
ln compliance with the 
Canadian Privacy Legislation 

sorne supporting forms 
may have been removed fram 

this dissertation. 

While these farms may be included 
in the document page count, 

their removal daes nat represent 
any loss of content from the dissertation. 





Spontaneous errors of imprinting in mouse embryos 

Marie-Claude Charron 

McGill University, Montreal 

March 2003 

A thesis submitted to McGill University 

in partial fulfilment of the requirements of the degree of Master of science 

© Marie-Claude Charron 2003 



1+1 National Library 
of Canada 

Bibliothèque nationale 
du Canada 

Acquisitions and 
Bibliographie Services 

Acquisisitons et 
services bibliographiques 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

The author has granted a non­
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

Canada 

Your file Votre référence 
ISBN: 0-612-88172-5 
Our file Notre référence 
ISBN: 0-612-88172-5 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou aturement reproduits sans son 
autorisation. 



ABSTRACT 

Genomic imprinting is a mechanism of fine regulation of gene expression. Imprinted 

genes are expressed from only one parental allele and many of them have critical roles in 

growth and development. Imprinting marks that distinguish the parental origin must be 

erased and re-established in germ cells according to the sex of the individual to ensure 

proper embryonic development. We investigated occurrence of imprinting errors in 

mouse embryos. Firstly, we tested the hypothesis that errors in resetting of imprints occur 

and lead to grandparental-origin effects on embryonic growth. Although we did not find 

statistically significant effects, we observed trends that should be confirmed by 

replication. Secondly, we examined expression of 5 genes located on the distal part of 

chromosome 12 in order to establish the incidence of spontaneous imprinting errors. We 

report a strain and parental-origin specific imprinting relaxation of Dlkl and Dio3 genes. 

RÉSUMÉ 

L'expression des gènes soumis à l'empreinte génomique se limite à l'allèle hérité d'un 

parent en particulier. Les marques parentales doivent être effacées et réimplantées dans 

les gamètes pour refléter le genre de l'individu et permettre un développement normal des 

embryons. Nous avons étudié les erreurs spontanées de l'empreinte génomique dans les 

embryons de souris. Premièrement, nous avons testé l'hypothèse que les marques de 

l'empreinte génomique ne sont pas complètement effacée dans tous les individus et que 

l'origine grand-parentale des allèles influence la croissance embryonnaire. Malgré que 

nous n'ayons pas trouvé d'effet statistiquement significatif, nous avons observé des 

tendances qui pourraient être confirmées par réplication. Deuxièmement, nous avons 

examiné directement l'expression de cinq gènes de la portion distale du chromosome 12 

pour déterminer l'incidence des erreurs spontanées de l'empreinte parentale. Nous 

rapportons un relâchement de l'empreinte sur les gènes Dlkl et Dio3 dépendant de 

l'espèce et de l'origine parentale. 
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CHAPTERI 

INTRODUCTION 

1. Genomic imprinting 

1.1 What is imprinting? 

Genomic imprinting is defined as an epigenetic difference between alleles depending 

upon their parental origin. This difference leads to exclusive or preferential expression 

of one parental allele. 

Parent-of-origin specific expression of imprinted genes requires that parental alleles are 

marked differently. The nature of imprints and the mechanisms involved have not yet 

been elucidated. lmprints have to be heritable through mitotic cell divisions and 

reversible in the germ cells. They must also be able to modify gene expression. 

1.2 Characteristics of imprinted genes 

One feature that characterizes imprinted genes is that they are assembled in clusters 

suggesting that imprinted genes within a cluster are co-regulated by regional control 

elements. Subsequently, such imprinting fenters (lCs) have been identified for 3 

imprinted gene clusters: Igf2r region (Wutz et al., 1997), H19/Igf2 region (Thorvaldsen 

et al., 1998) and in the Prader-Willi/Angelman syndrome region ofhuman chromosome 

15q (Yang et al., 1998) (Figure 1). Deletions or mutations of lC regions result in 

regionalloss of imprinting. However, it remains unclear how parental origin is marked 

in lCs. 

Differentially methylated regions (DMRs) were first found in the mouse endogenous 

19j2r gene (Stoger et al., 1993) and in the hum an PraderWilli/Angelman syndrome 

region (Dittrich et al., 1992; Driscoll et al., 1992). lmprinted regions are particularly 

rich in CpG islands (Engemann et al., 2000) and DMRs were found in the majority of 

known imprinted genes (Bartolomei and Tilghman, 1997) (Table 1). CpG methylation 

regulates gene expression by silencing or activating different regulatory elements 
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A: Mouse Igf2/H19 locus 

Igf2DMRl 
Silencer 

Igf2DMR2 
Activator 

IC 
H19DMR 

MaternaI 
.~~~~~--~~ .. ~ 

H19 

Paternal ...... -- ..... _ .. _-»> .....• - .... _ ... _. __ ..... . 
1 

~ ------
-----_ .. _--------------------

B: Mouse Igf2r Locus 
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MaternaI IC 

Igf2r Air 

Paternal 

C: Human PWS/AS locus 

S/c2201 S/c2202 S/c2203 

----=~ 

i if As-~7ws-IC 
Matern=a~l ___ !lj~~1 

MKRN3 MAGEL2 NDN SNRPN/SNURF 

Paternal 

UBE3A 

Figure 1: Schematic representation of 3 imprinted regions 

Pig 
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Figure 1: Schematic representation of 3 well-studied imprinted regions. A) Mouse 
Igf2/H 19 region on the distal region of chromosome 7. On the maternaI aIl el e , CTCF 
protein binds to the unmethylated H19 DMR and prevents downstream enhancers from 
interacting with the Igf2 promoter (Bell and Felsenfeld, 2000; Hark et al., 2000; 
Kanduri et al., 2000; Srivastava et al., 2000a; Szabo et al., 2000). The unmethylated 
silencer in Igf2 DMRI silences Igf2 gene (Eden et al., 2001). On the paternal allele, 
H19 promoter is methylated (Tremblay et al., 1995) and silenced. Igf2 expression is 
stimulated by the downstream enhancers (Leighton et al., 1995) and by the methylated 
activator in Igf2 DMR2 (Murrell et al., 2001). B) Mouse 19f2r region on proximal 
chromosome 17. Region 2, located in Igf2r intron 2, is methylated on the maternaI allele 
(Stoger et al., 1993) and represses expression of the antisense transcript Air (Wutz et 
al., 1997). Region 2 methylation and Air are essential for silencing Igf2r, Sle22a2 and 
Sle22a3 genes on the paternal allele (Sleutels et al., 2002; Wutz et al., 2001; Zwart el 
al., 2001). C) Human PWSI AS region on chromosome 15q 11-13. This region is 
controlled by 2 lCs: the AS-IC is deleted in a proportion of Angelman syndrome 
patients and the PWS-lC is deleted in a proportion of Prader-Willi syndrome patients. 
On the maternaI allele, the AS-ICR directs methylation and silencing of upstream 
paternally expressed genes (Bielinska et al., 2000; Moweryrushton et al., 1996; 
Sutcliffe et al., 1994). On the paternal allele, transcription of the SNRPN/SNURF unit is 
initiated in the PWS-lC (Runte et al., 2001) and these antisense transcripts silence 
UBE3A expression (Rougeulle et al., 1998). 
Open circles: unmethylated CpGs. Black circles: methylated CpGs. Dark rectangles: 
expressed genes. Light rectangles: silenced genes. Arrows: gene expression. Curved 
arrows: action of regulatory regions. Oval: DNA-binding protein. Triangles: short 
tandem repeats. 
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Table 1 : Examples of imprinted mouse genes with associated DMRs 
Chromosomal Gene DMR location Allele Allele References 

reglon expressed methylated 

12 distal Gt/2 Promoter M P Takada et al., 2002 

and exon 1 

17 proximal Igf2r Intron 2 M M* Stoger et al., 1993 

(region 2) 

17 proximal Igf2r Promoter M P Stoger et al., 1993 

(region 1) 

2 distal Gnasx/ Promoter P M Peters et al., 1999 

2 distal Nesp Promoter M P Peters et al., 1999 

2 distal Gnas Upstream of M M* Liu et al., 2000 

locus Gnasx/ 

2 distal Nnat Nnat coding region P M Kikyo el al., 1997 

6 proximal PegIl Exon 1 P M* Lefebvre et al., 1997 

Mest 

7 central Snrpn 3' end P P Shemer et al., 1997 

(DMR2) 

7 central Snrpn 5' end P M* Shemer el al., 1997 

(DMR1) 

7 distal H19 Upstream M p* Bartolomei el al., 

reglon 1993 
Tremblay et al., 1995 

7 distal Igf2 Last exon (DMR2) P P Feil et al., 1994 

7 distal Igf2 Upstream region P P Sasaki et al., 1992 

(DMR1) Feil et a/., 1994 

7 distal Kcnql Intron between M M* Engemann et al., 

(Kvlqtl) exons 10 and Il 2000 

7 proximal Peg3 Exon 1 P M Li et al., 2000a 

* Differentiai methylation inherited from the gametes. 
M: MaternaI P : Paternal 
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such as promoters, enhancers and silencers and by modulating the interaction of the 

region with DNA-binding proteins (Figure 1). 

Imprinted genes are also characterized by the common presence of short tandem repeat 

sequences near or within CpG islands (Kende et al., 1995; Reik and Dean, 2001) 

(Figure 1). Chaillet et al. (1995) demonstrated that short tandem repeats are necessary 

for parent-of-origin specifie methylation of the transgene RSVIgmyc. Furthermore, 

short tandem repeats were found in proximity to the mouse imprinted U2af1-rs1 gene 

(Shibata et al., 1997) whereas the hum an homologous locus, U2AFBPL, which is not 

imprinted, does not contain such repeats (Pearsall et al., 1996). Thus, tandem repeat 

sequences seem to have a role in imprinting. 

Non-coding genes and anti-sense mRNA transcripts are also often found in imprinted 

regions. These transcripts affect imprinted gene expression in two ways: firstly, by 

competing for the same promoters and/or enhancers or secondly, by mediating 

regulation of transcription. For example, Air is a paternally expressed antisense mRNA 

and non-co ding gene found to overlap with mouse Igf2r sequence (Wutz et al., 1997). A 

targeted mutation resulting in a truncated Air transcript does not affect differential 

methylation of the region and imprinting of Air itself, but disrupts imprinting of 3 

neighbouring maternally expressed genes: Slc22a2, Slc22a3 and Igf2r (Sleutels et al., 

2002). This demonstrates that non-co ding RNAs can play an active role in imprinting. 

1.3 Epigenetic marks: DNA methylation and chromatin structure 

Several lines of evidence suggest that DNA methylation is a good candidate for 

imprinting marle Patterns of methylation of the cytosine residue of CpG dinucleotides 

are heritable, reversible and able to alter gene expression. The first series of 

experiments to demonstrate that DNA methylation plays a role in imprinting involved 

the generation of transgenic mice (Surani et al., 1988). Severa1 transgenes were 

methylated differently depending on which parent they were inherited from. Later, Li et 

al. showed that monoallelic expression of imprinted genes is disrupted in embryos 

homozygous for a loss-of-function mutation of Dnmt1, the enzyme responsible for 

methylation maintenance (Li et al., 1993). 

13 



Although it has been established that DNA methylation is required for maintaining 

imprinting in somatic cells, it remains unclear if methylation provides the initial 

imprint. The role of other factors remain to be established. It has been shown that 

parental H19 DMR alleles acquire methylation at different moments in male 

gametogenesis although both alleles are devoid of methylation marks in 13.5 d.p.c. 

embryos (Davis et al., 2000). This suggests that parental identity of imprinted alleles is 

marked by other epigenetic mechanisms in addition to methylation. 

Chromatin structure and histone acetylation are also candidates for imprinting marks. 

There is evidence for chromatin structure and histone acetylation differences between 

parental alleles on imprinted genes (Bartolomei et al., 1993; Ferguson-Smith et al., 

1993; Moore et al., 1997; Pedone et al., 1999). Furthermore, in the presence of 

trichostatin A, an inhibitor of histone deacetylation, normally silenced alleles of 

imprinted genes are expressed (Hu et al., 2000; Hu et al., 1998b; Svensson et al., 1998). 

1.4 DNA-methyltransferases 

Trans-acting factors essential for establishment and maintenance of imprints were 

extensively investigated. Three DNA methyltransferases were isolated: Dnmtl, Dnmt3a 

and Dnmt3b (Bestor et al., 1988; Okano et al., 1998). Dnmt1 is the predominant form in 

mammals and is generally responsible for maintenance of DNA methylation. Targeted 

mutations of this gene are lethal and result in loss of imprinting (LOI) (Li et al., 1993). 

An oocyte specifie isoform of Dnmt1 was isolated, Dnmt10 (Mertineit et al., 1998). 

This form is present during oocyte maturation and early embryonic development 

(Mertineit et al., 1998). Mice homozygous for a null mutation of Dnmt1 0 appears to be 

normal, but embryos from homozygous mothers do not develop to term (Howell et al., 

2001). Although methylation imprints are established normally in Dnmt 10 -/- females, 

their offspring disp1ay 10ss of parental-origin specifie methylation and loss of 

imprinting (Howell et al., 2001). Dnmt10 protein is localized in the nucleus only at the 

eight-cell stage suggesting that it is responsib1e for methylation maintenance of 

imprinted loci only for one cell division (Howell et al., 2001). 

Dnmt3a and Dnmt3b are essential for de nova DNA methylation in germ cells and early 

postimplantation embryos (Okano et al., 1999). Thus, Dnmt3a and Dnmt3b are likely 
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candidates to establish imprints in germ cells. However, it remains unclear how these 

enzymes recognize target sequences for imprinting and how different methylation 

patterns are established in male and female germlines. Investigation of proteins binding 

to these enzymes led to the identification of Dnmt3L (Aapola et al., 2000). Dnmt3L has 

sequence similarity with other Dnmt3 enzymes but lacks DNA-methyltransferase 

activity (Klimasauskas et al., 1994). It binds to and colocalizes with Dnmt3a and 

Dnmt3b. Targeted mutation of Dnmt3L prevents establishment of maternaI imprints in 

oocytes and causes defects in spermatogenesis (Bourc'his et al., 2001; Hata et al., 

2002). 

2. Imprint resetting 

Imprinting marks are established in gametogenesis and/or early embryogenesis. ln the 

developing germ cells, imprints have to be reset to reflect the sex of the individual. This 

process consists of two steps: imprints are first erased from both alleles and then re­

established before being transmitted to the next generation (Figure 2). 

2.1 Erasure of imprints 

Mouse primordial germ cells (PGCs) are specified around 6.5 d.p.c. and migrate into 

the genital ridge between 8 and Il d.p.c. (Anderson et al., 2000). At this stage, PGCs 

undergo a series of epigenetic modifications inc1uding X chromosome reactivation in 

females and a general decrease in global DNA methylation (Monk et al., 1987). 

Promoters of several house-keeping genes become demethylated in the germ ceUs of 

12.5 d.p.c. and 13.5 d.p.c embryos (Kafri et al., 1992). These changes are thought to be 

necessary for the totipotency of germ ceUs. 
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Early primordial germ cells 

Erasure 

Primordial germ cells in the genital ridge 

Establishment 

Mature gametes 

Fertilization 

Embryonic development 

Figure 2: Primordial germ cells (PGCs) carry somatic imprints that 
distinguish the paternal and maternaI chromosomes. As PGCs enter 
the genital ridge, imprints are erased. Subsequently, imprints are re­
established as patemal during late gametogenesis in male germ cells 
and as maternaI in oocytes during follicular growth. 
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Several groups used different strategies to investigate how imprints are modified during 

mouse gametogenesis. Experiments using purified PGCs revealed that imprinted genes 

are biallelically expressed at II.5 d.p.c. (Szabo and Mann, 1995). Methylation status of 

various DMRs was also examined in PGCs from 10.5 to 13.5 d.p.c. embryos. 

Methylation was absent from DMRs in 12.5 and 13.5 d.p.c. PGCs (Brandeis et al., 

1993; Lee et al., 2002; Reik et al., 2000). Two studies demonstrated that in male and 

female PGCs, demethylation of imprinted regions occurs between 11.5 and 12.5 d.p.c. 

and is not simultaneous for all DMRs (Hajkova et al., 2002; Lee et al., 2002). 

Other groups studied imprinting in embryonic germ cells (EGCs) derived from PGCs at 

different embryonic stages. In agreement with observations made in PGCs, EGCs 

derived from 11.5 and 12.5 d.p.c. PGCs have hypomethylated DMRs (Labosky et al., 

1994; Tada et al., 1997; Tada et al., 1998). Finally, expression of several imprinted 

genes was analyzed in embryos derived by nuclear transfer of PGC nuclei to enucleated 

oocytes. Although it is unclear how these manipulations affect imprints, these results 

also suggested that erasure do es not proceed simultaneously for all imprinted genes 

(Lee et al., 2002). 

Overall, these data were obtained by usmg different experimental approaches and 

therefore one should be careful incomparing them. Cell purification and culturing 

methods can influence developmental speed and DNA methylation levels. Nevertheless, 

they demonstrate that imprint erasure starts as mouse germ cells reach the genital ridge 

at 11.5 d.p.c. and is completed by 13.5 d.p.c. Little is known about the mechanisms that 

erase imprints. Imprints are not erased simultaneously in different imprinted genes or 

clusters or even in different DMRs within the same cluster. This suggests that imprints 

are erased in a stepwise manner by a specifie mechanism rather than as a consequence 

of the general lad: of maintenance methylation in dividing germ cells which would 

cause simultaneous progessive demethylation of aIl sites. 
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2.2 Establishment of imprints 

Once somatic imprints are erased in the germ cells, new parental marks have to be 

established. Several groups examined how imprints are established on the maternally 

expressed H19 gene in male mouse germ cells. H19 DMR, located upstream of H19 

promoter is critical for proper monoallelic expression of H 19 and Igf2 genes (Figure 1) 

(Thorvaldsen et al., 1998) and methylation of the paternal allele is inherited from sperm 

and maintained through gametogenesis (Tremblay et al., 1997). Thus, this region is 

likely to harbour the primary imprinting mark. 

Methylation of H19 DMR is detected in mitotically arrested male germ cells at 15.5 

d.p.c. and postnatally in the spermatogonial stem cells (Davis et al., 2000; Ueda et al., 

2000). However, methylation of both alleles is only completed in pachytene 

spermatocytes (Lucifero et al., 2002). Although both alleles are completely 

unmethylated in germ cells of 13.5 d.p.c. males, the paternal allele acquires methylation 

more rapidly than the maternaI allele (Davis et al., 1999; Davis et al., 2000). In 

comparison, methylation of a secondary DMR in the promo ter region of H19 is 

acquired after implantation (Srivastava et al., 2000b). 

In contrast, the Snrpn gene is paternally expressed; its DMR1 is methylated on the 

maternaI allele, and is postulated to represent the primary imprint (Shemer et al., 1997). 

Methylation of this region occurs during oocyte follicular growth and is completed by 

metaphase II (Lucifero et al., 2002). 

2.3 Maintenance of imprints in early embryogenesis 

In mice, genome-wide DNA methylation level decreases after fertilization until 

blastocyst stage (Monk et al., 1987). This demethylation occurs in two phases. First, the 

paternal genome is actively demethylated prior to DNA replication (Mayer et al., 2000; 

Oswald et al., 2000). Then, the global methylation level decreases with each cell cycle 

because of the absence of maintenance methyltransferase in the nucleus (Carlson et al., 

1992; Howlett and Reik, 1991; Monk et al., 1991; Rougier et al., 1998). Primary DMRs 

must be preserved from this process as it was demonstrated for the H19 DMR (Olek and 

Walter, 1997; Tremblay et al., 1995). 
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DNA methylation increases in the embryo after implantation (Monk et al., 1987). 

Unmethylated alleles from DMRs need to be protected from de novo methylation. This 

can be achieved by specialized chromatin structures or DNA-binding proteins. For 

example, the binding of CTCF prote in appears to be necessary to maintain the maternaI 

H19 DMR allele unmethylated (Schoenherr et al., 2003). 

3. Imprinting variation 

3.1 Tissue-specifie and stage-specifie imprinting 

The imprinting of several human and mouse genes vanes with cell type and 

developmental stage (Table 2). For example, the mouse Igf2 gene is not imprinted and 

expressed biallelically in 8-cell stage embryos (Latham et al., 1994), but is expressed 

monoallelically from the paternal allele after implantation. However, in the choroid 

plexus and leptomeninges it is expressed biallelically (DeChiara et al., 1991). In adult 

rats Igf2 is expressed only in the choroid plexus and leptomeninges (Stylianopoulou et 

al., 1988). Moreover, Igf2 imprinting is regulated by tissue-specifie elements. For 

example, imprinting of a placenta-specifie Igf2 transcript depends upon regulatory 

elements not required for imprinting of fetal Igf2 transcripts (Moore et al., 1997). 

3.2 Polymorphie imprinting 

Polymorphie imprinting refers to the variability among individuals with regard to the 

imprinting status of particular genes. This phenomenon was first observed for the 

human IGF2R gene, which was shown to be imprinted in 3 out of 14 fetuses (21 %) and 

expressed biallelically in the others (Xu et al., 1993). Genes that show polymorphie 

imprinting include: WTl (linno et al., 1994), IGF2 in blood cells (Giannoukakis et al., 

1996) and IMPTI (Dao et al., 1998). 
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Table 2: Examples of mouse and human genes with tissue and stage-specifie 
imprinting regulation 

Gene Tissue & Time specificity 
Mouse genes 
Nespas Biallelic expression in adrenal and testis tissues; 

paternal expression in other tissues. 
GrblO 

Igf2 

Igf2r 

Slc22all 
(Imptl) 
1m2 

Kcnql 

Ube3a 

MaternaI expression in embryos, adult liver, kidney 
and muscle; biallelic expression in fetal brain; paternal 
expression bias in adult brain. 
Biallelic expression in adult and fetai choroid plexus 
and Ieptomeninges; biallelic expression before 
implantation; paternai expression in other tissues. 
Maternai expression in peripherai tissue; biallelic 
expression in central nervous system. 
Maternai expression in fetal tissues; biallelic 
expression in adult tissues. 
Maternai expression in yolk sac at 14.5 d.p.c.; biallelic 
expression in embryos and in yolk sac at 12.5 d.p.c. 
Maternai expression in aIl fetal tissues; biallelic 
expression in aduit brains (aiso strain-specific effects) 
Maternai expression in hippocampus and cerebellum; 
biallelic expression in other regions of the brain. 

Human genes 
GNAS MaternaI expression in pituitary; biallelic expression 

in other tissues. 
GRBIO 

SLC22Al 
(lMPTl) 

KCNQI 

UBE3A 

WT1 

Paternal expression of most isoforms in fetai brain; 
maternai expression of one isoform in fetal muscles; 
biallelic expression of other isofonns. 
Maternai expression in placenta, chorioamnion, liver 
and adrenal gland; biallelic expression in fetal and 
adult kidney. Strong inter-individuai variations. 
Tissue-type specifie imprinting: biallelic expression in 
heart and maternaI expression in other tissues. 
MaternaI expression in the brain; biallelic expression 
in other tissues. 
Maternai expression in fetal brain and in 5/9 pretenn 
placenta; biallelic expression in kidney. 

Reference 

Li et al., 2000b 

Miyoshi et al., 1998 
Hitchins et al., 2002 
Hikichi et al., 2003 
DeChiara et al., 1991 
Latham et al., 1994 

Hu et al., 1998a 

Dao et al., 1998 

Deltour et al., 1995 

Jiang et al., 1998b 

Aibrecht et al., 1997 

Hayward et al., 2001 

Blagitko et al., 2000 
Hikichi et al., 2003 

Dao et al., 1998 

Lee et al., 1997 

Rougeulle et al., 1997 
Vu and Hoffman, 1997 
Jinno et al., 1994 
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Giannoukakis et al. (1996) examined family clustering and inheritance of 1GF2 

imprinting in lymphocytes. Two individuals with 1GF2 monoallelic expression in blood 

cells were found in the same family. These individuals inherited different alleles of 

1GF2 suggesting that 1GF2 imprinting depends upon trans-acting factors (Giannoukakis 

et al., 1996). Another group investigated imprinting of 3 genes, 1GF2, SNRPN and 

SLC2A1L (IMPTI), in blood leukocytes from 262 Japanese individuals. They found 

four unrelated individuals with biallelic expression of 1GF2 out of 38 informative cases 

(10.5%) (Sakatani et al., 2001). 

4. Abnormal expression of imprinted genes 

4.1 Uniparental disomy and chromosomal aberrations 

Androgenotes (two paternal genomes) and gynogenotes (two maternaI genomes) are 

uniparental conceptuses created by the transfer of two pronuclei from the same sex into 

an enucleated oocyte. Although they have a normal diploid number of chromosomes, 

they have abnormal expression dosage of imprinted genes and most of these 

conceptuses have major anomalies and die during early post-implantation development 

(McGrath and Solter, 1984; Surani et al., 1984). 

Uniparental disomy (UPD) defines the inheritance of both homologous chromosomes 

from one parent. UPD can arise spontaneously in humans by different mechanisms such 

as trisomic and nullisomic rescues (Spence et al., 1988). The phenotypic consequences 

of UPD may arise because of abnormal dosage of imprinted gene products or expression 

of recessive traits if the two homologous chromosomes are identical (isoUPD). 

Mosaicism for aneuploid cells is common and also affects the phenotype. 

Deletion or duplication of the active allele of imprinted genes results in silencing or 

double dose of expressed product. 
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4.2 Loss of imprinting 

Loss of imprinting (LOI) is defined as biallelic expression or silencing of both parental 

alleles of imprinted genes despite biparental inheritance and the presence of two alleles. 

LOI may arise from errors in erasure, establishment, maintenance or interpretation of 

imprints and results in abnormal gene product dosage. 

Mice lacking Dnmtl enzyme fail to maintain parent-of-origin specifie methylation and 

imprinting (Li et al., 1993). This is an example of a global imprinting defect caused by 

a mutation in a gene essential for imprinting. In humans, familial complete 

hydatidiform moles are characterized by recurrent loss of conceptuses of biparental 

origin lacking maternaI imprints (Judson et al., 2002). This suggests a maternaI failure 

to establish germline imprints leading to a global imprinting defect in humans. 

Environmental conditions are also believed to alter imprinting in preimplantation 

embryos. Prolonged culture of embryonic stem cells in fetal calf serum complemented 

medium leads to methylation changes in DMRs and aberrant imprinted gene expression 

(Dean et al., 1998). Components of the culture medium are particularly important: Hl9 

methylation increases in preimplantation embryos cultured in M16 medium with serum 

(Koshla et al., 2001) and decreases in Whitten's medium (Doherty et al., 2000). The 

influence of environmental factors on imprinting maintenance is particularly important 

with the wide use of assisted reproduction technologies (ART). Recent data suggest 

that children born after ART are more likely to have imprinting disorders such as 

Angelman syndrome (Cox et al., 2002) and Beckwith-Wiedemann syndrome (DeBaun 

et al., 2003) due to incorrect establishment ofmethylation imprints. 

Locus-specifie LOI is also observed. 2-4% of Prader-Willi syndrome (PWS) and 

Angelman syndrome (AS) patients have biparental inheritance of chromosome 15q and 

normal karyotype. However, their paternal chromosome carries a maternaI methylation 

pattern (PWS) or the maternaI chromosome carries a paternal methylation pattern (AS). 

In sorne of these patients, a genetic mutation in the imprinting center (IC) prevented 

correct establishment of imprints (Buiting et al., 1995; Reis et al., 1994; Saitoh et al., 

1996; Sutc1iffe et al., 1994). In a proportion of PWS and AS patients, no genetic 

mutations were found (Buiting et al., 1998; Burger et al., 1997). This suggests that 
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epigenetic mutations occur stochastically to cause spontaneous imprinting errors 111 

mice and in humans. 

5. Consequences of incorrect dosage of imprinted genes 

5.1 Consequences of incorrect dosage of imprinted genes in mice 

In 1990, Cattanach and Beechey used mice with characterized Robertsonian 

translocations to generate mice with uniparental disomy for specific chromosomal 

regions (Cattanach and Beechey, 1990). By analysing phenotypic consequences of 

UPD, they constructed a mouse imprinting map. Phenotypic consequences of UPD 

range from early embryonic lethality to abnormal postnatal growth rate and behavioural 

anomalies (Beechey et al. 2001) (Table 3). 

The targeted disruption of individual imprinted genes has also revealed that imprinted 

genes affect placental development, growth regulation and embryonic survival (Table 

4). 

5.2 Consequences of incorrect dosage of imprinted genes in humans 

UPD of chromosomes with imprinted genes are associated with developmental, 

endocrine and growth abnormalities in humans (Table 5). UPD that have not been 

identified may have no phenotypic consequences. However, they may also not have 

been identified because of embryonic lethality. 

Beckwith-Wiedemann syndrome (BWS) has been mapped to chromosome 11p15 

(Koufos et al., 1989). This condition is characterized by somatic overgrowth before and 

after birth, birth defects and a predisposition to embryonic tumors such as Wilms 

tumors. The etiology of the disease is complex and more than one gene appears to be 

involved. Sorne patients have incomplete BWS phenotypes. For example, LOI of IGF2 

seems to increase the risk of developing cancer whereas LOI of KCNQ10T1 (LITl) 

causes birth defects (DeBaun et al., 2002). 

23 



Table 3: Phenotypes associated with UPD in mice 
Chromosomal Parental Phenotype 

region origin 
Proximal 2 MaternaI Variable fetal viability with growth reduction 
Proximal 2 Paternal Placental overgrowth 

Distal 2 MaternaI Neonatal behaviour and lethality, hypokinetic 
Distal 2 Paternal Neonatal behaviour and lethality, hyperkinetic 

Proximal 6 Maternai Early embryonic lethality 
Proximal 6 Maternai Prenatal growth retardation 
Proximal 7 Maternai Neonatallethality 
Central 7 Maternai Postnatallethality 

Proximal 7 Paternal Postnatal growth/viability/behaviour 
Distal 7 Maternai Late fetal lethality 
Distal 7 Paternal Early embryonic lethality 
Distal 9 MaternaI Reduced postnatal growth 

Proximal Il MaternaI Reduced postnatal growth 
Distal 12 MaternaI Late embryonic/neonatallethality & reduced growth 
Distal 12 Paternal Late embryonic lethality & growth enhancement 

Proximal 17 Paternal Neonatallethality (Tme) 
18 Maternai Fetal growth retardation (unc1ear) 
18 Paternal Fetal growth retardation (unc1ear) 

Adapted from Beechey et al. 2001: http://www.mgu.har.mrc.ac.uklimprinting/imprinting.html 

Table 4: Targeted disruption of mouse imprinted genes 
Gene Allele Phenotype Reference 

expressed 
Igf2 Paternal Growth retardation. DeChiara et al., 1990 
Dlkl Paternal Growth retardation and obesity. Moon et al., 2002 
Pegl Paternal Reduce pre and post-natal growth, reduced Lefebvre et al., 1998 

survival and altered maternai behaviour. 
Peg3 Paternal Reduce placental as weIl as fetal growth Li et al., 1999 

and altered maternaI behaviour. 
Ndn Paternal Reduced postnatal survival and behaviour Gerard et al., 1999 

abnormalities. Tsai et al., 1999 
Muscatelli et al., 2000 

Igf2r MaternaI Fetal overgrowth and late embryonic Lau et al., 1994 
lethality. 

Ube3a MaternaI Neurological deficits. Jiang et al., 1998c 
Ascl2 MaternaI Placental abnormalities and mid-gestation Guillemot et al., 1995 

(Mash2) lethality. 
Kcnql MaternaI Deafness and loss of balance. Lee et al., 2000a 

(KvLQT1) Casimiro et al., 2001 
Cdknlc MaternaI Developmental abnorma1ities, late Yan et al., 1997 
(p5i;!'2) embryonic or neonatallethality. Zhang et al., 1997 

Tssc3 MaternaI Placentalovergrowth. Frank et al., 2002 
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Table 5: Phenotypes associated with UPD in hum ans 
Chromosome UPD Phenotype Reference 

6 MaternaI Intrauterine growth restriction (2 cases). van den Berg-Loonen et 
al., 1996 
Spiro et al., 1999 

6 Paternal Transient neonatal diabetes mellitus and Whiteford et al., 1997 
growth retardation. 

7 Maternai SRS, pre and post natal growth Mergenthaler et al., 
retardation. 2000 (Eggermann et al., 

2001 b) 
11p Paternal BWS and growth enhancement when Li et al., 1998 

partial or mosaic, possibly lethal when Dutly et al., 1998 
complete. Slatter et al., 1994 

14q MaternaI Low birth weight, short stature, obesity, Reviewed by 
mental and motor delay. HeaJey et al., 1994 

14q Paternal Developmental delay, polyhydramnios, Reviewed by 
facial and skeletal abnormalities. Cotter et al., 1997 

15q MaternaI PWS (low birth weight, hyponia, obesity Reviewed by 
and short stature and behavioral and Nicholls, 1993 
endocrinal abnormalities). 

15q PaternaJ AS (mental retardation and ataxia). Reviewed by 
Nicholls, 1993 

20q Maternai Pre and post-natal growth retardation. Chudoba et al., 1999 
Eggermann et al., 2001 

Chromosomal abnormalities or imprinting defects in human chromosomal reglOn 

15qll-q13 are associated with two human syndromes: Prader-Willi (PWS) and 

Angelman (AS). PWS condition is caused by the loss of paternal products of 15q ll-q 13 

while AS is associated with loss of the maternally expressed UBE3A gene (Jiang et al., 

1999; Nicholls et al., 1998; Rougeulle et al., 1998). PWS is manifested as hypotonia, 

short stature, obesity and behavioural abnormalities including learning disabilities 

(Prader et al., 1956). AS is characterised by developmental delay, mental retardation, 

sleep disorders, hyperactivity, ataxia and seizures (Angelman, 1965). 

Silver-Russell Syndrome (SRS) is caracterized by low birth weight and post-natal 

growth retardation, triangular facies, asymmetry and fifth finger clinodactyly (Russell, 

1954; Silver et al., 1953) although symptoms vary among patients (Priee et al., 1999; 

Wollmann et al., 1995). Genetic causes for this disease are heterogeneous and different 

patterns of transmission have been observed in families with more than one affected 

individuals (Price et al., 1999). Association with an imprinted region was proposed to 
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explain the predominant maternaI transmission of the disease (Preece et al., 1999). 

Approximately 10% of SRS patients have maternaI UPD of chromosome 7 (Bernard et 

al., 1999; Kotzot et al., 2000). Two candidate regions were identified: 7p 11.2-p 14 

(Monk et al., 2002) and 7q31-qter (Hannula et al., 2001). 

The imprinted genes on chromosomal region 20q13.3 are involved in endocrine 

functions. This region contains the complex GNAS locus which contains different genes 

transcribed from alternative promoters but sharing exons 2 to 13. LOI and genetic 

mutations in the GNAS locus create different hormone resistance diseases depending 

upon the transmitting parent (Davies and Hughes, 1993). 

Transient neonatal diabetes mellitus (TNDM) is associated with an imprinted gene 

c1uster located on chromosome 6 (Temple et al., 1996). Finding of sever al patients with 

paternal UPD or paternal duplication of the region 6q24 suggests that TNDM results 

from functiona1 excess of paternal genes (Temple et al., 1996). Two paternally 

expressed imprinted genes in this region, PLAGLl (ZAC) and HYMAI, are likely 

candidates for this disease because they were found to be biallelically expressed in 

fibroblasts from a TNDM patient (Mackay et al., 2002). 

Loss of imprinting is one of the most common features found in tumors (Feinberg, 

2000). Relaxation of IGF2 imprinting is detected in severa1 tumor types, e.g. Wilms 

tumors (Ogawa et al., 1993; Rainier et al., 1993), rhabdomyosarcoma (Pedone et al., 

1994; Zhan et al., 1994), lung cancer (Suzuki et al., 1994), hepatoblastoma (Rainier et 

al., 1995) and leiomyosarcoma (Vu et al., 1995). Biallelic expression of IGF2 is also 

found in normal tissues from which tumors originated, suggesting that it may increase 

cancer susceptibility (Cui et al., 1998). LOI of Hl 9, WTl-as and PEGI is also reported 

in tumors (Chen et al., 2000; Malik et al., 2000; Ogawa et al., 1993; Rainier et al., 

1993). 

In summary, consequences associated with aberrant expression of imprinted genes in 

humans are important. They inc1ude growth, developmental, endocrine and behavioural 

abnormalities. It is also plausible to suggest that aberrant expression of imprinted genes 

essential for embryonic or placental development, such as CDKN1C and ASCL2, may 

be incompatible with the development of an embryo. 
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6. Objectives and hypothesis 

The goal of this study was to examine spontaneous imprinting errors in mouse embryos. 

We suggested that imprinting errors in embryos may cause miscarriage, infertility and 

developmental defects in hum ans and embryonic death and developmental anomalies in 

mice. 

As described earlier, imprinting marks are erased and re-established during 

gametogenesis. We proposed that imprint erasure stochastically fails in a proportion of 

gametes in which grandparental imprints remain (Figure 3). For example, a proportion 

of the grandpaternal alleles transmitted by a female would retain the paternal imprinting 

pattern. Offspring that inherited such an incorrectly imprinted allele from their mother 

and a normally imprinted allele from their father would therefore have two alleles with 

paternal imprints. Affected imprinted genes would therefore be biallelically expressed 

or silenced. 

Phenotypic consequences of failure to reset imprints depend upon the function of the 

affected genes. If errors of imprint resetting affect a growth factor that is normally 

expressed from the paternal allele such as 19f2, a proportion of embryos that inherited 

the grandpaternal allele from their mother would produce twice the normal dosage of 

Igf2 and display enhanced growth rate. Hence, we tested the hypothesis that embryonic 

growth would be influenced by the grandparental origin of the inherited allele III 

chromosomal regions harbouring imprinted genes, which regulate embryonic growth. 

If an imprinted gene essential for embryonic survival is affected, such stochastic errors 

in imprint resetting would lead to embryonic lethality. Hence, a proportion of offspring 

that inherited a grandpaternal allele from their mother may die because of imprinting 

errors. We expected this loss to cause transmission of grandparental alleles to deviate 

from Mendelian ratio of 1: 1. We previously examined transmission ratios of 

micro satellite marker alleles in three imprinted regions harbouring genes essential for 
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embryonic survival in three-week old mice (Croteau et al., 2002). We found a significant 

distortion from expected Mendelian ratios for the distal region of chromosome 12. This 

suggested that a proportion of embryos that inherited the grandpaternal distal chromosome 

12 allele from their mother were lost during gestation. To demonstrate that these embryos 

are lost because of errors in imprint resetting in the maternaI gerrn line, we investigated 

expression ofindividual genes in this region (Figure 4). The objective was to identify one or 

more candidate genes for the embryonic lethality associated with imprint resetting failure. 

~) 
(]~ 

Erasure 

Establishment 

Figure 3: Schematic representation of failure in resetting of imprints. 
Imprints are not erased properly in a proportion of gametes in which 
grandparental imprints remain (grey oocyte). Upon fertilization, a 
proportion of offspring would inherit 2 paternally marked alleles: one 
improperly reprogrammed allele from their mother and a norrnally 
imprinted alle1e from their father. Shapes above the chromosomes 
indicate their identity. 
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7. Experimental approach and expectations 

7.1 Grandparental-origin effect on embryonic growth 

First, we examined grandparental-origin effect on embryonic growth. Three 

chromosomal regions were chosen: distal chromosome 2, distal chromosome 7 and 

distal chromosome 12. Embryos with paternal UPD2 are significantly heavier than their 

littermates from 14.5 d.p.c. to 16.5 d.p.c. (24% heavier at 16.5 d.p.c.). This difference is 

due to swelling and it decreases after the embryonic kidney starts to function at 16.5 

d.p.c. (Williamson et al., 1998). 

Despite the fact that embryos with paternal UPD7 die early in development (around 

10.5 d.p.c.), we chose to include distal chromosome 7 because of the presence of Igf2 

gene that promotes embryonic growth (DeChiara et al., 1990) and because 15.5 d.p.c. 

embryos chimeric for normal cells and distal chromosome 7 paternal disomic cells 

display growth enhancement (Ferguson-Smith et al., 1991). 

Finally, we included distal chromosome 12. UPD for distal chromosome 12 results in 

late fetallethality and abnormal growth phenotypes (Georgiades et al., 2000). Embryos 

with paternal UPD12 have heavier placentas than their normallittermates at 18.5 d.p.c. 

Embryos with maternaI UPD12 have fetal and placental growth retardation from 15.5 

d.p.c. (Georgiades et al., 2000). Furthermore, humans with maternaI UPD for the 

homologous region, 14q32, also show intrauterine growth retardation (Healey et al., 

1994). 

Thus, 15.5 d.p.c. and 18.5 d.p.c. embryos were generated. Two reciprocal backcrosses 

were designed to detect grandparental-origin effects. Offspring from both backcrosses 

inherited the same genetic material from their father and mother. However, identical 

alle1es inherited from the mother were from different grandparental origin. Thus, effects 

of parental origin were distinguishable from allelic effects. These embryos were 

weighed, sexed and genotyped upon collection. 
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7. 2 Distal chromosome 12 genes 

We previously found a grandparental-origin dependent transmission ratio distortion 

(TRD) of maternaI alleles in distal chromosome 12 (Croteau et al., 2002). These data 

suggest that establishment and/or maintenance of imprints in this region are not equally 

accurate in all embryos. In this study, we examined expression of genes located in this 

region (Figure 4A). We investigated known imprinted genes and genes whose function 

is related to embryonic development. We determined if both or only one allele of these 

genes was expressed in individual embryos using transcribed polymorphism to 

determine allelic origin. 

We analyzed the expression of the paternally expressed Delta-like 1 homologue (Dlk1) 

gene (Schmidt et al., 2000). Dlk1 is located 82 kb upstream of the Maternally ~xpressed 

gene 3/ Gene-!rap locus 2 (Meg3/Gtl2) (Figure 4B). Imprinting of Meg3/Gtl2 gene was 

investigated in embryos from reciprocal crosses between C57BL/6 and MOLFlEi mice 

(Croteau et al., 2003). Meg3/Glt2 was found to be maternally expressed in embryos 

from one cross and biallelically expressed in about 30% of the embryos of the 

reciprocal cross. Here, we tested Dlk1 expression in the same embryos using 2 single 

nucleotide polymorphisms (SNPs) between C57BL/6 and MOLFlEi strains that we 

found by sequencing. 

We also analyzed expression of Deiodinase, iodothyronine type III (Dio3) gene which 

is involved in thyroid hormone metabolism and located 704 kb distal to Meg3/Gtl2 on 

chromosome 12 (Figure 4B). It was recently shown to be imprinted as expression from 

the paternal allele represent 80% of total expression in embryos (Tsai et al., 2002). In 

this assay, parental origin of Dio3 transcript was identified by using a SNP between a 

Mus musculus molossinus strain (JFl) and C57BL/6. We tested this polymorphism on 

MOLF/Ei and found that it is the same as in JFl. 

More genes located on distal chromosome 12 were chosen for their function in 

embryonic development. We investigated Tumor necrosis factor, filpha-induced .Qrotein 

2 (Tnfaip2), Vasoactive intestinal.Qeptide receptor 2 (Vipr2), Jagged2 (Jag2), Yin Yang 

1 transcription factor 1 (Yyl) and Tryptophanyl-tRNA synthetase (Wars) genes (Figure 

4). 
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Tnfaip2 is involved in angiogenesis and possibly spermatogenesis (Wolf et al., 1994). 

Vipr2 is a neuropeptide possibly implicated in apoptosis and ceIl proliferation 

(Pankhaniya et al., 1998). Jag2 is a member of the Notch signaIling pathway and is 

involved in limb, craniofacial and thymic development in mice (Jiang et al., 1998a). 

Yy 1 is a transcription factor present during embryonic development. Lack of Yy 1 

expression leads to peri-implantation lethality (Donohoe et al., 1999). Wars is an 

ubiquitous enzyme involved possibly in translation regulation (Clemens, 1990) and in 

splicing (Kittle et al., 1991). An ES-ceIl specific sp1ice form of Wars co ding for a 

protein with a COOH terminus extension was found (Pajot et al., 1994). 

Sequencing of Jag2 and Tnfaip2 did not detect polymorphisms between strains 

MOLFlEi, C57BL/6 and BALB/c. However, we found one SNP in Vipr2 between 

BALB/c and C57BL/6. We also found SNPs between MOLFlEi and C57BL/6 strains in 

Yyl and Wars mRNA. Therefore, we could further study the allelic expression of Dlkl, 

Dio3, Vipr2, Yyl and Wars. 
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Figure 4: A) Schematic representation ofthe mouse chromosome 12. 
The region with imprinted phenotype (Georgiades et al. 2000) is 
depicted as an open rectangle. The TRD region (Croteau et al. 2002) is 
depicted as a grey rectangle. Genes investigated in this study are 
indicated. B) Physical map ofthe region from 53 to 58 cM from mouse 
contig GI:28522618. The distance between the studied genes is 
indicated below the scale in kb. 
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CHAPTER2 

MATERIALS AND METHODS 

1. Mouse strains and crosses 

C57BL/6NCrlBR (C57BL/6) and BALB/cAnNCrlBR (BALB/c) mice were obtained at 

Charles River Canada, Saint-Constant, QC, Canada. Two reciprocal backcrosses were 

generated to examine grandparental origin of the alleles inherited from the mother 

(figure 5): 

A: (C57BL/6 x BALB/c) FI females mated to C57BL/6 males 

B: (BALB/c x C57BL/6) FI females mated to C57BL/6 males 

For the A cross, 33 FI females were generated and 24 FI females for the B cross. 

For expressIOn studies, crosses between C57BL/6 and MOLFlEi mlce were used. 

(C57BL/6 x MOLFlEi ) FI mice were kindly provided by Dr. Danielle Malo. Crosses 

between MOLFlEi and C57BL/6 mice and collection of embryos and tissues were 

conducted by Dr Sylvie Croteau. Reciprocal crosses (Figure 6) were used to obtain 

embryos that inherited a C57BL/6 allele from their mother and a MOLFlEi allele from 

their father (BM) and embryos that inherited a MOLF lEi allele from their mother and a 

C57BL/6 allele from their father (MB). These embryos were collected at 11.5 d.p.c. 

2. Embryo collection 

Males were caged with one or two females for one night. The next morning, successful 

mating was assessed by vaginal plug and this day was considered as 0.5 d.p.c. At day 

15.5 or 18.5 d.p.c., pregnant females were sacrificed and embryos dissected out of the 

uterus and rinsed in PBS. For each embryo, uterine tissue was carefully removed, 

placenta was isolated with extraembryonic membranes and excess fluid was removed 

with absorbent paper. Embryos and placentas were kept on ice and weighed 

individually. The posterior legs and tail were used for DNA extraction while the rest of 

the embryo and the placenta were transferred in individual tubes and frozen at -80 oc. 
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A cross B cross 

F1 C57BL/6 F1 C57BL/6 

Collected offspring Collected offspring 

Figure 5: Reciprocal mouse crosses used to study grandparental origin 
effects. A. C57BL/6 females are mated to BALB/c males. FI females are 
backcrossed to C57BL/6 males and generated offspring are collected and 
studied. B. For the reciprocal cross, BALB/c females are mated to 
C57BL/6 males and FI females are backcrossed to C57BL/6 males. 
Generated offspring are genetically identical to those collected in the 
reciprocal cross except the grandparental origin of alleles inherited from 
their mother. 

C57BL/6 MOLFlEi 

BM (48) MB (97) 

Figure 6: Mouse cross used to generate embryos heterozygote for 
C57BL/6 and MOLFlEi in the distal region of chromosome 12. 48 
embryos inheriting a C57BL/6 allele from their mother and a MOLFlEi 
allele from their father (BM) and 97 embryos inheriting a MOLF lEi 
allele from their mother and a C57BL/6 allele from their father (MB) 
were collected. 
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3. DNA extraction 

Legs and tails were incubated overnight at 55°C in 700 fll of lysis buffer with Proteinase 

K (50 mM Tris-HCI, pH 8, 100 mM EDTA, 100 mM NaCI, 1% SDS and 0.5 mg/ml 

Proteinase K). 

DNA was purified by performing two consecutive extractions with one volume of 

phenol (pH 8) and one purification with one volume of chloroform/isoamyl alcohol 

(24:1). The samples were then precipitated in three volumes of ethanol. DNA was 

recovered with a pipet tip and resuspended in 300 fll of water. DNA was left for a 

minimum of 3 ho urs to dissolve under gentle agitation. Samples were reprecipitated in 

200 mM sodium acetate and 3 volumes of ethanol. Spooled DNA samples were then 

dried on filter paper and dissolved in 1 ml of water. 

4. Genotyping 

Genotypes were determined by PCR amplification of alle1es at micro satellite loci. 

Microsatellite marker primer pairs were chosen for their location in regions of interest 

and their polymorphisms between C57BL/6 and BALB/c (Table 6). Primers were 

chosen us mg the Mouse Genome Informatics web site 

(http://www.informatics.jax.org), and ordered at Research Genetics (Huntsville, Ala., 

USA) or Sigma-Aldrich (Oakville, Ont., Canada). Each PCR reaction contained 10 mM 

Tris-HCl (pH 8.3), 50 mM KCI, 2.5 flM dNTP, 1.5 mM MgCb, 0.3-0.5 ~lM of primers 

and 0.1 unit of Taq polymerase (MBI Fermentas, Vilnius, Lithuania). PCR reactions 

were carried out in a Biometra T3 thermocycler (Montreal Biotech lnc, Montreal, Qc, 

Canada), starting with 3 min at 95°C, then doing 35 cycles of the following program: 

30 sec at 95°C, 30 sec at 55 oC and 1 min at 72 oC; and the reaction ended by 10 min at 

72 oC. PCR products were separated by electrophoresis in 2.5% agarose gels and 

visualized by ethidium bromide staining. For markers resulting in bands too close to be 

distinguished in agarose, radioactive PCR reactions were do ne with 0.1 ~lC ex e2p] 

dCTP (Perkin Elmer, Boston, MA, USA) and bands were separated in 5% denaturing 

polyacrylamide gels. 
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Table 6: Microsatellite PCR markers used for genotyping 
Marker Position (cM) Size (bp) 

C57BL/6 BALB/c 
D2Mit 230 107 139 131 
D12Nds2 59 195 165 
D7Mit174 69 109 123 

5. Sex determination 

Sex ofindividual embryos was determined by PCR amplification of the Y-chromosome 

specifie gene Zft l, using the following primers: 

F: 5' - AAGATAAGCTTACATAATCACATGGA - 3' 

R: 5' - CCTATGAAATCCTTTGCTGCACATGT - 3' 

PCR was done in 10 mM Tris-HCI (pH 8.3), 50 mM KCI, 2.5 )lM dNTPs, 2.5 mM 

MgCI2, 0.5 )lM of primers, 0.1 unit of Taq polymerase from MBI Fermentas (Vilnius, 

Lithuania) and going through 3 min at 94°C, 30 cycles of 1 min at 94°C, 1 min at 60°C 

and 2 min at 72°C and ending with 10 min at n°c. After electrophoresis in 2 % agarose 

gels and ethidium bromide staining, 600 base pair bands indicated male samples. 

6. Statistical analysis 

Statiscal analysis were performed usmg XLStat-Pro 6 pro gram (Addinsoft, Paris, 

France). Two tests were performed: 1) Fetal weight mean of fetuses inheriting alleles of 

each grandparental origin were compared by performing the Kruskal-Wallis test. This 

approach allowed us to compare me ans from samples with different variances; 2) 

Deviation of weight distribution of each group from normal distribution was tested 

using the Kolmogorov-Smironov goodness-of-fit test. The size of the embryos for these 

particular crosses and the magnitude of the effect possibly caused by imprinting errors 

were unknown, hence we could not perform power calculations for the tests nor the 

sample size needed to obtain significant results. 

7. RNA extraction and RT-PCR 

Embryos and placentas were crushed manually and other tissues were homogenized 

using a PowerGene 125 homogenizer (Fisher Scientific, Nepean, ON, Canada). RNA 
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was extracted using trizol (Life Technologies, Burlington, ON, Canada) and chloroform 

and precipitated in isopropanol. 

cDNA was synthesized using M-MLV reverse transcriptase (Life Technologies, 

Burlingtion, Ont., Canada). Oligo dT (pd(T)12-1S) were used as primers. Reactions were 

done as recommended for the reverse transcriptase: 10 min at 72°C in the absence of 

reverse transcriptase and 60 min at 37°C with the enzyme in the foIlowing conditions: 

50 mM Tris-HCI pH 8.3, 75 mM KCI, 3 mM MgCb, 10 mM Dithiothreitol (DTT) and 

0.5mM dNTPs. 

8. Allelic expression assays 

Following reverse transcription, cDNA were amplified by PCR. The primers for PCR 

amplification (Table 7) were designed according to published sequences (Dlkl 

G1:13365690, Wars G1:13097425, Vipr2 G1:6678574 and Yyl G1:6678620) and were 

purchased from Sigma-Aldrich Canada (Oakville, ON, Canada). Standard PCR 

conditions were used (see the genotyping section). 

PCR fragments were labelled with trace amount of a e2p] dCTP (Perkin Elmer, Boston, 

MA, USA). PCR products were separated by electrophoresis in a denaturing 5% 

polyacrylamide gel. Quantification of PCR products was do ne using a Storm 860 

phosphoimager (Amersham Canada Ltd, Oakville, ON, Canada). 

Amplification of genomic Dlkl, Vipr2, Wars and Yyl genes resulted in fragments larger 

than those amplified from mRNA due to the presence of introns. Dio3 is an intronless 

gene (Tsai et al., 2002), hence control amplifications without reverse transcriptase were 

performed to confirm the absence of genomic DNA contamination.. AIl PCR 

amplifications included a control lacking cDNA template to test for exogenous DNA 

contamination. Digestion by restriction enzymes was tested by adding fragments with a 

recognition site and a different size to individual digestion tubes or by including a 

sample homozygous for the digested aIlele. 
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8.1 Dlk1 

Expression of Dlk1 was examined using two SNPs located in the second and fifth 

exons. The po1ymorphism in exon 2 is located at nuc1eotide 2501 (GI:13365690). This 

SNP is recognized by DraIII in C57BL/6 DNA. The DraIII site is absent in the 

MOLFlEi strain. The polymorphism in exon 5 is located at base 7821 and is not 

recognized by a restriction endonuc1ease. Thus, we used mismatch PCR-mediated site­

directed mutagenesis (Volkova et al., 1996) to introduce a DraI recognition site in the 

C57BL/6 sequence. Transcripts were amplified using different combinations of primers 

(Table 8) and their parental origin was tested using one of the two RFLPs or by 

sequencmg. 

Table 7: Primers used in expression assays 
Name Sequence (5' to 3') Position 
Dlk 1F gtgcaaccctggctttcttcc 1022-1042 
Dlk 1aF gagaatcaggggtgtgctgt 2251-2270 

Dlk2F tgtgacccccagtatggatt 2499-2518 
Dlk4F aacaatggaacttgcgtgga 5600-5619 
Dlk4R tgtgcaggagcattcgtact 5635-5654 

Dlk 5R tcaccagcctccttgttt*aa 7822-7841 
DatR ggaagctagaaagagcgccc 16275-16294 
Wars F caagcatgcattttctggag 1231-1250 

Wars R ccttgtgccttcagagagga 1741-1760 
Yy1 F accagctggttcatactgga 1070-1089 
Yy1 R cagcattactaagcatatccc 1697-1717 

Vipr2 F tgacctgctactgctggttg 72-91 

Vipr2 R cacagagatggctctcagca 558-577 
Di03 F atcctcgactacgcacaagg 763-782 
Di03 R tagccagggatggaactacg 1365-1384 

Table 8: RT -peR conditions used for Dlkl 
Forward Reverse Fragment size Annealing -ra 
Dlk 1F Dlk4R 477 60° 

Dlk1aF Dlk4R 506 55° 

Dlk1F Dlk5R 1276 * 55° 

DIk2F Dlk5R 1057 * 58° 

Dlk4F Dlk5R 849 55° 

Dlk4F DatR --- * 60° 

*PCR cycles were extended (95°C for 45 sec, 
annealing T ° for 45 sec and 72 oC for 1.5 min 

GI: 13365690 Exon 1 
Intron 1 

Exon 2 
Exon 4 
Exon 4 
Exon 5 

GI: 17426732 
GI: 13097425 Exon 8 

Exon10 
GI: 6678620 Exon 4 

Exon 5 
GI: 6678574 Exon 1 

Exon 4 
GI: 20859334 Exon 1 

Exon 1 

[MgCI2] 
1mM 

1.5mM 

1.5mM 

1.5mM 

1.5mM 

2mM 
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8.2 Dio3 

To eliminate genomic DNA contamination, RNA samples were treated with 

Deoxyribonucleasel (Life Technologies, Burlington, ON, Canada) for 30 min at 37°C 

and 15 min at 65°C for inactivation prior to RT-PCR. 

Reverse primers were labelled with Ye 2p] ATP (Perkin Elmer, Boston, MA, USA), 

using T4 polynucleotide kinase (MBl Fermentas, Vilnius, Lithuania) and purified with 

ProbeQuant columns (Amersham Biosciences, Piscataway, NJ, USA) before standard 

PCR amplification. PCR fragments were digested with the restriction endonuclease 

Taql and separated on denaturing 8% polyacrylamide gels. 

8.3 Wars 

Sequencing of PCR fragments amplified by WarsF and WarsR prim ers revealed 3 

polymorphisms in exon 9. At nucleotide 1471, C57BL/6 had a T and MOLFlEi had an 

C which creates a Eco91I restriction site in the MOLFlEi sequence. Renee, RFLP 

analysis was used to distinguish Wars expression from different alleles. 

8.4 Vipr2 

Sequencing of Vipr2 revealed 2 SNPs between C57BL/6 and BALB/c. Nucleotide 538 

was an A in C57BL/6 and a G in BALB/c. The Xmnl enzyme recognizes a site in 

BALB/c alleles and creates specifie band size for C57BL/6 and BALB/c alleles that 

were distinguishable in 2.5% agarose gel. Parental origin of Vipr 2 fragments was thus 

tested by RFLP analysis. 

8.5 Yyl 

Yyl sequencing revealed two polymorphisms in the fifth and last exon. Nucleotide 1289 

was an A in C57BL/6 and a G in MOLFlEi. This SNP introduced a recognition site for 

Earl restriction endonuclease in MOLFlEi alle1es. Rence, RFLP analysis was used to 

determine origin of Yyl transcripts amplified. 
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9. Cloning ofPCR products 

Dlkl R T -PCR products were cloned using TA cloning kit (Invitrogen, Groningen, The 

Nederlands). PCR fragments were ligated in pCR2.1 vectors provided with the kit. 

These vectors contain an ampicillin resistance gene and a LacZ gene disrupted by PCR 

fragment integration. Colonies were selected on LB plates (1% tryptone, 0.5% yeast 

extract, 0.5% NaCI and 1.5% agar) containing 100 /-Lg/ml of ampicillin and covered with 

40 /-LI of 40 mg/ml X-Gal and 40 /-LI of 100 mM IPTG. The presence of ampiciUin 

eliminated ceUs that were not transformed and IPTG activated the LacZ gene in ceUs 

that integrated a self-annealed vector transforming X-Gal in a blue-colored by-product. 

White colonies were chosen and clones were grown in 5 ml of LB medium (1 % 

tryptone, 0.5% yeast extract and 0.5% NaCI) for one night. CeUs were centrifuged and 

resuspended in lysis buffer (10mM Tris pH 8, 1mM EDTA, 15% weight/volume 

sucrose, 2mg/mllysosyme, O.2mg/ml Rnase and O.1mg/ml BSA). After 10 minutes of 

incubation, the mixture was boiled for 2 minutes and cooled on ice. Samples were 

centrifuged to remove the bacterial material (including bacterial genomic DNA). 

Individual clones were analyzed by RFLP analysis. Selected clones were sequenced to 

validate RFLP results after phenol/chloroform (1 : 1) purification and ethanol 

precipitation. 

10. Sequencing 

AU the sequencing was done by the McGill University and Genome Quebec Innovation 

Centre (Montreal, Qc, Canada). 

11. Electronic resources 

Genotyping markers were selected 111 the Mouse Genome Database 

(http://www.informatics.jax.org). Genbank database (NCBI, http://www.ncbi.nih.gov) 

was used to obtain sequences for Dlkl, Dat, Jag2, Tnfaip2, Vipr2, Wars and Yyl. NCBI 

BLAST pro gram was used to align sequences and to search for ESTs. 
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CHAPTER3 

RESULTS 

1. Grandparental-origin effect on embryonic growth 

To investigate the effect of grandparental origin on embryonic growth, we recorded 

fetal and placental weight of 15.5 d.p.c. and 18.5 d.p.c. mouse embryos (260 embryos 

for each age group). The embryos were genotyped for marker alleles c10sely linked to 

imprinted regions of distal chromosomes 2 (D2Mit23 0), 7 (D7Mit174) and 12 

(D12Nds2). 

Fetal weight average of fetuses inheriting each grandparental allele were calculated 

(Table 9). Krukal-Wallis tests were performed to determine if groups of fetuses 

inheriting alleles with different grandparental origin had significantly different fetal 

weight averages. The significance threshold needed to be adjusted for the total number 

of tests, i.e. 2 ages, 3 loci and 3 sex categories (males, females and both) for a total of 

18 tests. Hence, assuming that all tests were independent, the threshold for significance 

was set to 0.05/18=0.0028 in order to have an overall 5% type 1 error rate (false 

positive). 

For all groups, grandparental origin of inherited allele did not significantly affect fetal 

weight average (Table 9). However, analysis of the weights of 15.5 d.p.c. fetuses 

showed that males that inherited the grandpaternal distal chromosome 7 allele from 

their mother tended to weigh less than those that inherited the grandmaternal allele 

(p=0.012) and 15.5 d.p.c. fetuses that inherited the grandpaternal distal chromosome 2 

allele from their mother tended to weigh more than those that inherited the 

grandmaternal allele (p=0.02). 18.5 d.p.c. fetuses that inherited the grandpaternal distal 

chromosome 12 allele from their mother tended to weigh more than those that inherited 

the grandmaternal allele (p=0.042) and this effect is more pronounced in female fetuses 

(p=0.023). 
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Table 9: Grandparental-origin effect on fetal weight: 
Weights of fetuses that inherited alleles of different grand parental origin from the 

mother in 3 imprinted regions 
Fetal welght at 15.5 d.p.c. 

Grandmaternal allele Grandpaternal allele 

Mean SE P normal Mean SE P normal P mean 

D2Mlt230 Both sexes 404.4 4.3 0.141 413.8 4.8 0.376 0.020 

Females 403.1 6.0 0.194 407.9 5.1 0.966 0.132 

Males 406.1 6.3 0.269 419.4 7.9 0.390 0.071 

D7Mlt174 Both sexes 412.8 4.3 0.460 404.6 4.6 O.lUl U.32~ 

Females 402.6 5.9 0.364 407.4 5.4 0.916 0.384 

Males 424.5 6.0 0.611 401.7 7.7 0.051 0.012 

D12Nds2 Both sexes 405.4 4.7 0.500 411.5 4.3 0.104 0.498 

Females 403.7 5.9 0.522 406.4 5.4 0.656 0.500 

Males 407.3 7.6 0.234 416.9 6.6 0.095 0.886 
t'etaI welght at Hl.5 d.p.c. 

tJrandmaternal allele Grandpaternal allele 

Mean SE P normal Mean SE P normal P mean 

D2Mü230 Both sexes 1235.0 9.1 0.052 1226.6 9.3 0.242 
Females 1228.7 14.0 0.417 1225.7 14.0 0,753 

Males 1233.2 12.0 0.594 1229.0 12.4 0.423 

D7MJt174 Both sexes 1235.0 9.4 0.092 1225.5 8.9 0.164 
Females 1236.5 14.9 0.440 1219.0 12.9 0.540 

Males 1227.5 12.2 0.588 1231.7 12.4 0.447 

D12Nds2 Both sexes 1217.0 8.~ 0.130 1243.lJ 9.4 U.006 

Females 1206.8 13.0 0.645 1247.9 14.2 0.141 
Males 1225.8 12.0 0.320 1234.0 12.5 0.246 

.. 
SE: Standard error of the mean. P normal: ProbabIllty that the welghts follow a 
normal distribution, calculated with the Kolmogorov-Smirnov goodness-of-fit 
test. P mean: Probability that the means of the two groups are equal, calculated 
with the Kruskal-Wallace test. AlI P values are unajusted for multiple testing. 
Significance thresholds adjusted for multiple testing are Pmean :::; 0.0028 and 
Pnormal:::; 0.0014. 

U.~21 

0.890 
0.782 

0.525 
0.320 
0.866 
0.042 
0.023 
0.632 

The grandparental origin of inherited alleles did not significantly affect placental weight 

(data not shown). Trends were not taken into account because of the difficulties to 

normalize the procedure to collect and weigh the placentas. 

These differences in fetal weight averages could be due to major effects restricted to a 

smaU group of fetuses or to minor effects on a larger group or on aU fetuses. We 

expected that grandparental-origin effects on fetal weight would be due to errors in the 

resetting of imprints which should affect only a proportion of fetuses. Therefore, the 

expectation was that the fetuses with incorrect imprints would increase one of the tails 

of the distribution of weights. 
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Thus, we tested if each distribution was significantly different from a normal 

distribution with the Kolmogorov-Smironov test. Again, the significance threshold had 

to be corrected for the multiple tests and was set to 0.0014. Fetal weight distribution of 

aU groups was not significantly different from normal. However, fetal weight 

distribution for 18.5 d.p.c. fetuses that inherited the grandpaternal distal chromosome 12 

allele tended to be different from the normal distribution (p=0.006). In contrast, the 

distribution of weights from fetuses that inherited the grandmaternal allele was not 

different from a normal distribution (p=O.l3). 

2. Expression of Dlkl 

Dlkl expression was analyzed in II.5 d.p.c. embryos from two reciprocal crosses 

between MOLFlEi and C57BL/6 strains (Figure 6). Embryos that inherited a MOLFlEi 

Dlkl allele from their mother and a C57BL/6 Dlkl aUele from their father are referred 

to as MB, whereas the embryos that inherited C57BL/6 Dlkl allele from their mother 

and a MOLFlEi Dlkl allele from their father are referred to as BM. 

Amplification of exons 1 to 4 of Dlkl revealed that Dlkl imprinting was maintained in 

BM embryos but Dlkl was biallelically expressed in aU studied embryos and placentas 

from the MB cross (Figure 7). Quantification revealed that the expression from the 

paternal allele represented 50-87% of total Dlkl mRNA in MB embryos and 100% of 

total Dlkl mRNA in BM embryos. In contrast, most of the placentas from MB embryos 

had biallelic expression of Meg3/Gtl2 but only 30% of MB embryos expressed the 

paternal allele to some extent (Croteau et al., 2003). 

This unusual asymmetry of expression between two reciprocal crosses could be 

explained by combination of monoallelic strain-specific expression from a non­

imprinted promoter and parental-specifie expression from another imprinted promoter 

(Figure 8a). It is also possible that imprinted expression is limited to certain tissue types 

or organs (Figure 8b). 
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MB BM B U 

478bp -

242 bp -

236bp -

Figure 7: RFLP analysis ofRT -PCR products amplified with prim ers 
in exon 1 and 4 of Dlkl in MB Il.5 d.p.c. embryos (MB), in BM Il.5 
d.p.c. embryos (BM) and in C57BL/6 homozygous embryos (B). 
Products were digested with the DraIII enzyme and an undigested 
PCR product is also shown (U). Products from C57BL/6 allele are 
represented by 236 bp and 242 bp products and product from 
MOLFlEi allele remain undigested and are represented by 478 bp 
bands. 
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A C57BL/6 x MOLFlEi (BM) MOLFlEi x C57BL/6 (MB) 

MaternaI (C57BL/6) MaternaI (MOLFlEi) 
•............. ~ 

1 1 =====.= .. = ..... = ..... ~.~ ~ 
Paternal (MOLFlEi) Paternal (C57BL/6) 

Detected: Only patemal (MOLF.Ei) Biallelic 

B C57BL/6 x MOLF/Ei (BM) MOLFlEi x C57BL/6 (MB) 

Tissue-type 1 MaternaI (C57BL/6) MaternaI (MOLFlEi) 
t t ." t 

t t 1 1 

~ ~ 
Paternal (MOLF/Ei) Paternal (C57BL/6) 

MaternaI (C57BL/6) MaternaI (MOLFIE ) Tissue-type 2 •............. ~ 

Detected: 

t 1 1 

1 1 1 •............. ~ 
Paternal (MOLF lEi) Paternal (C57BL/6) 

Only patemal (MOLFlEi) Biallelic 

•............. ~ Strain-specific splice form 
----I~~ Parental-origin splice form 

Figure 8: Schematic representation of our hypothesis. In both 
situations, imprinted expression would be detected in BM animaIs and 
biallelic expression in MB animaIs. A) Dlkl expression consists of an 
imprinted transcript and a strain-specific transcript. Assuming that the 
imprinted transcript is expressed exc1usively from the paternal allele 
(solid arrow) and the strain-specific splice-form is present only on the 
MOLFlEi allele and is expressed independently ofits parental origin 
(discontinuous arrow), only MOLFlEi products would be detected in 
BM animaIs and products from both alleles would be detected in MB 
animaIs. B) Alternative hypothesis: Dlkl is normally imprinted in 
tissue-type 1 and the MOLFlEi allele is preferentially expressed in 
tissue-type 2. 

1 

1 
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We investigated the possibility that different splice-forms of Dlkl transcribed from 

unidentified promoters have ditIerent parental bias in expression. Dfkl has 2 major 

types of transcripts with different sizes resulting from alternative splicing of exon 5 

(Smas et al., 1994) (Figure 9). To verify that expression ofboth forms is parental-origin 

dependent and to mIe out the possibility of incomplete digestion with DraIII, we c10ned 

individual PCR products and determined their size and parental origin by RFLP analysis 

or sequencing. AH c10ned products analyzed corresponded to either the long form 

containing the full length of exon 5 or the short form missing 220 base pairs in exon 5 

(Figure 9). Among the c10ned Dlkl RT-PCR products derived from BM embryos, we 

found 10 corresponding to long transcripts and 15 corresponding to short transcripts and 

aH were derived from the paternal allele as expected. In contrast, among the c10ned 

Dlkl transcripts from MB embryos, we found a total 20 clones corresponding to long 

paternal transcripts, 12 to long maternaI transcripts, 14 to short paternal transcripts and 

2 to short maternaI transcripts (Table 10). These results demonstrated that there was no 

difference in imprinting between the long and the short Dlkl splice-fonns. 

Table 10 : Parental origin of Dlkl RT -PCR products cloned 

A 

B 

MOLF/Ei from the mother and C57BL/6 from the l110ther and 
PCR prim ers Splice form 

C57BL/6 from the father (MB) MOLF/Ei from the father (SM) 

(see table 7) Paternal Maternai Paternal Maternai 

Total 
Long 20 12 10 0 
Short 14 2 15 0 

DlklF - Dlk5R 
Long 12 1 7 0 
Short 4 0 7 0 

Dlk2F - Dlk5R 
Long 8 4 Not tested Not tested 
Short 4 0 Not tested Not tested 

Dlk4F - Dlk5R 
Long 0 7 3 0 
Short 6 2 8 0 

Number ofclones obtained for each form ofDlkl using different sets ofprimers 
and each parental origin. A) Total of amplified transcripts of each form. 
B) Amplified transcripts separated by prim ers used 
(This table is borrowed from Croteau et al., 2003, table 2) 
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Figure 9: Dlk1 gene organization. Exons are reprcsented as boxes and 
restriction sites polymorphie between C57BL/6 and MOLFlEi strains 
are indicated. Primers used throughout the study are indicated by 
arrows. Major mRNA forms of Dlkl and RT -PCR products amplified 
and c10ned are illustrated. 
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However, when the cloned products were examined according to the primers used, we 

observed that no paternal long transcripts were amplified by primers in exons 4 and 5 

while it was the most common form when using primers in exons 1 and 5 or 2 and 5 

(Table 10). This finding suggested the presence of an additional Dlkl form and possibly 

of an unknown promoter. This new Dlkl mRNA would be paternally expressed and not 

amplified by the primer in exon 4 or maternally expressed and not amplified by the 

primers in exons 1 and 2. 

We investigated expression of DUel ~ssociated 1ranscripts (Dat). These transcripts are 

expressed from the region downstream of Dlkl and probably present extended forms of 

Dlkl (Paulsen et al., 2001). We succeeded in amplifying a PCR product with prim ers in 

exon 4 of Dlkl and in the Dat region. Sequencing of this product revealed that it is 

composed of exon 4, the first portion of exon 5 and 265 bases in the Dat region (Figure 

9 product H). We could not test the allelic origin of this transcript because we did not 

find a polymorphism. 

We searched mouse ~xpressed §equence 1ag (EST) database for the presence of different 

Dlkl splice-forms. We found the sequences of two cDNAs isolated from mouse 

embryos starting in intron 1 (GI 28224588 and 1744491). We investigated expression of 

this transcript using primers in intron 1 (or exon la) and exon 4 (figure 9 product G). 

We amplified this transcript in MB and BM embryos. Expression analysis revealed that 

it is expressed mainly from the paternal allele, hence it is not responsible for the 

maternaI expression that we detected (Figure 10). 

To test the hypothesis that Dlkl parental-origin dependent expression is restricted to 

specifie tissues, we examined Dlkl expression in different adult tissues. We found that 

Dlkl expression in brains displays different levels of parental bias between individuals. 

In contrast, Dlkl expression was exclusively paternal in muscles. Parental origin of 

Dlkl exons 1 to 4 amplified from brains of Il animaIs and muscles of 10 animaIs was 

determined by sequencing. We found as expected that aIl muscles analyzed expressed 

only the paternal allele. We found variable Ievel of maternaI expression in 3 out of Il 

brain samples tested. 
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BM MB B ------------_. __ ... _-- ... __ ... _-_._----_._---------- ---_._ ...... _--_._-_ .. _._-
UD D UD D UD D 

DlklaF-Dlk4R 

MOLFEi 

C57BL/6 

DlklF-Dlk4R 

MOLF.Ei 

C57BL/6 

Figure 10: Imprinting assay of D/kl products amplified with primer in 
intron l(DlklaF) or primer in exon l(DlklF) in a BM 11.5 embryo 
(BM), a MB Il.5 embryo (MB) and a C57BL/6 control embryo (B). 
Samples (D) were digested with the DraIII enzyme which recognizes 
a site in C57BL/6 strain only. Samples (UD) were not digested. 
(This figure is borrowed from Croteau et al., 2003, figure 3) 
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3. Expression of Dio3 

We examined Dio3 expression in BM and MB Il.5 d.p.c. embryos. In BM embryos, we 

found 78% of Dio3 expression coming from the paternal allele (Table Il). This was 

consistent with the results of Chen-En Tsai and colleagues (2002) who found that 

paternal expression represented 84% of total Dio3 expression in 15.5 d.p.c. embryos. In 

contrast, only 53 % of Dio3 expression was from the paternal allele in MB embryos, 

suggesting that similarly to Dlkl, Dio3 imprinting was lost in this cross. 

We also investigated Dio3 expression in adult brains because we found LOI of Dlkl in 

this tissue. Our results suggest that Dio3 is not imprinted in this organ (Table Il). 

4. Expression of Vipr2 

We examined Vipr2 expression in 15.5 d.p.c. embryos and placentas. (C57BL/6 x 

BALB/c) FI females were mated to C57BL/6 males. Offspring heterozygous for the 

D12Nds2 marker were used to assay Vipr2 imprinting. We observed that both maternaI 

and paternal alleles were expressed in all embryos (n=5) and placentas (n=2) (Figure 

Il). This suggests that Vipr2 gene is not imprinted in 15.5 d.p.c. embryos and placentas. 

5. Expression of Yyl 

We investigated Yyl expression in embryos, placenta and different adult organs. In aIl 

tissues, we observed biallelic expression (Figure 12). Furthermore, we did not find any 

bias in transcription of individual alleles by quantification. 

6. Expression of Wars 

We evaluated Wars expression in embryos, placentas and different adult organs. Again, 

we found biallelic expression in every sample (Figure 13). Quantification of individual 

bands revealed that MOLFlEi mRNA was approximately 4 times more abundant than 

the C57BL/6 mRNA in the embryos, independently of the parental origin (Table 12). 
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Table 11: Quantification of Dio3 expression 

Types of samples and cross Number of samples tested Paternal allele expression 

MB 11.5 d.p.c. embryos 
BM II.5 d.p.c. embryos 
MB adult brain 
BM adult brain 

C57BL/6 +­
BALB/c +-

8 
6 
3 
2 

E _._---_ ... _ ... _--_. __ .. _---
B C 

(% of total) 
53 
78 
51 
48 

p 
---_._-_ .. _------_ .. -

CB CB 

Figure 11: lmprinting assay for Vipr2 gene expression in embryos (E) 
and placentas (P) of C57BL/6 (B) and BALB/c (C) control animaIs 
and heterozygote offspring of backcrosses between (C57BL/6 x 
BALB/c) females and C57BL/6 males (CB). Samples were digested 
withXmnl which recognizes the BALB/c genotype only. 

C57BL/6 +­

MOLFlEi+-

B M BM MB 

Figure 12: lmprinting assay for Yyl gene expression in C57BL/6 and 
MOLFlEi control embryos (B and M respectively) and in 11.5 d.p.c. 
embryos from BM and MB crosses. Samples are digested with Earl 
whichrecognizes the MOLFlEi sequenceonly. 
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B M BM MB 

C57BL/6 ~ 

MOLF/Ei 

Figure 13: Imprinting assay for Wars gene expression in C57BL/6 
and MOLFlEi control embryos (B and M respectively) and in 11.5 
d.p.c. embryos from BM and MB crosses. Samples are digested with 
TaqI whichrecognizes the MOLFlEi sequence only. 

Table 12: Quantification of Wars expression 

Types of samples and cross Number of samples tested Paternal allele expression 
(% of total) 

BM 11.5 embryos 2 80 
MB 11.5 embryos 2 22 
BM II.5 placenta 2 73 
MB II.5 placenta 1 14 
BMbrain 2 72 
MB brain 3 35 
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CHAPTER4 

DISCUSSION 

1. Failure to reset imprints and grandparental-origin effect on embryonic growth 

Low birth weight is an important indicator of susceptibility to chronic disease, such as 

type 2 diabetes, hypertension and renal failure (Barker, 1992a; Barker, 1992b; Barker et 

al., 1993), and mortality among new-borns (Leon, 1991). Low birth weight may result 

from low growth rate or impaired placental function. There is solid evidence that 

imprinting and embryonic growth are linked. Initially, abnormal pre- and post-natal 

growth rates were observed in mice and humans with UPD of several imprinted regions 

(Tables 3 and 5). Furthermore, experiments in mice with targeted mutations of 

imprinted genes demonstrated that several imprinted genes influence growth while 

others are essential for formation and proper functioning of the placenta (Table 3). 

These observations led Moore and Haig (1991) to propose that imprinting evolved 

because of parental conflict over offspring growth and maternaI resources usage. By 

means of genomic imprinting, males and females can achieve their different 

reproductive aims: males favour larger offspring with better chance of survival while 

females promote the development of smaller offspring that will not be detrimental 

towards their littermates as well as her future reproduction performance (Moore and 

Haig, 1991). 

Further investigations are needed to understand the relevance of imprinting and the 

expression of abnormally imprinted genes for embryonic growth and placental 

development in the absence of genetic mutations. Lindsay and colleagues (2002) 

searched for parent-of-origin effects on birth weight in humans. They performed a 

genome-wide linkage analysis to map genes that affect birth weight. They found 

significant evidence of linkage between paternally derived chromosome Il p alleles and 

birth weight (Lindsay et al., 2002). 

In this study, we used an original approach and examined grandparental origin of alleles 

and their effect on embryonic growth. We proposed that erasure of imprints during 

gametogenesis stochastically fails in a proportion of gametes, in which grandparental 
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imprints remain unchanged. Hence, a proportion of grandpaternal alleles transmitted by 

a female would remain paternally marked. This would result in abnormal dosage of 

affected imprinted gene products in a proportion of embryos that inherited the 

grandpaternal allele from their mother. Consequences would depend upon the function 

of affected genes; therefore offspring that inherited incorrectly reset imprints in 

chromosomal regions harbouring imprinted genes regulating embryonic growth would 

differ is size from their littermates. Thus, we hypothesized that a group of fetuses that 

inherited an incorrectly imprinted grandpaternal allele from their mother in these 

regions would be larger or smaller than their littermates. 

We chose to investigate grandparental-origin effects of alle1es inherited in the distal 

portion of chromosomes 2, 7 and 12. We chose chromosomes 2 and 12 because mi ce 

with UPD of these regions have fetal weight different from their wild type littermates. 

We also chose to examine the distal region of chromosome 7 because of the presence of 

the growth factor Igf2. However, phenotypic effects associated with UPD are only 

suggestive of imprinted genes involved in growth regulation residing in a particular 

chromosomal region. These mi ce have abnormal dosage of all imprinted genes in the 

UPD region. In contrast, errors in imprint resetting can affect a variable number of 

imprinted genes and pro duce different phenotypic effects. AIso, errors in resetting the 

imprints in the distal region of chromosome 7 could lead to abnormal expression of Igf2 

and of several other imprinted genes located nearby, inc1uding Ascl2 and Tssc3 which 

affect placental development and could therefore influence embryonic growth. 

We observed that grandparental origin of alle1es inherited in the three studied regions 

tends to influence mean fetal weight. AIso, grandparental origin of the alle1e inherited 

for the distal region of chromosome 12 tends to influence the weight distribution. We 

grouped fetuses by age and gender and performed several tests. The results ofthese tests 

are not statistically significant after we applied the Bonferroni adjustment for multiple 

tests. However, the observed tendencies create a solid basis for validation experiments. 

More powerful statistical analysis could be done because the variance and effect of 

imprinting errors could be predicted. Corrections for multiple testing could be avoided 

by genotyping one locus in each group of fetuses generated specifically for this test (i.e. 
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D2Mit230 in 15.5 fetuses, D7Mitl74 in 15.5 d.p.c. males and Dl2Nds2 in 18.5 d.p.c 

fetuses). 

2. Distal chromosome 12 imprinted genes and embryo loss 

Embryos that inherit the grandpaternal allele in distal chromosome 12 from their mother 

are less likely to survive as demonstrated by the grandparental-origin dependent TRD 

found in this region (Croteau et al., 2002). This suggests that imprinting marks in one or 

more genes essential for embryonic survival are not equally weIl established or 

maintained amongst individual embryos. In this study, we conducted a search for 

candidate genes located in the distal region of chromosome 12 that are responsible for 

this embryonic loss. Such candidate genes should be imprinted, located within the TRD 

region and be essential for embryonic survival. 

The known imprinted genes in this region are: Meg3/GtI2, Dlkl, Dio3, RNA imprinted 

and .ê:ccumulated in the nucleus (Rian) and ,S.mall nucleQlar RNAs (snoRNAs). Here, we 

investigated Dlkl and Dio3 expression. Imprinting of Meg3/Gtl2 gene was investigated 

in a parallei study (Croteau et al., 2003). 

We found that imprinting of Dlkl and Dio3 is maintained in BM (C57BL/6 x 

MOLFlEi) embryos but is lost in embryos from the reciprocal cross MB (MOLFlEi x 

C57BL/6). AIl MB embryos expressed Dlkl and Dio3 biaIlelicaIly. Hence, instead of 

imprinting errors in a group of embryos, we found strain and parental-origin specific 

10ss of imprinting. 

Do Dio3 and Dlkl have a role in the grandparental-origin lethal effect observed? The 

TRD was found in crosses between C57BL/6 and BALB/c mice, while Dlkl and Dio3 

imprinting assays were performed in crosses between C57BL/6 and MOLFlEi mice. 

C57BL/6 and BALB/c are Mus musculus domesticus strains while MOLFlEi is a Mus 

musculus molossinus strain. It is possible that imprinting relaxation in Dio3 and Dlkl is 

specific for crosses between strains of different subspecies and hence would not be 

found in crosses between C57BL/6 and BALB/c. Due to the lack of p01ymorphisms 
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between C57BL/6 and BALB/c, we could not test expression of Dlkl and Dio3 in these 

crosses. 

We examined the average litter size in BM and MB crosses (Croteau et al., 2003). We 

found that although MB embryos display LOI of Dlkl and Dio3, litter sizes of BM and 

MB crosses are similar. This suggests that LOI of Dlkl and Dio3 does not affect 

embryonic survival. 

3. Distal chromosome 12 imprinting instability 

On the basis of the effect of the grandparental origin of distal chromosome 12 alleles on 

embryonic survival and/or fetal growth, we suggested that imprinting of genes in this 

region is not equally well reset or maintained in every individual. Here and in Croteau 

et al., 2003, we found strain-specific and parent-specifie spontaneous LOI of three 

genes on distal chromosome 12, confirming that imprinting of this region is unstable. 

To determine if this effect is due to cis or trans-acting factors, congenic mice with a 

MOLF/Ei distal chromosome 12 allele in a C57BL/6 background were generated. To 

pro duce congenic mice, MOLFlEi mice were backcrossed to C57BL/6 mice for 10 

generations. The genome of the resulting congenic mice is composed of more than 

99.9% of C57BL/6 sequence although they have a MOLFlEi distal chromosome 12 

allele. Offspring of congenic females homozygous for the MOLFlEi allele in distal 

chromosome 12 and C57BL/6 males display LOI of Meg3/Glt2 and Dlkl similarly to 

MB embryos (Croteau et al., 2003 and data not showed). This suggest that LOI 

observed in MB embryos is due to Gis-acting factors or to factors encoded by genes on 

this chromosomal region. 

Schmidt et al. showed that the Dlkl gene is normally imprinted in embryos from 

crosses between Mus musculus castaneus and C57BL/6 (Schmidt et al., 2000) and 

Yevtodiyenko et al. showed that Dio3 is imprinted in embryos from crosses between 

congenic mice with a Mus musculus castaneus distal chromosome 12 allele in C57BL/6 

background and C57BL/6 mice (Yevtodiyenko et al., 2002). These facts imply that LOI 

of Dlkl and Dio3 genes in MB embryos is caused by the MOLFlEi sequence in the 

distal region of chromosome 12. 
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This study presents an example of strain dependent spontaneous loss of imprinting of 

the endogenous genes Diki and Dio3. LOI in this chromosomal region appears to 

depend on the strain and parental origin of the allele. There are other examples of strain­

specifie LOI involving interspecific crosses between mouse strains: (1) Offspring from 

129/SvEv females and CASTlEi males display monoallelic maternaI expression of the 

Kcnq 1 gene (distal part of chromosome 7) in embryos and most tissues except adult 

brain. In contrast, offspring from the reciprocal cross (CASTlEi mother and 129/SvEv 

father) express only the maternaI Kcnqi allele in 6.5 d.p.c. embryos and then both 

parental alleles in all organs of 12.5 d.p.c. embryos and adults (Jiang et al., 1998b). 

Thus, it appears that imprinting maintenance or recognition fail in postimplantation 

embryos from one cross. (2) Imprinting of Coatomer 12rotein complex, subunit gamma 

2, ~nti~ense 2 (Copg2as2) (proximal part of chromosome 6) and Cdknl c (distal part of 

chromosome 7) was shown to be lost in he art, lung and muscle of FI hybrids from 

C57BL/6 females and KJRlMsf males (a Mus musculus molossinus strain) and 

maintained in embryos from the reciprocal cross (Lee et al., 2000b; Park and Chung, 

2001). 

The asymmetric LOI between two reciprocal mouse crosses is intriguing. It was 

suggested that this phenomenon is due to interspecific incompatibility between 

imprinting factors (Jiang et al., 1998b; Vrana et al., 2000). However, the mechanisms 

behind these LOI remain unclear. 

Little is known about how distal chromosome 12 imprinted genes are regulated. 

Paternal methylation of a DMR located between Diki and Meg3/Gtl2 is inherited from 

sperm and is thought to be the parental mark for this region (Takada et al., 2002). After 

fertilization, the paternal allele of another DMR located in the Diki gene becomes 

partially methylated and the promoter of the Meg3/Gtl2 gene also becomes methylated 

on the paternal silenced allele (Takada et al., 2002). However, factors and sequences 

important for imprinting regulation of this region could be identified by companng 

MOLF/Ei and C57BL/6 distal chromosome 12 sequences. 

Overall, our findings demonstrated that interspecific crosses between C57BL/6 and 

MOLF/Ei mouse strains represent a useful tool to study factors influencing imprinting 
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variations. We demonstrated that imprinting of the mouse distal chromosome 12 region 

is unstable and may lead to embryonic lethality and/or abnormal growth. Investigations 

of the interactions between imprinting elements of different mouse strains could lead to 

better understanding of how imprinting is influenced by polymorphisms among human 

populations. 
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CHAPTERS 

CONCLUSIONS 

The goal of this study was to investigate spontaneous imprinting errors In mouse 

embryos. We used two different approaches. Firstly, we investigated grandparental­

origin effects in 3 chromosomal regions containing imprinted genes with a role in 

embryonic growth regulation. We hypothesized that grandparental origin would affect 

embryonic weight if errors in resetting the imprints occur. We did not detect statisticaUy 

significant effect. However, we found trends for grandparental effects in the three tested 

chromosomal regions. It would be necessary to replicate this experiment to confirm if 

the observed effects are real or not. 

Secondly, we investigated expression of individual imprinted genes on distal 

chromosome 12. Both the results of our previous study (Croteau et al. 2002) and our 

preliminary data on the grandparental-origin effect on fetal growth suggest that 

imprinting of one or more genes of this region is not equally weIl established or 

maintained in aU embryos (Croteau et al., 2002). Failure to reset imprints in this region 

may lead to embryonic lethality and/or embryo overgrowth. We aimed to identify genes 

responsible for this effect. 

We observed loss of imprinting of Dlkl, Meg3/Gtl2 and Dio3 genes in (MOLFlEi x 

C57BL/6) embryos and normal imprinted expression in embryos from the reciprocal 

cross (C57BL/6 x MOLFlEi). This asymmetric imprinting relaxation suggests an 

interaction between strain-specific and parent-of-origin specific factors in these crosses. 

The expression data confirm that imprinting of Meg3/GtI2, Dlkl and Dio3 is not stable. 

However, the biallelic expression ofthese genes does not seem to be responsible for the 

fetalloss that we have previously reported (Croteau et al., 2002). 
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