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ABSTRACT

The prediction of RNA three-dimensional structures from its sequence only is a

milestone to RNA function analysis and prediction. In recent years, many methods

addressed this challenge, ranging from cycle decomposition and fragment assembly

to molecular dynamics simulations. However, their predictions remain fragile and

limited to small RNAs. In this work, we introduce RNA-MoIP, a new framework

incorporating the novel local motif information available in databases for the pre-

diction of RNA structures. We show that our approach (i) improves the accuracy of

canonical base pair predictions, (ii) identifies the best secondary structures in a pool

of sub-optimal structures, and (iii) predicts accurate 3D structures of large RNA

molecules.
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ABRÉGÉ

Un objectif principal de l’analyse fonctionnelle et prédictive de l’ARN est d’obtenir

sa structure tridimensionnel à partir de sa séquence. Pour résoudre ce problème,

plusieurs méthodes ont été développées durant les dernières années, telles la décompo-

sition cyclique, l’assemblage de fragments et la simulation de dynamiques moléculaire.

Cependant, leurs capacacités prédictives restent limitées. Nous avons mis au point

un nouvel outil, RNA-MoIP, permettant d’incorporer l’information des motifs locaux

nouvellement accessibles dans des bases de données pour la prédiction de structures

d’ARN. Nous montrons que notre approche (i) améliore la prédiction des paire de

bases canoniques (ii) identifie la meilleure structure secondaire dans un ensemble

de sous-optimaux et (iii) prédit des structures 3D précises pour de large molécules

d’ARN.
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CHAPTER 1
Introduction

Ribonucleic acids (RNAs) are molecules performing a broad range of functions

in cells. Many examples have been found of RNAs serving to catalyze chemical

reactions, such as the RNase P or the group II introns. Other groups, such as mi-

croRNAs, regulate gene expression by hybridization to messenger RNA. To perform

these vast array of functions, RNAs need to fold into specific three-dimensional struc-

tures that are directly encoded in their nucleotide sequence. The structural infor-

mation is therefore essential to gain information about the function. The prediction

of RNA three-dimensional structures from its sequence only is thus a milestone to

RNA function analysis and prediction. Nonetheless, experimental determination of

RNA structures remains time-consuming and technically challenging. Therefore, it

needs fast and reliable computational tools to help predict them.

1.1 RNA structure

RNA molecules are ordered sequences of nucleotides. Each nucleotide is com-

posed of a ribose sugar and a phosphate group, linking the nucleotides together and

forming the backbone of the strand. It also contains one of the four nucleobases:

Adenine, Uracile, Guanine or Cytosine.

Those molecules fold into complex 3D structures stabilized by interaction be-

tween the nucleotides. Any of the nucleotides can pair with any other in 12 different
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basic geometric configurations [14]. This quickly rises to an intractable number of

possibilities.

Historically, a lot of disparate information about RNAs energy and structure

could be found until the Salser review in 1978 [21]. The energy for only 3 types of

interactions, the canonical base pairs (i.e. A-U, G-C and G-U), were strong enough

to have been experimentally evaluated.

Thus, mathematical models focused on predicting structures using as basic

pieces the canonical base pairs. The structure, when restrained to the canonical

base pairs, is called the secondary structure. Formally a secondary structure can be

defined as follows.

Given a sequence of n nucleotides s := s1s2 · · · sn, si ∈ {A,U,G,C}, a secondary

structure S over s is a set of ordered pairs corresponding to base pair positions,

which satisfies the following requirements.

1. Only Watson-Crick or GU wobble pairs allowed: If (i, j) ∈ S, then i < j and

(si, sj) must be one of the following canonical base pairs: {(A,U), (U,A), (G,C),

(C,G), (G,U), (U,G)}.

2. Minimal base pairing distance: If (i, j) ∈ S, then j − i > θ.

3. No pseudo-knots: If (i, j) and (k, l) ∈ S, then j < k or l < i.

4. Only one interaction per nucleotide: If (i, j) and (i, k) ∈ S, then j = k; if (i, j)

and (k, j) ∈ S, then i = k.

The minimal base pairing distance θ for hairpins is a physical constraint usually set

around 3.
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Figure 1–1: Representation of the secondary structure of an RNA as a graph and as

a well balanced parenthesized equation.

We show in Fig. 1–1 two representations of a secondary structure, as a graph

and as a well balanced parenthesized equation. The fact that the structures disallow

pseudo-knots allows the writing of the structure as a well balanced parenthesized

equation with one type of parenthesis.

This led, in 1981, to the highly successful dynamic programming algorithm of

Zuker and Stiegler [30] for finding the minimal free energy secondary structure of an

RNA sequence, given those experimental values.

Due to the strength of their bonds, the base pairs considered in the secondary

structure form a scaffold for the entire 3D structure. Nonetheless, the rigidity of those

interaction impedes them to create the complex forms allowing molecules to hold
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Figure 1–2: An hairpin, interior loop and 3-way junction as represented in a sec-

ondary structure.

their functions. Thus, predicting efficiently secondary structures is a first step to the

daunting task of obtaining an all atoms 3D model but does not contain information

for regions void of the canonical base pairs (i.e. A-U, G-C and G-U). Those regions

are the ones folding into the most complex shapes and therefore containing most

valuable information. In secondary structures, there are 3 basic shapes containing

no base pairs: hairpins, interior loops and k-way junctions (presented in Fig. 1–2).

As shown in [25], roughly 50% of interactions are in fact canonical base pairs.

The pieces of the secondary structures void of canonical base pairs are those contain-

ing the remaining ones, explaining the diversity of shapes observed. We present in

Fig. 2–1 an annotated secondary structure representation of an RNA. The blue lines

represent nucleotides canonical interactions. We show in green two hairpins, in blue

one interior loop and in red a 3-way junction. Also presented in Fig. 2–1 are the 3D

structures of those 4 pieces as stored in the Protein Data Bank [1] (www.pdb.org).

We can notice that they contain a high level of organization.
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1.2 RNA structure prediction

During the last few years, several groups have developed fully automated RNA

three-dimensional structure prediction programs. However, those three-dimensional

structure predictors have limitations. Currently, their time requirement and/or their

accuracy restrict their application range to sequences with less than 50 nucleotides.

In contrast, restraining to the secondary structure, classical predictors, such as

RNAstructure [20], RNAfold [8], unafold [15], contrafold [5] or contextfold [28],

are fast and reliable on sequences with more than 100 nucleotides. MC-Fold [17] and

RNAwolf [29] expanded these techniques to predict extended secondary structures

(i.e. including non-canonical interactions), but these programs remain limited to

predict nested secondary structures without k-way junctions, thus, precisely lacking

the structural motifs shaping the RNA 3D structure.

Thus, ab-initio 3D structure prediction of large RNA molecules (i.e. more than

50 nucleotides in our context) is still an open question. To overcome this barrier, new

models are required. However, due to the paucity of structural data available, the

design of a complete model accounting for all the subtle three-dimensional structural

variations observed in experimentally determined structures is unlikely.

1.3 Related Work

The decomposition of RNA structures in elementary blocks was first introduced

by Lemieux and Major [13] who proposed a description of RNA secondary structures

(including non-canonical interactions) based on cycles. More recently, the analysis of

experimental 3D structures revealed that similar 3D motifs can be found in multiple
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unrelated structures. Here, we define a motif as a group of nucleotides that adopt

a specific 3D shape and interaction pattern (including non-canonical interactions).

Several groups have developed computational methods to extract and classify RNA

3D motifs. Those algorithms have been run on all structures in the PDB [1] and

have been consolidated in databases. The most popular databases are FR3D [22],

Rna3Dmotif [4], and RNAjunction [2]. Importantly, these databases identify 3D mo-

tifs involving three or more segments of the same molecule defined as k-way junctions

(when the motif is the branching point of several helical segments). Such motifs are

important because they are precisely those shaping the 3D structure of an RNA

molecule.

Despite the knowledge accumulated in these databases, the integration of this

information into current models remains complicated. First, the classification of

RNA motifs can be ambiguous (i.e. a motif and its sub-motifs can match different

database entries). Next, the structural compatibility between two or more motifs

can be difficult to resolve (i.e. how to concatenate two motifs). It is worth noting

that a method to predict the topological family of a given three-way junction has

been recently introduced by [12].

Interestingly, to complement the secondary structure programs, [16] and [10]

implemented semi-automated methods (resp. RNA2D3D and assemble) for build-

ing three-dimensional models from known/predicted secondary structure informa-

tion. These programs provide intuitive interfaces enabling their users to insert three-

dimensional motifs and modify backbone angles of a coarse grained input structure.
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From this standpoint, the hierarchical approaches (i.e. RNA2D3D and assemble)

appear well suited to the prediction of large RNA structures. Their advantage resides

in their capacity to benefit from the high accuracy of classical secondary structure

predictors (i.e. thermodynamic or comparative models) to build a scaffold of the

structure, and then to leave to the user the task of decorating the model with the

various structural motifs found in databases. Although this strategy is flexible,

it is time-consuming and requires human participation. Recently, [3] developed

RMDetect, a method to predict G-bulge loops, kink-turns, C-loops and tandem-GA

loops in RNA secondary structures. But the prediction of more complex motifs such

as the k-way junctions and the construction of 3D RNA structures remain open

problems.

1.4 Our Contribution

The methods developed in this thesis are based on a recent idea suggesting that

RNA 3D structures share common structural subunits. We introduce RNA-MoIP, an

integer programming (IP) framework for inserting RNA 3D motifs inside known (or

predicted) RNA secondary structures. Our method refines predicted secondary struc-

tures (i.e. removes incorrect canonical base-pairs) to accommodate the insertion of

RNA 3D motifs (i.e. hairpins, internal loops and k-way junctions). Integer program-

ming techniques have gained a lot of interest recently as they provided state-of-the-art

methods for predicting RNA secondary structures with pseudo-knots [18, 23]. One of

their strengths resides in their flexibility and capacity to incorporate heterogeneous

7



Figure 1–3: The RNA-MoIP workflow.

The motifs database and the secondary structure are the inputs to RNA-MoIP which

find the motifs fitting the best, under the objective function inside the secondary

structure. Then MC-Sym is used to recreate an all atoms model of the structure.

constraints, a valuable advantage when it comes to incorporate k-way junctions. A

schematic of the workflow is presented in Fig. 1–3.

We use our predictions as a template to generate putative RNA 3D structures

using the MC-Sym [17] software. We benchmarked RNA-MoIP on a set of 9 RNAs with

sizes varying from 53 to 128 nucleotides. We show that our approach improves the

accuracy of canonical base pair predictions, identifies the best secondary structures
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in a pool of sub-optimal structures, and predicts accurate 3D structures of large RNA

molecules. RNA-MoIP is publicly available at: http://csb.cs.mcgill.ca/RNAMoIP

1.5 Outline

The following chapters are organized as follows. In Chapter 2 we formally define

motifs, describe our motif database, introduce our IP constraints and our software

RNA-MoIP.

In Chapter 3, we apply RNA-MoIP on a set of 9 RNA used by [11] to benchmark

RNA 3D structure prediction programs. Our results show that RNA-MoIP (i) improves

the accuracy of canonical base pair predictions , (ii) identifies the best secondary

structures in a pool of suboptimal structures generated by RNAsubopt, and (iii)

predicts accurate 3D structures for sequences with sizes varying between 53 and 128

nucleotides – an insight that cannot be reached by other programs.

In Chapter 4, we discuss our results and propose future research directions.

We expend on the softwares that were used for this work: RNAsubopt, Rna3Dmotif

and MC-Sym, in Appendix A.

RNA-MoIP is publicly available at: http://csb.cs.mcgill.ca/RNAMoIP.
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CHAPTER 2
Methods

Let ω be an RNA sequence. First, we use a classical secondary structure predic-

tor (e.g. RNAsubopt) to generate a list of sub-optimal secondary structures. Second,

for each structure from the list we use RNA-MoIP to insert RNA 3D motifs in the

structure using the sequence information provided by ω. RNA-MoIP works in two

steps:

1. Given a database of sequences of RNA 3D motifs (cf. Section 2.2), the prepro-

cessing step applies a classical pattern matching algorithm to find all occur-

rences of each motif in the input sequence ω.

2. Given this list of potential insertion sites and a secondary structure, we solve

an integer programming (IP) problem which minimizes our objective function

(cf. Section 2.3). Importantly, under certain conditions, RNA-MoIP allows base

pair removals to insert the 3D motifs.

Finally, we use the best solutions as templates for MC-Sym [17] and generate three-

dimensional structures. In particular, we force MC-Sym to use the motifs inserted

by RNA-MoIP at their predicted location, instead of letting MC-Sym build his own

solution for the motifs. As we will see later, these constraints enable us to produce

3D structures, when an unconstrained run would simply never end.
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Figure 2–1: Example of motifs extraction

This is an example of motifs extracted by Rna3Dmotif [4] from a given RNA.

When our framework receives these as input it defines the following. The hair-

pins form the group with one component and we write: A := [(GGAAAC)],

B := [(CGAAAG)]]. Interior loops and Bulges, have two components (e.g. C :=

[(GAU), (AGAUGC)]). The n-way junctions naturally have n components. In

this case there is a 3-way junction which can be written in our framework in two

ways: D := [(CGAA), (UGUAAC), (GG*)] or D := [(CGAA), (UGUAAC), (*GG)],

since we want components to be of size at least 3. D can also be written as

MD := CGAA − UGUAAC − GG* (resp. CGAA − UGUAAC − *GG) and we

can say that D match this sequence at (6, 35, 47) but also, (6, 35, 48) and many other

positions. A motif can be inserted multiple times.



2.1 Definitions

Motif: We represent a motif x as an ordered list of components (i.e. sequences) where

xji is the i-th nucleotide of the j-th component (i.e sequence). As presented in

Fig. 2–1, hairpins have one component, bulges and internal loops have two, and

k-way junctions have k. Let r be the number of components, we represent a

motif as x := [(x11, · · · , x1k1), · · · , (x
r
1, · · · , xrkr)] and xji ∈ {A,U,G,C, ∗} where

∗ represents a wildcard. We say that motif x if of order r since it has r

components. We also write a motif x as:

Mx := x11 · · ·x1k1 − x
2
1 · · · xr−1kr−1

− xr1 · · ·xrkr

i.e. the concatenations of its letters with the added character “−” between the

components. We define |Mx| as the number of nucleotides in x.

Match: Given a sequence ω ∈ {A,U,G,C}+, and a motif x with r components, we say

that ωi is the i-th character of ω, and that a motif x matches the sequence ω at

(p1, · · · , pr) if ∀ 1 ≤ i < r : pi+ki+5 ≤ pi+1 and ∀ j ∈ {1, · · · , r}i ∈ {1, · · · , kj} :

xji ≡ ωpj+i−1 where the pi’s indicate the first positions of the i-th component of

motif x in ω. The inequality ensures that each component is separated by at

least 5 nucleotides. The number of components inside a motif is crucial to our

technique. Since there is not yet a good definition of motifs and components,

this allows to consolidate the notion that components interact together but

from a certain distance.
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2.2 RNA Motifs Database

Here we describe how we build the motifs database. First, we retrieve 888

experimentally determined RNA three-dimensional structures from the Protein Data

Bank [1] (www.pdb.org). Then, we use the program RNA3Dmotifs from [4] to extract

all the motifs from these structures. This results in a dataset of 35724 motifs for

which we have a 3D pdb file and a description of the interactions.

We processed these data to create a non-redundant database of curated motifs.

In order to ensure the compactness and coherency of the motifs, we assume that

each component is at least 5 nucleotides farther than the previous one; otherwise the

nucleotides are merged in a single component and the missing positions are replaced

by a wildcard “∗” (See Sec. 2.1). We describe a motif m returned by RNA3Dmotifs

as m := {(m1, p1), · · · , (mn, pn)}, where mk ∈ {A,U,G,C}, pk < pk+1 ∈ N and pk

is the position of nucleotide mk in the sequence it was extracted from. We create x

such that if we set xji = mk and 1 ≤ pk+1−pk = α < 5 then ∀ i < i′ < i+ α : xji′ = ∗

and xji+α = mk+1. If pk+1 − pk ≥ 5 then xj+1
1 = mk+1.

Some motifs may have small components composed of one or two nucleotides.

In our framework, the insertion of these components will be less constrained by the

secondary structure and thus less specific. To avoid this case, we extend all small

components in all possible combinations with the character ∗ until they reach a size

of three (e.g. the last component of motif D in Fig. 2–1).

It is worth noting that all these constraints are empirical rules which aim to

remove discrepancies and unify the sequence constraints applied on motifs. They

13



should not be considered as a rigid framework but rather as a tentative to clarify the

RNA3Dmotifs output.

Finally, we cluster together all pairs of motifs x, y if Mx ≡My (i.e. the sequences

are identical) to obtain a non sequence-redundant database of 4708 motifs.

It is important to note that in our database, the motifs with one single compo-

nent are all hairpins and do not include bulges. In this work, bulges will be seen as

a particular case of interior loops since for the motif to loop, it needs to include the

complementary strand.

Finally, we excluded from this database the structures used in the benchmark

(See Sec.3.2).

2.3 Integer programming model

Here, we describe the integer programming equations used to insert the motifs

into a given secondary structure. To insert a motif into the structure, our model

allows some base pairs to be removed.

2.3.1 Input

We introduce the notation and sets that will be used to model our input data.

Let ω be a RNA sequence, and S a secondary structure of ω without pseudo-knots.

We denote by n = |ω| the length of ω, and by δ the maximum percentage of base

pairs that is allowed to be removed. We call B the set of base pairs found in the

secondary structure S. We denote by Motj the set of motifs with j components that

match ω:

14



Motj = {x | x := [(x11, · · · , x1k1), · · · , (x
j
1, · · · , x

j
kj

)] and ∃ a match of x in ω} (2.1)

We store in Seqji the positions where the i-th component of the motifs of order

j can be inserted:

Seqji = {(x, pi, pi + ki − 1) | x ∈Motj and

∃ a match (p1, · · · , pi−1, pi, pi+1, · · · , pj) of x in ω}
(2.2)

We note that the criteria used to determine whether a motif can be inserted is

based on the sequence only. At this stage, the secondary structure S is not used.

2.3.2 Variables

We now describe the two variables used in our model. Our program will make

two predictions: First, it finds the location of the insertion sites of the motifs, and

second, it predicts which base pairs are removed. We denote Cx,j
k,l as the boolean

variable indicating the insertion of the j-th component of the motif x between po-

sitions k and l in ω. Similarly, we use the boolean variable Du,v to indicate if the

base pair (u, v) ∈ B is removed or not (i.e. Du,v = 1 if (u, v) is removed from the

secondary structure S and 0 otherwise).
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2.3.3 Objective function

We describe here the optimization criteria that will be used to predict the in-

sertion of the RNA motifs. As mentioned earlier, we do not have any estimate of the

energy of the motifs retrieved with RNA3Dmotifs. Instead, we will use a principle

of minimum entropy. We assume that a molecule folds in a configuration that sta-

bilizes its backbone and side chains through various base pairings. In other words,

we aim to minimize the free variables of the molecule. In the absence of reliable

energy values, we assign to the motifs a weight equivalent to the square of the num-

ber of nucleotides in its components. This objective function aims to increase the

coherency of the motif insertions as it maximizes the nucleotide positions coverage

and favours the insertion of large motifs instead multiple small ones. It also eases the

3D reconstruction process with MC-Sym. Although this objective function is purely

heuristic, it performed well in this work. We give a penalty of 10 for every base pair

deleted. With lower values our model was removing as many base pairs as possibles,

while with higher values we obtained similar results. Formally, we aim to minimize

the following function:

10 ∗
∑

(u,v)∈B

Du,v −
∑

x∈Motj

(|Mx|)2 ·
∑

(x,k,l)∈Seqj1

Cx,1
k,l

 (2.3)
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Figure 2–2: Constraints configurations

2.3.4 Constraints

Here, we describe the constraints that we use to ensure the correctness of the

motif insertion and to control the coherency of the final structure. We detail these

equations below.

Hairpins.

∀(x, k, l) ∈ Seq11 : Cx,1
k,l ≤

∑
(u,v)∈B

k−1≤u≤k∧l≤v≤l+1

(1−Du,v) +
∑

(x̃,k̃,l̃)∈Seq21
l̃=k−1

C x̃,1

k̃,l̃
+

∑
(x̃,k̃,l̃)∈Seq22
k̃=l+1

C x̃,2

k̃,l̃
(2.4)

We use Constraint (2.4) to insert the hairpins (i.e. x ∈ Mot1). A hairpin can

be inserted if and only if one of two following criteria holds: A base pair (u, v) ∈ B

exists such that both extremities are stacked or overlap on the motif x (Fig.2–2a),

or there is an inserted motif y with two components (i.e. y ∈ Mot2) such that x is

nested inside y and stacked onto one of its components (Fig. 2–2b).
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Interior Loops & Bulges.

∀(u, v) ∈ B, ∀x ∈Mot2 : −n·Du,v ≤
∑

(x,k,l)∈Seq21
l<u∨v<k

Cx,1
k,l −

∑
(x,k,l)∈Seq22
l<u∨v<k

Cx,2
k,l ≤ n·Du,v (2.5)

∀(x, k, l) ∈ Seq21,∀(x, k̃, l̃) s.t.

k̃ > l ∧ 2
∑

(u,v)∈B
k≤u≤l∧k̃≤v≤l̃

1 +
∑

(u,v)∈B
k≤u≤l⊕k̃≤v≤l̃

1 ≥ l − k + l̃ − k̃ + 1

 ∈ Seq22 :

Cx,1
k,l + Cx,2

k̃,l̃
≤ 1 (2.6)

Constraints (2.5) and (2.6) are used to insert bulges and interior loops. Con-

straint (2.5) stipulates that for all base pairs (u, v) ∈ B, every motif in Mot2 must

have as many 1-st component inserted before u or after v, as it has 2-nd components,

allowing to create an arc between the components of every motif without creating a

pseudo-knot with the base pairs in the secondary structure. Constraint (2.6) allows

both components to be inserted only if they fill at least 2 unpaired positions. Indeed,

such insertion would most likely not produce valuable structural information.

k-way junctions. ∑
j≥3

(x,k,l)∈Seqj1

Cx,1
k,l ≤ 1 (2.7)

18



∀j ≥ 3, ∀(u, v) ∈ B : −n·Du,v ≤ (j−1)·
∑

(x,k,l)∈Seqj1
u≤k≤l≤v

Cx,1
k,l −

∑
1<i≤j

(x,k,l)∈Seqji
u≤k≤l≤v

Cx,i
k,l ≤ n·Du,v (2.8)

Constraints (2.7) and (2.8) describe how k-way junctions are inserted. Con-

straint (2.7) restricts the number of inserted motifs with three or more components

to one, which is a reasonable assumption given the size of the RNAs. Combined with

(2.8), it means that for every conserved base pair (u, v) ∈ B, a motif can be inserted

if all or none of the components are between u and v. This is equivalent, as we can

see in Fig. 2–2c, to saying that we can connect the components which are shown in

red without creating a pseudo-knot with the base pairs in the secondary structure.

Motifs completeness.

∀ 1 ≤ i < j, ∀(x, k, l) ∈ Seqji : Cx,i
k,l ≤

∑
(x,k̃,l̃)∈Seqji+1

l+5<k̃

Cx,i+1

k̃,l̃
(2.9)

∀ 1 < i ≤ j, ∀(x, k, l) ∈ Seqji : Cx,i
k,l ≤

∑
(x,k̃,l̃)∈Seqji−1

l̃<k−5

Cx,i−1
k̃,l̃

(2.10)

∀ j > 1, ∀x ∈Motj, ∀1 < i ≤ j :
∑

(x,k,l)∈Seqj1

Cx,1
k,l −

∑
(x,k̃,l̃)∈Seqji

Cx,i

k̃,l̃
= 0 (2.11)
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Constraints (2.9) , (2.10) and (2.11) ensure that the insertions of the components

in ω respect their order given in the motif. Constraints (2.9) and (2.10) require that

if Cx,j
k,l is the j-th component of motif x and it is inserted at positions k, l, then at

least one (j − 1)-th component of the same motif should be inserted 5 nucleotides

above, and one (j + 1)-th component after. The last constraint restricts that, since

a motif can be inserted many times, the multiplicity of every component should be

equal to the multiplicity of the 1-st component.

Secondary Structure Constraints.

∀j > 1,∀1 ≤ i ≤ j,∀(x, k, l) ∈ Seqji : Cx,i
k,l ≤

∑
(u,v)∈B

k−1≤u≤k∨
l≤u≤l+1∨
k−1≤v≤k∨
l≤v≤l+1

(1−Du,v) (2.12)

∀1 ≤ u ≤ n :
∑

(x,k,l)∈Seqji
k<u<l

Cx,i
k,l +

1

4

∑
(k,l)∈B
k=u∨l=u

(1−Dk,l) +
3

4

∑
(x,k,l)∈Seqji
k=u∨l=u

Cx,i
k,l ≤ 1 (2.13)

∀1 < u < n : (1−
∑

(ũ,ṽ)∈B
ũ=u−1∨ṽ=u−1

Dũ,ṽ)− (1 −
∑

(ũ,ṽ)∈B
ũ=u∨ṽ=u

Dũ,ṽ) + (1−
∑

(ũ,ṽ)∈B
ũ=u+1∨ṽ=u+1

Dũ,ṽ) ≥ 0 (2.14)

∑
(i,j)∈B

Di,j ≤ δ · |B| (2.15)
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We conclude by describing the constraints regulating the secondary structure

properties. Constraint (2.12) use the secondary structure to guide the sites of the

components by allowing insertions if and only if one extremity overlaps or is stacked

on top of a base pair. Constraint (2.13) forbids two components from overlapping to

each other, and prevents base pairs to occur inside a component. Constraint (2.14)

uses the formulation of [18] to prevent lonely base pairs (i.e. every position in a base

pair must also have an adjacent position in a base pair). Constraint (2.15) limits the

number of canonical base pairs δ of S that can be removed.

We can notice that the model always has a trivial feasible solution, when no

motifs are inserted and no base pairs removed.
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CHAPTER 3
Results

3.1 Implementation

To solve the IP problem, we use the Gurobi optimizer v.4.5.1 [9] API for Python.

We ran our benchmark on a Ubuntu-Server 10.04 on a Dell PE T610 2x Intel Quad

core X5570 Xeon Processor, 2.93GHz 8M Cache, 64GB Memory (8x8GB), 1333MHz

Dual Ranked RDIMMs for 15 Processors, Advanced ECC.

3.2 Data set

We validate our method on the dataset defined by [11] to benchmark the RNA

3D structure prediction programs.. In this work, we aim to predict the structure

of large RNAs with 3-way and 4-way junctions. Small sequences (less than 50 nu-

cleotides) with simpler structures can be accurately predicted using existing methods

such as MC-Pipeline or NAST. Therefore, we removed from the dataset sequences

with less than 50 nucleotides. We also removed RNAs with secondary structures

that include pseudo-knots. Indeed, our approach has been designed to use secondary

structures predicted by classical secondary structure predictors such as RNAfold and

RNAstructure, thus without pseudo-knots. Moreover, our motif database and IP

model have not been designed to insert pseudo-knots. We redirect the reader inter-

ested in application of IP techniques to the prediction of pseudo-knots to the recent
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works of [18] and [23]. Our final dataset includes eleven RNAs with sequences of

lengths ranging from 53 to 128 nucleotides. We note that two of these 11 had no

homologous 3-way junctions in our database. We present here the results on the

remaining 9 RNAs. Eight of them have a 3-way junction and the other a 4-way

junction. Importantly, the motifs extracted from these RNAs by RNA3Dmotifs [4]

have been removed from our motif database.

For the negative control test, we used a test set composed of the 24 RNAs from

the dataset defined by C. Laing and T. Schlick [11] without pseudo-knot, 3 or 4-way

junction. Their sizes range from 16 to 77 nucleotides.

3.3 RNA-MoIP pipe-line

Our RNA tertiary structure prediction pipe-line works in three steps. First, sec-

ondary structures are predicted using classical predictors such as RNAfold, RNAstructure

or unafold. In this work, we generated the input secondary structures with RNAsubopt [27].

We used the default parameters but discarded structures with lonely pairs (i.e stems

of length 1). This procedure generated between 1 and 22 secondary structures for

each RNA sequence. Nonetheless, the quality of secondary structure predictions is

too low on the riboswitch 3D2G from A. thaliana and the tRNA 2DU3 from A.

fulgidus to accommodate k-way junction motifs insertion. Therefore, we extended

our list of suboptimal structures and generated all secondary structures in the range

of 4.5 kcal/mol from the mfe. This operation resulted in a total of 242 (resp. 58) sec-

ondary structures. We also note that extending the list of suboptimal structures of

other RNAs produces identical results. Typically the secondary structure predictors
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generate lists of suboptimal structures from which it is difficult to extract the best

ones. We will see in Sec. 3.3.2 that our method is able to identify the best candidates

in these ensemble predictions.

We apply RNA-MoIP to insert RNA 3D motifs in these secondary structures

as described in Sec. 2.3. The solution with an optimal score, under our objective

function (Sec. 2.3.3) is scripted manually for MC-Sym with the motifs locked in. Due

to various MC-Sym features, it is currently difficult to generate automatically these

scripts. Hence, the processing of very large sequence data sets remains challenging.

We recall that many 3D structures can have the same motif, which is only determined

by the sequence. Here we provide all alternative configurations to MC-Sym. Time is

a major limitation of MC-Sym. Using our strategy, we show that preprocessing the

sequences with RNA-MoIP results in a dramatic time improvement and at the same

time improves the accuracy. We set a time limit of 30min. Then on every set of

predicted structures we apply a minimization of steepest-descent until the difference

of energy between two consecutive structures is smaller than 5 Kcal/mol/A or after

500 steps [17]. It is worth noting that MC-Sym was not able to generate a structure

in two cases (3E5C and 2GDI), although RNA-MoIP predicted the 3-way junctions at

the correct positions.

3.3.1 Negative control

We verify that RNA-MoIP does not predict wrong k-way junction insertions (i.e.

false positives). We use a negative control data set composed of the 24 RNAs ex-

tracted from the dataset of C. Laing and T. Schlick that contain hairpins and interior
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loops motifs but without pseudo-knots and k-way junctions. Then, we apply the pro-

tocol described as in Sec. 3.3. Our results indicate that no k-way junction have been

inserted in the optimal solution returned by RNA-MoIP.

3.3.2 Secondary Structure

The identification of the best secondary structures in a list of suboptimals is

one major challenge in RNA secondary structure ensemble prediction. We present

in Table 3–1 the results as follows. The first column shows the PDB identifier of

the RNAs. The two following columns show the ratio of well predicted base pairs in

two structures. The former is the structure in the optimal solution of the RNA and

the latter is the same structure after RNA-MoIP was applied and removed some base

pairs (we highlight in bold the improved scores). There is an average increase of 6%

and only one case where it decreased. The fourth column represents the average of

well predicted base pairs for each RNA over all secondary structures considered by

RNA-MoIP. The penultimate column shows the rank of the best secondary structure

selected by RNA-MoIP in the ordered list of suboptimal secondary structures gener-

ated with RNAsubopt, while the last column shows the total number of suboptimal

secondary structures in that list. As we can see, the average base pair accuracy of the

secondary structure prediction is approximately 63%. But when we look at the base

pair accuracy of the secondary structures selected by RNA-MoIP (78%) we observe a

major improvement of 15% which means that our approach is able to identify the

best secondary structures in a pool of candidates. Interestingly, our program is able

to extract candidates with a very low rank, when ordered by energy. For instance,

on 2DU3 RNA-MoIP extracts the 163-th candidate with a base pair accuracy of 91%
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Percentage of well predicted base pairs Secondary structure

in the predicted secondary structures selected by RNA-MoIP

PDB Optimal solution Average over all Rank in Nb. of candidate

Before After secondary structures RNAsubopt list secondary structures

3E5C 100 100 100 1 2

1DK1 88 92 82 1 7

1MMS 47 67 49 2 2

2DU3 79 100 44 52 58

3D2G 91 100 43 163 243

2HOJ 68 68 61 13 20

2GDI 96 94 71 10 22

1LNG 100 100 82 1 7

1MFQ 29 31 31 1 4

Average 78 84 63

Table 3–1: Secondary structure improvement

(vs. 43% in average) in a pool of 258 structures. Finally, to accommodate motif in-

sertions RNA-MoIP can remove base pairs. Once removed, the ratio of well predicted

base pairs reaches 84%, thus increases by 6%. This experiment demonstrates that

the insertion of motifs can help to identify incorrectly predicted base pairs.

3.3.3 Three-dimensional Structure

We evaluate the quality of our 3D structure predictions using the RMSD and

the RNA Interaction Network Fidelity [7] tool, available with the MC-Pipeline at
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major.iric.ca/MC-Pipeline/. The latter computes the true positive (TP ), false

positive (FP ) and false negative (FN) tertiary structure interactions between the

experimental structures deposited in the PDB [1] and our predictions, and returns

the positive predictive valuablee (PPV) and sensitivity (STY) defined as:

PPV :=
|TP |

|TP |+ |FP |
STY :=

|TP |
|TP |+ |FN |

.

We report our results in Fig. 3–1. Fig. 3–1b shows that RNA-MoIP coupled with

MC-Sym is able to predict most of the tertiary structure interactions.

We show in green in Fig. 3–1b the RMSDs of the solutions obtained with MC-Sym

as described in 3.3. We recall that each script for MC-Sym is done manually with the

positions inside the predicted motifs directly mapped to the pool of corresponding 3D

structures, obtained by RNA3Dmotifs from [4]. We also recall that [11] reported that

only the two smallest structures were resolved by MC-Fold | MC-Sym pipeline when

only the sequence was given. We thus decided to input into MC-Sym the sequence

with the secondary structure selected by RNA-MoIP. Under this scenario, MC-Sym was

allowed to run for 48 hours. Those results are shown in blue. As we can see, having

the secondary structures allowed to solve 5 of the 7 structures. We note that two

of them only produced 7 solutions in the first half hour. The largest one took more

then 4 hours to produce the first results, and had only two solutions after the 48

hours. Nonetheless the information given by the motifs allows to our method to

predict significantly more accurate results.

Fig. 3–2 shows that our program outperforms other software and produces 3D

structures with a RMSD significantly lower than those observed by [11] for other
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programs. It also shows that our method scales with the length of the RNA better

than other approaches.

We completed this analysis by computing the Matthews Correlation Coefficient

(MCC ), defined as: MCC :=
√

PPV× STY, and the running time of our method.

We show in Table 3–2 an overview of the results obtained on each RNA as follows.

In the first column RNA identifiers are followed by a “∗” or a “#” to denote that

MC-Sym (reps. NAST) failed to predict them, as reported by [11]. The second column

contains the length of each RNA. The third column contains the number of secondary

structure predicted by RNAfold and used as input for RNA-MoIP. The fourth column

is the total time (preprocessing and solve) in seconds taken by RNA-MoIP to find

an optimal solution for all the secondary structures. The fifth column contains the

number of 3D structures generated by MC-Sym with the script made with RNA-MoIP

optimal solution. We then have the maximal, average, and standard deviation of

the MCC. The following three columns present the minimal, average, and standard

deviation of the RMSD. Finally, the last column indicate the type of junction found

in the native structure. We note the fast execution time of RNA-MoIP, even when a

large number of secondary structures are used. Also, despite a time limit of 30min,

MC-Sym generates good candidates. Noticeably, our RMSD can be as low as 2.23Å

for the tRNA 2DU3 and are considerably smaller than those reported by [11] (See

Fig. 3–2).
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Figure 3–1: PPV, STY and RMSD of predicted three-dimensional structures

Fig. 3–1a shows the PPV and STY for all the 3D structures generated by our scripts

on MC-Sym against the reference on the PDB [1]. Fig. 3–1b shows in green the

distribution of the RMSD of the solutions obtained with MC-Sym when the structures

of the motifs were given and in blue when only the secondary structure was provided.

N.B.: In the latter, the molecules are identified by their size.



Figure 3–2: Predictors performance comparison

Comparison of the RMSD obtained by RNA-MoIP, MC-Pipeline, iFoldRNA and FARNA

by [11]. This figure is derived from the data computed by [11] on which we superposed

the results obtained by RNA-MoIP and MC-Sym. The dots are the average RMSD

shown in Fig. 3–1b. We also show in dotted line the extrapolated RMSD for MC-Sym

and in black the best fit for the average RMSD obtained with our pipeline.



CHAPTER 4
Conclusion

In this thesis, we demonstrated that large RNA 3D structures can be automat-

ically predicted using a hierarchical approach. We benefit of the progresses accu-

mulated over the last 30 years in the field of RNA secondary structure prediction.

We developed an IP framework to incorporate the novel local motifs information

available in databases. We showed that this approach enables us to predict very

quickly accurate 3D structures for large RNA sequences (more than 50 nucleotides).

By contrast, previous methods were either too slow or too inaccurate on molecules

with similar sizes.

We show that motif insertion enables us to identify the best secondary struc-

tures in a pool of suboptimal structures. Nonetheless, the choice of the size of the

sample set that needs to be generated remains an open problem. As illustrated by

the 3D2G and 2DU3 experiments, some RNAs may require significantly more sub-

optimal structures than those generated by default by RNAsubopt. A simple strategy

to reduce the search space would be to cluster those samples and pick representative

structures.

RNA-MoIP demonstrates that we can already benefit from the information ac-

cumulated in RNA local motif databases without deriving a new model. This is

32



important because the paucity of the data currently available in these databases pre-

vents from developing accurate statistical potentials for predicting tertiary structure

interactions in high-order motifs such as the k-way junctions.

Therefore, another important issue with RNA-MoIP is the completeness of the mo-

tif database. For instance, we have seen that there is no homologous 3-way junction

in our database that can be correctly inserted in 3EGZ (riboswitch in H. sapiens)

and 2OIU (synthetic ribozyme). To circumvent this limitation, an interesting ap-

proach would be to generate highly probable new motifs from the existing ones using

isostericity matrices [25].

Some of the IP techniques developed here could be implemented using a dy-

namic programming paradigm. However, we argue that the IP approach is more

flexible and more suited to this problem. Indeed, in our framework the rules of inser-

tions can be easily modified (i.e. adding, removing or changing an equation) while a

dynamic programming scheme would required a complete re-implementation. This

is particularly useful in this case where some motifs present in our databases have

specific insertion constraints. This situation is more likely to happen in the future

with the growth of RNA local motif databases. Moreover, we demonstrated in this

work that our implementation is fast enough for realistic applications.

Finally, our methods are compatible with state-of-the-art IP programs for pseudo-

knot predictions [23, 18]. In future work, we could envision to merge the two models

and include new rules for inserting highly sophisticated 3D motifs with long-range

interactions, coaxial stacking or base triplets. Beside its inherent flexibility, the
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development of IP models for RNA structure prediction finds a justification in re-

cent results showing the inapproximability of the prediction of RNA pseudo-knotted

secondary structures with a nearest neighbour model [24].
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Appendix A
Software

A.1 RNAsubopt

Our method relies on our ability to predict quickly a set of secondary structure

yielding with high probability a good candidate, as discussed in Chapter 2. A well

accepted and efficient tool to this end is RNAsubopt [26], part of the Vienna RNA

Package [8]. RNAsubopt uses many thermodynamic parameters to compute the mini-

mal free energy (mfe) secondary structure and than retrieve all secondary structures

within a given energy range from the mfe.

The thermodynamic parameters defines the energy for the basic pieces of the

secondary structures (e.g. base pairs, stacking, bulges, loops, etc...) and can be

finely tuned by hand. However, our method, as explained in Chapter. 2, relies on

having quickly a pool of secondary structures. RNA-MoIP then identifies the one

deemed interesting. The focus was thus in having the secondary structure of interest

inside the pool, the ranking (i.e. the energy of the structure) is not taken into

consideration by RNA-MoIP. As such, when default parameters did not produce a

valid secondary structure, we expanded the range allowed range of energy from the

mfe to 4.5 kcal/mol (Chapter 3).
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A.2 Rna3Dmotif

A few databases of RNA 3D motifs have been done, as briefly discussed in

Sec. 1.3. At first, methods relied on the nucleotides spatial position (e.g. [6]) to

identify structural motifs in RNA. We chose the tool Rna3Dmotif [4] which, rather

than spatial positions, considers the following three types of interactions:

1. The phosphodiester bonds linking nucleotides along the backbone.

2. The canonical base pairs forming the secondary structure (i.e. Watson-Crick

GC,AU and wobble GU ).

3. The 12 non-canonical base pairs defined by Leontis and Westhof [14].

Rna3Dmotif relies on manual annotation of the interaction of RNAs three-

dimensional structures by FR3D [22]. Those structur1es are in the Protein Data

Bank [1] (www.pdb.org). Rna3Dmotif uses the FR3D annotation to identify struc-

tural motifs and the .pdb file to extract every structural motif. For every motif

two files will be created. The former contains a description of every interaction in

the motif. The latter contains the spacial positions of all atoms in the motif in a

canonical .pdb file.

Our framework uses the two files as discussed in Chapter 2. In the first step,

RNA-MoIP uses the description of the interaction to identify the sequences of the

components and where the motifs can be inserted. In the second step, the .pdb files

are feed to MC-Sym to do the 3D predictions.
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A.3 MC-Sym

MC-Sym (Macromolecular Conformations by SYMbolic programming) [17] is the

most accurate tool to predict all-atoms RNA 3D structures as shown in [11]. This

tool is based around the notion of NCMs (nucleotide cyclic motifs) which are min-

imal structural motifs. It is important to notice that as much as 100 different 3D

structures can be associate to any NCM. The basic idea of MC-Sym is to assemble

those NCMs under all possible configurations that doesn’t violate a set of constraints.

Those constraints can be explicitly given, as the secondary structure which contains

information about nucleotides interactions. There is also a set of implicit constraints,

as a minimal distance between atoms and limits in the backbone torsion.

Formally, an MC-Sym script needs a set sequence, an explicit declaration of every

needed NCM and the order under which those pieces must be merged. We show

in the Figure. A–1 the MC-Sym script that would correspond to trying to model the

hairpin shown in Figure. A–2.

For every nucleotide in every NCM, we need to explicitly specify in the sequence

which is the corresponding position. We can note in the script how this become

tedious when there is no corresponding NCM, as for the hairpin (lines 14 to 28 in

Fig. A–1, nucleotides 6 to 10 in Fig. A–2). Those parts are also the hardest to model

due to the sparsity of constraints. Nonetheless, this is perfect for the inclusions

of the motifs as described in Appendix. A.2. If we had the simple hairpin motif

M := CAAACAG and its associated 3D structure as a pdb file, we could have

directly included it in the MC-Sym script as:

motif_M = library(
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pdb( "Path/To/Motifs/M/*.pdb" )

#1:#7 <- A5:A11)

Therefore, once we have a database of 3D motifs and we known the insertion

locations of motifs into a given RNA, it is quite straightforward to create the MC-Sym

script associated with it. Notice that a motif is always defined as a set of files (i.e.

*.pdb). Nonetheless, the order in which the different NCMs and motifs are merged

is crucial to the diversity and feasibility of the simulation. There seems to be no

fixed reason for why some combination are more efficient than others, so scripting

must be done by trial and error. In our work, we always limited the time to half

and hour, and limited the number of generated structures to 1000, since speed and

accuracy are crucial to a useful tool.
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01 sequence( r A1 ACUGCAAACAGCACG )

02 ncm_1 = library(

03 pdb( "Path/To/Motifs/ACCG/*.pdb.gz" )

04 #1:#2, #3:#4 <- A1:A2, A14:A15)

05 ncm_2 = library(

06 pdb( "Path/To/Motifs/CUAC/*.pdb.gz" )

07 #1:#2, #3:#4 <- A2:A3, A13:A14)

08 ncm_3 = library(

09 pdb( "Path/To/Motifs/UGCA/*.pdb.gz" )

10 #1:#2, #3:#4 <- A3:A4, A12:A13)

11 ncm_4 = library(

12 pdb( "Path/To/Motifs/GCGC/*.pdb.gz" )

13 #1:#2, #3:#4 <- A4:A5, A11:A12)

14 ncm_5 = library(

15 pdb( "Path/To/Motifs/CA/*.pdb.gz" )

16 #1:#2, #3:#4 <- A5:A6)

17 ncm_6 = library(

18 pdb( "Path/To/Motifs/AA/*.pdb.gz" )

19 #1:#2, #3:#4 <- A6:A7)

20 ncm_7 = library(

21 pdb( "Path/To/Motifs/AA/*.pdb.gz" )

22 #1:#2, #3:#4 <- A7:A8)

23 ncm_8 = library(

24 pdb( "Path/To/Motifs/AC/*.pdb.gz" )

25 #1:#2, #3:#4 <- A8:A9)

26 ncm_9 = library(

27 pdb( "Path/To/Motifs/CA/*.pdb.gz" )

28 #1:#2, #3:#4 <- A9:A10)

29 structure = backtrack

30 (

31 ncm_1

32 merge( ncm_2 1.5 )

33 merge( ncm_3 1.5 )

34 merge( ncm_4 1.5 )

35 merge( ncm_5 1.5 )

36 merge( ncm_6 1.5 )

37 merge( ncm_7 1.5 )

38 merge( ncm_8 1.5 )

39 merge( ncm_9 1.5 )

40 )

41

42 explore

43 (

44 structure

45 option(

46 model_limit = 1000,

47 time_limit = 30m,

48 seed = 42 )

49 )

Figure A–1: MC-Sym script

modelling a simple hairpin



Figure A–2: Simple hairpin

A simple hairpin composed of 4 stacked base pair NCMs and 5 free nucleotides
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