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Abstract

This thesis presents a method based on the velocity singularities for the analysis
of oscillating airfoils. The method of velocity singularities has been originally developed
by Mateescu for the analysis of the steady flows past airfoils. This method makes use of
special singularities associated to the leading edge and ridges that directly represent the
complex perturbation velocity.

Closed form solutions were derived for the pressure distributions and for the
aerodynamic forces and moments acting on the oscillating airfoils with or without
oscillating ailerons.

The solutions obtained with the velocity singularity method for steady flows past
airfoils were found to be in very good agreement with the exact solutions obtained by
conformal transformation in the case of thin Joukowski airfoils, as well as with the
previous solutions for the case of flexible-membrane airfoils obtained by Mateescu &
Newrman, Nielsen and Thwaites.

For unsteady flows. this method has been validated for airfoils executing
oscillatory motions in translation and pitching rotation and for airfoils with ailerons
executing oscillatory rotations. The pressure distributions and the aerodynamic forces and
moments obtained with the present method were found to be in excellent agreement with
the previous solutions obtained by Theodorsen and Postel and Leppert.

The method has then been extended to the unsteady flows past airfoils executing
flexural harmonic oscillations. Closed form solutions were also derived for the pressure
distributions and the aerodynamic forces and moments acting on an airfoil with an aileron
executing flexural oscillations. No comparisons were presented for the cases of flexural
oscillations since there are no previous results known.

The present approach displayed an excellent accuracy and efficiency in all
problems studied.



Résumé

Cette thése présente une méthode d’analyse basée sur les singularités de vitesse
pour les profils aérodynamiques ayant des mouvements oscillatoirs. La méthode des
singularités de vitesse a été développée originalement par Mateescu pour |’analyse
d’écoulements stationnaires autour des profils aérodynamiques. Cette méthode utilise des
singularités spéciales asociées au bord d’attaque et aux arétes qui représentent directement
la vitesse complexe de perturbation .

Des solutions explicites ont été établies pour la distribution de pression et pour les
forces et les moments aérodynamiques agissant sur les profils aérodynamiques en
mouvements oscillatoirs, avec ou sans aileron en mouvement oscillatoire.

Les solutions obtenues avec la méthode des singularités de vitesse pour les
écoulements stationnaires autour des profils aérodynamiques sont en excellent accord
avec la solution exacte obtenue par transformation conformale pour le cas des profiis
aérodynamiques de Joukowski, ainsi que avec les solutions antérieures obtenues par
Mateescu & Newman, Nielsen and Thwaites pour les profils aérodynamiques flexibles.

Pour les ecoulements instationnaires, cette méthode a été validée pour les profils
aérodynamiques exécutant des mouvements oscillatoires en translation et en rotation,
ainsi que pour des profils munies d’un aileron oscillant. Les distributions de pression et
les forces et moments aérodynamiques obtenus par la présente méthode ont été trouvées
en excellent accord avec les solutions obtenues dans ces cas par Theodorsen et par Postel
et Leppert.

La méthode a été puis utilisée pour étudier les écoulements instationnaires autour
des profils aérodynamiques exécutant des oscillations harmoniques en flexion. Des
formules explicites ont ét€ aussi établies pour la distribution de pression et pour les forces
et moments aérodynamiques agissant sur un profil aérodynamique muni d’un aileron
exécutant des oscillations flexurales. Aucune comparaison n’est pas présentée pour le cas
des oscillations en flexion parce qu’il n’y a pas des résultats précédent connus.

La présente méthode a démontré une excellente précision et efficacité dans tous

les problémes étudiés.

..
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Chapter 1

Introduction

The analysis of unsteady flows past oscillating airfoils and wings is very important
for the aeronautical applications. The problem of predicting the aerodynamic
characteristics of such airfoils is among the first ones that have been studied in the
development of the aeronautical sciences. This analysis has proved to be of considerable
practical importance. Studies of unsteady airfoil flows require predicting the unsteady
aerodynamic loads acting on thin lifting surfaces. Potentially beneficial effects of
unsteadiness has also been given some attention. such as controlled periodic vortex
generation, improve the performance of turbo-machinery, helicopter rotors. and wind
turbines by controlling the unsteady forces in some optimum way. Most of these studies
concern either periodic motion of an atrfoil in a uniform stream or periodic fluctuations in
the approaching flow. There is a need to develop efficient methods of analysis that can be
used in conjunction with the structural research to study the dynamics and stability of the
airfoil and wing structure subjected to the unsteady aerodynamic forces.

The analysis of thin airfoil theory has been a subject under research and development
for many years. Since it is in general difficult to develop an exact solution for the ideal
flow past an airfoil of arbitrary shape, approximate methods have been developed to
solve this problem. Among the pioneering works are the ones of Glauert [6,14] and
Birnbaum. Glauert’s method approximates the airfoil by its camber line and by modeling
this camber line as a vortex sheet. An integral equation resulted for the distribution of the
vortex sheet by linearizing the boundary conditions and transferring these boundary
conditions from the surface of the airfoil to the chordline. Glauert solved the integral
equation by means of Fourier series. This approach is the basis of thin airfoil theories.



The fact that the boundary conditions are in general non-linear makes the problem of
finding an exact solution for the motion of an ideal flow very complicated. Few solutions
are available for a limited number of geometries only. For instance, Joukowski [21,14]
airfoils, which can be directly obtained from the conformal transformation of a circle.
However, these airfoils are of limited use in practice because of their pre-determined
shapes, but they are essential in assessing the accuracy of the approximate methods.

The method of velocity singularities has been first introduced for supersonic flow
past wings and wing-fuselage systems, Mateescu [11]. Mateescu [12,13] has also
introduced a new method for the solution of the steady flow past thin airfoils in subsonic
flows. The method of velocity singularities developed by Mateescu, makes use of special
singularities at the airfoil leading edge and ridges along the airfoil. This method, does not
directly use the velocity potential but instead operates directly on the velocity field by
considering the singular behavior of the flow at geometrically important elements of the
airfoil. [n addition, this solution satisfies the Kutta condition at the trailing edge. This
method is characterized by a simple and direct approach, leading to closed-form solutions
in all cases when the airfoil contour is specified. Although the initial method was
developed as a linear theory, a non-linear development is aiso possible [12]. This method
has been extended to analyze the problems of flexible airfoils and jet-flapped airfoils, in
which the shape of the jet sheet or the flexible membrane depends on the pressure
difference across them, see Mateescu & Newman [13], Nielsen [22] and Thwaites [27].

Studies of unsteady-airfoil flows have been motivated mostly by efforts to prevent or
reduce such undesirable effects as flutter and vibrations. Among the best known and most
enlightening analysis of this class of problems are those by Theodorsen [26,15] and Von
Karman & Sears [28], who considered a thin flat plate and a trailing flat wake of vortices
in incompressible fluid. Theodorsen developed the velocity potentials due to the unsteady
flow around the airfoil. The aerodynamic forces and moments on an oscillating airfoil are
then determined on this basis.

Kissner and Schwarz [5,9,25] obtained a solution of the lift and moment for an

airfoil oscillating with arbitrary mode, which depends on a Fourier series expansion.



A more specific solution for the unsteady lift and moment for an airfoil was
introduced by Biot [5]. The solution is limited to the special cases of an airfoil executing
vertical-translation and rotational oscillations.

Many important features of the unsteady airfoil behavior were described by
McCroskey [18,19]. A number of scientists such as Dietz, Schwarz, Kemp, and Basu
[2,4,8,25] covered various aspects of the unsteady flow past airfoils. In these
investigations, the primary objective was to obtain the lift forces and moments; therefore,
computations were not made to show typical pressure distributions. Theodorsen [26]
derived the forces and moments for the harmonically oscillating airfoil without actually
calculating the pressure distributions. Postel and Leppert [24] have calculated pressures
acting on a thin airfoil with harmonic plunging and pitching oscillations of small
amplitude in incompressible flow. These previous solutions are restricted to the special
cases of oscillatory translation and rotation of an airfoil. However, the previous formulas
of the aerodynamic forces are complicated and are obtained for special cases of the
airfoils oscillating as rigid bodies without considering the flexural oscillations.

In the present thesis. a new analytical method of solution for the analysis of the
unsteady flow past airfoils and ailerons. based on velocity singularities, is developed.
Closed form formulas of the aerodynamic forces along with the pressures acting on a thin
airfoil oscillating with various harmonic motions are determined. The formulas obtained
are of a simple and efficient form and the mathematical treatment provides an effective
approach for the general case of oscillations, including the flexural oscillations.

The first objective of the present work is to obtain the solutions of the unsteady flow
past oscillating airfoils, which could efficiently avoid the mathematical difficulties
encountered in the classical theories. The second abjective of the present study is to
develop a comprehensive approach for the analysis of the unsteady flow past oscillating
airfoils.

Chapter 2 is devoted to the problem formulation of the steady and unsteady flows
past fixed or oscillating airfoils. The previous theory developed by Theodorsen [26] is

also presented.



In Chapter 3, the method of velocity singularities for steady flows past airfoils is
discussed. This method of solution is applied for various problems of specific airfoils.
The method of velocity singularities is first validated by comparison with the exact
solutions obtained by conformal transformation [13,14], and then with the results
obtained by Nielsen [22] and Thwaites [27] for flexible-membrane airfoils.

In Chapter 4, a new method for the analysis of the unsteady flow past oscillating
airfoils using velocity singularities is presented. The method is extended to the analysis of
the unsteady flow past airfoils with oscillating ailerons. The aerodynamic forces and the
pressure distribution on the oscillating airfoils and ailerons are then determined.

The solutions of the flow past airfoils executing more general oscillations such as,
flexural oscillations are also determined.

Chapter 5 presents numerical results for various cases of oscillating airfoils obtained
with the method of solution developed in Chapter 4. First, the present solutions are
compared for validation with the results obtained by Theodorsen [26] and Postel &
Leppert [24] for the case of oscillations in translation and pitching rotation. Then, the
present solutions obtained for airfoils with ailerons executing flexural oscillations are
presented.

The last chapter is devoted to the conclusions and recommendations for future
further studies.



Chapter 2

Problem formulation and review of Theodorsen
theory

2.1 Problem formulation

Consider the flow around an airfoil having an angle of attack o with respect to the free

stream velocity U_ as shown in Figure 2.1.
yA

CI0)

Fig 2.1 Geometry of an airfoil at an incidence « in uniform flow of velocity Us .

The airfoil could be stationary or can execute various types of oscillations. The
most common types of oscillations are the linear translation and the pitching rotation

defined, respectively, as,
h(t) =y cos(ot+q,), (2-1)
8(r) =90, cos(wt +@,). (2-2)
where, © and ¢ are the frequency of oscillations and the time, respectively. In linear
translation oscillations, 4, and ¢, are the amplitude and the phase angle. Similarly, 6,

and @, are the amplitude and the phase angle of the pitching rotation oscillations.



The above equations can also be expressed in complex form as,

h(e)=Re{h ™}, (2-3)

0(c)=Reld |, (2-4)
where the complex amplitudes h and 8- are defined by,

h=hy €™, 2-5)

6=9, '™, (2-6)

For simplification, in the following, the real part symbol, Re{ } will be omitted and thus
equations (2-3), (2-4) are expressed in the form,
h(t)=he™, Q-7)
0()=0e~. (2-8)
However, this will imply that the real part will have to be taken from the final complex
solution (in fact, this is a common practice for this type of harmonic oscillation
problems).

The velocity potential equation for unsteady potential flows defined by the fluid velocity

and velocity components is,

v. v-z—‘i— V()= —{‘;j’ +aa: (v )}, (2-9)
where, ¢ represents the velocity potential and V is the fluid velocity, are defined as.

V=vs, (2-10)

V=(U,-cosa+u)i+ (U, -sina+v)j. (2-11)

The Bernoulli-Lagrange equation for barotropic incompressible fluids (for which the

density is a function of pressure only) is,

9, Ly Pcqy. (2-12)
ot 2 p
The pressure coefficient equation in second order approximation is,
C o f L) - 228 Ly 200 2 @-13)
U2 Ular 4 C|UL  Ularl



[t is important to note that in the case of incompressible unsteady potential flows, the

velocity potential equation and the pressure coefficient equation are,

V-V=0, (2-14)
c, =P (2-15)
L U?
5oV
% 2 3¢
Cr=-| 5-1]-52 . 2-16
& =0

[n Cartesian coordinates, the perturbation velocity components (u,v) and the

perturbation velocity potential (¢ ) equations are,

u:i(g . v=a—(p . (2’17)
dx oy

a_.1-+ 5"({: =0. (2-18)

ox-  dy°

Boundary conditions
The boundary condition on an airfoil executing vertical translation and pitching rotation
oscillations is determined in the assumption of small amplitude oscillations. Consider a

body executing a small oscillations, the equation of the body surface is expressed

generally as.
f(x,y, z,t): 0, (2-19)
The boundary condition on the body surface is given by,
2L, (@, +a)vr=0. (220)
[

where, U is the uniform stream velocity and q is the disturbance velocity.



Consider a flat plate airfoil in oscillation as shown in Figure 2.2.

Y ? xtan0

— —_ 6(!)

l

iy

t >
| x . d

Fig 2.2 Geometry of a flat plate airfoil executing translation and pitching rotation

oscillations.

The equation of the body surface of flat plate airfoil is.

y=h(t)- xtan®. (2-21)
[n the assumption of small amplitude oscillations ( tan® =8 ), the equation of the body
surface f(x,y,t), is expressed as,

f(x,y.t)=y+x-0(t)-nt)=0. (2-22)

The boundary condition on the oscillating plate is derived from,

2L, @, +abvr =0, @23)

where,U_ is the uniform stream velocity and @ is the disturbance velocity. The

equations of which, are expressed as,

U, =il_, (2-24)
i:iu-ﬁ-jw, (2‘25)
in which, Vf is derived from,
vr=iZl 2L 226)
dx “ady



af

The values of 5 and Vf in equation (2-23) are expressed as.

ot dt dt

af _ d8 _dh

Vi=i0()+jl,
The vertical translation and pitching rotation oscillations are given by,

10
o(t)

. .. af .
The value of the time derivative —a-i is expressed as,
t

i; elqﬂ

A '
eem,

%{—:ia)[é x—l;] e'™,

Hence, the boundary condition on the oscillating plate is,
w(x,y,tl plare = [-Uan 6+ iw(f; - éx)]e"“ .
which can be expressed as.

W) e =D (e) ], €™,

where the reduced vertical disturbance velocity w(x, y) is expressed as,

ﬁr(.r,yjp,m =-U, é+iw(.‘;—éx )

(2-27)

(2-28)

(2-29)

(2-30)

(2-31)

(2-34)



2.2 Previous studies for unsteady flows past oscillating airfoils:
Theodorsen’s theory

The unsteady flow past an airfoil oscillating around a mean position defined by
the mean incidence & , can be decomposed into the steady flow past the fixed airfoil at the

mean incidencea and the unsteady motion past an oscillating flat plate in the assumption

of small perturbations, Figure 2.3.

y A
a) .
ai *******
7 &
e
|
X
b) +
y A
------ hﬁ Ng(l)
U—’ h(t)
..... . -
X

Fig 2.3 Decomposition of the unsteady flow around an oscillating airfoil into: (a) The
steady flow past a fixed airfoil, and (b) The unsteady motion past an oscillating flat plate.

For the unsteady flow past an oscillating plate. Theodorsen [15,26] has developed
a method to determine the aerodynamic forces on an oscillating airfoil. The theory was
based on the potential flow and the Kutta condition. In this method, the perturbation
velocity potential, @, around the oscillating airfoil is decomposed into two parts:(i) the
perturbation potential @, . corresponding to the motion without circulation around the
airfoil, and, (ii) the potential @, . corresponding to the motion with circulation due to the
shedding vortices.
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The equation of the perturbation potential for the unsteady incompressibie flow is given
by,

vipg=09. 00 (2-35)
& oy
The pressure coefficient equation is given by,
2 (dp 6(])) )
C,(xyt)=-—|=+U_ 1|, 2-36
(%, .1) 7 ( = tUa (2-36)

Introducing the reduced potential ¢(x,y) and the reduced pressure coefficient c , (x.y)

in the form,
o(x,y.0)=p(x,y)e"™, 2-37)
C, (x.y.t)=C,(x.y)e". (2-38)

the above equations become,

Vip=—"+—=0. (2-39)

ép(x,y)=—;i (iwqb(x,y)-&-U,, %], (2-40)
The general form of the boundary condition on the oscillating airfoil is given by.

W%,0.8) g = W (1), (2-41)
where,

W(x.t)=W(x)e™. (242)
For the considered case of plunging and pitching oscillations, the boundary conditions are
given by equation (2-34).

ﬁf(x,yL,w =-U, 0~+im(h.-éx ) (2-43)

[n this manner, the unsteady aerodynamics problem has been reduced to the study of the
reduced motion defined by the reduced potential.

11



2.2.1 Motion without circulation

Consider the flow without circulation around a flat plate, the effect of the vertical
velocity jump is replaced by a source (+ AQ)and sink (-A Q)system situated on the upper
and lower sides of the plate as shown in Figure 2.4. The relation between the velocity
jump and the strength of the source (A Q) is given by.

AQ =2bW(x, t)dx, . (2-44)

W (xl )

Fig 2.4 Effect of a jump in the vertical velocity on a flat plate in the motion without

circulation.

Joukowski’s conformal transformation is used to transform the flat plate in the plane
z=x+iy into acircle in the plane { =& +in . The transformation is defined by,

1 1
zZ= 5’(; +ZJ . (2-45)
The complex potential of the source and sink is given by,
Fg)=22ns=% (2-46)
2z -4

where,

2 =J(x—x[ 3 -i-(\/l—-x2 —\ﬁ-xlz)z
= 18
- =pe’ > . ‘/f_xz -_\ﬁ_xlz , (2-47)
x-X,

g, =tan

12



\/(r x,) «[I x? +\/I—'q)'

o
§bimpe® > e : (2-48)

x—x
The velocity perturbation potential for the flow without circulation is denoted by,

d o, (r.x 1) =W (x, 1) 245

L (x, x, ), (2-49)

where,

—, (2-30)
(x-x,) (\/1 o+ l-x )-
The axial perturbation velocity is given by,
] dx 1-x} .
du, (x,x,,¢ d W (x,, . . 2-51
ul(ttl ) ba\'[ (p,xt, ] ‘:l ) Tt (x—x,)ﬁ ( )
The corresponding pressure coefficient is expressed by.
2
— (a(dqol)wn a(drp,)} 2:5)
Uu,\ ot ox
The pressure difference across the plate is given by,
2 1-x2
L[A p, (x.x,0)]= 22U W (x,.t) ] =+ L o (x;. ).L(x.x,)
dxl T (_t...x'),h_x‘ T ot
(2-53)
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2.2.2 Motion with circulation around a flat plate

The motion with circulation around a flat plate is studied by considering an elementary
shedding vortex AL situated downstream at z=x,. Joukowski’s conformal
transformation is used to transform the flat plate into a circle and hence, a vortex of

opposite sense has to be introduced inside the circle at the symmetrical point in order to

render the circle, the streamline property, as shown in Figure 2.5.

y A n 4

Al -AT AT
—_ - — a N >

” :1 Y
g

i/
! I ‘
l—————
%o > &o

Fig 2.5 Motion with circulation around a flat plate due to a vortex placed downstream.

The complex potential is given by,
iAr ln 4 - 50

F,{)= , 2-34
2 6)=-— T3 (2-54)
where { =z +vz? -1.
The perturbation velocity potential is,

dg, =80 g Yo V7T @-55)

T 2n I-x, x

The axial perturbation velocity is,

du, =202 _AL_ ¥%ol (2-56)
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[n the unsteady case. at any instant of time ¢, a free vortex g-d t is shedding at the
t

trailing edge of the profile. Since this free vortex is moving downstream with the velocity
U, of the uniform stream, the intensity of the free vortex distribution y ,, along the axis

of the plate, is expressed as,
7 (Lt)=-— ===y, ", @-5T)

A free vortex located at the instant ¢ at the distance bx, , was shedding at the trailing edge

at a previous instant of time, and hence,

x,—1
1 (xe0t) =7, [l,r—b i ] (2-58)
U,
The reduced frequency & and the harmonic oscillations are given by,
wb
k=—, 2-59
U, (2-39)
Yrs (xo J):Y; et e e’ (2-60)

where, v, is a constant that will be determined by imposing the Kutta condition at the
trailing edge of the profile. The free vortex distribution is related to the perturbation
potential by,
AT =y, (x,,t) bdx, . (2-61)

Since the free vortex is moving towards downstream with the velocity of the free stream,
the pressure coefficient corresponding to the purely circulatory motion produced by the
perturbation velocity potential after considering the effect of all the free vortices situated
in the wake of the oscillating airfoil, is given by,

dApl =pU,, 2 e:k o' E_LT j’e-:krn _'_t_‘%'_t_dto . (2-62)
T \}l—x' 1 x;—1
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2.2.3 Complete motion

By adding the potential corresponding to the motion without circulation around the flat
plate, due to the normal velocity jump ¥ (.1:I ,t) , and the potential corresponding to the
pure circulatory motion, produced by the shedding free vortices in the wake of the airfoil,
one obtains the total perturbation velocity potential for the complete motion around the

oscillating plate or airfoil.
Replacing the unknown constant y, by the equation,

. Wix,.t) dx
Yo =Yo (e#)‘ (2-63)

and imposing the Kutta condition at the trailing edge of the profile, one obtains the

unknown constant y, . The axial disturbance velocity is given by,

I—. 2 ) 3 2 —I
du(x.x,,t)= W(x.,r)%[——“:'%ro fert= 3"—@} [ (2-64)
x-x

= i %o =% Ji-xt’

By imposing the Kutta condition at the trailing edge (x =1), one obtains,

[du(x,x,.r)],., = finite, (2-65)

4 1 l+x, ”
_4 Ly 2-66
"R HP )+ HI () Vi-x, (260

where H(k), H®) (k) represent the Hankel functions of second kind of orders

zero and one [7,20,29]. See Appendices A and B for details. The pressure difference
across the plate combines a quasi-steady term, inertia force term and the effect of the free

vortices in the wake of the airfoil. The equation of the pressure equation is given by,

7 _ I
Ap(xJ‘):lpUz [—x IW(xl ,[) 1+x| ‘itl
r 1+x 3 I-x, x-x,

I
+ -1-pb I _a_W_(x_li).L(x,xl )-dx, , (2-67)
r 5 ot

2 1-x ' I+x
— 1-Cle) |— | W ix,, !
+ leran[ ( )] I+x -_[ (xl t) 1

dx,

-1
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where Theodorsen’s function C(k), is defined as,

H (k)

6= Frnar®

= F{k)+iG(k), (2-68)

where H{ (k), H® (k) represent the Hankel functions of second kind of orders zero and

one [7,20,29]. See Appendices A and B for details.
The function L(x,x,) is given by,

L(x,,g): In (x_xl )l +(\/l—7 — ﬂ)i .
(s i+ i

Theodorsen’s results are presented for the following oscillatory motions of the airfoil
(Figure 2.6),

(2-69)

y=by §
b-x
—»
h(t) x =b-x
alr) A 4
b-a H
Lot ~~T--‘
b-c, B( )
b b
[ > -
Fig 2.6 Flat plate geometry as presented in Theodorsen’s solution.
The oscillations of the airfoil are denoted as,
h(e)=h-e™, (2-70)
alt)=c.e™, @2-71)
B(e)=p-e, (2-72)
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The boundary conditions on the airfoil-aileron combination are defined as,

W(x,t)=-alU, -h-b(x-a)a for xe(-1.¢,), (2-73)

W(x,t)=—-al, —h-b(x—a)a-b(x—c )B-BU, for xelc,.1). (2-74)
The lift force is given by,

L=ztpb3a)2{ P, %+[P, -(—;—+a)P”}a+Pl, B } (2-75)

The pitching moment equation is,

M, =mpb* 0’ [M“, -(%+a)Py]§+[M, -[%4-::}(1” +Mu)+(%+ a) Pm]a +

+[Mﬁ -GM)P,,]/; !

(2-76)
The hinge moment equation is given by,
‘o {T, T ] 27
My,=rnpb o T"'Z+ — 5+a T, la+T; B ¢. (2-77)

A list of the terms that appear in the above formulas is given in Appendix B.
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Chapter 3
Method of velocity singularities for steady flows

3.1 Method of velocity singularities for steady flows past airfoils
Prototype Problem

Consider a very thin airfoil extending on the real axis in the complex plane z=x+iy
from z =0 to z =¢ with a sudden change of slope, due to a single ridge, at z =s Figure
3.1. A typical configuration of a flapped, otherwise uncambered airfoil Figure 3.1a is first
considered. This gives the basic singularities at the leading edge L(x=0) and the ridge
R(x=s), where the airfoil slope suddenly changes by an angle §.

y‘

>
a/4v1..__s T x
U
—
a)
n4
T" «— R’ R — I
/S /7 7 /7 7Y /7SS S Y S S /S /S 7SS é’
b) Q—G—H‘—c—.r

Fig 3.1 Geometry of a thin flapped airfoil: a) in the physical complex plane; b) in the
complex plane defined by the conformal transformation.
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The boundary conditions are,

v={U(1:-on)=vo, for 0<x<s 1)

Ult-a-B)=v,+Av. for s<x<c
where a is the angle of attack, t is the leading-edge slope with respect to the cord,
v, =U (‘: — a) represents the normal-to-chord perturbation velocity v at the leading edge
and Av=-BU denotes the change in v at the ridge. In the complex plane z=x+iy,
the conjugate complex perturbation velocity is defined as,

w(z)=u-i(v-v,). (3-2)
The boundary conditions (3-1) applied on the airfoil chord are, thereby, simplified to,

0 forO<x<s

IMAG[w(z)].., = { (3-3)

-Av fors<x<c

and, due to the antisymmetric nature of the perturbation flow past the airfoil in the

complex plane,
REAL[w(z)]... =0 forx <0, x>c. (3-4)

The local behavior of the perturbation velocities at the leading and trailing edges are.
respectively,

w(z)... > Jﬁ; (where 4, isindependent of z)

REAL[wz)]..,. =0

where the first condition represents the leading-edge singularity for a flat plate at z=0,

(3-3)

and the second is the Kutta condition at the trailing edge (z =c}).
The complex velocity w(z) should also contain a logarithmic singularity in order to
provide the jump Av at the ridge (z =5s):

W) o = infes). (3-6)

20



Indeed, considering z—5 =r, ¢'® in the vicinity of the ridge R(z = s) Figure 3.2, one can
successively write,

T=xp

imag (2}, - mag{v{o.., =tmag{ Linfre) " =E2feB -av.

| G-7)

y‘

Fig 3.2 The jump of the imaginary component of the complex velocity w(z).

The expression of w(z) can be easily determined in an auxiliary plane =& +in

Figure 3.1b, defined by the conformal transformation of the Schwarz-Christoffel type.

- =(—' (3-8)

c-2)
which transforms the airfoil (the x axis between 0 and c¢) into the whole of the real axis
in the { plane, and the rest of the x axis into the imaginary axis. The velocity

components do not change under conformal transformation in contrast to the usual

complex potential theory, the boundary conditions become,

0 for-c<&<o |
MAG[¥] _{—Av forE<-c, {>0 -9
lwherec=,fs!‘c—s”
REAL[w],, =0. (3-10)
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The leading-edge singularity becomes a doublet singularity 1/ at the origin, and the
ridge singularity becomes in this plane +(Av/n)In({ F o), and, thus,

w=A%+ﬂ|:ln4-d—ifr], G-11)

where the constant 4 has to be determined.

[n the physical complex plane z, the solution becomes,

- 2 -7
w(z):A,/-c—i - ZAvcosh™ l(c 2)s | (3-12)
z n c(s-2)

and the constant 4 comes from the requirement that ¥ =v =0 at z - -, resulting in.

’ 2
A=-v, ——2-Av cos™ |2 =U|:a—t+:B cos™ JE] (3-13)
n c T c

On the upper surface of the airfoil (y =0, z = x), the chordwise perturbation velocity

u = REAL w(z) may, therefore, be expressed as,

c—X

7
u(x)= A - = AvGl(e,s.x), (3-14)
n

X

where the singular ridge contribution G(c, s.x) is defined as,

r

cosh™ X5 for 0<x<s
c(s-x)
G(c,s.x)=1 sinh™ oo for s<x<c . (3-135)
c(x-s)
0 for x<0 andx>¢
|




The pressure difference across the airfoil in dimensionless form AC, =4u/U, where

+u are the chordwise perturbation velocity components on the upper and lower surfaces

of the airfoil, can now be expressed as,

AC, (x)= -%[[ Vo +2Av cos™ \/-;-] €= +2AvG(c,s.x)} , (3-16)
n c)V x =

where v, =(t—a)U and Av=-BU .

The lift coefficient and the pitching moment coefficient about the leading edge are

obtained by integration of the pressure coefficient over the airfoil:

C, =2n(a-1)+ 4|3|:cos'l J§+ E(l—é) } (3-17)

372 112
c.=tc, + 29(1) {l—i] . (3-18)
4 c

c



A comparison between the present closed-form solution and Glauert’s [6,13,14] thin
airfoil theory based on a modified Fourier expansion with N terms is given in Figure
3.3. One can notice that the results obtained with Galuert’s theory using an increasing
number of terms, in the Fourier expansion oscillate about the present closed-form

solution or tend asymptotically, but very slowly, toward the present solution.

11

0.9
0.8
0.7 /c=0.550
0.6 é

0.4 -]

0.3 ¥/c=0.650

0.2

/c=0.601

ACp

Fig 3.3 Comparison between the present solution (-) and Glauert’s solution (0.A.0) with

various number of terms V for a flapped airfoil (o =0.f =0.1rad, s/c = 0.6 ) at three

chordwise locations.
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3.2 Flow solutions for continuously cambered rigid airfoils

Consider a thin continuously cambered airfoil defined by the camber slope,
B(X)=a+v,(X)U, (3-19)

where v, is the normal-to-chord perturbation velocity v at the solid boundary, and

X =x/c is a nondimensional coordinate. Using the two typical singular contributions
for the leading edge and ridge, the solution for any camberline shape can be obtained by
superimposing infinitesimally flapped airfoils equation (3-16) in the form.

AC, (X)=- H %I (8)cos"JéFdS}\]T}7

[4(5)G(.5. X)ds }

¢

(3-20)
+

Al

where X =x/cand S=s/c.

Considering a polynomial representation for the camberline slope (which was also
adopted in the design of the NACA 5 digit airfoil series).
h'(X):-v,, (X)+a= Zh,, X*, (3-21)
k=0

the pressure difference across the airfoil is obtained in nondimensional form as,

AC [ Zh Zg._,X'HIXX (-22)
k=0 =0

where,

_ £-3-5---(29-1) _ (2q)

= = s =1. 3-23
8723629 2(q) 8o (3-23)
The lift and pitching moment coefficients are,
C, = 27‘[‘1 - zzhk gul}’ (3-24)
k=0
i = k+1
C.=—ja-4>nh —_. 3-2
m 2[0‘ ; kglwl k‘f‘?.} ( 5)



Parabolic thin airfoil
Cousider a parabolic thin airfoil (Figure 3.4) defined by,

h(x)= 4ex(1-§) , (3-26)

h(x) EC

iILH
“ v

¢

Fig 3.4 Geometry of a parabolic thin airfoil.

The derivative of the airfoil contour is expressed as,

H(x)=4e [1-2£J, (3-27)
¢

From equation (3-21),

h,=4e . h =-8¢c and h =0 for £22. (3-28)
The expression of the pressure difference coefficient is given by,

AC,(x)=4| a+8eX| |22, (3-29)

d c)V x

The lift and pitching moment coefficients are expressed, respectively, as,

C, =2nf{a+2¢). (3-30)

T
C, = ;(a +4g). (3-31)



The general expression of the geometry of a circular arc airfoil is given by,

h(x)=—(a—sc)+\/(a —ec) +x(c-x), (3-32)
where,
c 2
~gc=—oI1-4¢*). 3-3
a-sc 88(1 a) (3-33)

The derivative of the airfoil is expanded in Taylor series and is expressed by,

[ - X 48 __[_ _‘_2 2 -

where,

ﬁ%’ (3-35)
— e-

From equation (3-21), the 9 terms are expressed by,

_xle- ‘)B and B, =
C

hy=A, b =—4, [uf-) h, = A( Ba+-z»B§),h‘= (B +;B +—I%B§),

(3-36)
15, 25,5 35 3 0, 45 5 105 4) .
h = —B B B A ,h =—4q _B-+_B B i
: (s 16° " 128 ] N 1(4 s Bt Bl (337)
35 3 —45 4 o -D: 3 140 . .
ho - (16 B, + 64 Bo )~h7 = A((sBo ) —B, (3-38)
h‘R A (%B{;),hq =—A(223:}, hk =0,k210, (3-39)
where,
4, = 1 4413 - o
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A numerical comparison made for a circular arc airfoil (with 2 and 9 terms) with a

camber ratio €=0.01 and €=0.02 (at the angles of incidence o =2’ and a0 =5°)

indicated that the present solution was in a very good agreement with the exact conformal

transformation solution, as shown in Figures 3.5a, 3.5b.

0.8

0.7 | : -

0.6 = Conformal transformation

pu—

—e— Present method with 2 terms
05 v+ X%—+ -
—a— Present method with 9 terms

0.4

AC,

x/c

Fig 3.5a Comparison between the present solution and the exact solution for a circular arc

airfoil at & =5" and £ =0.02.
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1.8

16 | —— Conformal transformation

—o— Present method with 2 terms
1.4

—— Present method with 9 terms

A Cp

0.6 0.8
x/c

Fig 3.5b Comparison between the present solution and the exact solution for a circular
arc airfoil at a =2° and € = 0.01.
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3.3 Flow solutions for flexible-membrane airfoils

When the airfoil is a flexible, impervious, and nonstretchable membrane (or a two-
dimensional sail, as shown in Figure 3.6), its shape is unknown but it has to satisfy the
normal equilibrium equation between the tension and the local pressure difference across

the membrane:
Ap=%z—Th'(_r), (3-41)

The latter approximation for the radius of curvature R is for small slopes. The tension T .
per unit span, can be considered constant since the skin friction is zero in theory and very

small in practice.

yh

hx)

il Tt

U — o ——————

Fig 3.6 Geometry of a flexible membrane airfoil.

Introducing the nondimensional coefficient AC, =2Ap/ (pU l) and the coefficient
C, =2T {pU?c), where c is the chord length, equation (3-41) becomes,

AC, =-cC; h*(x), (3-42)
where the nondimensional pressure difference is AC, =4u/U .

The aerodynamic boundary condition on the airfoil is expressed in terms of the normal

perturbation velocity component v in the form,

v=v,(x)=[-a+# (XU, (3-43)

30



Nielsen [13,22] treated this problem by using Glauert’s [6,13,14] approach based on a
modified Fourier expansion for the circulation y =2U AC, in the form,
AC, =L = 4@+ 3 4, sinke (3-44)
TR R S

where the constants 4, and 4, are related to the cosine Fourier expansion of the airfoil

slope, A'(x), in terms of the variable 8 = cos™ (2x/c -1} in the form,

AJ
a—h(x)=4y+ 4, coskd, (3-45)

k=l
On this basis, equation (3-42) was rewritten as,
1 N . . N . .
EC’kZ..:kA" sinkd = 4, (l—cosG)-l-smO;A,‘ sin k9 . (3-46)

which had to be used to determine the coefficients A, and 4, that define the membrane

shape. However, at the leading edge, 6 ==, equation (3-46) leads to A, =0, which
corresponds to the ideal incidence for which the Kutta condition is also satisfied at the
leading edge. At any other incidence, the constant A, should not be zero. and then
equation (3-46) is not satisfied at the leading edge. Nielsen [13.22] avoided this particular
difficulty by expanding each term of equation (3-46), including 1 and cos0. as sine
Fourier series, and equating the coefficients of sink8. The present method does not
contain the above ambiguity. By differentiating equation (3-43), the membrane

equilibrium equation (3-42) may be recast only in terms of « and v as,

") =v! () U =22
R (x)=v, (x)/U = T (3-47)

For any shape of the camberline, equation (3-20) shows that « contains the factor

JU-X)/ X =J(c-x)/x. which satisfies the Kutta condition at X =1 and has the
X'? =Jc/x singularity at the leading edge. Hence, according to equation (3-47),
h*(x)and v (x) both have to contain the same singularity factor {1- X)/ X asu.
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The following expansion for v, (x) satisfies all of these requirements:

1, . 1 /l—X - -
Uv,,(X):h (X)=a(§—-2X) —X—+Zkb,‘X"', (3-48)

k=l
%v,,(X):h’(X)—a =aX"(-X)* + ¥ b, X", (3-49)
k=0
where, to satisfy the Kutta condition at the trailing edge (X =1) in equation (3-47),

‘Zkb, =0. (3-50)

k=l
The lead term of equation (3-48) contains [(1/2)-2.X] and, although not essential, leads
to a more compact expression for v, (3 x). The antisymmetrical chordwise velocity

component u on the flexible membrane corresponding to the above expansion of v, (x)

is obtained from equation (3-20) in the form,

o 2 o

k=0 [-0

(3-51)
where g,_ is defined by equation (3-23).

The camber shape of the flexible membrane can be obtained by integrating equation (3-
49), in the form,

h(X X +al, D gk 3-52
(X)= [a +a +k“0 P } (3-52)
where,
) ~LeostViTx -Ji-x)x (l—lx +1X=). (3-53)
8 8§ 127 3

There are (n+2) coefficients defining the membrane camber defined by the above
equations, a and b, (k 0.1,2..., n), which have to be determined using the condition (3-
50) and the membrane equilibrium equation (3-47). At the leading edge (X =0),

equation (3-47), which involves u and v, , reduces to.

{1 1 Z" -
— __._.C + b —_-0’ "-34
aZ(n 4 T) k=0 kgk (J )
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Other (n-1) equations can be obtained satisfying equation (3-47) at other convenient

locations X, (i =1,2,.........,n—1) along the chord,

u(X,)= -%C, v'(X,), i =12 An-1). (3-55)
The final equation is obtained from (3-32) by requiring that the chord lies along the x-
axis, i.e., h(l)= K{0),

T 2, 1
—a+ b, =—a. 3-36
16" kel t (3-36)

Eliminating the coefficient a, using equation (3-56), the system of equations reduces to

the form,
D, ][%]=[e,]. (-57)

This can be solved for the coefficients (b, /), which are independent of «. provided

that the matrix [D,k] is not singular, as, for example, when C, =1.727. which
corresponds to the case of a flexible membrane at an ideal incidence, aa=0.

At this ideal incidence. a=0 and, hence, the pressure distribution. as well as the
-1/2

membrane curvature, do not contain the leading edge singularity x

The excess length, defined as € =//c -1, is given by the relation,

e={)’\jl+[Ul—mv,,(x)+a]de—1
Sy ) |

25 al

and the lift coefficient of the flexible membrane airfoil is expressed, using equation
(3-47), as,

(SR < 59
@ Crz(a). (3-59)

k=l
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A numerical comparison (Table 3.1) of the results obtained for the overall parameters

al/C,, /e, and C, between the present method and Nielsen [13,22]} and Thwaites
[13,27] methods, indicated that the results are generally in fair agreement, although there
are detailed differences. The present method is in good agreement for C, >8 with
Thwaites method. The comparison with Nielsen’s method shows good agreement for

C; <8. The results are presented in Table 3.1.

Table 3.1 Comparison between the present solution for flexible-membrane airfoils and

the previous results of Nielsen and Thwaites.

Cr a/ve a/C,
Present method 0.322 28.250
2 Nielsen 0.322 28.148
Thwaites 0.340 24.989
Present method 2434 8.952
4 Nielsen 2411 8.821
Thwaites 2.480 8.848
Present method 6.424 7.255
3 Nielsen 6.329 7.120
Thwaites 6.400 7277
Present method 8.400 7.021
10 Nielsen 8.266 6.884
Thwaites 8.371 7.120
Present method 13.33 6.744
15 Nielsen 13.10 6.605
Thwaites 13.29 6.762
Present method 96.88 6.345
100 Nielsen cn—nee c———
Thwaites 96.86 6.349
Present method 391.69 6.298
400 Nielsen ——— ——
Thwaites 391.83 6.299
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3.4 Flow solutions for jet-flapped airfoils

Consider a thin cambered airfoil of chord length c, provided with a thin jet flap inclined
at an angle B, with respect to the chord, at the trailing edge Figure 3.7.

yA
I. h(X) T I,///
- >
y «— ¢ — ‘B-i—”’/ X
0 e o )
- [

Fig 3.7 Geometry of a jet-flapped airfoil.

The jet is assumed to be a thin sheet and have a small slope, and to have a constant

momentum J per unit length of slot. The sheet curvature 1/ R = ¢"(x), where y, =e(x)
is the jet-flap shape, is related to the pressure difference across the jet sheet by the
momentum equation normal to the jet:

Ap=J/R=Je"(x), (3-60)

Using the dimensionless jet momentum coefficient C, =2J/ (pU lc), this equation can

also be expressed in terms of # and v as,

@/C, Ju(x)=cv'(x). (3-61)
The aerodynamic boundary condition (3-43) has to be satisfied on the airfoil. where A(x)
is specified, and furthermore, the same condition has to be satisfied on the jet sheet itself:

vav, (x)=[-a+e'(x)U. (3-62)

where the jet flap shape, y, =e(x), has to be determined.
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At the trailing edge (x =c), the jet slope with respect to the chord is specified as B,
which leads to the additional condition,
¢'(c)=-tanB ~ -, (3-63)
or
v(c)=-Usin(a+B)/cosp = (o +B)U . (3-64)
Due to the pressure difference across it, the jet sheet is deflected upwards and,
eventually, at large distance / behind the airfoil, becomes flat and parallel to the free
ream direction. This can be expressed by,
e'()=e"(1)=0, (3-65)
or
v({l)=v'()=0, [also u(f)=0]. (3-66)
where [ tends, theoretically, to infinity. However, the jet curvature practically tends to
zero at a finite distance {/ ~c), measured from the trailing edge, which depends on the jet
coefficient C, , the jet angle B, and the incidence a. and. in general, has the same order
of magnitude as the chord length c.
In this situation, the jet-flapped airfoil can be considered as a fictitious rigid airfoil of an
overall chord length /, with the Kutta condition u(/) = 0 satisfied at x=1.
Considering the nondimensional coordinates X =x/cand L=[/c, the following
expansion of the normal-to-chord velocity component on the jet sheet, v, (X), satisfies

the preceding considerations:

1, R 2 k+l 2. 41 L-X .
EVJ(X)‘—'C (X)=-kz.zek?:-z-+a;t-51ﬂh ! m, (3-67)
and, by integration,
—v,(X)+a=e(X)=D ¢ ﬁﬂu aF(Xx). (3-68)
k=2
where L =1[/c,and
2 L-X 2 X
F(X)=(X-1)=sinh™ -JL-1= "\/:. 3-69
(x)=( )T:S Lx-1) ﬂcos I (3-69)

36



The last term of equation (3-67) accounts for trailing-edge singularity appearing in u
when the jet is not tangent to the camberline, i.e., when A'(1)# tanp ~ B .
The boundary condition regarding the jet slope P at the trailing edge can be expressed
in the form,
ie, =—tanB —a F(1), (3-70)
k=2
At the other end of the jet sheet (X = L), the boundary conditions can be expressed as,

e'(L)=) e /' =0, (3-71)

k=2

e"(L)= -Z":(k +1)e, /¥ =0. (3-72)

k=2
However, the terms (3-71) & (3-72) may be omitted in order to avoid having to many
terms in expansion (3-68) since the jet slope at X = L is at least in order of magnitude

smaller than the slope at the trailing edge B (since L is chosen to be larger than 2).
The velocity v, (S) should correspond to two different variations of the camberline slope

on the airfoil itself, v, (S), and on the jet sheet, v, (S). i.e.,

z":hkS". for0<S <l
—l-v,,(S)+a= +=0 i (3-73)
Ze,, +aF(S), forl<S<L

k=2

where S represents the new nondimensional coordinates with respect to c(S =s/c). For

convenience, a polynomial expansion is considered on the jet sheet,

F(S)=3 6, /5. (3-74)

k=2

The chordwise perturbation velocity « on the airfoil and the jet is obtained as,

1 : o (=X
U {(1 ghklz’o[ X ;(ek +ab );Xk,[-]} Y
{Zh,‘x" z"‘,e";:'lb } £6(L,1X)

k=2

, (3-75)

where G(L,1,X) has the expression (3-15).
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The expressions of /; and J, are defined by,

[j=_l_l L-1+ 212 lLI_[, Ig,=1—3cos"‘/I (3-76)

L nJ +J } J, =%% L-1 G-77)

= 2]+1L

The constant a is given as,

= _C"‘_[tans +h'(1)]= Ci[s +r(1)]. (3-78)

I ’

The (n-1) unknown coefficients e, (k =2.3,.......n), can be determined by satisfying

equation (3-61) at (n—-1) convenient locations X, situated between X =land X =L,

ie.,

u(X,)=1/4C, v'(X,), (T ,n—-1) (3-79)

The lift coefficient is obtained by integrating the pressure difference, in the form,

C, =4al cos™ 1’L—Zl--tt[ Zh,t[ﬁh, cos™ "LT +—«] Z[ )
k=0

=0

"’i(ek +ab,‘{2./,‘ cos™ J——’+—\/—2Jm} ]

=0

(3-80)
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Chapter 4

Method of velocity singularities for unsteady flows

4.1 Method of velocity singularities for unsteady flows past airfoils

Consider the general flat plate airfoil given in Figure 4.1,

y &

e(x.t)

>
x

Fig 4.1 Flat plate airfoil with a boundary condition e(x,).

The vertical displacement of the airfoil surface is defined by.

y =elx,z), (4-1)
where e(x,t) is given by

e(x,t)=é(x)e"™. (4-2)
The equation of the body surface f(x, y,¢) is hence

fle,y,t)=y-e(x.t)=0, (4-3)
The boundary condition on the surface of the airfoil is defined by

3—{+[(U¢, +u)i+jv]-Vf =0, (4-4)

where u and v are the perturbation velocities in the x and y directions, respectively.
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By performing the derivatives and inserting them into the boundary equation, one obtains

the perturbation velocity v in terms of e(x,¢),

de de
=—+{U_+u)—, -
v=—t U, +u)— 4-5)
. ~ aé ot
v= I:zaJe(.\:)-i-(Um +u)—]e . (4-6)
dox
The boundary condition on the airfoil can be expressed as
v=V(x), (4-7)
where,
s~ aé iat
V(x):{za)e(x)+(U,, +u)5—}e , (4-8)
x
The velocity ¥ (x) can be aiso expressed by
V(x)=V(x)e. (4-9)
where,
5 - oe
V(x)=[zme(x)+(U,,,+u)—a—J , (4-10)
X

I[n the small perturbation assumption ad

is smaller than the unity and hence can be

-

neglected in the above equations. The general form of the velocity boundary condition is
given by
?(x):Zbk x*. é-11)
k=0
where the coefficients b, can be determined for each specific case from the boundary

conditions on the oscillating airfoil. The complex perturbation velocity is given by

(2)=ulx.y)-jv(x.y), (4-12)
and can be expressed in the form,

W(z)=W (2)e™, (4-13)
where,

W (2)=i(x.y)-jv(x.), (4-14)
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Note that,
j=+-1. (4-15)
The boundary conditions on the oscillating airfoil can now be expressed in the complex
form, (where IMAG, [ ] represents the imaginary part of the corresponding expression),
IMAG [/ ()]... =7 (x). for 0<x<c (4-16)

To derive the boundary conditions on the wake of the airfoil, consider a flat plate airfoil

with a chord ¢, placed on the x-axis as shown in Figure 4.2,

Tr (c,l)

Y, (o.t)

Fig 4.2 Geometry of a flat plate airfoil indicating the free vortex distribution.

The circulation [(c,t) around the airfoil is expressed as a function of the reduced
circulation [ ().

[(e,))=C(c)e™. 4-17)

where s the frequency and ¢ is the time.
At any instant of time ¢ a free vortex gdtzdt is shedding at the trailing edge of the profile

as shown in Figure 4.3.

dx,

Fig 4.3 Free vortices shedding at the trailing edge of the airfoil.
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The shedding (trailing edge) free vortex is moving downstream with the uniform stream
velocity U, . This means that during the time interval dt, the shedding free vortex will
move along the distance 4 x, given by,

dx, =U_dt, (4-18)
Hence, the corresponding distribution of the intensity of the shedding free vortices, in the
proximity of the trailing edge is given by,

_ dr(c'[)dt
dt

Jg)=
Yy ((.' ) d.\’,

; (4-19)

The intensity of the free vortex distribution y ,(c,t) at the trailing edge of the airfoil is

expressed as,

1 d(c.t)
J)=-— .
ke d

2
U (4-20)

k-

where U _ is the free stream velocity.
The intensity of the free vortex distribution y ,(c,t) can be expressed in terms of the
reduced intensity of the free vortex ¥,(c), as,

1et)=1,c)e™, (4-21)

After taking the derivative of equation (4-17), the intensity of the free vortex distribution
at the trailing edge of the airfoil is given by,

1,(c.t)= —Ul [(c)iwve™ , (4-22)

The reduced intensity of free vortex distribution is given by,
io -

7,(c)= -U—r(c). (4-23)

The intensity of free vortex distribution, at a distance o behind the trailing edge of the
airfoil, is calculated considering the fact that a free vortex at a distance behind the trailing

n

edge moves with the free stream velocity U_and was initiated at a previous time interval

At (time lag) from the trailing edge of the airfoil.
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The time lag is expressed as,

G-—-C

At= (4-24)

E -]

The intensity of the free vortex distribution at a distance o behind the trailing edge of the
airfoil v, (0.t) is derived as,

c-c¢ L dl{c,t=At) o =0\ uiem)
y — ,t - - 3 ——r R -
Y,(o.t)=7 ,[c 7 ) - " 7 (c)e (4-25)

The reduced frequency A. is expressed as,
A=—. (4-26)

The reduced free vortex distribution at ¢ is given by,

7,(0)=- (c)

The reduced free vortex distribution at o is related to the reduced velocity U () by the

2]

(4-27)

relation,

¥,(6)=20(c). (4-28)
and hence,

s (21

Ulo)= —}' } (o) =-i ——r(c)e : (4-29)

The boundary condition on the wake of the airfoil is hence,
REAL, lW (z)L_r =U (x). for x>c¢ (4-29a)

where, REAL ,.[ ] represents the real part of the corresponding expression.
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4.2 Prototype problem
Consider a flat plate airfoil with the jumps of velocities due to the bound vortices on the
airfoil are represented by a constant 5, and a variable 5V . The jump of velocity due to

the free vortices behind the trailing edge of the airfoil is represented as U as shown in
Figure 4.4, A

U(x)V(x)

Fig 4.4 Representation of the velocity jumps in the boundary conditions of the prototype
problem of an oscillating airfoil.
Complex singularity functions

Special singularities are used to determine the complex perturbation velocity
4 (z) (rather than the complex potential) in the airfoil plane (see Figure 4.4). The
velocity singularities are expressed by,

At the leading edge, z=0

c—-2

, (4-30)

-
&

At the velocity jump on the airfoil, s<z<c
H,(z,5)=cosh™ -c——zﬁ, (4-31)
V c(s-2z)
At the velocity jump due to the free vortices outside the airfoil, c<z <o

4,(z,6)=cos™ (4-32)



The general behavior and the derivations of the above special complex singularities are

given in Appendix C.
The elementary complex velocity W, (z) is expressed in terms of the velocity jumps,
due to the bound and free vortices, and singularities related to the complex variable

z = x +iy . The expression of the complex velocity W " (2) is given by

oW, (z) =64 —-—b (j—-)-—cS'Vcosh" ( += 6’Ucos
ch-

The velocity U(o) is given by

N

0(c)=-55f-( s, (4-34)
C

The velocity jump SU due to an elementary free vortex behind the trailing edge is
defined by

oU = d—-é’c' (4-35)

where U (o) is defined by equation (4-29).
From equations (4-34) and (4-35),

7 2 - Mo-c
dy LA ['(c)e ! ,.

ds 2¢*

Taking the effects of all the free vortices from the trailing edge ¢ to infinity . the

(4-36)

complex velocity 8% (z) is expressed by,

] M (4-37)
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By taking into account equation (4-36), equation (4-37) can be recast as,

" - 2 =
oW (z) =84 ——jb 25Vcosh" -5—2—+:[ L% l"(c)] F(z), (4-38)
z cs-z) =| 2¢
where,
F(z)= qu st X8 s ) (4-39)

: clo~2)

The complex function F(z) is derived in Appendix A and is given by,

(4-40)

where,

-l-i(d*c
En=um[e ‘ ’}. (4-41)

To determine the constant d4, we note that at z —» « ., the perturbation velocity vanishes,
oW ()=0, (4-42)
The complex velocity at infinity is given by,
. 2 . 2 2
oW (w0) = SA(- j) - jb, —:cw[ jeos™ \H + :[-ll—,r(c)} F()=0. (4-43)
T c| 7| 2¢

where,

F () = lim{ [-;Z)E,, =+ jlimsinh™ Jz;"}-

2)z-0)lo-co

(4-44)

The real and imaginary parts of the complex velocity at infinity are equal to zero.
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Imposing the condition,
REAL, |oW («0)|=0, (4-45)
one obtains for the indeterminate value of the constant £_,

-i={g-c)
E, = hm[e ‘( -|=O. (4-46)
]
The above conclusion can also be obtained from the Riemann-Lebesque lemma on

Fourier Integrals [5,23], when the theory of distribution is used (see also Fung [5]).
Hence,

=lim im e-':(c-d CjNe—ck
rle)=tim |7 i T o)

(4-47)
Imposing the condition.
IMAG, s ()] = 0. (4-48)
one obtains,
7 . %o LEie-c)
84 = —by ——&V cos™ (4—-1*—['(::) -£ 3'lim{ Ie S __do .
T c 2¢ iA)gowse ! 2/(c-c)o
(4-49)

By inserting 4 into &W (z) and noting the fact that £_ =0, the equation (4-38) of the

complex velocity becomes,

}——Wl:cosh E(s ‘):) J 2 cos™ ﬂ

”zrr()2 s o
s "?(‘EJ i
where,
)= i {aj..e-.-(a-c}[’ c—z)z + ct: 1 ]da}
- 2o -2)flo-c z 2flo-c
(4-51)
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Determination of the constant & ()

The reduced circulation around the airfoil & (c) for the prototype problem, is determined
by imposing the fact that the reduced bound vortex distribution on the airfoil is related to

the complex velocity by the following expression,

7,(x)=2REAL [ ()L, = 2i(x 4-52)
The reduced circulation at any position x on the airfoil [ (x) is related to the reduced
bound vortex distribution by,
£(x)= [7,(x)dx =2 [ii(x)dx =2 [REAL, [W(:)L, d . (4-53)
0 0 0

The expression of éT ) is given by,

—&'(x =-b, th-—&V cosh"J((s ‘1’) J t' cos"‘/g}dt

(4-54)
142 c
+=2 8 (e)= - = | [J(x)ex.
26 ()z[ i,zJoI )
To determine 5F ), the condition of x =c is introduced in equation (4-54),
-l (c)=-b4, JC ad t——-6V J‘{cosh‘l t); J ~ cos™ \/—E]dt
x c
(4-55)

+ —-—61" -=| |

(- e

The derivation of the various integrals in equation (4-35) is given in Appendix A, and the
final formulas of the integrals are obtained as,

]'(t)dt———s-ce [HOMr2)+iHD 0 12)]- f(fﬂ (4-56)

where H¥(L/2) and H{(%/2) are the Hankel’s integrals of second kind of orders of
one and zero [7,20,29], respectively, and
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S lc—-x T
f —dr=cz, (4-57)
; 2

REAL, []cosh-- %ﬂ]:f,ﬂ-—s | ws®)
0

cls—x 2

Introducing the above integrals into equation (4-55), one obtains,

Jf(c)—_-G{—boc—%&}[,/ic—si;+c cos™ \/}——” (4-59)
(4

where,
4i e_'s
: 4-60
A HP(\2)+iHP(M12) (0
Determination of 5 C, (x)

The reduced pressure coefficient & c , (x) for the prototype oscillating airfoil problem is

expressed in terms of the reduced velocity potential 5 ¢ as,

- . 2
5Cp(x)=-—L}'—=n-[f U‘f’ é‘é(x,Y)+Lgfl}, (4-61)
where,
5p=[side=1 [264 de=15T(x). (4-62)

The equation of the reduced pressure coefficient & ¢ , (x) is then expressed as.

Jép(x)=—0i[i% %af(x)wa}. (@-63)

where A is the reduced frequency.

The expression of the reduced velocity on the airfoil & is given by,
84 =REAL oW (z)|.

=x ¥

(4-64)

where the term REAL ;[] represents the real part of the complex function.
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By taking the real part of the complex velocity &W(z), the expression of §# is given by,

5i(x)=-b, c-ﬁx—%&}[cosh'lJ(c ~xs J . cos™ i]

c es - t) c

+%’l—faf(c)3(- %]J(x)

ZC ¥4 !

(4-65)

After inserting the expressions of diand & (x) into the expression of the reduced

pressure coefficient §C, (x), one obtains,

_%aép(x) (’j)[ by —;Wcos \E}Kc—-r_)r
('j’)(-l&/)[(wf ~s)cosh™ ;:(s_tr—)l-b‘) E;—r
_%cﬂ}{cosh"‘j((s st) \/ t' cos"\/g]
+(—%JE(I—C(A/2))[-%c—%cﬂ}[ccos" %+mn

(4-66)
Details of the calculations are shown in Appendix D.
The above equation can be represented after mathematical arrangements as,
~Ze 56 ()= (AT k| - (472)|| -8 -2 cos™ ‘ﬁ
2 f c Ax T c
——JV cosh™ (- [l—l- x— s)-i-l] X (4-67)
(s - \:) c

- 2
+(-1-) X (1-C(ar2)) =6V Jle-s
c hd T

where C(A/2) is Theodorsen’s function [15.26]. The values of the real and imaginary

parts of the Theodorsen function are given in Appendix B.
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Determination of 5C,
The reduced lift coefficient & C"L for the prototype problem is related to the reduced

pressure difference coefficient 5[ AC » (x) ] by the expression,
~ ¢ - 7 < -
5C, =% fol AC,(x) Jc=-= [6C, (x) . (4-68)
0 €

The relation between the reduced pressure coefficient § ¢ , (x) and the reduced pressure
difference coefficient 5[ AC,(x) ] is expressed as,
o[ AC,(x) |=-25C,(x). (4-69)

After evaluating the related integrals (see Appendix A), the expression of the reduced lift

coefficient is given by,

;_E’s_ §C, =( -4 c(,uz)] ~b, = - 6V cos™ \/E
iA A 2 ¢

- 1 g,
Y ,/(c-sE[l-%i C(ﬁ./2)-ls},
c

(4-70)
¢
Determination of & C’,,

The reduced pitching moment coefficient & C ., for the prototype problem is defined by,

. 7 ¢ .
5C,=-5[xoC,(x)a. @-71)
0

The detailed integral derivations related to & é,,, are given in Appendix A, and the

expression of the reduced pitching moment coefficient & é’,, is obtained as,

— - 2 -
Us 5¢. =l(1-:ic(,1/2)) ~b, -6V cos™ JE
il 1S 2 p

_%5;} J(Z_S—)SB(1-36(1/2))-(§+£)5—3i}

A

4-72)

where C(A/2) is Theodorsen’s [15,26] function.
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4.3 The compiete oscillating airfoil problem

Let us consider the boundary conditions on the oscillating airfoil in the general form,
V(x)=) b x* | (4-73)

The jump of velocity & V on the airfoil can be expressed as,

5V = {d—V] ds, (4-74)
dx o
and hence,
SV =Y kbys*" ds. (4-75)

ksl
where the coefficients b5, are determined for each specific case from the boundary
conditions on the oscillating airfoil as it is shown for example in section 4.5.2. The
complete motion is obtained by inserting the elementary velocity jump defined by (4-74)
into the equations of the prototype problem and then integrating along the chord of the

airfoil, as shown in the following:

I"(C)=G{—buc—%]‘ [\/iC—SE +c cos™ \[%_]l:%] ds}, (4-76)

where,

4 e ?
AHDM2)+iHP(A2)

@-77)

The expression of the reduced pressure coefficient is given by,
U, - _ 1 i 2% L [sidv
- Cp(x)= (ul)\/ic—x)X[Z-EC(AIZ)}[—bq -;J cos™ \/; [Z]mds}
2] a4 fle=xp[id dv
-— h™ —= 1 —(x-s)+I||—| ds
r J €08 c(s—x) [ c (e-s) ][ dx Lﬂ

+(%] C_I(I—C(,llz))%;j c—s) %ﬂ ds .

X

=y

4-78)
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The reduced lift coefficient is expressed as,

ff ¢, (1_§c(1/2))[-bo§—:f°°S'I\E[ Lds}

__J’ J_j;[1-—c(z/2 —;SJ[‘ZL.

(4-79)
The reduced pitching moment coefficient is defined by,
-U l % s |dV
= C == 1—-—~C Al2 b, —- z
i1 ~( 1 ( ))[ 3 .[cos J:[&Lds}
2 2
“f [ (1__5 )) (H. ')i__f_ LA
3 4 3¢ Jlde]
(4-80)

4.3.1 The reduced circulation around the airfoil

The expression of the total reduced circulation around the airfoil ["(c) is given by,

f(c)=G { ~b, c——Zb [k;js*-'\/mczuck;j's*-'cos"‘Eds”

k:l

(4-81)
The detailed derivations of the integrals are given in Appendix A.
The resultant expression of the total reduced circulation [*(c) is given by,
= (2k+1
-—|G b I, . 4-82
(c)( ]g[m)u (4-82)
where,
2k-1 T 3 2
I, = Y cl,, where, [, =n [ =c—2- 11=§nc'. (4-83)

The detailed derivation of the recurrence formula of /, is given in Appendix A.
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4.3.2 The reduced pressure coefficient
The expression of the total reduced pressure coefficient C p(x) is determined by

introducing the expression of the velocity jump oV into the expression of & C , (x). The
integral form of the equation is given as,

eurBfa-2aefror o

k=l

c

+(ﬁj [-—%z":b, k Is* '(x—s)cosh™ —L) ds}--b0 it

4 k=l 0 c(s X X

Sl
+[‘—C‘) ETE )5, c-—gb (ckjs“ "\éds
vk Ojs"" Je=sk dv] ],

(4-84)
The detailed derivations of the integrals related to equation (4-84) are given in Appendix

A. The resultant equation of the reduced pressure coefficient C » (x) is expressed as

R o K YRS JOn A

cr

+% crth {[1 C(A/v)](zk"[‘][ —Z “"'1,,},

k=0 y=0

(4-85)

Note that the reduced pressure difference coefficient AC, (x), is given by the relation.

AC,(x)=-2 C,(x), (4-86)
The pressure difference coefficient for the airfoil is expressed by,

AC, (x,6)=ReaC, (x)e . (4-87)
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4.3.3 The reduced lift and pitching moment coefficients
By inserting the expression of the velocity jump ¥ into the reduced lift coefficient
5C > equation (4-70), and by taking the integrals around the airfoil, the general

expression for the total reduced lift coefficient ¢ . is given by,

'ﬂ“ o (1—ﬂc )[ b ?-gb kj*-‘ \/- }

1——C(/1/7 b, k |s* ds (4-88)
- ) Sk ot =k

k=l

+—Zb kj Jle=s)s ds,

k=l

The detailed derivations of the integrals within equation (4-88), are given in Appendix A.
The resultant expression of the total reduced lift coefficient ¢ . is given by,

'iinc‘ﬁ-%(t—i‘ic ][sz+z( } }

k=0 k=l

k(2K +1) (+-89)
2

(k+1)(k+2) * %7
where C(A/2) is Theodorsen’s function , A is the reduced frequency and /, is a

recurrence expression given by equation (4-83) rewritten below as,

7 - k)
21 1 whete [, =n [ =cX [2=%nc‘. (4-90)

h== 2

The total reduced pitching moment coefficient é,, is derived in the same way and is
given by, (see Appendix A for detailed integral calculations),

~U_ - I 2i 2
—=C =—| 1-22C(172) |} b, I, +
iz " 4( A ))Z; Lok

z":ki { ;(1—-2—’c(1/2)) {%in) 2k+1 1 (7k+1)(2k+3)},

21) k+2 12 (k+2)(k+3)

(4-91)
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4.4 Method of velocity singularities for unsteady flows past airfoils with
oscillating ailerons
The boundary condition on the airfoil with an oscillating aileron is given by the velocity
V (x) in the form

. 0 xe(0.s,)

V(x)= Zn:ﬂk o . (4-92)

x&(s,c)
k=0

The boundary condition on the airfoil at the position of the aileron (x =s,) is given in

terms of the velocity jump I}(s,) that is given by,

?(s,)=§,ﬂ* st (4-93)

where the coefficients B, are determined from each specific case from the boundary

conditions on the airfoil with an oscillating aileron.
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4.4.1 Prototype problem for the case of an oscillating aileron

Consider the unsteady flow past an airfoil with an oscillating aileron, as shown in Figure
45.

yA
>
U——'—D 4
m__’ e
‘—S|
— c—-—.\

Fig 4.5 Geometry of an oscillating aileron.

The various velocity jumps on the airfoil are represented in Figure 4.6,

0w P s
[}(sl )\ : § E

Fig 4.6 Velocity jumps representations in the boundary conditions on an airfoil with an
oscillating aileron.
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Complex singularity functions
Special singularities are used to determine the complex perturbation velocity
W (z) (rather than the complex potential) in the airfoil and aileron plane(see Figure 4.6).

The velocity singularities are expressed by,
At the leading edge, z=0

c-z

— (4-94)
At the velocity jump on the airfoil, s<z<¢
H,(z.s)=cosh™ ez s (4-95)
(5-2)
At the velocity jump due to the free vortices outside the airfoil, c<z <co
A(z,0)=cos™ (4-96)

The elementary complex velocity c)'Pf’,(z) is expressed in terms of the velocity jumps,

due to the bound and free vortices, and singularities related to the complex variable

z =x+1iy . The expression of the complex velocity 671‘{, (z) is given by

N -z 2 A z 2 . -
W, (z) =4 [S== -2 (s, )cosh™ | =1L _ = 5P cosh™ |28 4
= T z ) T c(s - z)
(4-97)
7 .
+=0U cos™
n
The velocity U(o) is given by,
- [ A —:i(c-c
O(o)=-L2E(e)e <, (4-98)

2¢

s

The velocity jump SU due to the free vortices behind the trailing edge is expressed by

(see also the analysis in section 4.1),

U oo, (4-99)

s =9Y
do
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The velocity jump SV for the airfoil with an oscillating aileron is given by
V=Y kp,s*" ds. (4-100)
k=1

From equation (4-98),
1, -'.ﬁ(c-c
dU LA F(c)e - ).

3 4-101
dc 2¢° ( )

Taking the effects of all the free vortices from the trailing edge ¢ to infinity <, the

complex velocity oW (z) is expressed by,

y —— —ZV(s,)cosh™ le=z)s
oW (z)= a4 p V(:) h e

s 2. “3ldU c-z
-—5V B /——(F Ztim{ [ | do|cos™ [£ZZF 3,
cos c(s-z)+n'6--“={ J[da a’}cos c(o-z) }

(4-102)
By taking into account equation (4-101), equation (4-102) can be recast as.
oW (z)=84,|——= -ZV (s, )cosh™
¢ (31
(4-103)
——é'Vcosh" + —[--——l"( )i|F(-)
c(s—_) | 2
where,
Te -:i{a-c} c—-
F(z)= i ¢ N d 4-104
()= fim{ Je " eos™ (204 ] (109

The complex function F(z) is derived in Appendix A and is given by,

N im e-:-tw) J(;F

To determine of the constant 84, we note that at z —co the perturbation velocity

vanishes,

oW (x)=0, (4-106)
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The complex velocity at infinity is given by,

sn‘f(w)=«s4(-f)-%r?(s.)[fcos-' H

(4-107)
. 2
—EJV[jcos" \/;jl + l[—-———l"(c)] F(w)=0
r c| x| 2
where as shown in equation (4-47),
c 7 Aeo (- iW(z-c)
Flo)=lim{}| —|lim{ |e ¢ do ). (4-108)
=t (1) e el )
The real and imaginary parts of the complex velocity, at infinity, are equal to zero.
From a similar analysis to that shown in section 4.2, one obtains,
. 2 .
04 = —EV(S1 Jeos™ |2 — =5V cos™ J?
T A 1
(__C_\E lim [ J‘e"—w_ do ]
/?.J e _,No’ -C E )
(4-109)
By inserting 34 into W (z), the equation of the complex velocity becomes,
6W(..)—-—V 5, [wff--—cos \F+cosh - } =2k, ]
sl
- . ’) '
-—6’V cosh™ (e )s 2 cos™ \/: +-l-i,-["(c)l - ()
c(s- 7) z c| 2¢8 A\ i
(4-110)
where,
m( o ,/(—E =z 1
J(z)= tim { I e }
L. _7 _\/(a’ C)O' ?.J(O"'Cb
(4-111)

60



Y

Determination of 5" (c) for the prototype problem of the airfoil with an oscillating
aileron

The circulation for the prototype aileron problem around the airfoil is given by,

(4-112)

s=Y

5F(c)=2 [REAL, |57 ()]

By taking the real part of the complex velocity and performing the integration around the
airfoil, one obtains,

Sa(e)=-27 [cos ( \/_ e+ jcosh-' \/z(s__}: dt]

o B et

(4-113)

The derivations of the above integrals are given in Appendix A.

The resultant equation of the reduced circulation for the airfoil with an oscillating aileron

is given by,
g (c)=G { —%?(sl ){,ﬂc-—s, Js, +ccos™ J%]—%W[M+c cos™ Jg]}
(4-114)
where,
oo 4 ¢! (4-115)

AHOMW2)+iHP (M 12)
where H{*(A/2) and H!"(L/2) are the Hankel’s integrals of second kind of orders of

one and zero [7,20,29], respectively.
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Determination of &C,(x)

The reduced pressure coefficient & ¢ , (x) for the prototype aileron problem is expressed

in terms of the reduced velocity potential 5 ¢ as,

As9)
5C (x)=——| i—5&p(x, , 4-116
»(x)= U@[Uncv(y) » (4-116)
where,
[ide=1 [260 de=2 ot () (@-117)
0 =0
The equation of the reduced pressure coefficient & o , (x) is then expressed as,
6C,(x)=- 2 |4 lo‘f‘(r)wﬁ (4-118)
Py U lec2 ’
where A is the reduced frequency.
The expression of the reduced velocity on the airfoil 54 is given by.
8i =REAL, |0 (z).... (4-119)

By taking the real part of the complex velocity 8 W(z). the expression of 54 is given by.

2 .
Fi(x)=-=V(s, 1F——‘rcos J—+cosh"
T c(s‘-t)

e [T e EL 4250002t

The expression of the partial reduced circulation at any position x is given by,
Lot (x)= —2- V(s,)| cos™ J_ I ik fcos - dx
2 T l c(s, ~x)
n) - X X :
~ =6V || cosh™ e t)s % cos™ \/? aﬁc+ll—51" (c )— -£ J'J (x)ax
T e(s- t) x c z\ 1),

The above integrals are evaluated in Appendix A.
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By inserting the above equations into the expression of the reduced pressure coefficient,
one obtains,

Lo, (0)- (!j][—;lf(sl)cos \/-E'L—%é'l:’cos“' ﬂ P

+(-;‘3—]\/E§(1-C(z/z»{ -27(s )[m +ccos™ H-
—%W[m-i-ccos" ﬂ}

_;m (s,)[(x 5, )eosh™ %J—%{%)W[(x—s)cosh" ZCC%)]'

-2 [ [ [

oo [ [ ]

Detailed calculations are shown in Appendix D.

(4-122)

Determination of 5C .
The reduced lift coefficient §C , for the prototype aileron problem is related to the

reduced pressure difference coefficient 6[ AC , (x) ] by the expression.
. < . 25 .
5C, =1 fol AC,(x) Jac=-= fo¢,(x)ax. (4-123)
€y €

After evaluating the related integrals (see Appendix A), the expression of the reduced lift

coefficient is given by,

ety 2] -

—ov- JZ_F{ ["1 -2--5)}- : (4-124)

|:V(s, cos™ J' +8Vcos™ \f } (’k)wc(,m)}
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Determination of 5C,

The reduced pitching moment coefficient & (f',,, for the prototype aileron problem is

evaluated by

-

5C, =-

l'lN

=[x 6C,(x)dx, (4-125)
0

The detailed integral derivations related to & ¢ . are given in Appendix A, the expression

of the reduced pitching moment coefficient & C‘,, is given by,

U,c® A s iA » € st) s
_— JC,,,=-V(slNic-sll_s',{ c(ar2)+ ( ](ﬁ -Es,——G‘-]-im‘—}—

_[I}(s‘ )eos™ \[.‘; + 6V cos™ \E]{%("f]f +§c(u2)}-

-V c- C(/l/2) (M"J EIC I
c 24 12 6

where C(A/2) is Theodorsen’s [15,26] function.

(4-126)

4.4.2 The complete problem for the airfoil with an oscillating aileron

In the equations derived in the previous section, the velocity jump 6V can be obtained

from equations (4-92) and (4-100) in the form,

& =

. 0 for x (0, ,)
Y g=la (4-127)
d | > kpBstlds  forxe(s,c). -

k=l

The reduced circulation is given in the general form as.

-~ 7 ~
[(c)=G {-lV(s‘ {Jic—sl Js, +ccos™ s:,]_
T

[ 2] o

(4-128)



By using the above expression and performing the integration from x =s, to the trailing

edge of the airfoil x = c, the reduced circulation can be expressed as,

Fe)=G{ -2/ )[J(-_F+ o ]_
-%ikﬂk :Is*"[\/(cfs)? +ccos™ ‘E]ds }.

k=1

(4-129)

Details of the integrals calculations are shown in Appendix A.
After performing the integration in equation (4-129), the expression of the reduced

circulation for the airfoil with an oscillating aileron I (c) is given by,

Fle)=G{ —%V(sl )[,/ic-s, )5, +ccos™ \/%]q.
2¢ 2k+1\c | K : R .
Y T |

(4-130)

where the recurrence formula /, for the airfoil with an oscillating aileron is given by.

k-1
=5 ool + 2o ksl 4-131)
2k
where,
I, =2cos™ 2L | I, = flc-s)s, +ccos™ 2, (4-132)
c c
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The reduced pressure coefficient ¢ , (x) for the airfoil with an aileron

The general expression of the reduced pressure coefficient for the airfoil with an aileron
is obtained by substituting the expression of the velocity jump SV into the equation
obtained for the reduced pressure coefficient of the prototype aileron problem,5C, (x).

The expression is given in general form as,

et (4] B -2 o 2] o]

-

+(_1)\/T(1 c(ar2) -%ﬁ 5 [\/mucos 2 -

c c

-%I [m+ccos ]I:d‘_,.,ds }
_%(%)I}(sl)[(x-s‘)cosh" cc(;'ié)}_
- %(%)] [(t - s)cosh™ %‘Y—)}[%L‘ ds -

-—V(s,{J:cos \/ +cosh™ \/—_F)]
2o [T o ]

NIN

4-133)
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By integrating from x=s, to the trailing edge of the airfoilx =c one obtains the

reduced pressure coefficient C , (x) in the general integral form,

—z—c() (%){-%t?(s,)cos' —-—Zkﬁ, ke ‘/—ds'] c—x)x +

T al 5

+(-§]\/c_f (1-c(a/2)f —%l}(s‘ )[m +ccos™ \/%] -

__zkﬁ, j - '[ﬂ+cc0s \E]ds

T k=l

epufiam BT
_;[M'Jikﬁ, ]s" '[(‘ s)cosh™ c(s—tx)}

ksl "

ds —
(e o 7]
‘%g"ﬂ*‘f“‘“[°°5h"\/£(s 3 \/C % cos™ \f}

(4-134)
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The resultant expression of the reduced pressure coefficient C , (x) for the airfoil with an

oscillating aileron is given by,
U, - 2| 2 a s 2
-~~—i—-Cp(Jc)=(:)[—;V(sl Jeos 'J;——;C[:l,ﬂc-x}_x +

+(—%Nc?ﬂ -C(Mz)){ﬁgl}(" ) -34 : “2“"4'}_, (4-135)
22 ) Ao

c—~X

-2V 0)6 )2

4

Zﬁ.[ I, -5 cos” \/E) (4-136)
kal ¢

£y = i(“l)ﬁ,( I, - M) 4-137)

knl

where,

N ok 1 fc=x& k=g
;J(x)=lzI B, [(:c _ )H(x)+—2- : Zox [,,}, (4-138)
C.(x)= Z(k 1) B [( e “")H(x)+—,/ie r)?i x4 } (4-139)
k=l 4=0
¢ (x)= €72 cos™ JS—'+H(x), (4-140)
X c
¢, =lc=5,)s, +ccos™ ‘/% (4-141)
¢ lx)=(x~s)H (x). (4-142)
where,
cosh™ c(—x ‘) 0<x<s,
(x) e L. (4-143)
sinh ™! ¢ —x)s 5, <X<cC
c(x-s,) )
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The recurrence expression /, is given by equations (4-131) and (4-132),

k 1

2k~
I, -—k— c—5, )5, +~'—f-k—1cr,,_, k21, (4-144)

where,

Iy =2cos” ( ,ﬂc -5 E,+ccos ( (4-145)

The values of the coefficients(B,, k=0 — n)can be determined from the specific

boundary conditions on the airfoil with an oscillating aileron.

The reduced lift coefficient C . for the airfoil with an aileron
The general expression for the reduced lift coefficient ¢ . is obtained by inserting the

equation of the velocity jump SV into the expression obtained for & ¢ , and performing

the integration from the aileron position x =35, to the trailing edge of the airfoilx =c.

The expression is given by.

_U":C S =P (s, )\/m{c(,zfv)Jf;(’ﬂ ——a.]}
-J ey Y- ] -

_I:[?(sl)cos"\[%+;[cos"‘/§ [‘Z } ds]{—iﬁﬂ:c }

(4-146)

69



The resultant expression of the reduced lift coefficient C, for the airfoil with an

oscillating aileron is given in an integral form by,

[{tc “ =-V(s.m{c(l/7) ;[Ij)(i-&)}—
_ikﬂ:;sk'm{dw (25 -

k=l

[V(s, cos™ Zk ,Bk_[ 1 cos” Jf &]{(%)w(:(&ﬂ)}

R

Detailed calculations of the integrals are given in Appendix A.
The expression of the reduced lift coefficient ¢ , for the airfoil with an oscillating aileron

is then given in the form

L, N {42 s ) -

-

2)+ 1S ko o
[C(i{/ + Iﬂ "(k+l S Je=s)s |+

4

M ; ﬁ‘(4(jcflk1:iz +ks£2“[c_s’}s'(2_(k_c+_l)_s‘n;
{['ﬂﬂc@ )}[ (s, )cos™ \/—‘ Z"B‘[ I, —s* cos” ﬁﬂ

(4-148)
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The same analytical steps used to obtain the reduced lift coefficient C, for the airfoil

with an oscillating aileron are repeated for the reduced pitching moment coefficient (:',,.

The general expression is defined by,

e, TR (B e -£a-2) ]

—[V(s,)cos" a +] cos \E[%]mds:i{%(%]cs+%C(ﬂ./2)}—

5 -
c

- I ,[ic—sE{—c-C(A/‘lH[il- —3-02 -is-»‘(f—.-}i-i

. 4 c N2 2

(4-149)
The resultant expression of the reduced pitching moment coefficient for the airfoil with

an aileron is expressed in an integral form as

. N caN A , 2
I O3V =y {50(,1/2)+(i EN _]_}

4 ch24 127 6

—I:I}(sl)cos'l Zkﬂ,‘ "'cos \/7(13 %(Ei]c3+§—C(M2)}-

k=i

—Zkﬂ,‘ j‘s",j(c_s_{ c(ar2)+ ('j)(;4cz—%s—%}+%}ds.

k=l
(4-150)
Detailed calculations of the integrals are given in Appendix A.
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The expression of the reduced pitching moment coefficient for the airfoil with an

oscillating aileron is then expressed as,

L C—C =V (s,){lc- sl)_sl{ —C(4/2)+ [ ¢ ¢t _£J+‘_l}_

_{23_4(%}:’-&—8 )H:V(sl cos” \/' +§,Bk( I, —s* cos™ ‘E H

“c(z/°)+— ac)]zk Iﬂk( ﬂ]-

k=l

15
G d)k..kwﬁ*[v e WJ
>

& |

(4-151)
The recurrence expression /, is given by equations (4-131) and (4-132),
I = s —5 )5, + I, k=1 (4-152)

k 2

where,

Iy =2cos™ J7 ,ﬂc sll—s, +c cos” \/7 (4-153)

The values of the coefficients(8, for £2>0) can be determined from the specific

boundary conditions on the airfoil with an oscillating aileron.
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4.5 Unsteady flow solutions for airfoils executing oscillatory translations

and rotations

4.5.1 Boundary conditions on the oscillating airfoil and aileron
Consider an airfoil executing vertical oscillatory translation #({t) and oscillatory pitching

rotation (), while the aileron executes oscillatory rotational motion B(t), as shown in

Figure 4.7.
y A
ma—
U - _—
] ) o)

Fig 4.7 Geometry of an airfoil and aileron under unsteady oscillations.

The vertical oscillatory translation h(t), the pitching oscillatory rotation 8(f) and the

oscillatory rotation of the aileron B(t), are denoted by (as shown in Chapter 2),

h(t)= he'™, (4-154)
0(r)=6e, (4-155)
B(r)=Be', (4-156)
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The corresponding boundary conditions are,

V(x,t):{(-U°é+iw (I;—éx))e"" forxe(O,sl))}’

(—Uu f+iw (i‘t-—é.wc)—ia),é(.vc—sl)—U«l /é)e“" for x e (s,,c

(4-157)
The vertical disturbance velocity ¥ (x,¢) can be expressed as,
V(x,t)=V(x)e', (4-158)
where ¥ (x) is the reduced vertical disturbance velocity given by,
I}(x)={(—U°?+im (Ifz—-f)r)) . . forxe(O,s,)}. (4-159)
(—U,,G-i-im (h—Gx)—imB(x—s,)—U,,B) for xe(s,,c)

4.5.2 Unsteady flow solution past an airfoil in oscillatory translation

Consider an airfoil executing vertical oscillatory translation 4(t), as shown in Figure 4.8.

Fig 4.8 Geometry of an airfoil executing vertical oscillatory translation ().

The vertical oscillatory translation A(t) is expressed as,
h(t)=he™, (4-160)
where o and ¢ are the frequency and time, respectively.
The boundary condition on the oscillating airfoil is given from equation (4-159) by,
V(x)=iwk, (4-161)
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From the method of velocity singularity for unsteady flows, the polynomial
representation of the vertical velocity on the airfoil is given by,

ﬁ(.:):ib,, x*, (4-162)

By comparing the two vertical velocities on the airfoil, one concludes the values of the
constants b, ,

b, =iwh and b, =0, for k21. (4-163)
Reduced pressure difference coefficient for oscillatory translation
The expression of the reduced pressure coefficient ¢ , (x) for an airfoil executing

oscillatory translational motion. after substituting the values of the constants b, in the

general expression of the reduced pressure coefficient equation (4-85), is given by.

-{—” ép(x)=(—%] Jle=x)k (b, lo]% C'T‘ b {1-C(R12))1, - 1,4,

(4-164)

where

a

b,=ioh and [,=m7. (4-165)

The general expression of the reduced pressure coefficient C,(x) for an airfoil executing

oscillatory translation after arrangements, is given by.

U: - 1 i
—=C,{x)=-2 Jlc-xk|-——C(rr2)|. (4-166)
ho'c ¢ Ax

The reduced pressure difference coefficient AC » (x) is given by,
AC,(x)=-2C,(x), (4-167)
The pressure difference coefficient AC, (x) is expressed as,

AC,(x.t)=AC, (x)e™. (4-168)
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Reduced lift and pitching moment coefficients for oscillatory translation
The reduce lift coefficient is calculated in the same manner as the reduced pressure
coefficient. From equation (4-89) ¢ , is given by,

-U,
i

!

C, -%(1—§C(uz))[bo L], (4-169)

The expression of the lift L for an airfoil executing oscillatory translation can be
calculated by,

c,=C,e™, (4-170)
C = L . 4-171)
lpU2 ¢
2 n
where pis the density. The general expression of the lift is given by,
%-L:{l-f‘-’c(uz)]. (4-172)
pw c rh A

The reduced pitching moment coefficient C",, for an airfoil executing oscillatory
translation is given from equation (4-91) as,

. Yi
v =-%(1-'7'C(1/2)]bu I, (4-173)

The pitching moment coefficient C,, is expressed as.

C,=C,e", 4-174)
e M 175
l Ul cl
3 pUS
The pitching moment around the leading edge of the airfoil is expressed as,
.
-——;83—M=~[1—"—1C(/1/2)]. (4-176)
pw-c Th A

where the reduced frequency is given by,

oc
A=—mo. 4-17
7 @-177)

o
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4.5.3 Unsteady flow solution past an airfoil in oscillatory rotation

Consider a thin airfoil executing oscillatory rotation 6(t), as shown in Figure 4.9.

y A
—
u,—> >
—> 0() x
—— € ——

Fig 4.9 Geometry of an airfoil executing oscillatory rotation 6(t).

The oscillatory rotation 6(¢), is expressed as,

B(r)=6e, (4-178)
The boundary condition on the oscillating airfoil in pure rotation 8(¢) is expressed (from
equation (4-159)) as,

V(x)=-U_0~-indx. (4-179)
By comparing the terms in the polynomial representation of the vertical velocity ¥ (x)
given by,

V(x)=Y b x*. (4-180)

k=1

one obtains,

by=-U,0 , b=—iwf and b, =0 fork>2. (4-181)
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Reduced pressure coefficient for oscillatory rotation
By inserting the constants (obtained from the boundary condition on the airfoil) into the

general expression of the reduced pressure coefficient for the airfoil, equation (4-85), one

obtains the reduced pressure coefficient C p(x) for an airfoil executing oscillatory

rotation,
Uu: - 2i x L) ic je-x(1 K
=—C, {2 =-.\ﬂ —x)x| e |+ —+|-=+—=|CIA/2)]|.
e (C ”( r 2c 4)+x - (4{ 4+x) ( )]
(4-182)
where the pressure coefficient C, (x,t) is given by,
C,(x.1)=C,(x)e™. (4-183)
The pressure difference coefficient AC, (x,t)= AC » exp(iwr) is given by,
AC,(x.t)=-2C,(x.1), (4-184)
AC,(x)=-2C,(x). (4-185)

Reduced lift and pitching moment coefficients for oscillatory rotation
By inserting the values of the constants b, into the general equations of the reduced lift

and moment coefficients, equations (4-89) and (4-91) respectively, one obtains,

d A 2i 8

C,=—0)|l-—-=CIA/2 ——C A2 4-186
Jod TA.y 9 3i

C,=—0)N}|———- Cl/’ ———Cl/’ 4-18
J=Zoe 222 Ao )] (@187

The general expressions of the lift L and pitching moment A around the leading edge of
the airfoil are given, respectively, as,

2i
=%pc39m [1—7-—C(k/2)-—c(k/-)] (4-188)
T 9 3i 3i
M=—pc'B0’ | =—-—-—=C(A/2)-5 C(x/2 4-189
Zoctoot [ 2-2-cpur)- )] 159
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454 Unsteady flow solution past an airfoil executing flexural
oscillations

Consider an airfoil executing flexural oscillation of a parabolic type, as shown in Figure
4.10.

y(x.1)

>
x

Fig 4.10 Geometry of flexural oscillations on an airfoil.

The parabolic flexural oscillation y(x,t) is assumed in the form,

y(x,t)= Re[a,, c(ij- e‘“} . (4-190)
A

where &, is a constant.

From equations (4-1) and (4-2) one obtains,

2

é(x)=¢, c(f) . (4-191)

¢

By substituting in equation (4-10), the equation of the reduced vertical velocity ¥ (x) for

an airfoil under flexural oscillations is given by,

V(x)=5U, [2£+ m(f”, (4-192)
c

c

By comparing the terms in the polynomial representation of the vertical velocity on the
airfoil, one obtains,
by=0 , b=2U_¢,/c , by=iwgy/c and b, =0 for £23. (4-193)
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Reduced pressure coefficient for parabolic flexural oscillations
By substituting the above constants into the general expression of the reduced pressure

coefficient (equation (4-85)), one obtains the expression of the reduced pressure

coefficient € ) (x) for an airfoil executing parabolic flexural oscillations,

c-x¢cf.x 1 3
X " ilclan : 4-194
¥ x {,lz( c 2+2 ( ))+ ( )

+£(xz +f’£—-%+§cz C(l/Z)) } ]

where the pressure coefficient C,(x,¢) is given by,
C,(x,6)=C,(x)e™ . (4-195)
The pressure difference coefficient AC, (x,t)is given by,

AC,{x.t)==2C,(x.1), (4-196)

Reduced lift and pitching moment coefficients for parabolic flexural oscillations
By inserting the values of the coefficients 5, into the general equations of the reduced lift

and moment coefficients, equations (4-89) and (4-91) respectively, one obtains after

mathematical simplifications,

- 3, 5 44 104 8

C, =g irn|-—+——+——C(112)+—=C(2/2)], 4-19
L=g% ”[12+3z 3 7AW )} @197
R 3 0, 1 78 21 5i 2

C =-g lr|————-Z—-=—C(1/2)-=cC(1/2)|. 4-198
g [46,13,126;.(),12()] ( )

where C(\/2) is Theodorsen’s function and A is the reduced frequency.
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4.6 Unsteady flow past an airfoil with an oscillating aileron

Consider an airfoil having an aileron that is executing oscillatory rotation B(¢), as shown

in Figure 4.11.
y A
— B)
U —_— —»
¢ 5
- . -

Fig 4.11 Geometry of an airfoil and aileron executing oscillatory rotation B(r).

The aileron oscillatory rotation B(¢) is given by,
B(e)=pe'™, (4-199)

The boundary condition is represented in terms of the reduced vertical velocity 4 (x),

which in the case of aileron oscillations is given by,

V(x)=-iop(x-s)-U_B. (4-200)
The boundary condition on the airfoil with an oscillating aileron is given by,
) [0 for xe(0,s,)
Vix)= Tz":ﬂ,‘x‘ for x&(s,,¢c)’ (4-201)
k=l

From the above conditions one obtains the values of the boundary constants,
B, =-U_f+iwfs, , B=—iwof and B, =0 fork>2 . (4-202)
In this case, the value of ¥ (s,) is,

V(s)=-8U., (4-203)
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The resultant expression of the pressure difference coefficient for an airfoil with an

aileron executing pitching oscillations is given by,

{2 2o -2 i

1
¢

-2 B -2, 1+ 25)+ 2 Zg.0)-

c—X

‘%I}(Sl)é's(x)‘ —

9
T X

1
¢ = ﬁl(;ll -5 cos™ J%),

1 c
2 =;ﬁl(7)'[x -sl\/(c-sl;| )v

4

where,

o[-l -2r ), - 20, - 2o} -

()= 5 [(x-—s, o)+ e 10],

¢(x)= -;-ﬂl [(xl -5} )faf(x}+%J(cfx)?(xfo +1, )},

)= o e,

(= «/if—'—sl El +ccos™ w/S—‘ .
c
¢ (x)=(x -5 ) H (x).
where,

c (s‘ -x)

cosh™
H(x)=

O<x<s,

5, <x<c
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(4-205)

(4-206)

(4-207)

(4-208)

(4-209)

(4-210)

(4-211)
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The resultant expression of the lift coefficient for an airfoil with an aileron executing
pitching oscillations is given by,

Uc- -

s m{c(ﬂ./z) %( l)(i”‘)}
e 2]a(51- L)
Aot
(et sl
(4-213)

The resultant expression of the pitching moment coefficient for an airfoil with an aileron

executing pitching oscillations is given by,

Uce- - ¢ A3 . 5 s s
U, __ — Lo P T [ I S W W
n C, =V Nc-s)1 4C(}./-)+[c](24c €5 6]+2 }
e a2 Pls,Joost 24 Bl 1, -5, c0s™ L | |-
4 7 2 1 - N TN c
-_'B‘I: C(A/”)H—/l]( I, -s”ﬂc—sl)sl)-
Bifl_.A)\¢c e—s.), |+ S fle—s)s
_—3— ;—Il—j [ Sl C—S| 1 ﬂ[ [ —Sl c—sl 1
(4-214)
where
[o=2cas“\[5 \/(f— 5,J5, +¢ cos” (
c
s 3 s; 5
[2 :-zl C—Sl 1 +ZC[| + I} 3! c— sl 1 + 6CI-' (4.215)
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4.7 Unsteady flow past an airfoil with an aileron executing flexural

oscillations

Consider an airfoil having an aileron under parabolic flexural oscillations y(x,f). The

parabolic flexural oscillation y(x,t) on the aileron is assumed in the form,

y(x,t) = Re{rcoc( ) )- e”"} . (4-216)

c

where «, is a constant.

From equation (4-2), one obtains,

3

é(x)=x, c("‘s‘ ) 4-217)
c

From the above analysis and from equation (4-10), the equation of the reduced vertical

velocity ¥ (x) for an airfoil with an aileron executing flexural oscillations is given by.

P(x)=20_ x, (:i] +iwxoc(x % ) , (4-218)
c c

where,

0 for x<(0,s,)
V(x)={a .
(%) > Bx* forxe(s,c)

k=l

(4-219)

By comparing the terms in the polynomial representation of the boundary conditions on

the airfoil, one obtains,

Bo=( —2U_kys, +iok,s? Ve . B =(2U_ x,-20K,s, ic , B,=iwK,/c
and B, =0 for £23.

(4-220)
In this case, the value of 7 (s,) is,

V(s,)=0, (4-221)
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The resultant expression of the pressure difference coefficient for an airfoil with an

aileron executing parabolic flexural oscillations is given by,

_‘;’_»é,,(x){i][-%;.]m +[ﬂ%)ﬁ (1-Car2)¢, +e6i}-

c

—'2":3(-")(1 +E'x)+‘2—(i)€4(x)-'2‘ i
4 c T\ C T

¢
X

(4-222)

¢ =ﬂ.(-;-1, —5,cos™ \/:)4-/3{; , —sicos™ J%] (4-223)

7 hi
¢2 ——,Bx( [“VIV(C‘SIEt]+§ﬂz(%[z“Sf c—5 1), (4-224)

where,

1
6(6)= B (=5 )+ = L [+ ] 6 =53 e+ (e, )]
(4-225)
[ 2 7 l
44("):5/?![("- “Sl.)H(-")"';V(c-"F(on +Il)]+
5 - | . 4-226)
+§ﬂz[(x’ -5 )H(.\:)+;,/i(:—.1:)::(.1:111I +xl, +1, )]
where,
( _ 3
cosh™ —c(—r—') 0<x<s,
H(x)= B g @4-227)
sinh™ [~ — fe=xls, 5, <x<c
o(x-s,)
I, =2cos™ 2 s =,/ic s,);,+ccos \/7
I, =i‘ c -5, '+idl , I3=S—§-,Nc-s|)vl +—Z—c]2. (4-228)
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The resultant expression of the lift coefficient for an airfoil with an aileron executing
parabolic flexural oscillations is given by,

sl )z, +l(ﬁ)z, 1 s eclan)lz,, (4-229)
4 4 2 ec )~ 4

where,

Z;= ﬂl{%ll —-5,cos” E)*ﬁz[%lz - s; cos™ E], (4-232)

The resultant expression of the pitching moment coefficient for an airfoil with an aileron

executing parabolic flexural oscillations is given by,

Uy’ - 3 l ) 1 i il
- == j— — 2 - -] ——-— —_— 2
=—C, [z 241+4C(/1/-)](c Y, +ct,) (2 IZ]Y, +[66)n, (4-233)
where,
Y, =2, (4-234)
Y,=2, (4-23%5)
1 , 1
Y, =§ﬂ'(%[2 —s,’,/ic-s,)s, )-&-;ﬂz(gg —-s",ﬂc—s, E,), (4-236)
1 3 2 (c
Y, =Zﬂl(§[3 -5 V(c""\;l )"’gﬂz(*z“lz ‘514\)(‘-'_31;1)’ (4-237)
where,
I, =,ﬂc—-sl E, +c cos"\[g, I =iz'- c-s, )5, +%c[l, (4-238)
¢
2 = 3
S 5 S 7
13=—3:— c-s5 ‘+Ed2’ [4=—4‘— c-s l+—8-¢:I,. (4-239)
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Chapter §

Results and discussion

The present method has been validated by comparison with the results obtained by
Theodorsen [15,26] and Postel and Leppert [24] for the case of an airfoil executing
oscillatory translation and rotation and for the case of an airfoil with an aileron executing
oscillatory rotations.

After validation, the present method has been used to obtain solutions for airfoils
executing flexural oscillations and for airfoils with ailerons executing flexural
oscillations.

No comparisons were presented for the case of flexural oscillations since there are no
previous results known.

For the sake of comparison, the following coefficients have been introduced:

AKP:,{_zACp=_I_ s (5‘1)
> puc
which is the reduced oscillatory pressure difference coefficient, and
K, =i,c‘L - (5-2)
A 1 e
5 p
K, =REAL(K] ). (5-3)
which are the reduced oscillatory lift coefficient and the oscillatory lift coefficient.
respectively, and
K. =25 C, =t (54)
A 3 p et
K, =REAL(K ¢'"). (5-5)

which are the reduced oscillatory pitching moment coefficient and the oscillatory

pitching moment coefficient, respectively.
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5.1 Case of airfoils executing oscillatory translations

The numerical results were obtained for various values of the reduced frequency A ,such
as A =0.48,0.60,0.68. The results are presented in Figure 5.1 and in Figures 5.2, 5.3, for
the real and imaginary parts of the reduced oscillatory pressure difference coefficient
(~c/(2m))AK ,» where h, = h, represents the complex amplitude of oscillations, and for
the real and imaginary parts of the reduced oscillatory lift and pitching moment
coefficients, (2c/(mh,))K, and (4c/(mh,))K ., respectively. The corresponding typical
variations in time of the oscillatory lift and pitching moment coefficients have been
calculated for several values of 4 , suchas A4 =0.48,0.68, as shown in Figure 5.4.

The results of the real and imaginary parts of the pressure difference coefficient are in
very good agreement with the previous results obtained by Postel & Leppert [24]. The
results of the lift and pitching moment coefficients obtained by the present method are in

excellent agreement with Theodorsen’s solution [15.26].
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A [ Postel & Leppert
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Present solution
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Fig 5.1 Real and imaginary parts of the pressure difference for an airfoil executing
oscillatory translation.
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8 G( 1 — Present sofution
o Theodorsen's sohution

(2¢/(u ) REAL { K1}
'S

0 01 02 03 04 05 06 07 08 09 1
REDUCED FREQUENCY, 3
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B

0 " Present solution
IR X T o Theodorsen’s sotion = |

(2¢/(nw)) IMAG { K 1.}
»
t
|

—
0O 02 04 06 08 1 12 14 16 18 2
REDUCED FREQUENCY, 3 /2

Fig 5.2 Real and imaginary parts of the lift coefficient for an airfoil executing oscillatory
translation.
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2 Present sohtion
1 o Theodorsen's solution

1.5
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(4¢c/(eho)) REAL { K w }
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8 ?K . — Present solution e
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g s | B
é 3 \ |
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Fig 5.3 Real and imaginary parts of the pitching moment coefficient for an airfoil

executing oscillatory translation.
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Fig 5.4 Typical variations in time of the lift and pitching moment coefficients for an
airfoil executing oscillatory translation.
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5.2 Case of airfoils executing oscillatory rotations

The numerical results were obtained for various values of the reduced frequency A ,such
as 1 =0.48,0.60,0.68. The results are presented in Figure 5.5 and in Figures 5.6, 5.7 for
the real and imaginary parts of the reduced oscillatory pressure difference coefficient
(1/6, )AK;, where 6, = 6 represents the complex amplitude of oscillations, and for the
real and imaginary parts of the reduced oscillatory lift and pitching moment coefficients,
(-4/(8,))K; and (-8/(78,))K.,, respectively. The corresponding typical variations in
time of the oscillatory lift and pitching moment coefficients have been calculated for
various values of 4 , suchas 4 =0.48.0.68, as shown in Figure 5.8.

The results of the real and imaginary parts of the pressure difference coefficient are in
very good agreement with the previous results obtained by Postel & Leppert [24]. The

results of the lift and pitching moment coefficients obtained by the present method are in

excellent agreement with Theodorsen’s solution [15,26].
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Fig 5.5 Real and imaginary parts of the pressure difference for an airfoil executing

oscillatory rotation.
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6 ‘ - Present solution —
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Fig 5.6 Real and imaginary parts of the lift coefficient for an airfoil executing oscillatory

rotation.
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Fig 5.7 Real and imaginary parts of the pitching moment coefficient for an airfoil
executing oscillatory rotation.

96



(4/100) Ky (0)

0.15 0.2

(8/ 1!90) Ku(t)

-15

0 0.05 0.1 0.15 0.2

Fig 5.8 Typical variations in time of the lift and pitching moment coefficients for an

airfoil executing oscillatory rotation.
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5.3 Case of airfoils executing flexural oscillations

The numerical results were obtained for various values of the reduced frequency A ,such
as 4 =0.48,0.60,0.68. The results are presented in Figure 5.9 and in Figures 5.10, 5.11
for the real and imaginary parts of the reduced oscillatory pressure difference coefficient

(—cz /4¢, )AKP and for the real and imaginary parts of the reduced oscillatory lift and

pitching moment coefficients, (8/(37¢,))K, and (8/(37,))K., respectively. The
corresponding typical variations in time of the oscillatory lift and pitching moment
coefficients have been calculated for various values of A4, such as 4 =0.48,0.68 as
shown in Figure 5.12. No comparisons were presented for the case of flexural oscillations

since there are no previous results known.
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Fig 5.9 Real and imaginary parts of the pressure difference for an airfoil executing

parabolic flexural oscillations.
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Fig 5.10 Real and imaginary parts of the lift coefficient for an airfoil executing parabolic
flexural oscillations.
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Fig 5.11 Real and imaginary parts of the pitching moment coefficient for an airfoil

executing parabolic flexural oscillations.
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Fig 5.12 Typical variations in time of the lift and pitching moment coefficients for an
airfoil executing parabolic flexural oscillations.
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5.4 Case of an airfoil with an aileron executing pitching oscillations

The numerical results were obtained for various values of the reduced frequency 4 ,such
as 1=0.48,0.60,0.68. The results are presented in Figure 5.13 and in Figures 5.14, 5.15
for the real and imaginary parts of the reduced oscillatory pressure difference coefficient
(1/ 8, )AK;, where B, = B represents the complex amplitude of oscillations, and for the
real and imaginary parts of the reduced oscillatory lift and pitching moment coefficients,
(-4/8,)K; and (~8/j,)K., , respectively.

The results of the real and imaginary parts of the pressure difference coefficient for an
airfoil with an aileron (5, /¢ =0.75), were found to be in very good agreement with the

previous results obtained by Postel & Leppert [24]. The resuits of the lift and pitching

moment coefficients obtained by the present method for an airfoil with an aileron located

at (s, /¢ = 0.70) were in excellent agreement with Theodorsen’s solution [15.26].
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Fig 5.13 Real and imaginary parts of the pressure difference coefficient for an airfoil
with an aileron (s, / ¢ =0.75) executing oscillatory rotations.
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Fig 5.14 Real and imaginary parts of the reduced lift coefficient for an airfoil with an
aileron (s, / ¢ = 0.70) executing oscillatory rotations.
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Fig 5.15 Real and imaginary parts of the reduced pitching moment coefficient for an
airfoil with an aileron (s, / ¢ = 0.70) executing oscillatory rotations.
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5.5 Case of an airfoil with an aileron executing flexural oscillations
The numerical results were obtained for various values of the reduced frequency 4 ,such

as A=0.48,0.60,0.68. The results are presented in Figures 5.16, 5.19, 5.22 and in
Figures 5.17, 5.18, 5.20, 5.21, 5.23,5.24, for the real and imaginary parts of the reduced

oscillatory pressure difference coefficient (—C/ICO)AK;, and for the real and imaginary
parts of the reduced oscillatory lift and pitching moment coefficients, (4c/x,)K; and
(8¢c/x, )K_, , respectively. The results were performed for various aileron positions such

as s,/¢=0.60,0.75,0.80. No comparisons were presented for the case of flexural

oscillations since there are no previous results known.
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Fig 5.16 Real and imaginary parts of the pressure difference coefficient for an airfoil

with an aileron (s, / ¢ = 0.60) executing parabolic flexural oscillations.
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Fig 5.17 Real and imaginary parts of the reduced lift coefficient for an airfoil with an
aileron (s, / c = 0.60) executing parabolic flexural oscillations.
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Fig 5.19 Real and imaginary parts of the pressure difference coefficient for an airfoil
with an aileron (s, / ¢ = 0.75) executing parabolic flexural oscillations.
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Fig 5.20 Real and imaginary parts of the reduced lift coefficient for an airfoil with an
aileron (s, / ¢ =0.75) executing parabolic flexural oscillations.
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Fig 521 Real and imaginary parts of the reduced pitching moment coefficient for an

airfoil with an aileron (s, / ¢ =0.75) executing parabolic flexural oscillations
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Fig 522 Real and imaginary parts of the pressure difference coefficient for an airfoil
with an aileron (sl / ¢ =0.80) executing parabolic flexural oscillations.
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Fig 5.23 Real and imaginary parts of the reduced lift coefficient for an airfoil with an
aileron (s, / ¢ = 0.80) executing parabolic flexural oscillations.
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Fig 5.24 Real and imaginary parts of the reduced pitching moment coefficient for an
airfoil with an aileron (s, / ¢ = 0.80) executing parabolic flexural oscillations.
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Chapter 6

Conclusions

In this thesis, the steady and unsteady flow past fixed or oscillating airfoils has
been analyzed. This work presents a new method based on velocity singularities for the
analysis of the unsteady flows past oscillating airfoils.

The method of velocity singularities developed by Mateescu [11,13,14,16] for
steady flows past airfoils. has been validated for the cases of rigid and flexible airfoils, in
comparison with the previous solutions based on conformal transformations [14.,21], or
obtained by Nielsen and Thwaites [13,22,27]. A very good agreement has been obtained
between the present solutions based on the velocity singularity method for steady flows
and the previous results.

Closed form solutions were obtained for the pressure distribution and the
aerodynamic forces acting on airfoils executing various harmonic oscillations. Closed
form formulas were also derived for the pressure distribution and the aerodynamic forces
acting on an airfoil with an aileron executing harmonic oscillations.

The method of velocity singularities for the unsteady flow past airfoils and
ailerons executing harmonic oscillations, developed in this thesis, has proven to lead to
accurate solutions, computationally efficient, in all studied problems. The solution of the
unsteady flows obtained by the present method of velocity singularity is relatively
simple, which avoid the mathematical difficulties encountered in the classical theories.
The present method has been first validated for airfoils executing oscillatory translation
and pitching rotation and for airfoils with ailerons executing pitching oscillations, in
comparison with the previous results obtained by Theodorsen [15,26] and Postel and
Leppert [24]. An excellent agreement has been obtained between the present velocity
singularity solutions for unsteady flows and the previous results.
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The method has then been extended to the unsteady flows past airfoils executing flexural
harmonic oscillations. Closed form solutions were also derived for the pressure
distributions and the aerodynamic forces acting on an airfoil with an aileron executing
flexural oscillations. No comparisons were presented for the case of flexural oscillations
since there are no previous resuits known.

In all problems treated in this thesis, the method of velocity singularities for
steady and unsteady flows past fixed or oscillating airfoils has proven to be accurate,
efficient and stable. The mathematical treatment also provides a convenient arrangement
permitting a smooth treatment of all cases of oscillations.

As a suggestion for future work, the present method can be extended to the non-
linear analysis of the unsteady flow past the oscillating airfoils. Also the method can be
extended to the case when the amplitude of oscillations is decaying exponentially in time

instead of being constant, as it is often the case in practice.
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Appendix A: General integrals

A.1 The integral F(z)
Consider the integral F(z) given by,

. 7% -i(o-c) 4 |le—=z
F(z)= lim [ e cos” |——
oo clo-2)

3

do ],
By taking the derivative, one obtains,

-

Integrating by parts yields,

] - f, e Je-2)
F(z)= ,/16[-"”[:.[ 2o~ ol

A.2 The integral J(x)
Consider the integral J/(x) defined by,

Cn 4
- c
care x2(e-x)Jlo-c)o

By integrating J(x) from x =0 to x. one obtains,

. L cr.e_'%(d_c, ,ﬂc t)-_x
el [ e I g

The second integral is evaluated by,

e, T D-(=c)

32x(o r) I 2(c- t)1ﬂc x[t §2(0- r)J(c x)x
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One obtains thus two known integrals and the overall integral is given by,

IW 1]' (=)

2x(o-x) 70 ,/ia o I2(a' r,ﬂ x)x
—eos™ |X (c-¢) c— ta
B \/— Jo- o c'(cr x)

By substituting the second integral into the integral of J(x), one concludes,

Y .1 %5 e c i c—x
J(x)dx = | N T | -2cost JE| -cos? [P L4s .
Df (x)abe = lim [ !e {om[ €08 VCL cos c(a—x)} o |

dx
, (A-T)

(A-8)
The value of the definite integral from x =0 to x =cis given by,
—r—(a-c o L ‘)
f.](x dx=— hm[ I )——,(_G_Fa’a -Z lim | I a . (A-9)
a 6 - c 2 Ty = ¢

By substituting o = % (€ +1) into the finite integral appearing in the integral of J(x). one

obtains,
< -tk(c-c) = -15(g-
[ o= [ S (A-10)
: c-¢ 2, c? -1

Note that Hankel’s integrais are defined by,
%t g n
e ? di=-=H®(1/2), (A-11)
S 2
0 _‘i ,
j’e lg—l-—dqz-ig-f{f,"(lIZ). (A-12)
i

where HP(1/2) and H'*'(A/2) are Hankel’s functions of second kind of zero and first

order.
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By substituting the known integrals of Hankel into the above integral, one obtains,

“ -iE a-c it
fe A ’_L_dnﬁez(-g)[H}z’(uz)uﬂ,‘f’(x/z)]. (A-13)

: Jo-clo 2

An important integral to note is that related to Fourier integrals given by (after integrating
by parts),

-r—(a’) c
|==[E, -1]==-. -14
[Ie —[E.-1=— (A-14)
where as shown in (4-46),

. -:é{a-c) -
E_=lim{e ° =0. (A-15)

=0

which can be obtained from the Riemann-Lebesgue lemma on Fourier integrals {5.23],

when the theory of distribution is used. Hence, the integral defined in (A-9) becomes.

:J’J (x)dx = (g)g . [_g) [H®(112)+ ngl(uz)]-(%) (ﬁ} : (A-16)

A.3 Recurrence formulas for the integral /,

Consider the recurrence integral defined by,
I=| «/G_%fdg : (A-17)
Note that s* can be written by,
= --[(c 25)s* —est], (A-18)

By substituting the value of s* into the recurrence integral, one concludes,

s* (c-2s)
I, =- Izmds ’.2 ~r S)ds', (A-19)
kl(c 2.5'
Notethatj ds s fsle-s5)-(k- I)Is s(c-s)ds
sle-s
The second integral can be then given by,
, *25(c-s) st
A L= e
(A-20)
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Substituting the above integral into the definition of the recurrence integral, one obtains,

I, [ =9~ (e-1)el, -a)-gz.-l], a21)

By arranging the terms, one concludes,
st 2k-1
[k =——k— S\ c—9s +[—2—E—)C[k_l. (A-22)
The value of the integral at £ =0(/,) is given by,

ds =2 S .
j‘m cos” \/7 (A-23)

The value of the integral at £ =1(/,) is given by,

I = [—2—ds =—fs(c-3)- "\/E. 2
; jm s{c—5)~ccos - (A-24)

The recurrence integral /, with limits is given by,

3 k
5
1) I, = oj NGmn ds (A-25)
2%k -
I = ";k Ler,  where, I=x, I =cZ. (A-26)

a) The integral Is"" ,/ ic - s;s ds is related to the recurrence integral as follows,
1]

k-1 l(‘-‘ 5)5 _ _ -__Fc -
_[ ,/ic s)s ds = Im ds=cl, [""_Z(k+l)["' (A-27)

b) The integral Is" 1/ic -5 is ds is related to the recurrence integral as follows,
0

j Je=s)s ds= j \KE‘C_SSE ds=cl,, ~1,,, (A-28)

where,

2 , .
Lo =—J-‘+—1(.‘[k and I, = c (2k+1)(..k +3)
2k +1) 2T (ke+1)(e+2)

(A-29)
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The resultant formula is given by,
“ cd (2k+1)
s 1ﬂc-sis ds=—————I,.
,,I 4 (k+1)k+2)"
The recurrence integral /, is evaluated from x =5, to x =¢ and is given by,

c k
iRy =
k-i

Y —
I, =$‘T,ﬂc-s, is, +#c I,

- ’S - ’s
[, =2cos™ J-+ L =lc-5)s, +ccos™ |-
¢ c

a) The integral Is"" ./ic —5)s ds is related to the above integral as follows.

"
<
Is"‘ c-s)sds=cl, -1,,,
%

where,

k
) 2k+1
I =—'—,/ic—s )5, +———c I,
"kl Y 2(ke+r) "
The resultant formula of the integral is given by,

k

T k- c s
Js"' c—ssds=2(k+l)l,‘—kll,/ic—s,is,.

(A-30)

(A-31)

(A-32)

(A-33

(A-34)

(A-35)

(A-36)

The following integrals are related to the recurrence integral and are evaluated in the

same manner as above,

3 k+1

c LY
b) Is" cC—35)5 dS'-:thl —Il-f_z .‘ﬂC—Sl is[ y

R

c k+2

. c 5
c) Is" 'Jle-s)sds= 2(k+3)[m -kl+3 Je-5)s .

5

where,
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A.4 Recurrence formulas for the integral O,
Consider the integral Q, defined by,

c—x)s,

dx,
Gim7)

0, = Ix" cosh™

By taking the derivative of the cosh™{ } function, one obtains,

c—x)s,

H =cosh™R , R = m,
§

dH, Jic—sl )s,

dx 2(s, - x)/lc—x)x

*

By integrating by parts, one concludes,

k+l k+l
0, =2 —cosh™ R, - }' = Jle-s)s
k+1 2(k +1)(s, =x)f{c - t)x

By taking x**' =s!"' - (s, - x) Zx" =" the above recurrence formula will be.

Qk=(xw M)cosh" \/(c VE Je=s))s, i o]

k+1 c(s,—x) 2k +1) =
where from section A.5,

n-i

AP AN v u+[ 2“)ci,,_,
n

n

where, [ =-2cos” J‘ I, =-‘/xic ti-CCOS \/E
c

The following integrals are special cases of the recurrence integral 0, ,

1) Atk=0, @, = foosh™ |S—=2 d

c(s r)
=(x~s)cosh™ c—x)s \/(c S); I

e(s- x) 2

By taking the limits of the above integral from x=0 to x =c. one obtains,

Qo=]cosh" c(s x)dx =(c- s)( ’2‘)+E,Kc_i?§,

; 2
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The real part of the above integral is given by,

Real [Qolzgm-

2) Atk=1,Q = Ix cosh™ [EZXS 4

0 c(s-x)

Q = o cosh™t |8 ‘ P Ic—sjsis"’"f
‘ 2 c(s-x)| 4 G "

x=

! - — -
Y1 =sI, +]1, =1t(s+

n=0

(S oY

The resultant formula is expressed as,

o[-

The real part of the above integral is given by,
Real[g, = ;[s + %),/(c —5)s.

¢ c—Xx)s

3) Atk=2, Q, = |x* cosh™ |*—— dk
) 0, Jr cos o)

By substituting into the recurrence integral Q, , one concludes,

3I_3 — € ’( _ ) 2 _
0, =|:(___x 3 a ]cosh‘l X s] +___c6s : s,
m=0

cls-x)|

The resultant formula is given by,

3 3
o, =(c 3s ](jl;-)+%(sl +-§-s+%c1)\ﬂc-sis,

/

The real part of the integral is evaluated as,

Real[Q, ]|= %(sz +%s +%c2}ﬂc —5)s .
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The following integrals are related to the recurrence integral O, and are given as,

4) Real.:J'(.wr-us')c:osh‘l k————[c(;:c j‘;dx}=Ql—sQo=(g) c—5§ s(%_sJ

-

[

5) Real J.X(X—S)COSI'I-‘ ﬁd:l:gz -sQ[=(n),/ic-sis[%c3-f_s_§i]

0

A.5 Recurrence formulas for the integral F,

Consider the recurrence integral F, defined by,
c—x)s,
c(s, - x)

By integrating by parts, one concludes,

k+l k#l
F, =2—cosh™ R, - | fle-xk (A-58)
k+1 "(lc+1 (s‘ —x),/sl ic s,

F, = |s! cosh™ ds, , (A-57)
k } 1

where,

c~x)s,

H =cosh™R . R = |~+———. (A-39)
c(s, -x)
di, __~fe-xx (A-60)

ds, 2(s, "")\/Sx (c-5)

k
By taking 5" =x*"' +(s, —~x))_s] x*™* one obtains.

n=(

kst kel
F, =[——S' p : ]cosh"\}s‘ c-x) Jrc r)z ey (A-61)

+ cls, -x) 20k +1) &
From section A.S,

n-|

I, =3 ,}s,ic—sl i+(2r21-‘1]c["_[‘ (A-62)
n n

By taking the limits from x =0 to x =c, one obtains,

1) F, = j’s," cosh™t [E—Z

0 C(sl -x)

ds, ,
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By substituting into the recurrence formula of F}, one concludes,

L

A-63
Tk (A-63)
The real part of the integral is given by,
,ﬂc X)x &
Real [ F, I A-64
T 1;; (A-64)
Note that,
2n- i
I,,="n lc[,,_I where, [, =1 , I‘=c-;£.

2n 2

The following is a special case of the above recurrence integral with limits and is

concluded as,
Fyy = [s*"cosh™ | ds, (A-65)
c(s - x)
Real[F, |= L Je-x sz I (A-66)
Y o &7

The following is an integral that is related to the recurrence formula and is given by,

I(.w:-s‘)s"'l cosh™ |E=5 g xF_ -F,
) b G-
- 1 k=1 rk-" )
= —-x)a —1I, -1
2+ V€ "‘[§ PR
(A-67)
The recurrence integral F, is evaluated for the case of the limits from x =5, to x=c¢
and is given by,
_tu o aa [le=x)s
3) F, —r_‘[s cosh c(s—x)ds
kel _ Lkl
P el ol I (S5 DR (CRSED WS (A-68)
k+1 c(s, -x) 2k +1) &
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s 2n-1

I, =="—Jlc-5)s, + cl
n

n-1*

- ,s - fs
I, =2cos™ -cl I, = flc=5)s, +ccos™ —z"—

A special case of the above recurrence formula is given below as,

cC—X)§

Fi, = Is"" cosh™ p

»n

ds,

A.6 Integrals related to /,

The following are integrals related to the recurrence formula /,,

1) Is"" cos™ JE ds
J ¢

By performing the derivative, one obtains,

2] cos™ JE -
ds c 2,}ic—sis '

[ntegrating by parts,
¢ ; 1 ¢ st 1
s*"cos'JEds=— —_—ds=— .
oI c .?.k Oj,/ic—sis 2/( t
where,
2k-1 n
I, = T cl,, where, [, =7, [ =c5.

The following integral is a special case of the above recurrence formula,

15 st
s, +—j——-—~ds
2k [ Jlc-5)s

2) js"“ cos™ Jgds = -:;s* cos™ \[E
¢ c

The resultant expression is given by,
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where,

k-1

5, f(—r 2k-1
Ikle C—Sl Sl +_’)k—CIi_l,

{, =2cos™ \/g
c

- ’s
I =lc—s,)s, +ccos™ 2L
c

A.7 Recurrence formula for the integral /,

Consider the recurrence integral /, defined by,

_ x’
= I,}ic—xix &

where (from section A.4),

r-l

x
I, == c-x)x
r

4 fx
I, ==2cos ‘\/:
¢

2r-1
+
2r

c

4 X
=-\’ic-x;.r—c Ccos -
c

The following integrals are related to the recurrence integral /, .

[

r-i

D | J" X de= fxr maﬁt cl -1,

The resultant expression is given by,

R ’c—x c
2 Jx X dx—Z(r+I)I

where,

dx—__.

crx

r

+
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The following integrals are related to the recurrence integral /, at various values of 7,

“lc—x c 7
3) oj —x—cﬁr=5[¢,=c—2—. (A-87)
9 [Jle=x)xde= [x [ S dr="1 =7 (A-88)
; 0 X 4 8
5) j'x c—x)x de= [x?. | S = -1 (A-89)

Appendix B: Theodorsen’s formulas

B.1 Formulas related to Theodorsen’s results

P, =l—2iL(F+iG), (B-1)
bw
P, =%~i%[l+2(F+iG)]—2(%} (F+iG), (B-2)
B L B L Y D)o L Ti(FH‘G), (B-3)
T bo)n bm bo) =
| 3.V
M, =5, M,, —E-l%‘ (B-4)

(1/1 cl))
M, =-£-—(cl +l)£+, T Lihal’y , (B-3)
T 2)rn bo bu) T
T, =—5-i151-(F+iG), (B-6)
n bonr
2
1 y 3(1/1~c‘ )!-i-ZTI 4~T4 V Tl,{
T, =—;[T, ar(cl +—)Tl]+ibm ™ (F+iG)
2 *
-(1] L (£ +1G)
bo) =
(B-7
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L.

p o h VLl Y Tl o (VY ToTT,
r° bo 2w bo 2m

bo n”
, , (B-8)
LA Y-S (F+iG)
bao) =*
T, = —%\/i-cf (2+ct)+c cos™ e, (B-9)

T, =c{l-c})-\1-c} (t+ci )cos™ c+¢, (cos™ ¢, ] (B-10)
T, = {-;—+cf](cos" e f "’%Cu Jl-cicos™¢, (7+ 2(:3)—%(1 -c/ )(5(."2 +4),

(B-11)
T, =—cos™ ¢, +¢,{l-c? , (B-12)

T, =-{1-c)-(cos™ ¢, ] +2¢,{1-¢c? cos™c,. (B-13)

T, =T,, (B-14)

T, = —(%+cﬁ)cos" ¢ +%c, Ji-ci(7+2¢7). (B-15)
1 T (~ 2 4

T, = -3 1-c} (2¢} +1)+¢ cos™ ¢, (B-16)

T, -_-%[é(,/l-cff +an], (B-17)
J
T,y =yl1-cl +cos™ ¢, (B-18)

T, =cos™ ¢,(1-2¢,)+41-¢?(2-¢,), (B-19)
T, =\/1—clz (24-(.',)—cos'I c (2(:, +l), (B-20)
T, =%[— T, -(c, —a)T,], (B-21)
T =L+lac,. (B-22)
16 2
Note that,
V=U,. (B-23)
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B.2 Theodorsen’s function

The function C (k)is called Theodorsen’s function, The exact expression of it is given by,

HA(k)
HO)+ i HP®) ®29

where H'(k) and H*(k) are Hankel functions [7,20,29] of second kind (zero and first

Clk)=F+iG=

order, respectively). The standard notations for the real and imaginary parts of C (k)are F
and G, which are tabulated in Table B.1.

Table B.1 Theodorsen’s function C(k)= F +iG.

k 1/k F -G
0 0.000 0.5000 0
10.00 0.100 0.5006 0.0124
6.00 0.16667 0.5017 0.0206
4.00 0.250 0.5037 0.0305
3.00 0.33333 0.5063 0.0400
2.00 0.500 0.5129 0.0577
1.50 0.66667 0.5210 0.0736
1.20 0.83333 0.5300 0.0877
1.00 1.000 0.5394 0.1003
0.30 1.250 0.5541 0.1165
0.66 1.51516 0.5699 0.1308
0.60 1.66667 0.5788 0.1378
0.56 1.78572 0.5857 0.1428
0.50 2.000 0.5979 0.1507
0.44 2.27273 0.6130 0.1592
0.40 2.500 0.6250 0.1650
0.34 2.94118 0.6469 0.1738
0.30 3.33333 0.6650 0.1793
0.24 4.16667 0.6989 0.1862
0.20 5.000 0.7276 0.1886
0.16 6.250 0.7628 0.1876
0.12 8.33333 0.8063 0.1801
0.10 10.000 0.8320 0.1723
0.08 12.500 0.8604 0.1604
0.06 16.66667 0.8920 0.1426
0.05 20.000 0.9090 0.1305
0.04 25.000 0.9267 0.1160
0.025 40.000 0.9545 0.0872
0.01 100.000 0.9824 0.0482
0 © 1.000 0
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Appendix C: Special complex functions

C.1 The complex function H,(z,s)
Consider the following complex function,

H,(z,s)=cosh™ R,, (C-1)

c-z
R, -Jm- (C-2)

The derivative of the complex function is given by,

where,

dH, 1 dR,
= , (C-3)
AR
where,
dR, c—s \F
= -, (C-4)
dz 2s-zhflc-z)(s-z) Ve

[p2 _1 = c-s) .
& dc(s-z)’ (€3)

The derivative is given by,

dH, ﬁﬂc-sl_s
dz  2s-z\lc-2)

Atz=x>s,

R =jR  where R = {Z—-(“(:_"S ;) : -7

The complex function can be expressed by,

H, =cosh™ R, = m(Rl +RZ -1 ) (C-8)
At R = jR,,

H; =[n(jR,'+\f(jR;)Z-I):[nj+1n(R,'+1f(R;)l+1 ] (C-9)

(C-6)
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H =JZ+sinh™ R
2

where,

H; =sinh™ R =1n(1z,‘ (R Y +1 ]

The derivative of the complex function is given by,

£=i(mh R )= ;’i&_,

dz  dz (Rl')'+ldz
where,

dr; s—c

e

& 25 le-2)e-9)

The derivative is given by,

dH, _ \ﬂc—sis
E e ¥

From the above derivations. one concludes,

dH, _ dH;
dz dz
Atz=x>c,
_ \f -jNz-c _ [s(z=c)
B ¢c(-j) J—:_E c(z-s)
Note that,
R <1,

H = [n(R, + ,/Rf —1)= ln(E +j,/1- R? )= +jcos™ R, =+/H,.

Note that,

H, =cos'R,.

diH, -1 dR Je=s)ks
dz J[ R? dz 2(s- We-ck
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(C-10)

(C-11)

(C-12)

(C-13)

(C-14)

(C-15)

(C-16)

(C-17)

(C-18)

(C-19)

(C-20)

(C-21)



By comparing the derivatives, one concludes,

dH, dH,

—L=+j—,
dz dz

H, =+jH,.

Forz=x<s<ec,

R =R = o _'z), R >1
dH,  -jysle-s
& 2(s-2 -2
_Ea)e-9)
els-z)
The complex function in this domain is expressed by.
H, =cosh™ R, = ln(R +j1-R? ) +jcos™ R, = +JH,.
Note that,
d_~1=_‘.1..(cos" R ) L R s .
- & ok & 2-Ce-2)
By comparing the derivatives, one concludes,
dH, _ .df,
& &
H, =jH,.

Note that for s<z=x<c.
dH, 1 7t
Rt Pt LG

o 2 4

T
Im(Hl)'—'!’.)‘-

-

The following are special cases of the complex function H,(z,s),

H (z.c)=0,
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(C-22)

(C-23)

(C-24)

(C-25)

(C-26)

(C-28)

(C-29)

(C-30)

(C-31)

(C-32)

(C-33)



~+lim| sish™ 725 |- ;T z
J +}Eo{s c(z-s)) 13 O<z<e
H(2,0)=1{ jlim| cos™ |25 |- ;T c<z<w
c(z-s) 2
s—0
j% -—wo<z<0

One concludes,
H,(z,0)= j=, forany z,
H (w,c)=0,

H|(°°~0)=J

C.2 The complex function 4 (z,c)
Consider the complex function 4,(z,o) given by.

A(z,6)=cos™ R,,
where,

c-z)o
clo-z)°

The derivative of the above complex function is given by,

R =

d__-1 R
dz 1-R? dz )
where,
dR, _ c-0C

&z 2(c-z)«](c-z')(c-3)’
J_

The derivative is given by,

dAl _ ,/ic-—cic

dz 2(c-2){lc-2)z )

c(cr
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(C-34)

(C-35)
(C-36)

(C-37)

(C-38)

(C-39)

(C-40)

(C-41)

(C-42)

(C43)



Foro>z=x>c,

4, . c-c)o  d4/
dz 12(0'—2) z-~c)z jd‘z
T—-C .

R =-j |~—==-jR,,
= c(o-2) I

The complex function in this range is expressed as,
4 =cos™ B =cos™ (- )= jaf [ )+ 1= RT )
4, = jin(- j)(R; y1+(R ) ) =2 jsinh™ R.

Note that,

A =sinh™ R/,

The derivative of the above complex function is given by,

e )2 (S i 4 4
1+\R, ] = ,
( : r clo-z2)
The derivative is given by,

da; _ Jo-c)o .
dz Z(G—Z)JG—C)Z

By comparing the derivatives in this range, one concludes,

dd, .dA

—:j—-.

dz dz

dA . pdA] lpde
lz-icz?‘dz = 4?&5 =_j?iz—o' ’

dA .
4};‘-dz=—jé[ln|z—c|+aetz =§.
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(C-44)

(C-45)

(C-46)

(C-47)

(C-48)

(C-49)

(C-50)

(C-51)

(C-52)

(C-53)

(C-54)

(C-55)



For z=x> o6 >c, one obtains,

The complex function is expressed by,

A =cos™ R, =jln(1_2hl +\/ﬁ:)= jeosh™ R,
A =cos™ R = jcosh™ R, = j4,.

The above conclusion is supported by comparing the derivatives,
dz 2o -2)fz-¢)z’

For z =x > & > ¢, one obtains,

dd4, _ ,/ic—cic _ iZ‘_
& 2o-2) WGk &

For z=x <0 <c <&, one obtains,

PR REN = =y

The complex function is expressed by.

A, =cos™ R, =ijln('1€l +R? -1)=ijcosh" R =%j4,.

The derivative of the complex function in this range is given by,

d‘zl___ 1 dﬁ,= Jo-c)o
& K& o e AD

By comparing the derivatives, one concludes,

da, _ dA
z &
A, = j4,.
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(C-56)

(C-57)
(C-58)

(C-60)

(C-61)

(C-62)

(C-63)

(C-64)

(C-65)

(C-66)



The following are special cases of the complex function A,(z, 0'),

4,(z,6)=cos™ Bkl iy (C-67)
clo-2z)
4(z,c)=0, (C-68)
cos™ J<=Z 0<z<c
c
T ey - -] Z-=C
A(z,0)={ =+ jlim{ sinh™ |=—T c<z<wyp, (C-69)
2 Tooe c(o-2)
j lim[cosh" ’__[c-:]) —0<z<0
s c(o-2)
The final expression of the complex function for this special case is given by,
cos™ <=2 0<z<c
c
A,(z,0) =+ %+jsinh" - c<z<® % (C-70)
2 c
jeosh™ J<=2 —0<z<0
L
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C.3 Summary of the behavior of the special complex functions

Below is a summary of the behavior of the special complex functions, represented in
Tables C.1 and C.2.

Table C.1 General behavior of a special complex singularity H, (z,s).

Part —0<z=x<0 0<z=x<s s€z=x<¢ c<z=x<w
Real|H )
L] 0 Hy=cosh™ R, | f* —sinh' R 0
. . Ay T .-
Imag[H,]| JH:=Jjcos™ R, 0 J5 JH, = jcos™ R
c—: = z-c
R =
\/c(s- z oo == " Velz-s)
cC—2 =
R R = ! - -
! " els-2) clz-s) R|... =2
s 1] z=m ¢
ll:—»—«n =\/:
c
Table C.2 General behavior of a special complex singularity 4, (z.c).
Part —w<z=x%0 O<z=x<c |cZ2z=x<0o CLz=X<®
Real[4,] | 0 4 =cos™ R, -125 0
Imag[4, | j4 = jcosh™ R, |0 jA, = jsinh™ R | jA4, = jcosh™ R,
~ c-z = z—c
R =R R =
""Velo-2) ppp " Yelz-0)
R = . z-cC
Rl C(G*-’-') Rl = C(O'—Z) E‘ ‘j;
~ s =y
Rll:-;—cz E ¢
c
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The two complex singularities at special positions along the airfoil behave as,

H (z,c)=0,

T
H,(z,0)=j—,
l(z ) !2

4,(z,c)=0,

Ccos

A4 (z,oo)= —1:-+ jsinh™ J_z-c
2 c

—_—

jcosh™

4 [C—

C

Z

O<z<e

C<Z<W|.

-w0<z<0
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(C-71)
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Appendix D

Derivation of the unsteady pressure coefficient

D.1 Unsteady pressure coefficient for the airfoil

The equation of the reduced pressure coefficient & c , () is expressed as,

aép(x)_-U—[z%%ar( )+5a]. (D-1)

where A is the reduced frequency.

The expression of the reduced velocity on the airfoil du is given by, (See chapter 4),
du=Re lJW (z)l_," , (D-2)

By taking the real part of the complex velocity & Ff’(z). the expression of d i is given by,

5i(x)=-b, ‘/;_;ay[mh-* Ek [t 2 }

(D-3)
rEote(-£ )
2¢° 7\ ik
The expression of 4l (x) is expressed as,
A P 7 .*
lcS[‘(:c):--b0 £7T e - =5V || cosh™ e-x)s J * cos™ J—E dx
2 JVox T, (s x) x ¢
(D-4)

%f—ial“(c)%(—é) ;jJ(x)dr

By evaluating the integrals appearing in equation (D-4), see Appendix A, one obtains,

Lst(o)- [m +{§-cos-' \EH[- by L7 cos” \/ﬂ-
——W[(t s)cosh™ E(STF JT_E(—-cos-* \{rﬂ

Lt ) e

2¢° T\ ik ];
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The expression of o (c) is given by

5f‘(c)=G{—boc-%aI}|:,ﬂc-s +c cos"JE]}, (D-6)
c

where,

S
4i e ?
A HAM2)+i HP (A 12)

The integral J(x) is defined by,

3 -r-(tr-c) o ,ﬂc ‘r)?t
Jx)=1 -8
Wl e ) >
The above integral can be expressed as.
J(x) - lim [ J'ie-ff(a-d ,}ic —-x); + c—-x 1 do ],
- 2o-xNlo-clo ¥ x 2Jlo-clo

By performing the second integral, one obtains

(D-7

(D-9)

(D-10)
The integral of the above equation is given by,
r O _,_";{a_‘.} c J; g c—-Xx
J(x)dx=lim| |e © {—s—=——==|-2cos™,/-{ ~-cos™ i Vdo
Pes=tml e e e eoma)
(D-11)
By performing the integrals in the above equation, one obtains

:p(x)dr:z(g-cos \/f)%'i(_g][ggnm)”Héz)u,z)h

+(‘ i) lim | ”j—e-{(“, o \/Ec)‘l_(ff C)a . ’ (D-12)
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By inserting equations (D-3) and (D-5) into the expression of the pressure coefficient

5C ,(x) (equation (D-1)), one obtains,

—Uz—“"é'(:'p(x) (’j)[ by ——5Vcos z:l[m-i-{g-—cos_l‘l%]jl*-
(el o ]
2ol B e ]

+i‘_faf(c)3[-_ij[% on(x)ctw(x)]

2¢” z\ id
(D-13)
Let us consider y(x)as.
il
w(x)== [J(x)dc+J(x), (D-14)
¢ 0
By inserting the terms that appear in equation (D-14), one obtains,
. o, Ao /( __j
w(x):[i(-.i)ﬂ lim [ Ie R £z do |+
c\ il) o= ! Ao -x\lo-c)
i -:-’C'%ﬂ’(z)—,-(z)7
+(CJ(EJ(—2——COS \/;)e (_E)[HI (A12)+iH] (,{/..)]+,
Lje=x 2\ a2
S ( 12) (472)
(D-15)

After arrangement, one obtains,

V’(ﬂ:%‘:%—-cos" \E]-.ﬂc r‘ ’H"’(A/’)) (D-16)

147



Note that,

50w (x)= {- boe-éaﬁ[\/(c——_s}- +ccos™ @}{ - zr{%—cos" \EJ .

+i7" C=X1-c(ar2) }

X

(D-17)

By inserting equation (D-17) into the expression of the pressure coefficient, one obtains,

ERAT Newr
+(%J(—%§I})|:(x-s)cosh" ﬁ}-bo ?
2o (B [ o ]

+[_l] c—x(l—C(/I/2))[—boc—%é’l}(ccos" ‘Edrmﬂ

c x
(D-18)
The above equation can be represented after mathematical arrangements as,
Yese (x)=(A)lc-xk L—-i-C(/l/2) b, - 257 cos™ Jg
27 c Ax 4 c
-2V cosh™ | ~xfs [ii(x-s)ﬂ} . (D-19)
T e(s-x)| ¢

+(%) c-x (l-c(zlz))%aﬁm

X

where C(A/2) is Theodorsen’s function. The values of Theodorsen function are given in
Appendix B.
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D.2 Unsteady pressure coefficient for the airfoil with an oscillating

aileron

The equation of the reduced pressure coefficient & c ( x) is expressed as,

ac‘,(x)=_Ui[i§ %af(x)wﬁ]. (D-20)

@

The expression of the reduced velocity on the airfoil 54 is given by,
8i =REAL, |57 (z)|..,. (D-21)

The expression of J# is given by,

5i(x) =-%1? 5 [ \/--s-cosh" —* ']
__JV[cosh" J(S t) "‘cos' ‘E ]%?iar( );(—%]J(x).

The expression of the reduced circulation for the prototype problem at any position x is

given by,

%éf‘(x) % 5, [cos J—w—_ak+j'cosh' e ?i‘ }
-—aV I[cosh" c(s ‘Z’ . % cos J: }tv li{-ar (--)jJ(:

(D-23)
The resultant of the above equation is given by,
l5f(x) = —--%[I}(s, Jeos™ Ji +6V cos™ JE}[,/(C —xk +c[£~cos" JEH -
2 T c c 2 c
—_’r—‘,l}(s, {(x s, )Jcosh™ (s i ') +[%-cos \/E]J{c -5, )5, }—
2 c—X
~Zovl (x- R L flc- j;
p {(x s)cos 1) ( cos” \/—] ]
1 2
+E;2—5l"(c (——)IJ( )ax
(D-24)
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The above integrals are evaluated in Appendix A.
The resultant equation of the reduced circulation for the airfoil with an oscillating aileron

is given by,
r 25 -1 |5 2 - -1 r;
éT'(C)=G -—-V(sl) ,/ic—s, )_sl +ccos” j— |—-—aV 1/ic—-sE+c cos \l—
/4 c| ¢
(D-25)
where,
Lk
4i e ? (D-26)

AHOW2)+iHP (M 2)
where H*(1/2) and H'¥(L/2) are the Hankel’s integrals of second kind of orders of

one and zero, respectively. By inserting the above equations into the expression of the

pressure coefficient and performing a similar analysis to section D.1. one obtains.
. ; 2 2 .
_U_dac (x)= [EJ -=V(s)eos™ \[i-;&’cos'l JE c-x
2 cA 7 c c
- 2.
+(_l) “X-clar2f -=p(, )[ fc=5,)s, +ccos™ Jg]_
eV x T .
2 .
—;W[\ﬂc —s)s +ccos™ JE} }
4 ¢
( )V(Sn )l:(x s, )Jcosh™ ) _E(M Jé’V [(x-s)cosh" -8 :l_

lw

(. —x) )

lFre 53]
o T

Q

(D-27)
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