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Abstract

This thesis studies the performance of different Markov Random Field

(MRF) based stereo formulations for cluttered scenes. Cluttered scenes

have objects of a specific size distribution placed randomly in 3D space.

Real-world examples of such scenes include forest canopy, bushes or foliages

in general. One characteristic of such scenes is that they contain a lot of

depth discontinuities and partially visible pixels. A natural question which

is addressed in this thesis is how well the existing stereo algorithms perform

for such scenes. The scenes used in some of the widely used benchmark

dataset do not contain stereo pairs with dense clutter. Therefore, we use a

cluttered scene model [1] to generate synthetic scenes with different scene

parameters such as size and density of objects, and range of depth. In our

experiments we apply algorithms with basic and visibility constraints. In

the basic category we use: Expansion, Swap, Max Product Belief Prop-

agation (BP-M), Sequential Tree Reweighted Message Passing (TRW-S)

and Sequential Belief Propagation (BP-S) with different forms of data and

smoothness terms. In the visibility constraint category we use: KZ1 and

KZ2 proposed in [2, 3, 4]. The algorithms are applied to the input dataset

with different parameter settings. To compare the performance, we consider

the percentage of mislabeled pixels, errors in certain regions and the con-

tribution of the errors in those regions to the total error. We also analyze

the cause of those errors using the underlying scene statistics.

For the basic formulation, Potts model performs surprisingly well in all

the experiments, in the sense that binocularly visible surface points are

correctly labeled. In particular, Expansion, TRW-S, and BP-M perform

equally well. Algorithms with visibility constraints also perform equally well

for binocular pixels and in some cases slightly better than basic formulation.



We did not observe any clear improvement in labeling binocular pixels.

However, visibility constraints perform largely better than basic formulation

when all the pixels are considered. This is also reflected in the energy

measure. Algorithms based on basic formulation shows large gap between

the ground truth and output energy. However, formulations with visibility

constraints have energy values closer to the ground truth. This is because

the visibility constraint restricts the search space to disparity labels that

are consistent. We conclude that methods like KZ1 can primarily improve

labeling of monocular pixels. For binocular pixels, there is still room for

improvement in both formulations, especially in the case of off-by-one errors

(i.e. cases where the assigned labels differ from the ground truth by a single

disparity).



Résumé

Ce mémoire vise à comparer la performance de différents modèles stéréo par

champs aléatoires de Markov sur des scènes encombrées. Ces scènes sont

composées d’objets dont les grandeurs suivent une distribution spécifique

et dont les positions sont aléatoires dans l’espace 3D. Elles se caractérisent

par la présence de plusieurs discontinuités de profondeur et d’occlusions

partielles. Des buissons, des feuillages ou une forêt en sont des exemples.

Les scènes de référence généralement utilisées ne contiennent pas d’images

stéréo de scènes encombrées. Il nous apparâıt donc important de vérifier

la performance des algorithmes stéréo existants sur ce type de scènes. Par

conéquent, nous utilisons un modèle de scènes encombrées pour générer des

scènes synthétiques selon différents paramètres tels que la taille et la densité

des objets, et l’intervalle des profondeurs. Nos tests appliquent des algo-

rithmes avec contraintes de base et de visibilité. Parmi les algorithmes avec

contraintes de base, nous utilisons: Expansion, Swap, Max Product Belief

Propagation (BP-M), Sequential Tree Reweighted Message Passing (TRW-

S) et Sequential Belief Propagation (BP-S) avec différentes fonctions de coût

et de lissage. Parmi les algorithmes avec contraintes de visiblité, nous util-

isons: KZ1 et KZ2 proposés dans [2, 3, 4]. Les algorithmes sont appliqués

aux images synthétiques avec différentes valeurs de paramètres. Pour com-

parer la performance, nous considérons dans toute l’image le pourcentage

de pixels erronés, c’est-à-dire n’ayant pas la bonne étiquette de profondeur,

ainsi que le pourcentage d’erreurs dans certaines régions et sa contribution

dans l’erreur totale. Nous analysons la cause de ces erreurs à l’aide des

statistiques de la scène.

Pour les algorithmes avec contraintes de base, le modèle de Potts performe

bien pour tous les tests, en ce sens que les points visibles dans les deux



images (pixels binoculaires) sont associés à la bonne étiquette. Plus par-

ticulièrement, les algorithmes Expansion, TRW-S et BP-M donnent des

résultats similaires. Les algorithmes avec contraintes de visibilité donnent

aussi de bons résultats pour les pixels binoculaires, mais sans amélioration

significative. Par contre, ils performent beaucoup mieux lorsque tous les

pixels sont considérés, ce qui se reflète aussi dans la mesure d’énergie. Les

algorithmes avec contraintes de base donnent de grandes différences entre

les énergies réelle et en sortie. Mais les algorithmes avec contraintes de visi-

bilité donnent une énergie de sortie beaucoup plus similaire à l’énergie réelle,

à cause des contraintes de visibilité qui restraignent l’espace de recherche

des étiquettes de disparité. Nous concluons que les méthodes, comme KZ1,

améliorent l’étiquetage des pixels monoculaires. Pour les pixels binocu-

laires, les algorithmes des deux catégories peuvent encore être améliorés,

plus spécifiquement dans le cas où l’étiquette diffère de la valeur réelle d’une

seule disparité.
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Chapter 1

Introduction

1.1 Stereo Reconstruction

Stereo vision is a classical problem motivated by how the brain fuses images from two

eyes to give perception of depth. In stereo reconstruction, the 3D scene is inferred from a

pair of 2D images of a scene taken from two different viewpoints. The problem is solved

by first finding the corresponding points between two images and then determining the

distance from a predefined coordinate frame using triangulation. The key step in this

process is solving the correspondence problem. In this thesis, we specifically address

the problem of stereo reconstruction for cluttered scenes.

1.2 Cluttered Scene Stereo Reconstruction

We consider cluttered scenes to be any scene, where objects with a certain size distri-

bution are randomly positioned in 3D space. Some examples of such scenes are forest

canopy, bushes, hedges, foliages, etc. These scenes pose special challenges because they

have large number of depth discontinuities and as a result any method that makes

smoothness assumption are likely to have difficulty with reconstructing such scenes. In

this thesis, we look at how different stereo formulations perform for cluttered scenes.

More specifically, models that formulate the problem in an energy minimization frame-

work are considered.

1



1. INTRODUCTION

1.3 Modeling the Stereo Vision Problem

The stereo vision problem has been modeled in a number of ways over the years. Models

based on correlation, variational methods, and discrete labeling has been proposed.

There also has been a number of work on modeling biological vision and using that to

solve the stereo problem. In this thesis, we are only interested in the models based on

Markov Random Field. Currently the top performing algorithms are based on some

variation of this model. So far there has not been any work on investigating how well

these methods perform for cluttered scenes. Most of the performance evaluation work

has concentrated only on the standard set of stereo problems which do not exhibit

significant amount depth discontinuities. Since cluttered scenes occur in nature very

often, it is important to investigate how the MRF-based models perform for these

scenes.

1.4 Objective

Our aim is to understand how different optimization techniques with different priors

perform for cluttered scenes. We specifically ask, how well do the current methods

perform for cluttered scenes? What types of prior perform best for these scenes?

Where do the errors occur and by how much? Is there any correlation between the

error rate and scene statistics? Is there any room for improvement? By investigating

these questions, our goal is to step towards understanding how better priors can be

formulated for cluttered scenes.

1.5 Contributions

The main contribution of this thesis is evaluating the performance of an important

subset of MRF based stereo algorithms and determining the forms of smoothness and

optimizers that work well for different types of cluttered scenes.

1.6 Motivation and Application Areas

General stereo vision has a wide range of applicability in the real world. Cluttered scene

reconstruction can have application in forestry where researchers want to make various

2



1.7 Outline

measurements (e.g. leaf density, visible amount of light) to determine the growth of a

forest or other ecological statistics. An example of a range image for a forest scene is

shown in figure 1.1 from [5]. Scene reconstruction from high-resolution satellite stereo

images can also benefit from cluttered scene based stereo formulations. One of the

challenges in this case is that certain terrains (e.g. forests, or urban regions) can have

a lot of depth discontinuities present. In those cases, it is desirable to use algorithms

that can robustly handle such scenarios.

Figure 1.1: Sample range image of a forest scene from [5]

1.7 Outline

The outline of this thesis is as follows: In Chapter 2, we give an overview of the tech-

niques related to MRF based formulation, optimization methods, and compare and

contrast some of the relevant previous works. In Chapter 3, we discuss the cluttered

scene model that is used in this thesis. Chapter 4 motivates synthetic scene generation

process, addresses several issues related to stereo pair generation, specifies the scene

parameters for the benchmark dataset and finally experimentally verifies the desired un-

derlying scene statistics. The performance of different stereo algorithms with different

parameters settings and different cluttered scenes are presented in Chapter 5. Finally,

Chapter 6 concludes the thesis by summarizing the overall approach, addressing the

question posed in Section 1.4 and giving future directions.
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Chapter 2

Background Review

In this chapter, we discuss some of the existing methods for formulating and solving

the stereo reconstruction problem. The scope of this review is restricted to MAP-

MRF formulation of stereo vision problems and MAP estimation using optimization

techniques such as Graph Cuts and Belief Propagation. An overview of previous works

on comparing stereo methods is also presented.

The organization of this chapter is as follows. In section 2.1, we discuss MAP-MRF

formulation for general computer vision problems. We review Graph-Cuts in section

2.2 and Belief Propagation with its different variants in section 2.3. In section 2.4,

we specifically consider the problem of stereo and review some of the key techniques

that have been proposed so far and also considered in this thesis. Section 2.5 presents

some of the previous work done on comparative studies with different algorithms and

problem formulation and discuss the similarities and differences between those work

and ours.

2.1 MAP-MRF formulation for Vision

For many problems in computer vision, we are mainly interested in minimizing an

energy function of the form [6]:

E(X) = Edata(X) + Esmooth(X) (2.1)

where E : L → R. L is a set of labels assigned to each pixel, and X ∈ L|P| where P is

the set of pixels.
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2. BACKGROUND REVIEW

A set of random variables X = {Xi} is a Markov Random Field with respect to

some neighborhood N if it satisfies the following properties:

1. p(Xi) > 0

2. p(Xi |X \Xi) = p(Xi |Xj ∈ N(Xi)) where N(Xi) are the neighbors of Xi

The Hammersly-Clifford theorem establishes the equivalence between a MRF and

a Gibbs Random Field. A set of random variable, F is a Gibbs Random Field (GRF)

with respect to N, if it follows the Gibbs distribution:

p(f) =
1

Z
exp{− 1

T
U(f)} (2.2)

where f ∈ F and Z is a normalizing constant:

Z =
∑
f∈F

exp{− 1

T
U(f)} (2.3)

Here T is called the temperature and U is the potential function. The potential function

is defined as:

U(f) =
∑
c∈C

Vc(f) (2.4)

where Vc is the clique potential and depends on the configuration of the clique. An

MRF can be categorized based on the characteristics of the clique potential function

and clique size. If the clique size, |c| = 1, it is known as a first-order MRF model. If

the potential function is independent of position and orientation, it is considered as

homogeneous and isotropic respectively. In this thesis and also in most MRF based

formulations, only first-order homogeneous and isotropic MRFs are considered. A

neighborhood of size cn, centered at (i, j) is defined as

N(p(i,j)) =
{
p(k,l) | p(k,l) ∈ P ∧ (0 < (i− k)2 + (j − l)2 ≤ cn)

}
In the definition of MRF, the probability of a random variable depends on its

neighbors. But due to Markov-Gibbs equivalence we do not need to explicitly compute

the conditional probability. Rather, we can directly compute the joint probability using

the clique potential.

In the MAP-MRF framework we want to find a configuration, which is an assign-

ment of values to random variables, that maximizes the posterior probability. This
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2.1 MAP-MRF formulation for Vision

can be done by taking the negative log probability and minimizing the corresponding

function. Since we are only concerned with the optima of the function, we can ignore

the normalizing constant.

p(X|D) =
p(D|X)p(X)∏
X p(D|X)p(X)

∝ p(D|X)p(X)

= exp{− 1

T

∑
x∈X

Edata(D|x)} exp{− 1

T

∑
x∈X

Esmooth(x)}

= exp{− 1

T
(
∑
x∈X

Edata(D|x) +
∑
x∈X

Esmooth(x))}

= exp{− 1

T
E(X)}

∴ − log(p(X|D)) ∝ E(X)

In such formulation, MAP estimation is equivalent to finding the minimum of Eq. 2.1.

Where Edata, which is known as the data term, is defined asEdata(X) =
∑

x∈X Edata(D|x)
and Esmooth, which is known as the smoothness term, is defined as Esmooth(X) =∑

x∈X Esmooth(x).

The likelihood can be thought of as modeling sensor noise while the prior models

the contextual relationship between pixels. In terms of penalty, the data cost is the

penalty for assigning a label to a node. Since in the stereo problem we want to find the

corresponding pixels, the data term measures the dissimilarity between corresponding

pixels. The smoothness term is the penalty for assigning a pair of neighboring pixels

certain labels. It ensures continuity between similar neighboring pixels.

Now that we have seen how to model vision problems using the MAP-MRF frame-

work, we consider the problem of finding the optimal labeling or the labeling that

maximizes the posterior probability. That is, we want to solve X∗ = argminX E(X).

There are several techniques for doing solving this problem. Early approaches used

simulated annealing [7], ICM [8], and other probabilistic techniques. Currently two

of the top performing methods are Graph Cut (GC) [9, 10, 11, 12, 13, 14] and Belief

Propagation (BP) [15]. Graph Cut works by constructing a graph whose minimum cut

corresponds to the minimum energy. Belief Propagation works by passing messages

that corresponds to how good a particular label is with respect to all the other nodes

in the neighborhood. In the following two sections (2.2, 2.3), we give a brief overview
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2. BACKGROUND REVIEW

of these optimization techniques. The details of the algorithms are not used in any of

the analysis and are provided for completeness only.

2.2 Graph Cut

Graph cut is a combinatorial optimization technique that works by formulating the

problem in terms of a graph problem and then finding a solution to that problem

using graph theoretic algorithms. More specifically in Graph Cut, the energy function

is represented using a graph and the minimum energy is computed by solving max-

flow/min-cut problem. Graph Cut in vision was first used by Grieg et al. in [9], for

binary image restoration problem. However, it was not clear at that time how it could

be used for more general vision problems. It was in the late 1990s that the approach

started to gain popularity [11, 12, 13, 14].

The key step in the Graph Cut formulation is expressing the energy function as

a graph. There are several graph-cut algorithms that differ in the way the graph is

constructed and how the labeling is performed. In this thesis, we only consider the

graph construction proposed by Kolmogorov et al in [16], and a class of move-making

optimization algorithms.

2.2.1 Graph Construction for Binary Labeling

We give a brief overview of the graph construction for binary labeling problem from

Kolmogorov et al [16]. It is a general construction that does not depend on the specific

terms of the energy function or the characteristics of the problem. Before going into

the details of the construction process, we first define the class of graph representable

energy functions:

Definition A function E is a graph representable function if for a graph G = (V,E)

the minimum cut on the graph C equals the minimum energy plus a constant.

The graph G = (V,E) used for representing the energy function is a directed graph

whose set of vertices V usually corresponds to the pixels, or set of pixels and the

weights of the directed edges E encode the relationship between pairs of pixels. Two

additional nodes s and t which corresponds to the binary labels are also added to the

graph. These nodes are known as the terminal nodes. Therefore, V = {P}∪{s, t}. The
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s

t

C

S

T

{(u, v)εE|uεS ∧ vεT }

{(u, t)|uεS}

{(s, v)|vεT }

Figure 2.1: s-t min cut on directed graph

edges connecting non-terminal nodes are called the n-links and the ones connecting the

non-terminal nodes to the terminal nodes are referred to as the t-links. The weight of

the n-links correspond to smoothness penalties and t-links data penalty. In this graph,

the minimum cut corresponds to the minimum energy plus a constant. The minimum

cut can be computed by solving the max-flow/min-cut problem.

A cut in the graph is the set of edges which when removed creates two disjoint

components. Hence, no proper subset of the min-cut C can be a cut. In a directed

graph the set of edges going from set S to T is called the s-t-cut. Therefore, the cut C

(Fig. 2.1) is,

C = {(u, v) | u ∈ S ∧ v ∈ T} ∪ {(u, t) | u ∈ S} ∪ {(s, v) | v ∈ T} .

The cost of the cut is the sum of the edges in C. In other words, its the sum of certain

t-links and n-links which is equivalent to the sum of data and smoothness costs.

The class of Graph Cut techniques that we consider requires solving binary labeling

problem in each intermediate step. So from this point on we only consider the binary

labeling problem.

The binary labeling problem can be represented using binary random variables

X = {xp | p ∈ P} where xp = 0 =⇒ xp ∈ S and xp = 1 =⇒ xp ∈ T. Using binary
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2. BACKGROUND REVIEW

labels, we can write the energy function as a sum of unary and binary terms as follows:

E(X) =
∑
i

Ei(xi) +
∑
i,j

Eij(xi, xj) (2.5)

where Ei and Eij denotes a unary and a binary term respectively.

It can be shown that to have a valid graph representation, the energy function must

satisfy the following property:

−Eij(0, 0) + Eij(0, 1) + Eij(1, 0)− Eij(1, 1) ≥ 0

∴ Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0) (2.6)

This property which is called the regularity condition is a binary special case of

the submodularity condition. Further details on the graph construction can be found

in [16]. In the following sections we look at how different algorithms can be used to

optimize the energy function using this graph construction.

2.2.2 Move-Making Algorithms

This is a class of algorithm that tries to find the minimum energy by iteratively as-

signing new labels to existing configurations. They can be categorized based on the

size of assignments that are made: 1) Standard move algorithm, and 2) Large scale

neighborhood search algorithms. Methods like ICM and Simulated Annealing are all

standard move making algorithms since they only modify single pixel at a time. The

algorithms that are going to be discussed in this section: Expansion and Swap are of

the second category, because they affect the label of a large number of pixels in a single

iteration.

The main differences between Expansion and Swap are the set of vertices and inter-

pretation of the terminal nodes. Both the algorithms iteratively decompose the original

problem into binary optimization subproblems and stop when no solution is found in

any step of the iteration.

2.2.2.1 Expansion

Let the set of configurations that only differ from each other by the label α be:

Nα(f) =
{
f ′ | ∀p∈P fp ̸= f ′

p =⇒ fp ̸= α and f ′
p = α

}
.
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β

α
γ

(a)

β

α
γ

α

β

(b)

β

αγ

α

(c)

Figure 2.2: a) Initial Configuration b)Swap, and c) Expansion

Such configurations are a single α-expansion move away. In each iteration of Expansion,

the algorithm tries to find such a configuration (f∗) that is a single α-expansion move

away and minimizes the energy function. The algorithm is given below:

Algorithm: Expansion

success := 1

while success = 1 do
success := 0

for each label α ∈ L do

f̂ := argmin
f∈Nα(f∗)

E(f)

if E(f̂) < E(f∗) then

f∗ := f̂

success := 1
end

end

end

The minimum cost labeling is found by constructing an st-graph with V = {P, α, ᾱ}.
Since this is a binary labeling problem, we have a binary configuration X = {xp |p ∈ P}
where xp = 0 =⇒ f ′

p = fp and xp = 1 =⇒ f ′
p = α. Boykov et al. in [14] showed

that E(f∗) ≤ 2cE(fopt) for optimal configuration fopt. For Potts model c = 1.

2.2.2.2 Swap

In the case of the Swap algorithm, binary optimization is done for each pair of labels

(α, β). In each iteration, only the pixels, labeled either as α or β are considered. That

is, a graph is constructed from the set of pixels P such that ∀p∈Pfp = α or fp = β.
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Let the set of configurations which only differ by swapping labels α and β be:

Nαβ(f) =
{
f ′|∀p∈Pfp ̸= f ′

p =⇒ fp = α and f ′
p = βorfp = β and f ′

p = α
}

Such configurations are a single αβ-swap move away. In each iteration, the Swap

algorithm tries to find an assignment of the labels α and β, which is a single αβ-swap

move away and minimizes the energy function. The algorithm is as follows: The

Algorithm: Swap

success := 1

while success = 1 do
success := 0

for any pair of labels {α, β} ∈ L do

f̂ := argmin
f∈Nα−β(f∗)

E(f)

if E(f̂) < E(f∗) then

f∗ := f̂

success := 1
end

end

end

minimum cost labeling is found by constructing an st-graph with V = {Pαβ , α, β} and

solving the st min-cut problem.

2.3 Belief Propagation and its Variants

There are two variations of the BP algorithm in terms of how the belief is computed:

sum product and max product (or max sum in the case of log probabilities). In BP, an

optimal label for each node is determined by passing messages between the nodes. Let

mpq be the message passed from node p to node q. Each message represents a score for

the receiving node to be assigned some label fq. This is represented using the notation

mpq(fq). To compute its message, node p tries to find a label fp that maximizes the

compatibility with its neighbors label fq. This is done by the following message update

rule (for an iteration t):

mt
pq(fq) := max

fp

∑
Ep(fp) +

∑
Epq(fp, fq) +

∑
r∈N(i),r ̸=q

mt−1
rp fp
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Once the message propagation stops, the label with the maximum belief is chosen as

follows:

fp = max
l∈L

{bp(l)} where bp(l) = Ep(l) +
∑

r∈N(p)

mrp(l)

The algorithm is shown below.

Algorithm: Max Product BP (BP-M)

for each pixel p ∈ P do

for each neighbor q ∈ N(p) do

for each label fq ∈ L do

mt
pq(fq) := 0

end

end

end

for t = 1 to MaxIteration do

for each pixel p ∈ P do

for each neighbor q ∈ N(p) do

for each label fq ∈ L do

mt
pq(fq) := max

fp

{∑
Ep(fp) +

∑
Epq(fp, fq) +

∑
r∈N(i),r ̸=q

mt−1
rp fp

}
end

end

end

end

for each pixel p ∈ P do
fp = max

l∈L
{bp(l)} where bp(l) = Ep(l) +

∑
r∈N(p)

mrp(l)

end

In [17], Wainright et al establishes a connection between the standard BP algorithm

and LP relaxation. Their approach, known as Tree-Reweighted Message Passing (TRW)

formulates the MAP estimation problem on a general graph, as a MAP estimation

problem on a set of trees. This allows them to prove certain properties of the upper

bound of the energy. The update rule is as follows [18]:

mt
pq(fq) := max

fp

cpq(Ep(fp) +
∑

r∈N(i),r ̸=q

mt−1
rp fp)−mt−1

qp fp + Epq(fp, fq)
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The coefficient cpq in Eq. 2.3 is the main element that makes it different from standard

BP-M. The update rule is equivalent to that of BP-M (Eq. 2.3) when cpq = 1. The

coefficient is computed from the tree-structured distribution of the original problem.

In [19], Kolmogorov proposed a sequential version of the algorithm and showed

improved convergence. We use this latter algorithm which is known as TRW-S or

sequential Tree-Reweighted Message Passing. In the sequential version the labels are

ordered in a particular way and the update rule is applied based on the ordering. The

same idea is used by the author in BP-S, which is BP-M with sequential updating rule.

2.4 MRF based Stereo Algorithms

So far we have seen how general computer vision problems are formulated using the

MAP-MRF framework and solved using various discrete optimization techniques. In

this section, we specifically consider MAP-MRF formulation for stereo problems. In

our presentation, a stereo pair is assumed to be rectified and the images in the pair

differ only by a horizontal shift. This horizontal displacement or difference between

the columns of corresponding pixels is the disparity. In this setting, the optical axes

of the cameras are also assumed to be parallel. In the case of stereo, the labels are

the disparity values. Most methods solve the optimal assignment problem for one of

the images (usually the left), while others solve the problem for all images by either

considering a fixed camera or for individual cameras. In the following sections, we

discuss two types of formulations that differ in the type of constraints being used by

the underlying model.

2.4.1 Basic Formulation

The basic formulation is simply the general form of energy function that was considered

at the beginning of this chapter (Eq. 2.1). The equation is rewritten in the context of

stereo as follows:

For stereo pairs Il and Ir with integer disparity values fp and fq for pixels p, and

q, the energy function that is optimized is of the following form [18]:
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E = Ep(fp) + λ Ep,q(fp, fq) (2.7)

Ep(fp) = d(Il, Ir, p, q)
kd (2.8)

Ep,q(fp, fq) = wpq min(|fp − fq|ks , Vmax) (2.9)

As before, equation 2.8 is called the data term and 2.9 the smoothness term. The

function d(.) in the data term measures the dissimilarity between corresponding pixels.

It can be either a basic dissimilarity measure (e.g. absolute or squared difference

between the corresponding pixels) or the more sophisticated Birchfield-Tomasi measure

[20]. The data term can be chosen either to be the linear or quadratic (for kd = 1 and

2 respectively) form of the dissimilarity measure.

The smoothness term is a function of label difference. This implies that the smooth-

ness function penalizes discontinuities. Quite often a truncation value like Vmax in Eq.

2.9 is used. This helps to preserve discontinuities and give better results in practice.

In the smoothness term wpq is a function of a pair of pixels which is usually a function

of color gradient. It can be defined as follows:

wpq =

{
λ∇ if |Ip − Iq| < Ithreshold
1 otherwise

(2.10)

. Here, λ∇ is the gradient penalty and λ∇ > 1. The coefficient λ in Eq. 2.7 specifies

the weight that should be given to the smoothness term.

2.4.2 Additional Constraints

The above formulation does not put any restriction on disparity consistency. It is quite

possible for multiple pixels in the left image to be mapped onto the same pixel in the

right image. Even the corresponding pixels may not map onto each other. Also the

formulation does not explicitly consider occlusion and therefore is likely to perform

poorly near discontinuities. Such observations have motivated researchers to consider

additional constraints.

In the case of visibility reasoning there can be three possible scenarios as shown

in Fig. 2.3a. A surface point can either be binocularly visible, semi-occluded (or

monocularly visible) or completely occluded. For scenes with fronto-parallel surfaces

we can have additional constraints that penalizes many-to-one mapping. There can be
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other constraints that allow scenes to have slanted surfaces. However, in this thesis

we restrict ourselves to visibility and uniqueness constraints primarily because they are

more appropriate for our synthetic scenes and our objective is to analyze the effect of

occlusion and discontinuity on a stereo method’s performance.

(a) (b)

Figure 2.3: a) Binocular visibility, b) < p, l > blocks q from seeing the point < q, l′ >.

Therefore {< p, l >,< q, l′ >} ∈ Ivis.

In the following, we discuss a general formulation for visibility and uniqueness con-

straints proposed by Kolmogorov and his colleagues in [4]. Specifically we are more

interested in the two special cases: KZ1 [3] and KZ2 [2]. The general energy function

is of the form [4]:

E(f, g) = Edata(g) + Ep
smooth(f) + Ei

smooth(g) + Evis(f) + Econsistency(f, g) (2.11)

Two types of configurations, f and g, are used in the formulation. The meaning of the

configurations and the terms are explained in our description of the two special cases

below.

In the first special case, referred to as KZ1 [3], Eq. 2.11 can be rewritten as (see
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[4, 21] for details):

E(f) = Edata(f) + Esmooth(f) + Evis(f) (2.12)

Edata(f) =
∑

{<p,f(p)>,<q,f(q)>}∈I

min{0, d(Il, Ir, p, q)kd −K} (2.13)

Esmooth(f) =
∑

{p,p′}∈N1

Vpp′(fp, fp′) (2.14)

where, Vpp′(fp, fp′) = wpp′ min(|fp − fp′ |ks , Vmax)

and,N1 ⊂ {{p, p′}|p, p′ ∈ P}

Evis(f) =
∑

{<p,f(p)>,<q,f(q)>}∈Ivis

∞ (2.15)

Among the two smoothness terms in Eq. 2.11, only Ep
smooth is considered. The con-

sistency constraint between f and g is ignored and Edata(g) is re-written as Edata(f).

The configuration f is defined as: f : P → L. The data term shown in Eq. 2.13 is

similar to the data term in the basic formulation. One difference is that to satisfy reg-

ularity condition the term has to be negative which is why a constant K is subtracted

from the dissimilarity measure d(.). The smoothness term is also similar to the basic

formulation except that in this formulation the smoothness penalty is calculated for all

images rather than just for a single image. The additional term, Evis, enforces visibility

constraint. To understand this term, we need to define the notion of “scene point”,

“interaction” (I), and “visibility interaction” (Ivis).

A pair < p, l >, where p ∈ P and l ∈ L, defines a 3D-point in the scene. It is the

intersection of a ray from pixel p and a plane at distance l from a fixed camera. Let p

and q be pixels in two different images i and j respectively. Two points < p, l > and

< q, l′ > interact (i.e. {< p, l > , < q, l′ >} ∈ I), if the projection of < p, l > onto j is

q. The visibility interaction set Ivis, is the set of point-pairs that violate the visibility

constraint. It is defined as, Ivis = {{< p, l > , < q, l′ >}|{< p, l > , < q, l′ >} ∈ I∧(l′ >

l)}. Fig. 2.3 (b) shows an example where < p, l > projects onto q and blocks q from

seeing < q, l′ >.

In the second special case, referred to as KZ2 [2], the energy function can be written
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as (see [4, 21] for details):

E(g) = Edata(g) + Esmooth(g) + Evis(f(g)) + Econsistency(f(g), g) (2.16)

Edata(g) =
∑
i∈I

g(i) (d(Il, Ir, p, q)
kd −K) (2.17)

Esmooth(g) =
∑

{i,i′}∈Ni

λT [g(i) ̸= g(i′)] ,whereNi = {{i, i′}|i, i′ ∈ I} (2.18)

Evis(f) =
∑

{<p,f(p)>,<q,f(q)>}∈Ivis

∞ (2.19)

Econsistency(f, g) =
∑

<p,q,l>∈I
∞T (g(< p, q, l >) = 1 ∧ (fp ̸= l ∨ fq ̸= l)) (2.20)

Here, T (.) = 1 if its argument is true and 0 otherwise. In the case of rectified stereo pair,

g is defined as g : {(Pl,Pr)} → {0, 1}. In this formulation, pairs of pixels (p, q), where

each pixel is from two different images, are considered. This pair is also known as an

interaction and can be either “active” (1) or “inactive” (0). If p and q are corresponding

pixels then the interaction g((p, q)) = 1. The data term only assigns penalty for active

interactions. The smoothness term is different from all other formulations in that it is

defined on interactions. The term assigns a penalty if two neighboring interactions are

not assigned the same label. Two interactions are neighboring if any two pixels in the

two interactions are either the same or neighbors of each other.

The last two terms Evis(f(g))+Econsistency(f(g), g) enforces uniqueness constraint.

The main idea behind the constraint is that a pixel cannot be in more than one active

interaction. The reason why the two terms enforce uniqueness constraint is that when

both (p, q) and (p, q′) are active then {< p, q, l = q − p >,< p, q′, l′ = q′ − p >} ∈ Ivis

because l ̸= l′ and projection of < p, l > is q′. As a result, the visibility term will be

infinite.

2.5 Comparative Study of MRF-based Algorithms

There have been other studies that compare MRF-based algorithms for different pa-

rameters and scenes. The result of a particular approach can depend on either the form

of energy function or the optimization method. Therefore, the key motivation behind

these studies has been to understand the effect of different parameters on different

scenes.
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Scharstein and Szeliski’s work [22] was one of the earliest to compare different

algorithms. The motivation behind that work was to categorize different dense stereo

algorithms and also to characterize the performance of those algorithms for different

scenes with different parameters. The authors consider a wide range of algorithms

including MRF-based techniques with basic formulation. They identified the common

elements between different algorithms and obtained results for 20 algorithms. All the

algorithms were implemented under a common framework to make more meaningful

comparison. In all cases, the appropriate parameters were modified to evaluate the

performance of those algorithms.

To compare the output disparity dC with the ground-truth dT , two quality metrics

were used:

1. RMS error ERMS =
√

1
N

∑
p∈P

|dC(p)− dT (p)|2

2. Percentage of bad matching pixels Eavg = 1
N

∑
p∈P

(|dC(p)− dT (p)| > τ), where τ is

the error threshold.

These error statistics are computed in: Textureless, Occluded and Discontinuity re-

gions. The authors found Graph Cut based optimization to be better than other tech-

niques and concluded that using Birchfield-Tomasi and gradient thresholding based

smoothness cost gives the best performance. We also find similar conclusion in our

analysis. However the authors note that “Choosing the right parameters (threshold

and penalty) remains difficult and image-specific”.

The motivation behind this thesis is similar. We also consider the amount of error

that occurs for different parameter combinations and where they occur (excluding tex-

tureless region). However, we focus on a wider range of MAP-MRF based techniques

and special type of scenes. Furthermore we show the set of parameters that work best

in each scene category, and relate them to the underlying scene statistics.

Tappen et al [23] investigates how Graph Cut and Belief Propagation performs for

the same energy formulation. The motivation behind their work was to identify whether

the MRF formulation or the inference algorithm causes the difference in performance.

To this end, they used the basic MRF stereo formulation and optimized the energy

using Swap and BP-M algorithm with the same parameter settings (Birchfield-Tomasi
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for data and Potts model for smoothness). The following four statistics were considered

for comparing results. These are similar to the ones used by Scharstein et al in [24].

1. Percentage of greater than 1 pixel disparity error in the unoccluded regions.

2. Percentage of greater than 1 error in the textureless regions.

3. Percentage of greater than 1 error near discontinuities.

4. Energy of the solution.

The algorithms were applied on “Map”, “Tsukuba”, “Sawtooth” and “Venus” dataset.

In general they found both the algorithms to have similar performance. Both Swap

and BP-M were able to find energy configuration lower than the actual energy. This

implies that the data and smoothness terms do not model the problem sufficiently well.

In this thesis, the algorithms are compared in a similar manner. However, a wider

range of parameter and algorithm settings are considered.

Szeliski et al, in [18] considers MRF based energy minimization techniques with

smoothness-based priors and uses a wide range of optimization algorithms for perfor-

mance evaluation. They used ICM, Expansion, Swap, BP-M, BP-S, and TRW-S for

stereo, photomontage, binary image segmentation and image denoising and inpainting

problems with different forms of prior. Their primary objective was to evaluate differ-

ent energy minimization techniques for different types of priors. The authors used the

basic stereo formulation and evaluated the algorithms using “Tsukuba”, “Venus” and

“Teddy” images from the Middlebury benchmark dataset with Vmax between 1 and 2,

norms L1 and L2, and without gradient threshold. They found Expansion, Swap and

TRW-S to be the best performing algorithms in terms of finding the lowest energy.

Compared to [18], we only consider cluttered scenes with different scene parameters

for both basic and additional constraints based formulation. We also compare the

algorithms in terms of error rates rather than optimal energy and show results for a

wide range of parameters. Furthermore we look at the error statistics of the resulting

images and relate that to the underlying scene statistics.
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Chapter 3

Modeling Cluttered Scenes

This chapter presents the cluttered scene model that is used in this thesis. Cluttered

scenes are defined to have objects of certain size and shape distributed randomly in

3D space. There are several real-world examples of these scenes such as foliage, tree

canopy, bushes, hedges etc. A model allow us to understand the underlying statistics of

cluttered scenes and thus to classify scenes based on those statistics. This is important

for us because our goal is to evaluate different methods for different types of cluttered

scene and observe the trend in performance due to different underlying statistics. A

model lets us choose specific parameters for generating specific scenes, thereby enabling

us to methodically evaluate the performance of stereo algorithms.

Ideally a cluttered scene model should mimic the statistics of natural scenes. One

such model which is very widely used is the dead leaves model [5, 25]. The objective

of the model is to capture the scale-invariant properties of natural scenes. As a result

the model only uses the ratio of distance between objects. In our case, we need to use

the actual distance of the objects for disparity computation. Therefore, the cluttered

scene model from [1], which explicitly derives the probability model with respect to

scene point distance, is used.

The organization of the chapter is as follows. In sec. 3.1 we give an overview of

previous work related to general scene modeling. The basic assumptions and notations

are listed in sec. 3.2. Finally the derivation of the probability models from [1] with

some minor modifications is presented in sections 3.3, 3.4, and 3.5.
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3. MODELING CLUTTERED SCENES

3.1 General Scene Models

There have been a number of works on modeling the statistics of natural images. A

patch of image of size P with K possible pixel values can have PK possible images.

However, not all of those images are meaningful. The study of natural image statistics

are motivated by the observation that the small subset of meaningful images should

have similar underlying statistics. An important property of natural scenes is that

they are translation invariant. This means that for an ensemble of images the statistics

at one point is the same as any other point. This allows us to compute the statistics

without worrying about the spatial location of pixels. Another important characteristic

of natural images is scale invariance. This means that the statistics of the images do

not change for different scales. This phenomena has been extensively studied in the

literature from the late 1980s [25, 26, 27]. Most of the statistics were studied for

intensity images. However, as Huang et al shows in [28], these statistics also hold for

range images.

Matheron [29], proposed the “dead leaves model” in the late 1960s for the mathe-

matical morphology community. Since then many researchers used the model to demon-

strate scale invariant statistics and also to study the cause of such scale-invariance.

There are two approaches for generating synthetic scenes that conform to the scale-

invariance properties of natural scenes [30]. They are: Superposition, and Occlusion

Models. In the superposition model, the scene is considered to be a superposition of

overlapping objects randomly distributed in the scene, while in the occlusion model

the objects are at different depths and the observed statistics are produced due to

the occlusion process. In both these models, the object’s position and properties (size

and texture) are determined using a Poisson process. It can be shown that [5, 25,

31] when the object size follows a 1/r3 distribution where r is the size of an object,

then the generated scene will have scale-invariant properties. These properties are not

investigated in this thesis.

3.2 Basic Assumptions and Notations

[1] addresses the problem of modeling cluttered scenes (as defined in this thesis). In

that work, different statistical models are derived assuming constant radius spheres

uniformly distributed in the scene. These models include the probability of visibility
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and binocular visibility. In a later work [32], the pair-wise depth probabilities for such

scenes are modeled. In this thesis, these models are used as the basis for generating

synthetic scenes. The objects are assumed to be squares and parallel to the projection

plane. This satisfies the uniqueness constraint that is assumed in some of the methods.

Throughout this chapter and the rest of the thesis the following assumptions and

notations are used:

Assumptions

1. Objects are parallel to the image plane, and therefore uniqueness constraint holds

2. The horizontal and vertical field-of-view of the cameras are the same

3. Pinhole projection model is assumed and therefore there is no blurring.

4. The size of the projection plane is a function of the focal length and field-of-view.

In real cameras this will be the sensor size.

5. The objects are assumed to be within a bounded region.

6. A scene point is assumed to be projected onto a single pixel. Therefore a point

in the scene is visible, if a ray from the pixel hits that point. The scene point

is occluded if the ray hits some closer object or if the scene point is outside the

view-volume. Assuming that all scene points are inside the view-volume, we can

simplify derivation by considering the Minkowski Sum of the ray and object (Fig.

3.1). That is the square is shrunk to a single point located at the center of the

square and the ray is grown to a cuboid (for a sphere it would be a cylinder).

Now a scene point is visible if a cuboid does not contain any square centers (Fig.

3.1).

Common Notations and Conventions

1. Objects are independently and uniformly distributed in the scene.

2. Objects are square with width S and area A.

3. The baseline between the cameras is Tx.

23



3. MODELING CLUTTERED SCENES

(a) (b)

Figure 3.1: a) Top view of scene showing different scene parameters b) Minkowski sum

of a ray and a square of half-width. The square in (a) is shrunk to a point.

4. The Focal length of each camera is the distance of the near plane N .

5. Field-of-view is denoted as fov.

6. The extent of the bounding region along the z-axis is zmin (or z0) to zmax.

7. The scaling factor from the projection plane to the image coordinate (denoted by

the subscript pi) is

Spi =
image width in pixels

projection plane width

8. The disparity of a pixel p is denoted as fp.

9. For transforming distance-based equations to disparity-based, the following sub-

stitutions are made:

z =
σs
fp

(3.1)

dz =
σs
f2
p

(3.2)

where, σs = NTxSpi

Based on these assumptions and notations, we look at the different statistics that

were presented in [1] with appropriate modifications.
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3.3 Probability of Disparity

3.3 Probability of Disparity

For a scene point to be visible on the image plane, two conditions must hold:

1. There are no centers inside the cuboid with cross-sectional area A (size equal to

that of the object) and extending from z0 to the position of object (Fig. 3.1b).

2. There is only one square center within a small depth interval [z, z + dz] at the

end of the cuboid.

We can model visibility using the Poisson distribution where the probability of having

k points is given by the equation γk e−γ

k! where γ is the average number of points within

a volume. Let the number of centers within a unit volume be η. For a scene point at

distance z to be visible, the first condition can be written as

γ0
e−γ

0!
= e−γ

where, γ = η A (z − z0) and A is the cross-sectional area of the cuboid.

For there to be a single square center within a very small volume Adz, the proba-

bility is:

γ
e−γ

1!
= ηAdz exp{−η Adz}

Since dz is very small exp{−ηAdz} ≈ 1. So the total probability of a point at distance

z being visible in the image plane is,

p(z)dz ≈ ηA exp{−ηA(z − z0)}dz (3.3)

Using Eq. 3.1 and 3.2, we have:

p(fp) =
σs
f2
p

ηA exp{−ηAσs(
1

fp
− 1

f0
)} (3.4)

In the rest of this chapter we do not explicitly perform the substitutions shown in Eqs.

3.1 and 3.2. Rather, the model is presented in terms of distance z and expressed in

terms of disparity where appropriate.
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3.4 Binocular Visibility

Binocular visibility refers to the case where a 3D point in the scene is visible from both

views. This is an important consideration for stereo algorithms because the data term

is modeled assuming that the corresponding pixels exist. Modeling the probability of

such cases allows us to determine how a stereo algorithm will perform. This is because

the techniques we use work best for pixels that are visible to both views. A scene point

will be visible from both views if it lies inside the union of the two view volumes and

is not occluded by any other scene points. In [1], a probability model for binocular

half-occlusion is presented. However, in the model occlusion due to finite view-volume

was not considered. In the following derivation the finite view-volume is taken into

consideration.

As stated before, a scene point visible from one viewpoint will be invisible from a

second viewpoint for one of two reasons:

1. The point is occluded by another point closer to the camera

2. The point is outside the second view volume

Let,
Vi: set of object centers inside view volume i
Γi: set of object centers inside cuboid i

Φi(z): width of a view volume i at depth z
∆(x): disparity of scene point x
β(x): point x is binocular
ρ(Γi): volume of cuboid Γi

A: cross-sectional area of object
Therefore we have,

p(β(x)) = p(Γr = ∅|Γl = ∅) = p(Γl \ Γr = ∅) p(x ∈ (Vl ∩ Vr)) (3.5)

The first probability, derived in [1], can be written as,

p(Γl \ Γr = ∅) = exp{−ηρ(Γl ∪ Γr)}
exp{−ηρ(Γl)}

= exp{−ηρ(Γl \ Γr)} (3.6)

where,

ρ(Γl \ Γr) =

{
A(2SzT − z0) +

2z
T S3 if z−z0

z > 2S
T

ST (z−z0)2

z otherwise
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The second probability is,

p(x ∈ (Vl ∩ Vr)) =
Φl(z − Tx)

AΦl(z − Tx)

=
w − Tx

w

= 1− Tx

w
where, w = 2z tan(fov/2)

∴ p(x ∈ (Vl ∩ Vr)) = 1− Tx

2z tan(fov/2)
(3.7)

For disparity fp,

p(x ∈ (Vl ∪ Vr)) = 1− fp
2NSpi tan(fov/2)

Using the above formulation the probability density of disparity for binocular pixels

can be written as:

p(∆(x) = fp , β(x)) = p(β(x) |∆(x) = fp) p(∆(x) = fp) (3.8)

3.5 Joint Probability of Disparity

MRF based stereo models typically use a smoothness term that tries to capture the

underlying pairwise statistics. Therefore, modeling the joint probability for cluttered

scenes can be useful for both stereo reconstruction and performance analysis.

We first determine the joint probability of distance and later use that to determine

the joint probability of disparity.

The joint probability of neighboring points being at distance z and z′ can be de-

termined by considering two separate cases: 1. probability of neighbor being on a

closer surface p(z′ < z) and 2. probability of both neighbors being on the same surface

p(z = z′)

3.5.1 Probability of Closer Neighbor p(z′ < z)

Given that a scene point is at distance z, its neighbor will be on a closer surface z′ if,

1. For the union of two cuboids contains no square center i.e. Γx ∪ Γ′
x = ∅, the

volume is,

ρ(Γx ∪ Γx′) = A(z − z0) + S(z′2 − z20)(x− x′)
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and the probability is,

exp{−ηρ(Γx ∪ Γ′
x)}

2. Both surfaces have a center within a very small distance dz and dz′ which is the

product of ηAdz and η2Sz′(x− x′)dz′

Therefore, the probability

p(z′ < z) = 2η2ASz′(x− x′) exp{−η.ρ(Γx ∪ Γ′
x)}dzdz′ (3.9)

3.5.2 Probability of Equidistant Neighbor p(z = z′)

Two neighboring pixels will see the same surface at depth z if,

1. The union of two cuboids does not contain any object centers i.e. Γx ∪ Γ′
x = ∅

2. There is an object center at the intersection of [z, z + dz] and [z′, z′ + dz′]

p(z = z′ | z) = η(A− 2Sz(x− x′))exp{−η.ρ(Γx ∪ Γ′
x)}dz (3.10)

Joint probability can be obtained by combining the above two cases. By applying

the substitutions in Eq. 3.1 and 3.2, we obtain the joint disparity probability p(fp, fq).

3.6 Models Derived from the Joint Probability Model

The joint probability model presented in the previous section can be used to derive

the discontinuity and disparity difference models. These models are used later in the

thesis because they give better insight into the assumptions made by different stereo

algorithms. All the expressions are written in terms of joint probability of disparity.

3.6.1 Probability of Discontinuity p(fp ̸= fq|fp)

This the probability that, given a scene point at distance z, its neighbor will not be

equidistant. It can be easily computed from the joint probability as follows:

p(fp ̸= fq|fp) =
1∑

fq

p(fp, fq)

∑
fq<fp

p(fp, fq) +
∑
fp<fq

p(fp, fq) (3.11)
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3.6.2 Probability of Difference p(fp − fq)

This the probability of having a certain disparity difference. The probability of differ-

ence can also be computed from the joint probability as follows:

p(fp − fq = d) =
1∑

fp,fq

p(fp, fq)

∑
fp−fq=d

p(fp, fq) (3.12)

3.7 Discussion

In this chapter, we looked at different probability models for cluttered scenes from

[1, 32]. We described the model assuming that objects are squares. But the model

holds for any shape as long as A is the cross-section area of the object and the objects

are fronto-parallel. In the rest of the thesis, we use these models to generate different

types of cluttered scenes and evaluate our chosen set of methods. It should be noted

that in natural scenes objects are not distributed uniformly in space but can clump

together. Also the model does not directly address what the probabilities would be

for scale-invariant scenes. However, in the next chapter, we will see that under certain

conditions scale-invariant scenes can closely follow the model.
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Chapter 4

Scene Generation

In the previous chapter, a cluttered scene model was presented and the motivation

behind considering such models was discussed. In this chapter, we concentrate on the

scene generation process which includes choosing appropriate parameters for generating

scenes with different statistics and rendering stereo pair for those scenes. The generation

process for scale-invariant scenes is also described. Finally experimental validations of

the generated scenes are presented.

For evaluating different stereo reconstruction techniques (i.e. algorithm and pa-

rameter combination), it is important to apply them to a wide variety of scenes. It

is also important to categorize scenes based on their underlying statistics so that it is

possible to understand the strength and weakness of a technique for a certain type of

scene. The scope of this thesis is restricted to cluttered scenes as defined in chapter

3. Real scenes with a desired statistics are hard to obtain and the current widely used

dataset does not have sufficient number of cluttered scenes to be applicable for this

thesis. This motivates us to generate synthetic scenes which can be used for evaluating

different methods.

The model in chapter 3 allows computing the underlying statistics before generat-

ing the scenes. It also provides a relationship between the scene parameters and the

resulting statistics. This makes it useful for choosing scene parameters that produces

the desired statistical properties. The cluttered scene model that was discussed, only

considers objects with constant radius. Since our goal is to evaluate different techniques

on a wide variety of cluttered scenes, we also consider scenes with non-uniform radius:

more specifically scenes with 1/r3 size distribution or scale-invariant scenes.
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Once a scene is generated, we need to render stereo pairs for that scene. For distance

statistics (e.g. in [1]) a single depth map is enough. But for evaluating algorithms we

require stereo pairs as input. Besides that, we also need to have a very accurate ground

truth disparity map. Although the basic idea behind the rendering process is simple,

there are certain subtleties that make the process non-trivial. These issues and their

solutions are discussed in detail in this chapter.

The chapter is organized as follows. In Sec. 4.1, the parameter choice and reasoning

are discussed. Sec. 4.2 discusses the scene generation process, some of the challenges

and their solution. Sec. 4.3 shows the characteristics of the generated scenes and valid-

ity of the generation process. Finally the scene generation process and the experimental

results are summarized in Sec. 4.4.

4.1 Choice of Parameters

Before choosing scene parameters we first need to categorize cluttered scenes based on

some criteria. Currently there are no such classification rules but for our purpose, we

can classify the scenes based on the size of objects (r), range of depths, baseline(Tx),

and the average number of surface points (γ).

But how should the parameters be chosen? More specifically, what properties of the

scene needs to be modified for the experiments and how? To answer these questions, we

need to consider how different MRF based stereo formulations work and the underlying

assumptions that they make. These were discussed in Sec. 2.4. This thesis mainly

considers the underlying single pixel statistics like the binocular visibility, and pair-

wise statistics like the probability of discontinuity, continuity or disparity difference. In

the following we explain how they are computed and why they were chosen. In each

case, we compute the statistics for all pixels and for only binocular pixels.

Probability Density of Disparity This is the probability of a pixel having a par-

ticular disparity. The theoretical model for this was presented in Sec. 3.3. It is simply

the ratio of pixels with certain disparity to the total number of pixels with appropriate

normalization using the bin-width. For the binocular case only the binocular pixel’s

disparity is considered. The motivation behind considering this measure is that most

of the models consider the pixels to be binocularly visible. As a result if there are more
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binocular pixels in a scene then that scene is likely to have lower total error for all

pixels. Furthermore we want to know if the error rate for binocular pixels also change

with the probability density in any way. By having different disparity statistics we can

understand how this property affects different methods.

Conditional Probability of Discontinuity This is the probability of two neigh-

boring pixels having different disparity. The theoretical model for this was presented

in Sec. 3.6.2. It is the ratio of pixels with non equi-disparity neighbors to the total

number of pixels with that given disparity. We are interested in this statistic because

the smoothness term in general penalizes discontinuity. This penalty depends only on

the difference between labels rather than the actual value of the individual labels. This

implies that the discontinuity is considered to be independent of depth. Using this

statistic we try to understand how performance varies between scenes with different

discontinuity statistics.

Probability of Disparity Difference This is the probability of disparity difference

between neighbors. Sec 3.6.2 gives the theoretical model for this statistics. It is the

ratio of neighbor pairs that have different disparity to the total number of neighbors.

This statistic is much closer to the criterion used in almost all of the smoothness terms.

Like before this statistic lets us see how different scenes with different statistics affect

the performance of different methods.

Now we consider how the parameter values were chosen to make the aforementioned

statistics different. From Sec. 3.3, we know that γ and the depth-range directly affect

the shape of the disparity curves. The baseline distance primarily affects the range

of disparity values. Small baseline causes smaller range of values and the opposite is

true for large baseline. Since the overlap between two view depends on the baseline,

it also affects the binocular visibility. This parameter is kept fixed for all the main

experiments. The size of objects, r, mainly affects the pairwise statistics. If the objects

are small then neighboring pixels are more likely to be on different surfaces because the

projection of the objects in the image is also small. This results in an increase in the

number of discontinuities. The opposite is true for large objects. Also if small objects

are closer to the viewer than it is likely to create larger occlusion.
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With these different scenarios in mind we consider the parameter values that are

shown in table 4.1. Later in this chapter in section 4.3, we compare the similarities and

Table 4.1: Scene Parameters

Scene baseline γ z range r

1a

0.2

0.54

2-8

0.1

1b 0.025

1c 0.0335 - 0.5359

2a

8-32

0.4

2b 0.1

2c 0.1340 - 2.1436

3a

0.1

2-8

0.1

3b 0.025

3c 0.0335 - 0.5359

4a

8-32

0.4

4b 0.1

4c 0.1340 - 2.1436

differences between the scenes generated using these parameters. But before that the

scene generation process is described below.

4.2 Synthetic Scene Generation

The basic idea behind synthetic scene generation is very simple. However in practice

there are some subtle issues that need to be considered. Scene generation mainly

requires randomly generating the position of objects within a prespecified region and

rendering them from two different viewpoints as specified by the baseline parameter.

Our approach to scene generation is much closer to the occlusion model [30] approach.

In the following subsections we discuss how a stereo pair is rendered and the ground

truth disparity map is generated.

4.2.1 Rendering Stereo Pairs

First we discuss the general setup of our synthetic scene generator. For rendering

scenes, we consider the image formation model from computer graphics. The image
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plane or projection plane is considered to be in front of the center of projection and it

is also the near clipping plane. As a result the focal length is equivalent to the distance

of the near plane from the center of projection. The size of the projection area on the

near plane is determined by the field-of-view and the distance of the near plane. In

a real camera it is the sensor size and focal length that determines the field-of-view.

Furthermore we consider a pinhole camera model, therefore there is no blurring and all

the objects at different depth are in sharp focus. The square normals are parallel to

the viewing direction or in other words they are fronto-parallel. The general setup is

shown in Fig 4.1a. We also texture map the surface. This is important because all the

hfov

Near Plane

Far Plane

Bounding

zmin

zmax

Top View

Tx

for Objects
Region

Figure 1: Scene Generation (Top View)

(a)

hfov
Near Plane

Top View

Tx

in units of distance
between grid points

object

(b)

Figure 4.1: a) Scene Generation (Top View) and b) Aligning camera with the pixel grid

algorithms works best for textured surfaces.

Since the same scene is rendered from two different view-points, the size of the

projected image in both views should be theoretically the same. However this is not

always the case in practice. Fig. 4.1b shows one possible case where the size of the

objects will not be the same if the “pixels” on the image plane are not properly aligned.

One possible way of overcoming this problem would be to choose the baseline distance

in such a way that the projections on the image plane line up with each other. Another

possible approach would be to detect such cases and keep regenerating new scenes till
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the problem does not occur anymore. One way of detecting such errors would be to

backproject an image from one view and reproject it into the other view and then

check the length of the diagonal of the square. However, we found both methods to

occasionally fail under certain cases.

This problem is mainly caused by the discrete nature of images. Therefore to avoid

such problem, we perform the whole rendering process in discrete space. In other words,

we pre-compute the disparity and size of the objects in the projected image. During

rendering the appropriate transformations are applied and the scene is rendered in

the screen space under orthographic projection. It should be noted that since we are

rounding to the nearest integer the actual distance or the size of the objects will be

slightly different from the specified values. Later in this chapter in Sec. 4.3 we will

look closely at these errors closely and see their impact.

4.2.2 Generating Ground Truth Disparity Map

Along with the scenes we also generate the ground truth data. This is an important

step since error in the ground truth data will make our evaluation invalid. The process

is described below.

b

b

b

X

Z

Tx

f

Z

X

Xl Xr

xl xr

Figure 4.2: Disparity Computation

For each pixel in the left image, the depth value is used to compute the location of

the corresponding pixel in the right image. Given the depth of the scene point to be

Z, baseline distance Tx, near plane distance N and the scaling factor from image plane
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to screen coordinate Spi, disparity d is (Fig. 4.2) :

d = Spi
NTx

Z
(4.1)

Since the camera displacement is horizontal, only the horizontal disparity is required.

From the disparity value the corresponding pixel can be computed as xr = xl − d. The

depth value of the corresponding pixel is then compared with the initial one. This value

can either be the same or smaller. In the former case, the pixel is binocularly visible

and has a valid disparity. In the latter case, the pixel will be occluded. In case if the

corresponding pixel is farther away then the scene can be considered to be invalid. This

does not happen in our scene generation process.

4.2.3 Generating Scale-Invariant Scenes with fixed γ

To generate the scale-invariant scenes with r−3 distribution, we first fix the number of

different radii the objects will have and then divide the interval rmin : rmax uniformly.

Next the number of objects Ni of each radius ri is chosen such that the resulting scene

has a fixed γ and follows r−3 distribution. For r−3 distribution we have:

Ni = K
1

r3i
(4.2)

For each class of objects of radius ri, let the cross-sectional area be Ai and density ηi.

Then for fixed γ we have:

γ =
∑
i

ηiAi =
1

V

∑
i

NiAi (4.3)

From (4.2) and (4.3) we have:

K =
γV

π
∑

j
1
rj

∴ Ni = K
1

r3i
=

γV

π
∑

j
1
rj

1

r3i
.

4.3 Scene Generation Experiments

In the following, we discuss the statistical similarities and differences between each

scene. The statistics are calculated from 100 images of size 256×256. While generating

the scenes the size of the objects (last column in Table 4.1) are chosen in such a way
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that the smallest object projects to at least 4 pixels (half width is 2 pixels). Therefore

in the non scale-invariant case this is determined by the size of object on the farthest

plane. In the case of a scale-invariant scenes, this depends on the size of the smallest

object on the farthest plane and the largest object on the nearest plane. The range of

size in pixels is 2 to 128. In scene coordinates, the width range is 0.034 to 0.536 for a

depth range of 2 to 8 and 0.134 to 2.14 for a depth range of 8 to 32. The objects and the

background were texture mapped with 2× 2 and 16× 16 randomly generated textures

respectively. The pixels colors were generated from a uniform distribution. In the

ground truth disparity map of all the scenes the pixels are marked as either monocular

or binocular along with the disparity value. A sample from each scene category and

the corresponding disparity map are shown in Figure 4.3.

Figure 4.4 shows the percentage of binocular pixels in all the scenes. For our chosen

parameter values the percentage of binocular pixels is always greater than 50%. From

the plot it can be seen that smaller objects always decrease the number of binocular

pixels. This effect is larger when the objects are closer to the viewer. Objects that

are farther away increases the percentage of binocular pixels. The statistics for scale-

invariant scene is mostly similar to large objects.

Figures 4.5, 4.6, 4.7, and 4.8 show the different statistics for each of the scenes that

were generated. It can be seen that the curves for small objects (r = 0.025) at a closer

range (2–8) have a sawtooth pattern. This is an artifact due to our scene generation

process. Since the size of the projected images are rounded to the nearest integer, the

actual width of the squares in the object space changes. For very small objects even

the slightest change in square width can have a big impact. As a result the artifact is

visible only for very small objects (half-width = 0.025). For larger objects this effect is

minimal. If the mean and standard-deviation of the radius is considered for large and

small objects we find that for the first scene (r = 0.1) they are µ ≈ 0.1 and σ ≈ 0.0032,

and for the second scene (r = 0.025) they are µ ≈ 0.026 and σ ≈ 0.0033. The statistical

similarities and differences between the scenes are given in the rest of this chapter. First

some general observations. In all cases, the shape of the probability curve depends on

γ. For a given disparity, the fraction of binocular pixels depends on the size of objects

when all other parameters are held fixed. This can be understood from Eq. 3.6 where

the probability is dependent on binocular visibility, which in turn has dependency on

the size of the object (both directly and indirectly due to cross-sectional area). The
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1a 1b 1c 1a 1b 1c

2a 2b 2c 2a 2b 2c

3a 3b 3c 3a 3b 3c

4a 4b 4c 4a 4b 4c

(1) Synthetic Scene (2) Disparity Map

Figure 4.3: 1) Samples from the generated scenes (left view) and 2) the corresponding

disparity map. Red denotes monocular pixels and magenta monocular pixels that are

outside the view volume of the other view.

range of disparity varies between different scenes based on the depth range. Farther

away objects (i.e. 8–32) have smaller range of disparities than closer objects (i.e. 2–

8). The discontinuity statistics is largely affected by the size of objects. When all

other parameters are held constant, the conditional probability of discontinuity is more

for smaller objects than for larger objects. For the disparity difference probability it

is easier to compare the negative log probability. This interpretation is closer to the

smoothness penalty (Eq. 2.9). From the figures it can be seen that they are almost the

same in all cases.
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Figure 4.4: Percentage of binocular pixels for all the scenes. Red center line denotes the

median, the lower and upper bounds of the box represents 25 and 75 percentile of the data.

The red ‘+’ denotes the outliers and the whiskers denote the extent of the data.

Scenes 1a, 1b, and 1c The first three scenes have γ ≈ 0.54 and depth range

between 2 to 8. The statistics are shown in Fig. 4.5. The all-pixel disparity probability

curves are similar for all three scenes as expected. The binocular disparity for smaller

objects shows a larger difference from the all-pixel one. The discontinuity probability

for smaller objects is very large and greater than both large and scale-invariant scenes.

More importantly the binocularly visible discontinuity is greater for almost the entire

disparity range. All three negative log of disparity difference curves are very similar.

In all cases, the curve rises linearly within the range |fp − fq| = 0 and 2. After that

the increase is non-linear with the curve rising slowly at first and then rapidly. This

indicates that even if the probability of large disparity difference is small, for a certain

range, the probability is almost the same.
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Scenes 2a, 2b, and 2c Fig. 4.6 shows the statistics of the next three scenes. This

set has γ ≈ 0.54 and depth range 8 to 32. The only difference from the first set is

the range of distance. The disparity probability density is much larger than the first

three scenes. This is because of having a smaller range of disparities. The curves are

also steeper because the range of visibility decreases with distance. The discontinuity

probability in all three cases is much larger than the previous set. In fact the small

objects have the largest probability among all the scenes. This is primarily because the

size of the projected image is much smaller than most of the scenes. All three − log p

disparity difference curves look very similar. Like scenes 1a-c the increase is linear for

|fp − fq| > 2 and after that the curve rises quickly to the maximum value because of

the small range of disparities.

Scenes 3a, 3b, and 3c In this set, γ = 0.1 and depth range is 2–8. The statistics are

shown in Fig. 4.7. Unlike all other scenes, the disparity curve is decreasing for this set.

This indicates that farther objects (i.e. small disparity) are more visible than closer

objects (i.e. large disparity). This implies that, due to the sparse nature of the scene

farther away objects are less likely to be occluded by closer objects. Discontinuity

probability is in general smaller than the previous two sets and almost flat. In the

case of disparity difference the − log p has two peaks. This is primarily because of the

sparsity of the scene and the range of being closer to the viewer. The chosen depth

range increases the disparity resolution but because of the sparsity of the scene it is

unlikely for two neighboring pixel disparities to differ between 2 – 10. It should be noted

that the model does not fit the data very well in all cases (especially discontinuity and

disparity difference) because of the large amount of visible background. This is because

the range of distance assumption that is made in Sec. 3.5.1 is not valid for these scenes.

Scenes 4a, 4b, and 4c In this set, γ = 0.1 and depth range is 8–32. Fig. 4.8 shows

the statistics for this set. The disparity probability is larger than the first and third

set and is more similar in shape to the first set. The reason is the same as the second

set which is the depth range. Since the objects are far away more objects are visible

within the view-volume. Furthermore the choice of depth-range reduces visibility as

was seen before. This couple with the size of projected objects being closer to the first
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set of scene makes the statistics behave similarly to the first set. However because of

the smaller range of disparities, the probability values are higher.
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Figure 4.5: Disparity and Neighbor Statistics for Data and Model with γ ≈ 0.54 with

depth range 2 to 8

4.4 Discussion

To summarize, our objective was to generate scenes with a wide range of underlying

statistics. To this end, we chose a set parameters and their values based on the model

presented in Chapter 3. The scenes were generated in such a way that the projections

are consistent and the ground truth disparity map has accurate integer disparities.

We also generated statistics from the synthetic scenes. We find that the parameter

γ affects the shape of the disparity density curve as expected. Between different scenes
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Figure 4.6: Disparity and Neighbor Statistics for Data and Model with γ ≈ 0.54 and

depth range 8 to 32

of the same γ, the discontinuity probability depends on the size of the objects. Smaller

objects have higher discontinuities. It is interesting to see that the shape of the − log p

of disparity difference curve does not change that much from scene to scene. It rises

almost linearly within a small range of disparity difference. Then it stays almost flat

within a certain range (for large disparities this range is also larger) and finally increases

sharply.

From Fig. 4.4, it can be seen that the percentage of binocular pixels is always

lower for smaller objects. This is primarily caused by the increase in discontinuity

which happens because of very small projection. For objects that are farther away the

percentage of binocular pixels is more. This is mainly because the disparity is small

and as a result the amount of occlusion is also small. When small objects are closer to
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Figure 4.7: Disparity and Neighbor Statistics for Data and Model with γ ≈ 0.1 and

z-range between 2 and 8

the viewer the disparity is large and almost always occludes an area equal to the size

of the object.

In the next chapter, we look at the error statistics for these scenes and correlate

those observations with underlying scene statistics.
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Figure 4.8: Disparity and Neighbor Statistics for Data and Model with γ ≈ 0.1 and

z-range between 8 and 32
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Chapter 5

Performance Evaluation

This chapter presents the performance results of different methods for the cluttered

scene stereo reconstruction problem. Previous chapters showed how cluttered scenes

are modeled and synthetic scenes are generated. The goal of scene generation process

was to generate scenes with widely varying statistics. The goal of this chapter is to

apply a wide range of methods on those scenes and understand how the performance

varies with different methods and input scenes.

Performance measurement is based on the accuracy of the output under different

quality metrics. For this we need to decide on a set of quality metrics that are appro-

priate for cluttered scenes. The primary requirement for these metrics is that they are

able to highlight the key characteristics of the scenes as well as the methods.

Statistically different types of cluttered scenes are used for the experiments (e.g.

size and density of objects, and range of depth). Different types of parameters (e.g.

data and smoothness cost type, smoothness weight, and maximum smoothness penalty)

are also chosen for the algorithms to find out which set of parameters perform well in

general. Primarily the two types of formulations that were discussed in Sec. 2.4 are

evaluated. Their implementation is from [18] and [16].

The chapter is organized as follows: In section 5.1, the parameter choices for the

algorithms are discussed. In section 5.2 the performance criteria are explained. The

experimental results are presented in section 5.3. Finally this chapter concludes with

a discussion of the results in section 5.4.
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5.1 Algorithms and Choice of Parameters

In section 2.4 MRF based stereo approaches were divided into two categories: 1) basic

formulation and 2) additional constraint based formulations.

The energy that is optimized in the basic formulation was discussed in Sec. 2.4.1.

There are two terms in the equation: The data term that ensures photo-consistency and

the smoothness term that ensures continuity between neighbors. The parameters that

are of interest are: the norm of the data and smoothness term (kd and ks respectively),

the maximum smoothness penalty Vmax, the intensity gradient threshold (Ithreshold),

gradient penalty (λ∇), and the smoothness weighting factor λ. The performance for

the basic formulation is evaluated for: Expansion, Swap [14], and variants of Belief

Propagation [15] such as BP-M, TRW-S, and BP-S [17, 19, 23, 33]. The different

parameter values for the algorithms are given in Table 5.1. The implementation from

[18] was used for obtaining the results.

Table 5.1: Algorithms and Parameters for Basic Formulation

Data term (kd) Birchfield-Tomasi with kd = 1, 2

Smoothness exponent (ks) 1, 2

Smoothness Max (Vmax) 1, 2, 10, 100

Gradient Threshold (Ithreshold) 5

Gradient Penalty (λ∇) 2

λ 1–120 with non-uniform intervals

Algorithms Expansion, Swap, BP-M, BP-S, TRW-S

There are wide varieties of algorithms in the second category. In this thesis, only

KZ1 and KZ2 [2, 3, 4] are evaluated. This is primarily because they have minimal set

of constraints and therefore, can be used to easily understand the effect of occlusion

and discontinuity. Their formulations were presented in Sec. 2.4.2 (Eq. 2.12 and 2.16).

KZ2 (Sec. 2.4.2, Eq. 2.16) considers pairs of pixels or voxels and assigns either 1 or

0 to each of those voxels. The data term computes the dissimilarity measure for voxels

that are set to 1. The smoothness term is defined for interactions (Sec. 2.4.2) and

does not depend ks and Vmax. Besides the data and smoothness terms, the formulation

has additional constraints for ensuring uniqueness. The set of parameters that are of
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interest for KZ2 are: kd, gradient threshold (Ithreshold), gradient penalty (λ∇), and

the smoothness weight factor λ. There is another variable in the data term, K, which

contributes to the constant occlusion penalty. But this parameter has a fixed value in

our experiments.

In KZ1 (Sec. 2.4.2, Eq. 2.12), all the pixels in the input images are used, and

the disparity is computed symmetrically. Like KZ2 it has an additional constraint that

ensures consistency between disparity assignments. The parameters that are of interest

to us are: kd, ks, Vmax, Ithreshold, λ∇ and λ.

The implementation of KZ1 and KZ2 is from [4]. Both the algorithms use Expansion

for optimizing the energy function. Because of the differences in implementation the

error rates for the two formulations cannot be directly compared. This is why, in the

second set of experiments, we include the results for basic formulation with Expansion

algorithm. Also, because of the differences in implementation, the range of λ values

is different from the first set. It should be noted that not all possible combinations of

parameter values were used for this set of experiments. The set of values is given in

Table 5.2.

Table 5.2: Algorithms and Parameters for Visibility Formulation

Data term (kd) Birchfield-Tomasi with kd = 1, 2

Smoothness Exponent (ks) 1

Smoothness Max (Vmax) 1, 2, 10, 100

Gradient Threshold (Ithreshold) 5

Gradient Penalty (λ∇) 2(Expansion), 3(KZ)

K 5λ

λ 1/16, 1/8, 1/4, 1/2, 1–10, 15

Algorithms KZ1, KZ2

5.2 Performance Criteria

A natural question in such a performance evaluation study is how to compare the

performance of different algorithms and parameter combinations. The main objective

of such comparison is to understand where and how the errors occur and by how much.
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Sec. 2.5 gave an overview of some of the previously used performance metrics. Besides

the commonly used error metric like fraction of mislabeled pixels, we also use some

additional metric that measures specific errors. However, these specific error metrics

are not mutually exclusive and therefore do not sum up to the total error.

Binocular Error: One widely used performance metric is the percentage of misla-

beled pixels. In our experiments we give more emphasis on the percentage of mislabeled

binocular pixels, which was also used in [23]. This is the ratio of mislabeled binocular

pixels to the total number of binocular pixels. The primary reason for using this metric

is that the algorithms and energy formulations do not inherently extrapolate disparity

labels for monocular pixels. The basic formulations assume that pixels are binocularly

visible. Formulations with visibility constraints can identify occluded pixels or incon-

sistent disparity assignment, and are usually better at labeling monocular pixels. But

neither of the formulations explicitly label monocular pixels (however, explicit assign-

ment can be done in the post-processing step in some cases). Therefore, we mostly

focus on errors in binocular pixels.

Off-by-one Errors: In many performance studies the error threshold is τ = 1. This

is primarily because the input dataset, which contains real-scenes do not have exact

integer disparities. However, in our case (recall Sec. 4.2.1), the scenes do not have any

fractional disparity. As a result, we set τ = 0, and specifically look for cases where the

assigned disparity label differs by 1 from the ground truth.

Binocular Monocular Error (BME): In this metric, the percentage of mislabeled

binocular pixels with at least one monocular neighbor (ignoring the labeling of the

monocular pixel) is considered. More specifically, it is the ratio of mislabeled binocular

pixels with at least one monocular neighbor to the total number of binocular pixels.

The reason for using this metric is that, when the smoothness term considers a pair

of neighboring pixels, it is implicitly assuming that both the pixels are visible and

the neighboring pixel is correctly labeled. Therefore binocular pixels with monocular

neighbors are more likely to be mislabeled especially in the absence of any visibility

constraints. In our analysis, we find the general trend in this error, and the contribution

it has to the total error. However, it is not possible to say anything conclusive just
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from this error metric, because there can be other binocular pixels in the neighborhood

which can (assuming they are correctly labeled) reduce the influence of the monocular

pixel (assuming the monocular pixel is mislabeled).

Binocular Discontinuity Error (BDE): This is the percentage of mislabeled

binocular pixels with at least one binocular neighbor with a different disparity out

of all the binocular pixels. The smoothness term penalizes these pixels because in this

case fp − fq ̸= 0. Such error will give an estimate of how well different methods can

handle discontinuities. For scenes with large number of discontinuities (e.g. scenes with

small objects) these errors are more likely to have an impact on the overall performance.

It should be noted that discontinuity between monocular neighbors are not considered

for the same reason why monocular errors are not considered: which is the methods do

not explicitly handle monocular pixels.

Binocular Continuity Error (BCE): This is the percentage of mislabeled binoc-

ular pixels whose all 4 equi-disparity binocular neighbors out of the total number of

binocular pixels. The smoothness term prefers such pixels because here fp − fq = 0.

As a result, there is no penalty. This error measure is useful when there are additional

constraints, because it allows us to determine if the additional constraints are affecting

the smoothness constraint in any way.

Correlation between Error Rate and Energy: If an energy function accurately

models a stereo problem, then the energy of the solution will be close to that of the

ground truth. Tappen and Freeman in [23], compared the ground truth and output

energy, and showed that the basic stereo formulation does not model the stereo recon-

struction problem very accurately, because the ground truth energy is always larger

than the output energy. In that work, visibility constraint based formulations were not

evaluated. Therefore, we use the same measure in our approach primarily to observe

how good the visibility constraint based approaches are.

5.3 Experimental Results

This section presents the results obtained from running experiments with basic (Sec.

5.3.1), and additional (Sec. 5.3.2) constraints.
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For each algorithm and parameter combination, the error and energy statistics are

averaged over 5 sample image pairs with the same underlying statistics. The reason

for using a small number of images is that variations of BP can take a long time to

converge. A smaller number of samples make the average and standard deviation of the

error rates unreliable. However, the error bars are usually consistent across different

parameters which implies that the results are fairly reliable. Furthermore we are only

interested in the qualitative trends in the result.

To make the experiments more realistic, Gaussian noise with µ = 0 and σ = 5 was

added with appropriate clamping to the right view. Because of this addition of noise,

formulations with gradient threshold (Eq. 2.9) gives better result than those without

gradient threshold. Therefore, in the rest of the thesis, only the results for gradient

threshold are presented.

To understand the effect of noise and texture pattern on the error statistics, the error

rate for the scenes with only one object, namely a textured background with disparity 0

(distance of the background is 2000 units from the camera and stereo baseline Tx = 0.2)

is examined. Fig. 5.1 shows the non-zero binocular errors.

It can be seen that the error rate goes to zero as λ increases. Smaller λ puts more

weight on the data term. Since the corresponding pixels are noisy, the data term alone

is not sufficient for correct labeling. In the first row, Expansion, Swap and TRW-S can

be seen to fall sharply to 0. In the second row of the figure, KZ1 is absent because

its error rate is 0 for all values of λ. This is due to the additional visibility term that

penalizes inconsistent labeling. Not all types of visibility constraint will result in zero

error, though. This is evident from the non-zero error rate of KZ2. However, KZ2

performs slightly better than just the basic formulation e.g. its error rate decreases

much more rapidly than that of Expansion.

In Table 5.1 and 5.2, the set of parameters used in the experiments and their values

were listed. However, we only consider the results for kd = 2. This is because the

results for kd = 1 and λ < 5 is similar to kd = 2 and the full range of λ. They are

similar in the sense that the relative performance between the different methods do not

change much with kd. To illustrate this point, sample plots for both kd = 1 and 2 are

shown in figure 5.2. The plots show that the relative performance between different

methods is the same in both column 1 and 2. For kd = 1 the optimal is achieved for

small λ values (with respect to the appropriate scale of λ). However for kd = 2, the
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Figure 5.1: Mean error rate for scenes with only a textured background. Only the

methods with non-zero error rate are shown in the figure. In the first row Expansion,

Swap, BP-M, TRW-S, BP-S are colored red, green, blue, magenta and cyan respectively.

ks = 1 and 2 are represented by solid and dashed lines respectively. Vmax values 1,2,10

and 100 are represented by O, *, � and ⋄ respectively. In the second row, Expansion and

KZ2 are colored red and blue respectively. The rest of the notations are the same. The λ

scales are different between the two sets as was mentioned in Sec. 5.1
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Figure 5.2: Comparison between kd = 1 and 2 for (a) scene 1a and (b) scene 3b. The

first row in each case is for the basic formulation and the second one for the additional

constraints.

optimal λ range is much larger and the error rate grows slowly with λ. The fact that the

relative performance between different forms of smoothness and algorithm combination
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is almost the same, indicates that the form of smoothness and algorithm are more

important. Since kd = 2 allows a larger range of λ values, it is possible to finely tune λ

to get an error rate that is better than kd = 1. However the main disadvantage is the

difficulty of finding an optimal λ in such a large range.

Now we investigate how this performance varies with different scenes. In the analysis

that is presented below we use the plots given in pages 65 to 76. The figures show results

for total error (5.4 and 5.5), off-by-one error (Figs. 5.6 and 5.7), BME (Figs. 5.8 and

5.9), BDE (Figs. 5.10 and 5.11), and BCE (Figs. 5.12 and 5.13). Finally, the energy

statistics are shown in Figs. 5.14 and 5.15. In each case, results for all the scenes

are shown. The columns from left to right in the figures, represent large, small and

scale-invariant objects. The rows represent scenes with fixed γ from Table 4.1. In each

case the y-axis scale is fixed for easier comparison. The colors and symbols carry the

same meaning as before.

5.3.1 Formulation with Basic Constraints

Performance of the basic formulation based methods for different error metrics is dis-

cussed in this section. The results are from Figs. 5.4, 5.6, 5.8, 5.10, 5.12. To reduce

clutter we only plot the results for Expansion algorithm with ks = 1, kd = 2 and

different values of Vmax. The extent of error considering all possible parameters are

summarized in Tables 5.3, 5.4, 5.5, and 5.6. The figures can be used to obtain an idea

about how the error changes with λ.

The tables mainly lists the minimum mean binocular error (min error), range of

mean error (either binocular, BME, BDE, or BCE), range of off-by-one binocular errors

(range(=1)), contribution to the binocular error (contrib.) and the range of λ for

which the observations are valid. The range of errors are defined by the minimum and

maximum extent of errors. They give an indication of the range of error we can expect

to have for any given combination of algorithm and formulation. In the following, we

discuss the performance of the methods in terms of different types of errors.

Binocular Error Table 5.3 summarizes the minimum average error, range of errors,

range of off-by-one errors and the range of λ for which these observations are valid. It

is based on Figures 5.4 and 5.6. It can be seen from Figure 5.4 that for each row the
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general trend in the total error and the minimum average error are very similar. The

error statistics depend largely on γ and depth range.

Table 5.3: Summary of Total Error Statistics for Basic Formulation. Grayed out rows

represent scenes with depth range 8–32

Scene min error range range (=1) λ

1a 2.5 0 – 55 0 – 30 1 – 120

1b 3 2.5 – 70 1 – 18 1 – 120

1c 2.5 1.5 – 65 0 – 30 1 – 120

2a 16 10 – 40 12 – 35 5 – 120

2b 18 15 – 30 8 – 26 5 – 120

2c 25 8 – 55 8 – 50 5 – 120

3a 5 2 – 65 0 – 30 1 – 120

3b 12 10 – 85 1 – 20 1 – 120

3c 3 1 – 75 0 – 40 1 – 120

4a 9.5 7.5 – 30 4 – 20 10 – 120

4b 6.5 6 – 28 3 – 20 10 - 120

4c 8.5 6 – 46 1 – 20 5 – 100

In terms of the algorithms and configurations being used, smaller values of Vmax

(e.g. Vmax = 1 and 2) perform well in most cases. The second (scenes 2a–c) and

fourth (scenes 4a–c) rows show that Vmax = 10, 100 with ks = 1 perform equally well

as Vmax = 1, 2. In some cases, they are considered to perform equally well, either

because of the large variation in error, or because the average error is approximately

within 5% of the minimum error. The range of error for non scale-invariant objects

that are farther away (i.e. depth range 8–32) is usually small (“range” column in Table

5.3 especially for scene 2a,b and 4a,b). However their minimum mean error is usually

larger (“min error” column of the same table) than closer scenes.

Performance of the algorithms also depend on ks for large Vmax (e.g. Vmax =

10, 100). In every case, ks = 1 perform better than ks = 2. For Vmax = 1, 2, the

performance for both ks is the same. As for the algorithms: Expansion, BP-M, and

TRW-S perform equally well in most cases.

In case of the off-by-one errors (see col. “range (=1)” of Table 5.3, and Fig. 5.6):

the effect is more prominent when the objects are farther away from the camera. This
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can be seen from the larger off-by-one error exhibited by scenes 2a–c and 4a–c. In

general the off-by-one errors increase with λ as can be seen from Figure 5.6.

Small objects have slightly larger error rate in general (scene 4b is the only ex-

ception). Even if the off-by-one errors are ignored the behavior remains the same.

In general the scale-invariant scenes have a large variation for total error as well as

off-by-one error.

BME For binocular monocular errors (BME), the differences between the columns

in Fig. 5.8 are considered. The figure is summarized in Table 5.4. The columns in

the figure represent scenes with different sized objects: large, small and scale-invariant

from left to right respectively and corresponds to gray rows in Table 5.4. The minimum

error rate for small objects is usually larger than the large and scale-invariant scenes.

Furthermore the contribution of this type of error is also greater than other scenes as

can be seen from the contribution column of Table 5.4(the data is from Sec. A.2). The

error rate can be correlated with the percentage of binocular pixels shown in Fig. 4.4.

If the percentage of binocular pixel is small then the error rate and contribution is more

and the opposite is true for larger fraction of binocular pixels.

Table 5.4: Summary of Binocular Monocular Error Statistics. Grayed out rows represent

scenes with small objects

Scene range contrib. λ

1a 0 – 6 10 – 55 10 – 120

1b 1.5 – 30 35 –75 1 – 120

1c 0 – 10 5 – 50 1 – 100

2a 0.5 – 2 3 – 8 5 – 120

2b 2 – 5.5 12 – 21 1 – 120

2c 0.8 – 2.6 2 – 10 1 – 100

3a 1 – 8 8 – 35 1 – 120

3b 7 – 35 35 – 65 1 – 120

3c 0.5 – 10 10 – 55 1 – 120

4a 1 – 3 10 – 15 10 – 120

4b 2 – 12 30 – 45 10 – 120

4c 1 – 4.5 8 – 20 5 – 100
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BDE The columns in Fig. 5.10 are also compared for binocular discontinuity error.

Table 5.5 summarizes the results from the figure. As before the errors are larger for

small object scenes (middle column in the figure and grayed out rows in the table).

The contribution of the error for smaller objects is also much greater than the large

and scale-invariant ones (left and right columns).

Table 5.5: Summary of Binocular Discontinuity Error Statistics. Grayed out rows repre-

sent scenes with small objects.

Scene range contrib. λ

1a 0.5 – 40 20 – 100 1 – 120

1b 2 – 70 65 – 100 1 – 120

1c 1 – 40 15 – 100 5 – 100

2a 2 – 8 12 – 30 15 – 120

2b 5 – 16 35 – 85 15 – 120

2c 2 – 10 10 – 40 15 – 100

3a 2 – 40 10 – 75 15 – 120

3b 7 – 80 50 – 95 15 – 120

3c 1 – 50 10 – 80 20 – 120

4a 2.5 – 15 20 – 65 10 – 120

4b 4 – 24 55 – 90 20 – 120

4c 3 – 20 15 – 70 10 – 100

BCE Table 5.6 summarizes the results for binocular continuity error shown in Fig.

5.12. In this case, the small object scenes (middle column in the figure and grayed rows

in the table) have relatively smaller error. The contribution to the total error is also

small.

Energy The energy plots are shown in Figure 5.14. It is evident in each case that the

ground truth energy is much larger than the optimal energy found by the algorithms

for different forms of energy terms. The reason behind this is that, in most of the

scenes there are a good number of monocular pixels (Fig. 4.4). In the basic formu-

lation there are no constraints for assigning labels to them. As a result, labels which
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Table 5.6: Summary of Binocular Continuity Error Statistics. Grayed out rows represent

scenes with small objects.

Scene range contrib. λ

1a 0 – 10 0 – 80 1 – 120

1b 0 – 1.5 0 – 25 1 – 120

1c 0 – 35 0 – 80 1 – 100

2a 10 – 30 65 – 85 10 – 120

2b 2 – 15 5 – 55 1 – 120

2c 5 – 45 55 – 90 15 – 100

3a 0.5 – 35 20 – 80 15 – 120

3b 0.5 – 10 1 – 25 15 – 120

3c 0.5 – 45 15 – 80 10 – 100

4a 5 – 10 30 – 70 10 – 120

4b 0.5 – 3.5 5 – 40 10 – 120

4c 1 – 30 30 – 80 10 – 120

minimizes the overall energy is chosen, resulting in a large gap between ground truth

and reconstruction.

5.3.2 Formulation with Visibility Constraint

As was mentioned before only KZ1 and KZ2 methods are considered under the visibility

constraint formulation. The implementation is from [4]. Both the implementations use

Expansion for finding a solution to the energy function. For comparison purposes

the results for Expansion algorithm for the basic formulation are also shown. In this

section, by Expansion algorithm we always mean the basic formulation with Expansion.

Since this section considers three different formulations (i.e. one basic and two with

different visibility constraints), only the relative performance between the formulations

are compared instead of the range of errors and error contribution. The objective of

the analysis (as before) is to understand how the error rate varies between scenes for

different range of parameters and if these variations can be explained by the underlying

statistics of the scenes. Figs. 5.5, 5.7, 5.9, 5.11, 5.13 are used in the analysis.
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Expansion for Basic Formulation First we consider the performance of the Ex-

pansion algorithm for the basic formulation and ensure whether it gives the same error

rate as before. From the total error (Fig. 5.5) the characteristics of the result (e.g.

shape of the curve, range of values, and ordering of Vmax etc.) are similar. Like before

Vmax = 1 performs better in general and this is followed by Vmax = 2, 10 and 100.

The off-by-one error (Fig. 5.7) is more for farther objects than for nearer objects. For

BME and BDE (Figs. 5.9, and 5.11),the error for small objects (middle column) is

more than the large and scale-invariant objects (left and right columns). For BCE

(Fig. 5.13) small objects have lower error rate than large and scale-invariant scenes.

This ensures that the Expansion algorithm with the basic formulation has the same

behavior as before. Furthermore it shows the consistency of the results across different

implementations. Since the Expansion algorithm performs well in general in the first

set of experiments and it has the same characteristics in the second set, comparing

KZ1 and KZ2 with the Expansion algorithm is sufficient for comparing the two types

of formulations.

KZ2 For KZ2 there is no dependence on Vmax or ks (see Eq. 2.16) in the smoothness

term. Therefore, all forms of smoothness term have the same error rate (see Fig. 5.5).

The performance of the algorithm depends only on the type of scene and the chosen λ

parameter. In most cases, KZ2 has the same minimum error rate as Expansion. For

scenes with γ = 0.1 and depth range 2–8 (i.e. scenes 3a–c in Figs. 5.5), the difference

in error rate is > 2. For these cases, KZ2 also has larger off-by-one error. For λ < 5,

the error is primarily due to the background as can be seen from Fig. 5.1d. The above

observations are also true in the case of BME and BDE errors (Figs. 5.9 and 5.11). In

the case of continuity error (Fig. 5.13), KZ2’s performance is significantly better even

for scenes 3a–c.

KZ1 Like the basic formulation, KZ1 performs best for small Vmax especially for

Vmax = 1. Vmax = 10, 100 only performs well for large and scale-invariant objects that

are far away (scenes 2a,2c, and 3c in particular). Larger Vmax performs particularly

worse than smaller Vmax for scenes with objects closer to the viewer (e.g. scenes 1a–c,

3a–c).
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KZ1 performs particularly well for small λ values. Most other methods have large

error for these values. This is partly due to it being relatively insensitive to noise and

texture pattern as was seen in Fig. 5.1d. For larger λ the error increases but the rate

of increase is usually slow. From the off-by-one error plots, in most cases KZ1 has

smaller off-by-one error for small λ (except in scenes 2b and 4b). This would explain

the relatively good performance of KZ1 for small λ values.

In most cases the total error for KZ1 is comparable to Expansion. However in cases

where objects are far away and have significant depth discontinuities (e.g. scene 2b,

4b), KZ1’s performance is relatively worse than Expansion (but always within > 2).

In fact the performance for BME, BDE and BCE are also not better for those cases.

These scenes also cause larger off-by-one errors for KZ1 but the error rate does not

improve even when τ = 1 is considered (see Sec. A.3).

In the case of binocular monocular error, similar to the basic constraints KZ1 has

larger error for smaller objects than for large or scale-invariant objects. Compared

to the Expansion algorithm, it performs well for scene 3b (λ = 0.1 and depth range

2–8). This scene usually has larger error in all the error metric. In the case of basic

formulation Swap algorithm has the best error rate for this case (≈ 6). It can be

seen that the error rate for Expansion is almost the same as in the previous set of

experiments. Therefore, KZ1 (error ≈ 5) marginally performs better than the basic

formulation. For other scenes with small objects, KZ1 does not perform better than

Expansion. For large and scale-invariant scenes KZ1’s BME performance is as good as

Expansion or slightly better.

For BME, KZ1 exhibits exactly the same trend in performance as BCE but with

larger error.

In the case of binocular continuity, KZ1’s performance is comparable to Expansion

and KZ2 in most cases. In general KZ1 does not perform very well when γ = 0.1. Scenes

3a, 4a, and 4c give examples where binocular continuity error for KZ1 is particularly

large.

Energy Fig. 5.15 shows the energy plots with ground truth energy. It is important

to note that for visibility constraints the difference between the ground truth and

output energy is smaller. This experimentally shows that visibility constraints are able
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to model the underlying statistics better. Furthermore, the plots show that the KZ1

formulation is much closer to the true model than any other formulation.

5.4 Discussion

In this section, we summarize the results of the experiments, generalize some of the

observations and answer the questions that were posed at the beginning of this thesis

in Sec. 1.4.

To summarize, we have significantly reduced the choice of parameters that can be

used in practice to obtain good stereo reconstruction of cluttered scenes. For the data

term, we found that kd = 1 and 2 give similar result except the λ ranges are different.

kd = 2 gives good result for a wider range of λ values i.e. error increases very slowly.

This motivated us to use only kd = 2 in all the analysis.
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Figure 5.3: 1) − log p of joint probability for scene 1a. 2) Vmax = 1 or Potts model.

For the smoothness term, we found ks = 1 to perform better than ks = 2 in almost

all cases. As for the maximum smoothness penalty, smaller Vmax especially Vmax = 1

always perform better than larger Vmax (i.e. ≥ 10). This is surprising considering the

fact that the joint probability of disparity decreases smoothly away from the diagonal,

whereas in case of Vmax = 1 its a sharp increase (Figure 5.3). It can partly be justified

by the negative log probability of disparity difference statistics (see 3rd row of Figs. 4.5
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to 4.8). The rise in penalty is usually linear within a small range of disparity differences.

After that it is relatively flat and rises sharply for very large disparities. This implies

that very large disparity differences are very unlikely. A certain range of disparity

difference is equally likely and the probability of small disparity differences change very

rapidly. Since the linear rise happens only within a small disparity difference (in most

cases |fp− fq| ≤ 2), larger Vmax does not improve the result and in some cases worsens

it.

The off-by-one error mainly occurs when objects are far away. It should be noted

that this error is not due to the range of disparity being decreased. For instance

the range of disparity decreases when baseline is decreased (Fig. A.1). But it does

not exhibit large (? 5) off-by-one error. Another possibility could be the noisy texture

pattern. But the amount of noise is independent of depth. The texture pattern however,

depends on depth. The color gradient for smaller objects (caused due to foreshortening)

is larger than that of larger objects. For a single large texture it can be seen that the

off-by-one error is relatively small for algorithms like Expansion, Swap, TRW-S, and

BP-S. So, it is likely that the color gradient contributes to the off-by-one error to some

extent.

Naturally if the percentage of binocular pixel decreases, then the total error (con-

sidering all pixel) increases. This is true because the percentage of monocular pixels

increases, and not all methods are able to handle monocular pixels properly (middle

column of Fig. 5.16 and 5.17). But does it affect the fraction of mislabeled binocular

pixels? We found that, the percentage of binocular pixels does not affect the binocular

error rate. From Fig. 4.4 we can see that the percentage of binocular pixels can be

small for scenes with smaller objects. The smallest percentage is for scene 1b (γ = 0.54,

r = 0.025 and depth range 2–8). If we look at the binocular error rate we can see that

it is not the largest. Furthermore, the first set of scenes (i.e. scene 1a–c) performs bet-

ter in general in both sets of experiments (i.e. with basic and additional constraints).

On the contrary, scenes 3a–c which have γ = 0.1 and depth 2–8 do not perform well

in all cases. Most of the error for these scenes is caused by the visible background.

We argue that this is primarily because the disparity difference probability assumed

in the smoothness term (e.g. Potts model) does not capture the true probability. For

instance, when the objects are between 2–8, the disparity range is 12–48. The disparity

for the background is 0. Because of this, there will be significant number of neighbors
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with disparity difference 12–48. This can be seen in the − log p(fp − fq) plot in Fig.

4.7, where the penalty suddenly drops near |fp − fq| = 12 as was discussed in Sec. 4.3.

When the objects are farther away the background is less visible and there is no abrupt

drop in penalty. Since this type of change is not assumed by any of the models, the

binocular error rate for these scenes is usually worse than all other scenes. In fact it is

not possible to capture this behavior without using some type of adaptive term. It can

be seen that the cluttered scene model also does not capture this abrupt change.

Is there any correlation between the scene statistics and error statistics? The answer

is yes. We have seen that there is a correlation between the underlying statistics and

the error statistics. In fact the error rate mainly depends on the γ and depth range.

For example, even when the baseline is decreased for scenes 3a–b, the error rates are

similar (Figs. A.2, A.3).

The correlation between the scene statistics and error rate is an important charac-

teristic. It implies that if we can model a natural scene using synthetic scenes then it

might be possible to find the set of parameters that works well for the synthetic scenes

and will also work well for the real scene.

As for methods using additional constraints like the visibility constraint, we natu-

rally expected KZ1 and KZ2 to perform significantly better than Expansion especially

in the case of large discontinuities. However experimentally we did not observe any

significant advantage if we only consider binocular pixels. Different values of K might

give better results. However we did not try varying K. An unique characteristic of KZ1

is that it performs very well for a single background proving that it is less sensitive to

texture pattern or noise. The most important characteristic that we observed is that,

for KZ1, the ground truth and output energy difference is smaller than the any other

methods (Fig. 5.15). Now the question is how does it affect the performance? If we

only consider binocular pixels then the performance does not differ largely from the

other methods as mentioned above. But if we consider all pixels then we can see a

big difference in performance between KZ1 and other methods (Fig. 5.17). The rea-

son behind this is that the visibility constraint implicitly enforces correct labeling of

monocular pixels. As a result, the overall error (i.e. error considering all pixels) is

much smaller than other methods. This conforms with the observation made in [3, 4].
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Figure 5.4: Non-zero error (i.e. error > 0) statistics for methods using the basic formu-

lation. Only errors between 0 – 40% for Expansion with ks = 1, kd = 2 and Vmax values

1,2,10 and 100 represented by O, *, � and ⋄ respectively, are shown.
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Figure 5.5: Non-zero error (i.e. error > 0) statistics for methods using visibility con-

straints. Only errors between 0 – 40% are shown for ks = 1, kd = 2 and Vmax = 1.

Expansion, KZ1, KZ2 are colored red, green, and blue respectively.
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Figure 5.6: Error statistics of mislabeled pixels that differ by exactly 1 from the ground

truth (off-by-one error) for basic formulation. Only errors between 0 – 35% for Expansion

with ks = 1, kd = 2 and Vmax values 1,2,10 and 100 represented by O, *, � and ⋄
respectively, are shown.
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Figure 5.7: Error statistics of mislabeled pixels that differ by exactly 1 from the ground

truth for visibility formulation. Only errors between 0 – 35% are shown for ks = 1, kd = 2

and Vmax = 1. Expansion, KZ1, KZ2 are colored red, green, and blue respectively.
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Figure 5.8: Binocular monocular error statistics for basic formulation. Only errors be-

tween 0 – 16% for Expansion with ks = 1, kd = 2 and Vmax values 1,2,10 and 100 repre-

sented by O, *, � and ⋄ respectively, are shown.
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Figure 5.9: Binocular monocular boundary error statistics for additional constraint. Only

errors between 0 – 16% are shown for ks = 1, kd = 2 and Vmax = 1. Expansion, KZ1, KZ2

are colored red, green, and blue respectively.
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Figure 5.10: Binocular discontinuity error statistics for basic formulation. Only errors

between 0 – 20% for Expansion with ks = 1, kd = 2 and Vmax values 1,2,10 and 100

represented by O, *, � and ⋄ respectively, are shown.
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Figure 5.11: Binocular discontinuity error statistics for additional constraint. Only errors

between 0 – 20% are shown for ks = 1, kd = 2 and Vmax = 1. Expansion, KZ1, KZ2 are

colored red, green, and blue respectively.
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Figure 5.12: Binocular continuity error statistics for basic formulation. Only errors

between 0 – 35% for Expansion with ks = 1, kd = 2 and Vmax values 1,2,10 and 100

represented by O, *, � and ⋄ respectively, are shown.
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Figure 5.13: Binocular continuity error statistics for additional constraint. Only errors

between 0 – 35% are shown for ks = 1, kd = 2 and Vmax = 1. Expansion, KZ1, KZ2 are

colored red, green, and blue respectively.
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Figure 5.14: Energy statistics for basic formulation. Only Expansion with ks = 1, kd = 2

and Vmax values 1,2,10 and 100 represented by O, *, � and ⋄ respectively, is shown. The

ground truth is represented by the black curves.
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Figure 5.15: Energy statistics for additional constraint based formulations. The colors

used for output energy for Expansion, KZ1, KZ2 are red, green, and blue respectively. For

ground truth energy the corresponding colors are cyan, magenta, and black.
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Figure 5.16: All pixel (i.e. both binocular and monocular) non-zero error statistics for

methods using the basic formulation. Only errors between 10 – 90% for Expansion with

ks = 1, kd = 2 and Vmax values 1,2,10 and 100 represented by O, *, � and ⋄ respectively,

are shown.
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Figure 5.17: All pixel (i.e. both binocular and monocular) non-zero error statistics for

methods using additional constraints. Only errors between 5 – 90% are shown for ks = 1,

kd = 2 and Vmax = 1. Expansion, KZ1, KZ2 are colored red, green, and blue respectively.
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Chapter 6

Conclusion

Stereo reconstruction has been of interest to the computer vision community for a

long time. But its application to cluttered scenes has never been directly addressed

before. As a result, the performance of existing algorithms, especially the ones based

on MRF, is unknown for these scenes. In the introduction of this thesis, we discussed

how important this category of natural scene is. Not only that, there are also fields that

can benefit from stereo reconstruction methods for such scenes. This motivated us to

investigate how a class of techniques performs for cluttered scenes. In our investigation

we limited ourselves to the MAP-MRF based stereo formulation. Our goal was to find

how different forms of energy and optimization techniques would perform for different

types of cluttered scenes.

In this chapter, the overall approach is summarized in Sec. 6.1. Sec. 6.2 summarizes

the main observations, and the conclusions that we make from them. In Sec. 6.3 the

contribution of this thesis is discussed. We address some of the open questions in Sec.

6.4 and finally discuss some possible future directions of this work in Sec. 6.5.

6.1 Summary of Our Approach

To this end, we reviewed the underlying concepts behind the MAP-MRF stereo for-

mulation, and the optimization algorithms used for solving the MAP problem. We

looked at how natural scenes have been modeled by different authors, and the jus-

tification behind those models. We also discussed the cluttered scene model that is

considered in the thesis, the justification behind using it, its derivations and charac-
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teristics. For evaluating algorithms, we require a benchmark dataset. Currently there

are no stereo datasets for cluttered scenes. Therefore, we generated synthetic scenes

for our experiments. We discussed how the synthetic scenes were generated, the diffi-

culties in the generation process and how they were resolved. After that we focused on

the types of scenes that are needed for the experiments. We generated different types

of cluttered scenes and experimentally verified their underlying statistics. Finally we

applied different algorithms with different parameter settings on the dataset, observed

the performance for each case and generalized the results.

6.2 Summary of Observations and Conclusions

We found Expansion, TRW-S, BP-M, and Swap to perform equally well. Despite the

variation in the scenes, the Potts model (i.e. Vmax = 1) or small Vmax in general per-

forms best in most cases. We found the form of the data term to be less important than

the form of smoothness term, because the relative performance between different forms

of smoothness and algorithm combination changed very little with the data term. If

only binocular pixel errors are considered then the methods with visibility constraints

do not necessarily perform significantly better than those with basic constraints. How-

ever, if all pixels (i.e. binocular and monocular) are considered then methods with

visibility constraint (e.g. KZ1) can perform significantly better. This conforms to pre-

vious observations made in [2, 3, 4]. This performance differences are also naturally

reflected in the energy values. For basic formulation the gap between ground truth and

output energy is very large, whereas for visibility formulation the gap is usually smaller

and for KZ1 it is the smallest.

The key question now is, is there any room for further improvement, especially in the

case of cluttered scenes? In terms of total error considering all pixels, basic formulations

are insufficient for cluttered scene stereo. Even though KZ2 uses additional constraints

like the uniqueness constraint, its performance is not on par with KZ1. If total error is

considered then KZ1 is clearly the winner. If only binocular pixels are considered then

we did not see any significant performance improvement for KZ1. In fact in some cases

Expansion and KZ2 perform better. However the performance gap is not big enough

(> 5) to warrant for an improvement. Also if we look at the error rates, we see that in

most cases the minimum mean error is less than 5%. But for certain scenes the error
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for even the best performing method can be close to 10%. We argued that this happens

because of the non-contiguous nature of − log(p(fp − fq)). It should be noted that this

type of cases can also occur in natural scenes where large part of the background is

visible through sparse bush or foliage. Therefore, it is important to improve the forms

of prior for these type of cases.

Furthermore, we have seen that monocular pixels make the most contribution to

the total error for all pixels. So, if our goal is to reduce the total error for all pixels

then there is a vast room for improvement. We saw that KZ1 performs better than

other methods but for very large number of monocular pixels (e.g. scene 1b in Fig.

5.17) the error rate for KZ1 is close to 50%. So there is still room for improving KZ1,

especially for cluttered scenes.

6.3 Contributions

This thesis contributes to the current field of stereo vision in a number of ways. In the

following we list some of the major and minor contributions.

6.3.1 Comparative Study of Cluttered Scenes

The main contribution of the thesis is in evaluating some of the fundamental MRF

based techniques for cluttered scenes. In the past there have been performance analy-

sis studies for generic scenes. However no such study has been carried out for cluttered

scenes. Cluttered scenes occur very frequently in the natural environment and there

are very promising applications of cluttered scene stereo reconstruction. This thesis

contributes to the field of vision, by investigating how some of the widely used opti-

mization techniques in conjunction with different types of energy formulation, work for

cluttered scenes.

6.3.2 Classifying Cluttered Scenes

Cluttered scene categorization is an unexplored area. We took a preliminary step

towards classifying cluttered scenes based on the underlying statistics. Based on the

model, we chose parameters that would affect different statistical properties of the

scenes and experimentally verified those effects. In Chapter 5 we have seen that similar

underlying statistics causes similar error statistics. Therefore, if we know the set of
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6. CONCLUSION

good parameters for a particular class, we can try to use that for other scenes of the

same class.

6.3.3 Synthetic Cluttered Stereo Pair Generation

The lack of cluttered scene benchmark dataset and the need for such dataset for perfor-

mance evaluation, drove us to generate synthetic cluttered scene stereo images. While

a single depth map is sufficient for statistical analysis, for stereo evaluation, stereo

pairs are required. These stereo pairs and the corresponding ground truth disparity

maps have to be rendered pixel accurately. There are certain challenges involved in

this process. Chapter. 4 identifies some of the subtle issues related to round-off error

such as consistency in size of projection, consistency between theoretical disparity value

and the actual value, and proposes an approach for overcoming those issues. The syn-

thetic stereo pairs were generated using the proposed approach and their correctness

was verified.

6.3.4 Best Performing Parameters

From a practitioner’s point of view, it is important to know the set of parameters that

can produce good results for cluttered scene stereo problems. Finding such a set of

parameters is a time consuming process. This thesis gives an overview of how some of

the parameters affect the error in scenes with certain underlying statistics. This would

simplify the process of choosing the set of parameters for a scene whose statistical

model is close to the ones we have in our experiment. Furthermore, we conducted our

experiments with a wide range of parameters and experimentally showed which set of

parameters work best in general and which do not. Therefore, for a completely new

scene those set of parameters should be the first choice to try.

6.4 Issues and Open Questions

Some of the scenes exhibit greater sensitivity to off-by-one error. We were only able to

identify where this happens and indicated that they might happen due to the texture

pattern. However we did not conclusively show this to be the case. Since they have more

impact on objects that are farther away, for certain scenes (e.g. 2a–c,4a–c) minimizing

this type of error is advantageous.
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We have seen that small Vmax works best because of the − log p(fp − fq) curve.

We showed how to choose parameters that affect certain properties of the scene like

probability density of disparity, discontinuity, etc. But the question is, is it possible

to generate scenes with certain probability of disparity difference? The reason why

it is somewhat difficult is that it is an average over disparity differences for different

disparities. As a result, generating scenes with a certain disparity difference probability

is non-trivial.

6.5 Future Work

A natural progression would be to consider non front-parallel scenes or scenes with

curved surfaces. These scenes break some of the assumptions made by the methods

that are currently used in the thesis and can be better modeled using higher-order

priors [34].

In this thesis, we mostly emphasized on binocular pixels because ideally these pixels

should have the correct disparity labels. We have seen that in terms of total error with

all pixels, monocular pixel errors make the most contribution. Future work will focus

on how the monocular errors vary with different scenes and stereo methods.

The scope of the thesis was limited to methods using the basic formulation and a couple

of methods that uses additional constraints. There are several other methods that

model visibility and occlusion. They can be applied to cluttered scene reconstruction

to see how well they perform.

The most important future step would be to apply the results that we obtained in

this thesis to real scenes. Real scenes entail certain other challenges such as shadows,

intensity variation, textureless regions, etc. These challenges need to be addressed for

successful application of stereo algorithms for natural cluttered scenes.
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Appendix A

List of Results

In this appendix, we provide the additional plots that can be referenced to get a better

idea about the results. In Sec. A.1 the scene and error statistics for baseline, Tx = 0.1

is given. Sec. A.2 gives plots showing contribution of different types of errors. Plots

for greater than 1 errors given in Sec. A.3.

A.1 Results for Tx = 0.1, γ = 0.1 and r = 0.1

In this section, we first show the statistical properties of scenes with small baseline.

We only consider the scenes with γ = 0.1 and r = 0.1. This is primarily because this

type of scenes exhibit more error. We are interested in finding out if the same scene

with a smaller baseline exhibits the same characteristics.

A.1.1 Scene Statistics

Fig. A.1 shows the scene statistics. This set of scenes has basically the same parameters

as the third set (i.e. scenes 3a–c) except the baseline is set to 0.1. This increases

binocular visibility. As a result, the difference between binocular and all pixel curve

is small. The range of disparity value is smaller because of the small baseline. This

makes the probability of all the statistics greater than that of set 3.

A.1.2 Error Statistics

The error statistics shown in Figs. A.2 and A.3 are similar to that of Scenes 3a–c.
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Figure A.1: Disparity and Neighbor Statistics for Data and Model with γ ≈ 0.1, z-range

between 2 and 8 and baseline 0.1
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A.2 Error Contribution Plots
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Figure A.4: Contribution of binocular monocular error for basic formulation.
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Figure A.5: Contribution of binocular monocular boundary error for formulations with

additional constraint
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A.2 Error Contribution Plots
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Figure A.6: Contribution of binocular discontinuity error for formulations with basic

constraints
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Figure A.7: Contribution of binocular discontinuity error for formulations with additional

constraint
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Figure A.8: Contribution of binocular continuity error for formulations with basic con-

straints
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Figure A.9: Contribution of binocular continuity error for formulations with additional

constraint
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Figure A.10: Error statistics (> 1) for methods using the basic formulation
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Figure A.11: Error statistics (> 1) for methods using additional constraints
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