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Abstrack

It has been cshowr quantitatively thet the diamagnetic
effect of large fleske-like metal powder dielectrics is smaller
tian predicted by simple theories. Ikeasurements viere made on
regular arrays of aluminum foil discs of uniform circular
contour in an atteupt to isolate the main causes of this effect.
To do this the theory of the Short circuit - Open circuit
wvavegulde technique was enlarzed in scope to treat certain umedia
of electric and magnetic anisotropy. Experimental values of the
perﬁeability, dielectric constant and loss tengents of the disc
arrays were obtained. It was found that the metal powder
dielectrics exhibit small diamegnetic effects because of the
interaction betveen perticles of avproximately circular contours
and because ol the small magnetic polarizabvilities of the niore
elongated particles. A practical procedure for estihﬁting the
experimental errors in the measured electric and magnetic parameters

has been given,
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LIST OF SYMBOLS

ia = rectangular waveguide dimension.
= real part of )id.
A, Al’ A2 = gymbols introduced for convenience in the discussion
of the theo»y of the measurements (see equation (3:3:8)).
Ay, Ay, A, = lattice structure correction terms.

ﬁb

]

rectangular wavesuide dimensiomn.

i

imaginary part of rld

ﬁ = magnetic induction.
' B, By, Bp = symbols introduced for convenience in the discussion
of the theory of the measurements (see equation (3:3:7)).
¢ = +the velocity of electromagnetic waves in free space.
¢ = length of the dielectric sample.
—t
D = displacement vector.
ﬁ = electric irtensity.
Eo = inverse standing wave ratio.
f = frequency.
P §
F = vector potential.
ff = magnetic intensity.

I I = weavegulde currents analagous to ordinary transmission
(rq), " (pq]

line currents.

-1 .

j =

ke = dielectric constant.

k, = nmnermeability or relative permeability.

kd = dielectric constant of the supporting medium.

kg = dielectric constent of the obstarles.

—

K = wave number vector.

L = separation between the plates of a waveguide medium.
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=
I

magnetization vector.

n = refractive index.

N = number of particles per unit volume.

b = electric dipole moment.

T = electric polarization.

R = radius of circular disc.

S = spacing between discs (see Figure 7).

SI, Sﬂi TI,ITI[ = numerical valﬁes of gquantities obtained from the
measurec values of the positions of the first
minima and the inverse standing wave ratios.

T(pq)(xy), T[pq](xy) = T functions used by Schellunor£2C.,

IT, YT = transfer coefficients introduced to represent coupling

between the propagation modes of waveguides.

U = secalar potential.

V! = scalar potential.

v v = waveguide voltages analagous to ordinary transmission
(pa)’ “fpq] & : & v
line voltages.
X = distance from the sample to the first voltage minimum.
Y(pq)(st)’ etc, = transfer admittances introduced to represent coupling
“between the propagation modes of waveguides.

Z(pq)(st)’ ete., = transfer impedances introduced to represent

coupling between the propegation modes of wavesuldes.

Zki = characteristic wave impedsnce in & dielectric filled guide.
Zko = characteristic wave inpedance in an empty guidse.

Zkil = gee page 33,

ZkiZ = gee page 33.

Zki[le = characteristic wave impedance for the TH mode.

(g

Zt = termination imoedance.



a, = electric polarizability.

Gp = magnetic polarizability.

Bes Bn = T'epparent" electric and magnetic polarizabilities.

BO = propagation constant in an empty guide.

7} = propagation constant in & dielectric filled guide,

Y, = propagation constant in an empty guide.

V;l, ?E = sgee page 33.

& = complex permittivity.

&X = distance between the two twice minimum power positions in the

standing wave pattern.

» = Tfree space wavelength.

Ne = cut-off wavelength.

Kgi’ Kgo = guide wavelength in dielectric filled and empty guide.

= stream funetion.

II = stream function.
)(Qg)= eigenvalues corresponding to the T functions.,

®w = angular freqguency.

g = complex permeability.

6, 61, 6 = symbols introduced for convenience ir the discussion

| of the theory of the measurements (see equation (3:32:8)).
g, ¢l, ¢2 = gymbols introduced for convenience in the discussion
of the theory of the measurements (see equation (3:3:7)).

tanbe, tanbm = electric and mapgnetic loss tangents.
.Ztend = the total loss tangent. |

% . . Rather than deviate from stariard notations, in a few cases
g symhol is used to represent more than one quantity. No
confusion ghould arise since the narticular representations

are made clear in the cortext.



Chapter 1 Introduction

Ever since the realization that optical techniques might lead to
importent developments when applied to the microwave region of the
electromagnetic spectrum, the search for a low loss, light weight dielectric
has been intensive. The dimensions of lenses, prisms, etc., at these
wavelengths must be large in order to avoid diffraction effects and to
produce the required phasechange. For example, a typical lens st a wave-
length of 3.2 cms. with & refrective index of 1.5 would have an aperture
diameter of about 3 meters and a thickness of about 20 cms. If it were
made of glass or polystyrene its large weight would present many difficulties
in most practical applications. To avoid these difficulties W.E.Kock}s?
developed two types of “artificial dielectrics™. The first was made of
parallel metallic strips separated from one another by a distence L. The
focussing effect arose by virtue of the high phase velocity between the
pletes which act as weveguides. The refractive index is given approximately

by the relation

n =1 - (o/21)2
where f is the frequency and ¢ is the veloecity of light in free space. This
shows that the dielectric exhibits dispersion to a marked degree, a property
undesirable for wideband applications. The second dielectric consisted of
a regular arrsy of metallic objects supported in space by insulating material.
Each objecf polarizes, both electrically.and magnetically, in an electro-
magnetic field. A simple analysis of such an array shows that the refractive

index is given by the relation

n =1 + aglN) (1 + q,N)

where N is the number of objects per unit volume and Gp,&, are the

megnetic and electric polarizabilities respectively. Here, again, diffraction

effects occur, but only when the spacing between the objects is of the order
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of a wavelength. Also, resonance effects are present if the dimensions
of the object are comparable with the wavelength. The construction of
a lens free from such effects at the shorter micro-wavelengths would be
impractical.

J.A.Carruther53 has recently developed an artificial dielectric
material consisting of small aluminum particles randomly embedded in a light
weight insulating medium. BSuch & material should not exhibit the troublesome
diffraction and resonance effects of the dielectrics of Kock's. E.L.Vogan4
has investigated the properties of these Aluminum Flake Dielectrics in a
waveguide by the Short circuit - Open circuit method developed by W.B.Westphals.
Since he found that the diamagnetic effect was small, most of his investig-
ation was concerned with the electric properties. Carruthers has attempted
to explain the small diamagnetic effect from a congideration of the-finite
conductivity of the particles, all previous theories having been based on
the assumption of infinite conductivity. He concluded that aluminum flake
particleé of thicknesses of the order of skin depth or less would not exhibit
diamagnetism.

The work which this thesis reports was done principally to gain a
better understanding of the magnetic properties of the dielectric. First,
an investigation of thick aluminum and copper particles embedded in a wax
medium was carried out to determine whether Carruthers! theory gives a
complete explenation of the small diamagnetic effects. A simple but effective
method of making homogeneous samples was devised which produced consistent
and more accurate values of the eleciric and magnetic parameters.

A quantitative interpretation of measurements of randomly positioned
and oriented particles with sizes and shapes which vary over wide ranges

is obviously not possible. For this reason a serles of measurements on



regular arrays of aluminum discs of uniform size was necessary. To make
the measureiments,the Short circuit - Open circuit waveguide method, which
considered only isotropic media, was extended to apply to enisotropic
electric and magnetic media by the use of Schelkunoff's Generalized
Telezraphists Equationsl9. Because of errors associated with the Interface
Provlem, measurements for two orientations of the anisotropic medium are
required for the accurate determination of the complex permittivities and
permeabilities. The theory of this measurement has not previously appeared
in the literature.

The measurements of the thick aluminum and copper perticles in a
wax medium indicate that the diamagnetic effect is still small. Hence,
Carruthers' explanation of the absence ot the diamagnetic effect which
applies only to thin particles is not complete. The simple theoretical
expressions o™ Xegkp, ke °nf ¥np m~res with the experimental values for
the aluminum disc array gsamples when the discs are not too close to one
another. From this it is concluded that the expressions for the polariz-
abilities are correct, that is, that they are not modified by the effect
of the finite conductivity of the obstacles. However, when the discs are
closely packed, the experimental values deviete radically from theory, the
values of ky being closer to unity than predicted. Hence, it eppears that a
conplete thseoretical exnlanetion of the small magnetic effesct will result
from & rigorous consideration of the intersction between the obstacles.
Recenfly C.Flammerl7 hes calculsted the propagation ccnstant in an infinite
array cf metallic objes*s by en extension of the Seitz-Slater cellular
method used in S»1id State Theory. The resu’t is not exvressible in analvtie

form and. es yet, no numericesl results have been renorted Tor courarison

with the values obteined in this work.



The exprescsions for the electric and magnetic paraneters in terms
of the positions of the first minima and the voltage standing wave ratios
obtained fro: the Short circuit-Open circuit theory have been revised,
thus resulting in a considerable reduction in the numerical calculations.
Also, because of these revisions, comparatively simple expressions for

the errors involved are obtained.



Chapter 2 Theory of Artificial Dielectrics

2:1 Types of Artificial Dielectrics

Although there are various kinds of artificial dielectrics in use
at the present time, they may be classed in either one of two groups
according to the manner in which the phase change is achieved. One of these
groups may be called the waveguide or metal plate dielectrics. They were

developed independently by Kock, Rust and Stuetzerr

257, It is well known

that when an electromagnetic wave passes between two parallel metal plates

spaced a distance, L, apart, the phase velocity is increased to the value
v =c/W -(c/2r)2

where ¢ ig the phase velocity in free space and f is the frequency, thus

resulting in a refractive index given by

n= E- (c/2Lf)2 R

In a lens these metal plates are made to suitable contours and are egually
spaced side by side. Such lenses are lighter and less expensive than those
of glass or polystyrene with the same properties. The principle disadvantage
of lenses made of this medium arises from the faet that the refractive index
depends explicitly on the freguency. Kock has observed that lenses having
large apertures (in wavelengths) have very serious bandwidth limitations.
Also, the lens action is restricted to one polarization.

In 1948 Koek? proposed artificial dielectric materials which did
not suffer from the serious limitations of the waveguide media. It ig this
group of dielectrics which will be discussed in the rest of this thesis. These
materials consist of metallic obstacles supported in a regular threz dimensional
array in an attempt to simulate the crystalline lattice of ordinary dielectrics.
EBach particle becomes polarized in the presence of an electiromagnetic wave,

the effect of the whole array thus resulting in a phase delay and a refractive
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index greater than one. The anslogy with the polarization of an atom

in a crystelline latiice is not nearly complete however, since there is in
general a comperatively large diamagnetic polarigebility associated with
the metellic obstacles which is absent in ordinary dielectrics.

Such obstacle type dielectrics have been constructed using various
sheped objects supported in lattice?structures in many different ways.
Polystyrene foem has been used extensively as a supporting medium since
it ig 2 light weight material with negligible loss. Spherical obstacles have
been used, but there is an upper limit to the value of n because of space
regquirements and their large diamagnetic effect. Corkum® shows that the
theoretical limit is 1.273 and states that the practical value obteined is
much less. Susskind9 has pointed out that dielectric spheres of high
dielectric constent also produce a delsy effect similar to that of the
metallic spheres and that the refractive index might be made larger since
the diamagnetic effect is absent. However, materiels of high dielectric
constent are usually lossy and the attenuation in such en array would
prohibit their use. Disc shaped metallic obstecles also have been used
extensively. Their shape is such that the magnetic polarizability is
negligible when the disc face is oriented parallel to the magnetic field.
There appears to be no upper limit to the refractive index in this case
since the number of discs per unit volume cen be very large. When used
a8 & lens, however, the disc erray displays anisotropic effects since it
is not always possible to have the magnetic vector parallel to the face
of the disc. However, EstrinlO has shown that it might be possible to
design a lens corrected for these effects.

The obstacle type dielectricshave many other attractive features

which meke them more suiteble es lens materisls. For exsmple, an obstacle
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Ltype lens can be matched to free spece by reducing the size of the obstecles
at the surfesces, thus forminz a gucrter wave matchirs device. KAlso, the
refractive index mey be made a funchion of porition by varyin~s the girs of
the ohstacleg or "y a contiruous change of +the lattice dimensinns.

There ere two major requirements that ers impoesed or‘the lattice
medium which make their comstruction i.practical for use at the shorter micro-
wivelengths. First, the lattice sracing must be much less than £ wavelensgth
to avoid diffraction effects similar to those which occur in ordinary dielectrics
at L-ray wavelengths. ‘The other recuirement nlaces 2 limitetion of the size
of the cohsteclea with resemsct to the wavelength. Any metallic cohject has
egsociated with it ratural wodeg »f elechtromarmetic oscilletion with
freguencieg which are related to the size and shape of the object., Hence,
anomalous dispersion occ“;s when the frequency of the 2m~1in? electronr mnetic
vave "+ 1¢£1 cne nf thn crenneran £ marsieg, The wevelencth associated
i+t the lowest ~~*vpal frecuency is of the crder of the dirensions of
the obstacle, in which case the dispersion is not noticable when the
wavelength of the applied vave is wuch grecter than the obstroele limeneions.

Brcause 0° thzge restrictions it is doubtful that 2 Jens could be
built for wavela c~ths helo~r 7.5 ems, The weirht and the rnumber of ohctacles
w4~)d be large and the mechariceal éi“?ioulties ir pmlacinz “rem ir a
reguler arr~y woulC be rreat.

Chrruthers susgesteé that the ohstecles need not necsesarily be

pleced in a lattice and +that to avoid diffractior end wnomalcus dispersion
the ohstacles ~culd be small metellic nerticles such és those used in raints
Meagurenmerts made b Vagan4ron flrke-1like aluminum particles embedded in
.wax indicate that high velues of reirsctive index can be obtaired. Although
the dielectric constant of these rendomly ~riented pz ticles "i.ich resemhled

Giscs more ther any nther simpls ceometriez) fijure, increesed almost lirearly
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with the mass of the particles per unit volume, the permeability decreased
very little from unity. Actually, he did not measure any permeabilities
less than 0.900. Wax, of course, cannolt be used as a supporting medium

for a lens. A light weight artificisl dielectric was made by mixing
aluminum powder in an alkyd resin foam with some success. However, the
resultant dielectric was slightly anisotropic and the losses were excessive.
At the present time research workers at Dow Chemical Company are atiempting
to place the sluminum in polystyrene foam to lower the losses inherent in

the supporting medium,

2:2 Simple Theory of Obstacle Type Artificial Dielecirics
The simple theory of obstacle type artificial dielectrics is based

on the assumption that there is no electromagnetic interaction between the
obstacles, hence it will be referred to as the No-interaction Theory. It
is difficult to say at what lattice spacing this assumption is valid.
However, & simple calculation shows that the dipole field set up by a.
metallic disc in an applied electric field is as little as one-~twentieth
of the applied field at a distence of twice its own radius. At distances
smaller than this the dipole fields increase rapidly and the interaction
is probably not negligible. This No-interaction theory also requires
that the obstacle size 1s much less than the wavelengﬁh. Only in this case
do ko and ky, have any meaning either theoretically or operationally. For
example, suppose the dielectric constant‘of sn array of obstacles of
dimensions greater than a wavelength is to be measured at 9370 mcps. In
order that the measurement may be made, the dimensions of the apparatus,
for example plane parallel condenser plates, must be much less than a

wavelength, in which case the comparatively large size of the obstacles
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would make the measurement impossible for mechanical reasons. However,
the refractive index does have meaning even though none can be associated
with ke or kpy, and it could be determined by meesuring the phase delay by
the free space method. Nevertheless, this is not an important restriction
on the theory since the obstacle size of the dielectries éf interest must
be much less than a wavelength to avoid resonance.

hecording to the No-interaction assumption, each obstacle in the
array polarizes under the influence of the fields, the polarizatiomns being
linearly dependent on the applied fields. In the electric case ?, the
polarization is given by the relation

P = ¢u N
where B is themmcroscopic field, N is the number of cobstacles per unit
volume and ug is a constent with dimensions of volume which depends on the
shape and size of the obstacle. &g is defined by the relation
D= ggeﬁg

where p is the dipole moment of the obstacle when placed in a uniform
applied field, Eg. Ug is called the polarizability of the obstacle and is
usually obtained by solving Laplaces Equation subject to the boundary
conditions at the surface of the obstacle and al large distances where the
field is uniform. This static solution does not differ from thé guasistatic
one if the conduotivit} of the object is infinite. Uy is 16/3 R’ for a thin
circular disc of radius R if the electric vector lies in the planc of the
dise and zero if it is perpendicular. This result can also he obtained by
examining the electric dipole radistion scattered by the disc for wavelengths
greater than its dimensions. If the obstacle i1s embedded in a dielectric,
the new expression for the polarizability is simply the polarizability of the

object in free space multiplied by kb, the dielectric eonstant of the
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supporting medium., In this case the polarization becomes

3 =¢k éael\ﬁ
Using these expressions for P along with the definition of the displacement,
the dielectric constant is

K, =1 + Gl

when the obstacles sre supported in a medium of dielectric constant unity and
ke = kg(l + all)

for a dielectric medium. This letter modification, although not obvious,

has been justified in a recent report by'H.E.J.Neugebauerll.

Satisfactory theoretical explamations of magnetic effects in ordinary
magnetic materiels avre usually based on a microscopic theory of matter, hence
on Quentum Mechenics. Diamegnetic effects in such meterials are extremely
small end very saccurate expevimental equipment must be used to measure
permesbilities different from one. However, the diamagnetism of obstacle
type dielectrics has its origin in current loops of macroscopic size and
the corresponding permezbilities might be much less than one. This is a
decided disadventage in the delay-type media. If &n arrey of obstecles is
placed in = magnetic field varying sinusoidaelly with the time and if the
intersction between obstacles can be neglected, the Ho-intersction expression

for the magnetization is

]

= o
where H is the macroscoplc magnetic intensity, N is the number of obstacles
per unlt volume and O is the megnetic polerizability. This polarizability

is defined by . .

M= Ongflg
where m is the megnetic moment of one such obstacle placed in a uniform
magnetic field, Ea = ﬁ;osinut. Again, ap depends on the size and shape

of the obstacle and is usuzlly obtezined by solving a megnetic toundary

velue problem. In this solution it is assumed that the frequency is large
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so that the skin depth is small end the field within the metallic obstacle
is zero. Even an arrsy of ferromegnetic obstacles will exhibit dismagnetism
if the skin depth is less than the dimension of a domain. Because of the
discontinuity in the tangentizl component of B at the boundary of the
obstacle, lerge currenfs flow along the surface. It is these surface currents
which produce the diamagnetic effect and the polarizability is obtained by inte-
grating the product of the loop current eand loop area over the complete surface.
Corkum8 has derived the polerizability for a sphere in a recent paper in which
the physicel situstion was mede clesr. The polarizability for a circular
disc of radius R was found by Estrinl® to be -8/3 R? when the disc is perpend-
iculer to the megnetic field and zero when parasllel. He considered an oblate
spheroldal metallic obstacle and by a suitable limiting process obtained
an expression for the currents on the surfeace of a disc. From this the
expression for the polarizability was evident. All derivations were based
on the assumption that the obstacles are perfectly conducting, elthough Estrin
suggests a means of extending his solution to the case of finite conductivity.

If the expressicn for the masgnetization is substituted into the
relation B = po(H + M), k, is given by the relation

kp =1 + o,
The refractive index, n, is obtained by taking the square root

of the product of the dielectric constent and the permeability, thus

n=K1+aN) (1+ N

which must be modified in the usual way to give

n = vké(l + QgN) (1 + aglV)
for a dielectric supporting medium.
It was mentioned thet circuler disc obstacles heve different properties
for different orientations with respect to the fields. Thus‘both the dielectric

constant end the relative permeability of a disc erray may be reprecented as
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tensors with principle axes which coincide with the coordinaste axes. Such

an arrey is depicted scheﬁatically in Figure 18 with the principle exes

drawn parallel to the coordinate axes., If an electric field, Ex’ is applied
in the x-direction, a displacement of chergze is not possible and hence

Dx = GOEX. An electric field applied in the y and z direction results in
simila: displacenents of charge with a result that Dy = éEy, D, = eEz. Hence,

it is not po:sible to describe the electric properties of the dielectric by

means of & single constant but a tensor quantity

€, 0 0
€) = [o € o
0o o ¢

must be used. In a similar way it may be seen that the medium is anisotropic

in its magnetic properties and the permeability tensor is

B 0 0
B)=1o0o u o
0 0 i

If the discs are randomly oriented, the medium becomes isotropic and it

can be shown thet the refractive index ig given by the relationB’A
Na. Ng
n= |1+ 3 ) 1+ Bm) veel2:2:1)

which ig modified in the usuzl way when k§ is not one,

2:3» Interaction Theories of Artificial Dielectrics

If the No-inter=ction equations develored in the last section are
examinad clogely it will become evident that a medium of high réfractive
index is not porsible unlegs the number of obsbacles per unit wolume is large.
However, if this is so, the expressions for n are no longer valid and theories
which attempt to indLude the interaction must be examined. In this section
the physical basgis and limitations of the existing thecries will be discussed
in detail with special emphasis on those which cen be agplied to disc sheped

obstacles,






Perhaps the most useful of such theories at the present time is
the extension of Lorentz's method of trestment of dipolar interaction.
Lorentz was avare thet there are two types of interaction forces between
atoms cr molecules in an ordinary dieléctric. The van de Waal, chemical
bonds and others which are short range saturated forces form one group
which must be explained by the Guantum Theory. Because of their saturation
properties and short range, only the interaction between nearest neighbouring
atoms is considered. The other type of forces is the long range dipole-dipole
interaction forces. Such forces have no saturation properties and the
field at any one atom is influenced by all other atoms or molecules.

In his theory, Lorentz neglccted the short range interaction forces
and proceeded to calculate the dipole interaction in an ingenious way. He
sought an expression for the field acting on one particular dipole, which
he called the local field, Ei. This field was considered to be made up of
three separate fields by imagining & spherical region about the dipole in
question. 'lhe radius of the sphere is such that the redium outside appeared,
electrically speaking, to be a continuous mcdium rather than an array of
dipoles. The three contributions to the field at the center are, Eﬁ the
macroscopic field} ﬁ;, the field set up by the polarized charge at the
surface of the sphere and ﬁa, the field due to the dipoles ingide the
sphere. If the dielectric is between two parallel plates, Iiﬂ is V/dp where
Vis the applied voltage and dj is the separation of the plates. E, can
be calculated by solving Lenlaceds equation for the field inside &
spherical cavity in a homogeneous isotropic dielectric with & uniform applied
field, This is a gsimple boundary valﬁe problem which gives ﬁ; = 4?7366
where ﬁhis the polarization. <he third term is the sum of the fiela of the

dipoles in the lattice array which lie inside the sphere, Fortunately, 1f the
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-4
lattice is spherically symmetric it can be shown that B, is zero, a

d
result which is almost intuitively obvious. By using the relations

E‘L =F -P‘/BGO, P = eoNae-fIL, and D = éokeﬁ, the diele‘ctric constant becomes

= 5]
ke—l""l——_—cz-e—N-

which, when written as

W=
+ 1t
o) B
!
wl| &

eee(2:3:1)
is known as the Clausius-Kossotti equation. This expression describes the
dielectric properties of gaseous and some liguid dielectrics but it cannot
anply to solid ciclectrics. This is due to the neglect of the short range
forces.,

The above analysis would secem to apply to artificial dielectrics
vithout revision, especially since there are no short range foreces, the only
type of interaction being of electrical origin. 1f the obstacles are

efl'ectively supported in frree space, the expression for n becomes

n =V(l + I_%) (l + I__?%ﬂ_ﬁ) ..f(2:3;2)

which, again, is multiplied by klto account for the surrounding medium.

Because of the agsumptions in the derivation ot the Clausius-Mossotti
eaquation, it appears that the equation cannot be applied to a lattice
gtructure vhich is not spherical or arrays which exhibit anisotropic properties
such as & disc array. However, ri.E.J.N'eugebauerl3 has shown that this
equation still applies if the expression for the polarizability is replaced by

an “apparent" polarizability, B, or B, which includes the effect of the lat-

e

tice structure and the anisotropy. ior example, in the electric case, kgy,

the dielectric constant along a principle axes of a disc array is given by
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Kex - 1 = NBex

+ 2 3

where ]/[3ex = Apt l/aex, and Ggx 18 the polarizability of the obstacle

along the x direction. The term Ax is the lattice structure correction

wed a3

where F} ig the vector from the center of the "Lorentz Sphere" to the

term given by

kth obstacle and X is the x component of this vector, the summation

being cerried out over the gphere. Similar expressions hold for the other
components. Physically speaking, the correction terms represent the
polarizing effect of the other obstacles in the Lorentz sphere,

Corkums hes attempted to check the Clausius-liossotti equations
experimentally for spherical obstecles. He used the Short circuit-Onen
circuit method at 6 ems. in rectangular guide. The obstacles were placed
in a cublc array and were supported in polystyrene foam. He observed large
deviations in the measured values of kg, and kp as the semple length was
changed and hence could not check equation (2:3:1)., Despite these
discrepancies the measured values of the refractive index were consistent.
This unusual behaviour was also noted in the measurements made with the
disc arrays in this work and it will be discussed in a later section.
Corkum found that the experimental velue of n agreed favourably with the
value given by equation (2:3:2).

Lewinlh has derived a method of finding the relative permeability and
dielectric constant of a cubic array of sgpheres of dimensions much smaller
then a wavelength. He made use of electromagnetic scattering relations
derived by Mle . The final expressions are, however, the same as the

Clausius-kossotti equations. DNevertheless, by considering the effect of the
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finite conductivity of the spheres, he was able to obtain expressions
for the loss tangents. Susskind9 has suggested that the disc array
might be treated in a similar fashion, although he admits the mathematical
difficulties would be great.

An electrolytic tank method has been devised by S.B.Cohn15 for
the measurement of the static‘dielectric constant of any array of
obstacles. The principle of the method is based on the well-known analogy
between displescement flux lines in space and current flow lines in an
electrolyte. Since the medium can be reduced by symmetry considerations
to a single rectanguler cell containing one obstacle, a measuremeni of the
reletive conductence of an electrolytic cell model gives an estimate of the
dielectric constant. Susskind9 summerizes his experimental measurements of
circular and square dises and compares them with values calculated by the
Clausius-Mossobti relation. Large deviastions between calculeted and
experimental values occur for closely packed errays ie: - for large N's.

Recently, an entirely new end perhaps completely rigorous analysis
of the propagation characteristics of artificial dielectrics has been
developed independently by several authorslé. It is based on an electro-~
magnetic extension of the cellular method of solid state physics. The
calculations involved in the numerical evaluation of the propagation
constants in such media by this methdd are extremely difficult end as yet
no reliable results have been published. It is probably true, however,
that eny rigorous snalysis would suffer from a similar disadvantage.

C. Flammer17 has been the first to publish a paper concerned with a three

dimensional structure which considers meny obstacle shapes, and the principles

of his procedure will be outlined briefly here.

From the symmetry of the lattice, the problem of the solution of the
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wave equation for a field component is reduced to finding the Block wave
function
d(2) = u(®) exp(j K-¥)

in a unit cell defined by the planes perpendicular to the lines joining
each lettice point to its nearest neighbours. The wave function must be
“ continuous with continuous normal derivetive at the boundary of each cell.
The problem then is to find a solution of Maxwell's Eqﬁations which satisfies
the well-known bewdery conditions at the surface 6f the obstacle in the cell
end is such that the field components satisfy the conditions mentioned above
at the boundery on the unit cell. This problem has been put into variational
form by Flammer end the wave nﬁmber vector, f, can be obtained, in principle,
by using the vector wave functions appropriate to the obstacle in question
as the trial functions in the Rayleigh-Ritz procedure. Because of the labour
involved in such & procedure, it has not as yet been used to obtain numericel
results. Flammer has obtained numerical dete by a very spproximate procedure
of numberical evaluation of the surface integrals involved in the variational
problem similar to thalt used by Slaterlg. In this case the conditlons at the
boundary of the unit cell are satisfied at only four points, the mid-points
of each palr of faces. These results were given only to illustrate the
generel features of propagation in such media and are not compared with
experimentel meesurements. Flammer has indicated that more accurate results
are forthcoming.

It was mentioned before thatall the existing theories which might
be epplicable to disc shaped array of obstacles have not considered the effect
of finite conductivity. However, Carruthers, in en attempt to explain the
absence of the large diamagnetic effect in the aluminum powder artificial
dielectries,has considered the effect of the conductivity on the magnetic

polarizability of a disc with a thickness of the order of skin depth. He
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observed, that for infinitely conducting obstacles, the impedance presented
to the emf induced by the high frequency field is purely reactive, thus
resulting in & diamegnetic effect. This impedance would be somewhat resistive
if the conductivity is finite. He assumed this resistive component is
negligible for a disc with a thickness much greater than skin depth and
showed that the impedance is meinly resistive for thicknesses less than

skin depth. The aluminum particles in the dielectrics measured by Vogan‘

had thicknesses of this order and these considerations gave a possible
explanation of the diamagnetic permeabilities close to wnity as well as the

high magnetic losses.



Chapter 3 wxperimental Meagurements, Apparatus and Theory

331 Description of the Apparatus

All meagurements were teken at & free space wavelength of 3.2 cms.
in a waveguide excited in the TEjp mode by a K39 Reflex Klystron oscillator.
The Klystron was opersted by a P.R.D. Type 801 Power Supply using square
wave modulation with & modulation frequency which was adjustable at around
1000 cpses In Figure 2 a schematic diegram of the experimental set-up
is shown. The oscillator output was fed to the waveguide by a short coaxial
line and an adjustable stub matching device was placed nearby. A 10 db
attenuator was uged to isolate the oscillator. The absorption type cavity
wave meter placed before the attenuator was calibrated in terms of guide
wavelengths, Variaeble flap attenuators were used to vary the power passed
to the standing wave section of the guide. An adjustable stub matching
section served to match into the stending wave section which was of high Q.

The standing wave detector was an accurate instrument made by P.R.D.
A vernier scale which could be read to one-ten thousandth of an inch was
added to the commercially built stending wave section. The power sampled
was detected by & 1N23A crystal and audio signal was amplified by a high
gain linear amplifier and then rectified, the resulting direct current
appearing on a D.C. microammeter. The short used was the seme as that
which E.L,.Vogan describes in his report.

All dielectric samples were measured at a frequency corresponding
to a guide wavelength,xgo, of 4.4705 ems. To do this, the cavity gap
spacing of the Klystron had to be adjusted to counteract the effect of
temperature chenges in the laboratory. However, during any one measurement
the Klystron output was stable and the changes in the guide wavelength

were negligibles
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The voltage standing wave ratios were obtained by the twice minimum
technique rether than by the direct method. This is done by measuring
the distance between the two probe positions at which the power detected
is twice the power at the minimum. The inverse standing wave ratio, E,

is then given by5

E, = 1
© E+ c>s<:27LA-}E
= T aX
kgo

where A4X is the distance between the two twice minimum points. The
approximete relation ig velid to within 1 percent for inverse standing
wave ratios less than 1/133. This technique has many advantages over
the direct method if large standing wave ratios are measured. The effect
of the nonlinearity of the crystal power response is negligible. Also,
this method does not require the use of a calibrated attenuator and
hence the errors associated with such an instrument are avoided. 1In
addition, since the probe 1s in the region of low field at all times
during the measurement, the®rrors associated with the probe are greatly
reduced. It also might be pointed out that_the position of the minimum
is more accurately determined by averaging these two probe position
points, rather than by finding the position of zero slope in the standing
wave pattern. Using this technique, stending wave retios as high as 500
could be measured and the logses associated with the waveguide walls could
be determined, thus resulting in more accurate estimates of the losses

present in the dielectric sampless
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3:2 Propagation Constants and Wave lmpedances in Rectangular Waveguides

It will be shown in the next section thet the Short circuit - Open
circuit method of measuring the magnetic and electric parameters of a dielectric
can be applied to certain homogeneous anisotropic medias if the corresponding
propagation constants and characteristic wave impedances ban be found. These
gquantities will be derived in this section by making use of Generalized
Telegrephist's Equations obtained by Schelkunoff19 in a recent paper.

The enalysis involved in setting up and solving these equations for the
énisotropic media of particular interest in this thesis is extremely lengthy.
For this reason, and also since Schelkunoff considered a gyromagnetic medium
ag an example to illustrate the principles involved in the analysis, complete
derivations will not be given. However, an attempt will be nade to make the
final results seem more plausible by first considering the gimple telegraphist
equations assoclated with the modes of propagation in a rectangular guide
filled with a homogeneous isotropic dielectrié.

The ordinary telegraphist equations of transmission line theory are

av

&V - .z
dz

a - _yy
dz

where I and V are the current and voltage respectively at a point z of the
line and Y and Z are the distributed shunt admittance and series impedance
respectively., Equations vhich are formally similar to these can be obtained
for each of the modes of the propagation in a guide. TFor the TEEq]mode (the
square bracket will henceforth refer to TE modes) in rectangular guide the

"
equations are <0

2 = - Z1oq Ipq eee(3:2:1)
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“ oq) 2:2)
— = Y V se e HV
az Pd " (3
where Y[pq] and Z[pq] are to be defined later. The quantities I[pq]
and V whick are functions of 2z only,have dimensions of current and

[pa]

voltage respectively, but cannot be interpreted as such in any simple -manner.
They are obtained from vector and scalar potentials which may be used to
describe transverse electric vlane waves. The scalar potential, U, can be
introduced since there is no longitudinal electriec current, the transverse

magnetic intensity being the negative of its gradient. Also, since

v.s = 2% . %y _g
X Dy

the transverse electric intensity can be represented by the curl of a
vector F which has only a z-co;nponent,’}, usually called & stream function.

In this cage the curl operator opersting on freduces to
-— - -
VYxF = "D_Li - ‘3_?3
2y X
]
and is usually denoted by flux ¥. Both the scalar potential and stream
function will depend on (x,y,z), the positipn coordinate in the guide. However,

each can be represented by the product of a function of z, and a funetion

of x and y where the latter is a solution of the partiel differential equation

’Q_z_T(xy) +Q_22(XY) = - xzq?(xy) ceel3:2:3)
3 X2 ’ayz
subject to the boundary conditions
2Z(oy) _ 9T(ay) . 9T(x0) - 9T(xd) - o
2x ox 2y oy

where @ and b are the x and y dimensions of the guide respectively. If the

eigenvalues and eigenfunctions are represented by XLPQJ and T[pq] (xy),

v[qu and lﬂ[pq] can be written
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U[P'l] = fl[pq] (z) - T[pQ] (xy) | eeo(3:2:4)

Yo " 2 o] (z) - T foq] (xy). .. o(2:235)

It might be expected that fl[pq] (z) could be interpreted as a voltage which
depends on the position along the weaveguide., Also, f2 [P‘-‘J(Z) can be interpreted
as a current similar to the current At a point on a transmission line. Hence,
writing

£ (z) ==V (z)

1{pq] [pa]

equations (3:2:4) and (2:2:5) become

g 7" 'pa " Ty

Yoq " ed) " Tpony

It is not difficult to chow by Mazwell's equations that I[pq] and V[pq]

defined in this way satisfy the telegraphist equations, (3:2:1) and (3:2:2)

if
Y[pq] = jwe + %l veel(3:2:6)

and Z[pq] = judb. eeol(3:2:7)

A solution of the form

g T {}[pq] e’(p()(i‘[pq]z)

“od T ,f[PQJ e@({[pqlz)

fa)
vhere I and ¢ are consgtant amplitude factors, is obtained if
[pq] 1
2 2\11/2
Yt = JU_‘) (L—e- - x .2\— ) s
i[pq] ¢ \ k6o L@
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For a TE[lfa mode the expression for the vropagation constant becomes

i[10]} - i Ho€o

o AR (.E__e__ﬁ)"‘
. c .

2 2
since X = HL .,
] kz
The characteristic wave impedance Zki[qu can also be obtained from the

telegraphist equations by the well-known relation

Zo ] .
AR = = _.J_u'i‘-[‘-—
ki[pq] %q G?%

If scalar and stream functions V' and II are introduced to describe
the transverse electric and magnetié intensity of TM modes, equations of

the form (round brackets surrounding subscripts will henceforth refer to

TM modes)
| 2
day X
Ez(pq) = - (joer Eéaﬁl) I(pq) .ee(3:2:8)
a1
EE(PQ) = - Jwé V(pq)  eee(332:9)

ere obtained where V(pq) and I(pq) are related to the potential and

stream functions in the following way:

Wm)= - v (z)

(pa) ()

(oa)
T(pa) = = Lpq)(2) T(pq)lm),

T(pq) is a solution of equation (3:2:3) subject to the boundary conditions.
T(oy) = T(ay) = T(xo) = T(xb) = 0

Also, by solving this problem, the eigenvalues )((pn) are obtained. Then’

the propagation constant and characteristic impedance can be derived in a

manner similer to that outlined previously in the transverse electric case.
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To summarize, the system of equations

eeel3:2:102)

av
709 = - Zpa I

dr
a;[Pq] Y vee(3:2:10D)

fpa] V[pq]

av
a.z?(PQ) Zpq) I(pa) +++(3:2¢10¢)

9 pq) -

iz ®a) V(pa) ..+(3:2:104)

]
'

along with the T functions cean be used to describe completely wave propegetion
in a homogeneous, isotropie, dielectriec filled, rectangular guide.

The problem of wave propagation in an anisotropic medium bounded
by perfectly conducting guide walls would be extremely difficult if attacked
in the conventional way, that is, as a boundary velue pfoblemJ The approach
used by Séhelkunoff, although quite mathematical, was motivated by the
following physical reasoning. From equations (3+2:10) the electromagnetic
bourdary value problem for a homogeneous isotropic medium can Be transformed
into the problem of the solution of an infinite set of independent ordinary
differential equations resembling the familiar ﬁelegraphist's equations.
Tach eguation corresponds to one of the modes of propagation in the guide.
If eny irregularity is introduced into the guide, coupling may arise between
some or all of these modes and the solution of this new problem is obtained
by & judicious c§mbination of the uncoupled normal mode solutions. This
ensures that the boundary conditions at the waveguide walls are gatisfied.
The irregularity may take the form of discontinuity in the guide or an

anisotropy in the dielectric. In terms of the transmission line analogy,
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this coupling may be represented Wy distributed transfer impedances and
admittances (or transfer coefficients). Hence, the Generalized Telegraphist's

Equations take the following form if tensor notation is used.

Twa) Z I - 2 I
iz (pg)(st) ~(st) {pc) [st] ™~ [st]
- VT(pq)(st)V(st) - kapq)[stJVLstJ
veel3:2:11a)
dI
gz'(po) = T(ra)(st)V(st) - Y(pq) [st] V[st]
- I0(pq) (st)I(st) - IT(pq) lst] T st
eee(3:2:11b)
Qv
P = - gttt T Zpagist)i(st)

Vi ; Vi
" Taret] T etl - Tieggist)Vist)

eee(3:2:11c)

dI[-pq]
= 0 ° 7 Ypqst1Vsy - Yeggist)V(st)

' [pa] Ist1 1 [s8] - I'l‘[pq] (st)i(st)

eeel3:2:114)

where p,q,s,t, take on positive integral values. By waking use of reletions
between the I's, V's and T's and the electromagnetic field components,

and with the help of the Maxwell's Hquations, Schelkunoff obtained expressions
for the transfer coefficients in the form of integrals involving permeability
and permittivity tensor components andderivetives of the Tlxy) functions.

For the general anisotropic medium these coefficients are extremely
compliceted. Schellunoff treats the case of a medium isotropic in its

dielectric properties, but with ferromasnetic properties characterized

hy the tensor



by O
(M) = U‘l [ 0
¢ o] Hg

He shows how the propasation constant for the TEllo]mode is modified
due to coupling with the TE[Ol]mOde‘ Alsgo, if the mutual permeability,
ul, is zero, he shows that there is no coupling, the only meodification

being a change in )aojwhich is

Y~ -w(H_é_ _ p_%)l/z.

= -
bel ¢ “oeo Mékc
One of the anisotropic media of particular interest here is that

characterized by the tensors

€ 0 0 L 0 ©
€y =10 € o and (K) =10 K, O
o o € 0 0 i

where éb and K, are the permittivity end permeability of free space,
respectively. Such is the case for a dise array medium in which the
disc faces lie parallel to the yz plene (see Figure la). The z axis
coincides with the vropansestion direction of the waveguide. The
derivation of the transfer coefficients for this medium follows closely
with that of the gpecial case treated by Schelkunoff, hence it will

not be given here. It might be mentioned, however, that the integrels
involved are somemhét different. The coefficients VT(pq)(st) ceeen,
IT[qu(St) are all zero and the transfer impedances and admittances

are given by the following relations:

2
2 toi ; ] X _
_ joar gt pshio pa) =
Z(pq)(st) X(p0) X (st) ( 22 * 2 ) T T jwe it i = Z

0 for all other cases.
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s 2
= an' - Tt if D= 8
Z(DQ)[StJ x(pq)stt] ab (qu' I‘t}-"o) 1 t =q
= 0 for all other cases.
TR Spé tq X P =S
Yin = o o 4+ Uaeé if
(pz)(st) >C(pq))((sf) ( o2 b;J t =q
= 0 for all other cases.
Y = J‘*’.”z (sqge - pte.) ir P78
(pa)st] qu)xrstj ab o t = ¢
= 0 for all other ceses.
e Lol -
Jwar SDR: (o] ; = g
Z = < L+ it P
[pc] (std kaq")xtsm ( a” b2) t =gq
= 0 for all other cases.
)
) = NI (tpid - if P =5
Z[qukst) kiqu}{st)ab (tpH - sqhy) b= o
= Q0 for all other cases.
2
Y = jorr? spe . "% . Xpa i P =8
= 0 for all other cases.
. 2
Y = ——T_____ (tre - sq€,.) ir P =8
[pq} (st) X[pojx(st)ab o t=gq

0 for all other cases.
If the TEIUiﬂnmde is propagated in a guide filled with this anisotropic
medium, the only non-zero coefficients appearing in the last two

telegraphist equations are 5

jwe + Eﬁlgl

Ynopol =Ypg ~© kg

and Z[lOJ iy = Z[lO_] = julk.

by comparison with equations (3:2:6) and (3:2:7) it is seen that only

the second term in Y{ldlis changed, the L being replaced by po.
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Since there is no coupling with the transverse magnetic modes

the last two telegraphist equations

av
10 .
i d = - o]
dI | Eb ]
e _ } Vna

are independent of the first two and can be solved hy assuming a

solution of the form

A
T = oy " Yina?)s

A
Thoy T quenﬂﬁumZL

This solution gives

1/2

' 2
Y @ [ HE | g AT
ifal I3 Ho€o Ho 32
c
2 ar”
since XD.O] = v The characteristic wave impedance Zy4pq]
C

defined by
Z = %—m then becomes
kif10] Y[loj !
, = otk .
% (103 Yirio3

It will be seen in Chapter 5 that in order to determine accurate
velues of the electric and magnetic parameters for the dise array it
wag necessary to take measurements for two different orientations of
sample in the guide. One of these is the one considered above. The
other is that for which the plenes of the discs coincide with the
xy vlane. By referring to Figure 1lb, it is easily seen that in the

latter case the tensors (€) and (M) become
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€ o O by O O
(€) = | 0 € 0 ) and (W =0 W, ©
0 0 & 0 0 W

Again, for this case the transfer coefficients 715 ana IT's

are zero and the only non-zero transfer impedances and admittances

are
: X%pg! .p S =D
2 = 4 +
(pa)(st) (Jukkg e ) if g =t
= 0 for all other cases,
Y = ¢+ jwe ir 857D
(pa)(st) ’ g =t
= 0 for all other casges.
yA = 4+ jup, if S =P
[paycst] © q=t
= 0 for all other casess
Y = + (WeE + 3&221. j¢9 8°P
[pa] [st] (J o) q=t

= 0 for all other cases.

Thus, as before, the last two telegraphist equations do not contain
any coefficients which couple them with the corresponding equations
for the transverse magnetic modes. The equations for a TE[lq] mode
become

av
Zo ] = =i I

aI X3
01 =-(1 [10]
EED.‘J (J(JJG + ok ) v[lO] .

Again, assuming a solution of the form
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A
Inol = Ipos exp () 11072)
A
Vrio] = Vriog e=(¥[1032)
the expression for the propagstion constant becomes
1/2
Vg = [ € - Bod?
120 ) By

The characteristic wave impedance obtained by taking the square root
of the ratio Z[lOJ/YWIOJ becomes in this case

Zycif10] ?i%%; g

In order to distinguish the propagation constants and characteristic
impedance for this orientation from that of the previous, the subscript
2 vill be substituted for the subscript [10]. The subscript 1 will bhe

used when referring to the previous orientation treated.

3:3 Theory of the Short circuit - Open circuit leasurements

The measurement is based on the fact that the input impedance, %4y,
near the generator end of a section of a dielectric filled waveguide
can be expressed in terms of the distance from the dielectric to the
first voltage minimum, X, and the inverse standing wave ratio, K, both
of which can be measured. This input impedance can also be expressed
in terms of the termination impedance at the opposite end of the
dielectric sample, the propagation constant in the medium and the
thickness of the sample by a well-<known transmission line relation.

If the termination impedance is a short circuit, the expression is
relatively simple and the propagation constant in the dielectric filled
guide is simply related to Eband X. If the expression for )f is knowﬁ,
the proverties of the medium may be expressed in terms of E,and X.

If the medium is & pure dielectric (K = Mo and temdy = O) k, and tandg
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are then expressible in terms of E,and X. If, however, the medium has

magnetic properties, the short circuit termination meesurements are not

sufficient. To obtain another independent relation, E,and X must be

measured for a different termination impedance. A termination vhich

yields a relatively sinple relation and which at the same time is easily

realized in practice is the open circuit impedance obtained by displacing

the sample one-guarter of a wavelength from a perfect short. In the

following analysis explicit relations are established between the pmrameters

of the medium and the quantities measured.

The transmission line relation which is basie in the whole of the

theory is that which expresses 2(z), the impedance at a distance z from

a waveguide termination of impedance Zt in terms of z, Zy and r=q + iB,

the propagation constant in the guide, namely
2(z) Z, * zktanh}’:'a
Zk 4 + 4 tanh Yz

where Z) is the characteristic impedance. For the lossless case yﬂis

«ee(3:3:1)

equal to jB and equation (3:3:1) becomes

Z, + JjZ, tan Pz
ggz! - t - _Zk - . eee(323:2)
. Zk iz, tan 3z

These equations can be obtained by solving the ordinary telegraphist
equations

v = z1, & = yv
dz dz

. . . . 21 .
subject to certain conditions at the termination. In order to emphasize
the similarity of the short circuit and open circuit theory, the analogous

relations in each will appear side by side in the following two columns.

The superscripts I and IT refer to the short and open terminations
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respectively and Zy 1is the impedance at the front face of the

dielectric. Also, Zko represents the characteristic wave impedance

in an empty guide and Zy; the characteristic wave impedance in a

diclectric filled guide.

mL_
at—O

By applying relation (3:3:2) to
section ab of the guide, the
expression for the normalized
impedance at the first minimum

becomes

I . ~rL
Z(XI) _ Z(}CI) _ Zb + JZkO tanBoA

Zxo Z,  + jZ% tanBOXI
cea(3:3:3)7

ko

It is easily shouwn that z(XI)

o in the

is related to
folloving way5
1 I

z(X*) Eo

and hence by (3=3=3)I

I I .
I Zb _E) - JtanBOX;
Zb_

Zgo 1 - jELtenpkl

-
S* exp(JTT) veo(3:3:4)T
where SI and TI can be obtained

from 'Eg and XI.

Z%Tﬂ &b—}zg §

Ty

By applying relation (3:3:2) to
section de of the guide, the
expression for the normalized
impedance at the first minimum

becomes
I ,
) - 26D P " P e X
Zyo Zreo * jzf tanB XL
vee(3:3:3)F

It is easily shown that z(X;B
is related to Eg: in the

following way5
I
Z(X;B = E,

and hence by (B:BIB)E

I
Zy _ EX - j tanB gl

Zyo 1 - jEEbanBOKII

ji
Zp =

= 8T exp(srh e (3:3:0) 8

where Sn:and TIIcan be obtained

from E%Iand Xl.
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By applying (3:3:1) to the section
be the normalized impedance at the

face of the dielectric becomes

ZI
7 = 2. = tann§a )
ki ee.(3:315)

By a comparison of (3:3:A)I and
(3:3:5)I a relationship between
the measured guantity SIexp(jTI)
and quantities characteristic of
the medium and the guide is

obtained which is

D s
st exp(s7t) = KL tann Yia
“ko 1
ees(3:3:6)

By suitable manipulations of e

By applying (3:3:1) to the section
ef the normalized impedance at the

face of the dielectric becomes

I
I 2% o
b g tenh ¥ d I
.o.(3:3:5)

By comparison of (3:3:&)11 and
(333:5)I[ a relationship between
the measured quantity Snéxp(jTﬂ)
and quantities characteristic

of the medium and the guide

is obtained which is

gl ]I) = Zki

Ly

1
. tenmh v;d

.++(3:3:6)

exp(JT

I

guations (3:3:6)I and (3:3:6)I[the

followinz two important relstions can be cobtained:

7 . I, I
ZEl SI Sn: exp(j T+ ?)
ko 2
" N - I
i —£82  tanh Tl
% j2md i

B exp( j¢) eee(3:3:7)

exp (j@i%:in )= A exp(-j0) eee(3:3:8)

where A, B, © and @ are introduced for convenience in the discussions which

r

A ig the propagation co

follow and

and is given by

Y, = a-3n0)

nstant in an empty waveguide

1/2
/ = J27T/}\'g0.
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Homogeneous, Isotropie Dielectrici=-

If the medium is homogeneous and isotropic in both its

electric and magnetic proverties then

e 42\
5 o- % (%c; -}\g)

and

Z N = M,
ki Yl

The characteristic wave impedance in an empty guide, 2., is j&“o/WS

and hence equations (3:3:7) and (3:3:8) become

nA

567? = B exp(j¢) «ee(3:3:9)
and ﬁ. = Aexp(-je). 000(3:3:10)
Yo

Prom the definition of ‘tandp,the ratio EE becomes ky(l ~ jtandy)

and if (3:3:9) is multiplied by (3:3:10) tihe relation

kp(l - jtandy) = AB exp j(¢-90)
is evident. Unon equating moduli and angles the following relations

for tand and k_ result:
1 Il

tand, = - tan(g-e) eoe(3i3:11)

kK = ——HB ., cee(3:3:12)

" ‘l + taft O

It is interesting to note thet these formulese are exact and hence the
permeabilities and nagnetic loss tangents of materials of high nagnetic
loss can be measured by this technique.

Frovided it cen be assumed that both the electric and magnetic
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loss tangents of the meaium are small, k k, and the total loss Ztand
can be expressed in terms of A and o respectively, in the manner

outlined below:

g (-3
Zg = “060 kﬁ 5 = A exp(-joO) el 3:3:13)
1) Bl - %}U
¢ %

and if € and B are put equal to k €yl - jtanbe) and kmuokl - Jtandy)

respectively, equation (3:3:13) becomes

Moo . 2N/ 2 . .
,Xﬁ— (kekmkl - Jjtandg)(l - jtand ) -‘75) = A exp(-j¥) cee(3:3:14)
A
c
Upon squaring, equation (3:3:14) becomes
i A 2
&0 (K k (1 - jtand,)(l - jtandy) - -,—) = A% exp(-j2e)
2 e nm e \ 2
A Ao
or _
kz k2
=2 (xx ‘l+ta§b Y1+tan<o, exp[—jtan‘l(Ztanbﬂ - =
2 e m & 2
N NG
2 . en
= A er(—JQE}. .'.k303'l5)
If the loss tangents are such that the approximations
Wl+tanzbe)(l+tanzbm) = 1
exp[-jtan™t(ztand)] £ 1 - jutend
ayre valid, then equation (3:3:15) becomes
A2 2 A2 -
0 (e -M ) - jTBO x (Stand) 3 A% exp(-j20)
w2 e 2 2 ‘e
N Mo N
or
2 2
A o .
=2 (kekm - }*2) oxp -] ——-———-———“tang 3 4% expl-j)
Ne lcek:m

and therefore
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A\ A2
k (A% + 8oL cee(3:3:15
olm ( 2 )}\%o (3:3 )
and
) G
Nekek

Mlthough (3:3:16) =nd (3:3:17) ~pply onlv to materials of small
loss tangents, kekm and ztend can be obtained for materials of large
loss tangents by using the approximamte values given by these equations
ag the initial velues in & method of successive approximstions which
mey be apolied to the rigorous equation (3:3:15). Hovever, this vas
not necessary in any of the measurements remorted in this thesis, ke
and tend, are easily obteined from ecuations (3:7:11), (3:3:12), (3:3:16)
and (3:3:17). This method of deriving the relations betwecn the parameters
and the ueesured gquPrtities emphasizes the fact that the valuss of the
refractive index and the total loss tangent depend only on the values
A And 6 respectively.

If done in a rigorous manner, tiie inversion of tanh }Zd given
in equation (3:3:8) is the most time consuming part of the numerical
evaluation of the quantities &, B, € and ¢ from the measured X's and
Els. In appendix A, this inversion is csrried out using valid approx-
imetiong resulting in a considerable reduction in the time spent on
calculations. The use of this avproximate procedure along with the
fact that the frequency wes kept the same For all measurements reduced
the celeulation time by about 75 percent.

The formulae used to obtain SI, TI, Sﬂ: and TB: are not derived here
since they have been treated thoroughly elsewhereh. It might be
mentioned, however, that the values of X have been corrected to

include the effect of the slotted portion of the gtanding wave section
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and the EJs have been corrected for the losses present in the wells

of the guide. A typical calculetion which shov.s these correction terms as
well as the revisions introduced by the ebove analysis is given in
Appendix A.

Homogeneous, Anisotropic Dielectrics

The provegation constant and characteristic wave impedsnce for the

anisotropic medium first considered are

| 2 1/2
= & (HE LB A vee(3:3:18)
)’i-l e (“’-’)GO Ho }\g) (3:7
and Zkll =' —Y-J.% "'(3:3:19)
i

If these expressions are substituted into ecuations (3:3:7) and (3:3:8)

the following relations are apparent

Y _
u“ro = By exp(if) , ..+(313:20)
o'il
1 _ > 2, /2

= 2o (BLE BN = Ay exp(-j61) vea(2:3:21)
Vo N (p‘o"o Mg }\3) -

In order to account for the loss associated with the electric and magnetic
polarizations the tensor components € and L may be written
€, ke(l-jtandg) and K = My km(l-jtanbm). Then if equation (3:3:20)

is multiplied by (3:3:21) the relation

kp(l-jtendy) = MBy exp (@ - ;)
results and the formulae
tandy = - tan(@; - 61) eee(3:3:22)

and A B
k= 1°1

m E+ tando, bm ves(313:23)

are obtained. Again it is noted that the permeability and magnetic
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loss tangent of materials of high magnetic loss can be measured by this
method.

By comparing equation (3:3:21) with the corresponding equation
of the isotropic case, it is seen that k.k; and Jtand cannot be expressed

in terms of Al and @, respectively. However, by the following procedure,

1
it is possible to obtaln expressions for kg and tanbe.
When souared, equation (3:3:21) becomes

2

A 2 2
.ﬁg(_& - B }.\-__) = A exp(-jZOl)
22 VHofo Ho 2§
2
or }:g_g . : }\_2 2
5 ( Kekp (1-jtandg ) (1-jtandy) - kp(l-jtandpy) 7) = 4 exp(-jzel)
A g
}\2 5 .
and  “go (kekm {1+tan Ce (1+tan2bm expE-jtan'l(Z‘,tanb:)]
}\2
. Z -1 2
~ky ;\2 l+tan‘bm expEjtan (’.canbmﬂ ) = Al exp(-j291).
ese(3:3:24)
If the loss tangents are such that
\F+ tanzbe [[l + tanzbm = 1
expl_;jtan—l(Ztanbﬂ = 1 - jZtend
and exp Ejtan'l(tanbm):l% 1 - jtandy
equation (3:3:24) becomes
2 2 2
}:8_9 A 0 e o . }\-2 N .
5 kel = Em B2 - 5{ Bk Jtand - iy 82 tandp | = Ay exp(-320;)
pS AG A Ag
.2 2 o eee(333:25)
. k tano  +(k_ - tand
or 89 km(ke - }_\.2-) exp| -j —° o Z}\Z/}\C) Aty AJZ. exp (- j20; )
}\2 \ }‘-02 ke = }\' />\'C

vesl(3:3:26)
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Hence by equating moduli ke is given by

2 A 2
ke % Z?"&i + b
N : A
20 [¢]
and if kckp ¥ A)B1 this becomes
2 A 2
I, & 1 Nl S N eee(3:2:27)

N B 3R
2o c

By equating the angles in equation (3:3:26)

tano .
(5%
or . }\'2
Ko

<lls

2 .
(1 -}?E-)(Ql + ¢l)0 000(303~28)
cHe

Hence, by the use of equations (3:3:22), (3:3:23), (3:3:27) and (3:3:28)

approximate values of the electric and magnetic parameters can be obtained from

measurements made by the Short circuit-Open circuit method. Again, if the
loss tangents are not small the approximate values can be used to obtain
more accurate velues by the method of successive approximations applied to
the rigorous formulae given in (3:3:24).

In the cage of the second orientation considered in the previous

section, the propagation constant and characteristic impedance are

2
Y., - ez(é LY ) -
i Ble -2 vee(313129)
R H NG
and % Jubo

ki2 = 17;5 ' «ee(3:3:30)
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If these are substituted into equations (3:3:7) and (3:3:8), the

fellowing two relations are obtained:

s

=2 = B, exp(j @) e.e(2:3:31)
P 2 < |

%

22 . A, exp(-jOz). eeel(3:3:32)
YB

It is immediately evident that the short and open circuit terminations
do not give incdependent relations, in which case it is impossible to
solve for the required parameters k,, kp, tand, and tanbm.

In the next chapter it will be shown that there are comparatively
large errors in B and ¢ due to the errors involved in the measurement of
the X's and Els. Thig, however, is not the case for A and O, the errors
in these guantities being comparatively small, Also, it is shown that
the expected error in B is & minimum when the sample length is an odd
multiple of one-eighth of a wavelength and it increases rapidly as the
sample length is changed from this value. Again, this is not true of A,
Actually, this quantity can be measured accurately for any length, with
the accuracy increasing slightly as the sample length is increased. Because
of these facts, iﬁ might be necessary to measure the disc array samples for
the two orientations in the guide., If this is done, the four electric

and magnetic perameters can be obtained from the relations

Ai exp(-jel) 000(3:3:33)

A

n

Ao exp(-j62). eee(3:3:34)

i
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(3:3)
First, equation (3:3:34) must be put in more convenient form. Using
the expression Tor 7;2 equation (3:3:34) becomes
2.1/2
}:82_ € N'O}\' / ( i0 )
= - - = exXp\-J¥,
PN €, p,}\% A2 2
which when squared is
2 2
}:ag € B AS (-j265) (3:3:35)
—_— - L= exp(- j262 eeel3:3:
}\2 € H»}\.g

By writing ¢ = €,k (l-jtandg) and 4 = Hokm(l-jtanbm) equation (3:3:35)

becomes
kz
280 [ xp(1-standg) - e )= 43 oxp(-520,)
)y Ky (1- Jtanon N2

2
N
or _E% (%eJl+tan2be exp[—jtan—l(tanbe!]
N

2
- A <o [tan~t _ 4R .
jtan™ (tand, )||= exp(-3j26.,)
oy e U B mJ) f2 (=328,
«ee(3:3:36)

If the loss tangents are such that
VY1 + tanzbe = VE_:—;QEESE = 1
exp[—jtan-l(tanbeﬂ- £ l-jtendg
and exp[jtan'l(tanbm)J $ L+jtend,

equation (3:3:36) becomes

2
N 2 e \° 2 2

0 s
—_fz (ke - L_é.) - j(..%.%O_ tandg + -2‘392. tanbm) Ay exp(-je;)
) . kN

(¢}
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from which it is evident that

a2 2 TEQ ke - g0 ++(313:37)
22 kMg
end 2 QD "
20,8, 7} -——iﬁ—tanbe+_§9_tanbm.‘ eee(3:3:38)
A knh2

By equation (3:3:25) the corresponding eguations for the first orientation

considered are

kz }\2
1 ¢ 2 m g >
2\ 23
2 2
2 S x ,
261 Ay = k —-g-}\g (tandy, + tendp) - __mf_:%g_ tandy ees(3:3:40)
j\.c

If kg is obtained from equation (3:3:37) and substituted into (3:3:39) the

following relation for k; results:

2 2 .2
- N, /N
km = Al-z—-—%o—-% o _ eee(3:3:41a)
‘Ag = )'go/}"c
ke i.s then given by _
, 2 }\2 }\.2
kK = L 4 . ] eee{3:32:41b)

2 2
}\go Nk
If (3:3:40) is divided by k; and the result subtracted from (3:3:38) tanbe

nay be eliminated thus giving

2 2
6 A, -8 1A1/ K

tand, 2 eee(3i2:41c)
32 22
20 (1) - B,
2 km 42
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2

tand, = (20 2 - _}\Egtanb) }\-2 (3:3:414)
e . 2A2 }\'21( m}\'2k . ee e

¢ m 807e

and
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Chapter 4 Experimentsl Accuracy

431 Experimental Errors in the Short circuit - Open circuit Measurements

Because of the complicated calculations involved in determining
the electric and magnetic parameters from the measured values of the
positions of the first minimum and the standing wave ratios, it is difficult
to see what errors result from experimentel inaccuracies in these measured
values. It has been known, however, that the measurement must be made on
samples with lengths of an odd multiple of one-eighth of a wavelength if
the results are to be relisble. However, previous to this research no
practical procedure for calculating the errors of a measurement has been
published. Because of certain simplifying revisions in the formulaes
used in the calculation, it was possible to outline such a procedure. This
is done in Appendix B.

Since the electric and magnetic parameters for either isotropic
or snisotropic media are expressible in terms of A, B, © and ff, considerable
attention will be given to the possible error in these quantities. It is
shown in Appendix B that 0B the error in B due to XL and dxII the errors
in the position of the first minimum for the short circuit and open circuit

terminations respectively,is given by

I
T 2 2K
sec2 —;)-\.——2'"X I sec ‘i"‘
- Bw O oXt + C __dK
B = ——
80 S )

The error in A is shown to be given by

I
- 1 2 2rK o vReanel( ATK -b ba .
DA ——_——2) <sec (_x—-go) ox> - visec (%) bxﬂ) 2

Ba(1l+v

The errors, bXI, bXII end dd, are algebralc symbols which may be positive

or negative for any particular measurement. It is difficult to see what
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order of magnitude these errors will be vithout giving definite values
to Xy, ke and d and hence determining B, X;, SI, X;I, SII. However, it is
evident that the absolute error in A will in most cases be less than that
in B, This is due to the d and d% in the denominator of the first and
second terms of OA. In almost all media of interest the value of A is at
least five times greater than that of B and hence the percentage error in A
is much less than that in B. To demonstrate this, the errors for A and B
have been celculated for a medium having the characteristics of polystyrene
(kg = 2452, k; = 1), assuning that X+ = oX = *,003, The estimte of dX
was obtained from a consideration of repeated measurements made on a lucite
sample, during the course of the work included in this thesis, and it probably
represents a maximum error. In Figure 3 the percentage errors in A and B
are plotted as a function of the sample length at lengths around two and
one-eighth of a vavelength. The plot shows that the percentage error in B
is mueh greater than that in A. Also, the percentage error in B is a minimum
at an odd multiple of one-eighth of a wavelength, whereas the percentage
error in A decreages slightly as the length is increased. In Figure 4
the percentage errors in kgk,, kjpand ke are plotted at the same sample
lengths. The error in kgky is small since it can be expressed in terms of
A alone, whereas in order to calculate kg or k;, B must be used.

The expected errors in the loss tangents for such & sample (tanhe =
«00096, tanbm = 0) have also been calculated assuming an error in the AX's
of £,0003. The graphs of the absolute error in tanbe and the percentage
error in stand are plotted in Figure 5. It is seen that the error in tand,
is about 100 percent even at the length corresponding to an odd multiple
of one-eighth of a wavelength. However, the error in Ztand can be as low
as 7 percent, which must be considered good for a measurement of a tand

of .00096. The reeson for this discrepency is due to the fact that Jtand
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can be exoressed in terms of © and does not involve g. It is not easy
to see why there is a smell error in ©, but the large error in ¢ is readily
evident. For a medium of small losses TI and IJI must be angles which are
very nearly equal but opposite in sign. Since, @ = (TI + TIB/2, small errors
in T and TII will result in & large percentage error in @$. For a two and
one-eighth wavelength sample the expected error in ¢ is .00ll, vhereas thset
in © ic¢ only .OQ004LZ.

keasurements were made on a polystyrene sample of about tvo and
one~-eighth wavelengths long., This vies done to verify that a measurement
could yield results to within the accuracies estimated. The values of
the dielectric nstant and permeability vere in error by 1 percent, whereas

the error in the product kekm was negligible., Also while the error in J2tand

was negligible that in tandg was 20 percent. These arve much less than the
estimeted errors.,

In order to estimete the errors involved in the measurement
of the disc array & medium with kj = .7500 and k, = 4.073 was considered.
The maxinum expected errors in Ai and By are plotted in Kigure 6. This
shows that at l—S/SXgi the percentage error in By ir more than ten times
thet of Al' The eceneral festures of the curves are similar to the
corresponding ones obtained for the polystyrene sample. The same can
be said for the estimeted error curves of @; and g, elthough these are
not plotted. Fence, it may be ssid that vercentage estimeted erromrs in
B, and ¢l are comparatively high, those in A and ©; being small.

Since mo<t of the aluminum powder in wax samples were measured at
l—l/gkgi it is only necessary that the errors te estimeted for & typical
sample at that length. For a semple with paraneters kg = 5.000, kp= 900,

tanbe = .0000 and tand, = ,0200, the corresponding estimated absolite
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errors are *.030, *.029, ?.C08 and #.0072. A lerger value of dX(.003)

is used here, because of the larger error involved in measuring the length

of these soft wax samples. It is interesting to notice that since b(tanbe) =

i.008, it is possible for a measurement to yield a negative loss tangent.

Negative loss tangents of this order were obtained by Vogan, bubt were

attrituted to inhomogeneities in the sample.

In order to give an idea of the deviations in the measured

paremeters of a given sample the following table lists measurements made on

an accurate lucite sample 5/8ths of a wavelength long.

Lucite Sample

——

k, k kkp tend, tand Ztand

2.6310 +9986 2.6268 .00885 -.00055 .00830

2.6110 1.0017 2.6154 00744 .00010 00745

2.6395 +9935 2.6225 00754 -.00011 .00745

2.6079 1.0027 2.6157 .00775 -.00014 .00763

2.5997 1.0061 2.6156 .C0700 ~-.00013 .00688

2.6034 1.0050 2.6171 .00761 -.00027 +C0734

2.5913 1.0069 2.6092 .00681 00125 .00806

2.5844, 1.0078 2.6048 «Q0790 .00036 .00826

2.5990 1.0086 2.6114 .00780 +00026 +00806

2.5910 1.0066 2.6083 .00706 +00072 .00788

Average 2.6058 1.0038 2.6147 00758 .00015 00772

Average 1.0132 t.0037 £.0050 1.00041 £.00026 t.00038
deviation

These repeated measurements were made on the same sample over & period of

about two years under various conditions.

Even for this small length of
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sample it is evident that kekm and Ztend are meesured more accurately

than the other parameters.

432 Accuracy of Samplesgi=-

Preliminery neasurements on the aluminum and copper powders did
not yield consistent results. For example, the deviation between measure-
ments of km made on two samples vhich had the same powder content was a
much as 30 percent. This inconsistency was thousht to be due to inhomo-
zeneities in the samples, vhich were mede by mixiny the powder in molten
wax until the mixture cooled sufficiently to ensure that the particles
did not settle out. Another, and porhaps eguelly importart error vées due
to the fact thst samples could not be cut to the exact dimensions of the
guide. A gimple but more effective ﬁethod of meking samples was devised
which removed inhomogeneities to a large extent and at the same time produced
extremely accurate samples. First, a mixture of solid wax and powder was
obtained by mixing as described above. A large piece was cut from this
and placed in a nilling attachment on a lathe. This piece was cut up by
the milling tool and the small shavings were collected. The shavings
were thoroughly mixed and then firmly pressed into a rectangular hole in
a brass block, the dimensiong of the hole being the same as the inside
dimensions of the waveguide. A tight fitbting plunger was made to facilitate
the packing which was done on & drill press. The hole was closed off atb
one end by a plate vhich c¢could be removed after sufficient packing. The
sample was removed and placed in the measuring section of the guide, The
ends of the sample were cut thile it was in the guide. Tseble 1 gives the
results of mezsurements of a copper powder sample made in this manner. The

sample was milled and repacked for each of the four measurement s,
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Table 1

kg ky, kekm tanbe tandy, Ztand

2.888 0964 2,785 ~.0009 .0056 00462
2.838 .981 2,785 .0095 -.0042 .00536
2.930 956 2.80” -.0014 .0059 00451
2.896 .961 2.784 .0026 L0041 00467
*,033 t 012 1,010 ¥,0037 *,0037 £,00035

The values of kg and kp show only & 1 percent average deviation, that
of kekpy being about . 4 percent. The results of the mersurement of tenbdg
and tand, are not reliable sinée the average deviation is of the sams order.
as the average, The measurements of 2tend are fairly consistent however,
the percent deviation being only 7.5. Hence, it was concluded that the
samples were quite homogeneous, the deviations being of the same order as
those caused by inaccuracies in th e meassurement of the X's and 4X's.

A disc array semple was made by placine aluminum discs on wax strips
of the same width as the small dimension of the waveguide. The strips had
a uniform thickness of 2.08 mms. and eleven strips, pleced side by side,
formed & sample of the same width as the large dimension of the guide., The
discs were pressed slightly into the face of the wax strips to avoid a
disarrangement of the lattice structure during the measurements.

In crder to investigate disc arrsys for which the interaction between
discg might be considerable, it was hecessary to develop a better method
of suspending the discs. First a comparatively long polystyrene sample
was mAde to fit accurately into the measuring section of the guide. A

scuare array of holes each of diameter 2.14 nms. was then drilled in the
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sample, the holes being along the length of the sample corresponding
to ths iarge transverse dimension of thé guide. Iigure 7 shows & diagram
of this sample. Since the other guide dimension is 1.017 cms., the
spacing between the centers of two adjacent holes was made equal to 1/3
of this or .33% cms. The aluminum discs were placed in these holes separated
by polystyrene spacers of the same diasmeter. The discs were produced from
alwiinum foil sheets ﬁy‘placing the foil shect on a hard rubber mat and
punching out the discs with an accurately machined steel punch. The
polystyrene spacers were punched .from thin polystyrene sheets through a
steel die., The punch and die were set up oﬁ a drill press. With
polystyrene spacers of differemt thickmesses the separation between the
aluminum discs could be varied. It vas found thast the average deviaton
in the thickness of the gpacers was as low as one percent. In order to
determine the effect of the smell air gpaces hetvween the gpacers, a
sanple made by merely fillins the holes vith spacers was measured. Ior
this semple k, was Z2.456 and tanbe was .00086, whereas for a solid polystyrene
sample kg is 2,519 and tanbe is .00097, Hence, it was concluded that the
spacers were accurately made.

Long samples uers used, since the experimental errors in Al and o,
are small for such samples. Thus, the time involved in maxking & sample
was considerable. To give an idea of the tedious vork involved, one

sample containing 45 holes required about 3600 discs and spacers,
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Chanter 5 Bxperimental Regults

5:1 Aluminum and Copper Powders in Wax

The regults of the measurements made on the samples of thick

aluminum and copper particles in wex are given in Table 2.

Table 2

2a Aluminum 66 - LM

It
Sample Length km kg k, tand, tand, Ztand
1-1/8 }\gi «899 5,022 | 2.232 022 .005 +0264
1-1/8 kgi .G10 54050 2eRldy 022 004 .0261
1-1/8 gy 1920 5,000 | 2.222 016 .009 0255
1-3,8 }\gi «925 44993 | 2.219 018 .008 0262
Average values W911 5,016 | 2.229 +020 .006 .0261
Average deviationt,009 £.020 | %.009 | *.002 t.002 +,0003

2b Aluminum 177 - 149

"
Sample Length k., I, ke tandy, tand Jtand
7/8 kgi <92 5,02 2423 .020 -.003 .0170
1-1/8 Ngy <964 LeBT | 2.16 012 .005 .0165
7/8 Ngy .873 5.27 2434 018 -.002 .0158
Average values 921 5.07 2425 .019 -.002 0166
Average

deviation t.024 f0.12 .05 t.o04 t.004 *.0005
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2¢ Aluminum 500 = 3501
"

Sample Length K, k, ke tend tand Ztand
1-3/8 }\Di 917 3490 1.73 0045 .0007 00520
1-3/8 xgi .898 3494 1.75 0064 .0012 00517
1-3/8 dgi +988 3.59 1.60 .0060 | -.0008 .00608
1-1/8 Ngi «968 3.67 1.63 .0051 -,0003 00481
Average values| 943 3.78 1.68 .0055 .0002 .00532
Average

deviation | X.035 A t.07 | Z.o007 | f.0007 +.00039

I —
24 Copper 500 - 3504

— it
Sample Length kg k kg tanty, tand Ztand
1-1/8 kgi 964, 2489 1,28 0056 ~+0009 JU0L462
1-1/8 xgi 943 2493 1.30 0010 0031 00418
1-1/8 )\gi 2981 2.84 1.26 - 0042 .0095 00536
1-1/8 Mgy .956 2493 1.30 .0059 .0014 .00451
Average values| 961 2490 1.285 0041 0026 L00467
Average

deviation t.012 +.03 *.013 | *.0037 +.0037 +.00035

1"

k is the dielectric constant of the narticles alone and is obtained by

e

dividing the measured dielectric constant by that of the wax, which is 2.25.

The notation 500-350 microns refers to the range of dimensions of the

particles.

This range was obtained by first sifting powder through a 500

micron screen and then sifting out the smaller particles through a 350 micron



(5:1) - 61 -

screen. All powders were obtained from Canadien 3Bronze Powder liorks
Limited. No attempt was made to detsrmine the exact particle thicknesses,
but an examination of the particles under a microscope indicated that the
ratio of thickness to diameter was of the order of one-twentieth for bhoth
aluminum and copper particles. Hence, the particles were flake-like,
resembling discs nmiore then any other simple geometrical figure, but generally
they were of completely irregular outline. Each sample contained roughly
.07 gms. of metal per cec. It is noted that in each case the measurements were
made a£ sample lengths near an odd multiple of one-eighthof a wavelength in
the dielectric filled guide. It was assumed that the particles were randomly
oriented in which case the analysis pertaining to isotropic media was used
to obtain the parameters from the measured values of the positions of the
minima and the standing wave ratios.

A comparisén of these results vith the values predicted by the

No~-interaction theory is easily niade by examining the experimental velue of

the ratio
1;& N
.ke'l ﬂo"e &g

This is actually the ratio of the magnetic to electric susceptibility.
Since, for circular dises &y = = 8 ® and Qg = ig.RB this ratio is

.5 and is independent of the size distribution of the particles. A
somewhat similar ratic is available which serves to compare experimental

results with the Clausius-lossotti eguation. Thigs ratio is

(-l fost2) _ 9
(-1 )kg+2) %

which again, according to theory,is +5. In Table 3 the experimental values

of these ratios are given for the four samples measured.
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Table 3
Experimental ﬁalue bxperimental value of
of
-
Sample E:Eﬂ 1—km ke 1
. kgl w2/ kg2
Al. 66-4i 145 106
AL, 177-149 127 092
Al. 500-350 084 «105
Cu. 500-350 <72 151

In each case the ratio is ﬁuch less than prédicted by theory. It should
be noted, however, that the theoreticel walues of the se ratios do not take‘
into considerztion the fact thet the particles are randomly oriented. A
glance at equation(2:2:1) makes it evident that

1-

Q

I _ -
ki1 g T 0
e e

o+

for discs which are randomly oriented. It is also easily shown theat

(1-X, ) (et 2)
(k8-1)(kd*2)

also equels .250 if the Clausius-iossotti equations apply. Nevertheless,
it is evident that in general the agreement betv.een experiment and theory
is poor. If the particles making up the dielectric are generally of

more elongated shapes, the theoretical values of the ratios will be
smaller since Gy is less than one-half Gy for such particles? In this

case better agreement vwi th experiment would be expected,
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From this investigation it must be- concluded that a complete
explanation of the small diamagnetic effect in the aluminum samples
must be applicable to particles with thicknesses much creater than skin depth.
The experimental values of the tand's serve only to confirm the
findings of E.L. Vogan, namely, that the greater part of the loss is associated
with the circulating currents in the particleg rather than with the
electric polarization effect.

5:2 Aluminum Disc Array in VWax

In order to understand completely the phasge delay property of the
aluminum powder dielectrics, it is necessary that the smsll diamagnetic
eifect be explained. The main difficulty in a gquantitative interpretation
of the results 5f the metal powder measurements arises from the fact that
the size and separation of the particles vary over wide ranges. An invesgt-
igation of the electric and magnetic properties ot a regular array of
disc obstacles of uniform size and separation should yield information
which could be more easgily interpreted., IFf the lsttire dimensions are
large, the interaction is smaell and the expressions for the polarizabilities
can be checked. Also, 1f the lattice dimensions are varied the interaction
between the discs can be investigated. The first investisetion was carried
out on a semple of discs supported in wax as described in Chepter 4 angd
the latter will he considered in the next section. The sample was oriented
in the guide with the discs perallel to the pronzzation direction such
that its electric and magnetic properties n~ould be represented hy the

tensors

€) = o € o and M)y ={o u_ o
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and the values of the tensor commenents were obtained from the positions of
the rinime and the standing wave ratins through ecuations (3:?;22),(3}3:23),
(3:7:27) and (?:3:28).

The diameter of the aluminum foil discs was Z.13 rms.ard S, the
separction between adjacent planes containing the discs was 2.08 mms. The
The results of 18 measurements

number of particles per cubic cm. was 55eh.

taken at different semple lengths are given in Teble 4.

Table 4
“Semple — = =
length koK km k, hand tand, Ztand
CImsS « _
243943 245430 157 "3.3593 0024 -.00077 .00163
2.3868 R.5642 it 3.3258 +007F -.00076 00174
244208 2.5659 7941 3.2312 L0016 -.00003 00157
24492 245733 8178 3.166 .0013 +.00012 00142
2.5184 2.6165 5892 2.9425 .00324 -.00153 .00171
2.5512 2.5555 7651 3.3401 .0013 +,00015 00143
2.5715 2.5632 817 3.1373 .0037 -.0020 .00170
2.5951 2 R LT 776 32844 .0016 -.00016 001 4k
2.6500 2.6056 8964 2.9067 0077 -.00528 00242
28077 245773 <8340 3.0903 -.0013 +,00209 .00079
245357 2.5976 8745 2.9704 | -.0032& +.00385 .00057
2.8730 2.5715 5301 3.0978 -.0007 +.,00195 .00125
2.9058 2.6171 0736 249958 -.0022 +,00304 00084
2.9528 245327 $7197 345191 -.0009 +.,00224 .00215
2.9964 2,584 L7990 3.2345 -.0052 +,00618 .00098
3.0622 2.5709 1765 3.3109 -.00825 | +.00882 | .00057
3 hbBR 26325 914 2.9532 .00062 +.,00073 .00135
3.9187 2.601 L7927 3.2512 -.0041 +.00490 .00090
Average 2.583 821 3.159 .00135

——

The percentage deviations from the mean value of k, are plotted in Figure 8.

It is seen that the deviation is as much a&s 10 percent for some of the

measurenients.

#hile some experimental errors due to errors in the measurement
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of the X's and Els are present, it is obvious from the discussion of
errors in the previous chapter that such large deviations nust have a
different origin. These irregular variations heve been obhserved by Corkum
for.an array of svherical obstacles. He assumed that they are due to a
difference in the actual physical length and the "effective" length of the
sample. That is, the refractive index of these obstacle type artificial
dielectrics increases from unity to the true or bulk value throusgh a
trangition region. Two samples, one an artificial, the other a natural
dielectric, which have the same bulk refractive index as well as the same
total phase delay, in general vi 1l not be the same physical length. The
length of thisordinary dielectric sauple is termed the effective length of
tihe artificial dielectric sauple. Corkum® observed thaet slthough the percent
deviations in k., and km were large the values of the product kekm were
constant. This niey be expleined by the discussion of errors carried out
in the previous chapter. A large error in the length of the sample will
I I

cause large errors in the guantities X and X .« These errors will cause
a large error in B, but only a comwparatively small error in A. Since
Corkun's sphere array was isotropic the product igky can be expressed in
terms of A4 alone end hence, the error in this product will be comparatively
small,

Recalling that for a disc array in which the discs are parallel to

the direction of propagation elong the suide

}2 2

2 e

A‘l = ﬁ'% keky - km“'}:'ﬁ
hS Ng

it ig evident that even in this anisotropic case there will be a small
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percentage error in k.k. .

term is always smell coumpared to the first,
2.2 . .
N°/N, = <4877 and kj, = .820, rhereas kgk

lar~re error in the second term due to tha

This 1= because of

2458,

Hence,

the fact that the second

for example, in this case

the comnerativelw

feet that B must he used to

detemmine km_will heve little effect and the error in kekm will result

principally from the error in 4.

By examining the complex part of

ecuasion (3:3:25), similer reasoning will lead to the conclusion that ztand

vill have a smeller error than those a@ssocisted with tend, or tare

mo

B

refererce to the results in Table 4 it is seen that the values of the

nroduct kegkp and .. temd ere much more consistent than those of the other

nerameters, Actually, the deviations in tande end tanbm are so large

that it is not logical to everage the results.

parameters are not too large and the average values have meanin~.

However, those in the other

Sirce the

permittivity of the medium ic equal to that of the suprorting medium multiplind

by thet of the obstaclesll, it can re shown that the elertric loss due to

the dises 1s equal to the total loss minue that of wax.

for wax, hence the total loss due to the dises is. 00097.

tand, is .00038

In Table 5 the

average of the experimental velues of kgk., kg and ky are compared with

the Clrusius-lMossotti and the No-interaction values.

Table 5
Experimental Clausius-Mossotti No-interaction
Kl ke km kekm km kekm ke km
24582 3.16 0.821 2.56 3416 0.811 2.51 3.05 0.822

Since the product

N& ig small for this perticular sample, the difference
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between the two theoreticel values for each parameter is slight and it 1is
impossivle to tell which of the two best describes the eXperimental
results. Certainly the agreement between experiment and theory is as

zood as can he exvnected. ‘Because of this it must be concluded that the
electric and magnetic polarizabilities serve to describe the properties of
a disc arrav when the interaction is small. Herce, any theoretical invest-
igation of the properﬁies of an individual disc, for example, an ettempt to
extend the results of Hstrin's theory to include the effect of the finite
conductivity of the disec, should not alter the expression for the real part

of vpolerizability.

5:3 Aluminum Disc Arraysin Polystyrene

From the resesrch carried out on the thick aluminum and copper powders
it was learned thetpermeabilities only slightly less than unity are observed
for thick as well as thin particles. This, alons with the results just
obtained, makes it possible to conclude that a satisfactory explanation of
this small megnetic effect cannot he acquired through a more critical
examination of the megnetic polarizability of a single particle. Hence,
by a process of elimination it appeered that the explanation might have its
origin in the interaction hetween the particles.

In order to investigate the effect of the interaction experimentally,
five samples of aluminum disc arrays supported in polystyrene were made
as described in Chapter 4. The diameter of each disc was 2.14 mms., the
distance from the center of a disc to the center of a nearegt neighbour
in its own planewas 3.39 nmns. S, the spacing between adjacent planes
containing the disc faces was different for each sample and was as small

as 0.55 nms. for one sample. Table 6 7ives the results of such measurements

made on & samole for which the spacing was 852 mm.
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Table 6
Sample
Length kekm Kp kg Ztand tend tand
ChiS o

27753 2.875 NoYavn Le519 .00190 00347 -.00157
3.6281 2.898 6881 o211 .00335 -.00723 .01058
346454 2.877 6901 44169 .0052 -.0195 L0247

3,665, 2.893 «6995 4136 .00363 -.00753 01116
3.6810 2.593 .7082 L+ 085 .00354 -.00661 .01015
3.6933 2.888 7042 4e101 .00402 -.00901 .01303
3.7067 2.893 7103 4.073 0456 -.01136 .01592
3.7199 2.895 <7153 L 047 00466 -.01211 01697
3.7332 2.895 JT172 4.036 .00520 -.01292 01812
3.7607 2.894 7150 L. 047 00576 -.01557 .02133
3.7858 2057 .7030 44106 .00551 -.01407 01958
3.5067 2.879 6900 4173 00481 -.01123 .01604
3.8191 2.889 J7011 o121 .00399 -.00672 .01071
3.8472 2.860 L6547 ko368 .00378 -.00397 00775
3.8821 24833 5934 bTTh 00347 -.00567 00914
3.9129 2.872 6362 o511l .00230 00337 -.00107
349334 2.875 6568 L.378 .00248 -.00016 00264
3.9413 2.914 J7342 34969 .00228 .00093 .00135
L2354 2.853 6271 L4550 .00278 -,00436 00714
Le2371 2.890 .7005 o125 .00372 -.00435 .00807
LeRl11 2.935 .'7059 L1105 .00364 -.00557 .00921
L, +2607 2.848 6123 4651 00358 -.00493 .00851
he2629 2.850 6221 Le582 .00335 -.00260 .00595
442700 2,847 L6167 4617 .00353 -.00345 .00698
L2773 2.851 6152 L6334 .00330 -.00191 .00521
Le28L42 2.849 .6133 Lob4b .00288 .00017 .00271
443125 2.988 ~88L7T 3.377 .00325 -.00394 .00719
Le3347 2.974 +8620 3450 .00361 -.00578 .00939
L e3483 2.971 8524 3485 .00377 -.00703 01080
443995 2.939 27922 3.710 .00203 ~.,00029 .00232
LoTL93 2.866 6860 L. 207 .00280 -.00197 00477
Lo'Th93 2.885 O3 L o278 .00303 -.00209 .00512
4e'7511 2.878 6666 4318 .00237 -.00051 00268
L7511 34040 6870 Leli25 .001.87 00344 -.00137
5.1038 3.043 $9241 3.293 .00000 L0127 -.0127
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There are large variations in the measured values of all guantities

excapt k k,

, and ztand. In Fizure Y the percent deviation of k. is plotted at

several sample lenghbhis and it is shown that this deviation is as high as 20
percent. From this it is evident that errors associsted with the transition
region of the array are larger than thoseencountered in the previous investig-
ation. This is to be expected since there are & greater number of discs near
toth interfaces of the sauple. To give added weight to the agsumption that the
interface problem ig of considerable importancs, graphg of the variation of the
parameters viith sample length for several lengths near 1-7/8 xgi are given
in Fiosure 10. Originally the sample was 1-15/16 wevelengths long and
meagurenent s were token as it was milled to a length slightly less than
1-13/16 kgi' The diagram of the sanple serves to indiceate the positions of
the discs relstive to the physical interface. As the length is changed by
amall amounts the valués of the parémeters change only slightly and in a
continuous manner. This is to be expected for when the length is changed
slightly the corresponding change in the difterence between the efrfective
and physical length is small., The discontinuous variations occur only when
the seample length is altered a great deal, for exauple from 2-1/& to 1-7/8 kgi’
Chenges of this sort, of cowse, in general vould seriously alter the
discrepancy between the effective and actual length since the diameter of
the discs is of the order of 1/8 kgi°

It has been noted that experinental errors in the measured velues
of the positions of the first minima and the standing wave ratios produce
comparatively large errors in By and ;251, those in Al and €, being small.
To illustrate thisg, the vdElues of Al’ B., #. end 6, are given in

1 1
Table T
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Figure 9. Percentage deviation from the meen of the individual values of kyp for an
aluminum disc array for which § = 852 mm.
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Figure 10. Variation of the measured electric and magnetic parameters
of an aluminum disc array with sample length,
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Table 7
Sample
Length B g e
(cms.) L 1 & 1
27753 «3012 .0028 242292 .00123
3.62651 23077 -.0118 2.2363 00125
3.6454 3099 -.0113 2.2267 00134
36654 «3134 -.0098 242319 .00136
3.6810 3176 -.0088 2.2298 .00138
3.6933 .3160 -.0116 242286 .001Li4b
3.7067 .3186 - 0144 242293 .00157
3.7199 +3208 -.0153 242293 .00167
3.7332 .3218 -.0163 242287 00178
3.7607 «3208 -.0194 242289 .00189
347855 »3155 -.0177 242281 L00188
3.8067 «3097 -.0143 2.2279 00174
3.8191 W31L4 -.0091 242299 .00161
38473 «2940 -.0060 2.2269 .00173
3.8821 <2663 -.0076 242281 .00151
3.9129 +2849 0025 242332 +00143
3.9334 2941 -.0014 2423314 .00129
3.9413 03287 -.0001 242335 .00125
Le2354 .2812 -.0060 2.2299 .00119
Le2371 3141 -.0064 2,2302 .00164;
Le2411 3162 -.0077 242325 .00151
4.2607 2745 -.0069 242305 00159
L2629 . 2790 - .0043 2,2296 .00161
L4 427700 2766 -.0053 242294 001545
Le2773 2757 -.0036 2.2313 .00163
L2842 2749 -.0012 242311 .00154
443125 .3961 -.0059 244336 .00131
L3347 3861 -.0080 2.2325 .00135
43483 L3817 -.0095 2.2331 <0134
443995 «3549 -.,0010 2.2323 .00137
Lo 7493 3074 -.0034 202316 00133
L7493 .3019 -.0036 242335 00145
L7511 2986 -.0017 242323 00121
L7511 3078 .0026 2.2320 .00120
5.,1038 4206 .0099 242312 .00119
Aversge 3143 0066 2.2306 L0143
hverage
deviation £.0050 +,0018 +,00017

1,024
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Because of this interfece difiiculty the average values of the
perameters do not heve much mesning. However, if the sample is oriented
in the guide w.ith the disc faces perpendicular to the propagation

direction, the permittivity and permeability tensors becone

€ 0 0 Mo 0 0
(¢) =10 € 0 W) =10 Hy O
0 0 €b 0 0 ]

and the second analysis of anisotropic mesdia considered in Chapter 3
applies, eagurements were made on this sample for such an orientation
sand the electric and magnetic parameters vere obtained from the two

sets of velues of A and ©. The pertinent relations are given in equations
{3:3:41). It is noted alsn in Chapter 3, that the theoretical value of
the product ApBy should be exactly unity. The average experimental velue
was W99 = 05, Better agreement could not be expected because of the
large errors in the velues of By, The average values of A and © are

Ay = 2.2306, 81 = 00143, A2 = 2.4763 and 02 = . 00091, =nd when substituted
into equetions (3:3:41) the following velues ol the electric and magnetic
parameters ére obtained:

X

k
e

<779, tendy = 00137

3.768, tanbe L0012y,

The results of similsr measurcments made on rour other samples are
given in Table . 'the A's and ¢'s reprecent averages of values obtained
from several measurements for each of the two orientations. In iigure
11, the expérimental values of kp are compareu with those predietea rrom
the No-interaction and Clausius-hossotti equations. IUoth agree with

experiment ¢t the larger spacings. 'thig is to be expected since at these

spacines the interaction betveen aiscs is negliginle.
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Figure 11. The permeability of aluminum disc arrays as a function of the spacing between the
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Table 8
Spacing
between A Ao o1 0o ke K tande | tandp
al.scs
0,055 2.2971 2.5858 | 00167 | 400101 | 4.073 754 L00142| .00173
0.110 242080 244101 | 00137 | 400093 | 3.580 .808 00135 00119
0.171 2.1326 | 2.2866| .00105 | +00090 | 3.259 841 00135 | L0047
0.255 2.,0822 2.,16567 1 00075 | L00075 | 2,945 904 00123 [~ ,u0004

At the smaller spacings, however, the experirental differ markedly from
theoretical velues. It should be pointed out that at these separations

the lattice gtructure is far from cubic and the lattice structure correction
terms, Ay, Ay, AZ, mentioned in the theory in connection with the Clausius-
nossotti ecuation are not negligible. l1ln any case, thsese experimental
results indicate that the permeebility effect is small when the discs are-
closely packed.

In Figure 12 the experimental values of the dielectric constant are
compared with the corresponding No-interaction and Clausius-®ossotti values.
hgein the agresment is good at the lereser disc separations, the experisental
velues belng smaller for the densely packed arrays. These experimental velues
of the dielectric constant are in agreement with the static values of
S.B.Cohn obtained by the electrolytic method. He found that the measured
dielectric constant was lover than theoretic:l velues when the ratio of the
separation between dises to the distance between adjzcent discs in the gsane

plene wes less than.75.

In an attemot to give theoretical confirmetion to the experimental
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values of k. and ky, the lattice structure correction terms A, AY and AZ
were obtained by numerical calculation for two rectangular lattices.
When the disc faces are parallel to the xy plane the apparent electric and

magnetic polarizabilities are given by

1 = L =1 4 g cne
= =z by ceo(5:3:1a)
Bex Bey Yox '
Bez = Pux = Bmy = 0 eeel5:3:lD)
l l ’ ! . 3
= + : oo'(503010)
B ~ Gy T 2

One of the rectangular lattice gtructures considered was that for
which the x and y lattice distances were .339 cm., the z distance being
.200 cm. The constant

we kg
k

obtained by summing over all lattice points in & Lorentz sphere of radius
1.695 cms is equal to =35.23 em™3, Also, it was shown that A, = Ay = =1/2 A,
The effective polarizabilities were then obtained from equations (5:3:1)
and inserted into the Clausius-biossotti expression. The dielectric constant
and permeability obtained in this way are 1.320 and .866 respectively.
If the actual polarizabilities are uscd the values are kg = 1,352 and
k, = «850. The modified equation predicts a lower dielectric constant and
a2 higher permeability. This is true in general for this typé of lattice if
S is smaller than 339 cm. 4Also, as the spacing is decreased AZ becouwes
larzer in absolute walue and the discrepancies between the values predicted

by the effective and actual polarizabilities becoie greater. Lxperimentally



x1074

20
\\
N
\\\\
© ~N
161 \\
~
N
o \O\ - —~0—— tan Sll'l
€ N ‘ ‘
© 12k i \\ o ) X .10n8e
o ~ ¥ :
c N
o
\\~\
: ~
5 I
o
- N
~
~
>~
——— X . } \O\
4 p 4 X S~
3 e
\\ X=
of T ——
‘ o
1 _ ] ' 1 a . 1
04 -08 12 16 -20 . 24
' . S (cms)

Figure l3.' The electric and magnetic loss tangents as & function ofvthe spacing between
the disc faces.

_64 -




—O—— Experimental

— — Clausius Mossotti

No Interaction

Figure 14.

Na

The permeability of eltmirum disc arrays as a function of Nag.

e ek

-08_

S

P



————— Clousius Mossotti

No Interaction

——o—— Experimental

1 |

[\

s
ok
o

Figure 15. The dielectric constert of aluminum disc

-0 12
N

arrays as a function of Nae.

._'[8..




x10-4

’ 1 1 l 1 ]
o 50 I00 150

N (cm-3)

Figure 16. The measured magnetic loss tangents of aluminum disc arrays
ag a function of the number of particles
per cmd.




(5:3) - 63 -

it was found that at dense packing the dielectric constant wes lower ang
the permeability higher than the corresponding quantities given by the
ordinary equation. &Hence, in this way the modified equation is in qualitative
agreement with experiment. However, the azreement is no better than this.
This is evident from the values given by the modified equation for a spacing
of .1 e¢m. 'lthe structure constant, AZ, is - 140.6 and the calculated
dielectric constant and permeability are 1.327 and .860 respectively.
thege values do not.agree with experiment (see Figures 11 and 12). This
disagreement results from applyinz the modified equation to an array for
whiich the radius of the disc is conparahle with the spacing. iwhen this
is the case the interaction is such that the current and charge displacenent
on a disc cannot be adequately represented by magnetic and electric dipoles
respectively.

‘the loss tangents are also plotted against disc separation in Figure
13. 'he electric loss tangent is small and does not vary appreciably with
disc sevaration. Thig emall loss tangent coulé posgibly be due to the
impurities introduced in the handling of the polystyrene spacers. The
magnetic loss tangent increases as the disc separation is decreased.

Plots of the dependence of the electric and magnepic parameters
on the number of particles per unit volume are rciven in Fieures 14, 15,
and 15. This is done to facilitate comparison with the more familiar

methods of plotting the theoretical curves.



Chapter 6 Conclugions

It wes poseible to show in a quantitative manner that the
diamagnetic effect associslted with comparstively thick fleke-sheped
metallic particles rendomly positioned in a wex medium is smaller
then existing theories predict. This was done by comparing the
experimental snd theoretical values of certain quantities which according
to the theory are independent of the distritmtion in size of the particles.
It should bhe pointed out, however, that to get the theoreticsl values it
was assumed that all particles were of circuler contour. If the particles
in genersl have a more elongated contour the agreement between experiment
end theory is better., These considerations indicate that Carruthers
guelitative explanation of permeabilities only slightly less than unity,
which applies to particles with thicknesses of the order of skin depth,
is not complete.

The experimental values of the loss tengents of these samples
glsc indicate that the greeter part of the total loss is eassociated with the
circulating currents. This is in agreement with results obteined by
£.L.Vogan from measurements made on fine aluminum powders.

The controlled experiments on the z2lurinum disc arreys gsve results
which point to the chief reasons for the small dismsgnetism oktserved in the
aluminum powder samples. The agreement between experiment znd theory
for the sparsely packed disc array in a wex supporting medium mede it
poseible to conclude that the expression for the magnetic polerizebility
is correct. That is, the polarizability of =z disc is essentizlly a real
quantity(-8/3 RB), being very little effected by the finite conductivity
of aluminur. Also, the results of the investigation of the densely packed

arrsys show that the diesmagnetic permeability is much closer to unity than
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predicted by the No-interaction or the unmodified Clesusius-Mossotti equations.
Tre smellest permesbility measured is about 75 end from the graph drswn

in Figure 11, it is not poseible thet it could be much smaller then this

for more densely packed arreys. It was shown that these findings sre

in qualitative agreement with the Clausius—Mossotti equation modified to
include the effect of the noncubic structure of the lattice.

The results of this investigation of the ordered arrsys presents = -
possible explenation of the small dismagnetic effect contrihuted by the
aluminum pasrticles of approximately circuler contour, the slight effect
being due to intere.étion. Thet part of the diamagnetism due to the more
elongated perticles is small because of the small polarizabilities associated
with such particles.

The values obteined from the measurement of the loss tengents of the
disc arreys show that the megnetic losses increase with the number of dises,
wheress the electric loss is small and almost independent of the number
of discs. FPecause of the errors involved, the plot of the measured value
of tandby gave little indicatlon of the explicit relation between tentj
and the number of particles.

The experimental values of the dielectric constants of the densely
packed disc arrays are much lower than the simple theories predict. This
ig in agreement with static measurements msde by S.B.Cohn hy the electrolytic
tank method. These values are alsc in qualitative agreement with the modified
Clausius-Mossotti equation. Because of this result,the explenation of
comparatively lerge refractive indices which can be obbtained with the
aluminum powder dielectric is not immediately evident. However, z reasonable
explenation follows from a consideration of the shape of the flske particles.
Microphotographs of the particles teken by E.L.Vogan indiceate that the dise

contour is in genersal very irregular with comparatively few contours being
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circuler. The majority of the larger particles are elongated. This

is to be expected from a consideration of the sifting process breviously
discussed. The electric polezrizabilities of these elongated particles
are nmuch greater than theif magnetic polerizabilities and hence they are
more effective in producing the high refractive indices.

The Short circuit - Open circuit mebhod of measuring dieléctric
perameters was enlarged in scope by making use of expressions for the
propegation constants and characteristic wave impedances of certain
anisotropic media in rectangulesr waveguide. This was done through the
use of Generalized Telegraphists FEquetions developed by Schelkunoff. A
similer treztment of the most general anisotropié media, if possible,
would be extremely complicated end from a practlcsl standpoint would be
useless. However, i% is possible that the theory could be applied to
certain anisotropic medie of practical interest, for example e gyromagnetic
medium,

Because of cértain gimplifications in the formulee used in the
numerical ealculetions of the Short circuit - Open circuit technigue, it
was possible to give a practical procedure for estimating possible errors

in the measured parameters. With this procedure unusuel experimental results

obtained by this end other suthors were explained.



- 37 -

fonendix A

In order to effect the inversion

I pul
tenh ™t ("g__ exp (jZE:E_ ) eeell)

it is first convenient to write

, I I 1T
S exp (jz_ﬂl_ ) = u+4 3w
SH 2

end hence equrtion (1) becomes

tenh™d (u + iv) =a+ jb
The prohlem is then reduced to finding a and b if given v and v.
Equation (1) can be written in the folloving way:-

tarh(a + * By = u+ v

tanh a + *enh i b
1 + tanh » tanh j b

and since tanh j b j tan b

u+ jv = tanh a+ jtend
1+ j tznh a tan b

= tanh 2 + 7 tan h

> S (1 - j tanh a tan b)
1 + tarha ter™®

= tanh a + tanh 2 tan<b +j tan b - tanh“a ten b
1+ ﬁenh2a tanb 1 + tenh®a tanzb

o 2 , 2
tanh & (1 + tan®b) . . tem b (1 - tanh®a)
= 3 -
1+ tanh2a tanzb 1+ tanhza tanzb

*

0.0(2)

Equation (3:3:17) shows thet 6 is of the order of one-half the

: . . 2
total loss of the dielectric since )\ —. 1s small compared to one.
NG Kekp

=
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RPut © is releted to a and b by the expression 0 = %. Thus %

is of the order of one-helf the totel loss tangent and a 1s of the

order of bstan*. For e sample one end one-eighth wavelengths long
> .
b (ifﬂg) is approximately 7 and  is of the order of 3.5 Jtand and hence
g1 . .
a<kl for low loss samples. Since tanh a = & - éﬁ + gﬁé - **°+, equation

3 15
(2) mey be wvritten

2

a(l + ten b)2 b tan b . cee(3)

u+j‘v g > . 2 2
1 + tanh®™a tan"™b 1 + tanh®a tan*b

Also, if the messurement is mede for = sample length near an odd multiple
of one-eighth of a wavelenath, tan b * 1 and tanh2a tan2b<3;_l end equation
(3) becomes

u+ jv o= a(l+ tanzb) + j tan b

from which the relations

b = tan"lv 090(14-)
and a = ——1—1——‘ . ooo( )
! 1+ v2 ’

are evident. Previous to this investiestion 2 end b have been determined

by the rigorous formulae

2 2
b = tan~t ( l—‘-‘-—‘l—z—‘l- * (1 +(...."9u2'."_ > ees(H)

2v 2v
cosh a = dﬁyllL£2§-9 + sinzb . ~ eeel?)
v

This method of getting b is straight forward but long. The term on the
right hand of ecuation (7) must be very little grester than one since a
ig small., Thus in order to get accurate values of &, cos b and sin b
had to be accurately known. In fact, values extrapolated in cos and sin

tahles of arguments to the nearest one-thousandth of a radian had to be used.
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The errors involved in such a procedure.might easlly be greater than the
error due to the use of the Aapproximate relation given in ecuation (5).
For example, consider a sample for which 2Ztand = ,0340 and tanh(a+jb)=.1580 +
j1.0681, .1580 and 1,068l being actual measured values of u and v respectively.
By equations (6) end (7)

a = 0733

b = 3.9657

and by the apnroximate equations

a

0738

b

39599,
However, a and b can be determined more &accurately by substituting these

latter approximate values into the right hand side of the equations

2a tan2b)

2y,

tanh & = 11(1 + tanh
1 + ten

tan b = V(1 + tanh®a tanZb)

1 - tanh<a
thus giving
a = 0744
b = 3.9657

Hence it is seen that the value of a obtained by equations (6) and (7) is
about 1.5% lower than the true vslue.

On the following page a typical calculation is carried out from
measurements made on a lucite samnle, The term (nd - né)fgi accounts
for the effect of the slot of the detecting'sectionron tﬁe position of
the minimum and the second tern in the expression for AX serves to correct

b

for the lorses in the guide walls’ . The equations appearing on this

calculation sheet will be uged ih the discussion of errors in Appendix B.



- 90 -

Calculation Sheet for

Short circuit - Open circuit sieasurement

of Isotropic Lielectrics
semple: Lucite Ngo™ k4705 k_ = 2.589
Run: 7 Date= oth January 1953  k, = 1.0086
Ne = he5822 Temp= 20°C tandg = +0L0k
AN = ,0270, Thickness= 1.3698 tand, = -.0024
X = (NgNg) + (ng-n,) }%Q + (nf - n»é) 4_75. -a- \}:EP.
8X = A%, - (X + ns}ggo) ni‘;xa ’
algo
Rgo= L4705 Ngo= 44705 Ngo= o705
= L0048 = L0046 = ,0212 = .0213 = L0264 =,0268
Ny = 2.5188 wl = 1.3162 NI = 8497
ESZ:- 00042 Sng-n;)I% = 0073 (né-n's)n‘%x = ,0096
I gample at short I Sample N,o/k from short
@ = 19122 @ xF = .3312
@ axt = .0176 @ ax"= .0185
G E = ”}“\i = .01239 () Eo = 01848
@ tan 21&1_ = tan 2.6875 = - L4881 @ tan %"{-XE: tan 4655 = 5023
20 g0
® (O @2)1/2= .4833 ® (B®* @2)1/2= .5026
©® tenl@®/Q) = tan ™ -39.h= -1.5454®) tean™t B/ = tan T 27.18 = 1.5340
@ tan 1®x@® = -.0060 @ ten ' Px@ = 00928
(1 + ®2x@2 /2 1y Qo+ @2X®2 32
@ st exp(57h)= %exp(j(—@+@)_ ® sYexp(yrh) =exp i-O+®)

4583 exp(j 1.5394)

= 5026 expl(-j 1.5247)
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Ly

I II
,Z;- = |sIsT exp 3 T S =B explif) = .i95k exply .00732)
(o}

'I : I ’
tenh)jd = tanh(a + j b) = S ex(T ) =y v j v = 0382 + § 984S
sTexp (j71)

b= tan™l v + mr = J7778 + 7 = 3.9194

a s = = 0194
1+v2 7
Yi Vozme? - '
L Vo%e ooy tan™t &) = A expi-j6) = 2.0359 exp(~] .00k95)
n 2m b
}\.go
tand = - tan(@g-9) = -.00237
Kk = AB = 1.0086

- —_—
ql + tanzbm

2 2
kol = L ( 2 4 ?‘_82) = 2.,6115

2 2
}\go }\'C
2
Stemd = 20(1 1 ): 00805
2§  Kekm

kg = % = 2.5892

tendg = (1 - @ = .o01042
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Appendix B

In the following enalysis of the errors in the Short circuit-Open
circuit measurement, it is assumed that the experimental error associated
with the measurement>of xgo is negdligible., This is a valid assumption in
view of the precision of the microwave compdnents involved in such a
measurenent .

The individual steps in the procedure =re not explained in detail
since they involve simple differentistions and approximetions based on the
assumption thet the slectric and magnetic loss tangents are small. Also,
the steps are numbered to correspond to those in the calculation sheet
given in Appendix A.

A b preceding a symbol refers to the algebraic value of the expe rimental
error associated v.ith the quantity represented by that symbol. No confusion
should arise betvieen this 0 and those associated with the electromagnetic
attenuation in the dielectric samples.

Calculation Procedure for the Estimation of LT TOTS

@ and @ The errors in X and AX are estimated in the usual menner by
considering the precision of the instruments involved.

B bE = - bAx)

e

el

@b@= %T—seczg@_{. oX
g0 kgo

@b@= ._-)-\.'/")"'-T—-sec'?@-)g dX
g0 kgo

Q20 = O+ O®

Negligible error



@ s = F seo (&@s)bx
20

o7 = ~3® + »®)
I o
() 5 = blsist BIRS_ + 88°|  pg =1 (a7t 4+ wrM)
T iy
S S
T 1.1
(:) Since u = ||[= |Z - I 'T:]
o |2 2
S
I
and v = §%i
S
ou = % (67T - »7h)
_ 1 I 2, I
and dv = 2B(bs <08 )
@ o = Loy
1+v
= —2% _ (08! - vsT)
2B(1+v<) '
N
@ ba - l+v2bu

b,
@ Since A = —82

2ma
A b
A = 22y - 58 b4,
° ord 2ma?
&lso since 6 = - a/b

The calculation procedure up to this point is the same for either
isotropic or anisotropic meaia. The errors in the clectric and magnetic
parameters can easily be obtained by making use of the relstions between

ke,km,taﬂbe, tandm and A, B, 6, ¢ which are pertinent to the nszdia under

considerations
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With this outline it is not difficult to estimate the errors in
the parameters of a sample after & measurement has been meae and the
values ol the paramebers obtained. If the estimated errors ror a sample
to be measured, i1or which approximate values of the parameters are known,
are needed, considerably more numerical wors is required, that is, the
calculation procedure outlined in Appendix A must be inverted so that
approximete values of XI, X]I, AXI and AXI[ may be obtained from the kmown
dielectric parameters. 'his was done to obtain the plots given in Chapter 4.
It should be mentioned that this inversion process is comparatively simple if
the proposed measurement is to be made for a sample with a length which is

close to an o0dd multiple of one-eighthof a wavelength,.
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