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Abstract

Since their popularization by Gromov in the eighties, CAT (0) metric spaces of

bounded curvature as defined by Alexandrov have been the locus of great progress

in infinite group theory. Surveying ideas and constructions of geometric group

theory, we express a bias towards groups acting on structures of this kind. As

such, swiftly acquainting the reader with the theory of CAT (0) spaces, we provide

a variety of examples obtained by gluing together families of convex polyhedra

along their isometric faces. In this context, Gromov’s link condition provides a

local-to-global framework for non-positive curvature. Combining this with tools

from knot theory, such as the Dehn complex of an alternating knot projection, we

demonstrate a result of Wise which states that the fundamental group of an alter-

nating link complement is also the fundamental group of a non-positively curved

complex. Using similar ideas, we also mention a construction of Wise relating

any finitely generated group to the fundamental groups of some non-positively

curved complexes. Besides providing such “explicit” constructions, we make use

of tower lifts of combinatorial maps to prove Bridson and Haefliger’s abstract

result that every subgroup of the fundamental group of a non-positively curved

two dimensional polyhedral complexes is the fundamental group of some com-

pact non-positively curved two dimensional polyhedral complex. Then, having

well established the inherent structure of CAT (0) spaces, we focus on classifying

their isometries, group actions upon them, and how they extend to the visual

boundary. The combinatorial approach is especially effective here when we prove

Haglund’s result that cell-preserving isometries of CAT (0) cube complexes are

semi-simple. Finally, using the theory of generalized harmonic maps, we demon-

strate the superrigidity result of Monod, Gelander, Karlsson and Margulis for

reduced actions with no globally fixed point of irreducible uniform lattices in lo-

cally compact, compactly generated topological groups of higher rank on complete

CAT (0) spaces.
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Résumé

Depuis leur popularisation par Gromov durant les années quatre-vingt, la théorie

des espaces métriques à courbure bornée, dits CAT (0), fut à la base de grandes

percées dans notre compréhension des groupes infinis. Survolant des constructions

de la théorie géométrique des groupes, nous portons donc une attention partic-

ulière aux actions sur les espaces CAT (0) et commençons notre traité par la con-

struction de complexes CAT (0) obtenus en identifiant certaines faces isométriques

d’ensembles de polyèdres convexes. Dans ce contexte, le critère du lien de Gro-

mov nous permet de caractériser la courbure nonpositive globale de manière lo-

cale. Combinant ces idées à certaines techniques de la théorie des noeuds, nous

démontrons un théorème de Wise reliant tout groupe fondamental du complément

d’un entrelac alternants à un complexe de courbure nonpositive. Nous rela-

tons aussi une construction similaire de Wise permettant de relier tout groupe

présenté de manière finie au groupe fondamental d’un complexe à courbure non-

positive. Outre ces constructions concrètes, nous utilisons les tours de relèvement

d’applications combinatoires afin de démontrer un théorème abstrait de Bridson

et Haefliger concernant les sous-groupes de groupes fondamentaux de complexes

à courbure non-positive. Ayant établi la structure des espaces CAT (0), nous pas-

sons en second lieu à la classification de leurs isométries et de leurs extensions

à la bordification de ces espaces. L’approche combinatoire est d’une aide partic-

ulière lorsque nous prouvons le résultat de Haglund concernant la semi-simplicité

d’isométries de complexes cubiques et offre un contraste par rapport à un résultat

analogue de Brisdon dans le contexte des complexes polyhédraux. Finalement,

en faisant usage de la théorie des applications harmoniques généralisées, nous

démontrons le résultat de superrigidité de Monod, Gelander, Karlsson et Mar-

gulis pour les actions réduites sans point fixe sur les espaces métriques CAT (0)

complets de réseaux uniformes et irréductibles dans des groupes de rang supérieur

localement compacts engendrés par un ensemble de générateurs compact.
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1 Prologue

1.1 Outline

Metric spaces of non-positive curvature in the sense of Alexandrov [Ale51] emulate

Riemannian manifolds of bounded sectional curvature. In order to generalize their

elegant features to the realm of geodesic metric spaces, he introduced the notion

of upper angle. This allows one to consider the angular excess δ(4) of triangles

4 in a geodesic metric space, namely the sum of its interior angles minus the

expected sum which is π, and say that such a space is non-positively curved if

δ(4) ≤ 0 for all 4. This concept is analogous in the differentiable case to the

total curvature of a surface.

The purpose of the present survey is two-fold. Our first goal is to introduce

the reader to the theory of metric spaces of non-positive curvature. As such,

having laid down the basic definitions, we provide a variety of interesting examples

arising mostly from gluing constructions and knot theory. We then turn our

attention to the theory of groups acting on metric spaces. There, we emphasize

the strong relation between the structure of non-positively curved metric spaces

and the structure of groups that act on them. The techniques used throughout

our exposition involve a constant interplay between analytic and combinatorial

interpretations of the restrictions imposed by the curvature.

Following a similar approach that of angular excess, we introduce a general

inequality to define CAT (0) metric spaces in Section 2. We then use Gromov’s

link condition to develop some metric and combinatorial aspects of the theory of

polyhedral and cube complexes of bounded curvature in Sections 3.1 and 3.2. In

particular, we explore closure properties for subgroups of the fundamental group

of such complexes and prove the following theorem in Section 3.3 by developing

techniques of tower lifts of combinatorial maps as introduced by [Pap57] and

[How81].

Theorem 1.1 ([BH99]). Every subgroup of the fundamental group of a non-

positively curved two dimensional polyhedral cell complexes is isomorphic to the
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1.1 Outline

fundamental group of some compact non-positively curved two dimensional cell

complex.

Moving away from these relatively abstract constructions, we produce a zoo

of non-positively curved complexes focusing on constructions of Wise involving

knots and exact sequences. In particular, it is shown in Section 4.2 that the Dehn

complex of a knot projection Π is non-positively curved if and only if Π is prime

and alternating, which leads up to the following theorem:

Theorem 1.2 ([Wis06]). The fundamental group of an alternating link comple-

ment is isomorphic to the fundamental group of a compact non-positively curved

cell complex.

Finally, in section 4.3 we illustrate a modification of Rips’ celebrated construc-

tion in [Rip82] by Wise which relates finitely generated groups to fundamental

groups of non-positively curved complexes.

Theorem 1.3 ([Wis98]). Given any finitely generated group G there is a short

exact sequence 1 → N → G → π1K → 1 where N is finitely generated and K is

a non-positively curved cell complex obtained by gluing hyperbolic pentagons.

Having laid down the necessary theory for metric spaces, we shift our point

of view and survey some basic ideas and constructions of geometric group theory,

embracing the slogan that good actions of infinite groups on metric spaces allow

great insight into the group structure. Swiftly moving through standard results

for groups acting on metric spaces, we prove a result of Macbeath from [Mac64]

for presenting groups of homeomorphisms to conclude that a group is finitely

presented if and only if it acts properly and cocompactly by isometries on a simply

connected geodesic metric spaces. Since many techniques in the geometric theory

of infinite groups rely on the introduction of good coarse geometric invariants, we

also recall the notion of quasi-isometries and illustrate them through the Schwarz-

Milnor Lemma in Section 5.8.

We then turn our attention to understanding isometries of CAT (0) spaces

and how they extend to the bordification of such spaces in Section 6.2. After
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1.2 Comparison Geometry

defining semi-simple isometries analogously to the case of Riemannian manifolds,

we study how they arise in CAT (0) cell complexes. In section 6.3 we focus on

cube complexes, giving an account of the following unpublished result of Haglund:

Theorem 1.4 ([Hag07]). Combinatorial isometries of possibly infinite dimen-

sional CAT (0) cube complexes are semi-simple up to cubical subdivision.

This inherently generalizes some aspects of the analogous result of Bridson for

polyhedral cell complexes with finitely many types of faces.

Theorem 1.5 ([Bri99]). Combinatorial isometries of polyhedral cell complexes

of bounded curvature having only finitely many isometry types of faces are semi-

simple.

Finally, we introduce the main ideas behind geometric superrigidity and gener-

alized harmonic maps in view of proving the recent theorems of Monod, Gelander,

Karlsson and Margulis. In Section 7, it is shown in particular that :

Theorem 1.6 ([Mon06],[GKM08]). Reduced actions with no globally fixed point

of irreducible uniform lattices in locally compact, compactly generated topological

groups of higher rank on complete CAT (0) spaces extend continuously to the whole

group.

We wish to emphasize that while we do not prove any new results per se, the

originality of the present thesis lies in the organization and presentation of the

theory.

1.2 Comparison Geometry

To properly understand the geometry of geodesic metric spaces, it is convenient

to introduce a notion of angle between geodesics issuing from a given point. Our

ultimate goal will be to fruitfully compare geodesic triangles in metric spaces to

similar ones in model spaces1 M2
k that can be thought of as template spaces of

1Please consult Appendix A where standard notation and definitions are set up.
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1.2 Comparison Geometry

fixed curvature k. The definition of angles given by the inner product in Hn,En

and Sn can implicitly be generalized to arbitrary model spaces via the appropriate

inner product. The Alexandrov angle will yield the desired notion of angle for

arbitrary metric spaces.

In this light, we first define a comparison triangle in E2 for a geodesic triangle

4(p, q, r) in a metric space X as a triangle in E2 with vertices p̄, q̄, r̄ such that

d(p, q) = d(p̄, q̄), d(p, r) = d(p̄, r̄) and d(q, r) = d(q̄, r̄). This triangle exists, is

unique up to isometry and denoted by 4̄(p, q, r) or 4̄ when no confusion can arise.

The interior angle of the comparison triangle at p̄ is called the the comparison

angle between r and q at p. We denote it by ∠̄p(q, r).

Given two geodesic paths2 g, g′ : [0, a] → X issuing from the same point,

consider the euclidean comparison triangle 4̄(g(0), g(t), g(t′)) in E2 and the com-

parison angle ∠̄g(0)(g(t), g′(t′)).

Alexandrov Angle The Alexandrov angle between a pair of chosen geodesic

paths g and g′ issuing from a common point is the unique number ∠(g, g′) given

by the lim sup of the comparison angles as follows:

0 ≤ ∠(g, g′) := lim sup
t,t′→0

∠̄g(0)(g(t), g′(t′)) = lim
ε→0

sup
0<t,t′<ε

∠̄g(0)(g(t), g′(t′)) ≤ π.

When X is uniquely geodesic, for p 6= x and p 6= y, the angle between the

geodesic segments [p, x] and [p, y] is well defined and denoted ∠p(x, y). One should

also note that the reason for using lim sup in Alexandrov angles is to ensure

that the angular distance between geodesics issuing from a point is always a

pseudometric. This is used in particular to metrize the space of directions at a

point as mentioned in Section 2.3.

Given a triangle 4 in an arbitrary metric space X, we define k-comparison

triangles 4̄(k) and k-comparison angles, ∠̄(k) in M2
k analogously to the E2 case.

It is a fact that they always exist when the perimeter of 4 is less than twice the

diameter3 2Dk. Interestingly, the Alexandrov angle coincides with the euclidean,

2Always parametrized proportional to arc length.
3The diameter of a model space M2

k is defined as Dk := π/
√
k when k > 0 and ∞ other-
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1.3 Alexandrov’s Lemma

hyperbolic and spherical angles of the three standard model spaces so we may

replace ∠̄ by ∠̄(k) in its definition without changing its value.

1.3 Alexandrov’s Lemma

The study of metric spaces of bounded curvature in the sense of Alexandrov relies

heavily on constructions involving triangles. Setting the mood for what is to come,

the following two technical lemma could be said to form one of the bases of this

theory and will be used in Section 2.2 to characterize flat subspaces. Although

the original ideas are due to Alexandrov, we follow a proof of [BH99].

Lemma 1.7 (Alexandrov’s Lemma Part 1). Consider a pair of distinct points

p, p′ ∈M2
k where k ≤ 0. Two piecewise geodesic paths [p, q]∪[q, p′] and [p, r]∪[r, p′]

where q 6= r while p and p′ lie on opposite sides of the geodesic line extending

[q, r] always determine a pair of geodesic triangles. We henceforth denote these

triangles by 4 and 4′ corresponding to the triples of points (p, q, r) and (p′, q, r).

Labelling the angles at vertices r of 4 and 4′ by γ and γ′, if γ + γ′ ≥ π then

d(p, r) + d(p′, r) ≤ d(p, q) + d(p′, q) (1)

or the path [p, r] ∪ [r, p′] is shortest among the two.

Proof. Recall by Proposition A.1 that M2
k is a uniquely geodesic space for k ≤ 0.

It follows that there is a unique point p̃′ with d(p̃′, r) = d(p′, r) such that r lies

on the geodesic [p, p̃′]. Since γ + γ′ ≥ π, the new angle formed also satisfies the

inequality ∠r(q, p̃
′) ≤ ∠r(p

′, q). We may now apply the law of cosines in M2
k to

deduce that d(q, p̃′) ≤ d(q, p′). Now d(p, r)+d(r, p̃′) = d(p, p̃′) ≤ d(p, q)+d(q, p̃′) ≤
d(p, q) + d(p′, q) which concludes the proof of (1).

Lemma 1.8 (Alexandrov’s Lemma Part 2). Keeping the notation from the pre-

vious lemma as indicated in Figure 1, let 4̄ be a new geodesic triangle obtained

from the quadrilateral (p, q, p′, r) by thinking of it as a system of four rigid bars

wise. The bound on the perimeter is necessary to ensure the existence and uniqueness of the
comparison triangle.
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1.3 Alexandrov’s Lemma

linked by hinges and flattening the “kink” at r. The distances between the respec-

tive vertices are preserved so this new triangle is unique up to isometry. As such,

we label its three vertices by p̄, p̄′ and q̄ and the angles at these respective points

by β̄, β̄′ and ᾱ. Now, if we denote by r̄ the point on the geodesic segment [p, p′]

such that d(p, r) = d(p̄, r̄) we have:

ᾱ ≥ α + α′, β̄ ≥ β, β̄′ ≥ β′ and d(q, r) ≤ d(q̄, r̄). (2)

In this equation, if equality occurs anywhere it must occur everywhere. Further,

such an equality occurs if and only if γ + γ′ = π or the original quadrilateral was

already a geodesic triangle.

Figure 1: Alexandrov’s lemma

Proof. From the proof of Lemma 1.7, we immediately obtain that d(q̄, p̄′) =

d(q, p′) ≥ d(q, p̃′). Applying the law of cosines for these two edges with the

angle opposite of them in the triangles 4 and 4̄ immediately yields β ≤ β̄ and
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β′ ≤ β̄′. Since d(p̄, p̄′) = d(p, r) + d(r, p′) ≥ d(p, p′), we may apply the same

technique to the angles opposite to the sides p̄, p̄′ and p, p′ to obtain α + α′ ≤ ᾱ.

A final application of the law of cosines yields d(q, r) ≤ d(q, r̄). In all of these

cases, equality holds if and only if γ + γ′ = π in which case 4̄ is isometric to the

union of 4 and 4′.

Remark Alexandrov’s Lemma holds for points in arbitrary model spaces Mk

but when k > 0 we must additionally require the points are not too far apart or

d(p, r) + d(p′, r) + d(p, q) + d(q, p′) < 2Dk to ensure the existence of the required

geodesics.

2 Bounded Curvature in Metric Spaces

We are now in a good position to define the main geometric objects of our

study, metric spaces which emulate in many aspects Riemannian manifolds of

non-positive sectional curvature. These metric spaces, said to be of non-positive

curvature, are a special case of the notion of (locally) CAT (k) spaces to be defined

below. Our main reference in this section is [BH99].

2.1 Basic Preliminaries

Before proceeding, the reader unfamiliar with model spaces of a given curvature

and their geodesics should read Appendix A where basic definitions and notation

are set up. In the following discussion all triangles are geodesic, namely their sides

are geodesic segments4 joining their three vertices. Let 4(x, y, z) be a triangle in

a metric space X. If the perimeter of 4 is bounded by 2Dk, we can consider the

k−comparison triangle 4̄ ⊆M2
k . The point x̄′ ∈ [x̄, ȳ] ⊂ 4̄ is a comparison point

of x′ ∈ [x, y] if d(x, x′) = d(x̄, x̄′) and d(x′, y) = d(x̄′, ȳ).

The reason we are interested in comparison triangles is that since the model

spaces Mn
k have constant sectional curvature k one would intuitively expect a

4These segments are not necessarily unique!
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2.1 Basic Preliminaries

triangle in a space X of curvature “bounded above by k” to be more negatively

curved in some sense than a similar triangle in Mn
k as illustrated in Figure 2. With

this in mind, we say that a triangle 4 satisfies the CAT (k) inequality or the thin

triangle condition if for every x′, y′ ∈ 4 and x̄′, ȳ′ ∈ 4̄ we have d(x′, y′) ≤ d(x̄′, ȳ′).

Figure 2: Thin triangle condition.

CAT(k) We say that a metric space X is CAT (k) or the metric of X is CAT (k)

if one of the following holds:

1. If k ≤ 0 and X is a geodesic space where all triangles satisfy the CAT (k)

inequality.

2. If k > 0 and X is Dk−geodesic with all triangles of perimeter bounded by

2Dk satisfying the CAT (k) inequality.

These definitions are due to Alexandrov and may be found in [Ale51] under differ-

ent terminology. Complete CAT (0) spaces are sometimes referred to as Hadamard

spaces, we will revisit them in Section 7. Following these definitions we use a lo-

cal version of these conditions to obtain the notion of metric spaces of bounded

curvature.

Definition A geodesic metric space X is said to be of curvature bounded above

by k if it is locally a CAT (k) space.

Remarks 1. For smooth Riemannian manifolds, having bounded curvature in

the CAT (k) sense is equivalent to having all sectional curvatures bounded

above by k. The CAT (k) condition is thus a natural generalization of

sectional curvature.

14



2.1 Basic Preliminaries

2. If X is a CAT (k) space then it is also CAT (k′) for every k′ ≥ k.

The following proposition gives us a good handle on the behaviour of such spaces.

We refer the reader to [BH99] for a modern proof although it is originally due to

Alexandrov.

Proposition 2.1 ([Ale51]). Let X be a CAT (k) metric space. If a pair of points

x and y in X are such that d(x, y) < Dk then any locally geodesic path between

them coincides with the unique geodesic segment [x, y]. Moreover, all balls B of

radius less than Dk/2 are convex, namely if x and y lie in B then [x, y] ⊆ B.

The focus of our attention will be that of CAT (0) or non-positively curved

spaces where D0 = ∞ so in the above proposition the statements are stronger

than they might appear. In fact, in a CAT (0) space all balls are convex and

contractible. We now state two characterizations particular to this case, these are

especially useful when one wants to concretely verify that a given space is CAT (0)

as in section 7. First, we have the Courbure Négative inequality of Bruhat and

Tits [BT72]:

Lemma 2.2 (CN Inequality). A geodesic metric space X is CAT (0) if and only

if for every triple of points p, q and r in X, given m ∈ X such that d(q,m) =

d(r,m) = d(q, r)/2 (i.e. m is the midpoint of [q, r]) we must have that

d(p, q)2 + d(p, r)2 ≥ 2d(m, p)2 +
d(q, r)2

2
.

There is also the very recent quadrilateral condition for such spaces due to

Berg and Nikolaev and based in part on the previous Lemma.

Proposition 2.3 ([BN08]). A geodesic metric space X is CAT (0) if and only if

any four points w, x, y and z of X satisfy the quadrilateral inequality

d(w, y)2 + d(x, z)2 ≤ d(w, x)2 + d(x, y)2 + d(y, z)2 + d(z, w)2.

The great interest of this characterization comes from the fact that it does not

rely on the existence of geodesics hence allowing one to generalize the definition
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2.2 Convexity in CAT (0) Spaces

of CAT (0) spaces to discrete spaces. We refer the reader to [Sat09] for a short

and sweet proof of the result.

Example 1. All convex subsets of En are CAT (0) when equipped with the

induced metric.

2. R-trees are by definition metric spaces where any two points are joined by a

unique geodesic segment and the concatenation of geodesic segments always

yields a geodesic. In such spaces, triangles are all “degenerate” so they are

CAT (k) for every k. In fact, a metric space is CAT (k) for every k if and only

if it is an R−tree. As such, these spaces are sometimes called CAT (−∞).

3. Under certain hypotheses Mk−polyhedral complexes can be made to be

CAT (k). This is the main subject of Section 3.1.

Remark The acronym “CAT” in the definition of CAT (k) spaces was originally

coined by Gromov [Gro87] and stands for Cartan, Alexandrov and Topogonov.

It’s always more fun when cats show up in topology literature as in the nicely

illustrated examples found on page two of [Wis05] and page three of [DL09]. In

this vein, it would be a shame to lose the cat-like essence of the acronym when

passing from english to french. Thankfully, we are in luck as Hadamard also played

a role in the development of the present theory. One could therefore shamelessly

insert his initial into the french acronym. On appelle donc parfois ces espaces

CHAT(0) en français.

2.2 Convexity in CAT (0) Spaces

Having laid down the basic definition of CAT (0) spaces, one might wonder which

features of these spaces make them so pleasant to work with. One of the most

important properties from this point of view is related to the inherent convexity

of their structure.

Recall that given a convex set V in a real vector space, a function f : V → R
is said to be convex if f(sv1 + (1 − s)v2) ≤ (s − 1)f(v1) + sf(v2) for all s ∈
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2.2 Convexity in CAT (0) Spaces

[0, 1]. Analogously, we say that a real valued function f defined on a geodesic

metric space X is convex 5 if for every geodesic path g : [0, 1] → X parametrized

proportional to arc length, the inequality

f(g(s)) ≤ (s− 1)f(g(0)) + sf(g(1))

holds ∀ s ∈ [0, 1]. Another way to look at this is to say that the function f : X →
R is convex if for all geodesics g : I ⊂ R→ X the map f ◦ g : I → R is convex in

the traditional sense where the interval I plays the role of a convex subset of the

vector space R.

One then considers the metric as a function d : X × X → R where geodesic

paths in X×X correspond to pairs of geodesic paths in X to obtain the following

landmark feature of CAT (0) spaces.

Proposition 2.4. The metric of a CAT (0) space is convex.

Before proceeding with the proof, we introduce convenient notation. Given two

geodesic segments g1, g2 : [0, 1]→ X parametrized proportional to arc length one

can think of their distance function as Dg1,g2(s) := d(g1(s), g2(s)) which measures

how far apart they are at a given time.

Proof. Given two geodesics as above, let us divide the convex hull of the two seg-

ments g1([0, 1]) and g2([0, 1]) into triangles4(g2(0), g1(0), g1(1)) and4′(g2(0), g1(1), g2(1))

as in Figure 3. Denoting by g3 the geodesic segment [g2(0), g1(1)], the CAT (0) in-

equality for 4 shows that d(g1(t), g3(t)) ≤ d(g1(t), g3(t)) for all values of t ∈ [0, 1].

Now that we have moved to the context of Euclidean geometry we immediately see

that d(g1(t), g3(t)) ≤ (1−t)d(g1(0), g3(0)). Combining these observations with the

similar ones for 4′ yields that Dg1,g3(t) ≤ d(g1(t), g3(t)) ≤ (1− t) · d(g1(0), g3(0))

and Dg2,g3(t) ≤ d(g2(t), g3(t)) ≤ t · d(g2(1), g3(1)). As such, we finally obtain

Dg1,g2(t) ≤ Dg1,g3(t) +Dg2,g3(t) ≤ t · d(g2(1), g3(1)) + (1− t) · d(g1(0), g3(0))

5We invite the reader to consult [Pap05] for an overview of convexity in vector spaces and
how it extends to arbitrary metric space.
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2.2 Convexity in CAT (0) Spaces

which establishes the desired inequality since d(g2(1), g3(1)) = Dg1,g2(1) and

d(g1(0), g3(0)) = Dg1,g2(0).

Figure 3: Convexity of the metric.

In light of the proof of this lemma, convexity of the metric simply expresses

the fact that the distance between two geodesics at a given time can not exceed

the distance between two comparison geodesics in euclidean space. The following

key fact is a standard result for ordinary convex functions and will be used several

times.

Proposition 2.5. A locally convex function is convex and a bounded convex func-

tion is constant.

Remark Convexity of the metric is a salient feature of non-positive curvature

and in fact it is the basis for an alternative generalization of non-positive curvature

to metric spaces in the sense of Busemann as developed in [Pap05]. Such spaces

rely heavily on the fact that a space of infinite diameter with convex metric is

necessarily uniquely geodesic.
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2.2 Convexity in CAT (0) Spaces

Recall that a subset of a metric space is convex if the geodesic segment joining

any two of its points lies within the subset. The following proposition stated

without proof defines the useful notion of orthogonal projection πC : X → C

onto a convex subset of a CAT (0) space X analogous to the similar projections

frequently used in functional analysis.

Proposition 2.6 ([BH99]). Let X be CAT (0) metric space. If a convex sub-

set C ⊂ X is complete in the induced metric then for every x ∈ X there is a

unique point πC(x) ∈ C such that d(x, πC(x)) = infc∈C d(x, c) which defines a

non-expanding retraction map πc : X → C homotopic to the identity.

To better comprehend the geometry of CAT (0) spaces, it is crucial to under-

stand subspaces that are isometric to subsets of Euclidean space. The following

two results are useful in characterizing “flat” subsets of CAT (0) spaces, namely

those that are isometric to subsets of E2. The first is known as the Flat Triangle

Lemma and illustrates an application of Alexandrov’s Lemma 1.8.

Proposition 2.7 ([Ale51]). If 4 is a geodesic triangle in X and one of the

interior Alexandrov angles of 4 is equal to the corresponding angle in some com-

parison 4̄ ⊂ E2 then the convex hull of 4 is isometric to the convex hull of

4̄.

Proof. The following argument follows [BH99]. Let 4(p, q, r) be a geodesic tri-

angle in X satisfying the above hypothesis. More precisely, suppose ∠p(q, r) =

∠̄p(q, r). We first proceed to show that for any s ∈ [q, r], equality holds in

the CAT (0) condition. This is equivalent to showing that for every such s,

d(p, s) = d(p̄, s̄).

To this end, fix s as above and let4′ and4′′ be geodesic triangles with vertices

(p, q, s) and (p, s, r) respectively. Let now 4̃′ and 4̃′′ be their comparison triangles

in E2 sharing the common segment joining p̃ to s̃ and such that q̃ and r̃ lie on

opposite sides of [p̃, s̃]. By the CAT (0) condition, the sum of the angles at r̃ in

4′ and 4̃′′ must exceed π so we may apply Alexandrov’s Lemma 1.8 to the pair

of triangles to obtain ∠p̄(q̄, r̄) ≥ ∠p̃(r̃, s̃) + ∠p̃(q̃, s̃). Since the CAT (0) condition
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2.2 Convexity in CAT (0) Spaces

implies that the Alexandrov angle can not exceed the comparison angle we thus

obtain the following chain of inequalities:

∠p(q, r) ≤ ∠p(r, s) + ∠p(q, s) ≤ ∠p̃(r̃, s̃) + ∠p̃(q̃, s̃) ≤ ∠p̄(q̄, r̄)

But now, by our original assumption, equality must hold throughout the above.

We obtain in particular that ∠p̃(r̃, s̃) + ∠p̃(q̃, s̃) = ∠p̄(q̄, r̄). A second application

of Alexandrov’s Lemma thus yields the desired equality d(p, s) = d(p̃, s̃) = d(p̄, s̄).

We are now in position to define a map φ : Conv(4̄) → X from the convex

hull of 4̄ to the original space X which, for every s̄ ∈ [q̄, r̄] maps the segment

[p̄, s̄] isometrically onto the segment [p, s]. We claim this map is an isometry which

implies it is the desired isometry from Conv(4̄) onto Conv(4).

To show that it is an isometry, let x̄ ∈ [p̄, s̄] and x̄′ ∈ [p̄, s̄′] where s̄ and s̄′

lie on the segment [q̄, r̄]. Letting ξ = φ(ξ̄) wherever appropriate, denote by δ1, δ2

and δ3 the angles ∠p(q, s),∠p(s, s
′) and ∠p(s

′, r) respectively. If δ̄i represents

the corresponding comparison angles in 4̄, since by the first part of the proof

4(p̄, q̄, s̄) is a comparison triangle for 4(p, q, s) we must have that δ1 ≤ δ̄1. A

similar argument yields δi ≤ δ̄i for every i. Now

∠p(q, r) ≤ δ1 + δ2 + δ3 ≤ δ̄1 + δ̄2 + δ̄3 = ∠p̄(q̄, r̄)

and by our original assumption, equality holds throughout. In particular δ2 = δ̄2

so d(x, x′) = d(x̄, x̄′).

Appropriately, triangles described in the proposition are referred to as “flat”

triangles. A generalization of the ideas in the preceding proof yields a simi-

lar condition for quadrilaterals which is the key to proving that convex hulls of

asymptotic geodesics are flat strips. We refer the reader to [BH99] for a proof.

Theorem 2.8 ([Ale51]). Given four distinct points in a CAT (0) space X, if the

sum of the four interior Alexandrov angles of the implicit quadrilateral ◊ is greater
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2.2 Convexity in CAT (0) Spaces

than or equal to 2π then ◊ is equal to 2π and the quadrilateral is in fact a flat

rectangle.

Infinite geodesics play a special role in the theory of metric spaces which

will be emphasized in Section 6.1 where certain isometries will act on them as

translations so they are often called lines or axes. One of the most useful relation

between geodesic lines in Euclidean space is parallelism but it is a priori unclear

how to describe such a relation in CAT (0) spaces. To this end, notice that in

En lines are parallel if and only if they are asymptotic. In other words, two

lines6 g1, g2 : R → En are parallel if and only if the distance d(g1(t), g2(t)) is

uniformly bounded. As such, we define geodesic lines in a CAT (0) space to

be parallel whenever they are asymptotic. In view of the following Flat Strip

Theorem found in [BH99], one might say that asymptoticity is possibly the most

useful generalization of parallelism in En to arbitrary metric spaces.

Theorem 2.9 (Flat Strip Theorem). The convex hull of the union of two asymp-

totic geodesic lines in a CAT (0) space is isometric to the convex hull of two

parallel lines in the Euclidean plane. Appropriately, this convex hull is called a

flat strip.

Proof. Let g1, g2 : R→ X be two asymptotic geodesic lines in the CAT (0) space

X. The distance function Dg1,g2 := d(g1(t), g2(t)) between the two lines is

1. Convex because X is CAT (0).

2. Bounded because g1 and g2 are asymptotic.

so Dg1,g2 is a constant map. As such, we may assume without loss of generality

that up to reparametrization the orthogonal projection of the first line onto the

other is well behaved, namely πgi(R)(gj(t)) = gi(t) for all t ∈ R and (i, j) ∈
{(1, 2), (2, 1)}. As such, consider the quadrilateral ◊ delimited by the four points

w := g1(t), x := g2(t), y := g1(t + δ) and z := g2(t + δ) where δ > 0. We

claim that the sum of the Alexandrov angles at the four corners of ◊ exceeds 2π

6Recall that all geodesics g : I → X are parametrized such that d(g(s), g(s′)) = |s− s′|.
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2.3 Local and Global Geometry

so by Theorem 2.8, ◊ is a flat rectangle and the result follows. Suppose for a

contradiction that the angle ∠x(w, z) in ◊ is strictly less than π/2. By definition,

this means that there are points ξ ∈ [x, z] and θ ∈ [w, x] such that the comparison

angle ∠̄x(θ, ξ) < π/2 in the comparison triangle 4(θ, x, ξ). But now, the CAT (0)

inequality implies that the distance d(w, ξ) < d(w, x) which contradicts the fact

that πg2(R)(w) = πg2(R)(g1(t)) = g2(t) = x. It follows by symmetry that all angles

are greater than or equal to π/2 and this concludes the proof.

The existence of a geodesic line g in a CAT (0) space X has strong implications

on its structure. Indeed, let Xg denote the set of geodesic lines parallel to g. By

the Flat Strip Theorem if g1 and g2 are parallel to g then Conv(g1(R)∪ g2(R)) is

isometric to a flat strip consisting of other geodesic lines parallel to g. As such, Xg

is a convex subset and consequently is also a CAT (0) space in the induced metric.

Using this structure, the following product decomposition theorem is proved in

[BH99].

Theorem 2.10. Let X be a CAT (0) space and consider its CAT (0) subspace Xg

associated to the geodesic line g. If we restrict the orthogonal projection πg(R) to

Xg then Xg
∼= X0

g × R where X0
g is the fibre of any chosen basepoint xg ∈ g(R).

2.3 Local and Global Geometry

In this section, we collect a few constructions leading to features of metric spaces

that will be used (at times implicitly) in characterizing non-positive curvature for

polyhedral cell complexes.

Euclidean Cones. Cones are an important construction that generalizes

the idea of the tangent space in Riemannian manifolds. Their geometry at a

point carries a lot of intrinsic information about the given space as we will later

see with Gromov’s link condition in section 3.1. Given a metric space Y the

Euclidean Cone X = C0Y over Y is the metric space defined as follows. As a set,
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2.3 Local and Global Geometry

X is the quotient of [0,∞)× Y by the equivalence relation

[(t, y) ∼ (t′, y′) if (t = t′ = 0) or (t = t′ > 0 and y = y′)].

The equivalence class of (t, y) is denoted by ty and the class (0, y) denoted 0 is

called the vertex of the cone. In the definition of the metric to follow, we suggest

the reader bear in mind the euclidean law of cosines as it is what everything is

based upon. Let dπ(y, y′) := min{π, d(y, y′)}, the distance between two points

x = ty and x′ = t′y′ in X is defined by the rule:

d(x, x′)2 = t2 + t′2 − 2tt′ cos(dπ(y, y′)),

It is a fact that the given formula defines a metric on X = C0Y where Y is

complete if and only if X is complete.

Example If Y is the sphere Sn−1, then X = C0Y is isometric to En. This is one

of the motivating examples behind the concept.

Remark This is a special case of the more general construction of k−cones Ck(X)

for metric spaces X obtained by modifying the metric according to the appropriate

cosine law.

Space of Directions. Building upon this concept we move towards an un-

derstanding of the local geometry of a metric space X. Consider two non-trivial

geodesics g and g′ issuing from a given point x ∈ X. We say that g and g′ define

the same direction at x if the Alexandrov angle between them ∠x(g, g
′) = 0. This

establishes an equivalence relation between geodesics issuing from x whose classes

are called directions. Equipping this space with the angular metric7 we obtain

the space of directions at x denoted by Sx(X). We can now define the tangent

cone at x as the Euclidean cone over Sx(X), C0Sx(X).

Example Both of these concepts are natural extensions of possibly familiar ones

as illustrated by the following examples:

7The distance between two geodesics is given by the angle between them.
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1. If X is a riemannian manifold, Sx(X) is isomorphic to the unit sphere in

the tangent space of X at x which coincides in this case with the tangent

cone.

2. If X is a polyhedral complex, Sx(X) is the geometric link Link(x,X).

Having defined these constructions, we now state the following theorem due to

Nikolaev which characterizes curvature in the spaces of direction and tangent

cones by considering the explicit construction of geodesics in the space of directions

and [proving] that the tangent cone is the four point limit of blowing ups8. In fact,

the result is precisely what one would intuitively expect.

Theorem 2.11 ([Nik95]). If X is a metric space of curvature bounded above by k

the metric completion of Sx(X) is CAT (1) and the metric completion of C0Sx(X)

is CAT (0).

Cartan-Hadamard. We conclude this section by stating a key generalization

of the Cartan-Hadamard Theorem proved in [BH99] is based on a result of [Gro87]

encapsulating a major local-to-global aspect of the geometry of CAT (0) spaces9.

Recall that a space X equipped with a locally convex metrics is locally contractible

so it has a universal cover X̃ on which there exists a unique induced length metric

making the covering map a local isometry.

Theorem 2.12 (Generalized Cartan-Hadamard Theorem). If X is a complete,

connected and locally CAT (0) metric space then its universal cover X̃ is globally

CAT (0) in the induced length metric.

Key Remark: In particular, a complete simply-connected geodesic space satis-

fies the CAT (0) inequality locally if and only if it satisfies it globally. This is the

basis of the combinatorial definition of CAT (0) spaces to be introduced in Section

3.1.

8Please see [Nik95].
9The interested reader should also take a look at [AB90] for a proof under a slightly stronger

hypothesis.
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3 Bounded Curvature in Polyhedral Complexes

Having set up the framework of CAT (0) spaces, we wish to provide concrete

examples that are not Riemannian manifolds; emphasizing how pervasive these

objects are in general contexts. To this end, we now turn our attention to the

first main topic, Mk−polyhedral cell complexes or disjoint collections of convex

polyhedra in some fixed model space glued together along isometric faces. When

the choice of Mk coincides with E, H or S we shall often say that the complex is

piecewise euclidean, hyperbolic or spherical. Recall that if the set of isometry type

of faces or shapes of such a cell complex is finite, then it is a complete geodesic

metric space. The reader unfamiliar with polyhedral cell complexes and their

intrinsic quotient metric should read Appendix B before proceeding.

In this section, all polyhedral cell complexes are connected and their set of

shapes is finite so they are complete, geodesic length spaces.

One should keep in mind that although the set of shapes is finite, our complexes

can contain infinitely many cells.

3.1 Gromov’s Link Condition

The key to understanding bounded curvature in cell complexes lies in their local

structure, embodying a local-to-global principle similar to the Cartan-Hadamard

Theorem. With this point of view in mind it is convenient to recall the geometric

link, denoted by Link(v,X), of v in the complex X which coincides with the space

of directions at v as defined in Section 2.3 and carries a natural cell structure

induced by X. Intuitively, for a small enough ε > 0, the link corresponds to

the intersection of X with the ε−sphere about the given point equipped with the

angular metric. In the present setting, there is a useful criterion due to Gromov

characterizing the existence of a metric of bounded curvature on a complex.

Link Condition Let X be an Mk−polyhedral cell complex. We say that X

satisfies the link condition if for every vertex v ∈ X(0) the metric cell structure

induced on Link(v,X) is CAT (1).

25



3.1 Gromov’s Link Condition

The raison d’être for this condition is that one can see with a bit of work that

when ε > 0 is small enough, the ε−neighbourhood of a vertex v ∈ X is isometric

to the ε−neighbourhood of the cone point10 in Ck(Link(v,X)). Combining this

observation with a result of [Ber83] stating that a metric space is CAT (1) if and

only if its k−cone is CAT (k), one obtains the following key theorem mentioned

as a “well known and easy to prove fact” in [Gro87]11.

Theorem 3.1. Suppose that X is an Mk−polyhedral cell complex whose set of

shapes is finite. The curvature of X is bounded above by k if and only if X satisfies

the link condition.

Using this result, one quickly deduces as indicated without proof in [Gro87] and

proved in [BH99] the following convenient characterizations of bounded curvature

in polyhedral cell complexes.

We state the results as definitions because that is how we will use them. If X

is an Mk−polyhedral cell complex whose set of shapes is finite, there are many

equivalent ways to say that it is locally or globally non-positively curved.

Definition If k ≤ 0 then a complex X has curvature bounded above by k if and

only if it satisfies the link condition.

A simple application of the Cartan-Hadamard Theorem then yields the global

version. Notice in particular that if X has non-positive curvature its universal

cover is automatically CAT (0).

Definition If k ≤ 0 then a complex X is CAT (k) if and only if it is simply

connected and satisfies the link condition.

To emphasize that this definition is far from being the only “good” one, we note

that this is in turn equivalent to X not containing isometrically embedded Eu-

clidean circles while satisfies the link condition. The same is true of requiring that

X be uniquely geodesic or even that the quotient pseudometric is convex.

10See Section 2.3.
11More precisely on page 120.
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3.1 Gromov’s Link Condition

Shifting our attention to the case where k is greater than zero, the requirements

are slightly more technical to ensure the existence of appropriate geodesics. We

only state a global definition since in practise it is only relevant to verify Gromov’s

link condition.

Definition If k > 0 then the complex X is CAT (k) if and only if it satisfies the

link condition and contains no isometrically embedded circles of length less than

2π/
√
k.

There are many special results rendering a certain appeal to complexes of

dimension two. Not only are they easier to visualize but they bear strong ties

to group theory through tools like disc diagrams over group presentations as we

will illustrate in the next few sections. When we work in dimensions less or equal

to two, the cell structure induced on the link of any vertex v ∈ X is a metric

graph Link(v,X) equipped with the angular metric described in Section 3.1. The

vertices of this graph correspond to the 1−cells incident to v and its the edges

correspond to the corners of the 2−cells incident to v as illustrated in Figure 4.

The length of these edges is by definition the vertex angle at v between the two

corresponding 1−cells.

Figure 4: The figure represents the 1−skeleton of a two dimensional simplicial

complex where all triangles span a 2−cell. The teal graph is the link of the

central vertex.
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Recalling our new criterions for being CAT (k) we see that a metric graph is

CAT (k) if and only if all locally injective loops in it have length greater than or

equal to 2π/
√
k and we obtain the following link condition for two dimensional

complexes X mentioned in [Gro87].

Lemma 3.2 (Two Dimensional Link Condition). A two dimensional piecewise

Euclidean (Hyperbolic) polyhedral cell complex X is non-positively (negatively)

curved if and only if for all vertices v ∈ X, closed loops in the graph Link(v,X)

have length bounded below by 2π.

After the geometry of the cells of the complex has been fixed, this criterion

allows for a very combinatorial analysis of non-positive curvature in many cases.

For instance, if the set of shapes of a complex X consists of a single regular

Euclidean n−gon, edges in the metric graph corresponding to the link of a point

all have length 2π
n

so thinking of link graphs combinatorially, we simply require

its girth to be bounded below by n in order to ensure non-positive curvature of

X. This is the classical approach in the case of cube complexes.

3.2 Non-Positively Curved Cube Complexes

Cube complexes are polyhedral complexes all of whose cells are n−dimensional

euclidean cubes. The set of shapes of a cube complex X can be thought of as

n−dimensional cubes of X isometrically embedded by maps ϕ : [−1, 1]n ↪→ X. In

fact, their inherent structure allows one to bypass much of the metric aspects of

non-positive and establish a purely combinatorial definition of nonpositive curva-

ture. Their intrinsically organized nature also facilitates the visualization of most

of their properties.

Flag Complex. A simplicial complex X is a flag complex if all complete graphs

on n+ 1 vertices in the 1−skeleton X(1) span an n−simplex in X.

Heuristically, a complex is flag if every time one “sees” a simplex, it “is” there. The

following striking results of Gromov [Gro87]12 are the base of the combinatorial

12Found beginning on page 122.
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definition of non-positive curvature in cubulated space.

Theorem 3.3 (Gromov). A finite dimensional piecewise spherical simplicial com-

plex where all edges have length π/2 is CAT (1) if and only if it is a flag complex.

Since the link at each vertex of a cube complex satisfies the hypothesis of the

previous theorem because Euclidean cubes have angles of π/2 at every vertex, the

link condition yields the following criterion which embodies the slogan that “a

cube complex is non-positively curved if and only if there are no missing cubes”.

Theorem 3.4 (Gromov). A finite dimensional cube complex is non-positively

curved if and only if its link at each vertex is a flag complex.

Remarks 1. The preceding theorem of Gromov has recently been generalized

to the infinite dimensional case by M. Sageev’s student Y. Algom.

2. In two dimensional cube complexes, the link at every point is a graph. Since

a graph is a flag if and only if its girth is bounded below by 4 we obtain an

easy criterion for non-positive curvature.

3. Criterions for cube complexes to be manifolds admitting polyhedral metrics

of non-positive curvature are illustrated in [AR90].

While general cube complexes can be thought about as higher dimensional graphs,

non-positively curved cube complexes are very well behaved in many aspects as

they tend to emulate trees, something we will see in Section 6.3. They also

tend to be a very powerful tool, in fact, work of Wise and Haglund on CAT (0)

cube complexes in particular Wise’s monumental manuscript [Wis11] has recently

allowed Agol to prove the Virtually Haken Conjecture in [AGM12].

Due to the intrinsically combinatorial nature of non-positive curvature in a

cube complex X, it is often convenient to forget about the CAT (0) quotient

pseudometric and consider its combinatorial metric13 instead. This is defined

13In general this metric is rather different from the CAT (0) metric. For instance, geodesics
are no longer unique.
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by thinking of the 1−skeleton of X(1) as a graph where all edges have length 1

and defining a (proper) combinatorial path γ = (v0, v1, . . . , vn) as a sequence of

vertices in the 0−skeleton X(0) where vi 6= vi. The combinatorial length of such a

γ is then defined to be l(γ) = n and the combinatorial distance between two points

x 6= y of X(0) is the combinatorial length a shortest path between them. As one

would expect, shortest combinatorial paths are called combinatorial geodesics.

Much of the elegance of cube complexes stems from the fact that their proper-

ties are combinatorially encoded in a family of subspaces called hyperplanes. To

define them following [Wis11] we first describe them locally. Given an n−cube

C ⊂ X and its isometric embedding ϕ : [−1, 1]n ↪→ X we define its local hy-

perplanes or midcubes as the subspaces of C obtained by restricting one of the

coordinates of [−1, 1]n to zero. Visually, this corresponds to slicing the cube C in

two halves. For instance, an edge [−1, 1] has a unique midcube which corresponds

to a point while a three dimensional cube [−1, 1]3 has three midcubes [−1, 1]2 iso-

metric to two dimensional squares. One can then define the hyperplanes of X as

its connected subspaces H that intersects any cube C ⊂ X in one of its midcubes

or the empty set. Intuitively, one can think of a hyperplane H as being defined

by an initial choice of midcube M ⊂ C ⊂ X and then successively “pushing out”

through midcubes of adjacent cubes. This is part of the content of Sageev’s key

theorem stated below. We say that a cube C is dual to the hyperplane H if they

intersect in a midcube of C. The carrier or neighbourhood of H is the set of its

dual cubes, it is denoted by N(H).

Theorem 3.5 ([Sag95]). Let X be CAT (0) cube complex.

1. Every midcube determines a unique hyperplane H which separates X into

two connected components. Further the structure of H induced by the mid-

cubes of X makes it a CAT (0) cube complex.

2. The carrier N(H) is isometric to the product H× [−1, 1] and is combinato-

rially convex as a subset of X. As such, there is always an automorphism

σH fixing H pointwise and exchanging the endpoints of all edges dual to H.
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3. The combinatorial distance between two points x and y of X is equal to the

number of hyperplanes separating them. In fact, a combinatorial path is a

geodesic if and only if it crosses any hyperplane at most once.

This structural result is the key to most applications of cube complexes, includ-

ing the classification of their combinatorial isometries as we will see in Section 6.3.

It should be noted that there is an analogous statement when X is non-positively

curved obtained by replacing X with its universal cover in the appropriate places.

3.3 Tower Lifts of Combinatorial Maps

We now turn our attention to the subgroup structure of fundamental groups of

polyhedral cell complexes. One would intuitively hope that if Γ is the fundamental

group of a complexX of bounded curvature then subgroups of Γ can be interpreted

as fundamental groups of complexes within the same class as X in some sense. It

turns out that properties of this type are related to classes of complexes closed

under passage to finite subcomplexes and connected covering spaces which are

best expressed through the idea of towers of maps.

The concept of a tower originated in a paper of Papakyriakopoulos, [Pap57],

where it was used to prove Dehn’s Lemma. This result infers from the existence

of a piecewise-linear map of a disk into a 3−manifold the existence of and embed-

ding corresponding to the original map on the boundary. Although it was first

announced by Dehn, it was later discovered by Kneser that his proof contained a

gap. To rectify the problem, Papakyriakopoulos expressed the original piecewise

linear map as a sequence of inclusions and covering maps whence exploiting the in-

herent simplifications that occurred. The transfer of these ideas to combinatorial

complexes first occurred in [How81].

In what follows let X, Y and Z be CW complexes14 where both X and Y

are compact. Given a combinatorial15 map of complexes f : X → Z, our goal

is to decompose it as much as possible into a sequence of simpler maps. More

14Please consult [Hat05] for basic definitions and notations involving CW complexes.
15A map which sends n−cells to n−cells but isn’t necessarily injective.
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3.3 Tower Lifts of Combinatorial Maps

precisely, we wish to rewrite f as a composition f = g ◦ f ′ where f ′ : X → Y and

g : Y → Z such that the composition maps have desirable simplifying properties.

Admissible Tower The map g : Y → Z is an admissible tower of height h if

we can rewrite g = i0 ◦ p1 ◦ i1 ◦ . . . ◦ ph ◦ ih where pr : Zr → Yr−1 is a connected

covering map of a compact CW complex and ir : Yr → Zr is an inclusion. It is

worthwhile to note that admissible towers are inherently combinatorial because

they factor through covering spaces.

Z1

Y0 Z0 = Z

Y1

Zh−1Yh−1

ZhY = Yh

p1

ph

ih

ih−1

i0

i1

Tower Lift The map f = g ◦ f ′ is a tower lift if f ′ : X → Y is combinatorial

and g : Y → Z is an admissible tower.

We shall henceforth denote this situation by f : X
f ′−→ Y

g−→ Z and, since we will

be interested in studying the fundamental groups of spaces, we wish our tower

lifts to be maximal in sense of the following lemma:

Lemma 3.6 ([How81]). Consider a combinatorial map f : X → Z between con-

nected CW complexes. If X is compact, there is a tower lift of maximal height

f : X
f ′−→ Y

g−→ Z such that f ′∗ : π1X → π1Y is surjective.
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3.3 Tower Lifts of Combinatorial Maps

Proof. The proof proceeds by iteratively constructing higher tower lifts of the map

f and showing that the complexity of f ′ decrease at each step in a quantifiable way.

The process must then end in finitely many steps yielding the desired maximal

tower.

Let us begin by defining the complexity of a combinatorial map f : X → Y

to be c(f) := |X(0)| − |f(X)(0)| or the difference in the number of 0−cells in each

CW complex. Now, setting Y0 := f(X) we trivially obtain an initial tower lift of

the form

f : X
f0−→ Y0

i0−→ Z.

Suppose that this tower lift is not maximal, whence f ∗0 : π1X → π1Y0 is

not surjective. By the Galois correspondence for covering spaces and the lifting

criterion there is a connected proper covering space p1 : Z1 → Y0 to which the

map f0 lifts to a map that we shall call f1. Defining Y1 := f1(X) we obtain a

higher tower lift of the form f = i0 ◦ p1 ◦ i1 ◦ f1 where i1 represents the inclusion

of Y1 in Z1.

At this point, we wish to show that c(f1) < c(f0). To this end, let us consider

the composition (p1 ◦ i1) which is surjective but not injective. As such there must

be a nontrivial deck transformation σ such that (σ · Y1) ∩ Y1 6= ∅. Since Y1 is a

compact cell complex and σ is a deck transformation, the intersection must be a

union of closed cells and must contain a zero cell v. But now, σ · v 6= v (only the

trivial deck transformation fixes a point) while p1(σ · v) = p1(v) so |Y (0)
1 | > |Y

(0)
0 |

and consequently c(f1) < c(f0).

If f ∗1 is surjective, we are done. If not, we simply iterate the procedure above

which must terminate because c(f) ≥ 0 and c(fi+1) < c(fi) whenever f ∗i is not

surjective.

It should be emphasized that the preceding propositions is proved by an ab-

stract argument and doesn’t provide any explicit constructions for the next few

results that rely upon it. The next proposition shows us how towers are used to

exploit closure properties of classes of complexes using the idea of disc diagrams
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3.3 Tower Lifts of Combinatorial Maps

and the Cayley complex of a group presentation from geometric group theory.

The reader unfamiliar with these concepts should consult Appendix D before

proceeding.

Proposition 3.7 ([BH99]). If Γ is a finitely presented group which injects into

the fundamental group of a polyhedral cell complex K then there exists a compact

two dimensional complex KΓ such that π1(KΓ) ∼= Γ which can be obtained from

K by successively passing to finite subcomplexes or connected covers.

Proof. Let X be the standard 2−complex16 of a finite presentation

Γ ∼= 〈a1, a2, . . . , am|r1, r2, . . . , rn〉.

In other words, X has a single 0−cell, m 1−cells and n 2−cells where X(1) consists

of a bouquet of m circles labelled ai and X(2) is obtained by attaching a 2−cell

along each relator ri. We wish to show that there is a combinatorial map f : X →
K inducing an injection f∗ : π1Γ ↪→ π1K.

Indeed, once this is the case, Lemma 3.6 ensures that f admits a tower lift

f : X
f ′−→ KΓ

g−→ K

where f ′∗ is surjective. On the other hand, by construction, f∗ = (g∗ ◦ f ′∗) is

injective so f ′∗ must be an isomorphism π1KΓ
∼= Γ. Since g is an admissible tower,

KΓ is obtained from K by a sequence of passages to subcomplexes and connected

covers so KΓ ∈ K. Since KΓ is also the combinatorial image of a map obtained

by iterative lifts of f (see the construction in the proof of Lemma 3.6), it is at

most two dimensional and we are done.

To construct the desired combinatorial map f : X → K, let us begin by

defining f on the circles labelled ai, so that f(ai) is mapped to a monotone

parametrization of a fixed loop in K representing the homotopy class of φ(ai) ∈
π1(K, k) based at the zero cell corresponding to the chosen basepoint f(v) :=

16The reader unfamiliar with this construction may want to glance at Section 5.1 before
proceeding.
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3.4 Passing to Subgroups of the Fundamental Group

k ∈ K. Notice that φ is injective so f(ai) is not nullhomotopic for any of the ai.

Now, since Γ is embedded in π1(K, k), every relator rj (sequence of ai’s traversed

in the corresponding order) is mapped under f to a nullhomotopic loop in K.

Therefore, by van Kampen’s lemma, there is a disk diagram Drj ↪→ K such that

∂Drj gets mapped to f(rj). If we denote by Rj the 2−cell in X corresponding to

the relator rj, we may endow its boundary and interior with the cell structure of

Drj and extend the definition of f so that f(Rj) coincides with the image of the

disk diagram in K and the following diagram commutes:

Rj Drjy y
X −−−→ K

The new cell structure induced on X by this correspondence makes f into a

combinatorial map and, since f∗ is injective by construction, the proof is complete.

3.4 Passing to Subgroups of the Fundamental Group

While subgroups of the fundamental group of a complex X of bounded curvature

do not necessarily occur as fundamental groups of a subcomplex X ′ ⊂ X, a result

similar in flavour does hold.

Theorem 3.8 ([BH99]). If Γ is a finitely presented subgroup of the fundamental

group of an Mk−polyhedral cell complex of curvature bounded above by k then Γ is

the fundamental group of some compact two dimensional Mk−polyhedral complex

of curvature bounded above by k in which every local geodesic can be extended to

a geodesic line.

In order to come to grasps with this theorem, let us fix k ∈ R and consider the

class of complexes X(k) which consists of those connectedMk−complexesX whose

set of shapes is finite, satisfying the link condition and whose cells are of dimension

less than or equal to two. This class is clearly closed under passage to connected
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3.4 Passing to Subgroups of the Fundamental Group

covering spaces since ifX ∈ X, any cover X̂ must satisfy Shapes(X̂) = Shapes(X)

and be locally isometric to X ensuring the link condition holds. On the other

hand, any subcomplex X ′ ⊂ X must trivially satisfy the restrictions on shapes

and dimension, however if X is of dimension ≥ 3 the link condition may fail in

X ′ as illustrated in the following example.

Example In a cube complex, the link condition holds if and only if the link at

each vertex is a flag complex. In Figure 5, we see a one dimensional cube complex

where the link condition fails as illustrated by the teal three cycle. However,

adding a three dimensional cube behind the figure would make it non-positively

curved. This reinforces the intuitive notion that a cube complex is non-positively

curved if when you see the outline of a cube, it necessarily belongs to the complex.

Figure 5: Cube complex

Luckily in dimension two and below, the link condition is equivalent to the

absence of injective loops of length less than 2π in the link of any vertex v ∈ X(0)

(which is a graph). Since Link(v,X ′) is a subgraph of Link(v,X) we see that the

link condition is preserved in subcomplexes. We have proved:

Lemma 3.9. With the induced length metric, the class of complexes X(k) is closed

under passage to connected subcomplexes and connected covers.

In view of Lemma 3.9 and Proposition 3.7, we see that if H is a subgroup

of Γ = π1X with X ∈ X, there must be some X ′ ∈ X of dimension ≤ 2 such

that H = π1X
′. We will then have completed the proof of Theorem 3.8 once we
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show that X ′ deformation retracts onto a subcomplex with the geodesic extension

property which is the content of the final lemma.

Lemma 3.10. A compact 2−dimensional Mk−complex satisfying the link condi-

tion collapses onto a subcomplex with the geodesic extension property.

Before proving the lemma, let us recall the notion of an elementary collapse

in a cell complex. A cell C in a combinatorial complex is called a free face if

it is contained in the boundary of a unique higher dimensional cell C ′ and the

intersection of the interior of C ′ with a small neighbourhood of C is connected.

When this situation arises in a complex X we can “collapse” the free face C,

meaning that there is a deformation retract from X to X ′ obtained by removing

C and the interior of C ′ from X. Evidently, π1X ∼= π1X
′.

Proof. All local geodesics may be extended indefinitely in a compactMk−polyhedral

complex X of curvature ≤ k if and only if it does not contain a free face. Since

X has only finitely many free faces, after finitely many elementary collapses we

obtain the desired complex.

4 A Knotty Zoo of Non-Positive Curvature

Non-positively curved structures are highly natural and occur all over. A vast

source of examples of non-positively curved 2−complexes arise from constructions

based on knots. These date back to Dehn’s work in [Deh87] on presentations of

the fundamental group of complements of knots in S3. This was later refined by

Weinbaum [Wei71] and elegantly adapted to the non-positively curved case by

Wise [Wis96]. On the other hand, one can also insert finitely generated groups

into the tail end of short exact sequences containing the fundamental group of a

non-positively curved cell complex. This modification of a construction of Rips’

in [Rip82] by Wise is presented in the last subsection. It should be emphasized

that the examples provided here are concrete in the sense that most of the proofs

provide explicit constructions.
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4.1 Basic Results for Knots

4.1 Basic Results for Knots

In these preliminaries we restrict our attention to the case of knots as everything

can be easily generalized to collections of possibly intertwined knots called links.

We follow to some extent the exposition given in [BH99] and [Rol03].

For our purposes, a knot K will be the obvious17 equivalence class of a smooth

embedding f : S1 ↪→ R3. Having fixed a representative f , we denote by π : R3 →
R2 its projection onto the xy plane. It is a fact that f may always be chosen

such that the regular projection Π := π ◦ f is smooth with self-intersections

corresponding to double points. These double points are paired as usual with

data describing the overpass and the underpass of the knot. To make this clear in

the projection Λ := Π(S1), overpasses are drawn completely while underpass are

drawn as missing a small neighbourhood about the corresponding double point.

We refer to this altered projection as Λ′.

It is convenient to have at hand a coherent way of decomposing complicated

knots into simpler ones. A natural way to do so is to consider knots as one

dimensional manifolds where there is a natural decomposition operation. In that

case, we say that K is the connected sum18 of two knots K1#K2 if it is obtained by

deleting a 0−ball from both K1 and K2 and gluing together the resulting boundary

spheres. In connection with this idea, a reducing circle for a projection Π is an

embedded circle C ⊂ R2 intersecting Λ in two non-double points such that both

connected components of R2 \ C contain a double point as illustrated in Figure 6.

In this case, we see that the corresponding knot could have been decomposed as

a connected sum of two knots as in Figure 7.

17That is, two knots are equivalent if there is an ambient isotopy between them.
18The reader is invited to consult [Hat05] for a more thorough explanation.
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4.1 Basic Results for Knots

Figure 6: Reducing circle in the image of a knot projection.

Figure 7: The resulting decomposition into prime knots.

As such, the projection Π is said to be prime if it does not admit a reducing

circle. Finally, if when travelling along K in a monotone manner one encounters

overpasses and underpasses in an alternating manner Π is said to be alternating.

Knots are said to be prime or alternating if they admit a prime or alternating

projection. The use of these definitions is expressed in the following two well

known results, see for instance [BZ03] or [BH99].

Lemma 4.1. Alternating knots may be decomposed as the connected sum of

finitely many knots, each admitting a prime alternating projection

As such, the following is a consequence of the Seifert van Kampen Theorem.
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4.2 Dehn Complexes of Knot Complements

Corollary 4.2. The fundamental group of the complement of an alternating knot

is an amalgamated free product19 along infinite cyclic groups of the fundamental

groups of prime alternating knots.

4.2 Dehn Complexes of Knot Complements

We now proceed to construct very concrete examples of non-positively curved

2−complexes. Let K be a prime alternating knot and maintain the previously

established notation. We begin with the following well known fact neatly proved

in [Wis06] which allows one to choose a “checkerboard” colouring of the connected

components of R2 \ Λ for any knot.

Lemma 4.3 (Checkerboard Lemma). Let G be a planar graph where the number of

edges incident to any vertex is even. Given any embedding G ↪→ R2, the connected

components of R2 \ G may be coloured black and white such that no two adjacent

regions are of the same colour.

In our particular case, knot projections Λ can be viewed as an embedding in

R2 of a graph where all vertices (double points) are incident to four edges and our

chosen projection Π is alternating we may choose the following natural colouring.

Given the connected components of R2 \Λ: {A0, A1, . . . An} where A0 denotes the

unbounded region, we define Ai (i ≥ 1) to be “white” if the anticlockwise orienta-

tion of its boundary orients its edges from overpasses to underpasses and “black”

otherwise. The unbounded region A0 is coloured by the opposite convention.

Definition The Dehn Complex D(Π) of the projection Π is the two dimensional

cube complex with the following structure:

1. Two vertices v+ (Top) and v− (Bot) that we picture as lying above and

below the knot projection.

2. One 1−cell for every region Ai oriented from v+ to v−.

19See Appendix C.

40



4.2 Dehn Complexes of Knot Complements

3. One 2−cell φ for every double point x ∈ Λ attached by the following map.

If Aix(1), Aix(2), Aix(3) and Aix(4) are the the regions one encounters while

proceeding anticlockwise around x in a small circle beginning in a white

region, the attaching map of φ is defined by the word Aix(1)A
−1
ix(2)Aix(3)A

−1
ix(4)

where the Aix(j) represent the previously defined 1−cells and the −1 indicates

it is traversed in the opposite direction.

Figure 8: The 1−skeleton of the Dehn complex of a trefoil knot.

Figure 9: The attaching map of a 2−cell at a double point.
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4.2 Dehn Complexes of Knot Complements

As a corollary to this construction we obtain the following Dehn presentation

for the fundamental group of R3 \ K. If we chose v+ as our basepoint and let

ai represent the homotopy class of the loop AiA
−1
0 the fundamental group of the

complement of K can be expressed as

〈a0, . . . , an|a0 = 1, aix(1)a
−1
ix(2)aix(3)a

−1
ix(4) = 1 for each double point x〉

obtained by a simple application of the Seifert-van Kampen Theorem20.

Remark Consider Λ′ as a subset of R2 (this is just Λ with small neighbourhoods

of underpasses at crossing points deleted). Wise noticed in [Wis06] that the

geometric link Link(v+,D(Π)) can be embedded in R2 \Λ′ in a highly visual way.

Interchanging overpasses and underpasses yields a similar result for v−.

Figure 10: Link of the Dehn complex embedded in the trefoil knot.

Begin by viewing the regions A0, . . . , An as sitting in R2 \ Λ′. The vertices

of the link correspond to incident 1−cells at v+ so there is one for every region

A0, . . . An. On the other hand, 1−cells of the link correspond to corners of 2−cells

20Please see Appendix C if this is unfamiliar.
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4.2 Dehn Complexes of Knot Complements

of D(Π) at v+. As such, if we pick one point in each region to represent the vertices

of the link, the 1−cells of the link correspond to curves between adjacent regions

passing through the gaps at double points and joining the corresponding vertices.

This realizes Link(v+,D(Π)) as a graph in R2 \ Λ′. We illustrate this for the

trefoil knot in Figure 10. The black lines represent Λ′ and the teal graph is an

embedding of the geometric link of v+.

We henceforth metrize D(Π) by viewing it as a piecewise Euclidean complex

where each 2−cell corresponds to a unit square. In this setting we obtain the

following nice class of examples:

Theorem 4.4 ([Wis06]). The Dehn complex of a knot projection Π is non-

positively curved if and only if Π is prime and alternating.

Proof. Having metrized the 2−cells of D(Π), we see that edges in Link(v±,D(Π))

have length π/2. As such, verifying the link condition for the complex is equivalent

to ruling out paths of combinatorial length less than four.

Suppose that Π is not prime. There is by definition a reducing circle S and

the components of S \ Λ must lie in distinct components of R2 \ Λ, say Ai and

Aj. Since the interior and exterior of S contain a double point, Ai and Aj must

meet along at least two distinct edges in such a way that there is a combinatorial

path of length two joining them in the graph mentioned in the remark. On the

other hand, if we suppose that Π is not alternating, without loss of generality

some edge of Λ will be an overpass at both of its endpoints when viewed from

above. As such, the components of R2 \Λ meeting along this edge are once again

joined by a combinatorial path of length two in R2 \ Λ′.

Conversely, suppose that Π is prime and alternating. Recall that the regions

of R2 \Λ may be coloured black and white in such a manner that adjacent regions

always have different colour. This induces a bipartite colouring on the vertices

of Link(v±,D(Π)) implying that all closed loops in this graph must have even

length. It is therefore sufficient to rule out the existence of combinatorial paths

of length two but a path of length two between vertices Ai and Aj immediately

contradicts the fact that the knot is alternating.
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Combining this result with Corollary 4.2 we see that the fundamental group

of a knot complement is the amalgamated free product along infinite cyclic sub-

groups of the fundamental groups of compact non-positively curved square com-

plexes. As it turns out, if we let G1 = π1(X1) and G2 = π1(X2) where both Xi

are compact non-positively curved cell complexes of dimension at most two and

glue X1 to X2 along a cylinder identifying the two necessary generators of Z in

Gi then the resulting complex remains non-positively curved and coincides with

G1 ∗ZG2. Modulo generalizations and precisions, we obtain the following theorem

of Wise.

Theorem 4.5 ([Wis06]). The fundamental group of the complement of an alter-

nating link is isomorphic to the fundamental group of a compact 2−dimensional

piecewise Euclidean 2−complex of non-positive curvature.

Remark It is unknown whether the fundamental group of all link complements

are the fundamental groups of non-positively curved cube complexes.

4.3 Algorithmic Construction of Negatively Curved 2−Complexes

Keeping with the spirit of producing a vast array of examples of negatively curved

complexes of dimension two we present a construction of Wise generating such

complexes from arbitrary finitely presented groups. This is based on previous

work of Rips, in particular on the proof of the following theorem:

Theorem 4.6 ([Rip82]). Given a finitely presented group G and a constant λ > 0,

there is a short exact sequence of groups

1→ N → Γ→ G→ 1

where Γ has a finite group presentation satsifying the small cancellation21 condi-

tion C ′(λ) and N is a finitely generated group.

21Consult [LS77] for definitions and a classical development of the theory.

44



4.3 Algorithmic Construction of Negatively Curved 2−Complexes

Let A = {a1, a2, . . . , an} be an alphabet and consider a set of words W =

{W1,W2, . . . ,Wm} in the letters of A. This set of words W is said to contain no

2-letter repetitions if any of the 2−letter words in the letters of A occur at most

once as a subword of at most one of the Wi. The following lemma of Wise is

known as the Good Word Lemma.

Lemma 4.7 ([Wis98]). Given J ∈ N and an alphabet AJ = {a1, . . . , aJ} there is

a positive22 word WJ of length J2 with no 2−letter repetitions.

Proof. Consider the following sequence of words inAJ : W1 = (a1), W2 = (a1a1a2)(a2),

W3 = (a1a1a2a1a3)(a2a2a3)(a3), W4 = (a1a1a2a1a3a1a4)(a2a2a3a2a4)(a3a3a4)(a5).

Proceeding in a similar manner, we define

WJ := (a1a1a2a1a3a1a4 . . . a1aJ)(a2a2a3a2 . . . a2aJ) . . . (aJ−1aJ−1aJ)(aJ).

By construction, WJ has no 2−letter repetitions and its length is equal to
∑J

i=1(2i−
1) = J2 so the prophecy is fulfilled.

This lemma turns out to be the key to the proof of the next theorem that we

demonstrate following Wise’s ideas.

Theorem 4.8 ([Wis98]). Let G be a finitely presented group. There is an algo-

rithm producing a negatively curved 2−complex K and finitely generated group

N such that π1K ∼= G/N . In others words, we have the following short exact

sequence:

1→ N → π1K → G→ 1

Proof. Let G = 〈a1, a2, . . . , aI |R1, R2, . . . , RK〉 be a finite presentation. We will

obtain the complex K as the standard 2−complex of a presentation extending the

given one for G, “unwrapping” its relations. As such, postponing the definition

of the integer J , define Γ as the group with the following presentation

Γ ∼= 〈a1, . . . , aI , x1, . . . , xJ |aixja−1
i = Wij+, a

−1
i xjai = Wij−, Rk = Wk〉

22A word where all exponents are positive.
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Where i ∈ {1, . . . , I}, j ∈ {1, . . . , J} and k ∈ {1, . . . , K}, Wij± is a positive word

of length 14 in the xj’s and Wk is a positive word of length 2||Rk||+ 8 also in the

xj’s. It is immediate from this construction that if we define N as the subgroup of

Γ generated by 〈x1, x2, . . . , xJ〉 that it will be normal. Further, Γ/N ∼= G so the

groups fit into the short exact sequence as claimed. All that remains to be done

is to equip K with a negative metric. This is where we will exploit our freedom in

the choice of J using the preceding lemma and the precise length of the developed

relations to divide them into pentagons.

To this end, let us metrize the 2−cells of K by subdividing them into hyper-

bolic regular right angled pentagons (effectively making K an M−1−polyhedral

complex). This procedure is illustrated in Figure 11 where the black arrows rep-

resent ai’s and the blue arrows represent xj’s. The top figure represents the

conjugate relations aixja
−1
i = Wij+ while the bottom shows the Rk = Wk case for

some relation Rk of length four.

Figure 11: Hyperbolic right angled pentagon decomposition of 2−cells.

This subdivision greatly simplifies verification of Gromov’s link condition (Lemma

3.2) to ensure that K is negatively curved. Indeed, notice that if we think of the

2−cells as 14-gons or (2||Rk||+ 8)−gons respectively, the angles at the corners of
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4.3 Algorithmic Construction of Negatively Curved 2−Complexes

the cells are of π or π/2 (flat or sharp). The link condition then boils down to

eliminating sequences of corners representing closed paths of length < 2π in the

geometric link.

Since the Rk’s were chosen to be reduced, sequence of the form aia
−1
i do not

label any corner. Therefore any sequence of corners corresponding to a cycle in

the link containing a black edge must have length exceeding 2π. We may thus

restrict our attention to sequences of corners containing only blue edges. Keeping

in mind that the Wij± were chosen to be positive words, all corners of blue edges

must be labelled xjxh or x−1
h x−1

j . All cycles of blue corners must therefore contain

an even number of edges so we need only rule out the existence of blue cycles of

combinatorial length two.

This is where the good words come in. Ensuring that there are no blue com-

binatorial paths of length two in the link corresponds precisely to requiring that

the family of words {Wij+,Wij−,Wk for every i, j, k} has no 2−letter repetitions.

The good word lemma provides us with a word WJ of length J2 with this desirable

property. If we choose J2 such that it exceeds the total length of all words in the

family {Wij+,Wij−,Wk for every i, j, k}, we could then subdivide WJ to obtain

a good set {Wij+,Wij−,Wk} ensuring that the link condition holds. Concretely,

this is done by choosing J such that is satisfies the following inequality

J2 ≥ 2(IJ)14 +
K∑
k=1

(2||Rk||+ 8).

Warning Groups containing finitely generated subgroups that are not finitely

presented are called incoherent. In [Wis98], it is shown using this construction

that as in Rips’ result for groups satisfying small cancelation [Rip82], fundamental

groups of negatively curved 2−complexes may be incoherent or have unsolvable

generalized word problem.
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5 Groups Acting on Metric Spaces

At this point we completely shift our point of view, no longer considering metric

spaces intrinsically but using them instead to study groups acting on them. One

of the first motifs in the geometric theory of groups is the idea that if we have

a “nice” action of an infinite group on a metric space, structural properties of

this space have strong implications on the structural properties of the group. We

develop some of the tools of this theory, specializing from topological spaces to

metric spaces only when necessary.

5.1 Basic Preliminaries

As usual, a group action of Γ on a space X is a homomorphism Γ→ Homeo(X)

if X is a topological space or Γ → Iso(X) if X is a metric space and will be

denoted by Γ y X. The case of interest to us will be that of actions said to be

proper and cocompact.

Definition An action Γ y X is said to be

1. Cocompact if the quotient space Γ \ X is compact. This is equivalent to

saying that there is a compact K ⊆ X such that X = Γ ·K.

2. Proper if small enough balls are properly moved. More precisely, if for every

x ∈ X there is a radius r > 0 such that the set {γ ∈ Γ|γ ·B(x, r)∩B(x, r) 6=
∅} is finite. The γ ∈ Γ such that γ · U ∩ U 6= ∅ for some fixed open set

U ⊂ X are called U − improper isometries.

3. Geometric if it is proper and cocompact on a metric space.

Although the above definition of a proper action is the weakest required cri-

terion to prove the first few results presented below, one generally deals with

actions in which every point has a neighbourhood mapped to disjoint sets by dis-

tinct group elements. Hatcher [Hat05] refers to these as a covering space action

since groups acting in this way can be realized as the group of deck transforma-

tions of the covering X → Γ \X.
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Lemma 5.1. If a group Γ acts properly and cocompactly by isometries on a

length23 space X, then X is complete and locally compact.

Proof. Let (xn) be a Cauchy sequence in X. Since Γ y X is proper, (xn) can

not eventually lie in a single orbit of Γ unless it is eventually constant. We may

thus assume without loss of generality that consecutive points in our sequence

(xn) lie in distinct Γ−orbits. Since the action of Γ is cocompact, this sequence

thus projects to a Cauchy sequence in the compact quotient Γ \X where it must

converge to the orbit of some point x = Γ · x. Since the distance between points

of (xn) and the orbit Γ ·x can be made arbitrarily small, it follows that (xn) must

converge to some point of the orbit. Our space X is therefore complete. On the

other hand, since there is some compact K ⊆ X such that Γ · K = X we also

deduce that X is locally compact.

Corollary 5.2. Applying the Hopf-Rinow Theorem for length spaces to the above

lemma shows that X is in fact a proper24 geodesic space.

We now shift our attention to understanding groups themselves as geometric

objects, a main theme in geometric group theory. A first step in this direction are

the following three classical objects that one associates to a group, two of which

we have already encountered without formally introducing them.

Cayley Graph. A group Γ generated by a set A can be obtained as a

quotient of the free group on the alphabet A, denoted by F (A), through the

natural surjection F (A)
ϕ−→ Γ. On the other hand, associated to every set of

generators A is a (directed) graph whose vertices are the elements of Γ with an

edge joining γ to γ′ whenever γ′ = γ · a for some a ∈ A. The resulting graph is

the Cayley graph of Γ with respect to the generating set A, denoted by CA(Γ).

This is a first striking manifestation of a group as a geometric object. Indeed, we

can consider Γ as a metric graph CA(Γ) by setting all edges to have length equal

to one. Equivalently, one can equip Γ as a set with the so called word metric dA

23See Appendix A for a definition.
24A metric space where closed balls are compact.
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which measures the distance between γ1 and γ2 as the length of the shortest word

in the pre-image of γ−1
1 γ2 under the natural projection F (A)→ Γ.

Cayley Complex. We now characterize a second geometric object that one

can associate to a group. Consider any set of (reduced) words R contained in the

kernel of the map F (A)
ϕ−→ Γ. Since a graph is equivalent to a one dimensional CW

complex we may view the Cayley graph CA(Γ) as the 1−skeleton of a 2−complex

CA,R(Γ) which is obtained by attaching a 2−cells along each path in CA(Γ) labelled

by a word contained in R. Since the tree CA(F (A)) is the universal cover of CA(Γ)

we have that π1(CA(Γ)) ∼= ker(ϕ). On the other hand, a classical application of the

Seifert-van Kampen Theorem25 shows that π1(CA,R(Γ)) ∼= ker(ϕ)/N(R) where

N(R) is the normal closure of R in the free group F (A). Recalling that whenever

N(R) coincides with the kernel of ϕ, the group Γ is given by the presentation

〈A|R〉 we have proved the following lemma.

Lemma 5.3. The CW complex CA,R(Γ) is simply connected ⇐⇒ Γ ∼= 〈A|R〉.

When either of the equivalent conditions given by the lemma hold we refer to

CA,R(Γ) as the Cayley complex of the presentation Γ ∼= 〈A|R〉.
Standard 2-Complex. When we are given a presentation Γ ∼= 〈A|R〉 there

is a third natural geometric object associated to Γ. This is the so-called standard

2-complex of the presentation which is a CW complex SA,R having a single 0−cell

v, a one dimensional cells for every a ∈ A both of whose endpoints are attached

to S
(0)
A,Rv and a two dimensional cells for every r ∈ R, each of which is attached

to the graph S
(1)
A,R along the path labelled by the word it represents. A simple

application of the Seifert van-Kampen Theorem shows that π1(SA,R) ∼= Γ and in

fact the Cayley complex CA,R(Γ) is the universal cover of the standard 2−complex

SA,R.

With these standard definitions at hand, we can move on to understanding the

intricate relationship between a group and spaces it acts on. A neat application

of the seemingly inoffensive Lemma 5.3 is the following surprising sequence of

25This theorem is stated in Appendix C. The reader very unfamiliar with these concepts could
consult [LS77] or [Hat05].
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results due to Murray MacBeath. Our proofs follow arguments of [BH99].

Lemma 5.4 ([Mac64]). Suppose that X is a connected topological space and Γ y
X by homeomorphisms. If U ⊂ X is a Γ−covering of X, in other words, if

U is an open set such that X = Γ · U then the set of U−improper isometries

S := {γ ∈ Γ|γ · U ∩ U 6= ∅} generates Γ.

Proof. Let 〈S〉 = H ≤ Γ and denote V := H · U and V ′ := (Γ \ H) · U . If

V ∩V ′ 6= ∅, there must be some h ∈ H and h′ ∈ Γ\H such that h′ ·U ∩h ·U 6= ∅.
However, we then see that h−1h′ · U ∩ U 6= ∅ and so h′ ∈ HS ≤ H which is

a contradiction. Therefore, V ∩ V ′ = ∅ and by connectedness of X, since V is

nonempty we must have that V ′ = ∅. This shows that H = Γ.

Theorem 5.5 ([Mac64]). Suppose that Γ acts by homeomorphisms on a path

connected and simply connected topological space X. If U ⊂ X is a path-connected

Γ−covering of X and AS is an alphabet indexed by the set S of U−improper

isometries of Γ then Γ ∼= 〈AS|R〉 where

R = {as1as2a−1
s3
|si ∈ S;U ∩ s1 · U ∩ s3 · U 6= ∅; s1s2 = s3 in Γ}.

Proof. Consider the CW complex CAS ,R(Γ) defined in Section 5.1. In light of

Lemma 5.3, it suffices to show that CAS ,R(Γ) is simply connected to conclude

that Γ ∼= 〈AS|R〉. Our approach to show this is by considering locally injective

continuous maps l : ∂D → CAS (Γ) where D is the standard 2−disk. If every such

map can be continuously extended to a map D → CAS ,R(Γ), it will then follow

that CAS ,R(Γ) is simply connected.

Fix a base point x0 ∈ U and for each s ∈ S, choose a point xs ∈ U ∩ s · U .

Since U is path-connected, we may choose a path joining x0 to xs and another

one joining xs to s · x0. Labelling the concatenation of these paths by cs, we

obtain a continuous map p : CAS (Γ) → X as the extension of the map sending

the identity 1 7→ x0 and edges emanating from the identity as 7→ cs. Note that

since X is simply connected p actually extends to a Γ-equivariant continuous map

CAS ,R(Γ)→ X.
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Suppose now that we have at hand a map l : ∂D → CAS (Γ) as described

above. We can then consider the composition p ◦ l : ∂D → X that we extend

continuously (since X is simply connected) to Φ : D → X. Since D is compact

and U is open, there is a finite triangulation τ of D such that given a vertex v of

a triangle in τ , there is some element γv ∈ Γ ensuring that Φ maps all triangles

incident at v into the open set γv · U .

Consider the triangle t with vertices labelled v1, v2 and v3. By the above,

∅ 6= Φ(t) ⊆ γv1 · U ∩ γv2 · U ∩ γv3 · U

= γv1 · (U ∩ γ−1
v1
γv2 · U ∩ γ−1

v1
γv3 · U)

= γv2 · (γ−1
v2
γv1 · U ∩ U ∩ γ−1

v2
γv3 · U)

so labelling s1 := γ−1
v1
γv2 , s2 := γ−1

v2
γv3 and s3 := γ−1

v1
γv3 we have that si ∈ S and

as1as2a
−1
s3
∈ R.

Figure 12: Presentation by generators and relations.

This observation allows us to extend the map v 7→ γv to a continuous function

θ : 1−skeleton(τ)→ CAS (Γ). Indeed, any v ∈ τ occurs in a triangle that we may
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label v1, v2 and v3 so we can thus send vi 7→ γvi and edges (vi, vi+1) 7→ (γvi , γvisi)

where indices are taken mod 3. To make everything compatible, if vi ∈ ∂D we

choose γvi to ensure that θ|∂D is a reparametrization of l.

To conclude, since the image θ(∂t) is a labeled closed loop in R ⊂ CAS (Γ),

all such loops are boundaries of 2−cells in CAS ,R(Γ). We may thus continuously

extend θ to a map D → CAS ,R(Γ) as desired.

While the above theorem is lovely, it is the following corollary that one uses

in practise.

Corollary 5.6. Γ is finitely presented ⇐⇒ Γ acts geometrically on a simply-

connected geodesic metric space.

Proof. Suppose Γ acts properly and cocompactly on a simply-connected geodesic

space. Since the action Γ y X is cocompact, there is some compact K ⊆ X such

that Γ ·K = X. As such, for x0 ∈ K and some R > 0, K ⊂ B(x0, R) and we may

apply the preceding theorem with U := B(x0, R). However, by Corollary 5.2, X

is proper so Ū is compact and Γ acts properly thus we are forced to conclude that

the set S = {γ|γ · U ∩ U} is finite.

Conversely, given a finitely presented Γ = 〈AS|R〉, the associated Cayley com-

plex can be realized as a piecewise euclidean space in which we can embed CAS(Γ)

metrized with all edges given length 1. In this case, the natural action of Γ on its

Cayley graph extends to a proper cocompact action of the entire space.

5.2 Quasi-Isometries

In order to adequately deal with infinite groups acting on metric spaces one needs

a notion that encapsulates the idea of spaces looking “essentially” the same when

viewed from a distance. This is the case when there is a coarse, almost surjective,

distance preserving map between them. It is with this in mind that the following

definition loosens up the concept of Lipschitz maps.
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Definition A map f : X → Y between metric spaces is a (λ, ε)−quasi isometric

embedding if there are constants λ ≥ 1 and ε ≥ 0 such that ∀x1, x2 ∈ X:

1

λ
dX(x1, x2)− ε ≤ dY (f(x1), f(x2)) ≤ λdX(x1, x2) + ε.

When every point of Y lies in the C−neighbourhood of the image of f , we call

the map a quasi-isometry and say that the two spaces are quasi-isometric. It is

often the case that the constants ε and λ are irrelevant so we will coarsely refer

to maps simply as quasi-isometries.

Remark A rather amusing instance of a quasi-isometry and its quasi-inverse is

mentioned in [DK09] and arises by considering languages as “metric spaces” where

the maps between them are translations. The german jewish name Schwarz was

translated to russian at some point in the nineteenth century resulting in Xvarc

until finally the AMS decided to reconvert it to english as S̆varc in the 1950′s.

The sequence

Schwarz→Xvarc→ S̆varc

could be informally thought about as a quasi-isometry followed by a quasi-inverse.

Definition Once a generating set A is chosen for a group Γ, we can define a

growth function βA : N → N which associates to any integer n the number of

elements in the closed ball B(1, n) about the identity in CA(Γ). It is a fact that

βA(n) is bounded by a polynomial in n for some generating set A if and only if it

is polynomial in n for all generating sets. As such, when this is the case, we say

that the group Γ has polynomial growth.

In view of the previous definition, we mention without proof the following striking

theorem of Gromov.

Theorem 5.7 ([Gro81]). A finitely generated group has polynomial growth if and

only if it contains a nilpotent subgroup of finite index.
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Although Gromov’s result was proved much later than the following proposi-

tion, it bears some relation to it. Indeed, the original motivation for the Schwarz-

Milnor Lemma was to relate the growths of the volumes of balls in the universal

cover of Riemannian manifolds X to the growth function of their fundamental

group π1(X). It turns out that this gives rise to an interesting example of quasi-

isometric embeddings of groups into spaces they act on. It was originally proved

by the Russian school and later rediscovered by Milnor.

Proposition 5.8 ([Sva55],[Mil68]). A group Γ acting geometrically on a length

space X is finitely generated. Further, if we denote by A some generating set and

consider (Γ, dA) as a metric space, the map γ 7→ γ · x0 is a quasi-isometry.

Proof. The following argument is inspired by [BH99]. Let the action Γ y X be

proper and cocompact an choose a compact C ⊆ X such that Γ · C = X. For

any base point x0 ∈ X, let D > 0 ensure that B(x0, D/3) ⊃ C. Using the same

argument as in the proof of Corollary 5.6, we see that Γ must be finitely generated

by the set A := {γ|γ ·B(x0, D) ∩B(x0, D) 6= ∅}.

Claim 5.9. There is some constant µ > 0 such that d(γ ·x0, γ
′ ·x0) ≤ µdA(γ, γ′).

Indeed, if dA(γ, γ′) = n then γ−1γ′ = a1a2 . . . an for some aj ∈ A∪A−1. Define

g0 := 1, gi := a1a2 . . . ai and set µ := max{d(x0, a · x0)|a ∈ A ∪ A−1}. By the

triangle inequality

d(γ · x0, γ
′ · xo) = d(x0, γ

−1γ′ · xo) ≤
n∑
i=1

d(gi · x0, gi+1 · x0)

and we are done since d(gi ·x0, gi+1 ·x0) = d(x0, g
−1
i gi+1 ·x0) = d(x0, ai+1 ·x0) ≤ µ.

In view of the claim, all we have to show is that we can bound dA(γ, γ′) in

terms of d(γ · x0, γ
′ · x0). Since the action of Γ is by isometries in both metrics,

it suffices to do so for dA(1, γ) and d(x0, γ · x0). To this end, fix γ ∈ Γ and let

c : [0, 1] → X be a finite path from x0 to γ · x0. Choose a coarsest partition of

the interval [0, 1] by t0 = 0 < t1 < . . . < tn−1 < tn = 1 subject to the constraint

that d(c(ti), c(ti+1)) ≤ D/3. Since Γ · B(x0, D/3) = X, for every ti there is some
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γi such that d(c(ti), γi · x0) ≤ D/3. Extending the γi’s to include γ0 := 1 and

γn := γ we see that d(γi · x0, γi+1 · x0) ≤ D ensuring that for every i, γ−1
i−1γi ∈ A.

Labelling ai := γ−1
i−1γi we obtain the following expression:

γ = γ0(γ−1
0 γ1) . . . (γ−1

n−1γn) = a1a2 . . . an.

Recalling that X is a length space, we may choose our curve c to have length

l ≤ d(x0, γ · x0) + 1. It follows that n ≤ (d(x0, γ · x0) + 1)(3/D) + 1 since our

partition into the ti’s was as coarse as possible. But since γ can be expressed as

a word of length n we also obtain dA(1, γ) ≤ (d(x0, γ · x0) + 1)(3/D) + 1 and it

follows that we have a quasi-isometry at hand.

Remark In general, a group Γ always acts by isometry on the metric space

(CA(Γ), dA) by left multiplication. As such, it follows from the Schwarz-Milnor

Lemma that the Cayley graphs CA(γ) and CA′(Γ) are quasi-isometric in the word

metric. In fact, this shows that viewing a group as a metric space is well defined

up to quasi-isometry.

This coarse geometric approach is quite strong as shown in this final theorem and

the next section. We refer the reader to [BH99] for a proof.

Theorem 5.10. If one of two quasi-isometric groups is finitely generated then so

is the other one.

5.3 Ends of a Space

Informally, the ends of a space may be thought of as the different ways in which

one can topologically move to infinity. It is in fact a subset of the visual boundary

for metric spaces, a concept we will study in Section 6.2. We proceed to give two

equivalent formulations of this concept moving from the most abstract to most

concrete.
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Consider a compact K ⊆ X and its complement Kc := X \ K. The 0−th

homotopy π0(Kc) counts the number of path-connected components of Kc so

whenever K1 ⊂ K2 we get an induced map ϕi,j : π0(Kc
2) → π0(Kc

1). In view of

this we have an inverse system of π0(Kc
i ).

Definition The set of ends of X is defined as the inverse limit

E(X) := lim
←i

π0(Kc
i ) = {(ri)i∈I ∈

∏
i∈I

π0(Kc
i ) : ϕi,j(rj) = ri}.

While this inverse limit may seem rather abstract, it can be worked out explic-

itly following the constructions in [Fre31]. In a general topological space X, we

say that a sequence of points xn → ∞ goes to infinity if it eventually leaves any

compact set. In the context of a parametrized path, this amounts to requiring

that its points eventually leave any given compact set. We say that proper26 rays

r1, r2 : [0,∞) → X converge to the same end if for every compact K ⊆ X, the

image of both rays is eventually contained in the same path component of X \K.

This notion of convergence of rays defines an equivalence relation whose classes

are denoted by e(r). The set of such equivalence classes coincides with E(X). To

understand the topology on E(X) we define convergence on ends e(rn) → e(r)

whenever given a compact K ⊆ X there is a sequence of integers Nn and mk ∈ R
such that rn[Nn,∞) and r[Nn,∞) lie in the same path-component of X \K for

all n > mK . The closed sets of E(X) can now be defined as those containing all

of their limit points.

Our first lemma requires the notion of a k-path joining points x and y of a

metric space X. This is a collection of points x = x1, x2, . . . xn = y such that

d(xi, xi+1) ≤ k for every i. One could say this definition is analogous to that of

an m−string defined in Appendix B. We also find it convenient in what follows

to denote by Gx0 the set of geodesic rays based at a point x0 ∈ X.

Lemma 5.11. In a proper geodesic space X, there is a natural surjection Gx0 →
26A map between topological spaces is said to be proper if the inverse image of a compact set

is compact.
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E(X) for any choice of basepoint x0 ∈ X.

Proof. The following proof is inspired by [BH99]. First, notice that if r1 and r2

are proper geodesic rays in X, then e(r1) = e(r2) if and only if for every R > 0

there is a T > 0 such that r1(t) and r2(t) are joined by a k−path in X \B(x0, R)

for every t > T . Indeed, given any compact K ⊂ X there is a ball about x0

containing it and vice versa. We may thus substitute balls for compact sets in

the preceding discussion of E(X). The forward implication is now clear from the

definitions. To show the reverse direction, notice that if x1, . . . , xn is a k−path in

X \ B(x0, R + k) then concatenating [x1, x2], [x2, x3],. . . , [xn−1, xn] yields a path

from x1 to xn in X \B(x0, R) for any choices of geodesics. Choosing T > 0 to be

large enough that r1(t) and r2(t) are not in X \ B(x0, R + k) for t > T does the

trick since then r1(t) and r2(t) must be in the same path component.

To complete the proof, consider a proper ray r : [0,∞) → X. Define a

countable sequence of geodesic paths cn : [0, dn]→ X joining x0 to r(n). We can

extend each path cn to be constant on (dn,∞). Now, since X is proper and the

cn are equi-continuous, by the Arzelà-Ascoli Theorem there is a subsequence of

the cn’s uniformly convergent to a geodesic ray c. By construction, e(c) = e(r)

and we are done.

Example Let T3 be a rooted metric tree of valence 3 where the length of an edge

separated from the root by n vertices is defined to be 1/2n+1. Here, E(T3) can be

vividly pictured as the uncountably many infinite paths one can take starting at

the root without backtracking. In fact, E(T3) ' C where C is the cantor set.

Indeed, recall that C can be characterized as the set of points in the interval

[0, 1] admitting a ternary expansion using only the digits 0 and 2 and, as such,

C ' {0, 1}N. Since T3 is connected, by the preceding lemma it is enough to

consider all equivalence classes of locally injective proper rays based at the root to

characterize E(T3). But then, we have a clear bijection between such equivalence

classes and {0, 1}N since e(r) is uniquely characterized by the choice of one of the

two possible directions at each vertex after the root. This correspondence yields a

homeomorphism because the condition on convergent sequences of ends defining
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closed sets translates into a condition on convergent sequences of points yielding

a bijection between closed sets in both spaces.

It is interesting to note that, by construction, T3 embeds inside the unit disk

as shown in Figure 13.

Figure 13: T3

In light of this new concept, we also obtain another well known quasi-isometry

invariant. Indeed, suppose that we have a quasi-isometry f : X → Y between

proper geodesic spaces. Given any proper ray r in X, one can consider the proper

ray

f∗(r) := [f(r(0)), f(r(1))], [f(r(1)), f(r(2))], . . . , [f(r(n)), f(r(n+ 1))], . . .

obtained by concatenating geodesic segments in Y . Since f is a quasi-isometry, the

map fe : E(X)→ E(Y ) given by e(r) 7→ e(f∗(r)) is a well defined homeomorphism.

Proposition 5.12. Every quasi-isometry between proper geodesic spaces induces

a homeomorphism between their ends.
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Applying these constructions to the case of groups, we can “unambiguously”

define the ends of a group Γ as

E(Γ) := E(CA(Γ)).

Whenever A is finite, this space is fairly well understood. The following landmark

pair of theorems are due to Hopf and Stallings.

Theorem 5.13 ([Hop43]). If Γ is a finitely generated group then E(Γ) is compact

and has either 0, 1, 2 or infinitely many elements. In the finite case, E(Γ) has 0

elements if and only if Γ is finite and two elements if and only if Γ contains Z as

a finite index subgroup.

Proof. We only prove that if E(Γ) is finite it has 0, 1 or 2 elements following an

argument found in [BH99]. Let CA(Γ) be the Cayley graph of Γ with respect to

some finite generating set. The action of Γ on itself by left multiplication extends

to an action of Γ on C by (quasi) isometries. By Lemma 5.12 we thus obtain a

homomorphism Γ→ Homeo(E(C)).

Assume that E(C) is finite. Since Γ is infinite, the above homomorphism

has a nontrivial kernel, H which must have finite index in Γ. Suppose for the

contrapositive that we have three distinct ends e0, e1 and e2. Let r1 and r2 be

proper geodesic rays such that r1(0) = r2(0) and e(ri) = ei. As [Γ : H] < ∞,

there must be some positive constant µ with the property that every vertex of C

lies in the µ neighbourhood of some element of H. This ensures the existence of

a proper ray r0 with the property that e(r0) = e0, d(r0(n), 1) ≥ n and r0(n) ∈ H
for every n ∈ N.

Define γn := r0(n) and let ρ > 0 be such that r1([ρ,∞)) and r2([ρ,∞)) lie in

different path components of C \B(1, ρ). It follows that for t, t′ > 2ρ,

d(r1(t), r2(t) > 2ρ

since the path joining the two points must cross through B(1, ρ). Notice now that

γn ∈ H implies that e(γn · ri) = e(ri) for i = 1, 2.
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Fix n > 3ρ and let i range over 1, 2. We must then have that γn · ri(0) = γn

which lies in a different path component of C \ B(1, ρ) than ri([ρ,∞)). Since

translation by γn doesn’t effect ends and d(γn, 1) ≥ n > 3ρ, γn · ri must pass

through B(1, ρ) for some t > 2ρ as in Figure 14. When t > 2ρ is such that γn · ri
lies in B(1, ρ) for i = 1, 2, their distance is bounded by the ball so

d(γn · r1(t), γn · r2(t)) ≤ 2ρ.

Since γn is an isometry, this contradicts the first inequality established above. It

follows that C can only have 0, 1 or 2 ends.

Figure 14: Three ends

We conclude by mentioning without proof the following theorem of Stallings.

Theorem 5.14 ([Sta68]). Γ has infinitely many ends if and only if it splits as an

amalgamated product27 Γ1 ∗C Γ2 or an HNN extension Γ1∗C where C is a finite

group with [Γ1 : C] ≥ 3 and [Γ2 : C] ≥ 2.

27Please see Appendix C for the relevant definitions.
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Having set up the basic preliminaries concerning group actions, we now return to

the realm of metric spaces of bounded curvature. It turns out that groups acting

on CAT (0) spaces by isometries share many of the elegant properties of isometry

groups of non-positively curved Riemannian manifold.

6.1 Types of Isometries

Associated to any isometry σ of a CAT (0) space X is the so called displacement

function, dσ : X → R≥0 defined by the rule dσ(x) := d(σ · x, x) and translation

length δσ := inf{dσ(x) : x ∈ X}. The set of points at which this translation

length is attained is denoted by Min(σ) := {x : dσ(x) = δσ}. This notation will

be used heavily throughout the other sections.

Remark It should be emphasized that Min(σ) is convex since if two points x

and y belong to Min(σ) the geodesic segment [x, y] must also belong to Min(σ)

because isometries preserve distances.

In analogy with the classification of isometries of riemannian manifolds we say

that an isometry of a CAT (0) space is Elliptic if it has a fixed point, Hyperbolic

if dσ attains a strictly positive minimum and Parabolic if Min(σ) = ∅.

Definition Isometries that fall into the first two categories or those whereMin(σ) 6=
∅ are semi-simple. The parabolic isometries are in many aspects the “rogue” ones.

Example 1. Isometries of En are all of the form x 7→ Ax+ b where A ∈ O(n)

and b ∈ Rn so they are all semi-simple.

2. Isometries of Hn are not necessarily semi-simple. Consider a rotation about

a point at infinity in the Poincarré disc model of H2.

We now proceed to develop the structure intrinsic to metric spaces admitting

semi-simple isometries of either type. Our first tool is the fact that the circumcen-

tre of a bounded subset of CAT (0) spaces is well defined. Recall that the radius

of a bounded set Y , rY := infr∈R{Y ⊆ B(x, r) : x ∈ X}.
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6.1 Types of Isometries

Proposition 6.1 ([Bro89]). Suppose that X is a complete CAT (0) space and that

Z ⊆ X is a bounded set of radius rZ. There is a unique point cZ ∈ X such that

Y ⊆ B(cZ , rZ). This is the circumcentre of Z.

Proof. Let us consider a sequence of points cn ∈ X such that d(cn, Z)
n→∞−−−→ rZ .

An application of the CN−inequality28 to a fixed pair of points cn, cm ∈ X along

with an arbitrary z ∈ Z implies that

d2(cn, cm) ≤ 2 ·
[
d2(cn, Z) + d2(cm, Z)− 2 · r2

Z

]
(3)

so the sequence (cn) is cauchy and converges to a circumcentre cZ . On the other

hand, equation (3) holds for arbitrary pairs of points in X so a circumcentre is

unique.

The idea of using the circumcentre of a set acted upon by a group to find a

fixed point is central; for instance, it was applied by Élie Cartan in the context of

Lie groups in his Leçons sur la géométrie des espaces de Riemann and in the case

of groups acting on Euclidean buildings by Bruhat and Tits in [BT72]. This has

the following consequences for groups with bounded orbits in CAT (0) spaces:

Lemma 6.2 (Detecting Semi-Simple Isometries). If a group acts on a complete

CAT (0) space with a bounded orbit then the action necessarily has a fixed point.

Therefore, an isometry of a complete CAT (0) space X with a bounded orbit is

elliptic. In fact, if the isometry σn is elliptic for n 6= 0 then σ is elliptic. Similarly,

if the isometry σn is hyperbolic for n 6= 0 then σ is hyperbolic.

Proof. The circumcentre of the bounded orbit is well defined and preserved by

the action of the group so it is a fixed point. If σn fixes a point x ∈ X then the

orbit of x under the action of σ has at most n points. We refer the reader to

[BH99] for a proof of the last statement which follows more easily from Theorem

6.3.

28Lemma 2.2.
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While hyperbolic isometries do not fix points, they stabilize their higher di-

mension analogues, a family of geodesic lines. The following theorem is crucial

for understanding hyperbolic isometries.

Theorem 6.3 (Axes of Hyperbolic Isometries). If X is a CAT (0) space then σ

is hyperbolic if and only if there are geodesic lines stabilized by σ where it operates

by translation of length δσ > 0. These geodesic lines are parallel and their union

coincides with Min(σ) ∼= Y × R where σ(y, t) = (y, t+ δσ).

Definition Geodesic lines on which a hyperbolic isometry acts by non-trivial

translation are called its axes.

Proof. The following argument is inspired by [BH99]. Suppose that σ stabilizes

a geodesic line γ where it operates by non-trivial translation. By definition, γ is

a complete convex set so we have δσ = δσ|γ where σ|γ is the restriction of σ to γ.

Therefore, if σ acts by non-trivial translation on γ, it is necessarily hyperbolic.

Suppose conversely that σ is hyperbolic. We claim that the union over all integers

n ∈ Z of the geodesic segments [σnx, σn + 1] is an axis for σ. A first step in this

direction is to show that

[x, σx] ∪ [σx, σ2x] = [x, σ2x]. (4)

Denoting by x+σx
2

the midpoint of the segment [x, σx], equation (4) is equiv-

alent to showing that d(x+σx
2
, σ(x+σx

2
)) = 2d(x, x+σx

2
). Recall that Min(σ) is

a convex subset of X so x+σx
2
∈ Min(σ) and consequently d(x+σx

2
, σ(x+σx

2
)) =

d(x, σx) = 2d(x, x+σx
2

) where the last equality follows by definition of the mid-

point. The result now follows because local geodesics are geodesics in CAT (0)

spaces, see Proposition 2.1.

Let us now fix parametrizations r, r′ : R→ X for two different axes of σ. We

have already shown that σr(t) = r(t+δσ) while σr′(t) = r′(t+δσ) so d(r(t), r′(t)) =

d(r(t+ δσ), r′(t+ δσ)). As such, the distance function between the two geodesics

is periodic which implies that it is bounded. Recalling that the CAT (0) metric is

convex allows us to deduce that the axes lie a constant distance apart so they are
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6.1 Types of Isometries

parallel. Finally, since Min(σ) is convex and axes are parallel, applying Theorem

2.10 we obtain the decomposition Min(σ) ∼= Y × R.

The technique to produce an axis in the preceding theorem should be kept in mind

during the proof of the main theorem in Section 6.3. Some classes of hyperbolic

isometries have even stronger implications on the structure of a metric space and

deserve a special name.

Definition A Clifford translation is an isometry σ or a metric space X such that

Min(σ) = X. In other words, they are those isometries which shift every point

of x by an equal distance. Simple examples of spaces with many Clifford trans-

lations are Banach spaces. These special isometries admit a surprising amount

of additional structure and the existence of non-trivial Clifford translation has

strong consequences on the properties of a metric space. In fact, we shall have to

rull them out in Section 7 to establish superrigidity results.

Let σ 6= 1 and τ be Clifford translations. By virtue of Theorem 6.3 there is a

splitting X = Y × R such that σ(y, r) = (y, r + δσ) so we may write σ = 1 × tσ
where tσ denotes translation by δσ. The action of τ on Y × R must then be of

the form τ ′× tτ where τ ′ is a Clifford translation of Y so τσ = στ = τ ′× tτ tσ and

we see that the Clifford isometries form an abelian group H.

We can now define an action of R on H by letting λ ∈ R send the isometry

σ as above which maps (y, r) 7→ (y, r + δσ) to the isometry (y, r) 7→ (y, r + λδσ).

Further, the norm on H which maps σ to δσ satisfies the parallelogram law so H

is a vector space equipped with an inner product. In fact, the following theorem

proved in [BH99] holds.

Theorem 6.4. The group of Clifford translations H of a complete CAT (0) space

X is a Hilbert space. Further, X splits as a product Y ×H preserved by Iso(X).

Without providing the proof, let us simply mention how the above splitting

arises. Since X is complete, its closed subsets are also complete so the projection29

29Defined in Proposition 2.6.
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π : X → H · x0 onto the closed convex orbit H · x0 of a fixed point x0 ∈ X

is well defined. We can then consider the splitting π−1(x0) × H and the map

θ : H× π−1(x0)→ X defined by the rule (σ, ξ) 7→ σ(ξ) is an isometry. It should

be mentioned that H is analogous to the Euclidean de Rham factor in Riemannian

geometry.

6.2 Visual Boundary and Bordification

The bordification of a complete CAT (0) metric space encapsulates in a sense what

the space looks like from the point of view of an internal observer. It is obtained

by attaching to a space its visual boundary which consists of the set of points at

infinity and topologizing this union in a coherent way.

The following constructions emulate in a sense the study of the geometry of

geodesics in non-positively curved spaces by Hadamard in [Had98] and Busemann

in [Bus55]. However, the first definition of a visual boundary for arbitrary metric

spaces was given in [EO73] and we give an account similar to [BH99]. One could

also consult [Hot97] or [Pap05] for the perspective of Busemann non-positively

curved spaces. The same ideas are applied in the context of hyperbolic groups by

Gromov in [Gro87].

Throughout this section we assume that X is a complete CAT (0) space, also

called a Hadamard space.

Recall that in a CAT (0) space, two geodesic rays are parallel30 if and only if

they are asymptotic. It is the existence and uniqueness of parallel rays emanating

from different points of a metric space that allow us to characterize its boundary

at infinity.

Proposition 6.5 ([BH99]). Given two points x and y in a complete CAT (0) space

X, once a geodesic ray based at x is specified, there is a unique parallel geodesic

ray based at y.

30See Theorem 2.9.
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6.2 Visual Boundary and Bordification

Sketch of the Proof. Suppose that we are given x and y as in the statement and

write r : [0,∞[→ X for the geodesic ray based at x. Given any n ∈ N let γn

be a parametrization of the unique geodesic segment [y, r(n)] joining y to the

point r(n). For any fixed s ∈ [0, 1], we have a sequence of points γn(s) which

is Cauchy by an application of the CAT (0) inequality. Since X is complete, we

have that γn(s) → r′(s) for some unique point r′(s) ∈ X and we can define

r′ : [0,∞[→ X as the pointwise limit of the geodesics s → r′(s). The ray r′

is unique because geodesic rays are parallel if and only if they are a bounded

distance apart. If r′′ : [0,∞[→ X was another ray emanating from y parallel to

r, its initial distance from r′ would be zero implying r′ = r′′.

In view of this proposition, we can unambiguously define the visual boundary

∂X as the set of geodesic rays based at some point x0 modulo parallelism. A

good example to keep in mind is the disc model for the hyperbolic plane H2

where ∂H2 coincides with the boundary of the model disc. The main purpose for

this definition is to consider the “closure at infinity” X = X ∪∂X which contains

the missing fixed point of parabolic isometries. This new space X is called the

bordification of X. Heuristically, X corresponds to what an individual travelling

within X would experience it as. So far, these spaces only consist of a set of

points so we need a useful topology on it. The following realization of X from

[EO73] allows one to elegantly define the so called cone topology.

Once a basepoint x0 ∈ X has been fixed, there is a system of closed balls

Bε := B(x0, ε) where 0 < ε < ∞. Since closed balls in CAT (0) spaces are

bounded, complete and convex, we have a projection πε : X → Bε as defined in

Proposition 2.6. Concretely, if x ∈ X, there is a unique segment [x0, x] and if

[x0, x] ∩ Bε = [x0, x
′] then πε(x) = x′. Restricting this map to closed balls yields

projections πε,ε′ : Bε → Bε′ wherever ε ≥ ε′ so the closed balls form an inverse

system and we may take its inverse limit

lim
←ε

Bε = {(rε)ε∈[0,∞[ ∈
∏

ε∈[0,∞[

Bε : πε,ε′(rε) = rε′}.
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6.2 Visual Boundary and Bordification

We equip it with the inverse limit topology, namely the one making all maps

lim←ε Bε → Bε continuous. Concretely, lim←ε Bε correspond to the set of geodesics31

r : [0,∞[→ X based at x0 such that πε,ε′(r(ε)) = r(ε′) equipped with the topology

of uniform convergence on compact sets. In other words, a sequence of geodesics

rn in the inverse limit converges to a ray r in X if for all compact sets K ⊂ [0,∞[

the restrictions rn|K converge uniformly to r|K as functions.

There is a natural identification η : X → lim←ε Bε sending points x ∈ X to

the geodesic r : [0,∞[→ X who’s image is the segment [x0, x] and sending points

ξ ∈ ∂X to the unique geodesic ray r : [0,∞[→ X based at x0 in the equivalence

class of ξ. This identification yields the desired cone topology on X and the

inclusion of X into X under this topology is a homeomorphism onto a dense set.

Figure 15: A neighbourhood of a point at infinity.

A convenient basis for the topology on X is given by two families of sets. First

we have open balls about points in x ∈ X. Then, if ξ ∈ ∂X corresponds in the

inverse limit construction to the geodesic ray r : [0,∞[→ X parametrized such

that r([0, ε]) = r([0, ε])∩B(x0, ε), a basis32 for its neighbourhoods is given by the

31The maps are either geodesic rays or for some t > 0, r(t′) = r(t) for all t′ ≥ t.
32This follows by general considerations of the compact-open topology as explicated in
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6.2 Visual Boundary and Bordification

sets of the form Uξ(ε, δ) := {x ∈ X : d(x, x0) > ε, d(πε(x), r(ε)) < δ} as shown in

Figure 15.

Proposition 6.6 ([BH99]). The cone topology on X = X ∪ ∂X doesn’t depend

on the choice of the basepoint x0 ∈ X.

Sketch of Proof. Let X be topologized as above with respect to the basepoint

y0 6= x0. The cone topology is induced from the inverse limit topology so it

suffices to show that the projections πx0ε : X → B(x0, ε) are continuous. This

holds for any fixed ε > 0 if for all θ ∈ X and for every neighbourhood V of πx0ε (θ)

there is a neighbourhood U of θ such that πx0ε (U) ⊂ V . If θ ∈ X, this is clear but

if θ ∈ ∂X it requires some work.

By definition, θ correspond uniquely to two geodesic ray ry0 , rx0 : [0,∞[→ X

based at y0 and x0 respectively and parametrized in a way that for λ ∈ R≥0,

r·([0, λ]) = r·([0, λ])∩B(·, λ). As such, we will abuse notation and write statements

such as πx0ε (rx0) instead of πx0ε (θ) in what follows. It suffices to check the continuity

condition on basis elements so suppose we are given an open ball of radius δ about

πx0ε (θ). For every λ > 0 there is a basis element of the cone topology (induced by

the basepoint y0) on X of the form

Uθ(λ, δ/3) = {x ∈ X : d(x, y0) > λ, d(πy0λ (x), ry0(λ)) < δ/3}.

All that remains to be verified is that if x ∈ Uθ(λ, δ/3) then d(πx0ε (x), πx0ε (θ)) =

d(πx0ε (x), πx0ε (rx0)) < δ. But using the triangle inequality we see that

d(πx0ε (x), πx0ε (rx0)) ≤

d(πx0ε (x), πx0ε π
y0
λ (x)) + d(πx0ε π

y0
λ (x), πx0ε π

y0
λ (ry0)) + d(πx0ε π

y0
λ (ry0), π

x0
ε (rx0))

where each summand on the right hand side is bounded above by δ/3. For the

first and last summands this is a consequence of the proof of Proposition 6.5 while

for the middle summand it follows directly from the definition of Uθ(λ, δ/3). The

[Mun00].
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situation is heuristically illustrated in Figure 16 for the convenience of the reader.

Figure 16: Visualizing the triangle inequality.

Remarks 1. The independence of the cone topology from the choice of a

basepoint should be a hint that there is a functorial description lurking

nearby. Indeed, it is shown in [BH99] following a construction of Gromov

that if we denote the complete space of real valued continuous functions

on X modulo additive constants by C∗X, then one can describe X as the

closure of the inclusion X ↪→ C∗X sending a point x to the map y 7→ d(x, y).

2. It should be noted that the visual boundary continuously surjects onto the

ends of a metric space as defined in Section 5.3.

Now, if σ : X → X is an isometry, then σ sends rays r based at a point x to rays

σ(r) based at the point σ(x) so we obtain the following corollary.
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Corollary 6.7. Let X be a complete CAT (0) space. For every isometry σ ∈
Iso(X), there is a natural extension σ to X which is a homeomorphism.

Example Recall from a previous example that a rotation σ ∈ Iso(H2) about a

point at infinity in the hyperbolic plane is parabolic since it rotates all geodesic

lines and has no fixed point in H2. However, if we consider σ ∈ Homeo(H2) it

has a fixed point in ∂H2.

Remark We have equipped the visual boundary with the cone topology but

since it was built from a metric space, one might ask if there is also a natural

way to metrize it. There are in fact several ways to do this, the most intuitive of

which is perhaps to define the distance between ξ1 and ξ2 in ∂X as the supremum

over all points x ∈ X of the angle ∠x(ξ1, ξ2). One can then endow the visual

boundary with the so-called Tits metric which is the length metric d induced

by this angular distance. It turns out that the resulting space called the Tits

boundary ∂TX encodes the geometry of flats in X. One should be warned however

that in general ∂TX is not homeomorphic to ∂X with the cone topology.

6.3 Isometries of Cube Complexes

In this section, we illustrate an aspect in which CAT (0) cube complexes behave

analogously to trees. More particularly, we give an account of Haglund’s result

that automorphisms of CAT (0) cube complexes are semi-simple (up to cubical

subdivision). All of the results proved here come from [Hag07]. We invite the

reader to review the contents of Section 3.2 for a definition of non-positively

curved cube complexes and preliminary results.

All distances expressed in this section are combinatorial, as such, all vertices of

cube complexes considered lie in the 0−skeleton.

Due to the combinatorial nature of the metric, slight modifications must be

imposed on the definitions pertaining to isometries introduced in the Section

6.1. To this end, we clarify that given a cube complex X we will be working with
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automorphisms σ : X → X which are the bijections sending n−cubes to n−cubes.

It should be emphasized that an automorphism is necessarily an isometry in

both the combinatorial and CAT (0) metrics. As such, they are often called

combinatorial or cellular isometries in the literature.

Given an automorphism σ of a cube complex X we have, as before, the asso-

ciated displacement function dσ(x) = d(x, σ(x)) along with the translation length

δσ = infx∈X(0) dσ(x) where the only difference is that d now represents the combi-

natorial distance and that the infimum is taken over vertices instead of arbitrary

points. Recall that in the general case, an isometry f of a CAT (0) space was

said to be semi-simple if it was elliptic (had a fixed point) or hyperbolic (had no

fixed point but its displacement function attained the translation length) and in

the latter case f necessarily acted by its translation length on an infinite geodesic

called an axis. Analogously, we say that an automorphism σ ∈ Aut(X) of a cube

complex X is (combinatorially) semi-simple if either it fixes a vertex v ∈ X(0) or

it acts by translations of length δσ on a set of infinite combinatorial geodesics that

we will also call its axes. The key technical obstruction to showing that all au-

tomorphisms are semi-simple is that some automorphisms act as glide reflections

along certain hyperplanes. This is illustrated in the following definition.

Stable Action Let H be a hyperplane in a cube complex X and recall that

such a hyperplane separates X in two connected components. We say that σ ∈
Aut(X) has an inversion along H if it interchanges these two components. The

automorphism σ is then said to act stably if for any n ≥ 0, σn does not have an

inversion along any hyperplane.

For instance, if one considers the cube complex consisting of a single euclidean

square and a rotation σ of π/2 then σ does not have an inversion but σ2 does hence

the action is not stable. In fact, the action is not semi-simple since its fixed point

doesn’t lie in the 0−skeleton and there are no infinite geodesics. Fortunately, the

requirement to eliminate such pathologies is not really an obstruction. Indeed,

one can readily pass to a cubical subdivision which is defined analogously to
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the barycentric subdivision33 in the case of polyhedral complexes but where the

sub-cells are cubes instead of simplices as shown in Figure 17. For the square

mentioned above, the subdivision results in four squares with the fixed point

now lying in the 0−skeleton implying semi-simplicity. The following lemma is

straightforward.

Figure 17: The cubical subdivision of a two and three dimensional cube.

Lemma 6.8 ([Hag07]). If σ is an automorphism of the cube complex X, it acts

stably on the cubical subdivision of X.

Working towards the main result, recall that we can view a (connected and

undirected) graph G as a one dimensional cube complex in which case an auto-

morphism is a bijection of its vertices which preserves adjacencies. The following

abstract result for graphs will be used to understand automorphisms of general

CAT (0) cube complexes.

Theorem 6.9 (Thomas Elsner). Let γ be an infinite combinatorial geodesic in a

graph G. If σ ∈ Aut(G) preserves γ then γ must contain a fixed point, a pair of

consecutive vertices exchanged by σ or be an axis of the action of σ.

Proof. Without loss of generality, we may assume that σ is not trivial. Let the

vertices of γ be indexed by the integers (pi)i∈Z so that its edges are of the form

(pi, pi+1). Since σ(γ) = γ there is a bijection φ : Z → Z such that σ(pn) = pφ(n)

so accounting for the fact that σ preserves adjacencies, |φ(n+ 1) = φ(n)| = 1 and

we may write φ(n) = θ + εn where ε ∈ {±1} determines the presence or absence

33See Appendix B.

73



6.3 Isometries of Cube Complexes

of reflections. Indeed, when ε = −1, when θ is even, σ(pθ/2) = pθ/2 so we find a

fixed point and when θ is odd, σ(p θ−1
2

) = p θ+1
2

so we find an inversion exchanging

two consecutive vertices of γ. It should be noted that in both of these cases a

“reflection” occurs in γ but it only occurs along a hyperplane in the odd case.

When ε = 1, it is clear that σ acts on γ by translations of length θ so we need

only show that θ = δσ which follows by comparing the distances d(x, σn(x)) and

d(p0, σ
n(p0)) using the triangle inequality.

Since an automorphism σ of a cube complex X induces an automorphism of

its 1−skeleton which is a graph and the exchanging of a pair of adjacent vertices

in the above result implies the existence of an inversion we immediately obtain

the following corollary which sheds some light on the similarity between trees and

CAT (0) cube complexes.

Corollary 6.10 ([Hag07]). Let X be a CAT (0) cube complex with σ ∈ Aut(X)

acting stably without inversions. If σ preserves an infinite combinatorial geodesic

γ then it is an axis of σ. Further, σ has the same translation length on each axis

and any axis of σ is also an axis of σn where translation is by δσn = n · δσ.

Finally, the following lemma of [Hag07] is the essential key to finding the axes

of a stable automorphism which doesn’t fix a vertex. This is where the real work

behind the main theorem is hidden.

Lemma 6.11 (Axis Building Lemma, [Hag07]). Let X be a CAT (0) cube complex,

suppose that σ ∈ Aut(X) acts stably34 and let x ∈ X(0) be a point where δσ =

dσ(x). Then, for all n ≥ 0 we must have d(x, σn(x)) = n · δσ.

Proof. Let Min(σ) be the set of vertices x ∈ X(0) such that δσ = dσ(x) =

d(x, σ(x)). Since the combinatorial metric is discrete, Min(σ) 6= ∅ and we may

assume without loss of generality that δσ > 0.

34It is easy to see that this hypothesis is necessary by considering the example following the
definition.
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Suppose for a contradiction that the following subset of X(0) is nonempty:

Ξ := {x ∈Min(σ) with d(x, σn(x)) < n · δσ for some n}. (5)

Choose a point x ∈ Ξ such that the value of n for which it is a counterexample is

minimal. Let now γ0 be a fixed geodesic segment joining x to σ(x) and let

γ = γ0 ∪ σγ0 ∪ . . . ∪ σn−1γ0

be the concatenation of translates of γ0 by powers of σ which results in a path

from x to σn(x). Since x ∈ Ξ, γ is not a geodesic and there are35 some hyperplanes

of X that cross it twice. By minimality of n, any such hyperplane H must cross

γ before σ(x) and after σn−1(x) so it divides γ = γA∪ eA∪γH∪ eB ∪γB into three

disjoint subpaths and two edges dual to H. Denoting the subpath which doesn’t

contain x or σn(x) by γH we may choose H such that the length of γH is minimal

and consequently is a geodesic.

Since the carrier of a hyperplane is convex and both endpoints of the geodesic

γH lie in N(H) we have that γH ⊂ N(H) so there is a combinatorial geodesic

γH parallel and opposite to γH along H. By the existence36 of inversions along

hyperplanes there is a vertex y ∈ Ξ such that σ(y) ∈ γH is opposite to σ(x). The

inherent symmetry in N(H) allows us to further deduce that the path from y to

σ(y) given by the edge (x, y) followed by the path γA along with the necessary

initial segment of γH is a geodesic that we denote by γ′. It may be helpful to

consult Figure 18. In fact, by minimality of n we now have a geodesic γ′′ =

γ′ ∪ σ(γ′) ∪ σ2(γ′) ∪ . . . ∪ σn−2(γ′).

Therefore, the hyperplane K dual to the edge (x, y) separates y from σ(y)

and y from σn−1(y). Notationally we will write y/K/σ(y) and y/K/σ
n−1(y). Let

us assume that y/K/σ
n−1(x), this will be shown to be true in the claim below.

Applying σ we obtain σ(y)/σ(K)/σ
n(x) which is the same as saying σ(y)/H/σ

n−1(x)

which is a contradiction becauseH would have to cross the geodesic σn−1[(x), σ(x)]

35See Theorem 3.5 part 3.
36See Theorem 3.5 part 2.
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twice. As such, it only remains to prove the following claim:

Claim 6.12. y/K/σ
n−1(x)

Proof of the Claim. If this were not the case then σn−1(x)/K/σ
n−1(y) so K would

be dual to the edges (x, y) and (σn−1(x), σn−1(y)) which implies thatK = σn−1(K).

However, combining this with y/K/σ
n−1(y) would imply that σ has an inversion

along K, a contradiction.

Figure 18: The various combinatorial paths and hyperplanes.

This completes the proof of the theorem.

The reason for the previous lemma’s name is the following procedure analogous

to the proof of Theorem 6.3: Suppose that σ is an automorphism of a CAT (0)

cube complex X which acts stably and doesn’t have a fixed point. Since we are

working in the combinatorial metric, δσ is a strictly positive integer and must

be attained for some point x, namely δσ = dσ(x) > 0. Consider now a fixed

combinatorial geodesic γ0 joining x to σ(x). The Axis Building Lemma tells us

that d(x, σn(x)) = nδσ so for any n the concatenation of geodesic segments

σ−nγ0 ∪ . . . ∪ σ−1γ0 ∪ γ0 ∪ σγ0 . . . ∪ σnγ0
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is a geodesic segment and taking the union over all n yields an infinite combi-

natorial geodesic γ preserved by σ. By construction, Corollary 6.10 applies and

we have found an axis for σ. We have proved the following:

Theorem 6.13 ([Hag07]). If X is a CAT (0) cube complex and σ ∈ Aut(X) acts

stably then it is combinatorially semi-simple, namely it fixes a point x ∈ X(0) or

it acts by translations of length δσ on an infinite combinatorial geodesic.

This theorem has some neat application. For instance it forbids many groups

from acting without fixed points on CAT (0) cube complexes as we will now show.

Definition We say that a subgroup H ≤ G is distorted if there is a sequence of

elements hn ∈ H indexed by N such that the following three conditions hold:

1. dG(1, hn) < dG(1, hn+1)

2. limn→∞ dG(1, hn) =∞

3. limn→∞
dG(1,hn)
dH(1,hn)

= 0

where dG and dH represent the word metrics in G and H for a chosen set of

generators.

For instance, in the Baumslag-Solitar group BS(m,n) = 〈a, b|bamb−1 = an〉 the

subgroup 〈a〉 is distorted whenever m 6= n. In light of this concept from geometric

group theory we have the following corollary to Haglund’s result.

Corollary 6.14 ([Hag07]). If Γ is a group containing a distorted cyclic subgroup

H then every action of Γ by automorphisms on a CAT (0) cube complex has a

fixed point.

Proof. Let us suppose that the distorted cyclic subgroup H is generated by an

element γ0 ∈ Γ and that we have fixed a set of generators S := {s1, s2, . . . sk} for Γ.

If Γ acts on the CAT (0) cube complex X, we may assume (by passing to a cubical

subdivision if necessary) by the argument following the axis building lemma that

δγn0 = nδγ0 . If we take a geodesic decomposition γn0 = s1s2 . . . skn in CS(Γ) we
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6.4 Isometries of Polyhedral Cell Complexes

must have that δγn0 ≤ kn maxs∈S δs and consequently n · δγ0 ≤ kn maxs∈S δs. But

now because H is distorted we have

kn
n

=
dΓ(1, γn0 )

dH(1, γn0 )

n→∞−−−→ 0

which shows that δγ0 = 0 so γ0 has a fixed point.

6.4 Isometries of Polyhedral Cell Complexes

The semi-simplicity of the isometries of CAT (0) cube complexes should be com-

pared with the somewhat analogous result of Bridson which applies to CAT (0)

polyhedral cell complexes X whose set of shapes is finite. In this context, the

automorphisms of cell complexes are those isometries preserving the cell struc-

ture. In other words, they are the cellular isometries σ : X → X sending cells

isometrically onto cells. It should be noted that requiring the number of shapes to

be finite implicitly impose the restriction that the complex be finite dimensional.

As such, Haglund’s result could be thought of as some kind of a generalization of

the above theorem to the infinite dimensional case for cube complexes

Theorem 6.15 ([Bri99]). If X is a CAT (0) polyhedral cell complex whose set of

shapes is finite then every automorphism of X is semi-simple.

Sketch of the Proof. Let σ be an automorphism of X and recall that by defini-

tion of the translation length, there is a sequence of points (xn) in X such that

dσ(xn)→ δσ. Since the set Shapes(X) is finite, by passing to a subsequence, we

may assume that there is some fixed Ŝ ∈ Shapes(X) such that xn ∈ ϕn(Ŝ) for all

n where ϕn : Ŝ → Sn represents an embedding of the shape Ŝ into X. We now

use the classic trick and consider the pullback sequence x̂n := ϕ−1
n (xn) which lies

in the compact shape Ŝ and passing to yet another subsequence, we may assume

that x̂n → x̂. Now, by the triangle inequality

δσ ≤ d(σϕn(x̂), ϕn(x̂)) ≤ d(σ · ϕn(x̂), σ · xn) + d(σ · xn, xn) + d(xn, ϕn(x̂)) (6)
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where the first summand tends to zero because d(xn, ϕ(x̂)) ≤ dŜ(x̂n, x̂), the sec-

ond summand tends to δσ and the last summand tends to zero. One can show

that the set of numbers d(σϕn(x̂), ϕn(x̂)) is a discrete subset of R using the finite-

ness of Shapes(X) along with the fact that σ maps cells isometrically onto cells.

Therefore, there must be some n for which d(σϕn(x̂), ϕn(x̂)) = δσ so the isometry

is semi-simple.

The interest in this kind of result for general polyhedral complexes is that, as

shown in [Bri99] it provides fixed points for some actions of lattices upon them.

7 Geometric Superrigidity

We now turn our attention to a last and rather different aspect of CAT (0) geom-

etry, the world of rigidity. The basic scheme behind any superrigidity37 result is

that given a topological group G along with a subgroup Γ ≤ G for which there

is a morphism f : Γ → H into a third group H then, under suitable hypothesis,

there is a unique extension of f to a morphism f̂ : G→ H.

G

Γ H

f̂

f

The case we are most interested in is that of geometric superrigidity where

H = Isom(X) for X a complete CAT (0) space also called a Hadamard space.

Here, the hypothesis on H and f can be recast into conditions on the implicit

action Γ y X.

37This term was coined by Mostow in view of Margulis’ results at the International Congress
of Mathematicians held in Vancouver in 1974.
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7.1 Generalized Harmonic Maps

All actions of groups on metric spaces in this section are by isometries on

complete CAT (0) spaces.

We also reemphasize the crucial properties of a CAT (0) space X that will be

used heavily throughout this section:

1. The CAT (0) metric is convex.

2. Balls in a CAT (0) space are uniformly convex: given r, δ > 0 there exists

an ε = ε(r, δ) > 0 such that for any closed ball of radius r centred about a

point x ∈ X, if y1 and y2 lie within the ball and d(y1, y2) ≥ δ we must have

d(x, y1+y2
2

) ≤ r − ε.

The second point emphasizes the idea that, like in euclidean space, the midpoint

of the geodesic segment joining two distant points in a given ball must lie “deep”

within the ball. The focus of our attention will be on a very specific type of

lattices but the interested reader should also glance at [Bur94]’s short Survey of

Rigidity Properties of Group Actions on CAT (0)-Spaces.

The constructions and results of this section originate from analogous ones

in [GKM08] where they were carried out in the context of so-called Busemann

non-positively curved spaces (metric spaces where the distance function is convex)

assuming uniform convexity as an axiom. See [Pap05] for a more detailed approach

to this weaker notion of nonpositive curvature.

For the remainder of this section, we let X denote a complete CAT (0) spaces.

7.1 Generalized Harmonic Maps

Harmonic maps ϕ : M → N between Riemannian manifolds are critical points

of the Dirichlet energy functional. Heuristically, one can think of a harmonic

transformation ϕ as requiring a minimal amount of “energy” to deform M into

its image ϕ(M) ⊆ N . Following [GKM08] and [Jos97], we generalize this notion

of energy to the case of equivariant maps between metric spaces with respect to
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7.1 Generalized Harmonic Maps

a group action. Such critical maps will later allow us to see that certain orbit

maps for subgroup actions on CAT (0) spaces are continuous, facilitating their

extension to the whole group.

Recall that if G is a locally compact topological group, there is a unique (up

to scaling) countably additive, translation invariant measure defined on the Borel

algebra generated by all compact subsets of G. This is the Haar measure38 defined

on G that we will henceforth denote by µ.

Irreducible and Uniform Lattices If a discrete subgroup Γ ≤ G has finite co-

volume and compact quotient, namely µ(G/Γ) <∞ and G/Γ is compact, we say

that Γ is a uniform lattice in G. If Γ is a uniform lattice in G = G1×G2×. . .×Gn,

we say that it is irreducible if Γ(
∏

j 6=iGj) is dense in G for any 1 ≤ i ≤ n. In

particular, this means that the projection onto the i−th coordinate πi(Γ) is dense

in Gi for any i.

Let us now specialize to the case where we are given a finitely generated

irreducible uniform lattice in a compactly generated locally compact group Γ ≤
G1 × G2 = G with an action Γ y X by isometries that we wish to extend to

an action of G. The first step in this direction will be the construction of an

associated CAT (0) space of equivariant functions ϕ : G→ X induced by Γ y X.

Since Γ is uniform, there is a measurable relatively compact Ω such that G = Γ·Ω.

Compact sets have finite Haar measure so we may renormalize µ so that (Ω, µ)

becomes a probability space.

Space of Equivariant Maps Denote by L2(Ω, X) the set of Γ−equivariant mea-

surable maps ϕ : G→ X subject to the L2 condition that
∫

Ω
d2(ϕ(ω), x0)dµ <∞

for some fixed x0 ∈ X. Since µ is finite, this condition does not depend on

the choice of x0 by the triangle inequality in X. Recalling that Γ · Ω = G

and all ϕ satisfy γ · ϕ(ω) = ϕ(γ · ω) we abuse notation and make no real dis-

tinction between ϕ : Ω → X and ϕ : G → X. We give L2(Ω, X) the metric

ρ2(ϕ, ψ) =
∫

Ω
d2(ϕ(ω), ψ(ω))dµ.

38Please consult [FF99] for a development of this theory.
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7.1 Generalized Harmonic Maps

The following lemma characterizes geodesics in L2(Ω, X).

Lemma 7.1 ([KS93],[Jos97]). Let ϕ0, ϕ1 ∈ L2(Ω, X) and define a family of

geodesics {σω : [0, 1] → X}ω∈Ω such that σω(0) = ϕ0(ω) and σω(1) = ϕ1(ω).

The family of maps ϕt(ω) := σω(t), t ∈ [0, 1] is a geodesic joining ϕ0 to ϕ1 in

L2(Ω, X).

Proof. We verify that ρ2(ϕ0, ϕt) =
∫

Ω
d2(ϕ0(ω), ϕt(ω))dµ =

∫
Ω
t2d2(ϕ0(ω), ϕ1(ω))dµ =

t2ρ2(ϕ0, ϕ1) from which the result follows.

Lemma 7.2 ([Jos97]). If X is a complete CAT (0) space then L2(Ω, X) is also

CAT (0) and complete.

Proof. The completeness of L2(Ω, X) is straightforward. To see that it is CAT (0)

notice by Lemma 7.1 that given f, g, h ∈ L2(Ω, X), the triangle comparison prop-

erty, or the CN inequality holds pointwise for f(ω), g(ω) and h(ω) so integrating

yields the desired result.

At this point, we are in a good position to define an energy functional on

L2(Ω, X). However, since we will want to minimize it we need conditions to ensure

that it will be finite and attain a minimum39. To this end, let 〈Σ〉 = Γ be a finite

generating set and 〈K〉 = G1 be a compact generating set. We introduce a notion

of “size” for an element g1 ∈ G1 by the map h : G1 → R, h(g1) := e−dK(1,g1)2+1

where dK is the word metric on G1. This function along with the L2 condition will

ensure that energy is finite. We further assume that the displacement function

dΣ → ∞ as x → ∞ where dΣ = maxσ∈Σ d(σ · x, x) and x eventually leaves

any bounded set. This notion is described as non-evanescence in [Mon06] and is

equivalent to the fact that there are no fixed points in the boundary ∂X when

X is a proper metric space40. This condition is used to ensure that energy will

attain its infimum.

39A more general outline for this kind of construction is indicated in Section 7.4
40A metric space where closed balls are compact.
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7.1 Generalized Harmonic Maps

Definition The G1 − Energy 41 of a function ϕ ∈ L2(Ω, X) is defined to be

E(ϕ) =

∫
Ω×G1

h(g1)d2(ϕ(ω), ϕ(ωg1)) =

∫
(Γ\G)×G1

h(g1)d2(ϕ(g), ϕ(gg1)).

Note that it corresponds to the total amount of resulting “stretch” in the image

under ϕ of the right action G1 y Γ \G proportional to the “size” of the elements

of G1.

We immediately highlight a few properties of energy E : L2(Ω, X)→ R.

1. E is convex by convexity of the CAT (0) metric and Lemma 7.1.

2. E is finite by the definition of h and using the triangle inequality in X

combined with compactness of Ω.

3. E is continuous.

4. E is G2−invariant from the right i.e. E(ϕ) = E(ϕ(·g2)).

In fact, letting M = inf{E(ϕ) : ϕ ∈ L2(Ω, X)} we can finally define the key

ingredient of our construction.

Definition We say that ϕ is harmonic if E(ϕ) = M .

Theorem 7.3 ([GKM08], Theorem 3.2). There exists a harmonic map.

Sketch of the proof. Let the norm of ϕ ∈ L2(Ω, X) be ||ϕ|| := ρ(ϕ, x0) where x0

is the map constantly equal to x0. Defining a family of maps ϕn satisfying

1. E(ϕn) ≤M + 1
n

2. ||ϕn|| ≤ inf{||ϕ|| : E(ϕ) ≤M + 1
n
}+ 1

n

one can show using the fact that dΣ → ∞ and the uniform convexity of X that

they are uniformly bounded. This then leads to the fact that they form a cauchy

sequence. Finally, since L2(Ω, X) is complete and E is continuous we obtain a

harmonic map.

41See [Jos97] for a more general notion of energy for maps between metric spaces.
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Remark Notice that since energy is G2−invariant if we are given a harmonic

function ϕ, its translate ϕ(·g2) is also harmonic.

Lemma 7.4 (Harmonic Functions Are G1−Parallel). If ϕ and ψ are harmonic,

then the geodesic segment [ϕ(g), ϕ(gg1)] is parallel to [ψ(g), ψ(gg1)].

Sketch of proof. This follows from the convexity of the CAT (0) metric along with

the minimality of E(ϕ).

The following lemma, implicit in the proof of the main theorem of [Mon06] is

key to the next results.

Lemma 7.5 (Key Lemma). Fixing any g1 ∈ G1, the function g 7→ d(ϕ(g), ϕ(gg1))

is essentially constant. The same holds when we fix any g2 ∈ G2.

Proof. Recall that in a CAT (0) space, a geodesic segment [a, b] is parallel to [x, y]

if and only if [a, x] is parallel to [b, y] as shown in [Bus48]. Combining this with

Lemma 7.4 we have that d(ϕ(gg2), ϕ(gg1g2)) = d(ϕ(g), ϕ(gg1)). On the other

hand, d(ϕ(g), ϕ(gg1)) = d(γ · ϕ(g), γ · ϕ(gg1)) = d(ϕ(γg), ϕ(γgg1)) since ϕ is

Γ−equivariant and Γ acts by isometry on X. But now, since Γ is irreducible, the

right action G2 y Γ \G is ergodic and we obtain the result.

Remark This is the first place where the irreducibility of the lattice Γ is used,

all previous constructions, in particular the construction of the space L2(Ω, X)

hold in a more general setting.

Corollary 7.6. Harmonic maps are essentially continuous.

Sketch of proof. The Key Lemma 7.5 shows that d(ϕ(g), ϕ(ggi)) = ρ(ϕ, ϕ(·gi))
where i = 1, 2 so showing that the (right) action of G on L2(Γ\G,X) is continuous

we obtain that ϕ is essentially continuous.

It follows that by changing the value of a harmonic map on a set of measure zero

we obtain a continuous harmonic map. As such, in the rest of this section we

assume harmonic maps to be continuous.
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7.2 Reduced Actions on CAT (0) Spaces

7.2 Reduced Actions on CAT (0) Spaces

The following definition is a substitute introduced by Monod which corresponds

to Zariski density in the context of Lie groups.

Definition We say the action Γ y X is reduced if there is no unbounded closed

convex proper subset Y ( X such that the Hausdorff distance

dH(Y, γ · Y ) = inf
ε
{Nε(Y ) ⊂ γ · Y and Nε(γ · Y ) ⊂ Y }

is finite for all γ ∈ Γ.

The reason for introducing this definition is because it has the following strong

consequence for the action Γ y X outlined in Section 2.5 of [GKM08]42.

Lemma 7.7. If X is a complete CAT (0) space with no non-trivial Clifford trans-

lations and 〈Σ〉 = Γ y X is reduced with no globally fixed point where |Σ| <∞,

then

1. The displacement map dΣ →∞ as x→∞ where dΣ = maxσ∈Σ d(σ · x, x).

2. There is no non-empty closed convex proper Γ−invariant subset of X.43

Sketch of proof. The function dΣ is convex being the maximum of convex func-

tions and the absence of Clifford translations implies that it is not constant. Since

the proper sub-level sets {x ∈ X : dΣ(x) ≤ δ} for any δ > 0 are convex and of

bounded Hausdorff distances from each other under the action of Γ they must be

bounded because Γ y X is reduced so we must have that dΣ →∞.

Using the uniform convexity of X, the fact that dΣ →∞ implies by convexity

of dΣ, uniform convexity of X and an application of Zorn’s Lemma that there

exists a minimal closed convex Γ−invariant subset Y ⊆ X. If Y 6= X, it must be

bounded because Γ y X is reduced and Since X is CAT (0), it has a well defined

circumcentre44 which is a fixed point.

42Compare with Lemma 63 of [Mon06].
43In the terminology of [GKM08], the action is then said to be C−minimal.
44See Proposition 6.1.
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Theorem 7.8 ([GKM08], [Mon06]). Let Γ be an irreducible uniform lattice in a

locally compact and compactly generated group G = G1×G2× . . .×Gn and let X

be a complete CAT (0) space with no nontrivial Clifford translations. If Γ y X is

a reduced action with no global fixed points then it extends to a continuous action

Gy X which factors through one of the Gi’s.

We give a rough sketch of the argument to be fully carried out in the next

section:

Sketch of the proof. We will only prove the case where n = 2, the general case

follows by induction. Let ϕ : G → X be a continuous harmonic function. If

ϕ(G2) is bounded, we may take ϕ to be G2−invariant using the fact that Γ y X

is reduced. On the other hand, if ϕ(G2) is unbounded, we may take ϕ to be G1−
invariant using the fact that there are no nontrivial Clifford translations. Without

loss of generality, ϕ is continuous and G2−invariant. We use ϕ it to show that

the Γ−orbits in X are continuous when Γ is endowed with the G1−topology. The

G−action can then be defined by

g · x := lim
π1(γ)→π1(g)

γ · x.

(Counter)-Example [Mon06] Consider the following scenario where all groups

are discrete: G = (Z/2Z n Z)× (Z/2Z n Z) along with its index two irreducible

subgroup Γ = Z/2Zn(Z⊕Z). Here Γ y R where Z acts by translation and Z/2Z
acts by reflections but the action does not extend to G. (R has many nontrivial

Clifford translations!)

The assumption that Γ y X is reduced is rather strong. Using the techniques

of generalized harmonic maps [GKM08] obtained the following result of group

action extensions into the visual boundary ∂X of a Busemann non positively

curved space without the reduced action assumption. This was first proved by

[Mon06] for CAT (0) spaces omitting the use of generalized harmonic maps and

generalizing instead a splitting result for the the space X itself found in [BH99].
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Theorem 7.9 ([GKM08], [Mon06]). Let Γ be an irreducible uniform lattice in a

locally compact and compactly generated group G = G1 × G2 × . . . × Gn and let

X be a complete proper45 CAT (0) space. If Γ y X without a global fixed point,

then there is a closed, invariant subset ∅ 6= L ⊆ ∂X on which the action extends

continuously to G and factors through one of the Gi’s.

Remark It is shown in [Mon06] that Theorem 7.9 actually implies and generalizes

a celebrated theorem of Margulis for uniform lattices found in [Mar91].

7.3 Proof of Theorem 7.8

Proof. Let Γ ≤ G1 ×G2 be as in the statement of Theorem 7.8.

The first trick of this proof revolves around an iterative construction of closed

convex hulls in uniquely geodesic metric spaces. Let Y be a subset of a uniquely

geodesic metric space. Defining Y0 := Y and Yn := {x+y
2

: x, y ∈ Yn−1} we see

that Yn ⊃ Yn−1 (taking x=y) and that

Conv(Y ) = ∪∞i=1Yn

since any z ∈ Conv(Y ) must occur as the midpoint of a pair of points in Yn

for some n. The use of this construction is apparent when one recalls that since

energy is convex, if ϕ and ψ are harmonic, the convex combination ϕ+ψ
2

remains

harmonic.

Let ϕ : G1×G2 → X be harmonic. As we have seen, we can (and will) assume

harmonic maps to be continuous. We proceed by splitting up the problem into

cases as to whether ϕ(G2) is bounded or not to obtain a Gi−invariant harmonic

map.

1. ϕ(G2) is bounded:

Consider the orbit of ϕ under the (right) action of G2, namely the set G2 ·
ϕ := {ϕ(·g2) : g2 ∈ G2} in which all maps are harmonic. The Key Lemma

45A metric space where closed balls are compact.
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7.5 ensures that the distance between any two functions in G2 ·ϕ is bounded

so the circumcentre46 of Conv(G2 · ϕ) is a well defined G2−invariant map

ϕ0 which remains harmonic by our iterative construction of Conv(G2 · ϕ).

2. ϕ(G2) is unbounded:

Letting Y := Conv(ϕ(G2)), we claim that dH(γ · Y, Y ) < ∞ for all γ ∈
Γ. Indeed, if γ = (γ1, γ2) we see that γ · ϕ(g2) = ϕ(γ2g2γ1) since ϕ is

Γ−equivariant so d(γ · ϕ(g2), ϕ(γ2g2)) = d(ϕ(γ2g2γ1), ϕ(γ2g2)) is constant

by the Key Lemma 7.5. Since Γ y X is reduced, we conclude that X = Y .

Recalling our iterative construction for closed convex hulls we have X =

∪∞n=0Yn where points of ∪∞n=0Yn can be described as ψ(1) where ψ ∈ Conv(G2·
ϕ) is harmonic. To see this, notice that ψ(·) = ϕ(·g2) and write elements

of Yn as nested combinations of elements of ϕ(G2). Now, for any g1 ∈ G1,

the segments [ψ(1), ψ(g1)] and [ψ′(1), ψ′(g1)] where ψ, ψ′ ∈ Conv(G2 · ϕ)

are parallel by Lemma 7.4. As such, the map ψ(1) 7→ ψ(g1) extends

to a Clifford translation on the set {ψ(1) : ψ ∈ conv(G2 · ϕ}. But Y ⊂
{ψ(1) : ψ ∈ conv(G2 · ϕ} = X so because X has no non-trivial Clifford

translations ϕ(g2) = ϕ(g1g2) for all g2. Letting g1 vary we see that ϕ is

G1−invariant.

Without loss of generality, we can now assume that ϕ : G→ X is a continuous,

harmonic, Γ−equivariant and G2−invariant map. We would like to define the

extension of the action Γ y X by the rule

g · x := lim
π1(γ)→π1(g)

γ · x (7)

so we need to ensure that the limit makes sense. To do so, consider the orbit map

of a given point x ∈ X, Ox : Γ→ X defined by the rule γ 7→ γ · x.

Claim 7.10. If we equip Γ with the topology47 induced from G1 by the projection

map π1 : Γ→ G1 then Ox is continuous for all x ∈ ϕ0(G).

46See Proposition 6.1.
47This topology is not necessarily Hausdorff.
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To see this, let gx be such that ϕ0(gx) = x and notice that since ϕ0 is

G2−invariant we may assume that gx ∈ G1. Using Γ−equivariance of ϕ0, γ 7→
γ · x = γ · ϕ0(gx) = ϕ0(γ · gx) so we can factor Ox.

G1 XΓ ϕ0·gx

Ox

Since ϕ0 is continuous and ·gx : Γ → G1 is continuous for the given topol-

ogy, we conclude as claimed that Ox is continuous when Γ is endowed with the

G1−topology.

Now, keeping in mind that Γ acts by isometries we see that the set

{x ∈ X : Ox is continuous when Γ is equipped with the G1 topology}

is nonempty, closed, convex and Γ−invariant so it must be equal to X by Lemma

7.7. Notice that since Ox is continuous when Γ is endowed with the G1−topology,

the action Γ y X factors through π1(Γ) so we may think of Γ as a dense subgroup

of G1 because it is irreducible in G. As such, using the continuity of Ox we may

define the action of g ∈ G by the Equation (7) above where the action factors

through G1.

7.4 The General Method

To conclude this section we outline some ideas behind the existence of generalized

harmonic maps.

Given a CAT (0) (whence uniformly convex) spaceX, the nonnegative function

d2
y : X → R+ defined by the rule d2

y(x) := d2(x, y) is strictly convex so for all

geodesics σ : [0, 1]→ X and for all ε > 0 there is a δ > 0 such that

d2
y(σ(1/2)) ≥ 1

2
d2
y(σ(0)) +

1

2
d2
y(σ(1))− δ =⇒ d(σ(0), σ(1)) < ε. (8)
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To any function E : X → R ∪ {∞} we can associate the Moreau-Yosida

approximations E(n) := infx∈X{nE(x) + d2
y(x)}, n ∈ N. The following Lemma

and Theorem are proved in [Jos97] in the more general context of any metric

space admitting a function similar to d2
y in the sense that it satisfies (8), this

“convexity” condition is key to their proofs.

Lemma 7.11. If X is a complete CAT (0) space and EX → R∪ {∞} is convex,

(lower semi-) continuous and not constantly equal to ∞ then for all n ∈ N there

is a unique xn ∈ X such that E(n) = nE(xn) + d2
y(xn).

Using this lemma, one readily obtains the following theorem which produces

under suitable hypothesis a minimum of the function E : X → R∪ {∞}, the key

to finding harmonic maps. This result should be compared with Theorem 7.3.

Theorem 7.12. If the sequence (d2
y(xn))n∈N is bounded as n → ∞ then (xn)

converges to a minimizer of E as n→∞.

Now, if we have a lattice Γ ≤ G which acts Γ y X we already know that

for any finite probability space Ω and a complete CAT (0) space X, the space

L2(Ω, X) of Γ−equivariant maps is also complete and CAT (0). In view of the

previously introduced general tools, we can define several different energy func-

tionals tailored to any given situation. Our first example is the G1−energy used

in the previous section,

E(ϕ) =

∫
(Γ\G)×G1

h(g1)d2(ϕ(g), ϕ(gg1))

but more generally, for any positive symmetric continuous function h : G×G→
R+ we can define an energy functional as:

E(ϕ) =

∫
∆(Γ)\G×G

h(g1, g2)d2(ϕ(g1), ϕ(g2))

where ∆(Γ) = {(γ, γ) : γ ∈ Γ} or any other sensible variant of these definitions.

In order to construct generalized harmonic maps by applying [Jos97]’s theorem

we need only ensure that:

90



1. At least one map ϕ ∈ L2(Ω, X) has finite energy.

2. The functions (d2
y(xn))n∈N are uniformly bounded.

While condition (1) is intimately linked to the choice of the function h and the

nature of Γ ≤ G, condition (2) usually follows from some kind of “irreducibility”

assumption for the action Γ y X which implies a condition similar to dΣ → ∞
used in the previous sections. There are a variety of available criterions that work

in particular situations allowing the use of harmonic maps to solve many different

problems, see for instance [DO85], [Don87], [JY90], [KS93], [Jos97], [Pan06] and

of course [GKM08].

8 Concluding Remarks

The present survey of non-positive curvature in geometric group theory was far

from exhaustive and there are many paths that one could pursue from here. To

conclude, without burdening ourselves with technicalities, we wish to highlight a

few directions in which applications of the geometric methods developed could be

fruitful.

A first consideration arises by trying to imagine how results like Theorem

7.8 could be applied to spaces obtained by gluing constructions similar to those

studied in Section 3.1. It turns out that there is an entirely analogous theory of

combinatorial harmonic maps as developed by Wang, Gromov, Izeki and Nayatani

in [Wan98], [Wan00], [Gro03], [IN05] and summarized by Pansu in [Pan06]. One

simply considers a complex as a simplicial complex (by passing to an appropriate

subdivision) and thinks of each edge of the 1−skeleton as a coil spring. The energy

of a mapping from a group into the complex is then simply the resulting potential

energy of the coil springs, and mappings which result in equilibrium positions are

called harmonic. Finding a class of concrete examples to which analogous abstract

results would apply could yield useful insights. This discretized combinatorial

approach to energy and harmonic maps might be a good place to start.
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These ideas fit into a superrigidity research program which consists in finding

the minimal necessary conditions on a group Γ such that an action of this group

on a complete CAT (0) space X would either have a fixed point or stabilize a

convex subset which is isometric to X up to rescaling metrics on its non-trivial

factors. It is unknown, to the best of our knowledge, whether there is an infinite

group which does not act without a fixed point on any complete CAT (0) space.

This would be a good place to apply a theorem similar to Theorem 7.8 but the

stringent requirements, that of a reduced action and non-evanescence, severely

limit its applications. Further investigations will be necessary.

On a different topic, during the course of his study of manifolds in 1912, Dehn

encountered three fundamental algorithmic problems of group theory as studied

from the perspective of group presentations:

1. The Word Problem which requires determining if a word on an alphabet of

generators for a group is trivial.

2. The Conjugacy Problem which requires determining whether two elements

of a group are conjugates.

3. The Isomorphism Problem which requires determining if two groups given

by two presentations are isomorphic.

It was discovered in the 1950′s that these problems are undecidable for generic

finitely presented groups. However, such algorithms are known to exist for many

classes of groups and, in particular, for so-called hyperbolic groups as defined

by Gromov in [Gro87]. Without going into too much detail, we say a finitely

generated group Γ ∼= 〈A|R〉 is hyperbolic if there is some δ ≥ 0 such that every

geodesic triangle 4 in CA(Γ) is δ−thin, meaning that each of its sides lies in the

δ-neighbourhood of the other two. While the solutions to the word and conjugacy

problem for hyperbolic groups have been known for some time48, the isomorphism

problem in this class was solved quite recently by [DG11] following the initial ideas

of [Sel95] that were extended in [DG08].

48See [BH99] for proofs and other references.
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Since this other global feature of negative curvature is in a sense dual to the

local one of Alexandrov, one can wonder which relations exist between groups

acting geometrically on CAT (0) spaces and hyperbolic groups. For instance, it

is a theorem of [Gro87] that a finitely generated group Γ acting properly and

cocompactly by isometries on a CAT (0) space X is hyperbolic if and only if X

doesn’t contain any isometric embeddings of E2. On the other hand, according

to [Bri07] and to the best of our knowledge, it is currently unknown wether ev-

ery hyperbolic group acts properly and cocompactly by isometries on a CAT (0)

or CAT (−1) space. One might also independently wonder if the Isomorphism

Problem is solvable for groups acting geometrically on CAT (0) spaces and in the

affirmative, if techniques behind the solutions in hyperbolic groups could be of any

help. Working in this direction, one could first try to use the additional structure

of those groups acting geometrically on CAT (0) cube complexes to understand

the problem in this class of groups.

In a similar vein, recall the results mentioned in Section 3.3 expressing a

finitely presented subgroup of the fundamental group of a non-positively curved

complex as the fundamental group of some other non-positively curved complex

obtained by successively passing to connected covers and finite subcomplexes. It

would be interesting to replace the abstract constructions used to prove the result

by concrete ones which would yield an algorithm for finding the new complex. A

concrete understanding of this process could yield greater insight into the struc-

ture of the finitely presented subgroups of groups acting on CAT (0) spaces in

general.

Finally, one could remark that we have only touched a few of the known

examples of CAT (0) spaces other than the gluing constructions that we mentioned

and actual Riemannian manifolds of bounded sectional curvature. There are many

other constructions that one could study and it would also be interesting to find

entirely new ones.
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A Model Spaces

Following [BH99] we provide a brief account of the material necessary to under-

stand model spaces. Most of our study takes place in the realm of metric spaces

(X, d) that we will denote by X whenever there is no ambiguity with respect to

the metric. In view of generalizing to such spaces many of the concepts of differen-

tial geometry, our main concern is the notion of “shortest paths” between points.

For points x, y ∈ X, a geodesic path49 joining x to y is a map c : [0, 1] ⊂ R→ X

such that c(0) = x, c(1) = y and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, 1]. Images

of such paths are referred to as geodesic segments and denoted [x, y]. If there is a

(unique) geodesic joining any two points of x, we say X is a (uniquely) geodesic

space. A subset C ⊂ X is called convex if every pair of points x, y ∈ C can be

joined by a geodesic segment [x, y] ⊂ C.

Given a curve c : [a, b] → X, we define its length as the supremum over all

finite partitions [t0, t1] ∪ [t1, t2] . . . ∪ [tn−1, tn] of the geodesic segment [a, b] ⊂ R
of the sum of the distances d(c(ti), c(ti+1)). Those curves having finite length in

this sense are said to be rectifiable. With this notion at hand, a metric space X is

said to be a length space if d(x, y) coincides with the infimum of the length of all

possible curves joining x to y. One should keep this in mind in Section B where

we “rig” our construction of a metric on cell complexes to make them into length

spaces. In this sense, we are equipping them with the “inner metric”.

Throughout this work, geodesic metric spaces will be frequently compared to a

standard set of model spaces Mn
k of constant sectional curvature k and dimension

n which can be roughly divided into three distinct classes according to whether k

is zero, positive or negative. Such spaces can be defined as complete 1−connected

Riemannian manifolds of constant sectional curvature k but we approach them

from the purely metric point of view. In the three main cases mentioned, the

standard models are Euclidean n-space with the usual metric En = Mn
0 , the n-

sphere with the “angular” metric Sn = Mn
1 and the hyperboloid model Hn = Mn

−1

with the “Minkowski” metric. These metrics arise from considering the given

49Notice that this notion is stronger than the differential geometric one.
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spaces as subsets of Rn+1 with the appropriate inner product.

In the case of Sn ⊂ Rn+1 the metric is obtained by associating to two points

x, y ∈ Sn, the smallest value of the two possible angles between them. For-

mally, this is done by saying that we take the unique solution of the equation

cos(d(x, y)) = (x, y) with the restriction that 0 ≤ d(x, y) ≤ π where (x, y) is

the usual inner product in Rn+1. Similarly, if we view Hn ⊂ Rn+1 as the hy-

perboloid model it coincides with the upper sheet of the set of points x ∈ Rn+1

with 〈x, x〉 = −1 where 〈x, y〉 := −xn+1yn+1 +
∑n

i=1 xiyi is the Minkowski inner

product. We can then define the distance analogously to the spherical case as the

unique solution of the equation cosh(d(x, y)) = −〈x, y〉 with d(x, y) ≥ 0.

Model spaces when k < 0 and k > 0 are respectively obtained by scaling

the metrics of Mn
−1 = Hn and Mn

1 = Sn by a factor of 1√
|k|

to obtain Mn
k . One

of the reasons we will favour those Mn
k where k ≤ 0 or CAT (0) spaces is the

following attractive property which is familiar in the euclidean or hyperbolic case

and follows easily from the scaling of the metric.

Proposition A.1. For k ≤ 0, Mn
k is a uniquely geodesic metric space where all

balls are convex.

There is a similar result when k > 0, for pairs of points x, y such that d(x, y) <

π/
√
k and closed balls of radius < π/(2

√
k). The quantity Dk := π/

√
k when

k > 0 and ∞ when k ≤ 0 is frequently referred to for such spaces and called the

diameter.

The interested reader may consult [BH99] for an elaborate discussion of model

spaces and their isometries or [Ber03] for a friendly approach to the Riemannian

point of view.

B Polyhedral Cell Complexes

The standard examples of metric spaces of a given curvature are Riemannian

manifolds but the constructions carried out below yield a much more exotic class

of length spaces that often are not manifolds. In order to maintain transparency
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of the ideas, following [BH99] we first work in the context of simplicial complexes

and introduce a canonical subdivision process to carry over results in the general

setting of Mk−polyhedral cell complexes50.

The construction of Mk−simplicial complexes is entirely analogous to that of

simplicial complexes in Euclidean space. An n−simplex S ⊂ Mn
k is the convex

hull of n + 1 points in general position. The faces or cells F ⊂ S are the convex

hulls of subsets of the initial set of n + 1 vertices and the interior of S, int(S),

is the set of its points that do not lie on any face. To build an Mk−simplicial

complex we fix a disjoint family of Mk−simplices {Sλ ⊂ Mnλ
k : λ ∈ Λ} and glue

them together along isometric faces of our choice to obtain a connected51 complex

X. In analogy with the classical definition of CW complexes52, we denote by X(i)

the set of faces of X spanned by at most i+1 points. This is the i−skeleton of X.

The following definition is the key to understanding the properties of the metric

structure we will endow X with.

Shapes We denote by Shapes(X) a fixed choice of representatives called shapes

for the set of different isometry types of faces of X. As such, for every face F

of a simplex S ⊂ X there is an associated F̂ ∈ Shapes(X) corresponding to the

unique chosen representative for faces of X isometric to it. Since simplices are

also faces, we can think of Ŝ ∈ Shapes(X) as lying in an abstract copy of Mn
k

above X and equipped with a family of isometric embeddings ϕS : Ŝ → X sending

the shape Ŝ to any given simplex S ⊂ X isometric to it.

Each simplex S ⊂ X inherits a metric dŜ from the corresponding Ŝ ∈ Shapes(X)

defined by pulling pairs of points in S back to Ŝ. As such, we can endow X with

the quotient pseudometric and under suitable hypothesis turn it into a length

space as outlined below. In what follows we refer to this pullback metric as the

local metric.

50These will also be called Mk− polyhedral complexes, polyhedral complexes, cell complexes
or even complexes when the meaning is evident from the context.

51In general, this is not required but since we are interested in geodesic metric spaces, dis-
connected complexes are rather uninteresting.

52Consult [Hat05] for a definition and basic properties.
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To define a global metric, we need a coherent notion of path in X between

arbitrary points allowing us to make sense of the “distance” between them. At

this point, one would intuitively think of the distance between points in X as the

length of the shortest path joining them where the length of such paths would be

given by adding the successive distances travelled within fixed simplices. With

this in mind, an m-string in X from x to y is an ordered sequence of m + 1

points in X with the property that successive pairs of points in the sequence lie

in a common simplex. The length l(Σ) of an m−string Σ can now be defined as

the sum of the local distances between its successive pairs of points. Finally, as

one would intuitively expect, the quotient pseudometric53 on X is defined by the

formula

d(x, y) := inf{l(Σ)|Σ is a string from x to y}

where if there is no such string, we set d(x, y) :=∞. We henceforth ubiquitously

endow X with this pseudo-metric that will turn out to be a length metric when

Shapes(X) is a finite set.

It is unfortunate but true that the quotient pseudometric is not a true metric

in general, namely it can happen that d(x, y) = 0 while x 6= y. For instance,

this happens if we consider a graph with two vertices and infinitely many edges

joining them who’s length tends to zero. To capture the essence of the property

that cause this pathology, recall that the star of a point x is defined as

star(x) := {int(S) : S ⊂ X : x ∈ S}

and notice that these pathological examples arise when the distance (measured

in the local metric) from some point x ∈ X to star(x)\star(x) is zero. More

formally, we encapsulate this quantity as follows:

ε(x) := inf{ε(x, S)|S ⊂ K is a simplex containing x},
53We allow ourselves to define it in this way since it coincides with the general definition of

quotient pseudo metrics. In [BH99] it is first called the intrinsic pseudometric.
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where

ε(x, S) := inf{dŜ(x, F )|F is a face of S and x /∈ T}.

If S = {x} simply define ε(x, S) as ∞. When ε(x) is bounded away from zero,

points y ∈ X that lie very close to x with respect to the pseudo-metric must lie in

a simplex containing x. Showing that this condition holds uniformly will allow us

to draw a strong conclusion on the metric as shown by the proof of the following

key theorem.

Theorem B.1. If X is an Mk−simplicial complex with finitely many isometry

types of faces then it is a complete geodesic length space when equipped with the

intrinsic quotient pseudo-metric.

The proof of this theorem exploits the finiteness property of Shapes(X) to give

a uniform lower bound on ε(x) as x ranges over the points of X. The following

pivotal lemma indicates the second step of this reasoning.

Lemma B.2. Suppose that ε(x) is uniformly bounded away from zero and let

x, y ∈ X be two points such that d(x, y) < ε(x). Then, any simplex S contain-

ing y necessarily contains x and dŜ(x, y) = d(x, y). In particular, the intrinsic

pseudometric is a metric and (X, d) is a length space.

Proof. Since d(x, y) < ε(x), ∃ an m−string Σ joining x to y such that l(Σ) ≤ ε(x).

However, from l(Σ) ≤ ε(x), it follows that the first three points of Σ lie in a

common simplex S, so we can replace Σ by a shorter m−string, omitting the

second point. Continuing in this manner, one eventually obtains a 1−string Σ

consisting of two points {x, y} such that dŜ(x, y) = d(x, y).

Proof of the Theorem. By virtue of the lemma, to obtain the length space it suf-

fices to show that ε(x) > 0 for every x ∈ X. Consider x̂ ∈ Ŝ and define a quantity

ε(x̂) as the minimum distance d(ψ(x̂), F̂ ′) over all fixed faces F̂ ′ ⊂ Ŝ ′ ∈ Shapes(X)

and isometric embeddings ψ : Ŝ ↪→ Ŝ ′ onto a face of Ŝ ′ whose interior is disjoint

from the face F̂ ′ ⊂ Ŝ ′. Since there are only finitely many shapes, ε(x̂) > 0 and if

x = ϕS(x̂) it follows that ε(x) ≥ ε(x̂) > 0 as desired.
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We now know ε(x) 6= 0. Suppose however that there is a sequence (xn) ∈ X
such that ε(xn) → 0. This can not happen since it would require shapes of

arbitrarily small size contradicting the fact that Shapes(K) is finite so in fact,

ε(x) > c > 0 for some constant c. To show that X is complete, consider a cauchy

sequence (yn). It must then hold that for some N > 0, for all n,m ≥ N we have

d(yn, ym) < c. It then follows that for all n ≥ N , yn ∈ S, some fixed simplex of

X. Such a simplex is complete so the sequence converges.

In fact, the resulting space is also geodesic as shown in [BH99] and the result

can be extended to arbitrary polyhedral complexes with a certain amount of work

through the process of barycentric subdivision we will describe shortly:

Theorem B.3 ([BH99]). Let X be an Mk−polyhedral cell complex equipped with

the intrinsic quotient pseudo-metric. If the set of shapes of X is finite then it is

a complete geodesic metric space54.

An Mk−polyhedral cell complex is defined in essentially the same way as

an Mk−simplicial complex. In this case, the building blocks are Mk−convex

polyhedral cells P ⊂ Mn
k defined as the convex hull of a finite sets of points55

in Mn
k . The faces of P are its non-empty intersections with various hyperplanes

of the ambient space such that P is contained in one of the closed half-spaces

they define. As usual, the 0 dimensional ones are its vertices. To construct

an Mk−polyhedral cell complex we start with a disjoint family of Mk−convex

polyhedral cells {Pλ ⊂Mnλ
k : λ ∈ Λ} and glue them together along isometric faces

of our choice to obtain a connected complex X. All notions previously defined

in the simplicial case cary over to polyhedral complexes with minor adjustments.

In fact, given a polyhedral complex, we can give it the structure of a simplicial

complex using the following procedure.

Given any convex polyhedral cell P ⊂ Mn
k , there is a point bP ∈ P fixed

by all isometries of the cell called the barycentre of the vertices of P . The first

54Recall that we require complexes to be connected!
55If k > 0, the points need to lie in an open ball of radius Dk/2 in order to ensure the existence

of required geodesics.
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barycentric subdivision of P is the Mk−simplicial complex P ′ defined as follows:

given a strictly increasing sequence of faces F0 ⊂ F1 ⊂ . . . ⊂ Fn, there is a

geodesic simplex corresponding to the convex hull of the barycentres of the Fi’s.

The collection of these simplices impose the necessary structure on P .

If we apply this process individually to the cells of X, an Mk−polyhedral cell

complex, we obtain its first barycentric subdivision X ′. This X ′ is a polyhedral

complex whose cells are all geodesic simplices but it is not always a simplicial

complex as the intersection of two simplexes may only be the union of faces.

To remedy this, we repeat the subdivision process a second time and obtain the

second barycentric subdivision X ′′ which always has the structure of a simplicial

complex.

Example Begin with a cylinder depicted as a square where a pair of opposite

edges are identified. This is a very simple polyhedral complex consisting of a

single cell, namely the square. Notice that in the first barycentric subdivision,

the two identified triangles intersect at two disjoint vertices (three dots in the

picture) when in a simplicial complex they should intersect on a single face. This

complication does not occur in the second barycentric subdivision as the identified

edges are “far enough apart” as illustrated in Figure 19.

Figure 19: Barycentric subdivision in a cylinder.

C A Word on Amalgamated Products

Due to their appearance in a few key places in the text, we place a few words on

amalgamated free products and Higman-Neumann-Neumann (HNN) extensions
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based on the treatment given in [LS77].

Given two groups Γ1 and Γ2 with presentations Γ1 = 〈A1|R1〉 and Γ2 =

〈A2|R2〉, one can form their free product which is concretely defined as the disjoint

union of their presentations Γ1 ∗ Γ2 = 〈A1 t A2|R1 t R2〉. This construction

instantiates the coproduct in the category of groups and readily generalizes to

concepts mentioned above as follows. Suppose we are given subgroups H1 ≤ Γ1

and H2 ≤ Γ2 along with an isomorphism φ : H1 → H2. The free product with

amalgamation of Γ1 and Γ2 along the subgroups H1 and H2 by the isomorphism

φ is defined by the presentation

Γ1 ∗H1'H2 Γ2 = 〈A1 t A2|R1 tR2, h1 = φ(h1) for every h1 ∈ H1〉.

More generally, if we are given a group H along with a family of monomorphisms

φλ : H ↪→ Γλ, the amalgamated free product of the Γλ along the isomorphic

images of the group H is defined as the quotient of ∗λΓλ by the normal closure of

the subgroup generated by elements of the form φλ(h)φλ′(h)−1. Notice that for

every λ there is a natural inclusion of Γλ into the amalgamated product.

The construction of HNN extensions is similar in flavour to the amalgamated

product. Let Γ = 〈A|R〉 be a group along with two subgroups H1 and H2 isomor-

phic via the map φ : H1 → H2. The HNN extension of Γ relative to the subgroups

H1 and H2 related by the map φ is defined concretely as

Γ∗H := 〈A, t|R, φ(h)t−1ht ∀ h ∈ H1}

where the letter t /∈ A is called the stable letter and H is an abstract group

isomorphic to the associated subgroups H1 and H2.

In fact, both constructions can be thought of as being part of Stalling’s uni-

fying concept of a bipolar structure [Sta68]. Informally, they both involve two

subgroups related by an isomorphism but in the first case the subgroups are in

different groups while in the second they both lie in the same one hence one might

say the first case is “disconnected” while the later is “connected”. To give both
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constructions a concrete realization we illustrate their relation to topology in two

key examples found in [LS77] but first we state the following crucial theorem

referring the reader to [Hat05] for a proof.

Theorem C.1 (Seifert-van Kampen). Let X be a topological space with a dis-

tinguished basepoint x0 and suppose that it can be written as the union of open

sets X = ∪iAi where x0 ∈ Ai and Ai is path connected for each i. Denote by ϕij

the homomorphism of fundamental groups π1(Ai ∩ Aj, x0) → π1(Ai, x0) induced

by the inclusion. If Ai ∩ Aj ∩ Ak is path connected for all choices of i, j and k

then π1(X) ∼= ∗iπ1(Ai)/〈ϕij(σ)ϕji(σ)−1 : σ ∈ π1(Ai, x0) ∩ π1(Aj, x0)〉.

Example Let X and Y be path-connected topological spaces.

1. Let U be an open path-connected subspace of X homeomorphic by a func-

tion h to the open path-connected subspace V ⊂ Y . Choose a base point

u ∈ U for the fundamental group π1(X) and a corresponding one f(u) ∈ V .

If we assume that the homomorphisms π1(U)→ π1(X) and π1(V )→ π1(Y )

induced by the inclusion map are injective then the homeomorphism h in-

duces an isomorphism h∗ : π1(U) → π1(V ). A simple application of the

Seifert-van Kampen Theorem implies that the space Z obtained by iden-

tifying U with V has fundamental group π1(Z) = π1(X) ∗H π1(Y ) where

H ' π1(U) ' π1(V ).

2. Similarly, if we suppose that in the above scenario U and V are both sub-

spaces of X and we attach a handle to X from U to V the Seifert-van

Kampen Theorem show that for the resulting space Z, the fundamental

group π1(Z) is the HNN extension π1(X)∗H .

D Disc Diagrams

Disc diagrams are central to much of geometric group theory as developed in

[LS77] and we will use them in several instances. The following elegant definition

of the concept can be found in [Wis11].
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Disc diagram A disc diagram or van Kampen diagram D is a compact, con-

nected, simply connected and contractible combinatorial 2−complex equipped

with a chosen embedding D ↪→ R2. Thinking of S2 as R2 ∪ ∞ we define the

boundary path of the disc diagram ∂pD as the attaching map of the 2−cell con-

taining the point at infinity which is missing to give S2 a cell structure.

Most of the time, one refers to a disc diagram in a complex X which is a combi-

natorial map D → X. The key to using disc diagrams lies in the following result

known as van Kampen’s Lemma for which our elegant statement is once again

taken from [Wis11]. Although the result is originally due to van Kampen, we

refer the reader to [LS77] for a modern proof.

Lemma D.1 ([VK33]). Let X be a CW complex. A closed combinatorial path

P → X is nullhomotopic if and only if there is a disc diagram D → X with

P ' ∂pD such that the following diagram commutes:

∂pD −−−→ D∥∥∥ y
P −−−→ X

E Notation

We enumerate here various frequently used notations for the convenience of the

reader, more or less in the order in which they appear. They are also defined in

the text where appropriate.

1. d(x, y) and B(x, ε): distance function for metric spaces and their open balls.

2. [x, y] : geodesic segment between points x and y.

3. Iso(X) and Homeo(X): isometry and homeomorphism groups.

4. Mn
k ,Dk, En, Hn and Sn : model spaces of constant curvature k and their

diameter followed by Euclidean, hyperbolic and spherical space.
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5. 4̄, ∠̄p(q, r): comparison triangle and angle, usually in euclidean space.

6. Dg1,g2(s): the distance between two geodesics g1 and g2 parametrized pro-

portionally to arc length at time s.

7. Γ = 〈A|R〉, CA(Γ), CA,R(Γ), SA,R: the group Γ given by a presenta-

tion on the generators A, the Cayley graph, Cayley complex and standard

2−complex of the presentation.

8. Γ y X: the group Γ acting on the space X by isometry or homemorphism.

9. C0(X), Sx(X): Euclidean cone and space of directions.

10. Link(x,X) is the geometric link of x in the cell complex X.

11. Shapes(X), dŜ : the set of isometry classes Ŝ of faces S of a cell complex X

and the local metric of such a complex, d is reserved for the quotient length

metric.

12. f : X
f ′−→ Y

g−→ Z: tower lift of f .

13. K = K1# . . .#Kn, D(Π): a knot decomposed as a connected sum and the

Dehn complex of a knot projection Π.

14. D, ∂D: euclidean disc and its boundary path.

15. dσ : X → R≥0, δσ, Min(σ): displacement function and translation length

of σ followed by the set of points at which σ attains its translation length.

16. ∂X, X: The visual boundary and bordification of X.

17. dH(A,B): Hausdorff distance between subsets A and B of a metric space.

18. L2(Ω, X), ρ2(ϕ, ψ): space of equivariant maps and its distance.

19. dΣ : the displacement map maxσ∈Σ d(σ · x, x).
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géodésique. J. Math. Pures Appl., 4:27–73, 1898.

[Hag07] F. Haglund. Isometries of cat (0) cube complexes are semi-simple. Arxiv

preprint arXiv:0705.3386, 2007.

[Hat05] A. Hatcher. Algebraic topology. 2005.
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