
Two mathematical security aspects of
the RSA cryptosystem:

signature padding schemes
and key generation with a backdoor

Genevieve Arboit

Doctorate of Philosophy

School of Computer Science

McGill University

Montreal, Quebec

February 2008

A thesis submitted to McGill University in partial fulfilment of the requirements of
the degree of philosophy doctorate in computer science.

Copyright Genevieve Arboit, 2008.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-50765-0
Our file Notre reference
ISBN: 978-0-494-50765-0

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

DEDICATION

This document is dedicated to all people dear to me.

n

ACKNOWLEDGEMENTS

Firstly, I thank my thesis adviser, Claude Crepeau, for suggesting the topic of

backdoors and for his counsel. I also thank Jean-Marc Robert and Alain Slakmon

for their precious reading and comments.

I thank my parents, my family, my friends, and Dan Nyborg who put up with

my excentric notion of becoming a doctor. I thank the crypto and quantum info

lab people, as well as Geza Szamosi, Faith Fich, Charles Rackoff, Laurie Hendren,

David Avis, Prakash Panangaden, and Bettina Kemme, for their interest and dis­

interested help. In particular, I owe thanks to Isabelle Dechene, Raza Ali Kazmi,

Simon Pierre Desrosiers, Martin Courchesne, Natasa Przulj, Nicole Witen (came

up with the Casanova story), Valerie Hongoh, Jenifer Thorsley, Shashikala Sivapra-

gasam, Paul Dumais, Hugo Touchette, and Frangois Pitt. Concerning publications,

I would additionally like to thank David Naccache, Jean-Sebastien Coron, and a few

anonymous referees for useful comments.

The McGill kendo club and d'Orangeville sensei are a late addition to the people

I acknowledge the help of and deeply thank, for making the writing of a philosophy

doctorate thesis appear to be relatively easy.

i i i

ABSTRACT

This work presents mathematical properties of the RSA cryptosystem. The top­

ics of backdoors and padding algorithm are developped.

For padding schemes, we give a practical instantiation with a security reduction.

It is based on the compression function of SHA-1 without any chaining function. Our

solution has the advantage over the previous one of removing the relation of the

output length of the compression function to the length of the RSA modulus.

For backdoors, improvements on definitions, existing algorithms as well as ex­

tensions of existing theorems are shown. The definitions pertaining to backdoored

key generators are improved as to make their analysis uniform and comparable. New

algorithms are presented and compared to existing ones as to show improvements

mainly on their running time, the indistinguishability of the keys produced, and that

some of these new algorithms are, for all practical purposes, the best that may be

called asymmetric. Our theorem on the correctness (or completeness) of one of our

better backdoored key generators is a generalization of a theorem of Boneh, Durfee

and Franke!'s on partial information on the decryption exponent.

iv

RESUME

Ce travail presente des proprietes mathematiques du Cryptosysteme RSA. Les

sous-domaines developpes sont ceux des portes derobees et des algorithmes de rem-

plissage.

Pour les algorithmes de remplissage, nous presentons une instantiation pratique

avec une reduction de securite. Elle est basee sur la fonction de compression de

SHA-1 sans user d'aucune fonction d'enchainement. Notre solution a l'avantage, par

rapport a la precedente, d'enlever la relation entre la longueur de sortie de la fonction

de compression et la longueur du modulo RSA.

Pour les portes derobees, des ameliorations sur les definitions, les algorithmes

existants aussi bien que des prolongements des theoremes existants sont exposes. Les

definitions concernant les generateurs de cles a porte derobee sont ameliorees afin que

leur analyse soit uniforme et comparable. De nouveaux algorithmes sont presentes

et compares a ceux existants afin de demontrer des ameliorations principalement par

rapport a leur temps d'execution, a l'indistinguabilite des clefs produites et par le fait

que certains de ces nouveaux algorithmes sont, a toutes fins pratiques, les meilleurs

pouvant etre qualifies d'asymetriques. Notre theoreme sur l'exactitude d'un de nos

meilleurs generateurs de cles a porte derobee est une generalisation d'un theoreme

de Boneh, Durfee et Frankel sur l'information partielle de l'exposant de dechiffrage.

v

/

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

RESUME v

LIST OF TABLES x

LIST OF FIGURES xiii

NOTATION xvii

CONTRIBUTIONS OF AUTHORS xix

1 Introduction 1

1.1 Brief history of public-key cryptosystems 1
1.2 The RSA cryptosystem 5

1.2.1 Definition 5
1.2.2 RSA signature padding 7
1.2.3 Backdoors in public key generation 11

1.3 Chapter notes 14

2 Background on RSA 15

2.1 History 15
2.2 Theory . 16

2.2.1 Computational security 16
2.2.2 Trapdoor one-way function 17
2.2.3 Toward the definition of RSA 18
2.2.4 The definition of RSA 19
2.2.5 Efficiency of key generation • • • 24
2.2.6 Number of generable keys 25

VI

2.2.7 Provable security . 26
2.2.8 Distribution properties of RSA 29

2.3 Application issues and standards 46
2.3.1 Direct attacks 46
2.3.2 Indirect attacks 47

2.4 Chapter notes 47

3 RSA signature padding 50

3.1 Introduction 50
3.1.1 Hash-and-sign paradigm 51
3.1.2 Chosen-ciphertext attacks 53
3.1.3 Security goal 55

3.2 Definitions 56
3.3 An improved algorithm . 58
3.4 Further developments 61

3.4.1 A practical hashing family iy3.i60. . . 61
3.4.2 Improved communication complexity. 63

3.5 Summary 64
3.6 Chapter notes 65

4 Introduction to backdoors 66

4.1 Background 66
4.1.1 The two contexts 66
4.1.2 Intuition on the roles of the parties 69
4.1.3 History 71

4.2 Definitions . 74
4.2.1 Informal definition of a backdoor 74
4.2.2 Model of analysis 77
4.2.3 Formal definition of a backdoor 79

4.3 Comparison with SETUP definitions for backdoors in cryptosystems 85
4.3.1 Definition of SETUP 85
4.3.2 Evolution of algorithms w.r.t. definitions in kleptography . 87
4.3.3 White box effect, uniformity and asymmetry . 88
4.3.4 Asymmetry (un)satisfied by SETUPS . 88

4.4 Lexicon 89
4.5 Chapter notes 90

vii

5 Measures for backdoored keys 91

5.1 Nature of the keys 92
5.1.1 Classical definitions of indistinguishability 92
5.1.2 Cardinality 95
5.1.3 Distribution properties 106
5.1.4 Generalized key regeneration 110
5.1.5 Diversity . . . 113

5.2 Interactions with the generator: side channel analyses 115
5.2.1 Complexity 115
5.2.2 Memory 122

5.3 Measures on the design of algorithms 125
5.3.1 Computational assumptions 125
5.3.2 Simplicity . 126

5.4 Measures: summary 126
5.5 Chapter notes 127

6 Comparison of existing algorithms 129

6.1 Simple algorithms 129
6.1.1 Anderson-Kaliski backdoors 130
6.1.2 Howgrave-Graham backdoors 137

6.2 Kleptography: Young-Yung algorithms 146
6.2.1 YY96 146
6.2.2 YY97 168
6.2.3 YY05a 175
6.2.4 YY05b 181

6.3 Crepeau-Slakmon algorithms ; 189
6.3.1 First algorithm: via Wiener's low decryption exponent attack 192
6.3.2 Second algorithm: via upper bits of S and prime e 196
6.3.3 Third algorithm: via upper and lower bits of 5 200
6.3.4 Fourth algorithm: via hiding p in n 206
6.3.5 Fifth algorithm: via Slakmon's variant of Wiener's Theorem 213
6.3.6 Choices of permutation, 7173 221

6.4 Chapter notes 225

7 Improved algorithms 227

7.1 First improvement: complexity, then diversity 228
7.1.1 Outline of the first improvement 228

viii

7.1.2 Preliminary results: new extensions of Wiener's Theorem . 231
7.1.3 Improvement of the time complexity • • • • 240
7.1.4 Improvement of the diversity without pseudo-randomness . 257

7.2 Discussion on the first improvement 278
7.2.1 Structure of the improvement 278
7.2.2 Failure of simple algorithms 279
7.2.3 Advantages of a reasonable simplicity 282
7.2.4 Diversity of the algorithms 285

7.3 Second improvement: generalized key regeneration for EG keys . . 288
7.3.1 Principles ; 288
7.3.2 Improvements 289

7.4 Third improvement: asymmetric algorithms 298
7.4.1 Principles 298
7.4.2 Improvements 307

7.5 Classification of backdoors 313
7.5.1 Backdoors to RSA key generation 313
7.5.2 Backdoors to EG key generation 315
7.5.3 Location of the embedding 315
7.5.4 Symmetry and asymmetry 316

7.6 Chapter notes 317

8 Conclusion 318

Appendix A: Basic cryptology 325

A.l Contemporary secure key lengths 325
A.2 The ElGamal cryptosystem 326

A.2.1 Number of keys 327
A.3 The ElGamal cryptosystem over elliptic curves 328

A.3.1 Cardinality, probability distribution and ciphertext length . 331

Appendix B: Computational number theory 333

B.l Lattice basis reduction theorems ; 333
B.2 Wiener's Theorem 335
B.3 Other theorems 336

References • • • 337

Index 345

ix

LIST OF TABLES
Table page

1-1 Theoretical overview of public-key cryptography. 3

2-1 Consequences on RSA security of values of p and q 46

2-2 Consequences on RSA security of values of e and d 47

2-3 Consequences on RSA security of additionally known parameters. . . . 48

2-4 Consequences on RSA security of additional interaction 48

4-1 Correspondences of parties involved in cryptosystem abuse and backdoor. 72

4-2 Evolution of definitions in kleptography with respect to the more
abstract notions of confidentiality, completeness, indistinguishability,
and white box effect 86

4-3 Evolution of algorithms w.r.t. definitions in kleptography. 87

5-1 Cardinality classification for RSA backdoored key generators 105

5-2 Cardinality classification for EG backdoored key generators 106

5-3 Complexity classification for RSA backdoored key generators 120

5-4 Complexity classification for EG backdoored key generators •. 121

5-5 Properties and measures relevant to a backdoor, with dependencies. . 127

6-1 Properties of Anderson-Kaliski backdoored key generators 136

6-2 Properties of Howgrave-Graham backdoored key generators 145

6-3 Properties of the first backdoored key generator of YY96 152

6-4 Properties of the second backdoored key generator of YY96. 159

6-5 Properties of the third and fourth backdoored key generators of YY96. 163

x

6-6 Properties of the fifth backdoored key generator of YY96 167

6-7 Properties of the backdoored key generator of YY97a 174

6-8 Properties of the backdoored key generator of YY05a 180

6-9 Properties of the backdoored key generator of YY05b. 188

6-10 Properties of the first Crepeau-Slakmon algorithm 195

6-11 Properties of the second Crepeau-Slakmon algorithm 199

6-12 Properties of the third Crepeau-Slakmon algorithm 203

6-13 Properties of the fourth Crepeau-Slakmon algorithm 212

6-14 Properties of the fifth Crepeau-Slakmon algorithm 219

7-1 Pre-existing backdoored RSA key generators with linear complexities. . 241

7-2 New backdoored RSA key generators with linear complexities 241

7-3 Properties of our first algorithm 249

7-4 Properties of our first algorithm 256

7-5 Properties of our second algorithm 260

7-6 Properties of our third algorithm 264

7-7 Properties of our fourth algorithm 276

7-8 The seven cases of GKR with the algorithms of Figures 7-12 and 7-13. 295

7-9 Properties of our symmetric EG backdoored key generator 297

7-10 Properties of our asymmetric RSA backdoored key generator 309

7-11 Properties of our asymmetric EG backdoored key generator 312

7-12 Comparison of backdoored key generators for RSA 314

7-13 Comparison of backdoored key generators for EG 315

8-1 Summary of this work's definitions on backdoors 318

xi

8-2 Summary of this work's main algorithmic improvements for backdoors. 319

8-3 Summary of this work's theorems and propositions on backdoors. . . . 320

A.l Contemporary secure key lengths with approximate equivalents 325

xii

ure
LIST OF FIGURES

page

1-1 Merkle's Puzzles 2

1-2 Man-in-the-middle attack 10

1-3 Chosen-ciphertext attacks (CCA) 10

1-4 The Doge of Venice's scheme to cast out Casanova 13

2-1 Symmetric cryptography. 15

2-2 Asymmetric cryptography. 16

2-3 The computationally unbounded eavesdropper's attack on an asym­
metric cryptosystem 17

2-4 Computational bounds on parties involved in an asymmetric cryp­
tosystem 18

2-5 Standard (honest) RSA key generation 19

2-6 RSA encryption and decryption functions 19

3-1 The RSA signing function, abstracted form to more applied form. . . . 52

3-2 The classical RSA scheme 53

3-3 Chosen-ciphertext attacks (CCA) 54

3-4 The new construction 58

4-1 High-level view of the roles played by two parties interacting with an

escrow 68

4-2 Change of context: the key generator produces backdoored keys. . . . 70

4-3 High-level view of the two components of a backdoored key generator. 70

xiii

4-4 Desmedt's cryptosystem abuse via public key generation 71

4-5 Desmedt's abuse via public key generation where the message is a
backdoor 72

4-6 Time line of the discovery of backdoors in the key generation of
common public-key cryptosystems 73

4-7 Third idea that captures the essence of the design of a backdoored
key generator: indistinguishability 76

4-8 Two physical oracles outputting public key pairs. Which is (?o?
Which is d ? . 77

4-9 The distinguisher can deploy two main types of attacks against keys
outputted by a physical oracle: side channel analyses and statistical
analyses of the keys 78

4-10 The functions involved in defining backdoored key generation 82

4-11 More formal definition of a backdoored key generator 83

5-1 Backdoored RSA key encrypted via ECIES 96

5-2 Honest RSA key generation (recall of Figure 2-5) 117

5-3 Honest EG key generation (same as Figure A.l) • • • • 121

6-1 Anderson's backdoor for RSA 130

6-2 Howgrave-Graham's first backdoor for RSA, which embeds p in e. . . . 139

6-3 Howgrave-Graham's second backdoor for RSA, which embeds p in e. . 140

6-4 [YY96]: an asymmetric backdoor for RSA that encrypts p within e. . . 147

6-5 [YY96]: PAP is an asymmetric backdoor for RSA that encrypts p
within n. 153

6-6 [YY96]: an asymmetric backdoor for EG which embeds o i n a and
keeps p fixed 160

6-7 [YY96]: an asymmetric backdoor for EG which embeds a in p and
keeps a fixed 160

xiv

6-8 [YY96]: an asymmetric "pure EG" backdoor for EG which embeds a

in p 164

6-9 [YY97aj: an asymmetric backdoor for DH key exchange 169

6-10 [YY97a]: an asymmetric backdoor for RSA, PAP-2, via a DH key
exchange 170

6-11 [YY05a]: PP is an asymmetric backdoor for RSA using the Rabin
cryptosystem 176

6-12 [YY05b]: an asymmetric backdoor for RSA, using the elliptic curve
Diffie-Hellman (DH) key exchang 182

6-13 RSA backdoor generation from weak private key 5 191

6-14 [CS03]: a backdoor for RSA using weak Wiener keys and a permuta­
tion. The information on 6 is embedded in e 192

6-15 Entropy of CS-1 193

6-16 [CS03]: a backdoor for RSA using a theorem of Boneh, Durfree and
Frankel and a permutation. The information on 5 is embedded in e. 196

6-17 [CS03]: a backdoor for RSA using another theorem of Boneh, Durfree

and Frankel and a permutation, without prime e 200

6-18 [CS03]: a backdoor for RSA using the hiding of p in n 206

6-19 [CS03]: a backdoor for RSA using the hiding of n — <j){n) in n 214

7-1 Illustration of the first sequence of improvements 230

7-2 Our first backdoor . 242

7-3 Entropy with few S and small \c\ 247

7-4 Entropy with k/2 values of 8 and \c\ w k 247

7-5 Entropy of Gx 248

7-6 A backdoor based on a linear extension of Wiener's Theorem 251

7-7 Our second backdoor 257

xv

I

7-8 Our third backdoor 261

7-9 Our fourth backdoor 267

7-10 Illustration of the theorems'use 278

7-11 Honest key generation for the EG cryptosystem 288

7-12 Our fifth backdoor: a symmetric backdoor for EG which embeds a in a. 290

7-13 GKR for ACK-1. The covered case is: new a and fixed p, a 292

7-14 Modification of Figure 6-4, from Young and Yung (1996): a backdoor
for RSA that encrypts p within n 300

7-15 Our sixth backdoor: an asymmetric backdoor for RSA using ECIES
and AES. The information on p is stored in n 307

7-16 Our seventh backdoor: an asymmetric backdoor for EG using ECIES

and AES. The information on a is stored in a 310

8-1 Relations between this work's results on backdoors 320

A.l Honest key generation for the EG cryptosystem. 326

A.2 Key generation for the ECIES cryptosystem 329

A.3 Encryption for the ECIES cryptosystem 330

A.4 Decryption for the ECIES cryptosystem 330

xvi

NOTATION

Formatting of theorems and other claims or examples

• • ends an example.

• • ends a proof.

Bit strings

• Let e be a variable which length is at least t bits. Then ef denotes the t most

significant bits (MSB) of e and ejt, its t least significant (LSB) ones.

• Let r and s be strings of bits. Then r : s denotes the bit string formed by the

concatenation of the first two.

Sampling

• Let x £R S denote the random sampling of variable x, where the probability

distribution function is defined alongside with the set S.

• Let x G[7 S denote the uniformly random sampling of variable x in the set S.

• Let [A,..., B] C Z be the range of integers from A to B.

• A random prime p is denoted as rp p.

Divisibility

• Denote as a\b that a divides b.

• Denote as ak\\b that ak divides b exactly, i.e. ak\b, but ak+1 J(b.

Referring to (in) equations

• LHS refers to the left hand side of an (in)equation

• RHS refers to the right hand side of an (in)equation

Functions

xvii

• Let / and g be functions such that the image of g and the domain of / are the

same. Then fog denotes function composition: fog: dom(g) —> ima(f).

• lg(n) denotes the base 2 logarithm of the variable n.

• 4>{n) is the Euler totient function: for n — pq, a product of two prime numbers,

0(n) = (p - l) ((/ - l) .

• Let gcd(a;, y) be the greatest common divisor of the integers x and y.

• Let lcm(:r, y) be the least common multiple of the integers x and y.

Groups

• Let ord(g) denote the order of a group element g, as detailed in Theorem 2.2.2.

Additional notation for RSA backdoors

• Let n = pq be an RSA modulus where |p| = \q\ — k and q < p <2q.

• Let (n, e) and (n, e) be RSA public keys with corresponding private keys, 5 and

d.

• Let K be such that e8 — K(p(n) = 1.

xviii

CONTRIBUTIONS OF AUTHORS

Signature padding

Chapter 3 shows how to construct a practical secure signature padding algo­

rithm for arbitrarily long messages from a secure signature padding algorithm for

fixed-length messages. This new construction is based on a one-way compression

function respecting the "division intractability assumption" and is a direct improve­

ment of the algorithm of Coron, Koeune and Naccache [CKNOO].

By practical, it is meant that the new algorithm can be instantiated using ded­

icated compression functions and without chaining. This algorithm also allows pre-

computations on partially received messages. Finally, an instantiation of our algo­

rithm is given using SHA-1 and PKCS # 1 ver. 1.5.

Contributions. This padding algorithm comes from a collaboration with Jean-

Marc Robert [AR01]. The author of this work is the main contributor of this paper.

Backdoors in key generation

As there has been various results on backdoors or related topics for the past

20 years, one of the goals of this work is to unify the field of study of backdoors.

Chapter 4 initiates accomplishing this goal by establishing a definition of backdoors.

Notions of indistinguishability of dishonest keys with respect to honest keys are ab­

stracted. *

Definitions of measures of quality for backdoors embedded in public keys are

given. The measures that were found relevant for indistinguishability are in terms

xix

of number, distribution, and actions which the distinguisher (adversary or legiti­

mate user) may take. These include key regeneration, reverse-engineering, and side

channel analyses, as for timing and resource usage. Justification and examples are

provided for each measure. Chapter 5 develops measures relevant to assessing the

quality of backdoors.

Furthermore, new backdoors are developed such that they supersede other ex­

isting ones, with respect to the measures provided. To obtain such a superseding

RSA backdoored key generator, a new extension of Wiener's Theorem (which origi­

nates from earlier works) is used, as well as a hereby contributed generalization of a

theorem of Boneh, Durfee and Frankel, itself based on Coppersmith's lattice fac­

torization. In parallel, this work presents how the same principles can be applied to

obtaining asymmetric backdoors as well as backdoors for ElGamal key generation.

Chapter 7 presents and gives the analysis of the algorithms that we developed.

Contributions. The formalization and uniformization of the definitions per­

taining to backdoors is mainly due to the author of this work. This originated from

discussions with the collaborators that follow. The extension of Wiener's Theorem

originates from earlier work from Claude Crepeau and Alain Slakmon and was fi­

nalized in collaboration with the author of this work. It is also the case for most

of the symmetric backdoors for RSA that are not attributed to other authors. The

strongest symmetric backdoor for RSA is mainly due to the author of this work. This

work has been submitted for publication [ACS].

The symmetric backdoor for ElGamal originates from earlier work from Claude

Crepeau and Raza Ali Kazmi and was finalized in collaboration with the author of

xx

this work, and is based on the generalization of the theorem of Boneh, Durfee and

Prankel. This generalization is a contribution of the author of this work. The asym­

metric backdoors for RSA and ElGamal come from a collaboration of the author of

this work with Raza Ali Kazmi and Claude Crepeau [ACK].

Furthermore, the author brought together the various definitions and corre­

sponding algorithms of the field of the theoretical study of backdoors [Arb]. Besides

the results of Crepeau et al., major contributions are due to Young and Yung

[YY96, YY97a, YY97b, YY05a, YY05b]. Chapter 6 presents and gives the analy­

sis of the existing algorithms, which have theoretical interest. The last section of

Chapter 7 summarizes and compares the various algorithms.

xxi

CHAPTER 1
Introduction

The goal of this thesis is to broaden and compile knowledge on two mathematical

aspects of the security of the rsa cryptosystem. The first of these two aspects is the

well-established field of padding schemes, which is the topic of Chapter 3. The other

aspect is the generation of public keys that are embedded with a backdoor. This is

the topic of the remaining chapters, that is, Chapters 4 to 7.

Before further details, it is useful to understand the context of these results.

First, the history of public-key cryptosystems is briefly recalled. A more detailed

descriptions of the RSA cryptosystem and of the specific problems at hand follow.

1.1 Brief history of public-key cryptosystems

The invention of asymmetric (or public-key) algorithms is credited to Martin

Hellman and two of his students of the time, Ralph Merkle and Whitfield Diffie.

The earliest publicly available asymmetric construction are Merkle's Puzzles which

were theoretically defined in 1974 [Mer78]. This construction is an answer to the

problem of reestablishing a compromised secure connection between two computers.

Merkle's Puzzles are as follows. As usual in cryptology, let Alice and Bob be

legitimate parties wishing to communicate, and let the eavesdropper be the malicious

party wanting to compromise this communication. Bob sends a large number of puz­

zles to Alice. The solution of each puzzle consists of an identifier and a secret session

1

key encrypted with a weak algorithm. Alice chooses a random puzzle and decrypts

with a brute force algorithm. Then, she sends the identifier back to Bob, who learns

which session key is to be used. An eavesdropper's best strategy is to decrypt all the

puzzles until the right one is found, thus an eavesdropper's workload is considerably

larger than Alice's. Figure 1-1 illustrates how Merkle's Puzzles relate to public-key

cryptosystems by solving the said compromised secure connection problem.

Alice Bob

Problems 1 to n ~*~

selects one randomly

Problem i

solution by brute force

(ID,key)

Problems 1 to n
each with (ID, key)

ID
knows the construction

key

Figure 1-1: Merkle's Puzzles. After Alice transmits ID, both Alice and Bob have
the key. An eavesdropper may learn Problems 1 to n and ID, but, except with
considerable difficulty, not key.

Since the original one, many other theoretical solutions have appeared. Ta­

ble 1-1 represents a non-exhaustive sample of public-key cryptosystems. Common

types of cryptosystems are key agreement, encryption and signature algorithms. Key

agreement allows more than one party to agree on a common key such than its value

is influenced by all legitimate parties but no other. Encryption allows to make

information unreadable without the possession of special knowledge, in the form of

a key. Digital signatures ensure that only the claimed signer of an information can

be identified as such.

construction

[Coc73]
(classified)
Mer78], 1974
[DH76]
[RSA78]

[MH78]

[Rab79]

[GM84] .

[E1G85]
[BG85]

[Mil85],
[Kob87]
[BR96]
[CCKL01]

[RS03]

[RS06]

type

encryption

key agreement
key agreement
encryption, signature

encryption, signature

encryption

encryption

encryption, signature
encryption

key agreement,
encryption, signature
signature
key agreement,
encryption
key agreement,
encryption, signature
encryption

security

n th root modulo n
computation x

many puzzles
discrete logarithm
eth root modulo n
computation 2

knapsack

integer factoriza­
tion
quadratic residu-
osity
discrete logarithm
integer factoriza­
tion
discrete logarithm
on elliptic curves
RSA78, Rab79
DH-DP or MSCSP

on braid group 4

discrete logarithm
on torus group
isogenics

indirect attacks

chosen-ciphertext,
weak keys
trapdoor discovered
[Sha82] (broken) 3

chosen-ciphertext
chosen-ciphertext

chosen-ciphertext

Table 1-1: Theoretical overview of public-key cryptography.

1 Very similar to RSA, but with non-equivalent encryption and decryption func­
tions. It was classified by the GCHQ.

2 If integer factorization is feasible, RSA is not secure. The converse is unknown:
does the computation of the eth root modulo n allow the factorization of n?

3 Shamir showed that from the public-key, a trapdoor can be computed, so that
any plaintext can be easily computed from the corresponding ciphertext.

4 DH-DP stands for Diffie-Hellman type Decomposition Problem and MSCSP, for
Multiple Simultaneous Conjugacy Search Problem.

3

In the table, the security column gives the problem on which conjectured average-

case hardness the cryptosystem's security rests. This is also called the security as­

sumption. A direct attack then consists in solving the hard problem on which the

security is based. The indirect attacks column gives a (non-exhaustive) list of at­

tacks to which the cryptosystem is vulnerable, aside from the direct attack. This

column reflects whether there has been significant theoretical research in finding

indirect ways of breaking a construction 5 . Indirect attacks usually include seman­

tic security (ciphertext indistinguishability), side channel analysis, weak keys, and

man-in-the-middle, as well as attacks on auxiliary cryptographic protocols, such as

standard hash functions and padding algorithms.

Overall, public-key cryptography was independently co-invented in the early

1970's. In academia, it was created by Merkle, Diffie and Hellman. As disclosed

in 1997, in the British intelligence agency "Government Communications Headquar­

ters" (GCHQ), it was created by Ellis, Cocks and Williamson [Way97].

Note on probabilistic encryption and randomness. In cryptography, the

intuitive aim is to scramble messages in order to conceal their contents from unin­

tended readers. In this context, randomness has been used to a large extent. In

1984, Shafi Goldwasser and Silvio Micali introduced the first probabilistic cryptosys­

tem [GM84]. A plaintext is encrypted to one of many possible ciphertexts in such a

way that it is as difficult as a (conjectured) hard problem to obtain any information

about the plaintext. Although the original RSA is not probabilistic, randomness can

5 Quand Dieu ferme une porte, il ouvre une fenetre. (proverb)

4

be introduced via padding schemes, as detailed in Subsection 1.2.2 for signatures

and at the end of Subsection 2.2.8 for encryption. Another use of randomness is the

generation of random keys. Such keys may be symmetric (e.g. DES) or asymmetric

(e.g. RSA).

1.2 The RSA cryptosystem

Table 1-1's fourth row lists the RSA cryptosystem, named after the initials of

its inventors Ron Rivest, Adi Shamir and Leonard Adleman, [RSA78]. This cryp­

tosystem is historically recognized as the first public-key encryption and signature

algorithm.

It is on this cryptosystem that the rest of this work focuses. Chapter 2 gives

mathematical background. Chapter 3 elaborates on signature padding schemes.

Chapters 4 to 7 concerns the generation of keys that contain a hidden backdoor.

1.2.1 Definition

Informally, a trapdoor function is a function that is easy to compute in one

direction, but hard to compute in the other one (the inverse function), unless a

special information (a key) is known, in which case it is easy to invert. The RSA

function is a well-known candidate trapdoor function. Because the RSA function can

be employed either for encryption or digital signature, denote it in general by ex, for

some key K (the key, K, is the trapdoor key). Not that the knowledge of K is not

necessary to use the encryption function, ex- Its corresponding inverse is denoted

by &K- For all x G Zn , it holds that

dx ° £K(X) = x and ex ° dx(x) = x

5

as shown in Subsection 2.2.4.

Definition 1.2.1 The RSA cryptosystem is a family of (candidate) trapdoor per­

mutations. It is specified by:

• The RSA key generator Gen, which on input lk, randomly selects 2 distinct

k-bit primes p and q and computes the modulus n = p • q. It randomly picks

an encryption (or signature verification) exponent e G ̂ lin)
 and computes the

corresponding decryption (or signature) exponent d such that

e • d = 1 mod <t>{n).

The generator returns Gen(lk) — (n, e, d).

• The encryption (or signature verification) function e -̂ : Zn —>• Zn defined by

^K(^) = %e mod n

and more specifically, either Encr(x) = e#(:r) or Verif(x,y) — [efc(x) = = y],

where "==" denotes Boolean equality. In practice, Verif has an additional

operation: the comparison of the message computed from the signature, x, with

the message, y, which is transmitted with x, as defined below.

• The decryption (or signature) function dx '• Zn —> Zn defined by

d]<(y) = yd mod n

and more specifically, either Decr(y) = dxiy) or Sign(y) = (dK(y),y)-

Therefore, K = (p,q,d, e) can be used as trapdoor key.

6

The RSA cryptosystem is used for digital signatures or encryption. In both

cases, (n, e) is the public key and d is the private key. The sender of a message uses

the recipient's public key e to encrypt the message; the corresponding decryption

exponent d decrypts it. The sender of a message uses its private key d to produce a

signature sent with the message; the public exponent e verifies that they correspond.

For RSA, the trapdoor key therefore consists of both public and private keys.

Direct attack on RSA

The security of RSA is based on the conjectured average-case hardness of com­

puting the eth root modulo n. This relates to the hardness of the factorization of

integers, of the form given in Definition 1.2.1. May recently showed that comput­

ing the RSA private key is (deterministically) equivalent to factoring [May04]. The

probabilistic equivalence was already known in the original RSA paper.

Concretely, a direct attack on RSA consists in computing an eth root modulo

n given (n, e). However, it is only known that if integer factorization is feasible,

then RSA is not secure; the converse is unknown. It may be the case that it is not

necessary to find d to inverse the exponentiation by e. In other words, taking the eth

root may be easier than finding d, i.e. than factoring.

1.2.2 RSA signature padding

When RSA is used for signing, it is common practice to use the hash-and-sign

paradigm: the information is hashed down before it is signed. This is because it

is more efficient to exponentiate a shorter, hashed, number. The security of the

signature algorithm is maintained given that the hash function, //, is collision-free.

7

The hashed message is however subject to an additional step: it is padded via an

encoding function, eric, in order to use the full length of the RSA modular exponen­

tiation. Besides, padding is also used in a similar way for encryption. Therefore, a

particular class of attack on RSA targets the security of the padding algorithm. Over­

all, the security of the signature algorithm is maintained given that \i is collision-free

and given the security of the encoding function, enc.

Relation to Definition 1.2.1

The RSA signing function can be conceived as follows, from a theoretical (ab­

stract) point of view to a progressively more applied (implementable) one. At the

most abstract level given by Definition 1.2.1,

Sign(y) = (yd mod n, y).

In the next level of implementation, one realizes that some messages are larger

than n, so their length has to be reduced via a hash function, fi. This hash function is

useful for cryptographic signing only if it is collision-free: it is difficult to find two of

its inputs that hash to the same output. Otherwise, a signature for a given message

could be (most likely illegitimately) reused for another one, which is an example of

signature forgery. This more implementable signing RSA function is

Sign(y) = (//(y)d mod n, y).

A final problem is patched via encoding. The output length of standard func­

tions, //, may not be exactly \n\ = 2k (typically, |/x(y)| < 2k). To use the entire

8

modular exponentiation length, an encoding function (also known as padding func­

tion) is used. This more applicable signing RSA function is

Sign(y) = {enc o n(y)d mod n, y).

Formal definition of signature padding

More formally, let /J, be a randomized compression function taking as input a

message of size t, using r random bits, and outputting a message digest of length I:

/*: {0, l } r x { 0 , 1 } ' - {0, l}1

where \x is useful if / < 2k < t, so that it hashes down the length of messages to at

most the length of n, and if it is collision-free, i.e. it is computationally infeasible to

find two inputs on which /i produces the same output. Also, the random bits, r, are

useful to counter an attack that will be explained later.

Let enc be an encoding function taking as input a message digest of size /, and

outputting an encoded message of length 2k:

enc: { 0 , 1 } ' ^ {0,l}2fc

where enc is useful in cases where I <2k.

Overall, a padding algorithm for RSA computes the following function.

encoiji:{0,iy x {0,1}* ^ {0, l}2fe

9

Attacks on padding schemes

Attacks on padding algorithms include chosen-ciphertext attacks (CCA), as shown

in Figure 1-3. They are a special case of a man-in-the-middle (MITM) attack, as

shown in Figure 1-2, where the adversary has access to a signature oracle (some­

times referred to, by abuse of language, as a decryption oracle). In practice, CCA

can be deployed as a lunch time attack, where the adversary has access to a signing

device at a time where its legitimate user leaves it unattended. A concrete example

is the one of a smart card which may be under the full control of the adversary, for

a limited amount of time.

...adversary ...

verification*- ^signature

Figure i-2: Man-in-the-middle attack: the adversary can observe and intercept mes­
sages. In the more general setup (that includes the dotted lines), it can also modify
the messages.

adversary
,_ ^^\aueries signature

a n s w e r s \ ^ \

verification •* :— signature

Figure 1-3: Chosen-ciphertext attacks (CCA) on a signature algorithm: the signing
algorithm acts as a signature oracle for the adversary. Moreover, if the queries are
not chosen all at once, the figure can be seen as showing an adaptive version of
this attack, where the adversary can adapt its strategy w.r.t. the oracle's previous
answers.

10

Contribution

Chapter 3 consists of an improvement on a signature padding algorithm of

Coron, Koeune and Naccache [CKNOO].

1.2.3 Backdoors in public key generation

Consider a special type of indirect attack, called a weak key attack. In general,

a weak key is one that makes the cryptosystem behave in an undesirable way: weak

keys constitute a weakness of the cryptosystem. A particular type of weak key attack

is one in which the designer produces keys that contain a hidden backdoor.

Such a backdoor attack is as follows. In many cases, the end users get a piece

of hardware or software which generates the public and private key pairs. These

key generators may have been developed by malicious designers. In such cases, the

designer may have implemented the generators in such a way that the designer can

retrieve the private key corresponding to any generated public key. Such generators

are said to be backdoored and to generate weak hidden keys.

Contribution

Chapter 4 provides a more complete and uniform way of defining backdoored key

generators and complementary notions. Chapter 5 develops a set of measures that

allow to analyze such algorithms in a uniformed manner. Chapter 6 repertories the

existing theoretical algorithms, with respect to these measures. Chapter 7 improves

on existing algorithms and compares all the presented algorithms.

11

The Doge of Venice vs. Casanova

Consider the following scenario. The Doge of Venice is in need of evidence in

order to throw Casanova out of the City. The Doge has partial control over the City's

system of secret message exchange (essential for commerce). This is a rudimentary

public-key system where a first party sets up a public mailbox with an open padlock,

to which this first party owns the key. Once such a mailbox is set up, any other

party can securely send a message to the owner of the mailbox. Casanova uses the

system to receive messages from lovers (or associates) with whom he cannot have a

private word (no meeting could be arranged to exchange secret information).

The control of the Doge over the system is in its magical key manufacturing,

where a key is understood to include the key itself and the corresponding padlock on

a box. The magician-keysmith produces padlocks that react to a magic spell, known

to the Doge only. When this spell is applied to a padlock, a copy of the corresponding

key appears out of thin air 6 . Officially, the keysmith is thought to be honest and

appears to produce locks and keys that behave normally. Such a padlock on a box

therefore is part of a hidden weak key. The Doge's spell uses the weakness of the

City's padlocks as a backdoor to retrieve their keys.

The Doge's attack is as follows. Casanova's padlock reacts as any other to the

spell: the Doge retrieves Casanova's key. The Doge is only left with collecting enough

6 "Any sufficiently advanced technology is indistinguishable from magic." (A.C.
Clarke, Profiles of The Future, 1961.)

12

^SktuJ^wwn,

Doge of Venice
spell

magician-keysmith
(makes keys based on ^/*>)

any of Casanova's
conquests

collects evidence

Figure 1-4: The Doge of Venice's scheme to cast out Casanova.

evidence of Casanova's behaviour in order to cast him out. For an illustration, refer

to Figure 1-4.

13

1.3 Chapter notes

Brief history. The information on Merkle's Puzzles is taken from [Mer78].

The discoveries of the GCHQ are commented in [Way97] and the title of the original

1973 secret report is A Note on Non-Secret Encryption [Coc73].

Theoretical overview of public-key cryptography. The information on

public-key algorithms in Table 1-1 is taken from the RSA Labs Crypto FAQ [RSAa]

as well as directly from the original papers, as cited.

14

CHAPTER 2
Background on RSA

2.1 History

As introduced in Section 1.2, RSA, for their inventors Rivest, Shamir and Adle-

man, [RSA78], is a public-key cryptographic algorithm. Historically, it is recognized

as the second such algorithm, although believed to be the first for nearly 20 years.

In earlier cryptosystems, the encryption rule, ex, and decryption rule, dx, were

either the same or were easily deduced from one another. If one of the rules is

exposed, then security collapses. These cryptosystems are thus called symmetric.

Another drawback of symmetric cryptography is key exchange. The key, K, used by

the encryption and decryption rules must be exchanged secretly, through a secure

channel, in order for the cryptosystem to become usable. A secure channel may be

expensive or unavailable if the parties who wish to communicate are far apart.

/ ' \ key exchange: K

* . sends e (m)
I Alice: K \ -*

decrypts eK (m)
with rule d
to get m

Figure 2-1: Symmetric cryptography. Top, key exchange via a secure channel. Bot­
tom, encryption with exchanged key, K, transmission of encrypted message via a
public channel, and decryption with the same K.

Bob

encrypts
m with rule e.

15

In asymmetric cryptography, the encryption rule can be revealed while leaving

the decryption rule computationally infeasible to deduce. As such, it was originally

called non-secret encryption This eliminates the need for key exchange via a secure

channel, and the decrypting party (Alice, in Figure 2-1) can publish the encryption

rule, e/f, in a public directory, for any other party's usage. Thus, this is also called

public-key cryptography. It is as if Alice publicly provides an open padlock. Bob can

lock a box with it, but only Alice can open it.

decrypts ejm)
with rule dK

to get m

key publishing: eK

i sends e (m)
K

A

w

encrypts
mwith rule eK

Figure 2-2: Asymmetric cryptography. Top, Alice transmits the public encryption
rule, ejf, to a public directory, where Bob, amongst others, can obtain e^- Bottom,
Bob encrypts with e^, transmits the encrypted message via a public channel, and
Alice decrypts with the decryption rule, &K-

2.2 Theory

2.2.1 Computational security

The security of asymmetric cryptosystem is always conditional. Their compu­

tational security is studied, as to consider a computationally bounded adversary.

16

Suppose that a ciphertext y is observed by an adversarial eavesdropper who, as any­

one, has access to e^. With unbounded computational resources, the adversary can

encrypt every possible plaintext m until the one m such that y = efc(m) is found.

unbounded adversary:

test all { m } until

Figure 2-3: The computationally unbounded eavesdropper's attack on an asymmet­
ric cry ptosy stem.

2.2.2 Trapdoor one-way function

First, an asymmetric cryptosystem needs to be such that the private dx is

computationally infeasible to compute from the public e^. This will be developed in

Subsection 2.2.7.

More generally, Subsection 2.2.1 shows that an asymmetric cryptosystem is re­

quired to be such that the original encrypted message, TO, is computationally in-

feasible to compute from the encrypted message, y = efc(m). This holds for the

eavesdropper and, more generally, for anyone other than Alice. Moreover, it is also

needed that y = efc(m) is easy to compute. This holds for Bob.

That y = e#(m) is easy to compute while m — e]c
1(y) is infeasible corresponds

to the definition of a one-way function: e# is easy to compute and hard to invert.

Furthermore, that m = dxiy) is easy to compute corresponds to the definition of

17

a trapdoor one-way function: e -̂ is easy to compute and hard to invert unless a

trapdoor, K, is known. Knowing the trapdoor provides Alice with the decryption

function, dx-

trapdoor one-way function

Figure 2-4: Computational bounds on parties involved in an asymmetric cryptosys-
tem. Encryption is easy for Bob. Decryption is only easy for Alice, assuming the
eavesdropper is computationally bounded. From the point of view of only Bob and
the eavesdropper, e# is hence a one-way function. From Alice's point of view, e# is
a trapdoor one-way function.

To insure security, a symmetric key is randomly chosen in a keyspace. Similarly,

a trapdoor function, e#, is randomly chosen in a family of such keyed functions, T.

Then e# is published and dx, kept private.

2.2.3 Toward the definition of RSA

The encryption function of the RSA cryptosystem is an example of trapdoor

one-way function. Let n be the product of two large primes, p and q. Define the

function e^ : Zn —> Zn to be ej<"(ra) = me mod n, for gcd(e, </>(n)) = 1, where gcd is

18

the greatest common divisor and 4>(n) is the Euler totient function, which gives the

number of positive integers less than n which are co-prime with n. The trapdoor is

an efficient way of computing d (or is d itself) such that the inverse function, dx, is

of the form ^ (y) = yd mod n, which computes ^fy mod n.

2.2.4 The definition of RSA

The RSA cryptosystem and digital signature algorithms [RSA78], are based on

the generation of two random primes, p and q, of roughly equal size, k bits, and the

generation of random exponents, d and e. It holds that de = 1 (mod </>(n)), where

the RSA modulus, n, is the product n — pq. The pair, (n, e), is made public. This is

illustrated in Figure 2-5. The EG key generator is given in Figure 7-11

Algor i thm Go [Standard RSA key generation]
1: Pick random primes p, q of appropriate size =
2: repeat
3: Pick a random odd e such that
4: until gcd(e, (j>{n)) = 1.
5: Compute d = e - 1 mod <j>{n).
6: return K = (p, q,d, e).

e < 4>(n).

= k, and set n = pq.

Figure 2-5: Standard (honest) RSA key generation.

Algorithm ex [RSA encryption of message m]
1: ex(m) = me mod n.
2: re turn exim)-

Algorithm dx [RSA decryption of message m]
1: dji (m) = md mod n.
2: re turn d/f (m).

Figure 2-6: RSA encryption and decryption functions.

19

The encryption and decryption operations are given in Figure 2-6. To show

that encryption and decryption are inverse operations, recall that d = e_ 1 mod <fi{ri).

Therefore

de = t(j)(n) + 1,

for some integer t > 1. Suppose that m G Z*, then

{rrff = m ^) + 1 m o d n

= m ^ m m o d n

= I'm mod n (2.1)

= m mod n

where all the steps are direct, except for (2.1). It comes from Theorem 2.2.1: if

m G Z*, then mp~l = 1 modp so m^n^ = 1 modp and the same holds modulo q.

Then, by Theorem 2.2.3, ra^n) = 1 mod n.

Theorem 2.2.1 (Fermat's Little Theorem) Suppose p is prime and m € Zp.

Then vnP = m mod p.

The following theorem bears Lagrange's name though only the then future devel­

opment of group theory allowed to prove its general form, as documented in [RotOl].

Although it predates it, Fermat's Little Theorem can be seen as its corollary. This

is because Z* is a multiplicative group of order (f)(n).

Theorem 2.2.2 (Lagrange's Theorem) Let the order of a group be the number of

its elements, and the order of an element m of a multiplicative group be the smallest

positive integer r, denoted ord(m), such that mr = 1.

20

Suppose that g EG, a multiplicative group of order n. Then ord(g)\n.

Theorem 2.2.3 (Chinese Remainder Theorem for n = pq, with p ^ q) The

simultaneous congruences mx = a mod p and mx = b mod q have a unique solution

modulo n:

mx = a • q • [q~l mod p] + b • p • [p_1 mod q] mod n.

The remaining cases are m G Z \ Z*, for which the preceding theorem is also

useful. Without loss of generality, suppose that m is a multiple of p, so m = £p

and £ < q since m < n. Then m t (^n)+1 = 0 mod p so the preceding a = 0. Also,

mt^.(n)+i = m m o (j q^ so b = m m o d g.

mt</>(n)+i ^ 0 + [m mod g] • p • [p_1 mod q] mod n

= [£ mod q] • [p mod q] • p • \p~l mod q] mod n

= £ • p mod n = m

Computing d with the trapdoor. The decryption exponent can be com­

puted efficiently, as part of the key generation. The encryption function is

&K{™) = ™>e mod n,

and the decryption one is

dx{y) = yd mod n.

Therefore, the trapdoor (as defined in Subsection 2.2.2) to the one-way function ex

is the factorization of n = pq, or equivalently 4>{n). With this trapdoor and e, the

RSA key generator computes d = e_ 1 mod 4>{n) as follows.

21

For a positive integer a, the set Za can be interpreted as a ring, with modular

addition and multiplication. Let a — (f)(n), then consider Z^(n) = {0, ...,(f)(n) — 1}

as a ring. The inverse of e € %<p(n) exists if and only if gcd(e, 4>{n)) = 1, otherwise

e is a zero divisor. The Euclidian division Algorithm computes the gcd of two

integers, so it can be used by the generator to test the condition, gcd(e, <p(n)) = 1.

The extended Euclidian division Algorithm also computes the gcd, as well as two

integers, d and K, such that ed + (f>(n)K = gcd(e, 4>{n)). Thus, if the condition holds,

it finds d = e_ 1 mod <j)(n).

Computing the encryption and decryption functions. Given the appro­

priate keys, i.e. the exponents e and d, the extent of the computations involved by

the encryption and decryption functions consists in modular exponentiations. The

straightforward exponentiations followed by a modulo take times 0(e + T(n)) and

0(d + T(n)), where T{n) is the complexity of multiplication modulo n.

However, a modular exponentiation by e is feasible in time C?(lge • T(n)). This

can be achieved using that for any integers, a and b,

a • b mod n = ((a mod n) • (b mod n)) mod n

and that an exponent has a binary notation form. This is the method known as

exponentiation by squaring or square and multiply exponentiation. For this, consider

the n-bit e in binary notation:
n - l

e = J2ai2i

i=0

22

where â € {0,1} and an_i = 1 (the latter by the standard convention on bit length).

Then

e = rote1**)

= n K)-.
i=0

therefore

ei<r(m) = me mod n
n - l

n [K)- mod n mod n.
i=0

Clearly, e^ is computable similarly.

Lexicon: vocabulary and variables

As RSA can be used in the two contexts of encryption and signature, the names

given to the exponents are dependent on these contexts.

private key: denoted d, is the decryption key in the context of an encryption

algorithm and the "signing key" in the one of a signature algorithm

public key: denoted e, is the encryption key in the context of an encryption

algorithm and the "verification key" in the one of a signature algorithm

Additional notation for backdoors. Let n = pq be an RSA modulus where

bl — \Q\ = k a n d q < p < 2q 1 . Let (n, e) and (n, e) be RSA public keys with

corresponding private keys, S and d. Let K be such that e5 — K(f>(ri) = 1.

1 In practice, the bounds of Table 2-1 (Section 2.3) are also applied.

23

2.2.5 Efficiency of key generation

Parts of Chapters 4 to 7 concern efficiency of altered key generators. For com­

parison, the corresponding properties for honest RSA key generation follow.

Theorem 2.2.4 (Prime number theorem) Let 7r(n) be defined as the number of

prime numbers less than or equal to n. Then, as n —• oo, it holds that

n
Tx{n) ~

Inn

in asymptotic (big O) notation, and, forn > 17 on the LHS and n > 1 on the RHS,

-— < 7T(TI) < 1.25506 -—.
In n Inn

Therefore, putting aside constants, Theorem 2.2.4's first approximation for n(n)

can be used for any practical, large enough, n. An example follows.

Example 2.2.5 For a 1024-bit RSA modulus n = pq, p and q are chosen as 512-bit

primes. A 512-bit random integer is prime with probability approximately

1 1

ln2512 355'

On average, given a set of 355 random 512-bit random integers, one of them is prime.

This is a large enough fraction for the random generation of integer to be considered

efficient in order to generate prime numbers. •

Example 2.2.6 The probability that a random k-bit integer is prime is

7r(2fe) 1 2 3
V ' /-N-* ^ ^ J

2fc ln(2fc) 2 H n 2 2k
— tt2~lek

24

where the last approximate equality will, throughout Chapters 4 to 7, be the mainly-

used form. •

2.2.6 Number of generable keys

Parts of Chapters 4 to 7 concern the number of keys generable by altered key

generators. For comparison, the corresponding properties for honest RSA key gener­

ation are given in this section.

Example 2.2.7 The number of k-bit primes is

#{p} « 7r(2fc) « j - | ^ « 2*-**

where the first LHS approximation is due to #{p} referring to primes of exactly k

bits, while 7r(2fc) refers to all primes of length k bits or less. •

For instance, for 2&-RSA primes, #{p} « n(2k) is an approximation in two ways.

Firstly, only primes of length exactly k are used. Secondly, standard precautions

reject certain primes, as Section 2.3 details. In both cases, the total number is affected

by a constant factor. Asymptotically, the approximate equality is not affected.

Example 2.2.8 The parameter d can be generated by randomly picking an integer

in ^lfny The number of such integers is the number of integers co-prime to <p(n),

therefore, it is <f>(<f>(n)). From [MvVOl, Fact 2.102], it holds that

< <p(n) < n
6 In Inn

n

36 (In Inn) lnln(n/(6 In Inn))
< <j){<j){n)) < n

25

where In Inn is short hand for ln(lnn), only used here in order to avoid confusion

with parentheses.

Dividing n only by In n does not affect the resulting order significantly. There­

fore, (f)(n) or (f)((j){n)) can be approximated by n in order to quantify the cardinality

of a set or the complexity of an algorithm. Both these cases are similar: compared

to the exponential size of n (in terms of 2k), a division by Inn is not significant.

Moreover, the practical selection of p and q also provides a lower bound for both

4>{n) and 0(0(n)). In Table 2-1 (Section 2.3) states that p, q are chosen such that

p — 1, q — 1 have large prime factors. Moreover, if the large factor of p — 1 is r, then

r is also chosen to have a large prime factor. This holds for both factors p and q.

This allows the following bound is derived. Suppose that \p — 1| « | q — 1| « k, then

\(j)(n)\ w 2k. Similarly, if \r - 1| » k, then \(j>{(j)(n))\ ex 2k. O

Example 2.2.9 Prom Examples 2.2.7 and 2.2.8, and because to each value of e

corresponds exactly one inverse d, there are

#{(p,q,d,e)} = #{ (p , 9) } .#{d}

w (2fc-1sfc)2.</)(0(n))«24fc-21gfc

honest keys. With 2k = 1024, this resolves to approximately 22030 honest keys. D

2.2.7 Provable security

Parts of Chapters 4 to 7 concern the retrieval of information hidden by altered

key generators. This information relates to provable security features of RSA keys.

26

Known p, q implies known d, e. By design of the RSA cryptosystem, it is

made so that knowing p, q implies knowing d, e. In the Computing the trapdoor of

the preceding Subsection 2.2.4, it is shown how to compute d from e and <p(n). The

knowledge of <f>(n) equivalent to the one of the factorization, p, q, of n. Indeed by

definition, it holds that 4>{n) = (p — l)(q — 1) = n — p — n/p + 1 Taking the left and

right hand sides, multiplied by p., and collecting the terms in p:

p2 — (n — (j){n) + l)p + n = 0

has two solutions:

n - <f>(n) + 1 ± J(n - 0(n) + l)2 - An
P,q = g ~ '

Known p, q is equivalent to known d, e. In the original RSA paper, a prob­

abilistic equivalence between factoring n and the knowledge of d, e is given. If d, e is

known then ed — 1 is a multiple of <f)(n). Miller has shown that knowing a multiple

of <f)(n) allows to probabilistically factor n [Mil75].

May showed the corresponding deterministic equivalence: knowing a multiple

of 4>(ri) allows to deterministically factor n [May04]. It is based on Coppersmith's

algorithm [Cop97] for finding small roots of bivariate integer polynomials via lattice

methods. Even so, in practice Miller's algorithm is used, because its expected time is

likely to yield actual running times better than May's because lattice methods yield

high time complexity.

Known bit of m implies known m. This work does not use the following

theoretical results; they are cited here for the sake of the completeness of the listing

27

of known security issues in RSA. From a theory point of view, predicting one bit of

the encrypted message is as hard as breaking RSA [HN98]. This means that given

(n, e, me mod n), knowing one bit of TO implies knowing the entire message TO. This

result's reduction is valid with an oracle yielding the physical ith bit of TO, as opposed

to a more general oracle that would yield one bit of information on TO.

This is an extension of a well-known result by Goldwasser, Micali and Tong.

This earlier result states that the least significant bit of an encrypted message is as

secure as the whole message [GMT82].

Breaking RSA may not be equivalent to factoring. A result of Boneh

and Venkatesan provides evidence that breaking low exponent RSA may be easier

than factoring [BV98]. Low exponent means small e, but the result applies as well

for any smooth e, i.e. any e with prime factors smaller than a given bound. This

result suggests a possible fundamental reason for the lack of progress in proving that

breaking RSA is equivalent to factoring.

For instance, consider the case where e = 3 and gcd(<j)(n), 3) = 1. Breaking RSA

means computing cubic roots modulo n 2 The result in [BV98] establishes that if it

can be shown that computing cubic roots modulo n is as hard as factoring n, then

2 When gcd(0(n), 3)^1, it is well-known that computing cubic roots modulo n is as
hard as factoring. Because gcd(^(n), 3) = 3, it holds that 4>(n) = 3k = 0 mod 4>{n),
for some 1 < k < <fi(n). Any integer y < n can be written in the form y = zak+l for .
0 < a < 2. Therefore y3 = z3ak+31 = z31, that is, for three different y, the cube is the
same. An algorithm that outputs the cubic root modulo n of z31 returns one of the
three choices, so x^ky mod n with probability 2/3. If x3 = y3 mod n, then knowing
x and y yields a non-trivial factor x — y of x3 — y3 = 0 mod n with probability 2/3.

28

that proof will provide a factoring algorithm that does not make use of an oracle.

Given these conditions, a cubic root (algebraic 3) oracle cannot help factoring n.

2.2.8 Distribution properties of RSA

Parts of Chapters 4 to 7 concern the distribution properties of altered key gen­

erators. For comparison, the corresponding properties for honest RSA key generation

are given in this section. Moreover, the RSA function itself is sometimes used to alter

a key generator. Therefore, this section also serves as a reference for the properties

of these alterations.

One inversion of a fixed e modulo 0(n). Some information on the dis­

tribution of the modular inversion of a fixed e was shown by Shparlinski [Shp04].

The formal version of the theorem is first given, to demonstrate the exactness of the

interpretation that we will finally derive. Define the discrepancy D of a sequence of

N points ('yj)jLi of the unit interval [0,1] as

\A(1)
D = supx - m N

where the supremum is taken over the interval X = [a, ft] C [0,1], | J | = ft — a and

A{X) is the number of points of this sequence which belong to J . For a real a and

an integer k > 1, let cra(k) = Y^d\k^a-

Theorem 2.2.10 [Shp04] Let R and e be sufficiently large integers and let TZ C

[R,2R] be an arbitrary set of primes r such that gcd(e, r — 1) = 1. Suppose that n

3 An algebraic oracle is such that it is restricted to arithmetic operations. For
instance, it cannot return x © y.

29

runs through all products n — pq with p, q € Tl, p ^ q, and d is the RSA exponent

that is the inverse of e modulo <f>(ri). Then the discrepancy, D(e,lZ), of the sequence

d/(j){n) satisfies

{ 1/2
Wtf-i/2(e) log e ife>R,

#£rj2(T-i/2(e)loge if e < R.

The cited paper provides the following interpretation. From the inequality
log2 log2 e

cr_i/2(e) < r(e), where r(e) < log2e = e log2e is the number of positive integer

divisors of e, it follows that a_i/2(e) = e^1). Suppose that the admissible primes, 1Z,

are dense: Tl > R/ log71 R, for some constant A > 0. Then it also holds that
D(e,K) <£ R~s/2+oW

for any fixed e and any e e [i?e, i?2_£]. This means that the distribution of the string

formed by approximately the

0.5elogi? MSB of d

is exponentially close to the distribution of the string formed by the same number of

most significant bits of randomly chosen integer in the interval [0,4>{n) — 1].

We reformulate this interpretation for the parameters that are useful in this

work, as the following theorem. For a fixed and sufficiently large e and for a random

choice of the RSA modulus n =' pq, where p and q are k-bit admissible primes, the

decryption exponent d, defined by ed = 1 mod 4>(n), is close to being uniformly

distributed in the following sense. A fraction (linear in the length of n) of the most

30

significant bits (MSB) of e_ 1 mod 0(n) is exponentially close to the distribution of

the string formed by the same number of MSB of a randomly chosen integer in the

interval [0,</>(n) — 1].

Theorem 2.2.11 ([Shp04], informal) Suppose a fixed e E pM*-!)^2"4*)**-1)]

and sampled p, q Eu [2fe_1,2fe] such that gcd(e,p — 1) = gcd(e, q — 1) = 1. Then for

x sufficiently small, an approximate fraction of x of the MSB of e_ 1 mod <p{n) are

distributed exponentially close to the distribution of the string formed by the same

number of MSB of a randomly chosen integer in the interval [0,4>(n) — 1].

A polynomial set of distributed e inversions modulo 4>{n). Now suppose

that e is limited to be of in certain set or of a certain size. Does a similar statement

hold, for a given distribution on e and fixed n? Let us examine a series of cases that

will build intuition and lead to the formulation of a computational assumption which

is coherent with Theorem 2.2.11.

Remark 2.2.12 Consider a given distribution of values of e in ZV^, for some fixed

n. Next, consider the distribution formed by the set of their modular inverses. Then

the elements of this set have the same distribution, up to relabeling, in %l/n\ because

the modular inversion function is a permutation.

If the distribution is uniform, then the resulting distribution is uniform as well.

However, it is possible to construct distributions of e such that the inverses are

easily distinguishable from the uniform distribution.

Example 2.2.13 Consider the set of all e, such that their inverses are small as to

satisfy the conditions for S in Wiener's Theorem (Theorem 6.3.1). Aside from being

31

weak keys, these inverses are all correlated by their small sizes: such values of d are

smaller than n 1 / 4 /3 .

(p, q, di,..., dpoiy(k)) where gcd(dj, 0(n)) = 1 and d{ < n1 / 4 /3 (2.2)

(p, q, d[,..., d'poly{k)) where d\ £v ZJ(n) (2.3)

where poly{k) is a polynomial function in the size of n. Distribution 2.2 is efficiently

distinguishable from the uniform distribution on ZC,rn\ (Distribution 2.3). D

In Distribution 2.2, the distinguisher knows (p, q), hence <p(n) so can check that

gcd(dj,</>(n)) = 1. Thus, it is capital that this condition be met in rfj's generation.

The "opposite" example equivalently yields a distinguishable distribution.

Example 2.2.14 Consider the set of all e that are themselves small as to satisfy the

conditions for 8 in Wiener's Theorem (Theorem 6.3.1): the modular inverses of the di

are all smaller than n1/4. Their inverses are correlated by Wiener's Theorem: a pair

(n, d) yields the corresponding e, thus the factorization of n, which the distinguisher

can check against (p, q).

(p,q,di,..., dp0iy{k)) where di = ej1 mod 4>(n) and ex < n1 / 4 /3 (2.4)

(p, q, d[,..., d'poly{k)) where d\ ev ZJ(n) (2.5)

Thus (2.4) is efficiently distinguishable from the uniform distribution on ^(n)- ^

Clearly, the distribution on e of Example 2.2.14 cannot be used directly to

generate a distribution close to Distribution 2.5. Nevertheless, this can be fixed via

a pseudo-random permutation.

32

Example 2.2.15 If d is then taken through a pseudo-random permutation, 7173, cho­

sen randomly from a family of pseudo-random functions keyed with /3, then

(p, q, 7r(di),..., 7r(dpoiy(k))) where dt = e,"1 mod (f>(n), e* < n1 / 4 /3

and gcd(np(di),<f)(n)) = 1

(p,q,d'l,...1d'poly{k)) where d\ ev ZJ(n)

are computationally indistinguishable, assuming that 7Tp is pseudo-random. •

Because of the uniformity that appears to be derivable from Theorem 2.2.11,

the use of ivp seems to be overkill. This result suggests that a number of bits linear

in the size of n, i.e. 2x(k — 1) for a constant x, might be derivable from the modular

inversion of e.

Example 2.2.16 Apply Theorem 2.2.11, with x = 1/32. It follows that for any

fixed e € [2(fc_1)/8,215(fc~1)/8] and primes p, q Eu [2fc_1,2fc], approximately a x = 1/32

fraction of the MSB of e_ 1 mod 4>(n) are distributed exponentially close to the uniform

distribution, with the compared distribution as precisely stated in the theorem.

Instead of fixing e and sampling n, consider the following. Fix n and sample a

polynomial number of exponents ej that satisfy three conditions: they are appropriate

RSA exponents in %urn)', they are small enough, i.e. of size at most k/2, such that

Wiener's Theorem applies; they are in the range of application of Theorem 2.2.11.

In other words e* €v [2fe/8,2fe/2] n ZJ(n) C p**-1)/8^15**-1)/8]. Then one lets

33

Dt = dif
/l6:irp{di\zlk/i&), so

(p, q, Di,..., Dpoiy(k)) where d{ = e"1 mod <f>(ri)

(p, ?, di,..., rfiojy(fc)) where d\ Eu ZJ(n)

may be computationally indistinguishable, assuming that 7173 is pseudo-random.•

The values of Di cannot be correlated via Wiener's Theorem, as they were in

Example 2.2.14, because only the upper bits of the di are known, so the continued

fraction algorithm (used in the proof of the theorem) is not directly applicable. It is

not known whether the e» being small imply that the MSB of the di have a special

form.

Prom Theorem 2.2.11, it appears sensible to conjecture that such modified in­

verses of e cannot be computationally distinguished from a uniformly and indepen­

dently distributed set. Note e's different "sampling" interval of [2k/8,2k/2} n ZJ(n)

as opposed to [2(fc-1)/8,215(fc-1)/8] in the theorem. We state this as the following

assumption.

Assumption 2.2.17 Consider a sufficiently large interval of uniform and indepen­

dent sampling for p and q and a set of size exponential in k of sufficiently large

values of e (sampled uniformly within the intersection of %lin) and of a given range

S, which will be made precise). Then, a linear fraction of the upper bits of the in­

verses of e modulo 4>(n) cannot be computationally distinguished from the equivalent

bits in a uniformly and independently distributed set, with the compared distribution

as precisely stated in Theorem 2.2.11.

34

More precisely, for primes p,q E [2k 1,2fc] and for x sufficiently small, if et Eu

S, for a significantly large S C p4"**-1)^2-*")**-1)] n ZJ(n), then any polynomial-

time bounded adversary has a negligible probability of distinguishing the following two

distributions:

(p,q,di]2xk,...,dpoiy(k)]
2xk) where d* = ejl mod </>(n) with e» Eu £

(p, q, d T \ -.., d'polyik)f
xk) where d\ Eu 1%{n)

and where poly(k) is a polynomial function in the size of n.

The values, of Di cannot be correlated via Wiener's Theorem, as they were in

Example 2.2.14. On one hand, if the e; are small, then as in Example 2.2.16, the

MSB of the di are not known to have a special form. On the other hand, if the e*

could be picked so that the di were small, then their MSB would have a special form

(that is, be all zeros). However, this is avoided by picking the e; uniformly in a

non-interrupted sub-interval of %u/n\ • In this way, such special values of e$ cannot be

favored. This restriction on the ways of picking e; relates to Assumption 2.2.17'.

Also the use of a strong assumption such as that irp is pseudo-random may not

be entirely necessary. Rather, let function np be the exclusive OR operation with

the random string (3. It is reasonable to make the hypothesis that 7173 composed

with modular inversion behaves somewhat like a pseudo-random function. In fact,

we require not this function composition to be pseudo-random. We only require

that its output be indistinguishable from the uniform distribution, given that the

distinguisher knows the factorization of n.

35

Assumption 2.2.18 Lett = \(5\, letnp : {0, l}e —> {0,1}^ be defined as the exclusive

OR np(m) = (3 © m and let ge(d) denote some £ fixed bits of a variable d. Suppose

that e Eu {0, l}2fe or, if n is fixed or sampled first, e Eu %lfn) or e is sampled in

an appropriate sub-interval of the preceding, and n is the product of two admissible

primes, so that e E 2£(n) after the samplings of n and e. Then for ft Eu {0> ̂ Y> the

parameterized distribution defined as

Dp,e,n = 7T/3 ° ^ (e _ 1 m o d (f)(n))

is indistinguishable from the uniform distribution on £ bits, given that the distin-

guisher knows the factorization of n.

This is reasonable because xoring does not interact naturally with modular alge­

braic operators. For instance, the two operations of Assumption 2.2.18 do not satisfy

distributivity, neither can their order of application be inverted. Xoring is done with

key (5 and modular inversion, with key e.

Example 2.2.16 can be modified to become the following.

Example 2.2.19 Apply the conditions of Assumption 2.2.17, with x = 1/32. For

primes p,q t [2k~1,2k] and for S = [2*/8,2fc/2] n ZJ(n) which is a significantly large

subset of p^-i)/*^15**-1)/8], the x = 1/32 MSB of e"1 mod <f>(n) are distributed

exponentially close to the uniform distribution.

Fix n and sample

e, ev [2fc/8,2fc/2]nZ;(n).

36

Let 7173(771) = (5 © m and let A = dj]fc//16 :ir0(di\sik/i6) so that

(p, q, Di,..., Dpoiy(k)) where d* = e,"1 mod 0(n)

and gcd(Dj,0(n)) = 1

(P, 9> dii --14o»w(*)) w h e r e d'i G t / z*(n)

are computationally indistinguishable, given Assumptions 2.2.17 and 2.2.18. •

Example 2.2.16 can also be modified so that the set of e (more precisely of in­

verses of d) is larger and does not contain an obvious weakness, as in Example 2.2.14.

Example 2.2.20 Apply the conditions of Assumption 2.2.17, with x = 1/32. For

primes p, q G [2*"1, 2fc] and for e Gt^*"1)/8,215(fc-x)/8] n ZJ(n)> the x = 1/32 MSB of

e~l mod 0(n) are distributed exponentially close to the uniform distribution.

Fix n and sample e ev [2fe/8,2fc/2] n Z; (n) C [2(fc-1)/8,215(fe-1)/8]. Then

let A = dj]fc/16 : ^(dfjaifc/ie). Let a uniformly sampled c and other corresponding

parameters (d in place of 8 and e, of e) satisfy the hypotheses of Theorem 7.1.1.

Then

(p,q,Di,...,Dpoiy(k)) where di = ce^1 mod <f>(n)

and gcd(Di,<p(n)) = 1

(p, 9> 4 » ' - , 4»«w(fc)) w h e r e d i G[/ Z£(«)

are computationally indistinguishable, given Assumptions 2.2.17 and 2.2.18. •

37

A statement about the modular inverse of any e would be more useful. It is

sufficient for our purposes that modular inverses fed into a randomizing function

behave like pseudo-random functions.

Definition 2.2.21 Let V be a probability distribution on an exponential size set S,

and let /„ : S —• S be a keyed function. With the application of fn, the distribution

becomes f(V). Suppose that f(T>) is close enough to being evenly spread out in S so

that feeding it into a randomizing function makes this function composition behave

like pseudo-random function. Then f(V) is said to be well pre-shufHed in S.

The statement that a f(V) is well pre-shuffled is weaker than it being indis­

tinguishable from uniformly distributed. A uniform distribution is well pre-shuffled,

because one expects a random selection to be evenly spread out in S. A well pre-

shuffled distribution is not, in general, uniform, because the fn may be reversible,

for instance if every element of f(V) is spread out exactly evenly in S.

Assumption 2.2.17' Consider a sufficiently large interval of uniform and indepen­

dent sampling for p and q and the intersection of %lfn\ and of a given range S,

forming a set of size exponential in k of values of e. Then the inverses of e modulo

(f>(n) are well pre-shuffled in S.

The supposition of Assumption 2.2.17' implies that the supposition of (an adapted

version of) Assumption 2.2.18 makes more sense, denoted as Assumption 2.2.18',

which follows. It is coherent that the primed version of Assumption 2.2.17 is stronger

and that the one of Assumption 2.2.18 is weaker than the corresponding original one.

In addition, the supposition of Assumption 2.2.18' will be more useful.

38

Assumption 2.2.18' Let 717? : {0, l}2k —• {0, l}2k be defined as ^ (m) = /3 © ra.

Suppose that e Eu {0,l}2fe or, z/n is fixed or sampled first, e Eu /̂>(n)
 o r e zs sampled

in an appropriate sub-interval of the preceding, and n is the product of two admissible

primes, so that e E %ltn) after the samplings of n and e. Then for (3 Eu {0,1}*, the

parameterized distribution defined as

Dp,e,n = tf/j(e-1 mod 4>{n))

is indistinguishable from the uniform distribution on 2k bits, given that the distin-

guisher knows the factorization of n.

The two preceding examples are modified similarly.

Example 2.2.19' Apply the conditions of Assumptions 2.2.17' and 2.2.18'. For

primes p,q E [2fc_1,2fc] and for e Eu %l(n)i * n e parameterized distribution Dp>e<n is

indistinguishable from the uniform distribution on 2k bits, given that the distin-

guisher knows the factorization of n. Then

(p,q, Di,..., Dp0iy^k)) where A = TT/3 (e_ 1 mod 4>{n)) (2.6)

and gcd(D;,0(n)) = 1

(P.9i^i»-.4o«y(fc)) ' w h e r e d'ieu^l(n) (2-7)

are computationally indistinguishable. •

Example 2.2.20' Apply the conditions of Assumptions 2.2.17' and 2.2.18'. For

primes p,q E [2fc_1,2fc] and for e Eu ^,(n)> then e _ 1 m ° d ^(n) *s w e ^ pre-shuffled.

Let d (replacing S) and e (replacing e) satisfy the hypotheses of Theorem 7.1.1, and

39

so does c, picked uniformly within the range \c\ < -yn 3^4ed. Then

(p, q, D1,..., Dpoiy(k)) where A = 7173 (ce_1 mod 0(n)) (2.8)

and gcd(Dj, (f>(n)) = 1

(p, q, d[,..., 4OJ»(*))
 w h e r e di Gtf ZJ(n) (2.7)

are computationally indistinguishable. •

These properties of RSA can be used to compare the security of ^ (c e " 1 mod

(f>(n)) with to the one of ^ (e " 1 mod (j)(n)). The following assumptions are the types

of statements that are useful in Chapters 6 and 7.

Assumption 2.2.22 Distributions 2.6 and 2.7 are computationally indistinguish­

able.

Assumption 2.2.23 Distributions 2.8 and 2.7 are computationally indistinguish­

able.

We would like to show that Assumption 2.2.23 is less strong than Assump­

tion 2.2.22. For this, one may show that if Distributions 2.8 and 2.7 are computa­

tionally distinguishable, then Distributions 2.6 and 2.7 are computationally distin­

guishable. To show this, one would transform instances of the latter pair into ones

of the former one, which are distinguishable. However, can a distribution of the

form ft/3(e~l mod <fi(n)) be transformed into one of the form 7173(0 • e_ 1 mod <f>(n)),

for sampled c? This seems unlikely, because the first form is exactly the second, for

c = 1, and this value may be the most difficult case (the reduction is only for the

average case). Furthermore, it seems, in general, impossible to sample c and insert

40

it within the 7173, in order to obtain the sought average case. For this to be feasible,

an extra condition on 7173 can be met. This is stated as follows, in what we believe is

the most general form possible.

Theorem 2.2.24 Suppose that 7173 is such that

7173(0 • e~l mod <p(ri)) = g (c, np(e~1 mod 4>(n)))

for some function g that may depend on IT, but not on j3. If Assumption 2.2.22 holds

then Assumption 2.2.23 holds.

proof: Suppose that T> distinguishes the two former distributions with probability

1/2+e. Let x be sampled uniformly from Distributions 2.6 or 2.7, and let a uniformly

sampled c satisfy the hypotheses of Theorem 7.1.1. Then

{Distribution 2.8 if x G Distribution 2.6,
(2.9)

Distribution 2.7 if # € Distribution 2.7.

In other words, multiplying by a uniform c transforms Distribution 2.6 into Distri­

bution 2.8 and leaves Distribution 2.7 unchanged. This is because, in the first case,

x = 7173 (e_1 mod (f)(n)), so g(c,x) = g (c,iT0(e~1 mod 4>{n))) — 7173(0 • e - 1 mod </>(n)).

Therefore

V'(x)=V(g(c,x))

distinguishes Distributions 2.6 and 2.7 with probability 1/2 + e. •

Theorem 2.2.24 is stated to fit with statements proven in the following chapters.

Intuitively, the converse statement does not appear to hold. That Distributions 2.8

41

and 2.7 be computationally indistinguishable may be attributed to the randomness

due to c. In other words that Distributions 2.6 and 2.7 be computationally distin­

guishable is a weaker statement than the sufficient.conditions of the previous theo­

rem's proof by contrapositive. It appears to be insufficient to imply distinguishability

for the other pair of distributions.

Theorem 2.2.25 (Generalization) In Theorem 2.2.24, the following can be gen­

eralized. The operation • can be changed to any group operation. The distribution of

c can be changed to any distribution within the appropriate range.

One last computational assumption is stated, stronger than any other one in

this section, at the exception of Assumption 2.2.18'.

Assumption 2.2.26 Consider a sufficiently large interval of uniform and indepen-
*

dent sampling for p and q and a range of size exponential in k of sufficiently large

and admissible values of e. Then, the set of inverses of e modulo 4>{n) cannot be com­

putationally distinguished from a uniformly and independently distributed set, with

the compared distribution as precisely stated in Theorem 2.2.11.

More precisely, similarly as for Assumption 2.2.17, we suppose the following.

For primes p,q G [2fc_1,2fe] and for some x,y, let e Gu S, for a significantly large

subset S C [^ - ^ (^ J ^ - ^ n Z ^ . Let

Di — dif ~ a> : ftp (diJ(2-4a)fc)

for a pseudo-random function np and a < 1/6 but large enough. Then any polynomial-

time, bounded adversary has a negligible probability of distinguishing the following two

42

distributions:

(p, q, Du ..., Dpoiy(k)) where dt = e"1 mod (j>(n)

(p,q,d[,...,d'polyik)) where dft ev Z j (n)

and where poly(k) is a polynomial function in the size of n.

It is useful in Chapter 7, as it is on this assumption that the security of Al­

gorithm G4 (Figure 7-9) is based. Denote by Assumption 2.2.26' the original as­

sumption, along with more complete domain for e (later replaced by 5) and the

assumption that the addition of c(3 makes the distribution of the (2 — Aa)k lower bits

indistinguishable from uniform, because c is uniformly distributed.

Assumption 2.2.26' Suppose Assumption 2.2.26 with a polynomial size sample of

eeu[i,22ak}nz;{n)

and let d = e_ 1 mod 4>{n). Then with c uniformly distributed, the parameterized

distribution Dp>e>n defined as

D0!e,n = TT0(d) = d + C0

is indistinguishable from the uniform distribution on 2k bits, given that the distin-

guisher knows the factorization of' n.

The second part of the Discussion after Algorithm G4 (Subsection 7.1.4) criti­

cizes its application to this security statement and derives an open question.

43

The RSA permutation. The RSA encryption function is a candidate trapdoor

one-way permutation. An efficient pseudo-random generator can be derived from the

(assumed) one-wayness of a variant of the RSA function [SPW06].

Under some conditions, the RSA encryption function is a pseudo-random per­

mutation. In this context of this work, the following proposition is often useful.

Proposition A.3.6 is the equivalent proposition for EG.

Proposition 2.2.27 By adding a linear fraction of random bits to a message, m,

the RSA-OAEP encryption function of m is in practice considered indistinguishable

from a uniformly distributed number, unless computing the eth root modulo n is easy.

proof sketch: This property is related to semantic security or indistinguishability

of encryptions [GM84], usually denoted IND. A concrete way of achieving semantic

security is through the RSA-OAEP padding and encryption algorithm provided that

the mask generation functions are viewed as random oracles. A detailed description

follows this proof sketch.

However, the indistinguishability property sufficient for this work's results is

that the output of some encryption function be pseudo-random. This appears to be

a property stronger than indistinguishability of encryptions. Nevertheless, Phan and

Pointcheval have shown an equivalence between indistinguishability of encryptions

and pseudo-randomness [PP04]. •

That a slightly modified RSA encryption function can be assumed to be a pseudo­

random permutation generation is sufficient for this work's results. RSA-OAEP is thus

sufficient to justify Proposition 2.2.27. Overall, a slightly modified RSA encryption

44

function is an assumed pseudo-random permutation generator, on which some of this

work's results are based on.

For this, the RSA encryption function / : {0,l}fc —> {0, l}fc is seen as:

/ : {0, lf+kl x {0, l}ko -> {0, l}e+kl x {0, l}fc°

where k = £ + k0 + k\.

Let the mask generation functions be hash functions G : {0,l}fc° —»• {0, l}fc_fco

and H : {0, l}fc_fe° —> {0, l}k°. The encryption of a message m G {0,1}£ with

randomness r Eu {0, l}k° is

c = f(s,t)

where

s = (m:0 f c l)eG(r)

t = reH(s)

and the decryption is

M) = rHc)
r = t@H(s)

m = s®G(r).

45

2.3 Application issues and standards

In the application of RSA, there are a number of different standard precautions

to be taken. The PKCS standard is meant to cover these precautions, for practical

purposes. Some of these precautions concern weak keys, i.e. keys that are rejected,

because they make the cryptosystem behave in ways such that its security may be

significantly decreased. This provides a standard set of keys to reject from practical

use.

2.3.1 Direct attacks

If some of the cryptosystem's parameters have special values, then the cryp­

tosystem can be vulnerable to direct attacks. An example of vulnerability is when

keys are chosen to be in a certain range or of specific values that make them weak

keys.
Values

p or q short, possibly up to 67
digits [Dod06]
4>(n) (or rather p — 1 or q — 1)
has only small prime factors (*)

p+1 or q+1 has only small prime
factors (*)

large prime r | 4>{n) is s.t. r — 1
has only small prime factors (*)
p-qE 0{n1^)

method

elliptic curve factoring
method

Pollard p—1 Algorithm
[MvVOl, Section 3.2.3]
p + 1 factoring algo­
rithm [MvVOl, p.125,
Section 3.12]
cycling attacks [MvVOl,
Section 8.2.2(vii)]

Fermat's algorithm

effect on se­
curity

n factorized

n factorized

n factorized

n factorized

n factorized

Table 2-1: Consequences on RSA security of values of p and q. When the (*) condi­
tions are avoided, p and q are said to be strong primes.

46

Strong primes may be generated with an algorithm given in the Handbook of

Applied Cryptography [MvVOl, Section 4.4.2].

Values

d < n°-25/3
d < n0 2 9 2

small e (low-exponent RSA) under
different public keys only
small e (low-exponent RSA)

ed = c mod 4>{n) such that
d < n 0 2 5 /3 and \c\ < 'yn°'75ed

method

Wiener [Wie90]

Boneh and Durfee
[BDOO]

Hastad [Has88]

Coppersmith et al.
[CFPR96]

Blomer and May
[BM04]

effect on se­
curity
n factorized
n factorized

message, m,
recovered
m recovered

n factorized

Table 2-2: Consequences on RSA security of values of e and d.

Wiener's method is cited in this work as Theorem 6.3.1. Blomer and May's

method is cited in this work as Theorem 7.1.1.

2.3.2 Indirect attacks

Well-known indirect attacks on RSA may come from the knowledge of additional

parameters which are not public nor private, but yield the private ones.

Indirect attacks may also be made possible from additional interaction with the

encrypting or decrypting parties.

2.4 Chapter notes

This chapter is mostly based on Stinson's book [Sti06, Chapter 5].

Subsection 2.2.3 contains material that has been updated in the most recent

standard. InPKCS#l v2.1 <fi(ri) = (p—l)(q—l) is changed to A(n) = lcm(p—1,^—1)

47

Values

.#0
k • 4>{n)
part of d

part of m

method

solve a second degree equation (knowing n)
Mil75, Lemma 4]

Boneh, Durfree and Prankel [BDF98]

Hastad and Naslund [HN98]

effect on se­
curity

n factorized
n factorized
n factorized

m recovered

Table 2-3: Consequences on RSA security of additionally known parameters.

Interaction

chosen ciphertext attack: an oracle of eth

root extraction (e.g. man-in-the-middle
attack, Figure 1-2)
key generation with verifiable randomness

effect on security
unknown properties
[PKC03, Section 7.1]

Juels and Guajardo [JG02]

Table 2-4: Consequences on RSA security of additional interaction.

[PKC03, Section 3]. Because X(n) |0(ra), this allows to maintain the properties to

be developed in Subsection 2.2.4 while ridding (p(n) of some redundant factors, as

A(n) = 4>{n)/ gcd(p— 1, q— 1). This allows for a lesser number of modular inverses to

be rejected, because |Z>(n)| < |Z^,(n)|. However, fewer are accepted as well, because

4>(\{n)) < 0(0(n)), and therefore |Zw J < |Z£, J. The values of primes to be

avoided, as listed in Table 2-1, still apply.

The non-asymptotic bounds in Theorem 2.2.4 are form the Handbook of Applied

Cryptography [MvVOl, Fact 2.96].

The information in Subsection 2.2.6 is not explicit in Stinson's book, but can

easily be derived from the mentioned chapter.

48

Subsection 2.2.8 is original work based on Theorem 2.2.11. At the end of

this section, the RSA-OAEP padding and encryption algorithm can be referred to

in [FOPS01, PKC03].

In Section 2.3, Fermat's factorization algorithm of Table 2-1 may be referred to

in [Wei07].

49

CHAPTER 3
RSA signature padding

3.1 Introduction

Background. In [CKNOO], Coron, Koeune and Naccache present security re­

ductions for RSA signature padding schemes. These reductions allow to go from

fixed-length messages to arbitrary-length messages RSA signature padding schemes.

A hash function /j, is an atomic primitive that is assumed to be a secure padding

scheme for RSA. However, JJL takes a 2k + 1 bit input and returns a 2k bit output

where 2k is the length of the RSA modulus. This particularity of the scheme is not

significantly modifiable: the bit length of the n output has to have about the same

bit length as the RSA modulus. This limitation on the choice of fx forces either to

instantiate it with a non-dedicated hash function, or with a dedicated hash function

that uses both compression and chaining primitives.

New algorithm. In this chapter, with a similar construction, we give a prac­

tical instantiation based on the compression function of SHA-1 without any chaining

function. Our solution has the great advantage over [CKNOO] of removing the re­

lation of the length of /i output to the length of the RSA modulus. We are able

to achieve this result simply by making an additional assumption about //, namely

division intractability. This property is slightly stronger than collision intractability.

The new algorithm allows one to make precomputations on partially received

messages. For instance, IP packets are typically received in a random order.

50

3.1.1 Hash-and-sign paradigm

A common practice for signing with RSA is known as the hash-and-sign paradigm.

First, a hash or redundancy function, which usually consists of a compression func­

tion and a chaining function, is applied to the message. Then some padding is added

to the result, and this value is exponentiated using the signature exponent. This is

the basis of several existing standards many of which have been broken, as surveyed

by [Mis98].

Paradigm 3.1.1 (Hash-and-sign paradigm) A signature algorithm pre-processes

a message to be signed by padding it as follows.

1. It is more efficient to exponentiate a shorter, hashed, number. The security

then also depends on the one of the hash function \x. More formally, let yt, be a

randomized compression function taking as input a message of size t, using r

random bits, and outputting a message digest of length I:

^ : { 0 , l } r x { 0 , l } * - { 0 , l } '

2. The hashed message is also padded via an encoding function enc in order to

use the full length of the RSA modular exponentiation. Let enc be an encoding

function taking as input a message digest of size I, and outputting an encoded

message of length 2k:

enc : {0,1}' -> {0, l}2k

Overall:

enc on: {0, l } r x {0,1}* -* {0, l}2fc

51

Firstly, sum up the mathematical consideration of the RSA signing function.

The RSA signing function, as conceived from theoretical (abstract) point of view to

a progressively more applied (implementable) one, is illustrated by Figure 3-1.

Signjy) = (yd mod n, y)

ii

Signjy) = (fi(y)d mod n, y)

ii

Sign(y) = {eric o /-t(y)d mod n, y)

Figure 3-1: The RSA signing function, abstracted form to more applied form. The
top line is the most abstracted form: only signing by exponentiation is shown. The
middle line includes the hashing step, with the hash function //. The bottom line is
the most applied one: an additional step of encoding compensates for limitations in
the lengths of the hash function.

The enc function. For clarity and completeness, we briefly elaborate on the

enc function. Bleichenbacher showed an efficient attack based on a feature of the

PKCS # 1 standard for hashing-and-signing [Ble98]. This feature is that some of

the bits generated by enc are constant. A way to avoid this is to use a random­

ized padding function (it is preferable to avoid using memory as a way to remember

which messages have already been signed). Also, if enc is deterministic, different ap­

plications of the encoding operation to the same message produce the same encoded

messages, which is undesirable [PKC03, Section 9]. In practice, this yields tighter

security proofs, for instance in Bellare and Rogaway's paper that randomizes FDH to

obtain PSS [BR96] and [PKC03, Section 8.1]. Therefore, the padding added via enc

is required to be pseudo-random and enc is, to be a randomized fonction.

52

Secondly, consider an algorithmic version of the RSA key generation and signing

function. Figure 3-2 shows the pseudo-code of the classical RSA signature scheme

(Gen, Sign, Verify) which signs fixed-length t-bits messages. This figure is a modi­

fication of [CKNOO, Figure 1].

SYSTEM PARAMETERS

an integer k > 0
a function y,: {0, l } r x {0,1}* - • {0,1}'
a function enc : {0,1}' -> {0, l}2k

K E Y GENERATION : Gen

(n,e,d) <— RSA(l2fc)
public key: (n, e)
private key: (n,d)

SIGNATURE GENERATION : Sign
R^u{0,iy
me{o,iy
y *— enc o fi(R, m)
return (R, yd mod n)

SIGNATURE VERIFICATION : Verify
y <— xe mod n
y' <— enc o /j,(R, m)
if y = y' then return 1 else return 0

Figure 3-2: The classical RSA scheme using enco\x for signing fixed-length messages.

3.1.2 Chosen-ciphertext at tacks

Therefore, a particular class of attack on RSA targets the security of the padding

algorithm. These attacks include chosen-ciphertext attacks (CCA), as shown in Fig­

ure 3-3. They are a special case of a man-in-the-middle (MITM) attack, where the

adversary has access to a signature oracle.

53

verification of the signature
(the eth power is public)

Figure 3-3: Chosen-ciphertext attacks (CCA) on a signature algorithm: the signing
algorithm acts as a signature oracle for the adversary. If the queries are not chosen
all at once, the figure can be seen as showing an adaptive version of this attack, where
the adversary can adapt its. strategy w.r.t. the oracle's previous answers.

The RSA cryptosystem used without the hash-and-sign paradigm is subject to

a well-known CCA [Dav82]. Suppose that the adversary is interested in knowing the

signature of a message ra, that is,

md mod n.

The adversary can query the signature of a random, innocent-looking message,

m' = sem mod n,

for a random integer s. The decryption oracle returns the signature of ra':

(sera) mod n = smd mod n.

This signature, multiplied by s _ 1 mod n provides the required signature.

In practice, a CCA can be deployed as a lunch time attack, where the adversary

has access to a signing device at a time where its legitimate user leaves it untended.

A concrete example is the one of a smart card which may be under the full control

of the adversary.

54

adversary:
wants the signature of ra

> s ^ ^ ^"~""-»^aueries signature of m'

answers m' moor r -^^ ^N*.

signature of the message
(the dth power is private)

3.1.3 Security goal

The security of signature schemes was formalized in [GMR88] for the asymptotic

setting. We will prove security against existential forgery by adaptive chosen-message

adversaries * . Overall, we show that adaptive chosen-message attack cannot produce

existential forgeries.

The adaptive chosen-message attack is the most general attack, that is, the

one involving the strongest adversary amongst the standard theoretical attacks cata­

logued in [GMR88]. As in Figure 3-3, the adversary can use the signature algorithm

as an oracle. The adversary can request signatures of messages that depend on the

given public key. Additionally, the adversary can request signatures of messages that

depend on previously obtained signatures. Similarly, the requests can depend on the

target message to be forged.

The least success that an adversary may hope for, again amongst the standard

interesting adversarial results, is an existential forgery. To forge a signature means to

produce a new signature that was not requested to the oracle. An existential forgery

is a forgery for at least one message, so that the adversary may not control which

message it forges a signature for, so the message may be random or nonsensical.

Therefore, such an adversary may not be able to do more than minor damages. Note

1 In the previous section, the message is called ciphertext because it is sent to a
signature oracle, which is also, by abuse of language, called a decryption oracle. This
is because of the common convention that the RSA private key is the decryption key.

55

that Figure 3-3 does not show an existential forgery, but a, more severe, selective

forgery: the forgery is for a message chosen a priori by the adversary.

3.2 Definitions

The following definitions are for the exact security of signature schemes [BR96].

Definition 3.2.1 A forging algorithm F is said to (tprOC, qsign, e)-break the signa­

ture scheme given by (Gen, Sign, Verify) if after at most qSign adaptively chosen

signature queries and tproc processing time, it outputs a valid forgery with probability

at least e. The probability is taken over the random bits of F, and given that the

random bits in the signature, R, are correctly distributed.

Definition 3.2.2 A signature scheme (Gen, Sign, Verify) is (t^oc, qsign, e)-secme

if there is no forging algorithm which (tproc,qSign,e)-breaks the scheme.

To construct (j, from a dedicated hash function without chaining, we make an

additional assumption, which is strong but constructible. We use a definition of

[GHR99] slightly modified for our purposes.

Definition 3.2.3 Let negl(l) be a negligible function and let Hi be a collection of

compression functions that map strings of length t into strings of length I. Such a

collection is said to be negl(l)-division intractable if for /x € Hi, it is infeasible to

find distinct inputs X\, ...,Xn, Y such that n(Y) divides the product of the n(Xi) 's.

We modify this definition in three ways. Firstly, it is also required that it is

infeasible to find distinct inputs X[,...,X'n such that fi(Y) divides the inverse of the

product of the /J,(Xi) 's. Secondly, the products are taken modulo 2*. Thirdly, A is a

probabilistic algorithm and a portion of the input length of /i may be randomized.

56

Formally, for every probabilistic algorithm A that runs in polynomial time in I,

there exists a l0 such that for all I > l0 and for all Y, {X!-}i and {Xj}j.-

)J.GHI,IJ,'S random bits < negl(l)

A(fx) = (X1,...,Xn,X[,...,X^,Y)

s.t. Y ^ Xif i = 1,..., n, and Y ^ X[, i = 1,..., n',

li(Y) divides Y[n
i=ln(Xi) mod 2*,

and n(Y) divides (J^Li M^O)" 1 m od 2*

If fj, is randomized, the adversary A can choose the input but not the randomness,

so that the latter is picked from the uniform distribution. Given a randomly chosen

function /j, from Hi, A needs to find pairs

(Ri,Xi),..., (Rn,Xn), (R[,X[),..., (R'n,,X'n,), (R,Y)

such that Y ^ Xi for i = 1, ...,n and Y ^ X[for i = 1, ...,n', but /J,(R,Y) divides

the products ULi K^i* xi) m o d 2* and [TGLi L*(K ^ i)] " 1 raod 2<-

Remark 3.2.4 In practice, this version of division intractability means that it is

infeasible to find two products of values of n that are equal. As before, let A choose

the input but not the randomness. Given a.randomly chosen function [i from Hi, A

needs to find pairs

(Ri,Xi),..., (Rn,Xn), (R1,X^,..., (Rn,,Xn,), (R,Y)

such that

fi(R, Y) f[fi(R\, XI) mod 2* = f[fi(Rh X{) mod 2*
i = l t = l

but Y ^ Xi for i = 1,..., n and Y ^ X[for i = 1,..., n!.

57

3.3 An improved algori thm

We construct in Figure 3-4 a new signature scheme {Gen!, Sign', Verify') using

the function enc o fj,. The new construction allows the signing of messages of size

2a(t — a) bits where a is between 0 and t — 1. This is a modification of [CKNOO,

Figure 2].

SYSTEM PARAMETERS

an integer k > 0
an integer a G [0, t — 1]
a function /i : {0, l } r x {0,1}* -»• {0,1}'
a function enc : {0,1}* —• {0, l}2fc

K E Y GENERATION : Gen'

(n, e, d) •*— rsa(l2k)
public key: (n, e)
private key: (n, d)

SIGNATURE GENERATION : Sign'
Split the message m into b blocks of size t — a bits
such that m = m[l]||...||m[6]
Ri^u{0,l}rfori = l,...,b
a ^ n l i M ^ I M ^ n i o d ^
where i is the a-bit string representing i
R<-u{o,iy
y <— enc o /x(i?, a)
return {.R, (i?j), yd mod n)

SIGNATURE VERIFICATION : Verify'
y +— xe mod n

y' <— enc o //(i?, a)
if y = y' then return 1 else return 0

Figure 3-4: The new construction using enco fx for signing long messages.

58

Theorem 3.3.1 For a non-negligilbe function e(l) and all negligible negl(l) func­

tions, it holds that s(l) > negl(l) for sufficiently large I. Suppose that qsign and tprOC

are polynomials in I. For a fixed e, if the signature scheme (Gen, Sign, Verify) is

\tproci Qsignj

e)-secure and if //, is negl-division intractable, then the signature scheme

described in Figure 3~4 (Gen', Sign', Verify') is (t'proc,qSign,e)-secure, where:
^•proc T'proc *• ' Qsign ' ^ V. /

for a message size of2a(t — a) bits and n that has a relatively negligible time com­

plexity.

proof: Suppose there is a forger F' that (^,oc, gSjgn,e)-breaks the signature scheme

(Gen', Sign', Verify'). Then, we can construct a forger F that (tpr0C, qsign, e)-breaks

the scheme (Gen, Sign, Verify) using F'. The forger F has oracle access to a

signer S for the scheme (Gen, Sign,Verify) and its goal is to produce a forgery

for (Gen,Sign,Verify).

The forger F executes F' and, if F' has queries, then F computes their answers

and returns them to F'. Specifically, F executes the steps of Sign' of Figure 3 -

4 and calls S as a sub-routine. In particular, when F' needs the signature of the

j t h message m?, F queries S to obtain the signature Sj of otj. This takes time

Ylf=\ ^j ^ Qsign • .2°', multiplied by the time necessary to compute multiplications

modulo 2', which is feasible in time at most quadratic in t. The factor 2a comes from

that the block index has a bits, therefore its value is bounded above by 2°.

59

file:///tproci

Eventually, F' outputs a forgery (m',s') for the scheme (Gen', Sign', Verify'),

where s' = (jR!, (R'^ ,y'd mod n). So F can compute:

y' = enc o/j,(R\ a')
b'

a' = JJ/i(i2j,i | |m'[i])mod2 t

t=i

6' = number of blocks of m'

which, similarly, takes additional time b' G 2° • O (t2).

The total time complexity of F is the time to simulate the oracle plus the time

to compute these last values. The operations other than the multiplications modulo

2* have relatively negligible time complexities, given that [i has a relatively negligible

time complexity. Therefore, the total time is of order 2a • qSign •

C(t2).

We distinguish two cases:

First case: a' £ {oti,—,<xqgign}. In this case, F outputs the forgery (y',s'[3]),

where y' = encofj,(R', a') and s'[3] = y' mod n, the third component of s'. This is a

valid forgery for the signature scheme (Gen, Sign, Verify) since y' was never signed

by the signer S. This value was never signed, because \i is a hash function on a new

value a', so standard assumptions on the security of a imply that the resulting y'

is new, except with negligible probability. Finally, that such a forgery is possible

contradicts our assumption that the signature scheme is secure.

Second case: a' £ {a>i,..., otqsign}-, so there exists a c such that a' — ac. Let us

denote m = rac, (Ri) — (R-), a. = ac, and b = bc. We have:
J J / / (# ; , i||m'[i]) mod 2* - JJ / / (#*, i||m[i]) mod 2*. (3.1)

60

Note that x \ y mod 2* means that there exists a z such that xz = y mod 2*. For such

ix and z, it is difficult to find a z such that z = /i(£).

For TO' 7̂ m, there are three subcases. Suppose b' = b. Then because m' 7̂ TO,

for some j it holds that J||TO'[J] £ {1||TO[1], ..., 6||m[6]} and fj,(Rj,j\\m'[j]) divides the

products Yl\=1fJ>(Ri,i\\fn[i\) mod 2* and frji=,i#j /•i(jft»>*llm[*])) mod 2*. Suppose

that b > b', then there is at least one more block on the LHS of the previous equation

that similarly divides the RHS. The situation is symmetric for b < b'. In any of the

three cases, since e > negl, and t' and qsign are polynomial in I, this contradicts our

assumption that fj, is negZ-division intractable.

If TO' = TO, then there exist choices of random bits, R[^ Ri for some i, such

that Equation 3.1 holds. This yields the same three subcases as above, contradicting

division intractability, which is consistent with [PKC03, Section 8.1]: randomness is

useful, but not critical to security. For simplicity, the random bits picked by F are

assumed to be chosen honestly, i.e. as close as possible to uniformly distributed. •

3.4 Further developments

3.4.1 A practical hashing family if3.i6o-

The original result was formulated in terms of version 1.5, even though this

standard does not use randomization in enc. The randomized enc function of version

2.1's more robust RSASSA-PSS (see Chapter notes) can more readily be interpreted as

a particular case of the previous sections' enc function. Using version 2.1 is consistent

with this chapter's security proof which is based on the one of the former, i.e. PSS,

in [BR96]. Section 3.1.1 explained how a randomized security proof is preferable.

61

We define the function fj, by using the following standard dedicated primitives:

h =SHA-l : {0, l} 5 1 2 - • {0, l } 1 6 0

enc = PKCS # 1 ver. 2.1 : {0, l } 4 8 0 - • {0, l}2fc

where |n| = 2k and where enc = PKCS # 1 f er. 2.1 is a feasible randomized instan­

tiation using the parameter for the intended length in bits of an encoded message,

emBits = 480. In brief, this standard is as follows. A leading 0 bit ensures that the

encoded message to be exponentiated is, when converted to an integer, less than the

modulus. The encoding's last eight bits are a trailer field, formed by the octet Oxbc.

The rest of the blocks are pseudo-randomly generated. This makes the length of the

encoded message to be exponentiated equal to 2k. [PKC03, Section 9.1]

Let Ri be a uniformly distributed 2 • 160-bit string and rrti the ith block of TO,

the message to be signed. Then \x is the compression function derived by [GHR99,

Section 6] from the heuristic given in [BP97]:

fx(Ri,mi) = 2320-h(mi) + Ri

where h is a collision-intractable function. Also, Ri is the smallest integer greater

than the integer defined by the ith 320-bit block such that fi(Ri, mi) is odd.

Note that our /J, is denoted h in [BR96, Figure l]'s notation. In that notation,

the functions gi and g2 not only produce the padding, but also mask the random bits

used in the compression function. This masking is left out in this chapter's scheme,

but such a modification is compatible: in fact, it allows the signature generation to

skip the transmission of R, (Ri), as was done in Figure 3-4.

62

The function /x is defined only when fx(R, m) is an odd integer. This guarantees

invertibility modulo 2*. Overall:

H : {0, l } 3 2 0 x {0, l } 5 1 2 - {0, l } 4 8 0

encof, : {0, l } 3 2 0 x {0, l } 5 1 2 ^ {0, l}2fc

3.4.2 Improved communication complexity.

The signature scheme (Gen', Sign', Verify') described in Section 3.3 has signif­

icant overhead communication complexity: the number of random bits transmitted

is proportional to the number of message blocks. This problem represents the main

open problem of this chapter. This is only an issue when the scheme is consid­

ered in general, that is, for an encoding function that does not feature recoverable

randomness, as opposed to the one described in Section 3.4.1.

A first solution to this open problem can be sketched using a (conjectured)

pseudo-random number generator. The following definition is based on [Lub96, p.50-

51].

Definition 3.4.1 Let g : {0, l}r - • {0,1}(6+I)r be a P-time function. We say g is

a (8, £)-secure pseudo-random number generator for which adversary A has success

probability:

5A = \Px&{Q,iy [A(g(X)) = 1] - PZe{0,1}«+i)r [A(Z) = 1]|

if every adversary A has a probability of success 5A < S and a running time of at

least t.

63

The modified scheme would involve the transmission of r random bits, which

would be stretched into (b + l)r random bits via a pseudo-random number generator

g, by both the signer and the verifier. The pseudo-random bits take the place of their

random counterparts in the original scheme described in Figure 3-2. The security

of this modified scheme is implied by the one of the original scheme, and of the

pseudo-random number generator.

For the practical implementation described in the previous section (but used

with a general encoding function that may not feature recoverable randomness),

n(Ri,mi) = 2320 • h(mi) + Ri

where h is collision intractable.

Collisions are unlikely. On average over all possibilities, Ri is incremented by a

value of 0.5. Therefore, when a collision in fj, occurs, it very likely comes from a col­

lision in h, which is in turn unlikely, because h is assumed to be collision intractable.

To quicken the verification process, Ri can be defined as ith 320-bit block +

inci. In such a case, only the value of mq is transmitted with the message block

trading time for communication and time of the receiver. This is generally accepted

to provide the same distribution, in practice.

3.5 Summary

In [CKN00], the problem of designing a secure general-purpose padding scheme

was reduced to the problem of designing a one-block secure padding scheme by pro­

viding an efficient and secure tool to extend the latter into the former. By modifying

64

their construction for arbitrary-length messages, and adding one reasonable computa­

tional assumption, we provide a practical method of instantiating the secure padding

function for short messages using the compression function of dedicated hash func­

tions as well as dedicated encoding functions. We have presented an implementation

that uses SHA-1 and PKCS # 1 ver. 2.1. This implementation is independent of the

size of the RSA modulus. This was not true in [CKNOO].

Dedicated hash functions usually consist of two primitive functions, one of com­

pression and one of chaining. This chapter presents an improvement on practicality,

since it reduces the potential attacks on the one-block padding scheme to the ones on

the hash function's compression function, eliminating all worries about the chaining

function, or its interactions with the compression function.

3.6 Chapte r notes

This chapter was published as a co-authored paper with Jean-Marc Robert

[ARM].

Update in PKCS versions. The latest PKCS document, version 2.1, states

the following [PKC03, Section 8]. Two signature schemes with appendix are specified

in this document: RSASSA-PSS and RSASSA-PKCSi-vi-J. Although no attacks are

known against RSASSA-PKCSi-ui-5, in the interest of increased robustness, RSASSA-

PSS is recommended for eventual adoption in new applications. RSASSA-PKCSi-vi_5

is included for compatibility with existing applications, and while still appropriate for

new applications, a gradual transition to RSASSA-PSS is encouraged.

65

CHAPTER 4
Introduction to backdoors

The goal of this chapter is to first develop an intuition of the concept of backdoor

and then to provide a formal definition. This forms a basis for the chapters that

follow. These chapters develop a classification of existing backdoors and provide

improvements on some of them.

4.1 Background

Key generators with backdoors can serve two purposes:

1. a designer may distribute a malicious key generation algorithm producing pub­

lic and private key pairs which are such that a public key allows this attacker

to retrieve the corresponding private key;

2. a legitimate key escrow-like system can be based on a backdoored key generator

that allows the trusted party to retrieve the private key associated with a public

key without an expensive database.

4.1.1 The two contexts

Illegitimate backdoors. Legitimate users of cryptography rely on hardware

or software to generate their keys. Therefore, users ultimately rely on smart card

manufacturers, software companies (that provide web browsers) or their own ca­

pabilities to review open source software in order to assure the validity of the key

generation.

66

For instance, malicious key generators may not use a trustworthy source of

randomness. The randomness may be made so that it has a special structure so that

weak keys are produced. For the designer of the generator, weak keys are interesting

for instance when their private part can be computed from the corresponding public

part.

Legit imate backdoors. Once encrypted, a message is unreadable for a party

who does not have the decryption key. This is problematic if the legitimate recipient

of the message has lost his key. In parallel, law enforcement agencies may wish

to have access to the contents of encrypted messages. To address these problems,

the mechanism of key escrow 1 was developed to recover the key associated with a

message.

In a corporate setting, technical support is expected to help legitimate users

to retrieve such information. A key escrow generally implemented as a database of

keys, as illustrated in Figure 4-1. An example of an implementation is Entrust [Ent]

(which they deem key backup instead of escrow to avoid legal issues).

In a law enforcement setting, the goal of key escrow is to help with law enforce­

ment. A key escrow allows a third party (such as a government agent) to obtain

decryption keys in order to access encrypted information. An example of a hardware

implementation is the NSA's Skipjack algorithm [RSAc], where a chip's unit key and

1 In Law, escrow is an arrangement by which something is kept in waiting by a
third party, that which can be money, property, or source code, until a specified
condition is fulfilled. Its etymology is the medieval Latin scroda for "scroll", via the
Old French escroe. The Latin word is of Germanic origin and is related to "shred".

67

serial number are escrowed. When a Skipjack chip is used for encryption, the en­

crypted message is appended with its encryption key, itself encrypted with the unit

key, and its own serial number, so that the key escrow (actually, two key escrows

authorities) may decrypt the encryption key and provide it to the third party.

first party (Alice) j -

key generator

i^=(public key^private k e y j

public key4
second party (Bob)J

K

key escrow
database

Figure 4-1: High-level view of the roles played by two parties interacting with an
escrow.

Definition 4.1.1 In a public-key crypto system, key escrow is a feature by which

decryption keys are held in escrow by a trusted third party. The keys can later be re­

covered by a legitimate party, which can be the legitimate owner or a law enforcement

agency.

Key escrow purposes. The following parties can play the role of the escrow

in a key escrow cryptosystem.

1. Auto-escrow: to recover lost keys. In this case, the escrow may or may not be

a distinct third party.

2. Government: to decrypt messages suspected to be relevant to law enforcement.

In this case, the escrow authority is probably a government agency.

68

Even though it will not be addressed in this work, it is to be noted that security

issues exist with respect to key escrow methods.

Key escrow alternatives. The simplest way to contaminate a cryptographic

black box with a backdoor is to hard code the private values that the designer wishes

to obtain and to escrow copies of them. The key which the designer then needs to

keep consists of all these escrowed copies. Therefore, the designer requires a database

which size is a function of the number of escrowed copies. Any contemporary cryp-

tosystem should have a number of possible keys that is exponential in function of its

security parameter k : \{kpub}\ € EXP(k) possible legitimate user (distinguisher)

keys.

An alternative to key escrow databases is the use of backdoored key generators.

From a separate piece of private information, i.e. a single key, a cryptosystem's

private parameters can be recovered. The amount of memory required to use a

backdoor is the one taken by the designer's secret key (symmetric backdoors) or

public key (asymmetric backdoors). Therefore, it is a constant amount of space,

independent of the number of generated backdoored keys. To sum up, the designer

has a space advantage in preferring backdoored keys over escrow.

4.1.2 Intuition on the roles of the parties

In public-key cryptosystems, we usually look at the interaction between two

parties who are exchanging messages. Suppose that one calls the first party, Alice,

the one for which the keys were generated. Then, the second party, Bob, encrypts

messages and the first one decrypts them. Figure 2-3 illustrates how the keys are

69

generated and provided, before a message is signed by Alice or a message is encrypted

by Bob.

key generator

(public key t lprivate key^

backdoored key generator

(public keyitprivate key^)

first party (Alice)] [legitimate user (distinguisher) J

Figure 4-2: Change of context: when the key generator produces backdoored keys,
Alice becomes the distinguisher in the analysis.

Consider another context. Take this process, but disrupted by a dishonest key

generator, as in Figure 4-2. This is a different disruption from the eavesdropper's,

in Figure 2-3.

backdoor designer (attacker) J

fixed designer key: /?

backdoored key generator

(public keyi .private k e y j

legitimate user
(distinguisher)

public key^ ^ p u b l i c public keyj

directory backdoored key retrieval

private keyj

Figure 4-3: High-level view of the two components of a backdoored key generator:
the generator and the attack. Compare with the more imageful, equivalent, Figure 1-
4.

70

This key generator is designed to produce backdoored keys, i.e. public keys that

contain a backdoor. Such a backdoored key allows the designer to easily compute

the corresponding private key, as in Figure 4-3. The quality of the backdoored key

generator is measured with respect to the adversarial distinguisher.

4.1.3 History

Backdoors are a special case of subliminal channels, which study begins in the

1980's. In 1983, Simmons [Sim83, Sim85] introduced the notion of subliminal (covert)

channel, by which information is exchanged secretly in innocent-looking messages.

One research area that Simmons' work initiated is the one of information hid­

ing, or steganography. The aims of steganography are the hidden transmission of

messages, mostly for intellectual property protection and sometimes for subliminal

communication. The channels used are mostly media digital formats and sometimes

implemented software code.

Alice with
key generator:

(public key, private key)

public key

ZK proof of key generation prop-scties

Bob:
normal or abusive use?

third party:
normal or abusive use?

Figure 4-4: Desmedt's cryptosystem abuse via public key generation.

Another research area initiated by Simmon's work is the one of cryptosystem

abuse. To abuse a cryptosystem is to use it in a way that it was not meant to. In

1988, Desmedt generalized the forms that cryptosystem abuses can take [Des88]. In

particular, RSA public keys can be used to store additional information which the

71

party that generated them wishes to transmit. For instance, Alice and Bob could

appear, from the third party's point of view, to be sending messages with digital

signatures. Meanwhile, they would additionally be secretly communicating using

public keys that were generated to be of a special form which the other party can

detect. Desmedt's solution to counter this abuse consists in a zero-knowledge (ZK)

proof that the keys were generated according to some properties.

key generator:
(public key, private key)

(public key, private key)

public directory

public key

public key retrieval algorithm:
normal or abusive use ?

distinguisher:
normal or abusive use ?

Figure 4-5: Desmedt's abuse via public key generation where the message is a back­
door. Compare with Figure 4-4.

A backdoor is a special type of cryptosystem abuse where public keys are gen­

erated as to give the backdoor's designer access to the corresponding private keys.

Refer to Table 4-1 for the correspondences of the involved parties. Hence, to trans-

General abuse: Figure 4-4
Alice
Bob
third party

Backdoored keys: Figure 4-5
backdoored key generator
designer (its retrieval algorithm)
distinguisher

Table 4-1: Correspondences of parties involved in cryptosystem abuse and backdoor.

mit a backdoor to the third party's public key, the communication is not direct from

Alice to Bob - from the key generator to the retrieval algorithm. Instead, it goes

72

through the acceptance of the warden - the distinguisher - who publishes the message

as his public key on a public directory.

Desmedt's 1988 paper included a solution, ZK, to the problem posed. However,

theoretical results on backdoors that followed Desmedt's do not use ZK or refer to

it. This work likewise does not allow the use of ZK as an interaction between the key

generator and the party interested in having honestly generated keys. Therefore, the

interaction is more limited.

On one hand, such an interaction does not use any additional protocol, making

the setting more realistic. On the other hand, this restriction yields richer and more

complex interactions between the parties involved with backdoors. In other words,

because the problem is not assumed or given to be solved by the - perhaps - overkill

of ZK, the study of backdoors is interesting.

1983

fr­
iges

unpublished manuscripts

1993 + 1996 1997

Hh 1 -
2001 2003

Simmons Desmedt Anderson Young Young Howgrave- Crepeau &
&Yung &Yung Graham Slakmon

subliminal backdoors
channels

broken

Young
Yung

symmetric asymmetric

Figure 4-6: Time line of the discovery of backdoors in the key generation of common
public-key cryptosystems. The unpublished manuscripts are from this work's author
(some, collaboratively). The qualities of symmetric and asymmetric for backdoors
correspond to the ones for cryptosy stems; details are given in the next two sections.

73

There are two main streams of theoretical results on backdoored key genera­

tion. Kleptography consists of results from Young and Yung [YY96, YY97a, YY97b,

YY05a, YY05b] (Section 6.2). The second stream consists of results from Crepeau et

al. [CS03, ACS, ACK] (Section 6.3 and Chapter 7). Other backdoor results include

the ones of Anderson [And93], broken by Kaliski [Kal93], and Howgrave-Graham

[HG01] (Section 6.1). Figure 4-6 illustrates this as a timeline.

4.2 Definitions

4.2.1 Informal definition of a backdoor

One goal is to work out how much power a backdoored key generator may

have. Recall the following vocabulary. The designer of a backdoored key generator

is referred to as the designer. The user of a backdoored key generator is referred to

as the distinguisher.

A backdoored key generator is a special type of malicious key generator. Three

ideas capture the essence of the design of a backdoored key generator.

1. Let Go be an honest key generation algorithm that outputs legitimate keys as if

sampled uniformly at random from the key space KS. For RSA, G0 is as given

in Subsection 2.2.4. Let k be the security parameter of the cryptosystem that

includes Go. Consider G0 as a function that takes lk to key pairs. Therefore,

\Kprivi fcpub) = *-T0V.-'- / ** '* \^privi Kpub) ^U -ft-O

where Gjy KS means that the keys are chosen randomly and uniformly in KS.

74

file:///Kprivi

Let G\ be a malicious key generation algorithm that outputs backdoored keys

from the key space KSM with a given distribution function. Therefore,

(kpriv, kpub) = Gi(lfe) « = • (kpriV, kpub) eR KSM c KS

where ER KSM means that the keys are chosen randomly in KSM according

to some distribution function.

2. The underlying structure of KSM can be expressed by the existence of two

functions: EKSM and DKSM- If G\ generates the pair (kpriv, kpub) £ KSM, the

following properties hold:

(a) kpUb =
 EKSM (kpriv)

(b) kpriv = DKSM (kpub)

where the private key kpriV can be understood to stand for any piece of infor­

mation that allows to compute the private key.

The related functions 2
 EKSM and DKSM can be seen as the encryption and

decryption functions of the generator G\, concealing and retrieving the back­

door information, respectively. This pair of functions can either be based on a

symmetric or an asymmetric cryptosystem.

3. The backdoored key generator, G\, should not be distinguishable for the honest

generator, G0.

2 The fact that more than one kpriv may correspond to a kpub is incorporated in
this chapter's definitions with an additional step of randomization. Therefore, E and
D may still be considered to be functions, for simplicity.

75

Let OQ0 and OQX be oracles that randomly sample KS and KSM, respectively.

Suppose that the distinguisher requests a key, then it is received from one of

{OGQIOGX} uniformly at random. The goal of the distinguisher is to deter­

mine whether OQ0 or OQX has been used to generate the key pair. For this,

the distinguisher may use information contained in the inputs and outputs of

the generators, as well as information derived from external measures on the

generator such as how much time it consumes. Cf. Figure 4-7.

G^n
prob. =1/2 prob. =1/2

\K"privi kpub) ~r indirect

designer j c o m m i °> KS, KSM 4 distinguisher J

G0 or d ?

r^n

Figure 4-7: Third idea that captures the essence of the design of a backdoored key
generator: indistinguishability. Schematics based on Figure 4-5.

In the literature, an hypothetical polynomial-time black box for an algorithm or

function, A, is called an oracle for A, denoted by OA- This means that no function nor

algorithm that computes A is explicitly given. However, in this work, the notion of

oracle captures physical black box implementation of a given algorithm. Therefore,

external measure can be taken during the oracle's processing of its input. Using

physical oracles instead of black boxes allows one to use the standard notation and

76

basic results on oracles. Therefore, this choice yields a better formalization for our

theoretical approach to backdoors.

Finally, we will not develop an extensive notation for external measures, be­

cause results regarding them are straightforward. For instance, we are interested in

computing the time complexity of backdoored key generators.

4.2.2 Model of analysis

The physical oracles used to implement the generators Go and G\ can be ana­

lyzed according to two different paradigms.

Definition 4.2.1 A black box analysis of a physical oracle assumes that the dis-

tinguisher has access to the inputs, the outputs and the external physical measures

taken during the computations of the oracle.

Figure 4-8: Two physical oracles outputting public key pairs. Which is Go? Which
isGi?

However, in this work, a stronger distinguisher is considered. While Go is based

on a published algorithm, what is known on Gi?

77

Definition 4.2.2 A white box analysis of a physical oracle assumes that the dis-

tinguisher has access to the inputs, the outputs, the external physical measures taken

during the computations of the oracle as well as the description of the underlying

algorithm.

Two important clarifications are in order. Firstly, in the case of Definition 4.2.2,

the distinguisher does not have access to the internal trace of the execution. In

particular, no access to internal implementation details such as variables is possible.

This approach is similar to the analysis of probabilistic cryptographic algorithms, for

which the random choices are unknown.

Secondly, if the underlying encryption algorithm EKSM relies on a symmetric

cryptosystem, the white box analysis is provided with the decryption of the encryp­

tion algorithm, but not the secret key used. This is coherent with the usual models

of analysis of symmetric and asymmetric cryptography.

Figure 4-9: The distinguisher can deploy two main types of attacks against keys
outputted by a physical oracle: side channel analyses and statistical analyses of the
keys.

78

4.2.3 Formal definition of a backdoor

A more formal definition of a backdoored key generator is presented in this

section. The EKSM and DKSM functions which capture the underlying structure of

the malicious key space KSM of the backdoored key generator can be expressed as

compositions of the following three functions and their inverses, respectively.

The first function's purpose is to extract from the private key, kpriv, the infor­

mation to be concealed in the public key, kpub. There are many possibilities for / ,

but they must satisfy the following definition.

Definition 4.2.3 (Information compression function) Let I be a function of

kpriV which output consists in sufficient information to efficiently retrieve kWiV.

To be useful, I should be such that ^(A^,,)! < \kpriv\ and \I(kpriv)\ <C \kpub\.

The second property is essential in order to leave bits free for the randomization of

/ ' s output via the encryption function, E.

Example 4.2.4 For RSA keys, for instance, this information can be half the most

significant bits of one of the prime factors of n — pq. Using Theorem B.l.l , one can

factor the public modulus, n, (Subsection 2.2.7) and retrieve the private key, d, •

The second function is this encryption function, E 3 . Aside from being invert-

ible, £7's only required property is that its output's distribution be computationally

3 In this work, the usual multi-value probabilistic encryption is done in the fol­
lowing particular way. The encryption function, E, is taken as deterministic and
the randomness is added separately. This allows to separate the accounting of the
backdoored key set, which depends on this randomness.

79

indistinguishable from uniform. Knowledge on the distribution of E's output is es­

sential to assess the distribution of the resulting backdoored public key. This require­

ment is straightforward to comply to in the symmetric E case. In the asymmetric E

case, it is feasible in particular for RSA, via OAEP (end of Subsection 2.2.8), and for

EG, via ECIES (Remark A.3.7).

Definition 4.2.5 (Encryption function) Let E be a function of the information

which is to be concealed I(kpriv). This function corresponds either to:

1. An invertible pseudo-random-like function, isp, keyed with (5, such that ftp's

output distribution is computationally indistinguishable from uniform. This is

the symmetric version of E.

2. A trapdoor one-way function E, based on a public-key cryptosystem, such that

there are conditions that can be satisfied so that E 's output distribution is com­

putationally indistinguishable from uniform^ To E corresponds an inverse func­

tion, D, which uses the trapdoor. This is the asymmetric version of E.

This insures that the designer is the only party able to use the backdoor.

Example 4.2.6 Consider another example with RSA keys, from [YY96] (the algo­

rithm is given in Figure 6-4). The prime p = I(kpriV) and it is encrypted using E =

RSA again, but with modulus N of the size of p.

The original paper does not mention the use of OAEP, but this is a minor modifi­

cation that does not change the spirit of this algorithm. However, as noted in [CS03],

that the encryption of the backdoor information be distributed close to uniformly

may be undesirable (but this has more to do with the third function). •

80

The third function concerns the bits which the encryption of the backdoor infor­

mation are set to occupy, in the backdoored public key. In other words, this function

concerns the location of the embedding, and thus is called the embedding function.

Definition 4.2.7 (Embedding function) Let /R be a function of the encrypted

information, E o I(kpriy). This function corresponds to:

1. the bit location of the insertion of E o Kjspriv),

2. the probabilistic assignation of values to the bits not involved in this location,

and, with it, the public key is finalized as k^ = fn o E o I(kpriv), for R random.

To be useful, /# should be invertible and insure that the encrypted information,

E o I(kpriV), is placed in k^ such that the backdoored keys look like honest keys

(this is to be defined formally later, in Subsection 5.1.3).

Example 4.2.8 Consider the same algorithm with RSA keys as in the previous ex­

ample, from [YY96]. The encrypted information E(p) is embedded in e. All the bits

of e are involved in this embedding, but the ones of n are entirely generated as in

the honest algorithm. •

The resulting backdoored RSA public key is

(n,e) = fRoEoI(d),

for R random.

With these definitions, a formal definition of a backdoored key generator can be

presented.

81

-I

..I

Figure 4-10: Left, the honest key parameters of the RSA cryptosystem: d is private
and (n, e) is public. Right, an illustration of the functions involved in defining back-
doored key generation. Function I extracts information from d. This information is
encrypted via E. The encrypted information is well-distributed in (n, e) via / : the
shaded part of (n, e) is where E o 1(d) is embedded by / .

Recall that the public-key cryptosystem's (honest) key generator is denoted

by Go, such that Go(lk) — (fcj,u&, fcprit>)- On input corresponding to the security

parameter k, Go outputs a pair consisting of a public key, A;^, and a private key,

h •

Definition 4.2.9 (Formal) Given a public-key cryptosystem's key generator, Go,

a designer produces a key generator, G\ and a retrieval algorithm R\. Let I be

the information compression function (Definition 4-2.3). Let E be the encryption

function (Definition 4-2.5), with its inverse function D. Let fn be the embedding

function (Definition 4-2.7). The keys outputted by G\ are (securely) backdoored if

G\{lk) computes (kpub,kpriV) such that the following properties hold:

1. Confidentiality: kpub = fa ° E o I(kpriV) is not computationally invertible.

2. Completeness: The functions I and fn are invertible, so the retrieval algo­

rithm, Ri, computes k^ — R\{fR o E o I(kpriV)).

82

3. Indistinguishability: The designer commits to the key space KSM C KS,

corresponding to the key spaces of G\ and Go, respectively. Then

(a) the outputs of oracles OG0
 and OG^ are perfectly, statistically, or compu­

tationally indistinguishable;

(b) the external measures on the physical oracles OQ0 and OQ1 cannot signif­

icantly distinguish one from the other.

Refer to Figure 4-11 for an illustration of this definition.

I private KS^I
pUPIIC Kffi""l

Go Gi

K distinguisher

side channel
analyses

• II

distribution
of the keys

3. indistinguishability

2. completeness

R1

decryption]

if the black
box is Gi

- • I private key

any party w/o D ft H private key

1 . confidentiality
wmmmmmmmmm

Figure 4-11: More formal definition of a backdoored key generator Gi. The three
key conditions are framed. Compare with Figure 4-9.

Confidentiality means that it is computationally infeasible to retrieve kwiv from

kpub. Completeness means that the designer may compute kwiv from k^. The spirit

of these definitions is taken from Young and Yung [YY05a]. However, they define a

83

weaker key indistinguishability as the keys being computationally indistinguishable

(which is the weakest variant), and without external measures.

Assumption on E. Because the length of the generated keys is determined by

the distinguisher (by setting the generator input to lfc), the cryptosystem involving

E, denoted by CE, should be at least as strong as the one involving Go, denoted by

CGQ • Otherwise, the backdoored key generator may be trivially insecure.

Suppose that it is not the case and suppose that the distinguisher chooses k of

minimal length such that CQ0 is secure for a time T. Because it is weaker, CE may

be expectedly secure only for a shorter period of time t <^T.

Example 4.2.10 Consider the same algorithm with RSA keys as in the previous

example, from [YY96]. In this algorithm, CE uses a key length of half the one of CQ0-

For instance, RSA-1024 is believed to be secure for 600 months, but this backdoor

information is encrypted with RSA-512, which is breakable in less than 5 minutes (cf.

Table A.l).

Therefore, after such a short time, the confidentiality of the backdoored key

generator fails, which allows any party to retrieve the legitimate user's private key.

Thus the keys are distinguishable and the backdoor is "opened" to any party. •

Minimality of Definition 4.2.9. Can a simpler and equivalent variant of

the preceding definition be formulated? It may seem that a simpler definition could

discard Point 1 because confidentiality is a sub-feature of indistinguishability: if the

keys are indistinguishable for the designer, then this party may not, in particular,

find its own private key embedded in its public key. Nevertheless, in some cases,

confidentiality may hold while indistinguishability fails. Therefore, taking apart

84

confidentiality from indistinguishability allows a more precise analysis of different

backdoored key generators. Consequently, Definition 4.2.9 does not call for trimming.

Injectivity of JR O E O I(kpriV). In order for 7 _ 1 o D o f^l{kpui)) to exist, the

function fRoEoI(kpriV) must be injective. In some of the backdoored key generators

that are examined in the following chapters, / R O E O I(kpriV), or more precisely, the

/ f l o£ component, is not injective. However, approximate injectivity is then showed,

which means that, in such algorithms, there is a collision only negligibly often, when

retrieving the private key from a backdoored public key.

4.3 Comparison with SETUP definitions for backdoors in cryptosystems

One way of constructing backdoors can be traced back to five papers on kleptog-

raphy by Young and Yung [YY96, YY97a, YY97b, YY05a, YY05b]. Kleptography

is the study of backdoors for cryptosystems, i.e., this field of study is not- limited to

key generators as this work is. In kleptography, a backdoor is called a SETUP, which

is an acronym for Secretly Embedded Trapdoor with Universal Protection.

4.3.1 Definition of SETUP

The following Table 4-2 summarized the different versions of the definition of

a SETUP. The properties of completeness, confidentiality and indistinguishability

are as defined in Definition 4.2.9. The white box effect states whether or not, upon

discovery of the description of C, the backdoored keys remain non-determinable (only

the designer can generate past or future backdoored keys) and indistinguishable.

85

Definition 4.3.1 Let CQ be the honest cryptosystem with input and output specifica­

tions. A setup cryptosystem is denoted by C and conforms to these specifications

and satisfies the following properties:

SETUP

[YY96]

[YY97a],
[YY97b]

Def. 1

Def. 2

Def. 3

[YY05a], [YY05b]

completeness

yes
yes

yes

yes

except with
negligible
probability

confidentiality

yes
yes

yes

yes

except with
negligible
probability

indistingui-
shability

everyone
everyone

everyone,
except
the distin-
guisher
everyone

everyone,
except with
negligible
probability

white box
effect

n/a
non-
determinable
non-
determinable

non-
determinable
and indistin­
guishable
non-
determinable
and indistin­
guishable

Table 4-2: Evolution of definitions in kleptography with respect to the more abstract
notions of confidentiality, completeness, indistinguishability, and white box effect.

86

4.3.2 Evolution of algorithms w.r.t. definitions in kleptography

The following table keeps track of the algorithms provided to satisfy the SETUP

definitions. For backdoored key generation SETUPS, the two last columns indicate

whether the definitions of Table 4-2 were attained. Overall, the definitions are

satisfied only for EG key generation in [YY96].

SETUP publication

[YY96]

[YY97a]

[YY97b]

[YY

regular
weak
strong

regular

weak
strong

05a]

[YY05b]

type
RSA key generation

EG key generation

n.a.
n.a.
DH key exchange
RSA key generation

discrete log prob­
lem, EG signature
n.a.
EG encryption
RSA key generation

RSA key generation

asymmetry
yes

yes

n.a.
n.a.
n.a.
yes

n.a.

n.a.
n.a.
no (var. i)

yes

security
based on RSA, but bro­
ken: bad key lengths
.based on RSA or EG,
but small number of
keys
n.a.
n.a.
n.a.
based on DH, but bro­
ken: bad key lengths
n.a.

n.a.
n.a.
based on Rabin, but
broken: bad key
lengths
based on elliptic curve
DH, but complicated

Table 4-3: Evolution of algorithms w.r.t. definitions in kleptography.

87

4.3.3 White box effect, uniformity and asymmetry

To simplify the white box effect and other reverse-engineering considerations,

Young and Yung introduced the notion of uniformity.

Definition 4.3.2 Uniformity is said to hold if the SETUP attack is the same in

every instance of C.

Uniformity means that the backdoored key generator is the same for all the

distinguishers for whom it generates keys. Therefore, there is no secret portion in

the designer's encryption function, not even keys. If uniformity holds, then the back­

doored key generator's code can be revealed (this is the white box effect) without

affecting indistinguishability. Furthermore, if a backdoored key generator is asym­

metric, then uniformity holds, because revealing an asymmetric key does not provide

additional information, computationally speaking.

However, there are no known secure examples of RSA SETUPS which were purely

asymmetric, as illustrated in Table 4-3. There are some asymmetric SETUPS ex­

amples for EG, but only with a small number of generable keys [YY96], given in

Figures 6-6, 6-7 and 6-8.

4.3.4 Asymmetry (un)satisfied by SETUPS

The SETUP definitions are such that the designer's cryptosystem is asymmetric.

However, this does not necessarily imply that the SETUPS provided to correspond to

the definitions are asymmetric backdoors. In the RSA backdoored key generations of

[YY96, YY97a, YY97b], the key lengths are not secure (Definition 4.2.9). In other

88

cases, some symmetric cryptography is also used. Only one of these cases concerns

key generation, in [YY05a], which algorithm is given in Figure 6-11.

Uniformity holds for the backdoored key generator of [YY05b] as this SETUP is

asymmetric, as claimed. At first, it seems that [YY05b] uses a private parameter,

Spriv, to generate the prime p, as shown in the algorithms of Figure 6-12. Confi­

dentiality appears to fail if SpriV is not kept secret, so it appears that spriV cannot

be the same for all the distinguishers. Nevertheless, uniformity does hold and this

backdoor is indeed asymmetric, because Spriv is used prior to the backdoor mechanics

themselves.

This algorithm is analyzed in details in Subsection 6.2.4.

4.4 Lexicon

• backdoor: means by which a cryptosystems private parameters can be recov­

ered, using separate information; in practical situations, this is often under­

stood as the information consisting of the designer's key; in theory, thus in

this work, backdoored keys are outputted by a contaminated algorithm, so the

means of recovery consist in both this special algorithm and the designer's key

• backdoored key (Definition 4.2.9): key from a contaminated key generator,

that is, the backdoored key generator, G1} of Subsection 4.2.1

• black box: object conceived in terms of its input and output, i.e. its internal

functioning is abstracted (Figure 4-8)

• contamination (of an algorithm): the embedding of a backdoor in an algo­

rithm by an adversary, called a designer

89

• designer: the adversarial party that aims at recovering protected private in­

formation, e.g. other parties' private keys (Figure 4-3), via a backdoor

• distinguisher: the legitimate user, when it is an adversary against the designer

• generable: said of a key which can be generated by a given algorithm

• honest key: key produced by the standard key generation algorithm, which

has not been subject to contamination, that is, the backdoored key generator,

G0, of Subsection 4.2.1

• key escrow: decryption keys are held in escrow by a third party, so that some

party can retrieve them (Figure 4-1)

• legitimate user (of the cryptosystem's public key): the sole party who

should know the corresponding secret key; takes the role of the adversary for

the distinguishability of the honest and backdoored keys (Figures 4-2 and 4-3)

• white box: object which description is known

4.5 Chapter notes

Subsection 4.1.1. Background: Two contexts. A reference for key escrow

is [MvVOl, Section 13.8.3]. The etymology for escrow is taken from the American

Oxford Dictionaries, online.

Subsection 4.1.3. Background: History. One research area that Sim­

mons' work initiated is the one of information hiding, or steganography. A general

reference on this area is [KP99].

90

CHAPTER 5
Measures for backdoored keys

The aim of this chapter is to allow a classification of different approaches used to

analyze backdoored key generators. For this purpose, several metrics are introduced

to create different classes of comparison.

Ultimately, perfect malicious key generators would be indistinguishable from

honest key generators, in terms of number of keys, key distribution, side channel

information, and remain so upon complete reverse-engineering of the generators.

The formal goal is to measure how an algorithm satisfies both parts of Property 3 of

Definition 4.2.9.

. nature of the keys
(static)

indistinguishability <

cardinality

probability distribution

, distribution
properties

variable
I correlations

. side channels
(dynamic)

' symmetry / asymmetry

• complexity

• memory

91

5.1 Na tu re of the keys

One important issue regarding the quality of backdoored key generators is the

indistinguishability of backdoored keys from honest ones, with respect to their nature.

Obviously, this issue is often addressed, even if only implicitly. The formal goal is to

measure how an algorithm satisfies Property 3(a) of Definition 4.2.9.

5.1.1 Classical definitions of indistinguishability

Indistinguishability is defined for ensembles. Consider sets of elements of size

£, with their corresponding probability distributions, Then consider a family of

such sets parametrized with £. Such a probability distribution on {0,1}^ is called an

ensemble, and is usually denoted T>i [Lub96, p.6]. Ensembles can be indistinguishable

in commonly defined three ways:

1. computational indistinguishable: if there exists no polynomial-time algorithm

that can significantly distinguish them;

2. statistical indistinguishable: if the distance between the two distributions is not

significant;

3. perfect indistinguishable: if the two sets are the same.

A similar approach has been used in zero-knowledge (ZK). More formally, Young

and Yung provide the following definition, where £ is the security parameter. There­

fore the elements of KS are of size (in general, linear in) £.

Definition 5.1.1 (Computat ional indistinguishability [YY05b]) The distin-

guisher is given two oracles O0 and Q\. One of the oracles generates keys uniformly

distributed in KS and the other one, with some given distribution in KSM C KS.

If the distinguisher cannot distinguish in polynomial time (with respect to £) which of

92

OQ or 0\ generates KS with probability significantly greater than 1/2, then OQ and

0\ are computationally indistinguishable.

Suppose that we have extracted all the information about the distributions of

both KS and KSM. Suppose that KS has distribution DG0 and KSM has dis­

tribution DGJ. If i G KS is not defined in VQX, its probability is zero for that

distribution.

Definition 5.1.2 (Statistical indistinguishability [Lub96], p.70) The distribu­

tion DGX on the set KSM has a statistical distance of e w.r.t. DQ0 on KS if

~ U e T

where the probability ofi£ KS according to DQ0 is hi and according to D^ is gi.

Pros and cons of classical definitions of indistinguishability

Pros of statistical indistinguishability. Definition 5.1.2 would arguably produce

the strongest possible statements. The perfect case would be for all keys to contain

a backdoor, which is when e = 0. This is not a useful consideration because the

cryptosystem would be considered broken, which normally is unknown or infeasible.

Therefore, values of e yield a family of distributions associated with KSM sets. As

e becomes more negligible w.r.t. £, these distribution become closer to the perfect

case.

Moreover, Definition 5.1.2 provides an absolute measure which is stronger than

a definition based on computational indistinguishability. It takes into account fea­

tures of the ensemble only, because it only depends on distributions. Therefore, this

93

= 6

measure is independent of computational issues. One reason in favor of computa­

tional indistinguishability is that it is the minimum theoretical security requirement

so that the distinguisher satisfies Property 3(a) of Definition 4.2.9. However, no

rigorous proof of such a definition being satisfied exists, despite a few number of

attempts. The most recent one is detailed and criticized in Subsection 6.2.4.

Cons of statistical indistinguishability. However, obtaining information on the

distributions of honest or backdoored keys is a considerable issue. For instance, for

the honest RSA key generation, the analysis of the distribution of the product of

two primes of the same length is non-trivial. Thus, for RSA backdoors, the honest

distribution, to be used for comparison in analyzing backdoored distributions, is

difficult to establish.

Middle ground. Thus a more practical indistinguishability definition than

statistical indistinguishability is sought. The more approximate notion of diversity,

which this work defines, is set in between computational indistinguishability and

statistical indistinguishability. A first reason for this new definition is that there

exists no proof of computational indistinguishability so far: the one in [YY05b,

Appendix A.l] is incomplete, as shown at the end of Section 6.2. The second reason

is that our definition of diversity allows the analysis of algorithms that approach the

ultimate property of indistinguishability. Diversity is useful in Chapters 6 and 7, in

order to compare the characteristics of various backdoored key generators.

Diversity relates to the cardinality of the key spaces as well as to the key dis­

tributions. The intuition is that both concepts of statistical and computational

indistinguishability could be combined, as to provide as much useful information as

94

possible. There are some absolute quantities that can be deduced about key distribu­

tion, such as the approximate total number of generable keys. However, G\ usually

relies on a form of pseudo-randomness used to produce a distribution that approaches

the uniform one. If it is the case, computational statements are unavoidable, unless

one completely analyzes the distributions produced by the involved pseudo-random

function(s).

5.1.2 Cardinality

The first step in defining the notion of key diversity is the notion of cardinality.

This is the cardinality of the key space KSM w.r.t. the one of the key space KS. As

an example, consider Figure 5-1, illustrating the case of kpub from Definition 4.2.9

being an RSA public key and the designer's encryption function E is the Elliptic Curve

Integrated Encryption Scheme (ECIES) (Appendix A.3). The security parameter of

a cryptosystem C is denoted by £c- Obviously, the value of tc varies with time: as

cryptanalysis evolves, longer keys can be efficiently broken, and these lengths yield

lower bounds on £Q- This accordingly increases the value of IQ.

Let C?o be a key generator. If necessary for disambiguation, instead of kpub, let

kp{GQ) denote the public parameter of Go: for example, &P(RSA) = (n,e). It can be

assumed that the length of kp(G0), \kp(G0)\ — ^P(G0)> is minimal in order to achieve

security (honest) key generation.

Let G\ be a backdoored key generator that mimics G0. Suppose that we use

algorithm E to encrypt the backdoor into fog, which is a part or all of fcp(Gi)- Algo­

rithm E is such that E : {0, l}71^) _> {Q, I}™(^) where lE is generally the length

for which security is considered to be achieved (for the backdoor).

95

£ECIES

ECIES^2tECIES + 1

tp(RSA)

Figure 5-1: Backdoored RSA key encrypted via ECIES. The encrypted backdoor
information is embedded in part of the public key, ks- The shaded part of ks is
where the encryption of the backdoor is embedded. The shaded part of the public
key kp(RSA) is where ks is embedded (it is so, whether it contains a backdoor or not).

Note that ks is not a subset of bits, it is a component (a variable) which is a

part of the public key. For RSA backdoored key generators, ks is either n or e.

Example 5.1.3 Consider again the backdoor of Example 4.2.6 (the algorithm is

given in Figure 6-4). Recall that the prime p = I(kpriV) is encrypted by using E =

RSA again, but with modulus N of the size of p. This encrypted value is stored in e.

In the notation introduced, ks = e and Go = E = RSA. However, n(£#) =

TTI^E) — 2&E and £E — k, but this backdoored generator uses k/2 instead of the

proper £E- Example 4.2.10 explains how the security of the algorithm is failed by

this £E issue. •

Example 5.1.4 The backdoored generator illustrated in the preceding Figure 5-

1 encrypts the backdoor information with ECIES and embeds it in RSA keys (the

algorithm is given in Figure 7-15). From a result of Coppersmith (Corollary 6.1.8),

96

the knowledge of some k/2 bits is sufficient to reproduce a prime p of k bits. The

backdoored generator encrypts these k/2 bits with ECIES, yielding a ciphertext of

k + 1 bits. This ciphertext is finally embedded in n.

In the notation introduced, ks = n, Go — RSA, E = ECIES, TI(£E) = £E,

IK^E) = 2£E + 1 and £E — length of the public prime used in ECIES. •

Total number of random bits. The cardinality of KSM is proportional to

the number of random bits used to generate kp{Gx). Prom Definition 4.2.9, kp(Gx) is

generated as

fcp(Gi) = fit ° s - _ S _ x ° I(kpriv)

embeds E o / (A;^) probabilistic encryption fixed for (7> ^ j .
and random i2: o r trapdoor -(, } b i t g o f

\R\ random bits ™e-way permutation: Jormation

r{E) random bits
" v '

encrypted backdoor embedded in kB

The number of backdoored keys generable by G\ is given by:

JVbx = NfR+NE+Mi(kpriv)

— 2lfll+r(E)+i(fep™). r , f5 i)

where the second factor in Equation 5.1 accounts for the fact that there are £p(G0)-bit

strings that are not valid kp^Go) values. In other words, r^,G) is the ratio of accepted

^p(G0)-bit strings. In general,

KS
n, P(G0) 2€P(°0)

97

so it is dependent on G0 only. In other words, it is the fraction of keys that are

accepted by Go- As G\ uses the same rejection criteria as Go, this ratio affects the

number of backdoored keys generable by G\.

Location of the embedding. In no cases will the embedding be done in

many parts of a public key. For instance, for RSA, no embedding may split the

backdoor information between n and e. While it may appear to be beneficial to

spread the information, this would readily forbid the generalized key regeneration

that we will elaborate on in Subsection 5.1.4.

Consequently, it is not useful to account the number of generable key parts that

do not participate in embedding the backdoor information. For instance, for RSA,

if information corresponding to p is embedded in n, then the number of random

bits used to generate the e part of the public key are discarded. Similarly, if the

information corresponding to d is embedded in e, then the number of generable n is

discarded.

These are cases where it is useful to compute the number of generable keys

for a fixed parameter. For instance, in RSA, if one wishes to compute the number

of backdoored e for a fixed n, one denotes this number by A/Gi.e- That the two

quantities,

J\fGl,n and A/"Gl,e,

are denoted similarity is however an abuse of notation, because e is dependent on n.

More formally, A/*G1>e means 'Wd.e given n".

Example 5.1.5 Consider the PAP example from [YY96] (the algorithm is given in

Figure 6-5). A backdoor is embedded in RSA keys such that p is hidden in n, i.e.

98

I(kpriv) — V and k,B — n. More precisely, the prime p is scrambled as p via a fixed

pseudo-random function 1 . The embedding function sets n — p : r, for a k-bit

random string r. The other prime is set as q — (p : r)/p. Subsection 7.4.1 shows an

analysis of a generalized version of this backdoor embedding strategy.

Firstly, compute how likely it is that the produced q is an integer and then how

likely that it is also prime. The probability that p divides p:r is given by the fraction

of strings covered by multiples of p times the expected fraction of strings covered by

p:r. This is:

#{2fc-bit multiples of p} #{/>: r}
Pr p:r

V
ez 22fe

2fe 2k 1

22fe ' 22k ~ 22k'

22fc

Nevertheless, substituting r by an appropriate r' allows for the exact division by p.

Pr p:r

P
ez = l

Recall that the other (candidate) prime is set as q — (p : r)/p. In fact, the random

choosing of r is not a useful operation: only two values of r are such that p: r is a

multiple of p, because \r\ = \p\. lip is not a factor of p:r, then p:r plus (or minus) a

1 The precise statement in [YY96, p.5] is "to achieve a pseudo-randomness of the
values" of p. This is meant in the sense of achieving a good distribution via a pseudo­
random function FK used as p = FK(p). The achieved distribution may be argued to
be good, but it is not a theoretically pseudo-random one, since the key, K, is fixed.

99

remainder is a multiple of p. Therefore r' is r plus (or minus, resp.) this remainder.

Since the resulting multiples are successive, one will be even and the other odd, thus

only the latter can be prime. By Theorem 2.2.4, a A>bit integer, q, is prime with

probability of about 2_lgfe. Therefore

Pr p:r .
L P

is prime = Pr p:r

P
ez Pv[q is prime \q G Z]

= 1.2 - lg fc =
2igfc"

Secondly, sum up for all values of p to obtain the expected number of n. The

number of p was approximated in Example 2.2.7. One expects

•A/bi.n = #{p : r ' I 3 prime g s.t. pq = p:r'}

= #{p} • #{r '} • Pr

» 2 f e_ lg fc-l-2~ l g fc

_ 2fc_21sfc

p:r .
P

is prime

backdoored keys.

Finally, reformulate this expected number using the notation introduced in

Equation 5.1. One obtains

KS
ri

P (G Q) 2ep<.ao)

2n
_ 2~21gA;

100

because the number of honest n = pq is the square of the number of A;-bit prime

(given by Example 2.2.7) and the length of the portion of the public key which is

the site of the embedding, n, is £P(G0) = 2k.

It is left to consider the number of bits in the backdoored keys. The number

of bits of are no random bits involved in its encryption, so

r(E) = 0. It could at first appear that \R\ = \r\ = k. Nevertheless, the restriction

that the subsequently computed q be prime makes the expected value of additional

random bits from r is \R\ = 0. Therefore

2\R\+r(E)+i(kpriv) __ tyi{kpriv) _ <)k

and AfGun = 2i(fcp™) rep(Go) — 2fc_21gfc as before. •

Example 5.1.6 Consider the same backdoored key generator as in Example 5.1.4,

with Go = RSA and E = ECIES. Recall &P(R,SA) = (n,e), and take ks = n, so from

Section A.l, £B = 1024. Therefore, 2k = \kB\ = 1024. For ECIES, from Remark A.3.7,

n{i.E) — &E, ITI(£E) = 2£E + 1 and also from Section A.l, £E = 160. More precisely,

the k/2 MSB of p are pseudo-randomly generated from 160 bits denoted (x, K). Thus

their distribution is computationally indistinguishable from uniform.

i(kpriv) = |a;| + | # | = 160

In (x, K), the parameter K is typically the key and x, the seed of the pseudo-random

generator. For instance, the generator can be instantiated with AES.

101

Denote the k — 512 LSB leftover bits of n by r2. Denote the k — m(^s) =

512 - (2 • 160 + 1) = 191 MSB leftover bits of nbyn.

n = n : E(x, K) : r2

At first, it would seem that the number of free bits is exactly the number of bits

not needed to embed the backdoor. That is \R\ = \r\\ +]7̂ 21- If it was the case, then

the following would hold.

\R\ = | f cB | -m(^) = 1024-2-160 = 704.

However, the k LSB bits ofn are as in Example 5.1.5, that is, these bits are not

free. More precisely, when q = [n/p\ is set, the initial value of r2 is substituted by

a r2 that allow integer division. This fixes the k LSB bits. Therefore

\R\ = N = 191.

The number of random bits involved in encrypting (x, y) is, by Example A.3.5,

r(E) fa 160.

Therefore

\R\ + r(E) + i(kpriv) w 191 + 160 + 160 = 511.

From Example 2.2.6, the probability that a random A;-bit integer is prime is

^ (2) ~ o-igfc _ 9-9

102

Therefore,

J\fr « 2^+r^+i^kpriv')~21sk

^ 2511-2 '9 = o493

So the size of the backdoored set {(n, d, e)} with fixed e is approximately 2493. The

number of keys generated by the standard RSA key generation, as in Subsection 2.2.4,

with ^p(Go)/2 = 2k = 1024, resolves to 2493, from Example 2.2.9. This indicates that

the cardinality of KSM is approximately about half of the total number of keys.

In both number of keys computations, there is a factor of 2_21gfe which comes

from the number of invalid n that are not the product of two k-bit primes. Without

this, the number of honest keys, with fixed e, is about 22fc = 21024. Also without

discarding these invalid values of 2k, the cardinality of KSM is about

9(512-(2-160+l))+160+160 _ 0511

where TO(£E) = 2-160+1 is the amount of space taken by the ECIES encryption, which

is compensated by the amount of information, TI(£E) = 160 bits, and of randomness,

\K\.« 160 bits, within it. Varying the length of the ECIES security parameter, £E,

does not significantly affect this compensation.

Because the used E is an encryption function, this process is injective, so E

maps any two different values of information and randomness to a different image.

Therefore, the number of images adds up in the same manner as the number of points

in the domain of E. •

103

Definition 5.1.7 (Number of keys) Denote the number of honest keys gen-

erable by Algorithm GQ by J^G0(^P(GO)) • Denote the number of backdoored

keys generable by Algorithm G\ byNGI{£P(G0)AE)• Denote the key ratio, which

is the inverse of the number of times that there are more honest than backdoored keys,

byTZGl(£p(G0)JE)- Then

MG^G^E) = 2l*l+^)+*(V„) r w

-P i, o \ - NGI(ZP{G0)^E)
I<-GA^P{G0)^E) - —TF—ro T~-

MG0\ZP{G0))

Example 5.1.8 In Example 5.1.6,

MGA^JE) « 21024+493 = 21517,

nGl(£p{Go),eE) « 21517-2048 = 2-531.

D

Cardinality classification for RSA backdoored key generators. Follow

the relative ratings for RSA backdoored key generators, in increasing order of de­

sirability. The security parameter of Go and G\ is k. In practice, the ratio of the

cardinality of G\ to the one of Go is of the form

tc-k
/ (*)

where c < 0 and f(k)~x € 2°(k\ This is another way of expressing that lg(/(A;)_1) G

o(k). Informally, this means that /(A;)-1 is negligible w.r.t. 2k, so that all the expo­

nential factors are collected in the constant c.

104

Then, classes of values of c are meaningful. That c = — 1/2 means that about k/2

bits of freedom in the key selection are lost because of their backdoored generation.

The case where c > —1/2 is classified as good because the strongest known theorems

fix k/2 bits of information to transmit the backdoor information (Theorem 6.3.1 and

Corollary 6.1.8). There case where —3/2 < c < —1/2 is classified as poor because

such theorems are typically used, but not in optimal ways. The case where c > —3/2

is classified as failed because at most k/2 bits of freedom in the key selection are kept.

Often, an algorithm that generates only one backdoored key can be trivially modified

via the precedingly cited theorems to free k/2 bits of information. Typically, this is

the source of cardinality of such an algorithm.

Rating

Failed
Poor
Good

value of c

c < - 3 / 2
- 3 / 2 < c < - 1 / 2
c > - 1 / 2

Table 5-1: Cardinality classification for RSA backdoored key generators.

Cardinality classification for EG backdoored key generators. Just as

for RSA, follow the relative ratings for EG backdoored key generators, in increasing

order of desirability. (The EG key generator is given in Figure 7-11.) The security

parameter of Go and Gi is k = \p\. In practice, the ratio of the cardinality of Gi to

the one of G0 is of the form 2C^I • f(\p\), where c < 0 and / (| p |) _ 1 e 2°^\

Then, classes of values of c are meaningful. When from a backdoored generator,

the value of a is dependent on p and a, so this fixes \p\ bits of information, because the

value of an honest a (of length \p\) is independent from other parameters. Therefore,

105

cases where c > — 1 are classified as good. Depending on how the information that

allows the retrieval of a is stored within the other parameters, some additional bits

become fixed. Therefore, cases where — 2 < c < — 1 are classified as average. (This

contrast with the poor label given for the intermediary case for RSA, because in all

known average cases, there is no non-optimal use of theorems issue.) Finally, cases

where c < — 2 are classified as failed. This means that 2\p\ bits are fixed in order to

retrieve \p\ bits, and this happens only when an additional parameter is kept fixed.

(While it may be useful in some situations, this usefulness is typically special to EG

and thus is not included in our scheme of analysis.)

Rating

Failed
Average
Good

value of c

c< - 2
- 2 < c < - l
c > - l

Table 5-2: Cardinality classification for EG backdoored key generators.

5.1.3 Distribution properties

In general, the bits generated by Go are distributed in a special way which

is distinguishable from uniformly distributed random bits. Therefore, the goal of

the designer is to avoid any disturbance in this distribution. Three aspects are

considered:

1. the number of bits occupied by embedding the encrypted backdoor information;

2. the positions of these bits;

3. the distribution of these bits w.r.t. their distribution when generated by Go-

106

Number of bits occupied by the embedding. This is addressed as a part

of the cardinality of KSM, in Subsection 5.1.2.

Distribution of the information via the embedding. Intuitively, the

more spread out the random bits by the embedding function, /R, the better, as­

suming that the embedding is within the bits of the public key which are distributed

as the encrypted backdoor information is (assumedly, distributed computationally

indistinguishably from uniform). For this criterion, the worst instances of JR em­

bed the encrypted backdoor information in the same block of bits, for any choice

of parameters. The best instances of fR embed the encrypted backdoor information

in bit positions that are themselves close to uniformly distributed, over the random

parameters in Go that are independent of the backdoor information.

However, this intuition is incomplete. In Definition 4.2.5, Point 2 requires that

i?'s output be close to uniform, upon certain conditions. In fact, one is rather inter­

ested in the uniformity of the composition of embedding function and the encryption

function, }R O E, as a whole. There are two questions. Firstly, has JR or E sufficient

properties to guarantee the uniformity of their composition? Secondly, do / R and E

interact in insecure ways?

Consider the following example of a simple backdoored key generator. Suppose

that E is simple, for instance, let E be a one-time pad. Suppose that / R fixes the

bit positions, then E can efficiently be inverted after two uses. That these /# and

E commute makes this backdoored key generator insecure. Therefore, a simple /#

calls for the use of a cryptographically strong E.

107

In the opposite case, if /# is a pseudo-random-like function on I{kWiV). Then

the sufficient assumptions on E are weaker. In certain circumstances, it is more

efficient to use simpler E and more complex /# . Chapter 7 develops this intuition

into a method for designing backdoored key generators.

Definition 5.1.9 (Entropy of G\) Denote the entropy of Algorithm G\ byHd-

Consider the effect of g = /# o E on x = I(kpriV). The distribution of g(x) is taken

over the other random variables in E and fn, denoted y. Thus y is the secret key

(or index) of g.

{1 if gy(x) 's output is computationally indistinguishable from uniform

0 if gy(x) 's output is computationally predictable, given a polynomial sample.

The entropy is denoted as

0<HGl<l

if the embedding is not predictable but also is distinguishable from uniform.

Distribution w.r.t. the one when generated by Go. The positions where

the bits of backdoor information are inserted is a relevant factor in avoiding such

disturbance. For instance, with Go — RSA, the middle bits of n are more randomly

distributed. It is preferable to embed a backdoor away from the very least and most

significant bits.

In G\, assume that the distribution of the embedded encryption of the backdoor

information is close to uniform. According to Definition 5.1.9, this is equivalent to

assuming HGI = 1- In Go, if the bth bit of kp(G0) ^s n ° t uniformly distributed, then it

108

is a bad place for fx to embed one of the bits of the encrypted backdoor information,

E o I(kpriV). Including the bth bit of kp(G0)
 m ^B is not useful in order to satisfy the

indistinguishability property (3.a) of Definition 4.2.9.

Therefore, one requires a measure on the distribution produced by Go, in func­

tion of the positions determined by G\, via its embedding function, /# . Let the

concatenation of these bits be denoted by X and their distribution, by X.

Suppose that Gi's Output is close to the uniform distribution, so if Go's output is

close to uniform, then the outputs of Go and G\ are similar. One wishes to determine

how close X is to the uniform distribution. This is given by the statistical distance

between X and the uniform distribution U, from which a |X|-bit length random

variable, U, is sampled [Lub96, p.70].

Definition 5.1.10 (Uniformity correctness) The uniformity correctness of G\

is the statistical distance between X and U.

CGl = dist(X,U) = 1/2- J2 \Pr[X = z]-Pr[U = z]

Equivalently,

CGl = dist(X,U)= max \Pv[X E S]-Pr[U E S]\ .
5C{0,1}IXI l * Ul J J

If CQX is negligibly small w.r.t. the security parameter of Go (which is, in general,

equivalent to stating w.r.t. |X|), then the consequent parts of G\ are close to being

uniformly distributed, and therefore are statistically indistinguishable from Go's. In

this case, G\ is said to satisfy the uniformity correctness criterion.

109

Distribution of Go. Finding Cqx can be a considerable problem. It requires

the study of the distribution of the honest algorithms' public parameters, as in [CS03,

Section 5] for the parameter n of R.SA. A further study of the distribution of the

product of two 512-bit primes (with a leading bit of 1) has been done by the author

of this work. However, because of the approximation due to results related to the

Prime number Theorem (Theorem 2.2.4), no conclusive new results were produced.

The two measures introduced in this section are sufficient to produce additional

qualitative indications on backdoored generators. However, they are not sufficient in

order to provide precise quantitative indications. Further study of the distributions

produced by honest key generators would be required.

5.1.4 Generalized key regeneration

The user of an honest key generator expects the algorithm to regenerate keys at

will, so that the distribution of the keys, as elaborated in the previous section, can

be analyzed. Since the user may not fully trust the generator, the user may require

the more general regeneration that consists in requesting keys whilst fixing some

part of these keys. For instance, the RSA parameter e may be kept fixed and the n

regenerated; one of the primes may be kept fixed and the rest regenerated, etc. Not

to allow this power to the user would be similar to restricting the user to request the

regeneration of only a "reasonably" small number of keys, as a non-distinguishing

user should only need. Not complying to either type of regeneration is evidence that

a backdoored key generator is used.

110

Obviously, this criterion only makes sense if the honest algorithm, Go, can itself

be adapted to satisfy it. Some Go may be defined as to generate key parameters that

are correlated.

Definition 5.1.11 (Generalized key regeneration) The requirements of gener­

alized key regeneration (GKR) are as follows.

1. The distinguisher may ask for a new public key.

2. The distinguisher may ask to keep certain parameters of the public key (given

that it has many parts) and request the remaining parameters afresh.

Point 1 is reasonable, because the distinguisher should have a polynomial-size

sample of keys in order to make a decision. Point 2 is reasonable, because elegant

solutions exist where the backdoored key generator does not scramble parameters in

unnatural or contrived ways. Although it is not stated as a standard requirement,

any honest key generator complies with GKR.

Therefore, the backdoored key generator should be prepared for the distinguisher

to be content with part of the public key, while discontent with the rest. In particu­

lar, any suspicious parameter should be regenerable at the will of the distinguisher.

Complying with GKR implies that the backdoored key generator cannot ignore the

independence relations between parameters, just as it cannot ignore issues regarding

key distribution. This confirms the intuition that "randomly" distributed variables

means variables that are uniformly and independently distributed, as far as the hon­

est key generation requires it.

I l l

Summing up, GKR is a feature of a backdoored key generator. Note that this

feature often seems to require the use of volatile memory (Section 5.2). This feature

was first taken into account in [CS03].

Correlation between key components. As the distinguisher fixes a key

component, the backdoored key generator may generate keys with components more

correlated than they should be, according to the distribution produced by GQ.

For instance, if the encryption function, E, is deterministic, we have the follow­

ing two cases.

Example 5.1.12 (Distinguishable variable correlation) Suppose the following

situation: Go = RSA, I(kwiv) — p and ks — e, This means that p is concealed in e.

In this case, if p is fixed by the distinguisher, the parameter e may either be

the same upon regeneration, or have a fixed part. GKR allows the distinguisher

to discover a correlation between p and e which is not present in the honest key

generation. D

Example 5.1.13 (Indistinguishable variable correlation) Suppose Go = RSA

and I(kpriv) = S, small enough for Coppersmith's attack. The small 5 is concealed

as e = 7T-0(5~1 mod 4>{n)).

In this case, if p, q or d is fixed by the distinguisher, the generator outputs

a different value of e (except negligibly often). GKR does not give a significant

advantage to the distinguisher in this case. •

From the two preceding examples, the following definition of correlation between

parameters in backdoored public keys can be stated.

112

Definition 5.1.14 (Variable correlation) Let the variable correlation of algo­

rithm G\ be denoted as Vox- It is defined accordingly to whether the execution of

G\ is distinguishable from the one of Go via the agreement or refusal to comply with

GKR.

{0 if it is distinguishable

1 if it is indistinguishable

5.1.5 Diversity

To assign a quality to the static analysis (without interactions such as side chan­

nel analyses) of a backdoored key generator G\, define the key diversity as directly

proportional to the key ratio (Definition 5.1.7). It is also directly proportional to one

minus the uniformity correctness (Definition 5.1.10) as well as to the entropy (Defi­

nition 5.1.9). Finally, if the variable correlation (Definition 5.1.14) of Algorithm Gi

is null, then the diversity is null as well.

Definition 5.1.15 (Key diversity) Denote the key diversity of Algorithm Gi

byVGl. Then

V = 0 if V = 0

V oc K

V oc H

V oc 1 - C .

113

Key diversity is a stronger measure than computational indistinguishability and

it is more applicable. However, the above definition implies a set of possible mea­

sures of diversity. Nevertheless, the definition as stated is sufficient to compare the

backdoored key generators that are analyzed in the following two chapters.

Conclusion. To prevent attacks based on distinguishable properties, it is also

required that the generable keys' number and distribution be close to the ones of

generable honest keys. The key diversity of a backdoored key generator is related to

the number of backdoored keys that it can generate as well as to their distribution.

It is not sufficient to generate a high number of backdoored keys, because this can be

done in trivial ways which possess easily distinguishable properties (Subsection 7.2.2).

key diversity
(Definition 5.1.15)

number of keys
' (Definition 5.1.7)

distribution

, uniformity correctness
(Definition 5.1.10)

entropy
(Definition 5.1.9)

, variable correlation
(Definition 5.1.14)

An increase in the number of keys or in the key entropy implies an increase

in diversity. This is coherent with Definition 5.1.15. Conversely, one would like

to state that a greater diversity cannot decrease any type of indistinguishability.

However, diversity being a syncretism of different versions of indistinguishability,

no such statement can be made. Alike to the preceding affirmation concerning the

114

number of keys and diversity, only hypotheses on a type of indistinguishability can

induce conclusions on diversity.

Key diversity is one way to capture the static nature of the keys, up to symmetry

or asymmetry. This last characteristic is stated separately.

5.2 Interactions with the generator: side channel analyses

Some interactions normally exist between a distinguisher and an honest key

generator. These interactions can be measured and used to distinguish between a

malicious and an honest generator. This is a dynamic type of indistinguishability,

as opposed to the static indistinguishability presented in Section 5.1. Therefore,

the formal goal of the dynamic measures is to evaluate how an algorithm satisfies

Property 3(b) of Definition 4.2.9.

The distinguisher may analyze the resource consumption of a key generator. If

an algorithm appears to take a longer time or to use more memory, or a special

type thereof, then it is likely that it is dishonest. A very simple distinguisher can

determine this. Ideally, a backdoored key generator should use the same resources

as the honest one.

5.2.1 Complexity

Relevance of this measure. The complexity of the backdoored key generator

is a feature that can be analyzed through side channel analysis. By opposition, it is

not relevant to analyze the complexity of the retrieval of the private keys (leaked via

the backdoored public keys) beyond insuring polynomial time, side channel analysis

only applies to the key generator, because this is the only one of the designer's

115

activities that involves the legitimate user (who plays the role, which was invented

for analysis purposes, of the external distinguisher).

Ideally for the designer, backdoored key generation would display the same

complexity as the honest key generation. However, all backdoored key generators

published so far involve additional operations. Intuitively, this appears to be an

intrinsic feature of backdoored key generators, because backdoored keys have ad­

ditional properties as compared to honest keys, one would expect backdoored keys

to be generated, by an algorithm that performs additional operations. However, a

backdoored key generator that displays exactly the same complexity can be trivially

constructed, at the cost of generating less keys, pooled from a table, for instance.

Classification scheme. In order to classify backdoored key generators with

respect to the side channel analysis of time complexity, we compare the complexity

of backdoored and honest key generators. One way to compare the complexity of G\

and Go is to express them as functions of the security parameter of the cryptosystem

which the generation belongs to.

Another way is to ignore the operations which do not take a significant time

complexity, i.e. to pick out the most expensive operations that Go performs. Then,

the analysis counts the number of times G\ uses these operations. In this way, only

significant operations are considered, i.e. the ones that the distinguisher would find

significant.

An additional idea applies to the whole of complexity analysis. The complexities

in generating separate parameters of a public key are considered separately, because

of their separate examination via GKR, as in Subsection 5.1.4.

116

Application to RSA. In this context, the interesting notion of complexity

is relative to the one of the honest key generation algorithm for RSA. The most

expensive operations of Go are the generation of two random primes of size k. Then

checking gcd(x, 4>(ri)) = 1, for a given x, along with inversions modulo (f)(n), are the

next most costly operations.

Algorithm G$ [Standard RSA key generation]
1: Pick random primes p,q of appropriate size = k, and set n = pq.
2: repeat
3: Pick a random odd e such that jej <
4: until gcd(e, <p(n)) = 1.
5: Compute d = e _ 1 mod <j>(n).
6: return K — (p,q,d,e).

Figure 5-2: Honest RSA key generation (recall of Figure 2-5).

Denote as tn the expected time complexity of generating the parameter n = pq.

It holds that tn = 2tp = 2tq, where tp and tq are the expected time complexity of

generating random primes of size k, ignoring the time to perform multiplication.

More precisely, tp is equal to the time of generating the bits of p multiplied by the

expected number of times this operation is repeated in order to find a prime. If

constants are considered irrelevant, then the complexity for p or q needs only to be

expressed in terms of tn: with this abuse of notation, tp = tq « tn.

With another abuse of notation, also denote as te the expected time complexity

of generating the pameter e, but given that n has already been generated. Consider

two quantities, the probability P of selecting a random element of Z£/ N and the

expected time E, of an inversion modulo <f>(n). In Go, these appear to be performed

consecutively, as Steps 2 to 4 and Step 5 respectively. However, using the extended

Euclidian algorithm, the two operations are done at the same time. The probability

117

that an inverse exists is P and given it does, the time to find it is E. Therefore,

te = (1/P) • E = E/P.

Overall, the complexity of G0 can be denoted as:

T(G0) =tn + te. (5.2)

Comparing complexities. Up to now, the best RSA backdoored key gener­

ators have an expected complexity that can be said to be' linear in the one of the

honest generator. More precisely, the best achievable complexity of an algorithm, G'i,

is proportional to a constant times each of the complexities of the prime generation

and the one of checking gcd's or inverting modulo 0(n), separately:

tn\G\) — c\tm

te(Gi) = C2*e,

where Ci,c2 are given constants. For Go = RSA, it is important to consider these

separately. If e is regenerated (GKR), then te is observed separately, while in Equa­

tion 5.2, the dominant term is tn. Therefore, if complexity was analyzed only in

the form of Equation 5.2, then the total complexity would not be easily affected by

detectable, but not dominating, variations in te.

A linear complexity allows a backdoored key generator, G\, to maintain its secu­

rity as the security parameter is increased. If the security regarding the side channel

analysis of complexity can be assured for a given value of the security parameter,

then it can be assured for all other values, with a constant amount of additional

118

computational power. For instance, suppose that T{G\) is exactly 2T(Go), without

ignoring constants, as we otherwise do. If the generator is a hardware device, its

circuitry's computational power has to be doubled to match exactly a complexity

of T{GQ). Ignoring constants again, the first backdoored key generator to have a

complexity of T(GQ) was shown in our work (Chapter 7).

Likewise, an RSA backdoored key generator may have an expected complexity

that is said to be polynomial in the one of the honest generator. This means that

T(Gi) is proportional to a polynomial in tn or te. There are many examples of

quadratic complexity. For the above reason, these complexities compromise a back­

door's security. Nevertheless, some such backdoors are theoretically interesting in

providing intuition to design more efficient ones.

Complexity classification for RSA backdoored key generators. Follow

the relative ratings for RSA backdoored key generators, in increasing order of desir­

ability. Denote by t the complexity of Go for a given key parameter. In practice, the

complexity of G\ is of the form

T(Gi) = ta • T(F)b + tc

where a, b and c are constant exponents and F is a non-instanciated function such

as TV/3 at the end of this section. Because T(F) may or may not be a dominant

factor, complexities with b > 0 are then still "to be evaluated", so they are rated as

F-relative, by convention. For instance, if F = AES is called within the generation of

a prime p, then for any small constant b, the factor T(F)b is negligible with respect

to tp.

119

Rating
Failed

Poor

F-relative

Good

complexity

The complexity is at least quadratic in the complexity of Go-
In other words, a > 2 or c > 2.
The function F is explicit and such that the factor T(F)b is
non-negligible with respect to t.
The complexity is more than linear but less than quadratic
in the complexity of Go- In other words, 1 < a < 2 and
l < c < 2 .
The complexity is less than quadratic in the complexity of Go,
while the complexity of F is not given explicitly (depending
on F, the factor T(F)b may or may not be dominant). In
other words, a < 2, b > 0 and c < 2.
The complexity is linear in the complexity of Go, and F is ex­
plicit and such that the factor T(F)b is negligible with respect
to t. In other words, a < 1, b > 0 (small) and c < 1.

Table 5-3: Complexity classification for RSA backdoored key generators.

Application to EG. The complexity is accounted w.r.t. the one of EG key

generation, Go, as given in Figure 5-3. Its most costly operations are the generation

of a random prime of size \p\ and the loop which checks whether a is a generator

modulo p. Then the complexity of Go can be denoted as:

T(Go) — tp + ta.

and, as for Go = RSA, tp and ta are analyzed separately. In this case as well, tp is

the dominant term.

Complexity classification for EG backdoored key generators. Just as

for RSA, the complexity of G\ is of the form •

T(Gi) = ta • T(F)b + tc

120

Algorithm Go [Standard EG key generation]
1: Pick a random prime p of appropriate size.
2: repeat
3: Pick a random a € Z*.

4: until V prime pi, s.t. pt\p — 1, it holds that [a(P_1)/P« mod p ^ l] .
5: Pick a random 0 < a < p — 2.
6: Compute /3 = a " mod p.
7: return (p, a,a,(3).

Figure 5-3: Honest EG key generation (same as Figure A.l).

where a, b and c are constant exponents and F is a non-instanciated function such

as 7T/3 at the end of this section.

Follow the relative ratings for EG backdoored key generators, in increasing order

of desirability.
Rating

Failed

Poor

F-relative

Good

complexity

The complexity is quadratic in the complexity of GQ. In other
words, a > 2 or c > 2.
The function F is explicit and such that the factor T(F)b is
non-negligible with respect to t.
The complexity is less than quadratic in the complexity of Go
times the one of a cryptographic function JF, such that T(F)
is negligible. In other words, a < 2, b = 1 and c < 2.
The complexity is less than quadratic in the complexity of Go,
while the complexity of F is not given explicitly (depending
on F, the factor T(F)b may or may not be dominant). In
other words, a < 2, b > 0 and c < 2.
The complexity is linear in the complexity of Go plus the one
of a cryptographic function F, such that T(F) is negligible,
or better. In other words, a = 0, b < 1 and c < 1.

Table 5-4: Complexity classification for EG backdoored key generators.

Additional notation. Another common case is when T(Gi) is proportional

to tn or te times the complexity of an unknown, non-instantiated, function F. This

121

function typically is a cryptographic primitive. The notation applies for a pseudo­

random function, F — irp, keyed with (3. As before, the expected time complexity of

7T/3 is denoted as

T(F) = T(^).

5.2.2 Memory

Relevance and classification scheme. Memory usage of the backdoored

key generator is another feature that can be analyzed through side channel analysis.

One can distinguish two types of memory that may be used, volatile memory (VM)

and non-volatile memory (NM). Some backdoored key generators require NM in

order to transmit the necessary information from one run to another. Others require

VM in order for key regeneration to function.

The use of VM is preferable to the use of NM, because the former is more dis­

creet. It could appear that NM requires more resources, so it is more easily detected.

However, in practice NM is resettable anyway. If a backdoored key generator is de­

pendent on NM to remember the keys that have been generated in the past, such a

reset can make it regenerate the same past keys. This is easily detectable.

Results. In some of the algorithms of [YY97b, YY05a], non-volatile memory

is used. Indeed, in order for the backdoor to leak all the appropriate information,

two emissions of backdoored keys are required. Thus, the first one is remembered

(even if the device is turned off, requiring the non-volatile quality of the memory),

in order for the second one to recover the backdoor or to generate it securely. More

details are given in Section 6.2, and more particularly in Subsections 6.2.2 and 6.2.3.

122

Example 5.2.1 (NM for backdoor recovery) In Figure 6-9 (Subsection 6.2.2),

a first message allows the transmission of an exponent, c. A second message transmits

a function of this exponent, /(c), such that given the two messages and a private

key, the designer can recover a given function of the exponent, g(c).

The designer needs to preserve the first message in non-volatile memory (NM),

The second message and the private key alone are not sufficient to recover g{c). •

Example 5.2.2 (NM for backdoor security) In Figure 6-11 (Subsection 6.2.3),

a counter (the variable i) is stored in non-volatile memory. This is a counter for the

number of backdoored keys that the generator created.

The non-fixed seed to the pseudo-random generator is u: % :j. The variable u is

randomly chosen in Z*N, where N is the designer's Rabin public key (u is a seed to

generate the backdoor information). The counter j is reset for every generated key

(it is incremented until some condition is satisfied). The counter i insures that the

generator's pseudo-random seed is necessarily different. Thus the same keys are at

least as unlikely to be regenerated as it is unlikely to find a collision in the keyed

pseudo-random generator, / # :

keyi = fK(u:i:j)

and

Therefore, NM is required for security because of key regeneration, despite its weak­

nesses as pointed out earlier in this section. •

123

Backdoor algorithms that allow generalized key regeneration (GKR, as defined

in Subsection 5.1.4) sometimes appear to require non-volatile memory. This seems

to be the case for backdoored EG key generation, because these keys' parameters are

more interdependent than RSA keys' parameters. An example is our algorithm in

Figures 7-12 and 7-13 (Subsection 7.3.2).

Example 5.2.3 (VM for backdoor security) The algorithm in Figure 7-13 an­

swers the regeneration (GKR) of the private key parameter a of the EG cryptosystem,

while keeping all other parameters constant. The variable r is a random seed used

to pseudo-randomly generate some of the parameters, including a, so r is stored in

volatile memory as to allow backtracking: the previous generations' essential internal

variables are preserved in r. These variables r and s are the seeds for the generation

of another EG parameter, a. Informally,

a = fxir)

and

a = fK{s:r)

for an invertible keyed pseudo-random function / # .

For this algorithm, VM is required for security because of GKR. For instance, in

the case where the legitimate user wants to keep a and regenerate a, the new a may

be regenerated with the same r and a different value for s. Both pairs of parameters,

old and new, are coherent with having been generated from the seed r.

124

This coherence, along with the invertibility of / , insures completeness:

s:r = f^l{a)

and

a = fxir).

So the designer retrieves the private a. •

For RSA backdoored key generation, generalized key regeneration does not re­

quire any memory. For symmetric backdoors, this is shown by the algorithms of

[CS03], in Section 6.3. For asymmetric backdoors, this is shown by our algorithms,

in Section 7.1.

5.3 Measures on the design of algorithms

We briefly elaborate on two additional measures that relate to the design of

algorithms.

5.3.1 Computational assumptions

The underlying cryptosystem associated to Go introduces some computational

assumptions. For instance, RSA assumes that the eth root modulo n is difficult to

compute.

The designer of a backdoored key generator wishes to conceal the information

that is useful to retrieve the private key, which is embedded in the public key. To

achieve this, i.e. the confidentiality and indistinguishability of Definition 4.2.9, the

designer relies on some assumptions about computational infeasibility. .On the con­

trary, completeness is independent of such computational assumptions, as it concerns

the capacity of key retrieval, i.e. the feasibility of a computation.

125

For instance, in the case of RSA, the backdoored key generator may reuse the

assumption that the eth root modulo n is not feasibly computable. In the case of

ElGamal over elliptic curves, the backdoored key generator may reuse the assumption

that the discrete logarithm problem is hard on average over elliptic curves.

As detailed in Subsection 7.2.3, for symmetric backdoored key generators, it can

even be the case that the permutation 7173 is so simple that it requires no computa­

tional assumption. For instance, irp can be as simple as xoring or shuffling its input

bits.

In our comparative study of existing and new backdoored key generators, addi­

tionally used computational assumptions are explicitly mentioned. The extra com­

putational assumptions shall be as minimal as possible.

5.3.2 Simplicity

Another consideration is the simplicity and parsimony of a dishonest gener­

ator. Typically, simpler algorithms are more flexible, more easily implementable,

require less additional computational assumptions, their properties can be more eas­

ily analyzed, and overall less possibilities for errors are introduced. Lex parsimoniae:

entities should not be multiplied beyond necessity, the principle for scientific theories

known as Occam's razor.

Algorithms can be rated as having low structure (LS), medium structure (MS)

or high structure (HS), structure being the opposite of simplicity.

5.4 Measures: summary

Table 5-5 gives the properties and a list of measures, with dependencies, relevant

to a backdoor.

126

To every pair of backdoored key generator and retrieval algorithm, (Gi, Ri), is

associated such a table. Such a table is a wieldy way of summarizing their properties,

as opposed to enumerating them.

confidentiality
completeness

indistinguishability

asymmetry

diversity

generalized

ratio TZd

distribution
uniformity (CGJ
entropy (HGl)
variable correlation (Vd)

cey regeneration (GKR)
side channel analyses complexity

memory (VM or NM)
computational assumptions
simplicity (LS, MS, or HS)

Table 5-5: Properties and measures relevant to a backdoor, with dependencies.

An additional column is presented with each algorithm's properties, which as­

signs a qualitative value to each property. Grades of "Good" "Average", "Poor", and

"Failed" rate the measures. As mentioned before (in Subsection 5.2.1), the rating

F-relative is also used when an algorithm leaves undefined determining features, such

as cryptographic functions.

5.5 Chapter notes

Chapter 5. Measures for backdoored keys. The interactions with the

generator that we study do not include zero-knowledge protocols because ZK is not

standardly included in known and used key generators. The possible interactions

with a dishonest generator that we consider are the same than that with an honest

127

one. However, note that zero-knowledge is used for RSA key generation with verifiable

randomness [JG02].

Subsection 5.1.1. Classical definitions of indistinguishability. Kleptog-

raphy uses polynomial indistinguishability in the sense of [GM84]. Shamir's backdoor

in the public-key knapsack cryptosystem known as Basic Merkle-Hellman is an ex­

ample of perfect indistinguishability: the backdoor breaks the cryptosystem [Sha82].

We will introduce key diversity, which relates to computational and statistical indis-

tinguishabilities.

Related publication drafts. Key diversity was first introduced in [ACS]. A

draft of this chapter was submitted for publication as [Arb].

128

CHAPTER 6
Comparison of existing algorithms

This chapter surveys existing backdoored key generators of theoretical interest,

i.e. which are provided with an analysis and rest on standard computational as­

sumptions. The goal of this chapter is to uniformly analyze them w.r.t. the criteria

introduced in the preceding chapter and summarized in Table 5-5. This creates a

basis of comparison for the new algorithms of Chapter 7.

6.1 Simple algorithms

The Anderson-Kaliski * and Howgrave-Graham 2 backdoors are simple exam­

ples of backdoored key generators. They provide useful intuition as to how to, as

well as how to not, design such algorithms.

Both generators leave confidentiality unsatisfied, for different reasons. Confiden­

tiality constitutes the main problem of the simple approach of the Anderson-Kaliski

backdoors. For the Howgrave-Graham backdoors, the relatively simple approach also

introduces more subtle issues w.r.t. key diversity and computational assumptions.

1 Named after two people, Ross Anderson and Burton S. Kaliski Jr.

2 Named after Nick Howgrave-Graham.

129

6.1.1 Anderson-Kaliski backdoors

An early theoretically interesting backdoored key generator was proposed by

Anderson in [And93]. This symmetric RSA backdoor with fixed secret key A embeds

in n an integer, qq', which is easy to factor. This integer is retrieved as n mod A — qq'.

In turn, the knowledge of these factors, q and q', and of A allows to factor n itself.

The prime generation in Steps 1 to 4, as well as Steps 5 to 8, is claimed to be

equivalent to the usual operation of selecting a random prime, p Eu rp- This is

detailed in the paragraph Distribution properties which follows.

PARAMETERS:

• A is a fixed 200-bit prime number.
• PublicTA,r'A : {0, l } 1 0 0 —> {0, l } 5 6 are (assumed) pseudo-random functions.

Algor i thm And93 [RSA key gen]
1: repeat
2: Pick rp q of size 100.
3 : Set p = rA(q) • A + q likely prime [Th. 6.1.5].
4: until p is prime.
5: repeat
6: Pick rp q' of size 100.
7: Set p' = r'A(q') • A + q' likely prime [idem].
8: until p' is prime.
9: Set n = pp'.

10: repeat
11: Pick a random odd e such that |e| < Ik.
12: until gcd(e,c/>(n)) = 1.
13: Compute d = e _ 1 mod <j>{n).
14: return (p,p',d, e).

Algor i thm A-And93 [Key retrieval]
1: Input of (n, e).
2: Set n' = n mod A.
3: Compute q, q' = f actor(n') [feasible: |n ' | = 200].
4 : Compute p = TA (q) • A + q.
5: Compute p' = r'.(q') -A + q'.
6: Compute d = e _ 1 mod </>(n).
7: return d.

Figure 6-1: Anderson's backdoor for RSA. The factorization of n is hidden in
n itself.

Confidentiality. The confidentiality of Anderson's backdoor was quickly bro­

ken by Kaliski in [Kal93]. For simplicity, denote r&{q) by r and similarly for r'. The

distinguisher can break Anderson's backdoor by computing the continued fraction

expansion of p'/p in which is found r'/r, by the following well-known theorem.

130

Theorem 6.1.1 (Continued fraction expansion) Consider the continued frac­

tion expansion ofp'/p and a fraction r'jr. If

r

then r'/r is a convergent of the expansion ofp'/p.

Thus rA(q) and r'A(q') are easily found. Theorem 6.1.-1 is the same as Theo­

rem 6.3.1, with renamed variables. The latter is followed by a sketch of proof.

Remark 6.1.2 In Steps 3 and 4 of Algorithm And93, the length of the prime is

\r\ + \A\ = 56 + 200 = 256

therefore n is 512-bit long.

Remark 6.1.3 In the Anderson backdoor, the conditions of Theorem 6.1.1 are likely

to be satisfied, by simple algebra. They are satisfied if

2r(r'q — rq') < rA + q

which is most of the time, because the LHS is 213-bit long and the RHS, 256-bit long.

If r is random, the conditions are satisfied with probability 1 — 1/243.

Furthermore, if A is the same for all distinguishers (as it is the case in the orig­

inal algorithm), then it can be retrieved by any party through solving simultaneous

Diophantine equations via the LLL-reduction algorithm [LLL82]. The problem is re­

duced to finding a short vector in a lattice, which has not been proven to be NP-hard.

Also, there are polynomial time algorithms that find relatively short vectors.

131

J_
272'

Completeness. Algorithm And93 embeds in n an integer, n' = qq', which is

easy to factor. This factorization, (q,q'), is the key to the factorization of n = pp'.

The private key, A, is used to retrieve the integer, n' = qq', as n mod A = qq' = n'.

Remark 6.1.4 Step 2 of Algorithm A-And93 yields q and q' because

n mod A = (rA(q) • A + q)(r'A(q') -A + q') mod A = qq'.

Then (q, q') = f actor(n') is feasible because \n'\ = 200. The knowledge of these

factors, q and q', and of A allows to factor n = pp'. Steps 4 and 5 of Algorithm A-

And93 perform this computation, using the public functions r and r'.

P = rA(q) -A + q

p' = r'A(q')-A + q'.

Symmetry. The Anderson-Kaliski algorithm is symmetric, with secret key A.

Kaliski suggested how the Anderson backdoor could be improved. By letting the

A parameter be distributed randomly as an additional Step 0 in Algorithm And93,

only the distinguisher could deduce its own A, because only the distinguisher could

hold simultaneous Diophantine equations with the same A. However, in this case,

indistinguishability fails, and the backdoor is still considered broken.

Note that the original Anderson backdoor, where A is fixed, is consistent with

our definition of symmetric backdoored key generator, while Kaliski's version, where

A is distributed randomly, is not.

Cardinality. In order to compare this algorithm with the ones that follow, the

translation of the bit sizes to asymptotic notation is necessary. Prom Remark 6.1.2

132

and Steps 1 to 4 of Algorithm And93, \q\ = |g'| « | p|/2 = \p'\/2 so |n'| « k. Prom

Steps 1 and 2 of the algorithm,

W = UP'} = # M = # M «2fc/2-'̂ fe/2)

therefore

{ n } = #{n'} = #{*} • #{(/} « 2*-aW*/2>.

Recall, from Example 2.2.9, that there are about 24fc_21gfehonest RSA pairs (n, e).

There are about 22fc = n public exponents e,. in both honest and dishonest cases, so

that the factor in e cancels in the ratio of honest to dishonest keys.

2fc-21g(fe/2)

^ G l - 22fc-21gfc _ _

The ratio of honest to dishonest keys is approximately 2~k. This is because the two

logarithms (in exponent) cancel to a factor of 2.

Distribution properties. It is claimed in the original papers that the pa­

rameter n = pp' is likely to be a product of two primes, because of Theorem 6.1.5.

Theorem 6.1.5 (Dirichlet's Theorem in Number Theory) For all co-prime

positive integers q and A, there are infinitely many prime numbers congruent to

q mod A.

This theorem implies that there are as many primes of this form as there are

prime numbers (both sets are countable). However, it is not strong enough, because

it ignores distribution. The random numbers that are picked are multiples of A,

translated by q. Since this selection is independent, via the dominating term, r • A,

133

of the distribution of primes, it seems reasonable to claim that this selection is very-

close or equivalent to a uniformly random selection in a subset of positive integers.

Although it does not prove it, Theorem 6.1.5 does not infirm this claim and thus

supports it, as the cardinality of primes in this selection is consistent.

Remark 6.1.6 In Steps 2 and 3 of Algorithm And93, p is likely to be prime because

of Theorem 6.1.5. Its conditions are satisfied : A and q are co-prime because they

are both prime numbers and q < A.

However, this does not guarantee that the primes are generated as to possess

the form that is standard for RSA primes, that is, with a leading bit of value 1. The

algorithm would have to be modified so that only half of the p and p' are accepted,

that is, those with such leading bit. Overall, the distribution properties are good,

given the pseudo-randomness of r and r', which are not explicitly provided.

Entropy of embedding. Without loss of generality, consider the distribution

of the embedding in p (the same applies to p'). The bits of q are randomized through

the pseudo-random r. So there are \r\ = 56 bits of information in p that are close

to uniform and dependent on q. Via the selection of q, the \q\ lower bits of p (about

half) are uniformly distributed. Therefore, one expects about |r |/2 + \q\ bits of p

to be close to uniformly distributed, because about half of r is redundant, as it

affects what is already affected by q. Therefore, the distribution of the embedding

is not entirely uniform (with the selection made in the set of all appropriate length

primes). This is denoted as 0 < Hd < 1- This entropy rests on the assumption of

the pseudo-randomness of r and r', which are not explicitly provided.

134

Generalized key regeneration and variable correlation. This property

is satisfied as parameters are generated independently: p depends on q and p', on q'.

Complexity. The time complexity of the generation of p by G\ is approxi­

mated as follows. For clarity, denote the complexity for the generation of an A;/2-bit

prime, p or q, by t^. Then k/2 other bits are generated through the application of

the function r, accounting for an additional complexity of T(r). Finally, the resulting

k bits are tested for primality and the process is repeated until it is successful. The

number of repetitions are the cost of the test, minus the random bits generation, is

exactly tp. Because tp « t^ (Subsection 5.2.1, paragraph Application to RSA), the

generation of p by G\ is about (t^ + T(r)) • tp = (t^ + T(r)) • tn, and similarly for

p'. The rest of Gi is comparable to GQ.

Overall,

UGi) » (t^ + T(r))-tn

e n(t^)

and

te(Gi) = te.

This complexity is rated as "poor" because it is more than linear but less than

quadratic in the complexity of Go (assuming that T(r) G 0(t^)).

Memory. No use of additional memory is made.

135

Computational assumptions. The algorithm uses two pseudo-random func­

tions, r and r', which are not explicitly provided.

Simplicity. Intuitively, the algorithm has a relatively low structure, even with­

out comparing with other algorithms. It consists of almost the same steps as GQ.

confidentiality
completeness

indisting.

asymmetry

diversity
KGl

cGl
v G l
Tl-Gi

GKR

side-
channels

complexity

memory
computational assumptions
simplicity

no: Kaliski [Kal93]
yes: Remark 6.1.4

failed

good

no: symmetric key A
2 - fc

0, given r and r' (see a)
1
0 < Hd < 1, given r and r'
yes

te\G\) = te

no
pseudo-random r and r'
LS

poor

average

good

poor

good

poor /

F-relative

good

average

good

Table 6-1: Properties of Algorithm And93 of Figure 6-1. Our trivial modification
detailed in Distribution properties is accounted for.

3 More precisely, given the pseudo-randomness of r and r'.

4 Assuming that T(r) e Oit^), the complexity is rated poor. Without this
assumption, the complexity is rated as F-relative.

136

6.1.2 Howgrave-Graham backdoors

In [HG01, p. 52], Howgrave-Graham mentions the two first simple backdoored

key generators for RSA that embed p]k/2 — p]^2 in the public e, as shown in Fig­

ures 6-2 and 6-3. Although not explicit in the original formulation, we let the

designer use a secret key (3 and a keyed cryptographic permutation, irp, that is

assumed to be a one-way function to insure confidentiality and a pseudo-random

function to insure distribution and entropy properties (this is a trivial modification).

Completeness is insured via one of the Coppersmith factorization methods which uses

approximate values of p: an approximate p allows the factoring of n if the additive

error is on the lower-half bits of p.

First, recall Coppersmith's Theorem. The proof of Theorem 6.1.7 rests on the

LLL lattice basis reduction.

Theorem 6.1.7 ([Cop96], Theorem 3) Let f(x,y) be a polynomial in two vari­

ables over Z, of maximum degree 8 in each variable separately, and assume the coeffi­

cients of f are relatively prime as a set. Let X, Y be bounds on the desired solutions

x0, y0. Define f :— f(Xx, Yy) and let D be the absolute value of the largest coefficient

off- If

XY < D2/3S

then in time polynomial in \gD and 2s, we can find .all integer pairs (x0,y0) with

f{xo,Vo) = 0, \x0\ < X,\y0\ < Y.

A well-known corollary to this theorem is of use. We present its proof for

comparison, as similar corollaries are derived in this work, for other algorithms.

137

Corollary 6.1.8 ([Cop96], Corollary 2) Given an approximation p0 of p such

that \p — p0\ < n1^, it is possible to factor n = pq in time polynomial in k, that

is, lg(n). Recall that it is assumed that q <p <2q.

proof: Let

Po P + X0

def
Qo = [n/p0\ = q + Vo

Then

X = \x0\ < n 1 / 4

Y=\Vo\ <
n

Po

n n

P + Xo P

nxn

P(P + Xo)
XQ

Po
< \xo\ < n 1 / 4 .

Let

f(x, y) = (p0 - x)(q0 -y)-n

then the solution to the zeros of f(x,y) is (x0,y0). In Theorem 6.1.7, f(x,y) =

f(Xx, Yy) has 5 = 1 and

D = n3 /4 .

The constant term p0q0 — n = x0q + y0p + x0y0 is also of this size, as well as the

coefficients of the first degree terms of / .

Thus, £>2/(3<s) = n1'2. Because XY < n1'2, the solution (xo,y0) can be found

efficiently. •

138

Figure 6-2 shows how p]k/2 is embedded in the public e, in such a way that

the completeness is insured via Theorem 6.1.8. The public exponent e is a secretly-

permuted version of

e = K:p + r

where K is a random prefix. Therefore, by knowing the public pair (n, e), hence e,

the designer can compute p and q via the last theorem.

PARAMETERS:

• (3 is a fixed secret key.
• irp : {0, l}2k —> {0, l}2k is an assumed cryptographic permutation.

Algor i thm H G - 1 [RSA key gen]
1: Pick rp p, q of size k s.t. q < p < 2q.
2: Set n — pq.
3: repeat
4: Pick random K < n1/2 and r < n 1 / 4 .
5: Set e = K:p + r.
6: Se t e = 7173(e).
7: until gcd(e, </>(n)) = 1.
8: Compute d = e - 1 mod 4>{n).
9: return (p, q,d, e).

Algor i thm A-HG-1 [Key retr.]
1: Input of (n, e).
2: Set e = 7r^1(e).
3 : Compute p,q from (n,e) [Theorem 6.1.8].
4 : Compute d = e _ 1 mod <j>{n).
5: return d.

Figure 6-2: Howgrave-Graham's first backdoor for RSA, which embeds p in e.

In Howgrave-Graham's second backdoor for RSA, p is scrambled with a multi­

plicative factor and an additive term, as shown in Figure 6-3 (the least significant half

of the bits is randomized via the addition on the random r). To show completeness,

the following corollary of Coppersmith's main theorem is derived.

Corollary 6.1.9 (Corollary of Theorem 6.1.7) Given p0 = k0p + x0 for \k0\ <

n1/2 and \x0\ < n1/4, it is possible to factor n = pq in time polynomial in k.

139

proof: Let

Po = k0P + x0

Qo
n

.Po.

_def ka q + y0-

Then y0 = q0 mod k0 gives the following bound on Y.

X = \x0\ < n1 /4

Y = \Vo\ < \k0\<n1'2

Therefore, XY < n3/4. Let

f(x, y) = (Po - x)(q0 -y)-n

then the solution to the zeros of f(x,y) is (x0,y0). In Theorem 6.1.7, f(x,y) —

f(Xx,Yy) has 5—1 and D = n3/2, so D2/(3<5) = n. Because XY < n, the solution

(x0, y0) can be found efficiently. •

PARAMETERS:

• j3 is a fixed secret key.
• ixp : {0, l}2fc —> {0, l}2fc is an assumed cryptographic permutation.

Algor i thm HG-2 [RSA key gen]
1: Pick rp p, q of size k s.t. q < p < 2q.
2: Set n = p<j.
3: repeat
4: Pick random if < n 1 / 2 and r < n 1 / 4 .
5: Set t = ATp + r .
6: Set e = 7173(e).
7: until gcd(e, <j>{n)) = 1.
8: Compute d = e _ 1 mod 0(n) .
9: return (p,q,d,e).

Algor i thm A-HG-2 [Key retr .]
1: Input of (n, e).
2: Set £ = ^ ^ (6) .
3 : Compute p, g from (n,e) [Corollary 6.1.9].
4 : Compute d = e _ 1 mod </>(n).
5: return d.

Figure 6-3: Howgrave-Graham's second backdoor for RSA, which embeds p in
e.

140

Algorithms' properties. The analysis is done concurrently for both Howgrave-

Graham algorithms, because they are similar, as to avoid unnecessary repetition.

The only difference with the first Howgrave-Graham backdoored key generator

is Step 5 in the key generation and Step 3 in the key retrieval. In Step 5 of the

generation, parameter K is not appended as a prefix in order to fill the length of e,

but instead it multiplies the value of p. Step 3 of the retrieval is modified accordingly,

using Corollary 6.1.9.

Confidentiality. In HG-1, the backdoor is

K:p + r;

in HG-2, it is

Kp + r.

To achieve confidentiality in both cases, a one-way function, 717?, is applied to the

bits corresponding to p.

However, if the permutation is applied exclusively on these bits, the backdoored

keys are distinguishable because they all contain the same sub-string 7173 (p) (see

Computational assumptions that follows). So 7173 is composed with the entire / # G - I

or JHG-I originally stated by Howgrave-Graham. In the settings of Subsection 5.1.1,

these 7T/3 o JHG-I and 7173 o JHG-2 are exactly fn o E o I.

Overall, this property rests on an assumption on a function, 7173, which is not ex­

plicitly provided. Nevertheless, when confidentiality is satisfied, it is always the case

that a computational assumption is used. The fact that an additional assumption is

used is made explicit in Computational assumptions, which analysis follows.

141

Completeness. This property is insured by Corollary 6.1.9.

Symmetry. Assuming that a pseudo-random permutation, np, is used for con­

fidentiality, the algorithm is symmetric with private key (3.

Cardinality. This algorithm's strong point is its cardinality, which is close to

the best known one. Recall, from Example 2.2.9, that there are about 24fc_21gfehonest

RSA pairs (n, e). There are about 22fc_21gfc public modulo n, in both honest and

dishonest cases, so that the factor in n cancels in the ratio of honest to dishonest

keys. There are A/"G0,e ~ 22fc = n public exponents e in the honest case.

Compute the number of public exponents e in the dishonest case, N~Gi,e, for a

fixed p. Because the samplings of K and r introduce in total |/c random bits, there

are A/c^e ~ 22fe backdoored keys out of the 22k honest ones that are generable. For

HG-2, this holds assuming that fHG-2(K,r) = Kp + r is approximately injective.

For HG-1, fHG-i(K,r) = K:p + r is injective.

Compute the ratio of honest to dishonest keys, TZd- The backdoor information,

p, is embedded in e, so for each choice of parameter n, only one corresponding

backdoored e is generable. In other words, a generated value of n ties the value of p

to be used in the generation of e. Therefore, in the ratio of the cardinalities of KSM

and KS, the #{n} terms can be canceled so that

^ _ NGue „ 9 - i f e
KGi - T 7 » ^ 2

->VG0,e

where N~Gi,e is computed for a fixed p.

Distribution properties. The uniformity correctness, CG15 is "good", if the

RSA encryption exponent is uniform (no assumption from Subsection 2.2.8 is needed)

142

and TT/3 is pseudo-random. Therefore, they are not computationally distinguishable

from one another unless e is of a special form or the assumption on 7173 fails. The

distribution properties of the embedded backdoor information are good, given the

pseudo-randomness of 7173, which is not explicitly provided.

Entropy of embedding. In both algorithms, the bits of p are close to uni­

formly spread in e, through the application of 7173. Discarding 7173, the entropy, HHG-I-,

would seem smaller than HHG-2, because JHG-2 spreads the random K into more

bits of e. For HG-1, the embedding of p has a uniform distribution via the addition

of r, but the embedding's location is limited to the least significant half of the bits

of e. However, via 7173, the resulting embedding's distributions are the same for both

algorithms, which is the only feature that affects entropy.

Generalized key regeneration and variable correlation. The values of

p and e are linked so that generalized key regeneration is not possible. Because e is

computed from p, their values vary accordingly together. Unless specific collisions

in the pseudo-random permutation 7173 can be found, the values of e and p cannot be

regenerated independently. For instance, if e is kept fixed, p cannot be regenerated

unless p' such that 7tp(p) = np(p') can be found. Therefore, the security of 7173 is

mutually exclusive with the generalized key regeneration of the Howgrave-Graham

algorithms.

Complexity. The key generation steps are the same than for Go, except for

the loop for the generation of e. At each iteration, this loop involves an additional call

to a pseudo-random permutation, IT p. Therefore, the complexity of this algorithm is

143

and

te(Gi) « r(TT^) • te.

The complexity is rated "good", because it is linear in the complexities of G0 and

ftp. As for the previous algorithm, because 7173 is not instantiated, the complexity is

also rated "F-relative".

Memory. No use of additional memory is made.

Computational assumptions. If the permutation, irp, is applied exclusively

on the bits corresponding to p, the backdoored keys are distinguishable because

they may all contain the same sub-string np(p). This would mean the failure of the

GKR and variable correlation criterion. More precisely, suppose that p is kept fixed,

therefore np(p) is a constant. By subtracting K\: irp(p) + r\ from K2 : np(p) + r%,

one finds 7173 (p)]*/2, which is derivable from any pair of backdoored keys. A similar

argument holds for the other version of this backdoor, using a gcd instead of a

subtraction.

It is therefore required to use some of the other bits of the backdoor as random

seeds in np. This moves the indistinguishability problem from the properties of the

functions, fjjG-i and fuG-2, to that of the security of np. In our modification of the

Howgrave-Graham algorithms, all the random bits in itp are used, for simplicity's

sake. The resulting algorithms implement these functions: in HG-1, e = np(K:p+r)

and in HG-2, e = irp(Kp + r). In both cases, |fc| + \r\ = n3/4 random bits are random

seeds and \p\ — n1/2 bits are fixed in irp.

144

Because of the assumptions needed for ixp to produce n pseudo-random bits from

n3/4 random ones, wp cannot be extremely simple. Unless a simpler instantiation can

be found, a wp based upon a standard computational assumption needs to be used.

Compared to a simpler algorithm that is developed in Chapter 7, denoted

(G4, A4), the Howgrave-Graham algorithm involves an additional computational

assumption and likely increases the time complexity of the backdoor generation al­

gorithm. This comparison is detailed in Subsection 7.2.2.

Simplicity. Both algorithms have a relatively low structure. This is intuitively

apparent, even without comparing with other algorithms, because both algorithms

consist of almost the same steps as the honest algorithm.

confidentiality
completeness

indisting.

asymmetry

diversity
nGl
Car
vGl
7~LGI

GKR
side
channels

complexity

memory
computational assumptions
simplicity

yes: one-way np
yes: Coppersmith corollaries

good

good

no: symmetric key j3
2~-2k

0, pseudo-random np
0
1, pseudo-random %p
no: p and e are dependent
tn{G\) = tn

ie(Gi) w T(np) • te

no
one way, pseudo-random np
LS

good

average

failed

average

failed

good/

F-rel.

good

average

good

Table 6-2: Properties of Algorithm HG-1 of Figure 6-2 and of of Algorithm HG-2 of
Figure 6-3. Our trivial improvement, in the form of the use of np, is accounted for.

145

6.2 Kleptography: Young-Yung algorithms

There are five papers on kleptography by Young and Yung that relate to back­

doors [YY96, YY97a, YY97b, YY05a, YY05b]. No algorithm from [YY97b] is listed

because it establishes backdoors on types of cryptographic algorithms other than key

generators, that is, on algorithms for signature, encryption, and key exchange.

6.2.1 YY96

The following first five RSA backdoored key generators are from [YY96]. The

idea of the first two algorithms is to use yet another RSA key to encrypt the private

parameter, p, into the public one, (n, e). The last three algorithms are the application

of similar ideas to the design of EG backdoored key generators. (The honest EG key

generator is given in Figure 7-11.)

First algorithm

The algorithm is given in Figure 6-4. It is the simplest asymmetric backdoored

key generator. Denote the designer's public key by (N, E) and its private key by

D, with \N\ = k. In other words, the designer's key, N, is half the length of the

distinguisher's key, n. The backdoor information used to retrieve the user private

key is p itself. It is encrypted as pE mod iV into the public parameter e.

Algorithm properties. The algorithm encrypts p within e. It uses the

lengths

k - |p| = \q\

k = \N\ = \e\

146

PARAMETERS:

• The designer's RSA public key is (N, E) and its private key is D, with \N\ = k.

Algor i thm YY96-RSA [Key gen]
1: Pick rp q of size k.
2: repeat
3: Pick rp p of size k.
4: Set n = pq.
5: Set e = pE mod N.
6: until gcd(e,^>(n)) = 1.
7: Compute d = e _ 1 mod 4>(n).
8: return (p,q,d,e).

Algo. A-YY96-RSA [Key retr.]
1: Input of (n ,e) .
2: Set p = eD mod N.
3: Compute d = e~l mod </>(n).
4: return d.

Figure 6-4: Young and Yung (1996): an asymmetric backdoor for RSA that
encrypts p within e.

Therefore, the designer key is half the size of the user's. Also, e is constrained to

be half the size that it may be in general. Nevertheless, this is not necessarily a

weakness, because smaller e's are often used in practice 5 .

Confidentiality. Given the secure key lengths listed in Section A.l, either

the choice of N makes the backdoor unconfidential or forces the choice of a larger n.

This is contradictory to Definition 4.2.9.

Completeness. The backdoor information is encrypted with RSA itself. There­

fore, completeness holds because the RSA function is invertible.

Symmetry. This backdoored key generator is asymmetric because the back­

door information is encrypted with RSA itself and RSA is asymmetric.

5 A common industry-standard choice for e is 65537 = 216 + 1, which has low Ham­
ming weight and facilitates fast exponentiation, as mentioned in Subsection 2.2.8. In
the theoretical RSA cryptosystem, e is bounded above by <f>(ri) « 21024, for RSA-1024.

147

Cardinality. There are about 2fc lgfc choices of parameter e, which is the num­

ber of generable parameters p, by Example 2.2.7.

#{e} = #{p}-

The cardinality of KSM is counted per value of n, hence per value of p. This is

because the backdoor information, p, is embedded in e. In the honest key generation

algorithm, e is generated given n: that e £ %l(n) makes it dependent on n. Still in

the honest case, there remains close to 2k bits of freedom in the choice of e. However,

for an already fixed p, setting e=pE mod N in Step 5 leaves only one possibility for

e. Therefore for KSM, MGl,e = 1 while for KS, AfGo,e ~ 22fc.

Computing the ratio of the cardinalities of KSM and KS, the #{n} terms are

the same so can be canceled. This is because Go and G\ generate n in the same

manner and A/b^n = NG0,TI- The following ratio is yielded.

??„ - H ^ 1 ~ o-2fc
^ A r G o , e

Modification. Nevertheless, this can be trivially improved and we do so for the

analysis in order to compare algorithm design strategies as significantly as possible.

Corollary 6.1.8 allows the factorization of n from the knowledge of only half the bits

of p. Therefore, only this half, which is fc/2-bit long, needs to be used as backdoor

information. The k/2 remaining bits to be embedded in e can be random according

to the algorithm in Subsection 2.2.8. The embedded backdoor information is half

of p appended to some randomness, r. In the trivially modified G\, Step 5 is hence

148

replaced by

e = (pf/*:r)E mod N,

for r ev {0, l} f c/2 .

Therefore, with this trivial modification of the algorithm, there are about k/2

values of e per p, and

v _ - A ^ # { e K , # { r } 2fc/2

^ . A / b b , ~ 2» - - 2 *
= 2~Ifc.

Distribution properties. For the assumption on the approximate uniformity

of the distribution of the RSA encryption function to hold as in Subsection 2.2.8,

Proposition 2.2.27, a portion of the encrypted value must be random. As for the

preceding property of Cardinality, Corollary 6.1.8 allows the factorization of n from

the knowledge of only half the bits of p. Therefore, with this trivial modification of

the algorithm, CGX — 0.

The uniformity correctness, CG1 , is "good", if the RSA encryption exponent is

uniform and the RSA encryption function's output's distribution is close to uniform

(Subsection 2.2.8). Therefore, they are not computationally distinguishable from one

another unless e is of a special form or the assumption on the uniformity of RSA fails.

Overall, this property rests on the assumption of the uniformity of the RSA

encryption function (the function on which the assumption is made is explicitly

provided).

149

Note. That the embedding is in e rather than in n makes appending random bits

easier. It is easier to append (assumedly) uniformly distributed bits and this param­

eter is usually (in honest key generation) distributed uniformly, unless (obviously) e

is restricted to be of a special form.

Entropy of embedding. If p is used entirely as backdoor information, then

the entropy is null. In GKR, if p is fixed, n is fixed as well, thus a predictable

situation occurs.

As in the modification introduced in Cardinality, if the embedded backdoor

information is half of p and some randomness, r, then

(pf/2:r)EmodN

is close to uniform (Proposition 2.2.27). The encryption of the information corre­

sponding to p]k/2 is likewise distributed.

Generalized key regeneration and variable correlation. The values of

p and e are linked so that generalized key regeneration is not possible. Because e is

computed from p, their values vary accordingly together. Unless specific collisions in

RSA can be found, the values of e and p cannot be regenerated independently. There­

fore, the security of RSA is mutually exclusive with the generalized key regeneration

of this algorithm.

The modification introduced in Cardinality affects GKR, but does not change

the overall result: there is at least one type of regeneration that is impossible. On one

hand, about # { r } = n/4 values of e are generable, per p. Therefore, if the legitimate

user fixes p and asks to regenerate e, it is straightforwardly feasible. However, the

150

inverse which consists in fixing e and regenerating p is infeasible. This regeneration

would involve finding p',r' such that

(p'f/2: r')E mod N = (pf2: r)E mod N.

Therefore, it would require the inversion of the R.SA function, which is one-way (Sub­

section 2.2.2).

Complexity. The complexity is not analyzed for individual parameters, n and

e, but for the whole of G\. This is for the same reason that implies that GKR does

not apply for this algorithm. The key generation steps are structured very differently

from Go, as the generation of p is embedded in the loop of the generation of e, and

also involves an additional call to RSA-fc.

Consider the generation of e, that is, the loop from Steps 2 to 6. The number

of execution of this loop is about te. The complexity of one execution is about tp

added to T(RSA-k). Therefore, the complexity of this algorithm is

T(Gi) » tq + te (tp + T(RSA-fc))

w tn + te (tn .+ T(RSA-fc))

> tn + te = T(G0).

The complexity is rated "poor" because it is more than linear but less than quadratic

in the complexity of Go.

Memory. No use of additional memory is made.

151

Computational assumptions. The algorithm uses no additional computa­

tional assumption.

Simplicity. The algorithm has a relatively low structure. This is intuitively

apparent, even without comparing with other algorithms, because it consists of al­

most the same steps as the honest algorithm.

confidentiality
completeness

indisting.

asymmetry

diversity
nGl
cGl
vG l
^ d

GKR
side-
channels

computational assump

complexity
memory

tions
simplicity

no: Def. 4.2.9 unsatisfied
yes: RSA fct. is invertible

failed

good

yes: RSA is asymmetric
2-ffc

0, given RSA (Proposition 2.2.27)
0
1, given RSA (Proposition 2.2.27)
no: p and e are dependent
T(Gi) = tn + te (tn + T(RSA-fc))
no
none added
LS

failed

average

failed

average

failed

poor

good

good

good

Table 6-3: Properties of Algorithm YY96-RSA of Figure 6-4. Our trivial improve­
ment, as detailed in Cardinality, is accounted for.

152

Second algori thm

The second RSA backdoored key generator encrypts p within n, and is called

PAP, for pretty awful privacy 6 .

PARAMETERS:

• The designer's RSA public key is (N,E) and its private key is D, with
\N\ = k.
• Fixed key K, and FK : {0, l}k - • {0, l} fc, GK : {0, l}k -> {0, l}fc be
invertible pseudo-random functions: FK is used to insure p <N and GK, "for
pseudo-randomness" 7 .

Algor i thm P A P [RSA key gen]
1: Pick rp p of size k.
2: Set pi = FK{P) (increment K until p < N).
3: Set p2= p\B mod JV.
4 : Set p = Gjf (/02) (increment K until p < N).
5: repeat
6: Set n = p:r, for a random r of size k.
7: until 9 = \n/p\ is prime.
8: Set n = pq and e = 15 (the initial e will be 17).
9: repeat

10: Set e = e + 2.
11: until gcd(e, <f>(n)) = 1.
12: Compute d = e _ 1 mod <j>{n).
13: return (p,q,d,e).

Algor i thm A - P A P [Key retrieval]
1: Input of (n,e) .
2: Set p : r = n, such that \p\ = \r\ = k.
3: repeat
4: Set p = G~1(p).
5: Set p = pD mod TV.
6: S e t p = F ^ 1 (p) .
7: until g = \n/p\ € Z (incr. the K's indep. o.w.).
8: Compute d = e _ 1 mod <£(n).
9: return d.

Figure 6-5: Young and Yung (1996): PAP is an asymmetric backdoor for RSA
that encrypts p within n.

6 PAP is named to contrast with PGP, for Pretty Good Privacy [PGP06].

7 The precise statement in [YY96, p.5] is "to achieve a pseudo-randomness of the
values". This is meant in the sense of achieving a good distribution, not a theoreti­
cally pseudo-random one, since the key, K, is fixed. As detailed in Distribution prop­
erties, the modification explained in Cardinality suffices to argue pseudo-randomness.

153

Algorithm properties. Let \p\ = \q\ = k = \N\. Let FK, GK be invertible

pseudo-random functions keyed with a fixed K. The role of FK is to insure that p is

less than N and GK is for pseudo-randomness.

Confidentiality. Given the secure key lengths listed in Section A.l, either

the choice of N makes the backdoor unconfidential or forces the choice of a larger n.

This is contradictory to Definition 4.2.9.

Completeness. The backdoor information is encrypted with RSA itself. There­

fore, completeness holds because the RSA function is invertible.

Symmetry. This backdoored key generator is asymmetric because the back­

door information is encrypted with RSA itself and RSA is asymmetric.

Cardinality. This computation was done with more intuition as Example 5.1.5,

because it aims at giving intuition for all such computations. A more general ver­

sion of the following computations is given in the context of Subsection 7.4.1, and

finalized as Equation 7.24.

Then p divides p: r with probability given by the fraction of strings covered by

multiples of p times the expected fraction of strings covered by p:r. This is:

Pr
P

#{2k-bit multiples of p} #{p : r}
2 ^ ' 2 ^

2k 2k 1
22fc ' 22fc ~ 22 f c"

Nevertheless, substituting r by an appropriate r' = [^ J • P — (p '• 0k) allows for the

exact division by p.

r p:r'
Pr

P
ez = l

154

By Theorem 2.2.4, a k-bit integer is prime with probability of about 2 lgfc.

Therefore

Pr p:r

P
is prime = l .2~ l s f c =

2igfe-

The remaining part of the analysis is

J^Gi,n = #{p'-r' | 3 prime q s.t. pq = p:r'}

= #M-#{r'}-Pr

« 2 f e _ l g f c - l -2~ l g f c

_ nk-2\gk

p:r

P
is prime

(6.1)

In the ratio of the cardinalities oiKSM and KS, the #{e} terms can be canceled

so that

KGl =
Afr< ofc-21gfc
JSIGi,n ^ * _ 2~fc

Modification. On the other hand, it may seem, but is not the case, that using

the same trivial modification as for Algorithm YY-96-RSA (Figure 6-4), a greater

cardinality is achievable. Suppose that p' be the encryption of the upper half of the

bits of p appended with \p\/2 random bits. This means that Step 3 of G\ is replaced

by

Setp'2 = (Pl]
W2:r)E modN,

for r <Eu {0, l}lpl/2. Then Step 4 computes p' with p'2.

155

Although p' is less redundant than p, this change has no effect on cardinality.

This is because p is embedded in n and not in e, so there is no need for extra random­

ization: fixed chosen bits in one parameter do not affect the other. Nevertheless, this

trivial modification is beneficial for other algorithms properties, such as Distribution

properties. Thus it is retained.

Distribution properties. An advantage of this algorithm is that the selec­

tion of e can be biased toward the smaller ones, so e is typically small, as in PGP.

Therefore, with respect to PGP, the e part of the public key has good indistinguisha-

bility.

For the n part, note again that via the trivial modification (detailed in Cardi­

nality) , the encryption of the backdoor information is close to uniformly distributed

(Proposition 2.2.27). Despite this, indistinguishability does not holds, as pointed

out in [CS03, Section 5]. In the setting of this work, this is a case where unifor­

mity correctness (Definition 5.1.10) was not taken into account. The idea is that

the upper bits of n are not uniformly distributed. If two random 512-bit primes are

picked, their product is 1023-bit long with probability 38%. With probability 48%

it is 1024-bit long with leading bits 10 and with probability 14% it is 1024-bit long

with leading bits 11. Nevertheless, this problem does not happen if p and q are picked

over the more appropriate interval [y/2 x 2511,2512 — 1].

Entropy of embedding. Again via the trivial modification (detailed in Car­

dinality), the encryption of the backdoor information is close to uniformly distributed

(Proposition 2.2.27). The encryption of the information corresponding to p~fpM2 is

156

close to uniformly distributed in the upper half of the bits of n, accounting for an

entropy between 0 and 1.

Generalized key regeneration and variable correlation. The modifica­

tion introduced in Cardinality affects GKR, but does not change the overall result:

there is at least one type of regeneration that is impossible. On one hand, about p/2

values of p are generable, per p. Therefore, if the legitimate user fixes p and asks to

regenerate g, it is straightforwardly feasible.

However, the inverse which consists in fixing q and regenerating p is infeasible.

Let s be \p\/2 random bits. Set

PP,s = GK (FK{pf\'2: sf mod iv) .

This regeneration would involve finding p',r', s' such that

Pp',s'-r' = pp,s:r.

Therefore, it would require the inversion of the RSA function, which is one-way (Sub­

section 2.2.2).

Complexity. It seems that there could be an efficiency issue with Steps 5 to

7, in parallel to the preceding one detailed in Cardinality. Nevertheless,

q = (p: r)/p

is a pseudo-random integer and q is prime with probability of about l/2~ lgfc (Equa­

tion 6.1). Therefore, the complexity of generating q in G\ is the same as in G0 and

157

the one of generating n is:

tn(Gi) = tp + T(FK) + T{RSA-k)+T(GK) + tq

= tn + T(FK) + T(GK) + T(RSA-k).

Also,

te(Gl) = te,

assuming that incrementing e in Step 10 has about the same expected complexity as

picking a random e.

This means that if T(FK) and T(GK) have at most a complexity similar to the

one of tn + T(RSA-k), then Gi's complexity is rated as "good". Firstly, it is linear

in the one of Go. Secondly, RSA-A; has a complexity negligible w.r.t. the one of RSA-

2k, of which tn makes the most part. Therefore, RSA-k has a complexity negligible

w.r.t. tn. Overall, G\ is rated as "good / F-relative".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses pseudo-random functions,

FK and GK, which are not explicitly provided.

158

Simplicity. The algorithm features a more complicated prime generation than

GQ. Compared with other algorithms that follow, this makes the algorithm only a

little more complicated than GQ.

confidentiality
completeness

indisting.

asymmetry

diversity
KGl

cGl
v G l
7~(-Gi

GKR
side
channels

comple­
xity
memory

computational assumptions

simplicity

no: Def. 4.2.9 unsatisfied
yes: RSA fct. is invertible

failed

good

yes: RSA is asymmetric
2-fc

> 0 , bad distribution of n
1
0 < HGX < 1, given RSA
no
*«(Gi) = tn + T{FK) + r(RSA-A;) + T{GK)
te(Gi) = te

no
pseudo-random FK and GK
(used with the ones of Proposition 2.2.27)
LS-MS

poor

poor

good

average

failed

good/

F-rol.

good

average

average

Table 6-4: Properties of Algorithm PAP of Figure 6-5. Our trivial improvement, as
detailed in Cardinality, is accounted for.

159

Third and fourth algorithms

The last three algorithms are EG backdoored key generators. The following two

algorithms (the third and fourth algorithm of Young and Yung's 1996 paper) however

use RSA to encrypt the backdoor information.

PARAMETERS:

• The designer's RSA public key is (N,E) and its private key is D, with
|JV|>|a | .
• The parameter p can be kept fixed, but assume that it is picked randomly.

Algor i thm YY96-EG-p [Key gen]
1: repeat
2: Pick random 0 < a < p — 2.
3: Set a = aB mod N.
4: until a <p and is a generator modp.
5: Compute /3 = aa mod p.
6: return (p, a, a, 0).

Algo. A-YY96-EG-p
1: Input of (a,/3,p).
2: Set a = aD mod N.
3: return a.

[Key retr.]

Figure 6-6: Young and Yung (1996): an asymmetric backdoor for EG which
embeds a in a and keeps p fixed.

PARAMETERS:

• The designer's RSA public key is (N,E) and its private key is D, with
\N\>\a\.
• The parameter a can be kept fixed, but assume that it is picked randomly
in z;.

Algor i thm YY96-EG-a [Key gen]
1: repeat
2: Pick random 0 < a < p — 2.
3: Set p = aB mod N.
4: until a <p and is a generator modp.
5: Compute /3 = aa mod p.
6: return (p,a,a,P).

Algo. A-YY96-EG-cn
1: Input of (a,/3,p).
2: Set a=pD mod N.
3: return a.

[Key retr.]

Figure 6-7: Young and Yung (1996): an asymmetric backdoor for EG which
embeds a in p and keeps a fixed.

160

Third and fourth algorithms' properties. The first two of these three EG

backdoored key generators are very similar, as to justify analyzing them together.

The first one, given in Figure 6-6, keeps p fixed. This is useful when p is shared

amongst many users. The second EG backdoored key generator, given in Figure 6-7,

keeps a fixed. The difference is that p plays the role that a did, in the previous

algorithm.

Confidentiality. Given the secure key lengths listed in Appendix A.l, either

the choice of N makes the backdoor unconfidential or forces the choice of a larger

n. The key lengths are contradictory to Definition 4.2.9 because |a| = \N\. Keys for

EG are smaller than for RSA, if only by a small fraction.

Completeness. The backdoor information is encrypted with RSA. Therefore,

completeness holds because the RSA function is invertible.

Symmetry. This backdoored key generator is asymmetric because the back­

door information is encrypted with RSA, which is asymmetric.

Cardinality. There are NQ0 « 23lp' honest EG keys (Appendix A.2.1). In Step

3 of YY96-EG-p or -a, since the RSA function is a permutation and its input, a, covers

all the values smaller than p — 1, all the a's are generable. There are p—l generable

a's, each yielding one value of a and, in turn, of (3. This accounts to about 2^

generable backdoored keys. In the ratio of the cardinalities of KSM and KS, the

#{a} terms can be canceled, one of p or a is fixed and the other is a permutation of

a, so that 1ZGl » 2-2lpL

Distribution properties. It is not possible to achieve a good distribution for

the embedded backdoor. If using the same trivial modification via Proposition 2.2.27

161

as for Algorithm YY-96-RSA (Figure 6-4) was possible, then the distribution of

the encrypted backdoor information would be indistinguishable from a uniformly-

distributed a or p. However, all the bits of either of these parameters are necessary

to store the value of the backdoor information, a. In the worst case where a is kept

fixed by request of the distinguisher, CGX — 1-

Entropy of embedding. In order to use the approximate uniform distribu­

tion of the RSA encryption (Proposition 2.2.27), one would need to pad a with some

random bits. However, the lengths of a and a are about the same, so there is no

place to do so.

If a is used entirely as backdoor information, then the entropy is null. In GKR,

if a is fixed, a (or p) is fixed as well, thus a predictable situation occurs.

Generalized key regeneration and variable correlation. This property

is not achievable because a are either a or p are dependent.

Complexity. The RSA encryption is performed inside the loop that checks

whether a is a generator modulo p. Therefore, the relative complexity of G\ is ta

times the one of RSA on \p\ bits.

Because either p or a is fixed, the total complexity does not involve a T{GQ)

term. The total complexity in the following. In the first case:

ta • T(RSA-\p\)

or, in the second case:

tp-T(RSA-|p|).

162

Overall, the complexity is rated as "poor". It is less than quadratic in the

complexity of Go times the one RSA-|p|, which is negligible w.r.t. ta or tp.

Memory. No use of additional memory is made.

Computational assumptions. The RSA cryptosystem is used for encrypting

the backdoor information.

Simplicity. Despite their high computational complexity, these algorithms are

very simple, as they mimic the operations of GEG, except for the obvious additional

encryption.

confidentiality
completeness

indisting.

asymmetry
diversity KGl

CGI

v G l
'HGX

GKR
side-
channels

complexity

memory
computational assumptions
simplicity

no: Def. 4.2.9 unsatisfied
yes: RSA fct. is invertible

failed

good

yes: RSA is asymmetric
2-aiPl
1
0
0
no
ta •T(RSA-IPI) or

tp • T(RSA-IPI)
no
RSA

LS

failed

failed

failed

failed

failed

poor

good

average

good

Table 6-5: Properties of the related algorithms of Figures 6-6 and 6-7. Both are
backdoored key generators for EG which keep one of the keys' parameters fixed.

163

Fifth algorithm

The third EG backdoored key generator is pure EG, because it uses ElGamal

to encrypt the backdoor as well. The idea is to encrypt the private key, a, as the

backdoor value, into the public parameter p. This encryption is done with EG.

PARAMETERS:

• The designer's EG public key is (p, a, (3) and its private key is a. It holds
that J3 = a>a mod p, with \p\ — \p\.
• For a "private" (secret) key K, and let FK : {0,1}W - • {0,l}lpl, be an
invertible pseudo-random function, used for randomization 8 .

Algor i thm YY96-EG-pure [Key gen]
1: Input of (K,p,a,f3).
2: Pick random 0 < a < p — 2.
3 : repeat
4: Pick random fe £ Z * j .

5: Set p i = 0ka mod p (this encrypts a).
6: Set p = FK(pi).
7: if p is prime and a < p
8: Set a = ak mod p.
9: until a <p and is a generator modp.

10: Compute 0 = aa mod p.
11: return (p,a,a,/3).

Algo A-YY96-EG-pure [Key retr.]
1: Input of (K, a,p, a,p).
2: Set a = F^ (p)/aa mod p (this decrypts o).
3: return a.

Figure 6-8: Young and Yung (1996): a symmetric "pure EG" backdoor for EG
which embeds amp.

Algorithm properties. The keyed pseudo-random function, FK, is used for

randomization in the following way. The key K is incremented until Step 6 succeeds

so that a prime p is generated out of the seed p\.

8 The precise statement in [YY96, p.8] is that p\ "is encrypted with a private
key to create pseudo-random functions". This differs from PAP (Figure 6-5): a
pseudo-random distribution is achieved because the key, K, is secret, as detailed in
Distribution properties.

164

Confidentiality. Algorithm YY96-EG-pure does not share the secure key length

problem of the first four algorithms. This property rests on the security of the El-

Gamal encryption. It has been shown that the semantic security of the ElGamal

encryption is equivalent to the decision Difne-Hellman problem [TY98]. Overall, be­

cause EG keys are backdoored, no additional computational assumption is required.

Completeness. The backdoor information is encrypted with EG itself. There­

fore, completeness holds because the EG function is invertible.

Symmetry. This backdoored key generator is symmetric because the back­

door information is encrypted with FR-, a pseudo-random function that is indexed

with a secret key K.

Cardinality. To count the number of generable keys, consider the three nor­

mally independently generated parameters, (p,a,a). Firstly, a is picked at random

in its normal range, yielding about p values. Secondly, p is the encryption of a, but

there are \k\ = \(j>(p — 1)| « \p\ bits of randomness used in generating it. The same

random bits are used to compute a from the designer's key corresponding param­

eter, so p and a are approximately permutations of one another. Therefore, 22'p'

backdoored keys are generable. In the ratio of the cardinalities of KSM and KS,

the #{a} and #{p} terms can be canceled so that TZa1 ~ 2~lpl

Distribution properties. Assuming that FK is a pseudo-random function,

a pseudo-random distribution is achieved for p because the key, K, is secret. This

randomization of p involves of the use of symmetric cryptography.

The parameter p could also be argued to be properly distributed because of

the semantic security of EG, used to encrypt a into it (refer to Cardinality). The

165

parameter a is properly distributed because k being uniformly distributed implies

the same for a. This would allow the backdoored generator to be asymmetric.

Entropy of embedding. Prom the pseudo-randomness of the EG encryption

(Proposition A.3.6), li.Gx — 1, given EG.

Generalized key regeneration and variable correlation. The values of

p and a are linked so that generalized key regeneration is not possible.

Complexity. Just as for the preceding two algorithms, the encryption of the

backdoor information (with EG instead of RSA in this case) is performed inside the

a generation loop. The same applies to the application of FK, which together with

the EG encryption, generates p. Therefore, this a generation loop also includes a

primality check for candidate values of p. Overall, the generation of a is the same as

the honest one:

ta(Gi) = ta.

The generation of p and a are intertwined. There are two checks on the loop from

Step 2 to 9, one for the primality of p, the other so that a is eventually a generator.

Within the loop, there is an ElGamal encryption and a randomization via FK-

tP,a(Gi) = ta-tp-(T(EG-\p\)+T(FK)).

Overall, the complexity is quadratic in the complexity of Go. It is rated "failed".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses a pseudo-random func­

tion, FK, which is not explicitly provided.

166

Simplicity. Despite their high computational complexity, these algorithms are

very simple, as they mimick the operations of GEG, except for the obvious additional

encryption. Since it is done via EG, it is probabilistic and is comparatively a little

more complex than the one of the two preceding algorithms.

confidentiality
completeness

indisting.

asymmetry

diversity
KGl

Ca1

v G l
"%?!

GKR
side-
channels

complexity

memory
computational assumptions
simplicity

yes: EG
yes: EG function is invertible

good

good

no: K is secret
2~lPl

0, given FK

0
HGX = 1, given EG
no
ta(Gi) = ta

tP,a(Gi) =ta-tp- (T (EG- |P |) + T(FK))
no
pseudo-random FK
LS-MS

good

average

failed

good

failed

failed

good

average

average

Table 6-6: Properties of the Algorithm YY96-EG-pure of Figure 6-8.

167

6.2.2 YY97

The following R.SA backdoored key generator is from [YY97a], and is called PAP-

2, being the second version of PAP. It uses ElGamal to encrypt the backdoor: denote

the designer's public key by (p, a, (3) and its private key by a, so that ft = aa mod p.

The problems with the secure key length of the previous paper remain here, for

Algorithm PAP-2.

In parallel, in this paper, Young and Yung present backdoored algorithms based

on a primitive algorithm called a (1,2)-leakage. This type of algorithm usually re­

quires the use of non-volatile memory (NM). Nevertheless, for backdoored key gener­

ation, the design of Algorithm PAP-2 manages to avoid this, even though it uses the

principle of (l,2)-leakage. The use of NM is, in general, a significant drawback as in

practice, the physical cryptographic device's memory can be reset anyway, and the

stored values stored, lost. This is detailed in Subsection 5.2.2. Our algorithms avoid

NM completely, which the only close exception being the use of volatile memory

(VM), in order to allow generalized key regeneration for EG backdoored key genera­

tion. The use of volatile memory is not as significant of a drawback, as there is no

requirement upon the resetting of the cryptographic device.

(l,2)-leakage. To clarify the functioning of the following Algorithm PAP-2,

consider the primitive SETUP algorithm of Figure 6-9. Such a mechanism requires

the generation of multiple contaminated values in order to transmit one value of

some backdoor information. The transmission of two messages, mi and ra2, in order

to recover one hidden parameter, c2, is called a (l,2)-leakage. Known examples of

168

(l,2)-leakages recourse to non-volatile memory in order to store the parameter, c\,

used to generate the first message.

PARAMETERS:

• ElGamal is used to encrypt the backdoor: denote the designer's public key
by (p, a, (3) and its private key by a, so that 0 = aa mod p.
• The RSA security parameter equals the one of the DH key exchange: |p| = \p\.
• W is odd and fixed and t € {0,1} at random.
• a, b are not secret and are included in the device.
• H : Zp —• Zp_! is a cryptographically strong hash function.

Algor i thm DH-mi [First DH msg]
1: Pick a random c\ G Z p _ i and store it.
2: return m\ = aCl mod p.

Algo. DH-m2(ci) [Second DH msg]
1: Pick a random t e {0,1}.
2: Set z = aci-wtp-aci-b mod p.
3: Set c2 = H(z).
4: return mi = of2 mod p.

Algo A - D H [Attack on discrete log]
1: Input of (mi,m2,a).
2: Set r = m^ab mod p.
3: Set zo = m i / r 5 mod p.
4: if m.2 = aH(z°> mod p (the case t = 0)
5: return H{zo).
6: Set z\ = zo/aw mod p.
7: if m,2 = aH<-Z1^ mod p (the case t = 1)
8: return i / (z i) .

Figure 6-9: Young and Yung (1997a): an asymmetric backdoor for DH key
exchange with (l,2)-leakage, i.e., transmission of two messages in order to
transmit c2.

The algorithm of Figure 6-9 is a SETUP on the Dime-Hellman (DH) key exchange,

i.e. an attack on the use of the discrete logarithm assumption, which allows the

transmission of additional information. The two secret values of the exchange are

a, b and the would-be corresponding honest messages are aa mod p, ah mod p. Note

that the key honest process and the designer both use the same generator a.

Use of NM for backdoor recovery. As in Example 5.2.1, a first message allows

the transmission of a function of an exponent, c\. A second message transmits

another function of this exponent, /(ci) , such that given the two messages and a

private key, a, the designer can recover yet another function of the exponent, g(c{).

169

The designer needs to preserve the first message in non-volatile memory (NM). The

second message and the private key alone are not sufficient to recover g(c\).

PARAMETERS:

• ElGamal is used to encrypt the backdoor: denote the designer's public key
by (p, a, 0) and its private key by a, so that J3 = aa mod p.
• The RSA security parameter equals the one of the DH key exchange: \p\ = \p\.
• W is odd and fixed and t e {0,1} at random.
• a,b,K are not secret and are included in the device.
• H : dom(H) —• [0,p — 1] is a cryptographically strong hash function.
• FK '• dom(FK) —> [0,p — 1] is a keyed pseudo-random function (for random­
ization).
L E F T OUT FOR SIMPLICITY:

• PBRM : [0, R] —»• [0, S] is an invertible function that preserves the uniform
distribution of its domain and s.t. S > R > S/2. Here, [0,R] — [0,p— 1] and
[0,S] is successively dom(H) and dom(F).

Algor i thm PAP-2 [RSA key gen]
1: Pick a random c\ € Zp_ i .
2: Set z = cf\-wtp-*c\-h m o d p.
3: Set p = H(z) and increment p until prime.
4: Set u = aci mod p.
5: repeat
6: Set U = FK{u).
7: Solve for q in U:R = pq + r, R € {0, l}lp l .
8: Increment K.
9: until q is prime.

10: Set n = U:R-r.
1 1 : Pick a random e € Z*l, . .

12: Compute d = e~1 mod </>(n).
13: return (p, q, d, e).

Algo. A-PAP-2 [Key retrieval]
1: Input of (n,e) .
2: Set t/:.R - r = n, such that \U\ = \p\.
3: S e t u = F^ 1 (£ /) .
4: Find QCI mod p = PBRM-1^).
5: Set z = S c i Q-wt^-ooj - fc m o { j p .
6: Set z' = PBRM(z).
7: Set p = H(z') and increment p until prime.
8: Compute d = e _ 1 mod (j>{n).
9: return d.

Figure 6-10: Young and Yung (1997a): an asymmetric backdoor for RSA, PAP-
2, via a DH key exchange. The information on p is embedded in n.

Algori thm propert ies . The backdoored key generator PAP-2 (Figure 6-10)

is based on encrypting p in n via a DH key exchange. In the algorithm of Figure 6-9,

the parameter c2 that is transmitted corresponds to p in the one of Figure 6-10.

Overall, PAP-2 internally performs a (l,2)-leakage via a DH key exchange.

170

Confidentiality. This property is meant to hold by noting that Step 5 of

A-PAP-2 requires the knowledge of the private a in order to compute

z = aCl a-wtp-aci-bmodp

= aCl a-wt(aCl)(-aa) p-bmodp (6.2)

one needs knowledge of a unless EG or the DH key exchange is broken. Note that

aci mod p is known from Step 4. Aside from a, the remaining variables are fixed or

public parameters.

However, given the secure key lengths listed in Section A.l, the key lengths make

the backdoor unconfidential or force the choice of a larger RSA parameter n, which

is contradictory to Definition 4.2.9. For ElGamal DH to be secure, a key length of

\p\ > 997 is necessary. For RSA, this key length is 2\p\ > 1024. However, the RSA

security parameter equals the one of the DH key exchange: \p\ = \p\. Therefore,

for PAP-2 to satisfy confidentiality, the generated backdoored RSA key length is of

2\p\ > 1994 ~ 2048. This is contradictory to the assumptions on E that follow

Definition 4.2.9.

Completeness. The backdoor information is encrypted with a DH key ex­

change on which a (l,2)-leakage is based. A (l,2)-leakage involves the transmission

of two messages through the parameter n, that are n itself and u, in order to trans­

mit p. The DH key exchange is alike to the one of Figure 6-9 and is computed as

explained for Equation 6.2. Therefore, completeness holds because of knowledge of

a and of the leaked value of aCl mod p.

171

Symmetry. This backdoored key generator is asymmetric because the back­

door information is encrypted with DH, which is asymmetric.

Cardinality. The number of generable keys is as follows. As its is the case

for Algorithm PAP (Figure 6-5), Steps 5 to 9 of Algorithm PAP-2 are of the form

E{p:Cl):R
q=

P

where c\ and R, both of the size of p, are random parameters. Summing up for all

p's (as they are embedded in n), one expects

jVGliB = #{n} = 2W-21glpl = 2fc-21gfc

backdoored keys. In the ratio of the cardinalities of KSM and KS, the #{e} terms

can be canceled so that

nGl = Tk.

Because p is encrypted in the form of its seed z' and not directly as the backdoor

information, the same trivial modification as for Algorithm YY-96-RSA cannot be

used. The encryption of the backdoor information cannot involve \p\/2 random bits

instead of the lower half bits of p.

Distribution properties. At Step 10 of PAP-2, p is fixed, U pseudo-random

and R random, so q = (U :R — r)/p is a pseudo-random number of the appropriate

length.

The same argument as for Algorithm PAP (Figure 6-5) holds. The parameter

n is not properly distributed.

172

Entropy of embedding. Prom the pseudo-randomness of the FK function

the upper bits of n are pseudo-randomly distributed, but the same does not apply to

the lower bits, as they must be adjusted so that q is prime. This yields the evaluation:

0 < HGl < 1, given FK.

Generalized key regeneration and variable correlation. This property

is satisfied similarly as for PAP with only minor modifications to the algorithms.

The only difference when regenerating p is that an incremented key should be used

as additional input to H. Then, in Step 7 of A-PAP-2, this key is incremented until

a coherent p is generated.

Cojnplexity. The complexity is comparable to the one of the PAP algorithm.

The difference lies into that PAP-2's cryptographic functions, H and FK, are applied

within the generation loops of p and q instead of outside of these loops. This implies

that the complexity of the cryptographic functions is multiplied with the one of the

loop of the corresponding prime generation. Overall, for the generation of n:

tpid) = tp-T(H) + T(DE)

and

tq(G1)=tq-T(FK).

For the generation of e:

te{Gi) = te.

These complexities are linear in the complexity of Go and the use of DH has

complexity comparable to RSA (the one of Go), of which tn is the dominant term.

Assuming that F — H is negligible with respect to tn, Algorithm G\ is rated "good".

173

Overall, the complexity is less than quadratic in the complexity of Go, while the

complexity of F is not given explicitly. Therefore, G\ is rated "good / F-relative".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses a cryptographic hash func­

tion, H, and a pseudo-random function, FK, which are not explicitly provided. Fur­

thermore, it uses the assumption that the DH key exchange is secure.

Simplicity. This algorithm is more complicated, compared to PAP, which was

already rated as LS-MS. That a DH key exchange is set up is an additional level of

structure w.r.t. the re-use of RSA encryption.

confidentiality
completeness

indisting.

asymmetry

diversity
nGl
cGl
VGl

TiGi
GKR
side-
channels

complexity

memory
computational assumptions
simplicity

no: Def. 4.2.9 unsatisfied
yes: DH exchange

failed

good

yes: DH is asymmetric
2-*
> 0, bad distribution of n
1
0 < HGl < 1, given FK

yes
tp(G0) = tp-T{H) + T(Dn)
t,(Gi) = tq • T(FK)
te(Gi) = te

no
pseudo-random H and FK + DH
MS

poor

poor

good

poor

good

good/

F-rel.

good

poor

average

Table 6-7: Properties of Algorithm PAP-2 of Figure 6-10. (Our trivial modification
to PAP does not apply to PAP-2.)

174

6.2.3 YY05a

The following RSA backdoored key generator is from [YY05a]. Its name, PP,

stands for Private Primes.

Indistinguishably of c. The prime p is generated through a keyed pseudo­

random function, H, 9 with a seed, u. This seed is encrypted via Rabin into a

parameter, c, which is stored in the public parameter, n. The following is to insure

that e is distributed indistinguishably. One picks a random element c in Z,*N which

Jacobi symbol is distributed as for a random element x in Z*N, but which also has

Legendre symbol, with respect to each of P, Q, that is uniformly distributed between

1 and -1. For this purpose, let eo,ei,e2,e3 e Z*N be four constants included in the

generator such that

L(eo/P) = L(e0/Q) = l

L(e2/P) = L(e2/Q) = -1

L(ei/P) = - 1 , L(e i /Q) = l

L(e3/P) = 1, L(e3/Q) = -1.

Algorithm properties. The security is based on the encryption of the back­

door information with the Rabin public-key cryptosystem. Its parameters are de­

noted as follows: the public key is iV and the private key is (P, Q), such that iV = PQ.

9 The original version uses a random oracle, H, but for the practical purposes of
a keyed pseudo-random function.

175

PARAMETERS:

• The designer's Rabin public key is N and its private key is (P,Q), s.t.
N = PQ and \N\ = k.
• ID is a fixed parameter.
• HK : {0, \^k+\iD-.i:j\ _> |Q , l)k is a keyed pseudo-random function, for a
non-secret key K (in the original version, if is a random oracle).
• eo,ei,e2,e3 € Z*N are four constants included in the generator
such that L(eo/P) = L(e0/Q) = 1, L(e2/P) = L(e2/Q) = - 1 ,
L(ei/P) = - 1 , L(ei/Q) = 1, and L(e3/P) = 1, L(e3/Q) = - 1 .

Algorithm P P [RSA key generation]
l
2
3
4
5

6
7
8
9

10
11
12
13
14
15

16
17

Update i = i + 1 in non-volatile memory.
for j = 0 to oo

Pick random x, u 6 ZJ^.
Pick a random b G {0,1}.
if J(x/N) = 1, set c = ejjejp1**2 mod AT.

if J(rc/JV) = - 1 , set c = e^eg - 1 ^ 2 mod N.
repeat

p = HK(u:ID:i:j), next |7V|-bit block.
until p > 2 W - 1 and is prime.
Pick a random fl e {0, l } ! ^ ! .
Set n' = c:R.
Solve for q in n ' = pq + r.
if q > 2 l j v l _ 1 , <j < p is prime, and |pg| > 2N

Set n = pq.
Pick a random e 6 Z*!, •,.

Compute d = e _ 1 mod <^(n).
return (p,q,d,e).

Algorithm A-PP [Key retrieval]
1: Input of (n,e,i).
2: Set c:R = n, s.t. |c| = k (+poss. carry bit).
3 : for i = 0 to 3
4: Set w = cej mod N.
5: Set {uo,ui,112,113} = Rabin _ 1 (i«) .
6: for 6 = 0 to 3
7: for each possible j and block of .H/f
8: p= Hx(ub:ID:i:j), next |iV| bits.
9: if p\n and p 5^ l , n

10: Compute d = e _ 1 mod <̂ >(n).
11: return d.

Figure 6-11: Young and Yung (2005a): PP is an asymmetric backdoor for RSA
using the Rabin cryptosystem. The information on p is embedded in n.

Confidentiality. The key lengths are: |iV| = A;. The designer's Rabin key N

is half the length of the user's n. Given the secure key lengths listed in Section A.l,

Definition 4.2.9 is unsatisfied.

Confidentiality does not hold, as opposed to what the proof of [YY05a, Sec­

tion 4] suggests. This paper states that if confidentiality failed, then either |JV|-bit

composites, N — PQ, or 2fc-bit composites, n = pq, can easily be actored. Exactly

176

because of the secure key lengths listed in Section A.l, |iV|-bit composites can easily

be factored. Therefore, the statement of [YY05a, Section 4] does not hold.

Completeness. The backdoor information is encrypted with the Rabin cryp-

tosystem. Therefore, completeness holds because the Rabin encryption function is

invertible.

Symmetry. In order to create a unique randomization for each public key

generated by PP, one of the parameters in the seed from which the prime p is gen­

erated is kept in non-volatile memory, somewhat as a secret key. Even though the

security of PP does not rest on it, this parameter, i, makes the algorithm symmetric.

Cardinality. The number of generable keys is accounted as the ones for Al­

gorithms PAP and PAP-2.

Distribution properties. This property is the same as for Algorithms PAP

and PAP-2.

Entropy of the embedding. From the pseudo-randomness of the HK func­

tion the upper bits of n are pseudo-randomly distributed, but the same does not

apply to the lower bits, as they must be adjusted so that q is prime. This yields the

evaluation: 0 < Tiox < 1> given HK.

Generalized key regeneration and variable correlation. First suppose

that H, the random oracle, is use instead of HK, as it was the case in the original

algorithm. If the user asks to keep p and regenerate the rest, there is no problem

since p is generated from u. The regeneration algorithm merely makes sure that n

still contains c, while finding another q that works.

177

However, if the user asks to keep q and regenerate p, the usual strategy would

be to swap the roles of the primes, that is, to keep the same backdoor value but link

q, instead of p, with u. However, that would mean

q = H(u)-J,

for fixed q and u, which is unlikely since if is a random oracle. Thus, GKR is not

feasible.

Modification. If HK is used instead, then as for Algorithms PAP and PAP-2, the

value of K is increased in the regeneration of p. Thus, with this small modification,

GKR is feasible.

Complexity. The complexity is similar to the one of Algorithm PAP-2, with

DH replaced by Rabin, for Steps 3 to 6. The equivalent of Step 3 of PAP-2 are Steps 7

to 9, which adds a factor of the cost of HK, for every iteration in the generation of

p. The value of e is generated (Step 15) outside the loop for the generation of q

(Steps 2 to 13), which otherwise, if the loops were embedded, would have made the

complexity of this part of PP quadratic in the one of Go- Overall, for the generation

of n:

tp(Gi) = T(Rabin) + tp • T(HK)

and

tq(Gl) = tq

and for the generation of e,

te(Gi) = te.

178

These complexities are linear in the complexity of GQ and the use of Rabin's

cryptosystem has complexity comparable to RSA (the one of Go), of which tn is the

dominant term. Assuming that F = HK is negligible with respect to tn, Algorithm G\

is rated "good". Overall, the complexity is less than quadratic in the complexity of

Go, while the complexity of F is not given explicitly. Therefore, G\ is rated "good /

F-relative".

The retrieval algorithm can be sped up, although this does not affect the relevant

measure of complexity. This cryptosystem decrypts most ciphertexts to four possible

plaintexts. The retrieval algorithm can be sped up by encrypting with the smallest

ambivalent roots of the ciphertext. Before Step 7, test if u > —u mod N and if so,

set u = —u mod N.

Memory. This algorithm uses non-volatile memory. The stored variable i is

a counter for the number of backdoored keys that the generator, G\, created. It

insures that the generator's pseudo-random seed is always different, thus the same

keys are unlikely to be regenerated. The variable j may at first appear to already

play this role of unique counter, but it is reset at zero every time the algorithm is

run. Therefore, the uniqueness of the input to HK comes only from i and u (but the

latter, only with some probability).

This property was analyzed as Example 5.2.2.

Computational assumptions. The algorithm uses a keyed pseudo-random

function, HK, which is not explicitly provided. Furthermore, it uses the assumption

that Rabin encryption is secure, which rests on integer factorization being difficult

179

and which may be a stronger assumption than the one that RSA is secure (Subsec­

tion 2.2.7).

Simplicity. This algorithm is about as complicated as PAP-2, which was rated

as MS.

confidentiality
completeness

indisting.

asymmetry

diversity
KGl

CGI
v G l
^ G i

GKR
side-
channels

complexity

memory
computational assumptions
simplicity

no: Def. 4.2.9 unsatisfied
yes: Rabin

failed

good

no: secret i
2 - fc

> 0, bad distribution of n
1
0 < HGl < 1, given HK

yes
tP(G0) = tp-T(HK)+T (Rabin)
tq(Gl) = tq

te(Gi) = te

NM
Rabin + pseudo-random HK
MS

poor

poor

good

poor

good

good/

F-rel.

average

poor

average

Table 6-8: Properties of Algorithm PP of Figure 6-11. Properties are given for our
version, as described in Generalized key regeneration and variable correlation, with
the random oracle H replaced by a family of pseudo-random functions, HK-

180

6.2.4 YY05b

The following RSA backdoored key generator is from [YY05b]. As it uses point

compression on elliptic curves, it is meant to be space efficient.

The original version of this backdoored key generator uses a random oracle, H,

but for the practical purposes of a keyed pseudo-random function. In this context,

H is sometimes applied to a given input so that it produces a long output of which

consecutive blocks that can be selected until some desired properties are satisfied.

Instead, we use a keyed pseudo-random function, HK, and increase K until such

properties are satisfied.

Algorithm properties. The designer encrypts the backdoor using elliptic

curve Diffie-Hellman (DH) key exchange 10 . Two elliptic curves are used in order to

save space. To simplify, consider the algorithm with only one curve E. Let G be a

base point of order q on f?(F2«i). The elliptic curve private key is picked as a random

x G Zg_i and the corresponding public key is Y = xG. As usual, (G, Y) is included

in the RSA key generator.

Consider Steps 2 and 3 of G\ =EC-SETUP. Note that it holds that Sprti,,Spu& £

{0 , l } m + 1 .

For basic explanations on elliptic curves, see Appendix A.3.

181

PARAMETERS:

• G is a base point of order q on E(¥2m).
• The designer's elliptic curve public key is Y = xG, for a random x € "Lq-i
which is its private key.
• HK '• {0, l } m + 1 —• {0, l}fc is a keyed pseudo-random function, where K is an
initially fixed key.
• 0 is s.t. a carry bit inn' — r (Step 13 in G\) is unlikely.
• 7r: {0, l } e —• {0, l } 0 is an efficiently invertible pseudo-random permutation.

Algor i thm E C - S E T U P (Y , G)
1: Pick a random 0 < k < q.
2: Set

Spviv —
kY.

3: Set spui, = kG.
4: Pick a random e 6 Z22fc.
5: repeat
6: repeat
7: Pick a random (. e {0, l } f c / 2 , increment K.
8: Set p = Hx(spriv):£.
9: until p is prime, \p\ = fe, p] 2 = 11,

g c d (p - l , e) = 1.
10: Pick a random s € {0, l } © - (m + 1) .
1 1 : Pick a random fl e {0, l } 2 f c - e .
12: Set n ' = 7r(s:spu6) : i?.
13 : Solve for q in n' = pq + r.
14: until q is prime, \q\ = k, q]2 = 11,

g c d (g - l , e) = 1.
15: Set n = pq.
16: Compute d = e _ 1 mod <£(n).
17: return (p, g,d, e).

A l g o . A-EC-SETUP(a;)
1: Input of (n,e) .
2: Set t : i J = n, s.t. |t| = © (+poss. carry bit).
3 : Set s:sput = T _ 1 (<) , s.t. | s p u | , | = m + l .
4: Set
5: repeat
6: Set u = Hx{spriv) and increment K\
7: until find p w. poss. upper bits u [Th. 6.1.8].
8: Compute d = e~l mod </>(n).
9: return d.

Figure 6-12: Young and Yung (2005b): an asymmetric backdoor for RSA, using
the elliptic curve Difne-Hellman (DH) key exchange. The information on p is
embedded in n.

Confidentiality. To insure confidentiality, the prime p is generated through a

pseudo-random function HK with SpriV as seed which is stored via spub in the public

parameter, n. Also, let n be an efficiently invertible pseudo-random permutation

from 0 bits to 0 bits. The parameter 0 is chosen such that a carry bit in (the

mid-upper bits of) n' — r (Step 13 of Algorithm EC-SETUP) is unlikely. For this,

182

\n'\ » \r\ is preferable, and in this case, it holds that \n'\ — 2k and \r\ = k — 0 (same

as the number of free bits for choosing the second prime q).

We deem it important to include the reasons why the proofs of Young and Yung,

as in [YY05b], are incomplete. One of these proofs concern confidentiality [YY05b,

Appendix A.2].

Critique of the confidentiality proof. The same critique applies as for

Indistinguishability, which follows, as the provided proof is very similar.

Confidentiality proof (redone). The goal is to show that from the RSA

backdoored public keys, it is computationally infeasible to find the corresponding

private key. Prom the security of the cryptographic hash function 7r, one may have

a hard time deducing spu6 from n, but n is not assumed to be one-way.

Given Spub, it is infeasible to deduce s^y, assuming the security of the designers

elliptic curve public-key cryptosystem. Therefore, even with access to the keyed

pseudo-random function, HK, one cannot mimic Step 6 of Algorithm A-EC-SETUP

in order to compute p.

Completeness. The DH key exchange has private parameter, swiv, and public

parameter, s ^ . These parameters are compressed forms of points on a given elliptic

curve. To simplify, consider that swiv = kY and that Sp^ = kG, for a random 0 <

k < q. Clearly, because the designer knows x and extracts s^i, = kG from n, it can

compute s ^ = kY = x(kG). Because E is over F2m, with compression, Spriv, s^b £

{0, l } m + 1 . Note that both SpriV,Spub are included in the RSA key generator. This

process insures completeness.

183

Symmetry. This generation algorithm uses only public parameters, Y, G, to

generate the prime p. Confidentiality holds as a; is kept secret. Therefore, x can be the

same for all the distinguishers and uniformity holds. This backdoor is asymmetric.

Cardinality. Because p is embedded in n, we count the total number of n and

e's. Firstly, consider the number of primes p is the number of primes of the form

p = HK(spriv):£ (6.3)

for £ € {0, l} f c/2 . By Example 2.2.7, the number of primes p is

#{?}« #w • ^ ~ = 2fc/2_lgfe-

Secondly, consider the number of primes q is the number of primes of the form

q = Eki±R (6.4)

P

where E is the generic encryption function (in practice, it is 7r here) and p stands

for fixed information related to itself (in practice, it is spu& here), and for s €

{0,1}0-("1+1) and R e {0, l } 2 f c " e .

The parameter m + 1 = \spub\ is about the length of a compressed point on

the elliptic curve over F2™. Because the cardinality of the backdoored key set is

expressed as a function of the security parameter of the cryptosystem which the key

generator is from, one wants to express m as a function of 2k. Let us assume that

the ratios of the key lengths shown in Table A.l hold as a general rule. Since RSA'S

2k — 1024 corresponds to EC's \s\ w 160, for a compressed point s E E. Then this

assumption means that m ~ \k by Definition 4.2.9.

184

Therefore,
2

m « 2q « -A;.

Therefore, the total number of random bits in Equation (6.4) is

4
\s\ +\R\ « 2fe - m « -A;.

The number of g that pass the divisibility and primality tests is as for Algo­

rithms PAP, PAP-2 and PP, so that the probability of q being an integer and being

prime is about l/(2fc+lgfc). To sum up, the number of primes q is

2M+I«I
#{<?}

_ 2fc/3-1sfe

Summing up the number of primes of the form of Equation (6.3) and Equa­

tion (6.4) as well as the number of possible e's, the total number of generable keys

is

M J „ » = #{?} •#{«}

^ 2fc/2-1sfe . 2fc/3_lgfc

= 2lfc-21gfe.

In the ratio of the cardinalities of KSM and KS, the #{e} terms can be canceled

so that TZGX ~ 2~6fe.

Distribution properties. In the Distribution properties paragraph of PAP

(Subsection 6.2.1), it is shown that n is not pseudo-random, unless its factors are

chosen in a special range. This backdoored key generator chooses these factors in

185

such a special range, but this makes both the primes and n distinguishable. For

the backdoored and honest distributions to match, the backdoored one needs to be

changed to match the honest one, not the contrary as it seems to be the intention

here. Therefore the pseudo-randomness of the n portion of the backdoored public

key is incorrect.

We deem it important to include the reasons why the proofs of Young and Yung,

as in [YY05b], are incomplete. One of these proofs concern indistinguishability (idem,

Appendix A.l) and confidentiality (idem, Appendix A.2).

Critique of the indistinguishability proof. Indistinguishability is proved

as follows. Let s = 7r_1(nje)- Note that if n is backdoored, then s — s ^ . By

contradiction, we suppose that a distinguisher D non-negligibly distinguishes primes

backdoored with spub. The idea is to use D to invert the ECDDH key exchange, i.e.

from (aiGo, a^Go), t ° find the shared secret aia2Go- Note that D makes calls to the

keyed pseudo-random function (standing in for an oracle), HK, which returns the

shared secret with probability denoted Ptrap-

1. First, we assume that ptrap is non-negligible. D is called on input primes com­

puted from (aiGo, a^Go) as well as some random points. From this assumption

on ptrap, one finds a^Go with non-negligible probability.

2. The complementary case is when ptrap is negligible, that is ptrap < 1, where

7 is a negligible function in the security parameter. The reduction shown is

claimed to succeed with probability proportional to 1 — 7, so it appears that

the reduction is successful when the keyed pseudo-random function, HK, does

not return the shared secret.

186

The problem is that there is then no explanation as to how the shared secret is

computed from D. In fact, the output of the reduction is the value of D itself on

parameters generated similarly as in the first case. Furthermore, on a more technical

note, the output of D should be a yes or no, whether it has distinguished the primes

as backdoored or not. A single bit cannot account for a ECDDH shared secret.

Therefore, the proof seems to miss all the difficult instances, that is, when the

probability that the oracle gives the solution is negligible.

Entropy of the embedding. From the pseudo-randomness of the ir function

the upper bits of n are pseudo-randomly distributed, but the same does not apply to

the lower bits, as they must be adjusted so that q is prime. This yields the evaluation:

0 < Hd < 1, given IT.

Generalized key regeneration and variable correlation. Same as for PP

in the preceding section, with spriV and Spub being equivalent to u and c respectively.

Modification. The same small modification as for PP applies as well.

Complexity. The complexity to the ones of Algorithms PAP, PAP-2 and PP.

Accordingly, RSA or Rabin would be replaced by EC, but its associated costs are

mostly offline.

Overall, for the generation of e, te(G\) = te. For the generation of n, the

generations of p and q are intertwined. The loop for the generation of q (Steps 5

to 14) includes the cryptographic function n (Step 9) as well as the loop for the

187

generation of p (Steps 6 to 9). This loop in turn includes the function HK.

tn(G1) = tq(T(7r) + tp-T(HK))

« t2
n-T(HK) + tn-T(7r).

The complexity is at least quadratic in the complexity of G0. Therefore, it is

rated as "failed".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses a keyed pseudo-random

function, HK, which is not explicitly provided. Furthermore, it uses the assumption

that EC encryption is secure.

Simplicity. This algorithm is about as complicated than the preceding algo­

rithm, which was rated as MS.

confidentiality
completeness

indisting.

asymmetry

diversity
KGl

CG1

v G l
Ti-Gi

GKR
side-
channels

complexity

memory
computational assumptions
simplicity

yes: EC cryptosystem
yes: EC is public-key

good

good

yes: only x is secret
2-ife

> 0, bad distribution of n
1
0 < HGX < 1, given -K
yes
te{G\) — te

tn(Gx) « t2
n-T(HK)+tn-T(7r)

no
EC + pseudo-random HK,TC

HS

poor

poor

good

poor

good

failed

good

poor

failed

Table 6-9: Properties of Algorithm EC-SETUP of Figure 6-12. Properties are given
with the trivial modification of the random oracle H being replaced by a family of
pseudo-random functions, HK-

188

6.3 Crepeau-Slakmon algorithms

The following five RSA backdoored key generators are from Crepeau and Slakmon

[CS03]. This section is more detailed because a large portion of Chapter 7 is built

on these algorithms.

These algorithms use a notation that involves two different pairs of RSA expo­

nents, (d, e) and (8, e), per parameter n. As usual, suppose that n = pq is an RSA

modulus and denote a public key as (n, e) and the corresponding private key as d.

Moreover, let (n, e) be similar to a public key with the corresponding private key-like

8. Because the pair (n, e) is not published, it is not a public key, but it is similar

to one because it satisfies some properties of the proper public key (n, e), amongst

other properties which are the main topic that this section develops. In general,

(n, e) is related to (n, e) in such a way that the designer can retrieve the concealed

exponents, (e, 8), from the public parameters, (n,e).

The algorithms from the paper of Crepeau and Slakmon rely on the following

result of Wiener [Wie90] or some extension of this result. In Wiener's Theorem, the

parameter K = (e8 — l) /0(n), where 0 is the Euler totient function.

Theorem 6.3.1 (Wiener's low decryption exponent attack) Any (n,e) with

38 < n1/4 efficiently yields the values of K and 8.

Proof sketch: In Stinson [Sti06, Section 5.7.3], the proof is broken into three com­

ponents. First, even if one removes the assumption that 38 < n1/4, it holds that,

6 K OK , -

n - ^ ^ W (6-5)

189

This is from applying the bounds on p and q to (n — 0(n)) and recalling that it is

assumed that q < p < 2q. Then the result is used in

1 + K(<p(n) — n)
8n

Note that n < 8, using e < 4>{n) in K<f>{n) — e8 — 1. One takes

Ke < K(p(n) = e8 — 1 < e8 (6.6)

and takes the LHS and RHS together:

Ke < e8 (6.7)

to simplify them into K < 5.

Second, given that 3K < 35 < n1/4, then,

n " I < ^ °r n " I < 3 ^ ' (6-8)

Third, recall the well-known theorem that can be found in Hardy and Wright

[HW79, Theorem 184] on the continued fraction expansion of x:

"If 11 — a;| < 5I2, then K/8 is a convergent." (6.9)

Given that |^ — f | < 3̂ 2, one can efficiently find n and 6 (recall gcd(/«, S) = 1). I

Remark 6.3.2 ./Vote that 38 < n1/4 cowW be improved to -y/3/2<5 < n1/4. However,

it would improve our results about the number of generable keys, which are asymptotic

and exponential, but by multiplicative constants.

e K

n 8

190

The usefulness of Wiener's Theorem and its variants is shown in Figure 6-13.

Suppose that (8, e) is an easy to break instance of RSA keys and let (G;, At) denote

the pair of algorithms formed by the backdoored key generator and the corresponding

retrieval algorithm, written by the designer. A general strategy is for Gi to transform

this easy instance into another instance (d, e), so that (e, n) is published as the public

key corresponding to d.

Gi . . . publication
(<>)e) —*• (<*, e) ^ (e, n)

Ai (easy instance)-...
Ai (designer only)

p-
(e, n)

Figure 6-13: RSA backdoor generation from weak private key 8. The backdoored
key generation process is represented by the full arrows. The key retrieval process
comprises the entire cycle, except for the publication arrow.

This transformation is such that only the designer may find (e, n) from (e,n),

via the retrieval algorithm, Ai. Since (8, e) is an easy to break instance, it is trivial

to find 8 from (e, n), and this is the second part of At. Its third and final part is,

from (8, e) and then (p, q), to regenerate d in the same way as it done by Gi.

Therefore, the convention in notation is that the key generation algorithm re­

turns (p, q,d,e) to the distinguisher while making sure to being able to trace back

a related weaker tuple (p, q, 8, e). The latter is weak in the sense that knowing its

public part (n, e) allows the designer to efficiently factorize n = pq or, equivalently,

to find d given e. Hence, the use of Wiener's Theorem and its variants is to ensure

the completeness property of the Crepeau-Slakmon algorithms.

191

6.3.1 First algorithm: via Wiener's low decryption exponent attack

Throughout the remaining part of this chapter, 7173 : Z^(n) —> Z^(n) denotes an

invertible one-way, pseudo-random permutation such that given (3, computing 717J1

is easy. The key to the permutation is the fixed secret key 0, which remains the

same for all legitimate users. This is simply coherent with symmetric cryptography,

although it was not the case for the Anderson-Kaliski backdoor (Subsection 6.1.1):

the secret key A is picked randomly for each legitimate user (Symmetry paragraph).

PARAMETERS:

• (3 is a fixed secret key.
• irp : {0, l}2fc —> {0, l}2k is an assumed cryptographic permutation.

Algor i thm CS-1 [RSA key gen]
1: Pick rp p, q of size k and set n = pq.
2: repeat
3: Pick a random S S Z*, . s.t. S < n 1 / * ^ .

4: Compute e = 5 - 1 mod <j>(n); e = nf){e).
5: until gcd(e, <j>(n)) = 1.
6: Compute d = e _ 1 mod <j>{n).
7: return (p,q,d, e).

Algor i thm A-CS-1 [Key retrieval]
1: Input of (n,e).
2: Factor n = pq from (n, 7rT1(e)) [Theorem 6.3.1].

3 : Compute d = e _ 1 mod <j>{n).
4: return d.

Figure 6-14: [CS03]: a backdoor for RSA using weak Wiener keys and a per­
mutation. The information on 5 is embedded in e.

Algorithm properties. The algorithm, in Figure 6-14, illustrates the most

basic application of the strategy of Figure 6-13.

Confidentiality. This property rests on the one-wayness of the permutation,

7T/3-

Completeness. This property is based on the classical Wiener's low decryp­

tion exponent attack (Theorem 6.3.1).

Symmetry. Algorithm (CS-1, A-CS-1) is a symmetric backdoor with secret

key p.

192

Cardinality. The number of keys, per fixed n, is

A/"Glle = #{e} = #{e} = #{<*} = ^ Ik

In the ratio of the cardinalities of KSM and KS, the #{n} terms can be

canceled so that TIQX W 2~2fc.

Distribution properties. The distribution of e is labeled "good", supposing

that -K/3 is pseudo-random.

Entropy of embedding. Algorithm CS-1 is the first backdoored key gen­

erator, in its originally published form, to satisfy Definition 5.1.9 in the following

way. It achieves Hd — 1 with only explicit computational assumptions (on RSA),

i.e. without computational assumptions on functions which are not explicitly pro­

vided. As illustrated in Figure 6-15, the backdoor information, 8, is uniformly spread

throughout the n bits of e, given Assumption 2.2.22 (cf. Subsection 2.2.8).

I
• i

e = 5" mod cb(n) m

Figure 6-15: Entropy of CS-1 gained from the distribution properties of the RSA
permutation. On the first line, the set of 5 is generated from k/2 bits. On the second
line, these bits are uniformly spread into 2k bits via the well pre-shufned property of
the RSA private exponent, given Assumption 2.2.17'.

193

Generalized key regeneration and variable correlation. This property

is easily satisfied because all parameters are generated independently. The backdoor

information on 8 is stored in e, which by definition depends on such an inverse.

Complexity. Step 3 and Steps 2 to 5 are two embedded loops that check the

condition gcd(x, <j)(n)) = 1, for a given x. Step 4 is an inversion modulo 0(n) which

is included in the outside loop.

If Steps 3 and 4 run in time bounded above by

2te + T(np)

then Steps 2 to 5, in time bounded above by

te(2te + Tfo)).

Overall:

Tn(Gi) = tn

The complexity is at least quadratic in the complexity of GQ. Therefore, it is

rated as "failed".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses a family of pseudo-random

functions, np, which is not explicitly provided.

The results in Entropy depend on Assumption 2.2.22.

194

Simplicity. The algorithm has a relatively low structure. This is intuitively

apparent, even without comparing with other algorithms, because it consists of al­

most the same steps as the honest algorithm.

confidentiality
completeness

indisting.

asymmetry

diversity
KGl

cGl
v G l
% 3 i

GKR
side
channels

complexity

memory
computational assumptions

simplicity

yes: one-way 7173
yes: Theorem 6.3.1

good

good

no: P is secret
2 2

0, pseudo-random 717?
1
1, Assumption 2.2.22
yes
Tn(Gi) = tn

Te(G1)^tl + te-T(n/3)
no
one-way, pseudo-random 7173,
Assumption 2.2.22
LS

failed

average

good

good

good

failed

good

average

good

Table 6-10: Properties of Algorithm CS-1 of Figure 6-14.

195

6.3.2 Second algorithm: via upper bits of 5 and prime e

The second algorithm's completeness rests on the following theorem on partial

information on the decryption exponent by Boneh, Durfree and Prankel (BDF).

Theorem 6.3.3 ([BDF98], Theorem 1.2, part 1) Lett e [k/2,...,k] andaprime

S € [2*,...,2t+1]. Given (n,5) andef, one can factor n efficiently.

In [CS03]'s usage, the partial information is on the hidden, weak, encryption

exponent, e. So the roles of S and e are swapped, w.r.t. the original Boneh, Durfee

and Prankel (BDF) theorem.

PARAMETERS:

• P is a fixed secret key.
• TT/3 : {0, l}2fc —• {0, l}2fc is an assumed cryptographic permutation.

Algor i thm CS-2 [RSA key gen]
1: Pick r p p, q of size = fc and set n — pq.
2: Pick a r p e S Z*, . s.t. |e| = fc/2.

3 : Set S = e _ 1 mod <t>(n).
4: SH = Sf/2.
5: repeat
6: Pick random r e {0, l}k.
7: e = Trp(5H--£--r).
8: until gcd(e,(^(n)) = 1.
9: Compute d = e _ 1 mod <f>{n)-

10: return (p,q,d,e).

Algor i thm A-CS-2 [Key retrieval]
1: Input of (n ,e) .
2: Compute (SH:e:r) = 7r l1(e) .
3 : Compute S from (n,<5/f,e) [Theorem 6.3.3].
4: Given (e, 6) factor n as p,q.
5: Compute d = e _ 1 mod <j>(n).
6: return d.

Figure 6-16: [CS03]: a backdoor for RSA using a theorem of Boneh, Durfee,
and Prankel and a permutation. The information on S is embedded in e. Step 7
includes our modification discussed in Cardinality.

Algorithm properties. An unusual restriction is made on e (which corre­

sponds to 5, in the statement of Theorem 6.3.3) so that it is prime. This affects the

cardinality of the backdoored key set, but not its indistinguishability. Indeed, the

196

value corresponding to e in the generation algorithm is encrypted via the pseudo­

random Trp. The distinguisher cannot tell that it is unusually generated, unless np is

broken.

Confidentiality. This property rests on the one-wayness of the permutation,

TTp.

Completeness. This property is based on a theorem on partial information

on the decryption exponent of BDF, Theorem 6.3.3.

Symmetry. Algorithm (CS-2, A-CS-2) is a symmetric backdoor with secret

key/3.

Cardinality. We directly analyze the algorithm with the trivial modification

that we introduced. In Step 7 of Gi, we added the concatenation of k random bits.

The original algorithm produces smaller e instead, and accordingly uses a irp with

smaller domain and image.

The number of keys, per fixed n, is N~Gi,e — # { e } = #{ e } * # { r } - By a

modification of Example 2.2.7, for fc/2-bit primes instead of ib-bit, #{e} « 2k/2~x^kl2\

Prom Step 6 of CS-2, #{ r} = 2k. In the ratio of the cardinalities of KSM and KS,

the #{n} terms can be canceled so that

ofc/2-lgfc/2+fc
<r> ^ ~ o-ifc-lgfc
KGx 2 2 ^ l

Distribution properties. This property and its argument are the same as

for the preceding algorithm.

Entropy of embedding. This property and its argument are the same as for

the preceding algorithm.

197

Generalized key regeneration and variable correlation. This property

is easily satisfied because all parameters are generated independently. The backdoor

information on 5 is stored in e, which by definition depends on such an inverse.

Complexity. The computation of n is the same as in G0.

Tn{G\) = tn

The computation of e is similar to the one for the preceding algorithm, with

three more operations. The first one is the generation of a /c/2-bit random prime at

Step 2, an operation which has complexity t^. Then Steps 5 to 7 form a loop that

includes a gcd check and a cryptographic function 7173. Overall:

Te(Gi) = t^ + te + U-T^fixtt^ + U-Tfo).

These complexities are linear in the complexity of Go and t^ has significantly

smaller complexity than RSA (the one of Go) as a whole, of which te is a significant

term. Assuming that F — np is negligible with respect to te, Algorithm G\ is rated

"good". Overall, the complexity is less than quadratic in the complexity of Go,

while the complexity of F is not given explicitly. Therefore, Gi is rated "good /

F-relative".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses a family of pseudo-random

functions, irp, which is not explicitly provided.

The results in Entropy depend on Assumption 2.2.22.

198

Simplicity. This algorithm is more complicated than the previous one, which

was rated as LS. Compared to PAP, which was rated as LS-MS, it appears to have

about the same level of structure.

confidentiality-
completeness

indisting.

asymmetry

diversity
KGl

CG1

• v G l

7~(-Gi

GKR
side
channels

complexity

memory
computational assumptions

simplicity

yes: one-way np
yes: Theorem 6.3.3

good

good

no: P is secret
2~%k-\gk

0, pseudo-random 717?
1
1, given Assumption 2.2.22
yes
Tn{Gi) = tn

Te(Gi) nt^ + U- T[TT0)

no
one-way, pseudo-random 7173,
Assumption 2.2.22
LS-MS

poor

average

good

good

good

good/

F-rel.

good

average

average

Table 6-11: Properties of Algorithm CS-2 of Figure 6-16. Properties are given with
the trivial modification explained in Cardinality.

199

6.3.3 Third algorithm: via upper and lower bits of 5

The algorithm's completeness rests on another theorem on partial information on

the decryption exponent. Again, the notation is a little tricky. As for Theorem 6.3.3,

in Crepeau and Slakmon's usage, the partial information is on the concealed, weak,

encryption exponent, e. The roles of 8 and e are swapped, w.r.t. the original theorem.

Theorem 6.3.4 ([BDF98], Theorem 4.6) Let t G [l,...,ifc] and 8 £ [2*, . . . , 2 m] .

Given (n,S), ef and e\k/2, one can factor n efficiently.

Theorem 6.3.4 compares to Theorem 6.3.3 as follows. In the notation of Crepeau

and Slakmon, the requirement from the second algorithm, CS-2, that e be a prime is

traded for the transmission of additional bits of information. As per Theorem 6.3.4,

a message consisting of the k/2 lower bits of 8 is sufficient.

PARAMETERS:

• f3 is a fixed secret key.
• t € [1,..., A;] is a fixed, non-secret, parameter.
• irp : {0, l}2k —• {0, l}2fe is an assumed cryptographic permutation.

Algor i thm CS-3 [RSA key gen]
1: Pick r p p, q of size = k and set n = pq.
2: Pick a random e 6 1?,, -. s.t. |e| = t.

3: Set 8 = e _ 1 mod <f>(n).
4: 6H=S]t;5L=:5\k.

2

5: repeat
6: Pick a random r € {0, l}^/2-2t
7: e = ir0(5H-SL'-c-r).
8: until gcd(e, <j>{n)) = 1.
9: Compute d = e~l mod </>(n).

10: return (p, q, d, e).

Algor i thm A-CS-3 [Key retrieval]
1: Input of (n, e).
2: Compute {Su : 5L • e • i") = itZ (e).
3 : Compute <5 from (n,<5jf,(5.L,e) [Theorem 6.3.4].
4: Given (e, 5) factor n as p,q.
5: Compute d = e"1 mod <f>(n).
6: return d.

Figure 6-17: [CS03]: a backdoor for RSA using another theorem of Boneh,
Durfee, and Frankel and a permutation. The information on 8 is embedded in
e. Step 7 includes our modification discussed in Cardinality.

200

Algorithm properties. The same modification as in the preceding algorithm

is applied.

Confidentiality. This property rests on the one-wayness of the permutation,

Completeness. This property is based on a theorem on partial information

on the decryption exponent of BDF, Theorem 6.3.4.

Symmetry. Algorithm (CS-3, A-CS-3) is a symmetric backdoor with secret

key p.

Cardinality. We directly analyze the algorithm with the trivial modification

that we introduced. In Step 7 of Gi, we added the concatenation of 3k/2 — 2t random

bits. The original algorithm produces smaller e instead, and accordingly uses a 717?

with smaller domain and image.

The number of keys, per fixed n, is Maue = # { e } = #{ e } ' # { r } - From Step 2

of CS-2, #{e} = 2*. From Step 6, # { r } = 23k/2~2t. In the ratio of the cardinalities

of KSM and KS, the #{n} terms can be canceled so that

ot+3fc/2-2i

Distribution properties. This property and its argument are the same as

for the preceding two algorithms.

Entropy of embedding. This property and its argument are the same as for

the preceding two algorithms.

201

Generalized key regeneration and variable correlation. This property

is easily satisfied because all parameters are generated independently. The backdoor

information on S is stored in e, which by definition depends on such an inverse.

Complexity. The computation of n is the same as in GQ.

Tn(G\) = tn

The computation of e is similar to the one for the two preceding algorithms

(without the additional generation of a random prime in the preceding algorithm).

Overall:

These complexities are linear in the complexity of GQ. Assuming that F = np is

negligible with respect to te, Algorithm G\ is rated "good". Overall, the complexity

is less than quadratic in the complexity of G0, while the complexity of F is not given

explicitly. Therefore, G\ is rated "good / F-relative".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses a family of pseudo-random

functions, irp, which is not explicitly provided.

The results in Entropy depend on Assumption 2.2.22.

Simplicity. This algorithm is about as complicated as the previous one.

202

confidentiality yes: one-way 717? good

completeness

indisting.

asymmetry

diversity
KGl

cGl
Vox
Ti-Gi

GKR
side
channels

complexity

memory
computational assumptions

simplicity

yes: Theorem 6.3.4 good

no: (3 is secret
2-ik-t
0, pseudo-random 7173
1
1, given Assumption 2.2.22
yes
Tn(Gi) = tn

TeiGJnte + te-Tfo)

no
one-way, pseudo-random ir@,
Assumption 2.2.22
LS-MS

poor

average

good

good

good

good/

F-rel.

good

average

average

Table 6-12: Properties of Algorithm CS-3 of Figure 6-17. Properties are given with
the trivial modification explained in Cardinality.

Discussion. In the context of Crepeau and Slakmon's paper, the additional

information to be embedded is not a disadvantage. This contrasts with the original

interpretation of Theorem 6.3.4 in the paper of Boneh, Durfree and Frankel, where

the non-consecutiveness of the bits of information was conceived to be a undesirable

feature of such a theorem. Formally, CS-3 generates e as, for t G [1,..., k]:

e = M^-Slk/i-.^-.r), (6.10)

t bits

with r eu {0, lp /2-2* a n d ^ . {0, l p _ {0, i p .

Back to the general case, suppose that t £ [l,...,3/e/4] in Theorem 6.3.4. The

size of the vector of variables to be transmitted is |5f :<5Jfc/2:e| = k/2 + 2t bits.

Therefore a different algorithm could use a 7173 : {0, l}fe/2+2t —> {0, l} f e / 2 + 2 t . Denote

203

by s the leftover space to append a prefix and a suffix of random bits to np:

This different algorithm would generate e as:

e = ri:iri3(5H:5L:e):r2, (6.11)

for a random n:r2 e {0,1}S/2. Also, TT0 : {0, l} 2 f c - s -»• {0, l}2 f c~ s .

Using Equation 6.11 instead of Equation 6.10 has immediate advantages. It

allows the tuning of the distribution of e, if appropriate (independently from the

choice of 7T/j). However, honestly generated e are distributed pseudo-randomly (as

defined in theory), so there is no gain in indistinguishability. There may be an

advantage in using Equation 6.11 in complexity. Suppose that ftp is more efficient

on inputs of a certain length. Then Equation 6.11 is preferable, because it allows the

designer to adjust input lengths.

Using Equation 6.11 also increases the cardinality because when t decreases by

one, s increases by two. This gain is maximized when t — 1. Is taking t — 1 an im­

provement? Doing this reduces the number of possible pairs (5, e) to two. Moreover,

the completeness of the backdoor rests on using S\k/2, which is the same number

of bits that the classical Wiener's low decryption exponent attack (Theorem 6.3.1)

effectively embeds.

This situation of t = 1 makes CS-3 appear needlessly complicated, because it has

more structure than CS-1. Moreover, the completeness of CS-3 is for the most part

guaranteed by ^ being invertible, rather than via Theorem 6.3.4, since the latter is

204

used on only two possible values of (5, e). Overall, this version encrypts nearly fixed

information that allows to eventually factor n u . Nevertheless, this slightly different,

if complicated and inelegant, version, that we now denote by G[, does feature an

interesting cardinality. Because n : r2 G {0, l } s / 2 and s = 2 (^ - 1) < 2 (^ - l) ,

there are

A/-Gi,e « 23fe/2

backdoored keys. This is the largest cardinality so far.

11 Note that the required (approximate) k/2 bits is the same number as the one of
bits of p that are required to factor n, via Coppersmith's Theorem 6.1.8. This is no
coincidence since Theorem 6.3.4 rests on Theorem 6.1.8. The latter theorem is also
used by one of Howgrave-Graham's backdoors (Figure 6-2).

205

6.3.4 Fourth algorithm: via hiding p in n

The fourth algorithm improves on both versions of PAP (Figures 6-5 and 6-10),

in terms of indistinguishability and simplicity.

PARAMETERS:

• (3 is a fixed secret key.
• np : {0, l}2fc —> {0, l}2fc is an assumed cryptographic permutation.

Algorithm CS-4 [RSA key gen]
1: Pick a random e G Z22k.
2: Pick r p p of size = k s.t. gcd(e,p — 1) = 1.
3 : Pick a random odd q' of size = k set n' := pq'.

k k

4: Set T = n'~\i and ft = ^ (p] ?) .
5: whi le gcd(e, q — 1) > 1 or q is composite d o

5fc

6: Pick a random odd X € { 0 , 1 } T .
7: Set n = (r:fJ,:X).
8: Set q - \n/p\.
9: Compute d = e _ 1 mod ^>(n).

10: return (p, q,d, e).

Algorithm A-CS-4 [Key retrieval]
1: Input of (ra,e).
2: Compute p] ^ = 7r^ 1(n]"4"J^).

3 : Factor n = pq [Theorem 6.1.8].
4: return d.

Figure 6-18: [CS03]: a backdoor for RSA using the hiding of p in n.

Algorithm properties. The key generation algorithm (Figure 6-18) pro­

duces instances of n that are the product of a truly random p and a somewhat

random q such that:

- the upper k/A bits of n have the correct distribution of such a product;

- the middle k/2 bits of n are an encryption of p's k/2 most significant bits;

- the lower k/A bits of q are randomly chosen so that q is prime.

This configuration insures that approximately well distributed n and q can be

found such that p is preserved in n. The length of the middle bits is determined by

the minimum (known) number of bits of p that are sufficient to recover itself entirely

(via Theorem 6.1.8). In the loop from Steps 5 to 8, the k/4 lower bits of q are

206

effectively randomized until q satisfies some conditions. This randomization affects

up to the (number of bits of p)+k/4 = 5/c/4th bit of n (this is why the random choice

of Step 6 is on these bits). Therefore, there remains 2k — hk/4 — 3/c/4 bits to store

information in n. The next k/2 bits are occupied by the information corresponding

to p, as just described. After this, there remains 3k/4 — k/2 = k/A upper bits of n

on which the only requirement is that they be distributed as a product of two prime

numbers.

Confidentiality. This property rests on the one-wayness of the permutation,

irp.

Completeness. This property is based on Theorem 6.1.8.

Symmetry. Algorithm (CS-4, A-CS-4) is a symmetric backdoor with secret

key/3.

Cardinality. The number of n is counted. It is the concatenation of three

parameters, T : /i: A, each being depend on p.

Count the number of /x, which is a permutation of p]z. Equivalently, count the

number of p]*. Assuming that the bit distribution of primes p are uniform for a bit

length of k, each fc-bit string has a probability about

2k

of being prime, by Example 2.2.6. We consider a total of 2fc//2 such strings (and only

their upper halves), so the expected number of those strings that are prime is about

207

Count the number of r . Not only fi depends on p, the two other parts of n do

as well, since at the end, p\n. Thus, on Step 4, r = n'"]*, of which one expects that

| • | = k/8 bits are free.

Count the number of A. Before the loop from Steps 5 to 8, r: / / is fixed. At the

end of the loop, a A is selected such that p\n, i.e.

p\r:fj,:X.

The ratio

n/p

has k bits. Because p\n', the division in the \r\ = k/A upper bits carries through

directly. The middle bits of n, denoted //, are fixed, so only with negligible probability

does the division within these bits carry through directly. Thus the choice of A almost

always compensates for the fixed \i. This means that the division by p affects

N = \n/p\-\r\

= k-\k
4

bits in A. Therefore there remains

\X\-N = \k-\k

- h

208

file:///X/-N
file:///k-/k

free bits in A. The final number of A is further reduced by the exit conditions of the

loop. The first condition to satisfy, gcd(e, q— 1) = 1, does not significantly affect this

number, as explained previously. The second condition that q is a prime accounts for

the rejection of about 2lgfc values, as previously argued. Therefore, the final number

of A is 2*"1*fc.

Summing up the numbers for the three parameters, r : /i : A, the generable

number of n is

W = #M-#M-#{A}

^ 2fc/8 . 2fc/2_1sfc . 2k/2~lgk

_ 2 i f e - 2 I s f e .

In the ratio of the cardinalities oiKSM and KS, the #{e} terms can be canceled

so that

TlGl » 2~ik.

Distribution properties. The key generation algorithm produces instances

of n that are the product of a truly random p and a somewhat random q. Amongst

other qualities, the upper k/4 bits of n have the correct distribution of such a product.

The middle bits, fj,, are distributed pseudo-randomly, given the assumption on 7173.

Therefore, CQX ~ 0, although further knowledge on the precise distribution of the

product n should determine whether this value is truly negligibly small.

Entropy of embedding. At first, it seems that the entropy is bad: if p

is fixed, n is too. Improving the entropy requires only a minor modification to the

generation algorithm. It suffices to use some of the bit length of the other parameters,

209

r and A, used to generate n within the generation of //. Since the bits of r are more

significant, it is preferable to use the ones of A, say \r\ bits. Then the middle part of

n is generated as
fc

Mpl3:r).

Prom the pseudo-randomness of the np function, the middle pi bits of n are

pseudo-randomly distributed. The same does not apply to the lower bits A, as they

must be adjusted so that q is prime. The upper bits r are by definition correctly

distributed. This yields the evaluation: 0 < H.GX < 1> given irp.

Generalized key regeneration and variable correlation. This property

is not satisfied unless some randomness is included in the generation of fi, as for the

easily modified version of the PAP algorithm. This is the same modification that is

suggested in Entropy of embedding.

Most cases are simple. If n is kept fixed then e is regenerated by simply being

picked at random: e €{/ %lrny If P (and possibly e) is kept, then it needs to be

insured that the value of p is embedded in the new n. This is where the modification

suggested in Entropy of embedding is useful. The bits r are regenerated and the value

of

changes so that coherent and new values of n and q can be generated from the same

p as in the previous generation.

The only special case is when q (and possibly e) is kept, but p is regenerated.

Then the roles of the primes are swapped, so that the old q is embedded in the new

210

n. The new p is generated in the same way as the old q had been, and becomes a

function of this same old q.

Complexity. Suppose that the same modification that is suggested in Entropy

of embedding is applied. First consider the generation of e. If it is regenerated alone,

then it is simply picked at random: e Eu ^4,1 ny If it is generated with one or both

of the other parameters, one or both of the gcd checks is done within the other

parameter(s)' generation. In either case,

Te{Gx) = te.

The most costly situation for the prime generation is when e is kept fixed: the

complexity te is still accounted for because of the gcd checks of Steps 2 and 5. In fact,

both steps combine one of these gcd checks with a primality check, which effectively

multiplies their complexities. Overall, the worst case average complexities are:

Tp[G\) = tpte

and

Tq{Gx) = tq,+T(Trf,) + tq-te

= tq-te + T(irp).

The complexity is rated "poor" because it is more than linear but less than quadratic

in the complexity of Go-

Memory. No use of additional memory is made.

211

Computational assumptions. The algorithm uses a family of pseudo-random

functions, irp, which is not explicitly provided.

Simplicity. This algorithm is simpler than PAP, which is rated LS-MS. How­

ever, its structure is not as close to the one of the honest algorithm as other algo­

rithms.

confidentiality
completeness

indisting.

asymmetry

diversity
KGl

cGl
v G l
T^G!

GKR
side-
channels

complexity

memory
computational assumptions
simplicity

yes: one-way np
yes: Corollary 6.1.8

good

good

no: /? is secret
2-ik-\r\

0, or negl. small, pseudo-random ixp
1
0 < Ti-Gi < 1) pseudo-random itp
yes
Tp(Gi) = tpte

Tq(Gi) =tq-te + T(np)
Te(Gi) - te

no
one-way, pseudo-random wp
LS

poor

good

good

poor

good

poor /

F-rel.

good

average

good

Table 6-13: Properties of Algorithm CS-4 of Figure 6-18. The analysis is done with
the trivial modification suggested in Entropy of embedding.

212

6.3.5 Fifth algorithm: via Slakmon's variant of Wiener's Theorem

In [CS03, Section 5.1], n is instead used to encrypt the k/3 « \n — 4>{n)\ — 2fc/3

most significant bits oln — <j){n) (instead of k/2 msb's of p required by Coppersmith's

method). Then a variant of Wiener's method, Theorem 6.3.5, allows to recover

hidden exponents d up to size

|n^-0(n) | - (2fc /3) /2»2fc /3 .

This improves on both Wiener and Boneh-Durfee methods [BDOO], because expo­

nents d up to n0 3 3 3 may be used and broken.

De Weger [dW02] and Slakmon [SlaOO] have considered the algorithm of Wiener

in a context where the primes p, q are partially known. In particular, [CS03] uses the

following result of Slakmon.

Theorem 6.3.5 ([SlaOO], Proposition 3.2.1) Lett be an integer in the range [1,

..., \n — <p(n)\] and d be an integer in the range [1, ...,2ln-<^n)l-*/2]. Suppose we are

given (n,e), and the \n — 4>{n)\ — t most significant bits of n — (f>(n). Then we can

factor n in time poly(k).

Algorithm properties. Figure 6-19 is mostly the pasting together of Fig­

ures 6-18 (Algorithm CS-4) and 6-14 (Algorithm CS-1). However, as opposed to

CS-4, both p, q' are picked as random primes. This is so that the most significant

bits of

n'-<j>{n')=pq'-{p-l){q'-l)

213

PARAMETERS:

• p is a fixed secret key.
• 7T/3 : {0, l}2fc —> {0, l}2fc is an assumed cryptographic permutation.

Algorithm CS-5 [RSA key gen]
1: Pick rp p,q' of size = k and set n ' := pq'.
2: Set r = n '] ^ and n = irp Un' - </>(n'))l^)-
3: while q is composite d o
4: Pick a random odd A 6 {0, l } f e .
5: Set n = (T-./X-.X).

6: Set q = [n/p\.
7: repeat
8: Pick a random S G %*,, s s.t. S < n 1 / 3 .

9: Compute e = 5 _ 1 mod </>(n); e = 7r,g(e).
10: until gcd(e, </>(n)) = 1.
1 1 : Compute d — e _ 1 mod tj>(n).
12: return (p,g, d, e).

Algo. A-CS-5 [Key retrieval]
1: Input of (n,e) .
2: Compute (n - 4>(n))]3 = 7rJ1(nlfcjfc).

3 : Factor n = pq [Theorem 6.3.5].
4: return d.

Figure 6-19: [CS03]: a backdoor for RSA using the hiding of n — 0(n) in n.

approximate the ones of n — <p(n) = pq — (p — l)(q — 1). Note that q' is prime is key

for <p{n') to approximate n'. If q' is not prime, then (j)(n') is not a factor of q' — 1.

By the choice of r, it holds that n]2fe/3 = n']2fc/3, so q]k/3 « q'~\k^ and

(n-4>{n))fk/3^(n'-^(n'))fk/3.

Therefore, the equality holds for the latter with only k/3 bits. Consequently, in

Step 4 of the generation algorithm, n's middle part is the encryption of n — 4>{n).

Confidentiality. This property rests on the one-wayness of the permutation,

7T/3.

Completeness. This property is based on Theorem 6.3.5.

Symmetry. Algorithm (CS-5, A-CS-5) is a symmetric backdoor with secret

key p.

214

Cardinality. Cardinality is accounted for similarly to the algorithm of Fig­

ures 6-18. The number of n is counted. It is the concatenation of three parameters,

r:fi: A.

Count the number of //, which is a permutation of {n! — (f>(n'))]3. Equivalently,
k

count the number of (n' — 0(n'))]3. Assuming that the bit distribution of primes p

are uniform for a bit length of k, each A;-bit string has a probability about
7r(2fe)

2k
2-igfc

™, k

of being prime, by Example 2.2.6. The number (n' — 0(n'))]3 is a function of the

upper bits of the product of two such primes, so it is determined by each of their
k

k/6 upper bits. This yields a total of 2a such strings if primality was not involved,

so the expected number of those strings that are prime is about 23~lgfe.

Count the number of r . Not only fi depends on p, the two other parts of n do

as well, since at the end, p\n. Thus, on Step 4, r = n']3fc, of which one expects that

\'\k = \k bits are free.

Count the number of A. Before the loop from Steps 3 to 6, r : / / is fixed. At the

end of the loop, a A is selected such that p\n, i.e.
P\T:/J,:X.

The ratio

n/p

has k bits. Because p\n', the division in the \r\ = |fc upper bits carries through

directly. The middle bits of n, denoted /j,, are fixed, so only with negligible probability

215

does the division within these bits carry through directly. Thus the choice of A almost

always compensates for the fixed //. This means that the division by p affects

N = \n/p\ — | T\

= k ~ \ k

- h

bits in A. Therefore there remains

\X\-N = fc-|*

- h
~ 3

free bits in A. The final number of A is further reduced by the exit conditions of the

loop. The first condition to satisfy, gcd(e, q— 1) = 1, does not significantly affect this

number, as explained previously. The second condition that q is a prime accounts for

the rejection of about 2lgfe values, as previously argued. Therefore, the final number

of A is 2§fc-lgfc,

Summing up the numbers for the three parameters, r : fj, : A, the generable

number of n is

W = #M-#M-#{A}

w 2^k • 2%~lgk • 2§ f c - l g f c

_ 2 l f e - 2 1 g f c .

216

Finally, because of the combination of the two methods, the number of e is also

accounted. It holds that #{e} = #{5} = 22fc//3, similarly as for the first method for

which this number is 2fe/2.

In the ratio of the cardinalities of KSM and KS, no pair of factors can be

exactly canceled. Overall,

= 2~2k.

Comparison. Compare the cardinality of this algorithm, CS-5, with the pre­

ceding one, CS-4. CS-5 has a higher approximate #{n} , because 2tk > 2»k. This

is because CS-5 reduces the amount of backdoor information to be encrypted in n,

even though this information also fixes other parameters in the cryptosystem, p for

instance. However, CS-5 has a lesser #{e}, since d is constrained via the acceptable

size of 5.

Distribution properties. This property and its argument are similar to the

ones for the preceding algorithm. Nevertheless, CS-5 increases the security of the hid­

den prime method, because it leaves more bits that can be distributed appropriately

in n.

Entropy of embedding. The same analysis as the preceding algorithm ap­

plies.

Generalized key regeneration and variable correlation. The analysis

does not require the modification applied to the preceding algorithm, CS-4. As the

217

result of the choice of backdoor information, CS-5 immediately satisfies GKR: if only

one of the primes changes, /j, changes as well.

Concretely, consider the case when p is fixed and a new q (and possibly e) is

requested. The backdoor information to be embedded is \i = rrp f(n' — <f)(n'))}3 J,

where n' = pq', so there are many values of fi associated to the same p. The genera­

tion algorithm (likely) directly produces new and independent /u, and then q.

Even if 8 is of a special form, other parameters that are usually independent

remain such, and this has no effect on GKR.

Complexity. As the result of the combination of two algorithms, CS-5 suffers

the high computational complexity of the first algorithm, CS-1. The complexity is

similar to the one of the algorithm of Figure 6-14. For the generation of e:

Te(Gi) « te(te+T(lTp))

= tt + te-Tfo).

For the generation of n:

TP(G\) — tp

and

r ,(Gi) = tql+T(TTP) + tq

= tq + T(n0).

The complexity is rated "failed" because it is quadratic in the complexity of Go-

Memory. No use of additional memory is made.

218

Computational assumptions. The algorithm uses a family of pseudo-random

functions, 7173, which is not explicitly provided.

Simplicity. As the result of the combination of two algorithms, that the back­

door relies on special forms of both n and e yields increased structure (less simplicity).

In particular, %p is used in both public parameters.

CS-5 is more complicated than CS-4, which is rated as LS-MS. This is due to

steps in the generation of e, in addition to the steps in the generation of n, which

are similar in both algorithms.

confidentiality
completeness

indisting.

asymmetry

diversity
nGl
Car

vGl
H d

GKR
side
channels

complexity

memory
computational assumptions
simplicity

yes: one-way np
yes: Theorem 6.3.5

good

good

no: /? is secret
2~'2k

0, or negl. small, pseudo-random -Kp
1
0 < Hd < 1, pseudo-random np
yes
Tp(Gi) = tp

Tq(G1) = tq + T(np)
Te(Gi) « i*+ ie • Tfo)
no
one-way, pseudo-random np
MS

failed

good

good

poor

good

failed

good

average

average

Table 6-14: Properties of Algorithm CS-5 of Figure 6-19.

Discussion on the optimal length of n's parameters. The goal is to

determine the optimal parameter lengths, that is, the ones for which the cardinality

of the backdoored key set is maximized. For this purpose, suppose that n' = pq'

and n are generated similarly as in the preceding two backdoor algorithms, but, for

simplicity, the validity probability when sampling prime numbers is ignored.

219

Suppose that n = T:/J: A, with \T\ = vk, \n\ = xk, and |A| = wk, for parameters

v, x and w € R such that x,v,w > 0 and x + v + w = 2. Let r = n']vk. Let fx fix xA;

bits of n and suppose that, as in the previous two algorithms, fixing /i determines

half the bits of r. Let A be tunable in order to insure that n — pq. Therefore, there

remains wk — (k — |r|) = (w + v — l)k undetermined bits in A.

The total number of free bits in each parameter is

M - H*

\fi\ — xk

|A| = (w + v-l)k.

Finally

\n\ = \— + x + (w + v — l) k=ix + w+-v — l)k

v

~ 2 + L

Therefore, for best distribution of n and the maximum cardinality, the designer

should choose r as large as possible. This is related to choosing fi as small as

possible, because it leaves more space for the other parameters. However, \fi\ = xk

is dependent on available theorems, so let the minimal known x be fixed. For A, the

designer insures that w is such that |A| = (w + v — l)k > 0, where the inequality is

strict so that many choices of LSB of n are produced. Suppose that |A| = ek. Then

the optimal v = 2 — x — e and the corresponding number of generable n is

#{n} = 22-(*+£)/2.

220

6.3.6 Choices of permutation, np

Throughout our exhibition of Crepeau and Slakmon's results, the choice of irp

was left open. Nevertheless, suggestions are included in the original paper. Because

some results of Chapter 7 are extensions of these suggestions, we exhibit and comment

them in this section.

Hidden (5, e) algorithms. As usual, let e = ftp(e). [CS03] suggests three

types of np.

1. The first one consists in the xORing with the secret key, (3, or a simple modi­

fication of it (to match lengths).

itp{x)=x®(2(3)\\x\

taking into account that the LSB needs not be flipped, so /5Ji = 0.

2. The second one consists in using cryptographic primitives.

np(x) = DESp(x) or np(x) = AESp(x)

but these introduce more computational complexity and extra computational

assumptions. To avoid this, one can use a more RSA-like permutation:

TTp(x) = x"1 mod j3

where (3 is prime or a product of a small number of primes such that n^1 can

easily be computed.

3. The third suggestion consists in different variations of additions and modulo

operations involving /?.•

221

(a) If the modulo changes with each n, then it is more indistinguishable. If

an even modulo such as n + 1 is taken, then the odd integers are mapped

to themselves. Since (n + 1) — <j){n) = p + q which is exponentially small

w.r.t. 4>(n), the probability that a permutation modulo n + 1 maps an

element to a value greater than (f){n) is negligible. For | max n < (3 <

maxn, let

Trp(x) = (x + 2P)mod(n + l).

However, this was broken by Vaudenay [Vau]. Suppose a small prime r

such that

r\(f>(n) and r\n + 1

then this 12 implies gcd(e,r) = 1 and gcd(e, r) = 1. In particular,

gcd(e, r) 7̂ 0, so there exists a small value, e < r, such that the following

holds:

e ^ 2/3 mod r

unless r\2(3, in which case

e = e mod r

which is uniformly distributed, so unlikely to happen.

Unless this unlikely case holds, it suffices for the distinguisher to test a

small number of (e, <f>(n),n) in order to tell backdoored keys apart. Pick a

12 For non-backdoored keys, this is true with probability about 1/r2. Then a dis­
tinguisher can.expect to efficiently test what follows.

222

small prime r such that r\(f)(n) and r | n + l . If the keys are non-backdoored,

then with probability about 1/r2, it holds that e ^ 2/3 mod r, so the values

of e modulo r are uniformly distributed and in particular, do not avoid any

given value. If the keys are backdoored, then it holds that e ^ 2/3 mod r,

so there exists a value of e modulo r which is constantly avoided.

(b) A more general permutation can use extra hidden parameters. Notice

that n + 1 — 2^/n is always an upper bound on 4>(n) and thus

7T/3,/i(̂) = {x + 2/3) mod (n + 1 — 2m)

may also be used, where m = /i mod L\A Ĵ f° r a fixed /x, such that

Vmaxn < /j, < 2yjm.ax.n, i.e., /x is an arbitrary constant at least half

the size of the largest generable n.

(c) Adding secret parameters may however be the cause of distinguishability.

Let a be such that 1 < a < maxn and generalize x + 2/3 to

TTn.a,/?,^) = ((2 a + ^)X + 2^) m ° d (™ + 1 - 2m).

If gcd(2o; + 1, (f>(n), n +1 — 2m) > 2, given two different sets of exponents,

but with the same modulus (p, q, e, d) and (p, q, e', d'), a distinguisher can

compute e' — e which is the same as (2a + l)(e' — e) up to a multiple of

(n+1 — 2m). The distinguisher could then notice that gcd(e'—e, 4>(n)) > 2

all the time which is unusual, despite the fact that /j, and j3 are unknown.

Summing up, suggestions 1, 2 and 3(b) are the most promising. Another ex­

ample of potentially useful non-algebraically-based functions are bit permutations.

223

However, they turn out to be too complicated, if portions of the bits are constant,

which may be the case in particular with GKR. A keyed permutation would be

necessary, and this suffers complications similar to a pseudo-random function.

Hidden p algorithm. In this case, let n = ^ (p) . The preceding suggestion 1

cannot be used because XORing two instances of backdoored keys, (n,p) and (n',p'),

allows to match strings as follows.

(n'en)frjfc = (p'©p)"^

The second suggestion's RSA-like permutation cannot be used directly, because

it yields multiples of /?, hence after few trials, /? itself via gcd computations. Math­

ematically, this is:

3fc k k —1 k

n]"^Jfep]2 - 1 = (p]a mod /?) • p|2 - 1 = k(5 + 1 - 1

where k > 0 is a constant.
k

An effective counter-measure is to pad p~* with random bits, as it was done to

improve entropy, in the Discussion paragraph of Subsection 6.3.4. Mathematically:
n = ir^(p : r)

for some random bits r.

In [CS03], a modification of suggestion 3(b) is preferred. It consists in computing
k

of a modular inverse modulo a fixed predetermined prime near 2* and XORing with

a fixed string:
pAx) = (x © (2M)J||) m o d P

224

or

irpAx) = fa"1 m o d P) ® (2AOJ|/?| •

This thwarts both preceding problems, but suffers from a different problem. For

given p, n, there are a lesser number of choices of q than normally. The distinguisher

may be able to tell that g's distribution is unusual. This happens with a lesser chance

if the preceding suggestion, with padding, is used. Mathematically:

*PAX) = (x ® (2v)\\x\) m o d P : r

for some random bits r, or

npAx) = (x~l m o d P) ® (2A*)J|/s| : r-

for some random bits r.

6.4 Chapter notes

Section 6.1. Simple algorithms. The notes are divided per subsection.

Subsection 6.1.1. Anderson-Kaliski backdoors. The masters project of

J. Cho covers the Anderson backdoor in details [Cho04, Section 2]. A statement

and proof of a special case of Theorem 6.1.5, also known as Dirichlet's Theorem

on Primes in Arithmetic Progressions, is found in [DF91, p.469]. The well-known

theorem on the continued fraction expansion, given as Theorem 6.1.1, can be found

stated and proven as [HW79, Theorem 184].

Subsection 6.1.2. Howgrave-Graham backdoors. Corollary 6.1.9 is im­

plicit in [HG01, p. 52]. Both backdoors of this section are very implicitly described

(backdoors are not the main topic of this paper).

225

Section 6.3. Crepeau-Slakmon algorithms. In the original paper of Crepeau

and Slakmon [CS03]:

- Algorithm (CS-1, A-CS-1) is denoted as (CS-3.1, CS-3.2);

- Algorithm (CS-2, A-CS-2) is denoted as (CS-3.2, CS-3.4);

- Algorithm (CS-3, A-CS-3) is denoted as (CS-3.5, CS-3.6);

- Algorithm (CS-4, A-CS-4) is denoted as (CS-5.1, CS-5.2);

- Algorithm (CS-5, A-CS-5) is described in Section 5.1 of that paper.

Subsection 6.3.5. Fifth algorithm: via Slakmon's variant of Wiener's

Theorem. The backdoor of this section is implicitly described in [CS03], probably

because it bears much resemblance to other explicitly described backdoors.

Subsection 6.3.6. Choices of permutation, 717?. Most of the information

is taken from [CS03, Sections 4 and 5] as well as [Vau].

226

CHAPTER 7
Improved algorithms

In this chapter, we present new backdoored key generators that supersede the

existing ones. Our generators improve on three critical aspects which were introduced

in Chapter 5 and used in the previous chapter to compare the previous works.

Diversity and complexity. Consider the RSA backdoored key generators of

Chapter 6 that passed all the criteria of Chapter 5 1 . All of these algorithms have a

quadratic time complexity and some have a low cardinality as well. We present the

first generator that passes all the criteria and that features a linear time complexity.

Comparable improvements for EG backdoored key generation are also shown.

Generalized key regeneration. The first EG backdoored key generators that

support generalized key regeneration are presented 2 . Of course, these generators

also pass all the other criteria.

Asymmetric encryption function. The first RSA and EG backdoored key

generators that pass all the criteria and that use an asymmetric encryption function

are presented.

1 One could make abstraction of the entropy measure, Hd, as it is more an ad­
ditional desirable feature than a failure criterion. However, in the documented algo­
rithms, failure of this criterion is always paired with the failure of other criteria.

2 For RSA, this was achieved in [CS03].

227

7.1 First improvement: complexity, then diversity

In this section, we use a new extension of Wiener's Theorem and a generalization

of a theorem of Boneh, Durfree and Prankel, itself based on Coppersmith's lattice

factorization, to obtain an RSA backdoored key generator with better complexity and

diversity. Firstly, this new generator produces keys in time linearly related to the time

of the honest algorithm. Secondly, the generator can produce a greater number of

generable keys that are at least as secure, thus increasing the key diversity. For a fixed

"backdoor secret key" (the information held by the party making the backdoors),

the diversity of backdoored public keys is improved in that they are closer to the

distribution of honest public keys.

Our results improve directly on the results of Crepeau and Slakmon, in par­

ticular [CS03, Algorithms (3.1, 3.2) and (3.5, 3.6)]. These algorithms are given in

Subsections 6.3.1 and 6.3.3, respectively, and denoted as (CS-1, A-CS-1) and (CS-3,

A-CS-3). In this series of results, the publicly known e is typically a private function

of an unknown, hidden e. Learning e typically implies the discovery of S and d.

7.1.1 Outline of the first improvement

Subsections 7.1.3 and 7.1.4 present four new hidden exponent methods for an

RSA key generation algorithm. The first algorithm, which is the simplest, serves

to demonstrate the achievable computational complexity of this type of algorithms.

The time complexity of all four algorithms is the same as that of the first one (Sub­

section 7.1.3), as they are very closely related.

First, we show the following proposition. It is an improvement on previous

comparable backdoored key generators.

228

Proposition 7.1.9 [Running time - informal] It is possible to generate cheating

keys in time linear in the honest algorithm's running time.

The second and third algorithm are meant to build intuition, leading to the

fourth one. This is the strongest of the results, and uses no additional cryptographic

assumptions. The first two pairs of algorithms, (Gi,Ri) and (G2, R2), yield simple,

general backdoor methods with a choice of permutation function. The other two

pairs of algorithms, (G3, R3) and (G4, R4), are consecutive generalizations of [CS03].

Alternatively, this result can be seen as an improvement on Wiener's attack on RSA

small public exponents, and more precisely on the one of Boneh, Durfree and Prankel

that uses parts of the private exponent [BDF98].

Proposition 7.1.10 [Diversity of backdoor keys I - informal] Within this

time constraint it is possible to generate about n3/4 keys, and this is closer to the

total number of possible honest keys than before. This refers to the number of pub­

lic/private keys generable per secret key of a backdoored key generator (as it is usual,

thus far).

Proposition 7.1.14 [Diversity of backdoor keys II - informal] This second

result is improved, because for a different secret key (3, the generated keys are almost

distinct. Thus, almost all keys can be backdoored, so for a random (3, the backdoored

keys are distributed closely to the honest ones. This is not achieved for a fixed (3, in

which case Proposition 7.1.10 applies.

As explained in details in Subsections 7.1.4 and 7.2.4, the resulting diversity is

increased. This comprises the number and distribution of the generable keys. The

last two propositions imply that the backdoored keys reach almost all honest keys.

229

direct results

Wiener's Theorem

Theorem 7.1.3-^improved diversity (Prop. 7.1.14)

Figure 7-1: Illustration of the first sequence of improvements. Compare with Fig­
ure 7-10.

Subsection 7.1.2 presents two new extensions of Wiener's Theorem for RSA small

private exponents, on which all four algorithm that follow rely. The generation

algorithm Gi, creates a random backdoored pair of private and public exponents,

(8, e), with small 8, and transforms it into a random-looking private and public

exponent pair, (d, e). This pair is related to (8, e) in a secret way that only the

designer may invert with the retrieval algorithm Ai. From public knowledge of (e, n)

only, the designer may recover e, break the easy instance (e, n), and compute 8.

The factorization of n is obtained via standard techniques, once 8 and e are known:

(expectedly) efficiently via a probabilistic algorithm [Mil75], and in polynomial time

although quite inefficiently via a deterministic algorithm [May04]. This is the same

as in the [CS03] algorithms, as detailed and illustrated in Subsection 6.3.1.

Theorems 7.1.3, 7.1.7 [Generalizations of Wiener's Theorem - informal]

Suppose that 8 is small enough, and that n as well as an additive approximation e

running time (Proposition 7.1.9)

key diversity (Proposition 7.1.10)

230

to e are given. Then one may efficiently find n (defined as K — 4nx) as well as S.

Furthermore, if 5 is prime, then one may efficiently factor n.

At first, the algorithms may seem very intricate, especially considering that there

have been simpler proposals. Nevertheless, as our algorithms avoid leaving all the

security (i.e., the indistinguishability issues) to an encryption function, they require

less structure. By using "trivial" encryption functions, we obtain more direct results.

This however does not rule out the existence of simpler algorithms. More properties

of backdoored key generators are considered in order to differentiate them in terms

of strength and quality in Section 7.5.3

Finally, our best result, given by algorithm (G4, R4) relies on less computational

hypotheses. More precisely, Algorithm G3 leaves the choice of permutation open,

while G4 incorporates a specific permutation with desirable properties.

7.1.2 Preliminary results: new extensions of Wiener's Theorem

Each result in this section uses Wiener's Theorem [Wie90], in one form or an­

other. A sketch of proof of this well-known theorem is given at the beginning of

Section 6.3. Recall that K is such that

e8 — K(j)(n) — 1.

It is a parameter which is useful in Wiener's Theorem (Theorem 6.3.1), as well as in

some of our propositions.

Following is a first generalization of Wiener's Theorem 6.3.1, from Blomer and

May [BM04, Theorem 2]. It deals with cases where e is such that

e8 = cmod 4>{n),

231

where c is generally not equal to 1. The significance of this generalization is that it

works for all exponents

e = cS_1 mod <p(n),

where c and 8 are sufficiently small. As shown in that paper, it follows that there

are at least n3//4 such "weak keys" and that this number increases with decreasing

prime difference p — q.

Theorem 7.1.1 ([BM04], Generalized Wiener's Theorem) Suppose that 7 <

1 and p — q> ^n1/2. Given an e £ ^sin)' that satisfies

e5 = c mod <fi(n)

such that

0 < 8 < \ n1 /4 and \c\ < jn~3/Ae5

then n can be factored efficiently.

The conditions of Theorem 7.1.1 imply that e8 — c ^ 0, therefore excluding

trivial congruences: since 7 < 1, then \c\ < e5. Letting e5 — c = «</>(n), this in turn

implies K > 0.

The main components of this generalization's proof are reproduced here. They

are useful for reference in the proof of Theorem 7.1.5.

Proof outline:

- The unknown parameters 8, K can be found among the convergents of the continued

fraction expansion of e/n (e.g. [HW79, Theorem 184]).

- From 8 and K, an approximation of p + q is computed.

232

- From an approximation of p + q, an approximation of p — q is computed.

- Combining both approximations yields an approximation of p, which in turn leads

to the factorization of n via Coppersmith's Theorem (Corollary 6.1.8). •

In fact, one of the hypotheses of Theorem 7.1.1 is not required. The first compo­

nent of the preceding outline is proven without using that e G %l(n) • This is useful for

building backdoored key generators. This proof is reproduced following the updated

theorem.

Theorem 7.1.2 (Generalized Wiener's Theorem, updated) The statement of

Theorem 7.1.1 holds for e G Z^(n) in general.

Proof of the outline's first component: An e G Z^(n) that satisfies e8 = c mod

4>(n) is given. Note that if gcd(e,<fi(n)) = x ^ 1, then x\(e5 — K(j)(n)) = c. This does

not affect the following.

Via the definition of <j)(n), one has

eS — c = K(j>(n) = K,(n — p — q + 1) (7.1)

and, dividing the LHS and RHS by nS, one obtains

e K K(P + q — 1) — c
n 8 n5

If 5 and c are the minimum values that satisfy e8 = c mod 4>{n) then j is a

fraction in lowest term. To see this, assume that it is not the case, so gcd(«, 6) —

x 7̂ 1. Then Equation 7.1 is divisible by x and therefore 8 and c are not minimal,

which is a contradiction.

233

Then, by the continued fraction theorem (e.g. [HW79, Theorem 184]), the

fraction | appears in the continued fraction expansion of ^ if

1 e K

n 8
< 252 '

It remains to show that \n(p + q — 1) — c\ < | | . We have

K(p + q-l) + c < ^--^n^ + ^n-^eS (7.2)
4 <p{n)

< ^Sn^ + Sn1/*
4

< 35n1/2 (7.3)

where Inequality 7.2 comes from p + q < 2n}/2, the bound on c in hypothesis, and

the following approximation of K. This variable is isolated as

e5 + c

and approximated with \c\ < 7n -3/4e5 and n > 212, yielding

5 cS
K-Acf>(nY

Inequality 7.3 also holds for n > 212. That bound on n comes from that we

can assume that n > (8/c)4, otherwise p — q e 0{n1/A) in which case Fermat's

factorization algorithm succeeds in polynomial time.

It remains to show that the RHS of Inequation 7.3 is bounded above by

SSn1/2 < £ i.e. 8<^nl'\
25 ~ y/6

234

The bound on 8 in hypothesis is slightly stronger: 5 < | n1/4. So the requirement of

the theorem on continued fractions (e.g. [HW79, Theorem 184]) is fulfilled. •

A new extension to Wiener's Theorem is hereby contributed. This result is

the cornerstone on which new backdoored key generators rely. Nevertheless, the

result was deemed an extension, not a generalization, because it is easily deducible

from Wiener's Theorem, even though it is comparable and complementary to Theo­

rem 7.1.1. Suppose that the public exponent e is an approximation to a concealed

exponent e, so only e is known. In the case that e approximates e sufficiently closely,

one can efficiently derive (K, S) from (n, e).

In the following theorem, the parametrization with a, £\ and £2, is intended to

make the theorem and the derived algorithms as general as possible. For simplicity,

one can picture the following statement with £\ ~ 1/3, 2̂ = 1 and a = 1/4.

Theorem 7.1.3 (An extension of Wiener's Theorem) Let a < 1/4, £\ < |

and £2 s.t. ^(^2 + 3) < | . Any (n,e) related to (n,e), with concealed e, that satisfies

\e-e\<£2n
1-2a

such that

8<£ln
a

efficiently yields the values of K and 5.

Proof: From Equation 6.5 in the proof of Theorem 6.3.1, and since K < S and

a < 1/4, then

e K

n 5

3K Z£\

«JnV2 ^ Sn1/*

235

holds, so

e
n

K

~~8
<

<

<

<

e — e
[+

n

e
n

£2 34
n2a 5nllA

f2

1
35*

K

"5

(7.4)

(7.5)

where Inequality 7.4 holds because

nV4
< ^ < * '

nu «5'

and where Inequality 7.5 holds by hypothesis. From Equation 6.9 in the proof of

Theorem 6.3.1, this is sufficient to efficiently yield K and 5. •

Theorem 7.1.4 (An extension of Wiener's Theorem, updated) The state­

ment of Theorem 7.1.3 holds for e G Z in general.

Proof: That e e %!{„) *s n ° t u s e d in the previous proof. Only the bound on |e — e|

in hypothesis matters. •

Can both perturbations be applied to Wiener's Theorem concurrently? The

result of Blomer and May allows a multiplicative perturbation: ed = 1 mod 4>{n)

becomes eS = c mod <fi(n). Our result allows an additive perturbation: if |e — e| is

not too large then knowing e is sufficient to efficiently yield 6. This is complementary

to Theorem 7.1.1 in which a multiplicative perturbation of e is known. Combining

Theorems 7.1.1 and 7.1.3 together yields a situation in which e is the known additive

approximation to e, s.t. eS = c mod (f>(n).

236

This combination of theorems results in the following Linear Wiener's Theorem.

Next, we build a backdoored key generator, G[, that is based on this theorem.

Theorem 7.1.5 (Linear Wiener's Theorem) Suppose that 7 < 1, p — q > ^n1/2,

a < 1/4, £1 < I and £2 s.t. ^(^2+3) < | . Given (n, e) related to (n, e), with concealed

e, that satisfies

e8 — K(f>(n) = c (7.6)

such that

0 < 5 <£ma

\c\ < 7n-3/4e<5

| e - e | < Z2n
l-2a,

then n can be factored efficiently.

Proof: Only the first component of Theorem 7.1.1's proof (cf. Proof outline) needs

modifications, that is, that the parameters 8, K can be found among the convergents

of the continued fraction expansion of e/n. This can be done via Inequality 7.5,

obtained in the proof of Theorem 7.1.3. For this inequality to hold, it remains to

show that

e K

n 8

34
<

<5nV4

i.e.

3£in3/4 > \e8 — Kn\

237

so by Equation 7.6 and the definition of cj){n) = n — p — q + 1

Uxn
z/A > \(i${H?tf + c) - K(#rtf- p - q + 1)\

= \n(p + q - 1) + c\. (7.7)

The latter can be shown as follows. Almost exactly as in the first component of

Theorem 7.1.1's proof,

K(p + q-l) + c < ^-^-rn^ + in-^eS (7.8)
4 0(n)

< hn^ + Sn1'*

< 3Sn1/2 (7.9)

where Inequality 7.8 comes from p + q < 2n1//2, the bound on c in hypothesis, and

the following approximation of K. This variable is isolated in Equation 7.6

_ e8 — c

and approximated with \c\ < rfn~3^4e5 and n > 23, yielding \c\ < 2~9/4e5 and

rf(l-^) 3.rf
(f)(ri) A(j){n)

Inequality 7.9 also holds for n > 24. That bound on n comes from that we

can assume that n > (8/c)4, otherwise p — q G 0{n1^i) in which case Fermat's

factorization algorithm succeeds in polynomial time.

238

Because of the bounds on 8 and a, it holds that 8 < £tn
a < £xn

l/A. This

implies that the RHS of Inequation 7.9 is bounded above by

38U1/2 < 34n3 / 4 ,

which is the bound of Inequation 7.7 that was to be shown. So the requirement of

the theorem on continued fractions (e.g. [HW79, Theorem 184]) is fulfilled. •

Theorem 7.1.6 (Linear Wiener's Theorem, updated) The statement of The­

orem 7.1.5 holds for e G Z^(„). and e € Z in general.

Proof: Use Theorem 7.1.2 instead of Theorem 7.1.1; use Theorem 7.1.4 instead of

Theorem 7.1.3. •

We further generalize Theorem 6.3.1 by combining the Theorem 7.1.3 with the

one that follows. Recall, from the preceding chapter, that Boneh, Durfree and Prankel

showed several results allowing the recovery of the entire e given a small 8, n and

parts of e (this notation swaps 8 and e w.r.t. the one used in [BDF98]). These results

depend on one of Coppersmith [Cop97], which relates to Theorems 6.1.8 and 7.1.12.

Theorem 6.3.3 combined with our extension of Wiener's Theorem provides yet

another contributed theorem. Given that 8 is prime and small enough, one can derive

(e, 8) from (n, e), if an approximation e, to the public exponent e, is known. The

use of BDF's theorem is permitted by the fact that the approximation of e reveals

a number of its most significant bits. The parametrization with a was left out for

clarity.

239

Theorem 7.1.7 (Extended Wiener combined with BDF) Any(n,e) related to

(n, e), with concealed e, that satisfies

| e _ c | < I n i / 2
4

such that

8e[2k/2-3,...,2k/2~2}

efficiently yields the values of e and 5.

Proof: Let a = lx = 2̂ = V 4 in Theorem 7.1.3, yielding 8. If a = £2 = 1/4, then to

satisfy the hypothesis of Theorem 7.1.3, k\ < 2/\/39 = |-^/l2/13, is required which

includes l\ = 1/4. From e, one knows e]k and with t — k/2 — 3 in Theorem 6.3.3,

efficiently derives e. •

Theorem 7.1.7 means that not only Wiener's small decryption exponents are

weak, but also the encryption exponents that correspond to an approximation of a

small exponent.

Theorem 7.1.8 (Extended Wiener combined with BDF, updated) The sta­

tement of Theorem 7.1.7 holds for e € Z in general.

Proof: Use Theorem 7.1.4 instead of Theorem 7.1.3. •

7.1.3 Improvement of the time complexity

We proceed to show a basic strategy which provides a linear time complexity for

RSA backdoored key generators. Throughout this chapter, itp : Z<p(n) '—> %<i>(n) denotes

240

an invertible one-way, pseudo-random permutation such that given /?, computing TT7

is easy.

The key to the permutation is the fixed secret key /?, which remains the same for

all legitimate users. This is simply coherent with symmetric cryptography, although

it was not the case for the Anderson-Kaliski backdoor (Subsection 6.1.1): the secret

key A is picked randomly for each legitimate user (Symmetry paragraph).

Proposition 7.1.9 (Running time) The expected running times of some back-

doored key generators and of Algorithm GQ can be made of the same order.

algorithm

HG-1
HG-2
PAP
PAP-2
PP
CS-2
CS-3

figure
6-2
6-3
6-5
6-10
6-11
6-16
6-17

table
6-2
6-2
6-4
6-7
6-8
6-11
6-12

Table 7-1: Pre-existing backdoored RSA key generators that have linear complexity,
but assuming that a given cryptographic function has negligible complexity.

algorithm

Gi
Gi
G3

G4

figure
7-2
7-6
7-8
7-9

table

7-3
7-4
7-6
7-7

Table 7-2: New backdoored RSA key generators that have linear complexity, but as­
suming that a 7T/3 has negligible complexity in the first three cases only. Algorithm G4
is the only one not needing this assumption.

241

Algorithm Gi is the simplest backdoored key generator that satisfies Proposi­

tion 7.1.9, as follows. It is based on Theorem 7.1.1, unmodified except from the small

update of Theorem 7.1.2. Because it relies on a multiplicative perturbation of a weak

exponent, 5 _ 1 mod <fi(n), it is called a multiplicative backdoored key generator.

In Step 5, the hypothesis \c\ < ^n~3^4e5 of Theorem 7.1.1 is replaced by the

weaker condition \c\ < 7n1/45, which is necessary because e <n . To insure that the

original hypothesis is satisfied, a check is made in Step 8.

PARAMETERS:

• P is a fixed secret key.
• np : {0, l}2fc —• {0, l}2fc is an assumed cryptographic permutation.
• 7 is a constant that satisfies the hypotheses of Theorem 7.1.1: 7 < 1.

Algorithm G\ [Key generation]
1: Pick r p p, q of size k s.t. p — q > fn1'2.
2: Set n = pq.
3: Pick a random 6 € Z J (n) s.t. <5 < n 1 / 4 ^ .
4: d o
5: Pick a random c 6 %<j>(n) s-*- c 5= 7T11' 4(5.
6: Set e = c5~l mod 4>{n).
7: Set e = 7173(e).
8: until |e| < -yn-3/4e8 and e e Z £ (n) .

9: Compute d = e _ 1 mod 0(n) .
10: return (p,q,d,e).

Algorithm R\ [Key retrieval]
1: Input of (n,e) .
2: Factor n = pq from (n, 7r^ (e)) [Theorem
3 : Compute d = e~1 mod </>(n).
4: return d.

7.1.2].

Figure 7-2: Our first symmetric backdoor for RSA, using a generalization of
Wiener weak keys theorem of Blomer and May. The information on 5 is em­
bedded in e.

Essentials of proof:

Algorithm G\\ The function np is a permutation on the set Z^(n), keyed with the

secret j3 that "hides" the values of c. Its complexity is limited as to achieve the stated

result. In Step 1, the RSA primes p and q, are set such that p — q > ^n1/2, for some

242

7 < 1. The bounds on the choices of S and c (which together determine e), in Steps 3

and 5 are set so that (n, e) allows efficient factorization of n via Theorem 7.1.2.

Algorithm R\\ The pair (n, e) is public and knowledge of f3 permits the com­

putation of (n, e). In Step 2, Theorem 7.1.2 yields p and q because the following

conditions are satisfied, it holds that e5 = c mod <j)(n) with 0 < 8 < ^n1^4 and

\c\ < 7n-3/4e<5.

The running time of Algorithm Go is te as defined in Subsection 5.2.1. Consider

two quantities: the probability, P, that the inverse modulo 4>(n) of a random element

of Z«£(n) exists; and the expected time, E, of an inversion modulo 4>{n). We have found

te — E/P to be the total time of finding a random inverse in ^l/n\-

In comparison, the complexity of Algorithm Gi for e is te{G\) = 2te, that is,

linear in the one of Algorithm Go- Steps 3 takes time about l/P, because an invertible

element is picked, but without being inverted. Steps 3 and 6 would together take te

time if the latter step was not involved in the loop of Steps 4 to 8. Steps 5 to 7 are

equivalent to picking a random e in Z^(n), so the total complexity of Steps 4 to 9 is

about te. The total, with Step 3, is bounded above by te + te = 2te.

Because here the running time is dominated by the greatest common divisor

(gcd) checks and the inversion computations, the expected running times of Go and

Gi are both proportional to te. Also note that the generations of n of G0 and G\ are

the same. Supposing that T(n^) is negligible, the expected running times of Go and

G\ are of the same order. •

243

Algorithm properties. Algorithm G% is a generalization of CS-1. It uses

Theorem 7.1.1 (unmodified except from the small update of Theorem 7.1.2) instead

of Theorem 6.3.1.

Confidentiality. This property rests on the one-wayness of ixp.

Completeness. This property is based on Theorem 7.1.2.

Symmetry. Algorithm (d, Ri) is a symmetric backdoor with secret key f5.

Cardinality. Key diversity is increased as compared to CS-1, as more pairs

(5, e) are used for backdoor generation. There are

backdoored keys, if / (c, 5)

To show that /(c, <5) is approximately injective, one may show that the proba­

bility of collision is negligible. This is, for random (c, S) and (d,8'), the probability

that

f(c,S) = f(c',5').

Given e5 = c, the number of collisions (c', 5') for which eS' — d is the number of

quotients (|_;§J> L|>J) f° r a n integer D. So the number of collisions is approximately

the minimum value of S and c. Up to constants, the expected number of collisions is

244

~ # W - # { c }

« #{<5} • (2-3fc/2 • #{5} • #{e})

py ofe/2 . (o-3k/2 . o^/2 . 22k)

_ 23fc/2

c8~l mod 4>{n) is injective.

therefore

E[(c',8')} « PT[S<C]-E[S\+PT[S>C]-E[C]

max S . / m a x 5 \
max o + l max c

maxc \ maxc
(max<3~)2

h max c — max o maxc

+ n i / < 6 - n x (- V 4) 2 • - , ! / * _ „!/<
nV2

= 1 + „l/2 - n l /4 ,

using (up to constants) maxS = n1//4 (Step 3) and maxc = n~3^4e5 (Step 8) which

expected value (up to constants) is £J[maxc] = n~z/Annl/A = n1//2.

Then the probability of collision is (up to constants)

Pr|/M) = /(c<,*<)] = f g g
1 + n1 /2 - n1 /4

max c • max <3~

l + n l / 2 _ n l / 4

~ n l / 4 . „ l /2

« 2~fe/2

which is exponentially small, thus negligible. For reference purposes, this is written

as a proposition.

Proposition 7.1.10 (Achievable cardinality of KSM I) A set of backdoored

keys that covers, in total for each run, 2?k possible keys is generable in an expected

running time of the same order as that of Algorithm GQ.

245

Finally, in the ratio of the cardinalities of KSM and KS, the #{n} terms can

be canceled so that 7£GI ~ 2~2fc.

Distribution properties. The distribution of e is labeled "good", supposing

that 7T/3 is pseudo-random.

Entropy of embedding. The encrypted backdoor information is in the form

of e = 7T/3 (c<5_1 mod <fi(n)). Entropy is particularly improved from CS-1, because RSA

exponents are nearly uniformly distributed, given Assumption 2.2.23. More formally,

there are sufficient reasons to make the assumption that the properties of RSA imply

that the distribution of 7173 (c<5_1 mod 4>(n)) is computationally indistinguishable from

the one of e <EV ZJ(n).
 3

Furthermore, e = c8~l mod 4>{n) makes the domain of 7173 larger than if it were,

as for CS-1, e = S_1 mod (f>(n). If there were fewer S~1 and smaller \c\, as in Figure 7-

3, then e could assume a lesser number of values in Z^(n).

That there are about k/2 close to uniform values of 5~l. The multiplication by

the k bit random number that is c allows e to possibly take more values in Z^(n).

The entropy of G\ is 7-fei = 1> because of the nearly uniform distribution of

the RSA public exponent, given Assumption 2.2.23 (the RSA private exponent in the

assumption's statement). This distribution of 5, with the choice of parameters in the

generation of e, makes it so that e is distributed on all of Z^(n). Secondly, different

3 This assumption is weaker than Assumption 2.2.22, by Theorem 2.2.24 (Subsec­
tion 2.2.8). Informally, this is assuming that the properties of RSA imply that the
distribution of 7173(<5-1 mod </>(n)) is computationally indistinguishable from the one
ofe^z; (n).

246

IN
o 6i1 6i1

i I JL *(n)
Id

Figure 7-3: Entropy with few 5 and small \c\. The possible values of c-8~l mod 4>{n)
reach a small number of values in the interval. That c • 5~l mod (f)(n) is larger at the
right hand side of the [0, <j>(ri)] interval, so the sub-intervals are larger there as well,
is not illustrated.

5i 82 631 5ln lnl/4

IN
0 j j

• 1

1 lclslnl/2 1
•

1 :

1

1

1

+(n)

h—

Figure 7-4: Entropy with k/2 values of S and \c\ « k. The possible values of
c • <5-1 mod 4>(n) reach more values in the interval.

samplings of 8 yield mostly uncorrelated inverses, given Assumption 2.2.17'. This

assumption is that different values of S_1 are distributed in a well pre-shuffled way,

despite that the values of 6 are restricted to k/2 bits.

Considering all generable keys as in Figure 7-4, because the theorem of Blomer

and May allows for e8 = c ^ 1, we gain an expected additional k random bits per

6. This is illustrated in Figure 7-5. On the first line, G\ generates about k/2 bits

247

H Inl
H— lnl/4 - H

Figure 7-5: Entropy of G\.

of 5. The shadowed bits are bits of backdoor information. On the second line, these

bits are uniformly spread into 2k bits via the well pre-shuffled distribution of the

RSA private exponent (given Assumption 2.2.17'). On the third line, for fixed 5 and

c, the value of e is a noisy copy of the one of Figure 6-15: there are many more

possibilities.

Generalized key regeneration and variable correlation. This property

is easily satisfied because all parameters are generated independently. The backdoor

information on 8 is stored in e, which by definition depends on such an inverse.

Complexity. Proposition 7.1.9 states that the complexity is proportional to

the one of Go. Overall:

Tn(Gi) = tn

Te(Gx) » ; e + T (^) .

248

These complexities are linear in the complexity of Go- Assuming that F = irp is

negligible with respect to te, Algorithm G\ is rated "good". Overall, the complexity

is less than quadratic in the complexity of G0, while the complexity of F is not given

explicitly. Therefore, G\ is rated "good / F-relative".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses a family of pseudo-random

functions, 7173, which is not explicitly provided.

The results in Entropy depend on Assumption 2.2.23.

Simplicity. As for CS-1, the algorithm has a relatively low structure. This

is intuitively apparent, even without comparing with other algorithms, because it

consists of almost the same steps as the honest algorithm.

confidentiality
completeness

indisting.

asymmetry

diversity
ftGi

cGl
v G l
'HGX

GKR
side-
channels

complexity

memory
computational assumptions

simplicity

yes: one-way 717?
yes: Theorem 7.1.1

good

good

no: /? is secret
2~$k

0, pseudo-random 7173
1
1, given Assumption 2.2.23
yes
Tn(Gi) = tn

T e (G i) » t e + T(7r^)
no
one-way, pseudo-random 7173,
Assumption 2.2.23
LS

good

good

good

good

good

good/

F-rel.

good

average

good

Table 7-3: Properties of the Algorithm Gi of Figure 7-2.

249

Discussion. Algorithm G\ has greater diversity than the CS-1 because it is a

noisy copy of that previous algorithm. Accordingly, the parameter c may be called

a perturbation. The entropy of the keys and the difficulty of distinguishing them

from honest ones are increased. Therefore G\ increases indistinguishability while not

allowing any loss of number of generable keys, and in fact, producing exponentially

many more.

To proceed onto showing that a greater cardinality of KSM is achievable, im­

proving Proposition 7.1.10, two complementary simple algorithms that match the

running time of (d , Ri) are shown. After studying (G2, R2), one may wonder why

it is useful, because it is less efficient and generates less keys. Nevertheless, it gives

intuition toward our best result (and this is its only purpose). Secondly, (G3,R3),

in turn gives intuition for (G4,-R4), which is finally used by the proof of Proposi­

tion 7.1.14, stating that greater cardinality of KSM is achievable.

However, we first show G[, a generalization of G\ that produces a perfect car­

dinality. The reasons for the study of the precedingly mentioned three future algo­

rithms are highlighted in the Discussion which follows the presentation of G[.

250

A generalization of Algorithm. G\. A simple backdoored key generator can be

derived from Theorem 7.1.5, as shown in Figure 7-6. Algorithm G[is therefore a

generalization of G\. This is useful for comparison purposes, with other backdoored

key generators based on more complicated results. For most choices of parameters,

we show a backdoored key generator and retrieval algorithm pair, (G±,Ri), which

requires a more complicated analysis, but yields better results than {G'^R'i).

PARAMETERS:

• 0 is a fixed secret key.
• 7T/3 : {0, l}2k —> {0, l}2fe is an assumed cryptographic permutation.
• 7, a,£i,£2 are constants that satisfy the hypotheses of Theorem 7.1.5.

Algorithm G^ [Key generation]
1: Pick r p p, q of size k s.t. p — q> -yn1^2.
2: Set n = pq.
3: Pick a random S € Z * , . s.t. S < £x na.

4: d o
5: Pick a random a € ! J0(«) s.t. a < t; 2 "

6: Pick a random c € Z^(n) s.t. c < 7n1/,4<5.
7: Set e = c<5-1 + a mod <f>(n).
8: Set e = 7173(e).
9: until \c\ < •yn~3/Ae5 and e 6 Z J (n) .

10: Compute d = e _ 1 mod 0(n) .
11: return {p,q,d,e).

Algorithm R[[Key retrieval]
1: Input of (n,e) .
2: Factor n = pq from (n,7rr1(e)) [Theorem 7.1.6].

3 : Compute d = e - 1 mod (^(n).
4: return d.

Figure 7-6: A symmetric backdoor for RSA based on a linear extension of
Wiener's Theorem. The information on 5 is embedded in e.

Algorithm properties. The following adjustment is the same as for G\. In

Step 6, the hypothesis \c\ < 7n_3//4e5 of Theorem 7.1.5 is replaced by the weaker

condition \c\ < jr^^S, which is necessary because e < n. To insure that the original

hypothesis is satisfied, a check is made in Step 9-

Confidentiality. This property rests on the one-wayness of np.

251

Completeness. At Step 2 of R[, it holds that (n,^^(e)) = (n, e) is such

that |e — e0| < £2n1~2a for e0 = c5_1 mod 0(n). For some integer K, it holds that

e05 — K(j){n) = c with the given bounds on 5, c. The conditions of Theorem 7.1.6 are

thus satisfied with e = e0 and e = e. Completeness is shown by this theorem.

Symmetry. Algorithm (G^R'^) is a symmetric backdoor with secret key f3.

Cardinality. Without counting collisions in the generation of

e = cS'1 + a mod 4>{n) (7.10)

the number of generable keys would be 2(a+1~2a+1/4+a)2fc = 25/2fc, which cannot be

the it exceeds 22fc. Consider instead both terms of Equation 7.10 separately,

since the second term only affects the lower (2 — 4a) k bits and thus does not affect

the remaining upper Aak bits.

The first term, c5_1 , is composed of \c\ = (1/4 + a)2k and |5| = 2ak bits.

As in the analysis of Algorithm Gl, the (1/4 + 2a)2A; bits of cS-1 are spread nearly

uniformly amongst the 2k bits of e (Figure 7-5). Therefore, given Assumption 2.2.17',

in the fraction of e unaffected by the addition of a, that is, its Aak upper bits, one

expects that c8~l contributes the following number of random bits.

#free bits from c8~l = (average # of free bits per bit) • (#bits)

= (l /4+.2a)-4a&

The second term, a, overwrites the randomness from c5_ 1 in the lower bits.

There are (2 — Aa)k such lower bits. This accounts for a total of

\gNG>1<e{a) = (1/4 + 2a)4ak + (2 - Aa)k = (8a2 - 3a + 2)k.

252

In the ratio of the cardinalities of KSM and KS, the #{n} terms can be

canceled so that 11^ = 2<8a2-3a)fe.

Bounds on TZG> can be established. Because

— lg KG[(a) = — (8a2 - 3a) = 16a - 3,

the ratio of keys is minimized when a — 3/16 with

nG[«2<8(3/16)2-9/16)fe = 2-£fc.

If a = 1/4, one expects a ratio of

nG{ « 2 ^ ^ 2 - 3 ^ k = 2-ifc

and if a = 0, one expects a ratio of

nG{ w 20k = i.

Therefore, one expects

2~&k < U&1 < 1.

Distribution properties. The distribution of e is labeled "good", supposing

that irp is pseudo-random.

Entropy of embedding. The same as for the preceding algorithm holds, with

a minor modification to Theorem 2.2.24. Instead of producing another theorem, this

modification is highlighted. Distribution 2.8 changes to

(p, q, D1,..., Dpoiy(k)) where d{ = 7173(0 • e^1 mod <f)(n) + a) (7.11)

253

where c and a satisfy the hypotheses of Theorem 7.1.5.

Recall the probability distributions that were compared in the original theorem.

Distribution 2.7 is the honest distribution and Distribution 2.6 is the one of objects

of the form TTp (e_ 1 mod 4>{n)).

(p, q, JDi,..., Dp0iy(k)) where Dt = np (e_ 1 mod 0(n)) (2.6)

and gcd(Di}(j)(n)) = 1

{p1q,d'l1...1d'poly{k)) where d\ Gu ZJ(n) (2.7)

Suppose that V distinguishes the two former distributions with probability 1/2+

e. Let x be sampled uniformly from Distributions 2.6 or 2.7, and appropriately

distributed c and a. Then Equation 2.9 changes to

np(c-7Tp1(x) + a) e <
Distribution 7.11 if x G Distribution 2.6,

Distribution 2.7 if x G Distribution 2.7.

A useful assumption is one by which Distribution 7.11 is computationally in­

distinguishable from Distribution 2.7. This assumption is weaker than Assump­

tion 2.2.23. This holds because the latter indistinguishability assumption implies

the former. To show this, an argument similar to the one used in the proof of The­

orem 2.2.24 can be used. In other words, multiplying by c and adding a, both ap­

propriately distributed, transforms Distribution 2.6 into Distribution 7.11 and leaves

Distribution 2.7 unchanged. Therefore

V(x) = VoTVp(c- ir^ix) + a)

254

distinguishes Distributions 2.6 and 2.7 with probability 1/2 + e.

Denote this weaker assumption as Assumption 2.2.23'.

Generalized key regeneration and variable correlation. This property

is easily satisfied because all parameters are generated independently. The backdoor

information on 5 is stored in e, which by definition depends on such an inverse.

Complexity. Proposition 7.1.9 applies: the complexity is proportional to the

one of Go- Overall:

Te(Gi) « te + T(7T0).

These complexities are linear in the complexity of Go. Assuming that F = irp is

negligible with respect to te, Algorithm G'x is rated "good". Overall, the complexity

is less than quadratic in the complexity of Go, while the complexity of F is not given

explicitly. Therefore, G[is rated "good / F-relative".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses a family of pseudo-random

functions, irp, which is not explicitly provided.

The results in Cardinality depend on Assumption 2.2.17'. Those in Entropy

depend on Assumption 2.2.23', which already supposed 2.2.17'.

Simplicity. The algorithm has a relatively low structure. This is intuitively

apparent, even without comparing with other algorithms, because it consists of al­

most the same steps as the honest algorithm.

255

confidentiality
completeness

indisting.

asymmetry

diversity
K&,
Ca,
VQ>-

We,
GKR
side-

channels

complexity

memory
computational assumptions

simplicity

yes: one-way irp
yes: Theorem 7.1.6

good

good

no: (3 is secret

2~%k < nG(, < 1
0, pseudo-random np
1
1, given Assumption 2.2.23'
yes
Tn{Gi) = tn

Te(Gi) » *e + T (^)
no
one-way, pseudo-random 7173,
Assumption 2.2.17',
Assumption 2.2.23'
LS.

good

good

good

good

good

good/

F-rel.

good

average

good

Table 7-4: Properties of Algorithm G[of Figure 7-6.

Discussion on the cardinality. When a = 0, it holds that TZc = 1 . In

this case, there are few choices of 5, therefore the keys are generated and retrieved

from the additive perturbation in Theorem 7.1.5. Because of the pseudo-randomness

of ftp, the correlation with 8 cannot computationally be detected even if all keys

used the same 5. However, this implies that the security of G[is entirely based

on the pseudo-randomness of 71̂ . We will show Algorithm G4 which removes the

pseudo-randomness assumption and instead uses the theorem's power more fully, at

the cost of a lesser cardinality. However, in order to build intuition, we first show

two intermediary algorithms, G2 and G3.

256

7.1.4 Improvement of the diversity without pseudo-randomness

We proceed to show a succession of three consecutively improved algorithms

that provide an improved diversity, w.r.t. the existing algorithms and G\.

Algorithm G2 increases entropy w.r.t. G\

We show an algorithm that increases the entropy of the backdoored keys w.r.t. G\.

The cardinality will be diminished, but the next algorithm will remedy to this, while

preserving the acquired entropy.

PARAMETERS:

• (3 is a fixed secret key.
• 7T/3 : {0, l}2fc —> {0, l}2k is an assumed cryptographic permutation.

Algorithm G2 [Key generation]
1: Pick r p p, q of size fc s.t. q < p < 2q.
2: Set n = pq.
3: Pick a r p <5 e [2k/2'3,...,2k/2~2] n Z * (n) .

4: Set e = <5_1 mod </>(n).
5: repeat
6: Pick random a s.t. \a\ < n 1 / 2 / 4 ; 0 < e+a < n.
7: Set e = 7T0(e + a) .
8: until gcd(e,<£(n)) = 1.
9: Compute d = e _ 1 mod <t>(n).

10: return (p,q,d,e).

Algorithm R-2 [Key retrieval]
1: Input of (n, e).
2: Compute S, e from (n, nZ (e)) [Theorem
3 : Factor n = pq from e and 5.
4: Compute d = e - 1 mod </>(n).
5: return d.

7.1.8].

Figure 7-7: Our second symmetric backdoor for RSA, using another variant of
Wiener, derived from combining an extension of Wiener with a theorem from
BDF. The information on 8 is embedded in e.

Algorithm properties.

Confidentiality. This property rests on the one-wayness of TTQ.

Completeness. This property is based on Theorem 7.1.8, supposing that the

permutation, tip is efficiently invertible, knowing j3. The theorem is satified as follows.

The bounds on the choices of 6 (hence affecting e) and a, in Steps 3 and 6 are set so

that the pair (n, e+a), allows efficient factorization of n via Theorem 7.1.8. From the

257

public (n, e) and knowledge of /?, one finds (n, e + a). In Step 2 of i?2, Theorem 7.1.8

yields (e, 8), because

\a\ = \nj1(e)-e\<\n1"

and

is prime.

Symmetry. Algorithm ((?2, #2) is a symmetric backdoor with secret key /?.

Cardinality. . Algorithm G\ can generate any of Wiener's weak 8 < |n1/ /4,

whereas Algorithm G2 is limited to prime

8 < \^/Y2Jl3nlJ\
o

Therefore, the latter can generate about 22fc/ln(n) backdoored keys. This l / ln(n)

factor is going to be patched in order to yield 2sfc backdoored keys in the upcoming

algorithms (G^,R3) and (G4,i?4). (The \e + a\ < 22k condition in Step 6 does affects

the cardinality by less than a constant, therefore insignificantly.)

In the ratio of the cardinalities of KSM and KS, the #{n} terms can be

canceled so that 7ta2 — 2~?k/\n.(n).

Distribution properties. The distribution of e is labeled "good", supposing

that ftp is pseudo-random.

Entropy of embedding. The same as for the preceding two algorithms holds,

with a minor modification to Theorem 2.2.24, comparable to the one for Algo­

rithm G[. Denote the resulting modified assumption on distribution properties of

RSA as Assumption 2.2.23(2).

258

Generalized key regeneration and variable correlation. This property

is easily satisfied because all parameters are generated independently. The backdoor

information on S is stored in e, which by definition depends on such an inverse.

Complexity. The computation of n is the same as in Go-

Tn{G2) = tn

As for Te(C?2), it would be comparable to Te(Gi) if the former did not pick a

random prime 8 (Step 3), although it is only of half the size of p or q. This accounts

for an additional complexity of t^, just as it was the case for Algorithm CS-2

(Figure 6-16). Also, Proposition 7.1.9 does not apply exactly, because TCp is used

within the loop for the generation of e. Overall:

Te(G2) = t^ + te+te-T(lTp)ttt^ + te-T(lXp).

These complexities are linear in the complexity of Go and t^ has significantly

smaller complexity than RSA (the one of Go) as a whole, of which te is a significant

term. Assuming that F = np is negligible with respect to te, Algorithm G2 is rated

"good". Overall, the complexity is less than quadratic in the complexity of Go,

while the complexity of F is not given explicitly. Therefore, G2 is rated "good /

F-relative".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses a family of pseudo-random

functions, np, which is not explicitly provided.

The results in Entropy depend on Assumption 2.2.23^.

259

Simplicity. The algorithm has a relatively low structure. This is intuitively

apparent, even without comparing with other algorithms, because it consists of al­

most the same steps as the honest algorithm.

confidentiality
completeness

indisting.

asymmetry

diversity
nG2
CG2

VG2

H-G2

GKR
side
channels

complexity

memory
computational assumptions

simplicity

yes: one-way TT/J
yes: Theorem 7.1.8

good

good

no: P is secret
2-*fc/ln(n)
0, pseudo-random lip
1
1, given Assumption 2.2.23^
yes
Tn{G2) — tn

no
one-way, pseudo-random ir@,
Assumption 2.2.23(2)

LS

good

good

good

good

good

good/

F-rel.

good

average

good

Table 7-5: Properties of Algorithm Gi of Figure 7-7.

Discussion. Algorithm G2 is complementary to G\. using the theorem with

approximate e (Th. 7.1.8), instead of the theorem without approximation (Th. 7.1.1),

yields more entropy. But G2 puts more restrictions on 5, hence decreasing the number

of keys. G3 deals with this issue.

260

Achieving the non-primality of <5 by G3

To pursue the insight of G2, consider G3 which directly uses Theorem 6.3.4,

with t = k/2 — 3 4 . Algorithm G3 removes the restrictions on 5, hence restoring

cardinality while preserving entropy. It is comparable to CS-3, with a complexity

given by Proposition 7.1.9.

PARAMETERS:

• (3 is a fixed secret key.
• 7T/3 : {0, l}2k —>• {0, l}2fe is an assumed cryptographic permutation.

Algor i thm G3 [Key generation]
1: Pick r p p, q of size = k s.t. q < p < 2q.
2: Set n = pq.
3 : Pick a random <5 S 1A, •, such that S < n 1 ' 4 / 4 .

4 : Set « = <S_1 mod </>(n).
5: repeat
6: Pick rd. c s.t. \c\ < n1!4/4; 0 < e + c2k/2 < n.
7: S e t e = 7r^(e + c2 f c/2).
8: until gcd(e, <f>(n)) = 1.
9: Compute d = e - 1 mod 0(n) .

10: return (p,q,d,e).

Algor i thm R3 [Key retrieval]
1: Input of (n, e).
2: Set eJfc/2 = ^ (e) mod 2 f c /2 .

3: S e t e l f e / 2 - 3 = 7 r J 1 (e) l f c / 2 - 3 .

4: Find <5 from (n.Tr^^e)) [Theorem 7.1.4).

5: F i n d p , q from (n,5), ejk/2,e]k/2-3 [Th. 6.3.4].

6: Compute d = e~l mod 0(n) .
7: return d.

Figure 7-8: Our third symmetric backdoor for RSA, using an extension of
Wiener's Theorem and another theorem from BDF. The information on 5 is
embedded in e.

Algori thm propert ies . In an implementation of (G3, .R3), it would be simpler

to apply 7T/3 on the k/2 — 3 most significative bits of e only.

Confidentiality. This property rests on the one-wayness of 7173.

Completeness. This property is based on Theorem 7.1.3, supposing that the

permutation, irp is efficiently invertible, knowing /?. The theorem is satified as follows.

4 From the preceding chapter, Theorem 6.3.4 is useful for intuition. Our Theo­
rem 7.1.13 is its generalization.

261

Let 7T/3 be a permutation on [—n1/4/4+ 1,...,nl^/A — 1], with secret key (3 that hides

c. In Step 4 of R3, Theorem 7.1.4 yields 5 because the following are satisfied: with

a = ex = h = 1/4, it holds that

*?ifi)-<\ = M<0|2fc/2

< n1/2/4

and that S < n1/4/4.

Symmetry. Algorithm (G^Rs) is a symmetric backdoor with secret key (3.

Cardinality. Even though Theorem 7.1.3 (equivalently, Theorem 7.1.4) allows

an approximation of size about n1/2, Theorem 6.3.4 requires that the k/2 upper bits

of e as well as its k/2 lower bits be retrieved. Therefore, no perturbation should

affect the k/2 lower bits. Since Theorem 7.1.3's approximation is additive (therefore

only the k lower bits are perturbable), there remains k/2 bits that are perturb-able.

Accounting for 8 being of k/2 bits, the cardinality of KMS sums up to k bits.

In the ratio of the cardinalities of KSM and KS, the #{n} terms can be

canceled so that Hc3 — 2~fc.

Distribution properties. The distribution of e is labeled "good", supposing

that 7Tp is pseudo-random.

Entropy of embedding. The same as for the preceding three algorithms

holds, with a minor modification to Theorem 2.2.24, comparable to the one for

Algorithm G[. Denote the resulting modified assumption on distribution properties

of RSA as Assumption 2.2.23(3).

262

Generalized key regeneration and variable correlation. This property

is easily satisfied because all parameters are generated independently. The backdoor

information on S is stored in e, which by definition depends on such an inverse.

Complexity. In part similarly to the preceding algorithm, Proposition 7.1.9

does not apply exactly, because np is used within the loop for the generation of e.

Overall, the generation of n is the same and so is the one of e, but without the

generation of a prime.

Tn{Gz) = tn

Te(G3) = te + te-T(irf,)Rite--T(n0).

These complexities are linear in the complexity of GQ. Assuming that F — ftp is

negligible with respect to te, Algorithm G3 is rated "good"- Overall, the complexity

is less than quadratic in the complexity of Go, while the complexity of F is not given

explicitly. Therefore, G3 is rated "good / F-relative".

Memory. No use of additional memory is made.

Computational assumptions. The algorithm uses a family of pseudo-random

functions, irp, which is not explicitly provided.

The results in Entropy depend on Assumption 2.2.23^.

Simplicity. The algorithm has a relatively low structure. This is intuitively

apparent, even without comparing with other algorithms, because it consists of al­

most the same steps as the honest algorithm.

Discussion. G3 generalizes Gi- It removes the requirement for 8 to be prime

by using Theorems 7.1.4 and 6.3.4, instead of 7.1.8. Because there are less restrictions

263

confidentiality
completeness

indisting.

asymmetry

diversity
ftG3

CG3

VG3

^ G 3

GKR
side
channels

complexity

memory
computational assumptions

simplicity

yes: one-way 7173
yes: Theorems 7.1.4 and 6.3.4

good

good

no: (3 is secret
2-*
0, pseudo-random -Kp
1
1, given Assumption 2.2.23^
yes
Tn(G3) = tn

T e(G3)«t e-T(7r^)
no
one-way, pseudo-random np,
Assumption 2.2.23(3)

LS

poor

good

good

good

good

good/

F-rel.

good

average

good

Table 7-6: Properties of Algorithm G3 of Figure 7-8.

on 8, there are more bits of backdoor information, which, as for Algorithm CS-1, are

uniformly distributed. Thus, this increases key entropy but decreases cardinality.

We have three successive improvements on Algorithms CS-1 and CS-3. Next we

must specify irp.

264

The generation of 22^~a^k backdoored keys by G4

The fourth algorithm (G4, R4) is entirely based on the structure of RSA. No

other one-way function is involved. The designer uses a secret key (3 to achieve

confidentiality. Its completeness rests on an additive generalization of Wiener's The­

orem, given in the same paper (Theorem 7.1.3), as well as on one of Coppersmith's

factorization method from approximate values of p (Theorem 7.1.12).

The three following theorems are rounded up by Theorem 7.1.13, which proof

is a generalization of the one of Theorem 6.3.4.

Theorem 7.1.11 ([Red96], Theorem 3.16) A necessary and sufficient condition

for y2 = b (mod (3), to be solvable for y, where gcd(6, f3) — 1, is that b be a quadratic

residue of all odd prime divisors of (3 and that if2\\(3, then b is odd, if A\\(3, then

6 = 1 (mod 4), and if%\f3, then 6 = 1 (mod 8).

If solvable, square roots modulo a prime p are found in expected 0(\g3p) by

Cipolla's Algorithm [BS96, Section 7.2]. The Chinese Remainder Theorem applies

for composite (3 with known factorization. A valuable succession of results is the

proof [RS86] that the 2A;/3 most significant bits of p suffice to factor n efficiently and

an improvement [Cop96] which reduces the number of bits to k/2. Thus recall, from

the previous chapter, how an approximate p leads to factoring of n if the additive

error is on its lower-half bits via Corollary 6.1.8.

Corollary 6.1.8 yields Theorem 7.1.12. The latter is used to generalize Theo­

rem 6.3.4 and yield Theorem 7.1.13, using that in Theorem 7.1.12, it is not required

that (3 be a power of 2. Recall a corollary to Coppersmith's Theorem (Theorem 6.1.7)

and its proof, as it is a simple application of this theorem.

265

Theorem 7.1.12 ([BDF98], Corollary 2.2) Given (3 > 2kl2 and p0 = p mod j3,

it is possible to factor n = pq in time polynomial in k, denoted by T{k).

proof: The proof of Theorem 6.1.7 rests on the LLL lattice basis reduction. It

yields Theorem 7.1.12, by taking pQ = p mod j3, q0 = n/p0 mod f3 = q mod f3 and

letting

f(x, y) = {(3x + p0) ((3y + q0) - n.

It is assumed that gcd(p, (3) = 1, otherwise, factoring n is trivial.

The solution sought to f(x, y) is (x0, y0) such that 0 < x0 < X — 2k+1/(3 because

of the limitation on the size of the primes (and similarly for y0). Because the gcd

of the coefficients of / is /?, we instead use Theorem 6.1.7 on g(x,y) = f(x,y)//3.

Determine the largest coefficient, D, of g(x, y) = g(Xx, Yy).

g(x,y) = I" f(Xx, Yy) = (5XYxy + Xq0x + Yq0y + P°q°~ U

Therefore, using X = Y = 2k+1/f3:

D = \0XY\ = (3 (2k+1/{3)2 = 22k+2//3.

The maximum degree of a variable is 5 = 1. To use the theorem, it is thus

required that XY < £>2/(3<s) _ £)2/3 Equivalently:

22fc+2//32 < /22fc+2//?-)2/'3

and 2(2fc+2)/3 < /34/3

which is satisfied when (3 > 2<-k+1^2. By exhaustive search on the first two bits of

x0,y0, this is reduced to (3 > 2k/2. •

266

The following algorithm yields the strongest result concerning the number of

backdoored keys.

PARAMETERS:

• /3 is a fixed secret key.
• a < 1/4, £i < | and £2 s.t. l\(£-2 + 3) < | are constants that satisfy the
hypotheses of Theorem 7.1.3.

Algorithm G4 [RSA key generation]
1: Pick r p p, q of size = k s.t. q < p < 2q.
2: Set n = pq.
3: Pick a random S S Z*,, . such that <5 < < m " .

4 : Set e = <5_1 mod (/>(n).
5: repeat

Pick rd. c s.t. \c\ < ^ n 1 _ 2 a ; 0 < e + c0 < n. 6:
7: Set e = e + c/3.
8: until gcd(e, </>(n)) = 1.
9: Compute d = e _ 1 mod (/)(n).

10: return (p, q, d, e).

Algorithm R4 [Key retrieval]
1: Input of (n ,e) .
2: Set eo = e mod /3.
3 : Compute K, S from (n,e) [Theorem 7.1.4].
4 : Set o = [eo<5 — «(n + 1) — l]/(2re) and b = a2 — n.
5: Set po to be a solution of (x — a) 2 = 6 (mod /3)

[Theorem 7.1.11].
6: Compute p, q from /3, po [Theorem 7.1.12].
7: Compute d = e _ 1 mod <t>(n).
8: return d.

Figure 7-9: Our fourth symmetric backdoor for RSA, using extended Wiener
weak keys and an extended theorem of Boneh, Durfree and Frankel. The
information on 8 is embedded in e.

Algori thm propert ies . The algorithm uses a private key /3, which is a mod­

ulo that is generally not a power of 2. Its value is picked, fixed and kept private by

the inverter as an odd random number of known factorization [Kal03], of size k/2.

Therefore, it satisfies the hypotheses of Theorem 7.1.12. The values of ^1,^2, and

a < 1/6 satisfy the hypotheses of Theorem 7.1.3 5 .

For Step 3 of i?4, the argument is the same as for Step 4 in i?3, except that Theo­

rem 7.1.3 is used in its general, parameterized form. The correctness of the remaining

5 In Step 7, 7173(e) = e + c/3 is different from Vaudenay's 7173(e) = e + 2/3(modn + 1)
[Vau], as quoted in [CS03, p. 9].

267

part of the attack (formally called completeness) of R4 is shown as Theorem 7.1.13

which follows.

Confidentiality. One needs to show that A;pu& = fRo E o I(kpriv) is not com­

putationally invertible. For G4, we have 5 = I(p,q) and the result of the function

composition is e = /# o E(8) = irpjC(e), where

K0,c(e) ~ e + cP w ^ h e = 5~x mod (p(n).

Supposing that p and q are uniformly distributed, 8'1 mod (j)(n) is well pre-

shuffled by Assumption 2.2.17'. Instead use Assumption 2.2.18®', derived from As­

sumption 2.2.18': with c and (3 randomly sampled, it is reasonable to suppose that

Ms) = 7173,0 ((T1 mod <f>(n))

is a function family with output computationally indistinguishable from uniform.

Furthermore assume that fp is one-way. Given this, from fp(S), it is computationally

infeasible to retrieve S or the pair (e, 5). So it is infeasible to factor n.

Completeness. The following theorem completes intuition provided in the

introduction of Algorithm properties. It may be interpreted as a generalization of

Theorem 6.3.4. Its proof follows closely the related proof of [BDF98, Theorem 3.1],

but for P generally not being a power of 2 and a better complexity.

Theorem 7.1.13 (Completeness) With appropriate choice of (3, Steps 4 to 6 of

Algorithm R± are likely to be successful and run in expected polynomial time in k.

An appropriate choice of j3 is to pick it to be an odd random number of known

factorization [KalOS], of size k/2, as in the proof of Proposition 7.1.14-

268

Proof: Consider e8 — K(f)(n) = eS — K[U — (p + q) + 1] = 1. Let g = gcd(«,/?) and

m = K/g. Let eo = e mod (3, then po = P mod (3 is a solution for £ in

1 + K.[n - x - nx~x + 1] = e0S (mod/?), (7.12)

KX2 + [e08 — K(TI + 1) — l]x + an = 0 (mod /?),

ma;2 — m(p + #):r + mn = 0 (mod P/g).

Because gcd(m,/3/g) = 1, m _ 1 mod /3/g is well-defined. Then

x2 — (p + q)x + n = 0 (mod /3/g)

and by rearranging the terms,

Taking y = x — (p + q)/2 in Theorem 7.1.11, a solution for y is a solution for x

because the values of

a = (p + q)/2 (mod 0/g) = [e0S - n(n + 1) - l]/(2«)

and

6 = [(p - g) / 2] 2 (mod/?/5) = a 2 - n

can be computed.

Now consider the algorithm itself. As (e, n) is public, the designer can compute

e0 = e mod /3. The values of K and 8 can be computed via Theorem 7.1.3, with e

approximating e, because |e — e| < £2^3/'4_a and 5 < £ina.

x
p + q

269

By Theorem 7.1.11, the conditions for Equation 7.12 to be solvable are satisfied

by p. Because b is a square, it suffices that gcd(&, /?) = 1 for b to be a quadratic

residue of all odd prime divisors of f3. With b — ((p — g)/2)2, either gcd(b,(3/g) =

gcd(p—q, (3/g) = 1, or an equivalent solution can be found because if h = gcd(fr, fi/g)

then

The last three conditions of Theorem 7.1.11 do not apply because 2 / (3 by hypothesis.

Finalizing the solution of Equation 7.13, with p0 = p mod (3 known, Theo­

rem 7.1.12 establishes that p and q are found in polynomial time T{k). Because the

modulo of Equation 7.13 is no larger than Equation 7.12's, the solutions of the former

is a superset of the latter's. If Xi is one of the v solutions to Equation 7.13, then solu­

tions to test for Equation 7.12 are {xi+j/3/g} for % e {1,... , v} and j G {0, ...,flf— 1}-

Note that v is a small constant [Red96, Chapter 3]. Also g = gcd(/s, /?), is likely to

be small if /3 is chosen independently of K. TO show this, let (3 be fixed and suppose

that K is uniformly distributed (although this is a rough approximation). Because

K < 5 < (f)((3), the probability that K is relatively prime to f3 is at least,

(j>(0) 1 = 1 J_
P > 2 1 g l g / 3 " 2 1 g | ^ | > > | ^ | '

which is significantly large. The first inequality comes from the well-known limit:

lim inf m ^ H = c -7 „ 0.561
n—>oo XI

where 7 is the Euler-Mascheroni constant [HW79, Theorem 328]. •

Symmetry. Algorithm (G4, R4) is a symmetric backdoor with secret key /?.

270

Cardinality. The following is the strongest result concerning the number of

backdoored keys.

Proposition 7.1.14 (Achievable cardinality of KSM II) Let a G ft(l) and a <

1/6. A set of backdoored keys that covers, in total for all runs, 22(1-a)fc possible keys

is generable. Furthermore, the expected running time can be made of the same order

as that of Algorithm Go (Proposition 7.1.10 still gives the performance per key).

Proof: First, the cardinality is analyzed without considering the relevance of

a lower bound on a. However, if a = 0, there is only one 5, which cannot be secure.

In order for the proposition's statement to be correct, the second part of the proof

determines this lower bound.

General cardinality. In Step 4 of Algorithm G4, there are l\na choices for e. In

Step 6, there are ^ nl~2a choices for c. Therefore there are 2£2 n
l~2a choices for c

and P together and 2£i£2 w
1_a choices for all three parameters (Step 7). This can be

interpreted as supposing that for each e, the generated sets of e are distinct and the

total number of e is ft (22(1-Q)fe).

It remains to subtract the intersections of these sets. Consider a generated

e = ei + Cij3\ and suppose that another execution of Algorithm G4 yields the same

e = e2 + c2/?2- Then ei — e2 = c2/?2 — ci/?i, without the mod 4>{n) operation, because

e + c(3 < (fi(n), with high probability from the choice of sizes of parameters. Count

the number of ways in which the following can happen, ei — e2 — c2/?2 — C\$\.

271

To see that the solution for Ci,C2 is unique 6 , consider the extended Euclidean

Algorithm on /?i,/?2• Let g = gcd(/3i,/?2), then the integers r i , r2 , such that r2/?2 —

r i A = 9 exist and are unique. Therefore, for fixed ei,/?i and 62,^2, the solution for

C\ and c2 is unique, C; = r\{e\ — 62)/'g. Letting (ei,/3i,e2>/?2) vary, there are at most

solutions for them. This can be interpreted as meaning that the size of the intersec­

tion between the sets corresponding to t\ and e2 is about 2k, while there are about

22ak such intersections for one set and 22ak such sets.

Finally, subtract the intersection. For an appropriate choice of a, it holds that

22(l-a)fc _ 2(2a+£)2fc ^ ^ /^(l -aJfcN

For this to hold the first exponent should be strictly larger than the second, that is,

such that 1 — a > 2a + | , therefore a < 1/6 is required.

Determining the lower bound on a. The smaller a is, the weaker the security of

the backdoor becomes. For instance, if a = 0 (or close to, depending on the value of

£1), then only one e can be generated (Steps 3 and 4 of G4). Then, given two keys

ei = e + CiP and e2 = e + c2/5, one finds a multiple of (3 which is (ci — c2)/?.

With an expected number of repetitions (different requests for key regeneration)

of 0(\n/(3\), one finds the value of/?. To see this, consider the range of (ci — c2) when

6 In some cases, the solutions are too large, so they are not collisions, although they
are counted as such. Thus the number of collisions is overestimated, for simplicity.

272

a — 0 which is [—^-n, %ra]. Given (ci — c2), the probability that another (dx —d2) is

relatively prime to (c\ — c2) (which would yield f3 by taking the gcd of both multiples

of P) is bounded below by the probability that (c[— c2) is a prime number. Since

it is randomly chosen, that probability is approximately l/\n(n/(3). Therefore the

expected number of different (c[— c^) generated before finding a suitable one is

bounded above by the order of \n(n/(3).

What lower bound should be imposed on a? Suppose an arbitrary a, then

about 22ak different e can be generated. Let the resulting keys be ê = Q + Ci/3. Via

the use of the gcd as above, the probability that the values of two keys allow the

extraction of information on j3 is the probability that e* — ej is a multiple of /3, which

is approximated by:

Prfe - ej = u/3] » Pr[ej + ap - (ej + Cjfi) = (Q - Cj)0\

Prom the point of view of the attacker (the party creating the backdoor), this

probability should be negligibly small. Asymptotically, this means that a G £1(1)

is required. In practice, to counter exhaustive searches, 2ak > 64 is required

[RSA06, dis02].

Fortunately, it seems, if the distinguisher finds v@, the value of 0 itself is still

unknown. What is a lower bound on the expected number of trials needed to find

it? The reasoning is similar to the one above. Given i^/3, what is the probability of

finding z /̂? such that /i = gcd(^i,i/2) = 1? (Note, as below, that larger /x's can be

considered.) The selection is random and there are 0(^i) such integers. The value of

273

the Euler function (f){v\) is bounded above by v± and bounded below by the following

well-known property which may be referred in [BS96, p.237, Proposition 8].

«*>e a (sfe)
The probability of finding i/2P such that gcd(^i,f2) = 1 is in O (1/loglog^i).

The range of V\ is [— ¥ n 1 - 2 a , ¥ n 1 _ 2 a] . As a < 1/6 by hypothesis, the expected

number of repetitions, f2(|rc1_2a//3|), is not significantly large. Thus, the above re­

quirements,

a e fi(l) or 2ak > 64, (7.14)

are necessary for the security of the backdoor.

Larger //'s can be considered, but this does not affect the above security re­

quirements. Suppose that gcd(^i/?, v2(3) — fi(3, with \(3\ « 256 bits. Suppose that

exhaustive searches are feasible up to 64 bits [RSA06, dis02]. The problem is to

factor \fj,p\ « 320 bits « 100 digits, which is about the point where general factor­

ization is difficult [WIF06]. Thus, considering larger /i's does not significantly help

the distinguisher. •

Usually, the (3 are kept fixed, in determining cardinality. Therefore, denote the

key ratio with the j3 accounted as 72.*.

2-k/3 < n*^ < 2-64

Because there are few restrictions on /3, counting them yields about #{/?} = 2fc/2

more keys, therefore 2~5/Qk < KG4 < 2~64-k/2.

274

Distribution properties. The distribution of e is good, if irp(5) — £_1 + c/3 is

close to uniform. This is reasonable, from a slightly strengthened Assumption 2.2.26.

As in Chapter 2, denote by Assumption 2.2.26' the combination of Assumption 2.2.26

with a more complete domain for 5, along with the assumption that the addition of

c/3 at Step 7 makes the (2 — 4a)k lower bits computationally indistinguishable from

uniform, as c is uniformly distributed.

Entropy of embedding. An argument similar to the one for the preceding

four algorithms holds. This is gathered by Assumption 2.2.26', as in Distribution

properties.

Generalized key regeneration and variable correlation. This property

is easily satisfied because all parameters are generated independently. The backdoor

information on 8 is stored in e, which by definition depends on such an inverse.

Complexity. Proposition 7.1.9 applies: the complexity is proportional to te.

Furthermore, no use of a non-instantiated 7173 is made. Overall:

T(Gi) = tn + te

* T(Go).

Memory. No use of additional memory is made.

Computational assumptions. Assumption 2.2.26 is used in Distribution

properties and Entropy.

Simplicity. The algorithm has a relatively low structure. This is intuitively

apparent, even without comparing with other algorithms, because it consists of al­

most the same steps as the honest algorithm.

275

confidentiality

completeness

indisting.

asymmetry

diversity

nGi

CG<
VG4

t~(-G4
GKR
side-
channels

complexity
memory

computational assumptions

simplicity

yes: one-way irp(e) = e + cf3,
Assumption 2.2.18®
yes: Theorem 7.1.13

good

good

no: P is secret
2-5/«fc < nGi < 2-e4-fc/2
2-fc/s < ^ < 2-64 .
0, given Assumption 2.2.26'
1
1, given Assumption 2.2.26'
yes
T(G0)
no
Assumption 2.2.18®,
Assumption 2.2.26'
LS

good

good

good

good

good

good

good

good

good

Table 7-7: Properties of Algorithm G4 of Figure 7-9.

Discussion. The fact that (3 is generally not a power of 2 is significant. It

matters not whether the information transmitted via the backdoor consists of actual

bits, or if it is bits of information. In R3, Step 2 performs a modulo operation of

a power of 2, which recovers the least significant bits of e. In contrast, R4 recovers

p0 = p (mod P) in Steps 4 and 5, for a more general (3. The same holds in the

comparison of Theorems 6.1.8 and 7.1.12.

For each @ of G3 or G4, the number of proposed backdoored keys generated is

roughly n3/4. For G4, Proposition 7.1.14 improves upon Proposition 7.1.10 because

it states that the different values of fi produce distinct sets of backdoored keys with a

high probability. (No such claim is made for Gi and G3 because they are dependent

on a choice of unspecified permutation np.) G4 also improves on G3 because, with

comparable key diversity, 7Cp(5) = 5_1 + c/3 is well-defined.

276

Relation with Subsection 2.2.8. In Algorithm G4, the assumed pseudo-random ad­

dition of cf3 acts on the \cf3\ = (2 — Aa)k least significant bits of e. Therefore, in

Assumption 2.2.26, it is claimed that its (2 — Aa)k most significant bits are compu­

tationally indistinguishable from being uniformly distributed.

This means that x — la in Theorem 2.2.11. For the theorem to apply so that

these (2 — Aa)k most significant bits are properly distributed, it is required that

28ak <$< 2{l-4a)2k (j ^

where 8 replaces e in the theorem. However, from Algorithm G4, S < 22ak. This is

excluded by the LHS of Inequation 7.15.

Consequently, the conditions of Theorem 2.2.11 are not sufficient to justify the

intuition behind Assumption 2.2.26. In fact, a different, perhaps related, theorem

would be needed to provide the intuition that Theorem 2.2.11 appeared to.

277

7.2 Discussion on the first improvement

This section is dedicated to the discussion of the important aspects of the im­

provements in the previous section. It is presented separately as to highlight these

improvements.

7.2.1 S t ruc ture of the improvement

Various theorems were useful for our results. The structure of their use is illus­

trated by Figure 7-10.

Th. 7.1.11 Th. 7.1.12

Th. 6.3.1

Th. 7.1.1 Th. 6.3.3 [Th. 7.1.3]

Th. 6.3.4

[Theorem _7._1.13]

[Prop. 7.1.9

Figure 7-10: Illustration of the theorems' use. The boxes represent our algorithms.
The dashed frames highlight our contributions. The three bottom propositions are
backdoor properties.

278

http://_7._1.13

Some improved useful theorems have been presented. Theorems 7.1.3 and 7.1.7

are new improvements of Wiener's Theorem. Theorem 7.1.3 is an extension of

Wiener's Theorem that is complementary to Theorem 7.1.1 [BM04], which is con­

cerned with multiplicative perturbations, while ours takes care of additive ones. In

comparison, the related generalization of [BM04] yields more information than our

extension. Our version of the attack yields the parameters 5 and K, while theirs yields

the factorization of n, thus breaking the entire private key. We used this breaking

directly for the algorithm (G\,Ri). For our three remaining algorithms, we achieve

the equivalent breaking in different ways. In the algorithm (G21R2), it is through

our Theorem 7.1.7, which has the disadvantage of requiring 5 to be prime. For the

algorithms (^3,^3) and ((^4,^4), it is through the additional use of Theorem 6.3.4

and Theorem 7.1.12 respectively. Every algorithm leaves the bulk of the work to its

retrieval algorithm, which does not need to run discreetly.

Theorem 7.1.13 is a generalization of Theorem 6.3.4. Concerning BDF's original

Theorem 6.3.4, recall that its first interpretation was that it was unfortunate that

the result required non-consecutive bits of e. From its use in the second pair of

algorithms, it is fortunate in our context. It is the propagated information that

matters and not where it lies.

7.2.2 Failure of simple algorithms

As provided in Section 6.1, there are several simpler proposals which make

our algorithms look intricate. In Subsection 6.1.2 for instance, Howgrave-Graham's

algorithms embed pfl2 in the public e. Can these backdoored key generators yield

a simpler proof for Proposition 7.1.10, that is, a cardinality of at least 22fe?

279

Generalized key regeneration and variable correlation. Using Theo­

rem 6.1.8 with given p]k^2, one finds p. This leaves \k bits free, but this approach

excludes any capability of generalized key regeneration (GKR) and proper variable

correlation, because the bits corresponding to the prime p may remain constant for

a fixed j3. Our modification with a careful application of ftp remedies to this in a

simple way. This is described in Computational assumptions of Subsection 6.1.2. A

portion of the |A; free bits is used as a random seed in the pseudo-random function

applied on pf/2. Instead of

npipf/2): random, (7.16)

the embedded information is

7T0(p]k/2: random). (7.17)

The modification allows an approximate GKR to be performed. By approximate,

we mean that it is possible to regenerate values of any individual variable, but we

ignore any consequences on other subsequently generated variables. New p or q are

regenerated as usual. New e are generated by picking a different random parameter

in Equation 7.17. This is possible in Equation 7.16, but a fixed p yields fixed upper

bits, irp(p]k/2). Using Equation 7.17 thus allows to regenerate any value of e, with

the normal freedom in all of its bits.

However, there still remains two problems. Firstly, even if we were to consider

this approximate GKR as sufficient for practical purposes, this modification merely

280

moves the problem of no GKR to that of the security of the 717? function. The

distribution of e is dependent on the pseudo-randomness of 7173 with key random.

Secondly, these values do not satisfy the desirable properties of variable corre­

lation, because of the tie between e and p. For instance, if e is kept fixed, p cannot

be regenerated unless one can find

e = irpipif/2: randonii) = 7173 (^l*^2: randoni2)

that is, one needs to find p25randoni2 such that K^PI :randonii) = 7T/3(p2'-ran.dom.2}.

This constitutes a collision in a pseudo-random function, 7173, which indicates a weak­

ness in its security. Moreover, even if it was computationally feasible to find a collision

in 7173, the distribution of the "weak" p would likely be non-uniform.

To sum up, the security of 7173, needed for approximate GKR, and variable corre­

lation are mutually exclusive. Therefore, if GKR is permitted, Howgrave-Graham's

algorithms are very simply distinguished from Go as generating backdoored keys.

Simplification of the proof for Proposition 7.1.10. For such an algo­

rithm, consider the required properties of the pseudo-random function, 7173. The

cardinality that it produces is computed over its random seeds, the appropriate pa­

rameters from the algorithm. The ideal pseudo-random function would be such that

on \k fixed bits, \k random bits and \k bits of key (3, the image of 7173 covers all 2k

possibilities. While this is reasonable, this complicates the choice of 7173.

For simple backdoored key generators, strong results such as Proposition 7.1.10

seem to be achievable only via strong assumptions. For instance, 7173 is required to

possess the previously mentioned characteristics.

281

In contrast, our proof of Proposition 7.1.10, only requires assumptions on RSA.

Our generation uses inversions modulo the Euler totient function, thus introducing

in e a type of "pre-pseudo-randomness" that relates to the pseudo-randomness that

is used to conjecture the security of RSA. More precisely, G4 uses the assumption

that for a random S e %lrn\ such that 5 < £ina,

e = 5-1 mod (f)(n) (7.18)

is well pre-shuffled (Assumption 2.2.17'). Inversions modulo such (p(n) are the

same as in the definition of RSA (Subsection 1.2.1), which is a candidate trapdoor

one-way function and a candidate pseudo-random-like function (which outputs are

computationally indistinguishable from uniform), under certain conditions (Propo­

sition 2.2.27).

In order to obtain e, our algorithms apply further operations to these inverses

and we conjecture that these perturbations are coherent with this pseudo-randomness

(or rather, closeness to the uniform distribution). More precisely, the e of Equa­

tion 7.18 becomes

e = e + c/3.

Assumption 2.2.26' states that such built e are distributed close to uniformly. As­

sumption 2.2.18^ states that the function doing so is one-way.

7.2.3 Advantages of a reasonable simplicity

The Young-Yung algorithms [YY96, YY97a, YY05a, YY05b], have a higher de­

gree of structure than ours (so far, the ones of Section 7.1). Obviously, less structure

282

is an advantage because the simple algorithms take less coding to write. Simpler

also means more flexible and less need for computational assumptions, thus 7173 can

be very simple. By opposition, Young and Yung [YY96, YY97a, YY05a, YY05b] use

strong cryptographic primitives.

Because Assumption 2.2.17' is reasonable, our algorithms can use a irp that

contributes a pseudo-randomness that is weaker than the other algorithms' cryp­

tographic assumptions. In other words, because RSA-type modular inversion can

be assumed to produce well-distributed outputs. Therefore, in order to finally pro­

duce an output with distribution computationally indistinguishable from uniform,

one only needs to apply to the first outputs (the modular inverses) a scrambling

function, 7173, that does not interact with modular inversion itself. This is the case of

any function that shuffles its input's bits in a non-algebraic way. For instance, the

function can consist in shuffling the bits or XORing them with a fixed random string.

The latter is the statement of Assumption 2.2.18'. This is an example of a weaker

pseudo-randomness assumption than the ones of the Young-Yung algorithms.

Let e = <5_1 mod </>(n), as usual so far in this chapter. Consider G3 with XOR,

that is, naively

7rJ(e) = e 0 0

where (3' is the concatenation of a certain number of bits of (3 and a final truncation

such that |/5'| = |e|.

Using Theorems 7.1.3, 7.1.7, 6.3.4 and 7.1.12, one finds the maximum infor­

mation that is redundant in order to break the key (knowing (5). This redundant

information corresponds to the parts of of 7ri(e) that can be xoRed with random

283

bits. There are many ways of "losing" information, and the cited theorems are not

known to list these ways exhaustively. With the same definition of /?', let f5' © R be

such that likewise selected bits of (3' are "lost". This selection corresponds to the

bits of R that are non-zero, as well as randomly picked. So, contrary to /?', R is

unknown to the designer and serves to "lose" information which can be retrieved via

theorems. Then let

7r®(e) = (e © p) © R.

In other words, R is used to increase entropy, randomizing certain parts of the

exponent. The parameter /?' introduces non-reversible perturbations (for the distin-

guisher) and R, reversible ones (for any party).

Similarly, G3 can be modified with shuffling the bits with a naive

?rj(e) =a / J/(e)

where a takes the ith bit ei and puts it in the i ©/?'* bit position, for |/5'| = |lge|.

Finally, with a similar R, a shuffling permutation is

for R selected as precedingly, for itp.

The permutation

n 13(e) = e + c(3

of Algorithm G4 is an example of an instantiation of irp from G3. (Recall: Assump­

tion 2.2.26' states that such built e are distributed close to uniform ly. Assump­

tion 2.2.18^ states that the function doing so is one-way.)

284

7.2.4 Diversity of the algorithms

The implications of Proposition 7.1.9 are clear; those of Propositions 7.1.10

and 7.1.14 are more subtle, thus call for arguments and further results. A step toward

a comparable distribution is getting the cardinality of KSM to be comparable to that

of honest keys, that is, close to n (Subsection 7.1.4). From Proposition 7.1.14, about

up to 23fe/2 backdoored keys are generable for a fixed (3 and up to 22fe_64 if the different

values of (5 are accounted. Other results go only up to 23fc/2 [CS03, YY05a, YY05b]

for a fixed (3 but none appears to be of a form which is suitable for a cardinality that

takes different values of f3 into account.

Consider the set over which the backdoored keys are defined as well as that of the

honest keys. Propositions 7.1.10 and 7.1.14 imply that the size of the backdoored

set is more comparable to that of the honest one than previously thought. This

implies that their distributions are also closer than previously thought, with some

assumptions on the distribution of the backdoored set which we discussed to be

reasonable in Subsection 2.2.8. For this, the notion of diversity of backdoored keys

was introduced in Subsection 7.1.4. It encompasses the number of generable keys

and a "key entropy", a step toward comparable distributions.

Algorithms CS-2, CS-3 and CS-4 are generalizations of CS-1 via Theorems that

generalize Wiener's. These theorems are more powerful than the original one because

they require less information to invert the public exponent. Thus, more bits of the

published exponent are free, these bits corresponding to the parameter R in the

preceding subsection. Because of this, cardinality is increased by about a factor

of 3. The three algorithms, CS-2, CS-3 and CS-4, are different ways of obtaining

285

approximately this same cardinality increase. Schematically, we have

CS-1 : e = 7r(e)

I

CS-2, CS-3, CS-4 : e = 7r(parts of 6: e).

Our algorithms have greater diversity than CS-1 because they are noisy copies of

the ones of that previous system. Our Algorithm G\ to G4 have greater cardinality

than the CS-1 because they are noisy copies of CS-1. For this to be true for G4,

temporarily consider G\^ instead, a version of this last algorithm that uses e = 7r/j(e+

c(3) instead of e = e+c/3. The R parameter is introduced by G\ from a multiplicative

perturbation, and by the other algorithms, from an additive perturbation. The keys

generated are of the form:

CS-1 : e - 7r(e)

I

Gi : e = 7r(c • e)

G<i : e — ir(a + e)

G3 : e = 7r(c • 2k'2 + e)

G4)7r : e = np(cp + e)

and because of this improvement, cardinality is improved by a factor of about 2 or

3.

286

Prom CS-1 to G3, the generalization consists in an additive perturbation, as just

mentioned. Prom G3 to G^, the generalization concerns the type of bits which are

perturbed. In G3, it is a portion of the MSB bits, i.e. physical bits. In G^, it is

general bits: information bits, not physical bits. Also, no bits are kept unperturbed.

CS-1 : e = 7r(e)

I

G3 : e = TT(C • 2k'2 + e)

I

G4>7r : e = -KP{C(5 + e)

In this sequence of generalizations, cardinality is first increased by a factor 2, and

then by a factor 3/2, for an overall factor of 3.

Moreover, the use of np in G4<K is redundant, given reasonable assumptions.

(Recall: Assumption 2.2.26' states that such built e are distributed close to uniformly.

Assumption 2.2.18® states that the function doing so is one-way.) Therefore G4 can

be considered the generalization of G3.

G3 : e = TT(C • 2k'2 + e)

I

G4 : e = c(3 + e

The form of G4 furthermore allow to compute the cardinality for unfixed /?. This

increases the cardinality by an overall factor of close to 4. However, this special

287

cardinality cannot be compared directly with the other algorithms', as G4 is the only

one for which it is readily computable.

Overall, our algorithms increase the number of generable keys (Subsection 7.1.4),

while not allowing any loss of indistinguishability. The cardinality is increased from

CS-1 to G4, while the quality of the other parameters that make up diversity is

maintained.

7.3 Second improvement: generalized key regeneration for EG keys

7.3.1 Principles

Generalized key regeneration (GKR) allows the distinguisher to test not only the

distribution of each of the parameters, but also their mutual dependencies. Therefore,

if a key is composed of parameters that are usually distributed independently, but

are not in a backdoored version, then it may be easy for the distinguisher to tell

them apart. The analysis of parameter correlations was defined in Subsection 5.1.4.

GKR with EG keys is more complicated than with RSA keys. The former,

(p,a,a,p), have more components are there are more relations between them. This

is immediate from the honest key generator, given in Figure 7-11.

Algor i thm Go [EG key generation]
1:
2:
3:
4:
5:
6:
7:

Pick a random prime p of appropriate size.
repeat

Pick a random n g Z * .

until V prime pi, s.t. pt\p — 1, it holds that [a(p~
Pick a random 0 < a < p — 2.
Compute /3 = aa mod p.
return (p,a,a,f3).

- i) M mod P # l] -

Figure 7-11: Honest key generation for the EG cryptosystem.

288

Because of these more complicated relations, the use of volatile memory in back-

doored key generators appears to be necessary in order to insure GKR.

7.3.2 Improvements

Up to [CS03], GKR had not be taken into account. Therefore, it is only natural

that early backdoors as well as the papers of Young and Yung (Section 6.2) do not

consider this aspect, or fail this criterion. One of our results accounts for GKR in EG

backdoored keys. The corresponding honest key generator is given in Appendix A.2.

Denote a generic encryption function, for instance AES^ or DES#, as

EncK:{0,iyi^{0,l}e>.

It is used, via

fK:{0,l}tl^{0,l}W,

as a pseudo-random function:

fK(x) = [EncK(x) : Eru$\x) : ... : Enc^1^(x)] mod p

where the last block, Enc^ (x)> is truncated in order to obtain a total of exactly

\p\ bits of output and the trimmed bits are ignored. In other words, the number of

encryption blocks is a fraction. This truncation is needed because taking a modulo is

many-to-one: without truncation, a portion of the small values of the output would

be twice as likely as other values. Therefore, ignoring the outputs above p — 1, the

modp is redundant and

fK(x) = [EncK(x) : Enc%\x) : ... : Enc{^\x)].

289

Also, at Step 8 of ACK-1, it is understood that the outputs above p — 2 are similarly

ignored.

PARAMETERS:

• Random secret key K.
• Efficiently invertible one-way, pseudo-random function /^(x) .

Algorithm ACK-1 [EG key gen]
1: Pick random prime p of appropriate size.
2: Pick a random string r of appropriate size.
3: repeat
4: Pick a random string s of size \r\.
5: Set a = / /f (s : r) .
6: until a € Z* and V prime pi, s.t. Pi|(p — 1),

[a (p - i) M m o d p ^ 1].
7: Set m = 00...0:r.
8: Set a = / / f (m) and such that 0 < a < p — 2.
9: Compute /3 = aa mod p.

10: return (p,a,a,/3).

Algo. ACK-A-1 [Key retr.]
1: Given (a,f3,p) , compute (s : r) = fj^i^)
2: Set m = 0 0 . . . 0 : J \

3 : Compute a — / K (" I) -
4: while f3 ̂ aa mod p
5: S e t m = a"|lrl+ISL
6: Set a = / j f (m) .
7: return a.

mod p.

Figure 7-12: Our symmetric backdoor for EG which embeds a in a.

Algorithm properties.

Confidentiality. This properties is based on the one-wayness of ficix)- If this

holds, then the values of a and a (Steps 5 and 8 of generation, respectively) do not

allow the efficient computation of r : s.

Completeness. This properties rests on the invertibility of /K(X)- The back­

door information is stored in a and restored at Step 1 of the retrieval algorithm.

Symmetry. The algorithm is a symmetric backdoor with secret key K.

Cardinality. Even assuming the pseudo-randomness of /R-(X), the parameters

a and a are not random within a set of the same size as for the honest algorithm.

Instead, they are randomly distributed in a smaller set, which is the image of fx-

290

We proceed to compare more precisely the cardinalities of the standard ElGamal

key generation, Go, and Algorithm ACK-1. The cardinality of GQ is

#{(p,a,p)} = #{(p,a,a)}

= # M - < K P - I) - (P - I) >

where # { a } = 4>{p — 1) and #{a} — p— 1.

The total expected number of keys generated by Algorithm ACK-1 seems to be:

#{(? ,« , a)} = # { p } - # { a }

because for each a, only one a is generable, as they both depend on the same random

parameter r.

Nevertheless, accounting the keys from GKR, more keys are generable. These

GKR-generable keys are to be counted because GKR is allowed to the distinguisher,

therefore that party has access to these keys. We will see that more a are generable

via Algorithm ACK-1 and more a, via the algorithm which follows. Therefore

#{(p ,a ,a)} = #{p} • # { « } • #{a} .

In some cases of GKR, when a new a is requested for fixed p and a, another

algorithm is used, as provided in Figure 7-13. More details are provided in the

paragraph Generalized key regeneration and variable correlation below.

291

PARAMETERS:

• A counter c in VM for the number of times that this algorithm has been
run, i.e. the number of iterations to obtain the previous a.

Algorithm ACK-GKR-l(K) regeneration
1:
2:
3:
4:
5:
6:
7:

if user asks for new a, but
Set (s:r) = fx1 (a).
Set a = fK(0...0:r).
for c iterations

Set m = a]2l rl and a =
Compute /3 = aa mod p.
return (o, /3).

keeps a t h e n

/ K - (W) .

of a]

Figure 7-13: GKR for ACK-1. The covered case is: new a and fixed p, a.

At first, it seems that Algorithm ACK-GKR-1 does not generate a significant

number of new parameters a because the new ones are functions of the previous ones.

On the first run of ACK-1,

•a = .fr(0..,0:r)

and on the first run of ACK-GKR-1,

a = fK{[fK(0...0:r)]]W)

and so on. Except the first one, the seeds {m} for fx are truncated outputs of / # .

Therefore, as long as there is no cycle that involves the upper bits of the outputs

of JK, there is no repetitions. The existence of such cycles would show a weakness

in the pseudo-randomness of / # . Assuming no cycles, the number of new a that

are such generated is the number of different functions applied (on already counted

parameters). Therefore, is it the maximum value of the counter in VM, 2'CL

For the backdoored key generator, the number of generable a is given by the

fraction of generated a that pass the test at Step 4 of Algorithm Go, times the total

292

number of generable bit strings via the pseudo-random function (assuming that it is

an injection, which is already assumed because it is required to be inyertible, thus

to be a permutation).

P- 1
<t>(P ~ 1) 92|r|

For both honest and dishonest algorithms, the number of p generated is the

same. In the ratio of the cardinalities of KSM and KS, the #{p} terms can be

canceled so that

4>(P-1) . 22|r| . 2|c|

UGI = 0 (p - l) . (p - l)
_ 2 |c |+|2(|r |- |p|)>

Example: For fa = AES, the lengths \r\ = \s\ = 64 are used, for a total block length

of 128, which is the size of the input of fa.

Distribution properties. The distribution of these backdoored keys is com­

parable to the honest ones because p is random and, just as for the honest case,

the other parameters, a and a, are generated pseudo-randomly. Therefore, assuming

pseudo-randomness, the backdoored key distribution of Algorithm ACK-1 is indis­

tinguishable from the one of Algorithm Go­

lf there is regeneration, cases are considered separately, because the distinguisher

knows in which case it is. For all cases which will be listed in Table 7-8 below,

except cases 2 and 7, regeneration does not produce more backdoored keys, because

293

the same random parameters are used, which are already counted in the diversity of

the generation.

In cases 2 and 7, when a is regenerated, while a is not, the situation is similar.

The new a is generated from the value of the previous one. As in Cardinality,

assuming that fa does not cycle, the a are not repeated and are distributed pseudo-

randomly.

Entropy of embedding. From the pseudo-randomness of the fa function, a

and a are pseudo-randomly distributed. Therefore HG! — 1, given fa.

Generalized key regeneration and variable correlation. Without GKR,

the problem of the designer when retrieving the private key is:

from (p, a, (3), find a (7-19)

and in the case of this algorithm, the parameter to generate a, that is r, is encrypted

in a.

GKR complicates this. Both a and a are functions of r. If a or a is kept fixed

and the other is regenerated, then the latter is required to preserve its relation with

r. Only with this preservation will the problem of Equation 7.19 remain solvable to

the designer.

While r can be retrieved from the parameter which remains fixed, because fa is

invertible, there remains one problem. Because a is regenerated by taking its previous

value as a seed (ACK-GKR-1), in order to recover this value, volatile memory is

required to store the number of times a has been regenerated.

294

The distinguisher can request several (p, a, a) or keep any one or two parameters.

The seven cases are as in Table 7-8.

1
2

3

4

5

6
7

user keeps

(, ,)
(?><*.)

(p, > a)

(, ot,a)-

(, > a)

(P, ,)
(> «>)

user asks new

(p, a, a)

(» . a)

(. a.) .

(P, ,)

(p>a>)

(,<x, a)
(p, , a)

via algorithm of

Fig. 7-12
Fig. 7-13

Fig. 7-12, Steps 3 to 6
(with the same r)

Fig. 7-12, Step 1 (only)

Fig. 7-12, Steps 3 to 6
(with the same r)

Fig. 7-12, Steps 2 to 10
Fig. 7-12, Step 1 (only)
then Fig. 7-13

description

use the \r\ + \s\
most significant
bits of previous
a as a seed to
generate a
produces at most
2'sl new a, which
are required to be
generators of Z*
finds p with gener­
ator a
finds p and a (a
more precise algo­
rithm should in­
sure that a <p—2)

finds p such that a
is the is generator
of Z* then finds a
as in case 2

Table 7-8: The seven cases of GKR with the algorithms of Figures 7-12 and 7-13.

Is VM absolutely needed? For this type of algorithm where a and a are generated

via an / # , it appears to be the case. A legitimate question is whether new as could

be generated as new as are. In other words, this would mean that the counter is

295

stored in the same way as r or s are. This is the following.

a = fK{0...0:s:r)

a = fK(c:0...0:r)

This would allow to regenerate a for a fixed a by picking another value for c. However,

c precisely cannot be retrieved by inverting fK on a. In this case, doing so is needed

to solve the problem of Equation 7.19. This is because a contains the only available

information on a. Putting c in a similarly generated p yields the same problem, when

p and a are kept fixed and a is to be regenerated. Therefore, this type of algorithm

appears to require VM. Indeed, there seems to be no room for noise, denoted R

in Subsection 7.2.3, so any variation in a has to correspond to information that is

retrievable via a public variable (p or a).

Non-volatile memory (NM) is not necessary because if the generator is com­

pletely reset, all the values are regenerated from scratch, which is coherent with the

honest generator. This property was analyzed as Example 5.2.3.

Complexity. The expected running times of the standard ElGamal key gen­

eration and Algorithm ACK-1 are of the same order, assuming that the complexity

of /K is relatively negligible.

The running time of Steps [1,6,9,10] is identical to the one of [1,4,6,7] in Go-

Steps 5 and 8 are similar to 3 and 5 in the original algorithm: both generate pseudo­

random strings of the same size. Algorithm ACK-1 has more steps (2, 4 and 7), but

their running time is negligible w.r.t. the running time of the standard ElGamal key

generation.

296

If we let Enck =AESfc or DES^ then the time it takes to compute Enck is constant,

so the time for fa is bounded by C>(|p|). This time is negligible compared to the

time it takes to compute the exponentiation on Step 6 of Algorithm ACK-1.

Therefore, tp(Gi) = tp, ta(C?i) =ta + T(fK) and ta{Gx) =ta + T(fK).

Memory. GKR uses non-volatile (NV) memory. This property was analyzed

as Example 5.2.3.

Computational assumptions. The algorithm uses a family of one-way, pseudo­

random functions, fa, which is not explicitly provided.

Simplicity. The algorithm has a relatively low structure. This is intuitively

apparent, even without comparing with other algorithms, because it consists of al­

most the same steps as the honest algorithm.

confidentiality
completeness

indisting.

asymmetry
diversity KGl

cGl
v G l
Ti-Gi

GKR
side-
channels

complexity

memory
computational assumptions
simplicity

yes: one-way fa
yes: fa is invertible

good

good

no: secret key K
2|c|+2(|r|-Jp|j

0, pseudo-random fa
1
1, pseudo-random JK
yes: Table 7-8
tp{Gi) = tp

taiGt) =ta + T(fa)
ta(G1)=ta + T(fa)
VM (only for GKR)
one-way, pseudo-random fa
LS

good

good

good

average

good

good/

F-rel.

average

average

good

Table 7-9: Properties of the Algorithm ACK-1 of Figure 7-12.

297

7.4 Third improvement: asymmetric algorithms

Up to now, all our algorithms have been symmetric. In this section, we present

asymmetric backdoored key generators for RSA and EG. The advantage is the same as

for public key cryptography: the public key is published along with the backdoored

key generator's code and, given some assumptions, does not provide the distinguisher

with any extra computational advantage.

7.4.1 Principles

In Subsection 6.2.1, are shown the first two asymmetric backdoored key genera­

tors for RSA, although they are insecure. Nevertheless, some design principles emerge

from them.

Securing the backdoor information

In the algorithm shown in Figure 6-4, the backdoor information, p, is embedded

in e. Suppose that E is the designer's encryption function.

Suppose that p was embedded in e, just as in Figure 6-4, but as

e = E(p:r)

with r picked at random to fit the leftover input size of E. Then E is used with a

secure key length, as listed in Section A.l. Otherwise, either E's key length makes the

backdoor unconfidential or forces the generation of a lengthier backdoored key. This

would be contradictory to Definition 4.2.9. Therefore a such constructed backdoored

key generator would not be one in the strict sense of the definition which we have

established and argued made the most sense, in Chapter 4.

298

Minimizing the backdoor information

Moreover, not all of p is useful when stored in e: by Coppersmith's Theorem

(Theorem 6.1.8), only its half upper bits are sufficient. Therefore, the backdoor

information can be secured and minimized as

e = Eipf'2 :r)

with r picked at random to fit the leftover input size of E.

Location of the backdoor embedding

There are two choices of public parameters for the embedding, if the backdoor

is embedded as a whole (which it should be, in order to conform to GKR): n and e.

Suppose that p was embedded in e as

e — E(p:r).

This establishes a dependence between the values of e and p. This forbids GKR

unless memory is used, as in Subsection 7.3.2.

Suppose instead that p was embedded in n, possibly as

n = E(p:r)

with r picked at random to fit the leftover input size of E. Then n would need to be

regenerated until both p and q divided n, that is, until

q = E(p:r)/p

is prime.

299

j

Example 7.4.1 (An algorithm with the preceding principles) Consider a

modification of the algorithm of Figure 6-4 that uses RSA encryption directly in RSA

backdoored key generation. Let the designer's RSA public key be (N,E) and its

private key be D, with \N\ = 2k. The result is secure, but has a relatively low

cardinality. We later on improve upon it.

PARAMETERS:

• The designer's RSA public key is (N, E) with private key D and \N\ = 2k.

Key generation algorithm
1: repeat
2: Pick rp p of size k.
3: Pick random r of size k.
4: Set n = (p:r)E mod N.
5: until q = \n/p\ is prime.
6: repeat
7: Pick a random odd e such that |e| < 2k.
8: until gcd(e, <j>{n)) — 1.
9: Compute d = e _ 1 mod <t>(n).

10: return (p,q,d,e).

Key retrieval
1: Input of (n, e).
2: Set (p:r) = eP mod N.
3: Compute d = e - 1 mod <̂ >(n).
4: return d.

Figure 7-14: Modification of Figure 6-4, from Young and Yung (1996): a
backdoor for RSA that encrypts p within n.

Selected algorithm properties. Some properties are interesting to analyze.

It is useful to notice that confidentiality holds and that GKR is feasible. On the

other hand, cardinality appears low in comparison to our best symmetric algorithms.

Nevertheless, it is close to our best cardinality for asymmetric algorithms.

Confidentiality. The key lengths are secure, because the designer's security

parameter is the same as the distinguisher's. The input of E has size |JV| = |p| + \r\ =

2k.

300

Cardinality. The total number of backdoored keys may seem to be as in

Example 2.2.9:

^ 24fc-21sfe

that is, the same as the number of honest keys. However, it is not the case: n needs

to be regenerated until both p and q divided n, that is, until

q = E(p:r)/p

is prime. For an individual r, this probability is small, but it is useable over all r.

Suppose that there is sufficient randomness in r to assumably produce all the

random values that correspond to g's size, that is, \r\ = \p\. This division, E(p:r)/p,

succeeds with good probability because there are about 2k multiples of a k-bit p that

have length at most 2k. However, by Theorem 2.2.4, the expected number of p is

2fc-ig(fc) g0 n o t a n v a i u e s 0f 2A;-bit integers are covered. The expected number of

covered 2A;-bit integers is

{ p : r} = #{p} • #{ r} = 2fc~lgW • 2k = 22fe~lg«

and these are distributed indistinguishably from as from a uniform distribution,

because E(p:r) is close to uniform by Proposition 2.2.27.

Then p divides E(p: r) with probability given by the fraction of strings covered

by multiples of p times the expected fraction of strings covered by the image of E.

301

This is:

Pr
E(p:r)

P
ez

#{2fc-bit multiples of p} #{p: r}
22fc

2k 22fe_1sC=)

22fc

(7.20)
22fc 22fc 2fe+lg(fc)'

By Theorem 2.2.4, a fc-bit integer is prime with probability of about 2- lg(fc).

Therefore

Pr
E(p:r) .

P
is prime

1 2~lg(fc) = 1

2fc+ig(fc) 2fc+21g(fc)'
(7.21)

Overall, the expected number of backdoored keys per value of e (which is unaf­

fected) is

A/"Gl,n = #{P-r | 3 prime g s.t. pq = E(p:r)}

-E{p:r)
= #M-#W-Pr

P
is prime

2fe+21g(fe)

_ 2 fc-3 's(fe)

In the ratio of the cardinalities of KSM and KS, the #{e} terms can be canceled

so that

Tin, = o—k—lgfc

Generalized key regeneration and variable correlation. As opposed to

the previous suggestion of embedding, e = E(p:r), GKR is allowed. The only non-

trivial case is to keep q and- find a new p. To regenerate, one swaps the roles of p

and q and regenerates with q as the backdoor value to be embedded. •

302

What are the more favorable encodings of (p: r) in El Is it possible to have a

shorter E(p: r) so that there remains space for random bits, r', in n = E(p: r) : r'.

If it were possible, then n could correspond to many choices of multiples of p, which

is desirable as it is of the form n = pq. One way is to truncate E(p: r), but the

feasibility of inverting a truncated RSA encryption is, to our knowledge, an open

question.

Example 7.4.2 (Leaving space for r', but insecurely) Let

n = E(p]k/2):r'

for E(x) = x3 mod N and an assumed secure-length RSA modulo N. Then

\E(pf/2)\=3k/2

so the k/2 MSB are 0. Therefore \r'\ = k/2 bits of randomness can be appended.

However, confidentiality does not hold, because 3 is an easily invertible choice of RSA

public exponent, as 3 rd roots modulo iV are feasibly computable. •

This last example illustrates how it does not appear to be possible to use RSA

encryption directly in RSA backdoored key generation. Even if only \p]k^2\ = k/2

bits are encrypted, the resulting encryption is 2k bits long. It seems that the loop

from Step 1 to 5 of the algorithm of Figure 7-14 remains needed in order to find an

r such that

E(p]k/2: r) = multiple of p.

303

Optimal location of the randomness

Distribution properties are a constant issue when RSA is used to embed a back­

door in RSA keys. This is directly consequent of the location of the embedding and

of the generation of the rest of the parameters.

A way to solve this is to use a different cryptosystem to instantiate E. Since

the length of the public parameters is £P(G0) — 2A; and since security requires that

|JW|
 =

 ^P(GO))
 a n v randomness is required to be used inside the designer's encryption

function, E. Therefore, we seek another E : {0, l } n (^ } - • {0, l}m (* s) . Function E

shall satisfy Definition 4.2.5, so its output is close to uniform, and thus uses internal

randomness, implicit here. It is also such that m (^) <S £P(G0)
 S O that p can be

embedded in n, as

n = n:E(p):r2 (7.22)

with ri , r2 picked at random to fit the leftover £P(G0)
 s^ze OI*n- This allows the division

n = qp + r0

with quotient q and remainder r0. Then the subtraction r'2 = r2 — r0 does not

affect E(p) and the picked p, if r2 is sufficiently long. By the Euclidean Algorithm,

\f0\ < | Q\ = k, so |r2| > k is required. Therefore |r2| = k. The probability that

= n-r£ = r1 = g(p):^2

p p

is prime is approximately given by Theorem 2.2.4, as much as r2 approximates r2.

304

Example 7.4.3 (Modified algorithm properties) Accordingly, let G[be the

same as the algorithm of Figure 7-14 of Example 7.4.1, but with E replaced as

described: Step 4 is replaced by an assignment which corresponds to Equation 7.22

and Step 5's computation of q is done accordingly to Equation 7.23.

n = n: E(p): r2

Some properties are improved and the others are the same as for the algorithm

of Figure 6-18. The notation ought to be more precise. Because only % bits of p are

encrypted, those sufficient to recover it via a given theorem, change E(p) to Eo I{p).

Also, suppose that the random suffix has length |r*21 = k, therefore, the random

prefix has length |ri | — k — i. Also, r\ has the distribution of the MSB of the product

of two primes.

Modified distribution properties. This property is improved and its anal­

ysis is almost the same as for the algorithm of Figure 6-18. The key generation

algorithm produces instances of n that are the product of a truly random p and a

somewhat random q. Amongst other qualities, the upper |ri | bits of n have the cor­

rect distribution of such a product. Therefore, Ca & 0, although further knowledge

on the precise distributed of n should determine whether this value is truly negligibly

small.

Modified cardinality. The expected cardinality is silghtly improved (the fol­

lowing analysis resembles the one that led to Equation 6.1 for PAP). The only part

of Gi's analysis which changes for G[is Equation 7.20. Its first term, the fraction of

strings covered by multiples of p, is replaced by a value of 1, because substituting r2

305

by r'2 allows for the exact division by p.

>i:£?o/(p) : r4
Pr

P
ez = 1

Therefore, Equation 7.21 becomes

> i : £ o / (p) : r £
Pr

V
is prime l-2~ l g f e

1
2~igl'

The remaining part of the analysis is

•M^.n = #{r i :p : r2 | 3 prime 9 s.t. pg = E(p:r)}

= #{ r i} • #{p} • #{r 2 } • Pr

^ 2fc~* • 2i_Igfe • 1 • 2_lgfc

r i :Eo/(p):r^2 .

P
is prime

(7.24)

In the ratio of the cardinalities oiKSM and KS, the #{e} terms can be canceled

so that

•ftci =
A/"G;,n ^ 2 f c ~ 2 1 g f c

ATGo,n * 22fc-2igfe

2-fc_ (7.25)

D

306

7.4.2 Improvements

The following algorithm is another contribution. The designer has no use for a

secret key /3 in the following RSA backdoored key generator. In order to use accepted

secure length for RSA, AES and ECIES, let k = 512.

PARAMETERS:

• EECIES is the Elliptic Curve Integrated Encryption Scheme's public-key
encryption function and DECIES is the corresponding decryption function.

Algorithm ACK-2 [RSA key gen]
1: Pick random (K,x) € {0, l } 1 2 8 x {0, l } 3 2 .

2: Set pf2 = AESK(x):AES^](x).
3: repeat
4: Pick random pJfc/2 e {0, l } 2 5 6 .
5: until p is prime.
6: repeat
7: Pick random r i e {0, l } 1 9 2 , r 2 £ {0, l } 5 1 2 .
8: Setn = (n:EECIES(k:x):r2).
9: until q = [n/p] is prime.

10; repeat
1 1 : Pick a random odd e such that e < <j>(n).
12: until gcd(e,<£(n)) = 1.
13: Compute d = e _ 1 mod <£(n).
14: return (p,q,d,e).

Algorithm ACK-A-2 [Key
1: Input of (n, e).
2: Set (K:x) = D £ C / B S (n] | ? 3) .

3: Set pf/2 = AESK{x):AES^\x).

4: Find p using p"|fc/2 [Theorem 6.1.8].
5: Set q = [n/p\.
6: return (p, q).

retr.]

Figure 7-15: An asymmetric backdoor for RSA using ECIES and AES. The
information on p is stored in n.

Algorithm properties.

Confidentiality. This property is achieved via public-key encryption with

ECIES.

Completeness. This property is achieved via a standard encryption function

as well as via one of Coppersmith's factorization method from approximate values

of p (Theorem 6.1.8).

Symmetry. This backdoored key generator is asymmetric because the back­

door information is encrypted with ECIES and this cryptosystem is asymmetric.

307

Cardinality. Change the parameter lengths to asymptotic notation, using

2k = 1024 and assuming that the secure lengths for the other cryptosystems vary

proportionally. Therefore, (K,x) G {0, l} fc/4 x {0, l} f e/16 so i = 5fc/16.

Nevertheless, the analysis that leads to Equation 7.25 holds. In the ratio of the

cardinalities of KSM and KS, the #{e} terms can be canceled so that 1ZQ1 — 2~k.

Distribution properties. This property's analysis is almost the same as for

the algorithm analyzed in Example 7.4.3. The key generation algorithm produces

instances of n that are the product of a truly random p and a somewhat random

q. Amongst other qualities, the upper |ri | bits of n have the correct distribution

of such a product. Therefore, CQX « 0, although further knowledge on the precise

distributed of n should determine whether this value is truly negligibly small.

Entropy of embedding. From the pseudo-randomness of the EECIES func­

tion (Proposition A.3.6), the middle bits of n are pseudo-randomly distributed, but

the same does not apply to the lower bits, as they must be adjusted so that q is

prime. This yields the evaluation: 0 < HG^ < 1, given EG.

Generalized key regeneration and variable correlation. This property

is easily satisfied because all parameters are generated independently. The backdoor

information on p is stored in n, which by definition depends on such an inverse.

Complexity. Following the asymptotic notation of Cardinality, this property

is as for the preceding algorithm, with RSA-2/c replaced by ECiES-5fc/16: The gen­

eration of e is the same as for Go, so te(G\) = te. For the generation of n, Step 9 is

done efficiently as shown to obtain Equation 7.23.

tp(Gi) = tp + T(AES) = tp

308

and

t„(Gi) = T(ECiES-5fc/16).

Memory. No use of additional memory is made.

Computational assumptions. The pseudo-randomness of AES and the en­

cryption scheme ECIES are used.

Simplicity. There is about as much structure as in the preceding algorithm,

which is rated LS.

confidentiality
completeness

indisting.

asymmetry

diversity
KGl

cGl
v G l
"HGI

GKR
side
channels

complexity

memory
computational assumptions
simplicity

yes: ECIES

yes: fK and Th. 6.1.8
good

good

yes: ECIES is asymmetric
2~lc

0
1
0 < HG1 < 1, given EG
yes
tp(Gi) = tp

tq(Gi) = T(ECiES-5k/lQ)
te{Gi) = te

no
AES a n d ECIES

LS

*
poor

good

good

poor

good

good

good

average

good

Table 7-10: Properties of the Algorithm ACK-2 of Figure 7-15. (*) Note that the
ratio is good, for an asymmetric algorithm.

309

A similar algorithm is given for backdoors in EG key generation. Following the

standard accepted key lengths of Section A.l, let \p\ = 997 (which is the length of

the ElGamal private key). The symmetric scheme AES is used with key length 128.

Let / K (^) be as for the preceding EG algorithm (Subsection 7.3.2):

fK(x) = \EncK(x):En4\x):...:En4\x)}

with tail truncation and EncK = AESK : {0, l } 1 2 8 -»• {0, l } 1 2 8 . Therefore, fK :

{0, l } 1 2 8 -> {0, l } 9 9 7 .

PARAMETERS:

• EECIES is the Elliptic Curve Integrated Encryption Scheme's public-key
encryption function and DECIES is the corresponding decryption function.

Algorithm ACK-3 [EG key gen]
1: Pick rp p of appropriate size.
2: repeat
3: Pick random (K,x) G {0, l } 1 2 8 X {0, l } 3 2 .
3 : Pick random r S {0, l } 6 7 7 .
4: Set a = EECIBS(k:x):r.
5: until a e Z* and V prime pi, s.t. pi\p — 1

and [a(P_1)/P< m o d p ^ l] .
6: Set a = / / f (x) and such that 0 < a < p — 2.
7: Compute /3 = o ° mod p.
8: return (p, a, a, j3).

Algorithm ACK-A-3 [Key
1: Input of (p, a,/3).
2: Let (k:x) = £ > £ C / E S (a J 3 2 o) .
3 : Let a = / / f (x) .
4 : Return a.

retr.]

Figure 7-16: An asymmetric backdoor for EG using ECIES and AES. The
information on a is stored in a.

Algori thm propert ies . The encryption of the parameters that determine the

private key a are in the 320 first bits of a.

Confidentiality. This property is achieved via public-key encryption with

ECIES.

Completeness. This property is achieved via a standard encryption function.

310

Symmetry. This backdoored key generator is asymmetric because the back­

door information is encrypted with ECIES and the cryptosystem is asymmetric.

Cardinality. Change the parameter lengths to asymptotic notation, using

\p\ = 997 and assuming that the secure lengths for the other cryptosystems vary pro­

portionally. Therefore, (K,x) e {0, l } 1 6 0 « {0, l}^6 and r <E {0, l } 6 7 7 « {0,1}2W\

In asymptotic notation, this means that there are # { a } « 25'pl/6. Because the (K, x)

are reused to generate a, there is one such parameter per parameter a.

In the ratio of the cardinalities of KSM and KS, the #{p} terms can be canceled

so that TlGl = 2-7W/6.

Distribution properties. By Proposition A.3.6, a is correctly distributed.

Assuming the pseudo-randomness of AES, a is correctly distributed.

Entropy of embedding. From the pseudo-randomness of the EG encryption

(Proposition A.3.6) and the one of / # , Ha = 1> given EG and AES.

Generalized key regeneration and variable correlation. The regenera­

tion cases are similar to the ones of Algorithm ACK-1 (Figure 7-12). Volatile memory

is required for some cases, for storing the string (K,x), which is comparable to the

parameter r of Algorithm ACK-1.

Complexity. Following the asymptotic notation of Cardinality:

ta(Gi) = * „ . T (E C I E S - | P | / 6)

and

ta(Gi) = T(fK).

311

Memory. GKR uses non-volatile (NV) memory.

Computational assumptions. The algorithm uses assumptions on AES and

ECIES.

Simplicity. The algorithm has a relatively low structure. This is intuitively

apparent, even without comparing with other algorithms, because it consists of al­

most the same steps as the honest algorithm.

confidentiality
completeness

indisting.

asymmetry

diversity
nGl
cGl
VGl

"HGX

GKR
side
channels

complexity

memory
computational assumptions
simplicity

yes: ECIES
yes: fK and Th. 6.1.8

good

good

yes: ECIES is asymmetric

2-7|p|/6
0, given ECIES and AES

1
1, given ECIES and AES
yes
tp(Gi) — tp

t a(Gl)=t a-T(ECIES-|p| /6)
ta(G1)=T(fK)
VM (only for GKR)
AES and ECIES

LS

average

good

good

good

good

poor

average

average

good

Table 7-11: Properties of the Algorithm ACK-3 of Figure 7-16.

Discussion. The expected running time of this algorithm can be improved by

repeating Step 4 when Step 5 fails its loop exiting condition. The repetitions should

be limited to a constant number of times, in case the failure is due to the other

previously picked parameters. Also, in fx, one could use EUCK{X) = EECIES(K:x)

to reduce the number of security assumptions, at the cost of a worst complexity.

It would have been possible to encrypt (K: x) into p, but many key generation

requirements include more restrictions on p than the basic ones, so that there are

312

more possible a than p. Moreover, if primes p with known factorization of p — 1

are generated, using a result from Kalai [Kal03], then Step 5 can be sped up. As

for the other public parameter, /3, it is perhaps unusable for this purpose since it is

computed from a and a (the discrete logarithm is involved).

7.5 Classification of backdoors

For complexity, some algorithms have two ratings. For example, the analysis

of And-93 is such that assuming that T(F) € 0(t^), the complexity is rated poor.

Without this assumption, the complexity is rated as F-relative. Thus overall, this

situation is denoted as "poor / F-relative". In general, the first component of this

notation is the result of the complexity analysis, assuming that the function F has

relatively negligible complexity.

Some measures are compilations of more detailed ones. A criterion which has

many sub-criteria is rated as its lowest-ranked sub-criterion. For instance, the diver­

sity analysis of PP is such that the complexity is rated "good / F-relative" and the

memory is rated "average", therefore the cumulative low is "average / F-relative".

Similarly for side channels, the rating is the worst of the complexity and the memory.

The diversity is rated as the worst of the key ratio and the variable correlation.

If the distribution properties or the entropy fails, then an exponent of (-) is appended

to any non-failing rating, because they are more difficult to test. This is coherent

with our suggested definition of diversity, given as Definition 5.1.15.

For asymmetric algorithms, an exponent of (*) is appended to the name.

7.5.1 Backdoors to RSA key generation

Compare backdoored key generators for RSA.

313

Algorithm

Name

And-93

HG

YY96-RSAW
P A P (*)

PAP-2^

PP

EC-SETUP(*^

CS-1
CS-2

CS-3

CS-4

CS-5

G1

G[

G2

G3

G,
ACK-2^

Table

6-1

6-2

6-3
6-4

6-7

6-8

6-9

6-10
6-11

6-12

6-13

6-14
7-3

7-4

7-5

7-6

7-7

7-10

confi­
dent.

failed

good

failed
failed

failed

failed

good
good
good

good

good

good
good

good

good

good

good
good

diver­
sity

poor

failed

failed
poor

poor

poor

poor

failed
poor

poor

poor

failed
good

good

good

poor

good
poor

GKR

good

failed

failed
failed

good

good

good

good
good

good

good

good
good

good

good

good

good
good

side chan­
nels

poor /
F-relative
good /
F-relative
poor
good /
F-relative
good /
F-relative
average /
F-relative
failed

failed
good /
F-relative
good /
F-relative
poor /
F-relative
failed
good /
F-relative
good /
F-relative
good /
F-relative
good /
F-relative
good
good

assump­
tions

average

average

good
average

poor

poor

poor

average
average

average

average

average
average

average

average

average

good
average

simplicity

good

good

good
average

average

average

failed

good
average

average

good

average
good

good

good

good

good
good

Table 7-12: Comparison of backdoored key generators for RSA.

314

7.5.2 Backdoors to EG key generation

Compare backdoored key generators for EG.

Algorithm

Name

YY96-EGW
YY96-EG-
pure
ACK-1

ACK-3W

Table

6-5
6-6

7-9

7-11

confi­
dentia­
lity

failed
good

good

good

diversity

failed
failed

good

average

GKR

failed
failed

good

good

side
chan­
nels

poor
failed

average
/ F-
relative
poor

assump­
tions

average
average

average

average

simpli­
city

good
average

good

good

Table 7-13: Comparison of backdoored key generators for EG.

7.5.3 Location of the embedding

The proposals of Crepeau and Slakmon [CS03], more related to our work, can

be put in two categories. First, the proposals in which the information necessary

for the factorization of an RSA modulus, n, is hidden in the public exponent, e are

hidden exponent methods. Second, the proposals in which the factorization is hidden

in n itself are hidden modulus methods. Both approaches have their own merits. The

latter, which includes the (direct) hidden factorization methods has the advantage

of a running time proportional to the original algorithm, but is still vulnerable to

timing attacks as no known speedup for the generation of n applies.

One advantage to a hidden modulus method is to allow the use of a common

industry-standard choice for e, that is, e = 65537 = 216 + 1 , which has low Hamming

315

weight and facilitates fast exponentiation. However, this concerns a particular ap­

plied case, not the general theoretical cryptosystem, as defined in [PKC03]. In the

light of such particular applied cases, the choice of letting e vary may be interpreted

as a tradeoff. In our algorithms, achieving .a backdoor that resists timing analysis

comes at the cost of increasing the time for all parties to encrypt data to a particular

party. This may be useful for backdoors used for administration .purposes, such as

password recovery. Also, using a fixed e is generally not secure 7 (As already pointed

out in Subsection 2.2.8).

The other category of methods, comprising the hidden exponent methods, has

the advantage of allowing an arbitrary generation of n and of permitting speedups

in the generation of the primes [JPVOO]. The present results, in the form of Algo­

rithms G4, ACK-2 and ACK-4, are the first to have a running time strictly propor­

tional to their respective original key generation algorithm. Thus with our results,

timing analysis is a less useful tool and the distinguisher, leading this "backdoor

detection attack" on its own keys, has a lesser chance of distinguishing backdoored

keys.

7.5.4 Symmetry and asymmetry

We presented the first asymmetric algorithms for RSA and EG. For RSA, other

algorithms, had been presented as such, but failed important security criteria. More­

over, the algorithm of [YY05a] is not fully asymmetric: Algorithm PP relies on a

7 For instance, given e different encryptions of a message m, it is trivial to recover
the message [Sti06, Exercise 5.17].

316

private value i. The use of i may not be necessary, but this algorithm fails the critical

criterion of confidentiality.

7.6 Chapter notes

Section 7.1. First improvement: complexity and diversity. The results

in Section 7.1 have been submitted for publication as [ACS].

Theorems 7.1.3 and 7.1.7 are contributed by Crepeau and Slakmon, even though

Subsection 7.1.2 was compiled in [ACS]. The proof of Theorem 7.1.12 is taken from

[BDF98]. It is a slight generalisation of a result of [Cop96].

Section 7.3. Second improvement: generalized key regeneration. The

symmetric EG backdoor of Subsection 7.3.2 is the work of R. Kazmi. Its analysis

and the one of its GKR is joint work with the author of this thesis.

Section 7.4. Third improvement: asymmetric algorithms. The results

in Section 7.4 have been submitted for publication as [ACK].

317

CHAPTER 8
Conclusion

The aim of this work was to push further the mathematical knowledge about

the security of RSA. We have shown a positive result that improves on the secu­

rity of padding schemes for RSA signatures. This consists in Theorem 3.3.1 and its

applications.

We have also shown a negative result that implies that more RSA keys are weak,

in the sense that they are subject to having being contaminated by an illegitimate

backdoor. In the process, we have given or shown the following improvements on

definitions pertaining to backdoors. The definitions from the kleptography papers

are summarized in Table 4-2.

general definition

indistinguishability of
keys
side channels
simplicity and compu­
tational assumptions
general comparision of
properties

improvement

Definition 4.2.9 is more complete than any kleptography
definition (Table 4-2)
Definition 5.1.15 is more complete than Definition 5.1.1

Section 5.2 is more complete than the analysis of [CS03]
Section 5.3 presents a new analysis

Table 5-5 is a wieldy way of summarizing properties, as
opposed to enumerating them

Table 8-1: Summary of this work's definitions.on backdoors.

318

The following are improvements on algorithms pertaining to backdoors. The

algorithms from the kleptography papers are summarized in Table 4-3

pseudo-code

complexity, diversity
and computational as­
sumptions
generalized key regen­
eration (GKR)

asymmetry

comparison

improvement

Chapters 6 and 7 present algorithms in uniformed
pseudo-code
for RSA, the algorithms of Section 7.1 improve on CS-1
and CS-3 of Subsection 6.3

for RSA, the algorithms of Section 7.1 improve on the
ones of Subsection 6.1.2
for EG, the algorithms of Section 7.3 improve on the ones
of Subsection 6.2.1
the algorithms of Subsection 7.4 improve on all other
algorithms, for both RSA and EG
Table 7-12 is a comparison of backdoored key generators
for RSA.

Table 7-13 is a comparison of backdoored key generators
for EG.

Table 8-2: Summary of this work's main algorithmic improvements for backdoors.

The following are improvements on theorems and propositions pertaining to

backdoors.

319

Proposition 7.1.9

Proposition 7.1.10

Proposition 7.1.14

improvement

for RSA, the complexity is linear in the one of G0

and the one of 7173, a keyed pseudo-random function:
T(Gi)«T(Go) + r (^)
for RSA, with the complexity of Proposition 7.1.9, car­
dinality is as high as any other algorithm (except CS-4
is slightly higher)
for RSA, with the complexity of Proposition 7.1.9, car­
dinality is the highest known
Theorem 7.1.13 shows the completeness of an algorithm
achieving Proposition 7.1.14 (and this theorem may be
interpreted as a generalization of Theorem 6.3.4)

Table 8-3: Summary of this work's theorems and propositions on backdoors.

.„ , , r. ... more precise image
unified definitions *• r ,, , , r , , , of the state of the art

extensions of
Wiener's Theorem

algorithms

generalization of_
BDF's Theorem

algorithms
propostitions:

->• better bounds on
achievable properties

asymmetric algorithms

Figure 8-1: Relations between this work's results on backdoors.

As noted in the second part of the Discussion after Algorithm G4 (Figure 7-

9, Subsection 7.1.4), an important open question is that the conditions of Theo­

rem 2.2.11 are not sufficient to justify the intuition behind Assumption 2.2.26. It

320

is on this assumption that the security of Algorithm G4 is based. A different, per­

haps related, theorem would be needed to provide the intuition that Theorem 2.2.11

appeared to.

Consequences. More concretely, these results have negative consequences on

the trust which can be placed into cryptographic implementations which use public

key generation. Three very different such examples are the following.

• PGP [PGP06]: as it is open source software, an embedded backdoor can be

detected by the review of peers, but other users cannot if they view PGP as a

black box.

• Microsoft: as it is closed source software, there is more reason to believe in

issues such as the one of the NSAKEY, which is a parameter in Microsoft's

Crypto API that is claimed to be a backup key, usable as a spare. However,

mostly its name has given rise to conspiracy theories, as NSA can stand for

National Security Agency, a United States governmental agency. [Sch99].

• Smart cards: as they are self-contained, small, black box devices, backdoored

keys is a type of attack for which they are an ideal target (more complicated

attacks are less likely).

Therefore, this call for common criteria certification involving revealing the key

generation algorithm to a trusted third party [NSA06a], or RSA key generation with

verifiable randomness [JG02]. The aim of the latter technique is to persuade the

verifying party that the legitimate user has not weakened or reused its key. This is

achievable via a simulated trusted third party and zero-knowledge proofs.

321

Theoretical importance. Prom a theoretical point of view, this thesis also

contributes in terms of properties of backdoors. The proofs of these properties are

constructive, referring to concrete backdoored key generators. The four new algo­

rithms presented are hidden exponent methods where the running times are linear in

the running time of the original algorithm. For all algorithms, except for the second

one which plays an intuitively important role, the set of possible cheating keys can

be made more diverse and better defined than in earlier algorithms. The first three

algorithms are meant to develop intuition. The fourth backdoored key generator

is our strongest result. It is also the best-defined one: cryptographic assumptions

are made on explicit functions, actually RSA itself, instead of on an uninstanciated

function, 7Tg, as it had been the case for the strongest previous results.

A general backdoored key generation algorithm building recipe is to use theorems

that need a minimal amount of information on the key in order to break it, such as

Theorems 7.1.12, 6.3.4 and 7.1.3. Then those redundant bits can be scrambled with

random bits, which allows for a better diversity of the backdoored keys.

Applied importance. We improve on the proposals of [CS03], which already

supersede the SETUP constructions, in a number of ways. Firstly, these proposals

already provided a better timing analysis. Secondly, they allow more power to the

distinguisher, power of which the description is repeated in this chapter in Subsec­

tion 7.1.1. The provided examples of SETUPS cannot allow these powers, which we

deem reasonable. Thirdly, those examples use the random oracle model in their

proofs, therefore calling for the use of strong cryptographic functions, which is both

an extra assumption and a computational complexity cost.

322

Comparison with kleptography. In kleptographic vocabulary, our back­

doors are closer to regular SETUPS. However, in regular SETUPS, asymmetric en­

cryption is used by the attacker [YY97a, YY97b, Definition 1, Points 2 and 3],

and this is indeed not our case. Yet, asymmetry implies uniformity, as defined in

[YY05a, YY05b, Property 4], which in turn implies strong SETUPS (idem, Definition

1). Therefore, in the regular SETUPS definition, the attacker should be stated as

using symmetric encryption, otherwise the regular definition collapses to the strong

one.

Moreover, it appears that regular SETUPS have been dropped from study. In the

latest kleptography papers (2005), regular SETUPS are no longer mentioned and the

latest regular SETUP (for key generation) [YY96, Section 3] and [YY97a, Section 5] is

a backdoored generator for which confidentiality does not hold because the attacker's

key lengths are not secure. However, as mentioned above, symmetric backdoors beat

other asymmetric ones in a number of ways, therefore symmetric backdoors are of

significant interest. Therefore, kleptographic vocabulary has evolved in such a way

that the best comparison for our backdoors is with the regular setups.

We do not analyze whether our backdoors are strong SETUPS. The strong SETUP

approach remains valuable as it produces high key diversity and may generate ac­

curate examples of indistinguishability proofs. Despite that, we believe that the

ones of Young and Yung [YY05b] are unfinished. As discussed in Subsection 6.2.4,

these proofs appear to be incomplete. In brief, a distinguisher D is assumed to non-

negligibly distinguishes primes from the backdoored keys. The idea is to use D to

invert the ECDDH key exchange. However there is no explanation as to how the

323

shared secret is computed from D, when the probability that the oracle gives the

solution is negligible.

Main open question. The main that this work highlights is whether it is

possible to generate RSA symmetric backdoored keys with cardinality significantly

greater than 2ik (for either of the parameters n or e, that is over a total of 2k possible

honest keys for that parameter only). Via the principles we showed for constructing

algorithms, this can be the same as asking whether it is possible to factor n = pq

when knowing significantly less than k/2 bits about its factorization.

324

Appendix A: Basic cryptology

A . l Contemporary secure key lengths

NIST recommends the following secret (private) key lengths [NSA06b]. The

breaking times are from 2001, in [RSAb], and are for the corresponding symmetric

key size.

symmetric

56
80
112
128
192
256

RSA

512
1024
2048
3072
7680
15360

elliptic curve

112
160
224
256
384
512

breaking time

less than 5 min.
600 months

1016 years

Table A.l: Contemporary secure key lengths with approximate equivalents.

In order to attain a comparable security to 80 bits of symmetric key, one uses

1024 bits of RSA private key or 160 bits of elliptic curve-based private key. Also, by

year 2010, cryptosystems using the equivalent of 80 bits of symmetric key should be

phased out.

For instance, the most recently solved challenges for elliptic curves were of 109

bits, in 2002 and 2004 [Sti06, p. 268]. The U.S. Government standards for top secret

encryption requires 192 or 256 bits of AES (Advanced Encryption Standard) secret

key [CNS06, p. 2].

For ElGamal over Z*, the private key length (the one of p) must be at least

325

300 digits (997 bits) and p — 1 must be a multiple of a large prime [Sti06, p. 235].

ElGamal is slightly stronger than RSA, in the sense that it requires less bits of private

key.

A.2 The ElGamal cryptosystem

The ElGammal (over Z*) cryptosystem and digital signature schemes [E1G85]

are based on the generation of a random prime p such that p — 1 is large enough

(Section A.l) and has a large prime divisor [Sti06, p. 235], of a primitive element

(generator) a G Z*, and of a random j3 = aa mod p, where a is generated randomly

modulo p — 1. The triplet (p, a, f3) is made public.

Algorithm GEG [EG key generation]

1:
2:
3:
4:
5:
6:
.7:

Pick a random prime p of appropriate size l .
repeat

Pick a random a G Z*.
until V prime pi} s.t. pi\p — 1, it holds that [a^'
Pick a random 0 < a < p — 2.
Compute j3 = aa mod p.
return (p,a,a,(3).

-i)M mod P ^ l] -

Figure A.l: Honest key generation for the EG cryptosystem.

1 Size is chosen consistently with respect to the values provided by Table A.l.

326

A.2.1 Number of keys

An element a of a cyclic group G is a generator if the order of a is \G\. In the

cyclic group Z*, every element has some order, k, that divides p — 1 = |Z*|, by an

application of Lagrange's Theorem. Suppose that f3 has order k, so any other group

element of the form 7 = /3l, for some 0 < i < p — 2, has order

l 7 l = gcd(M)-

So there are exactly <f)(k) elements of order k, one for each % that is coprime with k.

Therefore, there are 4>{p— 1) possible generators. This argument may be referred to

in Stinson's book [Sti06, Section 5.2.3].

Note that if primes p with known factorization of p — 1 are generated, using a

result from Kalai [Kal03], then Step 4 of GEG can be sped up.

Therefore, the number of honest EG keys is:

= P<MP-1) (P-1)

fa p3

where <f)(p —I) & p , because p — 1 is a multiple of a large prime. This is so in order

to thwart existing polynomial-time algorithms that solve special cases of the discrete

logarithm problem [Sti06, p. 235].

327

A.3 The ElGamal cryptosystem over elliptic curves

The following information is taken from Stinson [Sti06, Section 6.5], and es­

pecially from Section 6.5.4. Encryption with ElGamal cryptosystem over Z* has a

message to ciphertext expansion factor of two. Over elliptic curves (EC), this blowup

is of about four, because each of the two points on an elliptic curve consists of

two field elements. Nevertheless, we will immediately see how this factor of four is

reduced to a factor of approximately two.

Definition A.3.1 ([Sti06], Definition 6.4) Let p > 3 be a prime. The elliptic

curve E defined by the equation y2 = x3 + £x + tfj over Zp is the set of solutions

(x, y) e Zp x Zp, where £, ip e Zp and 3£3 + 27V>2 ^ 0 mod p. Along with E is defined

O € E, the special point called the point at infinity.

Assumption A.3.2 (EC discrete logarithm problem) The curve E is selected

so that it has a cyclic subgroup H of prime order ord(H) = h, where the discrete

logarithm problem is assumed to be computationally infeasible.

For this, h — 1 is required to be large enough (Table A.l) and to have a large

prime divisor.

For elliptic curves, the analog to multiplying two points in F* is adding two points

on E. The analog to raising a point in F* to the kth power is multiplying P E E by

an integer k. By repeated doubling, kP G E can be computed in 0(\gk \g3p) bit

operations [Kob94, p. 178].

328

A more efficient variant of elliptic curve ElGamal is the Elliptic Curve Inte­

grated Encryption Scheme (ECIES). The simplified version of ECIES presented in

[Sti06, Figure 6.2] has a ciphertext blowup factor of about two. Simplified ECIES uses

the standard technique of point compression, which reduces the storage required for

points on an elliptic curve by a factor of about two, at the expense of increased time

complexity. Point compression exploits the fact that there are two solutions for the

coordinate y in the equation of E, and these solutions are additive inverses of one

another. Therefore, storing a single bit is sufficient to compute y, when given x.

The following three algorithms are the components of ECIES, with the descrip­

tion of E understood to be public. They are given in Figure A.2 (key generation),

Figure A.3 (encryption) and Figure A.4 (decryption).

The public key is an instance of the EC discrete logarithm problem of Assump­

tion A.3.2. Suppose E, H where a generates H. Given (a,(3) G HxH, where (3 = aa

with a £ Z*h, the problem is to find a. This a is the corresponding private key. The

points a and (3 lie on the curve E, so they have two coordinates each of size \p\.

Algorithm GECIES key generation

1: Let a b e a generator of H s.t. ord(a) = h has a large prime divisor.
2: Pick a random a £ Z*h.
3: Let (3 = aa.
4: Return (a, a, (3).

Figure A.2: Key generation for the ECIES cryptosystem.

The algorithm encrypts a message m G Z*. The encrypted message (at Step 5

329

of the encryption) is denoted (7,9) and is such that 7 G Zp x Z2 and 9 € Z*. The

pair (7,9) is the compressed version of (ka, kf5m). Note that at Step 2, x0 7̂ 0 such

that x~l exists for use in the decryption algorithm which follows (Step 2).

Algori thm EECIES(m) [ECIES encryption

1:
2:
3:
4:
5:

Pick random feeZJ^.
D6T l3?o

Set 7 =
Set0 =
re tu rn

y0) = fc/?, with x0 ^ 0.
PointCompress(ka).
x0m mod p.
y = (7,^).

of m GZ;]

Figure A.3: Encryption for the ECIES cryptosystem.

In the decryption algorithm, Step 1 is the compressed version of the compu­

tation of k(3 = a(ka). Step 2 is the compressed version of the computation of

m = (kpm)(kp)-\

Algori thm DECIES(y) [ECIES decryption of (7,0),7 G Zp x Z2,0 G Z*p]
1: Set (a;0, y0) = a • PointDecompress^).
2: Set m = 9 • x~l mod p.
3: r e tu rn m.

Figure A.4: Decryption for the ECIES cryptosystem.

330

It is easy to verify that the scheme is correct: 6 • x~x = (x0m)x~l modp =

TO mod p. The quantity x0 is known to the decryption party because, having the

private key a, it can compute a • Point Decompress^) — aka — k(5 = (x0,y0).

A.3.1 Cardinality, probability distribution and ciphertext length

Theorem A.3.3 (Hasse's Theorem) Let ME be the number of points on an ellip­

tic curve E defined over¥p. Then

WE-(P+I)\<2y/P

where |.| denotes the absolute value.

A statement and explanation of Hasse's Theorem can be found in [Kob94, p. 174].

Remark A.3.4 On Step 1, k is of size within the range \p + 1 ± 2v/p|.

This comes from that if is a subgroup of E C Zp x Zp, and that the discrete logarithm

is assumed to be intractable on H. Therefore, one would aim to set E such that H

is as close to being of the size of E as possible.

Example A.3.5 Suppose that the minimum secure length of p as of Table A.l is

used, which is |p| = 160, and p's most significant bit is 1. Therefore, k is of size of

about \p + 1 ± 2y/p\ e [159,161]. •

The following proposition is the EG version of Proposition 2.2.27 for RSA.

331

Proposition A.3.6 The ECIES encryption of m is pseudo-random, assuming the

average-case hardness of the discrete logarithm on elliptic curves.

proof sketch: This property is related to semantic security or indistinguishability of

encryptions [GM84], usually denoted IND. Tsiounis and Yung have shown semantic

security for EG [TY98].

However, the indistinguishability property sufficient for this work's results is

that the output of some encryption function be pseudo-random. This appears to be

a property stronger than indistinguishability of encryptions. Nevertheless, Phan and

Pointcheval have shown an equivalence between indistinguishability of encryptions

and pseudo-randomness [PP04]. •

Remark A.3.7 The ECIES encryption of a message m has length

2 • |m| + 1 = 2 • |p| + 1.

332

Appendix B: Computational number theory

A number of theorems from computational number theory are useful to com­

press or scramble information. This applies especially well to backdoors in the key

generation of cryptosystems that are based on number-theoretical properties, such as

RSA. The entirety of the theorems listed in this appendix are also in the main text.

They are repeated here for the purpose of forming a compilation of useful theorems.

B. l Lattice basis reduction theorems

An approximate p allows the factoring of n if the additive error is on its lower-

half bits.

Theorem B . l . l ([Cop96], Corollary 2) Given an approximation p ofp such that

\p — p\ < n1//4, it is possible to factor n in time polynomial in k, that is, lg(n).

Refer to Corollary 6.1.8 in the main text.

Theorem B. l .2 ([Cop96], Theorem 3) Let f(x,y) be a polynomial in two vari­

ables over Z, of maximum degree 8 in each variable separately, and assume the coeffi­

cients of f are relatively prime as a set. Let X, Y be bounds on the desired solutions

333

xOJ y0. Define f := f(Xx,Yy) and let D be the absolute value of the largest coeffi­

cient of f. If XY < D2/35, then in time polynomial in lgD and 2s, we can find all

integer pairs (x0,y0) with f(x0,y0) = 0, \x0\ < X,\y0\ < Y.

Refer to Theorem 6.1.7 in the main text.

The proof of Theorem B.1.2 rests on the LLL lattice basis reduction. It yields

Theorem B.1.3, by taking p0 = p mod /3, q0 = q mod ft and letting f(x,y) —

(fix + Po)(f3y + qa) -n.

Theorem B.1.3 ([BDF98], Corollary 2.2) Given (5 > 2kl2 andp0 = p mod 0, it

is possible to factor n = pq in time polynomial in k, denoted by T(k).

Refer to Theorem 7.1.12 in the main text.

Theorem B.1.4, as in Howgrave-Graham [HG01, p. 52], is similarly derived from

Theorem B: 1.2 by taking p'0 = kp + x0, q'0 = kq + y0, so that (p'0 — x0)(q'0 — y0) = k2n,

and letting f(x, k) — (p'0 — x)(q'0x — n) — xk2n.

Theorem B.1.4 (Corollary of Theorem 6.1.7) Given p'0 = kp + x0 for \k\ <

n1/2 and \x0\ < n1//4
; it is possible to factor n = pq in-time polynomial in k.

Refer to Corollary 6.1.9 in the main text.

334

B.2 Wiener's Theorem

Wiener's Theorem [Wie90] is useful in many versions. Suppose that n = pq is an

RSA modulus and denote a public key as (n, e) and the corresponding private key as

8. The parameter K is such that e8—K<f>(n) = 1, where <fi is the Euler totient function.

Theorem B.2.1 (Wiener's low decryption exponent attack) Any (n, e) with

38 < n1/4 efficiently yields the values of K and 8.

Refer to Theorem 6.3.1 in the main text.

In the following theorem, recall that ef denotes the t most significant bits of e

and ejt, its t least significant ones.

Theorem B.2.2 ([BDF98], Theorem 4.6) Lett e [l,...,k] and 8 e [2*,...,2*+1].

Given (n,5), ef and e\k/2, one can factor n efficiently.

Refer to Theorem 6.3.4 in the main text.

Theorem B.2.3 (Extension of Wiener's Theorem) Let a < 1/4, t\ < \ and

£2 s.t. d\{(-2 + 3) < | . Any (n, e) related to (n,e), with concealed e, that satisfies

|e — e| < £2n1~2a, and 8 <t\ na efficiently yields the values of K and 8.

Refer to Theorem 7.1.3 in the main text.

335

B.3 Other theorems

Theorem B.3.1 ([Red96], Theorem 3.16) A necessary and sufficient condition

for y2 = 6 (mod (3), to be solvable for y, where gcd(6,0) = 1, is that b be a quadratic

residue of all odd prime divisors of (3 and that if2\\(3, then b is odd, if A\\(3, then

6 = 1 (mod 4), and «/8|/3, then 6 = 1 (mod 8).

Refer to Theorem 7.1.11 in the main text.

336

References

[ACK] G. Arboit, C. Crepeau, and R.A. Kazmi. Backdoors for ElGamal and
public key backdoors for RSA and ElGamal. To be submitted.

[ACS] G. Arboit, C. Crepeau, and A. Slakmon. An extension of Wiener's Theorem
and applications to RSA backdoors. To be submitted.

[And93] R. Anderson. A practical RSA trapdoor. Electronics Letters, 29(11):995,
1993.

[AR01] G. Arboit and J.-M. Robert. From fixed-length messages to arbitrary-
length messages practical RSA signature padding schemes. Lecture Notes
in Computer Science, 2020:44-51, 2001.

[Arb] G. Arboit. Measures for backdoors in public key generation. To be sub­
mitted.

[BD00] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than
no.292 IEEE Transactions on Information Theory, 46:1339-1349, 2000.

[BDF98] D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a small
fraction of the private key bits. LNCS 1514, Proceedings of Advances in
Cryptology - AsiaCrypt '98, pages 25-34, 1998.

[BG85] M. Blum and S. Goldwasser. An efficient probabilistic public key encryption
scheme which hides all partial information. Proceedings of Advances in
Cryptology - CRYPTO '84, pages 289-299, 1985.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS # 1 . Lecture Notes in Computer
Science, 1462:1-12, 1998.

[BM04] J. Blomer and A. May. A generalized wiener attack on RSA. Lecture Notes
in Computer Science 2947, PKC 2004, 2004.

337

338

[BP97] N. Baric and B. Pfitzmann. Collision-free accumulators and Fail-stop sig­
nature schemes without trees. In W. Fumy, editor, Advances in Cryptology
- EUROCRYPT '97, Lecture Notes in Computer Science Vol. 1233, pages
480-494. Springer, 1997.

[BR96] M. Bellare and P. Rogaway. The exact security of digital signatures —
how to sign with RSA and Rabin. Lecture Notes in Computer Science,
1070:399-416, 1996.

[BS96] E. Bach and J. Shallit. Algorithmic number theory, volume 1: effi­
cient algorithms. MIT Press, Cambridge, Massachusetts, 1996. URL:
http://www.math.uwaterloo.ca/ s h a l l i t / a n t . h t m l .

[BV98] D. Boneh and R. Venkatesan. Breaking rsa may not be equivalent to fac­
toring. In EUROCRYPT, pages 59-71, 1998.

[CCKL01] J. C. Cha, J. H. Cheon, K. H. Ko, and S. J. Lee. Tutorial on braid
cryptosystem. PKC, 2001.

[CFPR96] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter. Low-exponent
RSA with related messages. In Advances in Cryptology - Eurocrypt '96,
LNCS 1070, pages 1-9. Springer, 1996.

[Cho04] J. Cho. Ten years of RSA cheating cryptosystems, 2004.

[CKN00] J.-S. Coron, F. Koeune, and D. Naccache. From fixed-length to arbitrary-
length RSA padding schemes. In Advances in Cryptology - ASIACRYPT
'00, pages 90-96. Springer, 2000.

[CNS06] COMMITTEE ON NATIONAL SECURITY SYSTEMS (CNSS). CNSS Policy
no. 15, Fact sheet no. 1. http://www.cnss.gov/Assets/pdf/cnssp_15Js.pdf,
2006.

[Coc73] C. C. Cocks. A note on non-secret encryption, 1973.
http://www.cesg.gov.uk/site/publications/media/notense.pdf.

[Cop96] D. Coppersmith. Finding a small root of a bivariate integer equation;
factoring with high bits known. In LNCS 1070, Advances in Cryptology -
EuroCrypt '96, pages 178-189. Springer, 1996.

[Cop97] D. Coppersmith. Small solutions to polynomial equations, and low expo­
nent RSA vulnerabilities. Journal of Cryptology, 10:233-260, 1997.

http://www.math.uwaterloo.ca/
http://www.cnss.gov/Assets/pdf/cnssp_15Js.pdf
http://www.cesg.gov.uk/site/publications/media/notense.pdf

339

[CS03] C. Crepeau and A. Slakmon. Simple backdoors for RSA key generation.
Lecture Notes in Computer Science 2612, CT-RSA, pages 402-415, 2003.

[Dav82] G. I. Davida. Chosen signature cryptanalysis of the RSA (riiit) public key
cryptosystem. Technical Report TR-CS-82-2, Departement of Electrical
Engineering and Computer Science, University of Wisconsin, Milwaukee,
1982.

[Des88] Y. Desmedt. Abuses in cryptography and how to fight them. In LNCS
403, CRYPTO, pages 375-389, 1988.

[DF91] D.S. Dummit and R.M. Foote. Abstract Algebra. Prentice Hall, 1991.

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Trans­
actions on Information Theory, IT-22(6):644-654, November 1976.

[dis02] distributed.net completes rc5-64 project (list announcement).
http://wwwl.distributed.net/pressroom/news-20020926.txt, 25 Septem­
ber, 2002.

[Dod06] B. Dodson. Ps on ecm paper, http://www.loria.fr/ zimmerma/records/p67,
2006.

[dW02] B. de Weger. Cryptanalysis of RSA with small prime difference. Applicable
Algebra in Engineering, Communication and Computing, (13):17-28, 2002.

[E1G85] T. ElGamal. A public-key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, IT-
31(4):469-472, 1985.

[Ent] Entrust: What is a PKI? http://www.entrust.com/pki.htm.

[FOPS01] E. Fugisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSAOAEPIs
Secure under the RSA Assumption. In Advances in Cryptology - Crypto'01,
pages 260-274, 2001.

[GHR99] R. Gennaro, S. Halevi, and T. Rabin. Secure Hash-and-Sign Signatures
without the Random Oracle. In J. Stern, editor, Advances in Cryptology -
EUROCRYPT '99, Vol. 1592 of Lecture Notes in Computer Science, pages
123-139. Springer, 1999. http://www.research.ibm.com/security/ghr.ps.

http://distributed.net
http://wwwl.distributed.net/pressroom/news-20020926.txt
http://www.loria.fr/
http://www.entrust.com/pki.htm
http://www.research.ibm.com/security/ghr.ps

340

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Jour, of Computer
and System Science, 28(2):270-299, 1984.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on Com­
puting, 17(2):281-308, 1988. March 23, 1995 revision.

[GMT82] S. Goldwasser, S. Micali, and P. Tong. Why and how to establish a private
code on a public network. In Proc. 23rd IEEE Symp. on Foundations of
Comp. Science, pages 134-144, 1982.

[Has88] J. Hastad. Solving simultaneous modular equations of low degree. SIAM
J. Comput, 17(2):336-341, 1988.

[HG01] N. Howgrave-Graham. Approximate integer common divisors. Lecture
Notes in Computer Science 2146, Cryptography and Lattices, pages 51-66,
2001.

[HN98] J. Hastad and M. Naslund. The security of individual RSA bits. In FOCS,
pages 510-521, 1998.

[HW79] G.H. Hardy and E.M. Wright. An introduction to the theory of numbers.
Oxford University Press, 1979.

[JG02] A. Juels and J. Guajardo. RSA key generation with verifiable randomness.
In D. Naccache and P. Paillier, editors, Public Key Cryptography 2002, Vol.
2274 of Lecture Notes in Computer Science, pages 357-374. Springer, 2002.
http://www.rsasecurity.com/rsalabs/node.asp?id=2041.

[JPV00] M. Joye, P. Paillier, and S. Vaudenay. Efficient generation of prime num­
bers. In CHES '00: Proceedings of the Second International Workshop on
Cryptographic Hardware and Embedded Systems, pages 340-354. Springer-
Verlag, 2000.

[Kal93] B.S. Kaliski Jun. Anderson's RSA trapdoor can be broken. Electronics
• Letters, 29(15):1387-1388, 1993.

[Kal03] A. Kalai. Generating random factored numbers, easily. Journal of Cryp-
tology, 16(4):287-289, 2003. Also at SODA 2002.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48:203-209, 1987.

http://www.rsasecurity.com/rsalabs/node.asp?id=2041

341

[Kob94] N. Koblitz. A Course in Number Theory and Cryptography. Graduate
Texts in Mathematics 114. New York: Springer-Verlag, 1994.

[KP99] S. Katzenbeisser and F. Petitcolas, editors. Information hiding techniques
for steganography and digital watermarking. Artech House Books, 1999.

[LLL82] A.K. Lenstra, H.W. Lenstra Jr., and L. Lovasc. Factoring polynomials with
rational coefficients. Math. Annalen, (261):513-534, 1982.

[Lub96] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton
University Press, 1996.

[May04] A. May. Computing the RSA secret key is deterministic polynomial time
equivalent to factoring. In CRYPTO, pages 213-219, 2004.

[Mer78] R.C. Merkle. Secure communications over insecure channels. Communica­
tions of the ACM, 21(4):294-299, April 1978.

[MH78] R. C. Merkle and M. E. Hellman. Hiding information and signatures in
trapdoor knapsacks. IEEE-IT, IT-24:525-530, 1978.

[Mil75] G. L. Miller. Riemann's hypothesis and tests for primality. In STOC '75:
Proceedings of seventh annual ACM symposium on Theory of computing,
pages 234-239, New York, NY, USA, 1975. ACM Press.

[Mil85] V. Miller. Use of elliptic curves in cryptography. Lecture Notes in Computer
Science, CRYPTO 85, 1985.

[Mis98] J.-F. Misarsky. How (Not) to Design Signature Schemes. In Proceedings of
PKC '98, Lecture Notes in Computer Science Vol. 1431. Springer, 1998.

[MvVOl] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryp­
tography, Discrete Mathematics and its Applications Vol. 6. CRC Press,
2001.

[NSA06a] NATIONAL SECURITY AGENCY (NSA), national information assurance
partnership (niap). http://www.nsa.gov/ia/industry/niap.cfm, 2006.

[NSA06b] NATIONAL SECURITY AGENCY (NSA). the case for elliptic curve cryp­
tography, http: //www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm, Au­
gust 2006.

[PGP06] The international PGP home page (PGPI). http://www.pgpi.org/, 2006.

http://www.nsa.gov/ia/industry/niap.cfm
http://www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm
http://www.pgpi.org/

342

[PKC03] Public-key cryptography standards (pkcs) # 1 : RSA cryptography specifi­
cations version 2.1. http://www.ietf.org/rfc/rfc3447.txt, 2003.

[PP04] D.H. Phan and D. Pointcheval. About the security of ciphers (semantic
security and pseudo-random permutations). In Selected Areas in Cryptog­
raphy (SAC), LNCS 3357, pages 182-197. Springer, 2004.

[Rab79] M.O. Rabin. Digital signatures and public-key functions as intractable as
factorization. Technical Report MIT/LCS/TR-212, MIT Lab. for Com­
puter Science, Cambridge, MA, January 1979.

[Red96] D. Redmond. Number Theory: An Introduction, Monographs and Textbooks
in Pure and Applied Mathematics no. 201. Marcel Dekker, 1996.

[RotOl] R. Roth. A History of Lagrange's Theorem on Groups. Mathematics Mag­
azine, pages 99-108, 2001.

[RS86] R. L. Rivest and A. Shamir. Efficient factoring based on partial information.
In Advances in Cryptology - EuroCrypt '85, pages 31-34, 1986.

[RS03] K. Rubin and A. Silverberg. Torus-based cryptography. Proceedings of
Advances in Cryptology - CRYPTO, pages 349-365, 2003.

[RS06] A. Rostovtsev and A. Stolbunov. Public-key cryptosystem based
on isogenies. Cryptology ePrint Archive, Report 2006/145, 2006.
http://eprint.iacr.org/.

[RSAa] RSA Laboratories' Frequently Asked Questions About Today's
Cryptography, Version 4.1. The Crypto FAQ: Index page:
http://www.rsasecurity.com/rsalabs/node.asp?id=2152.

[RSAb] RSA Laboratories' Frequently Asked Questions About Today's Cryptog­
raphy, Version 4.1. The Crypto FAQ: Section 2.3.2: What is a one-way
function?: http://www.rsasecurity.com/rsalabs/node.asp?id=2088.

[RSAc] RSA Laboratories' Frequently Asked Questions About Today's Cryptog­
raphy, Version 4.1. The Crypto FAQ: Section 6.2.4: What is Clipper?:
http://www.rsasecurity.com/rsalabs/node.asp?id=2318.

[RSA78] R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining.
Communications of the ACM, 21:120-126, 1978.

http://www.ietf.org/rfc/rfc3447.txt
http://eprint.iacr.org/
http://www.rsasecurity.com/rsalabs/node.asp?id=2152
http://www.rsasecurity.com/rsalabs/node
http://www.rsasecurity.com/rsalabs/node.asp?id=2318

343

[RSA06] The RSA laboratories secret-key challenge: Status and prizes.
http://www.rsasecurity.com/rsalabs/node.asp?id=2103, August 2006.

[Sch99] B. Schneier. Crypto-gram newsletter, September 15, 1999.

[Sha82] A. Shamir. A polynomial time algorithm for breaking the basic Merkle-
Hellman cryptosystem. In FOCS'82, 1982.

[Shp04] I. E. Shparlinski. On the uniformity of distribution of the decryption ex­
ponent in fixed encryption exponent RSA. Information processing letters,
92(3): 143-147, 2004.

[Sim83] G.J. Simmons. The prisoners' problem and the subliminal channel. In
CRYPTO, pages 51-67, 1983.

[Sim85] G.J. Simmons. A secure subliminal channel (?). In CRYPTO, pages 33-41,
1985.

[SlaOO] A. Slakmon. Sur des methodes et algorithmes de factorisation et leur appli­
cation en cryptologie. Master's thesis, Uriiversite de Montreal, dept. IRO,
2000.

[SPW06] Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. On the provable secu­
rity of an efficient rsa-based pseudorandom generator. Cryptology ePrint
Archive, Report 2006/206. To appear in Asiacrypt'06, 2006.

[Sti06] D. R. Stinson. Cryptography Theory and Practice, 3rd edition. Chapman
& Hall/CRC Press, 2006.

[TY98] Y. Tsiounis and M. Yung. On the security of ElGamal-based encryp­
tion. Public Key Cryptography '98, Lecture Notes in Computer Science,
1431:117-134, 1998.

[Vau] S. Vaudenay. Private e-mail communication. 2 May 2001.

[Way97] P. Wayner. British document outlines early encryption discovery. The New
York Times, December 24, 1997.

[Wei07] E. Weisstein. "fermat's factorization method.".
From MathWorld-A Wolfram Web Resource.
http://mathworld.wolfram.com/FermatsFactorizationMethod.html, 2007.

http://www.rsasecurity.com/rsalabs/node
http://mathworld.wolfram.com/FermatsFactorizationMethod.html

344

[Wie90] M. Wiener. Cryptanalysis of short R.SA secret exponents. IEEE Transac­
tions on Information Theory, 36:553-558, 1990.

[WIF06] World integer factorization center (wife). http://www.asahi-
net.or.jp/ KC2H-MSM/mathland/mathal/index.htm, August 2006.

[YY96] A. Young and M. Yung. The dark side of "black-box" cryptography, or:
Should we trust Capstone? Lecture Notes in Computer Science 1109,
Crypto '96, pages 89-103, 1996.

[YY97a] A. Young and M. Yung. Kleptography: Using cryptography against cryp­
tography. Lecture Notes in Computer Science 1233, EuroCrypt '97, pages
62-74, 1997.

[YY97b] A. Young and M. Yung. The prevalence of kleptographic attacks on
discrete-log based cryptosystems. Lecture Notes in Computer Science 1294,
Crypto '97, pages 264-276, 1997.

[YY05a] A. Young and M. Yung. Malicious cryptography: Kleptographic aspects.
Lecture Notes in Computer Science 3376, CT-RSA 2005, pages 7-18, 2005.

[YY05b] A. Young and M. Yung. A space efficient backdoor in RSA and its applica­
tions. Selected Areas in Cryptography -SAC 2005, 2005.

http://www.asahi-
http://net.or.jp/

Index

345

Index

Adleman, 5
AES, 101, 119, 221, 289, 293, 297, 307,

310, 325
Anderson, 74
asymmetric key, 1, 5, 16, 23, 69,

73, 75, 78, 80, 87, 88, 91,
115, 125, 146, 154, 161, 172, 184,
307, 311, 313, 316, 323

backdoor, xviii, 1, 5, 11, 23, 66,
79, 91, 129, 227, 318

Blomer , 47, 231, 236, 242, 247
black box, 69, 76, 89, 321
Boneh, xx, 28, 47, 196, 203, 213, 228,

239, 267

cardinality, 95
Chinese Remainder Theorem, 21, 265
chosen-ciphertext, 3
Cocks, 4
complexity, 115
compromised secure connection, 1
concatenation, xvii
Coppersmith, xx, 27, 47, 96, 112,

137, 145, 148, 182, 205, 212, 225,
228, 233, 239, 265, 270, 276, 278,
283, 299, 307, 333

Coron, xix, 50
covert channel, 71
Crepeau, xx, 74, 189

database, 66, 67
DES, 5, 221, 289, 297
designer, 74

Dime, 1
digital signatures, 2
direct attack, 4
discrete logarithm, 3
distinguisher, 74
distribution, 107
diverrsity, 113
diversity, 94
division intractability, 50, 56, 61
Durfee, xx, 47, 196, 203, 213, 228, 239,

267

ECIES, 80, 95, 101, 103, 307, 310, 312,
329

EG, 44, 80, 87, 105, 120, 124, 146,
160, 164, 168, 227, 288, 310, 315,
319, 326, 331

elliptic curves, 3, 46, 87, 95, 126,
181, 307, 310, 325, 328, 331

Ellis, 4
embedding function, 81
encryption, 2
entropy, 108
Entrust, 67
Euler totient function,xviii
example, xvii

Fermat, 20, 46, 49
Frankel, xx, 48, 196, 203, 228, 239, 267
function composition,xviii

gcd,xviii
generalized key regeneration, 110
Goldwasser, 4

346

greatest common divisor ,xviii
group,xviii, 3
Guajardo, 48

hard problem, 4
hash function, 4, 7, 45, 50, 169,

174, 183
Hellman, 1
Howgrave-Graham, 74, 137
Hastad, 47

indirect attack, 4, 11
indistinguishability, 92
injectivity, 85, 103, 142, 244
integer factorization, 3, 7, 21, 27,

32, 35, 46, 79, 130, 137, 148,
176, 191, 196, 200, 206, 214, 228,
230, 237, 242, 251, 257, 265, 274,
279, 307, 313, 315, 324, 327, 333

isogenics, 3

Juels, 48

Kaliski, 74
Kazmi, xxi, 317
key agreement, 2
key escrow, 66
kleptography, 85, 87, 146, 318, 323
knapsack, 3
Koeune, xix, 50

Lagrange, 20
lcm,xviii
least common multiple,xviii
LHS, xvii
location of the embedding, 98
logarithm,xviii

man-in-the-middle, 3, 4, 10, 48, 53
May, 47, 231, 236, 242, 247

memory, 122
Merkle, 1
Micali, 4

Naccache, xix, 50
non-volatile memory, 122
NSA, 321, 325
number of keys, 104
Naslund, 48

open question, 324

padding algorithm, 1, 4, 5, 8, 50,
53, 318

PGP, 153, 156, 321
PKCS, xix, 46, 52, 62, 65
Pollard, 46
probabilistic cryptosystem, 4
proof, xvii
public-key cryptosystem, 1

quadratic residuosity, 3

random sampling, xvii
RHS, xvii
Rivest, 5
Robert, xix, 65
RSA, 1, 5, 44, 50

security assumption, 4, 31, 34, 50,
56, 60, 84, 108, 125, 129, 136,

144, 152, 158, 163, 166, 174, 179,
188, 194, 198, 202, 212, 219, 249,
255, 259, 263, 275, 297, 309, 312

semantic security, 4, 44, 165, 332
SETUP, 85
SHA-1, xix, 50, 62, 65
Shamir, 5
side channel analysis, 4, 78, 115
significant bits, xvii

347

Simmons, 71
simplicity, 126
Skipjack, 67
Slakmon, xx, 189
Stinson, 47
symmetric key, 5, 69, 73, 75, 78,

80, 89, 91, 115, 125, 130, 132,
142, 165, 177, 192, 197,. 201, 207,
214, 244, 252, 258, 262, 270, 290,
316, 323

trapdoor, 3, 5, 17, 21, 27, 44,
80, 85, 97, 151, 157, 282

Tsiounis, 332

uniformity correctness, 109

variable correlation, 112
Venkatesan, 28
volatile memory, 122

weak key, 3, 4, 11, 32, 37, 46, 67,
84, 192, 196, 200, 232, 240, 242,

258, 267, 281, 318, 321
Wiener, xx, 31, 47, 189, 191, 204,

213, 226, 228, 235, 239, 242, 257,
261, 265, 267, 279, 285, 320, 335

Williamson, 4

Young, xxi, 85, 146
Yung, xxi, 85, 146, 332

