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Abstract

This study focuses on the effect of chevrons located on the tip of a flat plate on the overall

aerodynamic performance and the near field structure of the tip vortex. The aerodynamic perfor-

mance of chevrons with varying depths, cut directly into the tips of a flat plate with a semi aspect

ratio of 3 were investigated using a time resolved six axis force/torque sensor at a Reynolds num-

ber of 67,000. Results show that that highest lift-to-drag ratio, L
D

was obtained for an angle of

attack of 5◦. For shallower chevrons, this L
D

ratio was increased by up to 7.7% compared to

a flat plate. It is known that the formation of a tip vortex depends on the geometry of the wing

tip [1], [2]. The tip-vortex was measured using constant temperature anemometry and a four-wire

hot-wire probe. The chevron plates formed tip vortices that have lower peak tangential velocities

and larger core radii as compared to a flat plate. To ensure that this effect was due to the presence

of chevrons and not due to wandering, which is an inherent meandering of the tip vortex, De-

venport et. al [3]’s correction was applied to the test plates with a laminar core. The tip vortices

formed on wing tips with deeper chevrons exhibited a turbulent core, as opposed to those formed

on a flat plate. It was also found that deeper chevron plates had an impact on the wandering of

the tip vortex- plates with deeper chevrons exhibited a narrow range of frequencies over which

the cross power spectral density coefficient showed a spike, as opposed to the flat plate, which

showed spikes in the cross power spectral density coefficient at a wide range of frequencies.
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Résumé

Cette étude porte sur l’effet de chevrons situés sur la pointe d’une plaque plate sur les per-

formances aérodynamiques globales et sur la structure en champ proche du tourbillon marginal.

Les performances aérodynamiques de chevrons de différentes profondeurs, découpés directement

dans les pointes d’une plaque plate avec un demi-allongement d’aile de 3, ont été étudiées à l’aide

d’un capteur de force et de moment à six axes à résolution temporelle, à un nombre de Reynolds

de 67,000. Les résultats montrent que le rapport de finesse le plus élevé a été obtenu pour un angle

d’attaque de 5◦. Pour les chevrons moins profonds, ce rapport L
D

a été augmenté de 7.7% au max-

imum par rapport à une plaque plate. Il est démontré que la formation d’un tourbillon marginal

dépend de la géométrie de l’extrémité de l’aile [1], [2]. Le tourbillon marginal a été mesuré par

anémométrie à température constante et par une sonde à fil chaud à quatre fils. Les plaques avec

chevrons ont formé des tourbillons marginaux ayant des vitesses tangentielles maximales plus

basses et des rayons de noyau plus grands par rapport à une plaque plate. Pour s’assurer que

cet effet était dû à la présence de chevrons et non à un biais, ce qui est un probléme inhérent au

tourbillon marginal, la correction de Devenport et al. [3] a été appliquée aux plaques d’essai avec

noyau laminaire. Les tourbillons marginaux formés sur les extrémités des ailes avec des chevrons

plus profonds présentaient un noyau turbulent, par opposition à ceux formés sur une plaque plate.

Il a également été constaté que les plaques à chevrons plus profonds avaient un impact sur le biais

des plaques avec des tourbillons marginaux. Les chevrons plus profonds présentaient une plage

de fréquences étroite dans laquelle le coefficient de densité spectrale de puissance croisée mon-

trait un pic, par opposition à la plaque plate qui montre des pics du coefficient de densité spectrale

de puissance croisée dans une large plage de fréquences.
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Chapter 1

Introduction

1.1 Background and Motivation

Fluid flow is an integral aspect of engineering problems, such as finding the forces on an
aircraft, the mass flow rate through a pipe, prediction of weather patterns, etc. Of particular
importance in this thesis is the flow of air over wings. As air flows over a body, aerodynamic
forces are exerted on the body due to the pressure distribution and skin friction acting on the
body. Lift is the component of the aerodynamic force that acts normal to the relative velocity
whilst drag acts parallel to the relative velocity.

An aircraft wing produces lift owing to its shape, which creates a pressure difference between
its upper surface, or the suction side, and lower surface, or the pressure side. As a by-product of
this pressure difference, the high pressure air over the bottom surface of the wing tends to curl
around its tip and leak onto the upper surface, thereby, creating a circulatory motion of air around
the wing tips, commonly called the tip-vortex. Therefore, wing tip vortices are by-products of
lift, and entrain the incoming flow to induce a local velocity in the downward direction called
downwash. In the presence of downwash, the effective relative airflow tilts, causing the lift
vector to tilt and contribute to the drag, as is shown in Fig 1.1. This component of drag, called
the lift induced drag, along with the profile drag, which is the drag due to the shape of the object,
makes the total drag.
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U∞

Fig. 1.1: Effect of Downwash over an Airfoil Section of a Finite Wing [4], where U∞ is the local
relative velocity, w is the downwash velocity, α is the geometric angle of attack, αi is the induced
angle of attack and αeff is the effective angle of attack

During steady, level flight, the lift force balances the weight of the aircraft, while the drag is
balanced by the thrust produced by the engine. Aerodynamic efficiency is defined as the ratio
of lift to drag. A higher drag leads to a higher thrust required for the same amount of lift. An
obvious consequence of larger drag forces is higher fuel consumption, in order to generate the
required thrust for steady flight, leading to higher CO2 emissions and noise. For instance, in
2017, the International Air Transport Association (IATA) reported an expenditure of 149 billion
USD on 90 billion gallons of fuel by system-wide global commercial airlines, leading to 859
million tonnes of CO2 emissions [5]. It is, therefore, desirable to have a lower drag for a given
amount of lift i.e., a high aerodynamic efficiency.

Since the total drag force is the sum of the profile drag and the induced drag, either of them
could be lowered for a higher aerodynamic efficiency. Both of these components of drag are
dependent on the velocity of the aircraft; when the velocity is low i.e., during take-off and land-
ing, the lift induced drag dominates over the profile drag whereas at higher velocities, the profile
drag is the dominating component. This is shown schematically in Fig 1.2. At the maximum
aerodynamic efficiency, i.e, at the point of minimum total drag in Fig 1.2, both components of
drag contribute equally to the total drag. One can, therefore, see why lowering the lift induced
drag becomes important. The lift induced drag is dependent on the strength of the tip vortices,
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Fig. 1.2: Drag vs Velocity for the Gulfstream IV at an altitude of 30,000 ft [6]. The drag due to
lift decreases with an increases in velocity, while the profile drag decreases with an increase in
velocity

which will be examined in detail in Section 1.2. Another important consequence of tip vortices
is that they are coherent structures and persist downstream for quite some distance while contin-
uously growing in size. This coherence of tip-vortices determines the minimum spacing between
two aircraft during take-off and landing. Faster dissipation of these vortices would reduce the
minimum spacing between two aircraft and increase airport capacities.

From the above discussion, it is clear that tip vortices are a by-product of lift and modifying
their structure would have a direct effect on their coherence as well as the induced drag in an
aircraft. In order to understand how this can be achieved, it is necessary to first understand how
tip vortices are formed and how they affect the overall aerodynamic performance.
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1.2 Flow over a Finite Wing

The main function of a lifting surface is to turn the oncoming flow, so as to create a pressure
gradient that can act on the solid surface and hence create a lifting force. On an aircraft, an
airfoil is able to achieve this owing to its shape and the fact that the flow stays attached to the
surface of the lifting body, which can be seen in Fig 1.3. This curvature in the flow field results in
the velocity along a streamline to increase as we move away from the virtual center of rotation.
According to Bernoulli’s equation, the velocity along a streamline can be related to the pressure,
where a faster flow speed results in lower pressure. Hence, on either side of the lifting body, a
pressure difference is created, thereby creating the lift force, as shown in Fig 1.4. On an aircraft,
the wing is the lift generating surface and is composed of many two-dimensional cross-sections
of an airfoil along its span. Despite that, the aerodynamic characteristics of an airfoil are very
different from that of the wing because wings are finite, three dimensional structures while airfoils
are two dimensional.

As mentioned earlier, lift is generated by a pressure imbalance between the top and bottom
surfaces of a wing. A consequence of this pressure imbalance is that the high pressure air over
the bottom surface of the wing curls around the wing tips and tends towards the low pressure air
over the top surface of the wing, as shown in Fig. 1.5. This results in a circulatory flow around the
wing tips, or tip vortices, that trail downstream of the wing, as shown in Fig 1.6. The circulatory
motion of air tends to push the oncoming flow downwards to create a local component of velocity
in the downward direction, called the downwash (w).

Fig. 1.3: Flow visualization of the steady flow around an airfoil [7], depicting how the streamlines
curve around the solid body
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U∞

Fig. 1.4: Schematic showing the typical pressure distribution around the surface of the airfoil, as
well as the resulting force vector [8]

U∞

Fig. 1.5: Flow over a Finite Wing [4], where U∞ is the incoming wind velocity, b is the wing
span and S is the wing surface area; the streamlines over the suction surface curl around the root,
while those on the pressure surface curl around the tip.
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Fig. 1.6: Tip-vortices trailing downstream of a wing [4]

Downwash has two major consequences: (i) The geometric angle of attack α is the angle
between the relative free stream velocity and the local airfoil section. Since the local relative
velocity seen by the airfoil section would be a resultant of the free stream velocity U∞ and
downwash w, the local airfoil section sees the velocity at a smaller angle of attack- αeff instead
of the geometric angle of attack α (see Fig. 1.1). (ii) The lift force is a function of the angle of
attack and acts perpendicular to the direction of the local velocity vector. Since the local velocity
vector is titled by the induced angle αi, the lift vector is similarly titled by the same angle which
now creates a component that is acting parallel to the oncoming flow field and hence directly
contributes to the drag force acting on the body. This component of drag is called the lift induced
drag or Di.

The aerodynamic forces acting on a finite wing can be quantified using Prandtl’s lifting line
theory, where the wing is modeled as a bound vortex filament of strength Γ. According to
Helmholtz vortex theorem, a vortex filament cannot end in the fluid and we assume that the
vortex filament continues as two free vortices trailing downstream, thereby forming a horseshoe
vortex. The downwash due to the trailing vortices can be found using the Biot-Savart Law applied
to several superimposed horseshoe vortices which model the tip vortices on a finite wing. Once
the downwash (w) is computed, the induced angle (αi) can be found. The total lift is found using
the Kutta-Joukowski theorem i.e., L = ρU∞Γ. Once the total lift is found, the lift induced drag
can be found using Di = Lαi. A rigorous mathematical treatment to quantify induced drag can
be found in textbooks by J.D Anderson [4] and Cummings and Bertin [9]. The end result, how-
ever, gives the following expression for the coefficient of lift (CL) and the coefficient of induced
drag (CDi):
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CL =
2

U∞S

∫ b/2

−b/2
Γ(y)dy (1.1)

CDi =
2

U∞S

∫ b/2

−b/2
Γ(y)αi(y)dy (1.2)

where S is the surface area of the wing. These expressions indicate that the lift force is a
function of the circulation (Γ) due to tip-vortices. Therefore, any attempt to reduce the circulation
and, therefore, the strength of tip vortices would also reduce the total lift. It is also important to
note that the induced drag is a function of the induced angle αi, which directly depends on the
downwash (w), which is dictated by the circulation Γ.

The lift induced drag (CDi) in addition to the profile drag (CD0), which is a consequence of
skin friction, gives the total drag. The drag coefficient CD is given by:

CD = CD0 + kCL
2 (1.3)

where k = 1
πAR e

and e is the Oswald efficiency factor that tells us how close the lift distribu-
tion is to the elliptic lift distribution, which, according to Prandtl’s lifting line theory, produces
the lowest induced drag. Therefore, the maximum value that e can take is 1 (elliptical lift distri-
bution), with the induced drag increasing as e tends to 0 [4]. AR is the aspect ratio, defined as
the ratio between the square of the distance between the tips of the wings or the span, b and the
surface area of the wing, S.

1.2.1 Effects of Tip-Vortices

One can summarize the main consequences of tip-vortices as follows:

1. High thrust requirement- In order to overcome the drag force created by the aircraft as it
flies, a thrust force needs to be generated by the engines; the larger the drag the more thrust
force is required, leading to a higher fuel expenditure, CO2 emissions and noise. According
to Eq 1.2, the induced drag is dictated by the strength of the tip vortices and the downwash
speed and Eq 1.3 shows that it contributes to the total drag.
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2. Coherence of tip vortices- Tip vortices are coherent i.e., once they develop, they are stable
and persist thousands of chords downstream of the wing [10]. This leads to the “following
plane” problem: a following plane could get caught in the wake of a plane flying in front of
it. As a result, the following plane would encounter a sudden change in the angle of attack
and stall, or it would experience a large rolling moment that would not be controlled by the
ailerons. As a result, there are regulations for a minimum spacing between aircrafts during
take-off and landing, which limit airport capacity.

3. In an aircraft, the tail generates a pitching moment that maintains longitudinal static stabil-
ity. The downwash angle due to tip vortices affects the flow field incident on the tail of the
aircraft, as shown in Fig 1.7. An important criterion for longitudinal static stability is that
the change in coefficient of pitching moment with respect to the angle of attack must be
negative. This change in coefficient of pitching moment with respect to the angle of attack
depends on the downwash angle αi.

U∞

U
′

αi

αi

αi

Fig. 1.7: Flow and forces in the vicinity of the tail. Here U∞ is the free stream velocity and U ′ is
the relative velocity seen by the tail after deflection due to downwash, αt is the angle of attack at
the tail [8]

To counter the adverse effects of tip vortices, most conventional aircraft use wing-tip devices.

1.2.2 Conventional Wing-Tip Devices

In commercial aircrafts, wing-tip devices are used to alter the formation of tip-vortices to
reduce the induced drag and enhance lift. The earliest development of a wing-tip device was by
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Fig. 1.8: Lanchester’s drawing of a tip-vortex [11]

Lachester. Figure 1.8 shows Lanchester’s sketch of a tip-vortex [11], who further proposed the
use of end-plates to reduce the drag force at high lift conditions which would break the span-wise
velocity component and reduce the three-dimensional effects. However, the endplates lead to a
higher profile drag during cruise due to local flow separation and negated the reduction in induced
drag. [12]

In the late 1970s, R.T. Whitcomb drew inspiration from bird wings and designed winglets
that reduce the induced drag. He observed that the flow over the pressure surface of the wing is
directed outward, towards the tip of the wing whilst the flow over the suction surface is directed
inwards, towards the root of the wing. It was demonstrated that a cambered, angled, nearly
vertical surface above or below the wing-tip can utilize this cross-flow tendency over the wing
and thereby, reduce the strength of the tip vortex. These winglets, therefore, utilized a part of
the energy of the tip vortices that would have otherwise been wasted [13]. The first winglet
consequently came to be known as the Whitcomb winglet.

Several wing-tip devices have since been developed in an attempt to increase the efficiency
of aircrafts, some of which are shown in Fig 1.9. These wing-tip devices work in different
ways but their intended effect is to reduce the induced drag of the aircraft. For instance, tip
fences extend both above and below the wing tip and utilize the span-wise component of velocity
to reduce the strength of tip vortices [15]. Canted winglets are angled upwards which utilizes
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Fig. 1.9: Wing-tip devices currently in use or testing stage [14]

the span-wise component of velocity to generate an apparent thrust. Blended winglets act like
canted winglets, except that they are attached to the wing with a smooth curve instead of a sharp
angle to reduce interference drag at the junction of the wingtip and winglet [15]. Horizontal tip
extensions have been shown to double the induced drag as compared to vertical tip extensions of
the same size, but they also add twice as much weight to the wing structure [16]. Van Damn [17]
showed that the induced drag for a planar wing with elliptical lift distribution can be reduced by
sweeping the wing aft. A raked wing-tip (which is also bio-inspired) combines this effect with an
increase in the aspect ratio, thereby reducing the induced drag. Lazos and Visser [18] studied the
aerodynamic performance of a hyper-elliptic cambered span wing (shown in Fig 1.10), which was
inspired from a seagull wing in gliding flight. It was found that these wings have an enhanced
aerodynamic performance as compared to a conventional elliptic wing and the position of the
tip-vortex had been shifted outboard.
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Fig. 1.10: Views of the Hyper Elliptic Cambered Span designed by [18]

While most wing-tip devices are bio-inspired, the final design consists of simple geometries.
On the other hand, bird wings are more complex in nature, having slotted feathers at the wing-
tips. Sheppard and Rival [19] investigated slotted delta wings and showed that they produced a
higher lift due to an increase in circulation due to the presence of secondary and tertiary vortices,
as compared to a conventional delta wing, as shown in Fig 1.11. It is, therefore, of interest to
investigate how other complex geometries would affect the structure of the tip vortex and its
development downstream of a wing. The latter becomes important as tip vortices persist several
chord-lengths downstream of a wing and determine the minimum spacing between aircraft at
airports during take-off and landing.

Fig. 1.11: Comparison of a delta wing in (a) to a slotted delta wing in (b) [19], showing the
formation of a primary, secondary and tertiary leading edge vortex around the tips of a slotted
delta wing, in contrast to the single leading edge vortex on a delta wing.
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1.3 Working Hypothesis

The impact of complex geometries on wake characteristics, noise and aerodynamic perfor-
mance have steadily increased over recent years. In 1997, Tombaziz and Bearman [20] found
that the addition of sinusoidal trailing edges to a half-ellipse bluff body reduces the strength of
the vortex street as well as the base drag, which would imply a lower profile drag. Similarly,
multi scale (fractal-like) geometries, such as those shown in Fig 1.12 were found to reduce the
energy of vortex shedding as compared to their non-fractal counterparts in three-dimensional
bluff bodies [21]. This study also showed that even though the geometry of these bluff bodies is
significantly altered, the wake arranges itself in such a way that it is similar to that of a disk.

Fig. 1.12: Complex geometries for flat plates used in [21]

So far, it has been established that tip vortices have a significant impact on the performance
of an aircraft i.e., they lead to induced drag and they persist downstream of an aircraft for several
chord lengths which leads to greater separation between aircraft during take-off and landing. To
counteract these effects, commercial aircraft use wing-tip devices that help reduce the induced
drag by hindering the span-wise component of velocity. Wing-tip devices used thus far, despite
being bio-inspired, have simple geometries that are limited by manufacturing capabilities. How-
ever, bird wings-such as those shown in Fig 1.13- have slots cut into the wing-tips, which are
noticeably different from the majority of designs seen on current aircraft. Several studies have
been conducted by biologists to investigate the advantages offered by bird wings. Withers [22]
extensively studied the aerodynamic properties of different bird wings at low Reynolds number
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Fig. 1.13: Birds with slotted feathers [14] or ‘primaries’

(1-5 x 104) and found that the aerodynamic properties of bird wings are different from that of an
airfoil: bird wings- which operate at lower Reynolds numbers than airfoils in commercial aircraft
wings- had a lower maximum lift to drag ratios (3-17) as compared to airfoils (27-60). Tucker
showed that the presence of slots on the wings of a Hariss’ Hawk causes the vertical diffusion of
vortices, whilst the curling of its feathers during gliding made its wing non-planar and reduced
the overall drag [23]. These studies have helped to establish that the aerodynamic performance
of bird wings is significantly different from that of conventional aircraft wings and that the com-
plex structures on bird wings lend them enhanced aerodynamic characteristics, such as a higher
lift, better control of flow separation and better lateral stability, at low Reynolds numbers. Based
on these studies, research has been conducted on engineering designs inspired from nature. The
previous section shed light on how complex geometries have been shown to give better wake
characteristics i.e., wakes that have reduced strength. In a previous study, chevrons were cut into
the trailing edge of a NACA 0012 wing to study the impact of chevrons on the self noise of a wing
by Chong and Vathylakis [24]. It was found that non flat plate type serrations were effective in
reducing the self noise of the wing. This study was complimented by Nedić et al., [25] who used
multi-scale geometries on the trailing edge of a NACA 0012, as shown in Fig 1.14 and showed
that chevrons on the trailing edge of a NACA 0012 improve its lift to drag ratio. This study also
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Fig. 1.14: Fractal trailing edges used in [25]

showed that the use of fractal trailing edges decreased the vortex shedding energy for chevron an-
gles smaller than 45◦. Furthermore, Prigent et al. [26] studied the effect of multi-scale serrations
cut into the trailing edge of a NACA 0012 wing and found a lower energy associated with vortex
shedding as well as lower coherence in the spanwise direction. The effect of straight, blunt and
serrated trailing edge shapes on a wing were studied through Direct Numerical Simulation (DNS)
and it was found that blunt trailing edges lead to periodic vortex shedding, while serrated trailing
edges created a span-wise pressure gradient, leading to a smaller velocity deficit downstream of
a trough, as compared to the velocity deficit downstream of a protrusion [27]. Ito [28] imitated
the serrations on the leading edge of an owl wing by using jigsaw blades attached to an airfoil
and found that the serrations produce higher lift and control the separation of flow over the wing
only at low Reynolds numbers. These shapes are similar to the triangular teeth or chevrons that
can be seen in bird wing-tips (called ’primaries’).

Based on the results from Tucker’s study [23], it is believed that the primary feathers located
at the tip of a bird’s wing can influence the structure and behaviour of the tip vortex. Our working
hypothesis is that these feathers act as individual tip vortex generators, where each tip vortex is
considerably smaller than the size of the tip vortex that would be created were the feathers not
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present. Fig 1.15 shows a schematic of how these tip vortices would be created on a simplified
chevron pattern directly cut into the tip of the flat plate. Given that the pressure difference be-
tween the upper and lower surface changes along the chord (see Fig 1.4), one would expect the
strength of each individual tip vortex to be lower; indeed the total combined strength of all the
tip vortices could also potentially be lower compared to a tip vortex generated across the entire
chord of the wing. It is, however, reasonable to assume that at some downstream distance they
would merge into a single tip vortex structure. Furthermore, by generating several smaller tip
vortices, one can expect a degree of mutual interaction between each vortex, which could alter
the dynamics of the tip vortex and potentially reduce its coherence, resulting in faster decay rates.
This is similar to the onset of the sinusoidal Crow instabilities in the trailing wake which lead to
their eventual breakdown [10].

To test this hypothesis, we will investigate the aerodynamic performance and decay of tip-
vortices generated by a flat plate with various chevron designs cut into the tip of the wing. The
chevrons are a simplistic geometry that can be easily characterized, thus allowing us to test how
various parameters of the chevron influence the overall performance. The use of a flat plate
instead of an airfoil allows us to eliminate the added complexity of variable chevron thickness on
an airfoil.

U∞

Fig. 1.15: The hypothesized development of tip vortices around chevron plates: the pressure
difference between the suction and pressure surface of the plate would form smaller vortices that
curl around the chevrons, as compared to a vortex generated across the entire chord of the wing.
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1.4 Design of the Chevron Geometry

A chevron can be characterized by its wavelength (λ), depth (2h) and chevron angle (φ), as
shown in Fig 1.16. The following expression gives the relation between these three parameters:

Fig. 1.16: Chevron Geometry characterized by the chevron angle (φ), chevron depth (2h) and
wavelength (λ)

λtanφ = 4h (1.4)

A key design requirement was that the planform area, S, remain constant in order to facilitate
a meaningful comparison between the coefficients of lift, drag and moments. The coefficient of
moment is defined as Cm= M

1
2
ρV∞Sc

, where M is the moment about a given axis, ρ is the density of
air, U∞ is the free stream velocity, S is the planform area and c is the chord.

For this study, it was decided that the span of the flat plate would be 300 mm, whilst the chord
length would be 100 mm. This gives a semi aspect ratio of 3, which is similar to the semi aspect
ratio observed on birds wings, such as those shown in Fig 1.13. The schematic of the flat plate
can be seen in Fig 1.17. In order to maintain the same planform area, the chevrons are applied in
such a way that the area shaded in green is added while the area shaded in red is removed. If the
number of chevrons is a whole number, the area added would be equal to the area removed and
the total planform area would remain constant. Although this method does increase the effective
span of the wing by h, the span of the planform, which we define as b = S

c
, would remain as 300

mm since the planform area S and the chord length c are unchanged. Given that S represents
the solid area over which the pressure difference is acting upon and hence contributing to the
aerodynamic forces, we believe that it is more fruitful to use this parameter to normalize the
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aerodynamic forces and moments as opposed to the product of the effective span and chord.

y

x
2h

300mm

100mm

Fig. 1.17: The area added (green) and the area removed (red) from a flat plate of span 300mm
and chord 100mm

In order to keep the planform area constant, the number of chevrons could only be a whole
number. In this study, the number of chevrons was chosen to be four, which is comparable to
the number of primaries found at the tips of bird wings, and the depth (2h) was varied and the
wavelength was kept constant. Table 1.1 describes the five different chevron geometries that
were used for this study.

Table 1.1: Table describing the chevron geometry for each plate

Plate Number Wavelength (mm) 2h (mm) Number of Chevrons Chevron Angle
1 25 10 4 32.00◦

2 25 20 4 22.60◦

3 25 30 4 17.30◦

4 25 40 4 14.08◦

5 25 50 4 11.76 ◦
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1.5 Thesis Objectives

The aim of this thesis is to answer the following questions: (i) What impact do chevrons
located at the tip have on the aerodynamic performance of a flat plate? (ii) What happens to
the structure of the tip vortex due to the addition of chevrons? (iii) How do chevrons affect the
development of the tip vortex downstream of the flat plate?
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Chapter 2

Forces and Moments on Chevron Plates

2.1 Introduction

In this section, the impact of chevrons on the aerodynamic performance is evaluated and com-
pared to a flat plate. Time resolved forces and moments acting on the test plates were measured
using a six axis force and torque sensor at a Reynolds number of 67,000.

2.2 Experimental Setup

2.2.1 Newman Wind Tunnel

All of the measurements were taken in the Newman Wind Tunnel in the Aerodynamics Lab
of the Department of Mechanical Engineering, McGill University. The Newman Wind Tunnel is
an open circuit tunnel with a rectangular, closed test section of cross section 2ft x 3ft and length
of 9ft. Most of its structure is made of 11

8
inch plywood and the overall dimensions of the wind

tunnel are 36 ft x 31
2

ft x 10ft. A schematic of the wind tunnel is shown in Fig 2.1. A bell mouth
is installed at the intake, which is fitted with a curved gauze (14 x 15 mesh, 0.020x0.022 inches)
and a curved honeycomb (1 inch deep). The honeycomb acts as a flow straightener before the
flow is accelerated through the contraction cone (with a 6:1 contraction ratio) into the test section.
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Fig. 2.1: Schematic of the Newman Wind Tunnel [29]

The test section has a background turbulence of 1.1% at a speed of 10m/s, which was also the
working speed for the aerodynamic and hot-wire measurements. Details on the measurement of
the background turbulence can be found in Section 3.3.2.

The test section is followed by the diffuser to decelerate the flow and a coarse steel mesh is
mounted at the end of the diffuser to protect the fan. The fan unit consists of a 5 bladed axial fan
that is powered by the WEG CFW 09 inverter.

The wind tunnel fan was calibrated for axial velocities between 5 m/s to 15 m/s at RPMs
between 138 and 380. Equation 2.1 describes linear fit of the RPM to the axial velocity.

RPM = 24U∞ + 18 (2.1)

The calibration of the axial velocity in the test section can be seen in Fig 2.2. The tempera-
ture in the test section was measured using a 100 Ω, 3 wire National Instruments Resistance
Thermometer Detector (RTD), which was connected to a National Instruments cDAQ 9174. The
differential pressure was measured using a Pitot-static probe connected to a Furness Controls
FCO-332 pressure transmitter with a measurement uncertainty of 0.25% of readings. The dis-
tance of the Pitot-static probe from the floor of the wind tunnel was 180 mm, which is sufficiently
far from the influence of the boundary layer at the inlet of the test section, which was calculated
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Fig. 2.2: RPM of the wind tunnel fan vs Axial velocity measured in the test section of the New-
man Wind Tunnel, plot shows a linear fit to the calibration data, giving an equation RPM= 24U∞
+ 18

to be 5 cm, under the assumption that the boundary layer is turbulent, which is very likely an
overestimation. The FCO pressure transducer was connected to a NI-USB 6363 Data Acquisi-
tion Unit (DAQ). The voltages measured by the transducer were converted to pressure using the
relation 1V=100 Pa, which was provided by the manufacturer. The absolute pressure was meant
to be measured using the Honeywell Model TJE Precision Gage/Absolute Pressure Transducer
(rated for 100 psig), however, the pressure transducer could not receive the required excitation
voltage from the National Instruments compact Data Acquisition Unit- cDAQ 9174. As a result,
the absolute pressure was assumed to be 1 atm for the measurements.

2.2.2 Test Plates

Five chevron plates, with chevron geometries shown in Table 1.1, were compared to a flat
plate. They were made out of 6mm thick acrylic and were cut using the Universal Laser System’s
VLS 6.60 in the Peter Guo-hua Fu School of Architecture. The chord length (100mm) and the
average span (300mm) was kept constant, giving a semi aspect ratio ( b

2

S
) of 3. This aspect ratio

was deemed as a good starting point for the following reasons:
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1. Our hypothesis draws inspiration from birds with slotted wings (or ’primaries’) such as the
Steppe Eagle (Aquila nipalensis), Griffon Vulture (Gyps fulvus), Brown Eagle (Haliaeetus

leucocephalus), etc. These bird typically have low aspect ratios ranging between 3-4 [30].

2. Blockage ratio is defined as the ratio of the frontal area of the model to the cross sectional
area of the test section. A semi aspect ratio of 3 gives a blockage ratio of 5.3% at an
angle of attack of 90◦. While this blockage ratio is slightly over the recommended limit
of 5% [31], the majority of the data presented in this thesis is at lower angles of attack,
therefore, giving a lower blockage ratio.

3. The experiments were performed at a wind speed of 10m/s, giving a Reynolds number
(Uc
ν

) of 67,000, which lies within the range of Reynolds’ numbers that birds like the Steppe
Eagle (with low aspect ratio and slotted wings) fly at (<100,000) [32].

2.2.3 Wind-Tunnel Setup

The plates were mounted on a 100 mm diameter disc with a 6 mm slot milled at its center,
as shown in Fig 2.3. The disc sat flush with the floor of the wind tunnel with a gap of 0.5
mm maintained around the circumference of the disk; this is within the recommended limits of
0.005*span (=1.5 mm for the flat plate) [31]. Figure 2.4 shows how three flat head, hex drive
M6 screws, 6 cm long, were used to keep the plates in place on the disc. The disc was mounted
on an ATI Gamma IP68 six axis Force/Torque sensor using four flat head, hex drive, 4.5 cm
long M6 screws. The range and uncertainty of the sensor is provided in Table 2.1 and Table 2.2,
respectively. The disk was attached to a Newmark RM-3D-411-NC Rotary Stage, which has a
resolution of ±0.002◦, using a 6 mm thick aluminium plate with four 8-32 counter-bore taps for
the rotary stage and four M6 counter sunk taps at the load cell end. The rotary stage was further
mounted on a MiniTec frame using four M4 screws.

Table 2.1: ATI Gamma IP68 Calibrated Range (±)

Fx Fy Fz Tx Ty Tz

32N 32N 100 N 2.5 N-m 2.5 N-m 2.5 N-m
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Fig. 2.3: Top View of the Disc Used for Mounting the Test Plates

The rotary stage and load cell were connected to the National Instruments USB 6363 Data
Acquisition Unit (DAQ). The specifications of the DAQ are provided in Table 2.3.

2.2.4 Methodology

Normal and tangential forces, as well as moments about all three axes (pitch, roll and yaw)
were measured on the test plates over angles of attack ranging from 0◦ to 60◦ in increments of 1◦

at a speed of 10m/s. At every angle of attack, the raw voltages from the load cell were recorded
at a sample rate of 1000 Hz for 40 seconds. Once the angle of attack was changed, a pause of 10
seconds was observed before recording the load cell voltages to allow the effect of any transient
forces to settle down. The bias was corrected for by measuring the raw voltages from the load cell
at every angle of attack with the wind tunnel fan turned off and then subtracting these voltages
from the voltages recorded with the tunnel turned on at the test speed. The raw voltages were
converted into forces and moments by using the calibration file provided by the manufacturer.
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Fig. 2.4: Side View of the Disc Used for Mounting the Test Plates

Table 2.2: ATI Gamma IP68 Measurement Uncertainty (95% confidence level, percent of full
scale load)

Fx Fy Fz Tx Ty Tz

0.75% 1.00% 0.75% 1.00% 1.00% 1.50%

The entire process was automated using a LabVIEW 2017 code.

To ensure that the 0◦ angle of attack was captured, the rotary stage was first moved to the
-5◦ of the “assumed” 0◦ and forces and moments were recorded over 65 degrees i.e., until an
“assumed” +65◦ angle of attack. During post-processing, the data was corrected for the actual
angles of attack by assuming that the 0◦ angle of attack is one where the the CL was 0 and CD
was a minima. This is because, at a 0◦ angle of attack, a flat plate would produce no lift and have
a CL value of 0. Similarly, the total CD on the plate would be CD0 , which is the lowest value of
drag that could act on the plate, based on Eq 1.3.

The chord of the test plates were aligned with the positive X axis of the load cell. Normal
(X) and Tangential (Y ) forces (Fig 2.5) acting on the plates were converted to the Lift and Drag
forces using Equations 2.2 and 2.3.

L = (Xsinα) + (−Y cosα) (2.2)

D = (−Xcosα) + (−Y sinα) (2.3)
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Table 2.3: NI USB 6363 DAQ Specifications

ADC resolution Max. Single Channel Sample Rate Timing Resolution Input Range
16 bits 2.00 MS/s 10 ns ±10 V

U∞

Fig. 2.5: Resolution of Tangential and Normal Forces measured by the load cell into Lift and
Drag

2.3 Aerodynamic Forces and Moments on the Test Plates

2.3.1 Lift and Drag

The Coefficient of Lift, CL, is defined as L
1
2
ρU2
∞S

, where the Lift force L is measured using the

load cell, ρ is assumed to be 1.225 kg
m3 , S is the surface area using the average span (300mm) and

chord (100mm) and U∞ is calculated by using Equation 2.4

U∞ =

√
2∆P

ρ
(2.4)

where ∆P is value of dynamic pressure provided by the Furness Controls differential pressure
transducer.

Figure 2.6a shows how the CL varies with an increase in angle of attack for test plates with
chevron depths (2h in Eq 1.16) ranging from 0mm (i.e., a flat plate) to 40 mm. Data was col-
lected over a wide range of angles of attack (0◦ to 60◦) for the 50 mm chevron depth test plate,
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Fig. 2.6: a) Coefficient of Lift (CL) vs Angle of Attack (α) b) Coefficient of Drag (CD) vs Angle
of Attack (α) for various chevron depths 2h over angles of attack from 0◦ to 60◦, showing the
regions of flow attachment, separation and stall

unfortunately, the data was not accurate because the mounting disc was found to be touching the
floor of the test section, and thus corrupted the data. This was observed solely for the 50mm deep
chevron plate for one set of measurements. Smaller sweeps of angles of attack were carried out
for all the test plates several times thereafter and are presented in the subsequent sections for the
50 mm plate along with the other five test plates.

From Fig 2.6a, it is observed that the coefficient of lift increases linearly with an increase in
the angle of attack between 0◦ to 5◦. Between 5◦ and 42◦ angles of attack, the coefficient of lift
increases linearly with a slope smaller than the theoretical slopes for a finite wing; this is a region
where the flow begins to separate but hasn’t completely separated yet. At an angle of attack of
about 42◦, there is an abrupt drop in CL and an increase in CD (= Drag

1
2
ρU2
∞S

) (see Fig 2.6b), which
indicates stall i.e, the flow completely separates from the suction surface of the plates.

Load cell measurements were repeated for angles of attack ranging from 0◦ to 15◦ to include
data for the 2h= 50mm chevron plate; the results over 0◦ to 5◦ would show how closely the test
plates follow the theoretical lift curve slope and can be seen in Fig 2.7. The theoretical lift curve
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slope from thin airfoil theory (a0) is 2πα. However, infinite and finite wings have different lift
slopes; finite wings have a component of lift force that contributes to the total drag and hence,
the total lift is smaller compared to an infinite wing (airfoil) for the same angle of attack. The lift
slope (a) for a finite wing, which is smaller than 2π, is given by Eq 2.5.

a =
a0

1 + (a0/πAR)(1 + τ)
(2.5)

where a0 is the lift slope for an airfoil, which is equal to 2π. The lift cure slope for a finite wing
(a), therefore, depends on the aspect ratio as well as the lift distribution which is accounted for
by Glauert’s factor τ . The typical values of τ range from 0.05 to 0.25 [4]. Since the test plates

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 (°)

0

0.1

0.2

0.3

0.4

0.5

0.6

C
L

Coefficient of Lift vs Angle of Attack

2h= 0 mm

2h= 10 mm

2h= 20 mm

2h= 30 mm

2h= 40 mm

2h= 50 mm

2

Semi-Infinite Plate; =0.25

Semi-Infinite Plate; =0.05

Fig. 2.7: Coefficient of Lift (CL) vs Angle of Attack (α) for various chevron depths 2h over α=
0◦ to 5◦, as compared to the CL for an infinite plate, a semi-infinite plate with τ= 0.25 and τ=
0.05, for the same range of angle of attack. The deeper chevrons exhibit CL values closer to the
theoretical Cl values for an infinite plate, while the shallow chevron plates and flat plates have
CL values closer to the theoretical semi-infinite plates.
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sit flush with the floor of the wind tunnel, they are semi-infinite. We can, therefore, calculate the
theoretical lift slope using Eq 2.5 for an aspect ratio of 6 (since the semi aspect ratio of the test
plates is 3) and τ= 0.05, which gives a= 5.347. From Fig 2.7, we see that the values of CL for the
test plates lie between the theoretical values for an infinite wing (=2π) and a finite wing with τ=
0.05. It is also noteworthy that the 0mm, 10mm and 20mm deep chevron plates have CL values
closer to the theoretical values for a finite wing and the 30mm, 40mm and 50mm deep chevron
plates have CL values closer to an infinite wing. This can be explained by the fact that an increase
in the total span brings the 30mm, 40mm and 50mm deep chevron plates closer to infinite wings
as compared to the rest of the test plates.

Fig 2.8 shows the CL values over angles of attack between 5◦ to 15◦. In this region, the
coefficient of lift increases with an increase in angle of attack, with a smaller slope than that of
a finite wing. This was also observed by Pelletier and Mueller [33] in their measurement of the
forces acting on a flat plate of semi-aspect ratio of 3, with a thickness-to-chord ratio of 1.93%, a
5-to-1 elliptical leading edge and a 3◦ tapered trailing edge at Reynolds numbers of 80,000 and
140,000. They observed that for low aspect ratios, there was no abrupt stall and CL either reached
a plateau and remained relatively constant or even increased for increasing angles of attack. We
speculate that this region is that of separated flow which takes place due to an increasing adverse
pressure gradient over the suction surface as the angle of attack increases. Similar results were
observed by Pelletier and Mueller for flat plate models with a semi aspect ratio of 0.5 and 1.
Through flow visualization in a water tunnel with hydrogen bubbles, they observed that there
was a thin region of separated flow at the suction surface near the trailing edge at low angles
of attack, which increased to more than 50% of the chord after α=8◦. They also observed that
the flow did not re-attach to the surface after separation and therefore, the Laminar Separation
Region was not present, which was confirmed by the lack of hysteresis. It was confirmed that no
hysteresis was observed for the current plates, hence strengthening our belief that the plates are
exhibiting a similar separation phenomena in this region.

Aerodynamic hysteresis of an airfoil refers to airfoil aerodynamic characteristics as it be-
comes history dependent, i.e., dependent on the sense of change of the angle of attack, near
the airfoil stall angle. The coefficients of lift, drag, and moment of the airfoil are found to be
multiple-valued rather than single-valued functions of the angle of attack in hysteresis loop. To
check for hysteresis, we conducted the load cell measurements for the flat plate from angles of
attack ranging from 0◦ and 15◦ and then again from 15◦ and 0◦ at the test speed. From Fig 2.9
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Fig. 2.8: Coefficient of Lift vs Angle of Attack for various chevron depths 2h over Angles of
Attack between 5◦ to 15◦, indicating a region of flow separation, but not complete stall

it can be seen that the changes in the values of CL lie within the error bars, which are shown in
Fig 2.10.

So far, we have discussed the general trends in lift and drag for all the test plates and identified
regions of flow attachment (0◦ to 5◦), separation (5◦ to 42◦) and stall (angles of attack greater than
42◦). In the following discussion, an attempt is made to answer the first question raised in the
objectives: what is the impact of chevrons on the aerodynamic performance of a flat plate?

To compare the aerodynamic performance of test plates, load cell measurements were taken
ten times for each plate for angles of attack ranging from 0◦ to 10◦. This allowed us to take an
ensemble average of the coefficients of lift, drag and moments at each angle of attack and define
error bars based on the Student’s t interval i.e., δ =

tα/2σ√
n

, where tα/2 is the inverse of Student’s t
cumulative distribution function at a confidence levell of 97.5%, σ is the standard deviation of the
data and n is the number of data sets (10 in our case). Since the α= 0◦ is corrected for during post
processing, the values of the coefficients were linearly interpolated using the MATLAB function
‘interp1’ at angles of attack from 0◦ to 10◦ in 1◦ increments.



30 Forces and Moments on Chevron Plates

0 5 10 15

 (°)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
L

Coefficient of Lift vs Alpha

Increasing Angles of Attack

Decreasing Angles of Attack
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Fig. 2.10: Coefficient of Lift (CL) as a function of angle of attack (α), for various chevron depths
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Fig. 2.11: Coefficient of Drag (CD) as a function of angle of attack (α), for various chevron
depths 2h. Error bars are calculated using Student’s t-distribution.

Figure 2.10 shows the CL values for angles of attack from 0◦ to 10◦ for all the test plates
with error bars. It is evident that the introduction of chevrons does not significantly alter the
lift coefficient of the test plates and that the measurement uncertainty are considerably small
(0.0026). We now turn our attention to the coefficient of drag over the same α range, shown in
Fig 2.11. Over this range, the average measurement uncertainty in CD was found to be 0.0023.
The drag coefficient of the 10mm, 20mm and 30 mm deep chevron plates is not significantly
different from that of the flat plate at angles of attack between 0◦ to 4◦. At angles of attack
between 5◦ and 10◦, the 10 mm chevron plate seems to have a lower drag coefficient as compared
to the flat plate, while the 20 mm and 30 mm chevron plates show drag coefficients that are similar
to that of the flat plate. The 40 mm and 50 mm chevron plates have higher drag coefficient values
as compared to the flat plate throughout the range of angles of attack, which can be due to a
higher profile drag. In order to confirm this, CD was plotted against CL2 for 0◦ to 5◦ of angle of
attack. Note from Eq 1.3, a plot of CD against CL2 would give a y-intercept of CD0 and a slope
of k (= 1

πARe
). From Fig 2.12, it can be seen that that 40 mm and 50 mm deep chevron plates

have a higher value of the y intercept i.e., of CD0 . Upon doing a linear fit to the CD vs C2
L data, it

was found that the values of k for the chevron plates were not significantly different from the flat
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Fig. 2.12: Coefficient of Drag (CD) as a function of C2
L,for various chevron depths 2h. Error bars

are calculated using Student’s t-distribution.

plate. Table 2.4 shows the values of CD0 and k. This implies that the increase in the total drag

Table 2.4: Values CD0 and k obtained by fitting a straight line

Test Plate 0 mm 10 mm 20 mm 30 mm 40 mm 50 mm
CD0 0.071 0.075 0.081 0.080 0.099 0.089
k 0.20 0.19 0.19 0.20 0.21 0.20

coefficient seen in the 40 mm and 50 mm deep chevron plates is primarily due to an increase in
the profile drag i.e., CD0 . The addition of the chevrons do not have a significant impact on the lift
induced drag, which is evident from the insignificant change in the value of k.

Finally, Fig 2.13 shows the aerodynamic efficiency of the test plates with an increase in angle
of attack. The aerodynamic efficiency of the 30 mm chevron plate is similar to that of the flat
plate throughout the range of angles of attack. The 10 mm and 20mm chevron plate seems to
have a higher aerodynamic efficiency as compared to the flat plate at angles of attack above 4◦.
This can be explained by the slight decrease in the drag coefficient, shown in Fig 2.11. The 40
mm and 50 mm chevron plates have a lower aerodynamic efficiency as compared to the flat plate,
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which can be explained by the higher profile drag. For all the test plates, the peak aerodynamic
efficiency is at an angle of attack of 5◦. Table 2.5 shows the values of the peak L

D
ratios at 5◦ for

the test plates, as well as the percentage change in peak L
D

ratios as compared to a flat plate.

Table 2.5: Peak Aerodynamic Efficiency of all the Test Plates at 5◦ angle of attack

Test Plate 0 mm 10 mm 20 mm 30 mm 40 mm 50 mm
Peak L

D
3.78 4.07 3.92 3.91 3.35 3.65

δ (±) 0.039 0.049 0.063 0.062 0.098 0.051
% ∆ L

D
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Fig. 2.13: Aerodynamic Efficiency ( L
D

) as a function of angle of attack (α), for various chevron
depths 2h. Error bars are calculated using Student’s t-distribution.

A clear pattern is not established between the aerodynamic efficiency and the chevron depth,
but it has been observed that the addition of shallower chevrons (with depths of 10mm and 20mm)
either improves the aerodynamic efficiency of a flat plate or does not alter it (in the case of the 30
mm plate). Deeper chevrons have a worse aerodynamic efficiency than the flat plate, particularly
the 40mm deep chevron plate due to an increase in drag.
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2.3.2 Moments
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Fig. 2.14: Moments acting on a plate, where X, Y and Z axes are those of the load cell

Fig 2.14 shows the moments acting on the test plates with respect to the axes of the load cell.
The moments acting about the X axis would be roll, Y axis would be yaw and Z would be pitch.

The rolling moment is created by the Lift force acting on the test plates, as depicted in
Fig 2.15, which shows that the product of the lift and the moment arm (x) would be the Rolling
moment. Fig 2.16 shows how the coefficient of roll moment (= Mpitch

1
2
ρU2
∞Sc

) varies over angles of
attack ranging from 0◦ to 10◦ for all the test plates. No appreciable change was observed in the
general trend of the roll moments on the test plates. Theoretically, the rolling moment at an angle
of attack of 0 should be zero, as the lift force is zero at a 0◦ angle of attack. The flat plate and
10mm deep chevron plate exhibit non-zero rolling moments, which could be due to defects in the
plate themselves (for example, a small bend in the plate).

The Pitching Moment is taken about the Z axis of the load cell and determines the longitudinal
stability of an aircraft i.e., the ability of the aircraft to return to equilibrium if the angle of attack
changes suddenly. The criterion for longitudinal stability is that the value of CM should decrease
with an increase in α i.e., the slope of the CM vs α plot must be negative [6]. Fig 2.17 shows the
coefficient of pitching moment for all the test plates about half chord. Before flow separation i.e.,
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Fig. 2.15: Rolling Moment created by the lift force, where x is the moment arm

at angles of attack less than 5◦, ∂CM
∂α

is negative (the slope of CM vs α is found to be -0.021/deg),
which implies that the test plates are longitudinally stable until the flow begins to separate. The
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Fig. 2.16: Coefficient of Rolling Moment (CX) as a function of angle of attack (α),for various
chevron depths 2h. Error bars are calculated using Student’s t-distribution.
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Fig. 2.17: Coefficient of Pitching Moment (CM ) as a function of angle of attack (α),for various
chevron depths 2h. Error bars are calculated using Student’s t-distribution.

value of CM0 lies between 0 and 0.015, which could be due to a small misalignment of the model
or due to the plates not being perfectly symmetric.

The yawing moment is the moment taken about the Y axis of the load cell. It is equal to the
product of the Drag force and the moment arm (y), which can be seen in Fig. 2.18. Figure 2.19

Drag

x

Yawing Moment

Fig. 2.18: Yawing Moment created by the drag force, where x is the moment arm

shows the coefficient of yawing moment (= Myaw
1
2
ρU2
∞Sc

) for all the test plates about half chord. As the
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Fig. 2.19: Coefficient of Yawing Moment (CN ) as a function of angle of attack (α),for various
chevron depths 2h. Error bars are calculated using Student’s t-distribution.

chevron depth increases from 10mm to 40mm, the coefficient of yawing moments becomes more
negative at a 0◦ angle of attack and remains fairly constant up to 4◦. Between 4◦ and 10◦, the
coefficient of moment decreases with an increase in the angle of attack. The 50mm plate shows
the same trend, but shows roughly the same values of CN as the 40mm plate. The value of the
moment arm (x) can then be worked out using Eq 2.6.

Myaw = Dx

Myaw

1
2
ρU2
∞Sc

=
L

1
2
ρU2
∞S

x

c

CN = CD
x

c
(2.6)

Fig 2.20 shows how the moment arm varies for all the test plates for a given angle of attack.
The moment arm shown here is normalized with the span of each plate. One can see that the
moment arm of each of the chevron plates at 0◦ is larger than the flat plate; in the case of the
10mm chevron plate, the moment arm is nominally higher. It increases with an increase in the
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chevron depth up till the 30mm chevron plate, with a x
b

value of 0.65. For the 40mm chevron
plate, the normalized moment arm shows a sudden drop (x

b
= 0.53) and it increases again for the

50mm chevron plate to x
b

= 0.6. The large drop in the moment arm of the 40mm plate can be
attributed to its high value of profile drag (CDo= 0.994), but the exact reason for this large drag
exhibited by the 40mm plate is unclear. The lift and drag forces act a point on the wing known as
the Center of Pressure. The location of the center of pressure is determined by the pressure field
around a lifting surface, which in turn, depends on the angle of attack. A change in the moment
arm of the chevron plates at a given angle of attack indicates that the point where the drag acts on
the plates (or the center of pressure) has shifted further towards the tip of the wing as compared
to a plate without chevrons. One can then speculate that this shift in the center of pressure could
be due to a shift in the position of the tip vortex itself.
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2.4 Interim Summary

The objective of this section was to investigate how the presence of chevrons with varying
depths affects the aerodynamic forces and moment acting on the test plates. By measuring time
resolved forces and moments, we were able to find angles of attack where the flow remains at-
tached (0◦ to 5◦), where it begins to separate (5◦ to 42◦) and finally, where it separates completely
(α > 42◦). We then focus the bulk of our attention to the ranges of angle of attack where the
flow remains attached, as this region is one where an aircraft or drone would fly. We find that
the presence of chevrons does not significantly affect the coefficient of lift for all the test plates.
The coefficient of drag seems to be higher for test plates with 40 mm and 50 mm deep chevrons,
while the 10 mm, 20 mm and 30 mm have a slightly lower drag coefficient than the flat plate.
The peak aerodynamic efficiency of the 10mm, 20mm and 30mm deep chevron plates was found
to be 7.7%, 3.7% and 3.4% higher, respectively, than the flat plate at an angle of attack of 5◦ .
Meanwhile, the 40mm and 50mm plates had a significantly lower efficiency by 11.4% and 3.4%,
respectively, as compared to the flat plate. This sudden drop in efficiency of the deeper chevron
plates was due to an increase in the profile drag. Finally, the coefficients of rolling and pitching
moments are not significantly affected by the presence of the chevrons, but the yawing moment at
a 0◦ angle of attack becomes more negative with an increase in the chevron depth. The moment
arm was then computed and was found to increase with an increase in the chevron depth up to the
30mm chevron plate. The 40mm chevron plate saw a sudden drop in the moment arm (although,
it was still larger than that of the flat plate) and the 50mm chevron plate saw an increase in the
moment arm, as compared to the 40mm plate.

Having determined the angle of attack corresponding to the maximum aerodynamic efficiency
of the test plates as 5◦, we turn our attention to the tip vortex itself and how its structure is altered
due to the presence of the chevrons. This is important to determine how chevrons affect the tip
vortex as it forms and develops.
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Chapter 3

Analysis of the Tip Vortex

3.1 Introduction

In the previous chapter, the aerodynamic forces and moments on the chevron plates were
compared to the flat plate. In this section, we study the downstream development of the tip
vortex for each of these plates. The motivation is to address the last two objectives presented
in Chapter 1: what happens to the structure of the tip vortex due to the presence of chevrons?
How does the vortex develop as we go downstream of the wing? The former is important as
it gives an insight into the shape and size of a tip vortex. The latter addresses the issue of a
minimum separation between aircraft during take-off and landing: a tip vortex that decays faster
would require a smaller separation between two aircraft and therefore, help in increasing airport
capacity.

3.1.1 Structure of the Tip Vortex

A tip vortex can be characterized by its tangential velocity (Uθ) and radial velocity (Ur).
Fig 3.1 shows how the tangential and radial velocities can be described by the u, v and w velocity
components in cartesian coordinates of the test section, using Eq 3.1 and 3.2.

Uθ = Wcosθ + V sinθ (3.1)
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Ur = Wsinθ − V cosθ (3.2)

V

W

Uθ

Ur

θ

z; w

y; v

x; u

Fig. 3.1: Uθ and Ur using Cartesian velocity components

The planar cross-section of a tip vortex is divided into two tiers: an inner tier, or the core,
where the tangential velocity, Uθ is proportional to the radial distance from the vortex center,
r up to a critical radius called the Core Radius, rc. In the outer tier, the tangential velocity is
inversely proportional to the distance from the vortex center. The radial velocity (Ur) is normally
negligible [34] in the tip vortex.

The formation of a tip vortex around a lifting surface, as described by Green [34], can be
explained using three different arguments:

1. The pressure difference between the suction and pressure surfaces of the wing that ac-
celerate the oncoming flow around the wing tip. This was explained in more detail in
Section 1.2.

2. Tip vortices form a bridge between the starting vortex and the bound vortex: According
to the Kutta-Joukowski theorem, L=ρU∞Γ, where Γ is the circulation around the lifting
body. In the case of an airfoil, the value of Γ is such that the flow leaves the trailing
edge smoothly. This is known as the Kutta condition. Based on experimental results from
Prandtl and Tietjens [4], it was found that when the flow begins to develop around an
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Fig. 3.2: Different values of circulation over an airfoil, where points 1 and 2 are stagnation
points [4]

airfoil, it curls around the sharp trailing edge of an airfoil and leads to high velocity and
therefore, vorticity gradients, as shown in Fig 3.2. As a result, the stagnation point (Point
2 in Fig 3.2) shifts towards the trailing edge. However, in the first few moments when the
flow around an airfoil is developing, the high vorticity leads to the formation of a vortex
called the starting vortex. This starting vortex is flushed downstream as the stagnation point
shifts to the trailing edge. According to Kelvin’s circulation theorem, the net circulation
about a closed path must be zero. Therefore, an equal and opposite vortex is formed around
the airfoil. In the case of a finite wing, this vortex is the bound vortex. Finally, according
to Helmholtz laws, a vortex cannot end in a fluid and the starting and bound vortices are
connected by the tip vortices. This is illustrated in Fig 3.3.

Fig. 3.3: Tip vortex as a bridge between the bound vortex and starting vortex [34]
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3. The presence of a shear layer near the wing-tip: The velocity vector over the surface of
the wing is not parallel to the free stream velocity vector, leading to vorticity due to the
presence of velocity gradients, thereby forming tip vortices.

However, the actual formation and downstream development of tip vortices involve complex
processes and detailed studies have been conducted on the same. Chow et al. [35] presented
a study on the initial development of a tip vortex around a rounded wing-tip and found that
tertiary and secondary vortices merge into a primary vortex within one chord length from the
trailing edge. They also found that this primary vortex becomes axis-symmetric, with the axial
velocity (u in Fig 3.1) higher than the free-stream velocity. Green and Acosta [36] found that
this axial velocity surplus reverses and becomes a velocity deficit at 10c downstream of the wing.
However, some authors show that the deficit forms at the trailing edge, in the case of Stinebring,
et al. [37], at a downstream distance of 0.073c. Therefore, it has been experimentally found
that the axial velocity within the vortex core can be ‘wake’ like (or have a deficit with respect
to the free stream) or be ‘jet’ like (higher than the free stream velocity). Batchelor [38] showed
analytically that the nature of the axial velocity is determined by the balance between the radial
circulation gradient and the dissipation of momentum. Anderson and Lawton [39] found that the
axial velocity depends on the angle of attack of the wing and the tip shape: wings with a rounded
tip and a high angle of attack lead to a jet like flow, as opposed to wings with a square tip and at
low angle of attack, which form a wake like axial velocity profile.

It has been observed that the formation and development of tip vortices is affected by wing
shape, tip geometry and the nature of the boundary layer over the wing itself. Sarpkaya [1]
observed that the radius of the tip vortex generated by a rectangular planform that is square cut
is 30% larger than that of the same planform with a rounded tip. Shekarriz et al. [40] found that
this increase in the radius of the tip vortex is due to the formation of the primary vortex from
several shear layer vortices that are generated at the tip, which merge downstream. Stinebring et

al. [37] found that the axial velocity in the core decreases and core size increases on roughening
a smooth, round wing-tip. Giuini [2] showed that a squared wing tip produces a higher number
of smaller vortices as compared to rounded tips. Bailey et al. [41] showed that squared wing
tips form a tip vortex due to three distinct vortices merging together. Iversen [42] showed that
tip vortices show little growth or decay over the first 20 wing spans downstream of the wing.
Thus, the tip vortex shed from one wing develops independently from its counterpart shed by
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the opposite wing. Finally, it was found by Crow [10], that these tip-vortex pairs will merge
and form a single counter-rotating vortex pair, which develops sinusoidal instabilities (or Crow’s
instabilities) and forms a vortex ring that ultimately dissipates. Sarpkaya and Daly [43] found
that this dissipation is rapid and Chevalier [44] found that an aircraft which is in close proximity
of a wake that has already formed a vortex ring would face a very small risk, as the vortex ring
was found to dissipate within 10-20 seconds of its formation.

As a result, there has been a concentrated effort in developing methods that would aid in
faster dissipation of tip vortices to address the issue of spacing between aircrafts at airports.
Jacob et al. [45] used jets in the wing-tips to introduce instabilities in the tip vortex to facilitate
their dissipation and found that the tip vortex pair had an increased separation and an increase
in the growth rate of the vortex core. Lee et al. [46] proposed blowing air in the span-wise
direction from the wing tip through slots. As mentioned earlier, the primary vortex is formed
from flow that separates from the wing-tip. Blowing air in the span-wise direction deflected the
flow around the wing-tip outwards and increase the effective span. It also displaced the tip vortex
outwards. Heyes and Smith [47] combined the two effects i.e., they investigated the efficacy of
blowing air through slots in the wing-tips periodically. By subjecting tip vortices to periodic
perturbations at different mass flow rates of air, it was found that the vortex core was larger,
peak tangential velocities were lower and axial velocity deficit was larger, as compared to a wing
without pulsed jets of air. The exact amount of increase in the vortex core radius and axial velocity
deficit and decrease in the peak tangential velocities was a function of the mass flow rate of air
through the jets and the frequency of pulsation: a higher mass flow rate of air lead to a weaker tip
vortex. Another method that has been found to be effective in increasing vortex dissipation rate
is increasing the free stream turbulence. Sarpkaya and Daly [43] found that a pair of tip vortices
decay at a faster rate when surrounded by turbulence due to vortex bursting, as compared to when
the vortex pair is surrounded by weak turbulence, where Crow’s instabilities cause the demise of
the vortex pair. Ahmadi-Bloutaki [48] also found that increasing the free stream turbulence to
4.6% from 0.5%, using a grid turbulence generator, lead to the formation of a tip vortex on a
NACA 0015 wing section, that had a larger core radius and smaller peak tangential velocity with
an increase in streamwise distance.

It is well established that vortex formation and downstream development is affected by the
wing-tip geometry and that modifying the tip geometry could potentially aid in the faster dis-
sipation of tip vortices. This section focuses on how introducing chevrons of varying depths at
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the wing-tips of a flat plate would affect the tip vortex. To capture the tip vortex and study its
downstream development, hot-wire anemometry was used. Hot wire anemometers are intrusive
flow measurement devices i.e., they are placed in the flow field to measure the velocity compo-
nents of the flow. A concern while using hot wires to capture a tip vortex is vortex wandering.
Vortex wandering is a low-frequency motion of the vortex core, which could be self induced or
due to free stream turbulence. Bandyopadhyay et al [49] found that vortex wandering is due to
instabilities within the vortex core that cause packets of fluid in the core to be pushed out. Baker
et al. [50] proposed that the wandering is a consequence of free stream turbulence. Devenport et

al. [3] found that the effects of wandering are very small at downstream distance of x
c
< 1 and

need not be corrected for. Since this study captures the tip vortex at downstream distances of x
c

= 0.5, 1, 1.5, 2, 2.5 and 3, it becomes important to correct for vortex wandering. The following
section looks at this in more detail.

3.1.2 Vortex Wandering and Correction

Vortex wandering is a low frequency motion of the vortex which results in errors in the mean
velocity and turbulence measurements made with fixed probe, as shown in Fig 3.4. The fixed
probe may measure the average vortex center to be at a point (the origin in Fig 3.4), but since
the vortex is moving, it may, at a given instant of time, be at a position different from what the
fixed probe measures on average (yv, zv in Fig 3.4). Accurate measurements of the tangential and

Time Averaged Position of the Vortex Centre

Position of the Hot-Wire Probe

yp, zp

Current Position of the Vortex Centre
yv, zv

rp

rv

Fig. 3.4: Vortex Wandering while using a fixed probe, adapted from [3]

axial directions (z and x, respectively) require velocity measurements in the frame of reference
that moves with the wandering. A fixed probe, however, measures velocities in a fixed frame of
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reference. Devenport et al. [3] devised the following method to correct the velocities measured
by a fixed probe for wandering:

1. The measured profiles of axial and tangential velocities along the y=0 were fitted with fam-
ilies of curves based on the Lamb-Oseen vortex, given by Eq 3.3. CoefficientDi was found
through a non-linear least square curve fit of the time averaged velocity profile (measured
by using a hot wire probe) by using the MATLAB function ‘lsqcurvefit’. The coefficient ci
defined the radial scale and to avoid complex results, was kept above [2σz

2(1− e2)] 12 .

Uθ(0, zp) =
n∑
i=1

Di

zp

[
1− exp

(
−zp2

ci

)]
(3.3)

The number of terms n for the series fit was chosen to be half the number of measured
points, based on the recommendation of Devenport et al. [3].

2. The position of the vortex center (yv, zv) was assumed to be given by a non-isotropic Gaus-
sian probability density function described by Eq 3.4, where σy and σz are assumed to be
equal to the root mean square wandering amplitudes and e is the correlation coefficient,
given by vw

σvσw
, where vw are the velocity fluctuations and σv, σw are the standard devi-

ations of the velocity signals. The correlation coefficient is that of the Reynolds stresses
to ensure that the vortex axis and the principal axis of the Reynolds stresses are aligned,
which was required by Devenport et al.

Pv(yv, zp) =
1

2πσyσz(1− e2)
exp

[
−1

2(1− e2)

(
zv

2

σz2
+
yv

2

σy2
− 2eyvzv

σyσz

)]
(3.4)

For the first iteration, the values of e, σy and σz were guessed by the user.

3. The corrected tangential velocity profiles, Uθ(r), were determined by using Eq 3.5, where
ai and Bi are given by Eq 3.6 and 3.7, respectively.

Uθcorrected =
n∑
i=1

Bi

r

[
1− exp

(
−r2

ai2

)]
(3.5)

ai
2 =

1

2
ci

2−σy2−σz2+
1

2

[
(2σy

2 + 2σz
2 − ci2)2 − 16σy

2σz
2(1− e2) + 8σy

2c2i
]1/2 (3.6)
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Bi = Di(2σy
2 + ai

2)/
[
(2σy

2 + ai
2)(2σz

2 + ai
2)− 4e2σy

2σz
2
]1/2 (3.7)

4. Using the corrected velocity profiles and the pdf, vcwc at the center, yv=0 and zv=0, was
determined using Eq 3.8, where vcwc are the corrected fluctuating velocity components at
the vortex center.

vwc =

∫∫ ∞
−∞

Pv(yv, zv)Vc(0−yv, 0−zv)Wc(0−yv, 0−zv)dydz−Vc(0, 0)Wc(0, 0) (3.8)

Similar expressions were used to compute vc2 and wc2 at the center. These calculated
corrected values of Reynolds stresses were compared to the values of Reynolds stresses
measured at the center using the hot wire probe and new values of σy, σz and e were
calculated using Eq 3.9, 3.10 and 3.11, respectively.

σy,new
2 = σy,old

2wmeas2/wc
2 (3.9)

σz,new
2 = σz,old

2vmeas
2/vc

2 (3.10)

enew =
vwc

σy,newσz,new
(3.11)

5. Steps 1 to 4 are repeated until the difference between the measured and corrected σy, σz,
v2, w2 and vw (or the relative error) was less than 0.1%.

This analytical method was validated by Heyes et al [51], who studied the tip vortex in free stream
turbulence using PIV, and confirmed Devenport et al.’s assumption that the wandering of the tip
vortex followed a non-isotropic Gaussian pdf. Furthermore, they found that failure to account
for vortex wandering leads to up to a 12.5% over-prediction of the core radius and a 6% under
prediction of the peak tangential velocity. Measurements taken by using fixed probes, therefore,
need to be corrected for wandering. Another issue with the use of an intrusive flow measurement
device like the hot wire is that the probe could perturb the tip vortex and cause it to wander.
However, Devenport et al. [3] found the tip vortex to be insensitive to the introduction of a fixed
probe and found the contribution of the presence of a hot wire to wandering to be minimal.
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Fig. 3.5: Three linear stages used to move in the x, y and z directions in the test section

3.2 Experimental Setup

3.2.1 Wind Tunnel Setup

The mounting disk for the test plates was the same as the one described in Sec 2.2.3. To
measure the tip vortex downstream of the test plates, three linear stages were used to allow motion
in the x, y and z directions, as shown in Fig 3.5. A Newmark LC Series 300mm travel length
linear stage was screwed into the floor of the test section of the wind tunnel, using four 1/4 inch
wood screws, 400mm downstream of the edge of the chord of the test plates. It was controlled
using the Newmark Motion Controller and enabled motion in the axial (x) direction. To move
the hot-wire in the y and z directions, two Panowin 3D Printer Slider with 17HS4401 Motion
King Stepper Motor and a travel length of 135 mm were used. The general specifications of the
stepper motors are provided in Table 3.1. The stepper motors were controlled using a TB6600
Stepper Motor Driver Controller, which supports micro-steps and current control. Since the
stepper motors were rated for 1.3 A, the micro stepper was set to 1.0 A of current control and a
micro step value of 4 (Step Angle=Motor Step Angle/Micro Step; in our case, 1.8◦

4
=0.45◦) through
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Table 3.1: Specifications of the Motion King Stepper Motor

Step Angle (deg) Rated Current (A) Step Accuracy
1.8 1.3 ±5%

DIP switches on the controller. The controller was, in turn, connected to the NI-USB 6363 DAQ
unit, which was further connect to a computer. The enable control, number of micro-steps and
direction of motion of the motor could be input through a LabVIEW code. The linear stages were
calibrated and it was found that 7675 steps make the traverse move over the entire travel range,
giving a resolution of 0.0175mm. The printer slider in the y direction was mounted on the other
slider (in the z direction; see Fig 3.5) through four M3 Hex Head, 5 mm long screws. Finally,
the printer slider in the z direction was mounted onto the Newmark LC linear stage through a 6
mm thick aluminium plate with four M6, flat head, hex drive, 5mm long screws on the Newmark
stage end and four M3 flat head, hex drive, 5 mm long screws on the Panowin printer slider end.

A 10mm thick plastic bar was mounted on the linear stage in the y direction using five M3 flat
head, hex drive screws , as shown in Fig 3.6. This bar, in turn, was connected to a 400 mm long
bar through three M6, flat head, hex drive, 30 mm long screws. The length of 400mm was chosen
as it was deemed an appropriate distance between the hot wire and the mechanism of the stepper
motors, which could add to the electrical noise. A slot for a HiTec HS-85BB Servo Motor was
milled into this bar. The Servo motor specifications are presented in Table 3.2

Attachment to the linear stage in the y direction

Slot for the HS-85BB Servo Motor

400 mm

Fig. 3.6: Attachment of bars to the linear stage in the y direction

One servo motor was mounted into the slot in the bar using two M3, hex drive, flat head, 5mm
long screws. This servo allowed for yawing motion of the probe holder. The second servo was



50 Analysis of the Tip Vortex

-100 -50 0 50 100

Angular Position (°)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
u

ty
 C

y
c
le

Calibration of the Pitch Servo Motor 

 

y = 0.00057*x + 0.063

Calibration Data

   Linear fit

(a)

-100 -50 0 50 100

Angular Position (°)

0.02

0.04

0.06

0.08

0.1

0.12

D
u
ty

 C
y
c
le

Calibration of the Yaw Servo
 

y = - 0.00049*x + 0.074

Calibration Data

   Linear Fit

(b)

Fig. 3.7: a) Calibration for the Servo Motor for Pitching b) Calibration for the Servo Motor for
Pitching

mounted on the first servo motor and allowed for pitching motion of the probe. Both servo motors
were connected to the NI-USB 6363 DAQ and were controlled using LabView codes that sent a
duty cycle of a Pulse Width Modulation (PWM) signal. Both servo motors were calibrated and a
relation between the duty cycle value and angular position of the motors was obtained, which is
described in Fig 3.7.

Table 3.2: Specifications of the HiTec HS-85BB Servo Motor

Voltage Range Pulse Cycle Pulse Width
4.8V-6.0V 20 ms 900-2100 µs

A mount (see Fig 3.8), which acted as an interface between the hot wire probe and the servo
motors, was 3D printed using FormLabs Form2 Stereolithography printer (which has a layer
resolution of 0.025 mm) using their proprietary standard black V4 photopolymer resin. The
mount had clearance holes for two M2 flat head, hex drive, 5mm long screws to attach with the
servo and one clearance hole for an M2 screw to keep the probe in place. The assembly of the
entire setup can be seen in Fig 3.9.

Finally, the measurements were made using an Auspex 4 Sensor Vorticity probe with the sen-
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(a) (b)

Fig. 3.8: a) Front view of the mount b) Side view of the mount

sor diameter of 5 microns and sensor length of 1mm; the configuration of the wires is shown in
Fig 3.10. The probe body was a round stainless steel tubing with 0.25 inches outer diameter. The
four sensors were connected to four of the six channels of the AA Labs AN-1003 Constant Tem-
perature Anemometer (with option 04 for high frequency operation), loaned from the University
of Ottawa. The four outputs of the CTA were connected to the NI-USB 6363 DAQ.

3.3 Methodology

3.3.1 Hot-Wire Calibration

Each channel in the CTA was calibrated using the method described in [53]. For each channel,
the gain was set to 1, the overheat ratio (OHR) was 1.5, the D.C. Offset was 3V and a low-pass
filter of 14 kHz was used. The two pairs of cross wires were calibrated using velocity pitch-map
calibration, the method for which is described as follows:

1. Set a pair of cross wires to a given pitch angle

2. Acquire voltages from the two channels over a range of wind speeds (Ub= 5m/s, 7.5m/s,
10m/s, 12.5m/s and 15m/s in our case)
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3 axis Linear Traverse Mechanism

Bars for Mounting the Hot-Wire Probe

Servo Motors for Pitching
and Yawing the Probe

3D Printed Probe Holder

Fig. 3.9: Final Assembly of the setup for Hot-Wire Measurements

Fig. 3.10: Four Sensor Hot-Wire Probe [52]

3. Repeat the process over a range of pitch angles (θ= -21◦, -14◦, -7◦, 0◦, 7◦, 14◦ and 21◦ in
our case; see Fig 3.11)

4. Fit the voltages to a third order surface polynomial to obtain a calibration for voltages for
pitch angles and velocities

5. U and V are obtained using U= Ubcosθ and V = Ubsinθ
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Fig. 3.11: Calibration of a Cross Wire

This process was repeated for the other pair of cross wires in the yaw direction. The two pairs
of cross wires were re-calibrated if the change in temperature in the test section was greater than
1◦C. An example of the velocity pitch-map calibration can be seen in Fig 3.12.
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Fig. 3.12: Velocity Pitch-Map Calibration for a Pair of Cross Wires

3.3.2 Background Turbulence

One of the characteristics of a wind tunnel is its background turbulence intensity, which is the
ratio of the root mean square of the velocity fluctuations and the free stream velocity i.e., urms

U∞
,
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where the velocity fluctuations, u are given by the difference between the instantaneous velocity,
Ui and the mean velocity, U . This is known as Reynolds decomposition. The instantaneous
velocity is measured in the test section without the model, and the fluctuating component of the
velocity is computed. The turbulence intensity gives an idea of how turbulent the oncoming
flow is. The contribution to the noise could be electrical (due to stepper and servo motors),
mechanical (due to the motion of the linear traverses) or due to unsteadiness in the wind tunnel
itself. To measure the background turbulence at the test speed of 10 m/s, the four sensor hot wire
probe was placed at half the height of the test section and moved at downstream distances of x

c
=

0.5, 1, 1.5, 2, 2.5 and 3. The turbulence intensity in the longitudinal i.e., in the direction of x, u
was computed by using Tu=urms

U∞
. Similar measurements were taken for v and w and are shown

in Fig 3.13. The largest value of Tu is 1.09%, while Tv and Tw is 0.2% and 0.19% at the farthest
downstream position.
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Fig. 3.13: Turbulence Instensity in the Wind Tunnel test section for all three components of
velocity; Tu seems to have a maximum value of 1.09%, while Tv and Tw are 0.2% and 0.19% on
an average
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3.3.3 Grid Capturing the Tip-Vortex

In this section, we discuss how the tip vortex was measured using the hot-wire probe. The
three axis traverse system was used to move the hot-wire over a 33mm x 33mm grid in the
y − z plane, from z values ranging from -0.1<z/c< 0.23 and y values ranging from -0.26<y/c<
0.07, with 1 mm increments in both directions. This plane of measurement was chosen based on
measurements to capture tip-vortices performed by Ahmadi-Baloutaki et al [48]. Each test plate
was set at a 5◦ angle of attack (the angle of attack corresponding the the peak L

D
ratio), found by

force measurements using the ATI Gamma IP68 sensor. The trailing edge of the test plates at an
angle of attack of 0◦ was chosen as the the global origin (0,0,0). Grid measurements were taken
at downstream distances (in the x direction) of 0.5c, 1c, 1.5c, 2c, 2.5c and 3c from the trailing
edge. Fig 3.14 shows how the vortex was captured using a grid and Fig 3.15 shows an example
of the V and W velocities captured through the grid. The measurements were taken at a sample
rate of 30 kHz for 30 seconds using the NI-USB 6363 DAQ. The sample rate was chosen to be 30
kHz because the low-pass filter on the CTA was set at 14 kHz; according to the Nyquist theorem,
to avoid aliasing, the sampling frequency should be more than twice the frequency of the highest
frequency that we hope to capture. Data was acquired for 30 seconds as that was the amount of
time required for the mean values of the signals to converge.

3.3.4 Mean Velocity Profile Measurements

Section 3.1.1 described the structure of a tip-vortex; if a hot-wire probe is moved from the
center of the tip-vortex along the y axis (see Fig 3.1), the V component of velocity would be zero
and the tangential velocity would be equal to W (as θ becomes 0). Assuming that the vortex is
axisymmetric, this velocity profile can characterize the tip vortex by measuring the core radius
and the peak tangential velocity. To measure this velocity profile, the center of the vortex has to
be found using the grid described in the previous section. The center of the tip vortex is defined as
the point at which both- the V andW components of velocity are 0 [48]- and was found using the
point of intersection of the contours where V and W are 0. Fig 3.16 shows the V and W velocity
contours for one measurement plane and the corresponding point where the zero contours of V
and W intersect. The hot-wire probe was moved to this point and then moved in the y direction
in 1 mm increments to measure the tangential velocity profile of the tip vortex. At each point
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Fig. 3.14: Three Axis Traversing Mechanism Capturing the Tip-Vortex through a 33 mm×33
mm Grid

in the y direction, data was acquired at a sample rate of 30 kHz for 60 seconds, this increase in
sampling time was set to decrease statistical uncertainty in the measurements.

Finally, to check for vortex wandering, the hot wire probe was moved to the center of the
vortex and data was acquired at the center at a sample rate of 30 kHz for 600 seconds. A long
data sample was necessary because sample time is inversely proportional to the lowest frequency
that we can measure in the flow, and vortex wandering is a low frequency motion of the vortex
center.
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Fig. 3.16: Contour plots of the V and W components of velocities measured for a flat plate at 1c
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3.4 Position of the Tip Vortex

The position of the tip vortex affects the aerodynamic forces and moments acting on a lifting
surface by influencing the downwash speed, which results in a change in the downwash angle
(depicted in Fig 3.17). If the tip vortex lifts up, i.e., move in the direction of the lift, the downwash
speed becomes smaller (as the distance between the tip vortex and the wing is larger), leading to
a decrease in the induced angle, αi. A lower αi leads to a smaller lift induced drag according to
Eq 1.2. The position of the vortex center also affects the overall pressure distribution over the
lifting surface, thereby changing the position of the Center of Pressure, which is the point where
the total lift and drag act on a wing surface. This change in the center of pressure leads to a
change in the pitching, rolling and yawing moments, as explained in Section 2.3.2.

U∞w
αi

L

D

z

y

x

Fig. 3.17: Figure depicting the effect of the position of the vortex on a lifting surface (adapted
from [4]); the position of the vortex affects the downwash speed, leading to a change in the
downwash angle

The center of the tip vortex was found using the method described in Section 3.3.3. The tip
vortex measured for the flat plate at different downstream locations is shown in Fig 3.18. Note
that the trailing edge of the flat plate at a 0◦ angle of attack is fixed as the origin.

Fig 3.19 shows the position of the center of the tip vortex in the z direction (i.e., in the
direction of the lift force), while Fig 3.20 shows the position of the vortex center in the y direction,
with respect to the origin for each test plate. The presence of the chevron plates moves the
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Fig. 3.18: V and W components of velocities at each downstream position for a flat plate, de-
picting the change in the position of the vortex center

tip vortex towards the wing root and in the direction of lift. In general, as the chevron depth
increases, the vortex center moves further in the z direction- the 10mm and 20mm chevron plates
have vortex centers ( z

c
) between 0.1c and 0.15c from the origin, while the 40mm and 50mm

chevron plates have vortex center at roughly 0.15c from the origin. The vortex center of the
30mm chevron plate lies between 0.09c and 0.15c. All the chevron plates have z

c
values of vortex

centers that are greater than those of the flat plate. The ‘lifting’ of the vortex center leads to
a smaller induced drag due to a smaller downwash angle. It is also observed that the chevron
plates have vortex centers that are pushed towards the root of the wing, as compared to the flat
plate. Again, as the chevron depth increases, the vortex centers are shifted towards the root of the
wing. This would affect the pressure distribution over the test plates, that could lead to a change
in the Center of Pressure, and therefore, the moment arm. A change in the pressure distribution
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Fig. 3.19: Normalized z coordinates of the vortex center for each test plate

could also explain the observed difference in profile drag in the test plates. The exact pressure
distribution over the test plates, however, would have to be studied using pressure taps on the
wing surface. We could also speculate that the movement of the vortex centers towards the wing
root would lead to tip vortex pairs in an aircraft wing or drone to move closer to each other,
leading to faster mutual interaction and dissipation [10]. The following section looks at the tip
vortex itself in more detail.

3.5 Size and Strength of the Tip Vortex

Fig 3.21 shows the contours of the U , V and W components of velocities, measured across
a 33mm × 33mm grid. One can clearly see that the tip vortex is axisymteric and therefore,
measuring the velocities along the y axis would sufficiently characterize the tangential velocity
and the core radius. The tangential velocities were measured at six downstream positions (x=
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Fig. 3.20: Normalized y coordinates of the vortex center for each test plate

0.5c, 1c, 1.5c, 2c, 2.5c and 3c) for each of the test plates. At x
c
= 0.5, the tangential velocities for

each flat plate showed peaks at two radii for each test plate, which is shown in Fig 3.24. This
indicates a double core structure of the tip vortex, consistent with Devenport et al.’s observation.
They observed the presence of a double core that disappeared with an increase in streamwise
distance and attributed it to the initial conditions, based on Engel et al. [54]’s study of the tip
vortex on a NACA 0012 wing. Using helium bubble flow visualization, they found the presence of
a primary vortex at half chord on the suction side of the NACA 0012 wing alongwith a corotating
secondary vortex that merged with the primary vortex at about 1c. As a result of this double core
structure in the tip vortex at 0.5c, the majority of this study focuses on downstream distances of
1c to 3c.

The strength of a vortex can be characterized by its circulation, Γ, which is given by the
line integral around a closed curve of the velocity field, or

∮
C
V dl. A large core radius and

small peak tangential velocity indicate lower circulation and therefore, a weaker vortex. Fig 3.22
shows the tangential velocities for a flat plate at all five downstream positions, while Fig 3.23
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Contour Plots of U, V and W for a Flat Plate at 1c
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Contour Plots of U, V and W for a Flat Plate at 2c
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Contour Plots of U, V and W for a Flat Plate at 3c

0 3 6 9 12 15 18 21 24 27 30

y (mm)

0

3

6

9

12

15

18

21

24

27

30

z
 (

m
m

)

-2

0

2

4

6

8

10

U

V

W

(c)

Fig. 3.21: Contour plots of the U , V and W components of velocities measured for a flat plate at
a) 1c, b) 2c and c) 3c
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shows the tangential velocities for the test plates at x
c
= 1. To compare the strength of the tip

vortex for each chevron plate at each downstream position, we focus our attention on the peak
tangential velocity and the corresponding core radius. This comparison is only possible if the
general tangential velocity profile of the tip vortex of each test plate is the same. This was
ascertained by normalizing the tangential velocity with the peak tangential velocity and radial
distance with the core radius for each plate at each downstream position, as the flow in the core
of the tip vortex has been shown to be self similar, with the tangential velocities normalized by the
peak tangential velocity and radial distances normalized by the core radius, for a fully developed
tip vortex. The normalized tangential velocities are expected to follow the curve given by Eq 3.12
up to r

rc
< 1.2 [55].

Uθ
Uθmax

=
1

0.716( r
rc

)

(
1− exp

(
− 1.2526

(
r

rc

)2
))

(3.12)
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Fig. 3.22: Tangential Velocity Profiles at Different Downstream Positions for a Flat Plate

Fig 3.25 shows the normalized tangential velocity profiles for the flat plate at each down-
stream position, while Fig 3.26 shows the same for all the test plates at 3c. One can see from both
figures that the core of the tip vortex for each plate is self-similar up to roughly 1.2rc and closely
follows the analytical solution given by Eq 3.12, after which the normalized tangential velocities
deviate significantly from the analytical solution. Note that this solution and the assumption of
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compared to the analytical solution

self similarity is only valid if the vortex is fully formed, which may or may not be the case for the
measurements presented in this thesis at downstream distances of 1< x

c
< 3. More analysis on

this is presented in Section 3.6.1. However, for the following analysis, it is suffice to keep in mind
that the general profile of the tangential velocities is the same for every test plate, and therefore,
the peak tangential velocity and corresponding core radius would adequately characterize the tip
vortex and allow a meaningful comparison between the different test plates.

Fig 3.27 shows the peak tangential velocities at each downstream position for all the flat
plates. One can see that the peak tangential velocities for the chevron plates are significantly
lower than the flat plate at each downstream location. This observation could corroborate our
initial hypothesis: the presence of chevrons could lead to the formation of several smaller tip
vortices that would interact with each other and result in a tip vortex that is weaker. In order to
validate this, detailed planar velocity measurements would have to be taken, using particle image
velocity for example; this is, however, beyond the scope of the current thesis. There is a clear
pattern between the chevron depth and the tangential velocity- deeper chevrons lead to smaller
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peak velocities. It is also of interest to compare the rate at which the peak tangential velocities
decrease with an increase in downstream distance, as it gives a better picture of whether or not
the presence of chevrons leads to tip-vortices that dissipate faster. To compute this, we performed
a power law fit of the form Uθmax

U∞
∝ (x

c
)−n to the peak tangential velocities at five downstream

positions of each plate. Table 3.3 shows the ‘decay rate’ for each chevron plate and the percentage
change in decay rates as compared to the flat plate. All the chevron plates, barring the 40mm
plate, have a higher decay rate than the flat plate. It is to be noted here that these power fits
were performed for peak velocities at 1 < x

c
< 3, which is merely five data points. An issue with

power law fits is that their uncertainty decreases as the spatial range over which they are applied

Table 3.3: Decay Rate of the Tip Vortex for all the Test Plates

Test Plate 0 mm 10 mm 20 mm 30 mm 40 mm 50 mm
Decay Rate (n) 0.1038 0.1896 0.1310 0.2284 0.08541 0.2148

% change in decay rate 0 +82.7 +26.2 +120.0 -17.7 +106.9
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increases. Therefore, an alternative way to look at whether or not the peak tangential velocities
are decaying faster is to look at their normalized ‘decay rate’, by normalizing the peak tangential
velocity at each downstream position with the value of Uθmax at 1c. This is shown in Fig 3.28.
One can see that the peak tangential velocities of the 10mm, 40mm and 50mm chevron plates
decrease significantly faster than the flat plate. The 20mm plate seems to have a decrease in the
normalized peak tangential velocity which is comparable to the flat plate and the 30mm chevron
plate seems to have a lower decay rate than the flat plate. This is contrary to the results given by
the power law fit, that indicate a faster decay rate for the 30mm chevron plate and a lower decay
rate for the 40mm plate, as compared to the flat plate.

The core radius is an important parameter to compare the effect of the chevrons, as it indicates
the size as well as the strength of the vortex. Fig 3.29 shows the core radius (rc) of the tip vortices
for the test plates at every downstream location. The chevron plates have a larger vortex core as
compared to the flat plate, barring the 10mm chevron plate, which has a smaller vortex core. For
the 30mm, 40mm and 50mm chevron plates, the core radius increased with an increase in the
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streamwise distance. This implies that the tip vortex is weaker i.e., it has a low peak tangential
velocity and large core radius as compared to a flat plate.

At this point, it is important to ensure that these lower peak tangential velocities and higher
core radii exhibited by plates with chevron wing tips are due to the presence of the chevron
tips and not due to wandering. It has been shown by Bailey et al. [56], who studied the effect
of wandering on a tip vortex in grid generated turbulence, that wandering can lead to a rapid
decrease in the peak tangential velocities and increase in the core radius. To check whether or not
the tip vortex was wandering, 10 minute long measurements of u, v andw were taken at the center
of the tip vortex, as described in Section 3.3.4 and the power spectral density was computed.

The autocovariance R(s) is a multi-time statistic that is given by u(t)u(t+ s) and gives the
correlation coefficient of a quantity (say, velocity) between time t and t+ s at a single point. The
autocovariance forms a Fourier transform pair with twice the power spectral density, Eij(f) ,
which is given by 1

π

∫∞
−∞Rij(s)e

−ifsds. Therefore, R(s) will be equal to
∫∞
∞ Eij(s)e

ifsdf . If i=j
and s=0, one can see that uii2=

∫∞
∞ Eii(f)df . Therefore, an integral of the power spectral density

over a bandwidth of frequencies would give the turbulent kinetic energy within that bandwidth.
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Eii plotted against frequency gives a temporal description of contribution to energy by all the
possible sources of energy in the flow field. According to Kolmogorov’s first hypothesis, at
sufficiently high Reynolds numbers, the statistics of the smaller scales have a universal form,
uniquely determined by the dissipation rate of the turbulent kinetic energy (ε) and the viscosity
(ν). This range of scales is called the universal equilibrium range. According to Kolmogorov’s
second similarity hypothesis [57], at high Reynolds numbers and length scales larger than those
of the equilibrium range, but still smaller than the integral length scale (which is the largest scale
in the flow), the statistics of motion are going to be determined by ε alone and are independent
of ν. This range of scales is called the inertial sub-range. Kolmogorov used dimensional analysis
for theoretically deriving the shape of the spectrum in the inertial sub-range and found that the
slope of the spectrum is equal to −5

3
. A more rigorous explanation of the same can be found in
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textbooks on turbulence by Tennekes and Lumley [58] and Pope [57]. As an example, consider
the power spectral density of u, v and w at the vortex center of the 50mm deep chevron at 3c,
shown in Fig 3.30, which has a slope of −5

3
, from which it can be inferred that the flow at the core

is turbulent.

To study whether or not the vortex was wandering, the cross power spectral density coefficient
( E2

yz

EyyEzz
) of v and w was plotted at 3c , since wandering is a planar motion that affects both

components of velocities simultaneously [56]. The farthest downstream location (3c) was chosen,
because wandering is shown to increase in amplitude with an increase in streamwise distance [3].
Fig 3.31 shows the cross power spectral density coefficient of the test plates at 3c. The flat plate
shows spikes in the cross power spectral density coefficient over a wide band of frequencies. The
10mm chevron plate shows a broadband peak at 10Hz, a narrower and sharper peak at 100Hz
and a final slightly broader peak at 300Hz. Using the definition of Strouhal number (St= fL

U∞
),

and substituting U∞ = 10 m/s, f = 300 Hz and assuming the Strouhal number, St to be 0.2, we
find that the characteristic length L = 6.6 mm. The thickness of the test plates is 6 mm, therefore,
indicating that the spike in frequency at 300 Hz could be due to vortex shedding. The 20mm,
30mm, 40mm and 50mm chevron plates show a clear spike between 50Hz and 70Hz. Bailey
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et al. [56] identified these spikes in the cross spectra at frequencies below 100Hz as wandering.
Therefore, there was a need to correct the mean velocity profiles for vortex wandering.

3.6 Correction of the Tangential Velocity Profiles

In section 3.1.2, we had discussed Devenport et al.’s [3] iterative method for correcting the
tangential velocity profiles measured by a hot wire probe to account for wandering of the tip
vortex. This correction was implemented on our measurements for the flat plate, the 10mm and
20 mm chevron plates by choosing the number of terms in each series (n) in Eq3.3 as half the
number of measured points. Fig 3.32 shows the tangential velocity profile measured for the flat
plate at 1c and its corresponding correction. Convergence was achieved within four iterations for
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this case and Fig 3.33 shows the maximum difference between the measured and the corrected
profiles at each iteration. The corrected and uncorrected (measured) peak tangential velocities
normalized by the free stream velocity and core radii normalized by the chord length are shown
in Fig 3.34 and Fig 3.35, respectively. It is evident that wandering has an effect on the values
of the peak tangential velocities and the core radius size: the corrected peak tangential velocities
are higher and the core radii are smaller as compared to the uncorrected values. Based on these
corrected profiles, the decay rate was calculated again and is shown in Table 3.4. Despite the
correction for wandering, the peak tangential velocities of the chevron plates are significantly
lower than the flat plate at each downstream position. The corrected core radii of the 10mm
chevron plate are smaller and 20mm chevron plate are larger than the corrected radii of the flat
plate, which was also the case for the uncorrected data. While there is a difference in the absolute
values of the peak tangential velocities and the core radii of the corrected and uncorrected data,
from the onset, the objective of this study was to compare the effect of chevron wing tips on
the tip vortex to that of the flat plate. Therefore, in a comparative sense, the results remain
unchanged: the presence of chevrons decreases the peak tangential velocity and increases the
size of the vortex core in a tip vortex.
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Another important factor to consider is the accuracy of the correction method itself. These
corrections have not found to be very accurate if σy,z

rc
is greater than 60% [59]. Fig 3.36 shows the

wandering amplitudes (σy,z) normalized by the core radius (rc) at each downstream location. The
wandering amplitudes are higher in the chevron plates as compared to the flat plate, but remain
well within the 60% limit and can be relied upon.

This correction could not be implemented on the 30mm, 40mm and 50mm deep chevron
plates as the the error did not converge to a point below the tolerance of 0.1%. If the tolerance
was increased to 1%, the resulting velocity profiles were oscillatory and the minimum ci values
were greater than the core radius (rc). Fig 3.37 shows one such case. This can be attributed to

Table 3.4: Corrected Decay Rate of the Tip Vortex for the 0mm, 10mm and 20mm chevron plates

Test Plate 2h=0 mm 2h=10 mm 2h=20 mm
Decay Rate (n) 0.1409 0.2394 0.1152

% change in decay rate 0 +69.9 -18.2
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the fact that the correction is only valid if the core of the tip vortex is laminar. Bailey et al. [56]
noted that Devenport et al.’s correction did not apply well in the case of high turbulence and
became increasingly sensitive to the number of terms (n) in the series fit: smaller values of n lead
to poor fits and larger values provided oscillatory velocity profiles. They also noted that a large
wandering amplitude iterated to a large minimum value of ci which exceeded the core radius
rc, leading to an incorrect determination of the location of the peak tangential velocity. Finally,
they observed that a small scatter in the measured velocity profiles lead to a large oscillation
in the corrected profile. Since we observed this in our implementation of the correction to the
velocity profiles of the 30mm, 40mm and 50mm chevron plates, it became important to compute
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the frequency spectra at the center of the tip vortex.

3.6.1 Frequency Spectra at the Center of the Tip Vortex

The frequency spectra (Fzz) of w at the time averaged vortex center was used to indicate
whether or not the flow in the core is turbulent. Fig 3.38 shows Fzz plotted against the frequency
for all the test plates at 3c. The deeper chevron plates have a turbulent core, as opposed to the
plates with shallow chevrons, and therefore, their tangential velocity profiles cannot be corrected
by Devenport et al.’s correction. An alternative to correct these velocity profiles is by using
the zero crossing technique proposed by Bailey et al. [56], which uses two four sensor hot wire
probes to measure the velocity profiles in a frame of reference that is attached to the wandering
axis. It was deemed that this correction method was beyond the scope of this thesis, due to the
lack of sufficient anemometer channels to collect the required data. The 20mm chevron plate
seemed to have a slope of the frequency spectrum that is closer to the −5

3
than the 0mm and

10mm plates, as shown in Fig 3.38. Therefore, the validity of Devenport et al.’s correction to the
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Fig. 3.38: Fzz for all the test plates at 3c.

tangential velocity profiles for this plate is uncertain.

We can speculate that the turbulence in the vortex core can be attributed to the fact that the
vortex is still going through the roll up process, since our farthest measurements have been taken
at a downstream distance of 3c. It has been shown by Katz et al. [60] that during the initial
formation of a vortex, its core is turbulent due to the boundary layer on the wing and the axial
velocity gradient in its core. There is no study that is unanimously agreed upon, that determines
when the vortex roll-up is complete. Birch et al. [61] reported that the strength (or circulation)
of a vortex was constant after a downstream distance of 1.5c and used the constant circulation
as a criterion for determining when vortex roll up is complete. In contrast, Phillips [55] deemed
the vortex roll up process to be complete when the spiral wake was distinct from the vortex
core, which continues up to several chord lengths downstream of the wing. Green [34] identified
the roll-up process to be complete when the vortex tangential velocity and circulation does not
change with streamwise distance. Therefore, it is hard to determine whether or not the tip vortex
roll up is complete at our farthest measurement plane of 3c.
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Fig. 3.39: Fzz of the flat plate for downstream distances x/c = 1, 1.5, 2, 2.5 and 3. The slope
of the spectra with respect to the frequency is −3 at every location, indicating a laminar core
throughout

Since all the test plates are subjected to the same background turbulence in the test section,
the only variable is the depth of the chevrons and one can speculate that deeper chevrons lead
to the formation of vortices with a turbulent core that have a roll up process that lasts farther
downstream than 3c. Bandyopadhyay et al. [49] observed that the mechanism of vortex decay is
through ‘stripping’, where there is an exchange of momentum between fluid packets inside and
outside the core. A turbulent core would therefore lead to an enhanced exchange of momentum,
leading to lower peak tangential velocities and large core radii. This raises the question of whether
or not the vortex core is turbulent at every downstream location and whether or not the bandwidth
of frequencies over which the slope of Fzz with respect to the frequency is −5

3
is the same. The

latter would give us information on whether the core becomes more turbulent with streamwise
distance or not.

Fig 3.39 shows the power spectral density of w at the vortex center in the flat plate at down-
stream distances of x/c = 1, 1.5, 2, 2.5 and 3. The power spectral density of w showed that the
flat plate had a laminar core at every downstream position in the measurement plane, identified
by the slope of the power spectral density, which was shown to be -3 by Devenport et al. This
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warranted the question of whether or not the tip vortex is turbulent in the near field of the test
plates i.e., at x/c < 1. The power spectral density of w at the vortex center of the flat plate at
x/c= 0.5 has a −5/3 slope, as shown in Fig 3.40. It can, therefore, be concluded that in the case
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Fig. 3.40: Fzz of the flat plate for a downstream distances x/c= 0.5. The slope of the spectra with
respect to the frequency appears to be −5/3, which implies that the vortex core is turbulent in the
near field and laminarizes byx/c =1.

of the flat plate, the vortex core laminarizes by a downstream distance of 1c. A laminar core is
explained by Mayer and Powell [62], who found that the vortex core is laminar in the absence of
a large axial flow, irrespective of the Reynolds number. Furthermore, through Direct Numerical
Simulation and Large Eddy Simulations, it has been shown that even if the axial flow is sufficient
to destabilize the vortex, the turbulence generated diminishes the axial flow to a stable level, after
which the vortex core returns to a laminar state [63].

The Power Spectral Density of w at the vortex center of the 10mm, 20mm , 30mm and 40mm
chevron plates at downstream positions of x/c= 0.5, 1, 1.5, 2, 2.5 and 3 are shown in Fig 3.41,
Fig 3.42, Fig 3.43, Fig 3.44 and Fig 3.45, respectively. In the 10mm chevron plate, the vortex
core appears to be turbulent at downstream distances of 0.5c, 1c and 1.5c, which is indicated by
the −5/3 slope of the power spectral density of w with respect to the frequency. At x/c > 1.5,
the slope of the power spectral density is closer to −3, than −5

3
and therefore, the vortex core is

laminar.
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Fig. 3.41: Fzz of the 10mm chevron plate for a downstream distances x/c= 0.5, 1, 1.5, 2, 2.5 and
3. The slope of the spectra with respect to the frequency appears to be −5/3, for x/c= 0.5, 1 and
1.5, which implies that the vortex core is turbulent initially and laminarizes byx/c =2.
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Fig. 3.42: Fzz of the 20mm chevron plate for a downstream distances x/c= 0.5, 1, 1.5, 2, 2.5 and
3. The slope of the spectra with respect to the frequency appears to be −5/3 at every downstream
position, which implies that the vortex core is turbulent throughout.
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Fig. 3.43: Fzz of the 30mm chevron plate for a downstream distances x/c= 0.5, 1, 1.5, 2, 2.5 and
3. The slope of the spectra with respect to the frequency appears to be −5/3, at every downstream
position, which implies that the vortex core is turbulent throughout.
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Fig. 3.44: Fzz of the 40mm chevron plate for a downstream distances x/c= 0.5, 1, 1.5, 2, 2.5 and
3. The slope of the spectra with respect to the frequency appears to be −5/3 at every downstream
position, which implies that the vortex core is turbulent throughout.
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Fig. 3.45: Fzz of the 50mm chevron plate for downstream distances x/c= 0.5, 1, 1.5, 2, 2.5 and
3. The slope of the spectra with respect to the frequency appears to be −5/3 at every location,
indicating turbulence in the core throughout

The 20mm, 30mm, 40mm and 50mm chevron plates exhibit a turbulent core at every down-
stream location. One can, therefore, speculate that the tip vortex for the 20mm, 30mm, 40mm
and 50mm plates is still in its formation stage and therefore, exhibits a turbulent core. We can
further speculate that if the tip vortex for these chevron plates laminarizes (at a farther down-
stream distance than 3c), its peak tangential velocity would be significantly lower and core radius
would be larger as compared to the flat plate tip vortex, resulting in a weaker, more stable vor-
tex with a laminar core. It is observed that the flat plate shows a turbulent vortex core in the
near field, i.e., at a downstream position of x/c= 0.5, and the vortex core becomes laminar by a
downstream distance of 1c. Since the presence of shallow chevrons with 2h= 10mm leads to a
laminar core further downstream than the flat plate and the deeper chevrons show a turbulent core
at every measurement plane, it is also safe to speculate that the turbulence in the core is due to
the presence of chevrons- whether it is due to axial velocity profiles in the tip vortex formed over
chevron plates or whether it is owing to the fact that the vortex roll up in chevron plates exhibits
a turbulent core is unclear. We now consider the mean axial velocity profiles of the tip vortices
to study if they are linked to the turbulence in the core. Singh and Uberoi [64] have shown that
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the presence of a large axial velocity gradient at the core leads to the production of turbulence,
which gradually decays downstream. The following section, therefore, looks at the axial velocity
profiles of the tip vortex for all the test plates.

3.6.2 Mean Axial Velocity Profiles

As mentioned in Section 3.1.1, in previous experiments, tip vortices have exhibited an axial
velocity deficit [3] or an axial velocity surplus [35] in the core, and the profile of the axial velocity
has been shown to depend on the angle of attack as well as the shape of the wing tip [39]. Fig 3.46
shows the difference between the mean axial velocity and the free stream velocity, normalized
by the free stream velocity (U−U∞

U∞
) with respect to the radial distance normalized by the core

radius for a flat plate at downstream positions of 1c, 1.5c, 2c, 2.5c and 3c. It is observed that at
the center of the vortex, there is an axial velocity deficit at each downstream position, however,
the axial velocity deficit becomes a surplus at a radial distance of about 0.3 rcore. It can also be
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observed that the axial velocity deficit at the vortex center becomes smaller with an increase in
the streamwise distance.

The normalized axial velocity deficit at the center of the tip vortex for downstream positions
of x

c
= 1, 1.5, 2, 2.5 and 3 for all the test plates are shown in Fig 3.47. At x

c
=1, the normalized

axial velocity deficit increases as the depth of the chevrons increases. At the farthest downstream
position (x

c
= 3), the 50mm chevron plate, which has the largest axial velocity deficit at 1c, has

a nominally higher axial velocity deficit as compared to the flat plate. This can be attributed
to the turbulent core of the 50mm plate- a turbulent core would lead to a higher diffusion of
the axial velocity. As it was mentioned earlier, Ragab et al. [63] showed that the presence of a
large axial velocity at the vortex center would lead to a higher turbulence, which in turn, would
diffuse the axial velocity and eventually laminarize the core.The 10mm chevron plate, that has
a slightly higher velocity deficit than the flat plate at x

c
= 1, is initially turbulent and laminarizes

at x
c
= 2. At x

c
= 3, its axial velocity deficit is lower that the flat plate. The 30mm chevron plate
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has a significantly larger axial velocity deficit at 1c and has a turbulent core at every downstream
position. At 3c, it has the lowest axial velocity deficit amongst all the test plates. The 20mm and
40mm chevron plates have a difference in the axial velocity deficit at 1c (with the 40mm plate
having a higher axial velocity deficit), however, at 3c, they have roughly the same axial velocity
deficit, which is higher than the flat plate.

Fig 3.48 shows the mean axial velocity gradient (UdU
dx

) at downstream positions of x
c
= 1,

1.5, 2, 2.5 and 3, computed by performing a power law fit to the measured axial velocity at the
vortex center at each downstream position. The axial velocity gradient at 1c does not have a
clear pattern with chevron depth, however, it decreases with downstream distance for each test
plate. Furthermore, the axial velocity gradient at each downstream position for the flat plate is
significantly smaller than that for the chevron plates.

Clearly, the axial velocity in the core is linked to its turbulence- whether the axial velocity
deficit is the cause of the turbulence, or its effect is unclear. It is clear, however, that the presence
of the chevrons affect the overall form of the tip vortex by changing the peak tangential veloci-
ties, the axial velocities, the core radius and by affecting the turbulence in the vortex core. The
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following section looks at how chevron wing tips affect the wandering of the tip vortex.

3.7 Cross Power Spectra at the Vortex Center

Section 3.1.2 shed light on the phenomenon of vortex wandering and an analytical method to
correct for it. Experimentally, vortex wandering poses a challenge for studies with fixed probes,
as it leads to errors in the mean and turbulence measurements by smoothing out the mean and
instantaneous velocities. One of the factors that vortex wandering is attributed to is the free
stream turbulence in the wind or water tunnel. It has been shown that an increase in the free
stream turbulence leads to an increase in the amplitude of vortex wandering [65]. Practically,
vortex wandering- when subjected to atmospheric turbulence- can aid in the decay of aircraft
trailing vortices by initiating instabilities that lead to the breakdown of tip vortices. Therefore, it
is of interest to study how the presence of chevrons would affect the wandering of the tip vortex.
As mentioned earlier, vortex wandering is a planar motion and affects both- V andW components
of velocity. The cross power spectral density coefficient gives us information on the contribution
of energy to both- V and W components over a range in frequencies. Fig 3.49 shows the cross
power spectral density coefficient for the flat plate and Fig 3.50 shows the same for the 50 mm
chevron plate.

The cross power spectral density coefficients for the two extreme cases- the flat plate and the
50 mm chevron plate- are significantly different. The flat plate shows contribution to energy over
a wide range of frequencies: the most discernible peaks are at 10Hz, 30Hz, 100Hz and 300Hz,
whereas, the 50mm chevron plate shows a single peak at 48Hz at each downstream location,
which is associated with vortex wandering. In the case of the flat plate,the large bandwidth of
frequencies over which the cross spectral power density coefficient shows a peak indicates that
the contribution to wandering comes from several sources. The cross power spectral density
coefficient of the 10mm, 20mm, 30mm and 40mm chevron plates is shown in Fig 3.51, 3.52,
3.53 and 3.54, respectively.

The 10mm plate exhibits a peak at 135Hz and 440Hz, which become smaller with an increase
in streamwise distance. At x

c
= 2.0, 2.5 and 3, there is peak at 10Hz which grows with streamwise

distance. The depper chevron plates i.e., the 20mm, 30mm and 40mm chevron plates have peaks
at less than a frequency of 100 Hz. The 30mm plate show peaks between 145 and 220 Hz, in
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addition to the peak between 30Hz and 90Hz. According to Bailey et al. [56], wandering motion
is associated with frequencies ‘significantly’ lower than the frequencies associated with turbulent
acitivity in the core. No threshold, however, exists that marks what the ‘cut-off’ is between
frequencies associated with wandering and those associated with turbulent activity in the core.
The spectra for the chevron plates shows fewer dominant frequencies than the flat plate, leading
one to speculate the following: a) the contribution of energy to the vortex center is from either
vortex wandering or turbulence in the core or both, or b) the motion of the vortex center follows
a set pattern in the case of chevron plates. While the exact effect of the chevrons on the turbulent
activity in the tip vortex and the wandering of the vortex requires further investigation using PIV,
it can be said with certainty that the cross spectra for the chevron plates is very different from
that of the flat plate. Therefore, by extension, one can speculate that the wandering associated
with chevron plates would also be significantly different than that of a flat plate. For instance,
if we consider the wandering amplitudes normalized by the core radius, given by Devenport et.

al’s correction to the flat plate, 10mm and 20mm chevron plates, we find that σy
rc

and σz
rc

increase
with increase in chevron depths and downstream distances (see Fig 3.36). This is a significant
finding because vortex wandering in atmospheric turbulence can aid in the faster dissipation of
tip vortices.
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Chapter 4

Future Work

This study was conducted on a very specific case- a flat plate with four chevrons at a Reynolds
number of 67,000. Other studies can be conducted on plates with a larger number of chevrons that
would more closely mimic bird wings. Within a chevron plate, the chevrons themselves could
have variable depths, (or chevrons could be cut into the tips of an airfoil instead of a flat plate)
again bringing us closer to a bird wing. This conceptual design is shown in Fig 4.1. It would

Fig. 4.1: Chevron plates with variable chevron depths

also be of interest to study whether or not the observed increase in aerodynamic efficiency for the
10mm and 20mm chevron plates and the weaker vortex observed for all the test plates is the same
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over a range of Reynolds numbers. Finally, instead of chevrons, other complex geometries such
as fractals could be cut into the tips of wings and their impact on the tip vortex could be studied.

The development of the tip vortex could only be studied at a streamwise distance of 3c due
to limitations in the length of the test section. Several studies on tip vortices suggest that the
tip vortex is still developing within 3c. It would be of interest to investigate when the core of
the chevron plate tip vortex would laminarize and how it would ultimately decay. The weaker
vortices produced by the chevron plates also warrants further studies: the exact mechanism of
vortex formation in the case of chevron plates remains unknown at this point. Furthermore,
the significant difference in the cross power spectral density coefficient of the chevron plates
as compared to the flat plates requires experiments using PIV, to attain a more comprehensive
understanding of the flow field.
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Chapter 5

Conclusions

This study focused on the impact that complex geometries, specifically, chevrons have on
the tip vortex. Chevrons were used as they most closely resemble the ‘primaries’ on a bird
wing. Through time resolved force and moment measurements using a six axis force/torque
sensor, we found that the 10mm, 20mm and 30mm chevron plates had a higher peak aerodynamic
efficiency (defined as the L

D
ratio) by 7.7%, 3.7% and 3.4%, respectively as compared to the flat

plate. The 40mm and 50mm chevron plates had lower aerodynamic efficiencies (11.4% and 3.4%,
respectively) than the flat plate. It was also observed the peak aerodynamic efficiency of each test
plate was at a 5◦ angle of attack. The presence of the chevron geometries did not have an impact
on the coefficients of roll and pitch moments, but made the coefficients of yaw moments more
negative as compared to the flat plate. This was due to the shift in the position of the tip vortex-
as the chevron depth increased, the vortex center was lifted up and moved towards the root of
the wing. We can speculate that this lead to a change in the pressure distribution, which, in turn,
resulted in a change in the Center of Pressure, thereby, changing the moment arm.

The mean velocity profiles was measured using constant temperature anemometry and a four
sensor hot wire probe for each test plate mounted at a 5◦ angle of attack (as it corresponded to the
angle of the peak aerodynamic efficiency). It was found that the chevron plates had a significantly
smaller peak tangential velocities and larger core radii than the flat plate (with the exception of
the 10mm plate, that showed a smaller core radius). All the test plates exhibited a ‘double core’
structure at a downstream distance of 0.5c, which disappeared by 1c. An axial velocity deficit
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was observed for the test plates at the vortex center, which became a surplus by 0.3rcore. The
cross power spectral density coefficient of v and w showed the presence of spikes at different
frequency bands for different test plates, indicating vortex wandering. Vortex wandering is a low
frequency meandering motion of the tip vortex, attributed to various factors like turbulence in
the test section, instability in the vortex core, etc. To correct for vortex wandering, an analytical
correction proposed by Devenport et al. was applied to the tangential velocity profiles of flat
plate, 10mm and 20mm chevron plate. The correction showed larger peak tangential velocities
and smaller core radii as compared to the uncorrected profiles. However, after the corrections
were implemented, the peak tangential velocities of the chevron plates were smaller than the
peak tangential velocity of the flat plate at each downstream position. The core radii of the 20mm
chevron plate was larger than the flat plate and the 10mm plate still had smaller core radii than
the flat plate. Therefore, as compared to the flat plate, the chevron plates lead to the formation of
a weaker vortex.

This correction could not be applied to the 30mm, 40mm and 50mm chevron plates, as they
exhibited a turbulent core, which was ascertained by the −5

3
slope of the power spectral density

of the w velocity. For the flat plate, the core was laminar at 0.5c and became laminar by 1c,
whilst for the 10mm chevron plate, it was found that the core was turbulent at 0.5c, 1c and
1.5c. At 2c, the core became laminar. The rest of the test plates showed a turbulent core at
every downstream position, indicating that the tip vortex hadn’t become stable up to the farthest
downstream position where measurements were taken. The reason for the turbulent core was
unclear- whether the presence of an axial velocity deficit at the core made the core turbulent
or whether the turbulence in the core lead to the axial velocity profiles that were observed is a
question that warrants further measurements using PIV.

Finally, the cross power spectral density coefficient at the vortex center was significantly
different for the chevron plates as compared to the flat plate; the chevron plates exhibited a
narrower frequency range with spikes as compared to the flat plate. The source of energy for
each spike in the cross power spectral density coefficient was not clear- the energy contribution
could be from the wandering motion of the vortices or the turbulence in the core or both. The
narrow frequency band of the chevron plates could also be indicative of a set pattern followed by
the tip vortex in their wandering motion.

Through this study, it has been established that the presence of chevrons has an impact on
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the tip vortex. The use of 10mm, 20mm and 30mm deep chevrons leads to a 7.7%, 3.7% and
3.4% higher aerodynamic efficiency as well as a weaker tip vortex as compared to the flat plate.
One can also speculate that the deeper chevrons could be implemented on the tips of winglets to
compensate for their lower aerodynamic performance on a flat plate.
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