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Abstract

This thesis studies intersection theory on projective surfaces with isolated singular-
ities. We review the classical intersection theory on a nounsingular surface, proceed to
an overview of types of singularity that may arise, and then discuss the intersection
theory of Snapper-Kleiman, that of Reeve-Tyrrell, and a modification of the latter
that we propose.

The intersection theory of Snapper-Kleiman applies to varieties of any dimension
but is restricted to locally principal divisors; that of Reeve-Tyrrell applies to arbi-
trary divisors but is restricted to surfaces. Our modification has the same domain of
application as the theory of Reeve-Tyrrell but simplifies computations: it allows us
to prove the theories are all equivalent on normal surfaces. We finish by developing
generalizations of the main theorems on nonsingular surfaces.

Résumé

Le but de cette thése est d’étudier la théorie d’intersection sur les surfaces pro-
jectives ayant des singularités isolées. Nous passons en revue la théorie classique
d’intersection sur une surface non-singuliére, ensuite nous verrons quelques types de
singularités, puis nous discutons de la théorie d’intersection de Snapper-Kleiman, de
celle de Reeve-Tyrrell, et d’une modification de cette derniére que nous suggerons.

La théorie d’intersection de Snapper-Kleiman s’applique aux variétés de dimen-
sions quelconques mais elle est limitée aux diviseurs principaux. Celle de Reeve-Tyrrell
s’applique aux diviseurs quelconques mais elle est limitée aux surfaces. Notre modifi-
cation s’applique au méme domaine que la théorie de Reeve-Tyrrell mais elle simplifie
les calculs: elle nous permet de prouver que les trois théories sont équivalentes sur
les surfaces normales. Pour finir, nous developpons les generalizations des théoremes
principaux sur les surfaces non-singuliéres.
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Introduction

The basic question of intersection theory is “how many times do two curves inter-
sect?” Classically, the question has a satisfactory answer once it is placed in the right
setting. Let C and D be curves, of degrees m and n respectively, on the projective
plane over an algebraically closed field. Then we have Bezout’s theorem: counting
multiplicity, C and D intersect in mn points. It is natural to want to generalize this
theorem.

The simplest generalization is to look at curves on a nonsingular surface X, that
is, a nonsingular projective variety of dimension two over an algebraically closed field.
In this case, which is the subject of Section 1.2, we obtain a version of Bezout’s
theorem that is somewhat more complicated. Instead of each curve having an integer
degree, it has a value in a particular finitely generated free abelian group Num X. The
intersection pairing is then a nondegenerate pairing on Num X whose form is described
by the Hodge index theorem. Once established, this intersection theory allows one to
answer a variety of questions. It provides the Nakai-Moishezon criterion for finding
ample divisors, it provides the adjunction formula for computing the genus of a curve
on a surface, and it provides the Riemann-Roch theorem as a way of measuring the
set of rational functions with specified poles and zeros.

Very general intersection theories exist, applying to varieties of n dimensions that
may be singular. However, many complications appear in this general setting that are
absent in the case of curves on surfaces. As a simple example, two distinct curves on a
surface will intersect in a finite number of points. One can quite adequately describe
this situation by simply giving the number of points. However, in higher dimensions,
subschemes of codimension one will generally intersect in a variety of codimension
two; to adequately describe this situation, one must have some information about the
subscheme. We present a discussion of the intersection theory that appears when the
underlying variety is projective space in Section 1.1. In the case when the underlying
scheme is more general but nonsingular, one defines the Chow ring of formal linear
combinations of subschemes of any codimension. The multiplication in this ring then
takes the place of the intersection pairing, with the intersection of two subschemes

Xi



xil INTRODUCTION

being a formal linear combination of subschemes of various dimensions. The intersec-
tion theory is quite complicated; while versions of (for example) the Riemann-Roch
theorem can be proven, their interpretation is not at all straightforward. When the
underlying variety is singular, one no longer has a well-defined multiplication pair-
ing of arbitrary subschemes, and one has even less algebraic structure to work with.
On can still intersect arbitrary subschemes with a locally principal divisor, yielding
operations on the Chow space. In this case the theory quite difficult.

As a result of this complexity, we will focus on surfaces. Moreover, while a surface
may have singularities in codimension one, it is no longer practical to use the language
of curves on such a surface. It is then necessary to restrict oneself to Cartier divisors.
The theory of Section 2.5 does in fact apply on such a surface, but it no longer has
a simple interpretation in terms of counting intersections of curves. We will focus on
surfaces with isolated singularities, and in fact we will occasionally make additional
restrictions on the nature of the singularities.

Unfortunately, the classical intersection theory on a nonsingular surface does not
generalize in an obvious way to the case of singular surfaces, even when the singu-
larities are isolated and normal. Several new phenomena arise when the surface may
have singularities. The first is that divisors cannot necessarily be moved around by
linear equivalence: on a nonsingular surface, given any divisor and a fixed finite set of
points, we can always find a linearly equivalent divisor which avoids the given points.
If the surface is singular, on the other hand, some divisors that pass through the
singularity may fail to be locally principal. Such divisors are not linearly equivalent
to any divisor which avoids the singularity. A second phenomenon which arises on
singular surfaces is that some intersection numbers may be fractional. Two families
of examples which will serve to illustrate these and other behaviors are presented in
Sections 1.4.1 and 1.4.2.

Singular surfaces also arise naturally in a number of contexts. For example, Hilbert
modular surfaces are constructed as a quotient of h? (where b is the complex upper
half-plane) by certain subgroups of SLo(L), where L is a real quadratic field. This
quotient yields singular and non-projective surfaces. Compactifying them yields pro-
jective surfaces with further singularities. Curves on these surfaces parameterize cer-
tain families of abelian varieties, and the intersection numbers of these curves yield
information about Hilbert modular forms. Resolutions of the singularities of Hilbert
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modular surfaces are known, but the theory is cumbersome; perhaps a more conve-
nient algebraic theory of intersections on surfaces would be useful in the study of these
objects.

Two different approaches have been taken to generalize intersection theory on
surfaces to the situation of surfaces with isolated singularities. The first approach,
taken in the paper by Reeve and Tyrrell ([RT62]), relies on the fact that singularities
on surfaces can be resolved. For any surface X, we know that the normalization yields
a unique normal surface mapping birationally to the original surface. This normal
surface then has isolated singularities which can be resolved by a sequence of blow-
ups and normalizations. The surface X* thus obtained, called a resolved model of
X, is not unique, but any two resolved models of X can be blown up repeatedly to
yield a common model mapping birationally to both. The idea of [RT62] is to define
an intersection theory on a surface in terms of intersections on a resolved model
of the surface. We discuss this intersection theory in Section 2.3. If one can find a
resolved model, this intersection theory is well-suited to computations; all intersection
calculations are reduced to intersection calculations on the resolved model, which is
a nonsingular surface. Such a resolved model is guaranteed to exist, and may be
produced algorithmically by a suitable sequence of normalizations and blow-ups, all
of which can be described in quite concrete terms.

A second approach to defining an intersection theory on a singular surface is
cohomological. On a normal surface, locally principal divisors correspond to invert-
ible sheaves, so intersection problems can be rewritten as problems about invertible
sheaves. On a nonsingular surface, it turns out that the intersection number can
be calculated from the Euler characteristics of several sheaves. Simply applying this
definition to invertible sheaves on a singular surface yields an intersection number
with appropriate properties. This is the approach of Snapper ([Sna60]), Kleiman
(|[K1e66]), and Badescu ([Bad01]), which we discuss in Section 2.5. It proceeds by
constructing a polynomial analogous to the Hilbert polynomial (as used in Section 1.1
to define intersection numbers) and then defining the intersection number in terms
of a coefficient of this polynomial. Some of the necessary background in cohomology
is reviewed in the Appendix. This intersection theory generalizes well to n dimen-
sions, and is more commonly found in the literature than that of Reeve and Tyrrell.
However, it is restricted to locally principal divisors. We will see in Proposition 3.3.1
that any divisor that is locally principal can be replaced with a linearly equivalent

divisor that avoids the singularities, so in some sense this intersection theory evades
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the difficult questions. It is also not at all clear how to go about computing this
intersection number, as it is not obtained from local quantities; one may need to cal-
culate Euler characteristics of a number of sheaves to obtain the intersection number.
Some results (such as Proposition 2.5.14) are available to ease computation of this
intersection number.

For nonsingular surfaces, of course, both these approaches coincide with the clas-
sical intersection number. If a surface is normal and the divisors involved are locally
principal, then both intersection theories are defined. Do they agree?

In Section 2.4, we develop a third intersection theory, based on work by Andreatta
and Goren in [AGO02], valid on any surface with isolated singularities. It defines the
intersection number by making reference to a resolved model, but it makes use of
the fact that locally principal divisors correspond to invertible sheaves, and that we
have a well-defined way to pull an invertible sheaf back from a surface to its resolved
model. This theory can also be applied to divisors that are not locally principal. A
relatively straightforward calculation shows that it agrees with the theory of [RT62].
A theorem about maps of surfaces and the intersection number of [Sna60| shows that
for locally principal divisors on normal surfaces, all three definitions of intersection
number agree.

Finally, now that we have a definition of intersection number on a surface with
isolated singularities, in Chapter 3 we will generalize some of the theory of intersections
on nonsingular surfaces. Versions of the adjunction formula and the Nakai-Moishezon
criterion exist in the literature, and we discuss these. We also present some further
results about numerical equivalence and a version of the Riemann-Roch theorem that
corresponds quite closely to the Riemann-Roch theorem on a nonsingular surface.

As far as notation goes, we shall generally follow [Har77}, although we will need
to introduce some notation of our own. An important exception is that when we use
the words “curve” and “surface” we do not assume nonsingularity.

Throughout this thesis, k will denote an algebraically closed field. We will write
n-dimensional affine space over k as A", and we will denote n-dimensional projective
space with coordinates (zg: -+ - :z,) by Wwo:,,,:zn). If X is a scheme over k, we will
write the sheaf of differentials as Qx/x, and if X is n-dimensional, we will write A"{2x
as wy. If X is nonsingular, then wy is invertible and we can obtain a canonical divisor,
which we will denote Kx. If I is an ideal in k[Xy, ..., X,,] we will write Z(I) to mean
the variety of common zeros of I and if M is a k[Xj,..., X, ]-module then M; will
denote the localization of M by the inverses of all the elements in I. If X is a scheme,
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the structure sheaf of X will be Oy, the sheaf of (locally) invertible elements will
be written 0%, the sheaf of total quotient rings will be written Xx, and the sheaf
of invertible elements of this will be written X%. If F is a sheaf on X, then F, will
denote the stalk of F at «.

A curve will be an integral separated projective scheme of dimension 1 over k. A
surface will be an integral separated projective scheme of dimension 2 over k that is
nonsingular in codimension 1. The field of rational functions on a surface X will be
denoted £y or just ¢ ; if X and X* are birational, then %y is canonically isomorphic
to 5~ so we will generally identify them. We will also use % to denote the constant
sheaf of total quotient rings on an integral scheme; if the scheme is not integral, we
will write the sheaf of total quotient rings as K.

Since we have several different intersection theories on a singular surface, we
have different notation for each: (C.D)gr denotes the intersection pairing of [RT62],
(C.D), denotes the intersection pairing of Section 2.4, and (C.D)s, denotes the in-
tersection pairing of [Sna60]. Once we have shown that they are equal, we will
sometimes use C.D to mean any of them.



CHAPTER 1

Intersection Theory on Nonsingular Surfaces

1.1. Intersection Theory in P”

We will first discuss an intersection theory on projective n-space. Unlike the rest of
this work, this will apply to objects of various dimensions, not only curves on surfaces.
For the proofs of everything in this section, see [Har77, Sec. 1.7]. Throughout this
thesis k will denote an algebraically closed field.

To begin with, we need to know something about the dimensionality of the inter-
section of two varieties:

THEOREM 1.1.1. Let Y and Z be varieties, of dimensions r and s respectively,
in P*. Then every irreducible component of Y N Z has dimension at least r + s —n.
Further, if r+s—mn > 0 then Y N Z is nonempty.

ExaMpPLE 1.1.2. Consider the two surfaces in IP‘(‘%:N:%) given by Z(x1,z2) and
Z(2? + 1o713, 72 + Tox4). The intersection of these two surfaces is Z(xy, Ts, ToT3, ToT4)-
This consists of the points (0:0:0:z3:24) and the point (1:0:0:0:0). So in partic-
ular, one of the irreducible components is a point but the other is a line, of strictly
higher dimension, showing that we may in fact have an inequality. However, if we
restrict ourselves to (irreducible) curves in P?, this cannot happen and the inequality
is an equality: all the components of the intersection are points.

The approach taken in this theory is to some extent a global one, associating cer-
tain polynomials to each variety and then extracting degree information. Intersection
numbers, however, are extracted from local data.

DEFINITION 1.1.3. Let M = @®;2,M, be a graded module over the polynomial
ring k[zy,...,2,]. Then the Hilbert function ¢ of M is given by ¢p(£) = dimy M,
for each £ € Z. Recall that the annihilator Ann(M) of an R-module M is the set
{r € R|rM = 0}.

THEOREM 1.1.4. Let M be a finitely generated module over K[z, ..., z,|. Then
there is a unique (integer-valued) polynomial Py (z) € Q[2] such that ¢p(€) = P ()
for all £> 0. Furthermore, deg Py(z) = dim Z(Ann M).

1



2 1. INTERSECTION THEORY ON NONSINGULAR SURFACES

DEFINITION 1.1.5. The polynomial Py/(z) of the theorem is the Hilbert polynomial
of M. If Y C P" is an algebraic set of dimension r, we define the Hilbert polynomial
of Y to be the Hilbert polynomial of its homogeneous coordinate ring S(Y) as a
k[zo, ..., zn)-module (a polynomial of degree ). We define the degree of ¥ to be
r! times the leading coefficient of this polynomial.

EXAMPLE 1.1.6. Consider the hyperplane H = Z(z,) in P2. Then our module M
is k([zo, 21, 22}/ zok|Zo, 1, 22]. In this case M, is the set of homogeneous polynomials
of degree £ in three variables, not containing z5. The monomials 2%z form a basis
for M, over k, so it is £ 4 1-dimensional. Thus ¢(¢) = £+ 1 and the degree of Z(z,)

is 1.

EXAMPLE 1.1.7. Next consider the curve C = Z(y?z — z®) C P?2. The module
M we have to examine is k(z,y, 2}/(y*z — 2®)k[z,y, 2]. Let M' denote k[z,v, 2] and
M" denote (y*z — 2°)k[z, y, z], where the degree of an element (y2z — z°)f is just its
degree as a polynomial, 3 plus the degree of f. Then we have an exact sequence of
graded modules:
0= M'—-M - M- 0.

So for each £, the degree £ parts form an exact sequence. In particular, this means that
the dim M, = dim M, + dim M}. There are (%2) monomials of degree £ in k[z, y, 2],
so M, has dimension (“;2). Clearly M" is isomorphic to M’ with the degree shifted
by three, so M} has dimension (“~3%2) for £ > 3. So the Hilbert polynomial is given

» ¢(€)_(e+2)_<(£~3)+2)_3l
S\ 2 2 o

and the degree of this curve is 3.
It is obvious how this computation generalizes to show that for a curve in P? whose
defining (homogeneous) polynomial has degree d, the Hilbert polynomial is

8(0) = (“;2) - (“”‘2”*2) Al 1—(d-1)(d—2)/2,

so that the degree of the curve is d. Note also that the genus appears in the constant
coeflicient of the Hilbert polynomial.

REMARK 1.1.8. It turns out that the Hilbert polynomial is in a particular sense
universal. Say a function f on modules is additive if whenever we have a short exact
sequence 0 — M’ — M — M" — 0 we have f(M) = f(M')+ f(M"). The length of a
module is the length of any composition series, that is, any chain of submodules whose
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successive quotients are nonzero simple modules (if no such finite chain exists, the
module is said to have infinite length). Then the Hilbert polynomial is the universal
additive function on graded modules that vanishes on graded modules of finite length.
See [Eis95, p. 487] for more details.

PROPOSITION 1.1.9. The degree function has the following properties:

(1) If Y CP", Y # 1), then the degree of Y is a positive integer.

(2) Let Y = Yy UYs, where Y1 and Yy have the same dimension r and where
dim(Y; NY,) < r then degY = degY; + deg Y.

(3) degP™ = 1.

(4) If H C P" is a hypersurface whose ideal is generated by a homogeneous
polynomial of degree d, then deg H = d.

DEFINITION 1.1.10. Let p; be the homogeneous prime ideal of Z;. Let S be any
ring. Then if p is a minimal prime containing the annihilator of a graded S-module
M, then we define the multiplicity of M at p to be the length of M, over S,.

Let Y C P™ be a projective variety of dimension r. Let H be a hypersurface not
containing Y. Then YNH = Z;U---U Z, where Z; are varieties of dimension r — 1.

We define the intersection multiplicity (Y, H; Z;) of Y and H along Z; to be

tp; (S/(Iy + Inr))-

REMARK 1.1.11. Here Iy and Iy are the homogeneous ideals of Y and H. The
module M = S/(Iy + Iy) has annihilator Iy + Iy, and Z(Iy + Ig) =Y N H, so p; is
a minimal prime of M.

With these definitions, we get a version of Bezout’s theorem:

THEOREM 1.1.12. Let Y be a variety of dimension r in P*, and let H be a hy-

persurface not containing Y. Let Zy,... Zs be the irreducible components of Y N H.
Then

> (Y, H; Z;) - deg Z; = (deg Y')(deg H).
j=1
COROLLARY 1.1.13. Let Y, Z be distinct curves in P?, having degrees d, e. Let
YNZ={P,...,P}. Then

8

3 iY, H; Py) = de.

=1
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P?

FIGURE 1.1.1. The curves H and C in P?

=

FIGURE 1.1.2. Moving curves into general position in P?

REMARK 1.1.14. The number }_, i(Y, H; P;) is a global function of the objects
Y and H. We can see that if we move the objects Y and H independently by any
“smooth” transformation (that is, one that does not change the degree, such as trans-
lation or rotation) this number will not change, although all the local intersection
numbers will. So we will denote this number Y. H, and it will be this number that has

the most natural generalization on surfaces.

ExAMPLE 1.1.15. Consider again our two curves from Examples 1.1.6 and 1.1.7,
H = Z(z) and C = Z(y?2 — z*). They intersect at the points (0:1:0) and (0:0:1).
Adding the ideals, S/(Ig + I¢) = K[z, y, 2]/ {z, y*2) = kly, z]/(y*z). At (0:1:0), the
relevant prime is (z,z). Localizing, we get the k[z,y, z],, ,,-module k(y) (where z
and z annihilate the module). This has length 1. At (0:0:1), the relevant prime is
(z,y), and we get the k[z,y, 2], \-module k(z)[y]/ (y?). This contains the length-1
module yk(z), and the quotient is k(z), so it has length 2. Thus the total number of
intersections is 3, as predicted by the theorem.

REMARK 1.1.16. When intersection theory was being developed, a number of dif-
ferent approaches to defining intersection numbers were tried. One approach observes
that in some cases it is easy to tell what the intersection numbers should be; if the

curves intersect simply enough, we can simply count their intersections. We know
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FIGURE 1.1.3. Deforming a quadratic curve into a pair of lines

that the intersections will be simple enough if the curves are in “general position”.
Defining exactly what “general position” and “simple enough” mean is not so simple;
we will see a way to do this for nonsingular surfaces in Section 1.2.4. So we could sim-
ply apply rigid transformations to the objects, moving them until they are in general
position, and then we would simply count the intersections.

REMARK 1.1.17. A more sophisticated approach would be to observe that inter-
section numbers are discrete; if we had a reasonable family of curves, say obtained by
varying the defining equations smoothly, we would expect the intersection numbers
with a fixed curve to remain constant. Of course, defining exactly what families are
“reasonable” is not so simple, but given such a definition, we would simply prove that
a curve of degree d can be deformed into a family of d lines. We will develop several
kinds of equivalence on surfaces in Section 1.2.1 and Section 1.2.7. We then know
that a curve of degree d and a curve of degree e are equivalent to a family of d lines
and a family of e lines respectively, and it is clear that these two families will intersect
in de points.

ExAMPLE 1.1.18. To apply this theory to some classical questions, first consider
the space of lines in IP?. This is isomorphic to P?: map the line agzo + a2 +aszy = 0
to (ag:ay:as). Then the set of lines through (ayg: g : ) is the variety

Z(O{()a,() +ara; + a2a2) C P%ag ta1:a2)°

If 8 is another point, then the set of lines through these two points is the intersection
of Z(apag + a1a1 + anag) and Z(Byag + Sra1 + Paaz); using the theory above we see
that if o # 3 then

Z(apao + a1a1 + a2a2).Z(Boag + fra1 + Baaz) =1,

which is simply a restatement of the fact that through any two distinct points there
is a unique line.
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More interestingly, we can ask how many conics pass through 4 or 5 points in
the plane. Without loss of generality we may assume that the first three points are
(1:0:0), (0:1:0), and (0:0:1). The set of conics passing through these three points
may be parameterized by taking aoz1 T2+ a120%2 + a2z to (ag:a;:ag). Then if o is
a point, the set of conics passing through it is Z{agayp + a10909 + agapa;), and we
obtain a one-parameter family of conics. Given another point 5 not equal to any of
the four given points, there is a unique conic passing through «, g, and our original
three points.

1.2. Intersection Theory on Nonsingular Surfaces

We will give a brief overview of intersection theory on nonsingular surfaces. For
more details, see [Har77], particularly Section V. The general approach taken here is
to consider some curves “equivalent”, allowing one to replace the curves with equiv-
alent curves so that their intersection is simple. We will see later that when dealing
with singular surfaces, some curves passing through the singularities are different in
essential ways from curves not passing through the singularities. Thus we cannot
hope to simply replace them with curves that have simple intersections.

DEFINITION 1.2.1. A nise scheme is a noetherian integral separated scheme over
k which is regular in codimension one.

DEFINITION 1.2.2. A surface will be a projective nise scheme of dimension 2 over
k.

In this section, the surfaces will generally be nonsingular, but this will be specified
when appropriate.
We will have several examples of surfaces that will recur throughout the text.

EXAMPLE 1.2.3. The projective plane, P2. This is a nonsingular surface, and on
it we already have an intersection theory as discussed in Section 1.1. This will allow
us to check that our definitions are reasonable.

EXAMPLE 1.2.4. The surface P* x P!. Using the Segre embedding, this can be
viewed as a quadric surface, the zeros of zgz; — 2923 in ]P’?wo:___:zg). While still very
simple, this surface is different enough from P? that it is worth considering.

ExXAMPLE 1.2.5. Let m > 1 be an integer such that the characteristic of k does
not divide m. Then the Fermat curve, Mp = Z(z + 20" — 2§) C ]P’%zl:_._:ms)
irreducible and nonsingular. In Section 1.4.1 we will show that the surface Xp =

is
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Z(xP 4+ 2 —af) C ]P’?w0 .....z5) 18 an irreducible surface with a unique singular point

at (1:0:0:0). We will then construct another surface

Xrp=12 ({xiyj — Ty} Y YR yé”) C Plrgmiag) X Py riga)s

the blow-up of the cone on the Fermat curve. See Section 1.3 for a description of the
operation of blowing-up. We will show that this latter surface is nonsingular, and we
will use these two surfaces as nontrivial examples throughout this work.

1.2.1. Divisors. We will generally talk about the intersections of divisors, that
is, formal sums of curves, rather than the intersections of curves, as the algebraic
structure of divisors makes them more convenient to work with.

DEFINITION 1.2.6. A prime divisor on a scheme X is a closed integral subscheme
of codimension 1. A Weil divisor on a scheme X is an element of the free abelian
group Div X generated by the prime divisors. A Weil divisor ) n;Y; is effective if
n; > 0 for all 3. The support Supp D of a Weil divisor D is the set of all prime divisors
whose coefficient is nonzero in D. If C and D are two divisors on X, then we say
C > D if C — D is effective.

REMARK 1.2.7. Normally one makes certain restrictions on the scheme X when
defining Weil divisors: the scheme X should be a nise scheme.! This implies in
particular that for every point Y with codimension one, the local ring Oxy is a
discrete valuation ring. We denote the corresponding valuation on the ring of rational
functions JZ(X) by vy. For a rational function f, vy (f) is called the order of vanishing
of f along Y. We will always talk about Weil divisors on surfaces that are nonsingular
in codimension 1 (where they are formal sums of curves) or on nonsingular curves over
k (where they are formal sums of points).

LEMMA 1.2.8. Let X be a nise scheme, and let f € J* be a nonzero funclion
on X. Then vy (f) =0 for all but finitely many prime divisors Y.

See [Har77, 11.6.1] for a proof.

REMARK 1.2.9. Observe that this applies to the two situations we have discussed
above, a nonsingular surface and a nonsingular curve, but that it also applies to some
kinds of singular surfaces, so that it will be useful to discuss Weil divisors in later
sections as well.

I1t is possible to make sense of Weil divisors on schemes that are singular in codimension one. In

this case, one does not have a valuation, but one can instead use the length of certain modules to
compute the appropriate coefficients of prime divisors. This is discussed briefly in [Eis95, Sec. 11.5].
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DEFINITION 1.2.10. Let X be a nise scheme and let f € ™. The divisor of f,
denoted (f), is

(F) =D w(f) Y,

where the summation is over all prime divisors ¥ on X. Any divisor that can be
written in this way is said to be a principal divisor. Two divisors D and D' are said
to be linearly equivalent if their difference is a principal divisor. The group of divisors
modulo the group of principal divisors is called the divisor class group of X and is
denoted Cl X.

REMARK 1.2.11. If X = Spec(R) is affine and R is a Dedekind domain, then the
divisor class group of X is just the class group of R in the sense of algebraic number
theory, which measures how far R is from having unique factorization.

DEFINITION 1.2.12. A divisor Y on a nise scheme X is said to be locally principal
at z, for some point x on X, if there exists a neighborhood U of z on which VY is
principal. The divisor Y is said to be locally principal if it is locally principal at every
point of X.

REMARK 1.2.13. For every point z on X, a divisor Y on X yields a divisor Y’
on SpecOx,. It is clear that Y will be locally principal at z if and only if Y’ is
principal. If R is a noetherian integral domain, CI(Spec R) = 0 if and only if R is
a unique factorization domain ([Har77, Prop. 11.6.2]). So every divisor on X will
be locally principal at z if and only if Ox, is a unique factorization domain. Every
regular local ring is a unique factorization domain, so if X is nonsingular at z, every
divisor on X is locally principal at z. If X is singular at z, Ox, may still be a unique
factorization domain; such points x are called factorial singularities and are described
in more detail in Section 2.1.8.

REMARK 1.2.14. In particular, on a nonsingular surface, every divisor is locally
principal.

There is a limited converse to this remark:

PROPOSITION 1.2.15. Let X be an algebraic k-scheme of dimension n and let
be a closed point on X. If there exists a nonsingular prime divisor Z which is locally
principal at x, then X is nonsingular at x.

PROOF. This can be found in more detail in [Mum99, IIL.7 Prop. 2]. Recall the
definition of the cotangent space Tk , at x of a scheme X, Tk, = mx,/m% . By
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FIGURE 1.2.1. The divisors C and E on the blow-up of the cone over
the Fermat curve

definition, the local ring Ox; is a regular local ring if and only if T% , has dimension n
over k. Now suppose we have an algebraic k-scheme X and a closed subscheme Z
which is nonsingular at « and which is also locally principal at z, say defined by
f € Ox;. Then we have Ty , = T% ,/k - df. So we have dimy T% , < dimy T3, + 1.
But Z is nonsingular by assumption and therefore dimy 77 , = dim X —1. Thus we get
dimg Ty , < dim X. But we always have dimy T% , > dim X, so dim T, = dim X
and X is nonsingular at z. U

See Section 2.1.9 for more information about divisors with locally principal mul-
tiples.

ExaMPLE 1.2.16. Consider Example 1.2.5, the blow-up of the cone over the Fermat
curve. The nonsingular surface Xp is

Z({fﬂz‘yj - xjyi}i,jv Yty - ygn) C ]P?:ro:-":ws) X P%yl i iy3)

The curve C defined by y; = 0 and y, = y3 is a prime divisor corresponding to a
ruling of the cone. We know that it is supposed to be locally principal, but we can see
this directly. Take a neighborhood that excludes the curves Z(y;,y, — pys) for each
p # 1 an mth root of unity, and the curve Z(ys) (note that y; and y, are never both
zero at the same point). Then take the rational function y;/y,. This has valuation 1
on our curve and zero elsewhere in our neighborhood.

Consider the rational function (y2 —ys3)/(y1 —ys). On C = Z(y1,y2 —Y3), Y1 — Y3 is
a unit, as is (y5" —y5")/(y2 — y3). But ¥ +y5* — y5* = 0 there, so (y2 —y3)/(y1 —y3) =
uy® for some unit u, meaning that it has valuation m. Similarly, its valuation on
C' = Z(y2, y1 — y3) is —m, so mC is linearly equivalent to mC”.
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A second prime divisor we can take on the same surface is £ = Z(x1, z2,%3). This
curve is a projective curve isomorphic to the Fermat curve: Z(y! + yi* — y7*) C P2
It corresponds to the exceptional fiber of the blow-up.

There is a second type of divisor, useful in more general situations (schemes sin-
gular in codimension 1, for example). Let X be a scheme, and let X be the sheaf of
total quotient rings (for integral schemes, this is just the constant sheaf of rational
functions), let X* be the sheaf of invertible elements of X, and let O% be the sheaf of
invertible elements of Ox.

DEFINITION 1.2.17. A Cartier divisor is a global section of the sheaf X*/0%.
A Cartier divisor is principal if it is the image of a global section of X* under the
canonical map. We denote the abelian group of Cartier divisors CaDiv X, and the
quotient of this by the abelian group of principal Cartier divisors we call the Cartier
class group of X and denote CaCl X.

REMARK 1.2.18. In more concrete terms, a Cartier divisor is specified by giving
an open cover {U;} and a set of functions {f; € X*(U;)} such that f;/f; is an invert-
ible element of Ox(U; N U;). Two such descriptions are equivalent if their ratio is
everywhere an invertible element of Ox. A Cartier divisor is principal if we can take
the open cover to be {X}.

PROPOSITION 1.2.19. Let X be a normal nise scheme. Then we have a one-to-one
correspondence between locally principal Weil divisors and Cartier divisors.

See [Har77, Rem. 6.11.2] for a proof. The correspondence associates a Cartier
divisor {(U;, f;)} with the Weil divisor that is the divisor of f; on U;.

REMARK 1.2.20. What is the role of normality in Proposition 1.2.197 Suppose X
is nonsingular in codimension 1 but not normal at z. Then let D be a Weil divisor D
which is locally principal on some neighborhood U of z, and suppose that D|y is the
divisor associated to f and f’. Then if X is normal, we know that f/f' € Ox(U)*.
If X is not normal, this may not be the case, and we may have several nonequivalent
Cartier divisors corresponding to the same Weil divisor.

DEFINITION 1.2.21. A Cartier divisor specified by {(U;, fi)} is effective if for every
i we have f; € Ox(U;).

REMARK 1.2.22. Clearly under the correspondence of Proposition 1.2.19 these
are precisely the Cartier divisors that correspond to effective locally principal Weil
divisors.
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1.2.2. Divisors, invertible sheaves and line bundles. Divisors are intimately
related to invertible sheaves. On a scheme X that is either projective over k or
integral, every invertible sheaf is isomorphic to a subsheaf of the sheaf X of rational
functions on the scheme (see [Har77, Rem. 11.6.14.1]). Each such subsheaf is locally
generated on a cover {U;} by rational functions {f;}. The collection of ;' clearly
satisfy compatibility relations, so they give a Cartier divisor. Had we chosen different
generators, say {g;} on {V;}, we would nevertheless have g;/f; € Ox(U;NV;)*, so
they would have yielded the same Cartier divisor.

Conversely, given a Cartier divisor D, we can construct a sheaf? Lx (D) by taking
Lx(D)U;) = (f71)O0x(U;) where (fi,U;) are the local equations of D. If D has a
zero of order m along Y, then every section of this sheaf will have poles of order at
most m along Y. As before, this is independent of the choice of local equations for
D. When X is clear from context we will often write Lx (D) as L(D).

If X is a nise scheme and D corresponds to a Weil divisor ), kyY, then the
Ox (U)-module L x (D)(U) is just all the rational functions f that satisfy vy (f) > —ky
for every prime divisor Y intersecting U. In particular, if D is a prime divisor, L(—D)
is the ideal sheaf of D.

DEFINITION 1.2.23. Let D be an effective divisor. Define a closed subscheme
structure on Supp D using the exact sequence

0—=>L(-D)—>0x —>F—0 (1.2.1)

by defining Op to be F. We will call this the canonical closed subscheme structure
defined by D.

Each abstract invertible sheaf is isomorphic to many different subsheaves of X,
but the Cartier divisors that this process yields are all linearly equivalent ([Har77,
Prop. 11.6.13]). So isomorphism classes of invertible sheaves correspond bijectively to
linear equivalence classes of Cartier divisors.

There is a third way of looking at locally principal divisors and invertible sheaves;
one can use the language of line bundles. See [Sha94, Sec. VI.1.4] for a more detailed
exposition.

DEFINITION 1.2.24. A line bundle on a scheme X over k is a scheme Y, a morphism
7m:Y — X, and a collection {(U;,v;)} such that:

2The £ stands for “line bundle”, because as we will show later in this section, invertible sheaves
correspond naturally to line bundles, and one often mixes the two languages.
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(1) {U;} is an open cover of X,

(2) ; is an isomorphism from 7 }(U;) to U; x Al,

(3) woh;! is the identity on U;, and

(4) ;0 wj_l is multiplication by a scalar on each fiber.
A section of a line bundle (Y, ) is a morphism f : X — Y such that 7 o f is the
identity on X. A meromorphic section is a section on some open dense subset of X.

EXAMPLE 1.2.25. The simplest line bundle over X is just X x Al. This is called
the trivial line bundle. A section of this line bundle is then any regular function on
X; a meromorphic section is any rational function on X.

REMARK 1.2.26. Suppose that we have some line bundle (Y, n) with a section f
such that f is never zero. Then we can form an isomorphism from ¥ to X x Al
by taking v; (x,t) to (z,t/1;(f(z))), and we see that Y is isomorphic to the trivial
bundle.

EXAMPLE 1.2.27. Let X be P!, with the open sets Uy = {(zo:21)|z0 # 0} and
Uy = {(zo:z1)|71 # 0}. Construct ¥ by gluing Uy x A' and U; x Al by identifying
((zo:x1),t) € Up x Al with ((zg:21),txe/z1) € Uy X Al. This defines a line bundle
over P!. Suppose now we define a map taking (zg: 1) to ((zo:21),71/%0) € Up x Al
and another taking (z¢:21) to ((zo:71),1) € Uy x A'. These maps clearly glue to
give a section of this line bundle that has exactly one zero. But there are no regular
functions on P! except the constants, so this is clearly not isomorphic to the trivial
line bundle.

REMARK 1.2.28. Note that to construct this line bundle, the essential data we
needed was a regular function f;; on each U; N U;. This then allowed us to glue
together the U; x A, provided that the f;; satisfied a compatibility criterion, namely
fijfie = far (with fi; = 1). We call such a collection of f; transition functions, and we
have exactly one such collection for every line bundle. Identifying the compatibility

criteria as a cochain condition, we see that the set of line bundles on X is in bijection
with HY(X, 0%).

Now suppose we have a Cartier divisor D on a nise scheme X. Let U; be an open
cover of X such that on U;, D is the divisor associated to f;. Now, on U; N U; the
functions f; and f; have the same divisor, so f;/f; can have neither poles nor zeros.
They clearly satisfy the compatibility criterion for a set of transition functions, so we
can construct a line bundle using them.
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If we have a line bundle and a meromorphic section f, then on each U;, f is a
rational function. By the compatibility criterion, the divisor of f on U; and the divisor
of f on Uj are equal on U;NUj, so we can piece together all of these to yield a Cartier
divisor D on X. If g is another meromorphic section, then f/g is a rational function
on X, and so the Cartier divisor associated to ¢ is linearly equivalent to the Cartier
divisor associated to f.

These two constructions are inverse to one another. To see this, let D be a Cartier
divisor and (U;, f;) be chosen so that on U; the divisor D is the divisor of f; and the
U; cover X. Now, this method gives us a line bundle with transition functions f;/ f;.
The divisor associated to this line bundle can be obtained by taking the divisor of
any meromorphic section, so construct the section that is f; on U;; by construction,
this satisfies the compatibility criteria, and its divisor is clearly D. One can similarly
show that going from line bundle to divisor and back yields the same line bundle.

Now that we have this correspondence between line bundles, sheaves and Cartier
divisors, we will often use them interchangeably. For example, a Cartier divisor is
ample if it corresponds to an ample invertible sheaf (see [Har77, Sec. 11.7]).

1.2.3. The canonical sheaf. On a nonsingular surface X, there is a particular
sheaf that is of interest. Recall that since X is nonsingular, the sheaf of differentials
Qx/x is locally free of rank two (in fact, this is equivalent to the nonsingularity of X).
So the sheaf wx = Qx/k A Qx/x is an invertible sheaf. We call wx the canonical sheaf
of X. Any associated Cartier divisor Kx we call a canonical divisor on X.

ExXAMPLE 1.2.29. As an example, we will calculate the canonical sheaves of both
P? and P* xP'. A general result ((Mum99, I11.1 Ex. B]) gives a description of Qx /g in
the case where R = k[zy,...,2,]/(f1,..., fm) and X = Spec R. In this case, Qx/ is
generated as an R-module by dz1,...,dz, and has the relations df; = - - - = df,,, = 0.
Thus on A?, the canonical sheaf is freely generated by dz A dy.

Cover P? with three copies of A? in the usual way, U; = {(z¢: 21 :29)|z; # 0}. On
Uy, the canonical sheaf is generated by d(z1/xo) Ad(z2/x0). On Uy, it is generated by
d(za/z1) A d(zo/x1). On Uy N Uy, the canonical sheaf is generated by either, so their
ratio must be a regular function with no zeros. In the coordinate system on U,

d(z2/x1) A d(zo/21) = d((22/20)/(%1/20)) A d(T0/21)
= (581/270)“361(372/560) A d(.fb’l/l'())
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So this sheaf is isomorphic to the sheaf generated on Uy by 1, on Uy by (2q/z1) > and
on Uy by (z0/z2)>. The divisor associated to this is just —3Z(z). Thus we find that
wp2 = O(3). More generally, wp» = O(n + 1).

We can approach P! x P! in the same way, covering it with four open sets U;; =
{(zo:z1,y0:91)|@: #0,y; # 0}. Then each Uj; is isomorphic to AZ. On Uy, the
canonical sheaf is generated by d(xi/zo) A d(y1/yo). On Uy, the canonical sheaf is
generated by d(z1/zo) A d(yo/y1). On Uy N Uy, this second generator is

d(z1/30) A d(yo/v1) = (w1 /o) 2d(z1/z0) A d(y1/y0)-

Similar computations hold for the other U;;. So this sheaf is isomorphic to the sheaf
generated on Uy by 1, and generated on Uy; by (—=1)"(zo/2;) % (v0/y,) "> This has
divisor —2Z(zo) — 2Z(yo). We note that wpigpr = piwpr ® phwpr where p; is the
projection on the i-th component. In fact, for any two curves, wx«y = piwx ® phwy
(see [Har77, Exer. 11.8.3]).

1.2.4. The intersection pairing. The general approach to intersection theory
taken here is to address the simplest case, intersections with multiplicity one, and then
to get at the other cases by replacing the divisors with linearly equivalent divisors
that intersect more simply. The reason for considering principal divisors trivial for
the purposes of intersection comes from the behavior of divisors on projective curves.
If we have a projective curve C on X, then (if C' and f are in sufficiently general
position) we can look at the intersections of C' with (f) as the number of zeros of f
on C' minus the number of poles of f on C; we know from the theory of curves that
this will always be zero. So we expect a principal divisor to have zero intersection
with any divisor.

DEFINITION 1.2.30. Two prime divisors Y and Y’, locally defined by f and f,
intersect transversally ot P if f and f' together generate the maximal ideal in Ox p.

ExAMPLE 1.2.31. Consider again the curves from Example 1.1.15, Y = Z(z) and
H = Z(y*z — 2*), now considered as divisors on P At (0:1:0), Ox,p = k[z,y, 2], ,,
and (z,y%z — #*) = (z, 2) so the curves intersect transversally. However, at (0:0:1),
Ox,p =k[z,9,2),,, and (z,3%2 — 2°) = (2,9”) # (2,y), so the curves do not intersect
transversally (as we expect from our calculations in Example 1.1.15).

Alternatively, refer back to Example 1.2.16. Consider our two curves, C and F
on the surface Xp = Z ({:vzyj - .’L'jyi}i’j, yo' +yt — yf?") These intersect at the point
P=(1:0:0:0,0:1:1). There C has local equation 3; = 0 and E has local equation
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x9 = 0. To see this, observe that Z(z3) = Z(y2) U Z(x1, 4, x3). Since y, has no zeros
near (1:0:0:0,0:1:1), this yields an adequate local equation for . We then have:
Oxp= (k[ﬂ?o, xhx%xl’nylay25y3]/<{$iyjy - xjyi}i,j’ Y+ yy — ygn>)
(1, 22,23,51)
and the maximal ideal is (1, T9, Z3,y1). Consider (z2,y1). It contains zy; = 7 S0
it contains z; for ¢ = 1,2,3. Thus it equals the maximal ideal and the intersection is
transverse.

THEOREM 1.2.32. There ezists a unique pairing
CD:ClX xClX = Z,

such that
(1) C.D=D.C,
(2) C{D+D")=C.D+C.D, and
(3) if C and D intersect transversally everywhere then C.D = #(C N D).

See [Har77, V.1.1] for a proof. Given two divisors, it is first shown that each can
be written as the difference of two nonsingular curves, and further that these curves
can be chosen to intersect transversally. Then since the intersection number depends
only on the linear equivalence class, it is completely determined by the properties
in Theorem 1.2.32. The essential part of this argument, showing that divisors can
be written as the difference of two well-behaved curves proceeds by first writing the
divisor’s sheaf L(D) as the difference of two very ample invertible sheaves. Each
very ample invertible sheaf L(D') yields an embedding of X into projective space
in which the divisor D' arises (up to linear equivalence) as a hyperplane section
and in particular is an effective divisor. A version of Bertini’s theorem valid in any
characteristic ([Har77, 11.8.18]) then shows that this hyperplane can be chosen so
that D' is a nonsingular curve which intersects a list of other curves transversally.

An alternative method of proving this theorem would be through the use of the
formula in Theorem 1.2.38, which gives an explicit method for computing the inter-
section number. This is the approach taken in (for example) [Mum66, Chap. 12].

EXAMPLE 1.2.33. The divisor class group of P? is Z, generated by a line ([Har77,
11.6.4]. So a curve of degree m is equivalent to m lines, and a family of m lines
intersects a family of n lines in mn points. This is the classical Bezout’s theorem.

It is often impractical to compute the intersection form directly, by moving the
curves, so one often uses a formula that can be computed from local data.
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DEFINITION 1.2.34. Suppose C and D are curves that share no common irreducible
component, and suppose that they intersect at P. Then if f and g are local equations
of C and D, we define (C.D), to be the dimension of Ox p/(f, g) as a k-vector space.

EXAMPLE 1.2.35. The curves z = 0 and %2 = 23 in ]P%m:y:z) from Example 1.1.15
intersect at (0:0:1). The module Op2 is just the ring of rational functions with
no pole at 0, which is isomorphic to K[z, ylmy. Now k[z, ylwy/(z, v* — 2*) is iso-
morphic to k{yly/(y*). But we know that k[yyy/(y?) is generated as a k-vector
space by 1, y, and the set of all rational functions 1/(y — a) for a # 0. But
1/(y—a)=(y+a)/(¥* —a®) = —(y+a)/a? so 1 and y form a basis for k[yu,/(y*)
over k, so it is two-dimensional and the intersection has multiplicity two, as we would
expect from Example 1.1.15.

REMARK 1.2.36. How does this definition of intersection number compare with
the definition given in Section 1.17 Consider the case of two curves X and Y, locally
defined by f and g, in P?, intersecting at some point z. Using the definition from
Section 1.1, #(X,Y; %) = pm,(S/(f,9)S) where (recall) S = k[zo, z1,22]. Recalling
the definition of pn,, this is just the length of (S/(f, 9)5),.. = Sm,/(f,9)Sm, as a Sy, -
module. Since Sy, is a local ring with residue field k, any simple module over Sy, is
isomorphic to k, and so the length of a composition series is exactly the dimension as
a k-vector space. So

’&(X, Y; IL') = dlmk sz/(f, g)sz = dimk OP2’w/(f, g)Opz,m = (‘X'Y')m

These local intersection numbers are useful, of course, only if they allow us to
calculate the global intersection number.

THEOREM 1.2.37. Suppose C and D are curves with no common irreducible com-
ponent. Then

C.D= >  (C.D).

PeCnD

See [Har77, V.1.4].

1.2.5. Cohomology and the intersection pairing. There is another formula
for computing the intersection number of two divisors. In this case it is based on
cohomology. Recall that the Euler characteristic x(JF) of a sheaf F on a surface X is
defined to by

x(F) = dim H°(X, F) — dim H*(X, F) + dim H*(X, F).
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See Section A.3 for more details.

THEOREM 1.2.38. Let C and D be divisors on a nonsingular surface X. Then
C.D = x(0x) — x(£(=C)) = x(&(-D)) + x(L(-C - D)).

For a full proof see [Mum66, Chap. 12|, where it is shown that the right-hand side
satisfies all the criteria for our intersection form; then uniqueness yields the result.
We will see in Corollary 1.2.68 that this follows immediately from the Riemann-Roch

theorem. We will cover a part of the proof here. This appears as [Mum66, Prop.
12.1}.

LEMMA 1.2.39. Let C and D be effective divisors having no prime divisors in
common. Then

x(0x) = x(£(—C)) = x(&(~D)) + x(&(~C — D)) = > (C.D),.
zE€Supp(CYNSupp (D)

PROOF. We have the exact sequences
0—=L(-C)—=0x —0c—0

and
0—L(-D)—0x —>0p—0.

Since all the sheaves listed are locally free, these are locally free resolutions of O¢ and
Op. Now, a priori, we could compute Tor®* (O¢, Op) using either of these resolutions,
as the cohomology of (for example)

0—);&(—0)®OD——)OX®OD—>O.

However, using [Rot79, Thm. 11.21], we can compute the cohomology using the
double complex
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The total complex of this double complex is
0> L(-C—-D)—L(-C)®L(-D) = 0O0x — 0, (1.2.2)

and the cohomology of (1.2.2) at the i-th term is Tor}* (O¢, Op).

Let z € X and let f and g be the local equations of C and D near z respectively.
Then Ocy = Ox4/fOx4 and Op, = Ox,/90x . If z is not on Supp C N Supp D,
then one of f or g will be a unit and the corresponding stalk will be zero and
Tor?x‘”((‘)c,m, Op;) = 0 for ¢ > 0. Now assume z € SuppC N SuppD. We know
f is not a zero divisor in Ox 4, so we have the exact sequence

f
0 — Ox, Oxz Oce —> 0,

where the left-hand map is multiplication by f. Applying the functor — ®o,, Op .
to this complex gives the complex

f
0 OD T OD T oC,m & OD,m — () 5

L k]

which is also exact since f is not a zero divisor in Ox,/90x, = Op,. But we have
the long exact sequence of Tor?%=

f
Tor;**(Ox ¢, Op.e) —> Tor,**(O¢4, Op 4) Opa Ops

By construction, Ox , ® — is just the identity functor, which clearly has zero derived
functors, so for n > 0 we have Tory**(Ox 4, 9p ) = 0, which implies in particular
that Tor?x’”((f)c,z, Op,) = 0. Looking further along the long exact sequence, we also
have

Torg_):f (OX,m oD,m) TOI'ijlw (OC,:m OD,IL‘) TOT,?X’E (OX,mz OD,m) >0 .

As above, for n > 0 we have Tor,?x’“'(OX,m, Opz) =0, s0 Tor?x’”((‘)c,x, Op) = 0 for
allz > 1.

Thus we have Tor?x‘”((‘)c,z,op,m) = 0 for i > 0 and for all z. Thus (1.2.2) is a
resolution of O¢ ® Op, so the complex

O——)L(-—C—-D) —)L(—C)EBL(——D) —0x > 0c® 0p — 0,

is exact, and therefore the Euler characteristic is additive on it. We have also shown
that the sheaf Oc®Qp is supported only on Supp CNSupp D, and at x it is isomorphic
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to Ox,¢/(f,9)Ox,z, which has k-dimension (C.D),. Thus:
cD= Y  (CD),

= dim H(X, O¢ ® Op)

= x(0¢ ® Op)

= Xx(0x) — x(£(=C) @ L(-D)) + x(L(-C - D))

= X(0x) = x(£(=C)) = x(£(=D)) + x(L(-C - D)).

We will see that the formula from Theorem 1.2.38 is also true when using the
intersection theory from Section 2.5 with Cartier divisors on a singular surface.

This same formula can be viewed as a formula for the Euler characteristic of a
tensor product: if ¥ and G are invertible sheaves, we can write F.§ to mean the
intersection number of the associated divisors. We then have

x(F®9) =x(F) +x(9) —F.9— x(0x).

1.2.6. Arithmetic genus.

DEFINITION 1.2.40. Let X be a projective scheme of dimension r over k. Then
the arithmetic genus p,(X) is defined to be

pa(X) = (-1)"(x(0x) — 1).

See [Har77, Exer. II1.5.3]).

Now suppose D is an effective Cartier divisor on the surface X. Then using
Equation (1.2.1) D defines a subscheme ¥ of X (which will not be reduced unless all
the coefficients in D are at most one, and which will not be integral unless D is a
prime divisor). We can then compute the arithmetic genus p,(Y) of Y.

By the definition of Y, we have an exact sequence

0= L(-D)—= O0x — Oy —0.

As a result, x(Ox) = x(L(—=D)) + x(0Oy). Thus we have proven:
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PROPOSITION 1.2.41. Let X be a surface and let D be an effective Cartier divisor
on X. Then D defines a subscheme Y of X, and we have
Pa(Y) =1 = x(0x) + x(L(-D))
= X(£(=D)) — pa(X).

This suggests the following definition:

DEFINITION 1.2.42. Let X be a surface and let D be any Cartier divisor on X.
Then define the arithmetic genus pa(D) of D by

Pa(D) = x(&(=D)) — pa(X)

REMARK 1.2.43. This gives the zero (empty) divisor arithmetic genus 1, and it
depends only on the linear equivalence class of the divisor. When D is effective, this
definition gives D the same arithmetic genus as the subscheme Y it defines.

If we suppose C is another Cartier divisor on X, then what is the relation between
Pa(C); pa(D) and pa(C + D)?

PROPOSITION 1.2.44. Let C, {Ci} ;e and D be Cartier divisors on a surface
X. Then

Pa(C + D) = po(C) + pa(D) + C.D - 1,
and
Pa (Z C'z') = Zpa(Ci) + Z Z (Ci.Cj) — (n—1).
PROOF. Apply Theorem 1.2.38:

C.D = x(0x) — x(£(-C)) — x(&(=D)) + x(&L(-C - D))

= —(x(&(=0)) + 1= x(0x)) = (x(L(~D)) + 1~ x(Ox))
+ (x(L(-C - D)) + 1= x(0x)) +1

= —pa(C) = pa(D) +pa(C + D) + 1.

The more general formula follows by an easy induction. 1

REMARK 1.2.45. We will see in Lemma 2.1.34 that if D is effective and the as-
sociated subscheme Y is connected and reduced, then p,(Y) > 0. However, we have
Pa(2D) = 2p,(D)— D.D+1, which may be negative, depending on the self-intersection
of D. Thus nonreduced schemes may have negative arithmetic genus. Further, if D
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and D' have disjoint support, then p,(D + D') = po(D) + pa(D') — 1, so discon-
nected schemes may also have negative arithmetic genera. This is not just an artifact
of our definition of the arithmetic genus of a divisor, since for effective divisors we
are simply computing the standard arithmetic genus of the subscheme induced by
Equation (1.2.1), which may well be negative.

1.2.7. Equivalence of divisors. Observe that intersection numbers are in Z, so
any torsion divisor must have zero intersection with everything. This suggests that
the divisor class group is finer than it needs to be for the purposes of intersection
theory.

DEFINITION 1.2.46. Let X be a nonsingular surface. We say a divisor C' is nu-
merically equivalent to zero if C.D = 0 for all divisors D. We say D, and D; are
numerically equivalent if Dy — Dy is numerically equivalent to zero. The group of
divisors on X modulo numerical equivalence we denote by Num X.

REMARK 1.2.47. Here we have a version of Bezout’s theorem for nonsingular
surfaces: the intersections of a curve are completely described by its value in Num(X),
which we will see in Remark 1.2.56 is a finitely-generated free abelian group. So
choosing a basis for Num(X), from each divisor D; we obtain a finite list of numbers
vy; the intersection of two divisors D; and D, is computed using the intersection
matrix M of the surface as v;"Muw,. So the vector v; or the image of D; in Num(X)
serves as a sort of degree with which we can compute the intersections of a curve.
Theorem 1.2.70 (the Hodge index theorem) will give a description of the matrix M.

REMARK 1.2.48. 1t is not only torsion divisors that are numerically equivalent to
zero. For example, if we consider P! x C for some elliptic curve C, the divisor class
group will be isomorphic to Z @& Cl1C, while the numerical equivalence class group
will be Z & Z ([Har77, V.2.3]). The theory of Jacobians tells us that C1C is just
Z & C, where C is interpreted as the group of closed points C(k), and C' need not
be a torsion group. However, there is a concrete description of which divisors are
numerically equivalent to zero in terms of a more flexible form of equivalence, namely
algebraic equivalence. See Remark 1.2.58 for the result.

EXAMPLE 1.2.49. For a concrete example where numerical and linear equivalence
differ, we can look to our by now standard list of examples. Both P? and P! x P! are
so simple that Num X 2 Cl1X. So look at Example 1.2.5, the blow-up of the cone
on the Fermat curve. We will compute its class group and its numerical equivalence
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class group in Section 1.4.1. There we will see that Cl X is a direct sum of Z and an
image of the class group on the Fermat curve, which will typically have some smooth
component. On the other hand, we will see that Num X is Z & Z; we will see that
Num X can never have a smooth component.

Between linear equivalence and numerical equivalence, there lies a third concept,
that of algebraic equivalence.

Let X be a surface possibly with isolated singularities. Let T be a nonsingular
curve, and let D be a nonzero effective Weil divisor on X x T. Then D defines a
subscheme Z of X x T having pure dimension 2 and having ideal sheaf Lx 7 (—D).
Lett € T. Weknow X x{t} is a closed subscheme of X xT'. Callits ideal sheafJ. Then
we can compute the subscheme ZNX x {z} of X x T. This subscheme has ideal sheaf
Lxxr(—D)+J. This ideal sheaf leads to an ideal sheaf in Ox, namely Lx.r(—D)/J.
This ideal sheaf defines a subscheme of X. We know Z has codimension one, and
X x {t} is defined by a single equation, so their intersection, if nonempty, cannot
have codimension more than two in X x T'. If their intersection has a component of
dimension 2, then it contains all of X and in particular, X x {t} is in the support
of D. If there is no ¢t € T for which Supp D contains X x {t}, then the image of
Z under the projection to T' must have dimension one. Since it is closed and T is
irreducible, it must be all of T, so the intersection of Z and X x {t} is never empty.
Then for each t, D defines a nonzero effective divisor on X. Say in this case that D
defines an algebraic family of effective divisors, and let D, denote the divisor on X
corresponding tot € T'.

For every two points 0 and 1 of T, we say the corresponding divisors Dy and Dy are
prealgebraically equivalent. Two not necessarily effective divisors are prealgebraically
equivalent if they can each be written as the differences of prealgebraically equivalent
effective divisors.

REMARK 1.2.50. The condition that the dimension of D; is constant is equivalent
to saying that Z is flat over T, and this is in fact how the definition is often stated.
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DEFINITION 1.2.51. Two divisors D and D’ are algebraically equivalent® if there
exists a chain of divisors D = Dy, Dy, ..., D, = D' such that D; is prealgebraically
equivalent to D;,; for all 4.

REMARK 1.2.52. The divisors algebraically equivalent to zero form a subgroup G,
of the group of divisors.

REMARK 1.2.53. We saw in the proof that a nonzero effective divisor cannot be
prealgebraically equivalent to the empty divisor; later we will see that it cannot be
algebraically equivalent to zero since it has positive intersection with some ample
divisor.

REMARK 1.2.54. Linearly equivalent divisors are algebraically equivalent. In this
case, the parameterizing family is P! and the divisor comes from a linear combination
of the two linearly equivalent divisors.

REMARK 1.2.55. One can show that algebraically equivalent divisors are numer-
ically equivalent ([Har77, Exer. V.1.7]). This fits with the intuition of algebraically
equivalent divisors being smoothly deformable into each other, while intersection num-
bers are a discrete quantity. This condition is a natural consequence of flatness, similar
to the fact that the fibers of a flat morphism all have the same dimension.

REMARK 1.2.56. The group of Weil divisors on X modulo algebraic equivalence
is called the Néron-Severi group NS X. The Néron-Severi theorem states that on
any projective variety that is nonsingular in codimension 1 the Néron-Severi group is
a finitely-generated abelian group. This is in contrast with the divisor class group,
which typically has some continuous component (for curves, for example, it has the
Jacobian of the curve). Observe that this implies that the numerical equivalence class
group is a finitely-generated free abelian group.

For more on algebraic equivalence and proofs of most of these results, see [Har77,
111.9.8.5] and [Har77, Ex. V.1.7]. For a proof of the Néron-Severi theorem see [Har77,

3There are several different definitions of algebraic equivalence in the literature. In [Har77, Ex.
111.9.8.5], the definition is very close to the one presented here when restricted to Cartier divisors.
In [Har73] and most texts on intersection theory ([Ful98}, for example), the definition of “prealge-
braically equivalent” is unnecessary because the curve 7T is replaced by a variety of any dimension.
The divisor D is then replaced by a cycle of appropriate codimension and the divisor (or cycle, in
general) D; is computed as the intersection of D with X x {t}. Such an intersection of objects of
high codimension requires much more machinery than we are covering in this work. In any case, all
these definitions of algebraic equivalence yield the same results when applied to our situation.
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App. B, Sec. 5] in the complex case, and see [LIN59] and [Har73] for fields of arbi-
trary characteristic.

DEFINITION 1.2.57. We say C is equivalent to D in the sense of algebraic equiv-
alence with division if there exists some nonzero n such that nC is algebraically
equivalent to nD.

REMARK 1.2.58. In [Mat57], it is shown that on a nonsingular surface X, a
divisor D is numerically equivalent to zero if and only if some multiple nD of it
is algebraically equivalent to zero. That is, the concepts of numerical equivalence
and algebraic equivalence with division are identical on a nonsingular surface. On
a singular surface, we do not yet have an intersection theory, so we cannot yet test
this theorem. In Section 3.1 we will see that given a suitable definition of intersection
number, the same theorem holds on any surface with isolated singularities. Denote
the group of divisors algebraically equivalent to zero G,(X) and the group of divisors
numerically equivalent to zero G,(X). Let G,(X) be the group of divisors with
a multiple algebraically equivalent to zero. The theorem just stated amounts to
saying G.(X) = G,(X). By the Néron-Severi theorem, the group of divisors modulo
algebraic equivalence is finitely generated, and so the group G.(X)/G,(X) is finite.

COROLLARY 1.2.59. There ezists a finite base for the group of divisors modulo
algebraic equivalence with division. That is, every divisor is expressible to within this
kind of equivalence as an integer linear combination of elements of this base in a
unique way.

1.2.8. The adjunction formula. Given an easy-to-compute intersection form,
it is natural to apply it to get results about preexisting divisors, as in the adjunction
formula:

THEOREM 1.2.60 (Adjunction Formula). Let C be a nonsingular curve of arith-

metic genus p,(C) on the nonsingular surface X, and let K be a canonical divisor on
X, as defined in Section 1.2.3. Then we have

2p.(C) —2=C.(C + K).
See [Har77, V.1.5].

EXAMPLE 1.2.61. On P(, .y x Py ..+, the divisor class group is Z ®Z, generated
by a = {pt} x P! and 8 = P! x {pt}. Thus any divisor is equivalent to aa + b3 for
some integers a and b. We will say that such a divisor has type (a,b).
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The curves a and [ intersect transversally, so clearly a.f = 1. What is the self-
intersection of, say, a? If we consider the rational function (a12¢ — agx1)/(b1zo — bozo)
we see that « is linearly equivalent to any divisor of the form {pt} x P!. Two such
divisors do not intersect, so a.a = 0. Similarly, .8 = 0. Thus using the basis («a, §),
the intersection form has matrix (93).

The curves o and 3 are isomorphic to P!, so they are clearly of genus 0. Suppose
that the canonical divisor K has type (a, b). If we take the first curve C, we have that
—2 = C.K = b. Similarly, —2 = a and the canonical divisor has type (-2, —2), as we
computed in Example 1.2.29.

EXAMPLE 1.2.62. On P2, consider the curve H = Z(x,). This is clearly isomorphic
to P!, hence has genus zero. If we write the canonical divisor as n times our curve,
we get that —2 = 1 +n or n = —3. This implies that the canonical divisor is linearly
equivalent to —3 times H, as we computed in Example 1.2.29. So if C is a nonsingular
curve of degree d on P? of genus g, then 2g — 2 = d(d — 3) or

g=5(d-1)d-2).

EXAMPLE 1.2.63. In Section 1.4.1 we will see that the numerical equivalence class
group of the blow-up of the cone on the Fermat curve is Z @ Z, generated by the
two divisors C and E described in Example 1.2.16. Unfortunately, the divisor class
group is now more complicated than the numerical equivalence class group, but the
canonical divisor is primarily important when intersecting it with other divisors, so
it will be sufficient for our purposes to find its numerical equivalence class. Consider
the divisor C. In that same example, we found another divisor ¢’ such that mC
and mC' were linearly equivalent. Then m(C.C) = C.(mC) = C.(mC") = m(C.C").
But C and €’ did not intersect, so C.C' = 0. The divisor E, the exceptional fiber,
has self-intersection —m (see Section 1.4.1 for an explanation). So any divisor on
the surface is numerically equivalent to aC + bF for some integers a and b. We have
(aC + bE).C = b and (aC + bE).D = a — bm. Thus the intersection matrix in the
basis (C, E) has the form (9 1,).

Now, C is a projective line, so its genus is 0. Then —2 = C.K. The curve E is
the Fermat curve, so its genus is given by the formula computed in Example 1.2.62:
g=3(m—1)(m—2). So (m—1)m = E.E + E.K. In this case, the self-intersection
number of F is —m, so we have m? = E.K. This implies that K is numerically
equivalent to m(m — 2)C — 2E.
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1.2.9. The Riemann-Roch theorem. We now come to the Riemann-Roch the-
orem. This theorem allows one to describe the space of global sections of an invertible
sheaf or of a line bundle. It can also be applied in many other situations; we will see
some useful corollaries below.

DEFINITION 1.2.64. For any divisor D on a nonsingular surface X, we let
¢(D) = dimy, H°(X, L(D)).
We define the superabundance s(D) to be dimy, H(X, L(D)).

THEOREM 1.2.65 (Riemann-Roch). If D is any divisor on a nonsingular surface
X and K s a canonical divisor on X, then

1
U(D) — s(D) + {(K — D) = 5D.(D = K) + 1+ pa(X).
See [Har77, V.1.6] for a full proof; we will go over a short version here.

PROOF. First observe that ¢(K — D) = dim H(X, L(—D) ® wx), where wx de-
notes the canonical sheaf. By Serre duality (see the Appendix), this is just equal to
dim H?(X, L(D)). Hence the left-hand side is just the Euler characteristic x(L(D));
we need to show that for any D

X(L(D)) = %D.(D K) 4+ 147

Both sides depend only on the linear equivalence class of D, so we can look for a
linearly equivalent divisor that is more convenient. We will find nonsingular curves C
and F so that D is linearly equivalent to C — E. To see that this is possible, fix an
ample divisor H (recall that a divisor H is ample if and only if L(H) is ample). Then
by the definition of ampleness, for k large enough, L(D + kH) and L(kH) will be
generated by global sections. If we then take £ large enough so that £H is very ample,
we will have D + (k + £)H and (k + £)H very ample by [Har77, Exer. 11.7.5]. Now,
if F' is any very ample divisor, F' gives an embedding of our surface into a projective
space in which F' is cut out by a hyperplane up to linear equivalence. But Bertini’s
theorem ([Har77, I1.8.18 and I11.7.9.1]) states that we can find another hyperplane
which cuts the surface in a nonsingular curve. These two hyperplanes give linearly
equivalent divisors, so we see that any very ample divisor is linearly equivalent to a
nonsingular curve. Thus, any divisor is linearly equivalent to the difference between
two nonsingular curves.
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REMARK 1.2.66. On a surface that has isolated singularities, a partial version of
this result holds. Since all our surfaces are by definition projective, there is some
divisor H that is ample. Then by the definition of ampleness, any divisor D yields
L(D + kH) and L(kH) that are generated by global sections; however if D is not
locally principal, neither is D+nH for any n, and so it can never arise as a hyperplane
section. If D is locally principal, however, we can find n so that D +nH and nH are
very ample as above. We can then use Bertini’s theorem to find a nonsingular curve
linearly equivalent to D+nH (or nH) that also avoids the singularities of the surface.

Of course, this is not the only difficulty involved in obtaining an analogue of the
Riemann-Roch theorem for singular surfaces; for example, Serre duality becomes more
complicated as the canonical sheaf may fail to be locally free, or fails to equal the
dualizing sheaf, or in some cases, Serre duality may simply fail to hold. See Section 3.3
and the Appendix for a more thorough discussion.

Now, the ideal sheaf of C is L(—C) by [Har77, 11.6.18], and similarly the ideal
sheaf of E is L(—FE). This yields the short exact sequences

O%L(—E)—-%OX——)OE—)O,
and

0 L(-0C) = 0x = 0c —0.
Tensoring with L(C') we get

0= L(C—-E)—L({C)—LIC)® 0 — 0,
and
0—0x = L(C)—= L(CO)®0: — 0.
Now,  is additive on short exact sequences (See Proposition A.3.4) so we get
X(&(C — E)) = x(0x) + x(L(C) ® Oc) — x(L(C) ® Og).
In Definition 1.2.6 we defined p,(X) so that x(Ox) =1 + pe(X). Since C and E are
nonsingular curves, we can apply the Riemann-Roch theorem for nonsingular curves
([Har77, IV.1.3]). This yields
X(L(C) ® Oc) = deg(L(C)) + 1 — ge,

and
X(L(C) ® Op) = degg(L(C)) +1 — g5
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Now, if F' is an irreducible nonsingular curve on our nonsingular surface, and G is
any curve on our surface intersecting F' transversally, we have [Har77, Lem. V.1.3]
that asserts that

#(FNG) = degp(L(G) @ OF).
If G does not intersect F transversally, we can always find a linearly equivalent divisor
that does, so the formula becomes

F.G = degr(L(G) ® OF).

Substituting this into the results from the Riemann-Roch theorem for curves, we
get

x(L(C)®O¢) =C.C+1 - g,
and
xX(L(C)®Op)=C.E+1-gg.
We can use the adjunction formula to compute the genera of C' and E:
1 1
gc = §C.(C +K)+1, and g¢gg= QE(E + K)+1.
Substituting and expanding, we get:
1
X(L(C = E) = 5(C = F).(C — B~ K) + 1+ pa(X),

as required. O

This theorem has many applications. We will see several.

EXAMPLE 1.2.67. If a divisor D is ample, then H*(X,L(nD)) =0 for all n > 0
and 7 > 0 (see Proposition A.3.2). Thus x(L(nD)) = dim(H°(X, L(nD))) and for
n > (0 we get

dimy (HO(X, L(nD))) = -;—(nQD.D —nD.K) + 1+ pa(X).

COROLLARY 1.2.68. Let C and D be divisors on a nonsingular surface X. Then

C.D = x(0x) — x(£(=C)) = x(L(=D)) + x(&(-C — D)).



1.2. INTERSECTION THEORY ON NONSINGULAR SURFACES 29

PrROOF. Evaluate the right hand side using the Riemann-Roch theorem:
RHS = x(0x) — x(£(=C)) = x(&(-D)) + x(&(-C - D))

= x(0x) = 5(~0).(~C — K) = x(0x)
1

= 5(=D).(=D ~ K) - x(0x)

+ .;.(_c ~D).(~C = D - K) + x(0x)
= C.D.
O

COROLLARY 1.2.69 (Adjunction Formula Redux). Let D be any Cartier divisor.
Then the adjunction formula holds for D:

2p,(D) —2 = D.(D + K).
PRrOOF. We apply the Riemann-Roch theorem to —D:
1
X(£(=D)) = 5D.(D + K) + 1+ pa(X).

Recall that p,(D) is defined to be x(L(—D)) — p(X) and the result follows immedi-
ately. O

1.2.10. Applications of the Riemann-Roch theorem.

THEOREM 1.2.70 (Hodge Index Theorem). Let H be an ample divisor on the
nonsingular surface X and suppose that D is a divisor, D not numerically equivalent

to zero, with D.H = 0. Then D? < 0.

See [Har77, V.1.9].

Recall that the Néron-Severi theorem has as a corollary that Num X is a finitely
generated free abelian group. So we can consider the intersection pairing as a bilinear
form on Num X ®z R. The Hodge Index Theorem then says that in diagonal form,
this has one 1 on the diagonal, corresponding to a real multiple of H, and the rest
~1.

REMARK 1.2.71. Suppose D is ample. What is D.D? Well, let n be such that ni
is very ample. Then we have an embedding such that nD is linearly equivalent to a
hyperplane section H. In particular, H is effective. By Bertini’s theorem, we can find
another hyperplane such that its section H’ does not share any irreducible components
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with H. We can be sure the divisors H and H' intersect because the hyperplanes are
objects of codimension one, so their intersection will have codimension two; this is
guaranteed to have nontrivial intersection with our surface, an object of dimension
two. But H and H' are both effective divisors, so their intersection will be positive.
Thus nDnD > 0, and so D.D > 0. Now let C be any irreducible curve on our
surface X. Then we can find a hyperplane section which does not contain C. Since
the hyperplane will have codimension one and the curve will have dimension one, they
will certainly intersect, and so nD.C' > 0 and therefore D.C' > 0. It turns out these
two intersection conditions are also sufficient for D to be ample.

THEOREM 1.2.72 (Nakai-Moishezon Criterion). A divisor D on the nonsingular

surface X is ample if and only if D* > 0 and D.C > 0 for all irreducible curves C
on X.

See [Har77, V.1.10].

EXAMPLE 1.2.73. On P?, the hyperplane H = Z(z) is ample, as is any divisor of
positive degree; all others have zero or negative intersection with H.

EXAMPLE 1.2.74. On P! x P!, the sum of the two generators is ample, for example.
More generally, when is the divisor D = aa + b3 ample? We have D.a = b and
D.p = a, so we must have a and b positive. Then D.D = 2ab is also positive. We
have seen in Example 1.2.61 that every curve C is linearly equivalent to o’ + V'3
for some integers o’ and b'. But every curve is an effective divisor, which must have
nonnegative intersection with the effective divisors « and 3, and we know ¥’ = .C > 0
and ¢’ = B.C > 0. If both o' and ¥’ are zero, then C is linearly equivalent to zero,
that is, is the divisor of some rational function. But this rational function could be
restricted to P! to give a rational function with zeros but no poles, which is impossible.
So if D = aa + bf with a and b positive then C.D = ab’ + ba’ > 0 for every curve C,
so D is ample if and only if @ and b are both positive.

EXAMPLE 1.2.75. On the blow-up of the cone over the Fermat curve, discussed in
Example 1.2.63, the situation is more complicated. We have two divisors, C, which
is derived from a ruling on the cone, and E, which is the exceptional fiber.

Suppose the divisor aC'+-bE is ample. Then in particular, (aC+bE).C = b must be
positive. We must also have (aC + bE).E = a — bm > 0. Finally, the self-intersection

(aC + bE).(aC + bE) = 2ab — b*m = b(a + a — bm)
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must be positive. This follows from the first two conditions. Now suppose we have a
divisor aC + bE such that b > 0 and a > bm. We have already seen that it must have
positive self-intersection. Let D be any curve on the surface. Recalling the definition
of our intersection pairing, we see that any two effective divisors have nonnegative
intersection number; if their supports have nonempty intersection, their intersection
number must be positive. So it is only necessary to show that an arbitrary curve D
intersects one of the curves C' or E. But we have a projection map from our surface to
the Fermat curve, taking (zo:21: T2 : 23, 91:Y2:Y3) t0 (y1:¥2:ys). The image of every
curve C is either a point or the whole Fermat curve. If the image is a point, then the
curve must be the preimage of that point under the projection; in particular, it must
intersect E. If the image of the curve is the whole Fermat curve, then in particular,
some point gets sent to (0:1:1); the preimage of that point must lie on C. Thus the
divisor aC + 8D is ample if and only if b > 0 and a > bm.

Theorem 1.2.72 is also true for singular surfaces (or even varieties), provided that
one has an adequate definition of all the objects involved. This is provided by the
cohomological intersection theory discussed in Section 2.5. See Section 3.4 for details
of this more general version.

1.3. Blow-up

When dealing with singular surfaces, it is often very useful to have a tool for
producing a birationally equivalent surface that is less singular. For examples of the
results in this section, see Section 1.4.1.

To begin with, we define the blow-up of A". Consider the variety A" x P*~! with
coordinates zy,...,T, and y;: -+ : ¥y, (note the unusual numbering of the coordi-
nates).

DEFINITION 1.3.1. The blow-up of A® at 0 is the closed set X of A® x P*~! given
by the equations z;y; = %;4;, 4,5 = 1,...,n. The morphism ¢ : X — A" associated
with this blow-up is simply the restriction of the projection map.

THEOREM 1.3.2. The morphism ¢ has the following properties:

(1) ¢: X\ ¢71(0) — A" \ {0} is an isomorphism.
(2) ¢71(0) is canonically isomorphic to P*! and there is a natural bijection

between lines through the origin in A" and points in the exceptional fiber
¢~10). If £ is a line and p, the corresponding point in P*~' then

¢~1(e\{0}) N ¢7'(0) = pr.
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(3) X is irreducible.
See [Har77, 1.4].

DEFINITION 1.3.3. Let Y C A” be a variety with 0 € Y and such that dim(Y") > 0.
The blow-up of ¥ at0is ¥ = ¢~ 1(Y \ {0}). We call ¥ N ¢~1(0) the exceptional fiber.

REMARK 1.3.4. The blow-up is also often called the strict transform, particularly

when discussing a curve on a surface.

Given a set S C P! let T = f~1(9) where f : A" \ {0} — P™! is the canonical
morphism. We call T the cone over S.

THEOREM 1.3.5. In the notation above we have:
(V) IY) = ({f (@1, .., Ty 11 - Y| (@1 oy Tny T, @) € I(Y))),
(2) Let C be the cone over the projective set Y N ({0} x P*~1) and let Cyp be the
tangent cone to Y at 0. Then C = Cyy.

See [Gor02, Thm. 6.3.3].
There is a particularly explicit representation for the ideal of the blow-up.

COROLLARY 1.3.6. Let Y be a positive dimensional affine variety containing 0. Let
I(Y)" be the ideal generated by the leading forms (the homogeneous parts of lowest
degree) of all the polynomials in I(Y). Choose generators gy, ..., g; for I(Y) such that
their leading forms generate I(Y)*. For every polynomial h € k[z1, ..., z,] we define
a polynomial Hy(x1,...,ToyY1,---,Yn) s follows: write h = h, + >, h; where h, is
homogeneous of degree v and h} is a term of degree > r. Then write each h; as p;ig;
where q; is homogeneous of degree r (this can be done in many ways; the choice is
arbitrary). Define then Hy, = hy(y1, ... Yn) + D; 0i(T1, - -, ) Gi(Y15 - - -, Un)-

Let I = <{:ciyj — 2y}, U{Hgli=1,.. .,t}>. Then Z(I) =Y.

See [Gor02, Cor. 6.3.4].

Since a blow-up is so closely related to the original surface, one might expect the
intersection theory to be related. Suppose for the remainder of this section we have
a nonsingular surface X and its blow-up X , with projection map ¢ and exceptional
fiber E. Then we have a number of results (see [Har77, Sec. V.3]):

PROPOSITION 1.3.7. E is isomorphic to P! and E.E = —1.

REMARK 1.3.8. There is a converse to this: if we have a nonsingular surface X'
containing a curve E isomorphic to P* and having self-intersection —1, then X' is the
blow-up of some nonsingular surface (see [Har77, Thm. V.5.7], due to Castelnuovo).
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We will see in Proposition 2.2.16 that blowing up a singular surface enough to yield
a nonsingular surface results in an exceptional manifold with more than one integral
component, but that the intersection matrix of these components is always negative
definite. In [B&d01] there is much discussion of when curves on a nonsingular surface
can be blown down to yield a singular surface.

Since we are assuming that our surface X is nonsingular, we know that every
divisor is a Cartier divisor, and corresponds to an invertible sheaf. We can pull
this invertible sheaf back to X to get an invertible sheaf there, which corresponds
to a Cartier divisor on X. We denote this map from the group of Cartier divisors
on X to the group of Cartier divisors on X by ¢*. It takes principal divisors into
principal divisors, so it induces a map from Cl1 X to Cl X. Suppose we have a divisor
D =Y apP on X. Let P denote the strict transform of the prime divisor P. We
know that ¢ is an isomorphism away from E, so on X \ E, the divisor ¢*(D) must be
equal to > apﬁ. However, we may obtain some multiple of ' as well. We will see in
Section 2.4 that a similar process is useful on singular surfaces.

ProPOSITION 1.3.9. The natural maps ¢* : C1X — ClX and Z — C1X given by
1~ 1-FE give rise to an isomorphism ClX = ClX @Z. The intersection theory on
X is given by:

(1) If C,D € Cl X then (¢*C).(¢*D) = C.D,

(2) if C € C1X, then (¢*C).E =0,

(3) E.FE = —1, and finally

(4) if ¢, : ClX — ClX denotes projection on the first factor, then if C' € C1X
and D € C1X then (¢*C).D = C.(¢ * D).

Finally, we have a result about the canonical divisor of X:

ProposITiON 1.3.10. The canonical divisor K5 is given by Kg = ¢"Kx + E.
Therefore K% = K% — 1.

REMARK 1.3.11. Observe that if D = ), apP then ¢*(D) =, apP +npkE for
some np uniquely determined by condition 2. We will see that an analogous criterion
allows us to define the pullback of a divisor in the singular case as well.

If the original surface is singular, then we do not yet have any intersection theory
on it. But one approach would be to use these results to construct an intersection
theory on a singular surface by relating it to a sufficiently blown-up version. This is
precisely what we do in Section 2.3 and in Section 2.4.
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Once such a theory is constructed, there will in fact be a relation between the
intersection theories on a singular surface and on its resolved model, but the relation-
ship will be significantly more complicated, since the precise nature of the singularity
will affect the exceptional fiber.

1.4. Examples

In order to illustrate intersection theory on surfaces with isolated singularities, it
is necessary (or at least extremely useful) to have a handful of examples in which one
can work out explicit solutions. So far we have used examples such as P? and P! x P!,
which are simple enough that they require no particular computation. However, our
examples of singular surfaces will be more complicated, so it makes sense to pause
and develop some useful facts about them here.

1.4.1. The cone on a curve. Our first family of examples will be the cones on
nonsingular curves. Let K be a nonsingular curve (that is, a nise projective scheme
of dimension one) embedded in P? defined by the homogeneous polynomials

(y1 2 1yn41)?
f17 .. 'afk-

DEFINITION 1.4.1. The cone C on K is the subset Z(fi,..., fr) of A"l The
projective cone X on K is the projectivization of C, that is, the closure in I[”’(‘;gl yns1)
of the image of the cone under (y1,...,¥nt1) = (1911 ... tYny1).

REMARK 1.4.2. The projectivization X of C is in fact defined by the same poly-
nomials fi,..., fx, now interpreted as homogeneous polynomials in n + 2 variables.
'To see this, we need only check that there are no surplus points at infinity creeping in.
So take (0:2q: - :z,) satisfying all f;. Since f; does not mention g, (t:2y: - 1 Ty)
is on the cone for all ¢t # 0, and (0:2y: --- :z,) must be on the closure.

For the purposes of demonstrating the intersection theory of Section 2.3, we will
need to find a resolved model (see Definition 2.2.10) of the cone. We will see that a
single blow-up suffices to accomplish this. Let C denote the blow-up of the cone C at
the origin, and let X denote the blow-up of X at the origin.

PROPOSITION 1.4.3. The surfaces C' and X are nonsingular except at the origin.

At the origin, they are singular unless K is a projective line in P*. The surface C is
nonsingular and given by

C= Z({xi?/j — @Yi}i o {filv, - ayn+1)}i) C AL X Pl .-

(1 50 Tnt1) “iYng1)”
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FIGURE 1.4.1. The blow-up C of the cone C on 22 + 22 — 2

The surface X is nonsingular, projective, and is given by
X = Z({:Eiyj - :Ejyi}i,j>07 {fi(yl’ AR yn+1)}1;) - P?a;gl: < Tpp1) X P?yl T i Ynt1)”

Finally, X is the projectivization of C. In both cases, the projection map ¢ onto C
or X respectively is given by taking the projection on the first component, and the
ezceptional fiber ¢~1(0) is isomorphic to K.

PROOF. Let us begin by examining the blow-up C. Using Corollary 1.3.6, we see

that
C= Z({xiyj =23}y o {filyns - ayn—H)}i) C AM < P

We also note that the cone over the special fiber is isomorphic to the tangent cone to
C' at the origin. This is just C, the cone over K, so that the special fiber is just K.

The points on C are just (tya, o tYnt, Y1t oo fYny1) for (yi: o0 tyYpy1) € K and
t € k. Fix t and y and compute the Jacobian matrix with respect to the polynomials
{filyr, - Yna) }; and {zy; — T;Yi}; ; we gave above. We obtain a matrix that looks

like
M, =«
(v 1)
where M, is the Jacobian matrix we have for K at y, which has rank n — m and
where M, is the matrix of row vectors

5}

o
vy = (5}:(%’% — Ti¥i)s s m(xiyj - %’%))
T

=(0,...,%,»~Yis---,0).
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Now, the 1; are not all zero; in fact, we can change coordinates so that y; = 1
and all the other y; are zero (the polynomials z;y; — z;y; can still be used because
they have the same zeros as the polynomials we get when we change coordinates).
Then we are left with n independent row vectors, giving our whole matrix a rank of
9n—m = (2n+1) — (m+1). This implies that C is nonsingular. Since C is isomorphic
to C away from the exceptional fiber, this also implies that C is nonsingular except
possibly at the origin. At the origin, we know that the tangent cone is isomorphic
to C; the tangent space will be the linear span of C¢'. C will be nonsingular at the
origin only if the tangent space is two-dimensional, which can happen only if C lies
in a plane, which can happen only if K is a line in P™.

Recall that X is the projectivization of C, given by the same equations; a very
similar argument, together with the fact that the blow-up is a purely local operation,
implies that X is the projectivization of C , and is given by the same equations, and
is in particular nonsingular. U

We have the following commutative diagram:

CS X
l\ /17”
Ce X
j n2
C\ {0} X\ {0}
\ %

PROPOSITION 1.4.4. If the curve K is a curve of degree d, then the blow-up C of
C is a line bundle over K with degree —d. It is equivalent to the divisor of y; on K.
Similarly, X is a Pt-bundle over K , that s, a ruled surface over K.

PRroOOF. If we fix ¢ and look at those points y on C where the ith coordinate is
one, we get a trivialization: take

(EY1s e e en by ey tUngts 1t oo il o i na1) = (Y1, - o Untd)-

This exhibits C as a line bundle over K. Let us try to determine what divisor on the
curve this corresponds to by constructing a meromorphic section. Take this chart and
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begin with ¢ = 1, setting { = 1. Then for j # i, we have

(17y2>--'7yn+171:y2: :yn—i—l) = (tyi""vt,"-aty;z—}—lvyll: RS IR :y;L-}‘l)’

so ¥, = (1/y;)ys and ty) = 1 so t = y; = 1/y}. So this section has a pole of order k
when K C Py i oiyny,) IntETSECES Z (y1) with multiplicity k. But we have Bezout’s
theorem (Theorem 1.1.12), which asserts that if K is a curve of degree d, this happens
d times, so we have a line bundle of degree —d.

If we now look at X , we see that the same trivializations work:

(s:typ: - it itypan, s oo Lo i) = ((S:8), 915+ o Y1)
U

Let us first describe the behavior of divisors on the cone X. We will not be able
to describe the intersection theory on X since we have as yet no intersection theory
even defined on X, but we can still describe the divisor class group. In [Har77, Exer.
I1.6.3], the relationship between a variety V, the cone on V, and the projective cone
on V are discussed. Applying this to our situation we extract several results.

PROPOSITION 1.4.5. Let ¢ be the projection map from X \ {0} to K. Then:

(1) C1X = ClK, with the isomorphism induced by v*,
(2) we have an exact sequence

0-Z—ClK—ClC—0 (1.4.1)

where the first arrow takes 1 to the intersection of any hyperplane with K,
and the second arrow is ¥*, and
(3) if Op is the local ring of the vertex of the cone, C1C = ClSpec Op.

REMARK 1.4.6. Recall that K is a curve. Thus we know Cl K is an extension of
Z by the Jacobian Jac K of the curve K, an abelian variety of dimension equal to the
genus of K.

REMARK 1.4.7. In the exact sequence (1.4.1), the first map takes 1 to the inter-
section of any hyperplane with K. But if K is a curve of degree d, Bezout’s theorem
(Theorem 1.1.12) implies that this is a divisor of degree d on K. This is of particular
interest because we know that on a nonsingular surface, the local class group of any
point is trivial; here we see some behavior peculiar to singular surfaces. In particular,
we have a divisor that is not locally principal. Some multiple of it may be locally
principal. If for example K is P! embedded with degree 2 in P?, then there is exactly
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one divisor (up to linear equivalence) that is not locally principal, and twice that
divisor is locally principal. If on the other hand K is an elliptic curve and k is the
field of complex numbers, the Jacobian of K will again be K, and in particular it will
have a point of infinite order.

What can we say about the divisors on the nonsingular surface X? We have seen
that X is a ruled surface over K. From [Har77, V.2.3] we obtain:

PROPOSITION 1.4.8. Lel my be the projection from X to K. Then
ClX = ZaniClK,

and
NumX =Z & Z.

The class group ClX is generated by the ezceptional fiber E and by {n(D;)} for a
collection {D;} of generators of CLK. The numerical equivalence class group Num X
is generated by E and any ruling of the cone.

Further, we can describe the intersection pairing on X.

PROPOSITION 1.4.9. Let E be the exceptional fiber and let R be a ruling on the
cone. If K is a curve of degree m, then

(1) E.E = —m,
(2) ER=1, and
(3) R.R=0.

LEMMA 1.4.10. Let L be a line bundle on a variety X, and let S be the zero section.
Let Ngy, be the normal sheaf of S in L (if S is defined as a closed subscheme of L by
the sheaf of ideals 3, then Ng;, is Homeg, (J/T?,0r); see [HarT7, Sec. 8|). Then the
line bundle corresponding to the invertible sheaf Ng/r, is isomorphic to L.

PROOF. Let {(U;, ¢;} be a local trivialization for £, and let 7 be the projection
function for L. Let the transition functions for £ be (f;;). Observe first that S is
isomorphic to X.

On 7~Y(U;), ¢; establishes an isomorphism between 7~ !(U;) and A' x U;. Writing
an arbitrary point of A! x U; as (¢, ), the zero section S is locally defined by the
polynomial t. On U; NU;, (¢,2) is mapped to (fi;t,z), so this defining polynomial
for S is taken to figlt. Thus if J is the ideal sheaf defining S, then the line bundle
associated to J/J? has transition functions figl. So its dual, which is by definition the
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line bundle associated to Ng/., has transition functions f;; and is therefore isomorphic

to L. O

PROOF OF PROPOSITION 1.4.9. The ruling R on X is the set of common zeros
of (y; —ci,i = 1,...,n) for some set of constants ¢;. The exceptional fiber E is the
set of zeros of (z1,...,z,). They intersect at (1:0:---:0,¢: -+~ :¢,), and clearly

they generate the maximal ideal there, so these two divisors intersect transversally
and F.R=1.

Recall that we have a projection map 7o to the original curve K. Any ruling on
the blow-up of the cone is the pullback of a point on the original curve. This map
shows that all the rulings on the cone are algebraically equivalent. But two different
rulings do not intersect, so each ruling must have self-intersection 0.

Let us compute the self-intersection of the exceptional fiber E. By [Har77,
Ex. V.1.41], E.E = degy Ng/x. But as a line bundle Ng,x is isomorphic to C
by Lemma 1.4.10, which has degree —m by Proposition 1.4.4. t

1.4.2. Toric varieties. A particularly manageable class of singular varieties is
the class of toric varieties. These are all birational to the torus (k*)" for some n, but
they can be singular. When they are, the resolution of those singularities is relatively
straightforward. The singularities are always Cohen-Macaulay (see Section 2.1.4 for
what this means). Every toric variety is acted on in a natural way by the torus, and
it turns out that every variety with the torus as a dense open subset that is acted on
by the torus is a toric variety (see [Oda78, Sec. 1.4]). In studying divisors on a toric
variety, one may focus on those invariant under the torus action; such divisors have a
simple description.

Toric varieties are manageable chiefly because they are constructed from discrete
objects, in particular fans of cones (which will be defined later). Properties of the
toric varieties usually arise from straightforward properties of the fans, and relations
between different fans of cones yield relations between the toric varieties they yield.

1.4.2.1. Basic definitions. Our treatment will follow [Ful93] closely; refer there
for more detail.

DEFINITION 1.4.11. Let N be a finitely generated free abelian group. Then N is
a lattice in N ® R which we denote Ng. Say o is a rational polyhedral cone if there
exist vy,...,v, € N such that

0= {(V1,...,Up) = {rv+ -+ rpu,|r; > 0 Vil
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FIGURE 1.4.3. The cone o and its generators in M

o is strongly convez if v € o implies —v ¢ 0. We will often say simply cone instead of
“strongly convex rational polyhedral cone” when no confusion seems likely to result.

EXAMPLE 1.4.12. Take N generated by e; and e;. Let o7 = (e3,2e; —e) as in
Figure 1.4.2. This is a strongly convex rational polyhedral cone as defined above.

DEFINITION 1.4.13. Let M = Hom (N, Z). If ¢ is a cone, then the dual cone ¥
is defined by

o' = {u € Mg|Vv € Ng u(v) > 0}.

REMARK 1.4.14. One easily shows that ¢V is a rational polyhedral cone, and
oV N M is a finitely generated semigroup. As we would expect, (¢¥)" = o.

EXAMPLE 1.4.15. Looking again at the cone from Example 1.4.12, we see that

o = (€], €] + 2€}),
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FIGURE 1.4.4. The fan A, and the generators of its cones in N

where {e}, €5} is the dual basis, so that e}(e;) = d;;. Observe that oy "M is generated
by {e}, e} + e}, e} + 2¢e3} but not by any subset of these.

DEFINITION 1.4.16. Let u be any vector in Mg. Define ut = {v € Ng|u(v) = 0}.
Then a subset 7 is a face of o if 7 = o Nut for some u in ¢¥. A fan of cones is a
collection A of cones such that every face of a cone in A is a cone in A and such that
if o and ¢’ are cones in A, then o N o' is a face of both ¢ and o.

EXAMPLE 1.4.17. The faces of oy are oy itself, {e;), (2e; — e2), and (0). This
forms a fan of cones; in fact, taking all the faces of any cone yields a fan A;.

EXAMPLE 1.4.18. For a less trivial fan, let 0o = (€1, e3), 03 = (€3, —e1 — €3), and
o4 = (—e; — ez, e1) as in Figure 1.4.4. Take A, to be the collection of all the faces of
09, 03, and J4.

Having defined fans of cones, we can now begin to construct varieties, our original
goal.

DEFINITION 1.4.19. Let o be a cone. Define S, to be the (finitely generated)
semigroup o¥ N M. Let Kk[S,] be the semigroup algebra, that is, k extended by
monomials x(u) for every u in S, with the relations x(u)x(v) = x(u + v). We define
the affine toric variety U, to be Speck[S,).

EXAMPLE 1.4.20. Taking again the cone oy, recall that the semigroup S,, is equal
to Zei + Z(€} + e3) + Z(ef + 2¢€}), so

k[S,,] = k[X, XY, XY?| =k[U,V,W]/{UW - V?).

Thus U,, is the quadric cone.
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REMARK 1.4.21. If 7 is a face of o, then we have S, C S, so we have a morphism
from U, into U,. This embeds U, as a principal open subset of U,.

DEFINITION 1.4.22. Let A be a fan of cones. Then the cones of A form a set that
is partially ordered by the relation “is a face of”. Whenever o is a face of ¢/, one has a
morphism f,,» embedding U, into U,. Construct the scheme X (A) from the disjoint
union of all the U, by gluing each z € U, to f,, (z). Then we say X (A) is the toric
variety associated to A.

EXAMPLE 1.4.23. If A is the fan of faces of a single cone o, then X (A) is just U,.
So for the cone o, the toric variety we obtain is just the quadric cone.

EXAMPLE 1.4.24. Now consider A,, the fan from Example 1.4.18. U,, = k[X, Y],
Uy, = k[X~1, X71Y], and U,, = k[XY~1,Y~1]. All three are isomorphic to A%. I
claim these glue together in the usual way to give P?: if (1,71, T2) are the homoge-
neous coordinates on P2, then X = T} /Ty and Y = T3 /Tg.

REMARK 1.4.25. Notice that every cone contains the face {0}. If the lattice N
is n-dimensional, then Uy = Speck[X1, X7',...,X,, X7 = (k*)", the torus of
algebraic groups. Thus every toric variety contains the torus as a dense open subset
(hence the name). It is also clear that a toric variety will have the same dimension as
N, the lattice on which it is built.

1.4.2.2. Points on a toric variety. There is a fairly simple description of the closed
points on an affine toric variety. A closed point on the affine variety U, is by definition
a maximal ideal in k[S,], which corresponds to a homomorphism from k[S,] to k. Such
a homomorphism is just given by a semigroup homomorphism from S, to k, where k
is considered as a semigroup with respect to multiplication.

This description leads to a natural action of the torus on any toric variety. In par-
ticular, a point ¢ on the torus contained in U, is a map of semigroups from Sggy = M
to k*. If x is a point on U,, we define the multiplication ¢ - x so that

(t- 2)(u) = t(u)z(u).

EXAMPLE 1.4.26. Let X(A;) be the toric variety of Examples 1.4.18 and 1.4.24.
We have seen that X (A,) is isomorphic to P, . ... What is the torus action on
X(A3)? We have N = Ze, + Zey so write M = Ze} + Ze;. Then any point of the
torus is (kq, ko) for k; € k* we can identify this with the semigroup homomorphism

(1€} + ngel) = kPky?. Consider first U,, = A%. Then the point (z,y) corresponds
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to the map (nief + ngel) — z™y™2. We can see that the torus action here is

(K1, ko) - (z,y) = (kaz, kay).

By continuity we can infer that the torus action on P%zo 51 102) is given by

(k1,k2) - (To: 1 :20) > (xo k21 2 ko).

Ifu € S,, then from the monomial x* we can obtain a regular function on U, its
value at a point z is z(u).

DEFINITION 1.4.27. Let U, be an affine toric variety. There is a canonical distin-
guished point z, in U, defined by
1 ifueot
zq(u) =
0 otherwise.

If o spans Ng, this is the unique fixed point of the torus action; if o does not span
Nr, there are no fixed points (see [Ful93, Sec. 2.1]).

For each cone o we also obtain a closed subset of X(A) by letting V,, be the
closure of the orbit of z,. Each V,, is then a complete integral scheme with an open
dense torus embedding, and it turns out that V, is again a toric variety whose fan
can be explicitly computed. We can see from the definition that the V, are the only
irreducible closed subsets of X (A) invariant under the torus action.

We have an inclusion-reversing correspondence between these V, and the cones
o in the fan A; in particular, if o spans Ng, V, is just the point z,, if 0 = 0 then
V, = X(A), and if o0 has dimension one we call it an edge and V, has codimension
one.

EXAMPLE 1.4.28. Returning to our toric variety X(As) from Example 1.4.26,
what is V, for the various cones o of A7 Looking at the torus action, we see that
the fixed points are (1:0:0) € U,,, (0:1:0) € U,,, and (0:0:1) € U,,. Thus, for
example, V,, = {z,,} = (1:0:0). Suppose we let o be the edge generated by e;.
Then S, is generated by e}, e} and —e} and o is generated by e} and —ej. Then z,
is defined by

1 ifny=0
(ni€] + noel) — 2 = 1™MQ",
0 otherwise
We can recognize this as the point (1, 0) in A2, which corresponds to the point (1:1:0)

in P?. The orbit of this point is {(1:4:0)|k € k*}, so Vo = Z(22) C PP, .4, .0)-
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We have already seen (in Example 1.4.12) that toric varieties may be singular. In
[Ful93, Sec. 2.1] we find a simple characterization of when this happens:

PROPOSITION 1.4.29. An affine toric variety U, is nonsingular if and only if cNN
is generated by part of a basis of the lattice N. In this case U, = CF x (C*)”“k where
k is the dimension of o as a cone in Ng. If on the other hand U, is singular, it will
be singular at exzactly the point x,.

In Section 2.1 we will describe many different kinds of singularity. The singularities
that occur in the category of toric varieties are rather limited. In particular, every
toric variety is normal and Cohen-Macaulay.

1.4.2.3. Resolution of singularities. In view of the simple characterization of sin-
gularities given above, it is quite straightforward to take a two-dimensional affine toric
variety and produce a nonsingular toric variety which is closely related. One simply
introduces new edges subdividing the cone until the generators of each cone generate
the lattice. We will give a more explicit description of this process that shows that
this is always possible.

Let A and A’ be fans on N and N’, and suppose we have a map f from N to
N' such that if o is a cone of A then f(o) is contained in some cone ¢’ of A’. Then
f induces a map from each S,» to S,, and we get a morphism from X (A) to X (A’).
Now suppose both fans are two-dimensional and A is obtained by subdividing some
two-dimensional cone ¢’ of A’, and further that f is just the identity. Then the map
of toric varieties is an isomorphism on the toric variety obtained by deleting ¢’ and
its preimage. But since o’ is two-dimensional, deleting it removes the single point
z,. Thus we have an isomorphism except for a single point, whose preimage is V, for
every new edge 7, just as in Section 1.4.1. See Example 1.4.30 for a worked example.

Let o be a two-dimensional cone. Then any minimal generator e; along an edge is
part of a basis {e;,es} for N. The other generator is me; — key for m some positive
integer and k any integer. Taking an automorphism of the lattice of the form (19),
we can transform this to (m,cm + k), so we can take 0 < k < m without loss of
generality. Then the cone o is generated by e; and me; — kes. Since we chose a
minimal generator along the edge, m and & will be relatively prime. Now, the group
G of m-th roots of unity acts on A? by ((u,v) = (Cu,(*v), and it turns out that
U, 2 A’/G. So all singularities of toric surfaces (and in fact toric varieties of any
dimension) arise as quotients of a nonsingular variety by a finite group.

Now suppose we have a singular affine toric variety generated by the cone o,
and that o is generated as above by (0,1) and (m,—k). The goal is to produce
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FIGURE 1.4.5. The process of resolving the singularity of an affine toric variety

a nonsingular toric variety by subdividing o; this will yield a map of just the sort
we need to produce a resolved model in the sense of Section 2.3. So insert the line
through e;. Then we have two cones o' = (e, e3) and 0" = (e;, me; — keg). But o”
is “less singular” than the initial cone o: rotate it though ninety degrees, so that one
generator is e; and the other is ke; + mes, then translate this point as before so we
obtain ke; — k'ey for some 0 < k' < k, ¥’ = m — a1k. We can carry on this process
just like the Euclidean algorithm until we obtain a nonsingular cone. One can view
this as the construction of the continued fraction

m_._
E? 1

g —

In this way we obtain a resolved model of the original affine toric variety. The ex-
ceptional fiber is a chain of P's intersecting transversally and having self-intersection
;.

ExaMPLE 1.4.30. Consider the affine toric variety U,, of Example 1.4.12. We
defined o7 to be the cone in Ny generated by e; and 2e; — e5. These clearly do not
generate the lattice, so we see that U,, is singular, which we knew already. Let us
follow the algorithm described above to resolve this singularity.

We must first choose generators for the lattice N so that the generator along one
side is (0,1) and the generator along the other is (m, —k) for 0 < k < m. For this
cone, e; and ey will do. Then we are supposed to subdivide the cone by introducing
the edge generated by e;. Then we obtain two cones, o5, generated by e; and ey, and
o generated by e; and 2e; — e5. In this case both cones are nonsingular, so we stop.
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The continued fraction we constructed was particularly simple:

1 1

27 (-2
As a result we obtain a nounsingular toric variety X (Aj;) covered by two affine toric
varieties; the exceptional fiber has self-intersection —2. We see that this is the same
self-intersection we would have obtained by simply blowing up the quadric cone at its
singular point, and in fact this is the same variety (this can be seen using the theory

of minimal models, since neither contains a rational curve with self-intersection —1;
see [Har77, Sec. V.5]).

We have seen that the local behavior of toric varieties is fairly simple to compute
from the structure of the cones that make them up. The global structure is also
relatively easy to compute from the fan of cones. For example:

PROPOSITION 1.4.31. The toric variety defined by A is proper over k if and only
if the cones of A together cover all of Ng.

See [Ful93, Sec. 2.4].

1.4.2.4. Divisors and the torus action. Since toric varieties have a natural torus
action, it is natural to focus on divisors that are invariant under the torus action. We
say that a divisor is a T-Weil divisor if it is invariant under the torus action. This is
particularly useful because of:

PROPOSITION 1.4.32. Every Weil divisor on a toric variety is linearly equivalent
to a T-Weil divisor.

See [Ful93, Sec. 3.3] for this and for the next few remarks.

Recall that we have a description of the orbits of the torus action, so we know
that every T-Weil divisor is of the form 5 a,V, as 7 ranges over all the edges (cones
of dimension 1} in A.

Let U, be an affine toric variety. Then in [Ful93, Sec. 3.3] it is shown that every
T-Cartier divisor is the divisor of x(u) for some v in M. Let 7 be any edge of o. If v,
is the first lattice point along 7, then the divisor of x(u) is > (u,v,)V,. Clearly the
divisor of u will equal the divisor of v if and only if (u — ', v) = 0 for every v in o.
So the group of T-Cartier divisors is isomorphic to M/(c* N M).

Now let A be a fan and let X (A) be the associated toric variety. Then a T-Cartier
divisor on X (A) is given by a T-Cartier divisor x{—u,) on each cone ¢ in A with the
criterion that if 0 C ¢', uy — Uy € o+ N M.
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The map ¢ : u — x(u) gives a map from M to the group G of T-Cartier divisors.
Recall that the group of Cartier divisors modulo the group of principal divisors is
denoted CaCl X. Using ¢, we get the following:

PROPOSITION 1.4.33. Let X = X(A) be a toric variety, defined by an n-dimen-
stonal fan A that is not contained in any proper subspace of Ng. Then there is a
commutative diagram with exact rows:

0 M i G CaClX —= 0.
w

|

Moreover, CaCl X (A) is free abelian, and we have
rank(CaCl X (A)) < rank(Cl1X(A)) =d—n

where d is the number of edges in A and rank(A) is the cardinality of the largest
Z-linearly independent set of elements in A.

REMARK 1.4.34. If A is a single two-dimensional cone o, then o has two edges
and is two-dimensional, so CI(X(A)) has rank zero and is therefore torsion and in
fact finite. So there exists some constant &, such that for any Weil divisor D we have
koD principal on o. If A is any two-dimensional fan, then we can clearly construct
some constant k such that for any Weil divisor D, kD is principal on U, for every
maximal cone ¢ in A. This implies that every Weil divisor has a multiple that is
locally principal.

More generally, it is not hard to show that on an n-dimensional toric variety, every
Weil divisor has a locally principal multiple if and only if every n-dimensional cone
has exactly n edges.

Since toric varieties are Cohen-Macaulay, there is a version of Serre duality that
applies to them (see |[Ful93, Sec. 4.4]). It relies on a dualizing sheaf (which may
not be the canonical sheaf if the toric variety is singular) which can be computed
explicitly. It is the sheaf associated to the divisor — >V, as 7 ranges over all edges
in A. The local sections of this sheaf on U are rational functions with at least simple
zeros along each V, for every V, intersecting U. If the toric variety is nonsingular,
this sheaf will be equal to the canonical sheaf.

Suppose we have a toric variety X(A') in which the singularities of X(A) are
resolved. Then we can take the canonical divisor K on X (A'); we know it will be a
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V2

U3

FIGURE 1.4.6. The edges v; in the fan of a nonsingular toric surface

formal sum of all the edges in A’ because X (A’) is nonsingular. Then taking the push-
forward K, of this (see Definition 2.3.4) we obtain the dualizing divisor on X(A). So
in the case of toric varieties, we have a simple description of the dualizing sheaf even
when this sheaf is not invertible. In Section 3.3 we will see that the same is true for
any variety that is a local complete intersection. This is a more restrictive conclusion,
since toric varieties need not be local complete intersections.

Suppose X (A) is a nonsingular toric variety of dimension 2, and let 7 and 7’ be
different edges of the same two-dimensional cone. Then 7 = ut and 7 = (v/)* for
some v and v’ in M. Then the divisor of x(u) is V;, and the divisor of x(u') is V.
Further, x(u) and x(u') together generate the maximal ideal at z,, so the two curves
intersect transversally. Since we already know that two edges that do not share a
cone do not intersect, we can determine how any two different divisors intersect. In
[Ful93, Sec. 2.5], the nonsingular toric surfaces are completely described. We will
summarize this discussion.

Let A be a two-dimensional fan of cones, and suppose that X(A) is complete.
Then we know that A spans all of Nk, so A can be described by giving the first
point along each edge in counterclockwise order around the origin. Let these points
be vy, ...,vq = v5. Now suppose X(A) is nonsingular. Then vy and v; must together
generate the lattice, and v; and vs must also generate the lattice. Since v, must
be in the second or third quadrants, we must have v, = —wvg + ayv;. In general,
we must have a;v; = v;_1 + v;4; for all i. One can show that these a; must satisfy
a; + -+ aq = 3d — 12, and that conversely, any sequence satisfying these criteria
defines a nonsingular toric variety. Then one shows that the intersection form on
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D,

Dy
Dy

Dy

Dy

FIGURE 1.4.7. The curves D; on a nonsingular toric surface intersect
in a loop

g 7 ar 4 Tt
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09 Oy

FIGURE 1.4.8. The fan A4 and a fan Aj resolving its singularities

X(A) is given by
—0; if1 = ]
Di.Dj =41 ifli—jl=1

0 otherwise.

EXAMPLE 1.4.35. Consider the toric surfaces X(A,4) and X (A;) defined by the
fans A4 and Aj as shown in Figure 1.4.8. Tt is easy to see that in X(A,) only the
cone o7 leads to a singular affine toric variety and that X (As) is a nonsingular toric

variety mapping to X (A,).
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Examining As, we see that if v; is the generator for 7;, we have

U1g + Vg = 0?)7
v7 +vg = —1ug
vg + v1p = 209
vg + v11 = lugg
V1o + vi2 = 2un
U1 + v = 2’012.

Let V' denote the closure of the orbit of z,, on X (As). Then we see that the inter-
section matrix on X (Aj) looks like

(0 1 0 0 1\
11 1 0 0 0
01 -2 1 0 0
VIV =
(Vi Vidig 00 1 -1 1 0
00 0 1 -2 1

\1o0 0 0 1 -2/
Let V; denote the closure of the orbit of z,, on X(A4). Then we know that the
canonical divisor on X(A) is V7 + Vg + Vg + Vig. We know Vi + Vj is locally principal,
since it does not pass through the singular point z,,. Is V7 + V347 Consider the affine
toric variety U,,. We know the principal divisors are images of elements of the lattice
M under the map ¢ defined above. Let e and e} be the dual basis to e; and es. Then
d(er) = (€], ea) Vi + (€7, 3e1 — 2e3)Vig
= 3V1o
d(e3) = (€3, e2)Vr + (€5, 3e1 — 2e9)Vio
- ‘[7 - 2‘/107

and we see that V7 + Vjq is principal on U,,. Thus the dualizing sheaf is invertible.



CHAPTER 2

Intersection Theory on Surfaces with Isolated Singularities

2.1. A Bestiary of Singularities

The object of this thesis is to study singular surfaces, so it seems wise to present
a description of several types of singularities that might arise on a surface. Unlike
the rest of this work, this section will focus on local properties of a surface, that is,
given a point x € X, properties of the scheme Spec Ox, and to a lesser extent its
completion Spec 0 x,z- For that reason, in this section we relax the restriction that a
surface be complete.

2.1.1. General singularities.

DEFINITION 2.1.1. A variety X is nonsingular at a point z if the local ring Ox ,
is a regular local ring.

Recall that a regular local ring of dimension n is one in which the maximal ideal
modulo its square has dimension n (as a vector space over the residue field). Equiva-
lently, a scheme X of dimension n is nonsingular at a point x if the sheaf of differentials
Qx/x is a locally free sheaf of rank n at z. See [Har77, Thm. 8.15] and the surround-
ing text for a proof and further discussion.

If X is a variety of dimension r and we have a representation of X as

Z({(filzr, .. xn)y ooy f(T1, o5 20))),

then X is nonsingular at z if and only if the rank of the m x n matrix
9f;
)
<8xj i

In general, the set of points at which a variety is singular is a proper closed

isn—r.

subset ([Har77, 1.5.3]). If this closed set has a component of codimension one, say

C, then the local ring Ox ¢ is not a regular local ring, so the maximal ideal mx ¢ is

not principal, so Ox ¢ is not a discrete valuation ring. This means that we cannot

compute the valuation of a rational function at such a generic point. As a result, Weil
51
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divisors are not very useful on such surfaces. Cartier divisors, on the other hand, are
well-behaved, and in fact the intersection theory of Section 2.5 can be applied. We
will see, however, that the objects of interest in intersection theory are often Weil

divisors that are not locally principal, so the theory has been formulated in those
terms.

EXAMPLE 2.1.2. Consider the variety in A® given by Z(z%(z + 1) — 3?). This will
be singular whenever y = z = 0, that is along a line.

2.1.2. Nomnsingular in codimension 1.

DEFINITION 2.1.3. If a surface is nonsingular at every point of codimension 1,
then it is said to be nonsingular in codimension 1.

Equivalently, if the set of singular points has no component of codimension 1, then
the surface is nonsingular in codimension 1.

On a surface that is nonsingular in codimension 1, the local ring of every prime
divisor is a discrete valuation ring, so Weil divisors are well-defined and useful. This
is the kind of surface we will focus on; only a few sections of this work (Section 2.5
and a few others) can be applied to surfaces that are singular in codimension 1. A
surface which is nonsingular in codimension 1 has only finitely many singular points,
so it is frequently convenient to examine each such point individually.

EXAMPLE 2.1.4. Suppose the characteristic of k is not 2 or 3. Then consider the
surface klu, v, w, y]/(u® — v?, w? — uy?, w® — vy3, uw — vy). This has Jacobian

3u? -2v 0 0
-2 0 2w —2uy
0 —y® 3w? —3uy?
Wy U —v
which has rank two except when y = v = v = w = 0. So this surface has a singularity
at the origin and no other singularities.

2.1.3. Normal singularities. Recall that the integral closure of a ring R in a
ring S is the set of elements y € S satisfying a monic polynomial with coeflicients in
R. A ring R is integrally closed when the integral closure of R in its field of fractions
is again R.

DEFINITION 2.1.5. A point x on a surface X is normal if the local ring Ox, is
integrally closed. A surface is normal if all its points are normal.
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EXAMPLE 2.1.6. Let R = k(2,9, 2]z.5/(y* — 2*). Consider the element y/z in
the quotient field of R. This satisfies the monic polynomial X2 —z but is not in R. So

R is not integrally closed and we see that the surface of Example 2.1.2 is not normal
at (0,0,0).

REMARK 2.1.7. Every regular local ring is a unique factorization domain, and a
unique factorization domain is always integrally closed. So every nonsingular point of
a scheme is a normal point. In particular, this implies that the normal points are an
open dense subset of any surface.

If a surface is normal at all its points, then it is nonsingular in codimension 1
(JAMSG69, Prop. 9.2]). The converse is not true, as we will see in Example 2.1.14.

Every surface X possesses a unique normalization, that is, a normal surface Y
and a finite morphism f : Y — X that is an isomorphism away from the non-normal
points of X. In particular, what this means is that any surface which is singular in
codimension one has a unique normal surface mapping birationally to it which is non-
singular in codimension one. So problems on such a surface can (at least in principle)
be resolved by referring to the unique normalization. In contrast, while every surface
has a nonsingular surface mapping to it in a similar way (see Section 2.2, particularly
Proposition 2.2.6), this surface is not unique, which complicates the theory greatly.
When dealing with curves, of course, the normalization resolves all the singularities
in a unique way.

Given any affine scheme Spec R, the normalization is Spec S, where S is the in-
tegral closure of R in its field of fractions, along with the morphism induced by the
natural inclusion. If Spec R is of finite type over a field, then this morphism is finite.
If now X is any scheme, then it can be shown that for any affine cover, the normal-
izations of all the affine neighborhoods glue to give a scheme that is noetherian if X
is, and the morphisms glue to give a morphism that is finite whenever X is of finite
type over a field.

Suppose now that X is projective. Is the normalization of X also projective?

PROPOSITION 2.1.8. Let X be a noetherian scheme of finite type over k, and let
(Y, f) be the normalization of X. Let £ be a line bundle on Y such that f.(L) is an
ample line bundle on X. Then L is ample on Y.

PROOF. Observe that f is affine by the definition of normalization, so for any
quasi-coherent sheaf M we can apply [Har77, Ex. I11.4.1] to obtain isomorphisms
H{(Y,M) = HY(X, f.(M)) for all i > 0.
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Now let F be any coherent sheaf on Y. Then since f,(£) is ample on X, by the
cohomological criterion of ampleness, H*(X, f.(L)® f.(F")) = 0 for ¢ > 0 and n large
enough. But then we obtain H{(Y, L ® F") = 0 for 7 > 0 and n large enough, and we
see that L is ampleon Y. [

COROLLARY 2.1.9. Let X be a surface that is nonsingular in codimension one.
Then its normalization is also a surface; in particular, the normalization of such a
surface is projective. Let L be any ample invertible sheaf on X, and let (Y, f) be the
normalization of X. Then f*(L) is ample on Y .

PROOF. We have f,(f*(L)) = L, as we can see by considering the corresponding
locally principal divisor: it is clearly equal up to a set of codimension two. U

In order to deal with normality, it is useful to have a more tangible criterion for
normality of a surface. This is provided by Serre’s criterion.

DEFINITION 2.1.10. Let A be aring and M an A-module. A sequence of z1,...,%,
of elements of A is called a regular sequence for M if (zq,...,2.)M # M, x; is not
a zerodivisor on M and zj is not a zerodivisor on M/(z1,...,zx—1)M for all k. If A
is a local ring with maximal ideal m then the depth of M is the maximal length of a
regular sequence for M with elements taken from m.

REMARK 2.1.11. In [Eis95, Chap. 18], a more general definition of depth is
used, allowing depth to be computed on rings that are not necessarily local; what
we call depth M on a local ring A with maximal ideal m would there be denoted
depth(m, M); if M = A, this would be abbreviated (confusingly!) to depthm. How-
ever, in the special case where A is local with maximal ideal m, the same reference
also abbreviates depth(m, M) to depth M, yielding two quite different interpretations
when M is an ideal. “However,” Eisenbud asserts, “confusion does not really arise in
practice.” ([Eis95, p.425]).

DEFINITION 2.1.12. We say a noetherian ring A satisfies condition S2 (the S is
for J.-P. Serre) if for every prime ideal p of codimension > 2 we have depth A, > 2.

THEOREM 2.1.13 (Serre). A noetherian ring A is a product of integrally closed
domains if and only if A is nonsingular in codimension 1 and satisfies condition S2.

See [Eis95, Thm. 11.5] and the proof of [Eis95, Thm. 18.15] for more information.
If A is the local ring of a point x on a surface that is nonsingular in codimension 1,
then A has dimension 2 and is an integral domain. Then there is exactly one ideal
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with codimension > 2, namely the maximal ideal m. Thus we need only show that
depth A, > 2. We can do this by producing a regular sequence of length 2. Such a
sequence is just a pair of elements f and ¢ in m such that g is not a zerodivisor in
A/ fA. If no such sequence exists, then the surface is not normal.

If x is a normal singularity on X, then by definition the local ring O, is integrally
closed. In [Bad01, Lem. 4.2], we see that the ring 0 x ¢ 15 also integrally closed. This
may occasionally be easier to investigate.

EXAMPLE 2.1.14. Let Y = Spec S be a normal affine surface. Then let R be
a subring of S such that S/R is finite dimensional as a vector space over k. Then
S and R will have the same quotient field, and S will be the integral closure of
R. So X = Spec R will not be normal. Further, the inclusion R < S defines
the finite birational morphism f : ¥ — X. Then Y is the normalization of X,
and there is a finite set of points zy,...,z, such that f provides an isomorphism of
Y\ *{z1,...,z.}) with X\ {z1,...,z,}. For the proof see [Mum99, Ex. II1.8.K].

ExAMPLE 2.1.15. For a specific example of a surface, assume the characteristic
of k is not 2 or 3, and take S = k[z,y] and R = Kk[z% 2% zy,y]. Then any el-
ement of S can be written as a + bz + f(z)z* + yg(z,y) = a + bz + r for some
r € R, and we see that S/R is a finite-dimensional k-vector space as required in
Example 2.1.14. Now write u = z°?, v = 2%, w = zy, and we get R mapping
into k[u, v, w, y]/ @3 2 8 — vy, uw — vy). This map corresponds to the
morphism of varieties f(x,y) = (2%, 2%, 2y,y). Consider the set-theoretic map

~ 2, w? — uy?,w

(0,y) ifu=0

(u,v,w,y) —
(v/u,y) otherwise.

This is a set-theoretic inverse to f, which implies that f is surjective. Since R is an
integral domain, R is irreducible and so is f(R). We can use the computer algebra
package Macaulay 2 ([GS]) to verify that the ideal of this scheme is equal to its
radical. Thus R is isomorphic to k[u, v, w, y]/(u® — v?, w? — uy?, w* — vy®, uw — vy),
the coordinate ring of the surface from Example 2.1.4 on which the point 0 is an
isolated non-normal singularity. The normalization of this surface is just Spec S with
the map f.
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2.1.4. Cohen-Macaulay singularities.

DEFINITION 2.1.16. Let A be a local noetherian integrally closed domain. We
then say A is Cohen-Macaulay if depth A = dim A, considering A as an A-module.

We say a point z on a surface X is Cohen-Macaulay if the local ring Ox ;, is Cohen-
Macaulay. A surface X is Cohen-Macaulay if all its points are Cohen-Macaulay.

REMARK 2.1.17. For general rings A, we have an inequality depth A < dim A
(translating [Eis95, Prop. 18.2] to our language). A Cohen-Macaulay ring is one for
which the depth is as large as possible.

This is definition of a Cohen-Macaulay point on a surface is rather awkward-
looking, but fortunately we have:

PROPOSITION 2.1.18. Let X be an algebraic k-scheme of dimension 2 that is non-
singular in codimension 1. Then X is Cohen-Macaulay ot x if and only if X is normal
at z.

PROOF. Let A be the local ring of a point z on a surface X and suppose z
is normal. We then know that A is nonsingular in codimension 1. Further, every
prime ideal has codimension one or two, so we need only consider prime ideals of
codimension 2, and there is only one of these, the maximal ideal m. We know from
Serre’s criterion (Theorem 2.1.13) that depth A, = depth A > 2. Recall that for any
ring R, depth R < dim R. In particular, we have depth A < 2, sodepth A =2 =dim A
so A is Cohen-Macaulay.

Now suppose instead that z is Cohen-Macaulay. Then for every prime p,
depth Ay, = dim Ay = codim p,
so by Serre’s criterion z is normal. O

REMARK 2.1.19. The fact that a Cohen-Macaulay ring that is nonsingular in
codimension 1 is therefore normal is true for varieties of any dimension.

If a projective variety is Cohen-Macaulay, then we have a version of Serre duality
(see A.4). This will be essential for the Riemann-Roch theorem in Section 3.3.

EXAMPLE 2.1.20. Toric varieties are always Cohen-Macaulay and always have
isolated singularities, and therefore toric varieties are always normal.
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2.1.5. Gorenstein singularities.

DEFINITION 2.1.21. A local noetherian ring R is Gorenstein if it has a finite
injective resolution as an R-module. A point z on a surface X is Gorenstein if the
local ring Ox ; is Gorenstein. A surface is Gorenstein if all its points are Gorenstein.

A Gorenstein ring is always Cohen-Macaulay (see [Fos73, Chap. 12]). If a surface
X is Cohen-Macaulay, then the dualizing sheaf wy is invertible in a neighborhood
of a point z if and only if z is a Gorenstein point on X (see [Bad01, 3.11]). Com-
paring with Theorem A.4.9, we see that a local complete intersection is Gorenstein
everywhere.

Generally, unless it is a local complete intersection, it is awkward to tell if a ring
is Gorenstein. However, we have a few results that are useful for this purpose.

THEOREM 2.1.22 (Murthy). Let R be Cohen-Macaulay, a quotient of a Gorenstein
ring, and a unique factorization domain. Then R is Gorenstein.

See [Fos73, Thm. 12.3]. Applied to surfaces, this implies that every factorial
singularity (see Definition 2.1.8) is Gorenstein.

THEOREM 2.1.23 (M. Artin). Let X be a nonsingular projective surface and let
E C X be a connected closed subscheme of dimension 1 with integral components
E, ..., E,. Then the following conditions are equivalent:

(1) There exists a morphism f : X — Y with the following properties: Y is a
normal projective surface, f(E) = y is a Gorenstein point on Y, f is an
isomorphism between X \ E and Y \ {y}, and f*(w}) = w%.

(2) The intersection matriz (E;.Ej), ; is negative definite, the E; are nonsingular
rational curves, and E; E; = —2 for all i.

REMARK 2.1.24. We will see in Example 2.1.29 that it is quite possible to satisfy
all the conditions of condition 1 except for f*(wy) = w; thus this theorem is not as
useful for proving that a point is not Gorenstein as one might hope.

EXAMPLE 2.1.25. We saw in Example 1.4.35 that the surface X(A4) has an in-
vertible canonical sheaf and is therefore Gorenstein.
2.1.6. Local complete intersections.

DEFINITION 2.1.26. Let X be a surface and z be a point on X. Let U be an open
affine neighborhood of z, so that U is isomorphic to an open subset of a variety cut
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out of affine n-space by some ideal I. We know that the ideal I cannot be generated
by less than n — 2 elements; if for some U the ideal I can be generated by exactly
n — 2 elements, then we say X is a local complete intersection at x. We say X is a
local complete intersection if it is a local complete intersection at every point.

It turns out ([Har77, Rem. 11.8.22.2]) that being a local complete intersection is
an intrinsic property of a scheme. In particular, it does not depend on the embedding
into affine space.

A local complete intersection is Cohen-Macaulay, and it is normal if and only if it is
nonsingular in codimension 1 ([Har77, Prop. 11.8.23]). A local complete intersection
is Gorenstein ([Eis95, Cor. 21.19]) and so the dualizing sheaf is invertible; if we have
a description of the projective surface as a closed subset of P, we have a quite explicit
description of the dualizing sheaf (see Theorem A.4.9).

EXAMPLE 2.1.27. Every nonsingular variety is a local complete intersection (see
[Har77, Thm. 11.8.17}).

EXAMPLE 2.1.28. Any hypersurface is a local complete intersection. Thus a hy-
persurface is always Cohen-Macaulay and Gorenstein, and it is normal if and only if
it is nonsingular in codimension one.

ExXaMPLE 2.1.29. Consider Example 1.2.5, the (projective) cone on the Fermat
curve ™ +y™ = 2™ of degree m. In Section 1.4.1 we have described a resolved model,
achieved by a single blow-up. The cone is a hypersurface, so it is a local complete
intersection.

2.1.7. Rational singularities. Rational singularities are not simple to define,
but they are much more tractable than more general sorts of singularities; the sorts
of exceptional fiber that can arise are well-understood.

Recall from Section 1.2.6 the definition of the arithmetic genus p, of an effective
divisor D:

pa(D) = (-1)"(x(0p) — 1).

DEFINITION 2.1.30. Let z be a normal singularity on the surface X, and let (Y f)
be a resolved model of X (see Section 2.3). Suppose that the exceptional manifold

has integral components {E;}. Then z is rational if any of the following equivalent
conditions holds:

(1) le*(OY) =0,
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(2) x(0x) = x(Oy),

(3) pa(Z) < 0 for every positive divisor Z with support contained in E,*

(4) HY(Oz) = 0 for every positive divisor Z with support contained in E, and

(5) for each Z > 0 with support equal to F, the canonical homomorphism d :
H'(03) — Z" which associates the n-tuple (degg (L|g,),...,degg, (Lix,))
to each invertible O x-module L is an isomorphism.

ExampLE 2.1.31. If we consider our familiar example from Section 1.4.1 and Ex-
ample 2.1.29, the cone on the Fermat curve, we see that the singularity is always
normal since the cone is a hypersurface which is nonsingular in codimension one. The
singularity is resolved by a single blow-up, yielding an exceptional fiber isomorphic
to the original curve. Thus the singularity will be rational if and only if the curve
has arithmetic genus zero —— that is, if and only if the curve is isomorphic to P!.
But recall that the Fermat curve of degree m has genus (m — 1)(m — 2)/2, so (for
example) the cone on the Fermat curve of degree 3 is a local complete intersection
but the singularity at the origin is not rational.

EXAMPLE 2.1.32. Cousider the toric variety Example 1.4.35. Here the exceptional
fiber is two copies of P' with intersection matrix (2 1,); let Z = aV/, + bVj, be a
nonzero effective divisor. Then by Proposition 1.2.44,

Po(Z)=0ab—1-2a(a—1)/2—(a—1)—2b(b—-1)/2—(b—1)
=ab—(a®+b") +1
= —(a —b)? —ab+ 1,

which is clearly less than or equal to zero.
So Example 1.4.35 is rational.

None of the equivalent conditions for a singularity to be rational is especially
tractable. However, we have a more explicit description.

Given a list of prime divisors {E;} on a nonsingular surface, by the local formula
for the intersection number (Theorem 1.2.37) we know that the intersection E;.E; is
a nonnegative integer for i # j. So construct a graph? whose nodes are the E; and
having E;.E; edges connecting E; and E; when 1 # j. Observe that this graph is
misprim in the statement of this theorem/definition in [BAd01]. There condition 3 is
written as “p,(Z) = 0 for every positive divisor Z with support contained in E”. However, examining
the proof and [B&d01, Lem. 3.3], we see that the correct condition is as stated here.

2In the literature, there are many slightly different definitions of “graph”, and the objects described
here are not graphs in the most common sense. These objects could more accurately be described as
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connected if and only if the underlying topological space | J; £; is connected. A cycle
in a graph is a list of vertices vy, ..., v, and edges ey, ..., e, such that e; connects v;
and ¥(i4+1) mod n and such that no vertex and no edge appears twice. In particular, if
a pair of vertices is connected by more than one edge, there is a cycle in the graph.
Recall also that the graph is a tree if and only if it is connected and it contains no
cycles, or equivalently, if the number of edges is exactly one less than the number of
vertices. Say the E; form a tree if the associated graph is a tree.

PROPOSITION 2.1.33. Let X be a normal surface singular at x, and let ()Z', f) be
a resolved model of X. Then if z is a rational singularity, the exceptional fiber (whose
integral components we will label { E;}) is a tree of copies of P'.

We will require a lemma:

LEMMA 2.1.34. Let Y be a reduced connected subscheme of a surface X, and let
Y have pure dimension 1 with n irreducible components {C;}. Then

p.(Y) > 0.

If po(Y) = 0, then the graph associated to the {C;} has no cycles and p,({C;}) =0
for all 1.

Proor. Recall the formula from Section 1.2.6:

n n n 1]
na(3C) =Y m(C)+3 Y (CiCy) ~ (= 1).

i=1 i=1 i=1 j=itl
We know that for i # j we have C;.C; > 0. In fact, the term 37, 77 .., (C.Cy) is
precisely the number of edges in the graph. Every curve has nonnegative arithmetic
genus ([Har77, Exer. II1.5.3]) so if the graph has m edges, this inequality yields
2,(Y) > m — (n—1). But since Y is connected, the graph must be connected; since
it has n vertices, it must have n — 1 edges, so we obtain p,(Y) > 0. If the graph
contains a cycle, it must contain at least n edges, so the inequality will be strict. If
any curve has nonzero arithmetic genus, the inequality will clearly also be strict. [

PROOF OF PROPOSITION. Assume z is a rational singularity. Then consider the
divisor Y. F;. This is supported on f~!(z) and so we must have p,(3, E;) < 0.
But since z is a normal singularity, we know that f~!(z) is connected by Zariski’s
main theorem (see [Har77, Thm. V.5.2]). Applying Lemma 2.1.34 to ), F; yields

weighted multigraphs with no self-edges, but the reader should have no trouble understanding what
is meant.
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pa(32; B;) = 0 and further every E; must have arithmetic genus zero. Since X is a
resolved model of X, all the E; are nonsingular, hence isomorphic to P* by [Har77,
Cor. 1.6.12]. Finally the lemma also tells us that the graph associated to the {E;}
has no cycles, thus is a tree. O

2.1.8. Factorial singularities.

DEFINITION 2.1.35. A point z on a surface X is factorial if the local ring Ox , is
a unique factorization domain. A surface is factorial if every point on it is factorial.

This implies that « is also a normal point, since every unique factorization domain
is integrally closed (JEis95, Prop. 4.10]). Further, since the local class group is trivial,
every divisor is locally principal. As we saw in Proposition 1.2.15, if there exists
even one prime divisor nonsingular at z that is a locally principal divisor, then X
is nonsingular at z. This implies that at a factorial singularity, every prime divisor
through the singularity is itself singular.

EXAMPLE 2.1.36. The surface X = Z(z? + ¢ + 2°) is factorial ([Har77, Exer.
V.5.8]). In fact, if the characteristic of k is not 2, 3, or 5, the completion O xp0 of
the local ring Ox, at the origin is also factorial. This is quite unusual; in these
characteristics, k[[X,Y, Z]]/(X% + Y3 + Z®) is the only nonregular normal complete
2-dimensional local ring which is a unique factorization domain (see [Lip69]).

EXAMPLE 2.1.37. Recall Example 1.2.5: here a ruling on the cone is nonsingular
and passes through the singularity; hence this surface is not factorial.

2.1.9. When does a divisor have a locally principal multiple? Intersection
theory on singular surfaces is much simpler for locally principal divisors than for
arbitrary divisors. For example, we have the correspondence between locally principal
divisors, line bundles, and invertible sheaves. Since the intersection form one obtains
is linear, it is quite straightforward to extend the theory to cover divisors whose
multiples are locally principal. However, as we will see in Example 2.1.42, not all
divisors are of this form. So the goal in this section is to study Cl Ox, and determine
when it is a torsion group.

A noetherian topological ring is a Zariski ring if the topology on it is generated by
an ideal contained in the Jacobson radical. Every local ring with the usual topology
is a Zariski ring.
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An integral domain A is a Krull ring if it has an associated family of valuations
{vi} on its quotient field such that A is the intersection of all the valuation rings and
such that every element of the quotient field has zero valuation in almost all v;.

A noetherian integral domain that is integrally closed is always a Krull ring
(see [Fos73, Chap. 1]). Furthermore, the completion of a local noetherian integrally
closed integral domain is again a local noetherian integrally closed integral domain
(see [Bdd01, Lem. 4.2]). Thus if we have a normal surface, we may apply the follow-

ing:

PROPOSITION 2.1.38 (Mori). Let A be a Zariski ring whose completion A is a
Krull ring. Then the class group of A injects into the class group of A.

See [Sam61| for a proof.

PROPOSITION 2.1.39. Let y be a normal singularity on the affine surface Y. Then
Yy s a rational singularity if and only if the my-adic completion 6Y,y of the local ring
Oyy has a finite class group.

Let (Y*, ) be a resolved model of Y with exceptional manifold E having integral
components {E;}. If y is a rational singularity, the order of the divisor class group

Cl 6y,y 15 equal to the absolute value d of the determinant of the intersection matriz
(Ei- Ej); e

See [B&d01, Thm. 4.6] for a proof.

REMARK 2.1.40. We see immediately that for any rational singularity, every divi-
sor has a locally principal multiple. Moreover, there is a global constant d such that
for every divisor D, the divisor dD is locally principal.

EXAMPLE 2.1.41. Consider our toric variety Example 1.4.35. We have shown in
Example 2.1.32 that its singularities are rational, so every divisor must have a locally

principal multiple. In fact, we showed that this was true in general for toric varieties
in Remark 1.4.34.

ExXAMPLE 2.1.42. Consider again the surface from Example 2.1.31, the cone C on
the Fermat curve K, letting P be the vertex of the cone. Now, we saw in Section 1.4.1
that ClSpec Op is a quotient of C1 K by Z. If K is not P!, then this will be infinite,
and we see immediately that the singularity cannot be rational. If our ground field
is the complex numbers, then for any surface with positive genus we will have an
element of infinite order, that is, we will have a divisor none of whose multiples is
locally principal.
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2.2. Resolution of Singularities for Surfaces

We have seen many kinds of surface singularity, with a variety of behaviour. In
order to do computations on a surface, it will very often be preferable to pass to a
nonsingular surface that is birational to the surface in question, where we can apply
the results of Section 1.2. However, in order to relate results on the nonsingular
surface to results on our original, singular, surface, we will need the birational map
to have a special form. We will see that such a surface and birational map can be
produced in an algorithmic way.

DEFINITION 2.2.1. Let X be a surface. Then (X*, ¢) is a desingularization if X*
is nonsingular and ¢ is a birational morphism from X* to X.

We have already seen two operations that take a surface X and yield a (possibly
singular) surface X* and a birational morphism ¢ in this way. The first, discussed in
Section 1.3, is the blow-up of a surface. We saw in Section 1.4.1 that this can lead to
a non-singular surface; however it does not always do so, by any means. In fact, if X
is singular and normal, then the blow-up X may fail to be normal. This brings us to
the second process we have seen: in Section 2.1.3, we described the normalization of
a surface. This normalization yields a surface which is guaranteed to be normal and
has a birational morphism to the original surface. So in some sense, it reduces the
severity of the singularities on a surface.

PROPOSITION 2.2.2. Let X be a surface with singular locus ¥, and let (X*, $) be
a desingularization of X. Then there exists a finite set M of points of X such that ¢
is an isomorphism from X*\ ¢ H(ZU M) to X \ (XU M).

PROOF. Since X* is by definition nonsingular, it is normal, and therefore ¢ factors
through the normalization of X. The normalization is an isomorphism outside the
singular locus of X, and the map from X* to the normalization of X is a birational
map of normal spaces, so we can apply [Har77, Lem. V.5.1] to its inverse to see
that this map introduces at most finitely many additional points where ¢ is not an
isomorphism. 0

THEOREM 2.2.3. Let X be a surface, and let (Xo, ¢g) be the normalization of X.
Then let (X;y1, it1) be obtained from (X;, &;) by first letting (Y;, ;) be obtained from
X; by blowing up a singular point of X;, and then letting (Z;, ;) be the normalization
of Y;. We define ¢;y1 = ¢ 0 ¢p; 0y;. Then for some n we have X,, nonsingular and
the process terminates. In this case (X, ¢,) is a desingularization of X.
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PROOF. By definition, our surfaces are all of finite type over k. Thus they are
excellent (see [Gro67, Sec. 7.8]). We then apply [Lip69, Thm. 2.1] and obtain the
desired result. O

REMARK 2.2.4. Observe that we have produced a desingularization that is an
isomorphism away from the singular points of X, showing that this is always possible.
In particular, if X is nonsingular in codimension one, we can find a desingularization
which is an isomorphism except for a finite set of points on X.

REMARK 2.2.5. Observe that the desingularization obtained depends on the pro-
jective embedding of X. In fact, it can be shown that there is, in a particular sense, a
minimal desingularization of X, but that this procedure does not in general yield it.

Because desingularizations are not unique, it will be necessary to have some way
of relating any two desingularizations of the same surface.

THEOREM 2.2.6. Let X be a surface, and let (X7, ¢1) and (X5, ¢2) be desingular-
izations of X. Then there exist surfaces Y1 and Ys as well as birational morphisms 1),
and g such that (Y1, ¢1 0 1) and (Ya, 2 0 1ha) are desingularizations of X, and such
that there is an isomorphism v : Y1 — Yo making the following diagram commute:

Y ———— %
¢1l 11/12
X1 Xo
451\‘\ ;/¢2

X

PROOF. In the proof of [Har77, Thm. V.5.5|, it is shown that the birational
transformation ¢; ' o ¢; can be factored by constructing a nonsingular surface Y and
sequences of blow-ups f; : Y — X; and f, : Y — X, such that ¢; o ¢y = foo fih.
Thenset Y1 =Y, ¢, = f1, Yo=Y, and 1, = f5, and the result is proved. [

DEFINITION 2.2.7. Let X be a surface with isolated singular points ¥, and let
(X*, ¢) be a desingularization. Then (X*, ) is a monoidal model if ¢ is an isomor-
phism of X \ & with X*\ ¢~}(X) and if for all z € T the set ¢~!(x) has pure dimension
one. We also say that the monoidal model has ezceptional manifold® ¢~ (%).

3In [RT62), the term “fundamental manifold” is used instead of “exceptional manifold”. We have
used the latter term because it is essentially the generalization of the exceptional fiber of a blow-up.
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REMARK 2.2.8. Any desingularization can be made into a monoidal model by
blowing down (possibly more than once) any preimage of a nonsingular point and
then blowing up any isolated point in the preimage of X.

PROPOSITION 2.2.9. If X is a normal surface with finite singular locus ¥ and
(X*, ¢) is a desingularization such that ¢ is an isomorphism of X\ X with X*\¢~1(T),
then (X*, @) is a monoidal model.

PrROOF. The only condition we need to verify is that every singular point has a
preimage of pure dimension one. This follows from Zariski’s main theorem as pre-
sented in [Har77, Thm. V.5.2]. O

DEFINITION 2.2.10. Let X be a surface, and let (X*, ¢) be a monoidal model. If
Y is the set of singular points of X, then ¢~!(X) forms a closed (but not necessarily
reduced) subscheme Q* of X*. If:
(1) Q is purely of dimension one,
(2) each irreducible component of Q* is nonsingular,
(3) no two components of Q* have intersections that are not transverse, and
(4) no three components of I* have a common point,

then we shall say that X™ is a resolved model of X with exceptional manifold Q*.

REMARK 2.2.11. Any blow-up of a resolved model is again a resolved model. As
a result, given any two resolved models of the same surface, we can find a resolved
model that is, up to isomorphism, obtained from each by a succession of blow-ups.

THEOREM 2.2.12. Let X be a surface, and let (X*,$) be a desingularization of X.
Then there exists a resolved model (X**,¢) of X which is obtained from (X*, ) by a
succession of blow-ups.

PROOF. Let X be the set of singular points of X, and let ¥ = ¢~1(2). Then
[Har77, Thm. V.3.9] shows that we can find (X** ) such that 1y~!(X) has normal
crossings, that is, each irreducible component is nonsingular, and when r components
meet at P, their defining equations are linearly independent modulo my«. p. In par-
ticular, this means that no more than 2 can meet at any point. So we see that (X**, 1))
is a resolved model of X, as required. O

REMARK 2.2.13. While a resolved model is technically more convenient, it may
take many more blow-ups to obtain a resolved model than a simple desingularization.
Since, naively implemented, a blowup doubles the number of variables in a problem,
this could be a problem from a computational point of view.
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ExXAMPLE 2.2.14. The surface we discussed in Example 1.2.75, the blow-up of the
cone on the Fermat curve, is a resolved model for the cone on the Fermat curve. We
saw that the exceptional divisor ¥, a curve isomorphic to the Fermat curve itself, was
the exceptional manifold.

ExXAMPLE 2.2.15. In Example 1.4.35, we constructed two toric varieties X (Ay)
and X(Aj). Because they are constructed on the same lattice and the second is a
subdivision of the first, we can construct a map ¢ from X(Aj;) to X(A,4) making
(X (As), ¢) a resolved model of X (A4). The exceptional manifold in this case is two
curves which we called V{;, and V/,.

We will use the symbol C.D to denote the standard intersection pairing on a
nonsingular surface (and it will always be clear from context which surface is meant).

Let X* be a monoidal model of the surface X with exceptional manifold Q*. Then
{2* can be partitioned into disjoint connected components, one or more corresponding
to each singular point of X. Let py, ..., us be the integral components of (.

ProPoOSITION 2.2.16. We have:

(1) No non-trivial linear combination of the u; is algebraically equivalent with
division to zero.

(2) The intersection matriz d = (d;;) = (wi.p;) is nonsingular, symmetric, neg-
ative definite and has no negative elements except on the diagonal.

(3) The matriz k= —d™* has no negative elements.

The first two are theorems of DuVal ([DV44]) and the third follows from the
second by virtue of a theorem of Coxeter (J[Cox34]). Since the p; can be classified
into sets so that no prime divisor from one set intersects a prime divisor from any
other set, d can be written in block-diagonal form, as can k. However, while d is a
matrix with integer entries, k may not be.

REMARK 2.2.17. Let Z = ). k;E; be any divisor supported on the exceptional
manifold. Then Z.Z =}, . kik;(E;.E;). Thus the intersection matrix associated to
the {E;} is negative definite if and only if every nonzero divisor supported on the
exceptional manifold has negative self-intersection.

ExaMPLE 2.2.18. Taking Example 1.2.5, the cone on the Fermat curve and its
blow-up, there is only one component to the exceptional manifold, namely the excep-
tional fiber 1 = 9 = x3 = 0. We showed in Proposition 1.4.9 that the exceptional
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fiber has self-intersection —m, so the matrix d = (—m), a one-by-one matrix. The
matrix k is then (1/m).

EXAMPLE 2.2.19. Returning to the toric surfaces discussed in Example 2.2.15,
we saw that the exceptional manifold is made up of two curves V{, and V{], each
isomorphic to P!. Referring back to Example 1.4.35, we see that they have intersection

matrix
a=(2 1)
1 -2

This matrix is negative definite and has negative inverse

K — 2/3 1/3
T \1/3 2/3)
Observe also that the preimage of the unique singular point is connected.

2.3. Intersection theory using resolution of singularities — the method of
Reeve and Tyrrell

In this section we will follow the approach taken in [RT62]. The basic principle is
to exploit the resolution of singularities described in Section 2.2 to define intersection
numbers that are independent of the particular resolution chosen.

2.3.1. Equivalence on surfaces. Recall that a Weil divisor on a surface X is
a formal sum of prime divisors, that is, closed integral subschemes of codimension 1.
On a singular surface, Weil divisors that pass through the singularities may not be
locally principal. Hence such divisors do not correspond to invertible sheaves, and are
not linearly equivalent to divisors that do not pass through the singularities.

DEFINITION 2.3.1. Given a finite set 2* of prime divisors on a nonsingular surface
X*, we will say that C = D mod Q* if C— D is algebraically equivalent with division
(Definition 1.2.57) to some divisor in the span of Q*.

DEFINITION 2.3.2. If P is a prime divisor on a surface X, and if (X*,¢) is a
monoidal model of X, define the sirict transform P of P to be the prime divisor
whose generic point is the preimage of the generic point of P under ¢. We extend
this to arbitrary divisors by linearity.

REMARK 2.3.3. Observe that if O* is the exceptional manifold, then P will not
be a component of {*.
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DEFINITION 2.3.4. Define the push-forward ¢.(P) of a prime divisor P on X* to
be closure of the image of P under ¢

x=\o+ or 0 if P is an integral component of (2*.
Extend this map by linearity to all divisors.

REMARK 2.3.5. Clearly ¢.(C) = C.

PROPOSITION 2.3.6. Let X be a surface, let (X*,¢) be a resolved model, and let
(2* be the exceptional manifold. Then there is a natural one-to-one correspondence
(given by taking the strict transform) between divisors on X and divisors on X* with
no components taken from 0.

EXAMPLE 2.3.7. Returning to Example 2.2.14, if we consider a ruling on the cone
on the Fermat curve, say x; = x3 = 0, the strict transform of this will simply be a
ruling on the blow-up, y; = y3 = 0, with no component of the exceptional fiber.

This correspondence now allows us to translate questions about divisors on a
singular surface into more tractable questions about divisors on a nonsingular surface.

Rather than attempt to deal with thorny issues of algebraic equivalence on a
singular surface, [RT62] defines a concept of equivalence that makes reference to a
resolved model. We will show that it is independent of the choice of resolved model,
and that it is in fact the same as algebraic equivalence.

DEFINITION 2.3.8. Let (X*, ¢) be a resolved model of X with exceptional manifold
Q*. Let D; and D, be divisors on X and D; and D, be their strict transforms. Then
we say [y is equivalent to Dy on X relative to X* if D; = Dy mod O*.

LEMMA 2.3.9. If X7 is adjacent to X, then equivalence of divisors on X relative
to X{ and equivalence of divisors on X relative to X are the same.

We can reduce this to the case of projective adjacency, where X5 is a blow-up of
X7. Given this simple relationship, it is easy to show the two concepts are the same.
Using the existence of a common resolved model dominating any pair of resolved
models, this gives:

ProOPOSITION 2.3.10. Let X be a singular surface. Then we have a well-defined
concept of equivalence on X, independent of the choice of resolved model.

DEFINITION 2.3.11. If X is a singular surface and (X*, ¢) is any resolved model
of X, then we say Dy and D, are relatively equivalent on X if they are equivalent on
X relative to X*.
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ExXAMPLE 2.3.12. For Example 1.2.5, the cone on the Fermat curve, all the rulings
on the blow-up are algebraically equivalent since it is a P'-bundle over the Fermat
curve, and the Fermat curve itself serves to parameterize a family of divisors. So we
can deduce that all the rulings on the cone are relatively equivalent. Further, since we
know the class group for the blow-up, we see that every curve is relatively equivalent
to a multiple of a single ruling on the cone.

PROPOSITION 2.3.13. Let X be a surface and let (X*, ¢) be a monoidal model
of X.

(1) Let Dy and D, be divisors on X, and let 13; and 13; denote their strict
transforms. Then Dy and Dq are algebraically equivalent if and only if 13/1
and 13/2 are algebraically equivalent.

(2) If Fy and Fy are algebraically equivalent divisors on X*, then ¢.(Fy) and
b.(Fs) are algebraically equivalent divisors on X .

PROOF. Let ¥ be the set of singular points of X and {2* be the exceptional man-
ifold. Then we know that ¢ provides an isomorphism between X \ ¥ and X* \ Q*.

Let T be a nonsingular curve. Then ¢ x idy is a birational morphism v from
X*x T to X xT. The restriction of ¢ is an isomorphism from (X*\ Q*) x T to
(X\X)xT.

Let D be a divisor on X x 7. Then we can use 1 to obtain a divisor D’ on
(X*\ Q) x T. If we just take the closures of all the prime divisors, this defines D
as a divisor on X* x T'. Conversely, if we have a divisor C' on X* x T', we can use
¢ to get a divisor on (X \ ¥) x 7. Since X has no components of codimension one,
this completely defines a divisor 1, (C). We see that ¢,(D) = D and that C — m
is supported only on OQF x T. Clearly 9, and ~ take effective divisors to effective
divisors. Clearly also the only effective divisors whose 