA was subsequently used 
in the definition of interfaces: any residue with a change in burial upon complex formation (ΔRSA 
≠ 0) was defined as an interfacial residue, and any residue with no change in burial upon complex 
formation (ΔRSA = 0) was defined as a non-interfacial residue. Non-interfacial residues were 
further subdivided into non-interfacial surface residues (complex RSA > 25% and ΔRSA = 0) and 
non-interfacial interior residues (complex RSA < 25% and ΔRSA = 0). Interfacial residues were 
further subdivided into interfacial rim residues (complex RSA > 25% and ΔRSA ≠ 0), interfacial 
support residues (monomer RSA < 25% and ΔRSA≠ 0) and interfacial core residues (monomer 
RSA > 25% and complex RSA < 25% and ΔRSA≠ 0). Comparisons of average evolutionary rate 
(computed using both ConSurf-rate4site and ConSurf-DB scores) for non-interfacial surface and 
interior residues and interfacial rim support and core residues (overall results for all PPI types 
combined) can be seen in Figure S3. Comparisons of average evolutionary rate (computed using 
both ConSurf-rate4site and ConSurf-DB scores) for non-interfacial surface and interior residues 
and interfacial rim support and core residues in preserved, missing ortholog, and rewired PPIs 
(separate results for each PPI type) can be seen in Figure S4. 
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Analysis S3. Repeat analysis without homology-based PPI structural models. 
 
Any PPI in our structurally-resolved interactome networks for S. pombe and S. cerevisiae modeled 
using the structure of a closely related PPI in another species was discarded, keeping only PPIs for 
which a high-resolution experimental 3D structure was solved in the species. All analyses from 
the main paper were then repeated. Comparisons of average evolutionary rate (computed using 
both ConSurf-rate4site and ConSurf-DB scores) for interfacial and non-interfacial residues in PPIs 
with experimentally determined protein complex structures can be seen in Figure S5. Comparisons 
of average evolutionary rate (computed using both ConSurf-rate4site and ConSurf-DB scores) for 
interfacial and non-interfacial residues in preserved, missing ortholog, and rewired PPIs with 
experimentally determined protein complex structures can be seen in Figure S6. Comparisons of 
average evolutionary rate (computed using both ConSurf-rate4site and ConSurf-DB scores) for 
buried and exposed residues outside of PPI interfaces in PPIs with experimentally determined 
protein complex structures can be seen in Figure S7. Comparisons of average evolutionary rate 
(computed using both ConSurf-rate4site and ConSurf-DB scores) for buried and exposed residues 
outside of PPI interfaces in preserved, missing ortholog, and rewired PPIs with experimentally 
determined protein complex structures can be seen in Figure S8. 
 
  

S. cerevisiae 
PPIs 

S. pombe 
PPIs 

Total 
PPIs 

Interfacial 
residues 

Non-interfacial 
residues 

Preserved 
PPIs 51 51 102 6 875 63 814 

Missing 
ortholog 
PPIs 

437 10 447 42 626 335 789 

Rewired 
PPIs 61 141 202 9 481 128 226 

Total 549 202 751 58 982 527 829  

Table S1. PPI dataset summary. Summary of the number of PPIs, interfacial residues, and non-
interfacial residues curated for each PPI type in this analysis. Numbers of PPIs and residues in our 
data for preserved PPIs, missing ortholog PPIs and rewired PPIs, as well as the number of PPIs of 
each type obtained from both S. cerevisiae and S. pombe are included. 
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S. cerevisiae S. pombe 

 
Average 
interface 
size 

Number 
of 
interfaces 

# rim 
residues /  
# core 
residues 

Average 
interface 
size 

Number of 
interfaces 

# rim 
residues /  
# core 
residues 

Interfaces in  
preserved 
PPIs 

42 residues 
(SE: 4.29) 96 1230/1523  

= 0.81 
35 residues 
(SE: 3.91) 80 1096/1013 

= 1.08 

Interfaces in  
missing 
ortholog 
PPIs 

35 residues 
(SE: 1.00) 1216 13230/15908 

= 0.83 
16 residues 
(SE: 3.58) 20 179/165 

= 1.08 

Interfaces in  
rewired 
PPIs 

32 residues 
(SE: 2.90) 122 1266/1468 

= 0.86 
20 residues 
(SE: 1.19) 282 2460/1956 

= 1.26 

Table S2. Interface size comparison between PPI types. Summary of the average size (and the 
associated standard error, SE), number of preserved, missing ortholog and rewired PPI interfaces 
in S. cerevisiae and S. pombe. For each interface type in both species the ratio of the overall number 
of rim residues to overall number of core residues is also shown. 
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Figure S1. The difference in evolutionary rate between interfacial and pseudo-interfacial 
residues within a species.  (A) Average evolutionary rates (as measured by ConSurf-rate4site 
score and ConSurf-DB score), plotted for S. cerevisiae interfacial residues in rewired PPIs, and S. 
cerevisiae pseudo-interfacial residues in single proteins that do not interact but have a 
corresponding functional interface in S. pombe. Standard errors for the average values of each 
group of residues are also shown. (B) Results of t-tests for differences in average evolutionary 
rates between interfacial and pseudo-interfacial residues in S. cerevisiae using both evolutionary 
rate measures. (C) Average evolutionary rates (as measured by ConSurf-rate4site score and 
ConSurf-DB score), plotted for S. pombe interfacial residues in rewired PPIs, and S. pombe pseudo-
interfacial residues in single proteins that do not interact but have a corresponding functional 
interface in S. cerevisiae. Standard errors for the average values of each group of residues are also 
shown. (D) Results of t-tests for differences in average evolutionary rates between interfacial and 
pseudo-interfacial residues in S. pombe using both evolutionary rate measures. Comparisons 
significant at the P-value < 0.05 level are denoted with a single asterisk (*) and comparisons 
significant at the P-value < 0.01 level are denoted with a double asterisk (**).  
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Figure S2. The difference in evolutionary rate between interfacial residues and pseudo-
interfacial residues across species. (A) Evolutionary rates (as measured by ConSurf-rate4site 
score), for each S. cerevisiae interfacial residue in rewired PPIs and its corresponding S. pombe 
pseudo-interfacial residue in a single protein in our datasets. (B) Evolutionary rates (as measured 
by ConSurf-DB score), for each S. cerevisiae interfacial residue in rewired PPIs and its 
corresponding S. pombe pseudo-interfacial residue in a single protein in our datasets. (C) 
Evolutionary rates (as measured by ConSurf-rate4site score), for each S. pombe interfacial residue 
in rewired PPIs and its corresponding S. cerevisiae pseudo-interfacial residue in a single protein 
in our datasets. (D) Evolutionary rates (as measured by ConSurf-DB score), for each S. pombe 
interfacial residue in rewired PPIs and its corresponding S. cerevisiae pseudo-interfacial residue 
in a single protein in our datasets. The diagonal line (interfacial residue evolutionary rate = pseudo-
interfacial residue evolutionary rate), as well as counts for the number of points above the diagonal 
line (interfacial residue more conserved than pseudo-interfacial residue) and below the diagonal 
line (pseudo-interfacial residue more conserved than interfacial residue) are also included for each 
panel.  
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Figure S3. The difference in average evolutionary rate for non-interfacial surface and 
interior residues and interfacial rim support and core residues. (A) Average evolutionary rates 
(as measured by ConSurf-rate4site score and ConSurf-DB score), for S. cerevisiae residues divided 
into non-interfacial surface residues (complex RSA > 25%), non-interfacial interior residues 
(complex RSA < 25%), interfacial rim residues (complex RSA > 25%), interfacial support residues 
(monomer RSA < 25%) and interfacial core residues (monomer RSA > 25% and complex RSA < 
25%). Standard errors for the average values of each group of residues are also shown. (B) Average 
evolutionary rates (as measured by ConSurf-rate4site score and ConSurf-DB score), for S. pombe 
residues divided into non-interfacial surface residues (complex RSA > 25%), non-interfacial 
interior residues (complex RSA < 25%), interfacial rim residues (complex RSA > 25%), interfacial 
support residues (monomer RSA < 25%) and interfacial core residues (monomer RSA > 25% and 
complex RSA < 25%). Standard errors for the average values of each group of residues are also 
shown. 
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Figure S4. The difference in average evolutionary rate for non-interfacial surface and 
interior residues and interfacial rim support and core residues in preserved, missing 
ortholog, and rewired PPIs. (A) Average evolutionary rates (as measured by ConSurf-rate4site 
score and ConSurf-DB score), for S. cerevisiae residues divided into non-interfacial surface 
residues (complex RSA > 25%), non-interfacial interior residues (complex RSA < 25%), 
interfacial rim residues (complex RSA > 25%), interfacial support residues (monomer RSA < 
25%) and interfacial core residues (monomer RSA > 25% and complex RSA < 25%). Standard 
errors for the average values of each group of residues are also shown. (B) Average evolutionary 
rates (as measured by ConSurf-rate4site score and ConSurf-DB score), for S. pombe residues 
divided into non-interfacial surface residues (complex RSA > 25%), non-interfacial interior 
residues (complex RSA < 25%), interfacial rim residues (complex RSA > 25%), interfacial support 
residues (monomer RSA < 25%) and interfacial core residues (monomer RSA > 25% and complex 
RSA < 25%). Standard errors for the average values of each group of residues are also shown. 
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Figure S5. The difference in evolutionary rate between interfacial and non-interfacial 
residues. Repeat analysis using only experimentally determined protein complex structures, 
with no homology-based PPI structural models. (A) Average evolutionary rates (as measured 
by ConSurf-rate4site score and ConSurf-DB score), plotted for interfacial and non-interfacial 
residues from all S. cerevisiae PPIs with experimentally determined protein complex structure in 
our datasets. Standard errors for the average values of each group of residues are also shown. (B) 
Results of t-tests for differences in average evolutionary rates between interfacial and non-
interfacial residues in S. cerevisiae PPIs with experimentally determined protein complex structure 
using both evolutionary rate measures. (C) Average evolutionary rates (as measured by ConSurf-
rate4site score and ConSurf-DB score), plotted for interfacial and non-interfacial residues from all 
S. pombe PPIs with experimentally determined protein complex structure in our datasets. Standard 
errors for the average values of each group of residues are also shown. (D) Results of t-tests for 
differences in average evolutionary rates between interfacial and non-interfacial residues in S. 
pombe PPIs with experimentally determined protein complex structure using both evolutionary 
rate measures. Comparisons significant at the P-value < 0.05 level are denoted with a single 
asterisk (*) and comparisons significant at the P-value < 0.01 level are denoted with a double 
asterisk (**).  
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Figure S6. The difference in evolutionary rate between interfacial and non-interfacial 
residues for preserved, missing ortholog, and rewired PPIs. Repeat analysis using only 
experimentally determined protein complex structures, with no homology-based PPI 
structural models. (A-C) Average evolutionary rates (as measured by ConSurf-rate4site score 
and ConSurf-DB score), plotted for interfacial and non-interfacial residues from all preserved PPIs, 
missing ortholog PPIs and rewired PPIs with experimentally determined protein complex structure 
in S. cerevisiae respectively. Standard errors for the average values of each group of residues are 
also shown. (D) Results of t-tests for differences in average evolutionary rates between interfacial 
and non-interfacial residues in preserved PPIs, missing ortholog PPIs and rewired PPIs with 
experimentally determined protein complex structure in S. cerevisiae using both measures of 
evolutionary rate. (E-G) Average evolutionary rates (as measured by ConSurf-rate4site score and 
ConSurf-DB score), plotted for interfacial and non-interfacial residues from all preserved PPIs, 
missing ortholog PPIs and rewired PPIs with experimentally determined protein complex structure 
in S. pombe respectively. Standard errors for the average values of each group of residues are also 
shown. (H) Results of t-tests for differences in average evolutionary rates between interfacial and 
non-interfacial residues in preserved PPIs, missing ortholog PPIs and rewired PPIs with 
experimentally determined protein complex structure in S. pombe using both measures of 
evolutionary rate. Comparisons significant at the P-value < 0.05 level are denoted with a single 
asterisk (*) and comparisons significant at the P-value < 0.01 level are denoted with a double 
asterisk (**). 
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Figure S7. The difference in evolutionary rate between buried and exposed residues outside 
of PPI interfaces. Repeat analysis using only experimentally determined protein complex 
structures, with no homology-based PPI structural models. (A) Average evolutionary rates (as 
measured by ConSurf-rate4site score and ConSurf-DB score), plotted for buried and exposed 
residues outside of PPI interfaces from all S. cerevisiae PPIs with experimentally determined 
protein complex structure in our data. Standard errors for the average values of each group of 
residues are also shown. (B) Results of t-tests for differences in average evolutionary rates between 
buried and exposed residues outside of PPI interfaces in S. cerevisiae PPIs with experimentally 
determined protein complex structure using both evolutionary rate measures. (C) Average 
evolutionary rates (as measured by ConSurf-rate4site score and ConSurf-DB score), plotted for 
buried and exposed residues outside of PPI interfaces from all S. pombe PPIs with experimentally 
determined protein complex structure in our data. Standard errors for the average values of each 
group of residues are also shown. (D) Results of t-tests for differences in average evolutionary 
rates between buried and exposed residues outside of PPI interfaces in S. pombe PPIs with 
experimentally determined protein complex structure using both evolutionary rate measures. 
Comparisons significant at the P-value < 0.01 level are denoted with a double asterisk (**). 
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Figure S8. The difference in evolutionary rate between buried and exposed residues outside 
of PPI interfaces for preserved, missing ortholog and rewired PPIs. Repeat analysis using 
only experimentally determined protein complex structures, with no homology-based PPI 
structural models.  (A-C) Average evolutionary rates (as measured by ConSurf-rate4site score 
and ConSurf-DB score), plotted for buried and exposed residues outside of PPI interfaces from all 
preserved PPIs, missing ortholog PPIs, and rewired PPIs with experimentally determined protein 
complex structure in S. cerevisiae respectively. Standard errors for the average values of each 
group of residues are also shown. (D) Results of t-tests for differences in average evolutionary 
rates between buried and exposed residues outside of PPI interfaces in preserved PPIs, missing 
ortholog PPIs, and rewired PPIs with experimentally determined protein complex structure in S. 
cerevisiae using both measures of evolutionary rate. (E-G) Average evolutionary rates (as 
measured by ConSurf-rate4site score and ConSurf-DB score), plotted for buried and exposed 
residues outside of PPI interfaces from all preserved PPIs, missing ortholog PPIs, and rewired PPIs 
with experimentally determined protein complex structure in S. pombe respectively. Standard 
errors for the average values of each group of residues are also shown. (H) Results of t-tests for 
differences in average evolutionary rates between buried and exposed residues outside of PPI 
interfaces in preserved PPIs, missing ortholog PPIs, and rewired PPIs with experimentally 
determined protein complex structure in S. pombe using both measures of evolutionary rate. 
Comparisons significant at the P-value < 0.05 level are denoted with a single asterisk (*), and 
comparisons significant at the P-value < 0.01 level are denoted with a double asterisk (**). 
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Appendix 2 

Supplementary information for all statistics analysis (Chapter 3 and Chapter 4) 

 

Correlations  

All correlations in this work were calculated as Pearson correlation coefficients. Standard 

Pearson correlations were obtained in R using the Feature Selection (Including Multiple Solutions) 

and Bayesian Networks (‘MXM’) package. Correlations labeled as “(weighted)” are weighted 

Pearson correlation, using the standard error to weigh the correlation analysis and were obtained 

in R with the Weighting and Weighted Statistics (‘weights’) package. For each Pearson correlation 

test throughout this work the variables of interest are using a continuous scale. Linear relationships 

without spurious outliers between variables of interest were established using simple scatter plots. 

Moreover, the structural and evolutionary data used in this analysis does not always follow a 

normal distribution, therefore, significance for each correlation coefficient was determined from 

1,000 rounds of randomizing permutations.  

 

Linear fits 

Linear relationships in this work were investigated using a weighted least-square regression 

technique that takes the error into account in the line fitting process. This technique has been used 

in previous literature and was adapted in R. The regression model takes the following form:  

𝑦(𝑥) = 𝑤! +𝑤"𝑥" + 𝑒#	 

where 𝑦(𝑥) is the evolutionary rate measure for residues in bin 𝑥, 𝑥" is the center value of bin 𝑥 

for the structural property investigated, 𝑤!,	𝑤" are the intercept, and the weight associated with 

the structural feature in the regression model, and 𝑒#is a random variable (“noise term”) following 
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a Gaussian distribution with zero mean and standard deviation equal to the standard error 

associated with the evolutionary rate measure for bin 𝑥. This method also reports a standard error 

for the slope and intercept of the resulting linear fit which we used in t-tests to compare slope and 

intercept across different fits. This method was chosen because errors for evolutionary rate 

measures are uncorrelated in our data, but the variance of the errors are not the same. Therefore, 

using weighted least-square regression ensures that high variability cases receive low weights, 

while low variability cases receive high weights. 

 

T-tests 

Welch two-samples t-tests were used in this work. For each t-test performed observations 

are independent and data from each group is approximately normally distributed with no 

significant outliers. However, as equality of variance and sample size cannot always be assumed 

Welch two-samples t-tests were used. This test is generally applied when the there is a difference 

between the variations of two populations or when their sample sizes are unequal. The Welch-

Satterthwaite equation was, therefore used to approximate the degrees of freedom throughout. 

 

Integrated modeling  

We investigated the combined influences of residue structural properties on evolutionary 

rate using a weighted multiple linear regression technique, again aiming to take the error associated 

with calculating evolutionary rates into account. The regression model was implemented in R with 

the Classification and Regression Training (‘caret’) package and takes the following form:  

𝑦(𝑥) = 𝑤! +𝑤"𝑥" +⋯+𝑤$𝑥$ + 𝑒# 
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where 𝑦(𝑥) is the evolutionary rate of residue 𝑥,	𝑥", … , 𝑥$ are the values of each structural property 

investigated for residue 𝑥,	𝑤!, … , 𝑤$ are the intercept and weights associated with the structural 

features, and 𝑒#is a random variable (“error term”) following a Gaussian distribution with zero and 

standard deviation equal to the standard error associated with the evolutionary rate for residue 𝑥. 

The model is trained using a 10-fold cross-validation process: the set of residues is randomly 

partitioned into 10 subsamples of equal size. A single subsample is retained as validation data for 

testing the model and the remaining 9 subsamples are used as training data. This cross-validation 

process is repeated 10 times so that each of the 10 subsamples is used exactly once as validation 

data. The advantage of this method is that all observations are used for both training and validation 

and each observation is used for validation exactly once. The overall performance of a model is 

taken as the average performance across all cross-validation trials and compared across models 

including different subsets of structural properties. 
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