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_ Axisymmetric free turbulent jets and wakes
may be self-similar if the externai flow has a
suitabl,e. adverse pressure gradient. %ive su'ch flows,
were measured; one wake and four jets.’ All’flows
were found to be satisfactorily self-~preserving in
both mean ;nd turbglent quantities and the non-dimensional
turbulence levels are also found to be almost the same
for all flows. ,

An\ open-jet wind tunéel was built and a
perforateduworking section was added to produce the
desired pressure gradients. The ,flows were measured
dsing hot-wire anemomeéer connectediﬁo an on-line
computer. . |

Two integral theories are developed to
predict the gfowth. The first uses Townsend's (1956)
original large eddy equilibrium hypthesis. The second,
more satisfactory th?ory‘usés the;inteqra} energy
equation by Townsend (1966), but includes a more
apprqqriate relation relating the shear stress to the

| -

turbulent energy.
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Sommaire

Le développement de 'jets ou de sillages rduwds,
dans un milieu fluide en mouvement, peut se faire en
équilibre'("éelf—preéerving")<a; 1'écoulement exterieur
est Todifié par un gradient de pression positif. Cette

thése contient un ensemble de résultats concernant ce

-~

type d'écoulement. On a établi en laboratoire cing jets
et-un sillage ol 1'écoulement était en équilibre relatif

a la fois au profil des vitesse de 1l'écoulement moyen
{

et de l'écoulement de fluctuation. On a trouvé, entre

autres, gue l'intensité relative de la turbulence était

semblable dans tous les cas.

Pour effectuer les mesures on a construit’ urte
- I4

soufflerie rende dans laquelle le jet ou le sillage

~~ évoluait au centre. Le gradient de pression a été établi

a la fois en bloquant la sortie de la soufflerie et en

entourant 1l'écoulement exterieur de grillages avec une

'

densité de perforation variable.

Deux tﬁéories de type "integral" ont été
utilisées pour calculer le développement des égoulemeﬁts.
La premiere utilise 1'hypothese de Townsend (1956) selon

laguelle les gros tourbillons sont en équilibre. La
[

deuxieme constitue une amélioration d4'une autre théorie

Y

de Townsend (1966), et utilise: (1) 1l'equation de 1la

somme de l'énergie moyenne et turbulente; et (2) une

7

relation entre la tension et 1'énergle turbulente.
S _ »
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NOTATION

k]

.

I(n)
-

I,(n)’

Is(n)

I,

i

CLR specified point in flow

at specified point in flow

t

3%
au
X
daL
4

scale factor from U1=C1(x—xo)m

pressure drop coefficient for screens-and

perforated plates o \

value of Cp for unblocked screen in flow

perpendicular to $creen or perforated plate

diameter %of pipe’

energy dissipation parameter [L°£]
\ U}

general function of x and y

Uo
U, ' .
’ - . -2
turbulent energy parameter {9&
3 ) U%
n l
f nf(n)dn® ‘
0‘

n A Y
nf£2(n)dn .

o

o}

0 . v

2]

nHh(n)dn
0

]
e (nran
I

A



LILI

Ly

[ nf (n)Hh (n)dn
0

J nkdn
0

Tmeasure of large eddy size, subscript, refers
to value for B=0
distance from centerline of flow to point where

velocity increment (or decrement) is half of

maximuam
X

Mach number

kinematic mean pressure, also polynomial in G

kinematic total pressure

kinematic ambient pressure

-

/

Reynolds number

turbulent Reynolds number {

d

o

v

r

UosLog
Vrp

mean velocity in x-direction

»

difference between velocigy at centerline of

|

N\

jet or wake and the free stream velocity

free stream velocity in x-direction

mean velocity in x-direction at end of tunnel

~working section

mean velocity in y-direction.

. z . .
radius of working section
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Y
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Y
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aiy,az,

e1,€e,,
€3,ey

Po ,

-

-

constants fr\m Equ. (44), also coefficients
used in fitting velocity for setting up working

section tape pattern \\
A

jet (or wmke body) diameter

.

constants used in theory using integral energy

equation ,
| ] . . ’ __kn 2
mean velocity shape factor (e )

shear stress parameter {EX ’
uj :

shear stress parametér at y=Lg

shape factor for turbulent energy distripution

o s

constant=1ln(2)=.693 ,

growth exponent for self-presexving flow,

(U= (x=x0)™) , "

exponentnrelating shear stréss.and turbulent
kinet%c enerqgy té total strain

fluctuating kinematic pressure -
sta%ic pféssure when M=1
stagnatioQﬁpressure, also §2+p
Ez;Vz#GQ) ]

g? at center of frow

fluctuating component of velocity in x-direction
wl 7 -

fluctuating compon%nt of velocity in y-direction

fluctuating component of velocity in 6-direction

v hd 2
? ~
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@ o
max

B,BQ

Greek Letters

e

~-Xi~ ’\

ot

distance élong symmetry axis of flow, medsured
from sfjart of working section )
x-positlon of virtual origin of flow

distance radially outwards from symmetry axis
of flow.

average position of botindary between vortical and

non-vortical fluid in jet or wake

¥

o~

constant in relation for g, in large eddy
hypothesis, also total strain .
maximum total strain

constants in relation gor gp in large eddy

”
hypothesis
v

constant relating shear stress to turbulent
kinetic energy for still air jet, defined in
equation (84) ¢
kinematic energy dissipation rate

. C _X pu?
pipe flow friction factor |A 5 "3
similarity parameter (%o]
fluid density
length for Gaussian wéignting in predicting ‘- )

working section flow, also standard deviqtion“of
boundary between vortical and pon~vortical fluid

in jets and wakes e
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1. Introduction

1-1 Self-presexrving Flows

In this thesis jets and wakés in streaming
flow are considered and emphasis 1is pléced on predicting
their mean flow characteristics. Suéh flows are of
interest in the design of, for example, jet pumps,
thrust augmenters, and combustio; chambers. Since
the difference‘ggsgﬂen the central velocity and the
surrounding streaming flow belocity decreases with .
dadnstream distance the- possibility exists that such
flows can be self-preserving (self-similar) if the
free stream velocity is also reduced in the downstream

>

direction, i.e., if the jet (or wake) were in a suitable

-adverse pressure gradient.

A self-preserving flow is of interest
because of ifhe theoretical simplicity of its description.
Partial differential equations are replaced by ordinar;
differential equations and since éll propertigsascale
with a single velocity and légqth scale, the non-
dimensional properties of the turbulent structure can
be uhambiguously related to the properties of the mean
flow. Consequently, experimehtal information on such

flows can provide useful tests for thedries relating

such quantities.
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s The required free-stream velocity for

-
¢

sé1f~preserving flow 1s obtained from the mean
momen tum agg turbulence enerdy equations. These
define the necessary mean flow conditions for a
self~-preserving flow to exist. Whether or not such
a flow will be self-preserving can only be answered
by experiment or further theoretical development.
For example, the mean moﬁentum equation says that
both the small-deficit two-dimensional and axisymmetric
wakes in zero pressuré gradient are possible approximately
self-preserving flows. The existence of the two-
dimensional self~p}eserving flow is.well established
experimentally, but the axisymmetric one does not
seem to become self-preserving, at leaét not universally%
Work by Baldwin and Sandborn (1968), Gibson et al )
(1968), Bukrecev et al (1973), and Antonia and Bilger
(1973). have all lent suéport to this finding. It ‘
is interesting that Townsend (1970) predicts thais
difference betwéen these two types of wakes.

Another theoretically possible self-preserving
flow that does not become self-preserving 1in practice
is the laterally strained two—dimengional*wake as’
studied by Reynolds (1962).

The experimental study of self-preseéving
free shear flows has naturally had to follow their

theoretical recognition. In the case of symmetric

e
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. jets and wakes the first to be examined was the jet
in still surroundings, and axisymmetric and two-
dimensional flows have been extensively studied.

(Table 4~9 has information“on some of the work on the

& - ;

axisymmetric jet in still sﬁrroundings). Both these
jet flows seem well established as self-preserving
cases, alt?Pu%h there appear to be ug¢xplainably
large varigtigns in measured turbulent quantities
from one experiment to another.

‘Only fairly retently has it been recognizedM
that th; still-air jet is but one member of a family
of self-preserving jets and wakes in‘.a pressure
gradient. Patel and Newman (1962) developed this
concept | for tw?—dimensional wall jets and free jets.
The concept was then developed in general for both
two-dimensional and axisymmetric free jets and wakes
by Newhan (1967).

® Even more ;ecentiy the small-deficit wake
in zero pressure gradient has also been recognized
as one member of a family of approximately self-
preserving wakes and jets in pressure gradients by
Gartshore and Newman (1969).

- . 4
1-2 1Integral Methods of Analysis

One of the most striking characteristics of



both two-dimensional and axisymmetric free jets and
wakes is the similarity of the mean increment or
decrement velocity profiles, both in the streamwise
direction in a particular flow and among flows of
'different character (Halleen (1964), Harsha (1971)).
This makes the use of an integral method of&analysis
particulgrly attractive, as it not only reduces the
motion equations to 6rdinary differential equatiqns,
but also makes the effect of turbulent models more
apparent. s
A jet in uniform streaming flow, which 1is
physically simple, is theoretically more difficult
to analyse. It cannot be self-preserving except close
to the jet origin (where it might behave like a'jet
in still surroundings) apd far downétre;ENTWHEre it
might be expected to approach a self-preserving small-
deficit wake behaviour). But even the latter may not
be possible for the axisymmetric jet. g
A number of appr?aches niye been used to

-

mtry and predict the behaviour of this jet flow. Squire
and Trouncer (1944) used a mixing length proportionpl |
to the flow width and obtained the constant of
proportionality from the Jjet in still surroundings.

This does not‘take into account the substantial change
in the turbulent structure as the flow changes from a

S
strong jet to a weak, small-increment jet. See, for ’




example, Bradbury and Riley (1967).

Other workers have explicitly or implicitly
used a frameA?f reference mov&ng with the fluid to
deal with thé streaming flow cases, using information
from the strong jet. Examples are Kruka and Eskinazi
(1963) and PdEel (1970).

B;gabﬁry and Riley (1967) meésuzgd the
development of plane jets in zero pressure gradient
with varying ratios of initial jet to free stream .
velocity. They obtained a satisfactory collapse

of the resuits using excess mgmentum and the distance
from a virtual origin’as scaling parameters. However,
the position of the virtual origin varies so much
between flows that t;e method cannot be used as a
basis for prediction. ’

Bilger (1968) has attempted to predict the
plane jet measured by Bradbury and Riley (and others),
and the plane wake measured by Townsend and others, |
using the total energy equation proposed by Townsend
(1966). He obtains good correlation between
experiment and his theory, but the Yariation of virtual
origin is still not dealt with. In a later work
Bilger (1969) attempts %o use the same approach for tﬁe
axisyqpetric jet and wake, but without much success.

He ascribes this to a lack of strong structure for the

small increment jet (and small-deficit wake).

4
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‘ For predicting the behaviour of aXisymmetric
,  Jjets in streaminé flow with a pressure graéient, Hill
has developed a qui?e successful method using an
integral approach and assuming that RT { a turbulent g
Reynolds number defined from a velocity and length
scale of the flow and the turbdieﬂ£\§i§cosity) is a /
constant and equal to the value fpt the jet in still
surroundings.. The theory adequately predicts‘the
static pressure even after the jet has impinged on
the walls of the dAuct and there is some backflow.
Two reviews, by Halleen (1964) and Harsha
(1971), are of interest, and the proceedings of a
‘ ' : conference on free turbulent shear flows (NASA Langley
l ,

(1973)) have been published.
l ) 1-2-1 The Large Eddy Equilibrium Model

A model used to relate the turbulent
structure to the mean motion was proposed by Townsend
(1956) and was independently developed and used to predict
~the bchaviour of two-dimensional free jets, wall jets,
and wakes by Gartshore (1964), (1965) and Bradbury
(1967) . This approach postulated that the turbulent
Reynolds number (RT) could be calculated as a function
. of the ratio af the mean transverse to longitudinal

. rates of strain at some representative point in the flow.

!
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This function involved two empirical constants

o
which were to be evaluated from the growth rates for
the jet in still surroundings and the small-deficit

wake in zero pressure gradient.

/,
’

éince the theof& is essentially a mixing
@

length theory, with the mjixing length proportional to
the large eddy size rather than flow width, the
turbulent -Reynolds number should be inversely proportional
to the square of this eddy size for a given class of
flows. Gartshore (1966) checked this by measuring
intermittency in a number of two-dimensional shear
flows and.assuming that the standard deviation of the
bounding surface between turbulent and non-turbulent
fluid was a measure of large eady size. The agreement *
" with theory was quite good. -

However, the theoretical basis for the
large eddy equilibrium hypothesis is now in some doubt.
Townsend (1966) first raised these doubts, and postdlated
a different mechanism (Section 1-2~2) to control the
process of entrainment.

’ Both models involve anvequilibrium between .
the large eddies which define the shape of the boundary
between vortical and non-vortical fluid and the smaller
eddies that contain the bulk of the turbulent energy.‘

Also, both models -attempt to explain how the entrainment

process is controlled by this interaction. The difference
! ' )
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~is in how this control process is postulated to act.

In the earlier theory, the transfer of energy
from the ﬁean flow is envisioned ag a two~-step process,
with energy transferred'first from the mean flow to
the large eddies by a,process of stretching. The
stretching is accompanied.by rotét%on which affects
the energy transfer b§ changing the orientation of
the eddy until no more energy can be added. The
second step is a transfer of energy from these large
eddies to the smaller eddies. This second step is also
atcomplished by stretching, but of the smaller eddies, and
may be described by an apparent eddy viscosity. Thus
the growth and decag_of the large eddies is controiled
in a quasi-viscous manner.

Townsend's (1966) later criticisms of his
earlier work were threefold. He used a uniform two-

dimensional fluid flow around a strip of fluid with

a higher viscosity and, possibly, a different density

fto model the behaviour of the bounding surface of a

turbulent wake characterized by an eddy Yiscosity. ﬁ
He then showed that such a surface is unstable to
disturbances of all wave number. This is not in
agreement with experiment'which indicates that only
disturbances of a narrow range of wave number are
amplified. Furthermore, the entrainment predicted

v

by this process is shown to vary proportionally to the

|
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ratio of the density of the ambient fluid to the mean
jet density. While the experimental evidence for

this is not so convincing, it does support,the belief

[

that the prediction is incorrect.
Thirdly he objected to his earlier theory

on the grounds that it fails to provide the reduced

entrainment into a boundary layer in zero pressure //

gradient. According to Gartshore's formulation this
reduced entrainment would require a positive 5U/9dx

which does not exist.

L1

4 ”
1-2-2 The Townsend Entrainment Model
\

As an alternative to his previous model, Lo
Townsend (1966) advanced a madel in which the incremental’
stresses induced by disturbances of the boundary surface “
of the turbulence are resisted in a quasi-elastic way
by the turbulent structure. If the energy containing
eddies are distorted rapidly then the anisotropy and
accompanying shearing stress is proportional to the
incremental strain, raéher than rate of strain, and
an elastic model is thus appropriate. This model ’
predicts that only disturbances of a certain wave number
are unstable and thus amplified. He shows that this .

is in qualitative, and, to a reasonable extent, quantitative

agreement with the measured experimental behaviour of the

—



boundary surface. Furthermore, this model predicts that

the entrainment varies with the square root of the

ratio of the densities, and this 1s 1n somewhat better

4

agreemént with experiment.

| In his second paper Townsend (1970) investigated

on
the details of the turbulent structure associated with
the quasi-elastic behaviour of the rapid distortion
theory. Thus a relaiion exists connecting the turbulent
shearing stress, uv, to the éotal turbulent kinetic
energy per unit mass (;;72). This relation is a
function of the average total strain experienced by
an eddy during ita lifetime. The effective strain is
predicted by an eguation which includes a diffusive
term to account for the fact that eddies which arrive
at a certain place gave been strained by different
amounts dﬁe to the turbulence itself. It is therefore
appropriate to assume that the associated diffusivity
éoef@?cient is apprdximately egqual to Vi the
turbdiént eddy viscosity. He showed that for a range
of flows the ratio of total strain to turbulent
Reynolds number is approxigately constant.
NewTan (1968), following sﬁggestions from

Townseﬁﬁ (1966), used the total energy integral equation

[

and two integrals of the momentum equation to develop

two prediction methods for two-dimensional self-preserving
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free jets and wakes. The first method linked these

equations by using the concept of geometric similarity

expressed as G?/qz = constant at a representative

point in the flow. The second method used a mixing

length model, expressed as w « JE2 U,

representative point, to link the equations.

-~

at this

Fekete (1970) compares the prediction

of the large eddy hypothesis and of the two variations

on the entrainment model to CGartshore's (1967) self-

preserving wake results, and his own measurements

on two-dimensional self-preserving jets.

He finds

that the préﬁlctlons using the large eddy hypothesis

and those of‘tﬁe entrainment model using the mixing

length assumption both do a reasonable job of predicting

the growth of these flows. .

It is WOrth hoting tﬁgt both models (the

large eddy equlllbrlum model and the entrainment

model) by Townsend predict that the lateral displacement

of the bounding surface is:-essentially proportional

that shows thce squarc of the standard
bounding surface varying inversely as

with this newer theory as well. ’

Y
devia

to a mixiﬁg length, so that Gartshore's (1966) work

ion of the

in agreement
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1-3 Field Methods of Analysis’ —
f
2 . In vecent years the availability of large

digital computers has led to the development of
boundary layerhprediction methods in which the basic,
time averaged partial differential equations describing
the motion are solved numerically. The methods

differ in the number of equations which are modelled.

Early methods merely used a mixing length or eddy

3

viscosity,formul? for the shearing stress (e.g. Mellor

.

and Herriﬁg»(l968)) and modelled the streamwise

momentum equation and the continuity equation. In

~

later methods the shearing stress;Was obtained from

the turbulence energy cquation assuming structural

o

similarity of the turbulence (Bradshaw et 51 (1967)]

‘Glushko (1965)). & model equation for the dissipation
of turbulence energy has been added (Spalding (1965)),
and‘thq latest methods attempt-to model the equations
for the individual components of the turbulent stress

tensor (Launder et-al (1973), Donaldson (1972}).
Thase methods are capable of handlind complex

flows and appear to give good results. No doubt the

4

experiments described in this thesis will pravide useful

0]

test-cases for these methods, but the methods themselves

o

have not been considered in the present work. -

»
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1-4 Scope of Present Work

-

1-4-1 Theory

-3

The basic theory describing axisymmetric

] \ , . )
turbulent jets and wakes that are self-preserving is

developed in Section 2-1. Following Newman‘(l967),
(1968) and using an assumed, universal velocity érofile,

the mean momentum and total energy eguations are

&

,

transformed to integral equations destribing these

axisymmetric flows.
L

¢ °

- In Sections 2-2 and 2-3 two prediction l

methods are developed to use, these basic equaiions

to deal with those flows. The previous development

and use of thesé two models, the large eddy equilibrium

model and,the entrainment model, has already been
% .

“described in Section 1-2-1 and 1-2-2.

o -
The conversion ¢f the first theory for

3
.axisymmetric flow was first given by Vogel (1968),

(1969) and is presented in somewhat different form

*

-

in -Section 2-

Some modifications to the original theory,

postufated

3

4y Gagkshore had to be intreduced to cvercome
the prediction ¢ff what appeared to be unreasonable

values of growth for medium stréhgth jets in both

» -
two-dimensional and axisymmetric flowss, Subseguent
Bars ay 0 T -

measurements by Fekete (1970) on two-dimensional

LN

“ .
¥ oo
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self-preserving jets and the present work on axisymmetric
jets S<Pport the validity of'this choice.

N To evaluate certain constapts in the. theory,:

- mdasured growth is needed for two self-preserving’

°

flows; the jet in still surroundings and the small-"
deficit wake in zero pressure gradiernt,

The second model uses Townsend's (1970)

oo

theory relating relative stress intensity (uv/gq?) to . '

the turbulent Reynolds number of the flow. From this

it is seen that over limited ranges of Ros uv/q? « RT-n.
. ‘f - ¢

-

. t
Predictions are calculated for the value of n appropriate
to the measured flows. It is also shown that the
two equations for the relative stress intensity used

by Newman for two-dimensional flows are equivalent to

‘the above relation for different values of n (and J N

thus range of ).~ The predictions using these values
g g

of n are §iveﬁ, and also the prediction for another
>
value of n that is equivalent to gi? = constant for
Uy
the full range of self-preserving flows.

The theory uses a number of empirical'

constants derived from measurements on the jet in still

surroundings. In this it is better than the theory

of Section 2-2 which needs empirical information from

s

two flows. B .
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. 1-4-2 Experimental Program )

Five self-preserving flows were stu&lgd;

one wake with Uo,/U; =-.54, and fqu jets with
Us/Uy = .85, 1.83, 3.00,'and o (the last one is
the jet in still surroundings), As well, some

» measurements were made of the small-deficit wake
in zero pressure gradient.

&///// Details of the results of these measurementé

are presented in Sections 4-1 to 4-3, with general

a

discussion in Section 4-4.

N Since the flows have an external stream

. co-fléwing with the jet or wake, a blower cascade wind °*
N tunnef with a 30 inéh diameter working section was

designed and built: It incorporated a test section
with controlled air bleed to generate the necessary
querse pressure gradients and prevent Eoundary layer
separa@ion on the walls. The tunnel, working section,
jet supply, traversing gear, and instrumentation are
described in Sections 3-1 to 3-5. As well, the
design and constructiog of the novel wide-angle
expansion used in the wind tunnel is given in Appendix A,

-
and the electrical power and control system is described

'
»

in Appendix B. -
Section 3-6 ddscribes the experimental

. procedures used. -
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. 1-4-3 Claim for Originality

It is reasonable to suggest that the
following three'areas represent original work and
are a contribution to knowledge:
) Setting up and measuring one axisymmetric
wake and three axisymmetric jets ip an adverse »
pressure gradient such that the flows dre“self-preserving;
Developing an ‘integral method of predicting
the growth of such flows using the lérge edéy
equilibrium hypothesis by Townsend (1956). This’
involved modifying the two-dimensional formulation
. of the prediction methz;d by Gartshore (1967) to handle
axisymmetric flows, and an improvement of the method -
! of evaluating the ratio of longitudinal to transverse
rates of strain. This improved the predictions of
growth for medium strength jets;

Following Newman (1968), developing a
second iﬂ?egral prediction method using the total
energy equation and Townsegd's {1966), (1970) entrainment
theory. The prediction method was modified to deal
with axisymmetric flows. Several relations linking

o
the relative strefs intensify to a turbulent Reynolds
)

number were used to predict the growth.
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'\. 2. THEORY
v

The development of the theory desc@ibing
symmetric free turbulent jets and wakes may be roughly
divided into two areas, basic theory and,auxiliary b
theory. Basic theory describes the development of
the momentum and energy boundary layer equations to
describe symmetric free turbulent jets and wakes,
their simplification to integral cquations and
their specialization to treat self-preserving flows.

In this the assumptions used are fairly standard

and generally quite respectable. The onlY new
feature is the useful de&onstration that the
}ntroduction of the self-preserving conditions allow |
the reduction of the ordinary differential equations
to algebraic ones. - ’ i

’ This approach, of course, always generates -
more unknowns than equations. . This necessite;gs.the
development of models and their resultant auxiliary
relations. These auxiliary, equations usually relate
some turbulent quantity (present in the basic equations)
to some mean p;operty of the flow, and, toéether with
other auxiliary equatibns necesséry to provide one
independent eguation for each uﬁknown, alloyg the growth

of the flow to be calculated. In all the modqls used

here the relations lack one or more constants of
£
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proéortionality, and these are supplied by using
measurements made on some 'standPrd' er ‘asymptotic'
flow, such as the jet in still air. Such modéls are
usually greeted skeptically and need experimental
testing (on flows that differ as much as possible

from the 'stan@ard' flow used to define the constants)

before they can be used with confidence.

2-1 Basic Theory
4

The theory presented here follows in part
that by Newman (1967), (1968) and is a modification
and expansion of .the thcory given in two publications
by the author (1968), (1969). ‘ -

The first assumption made is that the £lows
to be studied tan be adequately described by boundary
layer equations. An adeguate measure of the validity
of this assumption is the ratio of the mean transverse
to longitudinal velocity gradients, and for all the
flows measured this ratio is less than .07;

Thﬁ coordinate system to be used in all the
flows is given in Fig. é—l. The x-axis is along the

centreline of the jet.or wake, and y is used as the

radial direction at right-angles to the x-axis. Lg ~

1]

is the distance from the cCentreline of the jét or wake
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to the point where the mean increment (qr decrement)

of velocity is half the maximum yalue. Ug 1is the)/ )

increment (or Wecrement) of velocity at the centre of

the jet (or wake).

2-1-1 Momentum and Energy Boundary Layver Equation ! ,

1

In this coordinate system the time averaged

turbulent boundary layer equation for momentum is:

dU;\)B ?E ;
U3 2 Vay ax VA ya (y uv)= “Uigt yay(yay) (1)

%
This assumes axisymmetric flow. Using tse usual

T

assumptions that

ne=vruy

and _

(g

tﬁe term ; |
%;(u -v°) ;

is discarded. The self-preserving relations ((38)-(42)) can

be developed with this term left in the equation, but, as it is
subseqdently discarded it was felt worthwhile to simplify

the relation at this stage.and only carry along terms that

are essential. As well, if the assumption of large Reynolds

number is made the term

3 aU .
\’537(5’5'}3‘) i
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»
’ may be discarded, as the term representing the turbulent

transfer of momentum should greatly exceed this term,
which represents the viscous transfer due to mean shear:
This then leaves the momentum boundary layer

equation as used in this report.

oU,1 29

U
UsxtVaytyay

N l

(yav) = Ulgul (2; ‘

’<

To the same level of approximation as (1)

the time averaéed total energy boundary layex equation is,

3 ,u?-u? u-u
U—ﬁ—(-———z——l 42’ )+V~———( 1+§ y+10 a (yvp.) (yqu)
3
3 _ g2
+[U(T2-72) 1= yay[yay<-2- +3)1-¢ (3)
where g? = u® + v? + w?
. 2 "
po =3 +p’ , |
Iéw :

lov w)

and £= v[(ay) +(yae v

(ax) +(3y) RY

au) 2+l s‘—w 2 s“u -2

! 2
+y) 5+ g ] (4)

The latter term is the kinematic dissipation rate

of both mean and turbulent energy.

h
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This is a rather complicated expression,
and as it is not used explicitly the symbol ¢ will

be used in its place. A further simplification is

4

made by noting that the term-

§;w(a‘2-\72n '

is genérally of higher order than the other turbulent x
'terms, and can be ignored.
: ™~

+ This then leaves the total energy boundary

layer e€quation as used in this report. ©

3 U2 U [32 Uz 2
U 1+g +V-———— 14_3 .’
\35{ ( 2 2 ) y 2 2 )+€

(5)
[yvpo+yqu-y\)a ( +q )1=0

!

l
a Y
. Also used is the time averaged continuity

<

equation: L

19

B U_ |
yoy ¥

L yV)+5=0 “ (6)

This thesis makes use éf the momentum and
energy equations integrated in a direction transverse
to the flow direction. More correctly, this integral
is the control volume equatlon over a disk of radius
¥ transverse to the flow direction, and of thickness

dx; axial symgetry is assumed. It is given by:

g



{where

Lo (x) being defined as in Fig. 2-1.

-2 2 - I

y 27
[dy/ F(x,y)ydé$dx
0. Jo
Y

=27dx yF(x,y)dy
0.

where F(x,y) is one of the boundary laver equations.
The 2mdx is subsequently ignored as it 1is common to

all terms in the resultant relations.

It is convenient at this point to change

' »

the independent variables, and thus introduce what
will become a similarity parameter. This variable

is defined as:

an X,y system to an x,n system is made by noting

the following relations:

on =3 Y - "XaLo_______nLo '
X v x| Lo (x) L§ox Lo

]

aF (x,n) _3_1;‘ +§__F_‘ an‘ 2_3_5‘ _nLyoE| !
0x R an X§§'y S Loon x)
aF (x,n)| _Aarl anl 1 aF| !
y lx ntxa lx L03ﬂ|x

indicates differentiation with respect to

The change from

(7)

(8)

(9)

(10)

(11)
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‘ X and - { ] indicates a partial derivative
= a( )
()

holding the subscripted variable constant). When
these changes are introduced, equations (2), (5) and

(6) become:

d 2 19 1 3 — _;.4Ux
ﬁ'y(u )+mix(anV)+m‘x(nuv)—U1dx

(12)
2 _p2 =2 2_112 =2 ‘ ;
3 U°-Ug q |4 Va Uc-Ug g
Usx ( 7 *2 ]'Loan x[ 7 *2
y ) - (13)
19 — — nvd | U® g% |_
ikl [ £ )}-o
X x
i 3
~ —————— = 4
’ . bLnan'(V)-Pan 7(1)
‘\ |
| and the integral relation (7) is: .
I
ﬂ - 1
L} | nF(x,n)dn (15)
° | o
Integrating equation (12) with respect to n and using (15),
n n n '
3 1 0 1 3 —
(U2)dn+ —“l (nuV)dn+=— -—’ (nuv)dn=
ﬁ)axy O/anx L°Oanx ‘
n
- / nUng’dn
which becomes Jo
- ) ] . 4 M
n i n '
(u? )dn+ (UV) +-——uv nu ‘—iy-‘dn
o 0 "5 y o Loon Jo aX (16)
‘ I
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Now using the integrated continuity equation

’

Q

n . . .
Ny / 1 (14)
Lo n 0 3% ‘
(16) bécomes:
T] n n I’ ’
f ng——(U ydn- U/ ng—gdm——-—uv f nng%‘dn ‘! (17)
) 0 )

Now add to this the identity

K '

n n ; n
U 4 du -
- -5—-— (U i —dn=- =-1dn;

!

and the result is: o

n ' N "
) au‘ duy
_ -(Uy ~U dn'{" T\(U“U )dn
fo ”""‘ax\)[,u(u Uy)ldan- (U, 1).]; 3% o ax fo 1 | (18)
i

Before the energy equation can be integrated
it must first be modified by having the continuity

2 _ 2
equation multiplied by UUi” 4 977 added to it.

2" 2
This is given by: .
1 U2 E{- 9 ( "Ul q ]QU‘ =0 i .
‘L'o'n[ 2 ‘2‘] ‘(”V“ 7 7wl ,»

-
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‘ witﬁ this addition (13) becomes:

-3 (v-udy  g?), 13 (u?-u]) 3’
§§‘y[u’“”§“““'U2 toonan| VT2 T2

o , (19)

13 — ey 3 Uty
lx[nvpoﬂlqu] nm—ﬁ‘xlz +5 J+e=0

+LOT]3r]

- " Applying (15) to this gives:

n 2 2 -2 2 2 poy
) (v?-ui) g (U”-U3) q
Li]; n§§ /[ 5 3 uldn+nv -—7———+nv 3

(20)

+n (vp )%U’ﬁ?—ﬂ-\-’f’a———(gz+§—z)+ nwncdn=0 |
 ¥nivPo Loon ‘2 2 0 ,

For this work only the limit n = = will

. be used for the.integral energy equation, and the

[ 4
resulting.relation is: ’

™ U2-u? =2 «© ’
[L%jo(nUi—wjgll +nU% ]dn]+LQI nedn=0 (21)
Yy 0

e
o
. ;:le

X
,

In order to proceed further with either
the integral momentum or energy equation, a relation
for the mean velocity profilé is needed. Here use
‘is made of,the experimental fact that suitably

. " non-dimensionalized mean velocity brofiles of symmetric
free jets and wakes are closely similar except near

: their origins (Halleen (1968)). Thus it has usually begen

B
«s ‘ G
"“ .
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. S é;‘L. ; * ‘ © ~
- assumed that: . -
& ° .
¢ U(x,n)=0, (x)+U, (x) £(n) (22)
Introducing this into (18) results in: . . . » .

o ¢

-~ L " (3
|

\_m/Lo'(2UoU1f1(n)+2U%Iz(n)—Uonnzf(n)—ZU%f(hﬁlx(n)?. N

|
' . . . | .
+Lo%: (UeULT 1 () +2UFT2 (M) ~USE(N) I ¢én)) 1 : - (23)
et ¢ U]' nz _ e '
. +Lo-ﬁ-1 (ZU&UIIIM'UOUI‘Z f(n)}——ﬂ (uv) ; g
1 « f
9 R
| where . . .
o n lm -
® , { .
I,(n)=| nf(n)dn | LT (24)
: 0 . f ’ L e
) ” mo i\ 3 - e
and ¢ Iz(ﬂ)=f nf (T\)dﬂ \ . (25)
s O ? . L " .
K ) . ’ ] -
- Now introduce a change in the dependent ;9"
variable that will be useful when dealing 'with self- | .
preserving flows. i
. [
. \ . R ’
. L __g_o , * [}
u s G(xz"'Ui ‘[' o v (26) .
. } ‘
‘ ) . ! F .
With this definition (23) becomes
' ﬁ2 ' .
° ZLO'((I‘G,f(ﬂ))ll(n)+GIi(n)"‘2“ f(n)} e )
Uo' 02 S
thog (3-G£(n)) I (n)+2GI2 (n) -5 £(n)
4 0 o )
: N Lo n
G| n2 : 3 . ’
+Lo= | f(n)—ZIl(n)]=—nGg(n.X)
G (2~ .
&, o L '
- } arAD :',,) * @
“ . ‘(‘J.f\ 1 - »
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'
where V(N x) .
: g(n,xX=_~_ﬂL__ / ' . (28
‘U% (X) ,a" -
/ '
© [ “
Similaa}y, introducing (22) and (26)
into (21). gives -
- T \ ] - , 5
. . 1
1 3 (L3Ud .2 ! , )
G?T3(0)+3GTIo (=)+2T;.(=) | .
Lo[Ugfaxl'z (“ 3‘(‘)‘) 2( )u 1 ) (29)
+GIu(w,x)+GZIS(%Ux))]+G215(m,x)=0 7l )
¥ |
where @i' . ..
Vi . ° .ﬁ
E=_10€ . P (30) -
Jui| ‘ .

~2
h (n,x) H=2{0eX) 52 S (31)
Up H= = ;
‘ v} ‘ :

° n . N
Ia(ﬂ)=[ nf3(n)dn (32)
0 ‘ \
I s ¢ i
n - v
Iu(ﬂ:X)=f nith (n, %) dn- | (33)
0 " b,
» . ' { - )
3 - n i -
Is(n,x)=[ nf(mmm(ndn (34)
0 o ‘ » [
i . X
[ n - l )
Ie(ﬂ:X)=f nE(n,x)dn 4 (35)
0 .

.

These forms of the momentum and energy
]

bl
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kY

integral equations, while still describing a general
axisymmetric jet wake, are readily modified to

show the effectX of the assumption of self—preservatioﬁ.
2-1-2 Self-preservation

In the context of the incompressible jets
and wakes studied here, the concept of self-preservation
ﬁeans that all flow characteristics scale with U,
and L, (or some other velocity and length scale). This
can only be true to the extent that the effect of
Reynolds pumber can be igriored. Physically, this méans
that, while viscosity is directly involved in the
turbulent transport of momentum and energf, and in the
dissipation of turbulent enerqgy, the flow is driven
by the gross properties of the flow, and changes in
viséosity affect only the very fine details'Pf the

turbulence.

Following Townsend (1956), a jet or wake is

j
u
r%a

self-preserving if.the‘integ;als Il(n,x)"le(n,x),
and the relations g(n,x? and f(n) a{e assumed £o
be independent ofax. (This has already been assumed
for £, I,, and I;). With these assumptions, (27) and

(29) become, ! .




' |

[Lo'1(21,-n?£)+[Lo'G] (212-2f11)+[L°g-§~ Gl (2T,-fI1) |

] ’ 2 ' 2 ’
LoD 1 1= ) +[L0§ T 211-F £+ [61(ngs)=0 | (36)

and .

' ‘ .
tG2L0'+%G2LOHOI<I3+I5)+[GLQ'+§GL030.
0

U, 3 1 (3I2+1y)

3 (37)

Ug' G' .
+[Lo'+§L053 1(211)—[Lo§ ] (3I2+41y) ‘

-[Log 1(210)+1|G]6] (14)=0

‘. This follows Newman's approach (1967). The terms

in the sgquare brackets are functions of x only, and
the terms in the round brackets are functions gf n
only. Selflpreservation thus requires that the ratios
of th? terms in the sqguare brackets be constants for,
a particular flow. This leads directly to the

requirement that,

s

> ’ G= const. -
(38)

l

Lo'= const.’
! i (39)

3
t

1
Lo%i = const.| {40)
0 - .
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. which in turn lead to,

Lo=Cy (x-xX,) (1)

U1=Ci (x=x)™ | (42)

where m is a constant for a particular flow. °

s 4 -

Re
Thus a self-preserving jet or wake grows
linearly with distance from a virtual origin (xo)
with a growth parameter given by Cy; the ratio
of the free stgeam,velocity and the jet or wake -
‘ scaling velocity remains constant; and both these }
. \ velocities change at someppower of the distance
from the virtual origin of the flow. .

The integral momentum equation for self-

preserving flow is then,

~

2
ZCO[(Il(n)—g f(n))+G(Iz(n)—f(n711(n))]

2 , 43
+Com[(311(n)~% f(n))<G(ZIz(n)—f(h)Il(n))}=-ncg(n) f “3
| n

and the energy integral equation 'is, . ,

Co(l+%m){211(w)+G(312(m)+Iu(w))+G2(Is(“)+Iskm))]

_ & (44)
. o

+G|G| I (x)=0




«In order to "calculate some of these constants

an explicit expression for f(n} is needed, and

f(n)=e—kn2i
! was chosen,
where k = In(2) = .693.

This has been used before by other researchers,
and was chosen here as being mathematically simple,
and, except near the edges of the fiow, fitting the

experimental data well.

For the integral momentum equation two
limits will be used. One 'is n = ». This gives the
overall momentum balance that must be obeyed by a
self-preserving flow, and will be called the full

e

integral momentum equation. The other limit is n = 1.

‘ A\

The resulting relation here gives the momentum balance
between the central part of the flow and the shear

stress near its point of maximum (for a Gaussian

profile), and will be called the half-inteqral momentum

equation. For these limits f, I,, I,, and I3 become

k

fF(l)=e '=.5 £ (»)=0 |

~k enie 72

1 () =p(lme 2,36 I (@)=g3=.72

N !
1

T2 (L) La-e™)=.27  Ia(=)=gz=.36

3 (1) =% (1~e —3ky_ 01 13(«»)_——_ 24

(45)

(46)
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Using these constants the full integral
equation reduces to,
) -

. .
m=—(2+g)
(3+G)

When this is introduced into (43), the

half-integral momentum equation becomes

|

Co= G (3+G) go ;
a2G2+a 1G+ag I"
where go=g{n=1) f
and a, = I%(l) ~ .18
-’

ay = 3I,(1)-21,(1)+.25 = .79
ag = 1
Putting (47) into the integral enerqgy equation

gives another relation for C, as follows

o= 1G] (6426) T () |
G2 (T3 (#)+T5 () )+G (3T () +T4 (=)) 4211 (=) |
' !

This is essentially as far as these relatiors
may be taken on safe grounds. Further progress degends
upon developing expressions relating the shear stress,

| 2
turbulent energy, and dissipation to the mean properties
of the flow, and thus to G. As the basic energy

and momentum equations have been 'used up', models

k

-~

(47)

(48)

(49)

(50)
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must be developed which lead to piausible and tractable -

relations. Two methods of approach will be used,

both using these integral equations.

2-2 The Large Eddy Equilibrium Model

2-2-1 Development of Model

This model was first propoéed by Townsend
(1956) , and independently developed as a prediction
method for two-dimensional wakes and jets by Gartshore
(1964), (1965) and Bradbury (1967). Townsend
postulated that the energy transfer from the mean
flow to the bulk of the turbulent structure was a
two step procedure. First the energy is transferred
from the mean shear to larqge eddies with dimensions
comparable to the width of the shear region. (These
eddies are Jhoée that give the characteristic
intermittent eructure‘to the boundary of free shear
flows). The energy is then transferred to the more
nearly isotropic turbulence (that contains the bulk
of the turbulent enerdy, or a constant proportion of
the total turbulent enerdgy) by turbulent transport
processes describable by an eddy viscosity.

It was furth?r postulated that during an

ppreciable part of the eddy's lifetime, the rate of

input of energy from the mean shgggsyas balanced by
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the energy loss rate -to the bulk of the turbulence.

This leads to a mixing length type of relation,

B Y

T2 f3U}? .

BL{'@‘] . . 6D
where L is a measure of the large eddy size rather"Pk
than a measure of flow size.

To get a relation between L and some
measure of the mean flow, Gartshore considered an
eddy with a chapéctcr consistent with the measure-
ments of Grant (1958); this eddy being placed in a

AN

steady two-dimensional flow field such that

d3U _ 3V _ oU _
3% Ay P 3y P
(52)
3V _ -
X =0, 0
and further that N
A
§>>1

1

g
Energy is transferred to an eddy in this

field by a process of stretching. The mean shear
also rotates the eddy to an orientation where no

ﬁore energy can be. added; but energy transfer to
smaller eddies conﬁinues, and the large eddy is
destroyed by the mean shear. The time takén'to rotate
the eddy from 90° to the x-direction to 45° to the

-

x—-direction is A ', and consequently the eddy is assumed .
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e

"to have a lifetime

T = /A -

where 8 would be expected to have a value of 2 or 3.

Using these assumptions, the instantaneous
vorticity equation was used to predict the growth of
such an eddy, first with B non-zero, and then:with
B = b. Assuming that the circulation remains constant
through its lifetime, it is possible to calculate
the rati; of the eddy sizes in the two cases. Gartshore

obtained the relation

~

L2 _ B/A (53)

L12 sinh(B/A)

where L; refers to the large eddy size for B = 0.
Newman (1967) places an unspecified eddy
in similar flow conditions, and uses the instantaneous
and average vorticity equations to develop
L2

—— =1 + (const.)
L,2

B
A

(54)

He also used independent dimensional arguments to '
show that
1,2
L12

which approximates to (54) for B/A << 1.

a
LS
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The next sfep is to consider these large
eddies in the non—-uniform shearﬁflow of one half of
a wake or jet. The assumption here is made that,
while the effect.of the mean flow on the large eddies
is'different for the two cases (B zero and non-zero)

from that for the uniform flow, the relation

given by (53) or (54) is unchanged. This

assumes that the starting size of the eddies are
the same in the two cases despite th% fact that the

flows are similar but not identical.

v

An expansion of (53) gives

B 2

A

LZ
2 = 1 %+ (const.)

L12

)

élthough Gartshore actually used Equation (54) in

his calculations. As will be seen later, the predictions

using (54) and (55) differ by a negligible amount.
Using RTmi— and Equation (53},
L2 .

w

= (const.) (1 + B B )] .
A

S|

using (54), and

1

jos)

¥

= (const.) |1 + B
T

(55)

(56)

(57)
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" using (53). The B for the two relations must
obviously bhe different. This assumes some averaée

*

RT across the flow; however, for use in free shear

f}bws it is more convenient to use FT evaluated at
some non—di/mensional point in the flow. This seems
a recasonable thinc} to do as RT is usually fairly
constant across the central regions of such a flow,
and the point to be chosen (near the point of maximum
9U/3y) should be ne;ar the centre of a large eddy.

The constant and 8 for two-dimensional
flow were evaluated by considering two self-preserving
flowss the small deficif; wake ih uniform flow, and
. the still air jet (the first of which has B/A = 0).

Relations (56) and (57) have here been
ad;‘pted directly for use in describing axisymmetric

flows (with, of course, different constants). This

involves the obvious assumption that the concept is
s,

valid for such flows.
For the case of symmetric jets and wakes
considered here, where the mean velocity profiles

.
are scelf-preserving, j

Y can be replqa\ced by

2
= LoUo (const.) Us - (const.) Yo~ .1 5

® T Lo &) 900 |
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where g(n,x) is defined in (28). Since this shear

stress parametex is uséd throughout this work, (56)

.

and (57) will be restated as, -
N .
lgo] = a(1-8]B/A]) (>8)
and N
(59)

lgo| = a(1-8,(B/A)?)

where go is here 1éss restrictive than as described

in (49), as only local self-preservation is demanded.

(This is the assumption that the energy transfer is

affected only by the local B/A and not by what the

eddies have experienced in “the past. A criterion for

it to be true is that B/A change rel;tively little

in a time period of A Y., l .
One\of the consequences of the existence

of large eddies is that these eddies\will distort

the boundary between vortical and non-vortical fluid

at the edge of the flow. By measuring the size of

these distortions it should be possible to get a measure

of the size of the eddies. This*was.hone in this

n

experiment by measuring the mean and standard .

deviation of the intermittency as a function of the



-39~

distance from the centreline of the flow. This will
be assumed to be proportional to the size of the.
large eddies, and will be the only check performed
oh the large eddy equilibéium hypothesis other than
comparing predicted regults with experiment.‘

One of the unexpectéd rewa?ds of the a
development of a closed form solution for the
behaviour of sélf~preserving jets-and wakes was the.
discovery of a -problem in the concept of how BYA is
evaluated. This affected both‘Gartshore and Bfadbury
in their calculations of the development of two-
dimensional jets.

When predicted growth for the whole range -
of G.from -1 to 0 (wakes) ané 0 tc;+oo (jets) were
calculated for two-dimensioﬁal and,axisymmetric flows,
anomalous behaviour was seen for medium strength jets.
(See Figures 2-2 and 2-3). The predicted growth not
only seems unlikely, but is wrong, as“subsequent work
by Fekete (1970) (two-dimensional jets) and the author
kaxisymmetric jets) show.

The causeluf these unusual predictions and
the app{oach adopted to deal with them:are covered.more
thoroughly in earlierwréports by Fpe adthor (1968), (1969) .

>

Briefly, however, the equilibrium theory evolved by
k)

considering a flow field in which B is constant. When

[ o

=
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4

S

-

: thé\concept is transferred to a turbulent jet or wake

J

B obvicusly cannot.be constant everywhrere, but it

would be expected that,the character of B would be

similar in some local region. For exampley all the
A '

self-preserving two-dimensional and axisymmetric

wakes and jets considered here have the 23U/ox of

x a

the external flow negative. Thus the eddies in
4

the turbulent part of the flow should ‘be experiencing
a rising pressure and a lénqitudinal compression,

which in turn should be reflected by a value for B
which is regative. *
The usual approach tougyaluatinq B ig as

[

. “which means the rate of change of U with x, holding
y constant. Using

a

U = U+ Ugf(n)

o

3

ayu du, + £(n

f i;@i‘y - (dx

dUyp
dx.

] +[2knzuof(n)'%il
0

(2)

~ (60)

(22)

(61)
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An incremental movement 'in the x-direction, holding y

constant, is thus seen to change the mean velocity
4 ) o \

in two ways. First, there is the decrease of mecan
velocity due to adverse pressure gradient. This is
expressed by part (1) of (61l). Second, because of

the growth of -the jet as the flow progresses, the ’

movement is to a region that is non-dimensionally

closer fo the centre of thefglow, and thus (for jets) a
§region of possibly higher velocity. Thus it is possible

to get B = 0, or even B > 0 for flows where 3U;/9x y

is ﬁegative, and in fact this is what happens when
Y X A}

the calculations are carried out.
As well as the above physical and conceptuals

objections to evaluating B as in (60), there is an ' t

objection that the character of the flow prediction

re |

is critically dependent on the value of n chosen to

<

evaluate B/A. . o A

The way chosen here to overcome this problem

o

was to redefine B as i o,
_aul _ au, du, i (62)
I ‘ E - *g?{—ln - dX '+ f(n) dx i

(which will be recognized as term (1) of (61)), while

leaving A as . )

_ 92U . .
LSS 3 9
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This is tﬂe matﬂematical expression of -the
physical assumptioﬁ thaﬁfthe vath of the large eddy 3
is such as to keep it non~dimenéionally in the same |
place in the flow. This means that fhe eddy is not
travelling along a mean velocity streamline, which
for jets and part of the wake region have V neggtive
at y = Lo. However, flow visualization experimenis
on boundary lavyer deve}opment would lead one to
expect that during their active period that the

large eddies do move -outwards, and that the assumption

given here about their paths may not be too bad a

2 f

° ' 4 .3‘{
Two appro#®hes were used to justify this

guess. A

choicc. WOne was the use of cylindrical (for two-
dinilensidnal)or spherical (ﬁgr axisymmetric) coordinates
in which to calculate B;A.( Using x and y along thg>
coordinaté.direction plus use of tﬁé boundary layer
approximatiéns then leads to (62) agd ) for self-
presefving flow. This is the approach§?§bpted in

Voéel (1968).

| The other apprcach, £rom Vogel (1969}, assumes
that the position of the eddy remains fiqu relative to
the naon-dimensional profile, and thué, to the boundary'

layer approximation, the lengitudinal strain rate

experienced by the eddy is}%\ given by (62).
. ) .
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The first approach is perhaps geometrically

»

. better justified, but is applicable only to self-preserving

. flows with their resultant linear growth. The second

]

approach is physically more satisfying and more
l ‘ generally applicable. A way té justify it is.to state
: that the original conceét involved an eddy in a field,
where the mean transverse and longitudinal rates of

strain were everywhere constant. This cannot be' true

| when the concept is transferred to a jet or wake, but
" it seems reasonable to evaluate these rates of strain

| along a line’in the flow along which and around which
\ &9
they are constant. should

N

This means that 93U/dx

' »
" : be evaluated along a line of constant n, and at the

inflection point in the profile. (This should mean

v

[ ]

that n = .85. However, n =1 is felt to be close

enough). The rate of change of U in a direction at

A

\ right angles to this line is (63), to,.the boundary
[
layer approximation.

\
. ' Using (63), (22) and (45)

kn?

A 2k~ U,e” = -k
gy Uoe = kg

11

B = mg%%i (1/Gre ¥y = mg-%%—o— (1/G+1/2)

(64)

(65)



™ ?

and, using (47) Jf%

3
"

. B _ Cyp (2+G)?

- AT 2kG(3+0)

1
For G 2 -1 {(jets and wakes q}thout back

»

flow) m < 0, so

Co (24G) ?
2k |G| (3+G)

Bl
A

and putting this into

lgo| = a(1l- B|B/A})
| |

it becomes
A

Co (G+2)2 o
2k |G| (3+G)

go = (sign G) |1- B

-

combining this with (48) éives analytic relations for

Co and gy

Co = a|G| (3+G)

(asz¥aiG+ao)+%%(2+G)2

go = a (a,G’+a;G+ay) (sign G)

af 2
eI (2+G)

(a2G%+aG+ag) +

(66)

(67)

(58)

(68)

(69)

(70)_
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. using the other relation for go,
.~:> e * ‘
. |go|=0(1-8,(B/A) 7] (59)
. .
2 " ‘ !
' Fo={sign G)“[I'BQ( PeyTom ” ’ (71)
4k?G? (3+G) 2 ; (

Combining this with (48) gives another set of analytical

*relations for C¢ and go

, éo:?kal(3““‘?1({}&(azc,2+a,c;+ao)2+1>L23(:»:+c;)"}!'i
CaBa(2+G
/ aBy (2+G) | (72)
Y ~k(a2G2+a1G+ao)}
2 -~
go= 2K(a:G ““’1‘5‘”‘?‘0)[{k‘(<-;12c;2+alc;+a(,)2+oﬁB(2+G)"};5
aBQ(2+G)“

(73)

—k(aszfaxG+ao)](sign G)

!

2-2-2 Predicted Growth for Large Eddy Equilibrium
Model .

o

The next step is to obtain values for a

and £ so that numerical predictifine for Co and g
n

¢

Sk
can be obtained. Values for these are given 1n

Table 2-1. Using these values,
Al
N

; .
- I

o= .04921G] (3+G) /f—\ (74)
. .540G%+2.232G+2. 442 |




_.0492(.18G%+.79G+1) 2 .
lgol= (75)
.540G%+2.232G+2.442
and (72) and (73) become ‘ 7
.182 3+G
Co= 1G] (3+8) 15, (6) ) (76)
(2+G)*
Y .182(.18G?%+.79G+1
_ EDE ( L(p, (G)} 7)
-t (2+G) " \
where '
' y | |
P, (G)={(.391G"+3.136G3+9.472G%+12,758G+6.480) ? " (78) -
) ; .

-(.125G%+.548G+.693) } o |

The predicted values’ from equations (74)
and (76) are plptted on Fig. 2—4) and those from
equations (75) and (77) ol Fig. 2-5. As can be seen,
the &wo methods of calculating go ((58) and (59)) .
produce quite similar answers except perhaps for the,

strong wake region.

2=3 The Townsend Entrainment Model

An alternative theory may be developed by
using the complete energy equation integrated across

the flow, and, as a connection between this and the
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momentum integrals, a model connecting shear stress
to turbulent energy.
Townsend (1966), (1970) argues that in the

'‘control loop' of turbulent shear flows, where Q4
entrainment provides energy to eddies that in turn
determine the entrainment, the dominant element is
the average total strain experienced by the large
eddies of turbulent motion. He then argues that, . for
turbulént shear flows, the effect of this total strain
on the Reynolds stresses is similar to that predicted
by rapid distortion theory. In particular, Figure 3
in Townsend (1979) gives a prediction of how the ratio
of -Eg- varies with o, the total strain. Over a
q

limited range of a, this curve can be approximated

Y 4
by -

uv !

@y

, 7 (80)

where n varies from near -1 (for 0 < o < 1.5), to 0

(for 1.5< a < 3.5), and approaches a value somewhat less
than 1 for « largé} than 4., The .assumption is made
that this applies to non-uniform shear fiaws such as
jets and wakes., and thus (80) may be restateq as

max -n ’ (81)




where uv oo« is a representative value of shear stress

near the position of maximum mean velocity gradient.

® ax is similarly evaluated at a position across

-

the flow where it is a maximum, and represents the
average total strain experienced by a large eddy during
its lifetime.

The equation describing the total strain
following the mean motion (equation 5.1 in Townsend ,
(1970)) involves an eddy diffusivity for effective
strain. If this is taken to be universally propeortional

to the eddy viscosity, Vv it follows that for self-

Tl

preserving flow

Experiments and comparisons with the two-
dimensional small deficit wake, the two~dimensional
still-air jet, the mixing layer and the boundary layer

in zero pressure gradient tend to confirm thig (see
1

Table 3 in Townsend (1970)) and indicate that

.1
“max” ERp

Thus the flcow regime for the two-dimensional small -

deficit wake has Cax 2.5 and ecquation (81) has

n = 0, while for self~-preserving jet%’jpd wakes

‘a ~ 6 and n ~ ,75.

(82)
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For flows with

U=U;+Uof (y/Lg) :
(22)

RT=UDL°= UOLO >4 %—_
v _— ) —_
T (uv/%g] v o«
Y) max
and using (81) and (82) '
av. -n -n -n ,
Wmax  «o " «(Ry) T =(UE/gp ) s (83)
=2 max \
de
which leads to
T _ 1
Vmax =y (gﬁ_] 1-n . . (84)
U ud
To calculate growth predictions for self-
preserving axisymmetric jets and wakes, some further
assumptions and numerical values are needed. Looking
. 4
at relations (48) and (50) it is seen that the value
of a number of integrals are needed. f, I,, I:2, and
I, have already been assumed to be constant for the
full range of G (-1 to +») and values calculated
. —
assuming a Gaussian profile. The assumption is here
made that the remaining integrals (I, - Ig) have
universal "shapes for these flows. Relg}ions (33) - |
- '—2 2 i
=30
(35) can be restated as (using Eavg L, )
o (85
I,=H| nh(n)dn ‘ )
0 :
| Is=HJ nh(n)f(n)dn (86)

0
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[s0]

L,
Lo} Lo 1.5("
o3 n=rent Sf Y (87)

(e8] A l- g )
Is=] nE(n)dn:j nL~7{57‘d I ndnz%ln > 5
0 .10 e ‘e

0 €

[ Sl

where h(n) is the shape factor for the distribution
of turbulent energy across the flo@, Lg is the
dissipation length scale for the flow and n.s, the
value of n for which the intermittency is -5, defines
the average width of the turbulent region.

The assumption 1s now made that h(n),
= and n.s are independent of the value of G, and
thus values measured for the still-air jet will apply
to‘all axisymmetric self-preserving flows. Thus all
the experimentally determined constants in this theory
are derived from measurements on just one flow, the |
jet in still air, and this flow is, furthermore, a
member of the self-preserving family of axisymmetric
jets and wakes. This is an obvious imprévement over
the large eddy equillbflum'theory which requires, as
well, measurements on the small-deficit axisymmetric
wake in zero pressure gradient. This latter flow 1s a
member of another possibly self-preserving group, and is
one about which doubt exists whether i1t can ever be
self~preservin§.

From measurements &x Rod1 (1972) and from

5
the present work (Sec Section 4-4-2),

H{for still-air jet)=.124 (88)

Caw
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and

"Iy= .701xH

Is= .387xH

Te= .300xHT">

using these in (50) gives

5 J

Con 2|G| (3+G) (.300) H!"® |
H(.387G?+.701G)+(.24G?+1.08G+1.44)
¢
while replacing gy in (48) by (84) gives
| 1
’ Com |G[(3+G)ynl‘n
.18G%+.79G+1

where y is calculated from (88) and the value of gy

for the still air jet,

go (still-air jet)= .0164

using Rodi's(1972) correction to the measured growth.
Letting

Y i
.18G%*+.79G+1

e (G)=

e,=2%.300=.600

e;(G)= G(.387G+.701)

€, (G)= (.24G*+1,08G+1.44)

(89)

(90)

(91)

(92)

(93)




and equating (90) and (91) results in

1-3n
H(e,(G)eg(G))+e1(G)eu(G)=eyﬂ{2ﬁ2n] (94) ]
and this is, in general, soluble for given values of = &
n and G. From the calculated H(G),
=
lgo=YH{I-n * (95)
and
'CO_ G(3+G)g0 °(96)

.18G?+.79G+1

Numerical solutions for C, and |gg| fo£
n=.75 are ,presented in Figures 2-6 and 2-7. {On these
and subsequent figures in this section experimental
values from this thesis are plotted, and will be
referred to in Section 4.) v

There are some other models for the turbulent
structure that can be formulated in terms of a value of

n in equation (84). The concept of-geometric similarity

UVmax
a5
Townsend (1966) is eqqival@nt to n=0. Predictions using

!

= constant for all flows) 'which was proposed by

this value of n are shown in Figures 2-8 and 2-9. Another
model, used by Newman (1968) in prcedicting the growth of
two—dimensionafAself—preserving flows, has uv « qUyg.
This 1s equivalent to n=-1 in equation (84). fPredictions

using this value of n are shown in Figures 2-10 and 2-11l.
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' ’ Finally the effect of assuming H = const.
for the whole family of axisymmetric self;breserving
flows could be considered. This is equivalent to ‘
n = 1 in equation (84). 1In this case only equation
(90) is needed and (91) is not valid. Predictions
using this value of n are shown in Figures 2-i2 and
2-13.

¢ Af’intéresting sidelight came out of

investigating a range of values for n. For n = %,

equation (93) becomes

| He, (G)es (G) +e; (G) ey (G) =e3

| and thus v
o 4o €27€18y_ e/ei-ey _ez (.18G’+.79G+1)~(.24G?+1.08G+1.44) (94)
. erey e, Y G(.387G+.701)

For G = 0 this becomes

_ez 1-1.44] B
Hv{o

J

; so H tends to ® as |G| becomes small. In practice,

} numerical solutions to relation (94) tended to 'blow up'
near |G| = 0 for .25 < n < .4. It is not clear what
physical significance should be attached to this

finding, as it is not known %f this range of n 1is .
physically possible, or if"thé basic assumptions leading

o

to (94) apply here.
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a \

For the axisymmetric wake where

4

2-4 The Small-Deficdt Wake in Zero Pressd>QGradient .
\

IU° << 1

Uy = const.

(95)

n equation (27) becomes

UiUgLo' [2I, (M)
LoUjUg' I;(n) + nUp?g(n,x) =0

- n?f(n)1l

]

+
This already assumes a self-preserving
¥f it is further assumed

i

mean velocity profilel

that .
.gn,x) = g(n)
then this leads to
. Ly = (X'-)-{o)l/3 q9
, Up « (X"XO)—2/3
LozUon = COI.1§t.
' 2z - "
3
Thus (95) becomes.
gm =Y ﬁz n £(n)
. L
3
r\. :ﬂ" -
". ¢

(96)

h e,

v
P
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! 3 . 4
Fbr n =1, ‘ Lgt' = ;—(—E-g———-; .
\ - . X-Xo }
go = UpLo' . Uy Lo, . \
20, 6 Up (x-x0)

assuming a Gaussian velocity profile.

@ and B in (58) .and (59)..

¢
This value of gy is needed to calculate_ __
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- . 3. EXPERIMENTAL PROCEDURES

I'd

3-1 Wind “Tunnel

I 2.

\ "’ ‘ .
The wind tunnel is of the open return tybe. .

The outlet diameter is 30 inches, and the velocity .
e

can be varied continuously {rom less than'l ft./seg.
to a maximum of 124 ft./sec. The variable speed

system is described in Appendix B.
4

As hot-wire anemometers are,to be used in

this work, considerable care was taken in the=design

to have a low level of vibration and turbulence’ and
. - < to remove atmospheric dust.

Pankhurst and Hoider (1952) , Pope (1954),

and Bradshaw and Pankhurst (1964) were found help- I

ful in the désign of this tunnel. In particular, . .Y
L} . \

the report by Bradshaw and Pankhurst was used .
i . N ~-
extensively. The design was also compared with the : 3

¢ \

specifications and performance of an existing blower

wind tunnel (WygnansKi and Gartshore (1963)).

—_— . 4

§

A néobvel two-dimensional expansion was
qéveloped from the theory proposéd by Hugﬁ%s (1944) .
A large area-ratio expansion wgzs needed in a limited
space, and it was desired that this expansion have X '

y r
low turbulence and good spacial uniformity of flow
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(2 B

at its. exit even at the expense of no recovery in
the static pressure. Appendix A gives the theory

for this expansion in detail, how ‘the éheorx’was
“

adapted for construction, and its performance.
. -

A sketch of the tunnel is’shown in

" Figare 3-1. With the exception of the fan unit

the tunnel is almost entirely constructed of ply-

wood.
3-1-1 Air Filter and Fan Unit

k]
The tunnel is driven bj a‘single stage
centrifugal fan with backward curved blades
2
| . }.
(Buffalo No. 805 B.L., double inlet type). At

the maximum operating speed of 900 RPM it delivers

37,000 CFM of air at a‘pres;ure differential of

4.6 incheg oﬁ ;ateri The fan is belt-driven through
\

a 2:1\reduction from a 40 HP 110 VoLg DC electric

motor. The air velocity is controlled by wvarying
the motor Speed”through a Ward-Leonagd' system. (See

Appendix B). The speed controls are convenientlj

located on the ‘tunnel just before the end of the,

contraction. , ’
. A
The fan and mptor are mounted on a steel
- v
frame. This frame is ifh turn mounted on vibration

4
“.
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isolators.

58

“+

To further isolate fan vibrations from

the rest of the tunnel, the fan* is connected to the

. transition section by a 6 inch wide rubber sleeve.

This also allows for the small movement of the fan

on the vibration isolators as the speed (and thus

the Pedhsure pide) varies.

¢

The entire fan unit is enclosed by a

12 ft. x 12 ft. x 8 ft. high filter box. The up-

stream wall'of this enclosure is occupied by

24-2 ft. x 2 ft. Dripak high efficiency air filters

(American Air Filter Co., Typé 2090), and their

assoclated prefilters. These filters remové most

dust particles down to .5 microns diameter. The

¢

pressure drop through the filters is appreciable,

»

being .7 inches of water, but the use of filtered

air greatly improves the performance of hot-wire

anemometers.

As a test of the filters, a hot-wire

anemometer was operated for a 4-hour period. No

measurable drift was noted, and later examination

of the hot-wire probe under,a microscope showed

no accumuiaction of dust particles.

3-1-2

s Y}

~
~

Transition and Two-Dimensional Expansion

Sections .

7

Following the fan there j
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. transition section. This\ section, which is of
essentially constant area, has inlet dimensions of
55-3/4 inches wide by 43-3}/4 inches high (to match
the fan outlet), .and outlet dimensions of -78—-1/2 inches
wide by 30 inche; high (to match the inlet to the ¢
expansion section). This(transition section also
lowers the centre line of the flow by 5 inches to
coincide with the centre line of the res£ of the
tunnel. .
The expansion section ha$ an inlet to
outlet area ratio of l:%.6£, ;nd is two-dimensional.
The wall shape follows a free streamline theory
"r*\ first suggested by Hughes (1944) which permits the
rational design of a rapid expansion. This is
achieved'without static pressure recovery in1thg
expansion. ’
The length of the expansion i< 80 inches,
or 1.02 times the exit height. The inlet of the
section matches that of the transition, while the b
outlet, which is 78-1/2 ;ﬂéhes square, joins
directly to the settling thmbeg. A curved screen
stretches across the expansion at the section where

there is an abrupt rise in pressqfe along the curved

y wall. The screen is designed to supress*separation

L] -
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a

at thaéEpoint. An optimum cﬂoice of screen pressure
drep coefficient would have the expansion produce

zero net static pressure rise. However, available
screen material dictated the use of a perforated

plate with a pressure drop coefficient 30% higher

than optimum. By the usual definition of diffuser
efficiency the expansion section has an efficiency

of -30% instead of perhaps +30% that could be expected
from a well designed diffuser with 5 degree cone
angle. However, such a diffuser would have to bé in
excess of 32 feet long and available space prohibited
such a choicé. The 5ifference amounts to about 6% \\\\\
of the total tunnel po@er.

Appendix A gives the theory for the design

-
L4

of the gexpansion.

L} t
3~1-3 Settling Chamber

The settling chamber is 80 inches long

0

and 78-1/2 inches square at the inlet. It tapers
along its length to a regular ockagenal cxocs cection
at the outlet. As the sides which formed the square

cross section at the inlet are kept parallel, the

W

¥

chamber has a l1.21:1+contraction ratio.

The settling .chamber has four screens to
¢
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. reduce spatial variations of velocity and turbulence.
These are equally spaced along the length of the
section, and are approximately 2 ft. apart. The first

: screen is of steel, 18 mesh, 24 SWG wire, and has a
pressure drop coefficient of about 4. The other three
screens are bronze, 20 mesh, 30 SWG wire. Their
pressure drop coefficient at the highest tunnel spéed

en ~J+1s 1.5 and they have an open arca ratio of .5G. This
r '

-~

-~

value was chosen as it appears that values of open

grea ratio less than this may produce spatial non- .

[y

uniformities in the flow Bradshaw (1963)). All the
screens are mounted on wopden frames that can easily‘

. be slid out of the tunnel for cleaning. The steel
"’ ™ A

screen was made up of two pieces carefully woven

ApS

‘together, while each bronze screen is in one piece.
- All the screens were supplied Ry the Sankey Greeon
Wire Weaving Co., Thelwall, England.

LA honeycomb section is also included 1in
the settling chamber. It too is WQUnted on a wooden
frame for ease of remowval and cleaning; and is

Tl

pocsitioncd between the first two screens. 1@ hotiey = -

comb is aluminum (Hexcell Manufacturing Co.), and

| 4 o
| ig 1-1/2 inches thick,with 1/4 inch dell size. The

(]
| biggngt piece of honeycomb available was approximately ) d/

48 1nches wide, so it was decided to join three picecess
@
. together. One 48 inch pieqge was placed in the centre

-
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- ‘ y
\_!L/ of the frame and ‘ttle space on either side filled
, with narrower pieces. The joints were made by glu-
inglthe picces to a 1-1/2 inch side by 1/32 inch
thick strip of aluminum placed between them. This

method of construction was chosen to give a clear

| area of honeycomb in the centre of the tunnel.

3-1-4 Contraction Section
Th§ contraction has an area‘ratio of

7.2:1, and is 90 inches long. The inlet shape is

that of a regular octagon, which changes to a
‘. 32-sided shapé at the outlet The calculations .
for the contraction followedéthioge of Cohen and
Ritchie (1962). Extensive use of a'digital computer
was made in this design, firét to calculate the
shape of the‘theoretical. axisymmetric contraction,

. and then to calculate the detailed shape of the

frames and wall pie%es. This allowed these complicated

shapes to be precut to close tolerances, and very ’

little fHitting was required. It was built around a

male jig. - :i

v
M
| < 3

3-1-5 Joining, Mounting, and Access
b
b .3

. y The sections of the tunncl, and the pieces
L] . ‘ 4 \ ‘e
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“«
that make up the sections, are all built with flanges,

which form part of the framework. These pieces
and sections are joined together with bolts. This
was done to allow for the possible disassembly and
‘relocation of the tunnel.

Each section of the tunnel is mounted
on its own set of wooden l;gs, and was adjusted in
position to maintain the tunnel centreline 56 inches
from the floor.

Agcess to all parts of the tunnel is
provided by a doer and 4 hatches. A full size door
allows entry into the filter box, and access to the
back of the high efficiency filters and to the fan
and motor assembly. A hatch in the bottom of the

transitiop-section permits, access to‘%he outlet end

}

of the fan and to the expé?sion as far as the '
: o

expansion screen. Another hatch in the downstream

end of the expansion gives access to this area, gbile
i
a hatch in the side of the settling chamber gives

access to the region between the beco?d and third

, ¢

screen. FPartial removal of some of the screen
frames makes the rest of the settling chamber
accessible as well as the inlet to the contraction.

Finally, a hatch in the bottom of the contraction

section allows access to this rigion.

l



3-1-6 Total Pressure Investigation

] Two total pressurc surveys were made at
the outlet of the tunnel. The first was made with
no screens in the settling sectiona and allowed an
assessment of the performance of the expansion
section. The second'survey was made with all screens
and the honeycomb in place. In both cases the static
pressure was found to be essentially constant across
the outlet, and equal to atmospheric pressdre. B%th
surveys were made by comparing the readings from a
1/16 inch diameter total head tube with a similar
one mounted 2 inches out from the wall of the
contrection and 4 feet upstream from the outlet,
and were made at 115 f%./sec. outlet velocity. 1In
the first survey measurements were made e&ery inch
in the horizontal direction, and every two inches
vertically. The second survey was made cevery two
inches ii both directions. Thesc mecasurements
excluded thg boundary layer rcgion. Contour plots
of.these two surveys are]kivon in Figures 3-2 and 3-~3.
The results are expressced relative to an average
velocity, and assume congtant static prossuri across
the exit'plane.

\ A

. The first survey shows that the fan plus

*
the expansion section produce a high.degrec of uniformity

h A
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in the outlet velocity, the total velocity variation = —
over the working section being less than .5%. It
would be expected that theltwo—dimensional expansion
section might develop some secondary flows in the
corners, as well as thicker boundary layers on the .
parallel (vertical) sides where the pressure gradient
is adverse. Tﬁis would perhaps explain the four
;;aﬁons of reduced velocity on the diagonals of the
tunnel outlet and the generally reduced velocities
on the sides indicated in Figure 3-2.
With the screens in position the outlet

velocity shows lesg variation (.3%) and the pattern
of variation is much Simﬁler (Figure 3-3). The
contours of constant velocity are approximately
concentric circles, with the maximum velocity in
the centre.

- A static pressure tap was installed at
the entrancelfo the contraction section 8 inches
downstream from the last screen, and two others were
installed 8 inches from the contraction section '
outlet and on cpposite sides of the tunncl. The
downstream static taps are connected together, aﬁé/ .

the pressure difference between them and the upstream

tap is used to monitor tunnel speed. This pressure
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difference was not calibrated against tunnel speed

as the vented working sections that would be attached
£o the tunnel would produce large static pressure
variations across the tunnel dutlet.

- A boundary layer survey was made on éhe
bottom of the tunnel oﬁtlet using a hot-wire anemometer.
The test was made at a velocity of 85 ft,/sec. The

boundary layer was turbulent, with a thickness of

.35 inches.

ﬁ3—l—7 Tunnel Turbulence

A survey of the léngitudi;al component
of turbulence was made, using a normal hot wire.
Without the screens, the relative longitudinal
turbulence intensity (/u?/U) varied from 1% in the
centre of the outlet to about 1.5% near the walls
(but outside thé boundary layer). With all the
screens in place, the relative intensity was .2%
or less, and was essentially constantsover the
tunnel outlet. In both cases there seemed to be

“““Aittle variation with tunnel speed.
L}

.



3-2 Jet Supply

t s

The .experiment required an axisymmetric

/

source in the ceptre of the air flow from the tunnel.

A prélimihary experiment with an axiéymmetric wake

body suspendeg on piano wire wa§ done. The tunnel o
working section was adjusted for an adverse pressure
g%adient similar to what was eventually used for‘thé

rest of the experiments. In this relatively strong
adverse pressure gradient the originallyg small two-
dimensional wakes from the Suppérting wiges grew
rapidly, and soon swamped the wake from the aii—qq

symmetric body. In retrospect this was not surprising,

as the adverse pressure gradient needed for self-

preserving growth of a two~dimensional wake is

con51derably 105° than that for an ax1bymmctr5¢ wake. ,
It meant haweVer, that the jet producing apparatus
should be tru}y ‘axisymmetric and have no supporting
struts or wireshthat could produce a wakf.

&he design ‘evolved around a 2 ch diameter g
lightiweight aluminum pipe extending the whole length ,
of the tunnel, and supported on and cantile&ercd,from

the wind tunnel screens. Figure 3~4 gives the general

arrangement- of the jet supply. The feed into the

longitudinal pipe was an acrofoil section just down-

stream of the wind tunnel fan, and nu evidence of any

& -
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wake from Yt was found at the outlet of the tunnel

4

contraction.

Halfway along thedcontraction the diameter

of the pipe Qas smoothly feducad o 3/4 of an inch - 5
‘and there was a fitting to allow ldngitpdinal adjust-
ments of the jet pipe outlet. fhe fitting.consisted
of a sliding O-ring seal for air tightness, and part
of a 3/4 of an inch lathe collet to lock the pipe ~
into position. (See Figure 3-5). In some cases
this 3/4 of an inch pipe was further reduced in
diameter before thé pipe outlet was reached.

. The air supply came from a 15 H.P. air
compressor used br the general building supply, ‘
and passed through a‘filter that removed oil and ,
water droplets down to 2 micron size. The air.
compgbssor was run continuously to maintain a fairly
steady pressure at the.input to the éressure requlator.
(This pressure was typically 100 to 110 p.s.i.). This -
wad done by pleeding #r 0ff with a valve ahead of
tge filter until a stable condition was obtained.
Iin practice Lhis guLéiled 15 to 20 minutes of alternately
adjusting the bleed valve and pressure regulator until
a stable condition was achieved with the desired pressure
in the pipe to the jet.

~.sAs hot—-wire anemometers are sensitive to

“~

° ’
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. temperature as woell as velocity, it was necessary "t

ensuric the jet had the same temperature as the ar
> ¢
flow from the tunncl. This cuwrned out te bo ecany to

\

; ° do, as tho long run of the 2 inch air piton aned the

low velgeity therein (4 to 10 ft./sec.) ensured that « .
its temperature closely matched that of the room and

tupnel. Since the tempoevature of the air after being

thtottled to room pressure and sldwed to a low Mach Co
% . < .
number should be the same a% the stagnation temperature

)

‘ before- throttling {assuming adiabatic low and'Cp a, -

i N function of temperature only), this dpprared sufficient
Measurements of averago Lemperature #n the jet: a few

4

inches from thce ontlet showed no measurablo temperature =
/

difference between that and the free stroam-* {less than -

Il

0.5°C). As the jct, downstream consistod mostly of

o

AT

entrained flow (volume flux 5 to 15 times larger than

. " ' that. emerging from the jet .pipe;, no further concern e
A%

was felt in this area. N .

. In all the cases uscd, the length/internal

N 2y

i -~
" - diameter ratio of the final jet pipe was 50, and :

- , essenﬁially/g@ntrolled the flow for a givel ‘setting

;" 0f the pressure regulator. T
1 - L]

By

B

PR Using a pipe R.e of 200,000 and standard ' o
curves for the smooth pipe friction. Factor (gk gives
o L ' R ° . ' I .
)(E) = l.%rw1th an L/D ef 50. From the perf@gt qas

[

. rclation for frictional adiabatic flow in a pLpe - ‘

L \
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x

(Fanno Line) #nd assuming M.= 1 at exit, M = .47

at the entrance to the pipe, and the static pressure

s .

ratio from the entrance to exit is

e *

.p/p* = 2.28,

where p* is the pressure at the exit -from the pipe’

Where M = 1., - ,

. From the iﬁentropic relations for a %

perfect gas, the ratio of the stagnation pressure

LS N
ta static pressure at M=.47 is *

- Y.
* a7 pe/p = 1.163 '
h ]
and the overall pressure ratio is . ’
Po/p* = 2.65 , :
W oo . o ) A A
Thus to just achieve sonic velocity at the pipe.exit .

it is necessary to have . a supply pressJSG of at least

. _ . . RprsmT ™

24.3 p.s.i.g. The supply pressures used for the three
s : LN .

jet cases studied were 19, 20, and 30 p.s i. gauges.
Thusethe jet using 30 p.s.i.g. was choked flow and

, ’ . . '

. S‘p /patm ifls ‘

) - s WA ° " .
For the 20 p.s.i. jet the exit,MacH .number is ;

' ' .
d

ne

N : " Mexit 91 ..

4

dnd for the 19 p.s5.i. jet, .

\f : M ~ .87 . " .

., exit . .

-
3
aa e

e
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The total volume flow from the jet (at
atmospheric pressure) is about .5 cu. ft./sec. and}>

«“

leads to.a velocity ja the 2 inch supply pipe

(at 2 atm) of 10 to 15 ft./sec. With an effectave
pipe length/diamcter ratio of 600 in the 2 inch
supply pipe from the pressure gauge to the ﬁina]q

small diameter jet plipe, the pressure drop in this
\ v
pipe is very small (=..03%p.s.i.), and may be ignored
in thesc calculations. ' : ’
i o w)
1

3
[

3-3 Working Secction .

y All self-preserving jets aﬁd wakes of
practical interest require an gdverse pressure gradient;
consequently the working section ;f the tunnel must
provide for an adjustable axisymmetric decreasé¢ in
velociéy down the working section. There are two
baéi% ways to accomplish this - ei}her with ar adjustable
tross-scction ‘or an adjustable air bleed (or some
combination of both). As,dn}adjugiable cross—-section -
stemed insurmountably complicated as well as requi?}ng
some form QE boundary layer control to aveid separ::}sn,
the latter &pproach was taken. Thus £hc workingﬂ

scction was of uniform cross—-section and it could be

made up of identical short elements..

[4

v
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A system of air bleeds brings problers of

its cwn,

, : . e
as the remuivenents of an axisyvumetric aiy

bleced are in eonflict with the necd for access to '
L4

the working arca,

’

general support for the structure.

e -

support for traversing gear, and

It was degided to use-a light-weight, low-

1

blockage wooden support for a cylindrical working

L

section made

The holes in

of an inch staggered centres.

O

¢

. l »
of high—-porosity perforated shecet met#tals

the plate wetes3/16 of an inch on 1/4

AS

This sets an upper

limat on the porosity, but ain practice the desired

porousity was much less than this maximum except right

at the start of the working sectign.

7

The working section was made up of a numbér

of identicgl elements, each 3 feet long aad 30 inches

‘in diameter.

split horizontally and hlnqed’on one %i@e.

.

They were made as two half cylindersc

o

The somi-

aylinders 'of perforated plate were held by a 3/4 inch

flange at each-end and along the horizontal seam.

There

was alsosa 3/4 inch filler, piecce in the horizontal

joint that could bhe removed and replaced by

for the traversing gear.

"

Sce Tigure 3~6.

the supports

The support for these 3 fopt scctions were

two wooden rails to which the sections c¢

1

In use, the scctions were held togetld

)

LY

ould be clamped.

er with large



. . C-clamps. ' N ¢

, - - . o ,

: 8 . . -
~ Thers were ten posttions in each - section g

&
v

at. which tie traversing gear could be placed.  For

refeorence thoy wore numberned 1 to 10 from, the up- N
S\
- 1 K
\ stream end.  The vorking sgotiong thomsolves weroe !
numbored from the tunnel onblet downntr Thus “
-~ the fifth traversing gear position ip/lhe second ¢
]

w tunnel is labelled

-

working scction downstream from
{2 - 5). The zero for x was the leading face of the
\ -

flrst working scction, and Table 3-1 gives a 1i%t

O of the positions used and the resultant distance of

s
]

the probe tip from the x = 0 posit‘iti)n.
. . The blockage of the perforated plate to
set the pressure gradient was done by covering some
of the holes wilh masking tape. Considerable care
was t‘aken‘t}o ~nsurce that the blockage produced was
- L}
rconsistcnt,‘ reproducible, and axially symmetric,
Consaquently the tape was placed on the ingide of
the scections, and the pattern was arranged so that

\

cach hole in the perforats plate was either cowmplaetely o
/7 4 . 5

open or compietely covered. thus there were no |
. i
unadhered cedges in the tape pattern to stretoh or

age and the flow wan likely to be axisymmetric and
invariant with time. .o i,

Where the ratio of closed hbles to open

a4 \

3

holes did not exceed 12 or 14 to I, the pattern was

B +
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i

set up. by yﬁav1ng circumferential strips of holes

uncovcred by tape.  This afdoured that tha maximun

distance betwoel rows of opegp holes was 3.5 inchoes.
Y
by

For ratios largein\(than this’tho whole of the perforated

plate was covered and the masking tape drilled out

and neatly trimmed with a special cutter.
j

. : Ideally s the resultant porosity of the =
\ ‘.
working scction shoula\vary'smnothly in the axial

direction and be constant around anﬁ circumference.

»n -
s

i
> Obviously, with say 14 rows of holes blocked and one
open the porosity does not vary smoothly in the axial
L2

. direction; and when the change is n@de to having

individual holes open rather than compdete circum-

ferential strips, it is* no longer circun
uniform cither. The assumption is made that this
is not important'hQWQver, when the scale of these non-
uniformities are small, relative to the distance from

the edge of the jet to the wall, and waen the change ¢
in U1~i% small. This was Lypic&lly 8 to 10 inches

at the éoint where a row of oan holes was 3.5 inches

from the precceding row and where U; mfght be Qﬁpactod
to decrease by 3% in this 3.5 inchcs\ No calculations
or mrasurements were made to check this but it was

\

{
fell that the ameunt of non-uniforility in tite varcjation

-2 ,\ i} 3




‘Of U, would not be serious. ,

further downatream the maximum distaneo

)

between holes varied as the sqiare root of the open

to total hole ratio, and thé URRSRUINLY dirastance at

v

measurad stations did not oxceeod 2 inches, ; Hore

f]mwé'hcre mrasured to within 4—1{? inchos of Lhe
L] - ~ . . ' '

wall, nnd Uy; veried by 155% over 2 inches inm the

J " ,

xﬁdIQQGtion. . ‘ Ve ‘

. A2 . A ~ .

Tbﬁ endt of thp vorklng scction wag bloc%o@

-

1@k picce of pﬂz{orated p}aié of somewhat Nower

\

porpefity than that £ ing the worklnq socflmn z

Tt is difficult to determine eyé pattern

Zapc(which qlvrs a desired velocity distraibution,

” 5

Ch(x—x9)m1 The out flow voloolty must be largest

' |
L

necdr the jet origin, whene unfortunatoly the pressure
. . «. .0 .
dlffn rence to drdive it is smallest while the opposile
> *
is t%uo far downstream. Thus the ranqge of pressuro
FY

rd

drep coefficient from beginning to end of Bhe working

scction must be 1drge. In addition, the jet entrains

the %trcamznq Flow Ui, and the amounk of entrainment

i

is strongly dependent on' U;, particularly near x 0.

As well, the-ellaiptic character of the flow meant that

changes 1n tape pattern at one statioh would affect the

\

% ! 4

a

»

f"\
i

by

!
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.
-

@ -
. B \
. velocity gradient elsevhere in a manngrithat would be

[N

difficnlt to predict inturtaively.  When \111 this was

cconwrderod along with the fact that a dianificant

3 ' A v

change 1n tape pattern and testing to measurce its

-r
cffect would take several days, it was felt that a Py
] \r * " ¢
. "eut and try" approach wyould be retrogressive.
. - * .
Y Consequently analytiec and scmi-analytic methods were

- . ° ! . - 4

. m]optp’d-. ) o b . C . ‘

. o . ‘,- . v ' ' . 1 ~

. . v 0
- .

"~ 9, N i . Y - v M
The proseduvre’ uised was flrst'to predict z

1)

. B
‘ . 3

the mean velocity field at the worfing section walls .
. <M .
using a form of the continuity equation, and second,
. ) , 5 '
to use these velocities plus a simple thedry for

‘ the pressure drop coefficient of a perforated plate
” .

to predict the ratio of open to c¢losed holes as a

funcidon of x.
4

There were two assumptions used in predicting
the behaviour of the’ flow thrpugh the beffprated plate.

‘1\1"\i\rst, that thce pressure drop across a section ot‘ plate

\

4 was 4 function of the perpendicular component of Velocity

4 {
only. (Taylor and Batchelor (1949)/) . Thus
. ’ 2 (Pe - P - (B O+ V) =cC_ VP
. ar . P

where Po 18 the Kinematic total pressure in the tunnel,
P _is ambj_ex'ﬂ: kmeme_ltic stitic pressure outside
the working sect&on,

[



9
A ; )
'® ‘ {
. U and V are evaluated at the working sectiron walls
. and Cp is a local pressure grop coefficient for the
: poerforated plate, &

4 The =sccond asgunntion 1o that volume flow Lhrough a

-

hole 1n the plate is a function only of the pressure
drop across it, and 1o not affected by whether >

neighbouring holes are opmi® or not. Then the effective

’ ’ local pressure dvdg cocfficient is given by °
. .
/ g o
, ' “© tq - N'Q
] ?) 'pq d
: 4

Pl ’

whdre N is the ratio of total holes to opcer: holas 1in

any area, and Cp 1s the pressure drop coefficient for ,
o 13

the completely opaentplate. ‘
‘ . ) These agsumptions are known to be inaccurate,
!

as Cp is a function ¢f Raynolds number and the amount
[} 0 .

I3 @

of tangential flow, and blocking off some of the holes

deoes affect those nearby. - However, they did allow the ‘

prediction of '‘a tape. pattern with the riaght sort of

character to use as a starting condition for the
& 1

. ' . b ’
subsequent experimental 1teration which was used to

determine the required pattern.

-

t o L J - .
Since the désirved frce stream voelocity on
® . .

the axis of the flow wassspecified by an analytic

W S
L

y m . . A .
expression, U = Cix, which has continuous derivatives

of all orders, it secmed attradtive to calculate the !
" )
. velocity field at 'the working section walls by using an ~
. i ) &

4

- . ‘ =Y >~
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LY " y

o | I

14
expaq§aon of the Stokes-Belbrami equation inspowers
{

of radius & of the working soction. (The Gtokes—

-

. Beltrami eguation s the axisymmelric Q?ninlont of
; Laplace's equation in cy]L%ﬂricalgpoLar coordinates) .,

The mathematical procecdure used by Coh@hlgnd-Rxfchie

- .

(1962) to predict the Sbréﬁmlinés for an aXLSymmcﬁriC )
F £ ! .

! contraction was uugad,., The atbractive fcature of this

)

approach was the promise of more recalistic values. of
’ ’
A U and V for x/Y small than would be obtained by

|
l
|
|
|
Y
_~ assuming U = Y, at the wall. ‘ ¢

- L]
. . -

This procedure was used to set up the»

first tape pattern. While the resulting flow wAs

. used successfully as the starting point for the .

R 1
subscequent iterative approach to improving the flow,

the hoped-for accuracy in flow prediction, partjcularly\

;

near the virtual origin of the flow, was nct realized.
R

G Consequent%y the simpier approadh assuming U = const.

. . across the flow should have been used, especially as .

¥ \

it also allows inclusion of the ef?ﬁsfé of?jet

entgminment . . g
Q A . \
This simpler approach was, however, used

in t\e iterative procedure to predict improvements

for the tape pattern in setting up all subscquent

N \ . '

~

flows. The equation is o

)
p ~_ Yf,au, , 1d )
@ g Vy Z(de Mevax (Vo be) |
o ' ' ,' A 5,'
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where Y is the radius of the working section, thoe VY
N . '

Gaussian form of jet or wake profile is assumed,. and
Uy is assumad constant across the flow. s

The velocity through the plane perforated
plate at thpvend of tEe working section 1's assumed uniform

across the plate, and given by

. PO
. Y. U;+L9£Eﬂl :
ky? - C

.
. v

for values of'Ul, Ug, and I,p .oxpected at this plate

L VN

position. This satisfies volume, flux requirements.
The }terative proce%ure made use of

measured valuds of U16 Uo; and Is to calculate valuwes

of‘VY(x) and UF' using thauis continﬁity cquation.

Then'analytlc relations for U;, Usy and Lo’

¥ '
~

Up = Ci(x-x0)", Uo = G Ui, Lo = Cg(x=%o) ‘

were used to calculate the,desired values of V(%)

Then these two scets éf VY(X)'S and UF‘~’ ‘

>

and U_
P

along with tunnel total pressure, Were used to
predict' the change in tape pattern necded to produce

4
this flow, using the assumed behaviour of the pevforated

H
-

plate,

If measurements on the flow resulting from

this new tape pa%pern weFe still unsatisfactory, these

measured values became the dnput to a new iteration

. 4
step. Approximate values of Cy; and G were sclccted

’

[ae.

<
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and thus m calculated, and an approximate value of R ‘ \

¥

xy determined by extrapolating Lg to zcero. The o

rough approximations used in predickting the behaviour
o the pergoratad plate worked, hpcauso‘ﬁhm measured
flow and existv¥hqg tape pattern were used to calculate

an effective local Cp , and a new value of N (the
o .

ratio of total to open holes) calculated for tho
? ‘
desired flow using, this Cpo' Thus, as the measured, ‘

v
and desired flows become closer, the more accurate
iy

shpuld be the prcdibtioﬁ of the tape\PdtLern change,"
As noted, tﬁe values measured for a flow
pattern woere used to calculate outflow velocities
and wall' pressure drop coefficients as they actwmally
existed.: This was done by;iﬁterpolatinq the cxperi-

' . N h
ment;l values for U, and (Ugloe’) to get intermedf&te ’

values and derivatives. The process for 'doing this
interpolation turned owt to be crucial to the success:
of this method. Several reasonable choices, which

4 .
might tempt a future experimenter, turned, out to bhe

.
’

unsatisfactory. Consequently it seems worthwhile 3

to explain thgsc mathods and why they didn't work.
. . : ’
It should be noted that all' the methods used or
-

i

considered produced satisfactory answers for the

intcrpolatgd values of Uy, (U¢Lo,’), and %E'(UQLUZ):

It was the problem of obtaining the derivative of U; - ’

) . . *

that created, the dif{ficulties.

A, ,



The first and most obvious cholce was to
. . Y - h
fit the n experimenial points by o (n-1) order

polynomial 1n x. Thi§ would produre a smiothly vary-

i

ing derivative that is casily cwmﬂgu&tvd at any value
A % ‘4",

of x, and standard prnqrnm&'ﬁnd techniques are

: ¢ o .
ivallable to calculate the coofficients. This approach )

4 . .
was, however, rejected at the outset, as-a high order

.

polymomial like this would be expect@d to 'show ripple$ o
about a ';mooth' line througs a set of points Lh;t ) v .
approximated an xm,iclation (where m is ncqh;ive). .
Thus the tape éattern Coérectionqlwouid shéw _ ' ’

. . .
periodicities that had little to do with correcting- ' ! ,;
the yeal flow that existed. ’ o R

. ! .

Initially a quadratfc polynomial- was fitted,

through the four experimental points nearest the x-value o
: ’ - o 1
of the point at which interpolated results were need§q: |
A least-square error approach was used to fit the

curve to the data. A quadratic polynomial secemed a

. , .
simple curve that had the desired properties of a "y
4 . : D
smoothly varyin% dérivative and no. inflection point, -

and again, standard pfograms and techniques are avallable

to evaluate thd coefficients. When this was tried
P
a problem quickly showed up in that the predicted ,
- o v \
changes 1n hole pattern showed periodic large,



-~

abrupt jumse 1w the o ovalue waa changoed. The wavoe- .
2 J : ]

length was abont that of the spacing botweoen,
’ L .
exper menl.al porat o, and vas canned Ly the chonrges
, . N
irl the sot of thay “our cxperimental points used tor

evaluate the polvnomial coefficients.  Over a certain

? -

interval the interpolated der ivatives would b deler-

mined by the fixed coefficients of o gquadratic poly- |

» a

nomial which were in turn detecmined by the values of

the four oxperimental points near this region. .

Conscauently, as the intdrpolad pon point was stepped
i 3 } P 1941

aloys the derivative would vary in a smooth linoar *° N}

rvceret 3

v "».
maniicr.  Rut then a ooinl would be raached where these
0! ! -

fou% exper imental noints were no longer the closest,
) N ’
and the quadrat:c gﬁefficionts and thus the value of 7 .

v,
the derivative would <change abruphbly as one of the

¢

T expewximental poinbts was dropped and a new once added

£

to make up the set of four. A 5
In the face of these diffighlties ’ c

modifications weve made in the interpolation program - 3
k} ‘l

to smoobth the transition caused by the changing » :
a ' .
inflyence of the experimental points on the calculated
. ¢’ - -t

. . Lo *
derivative. The four-point procedure was to detegmine

J

°d
oy

N ~

v

a-ae by sovlviny’ ‘

¢
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0

. where 73 = {1; , and F(x) was the experimental value
2

‘.

of either U, (x) or UpL,~ (x) at x; and n is chosen so
that the four experimental points are the closest
availablevto the point at which interpolated values
are desired. To eliminate the effect of changing the

L

set of experimeptal points, this was changed to -

3 Mmax N X )
o . .z&”(F(xi)—(a2x;+a1xi+ao))zexp'JXi‘xp } =0
jl i= P ,

a

where xp is the x-value for the intefpolated

point. This used all the experjgental points but
-~ weighted their impoftanée sozégijv;hose near xp had

much influence. The value of ¢ was choseq to be
approximately one-half the distance between experi-
mental points.

This relation gave a smoothly %ﬁryinq
derivative, and the interpolated values of U; and
U0L92 gave an excellent fit to a hand drawn curve
througﬁ the experimental points.‘ j‘ N

This relation was used in the calculations’ ‘

-

for the pressure gradient for all the self-prégerving
. [ .

[}

, . ’ $
jets. Two to three iterations seemed to be’#nough

to set up a reasonable flow for these cases.

.
) v
€
Iy L
;
»

The jet with G = .85 (weakest jet) gave '
. ° \ ' * ' « ) \
the most difficulty. o o o ‘
o ‘ J
o |
i
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When this procedure was used for the self-

F)

preserving wake, it did not conveége. After thrde
iterations not much improvement had been achieved,

and it was decided to re-examine the numerical aspects ;
of the procedure. The apparently inconsistent finding
was then made that while the interpolated values of

U, fit the experimental data well, the’ value of the
derivative was always too large in _magnitude by a

¥ew percent. The discrepéncy was not very big, but

the resultant tape pattern consistently had too much ’
blockage, and this caused an accumulated error between

.

theory and reality.
The basic cause of the problem was that
a quadratic polynomial was not a good function to

use for fitting U = C (x—xo)m where -1/2 2m 2 -1.

A segment of such a velocity versus x curve will have

~its maximum curvature at the high velocity end. When

& quadratic polynomial is fitted to such a c¢urve the
part of the ﬁarabola chogen will afways have its
maximum curvature at the low velocity end, and at the
centre of the parabolic segment the magnitude of the
gradient is always larger than that ofnﬁhe curve

being .fitted.

A
S~

The solution to this problem was to use
*

)

A ¥
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a more suitable function to fit the experimental
'
points, and .
U:alc—azx'f‘a'g i )
. . _ )
was chosen. (It might be noted here that in some

similar carlier work an unsuccessful attempt had been
made to use U = a; (x-a2)°? as a fitting function.
Although the problem may have been due to other causes
than the choice of function, this experience led toCQSJ
using the exponential relation above). As befofe,
the 'algorithm was to make
n
5 maxi —a,x X;7X5) 2
A [T oyl
J

i=1 ¢
¥

for § =1, 2, 3. !
Any suitable numerical routineccan be used to find the value
. i

of the caefficients aj; in this case a three-dimensional
Newton—Réphson method Qas incorporated into the program

for this purpose. "

When this more suitable function was used

to predict the tape pattern the first iteraéion
pfoduced a satisfaétory flow. It is probable that

it would also have been easier to set up the jet cases

1 3

using this® function.

L




3-4 Traversing Gear

The traversing gear used in this experiment
was able to provide movement bhoth horizontally and
vertically. It consisted of a horizontal slide that
extended, the width of the tunnel and which was supported
in the 3/4 inch slots available between the two halves
of each working section segment. This slide in turn
carried a shorter vertical-slide on which was mounted
Ehe instrument probes. The traversing gear 1is shown
in Figure 3-7.

Obvioﬁsly there had to be some compromise -
in the design between obtaining maximum horizontal
and vertical traversing distances as a long vertical
slide would allow only limited horizontal movement.

The choice made gavé approximately 22 inches of travel
hérizontaliy and 15 inches of Fravel vertically. This
gave sufficient vertical travel to allcw checks of
agisymmetry'while allowing measureﬁents to be made in
the horizontal direction to within 4 inches of the
working section walls. In practice the vertical

slide was used primarily to find and positigﬁéﬁhe
probes at the centre of the jet or wake.

The horizontal slide consisted of two :

¥18 inch segments of aluminum dovetail slide supported

P
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in a steel frame. The structure was 3/4 of an inch
thick and 4 inches wide, with a wooden fairing to
keep flow disturbances to”’a minimum. The vertical
slide was also an aluminum dovgtail unit, 18 inrhes
high_overall, 1/2 of an inch tgkck, and é—l/Z}inches
nggjoand ;t alsc had a wooden fairing. The slides
were commercial Velmex Unislides. The probe tip
was 13 inches ahead of the vertical slide and 16 inches
ahead of the horizontal slidec.

Blockage effects from the two slides were
calculated by simple inviscid theory by replacing the
slides by appropriate line sources. The total change
in vélpcity at tﬁg probe was thus astimated at <2%.
This was checked (for the part caused by th? vFrtical
slide), by comparing static pressures at Eﬁg probe
position (with a separate static probe) with and
without the vertical slide in proximity, and this
agreed with the calculated values. No cérrections
were applied and since all results are presented
non~dimenéionally, the only error is due to the change
of interterence ?ue to the non-uniformity of the tlow,
an crror which %%ould be much lessi{han 2%.

b
The probe holder mountedﬂon the vertical

4 1
sllde had provision for carrylnq a qwt wire probe

<

}
and .two pressure measuring probes, p051t10ned in a
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vertical row 1/2 of an inch apart. 1In praétice cither
a static and total pressure prohe were used together

to measure mean v;]pcity, or a total pressurc pro@e and
a hot wire were carried to measure mecan and fluctuating
volpoity compéﬁents. In this case the pressure probe
was used onl& for hot-wire calibrations.

All definitive measurements of the flow were
done with a hot-wire ancmometer. Moan velocity and
longitudinal turbulgn;e were measured using a normal
hot wire with the wire in the plane of the traverse.
The other stress tensors were calculated using readings
from a single slanting hot wire. For the slanting wire
two readings were taken at each position of the traverse
with the wire positioned in the plane of the traverse,
rotating the wire 180° around the probe's lon%itudinal
axis between readings. As well, a similar sct of two
readings were also taken at some positions with the
plane of the wire verticall Calculéted values of

Reynolds stresses that involve slanted hot-wire measure-

ments were corrected for longitudinal coolinq‘using

measured values of wire angle and aspect ratico. (Champagne

et al (1967), Patel (1968)). No higher order corrections

were taken into account.

The hot-wire probes were mounted in a special

-

holder that held them rigidly in alignment while allo@inéi\

[

rotation of the probe around the longitudinal axis. Thus
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all slanting~wire measurements at a particular position
4

could be made very closke in time to each other. Indexing

/f
accuracy &as not écasured, but was cstimated to be about

0y

one deqgree.

,

3-5 JInstrumentation
r
®
Figuré 3-8 is a block diagram of the

instrumentation used in the mgasurements. A Disa
/

éénstant~temperature hot-wire anemometer was used for
mean flow ahd turbulence measurements. The output
voltage was made lincar with velocity by means of a
Disa linearizer., This output was measured directly

to obtain mean velocity, and fed to a Hewlett Packard
true R.M.S5. meter to measure the fluctuating

components of velocity. This meter has a low frequency
cutoff of‘S Hz.

/(\\\ ' . Some mean flow measurements were also made
with\pressure probes, and these probes-were also used

in calibrating the hot wires. With the exceptign of

the tunnel reference pressure, all pressure measurements
were made with a single Statham 0.3 p.s.i. pressure
transducer, which gave excelient linearity and
repeatability. It in turn was calibrated against an

3

Askania water manometer.

G

.

The technique for obtaining time averages
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is _important when making accurate mecasurements in
turbulent flow. For a few seconds a%érage visual
integration from-a meter may be satisfactor?, but
for longer times it becomes tedious and inaccurate.
The use of R-C analog circuitryhto lengthen the
response time of measuring instruments is usefdl,
but beyond a time-constant of 10 to 20 seconds the
problems of transient recovery and charge leakage
become important.

The solution chosen here was to use a
combination of analog and digital averaging, psing
a computer controlled multiplexer and analog-to-
digital converter. Each voltage that was to be
measured was firs£'averaged, using an R-C time
constant of 10 seconds. Then a measurement of each
voltage was made every 5 seconds by the computer
system, and ultimately averages were calculated
and printed out. As well as solving the problems

mentioned above, other benefits were realized from

the use-of this system. Because satiéfactorily'

- “~

!

accurate measurements of the averaged analog voltages

B
s

took less than 20 milliseconds, it was reasonable to

average both the mean and fluctuating component of

swwelocity over the same time interval. With long

G :
total integration time (50 seconds), this cut the

v
‘
n \ !

W 1 3
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. ' time for hot wire traverses almost in half. Secénaly,
having short term estimates of the voltages (sct by d |
the 10 sccond R-C time constants) enabled the
compuler program to compute a running estimate of
éhe accuracy of the reading, using standard statistical
techniques.
These estimates were‘used in two ways.

)Q) The last estimate u51hg all the data was printed out
along with the data and gave a measure of the accuracy
of the average. Secondly, if.the estimate of the
accuracy got.better than a set aﬁouqt before the .
maximum averaging time of 507 second,(the program
' Ystopped taking readings and printed out the averages

calculated for this shorter integfation.time.

Typically one-quarter to one-third of the reédings

would take less than tile maximum time.

Thig program was one of three used in data
gathering, and, aé noted, printed out for ecach position
» the values of mean and fluctuating Voltaégs (taking
into account the gain setting on fhe R.M.S. meter),

and estipates of the accuracy of the ¥eadings.

The second program was used when mean »
velocity profileshwere gathered using the pressuré
’ proﬁ%s. The output of the pressure transducer was

averaged, the zero voltage subtracted, and the velocity

calculated using appropriate constants for the transducer
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calibration and air densiéy. The voltage and velocity
for each position was then"prigted out.
The third program was used to calibrate
the hot-wire and set up the lineaxizer. It had
previously been empirically determined that the
performance of thé hot-wire probes used could be

adequatel§ described by
(VoltsT?2 = A + B(vel.)"*

Consequently the calibration program measured the
pressure tr?nsducer voltage to obtain velocity

along with output from the anemometer both before
and after the‘lingarizer. it then érinted out the
values of transducer voltage, calculated velocity,

. anemometor output voltage (unlineariéed), linearizer
output, (velocity) ", (bridge voltage)?, and the
value of transducer zero voltage used in the
calculations. (In thi; and the previoﬁs program

the transducer zero voltage to use could be updated
at:anyftime by taking a zero reading). This program
was used both to set up'tﬁe linearizer and to
subsequently check the 1inea§ized output. Figures A

3-9, 3-10, and 3411 are examples of outp@; from the

three programs.

.
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3-6 ' Experimental Procedures \ .

The major aim of this research was.to
measure the greowth and related parameters for self-

preserving axisymmatric free shear flows covering

the range from wakes to fairly strﬁng jets. As well,

some measurements were made on two other axisymmetric

€

flows, the still-air jet and the small-deficit wake

in zero pressure gradient.

_3-B-1 Axial Symmetry

Axial symmetry was ensured in a number

rs

of ways. First of all, considerable care wés taﬁen_
to provide a symmetric envirénment. The jet or

wake producing apparatus wag cylindrical, had no
supéort struts, and was carefully centred in the
tunnel. The working sections were cylindrical and
“the hole pattern to control the flow was axially
symmetéic except at the division between the top and
bottom halves of the sections. The.z—l/4 inch wide
blockage here was compensated by extra openings on °

both sides of this blocked area.

When a satisfactory flow -was achieved,

ol
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part of ‘the information available was the centre

- t -

"positien of the jet at each station. Any wandering

of the flow would have indicated an asymmetry 1n
the mean flow field. ‘In practice the variation
was in the order of +.1 -inches, which is ‘not muéh
more than the absolute positioning accuracy of
traversing gear from station 60xstétion.

Another check was to ‘make ve;tical mean
;elocity‘praverses and compaée them with a horizontal one
at the same station. 1In 511 cases th; pfofiles were
identical. As well, a contourfplot of mean velocity

at one station was generated and is shown in Figure

3-12. As -the other indicators \seemed favourable this

-was only done at one station for one self-preserving

flow.

As a final check on one selfrpreserving
flow, shear stresé prdfiles wefe made in a vertical
traverse at one station, and again the agreement

with the horizontal traverses is excellent.

3-6-2 Setting Up the Flows s -

The procedure used to generate the appropriate
pressure gradient has been described in the section on
the wérking sections. In each case an approximately

correct flow would be geanerated by changes in jet-pipe
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size and longitudinél position, and jet and tunnel

working pressure. Mean velocity measurements wére

‘ ' !

made of the streaming flow and the "jet (or wake)

profile at 8 to 10 stations in $he flow that extended -

over approximately a 3:1 ratio éf distance from the
c.

iét {(or wake) source. . >

-

3-6~-3 Sclf-preservation

[

e
In practice, the primary decision on whether -

a satisfactory flow had been achieved was based on &
becoming nearly constant for a significant length of
flow. Havin? Lo varying linearly with x was also
important, but this was always satisfactory when G

/
became constant as G = constant seemed td be a much

P e

more sensitive indicator. ,
LN

That U, and U; varied at the aﬁpropriate
]

power of x was al%o checked, as was the self-preserving /
behaviour of the longitudinal component of turbulence.
The value of m for U = Cl(x—xo)m agreed well with

that predicted from the momentum equation.. The best

fit of m for Ug = GvCl(x—xo)m did not seem to be in

as good an agreement with the Romentum equation pre-

{
diction, but this disagreement was due to what were

)
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assumgd to be acceptably small changes in G down the
flow. ‘ .

The longitudinyl turbulence toakqlonger
to reach a self-preserving form, and was theréfore

»

a severer test of self-preservation.

- \

3-6-4 Self-preserving Streaming Flow Cases

o

a?”//’/l * Four self-preserving axisymmetfic flow

n /‘
cases were studied. Three were jets, with a

G (= U,/U,;) of .85, 1.83, and 3.00; the fourth was

a wake witfib = -.54. Details of the jet pipe

4

positions And jet operating conditions are given in

Table 3-2. The axisymmetric body used to produce the

wake was one of the jet pipes with its exit blocked.

The end 12 inches of this pipe was 1/4 inch outside

to the 3/4 inch diameter pipe that was in turn

supported by the .2 inch jet supply pipe within the

contraction section of the tunnel. This is described

r
more fully in section 3-2. i —~—
‘ ’ ) tw .
In the pyocess of setting up this wake
several wake producing bodies were tried. All used

the jet pipe ,apparatus as sypport. A bluff body
I Y . D R
1

(a 2 inch diameter disk), and a square—-ended 3/4 inch rod

9 ’

were tried as well as the wake source ultimately used, -

~
3

.

/

" diameter. Upstream from this was a smooth transition. (
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and the aim was to produce as stromg a wake as possible.
The disk was unsatisfactory as the wake produced was

broad and ver{ shallow. The 3/4 inch rod ' was better,

RWEY
o

.80 the jet pipe with the 1/4 inch. end section was
tried and proved satisfactory. It appears that the
,strong ¢ddies behind a bluff Sody are very effective
at distrfbuting momentum across thé*flow, and make
for a wide, shallow wake. The wake from the slimmer
pipe probably was largely composed of boundary layer
from the 3/4 inch pipe upstréam, with correspondingly
'lower turbulent intensity and scale than a separated

flow. To further try and reduce the component of‘
separated flow in the wake, and thus possibly
emaking a deeper wake, a streamlined-plug was added
to the end of the.l/4 inch pipe. No-change in the
wake was noted, possibly because,éhe boundary layer
would not stay attached to the<plug in the strong
adverse pressure gradient existing at that point.
In fact, this boundary layer may even have separated
before the end of the pipe. No tests were conducted
of the conditions ﬁedr the end of the pipe.

As noted in Table 3-2, the end of the
wake-producing apparatus was 17 inches further down-
stream than the jet outlet for any of the jet cases. - -

This was necessary to enable the wake to be started



in a strong adverse pressure gradient. When an
attempt was made to start the wake further upstream
it decayed too much before the pressure gradient
became established.

%br the three jet cases more detailed
Ameasurements vere made at one or more stations. These
stations were chosen to be ones at which meaéurements
of longitudinal turbulence indicated that the turbuient
structure had settled down to a self—preéerving form.
Measurements were made with a single slanting hot

e '
wire rétated about the x-axis to lie in the x-y and

x-2z planes. (More details are given in Section 3-4).

These readings, combined with normal hot-wire measure-

— — — 5
ments enabled u?, v?, w?, uv, and uw to be calculated.

For the self-preserving wake only mean
velocity and longitudinal turbylence measurements
were made. ) ‘

Intermittenéy profiles for the outer part
of each jet flow wefe also measured at one station.
At each traverse position 10 seconds of output was
recorded onan F.M. tape recorder (Bruel and Kjaer,
Type 7001). To emphasize the high frequencies and
thus better distinguish ;otaiional from irrotational
flow Fhe signal was differentiated with'reSPect to

time before recording, using an operatiomal, amplifier.

1
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Subséquently the analog signal was
digitized and recorded at 12,000 samples/second. . ”
This time series was thert digitally filtered to

-’
remove the average value and the components with - '

frequencies above 3000 Hz.
The intermittency was'calculated by ex-

mining eac& sample to see if its magnitude was

bove a certain threshold. The intermittency at o

‘Pach position was calculated as the number of

amples above this threshold divided by the total

number of samples in this 10 second interval.

K Clearly, sections of the record that are

completely turbulent will have short intervals when

the magnitude is less than the threshold as the \(

signal crosses the zero axis from large values of <

one.polarity to large values of the other. To take

into account these zero crossings, samples which

were below the threshold for a period of less than

.4 milliseconds were counted as turbulght. ‘
The‘threshold level and the above period

of .4 miliiseconds were determined empirically by

examining a number of segments of the signal from

a traverse podition which was turbulent about 40%

of the time. There was clearly a uniform background

signal between segments that were turbulent, and the
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threshold was set to roughly' 1.5 times the maximum

of this background. Examination of a number of
turbulent regions then suggested that .4 milliseconds
would cover most of the zero crossings when the signal

o~
was below the threshold.

3-6-5 Measurements on Other Flows .

Some measurements were also made on two
related axisymmetric flows; a jet with still surround-—
ings and 5 small deficit wake in zero pressure gradient.

For the still-air jet mean velocity and
longitudinal turbulence was measured at a number of
stations. The jet pipe was the same as that for the
streaminé flow cases, but the working section of the
tunnel was removed so the jet exhausted directly
into the room. The tunnel was of course not running.

n Because of:'the unexpeéted value of the
measured growth, other confjgurations were tested.
Some measurements were made with the-tunnel outlet
blocked with a sheet of plywood to see if entrainment
flow direction would influence the growth. Other

;
tests were made using a jet source with a-'top—hat'
velocity profile rather thén the fully developed .

pipe flow of the main tests. The jet source coansisted

.
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of a 1/2 %nch thick orifice plate fastened directly
to the end of an extension of the 2 inch jet supply
pipe. This had a smooth contraction to a .218 inch
hole'in the cengre of the plate. Two horizontal ,
\ and one vertical traverses were made using this
[ source. ’ ’

The other flow measured was'the small .
deficit axisymmetric wake in zero pressure grédient.
This flow was. produceé by[siﬁply removiné the perfor§ted

plate from the end of the working section. The wake-~

producing body was the pipe described in Section 3-6-4,

K}
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4. Resdults and Discussions

4-1 Results for Self-preserving Jets and Wakes

in Sreaming Flow

The data for these flows is.presented
in Figures 4-1 to 4L34, pius Tables 4-1 to 4-4.

The data for the three jet\flows are cach presented
in ten figures, and four more figures are used to
present the data for the self-preserving wake.

The first three figures for each flow
shows the devel@pmént of the mean flow. The first
figure shows values of G and L, as functions of
downstream distance, with lines drawn to calculace
an average value of G, the slope of the L, line, and
xg (the virtual origig of the flow). 1In each case
the wvalue of G deviates no more than a few percent
from the average va}ue, and the I, values from the
line Lg=Cgq {x~xp) by 1% or less.

For each of the jet cases the virtual origin
of the flow is upstream of the outlet of the jet pipe.’
Close to the pipe outlet the jet might be expected

/
to grow with a larger rate, gradually reducing to
the lower rate for the particdlar value‘of G for that

ﬁ}ow. This would produce the observed effect on’

position of the virtual origin relative to the jet outlet,
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and the difference goes down with 1a;qer values of

G as might bcﬁexpec£ed.

’ The second figqure has experimental wvalues

of log (U,;) and log (Ug) plotted against log (x-Xo).
Since 'U; « (x—xo)m these points should lie on a straight
line and the slope shoul@}pe\qual to theivalue of m
predicted by equation (47)«j Best lines are drawn
through the experimental/ points and the slope indicated.
For the log (U;) data a dashed line with the slope 5
given by ,equation (47) is drawn for comparison. Generally
the fit to the log (U;) points is very good, while

that of the log (U,) is not as good. Since, if

U /Uy = constant and U; « kx—xo)m, then Uy « (x—xo)m,
then Uy « (x—xo)m also. So the wvariation of log (Ug)
values from the expected slope must be due to the

small variations in G and should be acceptable.

One table for each flow collects the data
from these figures, and presents measured values of
Uy, Uy, G, Ly, and Re for each station.

The next figure ig each set prééents the .
normalized mean velocity profiles plolted non-dimensionally.
It is seen that for each flow-they all collapse satisfactorily
onto 6ne curve, and, as was assumed in the theoretical .

development, the curves are identical for each flow. Also

drawn on each of ‘these figures is the assumed Gaussian



~104~

profile used in the ths¥ry. It is seen to be in
close agré%ment over most of the width of the flow,
but over-estimates the amplitude in the outer part.

N

The nexrt .five figures of each set
L

present the measured Reynolds stress profiles of

each flow. These are suitabYy non-dimensionalized

M e

with U, and Ly,. Presented are u?/Uq?, FG/UQZ, vi/Ue?,

;?/Uo7> and W/U,’. (For the wake only ;;VUDZ data

is presented as no slanted-wire measurements were

made in that flow). Lojjgitudinal turbu%ence measure-

ments were made at each stati?n that mean flow

measurecments were made’, and were used as a measure

of how well the turbulent structure was se{g;preserving.
The figures showing radial shear stress

(U0v/Us? ) have drawn on them a line of shear stress profile

predicted using the momentum equation and the measure

growth. It is calculated assuming self-preservation

and the Gaussian velocity profile. For the flows with

Gmz .85 and G = 1.83 the agreement between the data

ﬁrints and this line is very good out to the value

of n a£ which the measured mean velocibky aud the

Gaussian profile start to differ. For the flow with.

G = 3.00 the agreement between the predicted and

measured shear stress is not as good as for the other

two jet flows; the measured values being ~ 10% lower
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than the calculated curve. It is possible that this

is an effect of high turbulence intensity; the larger
A
valud of G for this flow means that the ratio of

turbulent velocities to mean floy velocity can be

relatively high. Looking at the term J%— across

the flow indicates that it reaches a maximum of

~30% for n = 1.4 and 22% at the point where uv/Us’

i$ maximum. This can be compared with values of
L

i

22% and 20% for the flow with G 1.83.

il

For the flows with G .85 and G = 3.00
shear stress measurements are made at a number of
stations, and the fact that the measurements collapse

onto one curve can be taken as another indication

»

that the flows are self-preserving in the stress
tensor term. For these flows the other two normal
stress terms (;37U02 and w2 /Uo%) are also measured.
There is considerably more scatten in the data

than for the u’/U,? Weglues, and,jfor the flow with
G=.85a trend towards increasing values down the
flow. -

The three normal stress tegms are collected
together and plotted as twice the turbulent kinetic
energy (&77U02) in Figures 4-9, 4-19, and 4-29.

The last of the measured Reynolds stress
profiles (uw/Us?) are plotted in Figures 4-8, 4-18,

and 4-28. From symmetry considerations these measureq




values should be zero, and this seems to be the
case for ali the measured flows.

For each of the jet cases the intermittency
in the outer part of the flow was measured, and profiles
for the three jet flows are presented in Figures 4-10,
4-20, and 4-30. Values of y.5/Ly and /Ly ared
calculated by fitting a curve of erf(zézl) to the
data points, and the calcuiated values are included

with the figure.

In the Tables 4~1 to 4-4 where information
for each of the flows is collected the values of
(x-x0}/b (where b is the jet outlet diaméter or
wake body diameter) are listed for each station. The
choice of a value of b for the wake is not ocbvious,
as the wake is probably made up to a considerable
extent of boundary layer that has built up over.
the 3/4 inch diameter pipe that supported the final
12 inches of the 1/4 inch diameter pipe at the end
of the wake body. The valué of b was chosen as
1/4 of an inch,; but the values of (x-xg)/b at the ,
measured station should be considered in light of

the above information. *

r

[ ! ~
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4-2 Results for Jet with Still Surroundings

¢

Mean velocity and longitudinal turbulence
measurements were made at six stations for this jet.
The range of x/b was 43 to 290. ~

Figure 4-35 gives the wvalues of Ly at
each station. The growth of the jet is linear, with
Cy = .0964, and the virtual origiﬁ is 0.7 inches
downstream from the jet source. This distance was
unaffected by whether the jet source was a fully
developed. turbulent*pipe flow from the jet pipe.

‘or a top-hat profile from the orifice-plate source.
The growth rate measured also was not affecd¢ted by
the change in jet sourée, and, at the one station
measured, Lg fr&m a vertical traverse was the samer
as for the horizontal traverse.

Although not noted in Figure 4-35, a traverse

\

. at onérstation was also made to determine if the

growth rate was affected by a change of entrainment
conditions. To tést this, a 4 foot squaré board with
a;holg in the centre for the jet was fitted over the
tunnel outlet perpendicular to the flow axis and
plane with the end of the jet pipe. No diffg;ence
in the measured L, was noted with and without this

e

board.

Fi:;re 4~-36 shows how the centreline

@ o
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"top-hat' profile at the jet exit. .Figure 4-43 shows

&

velocity of the jet varies with x. The value of

1/Up 1is seen to vary linea¥ly with x (m = -1 for
G = »), and the virtual origin defined by the values
of Uy is very close to that defined by Ls.

Figure 4-37 is a plot of the non-

1

dimensionalized mean velocity profiles, and they
ar; seen to be fairly well self-preserving. The
self;preserving shape is, however, distinctly
different in the outer paft of the flow from that
of the jets and wake with external flow. This is
like}ly to be a measurement error due té the
extremely high intensity turbulence in this region.

The lbngitudinal turbulence,prafiles are
presented in Figure 4-38. As noted earlier, rather o
hurried measurements were made of the jet in still

) f’ t,
surroundings using a source that gave a non-turbulent

the longitudinal turbulence at one station for both

r———

a horizontal and a vertical traverse. These were
measured at the x = 58 inch station, and, can be
comééred with the measurements from that stwtion %g&
Figure 4-38. At the time it was only intended thé%
Lo be measured for this differen% jet sourge, so
the hot wire waé not calibrated (the outplt§Was,

however, linear with velocity). Consequently Up

is not known directly, but calculations from the

(W -
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jet condition would indicate that Up at each station
]
was 1.0 - 1.2 times its value for the flow using

éLe jet pipe.

These profiles do not seem to
reach a self-preserving form, there being large
differences in the last two statioﬁs. This is
most likely a feature of the instrumentation,
as the R.M.S. md}er used (see Section 3-5) had )
a low frequency c®toff of 5 Hz and the work by
)Wgnanski and Fizaler (1969) indicated that the
longitudinal‘furbulence of the still-air jet

has a significant portion of its’energy at low

2

AN

waye numbers. Using their sbectrum of u and
assuming that the measured frequency‘for a
particulargvalue of (k Lo) in the spectrum varies
és Uos/Le, the 5 Hz cutoff for the R.M.S. meter
would be expgcted to give answers thqt are ~=20%
too 1gw.f This' is assuming thatnthe shape of the

spectrum of the Reynolds stresses scale with Ly

in wave number space. Then it should be possible

5

to say -that the relation between the cutoff freguency,

of a measuring insgtrument and a specific point in
the non-dimensionalized spectrum of a Reynolds

stress term is "
. .

F__ . .. 0 u_ )
cutoff Ly )
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where U is the velocity with which the fluid is being
transported past the measuring probe and F cutoff
is, say, the frequency at which a specified

percentage of the measured guantity will be lost

t

by'the measuring ingtrument. , If U is defined as

U, + gi it also allows comparison between the jet

with still surroundings and the other self-preserving
flows with finite values of G. Table 4-8 gives

values of this frequency for the first acceptably

self-“preserving station and the last measured

station for eagh gf the flows, and includes the
station from Wygnanski and Fiedler (1969) where
the spectrum measurements were made. Indications
from their work and the present measurements on
the.jet in still surroundings would indicate that

1

as long as the measuring instrument cutoff frequegcy

was below 1 - 1.5 times the values given in the

table that the loss of sigmal will be <3%. From

L

this it is seey/ that perhaps the last station

out to be low in
s 3

megsured for the;iglf-presenving wake might turn

alue ap»thé centre of thg flow.
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4-3 Small~-Deficit Wake in Zero Pressure Gradient

J ) From equations (96), the growth of the
wake (for |9%{ << 1) should be such that ,
U, -
Lyd o« (x-Xg)
1

«  (x-Xo)
Uol's ,

The experimeptal‘values of Lg are
plotted on Figure 4-39, and those for Uy, on Figure 4-40.

€
3/2 oxhibit satisfactorily linear

Both L¢? and U,
variation with x when U¢/U; becomes small, apd the
virtual brigins calculated by extrapolating best lines
;nrough these points are in fair agreement. Also,
the momentum fiux, expressed as‘UoUlLoz, is (for the
lagt sig’stgtions) constant, *1.3%.

Table 4-7 gives the growth information for
this flow and the measured mean flow ﬁéluééjat eachﬂ

station. The calculated go's for each staéﬁon vary -

from the average by +2.5%, - 1.2%.
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o " .
The normalided’ mean velocity profiles . .

are given in Figure 4-41. Except for the first

station they collapse satisfactorily o:to one curve. {
Thus mean velocity measurements all

indicate that this wake is self-preserving when

Uo/Qz become reasonably small. When the longitudinal

turbulence measuyrements (Figure 4-42) are examined,

however, the evidence contradicts this assumption.

The values of 577U02 do not reach a self-preserving

form and do not even seem to be tending towards a |

stable value. Clearly, then, this flow is not "

coméletely self-preserving for turbulence. Since ) v
Uo, Lo and f(a) satisfied the self-preserving
relation, the uv/U,? profiles must have been invariant
also. No direct measuréments were made of this
quantity, but calculationsqfrom the measured mean
quantities should be accutate. «&fhus this is a '
. situation.where one component: of the stress tensor,
uv/Uy? remains essentially constant while another
component, ;z)uoz increases by over 65%.

These results should be considered in tﬁe
light of recent work on both.the sgall-deficit wake
and small-increment jet. Békreevﬂgt al (1973) have

measured the wakes from two different axisymmetric

bodies, a slender streamlined body and a sphere. They
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found. that the mean and turbulent structure reached
a self-pregerving form in each flow, but that the
growth fd? the two cases was very different. For

A

example, the calculated shear stresses, as expressed

by RT, the turbulent Reynolds number, are

i

20.4 for the slender body

Rp
Rp

I

3.2 for the sphere .

r
-(The calculated and measured rvalues of uv are in

good agreement), and s

u?
MaX = .086 for the slender body
Uo?

2

u -
ma' = ,488 for the sphere
U02

Rodi (1972) has surveyed experiments . o

involving axisymmetric small-deficit wakes, and he
tog finds that there are large va;iations in thé rates
éf érowth'and the non-dimensionalized Reynolds stresses
from one flow to the other in spitg of the apparent a
self-preservation of thé individual flows.
In another related experiment Antonia
and Bilger/?1973) studied two jets in uniform streaming

flow, following their development from close to the

jet source (where U,/U; > 1) to far downstream
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\
(where bo/U1"h§ 1) & *They studied two jet flows, and

found that although the mean velocity measuremen£s

appeared reasonably self—preserving‘wicn Uo /U,

becamea small} the growth rates were different for

the two flows and were generally duite a lot lower

than investigators have found for small-deficit

wakes. (The presént‘work is an gxceptign to this).
All the evidence of thes@finvestigations

point to the conclusion that the universally self-

preserving axisymmetric wake in uniforw flow does

not develop, at least not in the léngth of flows

studied so far, despite the preseﬁce of the

necessary condition as provided by the momentum

and energy boundagz,&ayer equation. It is still

possible that there is a universally self-preserving

form for this flow that is being épproqched very

slowly, but the Reynolds number for these flows-is -

generally fairly low and, from the vagiation of

Us and Lo, is continuing to fall in the downstream

direction. Consequently there' can only be at best

a limited regyion of self-preservation. It is interesting

to note that Townsend (1970) predicts from a gtudy ’

of the mechanism of entrainment in shear flow that

the small deficit wake in zero pressure gradient can \
. . )

aQ

never become self-preserving.

s
w



-115-

This leaves the prgblem of choosing é
value of g, for this flow to use to evaluate o and
B in equations (58) and (59). Since the present
measurements jndicate that the flow is not self-
preserving and the value of RT calculated is much
higher than other small deficit wake measurements,
a median value from the literature was chosen for

go, as shown in Table 2-1.

<

4-4 General Review and Comparison with Theory

In tﬁis work five flows have been studied,
all belonging to tlie family of exa;%ly self—preservin%
axisymmetric jets and wakes. These extended from a
fairly strong wake through three jets with streaming
flow to thF jet with still surrodﬁgings.

The guestions that need to be answered
about these flows fall into three areas; are the
flows self-preserving, what are thg mejn and turbulent
:paraﬁéters of thé flow and how do they c&wpare with

A

each other, and is there an adequate theorQ\co

predict their behaviour? These will be dealﬁ\with
.

o

in turn.
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4-4-1 Self-Preservation

.

This subject has already been covered

to some extent in Section 3-6-3. The theory

predicts that if U; «o (x-—xo)m then G = constant

down the flow, L, varies linearly with x, and the‘
non-dimensionalized velocity profiles arc the same
at all stations.‘ These conditions seem to be met
satisfactorily for all the flows studied, as described
in Section 4-1.

The non-diménsionalized profiles of all
the terms in the Reynolds stress tensor should
also be invariant down the flow when g%e flow is
self-preserving. The longitudinal turbulence
(E?/Uoé) was taken as a measure of this, and again
for all the flows it reached a self-preserving form,
although, as might be expected, it took further to
reach this state than the mean flow, particularly
when. |G| was small. For two of the jet flows the
other two normal stress terms were also measured at
more than one station, and here the similarity of
the profiles at the different stations is not as
good, especially for the jet with G = .85.

The radial shear stress term (uv/Uys?) of

the stress tensor was also measured at the same

stations as the previous twe normal stress terms ; :

*»
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the profiles were self-preserving, and except

for the jet with G = 3.00, were in excellent agree-
ment with the profiles calculated from the momentum
e&?ation. This should probably not be considered
evidence of self-preservation apart from that of

the mean flow, as the connection between the mean
flow growth and the shear stress through the momentum
equation, as e;pressed by equation (27)', is well
eéstablished theoretically and it would be surprising

if there was much difference. This is different from
B 4y

_. the situation for two-dimensional flows where
relatively small departures from two-dimensionality
. can produc€ sizeable disagréements between measured
\ and calculated shear stress.

For the jet with still surroundings (G = =),
the requirement that éhe longitudinal turbulence be
self-preserving appeared to be violated. However,
as explained in Section‘4~2, this is believed to'be
due tc lack of low frequency response in the R,M.S.
meter. Certainly there is plenty of evidence from
other research that this particular flow is selt-
preserving for the values of (x-xq)/b meagured
in this work.

As can be“ifen from Figures 4-31, 4-32, '

' S

and 4-34 the self-preserving wake took longer to

. reach self-preservation than the jet flows. It was
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also much more difficult to set up than the others.
Part of this' may be due to the fact that the wake
body was further dowﬁstrcqm than the normal position
for the jet pipe and éhat there was no gasy, independent
way of adjusting wake strength as there is for the jet.

‘ It may also be, however, that the ée}f—
preserving wake is inherently less stable than the
'jet. A self:preserving jet involves a jet in a co-
flowing stream with an adverse pressure gradient
adjusted to give the external flow a specified
longitudinal variation. Since the velocity in the

" o«

jet is higﬁer than the external stream, then, if
there were no shearing stresses Bernoulli's equation
would apply, and the jet would be less affected by
the pressure gradient. Thus the jet—to~freejstream
velocity ratio would continuously increase. The
effect of the turbulent shéar is to counteract this
by 'holding back' the jet, and self-preservation
iﬁ‘achieved when these two effects balance and U, /U,
is a constant. A similar pattern describes the self-
preserving wake, with the slower wake being 'pulled
along' by the egfernal fléw and the turbulent shear
stresg.

When the pressure gradient is not exactly

that called‘for‘by the value of G, the jet and wake




-119-~

]

are seen to behave differently, if the she;ring stress
is assumed to be unaffected by the perturbation.
If the pressure gradient is too strong for the local
value of G, the effect will be to slow the external
flow more than the jet and G(= Uy/U,) will rise.
B§ equatiqn (47) a larger G demands a larger value
of m and thus a steeper pressure gradient foxr N
self-preservation. Thus the flow ténds to the
value of G appropriate to the new pressure distribution
and is ‘'stable'. .
For a wake the situation is different.
Here a stronger pressure gradient than required also
increases the magnitude of the ratio U,/U; but now
by slowing the wake more than the free stream. This,
however, produces a more ne%ative value of G and b

)

thus the m calculated from equation (47) is smaller
in magnitude. This means that deviation from self-
pfeserving conditions tends to produce a flow that
is even farther from self-preservation and the flow
is now ‘unstable'.

It is not implied that the wake is impossible
to set up in practice because changes of shear stress-
will occur to counteract the changes of G. The present

argument, however, helps to explain why the wake

was a more difficult flow to stabilize.
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4-4-2 Comparisoh Between.the Flows

Table 4-5 collects together some of the
parameters for the five self-preserving flows studied.

The growth rate (as expressed by Cg) obviously

increases with |G|. The value of gy = v (as

2
r ' ¢ Ug

‘calculated from Co and G using equation (48) or
from direct turbulence measurements) show remarkably

little variation over the range of G from_g strong

wake to the jet with still surroundings. For the

Gaussian profile R, (the turbulent Reynolds number

T
at y = Lg) is related to g, by RT = g; In thi§_

range go varies by 710%-15%.

Leaving out for the moment consideration
of the jet with still surroundings (G = «), this lack
of variat}on of turbulent structure extends to the
other components of the stress tensor. For the
three self-preserving jets the variation of the{

normal stresses are again ~V10%, using values for the

centre of the flow. The u?/Uy? values for the

self-preserving wake are considerably lower, although

v

he value in the table exaggerates this trend as the

:grdfile of u?/U, for the wake shows a much more

pronounced dip in the centre than the jets. It might

be noted here that there does seem to be a trend
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in the profile of T?/U,? from a pronounced central

S

dip for the wake to’a barely noticeable one for the
jet in still surroundings.

F All this seems to indicate that the
turbulent structure of the flows are- remarkably
unaffected by the strength of the external flow
réiative to the jet or wake. The external f;ow
merely convects the turbulence along and this is
the principal reason for the variation of Cqy with
G.

The measurements of intermittency at ‘
the edge of the twurbulent flow also indicate little
difference between the three jet flows studied.

The value of vys/Ls 1is 1.8 to the accuracy of the
measurements, and this is the value found for the
jet in still surroundings by Wygnanski and Fiedler
(1969). The value of o/Lg for thg three jet flows
studied was essentially constant at ~.27, but this is
in disagreement with Wygnan§ki and Fiedler who
measure o/Lg = .36 for the still-air jet. Their
interpretation of signals may have been different,

1

however.

'
4
‘.
s

The constancy of v.s/Lo for the measured
£

flow and the agreement with the value for the still-
air jet is good support for the assumption in Section

'2-3 that it is constant for the full range of G. The

¢
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constancy (to the accuracy of the measurements) of

0/Le for the three measured jet flows, for which

+gg is fairly close to constant, is in agreement

with the measurements of Gartshore (1965) for two- . .
dimensional flows. Gartshore predicts that g, and
(6/%s)? should be proportional on the basis of the
large eddy equilibrium hypothesis. This hyéothesis

is now somewhat suspect, as expounded by Townsend

~(1966) , but in the .same paper he also shows that

the méchanism of entrainment based on a quasi-elastic
behaviour of the turbulené eddies is still consistent
with g, being proportional to (0/Lg)?. This is -
considered in more detail in the introduction.
The megsurements on the jet in still ‘
surroundings (G = «) were intended to confirm
that the érowth rate (Co) for this flow was the
genérally aédepted value of .085 (see values collected
by Newman (1967) and measurements by W{gnanski and
Fiedler (1969)). However, the value of C; measured
(over a rangé of x/b from 43-290) was .0964. This
was unaffected by the prescnce or not of a back wall | °
and whether or not the jet source was an orifice '
producing a 'top-hat' profile or a pipe providing
fully developed pipe flow. | ﬁ\
Subsequent work by TTio (1971) and Rodi (1972)

|
|
and an inves;igation and reassessment of the literature
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have indicated that this value of C, is reascanable,

Y

and furthermore, that the guestion of univers&lity

N
-

of the turbulent structure of the flow for the jet ; .

in still surroundings is still an open duestion.

Table 4-9 lists information from a representative - .
) .

sample of the experiments with the jet in still

surroundings. ) .

[ e

tﬁét% regard to growth rate, results fall . . »

into two groups. First there are the experiments

dL,
dx

group with values of 0.8<C,<.092. For the following .,

with Co (= ) very close to .095, and secondly a

reasons the results by Rodi (1972) have been recalculated

to give C3=.0956 instead of .090. From the reported -

<

results it appears that mean velocity profiles were’

s '{v . )

taken only at an x/b of 68 and 75, which.are probably \ ®
> o '

not enough to accurately define the virtual origin of’

. ) -

the jet. Measuremernts of centerline velocity in the
same flow over 50<x/b<75. indicate, that x,/b=4. When ﬂf

this value ofuxo/biis us&d instead of the value 0 r:

. used,by -Rodi, €y=.0956 instead of .090. Lo

3

This concern about the value of Xy:is
one that has affected the work of most experimenters.

frog the work of Albertson et al (1948) and Wygnanski o

and Fiedler (1969) is is apparent that oﬁly points with

. ” KN .
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. ' an x/b beyond 30 should be used to define xo and

‘1 P

“ , ~dL;/dx. This is most apparent in plots of Ujet/U°‘
If it is arbitraxily assumed that .only.

values of Cy for flows where measurcements of Ljg

were made beyond a value of x/b of 50 will'be

recognized, the only value of Cy; that differs

appreciably frap .095 is that of Wygnanski and Fiedler.

. For their jet the growth xate defined by the longitudinal
' - variatidn of L, between an R/b of 30 and 97.5 is .086,
i " - fon
and htas the virtual origin at the jet exit. However,

the long}tudinél variation of U, defines a virtual
origin having x/b = 7. This sort of difference in
Xo is equivalent to about a 10% difference in C,

"(using a median value of 70 for x/b). For their jet, -

x 2

X=Xy

(x-x,) !
b I

and this varies by 23% between x/b = 40 and x/b = 97.

Up «

and Lo « %, so that (UgLg)? =«

. But (UpLys)? is proportional to the momentum flux for
. . . 5
a self-preserving profileé, and should be constant

' X g

down the flow. Thus tRere is a question 'about the -
» : : '

growth rate for this flow. . ' ¢

Table 4-9 notes if the "experimental set-: i

up used a back wall (a plane surface perpendicular

to the jet ;xis and placed at the jet outlet). This

was of concern because experiments on the two-dimensional
) . jet in still §urroundingsA3ndica§e that the presénce

L * ’ * :

‘ or absence af a back wall causes a difference in the

.
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growth rate of ~10%. (See Fekete (1970) and Smith

-

(1970)). The evidence from the table indicaées that

this is not the case for the axisymmetric jet. The

folléwing arg&ment lends suppoft to this finding.
For a jet issuing from a hole in a wall

the induced entrainment of velocity will be radially

. ° inwards. If there is no wall, however, there should
be some longitudinal component of velocity and thus /
/

G(= Ug/U;) will not be infinite. Using equation (48)
and assuming that go is constant for large G 'leads

to the result that a 10% reduction in Cp, can be

~

. induced by changing G from « to =12.
) ' Assuming a Gaussian pro'file, Up = x. 1, :
e

and Lo = Cox, the volume entrainment rate is constant
and is given by

a0 _ —_ UpLoCo

dx k K

” ~

‘Thus to calculate the mean flow outside the jet,

the jét may be.replaced by a line sink of that stretgip

* extending from 0 < x < o,
The flow field induced by this line sink .
has 5 jﬁ DoLoCo
A - ]
‘ 4k (x%+y?)3d
- : 1
and the velocity of U just outside the jét is
.- U, = UoLoCo ~ UeLoCo )
® ak|x| (1+A2Co2)E 4k %]
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(assuming A = 2-3 and C, = .095).
Since L = Cyx, then
i, = Yo Co?
v, Tk . '
f and G = 340. .
Thus. the mean longitudinal entrainment N

velocity is not nearly enough to cause the observed
variation in growth’rate.

When measurements of thg turbulent
energy (using the longitudinal turbulence as a

measure) are examined, a great variation is found
L #]

in published work; values of wp?/Up? (the centre-
line turbulence) varying from .OQ% to .082. The . -

valueg from Corrsin (1943) of .068 and Corrsin

'

and Uberoi (1949) of .042 might be ignored as they

were made at an x/b of only 20. This leaves the !

'

measurements of Wygnanski and Fied}er (1969) and of

Rodi (1972) with values ,of ;;;7002 in the r;nge of

.075 - .082, and those of Tjio and the presen? work

with values of .058 and .055 respectively. Rodi < &
used a very similar experimental setup to Wygnanski

and Fiedler and the jet in both .cases had a low-

turbulence 'top-hat' profile. Tjio and the present

work, on the other hand, used a jet source that gave

turbulent pipe flow. However, as noted earlier, some
LS

*
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measurements were made by the author with a-jet
source having a top-hat profile and the turbulence
\profiles were essentially similar in the two cases.
(See Figures 4-38 and 4-43).

" The explanation given by Wygnanski and
Fiedler that the scatter ip the turbulence measure-
ments is due to lack of low frequency response in
the measuring instruments does hot seem to be valid.
As explained earlier, the effect of a particular
cutoff frequency of a memsuring instrumen£ is a
function of the ratio of this frequenéy to a '"flow
frequency' defined as g%;n This varies as x—z,
and thus profiles which are affected should show a
rapid change with longitudinal station.

In the present work the profiles of
;;7U02 do show a distinctive change for the last
two stations, while the §tations further upstream
do n@é’seem to be affected. ThJss is in agreement
with the calculations (based on ‘the work of
Wygnanski and Fieéler) that measurements will be
relativedy unaffected if-the ratio of 'flow frequency'
to instrument cutoff frequency is above 1 - L.5.
For the egéeriments by Tjio (which were én

a water jet) the velocity and length scales were

much different, but the 'flow frequencies' were similar

and calculation indicates that only the measurements at
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the last two stations should be affected by instrument

cutoff; the profiles presénted seem to bear this out.
The predictions for the Townsend entrainment

model use information from the jet in still surroundings

to evaluate constants in thé theory.‘ The guestion is,

what values to use? For the growth rate it was

relatively easy to choose the .096 value. However,

Rodi has shown that the effect of the high turbulence

intensity is to make the estimates of Lg¢, and thus

Co too high. Since the theory is going to be used

to ﬁ}edict the growth of the self-preserving jets

and wake in streaming flow where the effect of this

high intensity correction ﬁo Co will be small, it(

was decided not to use his linearized readings but

instead to use those for which the response was ] /\\
! \

made proportional to the square of the velocity so \

that corrections for high intensity turbulence
became more accurate. These results give a rate of

growth Co = ,091.

7
Getting a value for H (= 31; at the
Uy
centre of the flow) and the constants for the

integral I4 - I¢ in (89) was more difficult as no ¢
vZ “;?
#measurements were made of —— and - for the
Uozﬂmﬁ\ Uo?
jet in still surroundings.' The choice was to
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‘ assume that the shape and amplitude relative to

u?/Uy? were the same as measured by Rodi (19}2k\h

Thus 4he numerical values of Iy4 and -Is can be 1
calculated. H for this flow is then assumed to |
equal ?c}_o_{/Uo2 for Rodi's measurements multiplied ‘
by the ratio of \_1_;;_;/092 from the present work
to ;o—;/Uoz from Rodi's jet. This sets H = .124
for the jet in still surroundings.

It is unfortunate that the other two
normal stress terms were not measured, but .at the
time the measurem'ei'lts were made only the theory
based on the large eddy eqt;;.librium hyéothesis

. was available, and that only required knowing the

growth rates for two specific self-preserving flows.

° P
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4-4-3 Comparison with Theory

The predicted values of growth and shear
stress parameter for each theory and their variants are
shown in Figlres 2-2 to 2-13. For comparison the exper-
imentally measured values are plotéed on each figure.

As noted in Section 2-2, bsing the x-axis as
the direction along which to evaluate the longitudinal
rate of strain produced growth predictions that appeared
unlikely. Figures 2-2 and 2-3 compare th%se predictions
with the measured values, and the results are clearly in
disagreement with this theory. Using the line of y=L,
along which to evaluate this longitudinal ¥ate of strain
gives a much more resonable prediction, as shown in
Figures 2-4 and 2-5. There is not much difference shown
between the -predictions of the linear and quadratic
relaﬁﬁpns for B/A, and as thé former 1is mathematicélly
simpler it clearly 1is to be preferred. s

As noted earliér, the constants in this theory
depend on the growth rate of the small-deficit wake in
zero pressure gradient and a wide range of values have
been measured for this growth rate. Consgquently better
agrcyment between theory and experiment could probably
bé chicved by using a different value from that gi&en
in Table 2-1. However, since the basis of this theory

i
is now being questioned and the second theory gives
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s
' . ' better results nothing more was done in- this direction.
Predictions using the integral energy equation
areasﬁOWn in Figures 2~6 to 2-13. Four different variants
are shown, each representing a different relation between
the shear stress parameter and the non-dimensional
turbulent kinetic energy, and are characterized by a
particular value of n in equation (83). Townsend's(l%?O)
work indicates that for the range of RT in these axi-
symmetric flows n should be =.75. Figures 2-6 and 2-7
show results using this predictiopn. The results are
reasonable, but the agreement with experiment is not much
better than for the large eddy equilibrium theory. Using
. n=1, which is equivalent to assuming that gé is the same
. for all flows in this family, gives a little better
prediction of the growth rates as shown in Figures
)“ 2-12 and 2-13. ’
The 4ssumption of geometric similarity given
by n=0 leads to a rather poor agréement with experiment.
This comparison is shown in Figures 2-8 and 2-9. o
The best fit to the experimental data® however, -
is achieved with n=-1. This is one of the relations used
’ by Newman(1968) for two-dimensional flows, and assumes
° that the stress to intensity ratio is directly proportional

-

to R,. This prediction is compared with experiment in’

'

Figures 2-10 and 2-11.
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L]

As an empirical prediction method the
assumption that go (and thus RT) is constant for all
flows and equal to the value for the jet in still
surroundings produces predicted values for érowth that
are in as good an agreement with experiment as using
n=-1 in the integral energy equation. This lends support
to the work by Hill(1967) who used the assumption of
constant RT to obtain predictions for axisymmetric jet

mixing in a converging-diverging duct.

at
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5. Conclusions

5-1 Major Conclusions

Axisymmetric jets and wakes have been set up
according to the constraints of the mean momentum and
turbulence energy equagions for self-similar flow.

The measurements indicated th?t each of the five flows
were satisfactorily self-preserving in both mean
velocity and turbulence. . :

Probably the .dominant character of these
axisymmetric flows'is that the turbulent structure is
relativ%ly independent 9f the value of g:. This is
illustrated by the fact that the shear stress parameter

PR

go(=2% at y=L,) varied ‘from a minimum of .0155 to a
Us
maximum of .0170, a range of less than 10%. Since g, is

inversely proportional to RT’ this means. that Rp varied
from 40.7 to 44.7. -

The turbulent kinetic enexrgy shows little
variation between flows for the three jets in which this
was measured. Measurements of the longitudinal turbulence
in the wake would lead one to expect the turbulent kinetic
energy of this flow is somewhat less than that of the
jets.

Two methods of prediction have been developed.

Both are integral methods and assume a Gaussian shape for

N 1
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the mean velocity profile. The first is based on Townsend's
original large—eddy equilibrium hypothgsis in which the
transfer of energy down the scale of eddies is assumed

to occur in a quasi-viscous manner and the turbulence is
also %gsumed to be structurally similar in all flows.

When combined with an equation which relates the ‘large

eddy size to the rates of strain in the mean flow

(assumed to be homogeneous) a solution is obtained. Two
empirical conétants are required, and are determined
from the measured growth of the jet in still surroundings
and the small-deficit wake in zero pressure gradient.
The latter flow is not well established and indeed is
not strictly universal; nevertheless 1t is shown that if
a slanting axis system is used in which the 1onqitud}nal
axls corresponds to the locqs of y=Ly along which the
rates of_str;in are “more near%y homogeneous,the rate of
growth is reasonably well predicted.

The second theory ié based on Townsend's
later work in which the qntegral form of the complete
energy equation is u§ed, Le is assumed constant, and the

Lo

unknown shearing stress, uv, is assumed to be a constant

2
proportion of the average turbulent energy, %“, which
depends on the strain which the flow has experienced. ‘

. . 151 .
Good predictions are made when :g 1s assumed to be
o

direptly proportional to the average total strain.
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An equally good embirical prediction method
is to assume that the turbulent Reynolds number of the

flow is the same for all values of Yo and equal to that

U,

for the jet in still surroundings.

5-2 Minor Conclusions

¥4

A satisfactory method has been developed for

setting a prescribed adverse pressure gradient which

, involves an approximate one-dimensional theory used

iteratively with exper}mental measurcments. Two or three
iterations~are usually sufficiént to give an adequate
distribution of porosity for the venti}ated working section.

The rate of growth of the jet in still
surroundings seems to be well ‘established (+1%), although
there are some measurements that disagree with this
universal growth rate. The turbulence, which is more
difficult to measure, is much less universal.

In agreement wfth recent workhof others,
it is concluded that the self-preserving small-deficit
wake 1in zero pressure gradi?nt is not universal, but
élways depends on the turbulence introduced by the body
which produced the wake.

Intermittency measurements indicate that the
non-dimensional standard deviation, %$, for the position

of the'ga\face separating the turbulent rotational from®
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the. outer irrotational flow is ‘the same for &ll the §elfr

.

preserving flows. This is consistent with RT being

effectively the same since both theories show that %‘ is
. Ly

k]

a function of RTL

o

5-3 Suggestions for Further Work

A self-preserving wake with larger

U,
U,

o

should be measured, since it would provide a more stringent -

o LN

test of the theories. .

The present results should be compared.with
differentiﬁl methods of prediction in which the turbulence'
energy and the indibidual components of the Reynolds

stress tensor are modelled.

o
-

The rate of dissipation of turbulence energy

should be measured for these flows.

”
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Values of go and B/A from Measured Flow

and the Resultant Values of a and 8.

Still-air Round Jet

Small-Deficit Round Wake

Rodi (1972):
present work (with

Rodi's high intensity

Rodi (1972)
{collected values)

correction)
‘ lgo | .0164 .0492
B/A .0656 0
o .0492
B 10.16
BQ 154.9
Table 2 ~ 1




Longitudinal Probe Positions for

Traversing Gear Stations

»

-

Station x (in.) Station x(in.) Station x(in.)
(2-1) 23.18 (371) 59.25 (4-1) 95.37
(2-5) 32.06 (3-5) 68.13 (4~-5) 104.25
(2-6) 39.44 (3-6) 75.51

(2-10) 48.18 (3-10) 84.26

A <t
Table 3-1
Jet Working Conditions for Self-preserving
Streaming-flow Cases
G Pipe inside Working pressure| Longitudinal
diameter (in.) (psig.) position (in.)
.85 .178 " 19 ~-2.12
1.83 .303 20 -7.88
A
3.00 .303 30 -6.00
Table 3-2




Table 4-~1

Growth Information for Self-oreserving Jet, G = 0.85

[T

Diameter of jet outlet (b) .178
Jet pressure (at pipe inlet) = 19 p.s.1.qg.
Xyt ™X0 = +10.1 in.
xo (virtual origin) -~ = -12.3 in. -
m (best fit‘to U= (x—xo)m) = -,732
m (best fit to Up= (x-Xg)™) = -.719
m (calculated for G = .85) = ~,740
Co (Lo = Co(xX—X%0)) = .0311
L
Values at Measured Stations
station, X=X XoX0 U, Ug G Lo (in.) | Re(UgLy/V)
; b :
(in.) B (ft/sec) (ft/sec) (x10%)
(2-1) 35,4 199 57.49 49.11 .854 1.10 2.81
(2-5) 44.3 249 49.53 41.43 .836 1.38 2.98
(2-6) 51.7 290 44.49 37.03 .832° 1.61 3.10
(2-10) 60.4 339 39.01 33.45 .857 1.88 3.28
(3-1) 71.5 402 35.14 29.93 .852 2.21 3.45
(3~-5) 81.4 457 31.31 27.08 .865 2.50 3.53
(3-6) 87.8 493 29.86 25.59 .857 2.75 3.67
(3-10) 96.5 542 27.78 23.73 .854 3.01 3.72
(4-1) 107.6 604 25.56 23.31 .873 3.35 4.07
(4~5) 116.5 654 25.04 . 20.44 .816 3.61 3.84




Table 4-2

Growth Information for Self-preserving Jet, G = 1.83

Diameter of jet outlet (b)
Jet pressure (at pipe inlet)
¥jet~¥0 .

xs (virtual origin)

m (best fit to Up=(x-x5)™)
m (best fit to Ugx(x-x0)™)
m (calculated for G = 1.831
Co (Lo = Co(x-X%0))

N

.303 in.
20 p.s.i.q.

+3.6 in.
-11.5 in.
-.777
-.836
-.793
. 0452

Values at Measured Stations

X=Xy

station X=Xo T U; U e Lo (in.) | Re(UgLg/V)
(in.) (ft/sec) | (ft/sec) (x10%)
(2-1} 34.7 115 54.1 97.1 1.79 1.586 7.89
(2-5) 43.6 144 43.2 81,2 1.88 1.98 8.37
(2-6) 50.9 168 38.8 70.8 1.82 2.32 8.56
(2-10) 59.7 197 33.6 63.0 1.87 2.69 8.83
(3-1) 70.8 234 29.5 54,3 1.84 3.23 9,13
(3-5) 79 0= 263 27.0 49.0 1.81 3.56 9,09
(3-6) 87.0 287 25.3 45.7 1.81 3.91 9.31
(3-10) 95.8 316 “23.4 41.8 1.79 4.37 9.51




Table 4-3

Growth Information for Self-preserving Jet, G = 3,00

* Diameter of jet outlet (b) = ,303 in,
*  Jet pressure (at pipe inlet) = 30 p.s.i.q.
Xyer ™0 = +0.5 in.
Xo (virtual origin) = -6.5 in.
m (best‘;it to Ui=(x-%0)™) = -.837
m (best fit to Us«(x-x0)}™) = -,852
m (calculated for G = 3.00) = -,833
Co (Lo = Co (xX-%p)) = .0570
Values at Measyred Stations
‘) .
station X=X X=X U, o G ’ Lo (in.) | Re(UgLo/V)
{in.) - b (ft/sec) (ft/sec) (x10°%)
*(2-1) *¥29.7 98 41.6 124.4 2.99 1.70 1.10
(2-5) 38.6 127 33.0 98.4 2.98 2.21 1.13,
(2-6) 45,9 151 29.6 88.7 3.00 2.61 . 1,21,
(2-10) 54,7 181 24,7 74.4 3.01 3.13 1.21
(3-1), 65.8 217 21.3 63.9 3.00 3.72 1.24
(3-5) 74.7 246 19.3 56.6 2.93 4,26 1.26
{3-6) 82,0 271 17.9 52.9 2.96 4,65 1.28
*(3-10) *90.8 300 16.2 47.8 2.95 5.20 1.29
*from pressure profiles
'




£
Table 4-4
Growth Information for Self-preserving Wake, G = -.54
i "~ Diameter of wake body (b) = ,25 in,
*pody *° = +3.7 in.
! X9 (virtual origin) = 11.1 in. ‘
' m (best fit to Uj=(x-xo)™) = -.600
i m (best fit to Uge=(x-x0)™) = -.630 .
. m (caiculated for G = ~.54) = -_593
- = Co (Lo = Co(x-x¢)) . = ,0358
Values at Méasure§ Stations
station o x=xo | . Ui Uo G Lo (in.) | Re (UsLo/v)
t ’ 3 {(in.) b (ft/sec) (ft/sec) (x10%)
r

1 (2-6) 28.3 113 45.90 -28.70 -.625 1.09 1.63
¢ (2-10) 37.1 148 40.77 ‘~24,27 -.585 1.34 1.69
(3-1) 48.2 193 35.85 -19.90 -.555 1372' }.78
(3-5) 57.0 228 32.50 -17.70 -.545 2.03 1.87
(3-6) 64.4 258 30.30 -16.40 -.542 2.31 1.97
(3-10) 73.2 293 28.04 -15.12 -.540 2.63 2.07
(4-1) 84.3 337 25.68 ~-14.10 -.549 3.05 2.24
(4-5) 93.2 373 24.15 -13.00 -.538 3.32 2.25




'

Average Values of Normal Stresses at Center of Flows

)
'

—9 -2 =2 —2
G 9 u v_ w_ q_
U} U3 Ul U3
85 .0412 } .0397 .0393 .1202
]
1.83 . 0454 .0380 .0390 L1224
ﬂ' s 4 .
s 3.00 .0404 .0374 :0368 .1146
-.54 .0321
o .0546
Measured Constants
1
4
; # Co ' go(%% at n=1) - Intermittency
cvalc. from| from meas. Y.S o
Co and G | turbulenge Lo- Lo
P .85 .0311 .0170 .0170 1.79 .265
’ 1.83 .0452 .0155 .0154 1.86 .264
3.00 . 0570 .0158 .0145 1.77 .280
-.54 .0358 .0168 — —_— —_
0 . 0910 .0164

.

¥

'S
Average Values of Mean and Turbulent Quantities

&

for Self-preservirng Flows

sy L9

o
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Table 4-6
Growth Information for Still-Air Jet .
. for jet pipe source
Diameter of jet outlet (b) = .178 in.
Jet pressure (at pipe inlet) - = 20 p.s.i,qg.
#jeg X0 = -0.7 in. .7
x0° (virtual origin) \ =.18.4 in.
. Co~(Lo = Co (x-Xo)) L = .0964
4
for square profile source
Diameter of orifice - = .21% in.
Jet pressure (upstream of orifice) = 9 p.s.i.qg.
Xiet ¥ ) . = -0.7 in.
xp (virtual origin) = 18.4 iam.
Go (Lo = Co (x-X0)) = ,0964
. Values at Measured., Stations ‘J
X-Xo X-Xg Uy Lo(in.)- Re (Usko/V) Details
(in.) b (ft/sec) (x10%) -
7.6 43 - - 132.8 .73 5.05 . ]
’ = %
11.6 65 - 87.1 1.12 5.08
15.6 . 88 . 63.3 1.53 5.04

19.6 110 + 50.8 1.88 4.97 Jet pipe source’
39.6 222 " 24.9 | 3.82 4.95 \

51.6 290 18.6 | 5.10 4.94 ’

—_— — -,
39.6 222 » -- 3.85 - Horiz. Z
51.6 . 290 -- | 5.00 ° o Lo traverse  gonare
39.6° 222 . | 3.83 - Vert. profile

- i : - traverse source
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1

Growth Informition for Small-deficit

Wake in Eero Pressure Gradient

\Diameter of wake body

Xbody—

.f

X0

P

&

x¢ (calculated by fitting Lg’«(x-xq))*

X9 (calculated

xg {average of

go (calculated

RT (calculated

i
v

-1
by fitting U,

above two),

(x—xo)}:,;f;

from go=U;L¢/6Uq (x~xg) ) *

from RT=k/go)*

+3.5
- 14,1
16.0

15.0

.25 in.

in,
in.
in.

in.

.0221

31.3

" Values at Measured Stations (using average x,)

©

A

X-X0 Uy Us Lo(in.)| LoUy Re (UoLo /V)
{(in.) (ft/sec)| (ft/sec) Up (x~-xg)
h (x10°)

. 8.2 103.2 | -31.50 .288 ‘115 £.73
17.1 102.4 | -19.08 .445 .14b 4.42 :
%24 .4 101.8 | -15.48 .505 .136 1.07
%33.2 101.7 | -12.96 555 .131 3.75
x44.3 101.5 -10.64 610 131 3.38

} . :
*53.1 | 101.3 ~9.28 .646 .133 3.12
*60.5 | 100.9 | T=8.51 676 .132 3.00
%69.3 101.0 -7.74 708 .133 2.85

g

*Using values from

+

A ‘
Using average Xjp

stations marked with

Table 4-7

14

(*?

r



oo w / .
°
A ; .
Frequency
Self~preserving - Ue/2 + Uy
Flow . f Lo
. first self-
preserving last station
. station . }
'\ (&= -85 ) 74.6 : 9.7
N ) s *
G =1.83 42.3 | . 10.1
G = 3.00 - 37.2 i 7.7
G = -.54 (wake) 15.1 5.3
G = 90.9 19 7
Gr= = (Wygnanéki and ® '
Fiedler (1969)7 ) .61
x/b = 90) '
Relative Frequency of Spectrum
’ - of Longitudinal Turbulence
3 ) v

[}

Table 4-8 o

"3
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Growth Prediction for Large Eddy Hypothesis and

Using B from Equation (60) to evaluated B/A
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006-
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. 054

.04

. 034
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. 01n v
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Predictiqn of Shear Stress Parameter for the Large

Eddy Equilibrium Hypothesis, using B from Equation (60)
to, Evaluate B/A
'oXoJo) valugs calculated from measured

growth and momentum equation

B 0Q values calculated from turbulence

T measurements

L

value for still-air jet

.00
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. linear relation for B/A 3
»
\ ———————— quadratic relation for B/A
) \ . . e
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/ OO O measured values o
- ! Q
! -
1 N
!
-
. G
T Y T ) T T T T )
-1 1 4 5 6 7 8 9 10 11
‘ L3




.028 1
0267
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Predictions of- Shear Stress Parameter for

the Large Eddy Equilibrium Hypothesis

linear relation for B/A

*

-~ =— = -« quadratic relation for B/A -

OO Ovalues from measured growth

3
.020 OB Hvalues from turbulence é =
. measurements
f N
Igo { J1
.018: - -
C). E] — —_ — g
value for still-air jet —
1016.‘ O -
Wakes Jets, .
o G
.014 Y T T T T Y T —T
-1 3 4 5 6 7 8 9 10




.12 - ,v ’ Growth Prediction for Energy Integral _ 4

M wakes Jets Approach and n=.75 / -

. .10 4 .

s value for still-air jet—

.08 -1 ]

Co
006/-‘

'

OO0 measured values

.04-1

.02
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i
Y I R 1 T T

«

Prediction of Shear Stress Parameter for

Energy Integral Approach and n=.75 ‘ =

L4

® values from measured growth -

oY)
O30 values from turbulence

measurements
., 018+ . -
&
0 o &
! value for still-air jet —
L0164 _ o 4
lth Eg y
' ; D]
0014- _ -y
.012+ .
-010 1 A T ¥ T L4 T L4
-1 1 2 3 6 7 8 9 10

“bra
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(geometric similarity)
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settling chamber screcns .
(which support jet supply pipe)
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. » Instrumentation .

Y L
total pressure

. hot-wire probe
‘ o - prassure probes
M)
y static
Iy p - pressure
" . Ty - N h’ Y.
‘ . DISA : . , statham ‘ -
55A01 ) * . v 3 psi.
nnemometey ransducer
7 \\
Y
\ l - o v * -
® DISA
. _ 55DL0 tunnel reference
. Linearilzen . -
. . . . press&\e
a
t+——9*| CRO ‘
Y . Alcohol
Manometer
p ) HP 3400A
RMS Meote]
r Y Y
10 sec. 10 sec. 10 sac. 10 scc. Function
a Time Time Time Time Control
) Consfant Constant Constant Constant Box
) 2 4 1 < . 1'- ‘b‘
| Computer Interface
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}g)twviggf*

STATION -5, O1.°6,

J P 93
15.5 3 4290 -D.J0°00

< 1G, b ah 3357 ~ 500
16.9 3 ANVS =0T

l7o S.,,) l "(}.:‘LI)?A

17,5
17575

\).(’103
4,258 0,971

~Joa iVl

18, 45759 =020

1625 4.99%%

1 "'O ('cryy

18.5  5.2793% ~0.6540
18,75 5.6451 =0,5909
19. 500383 ~0.6451
19.25 G633 ~0.6165
19,5 16,2871 -0.5%15
19,75 6.2634 <5995

20. 6.0997
20.25 5,35

~0.6173
33 ~.GOT

>
20.5  5.,%444 -0.,06521

20.75

5.,10359
21, 4,5459

~0.65G4
=0.5345

21.25 4.5 ~Oj/ ~0,5530
21.5 4.17791 -o.5f95

5 3.9057 L4554
22. 3.65614 -o.&ng
22,5  3.069  0.1179
23,  3.,45018  ~0,0478
23.9  3.47652  =0.029%
24,  3.4746  =0,0180

Example of

a

0.4210 =01 =0,116

0.53662-01

Fie.
Pita Prosram h et
“1?/11’ D, WIREOAS AvOvVe,
FFe40 VARl VATE
0 AL, ~0h DN -0 8007
0159, -6 000 01 -0, laﬂ° ~-nl
0,50 -0 LA956H - =0 e -0
0.9411:~01 021751 00 J‘iﬁﬁ an
Oocene GO 0.50000 00 ~0L.90857 60
0.32747 00 8,200,700 =0,%914k 60
035775 0N 0.39497 09 0.9 79,700
0.,4340° 00 0,29948 (05 -0.99345 1610)
0,44007 0N 0.,25007 00 ~0.,993%. 00
0,357 U0 01731E 00 -0 ‘)ﬁJI on
041610 GO Q.1839F 00 -0.95%77 60
0.3795F U9 016735 00 ~0,97048 G0
O,SASSE 03 0316285 00 -0,99%5 Q0O
0.,354TF 00 0.2298F 00 -0,99.9:. 00
0 3811‘ 0% 00,2300 00 -0.,92:.50 00
0. 41f§' 0@ 0.1520r 03 -0,9583E 00
O.;’S”‘ OD 0.1775% 00 =0.9921E QG
0.,4309% 0o 0.2151E 0Q ~0.,9008% 00
0,4023% 00 0,2012E 00 -0,9¢237 00
0.35952 00 0,2542% CU =0,9197.2 00
0.29412 00 0.2177c 60 ~0,9535c 00
0.2101E G0 0.13937 00 ~0.9951% Q0
011705 €O 0,24597 Q0 -0.9843= 00
0.1390E-01 0.6478.-01 ~0,2070% 00
2558 ~00 ‘O.IQSCL»OI -0.3624=-01

1..~01

~0,26591~02

Hot-wire Calibration Program Output

PO
0.150
0.753
2.112
3,577
5,21%
7.0p5
10,93
C 1385
17.354
20,197
23,765

26,00

VEL iB FL
8.42  3.676  0.617-
18,52 4.039 ° 1.365 L
31,63 4,516 2.0 %
IRE; 4.473  2.951
471 4,503 3.626
57.¢2 4,693 4.085 -~
10,50 4.528 4,903
8l.13% 4.976 « 5.654
90.65  5.008  G.7%4
97.34 5,064 6.75%
106.15 5,124 7.o0
112,32 567 7615
R ]

F—

[ ‘s\ib-

Fig. 3-
Vrk 4 B+ e2
2.345 13,51
3.2 16.31
S “” 18,63
4,424 2D.01
4,770 21,10
5,067, 772,032
5,459 2351
5,903 24,27
6, 0G7 295,08
6,254 5,04
6451 0625
6,609

26,69

3-9
\
IR )
10
10
10
10
13
28
25
24
28
36
26
31
17
21
16
18
37,
31
31
33
24
15
23
10
10
30
10
%
10
s
ZERO
0.831
0.0G1
0,05
0.055
3.056
0,056
0.056
0.056
0.056
0.055
0.055
0.056




Fig. 3-11
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s SIATION 287 112,, 6/1/70 o
7FR0: Q.20 AP0 FRUIV. .
PREF)-P(5) = 11.66 MI1.H2D -
‘ 1A.5 17(C)-T (8)= 11.57 MLH20 VELQCITYZ 45.07 FI/3EC |
15, PEY-2(S = 11.58 M1LH20 ELOCTTY = 45,10 FI/56C
15.5 PO)-P(SY. 11.96 MLH20 VELOZITY= 45.08 FT/SEC
16, PO-P(3) 11.92 11,120 ELCCTTY = 44.97 J1/55C
« 16.5 PO~z 11,42 MNP0 (VTN = 44,73-FI/SEC :
. : 17. 2P =-,$=,10.5 1,420 VEICCTIY = 43,12 FI/350 L,
: L1705 PO S 8.H M0 B VRLODTTY = 39,83 FI/SEC
L 13, PEY-2(9 = 6.25 fLH2C VELOCITY = 33.11°FTI/572
18,5 . P(D-F(S): 4.09 MH20 JELCITY = 25,81 FI/S7C ' .
f9, POY-PSY T 2,71 11LH20 VEVESITY = 21.82 FI/SEC -
19.25 2()-P(5) = 2.04 14.M20 VBCTTY: 18,95 YT/7SEC '
| , S 19,5 SO -PAD T 1.65 M1H20 VEL(CTTY 2 17.02 FI/SE .- .
| 15.75 PO -PXS) = 1.4% MILU20 © -7 VELOTITY= 15,87 FI/3:C -
| ) 20. =Pz 1,42 01,420 CLCCITY = 15,77 FI/SEC # S
@ Z7RIZ 0,19 M1H20 ULV, ' ! .
PREA) - (S) = 11.59 M1.HP0 ‘ . ) ' N “
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Appendix A

TWO-DIMENSTIONAL EXPANSTION

Most wide—aﬁéle expansions are built
with straight sided walls, and suéficient screens
are added to eliminate or reduce unsteadiness '
associated with flow separation. As the number, *
placement and pressure drop coefficient of the screens
are usually determined by a combinagkon of guesswork
and experimentn such an expansion is often wasteful
of power and may still have regions of high gurbulence
due to local separation and reattachment.
The more rational approach used in the
present expansion was first suggested by Hughes (1944)
and Sqlire and Hogg (1944). Hughes developed the
theory and pointed out the salient features of the
design. His numericai solution made use of a series
expansion. The present availability of digital
compﬁters nowtmakes direct integration the more.
logacal approach. | .
Cibson (1959) describeé the design and ’
building of such an expansion for a wind Funhel, and
his theoretical apbroach is followed, although the
calculations are déscribed in more detail. The /, "

expansion described by Gibson was rendered axisymmetric

by making its.area at each‘étation the same as an,

I
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appropriate two-dimensional expansion of the same
léngthu There is, however, an ambiguity in such

a cdnversipn, as the length to diameter ratio, and
thus the wall slope, of such an axisymmetric
expansion depends on the width of the two-dimensional
expansion, and there appears to be no rational way
of choosing this width. - Although not ftated, it
appears that Gibson chose the width of*thé two-
dimensional expansiog to be the same as the inlet
height. ) N
This problem pius the relatjive ease of

construction, led us to build a two-dimensional -

"expansion.
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THEORY

A desirable wide—ang{e diffu§er would have
the velocity on thé walls éénstant everywhere except
at one point. The separation iﬁduced by the large
adverse pressure gradient at that point may then
be controlled by a screen or by blowing or suction¥*.
The theory should give the wall profileuand indicate
the amount of boundary layer control needed at the
discontinuity. Half such a proposed symmetrical
diffuser is sketched in Figure Al.

For the purposes of calculation the flow
is considered ideal and irrotational. The diffuser
Has an expansion ratio of A. The outlet velocity
.is assumed to be 1, and the outlet half-width to
be 7. On the curved walls tge velocity is to be
constant, and equal to A and 1, upstream“and down-
stream of the discontinuity, respectively. This

. problem is best solved using complex variables. 1In

this representation position is represented by a

complex variable Z = x + iy, and the flow is represented

by a complex potential, W = ¢ +~imx where ¢ and ¥ are
the potential and stream functions of the velocity
field, respectively. Letters A-F identify points in

-

this complex plane.

{

F -

*If a screen is used, there will probably be no pq@ssure
recovery, and ‘'expansion’' would be a better description

than 'diffuseN . However, to avoid confusion, the
word diffuser will be used. .

~



¥

«

- A4 -

Solution of the problem involyes operating
on the complex variable Z with an analytic transforma-
tion, or transformafions, that conveg§ the boundaries
of the flow into gnés that have a recognizable solution.
For this problem, the first transformation is to
the hodograph plane defined by *

dw

H= - ln(d7

- In (3) + i (al)

which transforms the problem to that of flow in a
semi-infinite channel with a source and sink of
strength 7 in the cgrners, as shown in Figure A2.
Letters A-F identify‘points that correspond to

those in Figure Al. V is the magnitude of the flow,
and 6 is the angle of the flow direction, both measured
in the physical Z-plane.

‘ks originally postulated, there is a
discontinuity at the point where the flow changes Speed\
abruptly, and there is a sp}ral boundarly there, as
the flow angle must go to infinity as the discontinuity
is approacheé. |

The problem in the H-plane is now transformed
to that of a source and sink on a semi~infinite plane, -
the T-plane, by means of the Schiwarz-Cristoffel

[
transformation

¥

i - .
H = = "In{)) cosh T
T () : (1) (82)

AN

,, i
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This plahe is shown in Fiqure A3, and again the
characteristic points are denoted by the letters
A-F. It is easily seen that this is the upper

half of the problem with a source and sink strength
27 located on the:real axis -1 and +1, respectively,
and with no boundaries. The solution to this is

well-known, and is

when the real part of T is zero or qﬁfinite
¢ = 0 from expression (A3). Then points F, E;, and 1
E, arc points where ¢ = 0 and are also shown in the
physical Z-plane (Fig. Al). Similarly, ¥ = -1 from
A,D to B,C, and equals 0 from E; to A,D, and frém
B,C to E;. . K

Solﬁing (A3) for T gives

\
2)
/ T = - + 1 = coth (E;)
I 2
. c -1
then
i - .
H = = In ()) cosh 1 [éoth (gj]
but '
az = e aw
and thus

az :’exp{}im cosh ™ [coth (gji]dw

S

(A3)

(pd)

(A5)

(A6)

(A7)
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where
1n§X[ 4
M = T (A8)
Now - .1 5 D
cosh {(x) =Ih1&<+dx - l]
—
Fig
and thus W
_ . ) 2 cosh (s}
cosh l[coth (g)] = 1n L 1n[coth (g)]
2 sinh (g) "
) (A9)
SO that ' ’ :x/

dz = exp |1 M 1ln [coth (g{] aw

1

. This cannot be integrated in closed form
and was.therefore solved numerically on a digital
computer. A program could have been written to
integrate the general complex equation, but ;nly
the values of x and y when ¢y = 0 (for the walls)

and for ¢ = 0 (for the screen positiony are required.

The choice of the ¢ = 0 line as the position for the

rh

screen was madce for two reasons. [irstly, the ¢ — O
‘line goes through the discontinuity where boundary
layer control is needed; and secondly, the line, like
all constant ¢ lines, is at right angles to the local
)

streamlines and, as will be shown in relation (A21),

‘the flow speed.across this line 1is the same at all
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-

points on the line. Thus the drop in total pressure
: <

across the screen is the same for all streamlines,

"

and therefore the ideal flow pattern is not affected
by the presence of the screen, and at the diffuser

outlet the flow will have uniform velocity.

When ll) =0 '\
dz::[gfp i M 1n oth (5 :Ildé (A11)
but ¢
-] o
) coth (4) = e} cothlu‘ (A12)
where
n = 0 when & 2 0 L
n =1 when g ¢ 0 . ﬁ
Thus
ln[}oth (ﬁ = nir + lnjcoth I?}
Ml (313)
and
, . n 1
. eimﬂnlw) = e ~in(x7)_ L , from (A8) “
A (AL4)
Using (Al3) and (Al4) in (All) and separating
Z into its real and imaginary parts gives
cos{;i ln{;oth l%ﬂi}dﬁ
% = = - -
Xn (A15)



sin[‘rﬁ-l 1n Eoth [{f‘”dgﬁ
= . =

o

For the other case of interest, where
T ! [
‘' coth () = coth (—1[%’) = =i cotl%l

and 1

|
aw = idw/‘t

then )
az = i eXpli M 1ln Eot I’LI—] dvy
AN 4
and
-sm[;; 1n E d{/
dx = |
cos[rjl in kot ,%l_ﬂdy . Y
~ dy — -

W

In gener?l, the speed of the flow is given by

(Al6)

(Al7)

(a18)

(A19)

(A20)
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and for ¢ = 0 this becomes

\/ A
A J— —_— ~ \/;l o (A21)
‘ expoLHn t?thiu cxpi:iM]Jlkétl%m

‘ _

~ Thus the speed of fluid across the ¢ = 0
line ;s constant acros; the width of the diffuser
and is equal to the geometric mean of the inlet and
outlet speeds. ?his is different from that predicted
by the one-dimensional actuator disk thegry which '
predicts this speed to be the arithmetic mean of the
inlet and‘outlet speeds. Gibson apparently was not
aware of this relation when he designed his diffuser
as he used Squire and Hogg's one-dimensional theory (7)
to determine the screen pressure drop coefficient that
would maintain constant wall pressure. This one-dimensional
theory predicts thal the pgessure coefficient for such a
screen should be

. . (-~
. K, - B{x-1)

“D )L“fl [
- (A22)
whereas the above two-dimensional theory predicts that
2 ¢
K — )\. - 1_ v
2-D py (n23)

These become significantly different as X increases.

/ .

~



when (Al5), (Al6), (Al8), and (Al9) are

integrated numerically a difficulty arises, as both
coth and cot become infinite as their arguments tend

to zero. However, for small values of the arqument

coth %- and cot % ~may be approximated by %
and % , respectively, and then the equation is

integrable in closed form. If these equations are
integrated between the limits of 0 and ¢, and 0 and

¥, respectively, the following equations result.

When ¢ = 0O, “
n———-’ Eam
i N )
X =-~§~é~a~ cos{& lnléi - M sin M lnléﬂ
(=) | P _ J

e ——

y = f*,~é~_~ in{é ln(Bh + M.coslgg}n,g;

(2" L .

<

\

for small ¢ (it 1Is

noted that these relations differ from those given
by Gibson (6)).

When ¢ = 0, 0 2y 2 ~-w ;

—

M ln,*!ﬁT

- "’J

. N Ul
sin, M 1n!71
L Wi

b
i

(M2+1 )/ % v

.

r‘-— -1,
vln‘M lnl f‘+ M cos

e

4 '
5 — cos[g lnl7li~
(Me+1)/ 2| 1

e

-

for small .

’(A24)'

(A25)

(A26)

(A27)
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This allows a choice of finite starting
value of dx and dy for the numerical integratign
with the starting values of x and y determined by
equations (A24) - (A27). E )

Some trials had to be made to determine
a satisfactéry matching point between the approximate
analytic solution and the solution using numerical "
integration. Further, it was found that the step
size for the numerical integration had to be very
small near the disgontinuity qnd therefore had to

be increased further out in order to maintain .

reasonable computation times.
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DESIGN AND CONSTRUCTION

1]

1S

«

<

7 ~ The previous theory gives the wall

é

v

shape for an infinitely long diffusef with an ex- .
pansion ratig Ai  This theoretical designimust bs‘
truncated to én écceptable lendth,‘fhe choice béing -
set by X, fge acceptable diséontinulty in wall slope
at thedinlet'and outlet, and the available room. This-
in turn'meags that the actual bxpansion ratio will ‘
) :

be somewhat less than X. A few trial calculations,
are usually needed to achieve a saﬁisfactory cdmpromise.
A second problem with the theoretical design is that
the walls and-the screen'approaching the discontinuityn
form a tight logarithmic spiral around the discontinuity,
and must be suitaﬁly faired. J

For the proposed 'difﬁuser', an overall
expansion ratio of 1:2.62 was needed, and a 'diffuse%'
with a theoretical expaﬂsion ratio of 1:2.9, suitag}y
truncated, was chosen. The degree of truncation was
. *based on Gibson's tests. Figq;q A4 shows the profile
of half of this [diffuseff. vThe dotted lines nea£
the dlsconti;uity are the faired positions for the
walls ané the screen that were used in the actual o

'diffuser®. . .

Before the prototype was cohstructed tests

-~

.
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were made on a 1/20 scale modq}. A piece of square
mesh wire screen of appropriate pressure drop
coefficient was used to con£r01 separation. Tufté
were placed on all the walls to find any;regions of
.separation, and none wer;mggﬁwﬁa As both the
turbulence level and Reynolds number for the model
were ‘lower fhan for the'prototype, this gave
.confidence that the desigh was sound.

o

PERFORMANCE TESTS

As noted in the main seZEion of this
report a total préssure survey was made at the tunnel
outiet before the screens and honeycomb were installed
in tﬂe settling chamber. No unsteadiness' was noted
and the variation of mean velocity ovef the out1e£

’
(outside of the‘boundary layer) was less than .5%.

As well, tufts were fastened to all the walls and

the screen inside the‘iijfuser to see if there were

any regions of separation, especially in the corners
just upstream and downstream of the screen. Observation
at several speeds showed no evidence of separation or

: . .

any Zignificant secondary flows.
1
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APPENDIX NOTATION -

!

¥

A, B, C, b, E, F,, F, ~ points on the complex physical

< < Yo,

plane, and on the transform
8

planes.

3
4
el . . - . 4 )
pressure drop coefficient for one-dimensional
expansion theory

pressure drop coefficient for two-dimensional
expansion theory ’

constant in two-dimensional expansion theory,
= 1ln(\) /7w ‘

complex number, position on a transform plane
in complex flow theory

meén flow velocity in x-direction
flow sSpeed in Z-plane

complex potential, = ¢'+ iy

real part of 2 ’ | .
imaginary part’of‘z

C?TELBX number,'position on physical plane

. imaginary component in T-plane

direction of flow in Z—élane
theoretical expansion ratio for streamline
diffuser o

real component in T;plane
velocity potential .function, real part of W

I (
velocity stream funcﬁion, imaginary part of W

complex number, position on hodograp?/plane"



. Z—-plane

® .
AL AL |
U= Z | Y= - 17 N
]
v///////// S a
N ¢
) E} 59)‘;2 Fig. A2
g L
L
H-plane /| %
/]
L/
. ; L _ x
L / ;
/] t .
) / ¢
/] L/~
/ / / }
1 F v %
P.-D/fﬁ T,
. /[/ / r/ ej
\ "/n(/\) 7% . In(<7)
L ¢ \
~ £ Fig. A3
T:plane ’
("
o : S 3
A T ////]// 77 T
) A D c )
® ’ , .




[ :
Transition
\ Sectiont
i

B}
\

\

—_— %— T
=30, =0
/ |
/ !
|
§

-10 .0

I
!
|
1
¢

/
!

L“-_—r_\

Profile of Two-Dimensional

40+

204 I
13
C
; H
Screen E !
Position lQ* S
g —
20 30 40 50
INCHES
_loc_l .
&
—201

©

'Diffuser!

4|
Fir§é15creen
Ain, Settling
Chamcer

£~

‘b1a

Y




- Bl -

. Applendix B ‘
| WARD-LEONARD CONTROL SYSTEM q
! 'j INTRODUCTION
T
'
| 2 s ) )
| ! A Ward-Leonard control syﬁiem was built

to con‘cirol the tunnel speed. A 40 H.P. 55b Volt )
3 Ph. AC 1700 RPM electric motor drive‘s a generator
capable of delivering 240 Amps. of D.C. current at
125 Volts. This is connected to the 40 H.P. drive
motor on the wind tunnel. The control u:'u’_t mounted N
/ on the tunnel supplies 120 Volts, 2 R&mps. D.C. to the
, fan motor field, énd 0-120 Vvolts, 0-5 Amps. DnC. to -

the generator field windings to control the E';peed.

Figure Bl is a block diagram of the complete circuit.

&
; ]

[
. MOTOR-GERERATOR CIRCUIT

As tan be seen from Figure Bl the motor-
generator unit is used to power another wind tunnel

drive. A 400 Amp. DPDT knife switch is used to trans-

-

fer the high current D.C. between the two systems. Two
a ?\A » v .
' DPST+120 Volt A.C. relays switch the field winding of
9

the generator between the two control units of the

tunnels, and these relays are in .turn operated from

micro-3witches mounted under the high current knife .

1

,‘ switch. When this knife switch is completely closed




.

l\ . N
it actuates one of the micro-switches.

In the high current D.C. line between
the generator and the switch there is a hand reset
‘overlpad relay set to triﬁ)at 260 Amps. When this
relay trips it opéns the stop line on the 40 H.P. A.C.,

motor control, and the motor-generator set stops.

Figure B2 shows the circuitry for this section.

FAN MOTOR CIRCUIT

s

Figure B3 shows the fan-motor circuit.
The 300 Amp. shunt for the motor-current meter is in
Fhe same box as thé main disconnect switch. The
motor field wiring alsp passes through this box.

‘The Klixon (Texas Instrument Co.)' tempera-
ture sensors are four normally-open bi-metallic
switches, one in each field winding,vthat will close

ff the motor overheats. They are ¢onnected in

parallel.

MAIN CONTROL PANEL

\
The main control panel operates on 120 Volt

A.C. which is obtained through a standard magnetic
motor control switch. A green pilot light indicates

when power is on. The A.C. current is fed to two




autotransformers, and each transformer in turn feeds,

a bridge rectifier to supply D.C. cyrrent to the

fan-motor and generator fields. The autotransformer

in the fan motor field circuit is a tapped transformer
L3

giving a range of output voltage of approximately

40 Volts. It is operated by a six position switch

that is screwdriver adjustcd from the front panel of

the control box. 1In practice this gwitch is adjusted

to give rated output voltage.

vThe autot;gnsformer fo%ﬁthe generator field
current is continuously variable from 0-135 Volts by
magps of a frqu panel knob. It serves as the main
speéd control. An identical auto-transformer is also
mounted iF’a separate portable box to serve as an
extension speed control (Figure B4). It is connected
to a four prong plug-in on the front panel of the main
control box, and a switch on the main control box
transfers control between the two autotransformers.
There is also a green light on the portable box to
indicate when it is switched into the circuit.

Four metexrs on the main panel monitor the
electrical system. A 0-300 Amp. meter indicates the
main ﬁbtor current. In practice this is a most
important meter, and it is monitorel whenever the

tunnel speed is increased to ensure that the rated

[

amperage is not exceeded.
3

-




The other meters monitor the generator

field current and voltage, and the main motor voltage.

A number of safety features are included in
the circuit. 1In additioniio fuses in the lines feeding
each autotransformer, there are circuits that ﬁonitor both
the motor field current and the motor temperature. A |
relay in series with the motor field current line is
held in by the motor field current. If the field
current falls significantly the relay opens and turns
off the.main control panel power. It does this by
opening the stop line of the magnetic motor control
switch. It should be ﬁoted that because of the
inductance of the motor field windings, it takes
approximately 2 seconds for the motor field‘curren%
to build up sufficiently to agtivate this protective
'relay. Consequ?ntly, when switching on, the start
button must be held down until this relay operates.

If the motor field windings should over-
heat at anytime one of the Klixon sensors will be
activated, supplying 120{Volt A.C. to a second relay
in the main control box, as well as to a red panel
light. The contacts of this relay are also wired into
the stop circuit of the magnetic motor control.

| Figure B5 is the circuit for the main control

\ v

box.
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‘ Although not connected to the electrical
system, an aircraft airspeed indicator is mounted in
the front panel of the control box,. and indicates

the approximate tunnel speed.

>
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