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Abstract/Résumé 

Focal plane array (FPA) FTIR imaging spectroscopy provides unprecedented levels of 

spatially resolvable chemical information for analysis of samples at the micrometer 

scale. This study evaluates the quantitative performance characteristics of the individual 

detector elements comprising the FPA camera, and applies them to making analytical 

measurements of a custom designed microfluidic multichannel transmission cell. 

Statistical descriptions are provided for the response distributions among the FPA’s 

detector elements; RMS noise, peak response, and linear regression parameters. It was 

found that individual detector elements of the FPA allowed for accurate milli-

absorbance measurements, however the variability was large when contrasting detector 

elements due to FPA detector non-uniformity issues. When applied to the microfluidic 

multichannel sampling system designed for the monitoring of four fluid streams, it was 

found that the detector elements covering the fluid stream could be averaged to 

generate a very repeatable response between streams – thus allowing for milli-

absorbance measurements of 4 samples simultaneously with the current design.  

L’imagerie par spectroscopie IRTF dans la matrice plane focale (MPF) offre des 

niveaux de résolution spatiale sans précédent des informations chimique dans le 

domaine spatial pour une analyse des échantillons à l’échelle du micromètre. L’étude 

actuelle examine l’ensemble des applications de la spectroscopie IRTF (MPF) avec 

l’utilisation d’un système micro-fluidique multicanaux de transmission de cellules conçut 

sur mesure comme une approche potentielle d’une analyse quantitative des 

échantillons liquides à haut débit. Des descriptions statistiques sont fournies selon la 

répartition des réponses parmi ces éléments individuels du détecteur. La réponse des 

éléments individuels du détecteur dans la MPF a été démontrée comme étant 

reproductible dans des unités de milli absorbance et ainsi, la plus importante variabilité 

de réponse à travers l’ensemble est due aux problèmes de non conformité associés à la 

MPF. La moyenne des réponses des éléments du détecteur sur lesquels les résultats de 

chaque canal est imagées dans de bonne reproductibilité inter-canal et ainsi compense 

de manière satisfaisante la non-uniformité des pixels. Les expériences qui prouvent ce 

concept impliquant des mesures analytiques sur quatre échantillons visualisés 

simultanément avec la conception actuel des cellules sont présentées. 
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Chapter 1: Introduction 

1.1 General Introduction 
 

1.1.1 FTIR Spectroscopy As A Quantitative Analysis Tool In The Food Industry 

Infrared spectroscopy is well established as a qualitative and quantitative analytical 

tool. The energies associated with the infrared region of the electromagnetic spectrum 

correspond to those required for transitions between vibrational energy levels of 

molecules so that IR spectroscopy provides valuable compositional and molecular 

structural information about a sample. In a properly conducted IR experiment there is 

also adherence to Beers law which forms the basis of any calibration methodology; as 

such the quantitative performance of IR spectroscopy has been well evaluated in a 

variety of contexts. Over the past few decades engineering developments in FTIR and 

FT-NIR spectroscopy, together with various ingenious sampling accessories, increasingly 

robust calibration methodologies, and ever-increasing computational capacities, have 

furthered the utility of this spectrographic technique, making it particularly effective in 

providing process analysis solutions. Many, if not most, of the novel process applications 

of FTIR and FT-NIR are proprietary,  often making them difficult to precisely report 1. 

Examples of the successful application of IR spectroscopy as a process analysis tool 

range from ambient air monitoring, detection of impurities in liquid chlorine,  trans-fat 

detection in edible oils, payment analysis for raw milk, rapid quality control of alcoholic 

beverages – plus hundreds of other examples in the petrochemical, pharmaceutical, 

materials, and biomedical sciences. In short, FTIR spectroscopy is a very robust and 

information rich technique with high applicability to a diverse range of products. 

The emphasis of this thesis will be on the application of FTIR spectroscopy for 

quantitative measurements on (liquid) food systems – or on model systems relevant to 

food analysis. Proximate analysis of raw, in-process, or finished food products is the 

most common analytical requirement of the food industry, resulting in significant 

labour, capital, and operating costs 2. Each of the major components of food systems 

(fats, proteins, and carbohydrates) has well-defined bands in the IR spectrum, which 

may be modelled in a variety of ways to obtain qualitative/quantitative information 

from FTIR analysis of a given food system. As already mentioned, a successful 

application of IR spectroscopy is the proximate analysis of raw milk for payment and 
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herd analysis purposes, whereby milk samples are analyzed for their fat, protein, and 

lactose content 3, the two former components being the most significant in terms of 

payment calculations. These measurements are often performed at central laboratories 

that may analyze hundreds of thousands of samples per annum, and thus the IR 

instrumentation employed in these labs has been specifically designed to be up to the 

task of accommodating these high sample throughputs, While IR milk analysis had its 

origins (ca. 1960) prior to the advent of FTIR instrumentation 3, most of the filter-based 

IR instruments that were employed for this purpose have been progressively replaced 

by FTIR systems. It may be noted that IR milk analysis is considered a secondary 

technique, i.e. it must be calibrated and periodically validated against reference 

analyses. Given that the IR milk analyzers operated in centralized laboratories are 

defining cash flow through a multimillion dollar industry, they must be monitored 

closely for their quantitative accuracy and precision, and hence there is often a 

reference laboratory operated in tandem with the FTIR lab at such facilities.  

An offshoot of the success of IR milk analysis that illustrates the multifunctional 

utility of FTIR spectroscopy as an analytical tool is seen in the wine industry, where 

many larger wineries use FTIR spectroscopy to monitor from the commencement of 

grape ripening to the finished bottled product 4. Because FTIR spectroscopy allows for 

the rapid qualitative/quantitative multi-component analysis of wines at different stages 

of their production, it can be invaluable to oenologists and vintners alike. However, 

despite all the advantages of the technique, a difficulty with the application of FTIR 

spectroscopy to wine analysis arises from the complexity and diversity of the sample 

matrix, such that calibration models must often be built locally or restricted to similar 

product types. It then becomes difficult for a central laboratory that handles, for 

instance, a variety of imported wines to reliably analyze this whole range of products. 

Regardless of these difficulties, the market share for FTIR wine analyzers is anything but 

insignificant, and further improvements in chemometric modelling are sure to come. 

There are many other examples of the application of FTIR spectroscopy to the 

analysis of food systems, both in industry and in academia (e.g. analysis of edible oils, 

monitoring of beer processing, analysis of grains, etc). Thus, the speed, non-destructive 

sampling, spectral resolution capabilities, amenability to automation, and overall cost-

effectiveness of FTIR spectroscopy all go towards making it an increasingly attractive 
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analytical tool to many sectors within the food industry. In addition, with ever-growing 

pressures on the food industry in terms of production, quality control, and safety, 

laboratories require analytical techniques capable of a very high sample throughput – 

something that FTIR spectroscopy, through its application to milk analysis, has proven 

quite capable. As discussed below, recently developed focal-plane-array (FPA) FTIR 

imaging technology can potentially further enhance the sample throughput of FTIR 

spectroscopy by orders of magnitude and thus could have a significant role in the food 

industry and, in turn, in any other analytical sector with high sampling volume needs. 

1.1.2 FPA-FTIR Imaging 

Utilization of focal plane array (FPA) detectors in conjunction with FTIR micro-

spectroscopy for the collection of IR images has been of growing interest in the last 10-

15 years. The collected images consist of nn pixels (typically, n = 32, 64, or 128), each 

constituting a full mid-IR spectrum, and thus FPA-FTIR imaging is commonly referred to 

as ‘hyperspectral imaging’. The spatially resolved chemical information provided by FPA-

FTIR imaging of heterogeneous samples can be visualized by extracting any feature of 

the measured IR spectrum from the resultant image and mapping it in a two-

dimensional plot, hence the term ‘chemical staining’ sometimes used to describe FPA-

FTIR imaging. This is often how IR imaging results are presented, with artificially 

coloured IR images illustrating a wealth of chemical/spatial information on a variety of 

samples (see figure 1.1). 

 

 

Figure 1.1.  Examples of FTIR imaging of heterogeneous sample types: a) starch profile in 
imitation cheese 5; b) nucleic acid profile of prostate tissue6; c) forensic study of bi-
component fibres 7. 
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Many studies that utilize FPA-FTIR imaging technology do so in an effort to extract 

information using the high spatial resolution capabilities of the technique, i.e. the 

analysis is carried out on some type of heterogeneous sample to investigate the spatial-

chemical features of that sample (figure 1.1). To date, the majority of applications using 

FPA-FTIR imaging have been within the biochemical and medical sciences, while it has 

also found its way into a variety of other fields including: materials science, forensic 

science, agricultural and food science 8.  

Another aspect of FPA-FTIR imaging that has been much less extensively considered 

is its potential utility as a high-throughput analytical technique. The information-rich 

nature of mid-IR spectra combined with the enormous number of spectra acquired 

simultaneously by the FPA detector make this technique highly relevant in the era of 

high-throughput analytical sciences. However, several questions regarding the 

performance characteristics of FPA detectors need to be addressed in order to properly 

exploit this potential. First, the performance of each of the individual detector elements 

comprising the FPA becomes more significant in the context of high-throughput 

quantitative chemical analysis than it is when FPA-FTIR spectroscopy is utilized to probe 

progressive changes in chemical composition across heterogeneous samples such as 

those presented in figure 1.  Second, in studies that have been conducted to 

characterize FPA detectors – mostly in relation to thermal imaging - a term that 

commonly appears is ‘pixel non-uniformity’, used to describe observations that the 

different detector elements of the array generate slightly different responses from one 

another. While a number of protocols have been proposed to address this issue, it is 

found that no single method can completely eradicate pixel non-uniformity. However, 

the effects of pixel non-uniformity in the context of high-throughput quantitative 

chemical analysis by FPA-FTIR spectroscopy have not yet been properly addressed. 

 

1.2 Rationale & Research Objectives 

1.2.1 General Overview of the Research Project 

 

The overall objective of the research presented in this thesis is to investigate means 

of enhancing the sample throughput of FTIR spectroscopic analysis of food systems by 

exploiting the multichannel detection capabilities of FPA-FTIR imaging spectrometers. 

The approach proposed involves the development of a micro-fluidic multichannel 



5 
 

sampling accessory, the use of which in combination with an FPA-FTIR imaging 

spectrometer is envisioned to allow one instrument to perform the work of m 

conventional spectrometers, where m is the number of channels in the micro-fluidic cell. 

If one takes the example of milk analysis, where central laboratories run hundreds of 

thousands of samples per year, the sample throughput of such a system would be quite 

beneficial. The viability of this approach is contingent upon the capability of the 

individual detector elements in the FPA that record/build the image of each channel to 

provide satisfactory quantitative accuracy. Thus, the global aims of the research were (i) 

to assess the analytical performance of a 3232 FPA detector through the study of 

several model systems, including milk calibration standards, and (ii) to fabricate a 

multichannel micro-fluidic demountable transmission cell and evaluate its potential 

utility in the context of high-throughput quantitative analysis by FPA-FTIR imaging 

spectroscopy. 

 

1.2.2 Specific Research Objectives 

 

The specific objectives to be addressed by the research are as follows: 

 

 Development of image collection protocol for quantitative analysis applications: 

o Establishing stable environmental conditions within the instrument, including the 

microscope stage. 

o Optimization of image acquisition parameters. 

o Assessment of FPA detector element response characteristics using multiple test 

systems (open-beam response, calibration films, model liquid systems). 

 Assessment of FPA-FTIR spectrometer quantitative performance using 

gravimetrically prepared calibration standards and pre-analyzed milk calibration 

standards together with a conventional transmission flow cell. 

o Development of data extraction techniques. 

o Assessment of individual detector elements, groupings of detector elements, FPA 

as a single detector (averaging responses of ‘all’ detector elements). 

 Development and testing of a micro-fluidic multi-channel transmission sampling 

accessory. 



6 
 

Chapter 2: Literature Review 

2.1.1 Concepts of Infrared Spectroscopy 

Infrared (IR) spectroscopy involves the interaction of a controlled source of IR 

radiation with a sample of interest, and the subsequent detection and interpretation of 

resultant changes to the source radiation upon this interaction. The IR region of the 

electromagnetic spectrum (EMS) is most often measured by convention with the inverse 

of the wavelength (in centimetres) – termed the wavenumber (cm-1), and spans from 

roughly 10-14,000 cm-1. This region is further subdivided into the near, middle, and far 

IR regions (NIR, MIR, and FIR respectively) each exhibiting different energetic 

interactions with molecular bonds. 

The IR region constitutes the portion of the EMS associated with vibrational energy 

transitions of molecules, and thus IR spectroscopy is often referred to as vibrational 

spectroscopy (a term that also encompasses the complementary technique Raman 

spectroscopy). The interaction of a molecule with IR radiation is often portrayed as a 

physical vibration but is more accurately described as an excitation, within quantized 

vibrational energy states, of a molecule upon absorption of incident radiation matching 

one of its “fundamental” frequencies; some examples illustrated in figure 2.1.  

 

Figure 2.1. The MIR spectrum; common spectra/structure correlation generalities. 
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Modern IR spectrometers are said to have stemmed from the World War II era, 

where developments in electronic amplification methods, detector technologies, and 

the advent of double- beam spectrometers greatly increased their utility 9, 10. The 

essential components of any IR spectrometer include a source of radiation (ranging from 

conventional Globar and Nernst glowers to the more modern free-electron laser and 

synchrotron sources), some means of resolving the wavelengths contained within the 

radiation from a broadband source (e.g., a monochromator or an interferometer), a 

detector, optical components directing/focusing the source radiation onto the sample 

and towards the detector, and a data collection/display system (e.g. PC, printout). 

Because there are few convenient materials that transmit a sufficient range of IR 

wavelengths, the optical components are nearly always reflective rather than 

transmissive, and because of a lack of ‘bright sources’ (until recently) the apparatus 

must enable a high throughput of the source energy 11. IR detectors are of particular 

interest to this review and will be explored further in the following sections. 

Dispersive IR spectrometers employ a monochromator to select a narrow bandwidth 

for analysis and are quite useful in process analysis applications where only a few 

selected wavelengths are needed for analysis, however collection of full spectra (e.g. 

spanning the MIR range) with a scanning monochromator is time-consuming and has 

been overshadowed by a superior approach, Fourier transform IR (FTIR) spectroscopy.  

 

Figure 2.2. Basic Components of an FTIR Spectrometer 12. 
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FTIR spectroscopy is a form of IR technology that has been available to researchers 

since the early 1970s. The advantages of FTIR over conventional dispersive IR 

spectrometers are derived from the replacement of a monochromator by the two-beam 

interferometer, the concept of which was originally developed by Michelson in 1891 9. 

As depicted schematically in figure 2.2, the full bandwidth of the radiation from a 

broadband IR source is passed through an optical component called a beam splitter, 

which partially reflects and partially transmits the source radiation onto two mirrors, 

one of which is stationary while the other is moved backward and forward, either at a 

constant velocity (continuous-scan mode) or in fixed increments (step-scan mode). 

Owing to the varying difference in the distances traveled by these two beams when they 

are reflected back to the beam splitter, their recombination at the beam splitter results 

in a pattern of constructive and destructive interference (an interferogram) as a function 

of the optical retardation of the beam reflected back from the moving mirror.  

The advent of FTIR spectroscopy is often said to have revitalized, if not 

revolutionized, the field of vibrational spectroscopy. Apart from collateral advantages 

accruing from the fact that FTIR spectroscopy necessitated that the spectrometer be 

equipped with a dedicated computer, the following fundamental advantages of this 

technique arise from its use of interferometry:  

 All resolution elements are collected at all times (Fellgett’s advantage). 

 Efficient energy throughput at each resolution element (Jaquinot’s advantage). 

 Internal laser establishes wavelength stability, providing a universal reference for 

FTIR spectrometers enhancing reproducibility and repeatability of measurements. 

 Significant reduction in scan time; sample throughput potential revolutionized. 

 Superior spectral resolution and wavelength accuracy. 

 Simpler/smaller instrumentation; portable devices are now commercially available. 

A principal disadvantage of FTIR spectroscopy lies in the fact that it is a multiplexing 

technique in the time domain, making it quite sensitive to fluctuations in the source 

intensity – particularly periodic fluctuations, which will result in narrow spectral noise 

features 13. Another disadvantage of FTIR spectroscopy and IR spectroscopy in general, is 

that the achievable signal to noise ratio (SNR) is often limited by the detector used in 

the system. 
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2.1.2. FTIR- Imaging Spectroscopy 

FTIR imaging (FTIRI) is defined as a spectroscopic technique that employs FTIR 

microscopy and multichannel detector (array) technology for the rapid and 

simultaneous acquisition of a set of n spatially resolved IR spectra (where n = the 

number of detector elements in the array) 14. Strictly speaking, there are three methods 

for the collection of FTIR images: 1) the original point-by-point “mapping” technique 

using a single-element detector and an x-y stage, 2) the use of a linear array (LA) 

detector, and 3) the use of an FPA detector. Each of these has its advantages and 

disadvantages, and many examples employing some combination of the three can be 

found in the literature. 

A common thread between the three FTIR image building techniques is that each 

usually employs an IR microscope, although FTIRI has also found application on a macro-

imaging scale. The IR microscope is analogous to an optical microscope, with the 

exception of a few key difference: 1) IR radiation from the interferometer as its source; 

2) reflecting optics; 3) an aperture at the primary image plane for sample definition; and 

4) an IR-sensitive detector 15. A minor difference between conventional IR microscopes 

and imaging IR microscopes is that the latter are designed for homogenous illumination 

over the field of view, while the former are designed for maximum light throughput 16. A 

regular feature of IR microscopes is that they incorporate a white light microscope in the 

same optical path as the IR microscope. The limiting spatial resolution in IR microscopy 

is roughly 2λ – also known as the diffraction limit. Thus, on going from high to low 

wavenumber in a spectrum, the attainable spatial resolution is diminished. For a typical 

mid-IR spectrum, the spatial resolution at the focus will range from 5 to 30 µm 15. 

The first image collection method mentioned above, point-by-point mapping, has an 

obvious time disadvantage with respect to the other two (in that a spectrum 

corresponding to one pixel in the image is collected, the sample moved, the spectrum 

corresponding to the next pixel in the image is collected, and so on), countered by the 

advantage of flexible pixel size through adjustments to the aperture. Typically, the 

spatial resolution is no better than 15 μm 14. Mapping techniques that employ a 

synchrotron IR beam-line and a technique called compressive imaging have recently 

been reported to offer diffraction-limited spot sizes, a higher SNR, and no requirement 

for mapping at every spatial point - hence increasing the speed of the process 17.  
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The second image collection method, which employs an LA detector consisting of m 

individual detector elements (most commonly 16), allows m spatially resolved spectra to 

be collected simultaneously. The building of a full n x n image of a sample requires n2/m 

‘sweeps’ and therefore this technique may be considered a hybrid of point-by-point 

mapping and FPA imaging, and to some it is simply a stepping stone to the advent of 

FPA-FTIRI. However, an advantage of the technique appears to be that the fabrication of 

16 high-quality detector elements is easier to accomplish than that of the >1000 

detector elements found in FPAs, effectively reducing non-uniformity issues. In their 

study comparing confocal synchrotron single-point mapping with LA-FTIRI, Miller et al. 18 

found that higher spatial resolution could be achieved with the synchrotron mapping 

method; however, the LA detector was still able to provide faster data collection at a 

reasonable resolution. Thus, the synchrotron mapping system lends the potential 

advantage of better spatial resolution; however, the need for access to a synchrotron 

source limits the technique’s availability, and it is still much slower than the LA and, in 

turn, the FPA methods of image collection, each of which provides reasonable spatial 

resolution. 

The third method of image collection involves the simultaneous collection of all 

pixels of the image using an FPA detector, lending an obvious speed advantage relative 

to the other methods of image collection described above.  For example, a typical FPA 

format of 64 x 64 detector elements allows for the collection of 4096 high-quality IR 

spectra within minutes, generating a ‘three-dimensional data cube’, often referred to as 

a hypercube – but perhaps more correctly referred to as a hypercuboid 19.  These 

hypercuboids consist of both spatial and spectral information, generally configured with 

spatial information in the x and y directions, and spectral information in the z-direction, 

as represented in figure 2.3. The information within the data cube is typically displayed 

as: 1) all of the z (spectral) data points at one x, y (spatial) location or 2) one of the z 

data points at all of the x, y locations 20. The process of hyperspectral data cube building 

is described in further detail elsewhere 14. 
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Figure 2.3. Representation of a hyperspectral data-cuboid. Each point along the z-

axis represents a spectral feature plotted in the spatial (x, y) plane as a color intensity, 

red=high and blue=low. Note that the depicted spectrum is fictitious, present purely for 

illustrative purposes. 

The multichannel detection capabilities of FPA detectors enable the monitoring of 

dynamic chemical processes, spatially resolved characterization of large heterogeneous 

samples, and the simultaneous characterization of many small samples. There are a 

range of accessories available for FTIRI purposes, including a selection of Cassegrain 

objectives with varying magnifications and numerical apertures, lending some flexibility 

to the spatial resolution capabilities of the instrument 8. Additional developments in ATR 

sampling accessories enable further improvements of the spatial resolution, due to the 

high refractive index of an ATR crystal, which thus can serve as a solid immersion lens  – 

while there are also macro-ATR sampling accessories for the imaging of larger sample 

areas 8. Recently, there have also been developments in the combination of a 

synchrotron radiation source with FPA-FTIRI systems, giving advantages of 1) better SNR 

than with a Globar IR source, 2) higher spatial resolution, and 3) very short acquisition 

times 21. Again, the limited availability of a synchrotron light source does not make this a 

realistic solution for the average laboratory. 
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Two modes of data acquisition, each originating in conventional FTIR spectroscopy, 

may be employed in FPA-FTIRI: 1) the step-scan mode and 2) the continuous-scan mode; 

detailed descriptions of these image collection schemes may be obtained elsewhere 16. 

In the first FTIRI systems, the step-scan mode was exclusively employed owing to the 

slow frame rates of the first-generation FPAs, such that the detector read-out 

electronics were not capable of sampling every point of an interferogram as in modern 

continuous-scan systems 16. An advantage of the step-scan mode is that the retardation 

in a step-scan modality is decoupled from the time domain; thus, each point of the 

interferogram can be measured for any desired length of time. This capability has 

allowed for substantial SNR enhancement in monitoring repeatable transient events 16. 

Disadvantages of step-scan systems include additional controls and higher cost, plus a 

time requirement for stabilization of the interferometer before data collection may 

commence. As late as 2005 it was believed that step-scan interferometry was the most 

practical way to conduct FTIRI experiments, though it was acknowledged that 

advancements in detector technology were already making continuous-scan systems 

viable 16.  The continuous-scan mode has become the standard method for image 

collection, due largely to the development of second- and now third-generation FPAs, 

which have frame rates of up to 3000 Hz 8. The continuous-scan mode is more time 

efficient in the collection of signals from the FPA, as there is no time spent on the 

stabilization of the interferometer at specific retardations. The SNR achievable with 

continuous-scan systems is limited by the positional error (~10-25 nm) of the moving 

mirror within the interferometer, making imaging in continuous-scan mode an 

inherently lower SNR technique than imaging in step-scan mode. The SNR can be 

improved by increasing the number of co-added scans, though this does diminish the 

time advantage of the continuous acquisition scheme over the step scan.  

2.1.3. IR Detectors 

Modern FTIR spectrometers are often described as ‘detector noise limited’, meaning 

that the fluctuations of the detector component represent the main source of noise in 

the measured signal. Detector type will also define the wavenumber range of the 

recorded IR spectrum, the speed of response, and the dynamic range of response – in 

essence, the detector has a very significant impact on the end quality of spectral data. It 
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is therefore constructive, when discussing detector technology, to define terms which 

allow the properties of detectors to be properly assessed and compared. Conventionally 

used descriptions of IR detector performance include 22: 

 Signal to noise ratio (SNR): Ratio of the signal to the noise corrupting the signal (see 

equation 4); the higher the SNR, the less obtrusive the noise.  

 Responsivity: Ratio of electrical output (volts or amps) to the incident IR power 

(watts); defines ability of a detector to convert IR radiation into an electrical signal. 

 Noise equivalent power (NEP): Ratio of the noise power per unit bandwidth (noise 

power density) at the detector output to the detector responsivity (W Hz-1/2); used 

for describing a detector’s ability to measure small signals. 

 Specific detectivity, D* = Area1/2/NEP: Ratio incorporating detector active area and 

NEP, equivalent to the SNR of a detector of unit area in a unit bandwidth when one 

watt of power is incident on the detector (cm Hz1/2 W-1); dependent on 

measurement conditions, which must therefore be defined. 

 Response time, τ: Defines how quickly the output of a detector can follow a 

dynamic incident signal. 

 Linearity: Condition achieved when a detector’s output is proportional to the IR 

signal being measured. Detectors may be inherently linear; however, the entire 

detection system can be made nonlinear if utilizing unsuitable read-out electronic 

hardware. 

 Spatial uniformity of response (figure 3): Describes the largest deviation of the 

detector response at different points on the active area, expressed as a percentage 

of the maximum response. Nonuniform response may be a consequence of poor 

fabrication techniques, impurities within the active area, and variable thickness of 

detector element(s). 

 
Equation 2.4. Expression of SNR for conventional wide beam single element detector in 

an FTIR spectrometer using Michelson type interferometer. See reference for full 

derivitization and meaning of each component of the equation 23. 
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The D* is one of the more versatile measures of detector performance, and it is often 

said that it should be the starting point in every detector selection process 22. The 

advantage of knowing the D* is the ability to compare detectors of different active 

areas;  once a group of detectors has been selected with known active areas, the NEP 

may be individually determined for further interpretation of detector performance.  

The last point in the list above brings up the issue of the possible spatial non-

uniformity of detector response as a result of physical imperfections in the detector, 

such that different regions of the detector exhibit slightly different responsivities. To 

illustrate this point, the surface response profile of a pyroelectric LiTaO3 detector is 

depicted in figure 2.4, showing the extent to which the response may be distributed 

over a single detector due to variations in crystal thickness 22. 

 

Figure 2.4. Surface response profile of an LiTaO3 detector crystal element 22. 

 

2.1.3.1. Thermo-detectors and Photo-detectors 

 

Figure 2.5 depicts the historical development of IR detection materials, and from this 

list the generalization can be made that “all physical phenomena in the range of 0.1 to 

1.0 eV may be proposed for IR detection” 10. This encompasses a range of possibilities, 

but the most common found within the field of IR detection may be subdivided into two 

main categories: thermal and photon detectors 22. The former category of detectors 

monitors any physical process affected by a temperature change generated by an 

incident radiation and includes thermocouples, thermistors and bolometers. The 

fundamental limit to the sensitivity of thermal detectors is determined by the random 

temperature fluctuations in the detector element 10. A further (general) limitation to 
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thermal detectors is that their response times are rarely faster than 1 millisecond (ms). 

Thus, the response times of the thermal detectors that were traditionally employed in IR 

spectroscopy are too slow to allow their use in FTIR spectroscopy. This limitation has 

been overcome through the use of pyroelectric. bolometers, particularly the deuterated 

triglycine sulfate (DTGS) detector commonly supplied with FTIR spectrometers. Although 

this detector has relatively low detectivity at higher frequencies and a slower response 

than photon detectors, it does possess numerous advantages, such as the ability to 

operate at room temperature, light-weight components, and relatively low cost. Overall, 

the DTGS is a very rugged detector which serves its purpose quite well. 

 

Figure 2.5. Historical development of IR detectors into array detectors 10. 

Photodetectors are founded on the photoelectric effect whereby a photon with 

threshold energy, collides with a substance (e.g. the detector material) releasing an 

electron and creating an electrical response that is interpreted as the signal. More 

precisely, within a photodetector the incident radiation increases the mobility of a 

charge carrier by increasing its energy substantially enough to move it from the valence 

band of a semiconductor material to the conduction band where it is free to move 

under the influence of an electric field 22. It follows that photon detectors must be 

constructed from some type of semiconductor material; the most commonly used 

semiconductor material over the past four decades has been mercury-cadmium-

telluride (HgxCd1-xTe, or MCT by convention), which encompasses the MIR and FIR 

spectral regions. Materials science has led to the growth/production of a wide variety of 

semiconductor materials (see figure 4), but to date MCT remains predominant in the 

fabrication of photodetectors for the 1-25 μm range 10. These photodetector materials 

typically exhibit an increase in D* with increasing wavelength, with a sharp cut-off after 

a certain point 10. The more common MCT detectors are considered intrinsic 
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photoconductive detectors, defined as possessing a relatively low energy band gap upon 

irradiation compared with the energy of the IR radiation being detected. Extrinsic 

photoconductive detectors, which are defined by their relatively large energy band gaps, 

are also available. Existing extrinsic photodetectors generally require extreme cryogenic 

conditions (~4 K) to achieve D* equivalent to that of an intrinsic MCT detector, while 

due to their lower dielectric constants they possess inherently faster response times 

than intrinsic photodetectors 22.  

Detector Type: D* (cmHz1/2W-1) Comments: 

Ge(Ga), Bolometer 3 x 1013 (< 4 K) 
Broad spectral response, liquid helium 
temperatures of operation. 

DTGS, pyroelectric 108 - 3.5 x 109 (rt) 
Spectral response, 6000-350 cm

-1
; only 

thermal detector operating at room 
temperature 

InGaAs, p.v. 1013 – 1014 (77 K) 
Spectral response, ~6800 cm

-1
 to visible 

(@ 77 K); low spatial non-uniformity. 

PbSe, p.c.(i) 108 - 1010 (193 K) 
Spectral response, 10000~1500 cm

-1
, 

active control of detector temperature is 
required. 

InSb p.v. ~1011 (77 K) 
Spectral response, 10000 – 1800 cm

-1
; 

good spatial uniformity and linearity. 

HgxCd1-xTe p.c. (i) 109 – 1011 (77 K) 

Different HgxCd1-xTe mixes can modify the 
spectral response; typical = 5000 – 850 
cm

-1
. Relatively poor spatial uniformity 

and limited dynamic range. 

Ge: Cu p.c. (e) 109 – 1010 (4 K) 
Spectral response, ~5500 – 350 cm

-1
; 

liquid helium temperatures of operation. 

Table 2.2. Descriptions for various IR detector formats.  

p.c. = photoconductive; p.v. = photovoltaic; i = intrinsic;  

e = extrinsic; rt = room temperature. 

Main advantages of photodetectors over thermal detectors include: a significantly 

faster response time (τ) (~10-9 seconds), and response over a narrower range of the 

spectrum generating lower thermal background noise and a higher D* 22. In order for 

the intrinsic MCT to achieve these conditions however, it must be cooled to ~77 K (see 

table 2.2). The fact that photodetectors generally require a bulky cooling unit combined 

with the associated overhead costs of cryogenic cooling introduces a disadvantage to 

the technology. As previously stated, extrinsic photo-detectors are further limited in this 

sense due to their liquid helium operating temperatures (4 - 30 K). It was observed by 

Theocharous that there was a drift in the spectral responsivity of cryogenically cooled 
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MCT detectors at specific wavelengths (3.1, 11-13 μm), a phenomena attributed to the 

gradual development of an ice layer within the Dewar on the active area of the detector 

24. These effects were found to be temporarily treated by evacuating and baking the 

Dewar at 50°C for 48 hours, and it was cautioned that liquid nitrogen cooled Dewar’s 

containing rubber O-rings resulted in the largest ice build up with time. It has been 

stated that current engineering advances have largely eliminated the issue with newer 

instrumentation 25. Further disadvantages of the MCT detector specifically include: 

variable reproducibility with crystal growth, requirement of hazardous chemicals for 

production, high degrees of spatial non-uniformity, and a restricted dynamic range of 

response. Despite its assortment of problems the MCT detector remains in high rotation 

within IR instrumentation as a higher end detector technology. 

 

2.1.3.2. Linear Array and Focal Plane Array Detectors 

The terms linear array (LA) and focal plane array (FPA) refer to a collection of IR 

detector elements in a linear or 2D arrangement, allowing for the collection of spectra 

at all detector elements simultaneously 18. LAs and FPAs are sometimes referred to as 

scanning arrays and staring arrays, respectively, both conventions arising because of 

their respective mechanisms of image collection (see figure 2.6). The terms FPA and LA 

are restricted to detectors which are IR sensitive, but these detectors are analogous to 

detectors operating in the visible spectrum, e.g. charge-coupled devices (CCD) or 

complementary metal-oxide semiconductor (CMOS) sensors. The utilization of an FPA or 

LA detector within an FTIR apparatus has provided researchers with powerful 

instrumental multiplexing capabilities 26. Within the past two decades the number of 

relatively low-cost, high quality, and commercially available LAs and FPAs has been on 

the rise 27 – refer to the latter portion of figure 4 to appreciate the  trends in 

development. The rate of FPA development is comparable to that of RAM technology 

but lags behind in terms of chip size by about 10-15 years, indicative of the potential 

growth in FPA technology 10. 
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Figure 2.6. Depiction of (a) LA and (b) FPA detector format 10. 

As with conventional IR detectors, the type of imaging detector selected for 

measurements will critically impact the speed of data acquisition and the quality of the 

recorded data, but a further consideration in the case of imaging detectors is the quality 

of the individual detector elements 28. In this regard, the different architectures of LAs 

and FPAs must be considered. Essentially, any array design must be able to perform 

three fundamental tasks: photon detection, charge storage, and multiplexed readout. In 

this regard, LAs and FPAs are classified as monolithic and hybrid detectors, respectively 

(see figure 2.7 for a depiction of hybrid architecture); the former performs the three 

tasks upon the same chip, whereas the latter performs photon detection within a 

narrow band-gap semiconductor and then transfers the signal to a silicon multiplexer 

(one contact per detector) 29. It is apparent in figure 2.7 that there are minor differences 

in the surface areas of each of the detector elements, the consequences of which will be 

elaborated on below. The greater complexity of the hybrid detector architecture is 

compounded by the much larger number of individual detector elements in FPAs as 

compared to LAs;  the latter typically consist of 16 detector elements, whereas common 

FPA formats range from 32x32 to 256 x 256, with the individual detector elements 

typically measuring tens of microns to a side, and the complete array on the order of 

square millimetres 16. In addition, it has been reported that LA detectors have better 

SNR performance than FPA detectors 30, though the argument that this is offset by time 

of analysis is often made 19. 

FPA detector technology has undergone considerable development since the first 

example of FPA-FTIRI was reported in 1994 26, with current state-of-the-art FPA 

detectors being classified as third-generation FPA technology. The first-generation FPA 
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detectors had frame rates of less than 20 Hz, necessitating image acquisition in the step-

scan mode, while the second- generation FPAs, which became available ~6 years ago, 

were much faster and could be utilized with a continuous-scan interferometer, although 

they still had stability issues with respect to the response of the individual detector 

elements 8. With the current third-generation FPAs, which became available ~3 years 

ago, the stability issues have been addressed to an extent and the detector uniformity is 

said to be significantly improved relative to the earlier generations 29.  

 

Figure 2.7. Depiction of a typical FPA hybrid array architecture; a) Detector element 
architecture, b) visual image of detector array segment 10. 

 As described in the previous section, various materials may be used for IR detection 

– array detectors are no exception; examples of materials that have been incorporated 

include InSb, MCT, silicon arsenide (Si:As), and barium strontium titanate (BST) 28. For 

further reference, a summary of the key parameters of various representative FPA 

formats from major manufacturers is presented in a review by Rogalski 10. Analogous to 

conventional IR detectors, MCT has been the most utilized material, owing largely to its 

availability and affordability while providing access to the fingerprint regions of the IR 

spectrum (extending to 750 cm-1 in the case of third-generation FPAs) 8, 28. As previously 

stated, MCT detectors require cryogenic cooling - as do many of the other 

semiconductor materials used in IR detector array fabrication - in order to control 

thermal generation (thermal noise) and achieve higher performance 10. It has been 

observed that the continuous temperature cycling of array detectors can result in de-

bonding and edge delamination, resulting in the gradual development of inoperative 

pixels 14. Owing to the disadvantages of cooled detector arrays, there have also been 

considerable efforts by both the US Department of Defense and the commercial circle to 

further develop thermal detector arrays due to their superior durability, facile 

implementation, and higher pixel densities at significantly lower cost 25. Developments 
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in micro-bolometer and ferroelectric detector arrays (the former being more mature 

than the latter) are expected to compete for detection purposes in the spectral region 

below 12 µm (< 800 cm-1) 31. The BST hybrid array illustrates a current uncooled 

photodetector format; advantages include lower manufacturing costs, lower installation 

and maintenance cost, possibility for larger formats, sensitivity to longer wavelengths 

than second-generation MCT-FPAs (useful for investigation further into the fingerprint 

region of the mid-IR spectrum), and of course no need for time-consuming/expensive 

cryogenic cooling and the associated consequences of temperature cycling 14. Another 

recent study reports an uncooled 128x128 micro-bolometer FPA detector integrated 

within an already well-developed CMOS format, demonstrating a simple, low-cost 

fabrication process, capable of generating a detector array with respectable 

performance 32.  However, the key disadvantage of thermal detector arrays is that their 

sensitivities are currently inferior to those of photodetector arrays, a significant 

drawback when looking to make quantitative measurements of chemical systems. 

Aside from cooling issues, there exist more fundamental problems with IR FPA 

technology in its current state. The issue of non-uniformity between detector elements 

is a well-characterized problem of FPAs, as it is of some concern in that the purpose of 

the technology is to obtain spatially resolved (thermal and chemical) images of 

scenes/samples. There is a response pattern embedded within each FPA due to the 

imperfections in the fabrication process (see figure 2.8), an effect initially so severe that 

it impeded the development of FPA technology for several years 33. This issue arises 

because all of the detectors and much of the multiplexing electronics are fabricated 

collectively, and there is little possibility for post-processing of individual detector 

elements 29. Non-uniformity problems are compounded by the driving forces behind FPA 

technology, i.e. the desire for increasingly large detector array formats constructed from 

novel semiconductor materials, resulting in less developed fabrication techniques and 

more potential for irregularities among the detector elements within the array. As a 

consequence of this embedded non-uniformity, individual detector elements in the 

array exhibit differences in their respective spectral response, which has an impact on 

interpretation of FPA-FTIR images 33.  In order to be assessed, detector non-uniformity 

must be measured in the time domain to compensate for the effects of temporal (white) 

noise – this can be accomplished through co-additions of scans in spectroscopic 
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measurement or frames in thermal camera measurements. Once the pattern is 

established, it may be compensated for through non-uniformity correction (NUC) 

techniques. The most commonly applied FPA correction is referred to as a two-point 

NUC. This standard technique involves measurements at two irradiance levels, and the 

responses of each detector element are employed to calculate individual offset and gain 

corrections for each element, thus forcing the detector output to be (ideally) uniform 

across the FPA for these two irradiance levels (see figure 2.9) 34. More elaborate 

correction procedures range from simply extending the two-point NUC by 

measurements at additional irradiance levels to fuller algorithmic treatments which 

attempt to more thoroughly model the detector element non-uniformities (see figure 

2.8) 35-40. The downside of increasingly exhaustive NUC techniques is the corresponding 

increase in the computational power required, compounded by the fact that these NUCs 

must be conducted regularly due to the often variable nature of detector element non-

uniformity over time 39. Through the application of NUCs, the performance of the 

detector array can approach temporal noise-limited characteristics, though it is noted 

that patterned noise will often persist even after rigorous treatments 35. Thus, an 

additional term to be defined for FPA response characterization is spatial noise, the non-

uniform noise patterns that persist after NUC procedures. Spatial noise exists primarily 

due to the fact that non-uniformity is difficult to model, and there always exist random 

variations in camera operating conditions and environmental conditions 36. 

 

Figure 2.8.  A novel non-uniformity correction algorithm applied to an InSb 128 x 128 FPA 39. 
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Figure 2.9. 3D plot of an MCT FPA (a) before, and (b) after linear non-uniformity 

corrections (NUC). Pixel coordinates on the x, y axes, detector element response value 

on the z-axis 41. 

Other issues with FPA detectors include 29, 36:  

 Limited spatial resolution capabilities compared with optical microscopy 

techniques.  

 Poor detector element SNR; charge transfer efficiency and crosstalk problems.  

 Detector element saturation leading to requirement of DC suppression and sub-

frame integration strategies – leads to more complexity in electronic readout 

systems. 

 High investment costs due to these detectors being produced for high 

priority/low volume applications; note that growing interest in FTIR imaging is 

shifting this trend. 

In assessing FPA performance, the most common measures of detector performance 

(D* and NEP) have been reported to be inadequate 33. The use of these parameters rests 

on the implicit assumption that all detector elements in the array are exactly the same 

and thus does not account for FPA detector element response variations. As a 

consequence, expectations of FPA detector performance based on these figures of merit 

are often very optimistic. A parameter proposed by Mooney et al. 33 is the contrast 

signal-to-noise ratio (CSNR), a parameter similar to the NEP and D* in that it 

incorporates signal- independent noise and shot noise, but goes further by including the 
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spatial noise of the FPA. This same group describes two principal means of quantifying 

FPA non-uniformity: 1) task-based and 2) reference-based techniques 36. Task-based 

techniques involve the measurement of some controlled system – the detection of a 4-

bar pattern of adjacent hot and cold bars with the FPA detector is a classic example of a 

task-based technique used with thermal imaging FPAs. The figure of merit used for this 

task-based techniques is the minimum resolvable temperature (MRT), which is equal to 

half the difference between the temperatures of adjacent hot and cold bars. The 

reference-based techniques involve imaging of a uniform source with the FPA camera 

and quantifying any deviations from uniformity among the detector elements. The 

figures of merit used for reference-based techniques include the percent nonuniformity 

(%U), the CSNR, and the nonuniformity D* (simply the mean/SD of the D* per detector 

element); however, Mooney et al. stated that none of these parameters are fully 

satisfactory, in that non-uniformity and spatial noise vary unpredictably with changes in 

operating conditions, and that each parameter is specific to an individual detector – 

hence, the versatility of D* as a basis for comparisons among detectors is lost 36. 

An effort at approximating the impact of the unique characteristics of FPA detectors 

on quantitative chemical measurements was made by Snively et al. 23. Essentially a 

reference-based technique, their measurements of a benzonitrile solution yielded a 

coefficient of variation (CV) for the pixel absorbance values within the image of ~16% or 

higher; increasing the number of co-added scans reduced the CV to ~12%, still a 

significant variation 23. Other findings of this study include: 

 Impact of diffuser on source intensity distribution of the FPA found to be minimal. 

 Effect of increased scan co-additions on the overall SNR of the FPA was found not to 

result in the expected square root increase. 

 Linear relationship between SNR and decreased spectral resolution (R2 = 0.968).  

 LOD (for benzonitrile) of 9 mol% (5 µm pathlength); linear range of 30 mol%. 

 With further advancements in FPA technology, high quantitative fidelity would be 

quite feasible 19, 23. 

 

 



24 
 

2.1.4. IR Spectroscopy for Quantitative Analysis 

2.1.4.1. Condensed Phase Sampling 

Many techniques exist for obtaining an IR spectrum from a wide variety of samples – 

indeed, this is one of the strengths of IR spectroscopy. Two prominent techniques for 

making such measurements on fluid samples are transmission and attenuated total 

reflectance (ATR). The basic principles behind each technique are important to 

understand when determining which will best suit a particular experimental design. It is 

recognized that there are various other possibilities for IR analyses (e.g. diffuse 

reflectance, photo-acoustic, emission) but these are generally not pertinent to the 

handling of fluid samples and hence may be disregarded for the purposes of this review. 

2.1.4.2. Transmission Measurements 

 Transmission measurements on fluid samples require the use of optical windows 

made from an IR- transparent material. Lists of typically used window materials and 

their associated ranges of IR transmission are available in the literature 42 and from 

suppliers (e.g. ICL, PerkinElmer). The simplest means of preparing a sample for a 

transmission measurement is to place a drop of the liquid on one window and then 

‘sandwich’ the sample by placing another window on top of the sample, thus creating a 

film thickness of approximately 10-20 μm, referred to as a ‘capillary film’. Other means 

involve the use of sealed or demountable transmission cells, in which two optical 

windows are separated by a spacer, ranging in thickness from 10 μm to several 

millimetres, which effectively determines the cell path- length;  the latter may be 

precisely measured by the interference fringe method or the Lambert law method, with 

the former being the more accurate of the two 42. In sealed cells, the two windows are 

held together by a metal frame containing two filling ports, which are  aligned with two 

holes drilled into the upper window so that liquid sample may be ‘loaded’ into the cell 

by means of a syringe. Demountable cells are similar in concept to sealed cells, the only 

difference being that the former must be disassembled in order to “load’ the sample. 

Given that the path-length of a demountable cell may thus change slightly from one 

sample to the next, the use of a sealed cell is preferable for precise quantitative work. 
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Generally, for pure liquids the more polar the liquid, the thinner the transmission-cell 

path-length should be. Though it is preferable to work with pure liquids, many analytical 

situations require that liquid samples be diluted with a solvent. This may be done in 

order to provide a reproducible environment for the analyte, to increase the 

transmittance of a strongly absorbing liquid component, or to decrease the viscosity of a 

particular liquid (e.g. highly viscous oils) 42. In the case of solutions, concentrations of 

solute are typically in the range of 5-10% (w/v), and as long as the solvent absorbance is 

not too strong, the solvent spectrum may be subtracted from the spectrum of the 

solution in the absorbance mode 42. Typical solvents include chloroform, carbon 

tetrachloride, carbon disulfide, hexane, iso-octane, acetone, dioxane, tetrahydrofuran, 

and water 42. A rather significant disadvantage of transmission measurements of liquid 

solutions is that common solvents absorb very strongly in the mid-IR region. Water in 

particular absorbs over broad ranges of the mid-IR spectrum (for a 10 μm cell around 

650-930 cm-1, 1580 - 1750 cm-1, and 2930 – 3650 cm-1) and requires a very short path-

length to avoid signal saturation - thus compromising experimental sensitivity. Ideally, 

the path-length should be as small as possible; however this introduces problems with 

experimental reproducibility due to path length variation, practicality of filling the cells, 

and interactions of solvent molecules with surface materials. Another consideration is 

the possibility of solvent-solute interactions that may modify the resultant spectra of the 

solute. Such associations will result in a frequency shift of the absorption bands of the 

associated polar components of the solute molecule.  

2.1.5.3. ATR Measurements 

The ATR technique is based on the attenuation of a totally internally reflected IR 

beam through its interaction with the sample. This technique is implemented by placing 

the sample in contact with an “IR transparent’ internal reflectance element (IRE), 

through which the IR beam from the source undergoes total internal reflection (TIR) by 

impinging on the IRE at an angle from the normal that exceeds the critical angle, c = 

arcsin(n2/n1), where n1 and n2 are the refractive indices of the IRE material and the 

sample, respectively. The crystalline substance comprising the IRE must be of a higher 

refractive index than the sample in order for TIR to occur. Various materials are used for 

ATR IREs, including: ZnSe (nr=2.4 at 1000 cm-1), Ge (nr=4.0 at 1000 cm-1), Si (nr=3.4 at 
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1000 cm-1), GeAsSe (nr=2.5 at 1000 cm-1, and diamond (nr=2.4 at 1000 cm-1) 43, 44. When 

the incident IR beam passes through the IRE and contacts the sample medium at an 

angle greater than the critical angle (thus satisfying the requirements for TIR), an 

evanescent wave is produced at the surface of the IRE. Evanescent, meaning “tends to 

vanish”, refers to the property of this near-field standing wave to decay exponentially 

from its point of origin, with the distance at which the amplitude of the evanescent 

wave has decayed to 1/e of its initial amplitude being termed the depth of penetration. 

The latter is proportional to the wavelength and also depends on the refractive indices 

of the IRE material and the sample but is generally on the order of 0.5–5 μm. Within this 

minute distance, IR absorption by the sample will result in attenuation of the 

evanescent wave, and. the attenuated energy of the evanescent wave is then returned 

to the totally reflected IR beam, which then exits the IRE onto the detector element. The 

short penetration depth of the evanescent wave makes the ATR technique ideal for 

highly absorbing materials (e.g. water solutions) as well as surface and thin film 

measurements. When used with solid samples, the short penetration depth makes it 

essential to ensure that the sample is in direct contact with the IRE of the apparatus, 

which is often achieved with the use of a pressure device. 

2.1.5.5. Calibration Methodologies & Analytical Figures of Merit 

 

Agencies such as the Association of Official Analytical Chemists International (AOAC 

International) impose strict guidelines for the performance of calibrations applied to 

specific analytical problems, e.g. the proximate analysis of raw milk for fat, protein and 

lactose contents. Because FTIR spectroscopy is a secondary method, its results must be 

continually confirmed by a reference method, and there must be a defined level of 

agreement. A way to establish the level of agreement is defined as the mean difference 

for accuracy (MDa) and the standard deviation of the differences for accuracy (SDDa). 

The MDa measures the differences between measurements made on calibration 

standards using the reference method and the FTIR method and is reported with a sign 

to indicate both the magnitude and the direction of the bias of the FTIR method relative 

to the (presumed to be accurate) reference method. The SDDa measures the width of 

the distribution of those differences, giving an indication of the precision of the FTIR 

method relative to the reference method; it is noted that the SDDa is inherently limited 
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by the precision of  the reference method 45. An additional set of measurements 

describe the level of reproducibility of an FTIR method and are analogous to the MDa 

and SDDa parameters, replacing the reference method measurements with a set of 

repeated FTIR measurements. These parameters are reported as the mean difference 

for reproducibility (MDr) and the standard deviation of the differences for 

reproducibility (SDDr). 

Linear Regression 

 

According to IUPAC “a calibration in analytical chemistry is the operation that 

determines the functional relationship between measured values and analytical 

quantities characterizing types of analytes and their amounts” 46. The simplest of 

calibration models is a linear least-squares estimation (LLS); the relationship between 

signal intensity (yi) and analyte concentration (xi) in an LS model is expressed in equation 

2.5. 

 

Equation 2.5.  yi = B + M xi  (B = Experimental Blank; M = Experimental Sensitivity) 

 

In terms of spectroscopic analysis, the response (yi) is the absorption of 

electromagnetic radiation at a specific wavelength by a quantity of analyte (xi). The 

Beer-Lambert-Bouguer law (or simply Beer’s law) describes the relationship between 

the attenuation of a monochromatic beam of electromagnetic radiation of fixed radiant 

power on interaction with an absorbing medium 47. When a number of requirements are 

satisfied 47, a chemical system may be found to adhere to Beer’s law, whereby the 

directly proportional relationship between analyte concentration and signal response is 

described by equation 2.6. When a linear model is made relating concentration to 

absorbance for prediction of concentration from absorbance, the calibration is referred 

to as an inverse Beer’s law calibration 19. 

Equation 2.6.  A(λ) = a(λ)bc  

(A=absorbance; λ = wavelength; a = absorptivity; b = path-length; c = analyte 

concentration). 
 

Looking from equation 2.5 to equation 2.6, it is observed that the term M ( in 

equation 2.5) in spectroscopy is in fact a combination of the measured path-length and 

molar absorptivity of the analyte – which will be different from one case to another. 
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Building a calibration is usually conducted in such a way that there is the upmost 

confidence in the true values of the calibration standards which should be prepared in 

suitably graduated amounts 46. This creates a ‘controlled’ situation where the level of 

error associated with the xi component becomes negligible when compared to the level 

of error in the yi component (dependent variable) of the calibration, ensuring that the 

error introduced to the calibration model is as minimized as possible. Some descriptors 

of the quality of a particular calibration model include the correlation coefficient (CC), 

the calibration standard deviation (CSD), linearity (a priori or a posteriori), comparison of 

experimentally obtained calibration parameters (B & M) and the condition of 

homoscedasticity (where the standard deviation of the points around the curve is 

assumed to be equivalent along the length of the curve); see reference for elucidation 

and/or further descriptions of each of these parameters  46.  

 

Multiple Linear Regression 

 

Multiple linear regressions (MLR) take into consideration that the correlation of yi 

may not be solely with xi but with xn, where n could equal any number of explanatory 

variables. In other words, MLR attempts to model the relationship between 2 or more 

explanatory variables and a response variable by fitting a linear equation to an observed 

data set. In equation 2.7 an example of a two-predictor linear regression model is 

provided 48. 

 

Equation 2.7.  y1 = β0 + β1x1 + β2x2 + Є  

 

This model is linear in each of the parameters β0, β1, and β2, and describes a three-

dimensional plane with the axes y1, x1, and x2. The parameter β0 is the intercept of the 

plane, while the parameters β1 and β2 are called the partial regression coefficients. 

Parameter β1 represents the change in the response corresponding to a unit change in x1 

when x2 is held constant, and vice versa for parameter β2. 

 

Partial Least Squares Regression 

 

 Partial least squares regression (PLS) is a multiple linear regression technique that is 

said by some to be the de facto standard calibration method in spectroscopy 49.   PLS is 
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often referred to as a “whole spectrum” technique because the calibration model may 

be built utilizing the complete vector which represents the spectrum, as opposed to LR 

and MLR techniques which utilize single or relatively small portions of the overall 

spectra (e.g. peak heights and/or peak areas of interest). It is also referred to as an 

‘indirect method’ in that it only requires knowledge of the concentration of the 

analyte(s) in question. In short, PLS involves the determination of a set of latent 

variables through a data matrix rotation which determines the components within the 

data matrix that are also relevant to the (in the case of chemical measurement) 

concentration values 19. The latent variables which are calculated describe the variability 

attributed to the data matrix and the concentration values; the first latent variable 

describes the largest source of the variability, the second latent variable the second 

largest source of variability, and so on. The selection of the number of latent variables to 

define the PLS calibration model is an important consideration, where the simplest and 

most commonly employed method is to utilize the latent variable associated with the 

minimum predictive error sum of squares (PRESS) value 19. In this procedure the PRESS 

values are plotted against an increasing number of latent variables and the minimum of 

this plot is then selected as the optimum condition of calibration.  

A significant advantage of using PLS calibration models is that they are often robust 

enough to build calibrations for sample matrices that exhibit highly overlapped spectral 

features – i.e. it can prove to be quite trivial to build multi-component calibration 

models from complex sample matrices. Given the multiplexing advantage of FTIR 

spectroscopy, it does in some circumstances seem suitable to make use of that wealth 

of information, which is where PLS (among other multivariate matrix based techniques), 

is quite well suited. 

2.1.4.5. Quantitative Applications of FTIR Spectroscopy in Food Analysis 

 

FTIR spectroscopy is reliable (inherently high wavelength accuracy and reproducible 

measurements), fast (to various degrees, depending on 

interferometer/detector/method), often non-destructive to the sample, and 

simultaneously acquires a wealth of chemical information in a single measurement. It 

has been demonstrated that there are a variety of potential calibration schemes (most 

using matrix methods based on the additive nature of Beer’s law) that can access this 
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chemical information to varying degrees, easily achieving multi-component calibrations 

from complex sample matrices 2. All of these attributes make FTIR spectroscopy highly 

adaptable to process analysis applications; a sector which has seen significant levels of 

success in the application of FTIR spectroscopy is the food industry. The needs of the 

food industry lie mainly in proximate analysis, be it raw materials, process products, or 

finished products. The main constituents in foods are fats, proteins, carbohydrates, and 

moisture – followed by a list of minor constituents such as vitamins, minerals, 

phytosterols, organic acids etc. Of particular interest to this review are those 

applications which require quite high levels of sample throughput, and to give an 

impression of such requirements three applications will be highlighted: milk analysis, 

wine analysis, and edible oil analysis.  

 

Milk Analysis 

 

The dairy industry is a notable example of the successful application of IR 

spectroscopy for the regular proximate analysis of a food product. The modern 

application of FTIR spectroscopy to milk analysis is preceded by a significant background 

of IR utilization in the industry. The traditional chemical reference methods for 

compositional analysis of milk include the Babcock and Mojonnier ether extraction 

methods for fat, the Kjeldahl procedure for protein, and polarimetry or HPLC for lactose 

50. These methods carry a high degree of precision; however they are inefficient in terms 

of time of analysis and require substantial amounts of chemicals, particularly when 

performed on a large commercial/industrial scale. These issues motivated the search for 

a rapid analysis technique, and in 1960 the first IR milk analyzers were created by 

Goulden et al. 3; these were eventually commercialized as the IRMA by Grubb-Parsons. 

This analysis technique was accepted by the AOAC as an official method, and later the 

IRMA was purchased by FOSS – now a global leader in IR milk analyzer systems; see 

table 2.3 for a list of companies marketing dedicated IR milk analyzers. The adoption by 

industry of these IR milk analyzers resulted in their gradual evolution from diffraction 

grating based systems to filter based,and eventually interferometer based systems. The 

current utilization of FTIR spectrometers for the analysis of raw milk is illustrative of the 

high-throughput potential of the infrared analysis technique. Some of these analyzers 

(e.g. MilkoScan series from FOSS) utilize an automated flow system and are capable of 



31 
 

scanning up to 600 samples/hour. Further, it is not uncommon for central laboratories 

to operate several of these units simultaneously, amounting to a potential of several 

thousand samples/hour. The incorporation of FTIR spectrometers into these instrument 

designs enables the simultaneous selection of appropriate spectral bands for the 

quantification of the main components of milk; carbonyl groups from the ester linkages 

of fats (C=O stretching vibration modes), peptide linkages (Amide II) in proteins, and O-H 

groups in lactose 50. Current instrumentation/calibration techniques are capable of 

measuring the fat, protein, lactose, total solids, solids-non-fat, freezing point depression, 

total acidity, free fatty acids, density, urea, and casein values from a milk sample. 

Depending on the exact analyzer system being used, they are also adaptable to creams, 

concentrated milks, infant formulas, and an increasingly wide variety of milk products. 

Table 2.3 illustrates the potential versatility of FTIR analyzers in the dairy industry, 

highlighting several studies of dairy products. A list of several publications regarding 

FTIR analysis of dairy products is provided in table 2.4 (following page). 

 

Table 2.3. List of some commercially available IR based milk analyzers (2009). 
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Sample Set Reference Spectrometer/Calibration/Analytes/Other 

Milk Standards 

(12c) 

Van de Voort et al 
50 

FTIR with MLR, CLS, and PLS calibration 

model, measures of fat/protein/lactose/TS. 

Milk Standards Ulberth et al 51 
FTIR, derived methyl ester + direct 

measures of TFA content 

Sweetened 

Condensed Milk 

Standards (20c, 

30v) 

Nathierdufour et 

al 52 

ATR-FTIR, PLS calibration model, measures 

of fat and solids. 

Milk Standards DeJong et al 53 
FTIR, 2nd Derivative measurements, 

measures of fat/protein/lactose. 

Raw Milk 

Standards  

(~300c, 20v) 

Hewavitharana 54 
FTIR, PLS and PCR calibrations, measures of 

casein content 

Milk Standards 

(~900c, xv) 
Hansen 55 

FTIR, Multivariate calibrations, various pre-

treatments, measures of urea content 

Milk Standards 

(180c) 
Heuer et al 56 

FTIR, PCA/PLS, truncation & 2nd derivative 

pre-treatment, measures of acetone 

content 

Chocolate Milk 

Standards 

(18c, xv) 

Cocciardi et al 57 
FTIR, PLS calibration, measures of fat, 

sucrose, lactose, and total solids. 

Milk Standards 

(45c, 15v) 
Sivakesava et al 58 

FTIR, FT-NIR, PLS calibration, measures of 

tetracycline content 

Milk Standards 

(33c, 48v) 
Inon et al 59 

ATR-FTIR, HCA selection, PLS-1 PLS-2 

calibration; measures of fat, protein, 

carbohydrates, calcium, caloric content. 

Infant Powdered 

Milk 

(11 – qualitative) 

Deng et al 60 
FTIR, 2nd derivative; measures of fat, 

protein, lactose, maltodextrin, sucrose. 

Spoiled Milk 

Samples (252) 
Nicolaou et al 61 

ATR-FTIR and HT-FTIR, PCA/ PLS 

calibrations, metabolic fingerprint 

measures. 

Rumen Standards 

(n/a) 
Uden et al 62 

FTIR, measures of acetate, propionate, 

butyrate, 1mM accuracy. 
 

Table 2.4.  FTIR analysis of milk – examples from the past 20 years. c = calibration set; v 

= validation set; CLS = Classical Least Squares; TFA = Trans-Fatty Acids; PCR/A = Principal 

Component Regression/Analysis; HT-FTIR = High-Throughput – FTIR. 
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Alcoholic Beverage Analysis 

 

Alcoholic beverages can be defined as those beverages with an ethanol content of 

60% (v/v) or less and can be divided into two main categories – distilled liquors (or 

spirits) and fermented liquors 63. The first component that likely comes to mind when 

making measurements of alcoholic beverages is that of the ethanol content, an 

important measurement for both social and economical reasons, and something that is 

performed in producer, government and customs laboratories. As with milk, there are 

tedious time-consuming official methods for the analysis of the ethanol content of 

liquors. It is possible to make measurements of ethanol using FTIR spectroscopy in both 

the transmission and ATR modes, while measurements using NIR spectroscopy are also 

quite common. Regarding transmission measurements, as with milk measurements, the 

path-length must be kept smaller than 50 µm in order to keep the water absorption 

under control. A constant issue with direct measurements of ethanol is that there is 

often strong interference from carbohydrate bands, resulting in a variety of innovative 

calibration approaches (see table 2.5, following page).  

The analysis of wines is another excellent example of the high-throughput potential 

of FTIR spectroscopy, with commercially available dedicated wine analyzers receiving 

considerable attention from industry and research communities alike 4. Using 

multivariate calibration techniques, mainly PLS regression, it is possible to make 

quantitative measurements on upwards of 10 components (with varying degrees of 

accuracy) on a single sample of wine – a nice touch for an industry with such prestige. 

The main challenges in FTIR analysis of wines are: 1) the chemically similar profiles of 

wines, 2) interferences from dominating components (mainly ethanol and water), 3) 

outliers due to the high variability of wine samples, and 4) the restricted LOD afforded 

by FTIR spectroscopy 4. Table 2.5 highlights several studies using FTIR spectroscopy for 

the direct measurement of an alcoholic beverage, with some pre-treatment of the 

sample in some cases. The wide ranges of products that open themselves to 

multivariate analysis make alcoholic beverages an excellent candidate for FTIR 

quantitative analysis. 
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Other Food Products 

The application of FTIR for food analysis is of course not limited to milk and wine; 

there exist a wealth of products that the versatile range of FTIR techniques can handle. 

Edible oils form another significant area of FTIR research (table 2.6, following page), 

where the analysis of fat composition, moisture content, FFA’s, peroxide values, iodine 

values, among other parameters, has been achieved with excellent accuracy 64. Fruit 

juices, cola drinks, energy drinks, and essentially any sugar solutions comprise another 

successful example. FTIR has firmly established itself in the food industry, where the 

number of applications continues to grow rapidly. 

 

Sample Set Reference Description 

Wine (72c, xv) Schindler et al 65 
FTIR (SI); PLS calibration; measures of 

sugars, alcohols, organic acids. 

Beer  Haberkorn et al 66 
FTIR (SI); measures of carbohydrates, in 

situ monitoring of enzymatic reaction. 

Wine (72c, 77v) 

Distilled Liquor (xc, 

12v) 

Cocciardi et al 67 

ATR-FTIR; PLS calibrations; measures of 

alcohol (distilled liquors); measures of 

alcohol, TR sugars, TA, and pH (wines). 

Wine (150c, 45v) Dixit et al 68 
ATR-FTIR, ANN & PLS calibrations; 

measures of glycerol adulteration. 

Alcoholic Beverages Gallignani et al 63 
FTIR, online LL EtOH extraction with 

CHCl3, LR calibration, measures EtOH. 

Wine (897c, xv) Moreira et al 69 
FTIR, PLS calibration; measures of TA, 

tartaric, malic, lactic, acetic, citric acids. 

Cider (51-147c, 25-47v) Lobo et al 70 
ATR-FTIR, PLS calibration; measures of 

TA,VA, EtOH, specific gravity, pH, fructose. 

Wine phenolic extract  

(64c, 22v) 
Fernandez et al 71 

FTIR, SPE, PLS calibration, 2nd 

derivative; measures of tannins 

(phenolic content). 

Spirit drinks & Beer 

(535c & 461c, v = 1/3rd 

of c) 

Lachenmeier et al 72 
FTIR, PLS calibration; 9 components for 

beer, 7 components for spirits.  

 

Table 2.5. IR spectroscopic analysis of alcoholic beverages. SI = Sequential Injection; 

ANN = Artificial Neural Networks; TR = Total Reducing; TA = Total Acidity; VA = Volatile 

Acids; SPE = Solid Phase Extraction. 
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Application Reference Description 

Virgin Olive Oil Tena et al 73 
ATR; SWMLR calibrations; TFA, total polar 

compounds. 

Edible Oils (synthetic) Christy et al 74 
Reflectance; PLS calibration; FA 

determination. 

Thermally Stressed Oils Dubois et al 75 
PLS calibrations; aldehyde formation, and 

determination of anisidine value. 

Fats and Oils Ismail et al 76 
Transmission and ATR; LR calibration; FFA 

determination. 
 

Table 2.6. FTIR analysis of edible oils. SWMLR = Stepwise MLR; FA = Fatty acid. 

 

2.2. Micro-fluidics 

The field of micro-fluidics, which deals with fluid properties and applications at the 

sub millimetre scale (<10-3 m), is a highly multidisciplinary science encompassing the 

areas of engineering, physics, chemistry, micro-technology, and biotechnology to name 

a few. According to Tabeling and Cheng (2005), “Micro-fluidics can be defined as the 

study of flows that are simple or complex, mono- or multiphase, which are circulating in 

artificial micro-systems” 77. Over the past two decades this field has been increasingly 

explored, evolving from its earliest applications in basic flow analysis procedures 

towards more involved applications like micro total analysis systems (μTAS) and the ‘lab 

on a chip’.  

It is alleged that micro-fluidics was born of four parent technologies: molecular 

analysis, bio-defence, molecular biology, and microelectronics 78, 79. Molecular analysis 

refers to the advancements in capillary analysis technologies such as high performance 

liquid chromatography (HPLC) and capillary electrophoresis (CE) – both highly employed 

analytical techniques whose successes encouraged the development of increasingly 

compact designs 79. Secondly, fears of biological and/or chemical weapons technology 

stimulated the Defence Advanced Research Projects Agency (DARPA) to develop highly 

compact, field deployable micro-fluidic instrumentation for their detection 78. These 

suspicions provided what some consider to be the main stimulus for academic 

advancements in micro-fluidics during the 1990’s 78, 79. The field of microbiology made 

major contributions to the development of micro-fluidics during the search for more 

efficient methods of DNA sequencing during the genomics boom of the 1980’s; 
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techniques with higher throughput, sensitivity and resolution were essential for 

advancements in this research 78, 79. Lastly, the field of microelectronics supplied a 

precedent for the fabrication of micro-fluidic devices (e.g. photolithography, wet/dry 

etching, deposition), which enabled the precise design of the channels and contours 

required for different micro-fluidic devices. Micro-electromechanical (MEM) devices 

provided the makings for various micro-components such as heaters, valves, and pumps 

that have since been adapted into novel micro-fluidic systems.  

It is noteworthy that nature provides exquisite examples of micro-fluidic systems that 

make our current innovations seem crude at best. One example is the capillary systems 

found within trees, which employ networks of countless capillaries ranging in size from a 

hundred micrometers in the trunk to tens of nanometres within parts of the leaves. 

Despite the complexity of the capillary system, it is able to provide a near homogenous 

supply of sap throughout the organism – reminiscent of the circulatory and respiratory 

systems in animals 77. Another example is the ability of any common spider to spin a 

thread 10’s of micrometers in diameter with remarkable mechanical characteristics. This 

is accomplished through the synthesis of proteins having a specific combination of 

crystalline and amorphous structures that give the silk its extraordinary properties, 

which are then manipulated through a series of glands to be expelled as the final 

product 77. Looking to examples such as these, one might consider the field of micro-

fluidics to be open to biomimetics 78, 80.  

The accomplishments of manmade micro-fluidic systems have yet to reach those 

seen in nature; however it is currently recognized as a young science with plenty of 

promise. The fact that micro-fluidic systems require minute sample/reagent volumes, 

generate respectively small volumes of waste, possess short 

reaction/separation/detection times with high sensitivity and resolution, offer the 

possibility for integration and automation, have a high energy throughput, have reduced 

dimensions compared to conventional analytical instrumentation, and are relatively 

cheap – makes micro-fluidics quite an attractive technology 78, 79, 81, 82. It is apparent, as 

indicated by the above list of qualities, that micro-fluidic technology derives most of its 

advantages from its relative size. The details of the behaviour of fluids at the micro scale 

shall now be discussed in more detail. 
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2.2.1. Micro-Fluid Theory 

When thinking about micro-fluidics, it should be apparent that small fluid volume is 

the cornerstone of the technology. Columns typically range from 5-500 μm in diameter, 

and fluid volumes range from micro- to femtoliters (10-6 – 10-15 L) 81. Micro-fluidic 

technologies take advantage of both the physical scale of a particular system, and the 

properties of fluid behaviour at that scale 79. It may not be intuitive that liquids at the 

micro scale should behave differently than those in the macro-world, after all the micro 

scale is still several orders of magnitudes larger with respect to molecular and 

intermolecular distances. Still, there are situations where physical descriptions that may 

apply in the macro world prove unaccommodating at the micro-scale of fluids. 

Some relevant works for introductory concepts to micro-fluidics include: Patrick 

Tabelings “Introduction to Micro-fluidics” 77; Henry Bruus’s “Theoretical Micro-fluidics” 

83; Nguyen and Werely’s “Fundamentals and Applications of Micro-fluidics” 84; and an 

assortment of journal articles and reviews 79. In the following sections the characteristics 

of fluids and fluid flow, and transport mechanisms within micro-fluidic systems are 

considered in brief. It is suggested that if the reader would like a more in depth 

treatment of these concepts they refer to the listed material. 

 

2.2.1.1 Fluids and Fluid Flow 

Fluid: “A material that deforms continually under shear stress or with the 

application of an external force attempting to displace part or all of the fluid elements at 

a surface boundary.”79 

The term fluid and liquid are often used synonymously, however this is not strictly 

correct as gasses and liquids (separate phases) both exhibit fluid characteristics. That 

said, there are fundamental differences between these two types of fluids as a 

consequence of their vastly different densities83, 84. Three important parameters when 

considering fluids are: density (ρ), pressure (P), and viscosity (η). Density is defined as 

mass (m) per unit volume (V). Pressure is defined as the mechanical force per unit area 

of a surface. Pressure within a fluid is a function of the depth of the point of interest in 

the fluid, i.e. pressure will increase as you descend from the surface of a liquid. In terms 

of micrometers, the change in pressure (ΔP) is minute, allowing for the safe 
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approximation that pressure changes due to depth within microfluidic systems can be 

ignored. As will be discussed in section 2.2.1.2, external pressures are often applied to 

micro-systems containing inlets and outlets as a means of obtaining fluid flow. When a 

fluid flows within a confined area there will be resistance, giving rise to fluid viscosity. 

Viscosity can be defined by equation 2.8, which shows the viscosity coefficient equal to 

a ratio of shear stress (Force (F)/Area (A)) to shear rate (displacement (dx)/liquid 

thickness (dy)). Sheer stress refers to a stress force parallel to the face of a material, 

while sheer rate refers to the displacement of the film relative to the films thickness. 

 

  

 

Equation 2.8. Viscosity Coefficient (ratio of sheer stress: sheer strain). 

There are three possible scenarios surrounding the relationship presented in 

equation 2.8. The first is that the relationship between the viscosity coefficient and the 

sheer stress is directly proportional. Any fluid that exhibits this behaviour is classified a 

Newtonian fluid. The second and third possibilities involve situations where the two 

parameters are not directly proportional (i.e. the viscosity changes with the magnitude 

of sheer stress) and are called Non-Newtonian fluids. In the case of Non-Newtonian 

fluids the viscosity can either increase (sheer thickening) or decrease (sheer thinning) 

with the amount of sheer stress. 

The main issue when going from macro to micro-fluidics has to do with the relative 

importance of various physical effects, a problem that may be simplified by using 

dimensionless parameters 85. A dimensionless parameter is used to define a unit such as 

volume, length, or linear flow rate in such a way that it can be assumed to be constant 

throughout an entire system, a scaling technique used by engineers when there are 

large number of variables involved with a particular system 86. A commonly quoted 

dimensionless parameter in regards to fluid flow properties is the Reynolds number 

(Re), defined in equation 2.9. 

 

Equation 2.9. Reynolds number (d=diameter or channel depth; v= average velocity of 

the moving liquid, and η = viscosity). 
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This dimensionless parameter describes the flow properties of a fluid as a ratio of 

inertial effects to viscous effects, i.e. in terms of turbulent or laminar flow 79, 85. 

Turbulent flow is characterized by the presence of eddies, vortices and other flow 

fluctuations, while laminar flow is characterized by a smooth, stable fluid motion 85. 

Empirical observations estimate fluids with a Re of >2300 to be turbulent (inertial forces 

are dominant). With a Re of approximately <2000 a fluid begins to be dominated by 

laminar flow (viscous forces). In regards to equation 3.2 it is apparent that micro-scale 

channels will generate a low Re at practical velocities – in fact a flow rate approximately 

the speed of sound would be required to see inertial forces resurface 79! This has 

implications to how fluids will be able to mix within micro-fluidic channels, as without 

some form of agitation, mixing will be entirely diffusion controlled. It is recognized that 

due to the nature of fabrication techniques (section 2.2.1.3) micro-channel designs are 

often semi-rectangular, and as such the hydraulic diameter (equation 2.10) may be used 

in determining the Re. The wetted perimeter (Pwet) refers to the entire perimeter of the 

channel that is exposed to the fluid. 

 

Equation 2.10. Hydraulic Diameter (Dh), Area (A), Pwet (wetted perimeter). 

There are various dimensionless parameters related to surface tension that may be 

useful, depending on the particular micro-fluidic application 85:  

 Capillary number (Ca) compares viscous effects to surface tension effects - 

useful when working with multiphase flow. 

 Weber number (We) compares fluid inertia to surface tension - useful for 

analysis of bubble/droplet formation. 

 Bond number (Bo) compares gravitational effects to surface tension effects - 

minor effect observed in gas-liquid systems. 

 

Navier-Stokes equations are based on combinations of fundamental laws 

(conservation of mass/energy/momentum) with fluid properties (viscosity, thermal 

conductivity etc.), and are used for the theoretical treatment of fluid flow. These 

equations require several boundary conditions or equations of state in order to obtain 
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meaningful solutions. A key boundary condition is that of the ‘no slip condition’, which 

states that the velocities found at a phase boundary must be equal. In the case of phase 

boundary between a fluid and solid capillary or channel, the velocity must then be equal 

to zero. Another boundary condition is the ‘no temperature jump’ condition – used to 

ensure that a gradual temperature gradient is in place for data treatment 83. 

The Poiseuille flow equation (equation 2.11) presents a solution to the Navier-

Stokes equations that is useful for describing flow conditions in a system with a pressure 

gradient as the driving force 79, 83. Within equation 3.4 exists the reciprocal of the fluidic 

resistance, 8ηL/πR4; its inverse dependence on the capillary radius demonstrates an 

increased fluid resistance with decreased size. As a result of the increased resistance the 

required pressure gradient (ΔP) needed to flow liquids through dimensions at the micro-

scale is quite large. Currently there is no known analytical solution to the Poiseuille flow 

problem when presented with rectangular channel dimensions – it is instead 

approximated as a Fourier sum with reasonable accuracy 83. 

 

Equation 2.11. Poiseuille Equation (Q): (R = capillary radius, L = capillary length, ∆P = 

hydraulic pressure, ∆V = volume of liquid in system, t = time). 

 2.2.1.2. Transport Mechanisms 

A key function of many micro-fluidic devices is that they have a fluid (or some 

combination of fluids) flow through a simple or complex network of micro-channels for 

some purpose. There are two different types of transport in micro-fluidic systems: 

directed transport and statistical transport 79. Directed transport is achieved through the 

application of work to the system. Two common means of achieving directed transport 

in micro-fluidic systems are pressure driven flow and electro-osmotic driven flow 87, 88. 

Statistical transport is defined as entropy driven transport, whereby flow only occurs 

when the fluid is moving in such a way that it is more disordered than its initial state 

(e.g. diffusion controlled transport). Mixed transport (a combination of directed and 

statistical transport) is also a possibility, an example is forced heat convection – the fluid 

is pressure driven through the channel while a heat source causes the molecules in 
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contact with the channel walls to diffuse to the center 79. Due to the high ratio of surface 

area to volume in micro-channels there are many interfacial phenomena that could be 

explored as driving forces e.g. wetting properties, surface tension, capillary effects, 

electrokinetics 89. For the purposes of this review only electro-osmotic and pressure 

driven directed transport are discussed further. 

Electrokinectic Drive (Electro-osmotic Flow): Electro-osmosis is the electrokinetic 

flow of fluids with respect to a fixed, charged solid surface 90, 91. Note that the key 

difference between electro-osmosis and electrophoresis lies in the size of the charged 

particles in the ionic liquid; if comparable to the size of the fluid molecules you are 

dealing with electro-osmosis, whereas if the particles are large (e.g. macromolecules, 

proteins) you are dealing with electrophoresis 92. The flow phenomena observed in 

these systems is dependent on the applied electric field, the physical characteristics of 

the microchannels, and the physical properties of the fluid 93. The principles behind 

electro-osmosis (and electrokinetics) can be explained with a model case 77, 89: 

 Establish a uniform surface charge at a solid-liquid interface within a capillary or 

channel, brought about by the functional groups of the surface material. 

 Surface charge attracts counter ions from the contained electrolyte solution. 

 An excess charge is developed near the solid-liquid interface, forming an electrical 

double layer (EDL) with thickness equal to the Debye screening length. 

 This EDL of counter-ions screens the electric field so that it decays over the Debye 

length – the potential drop over this distance is referred to as the zeta potential 

(typically less than 100 mV for electrolyte solutions). 

 Application of an external electric field parallel to the capillary/channel produces an 

electrical force within the EDL, driving the mobile ions within. 

 Fluid surrounding the ions moves due to fluid viscosity, bulk fluid motion is produced. 

 

Note: The EDL results in a screened electric field normal to the surface whose 

strength depends on surface charge density, thickness ranges from ~ 10-100 nm 

relative to electrolyte concentration (~10-3 – 10-5 M) 89. 

When an ion containing fluid (e.g. water) is placed into a micro-channel with a fixed 

charge on its surface and the voltage is applied, the fluid will essentially move as a plug 

78. There are several advantages to electro-osmotic driven flow as it relates to micro-
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fluidics, e.g. the simplicity of having the driving force embedded into the device, no 

external moving parts, convenient power supplies (batteries), compact size, 

minimization of fluid plug broadening, and the high resolution separation of ionic 

components 78, 89. However, depending on the specific application you are interested in 

there are some drawbacks to electro-osmosis directed transport, especially related to 

the strong dependence of electro-osmosis flow on the channel surface properties. For 

instance electro-osmotic flow can result in varied amounts of analyte retention, 

impacting the efficiency and reproducibility of chromatographic separations; the 

coatings sometimes added to micro-channels used for cell analysis can lower the net 

surface charge of the channel, thus suppressing the flow rate; limited flow rate for time 

resolved applications; the presence of an electric field may be undesirable in some cases 

– i.e. unwanted electorphoretic separation, alteration of biological cells 87. Another 

limitation of electro-osmosis is that it is only applicable to polar fluids containing some 

concentration of ions 92. 

Pressure Drives (Hydrodynamic Flow): This is a conventional method of achieving flow 

in fluid systems, something that has been well established by engineers. Flow in this 

case is driven by the action of a pressure difference, which is applied between an 

upstream and a downstream terminal in a device. Applied pressures spread right 

through the fluid with finite speed, though changes do not occur everywhere 

throughout the fluid instantaneously as they are limited by the speed of sound 92. The 

actual transfer of pressure in a fluid is carried out at the molecular level through 

intermolecular forces and momentum gain through increased molecular collisions (more 

significant in the case of gasses). The usual means of obtaining a pressure differential in 

microfluidic systems is by connecting an external macro syringe pump with the excess of 

fluid to be injected into the micro-channel. This system gives good control over the 

pressure differential; however it can prove problematic to obtain highly accurate control 

of the fluid flow 87.   

The use of microfluidic pumps has been investigated, with over 200 journal articles 

covering new micro-pumps or analyzing micro-pump operation since the early 1980’s 94.  

There exists a wide range of mechanical and non-mechanical pumps available to micro-

fluidics, e.g. check-valve, peristaltic, valveless rectification, rotary, ultrasonic, centrifugal, 

magneto-hydrodynamic, electro-hydrodynamic, and as discussed previously electro-
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osmotic 88, 94. The majority of micro-pumps reported are classified as reciprocating 

displacement pumps, otherwise known as membrane or diaphragm pumps 94.  

An issue with micro-fluidics and pressure driven flow is found within the Poiseuille 

flow equation (equation 3.4) – the fluidic resistance. The high surface to volume ratio 

creates viscous effects that require a larger pressure gradient (typical operating 

pressures in microfluidic systems are between 1 kPa and 100 kPa) in order to provide 

the flow needed for the system – perhaps to the point of compromising the mechanical 

integrity of the device 92. Another problem with micro-mechanical pumps is that their 

fabrication and implementation into microfluidic devices can prove to be quite tedious – 

as opposed those of electro-osmotic systems. These disadvantages aside, the use of 

mechanical pumps continues to be a common means for pressure driven flow. The 

availability and cost of equipment such as syringe pumps, combined with its ability to 

move a broader range of materials, and its insensitivity to channel materials make 

pressure driven flow a practical approach for many applications. 

2.2.1.3. Fabrication Technologies 

Fabrication technology for microfluidic devices has evolved largely out of techniques 

developed in the field of micro-electromechanical (MEM) engineering where techniques 

such as photolithography, etching, deposition, micro-wetting, and micro-impression all 

permit the fabrication of miniaturized systems 77. As a convention these technologies 

can be categorized into hard and soft techniques; hard referring to technologies based 

on etching/lithography/deposition of hard materials such as glass and silicon, soft 

referring to technologies that manipulate elastomers or plastic materials. 

An important consideration with respect to the current work is that the majority of 

micro-fabrication techniques have been built up around MEM’s technologies, where it is 

most common to work with silicon and glass based media. When working with IR 

detection these techniques must be extended to different IR transparent crystal media, 

e.g. CaF2 or ZnSe, where fabrication techniques are less developed. Besides being 

considerably more expensive than the more common glass/silicon substrates typically 

used, there are other differences in these IR transparent substrates that will have 

consequences on the application of micro-fabrication techniques. Keeping this fact in 
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mind a brief description of common micro-fabrication techniques is provided and, 

where possible, applications of the technique to IR specific materials. 

Hard Techniques - Etching 

As previously mentioned, the use of silicon or glass as a substrate in micro-design is a 

relatively mature technology. These hard materials are open to techniques such as 

etching, lithography, and deposition, which are capable of obtaining micro-channel 

dimensions in the range of 0.2 – 500 μm 77. Silicon as a micro-device substrate is suitable 

for various reasons: wide availability, possibility for integration with electronic circuits 

(semi-conductor), and its physical and chemical properties make it compatible with a 

wide range of established micro-fabrication processes with sub-micrometric precision. 

Glass, for the most part, can be thought of as analogous to silicon in respect to the 

micro-fabrication techniques discussed here. 

One of the principle methods is the wet etching of silicon/glass. This involves 

protecting some portion of the substrate with a mask while it is exposed to a liquid 

phase chemical attack – a technique that can be traced back to the 15th century for the 

creation of designs in armour 77. Isotropic and anisotropic etchings are two classes of 

etching with important differences. Isotropic etching creates spherical cavities, as the 

chemical reaction takes place equally in the three spatial dimensions. Due to its ‘under-

etching effect’ isotropic etching is less useful in designing lateral structures 84. 

Anisotropic etching can be carried out along one plane, making it possible to design flat 

surfaces, and cavities. Isotropic etching is carried out using an acid called HNA (mix of 

HF/HNO3/CH3COOH), while anisotropic etching uses a strongly basic solution. The 

overall advantages of wet etching techniques can be summarized as: high selectivity, 

availability of planar or curved surfaces, high repeatability, and controllable etching rate 

with ‘etchant’ concentration 84. With respect to IR transparent materials, it has been 

demonstrated that CaF2 can be etched using laser induced heating. 

Dry etching is another ‘hard’ technique, whereby a solid-state surface is etched in 

the gas phase, physically by ion bombardment, chemically through a reactive surface 

species, or through some combination of physical and chemical mechanisms 95. 

Drawbacks of physical dry etching include slow etching rates, low selectivity (due to ions 

attack on all materials), and a ‘trench effect’ caused by reflected ions *8+. The chemical 
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dry etching technique is an isotropic technique that exhibits behaviour quite similar to 

its wet etching equivalents 84, 95. An important physical-chemical dry etching technique 

called reactive ion etching (RIE) combines low pressures, radio frequency heating, and 

the bombardment of ions 77, 84. This technique is quite important to the micro-machining 

industry, and variations of it are capable of achieving relatively high aspect ratios (e.g. 

deep reactive ion etching, DRIE). Other physical–chemical techniques include anodic 

plasma etching (APE), magnetically enhanced reactive ion etching (MERIE), triode 

reactive ion etching (TRIE), and transmission coupled plasma etching (TCPE). In general 

dry etching techniques yield finer patterns than wet etching, and provide the advantage 

of greater safety - as there is no need for corrosive acids or bases 95. 

Soft Techniques – Photolithography 

Photolithography is an important micro-fabrication technique which involves the 

projection of light (typically between 300-450 nm for optical lithography) through a 

mask which is designed to protect specific parts of a photosensitive resist that has been 

deposited onto a substrate 77. The masks themselves are generally constructed from 

quartz with deposits of chrome to form the protected pattern translated onto the 

photosensitive resist. A polymer resin is deposited onto the substrate (e.g. glass, silicon, 

CaF2) where it is then spin-coated (centrifugally spread and evaporated simultaneously). 

The thickness of the polymer film is proportional to the initial concentration of the 

polymer in solution and the viscosity of that solution, while it is inversely proportional to 

the angular rotational velocity 77. The polymer cannot be deposited on too thickly, due 

to loss in precision of the patterns etched into it through the mask – thus thinner 

deposits are often used. After spin-coating, the remaining film is heated to ensure the 

removal of remaining solvent from the solution, which may otherwise lead to cracks 

upon drying. The final step is referred to as exposure, where the substrate with polymer 

are aligned and exposed to a luminous flux (e.g. mercury vapour lamp) which starts the 

physic-chemical reactions that attenuate the solubility in certain solvents 77.  Positive 

resists refer to polymers whose lighted zones become soluble in a certain solvent, while 

the unexposed – or dark zones remain insoluble and vice versa for negative resists. 
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2.2.1.4. FTIR for Detection in Micro-fluidic Systems 

It has been put forward by some that FPA-FTIR spectroscopy is the most powerful 

spatial/chemical analysis tool of its kind, and that the inherently high throughput nature 

of the technique would make it tremendously adaptable to micro-fluidic systems 96. The 

coupling of FTIR for flow injection analysis (FIA) and liquid chromatography (LC) 

applications has been described as an established yet relatively unexploited technique97, 

98; the principles of FIA/LC-FTIR could be enhanced further with micro-fluidic sampling 

accessories and FTIRI detection.  It has also been observed that with more and more 

fluidic functions becoming available in microchip format, the necessity for high 

performance detection has never been more relevant 99. FTIRI is well suited to micro-

fluidic detection for a variety of reasons: 1) the ability to rapidly collect spatially resolved 

chemical images, 2) the multiplexing capabilities of FTIR allow for rapid multi-

component qualitative/quantitative analysis, 3) the micro-fluidic platform can be 

fabricated directly onto an IR transparent material, and 4) the scale of micro-fluidic 

systems (path-length) are often well suited for mid-IR transmission measurements while 

ATR accessories allow for a range of other possible arrangements. The combination of 

the two technologies is also advantageous for sampling purposes in that there exists the 

potential for enhanced repeatability and accuracy, there is containment of chemicals 

within a closed system (important for toxic/volatile analytes), there is minimized reagent 

consumption and waste generation, and the whole system is highly adaptable to 

automated high-throughput analysis. 

The number of papers using FTIR for high-throughput analysis is growing, as the 

performance capabilities of FPA detectors improve – now in their third generation of 

development (section 2.1.4.2). Snivelly et al developed a high-throughput parallel 

analysis platform using a Nicolet Magna 860 FTIR spectrometer equipped with wide 

band-pass filter, KBr diffuser, and a 64 x 64 MCT FPA, combined with a novel gas-phase 

sampling accessory 100. The accessory, which arranged a series of stainless steel channels 

each with IR transparent windows (n=16) arranged in an array fashion, enabled the rapid 

parallel identification of CO oxidation over a series of commercial catalysts, while also 

allowing the quantification of reactivity and selectivity of these catalysts for the 

substrate. Kazarian et al have produced a number of applications utilizing an ATR-FPA-
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FTIR spectrometer 96, 101-105. In their paper on chemical imaging of micro-fluidic flows, 

Chan et al 105 used a Varian 7000 FTIR spectrometer with a 64 x 64 FPA and a single 

bounce inverted ZnSe ATR sampling accessory to monitor the H/D exchange of H2O/D2O 

mixtures. Their sampling accessory involved a PDMS micro-channel self adhered to the 

ATR crystal, and fastened by screwing a plate of polymethyl methacrylate on to the top 

side of the structure. This system allowed for the separate introduction of two fluids 

which united at a 90˚ angle, then the 1000 µm wide and 50 µm deep channels snaked 

over the field of view for detection. From this system it was concluded that the in situ 

monitoring of chemical reactions and fluid mixing is possible. 

Other work by Kazarian et al using the same instrumental system, explored different 

micro-fluidic structures using the same adhesion technique 96: 1) a PDMS multi-well grid 

to monitor up to 156 samples simultaneously (figure 2.10c), and 2) a 4 parallel multi-

channel system for monitoring the dissolution of different polymer formulations (figure 

2.10d). Another approach by Kazarian et al 106, and also Kirkwood et al 107 for 

applications in pharmaceutical and bacteria identification purposes respectively, was to 

employ a micro-drop deposition technique (figures 2.10a and 2.10c respectively). In this 

approach the samples are uniformly ‘stamped’ onto an IR transparent substrate in an 

array format enabling the simultaneous measurement of many micro-drops of sample. 

Theoretically this technique would allow for the measurement of as many samples as 

there are detector elements of the FPA, e.g. 1024 samples for a 32 x 32 FPA; although 

practical considerations make this a purely boastful claim. 
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Figure 2.10. Examples of HT-FPA-FTIRI studies: a) micro-droplets of poly(ethylene 

glycol)/ibuprofen formulations 106; b) micro-depositions of bacteria culture107; c) PDMS 

multi-well demountable grid 96; d) 4 micro-fluidic channels for monitoring of polymer 

dissolution 96. 
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The technique of time resolved (TR) spectroscopy has seen some success of applying 

FTIR spectroscopic techniques to measuring micro-fluidic systems. TR-FTIR has proven to 

be a useful tool for obtaining structural information on the course of dynamic chemical 

processes – for example, enabling insight into reaction kinetics, ligand interactions, 

protein conformational changes, complex formation 108. There are a number of papers 

utilizing FTIR microscopic detection of micro-channel systems designed to control 

chemical interactions. Hinsman et al 109 conducted work on a a fast diffusion based 

mixer (SU-8 polymer on CaF2, ribbed mixer design) for the study of chemical reactions 

(three models: acid-base neutralization, addition of sulphite to formaldehyde, basic 

hydrolysis of methyl monochloroacetate). The apparatus proved to be very resistant to 

mechanical forces and chemical solvents, while their stopped flow liquid handling 

system was able to achieve highly reproducible. Kakuta et al 110 used a continuous flow 

and stopped flow TR-FTIR apparatus to achieve a time resolution of 0.5 – 10s in the 

observation of conformational changes in the protein ubiquitin, results of which were in 

good agreement with NMR spectroscopic measurements of the same system. The 

micro-machined mixer was off-chip in this study; solutions were first introduced into the 

diffusion based mixer then travelled onto the transmission cell for detection. This same 

approach was used by Masuch and Moss 111 to perform measurements of aqueous 

solutions of biological macromolecules (cytochrome c), where they provide a good 

overview of the optimization of experimental parameters. The time resolution of 

Masuch et al work was improved  by Tang et al 112to 6-15 ms (characterized by the 

reduction rate of 2, 6-Dichlorophenolindophenol), using a tuneable single frequency 

diode laser with MCT detector. This higher time resolution apparatus was also applied to 

the analysis of cytochrome c. 

Kuan et al developed one of the first continuous flow systems using FTIRI for 

detection, using the addition of sodium sulphite to formaldehyde as a model system. 

Using the technique of multivariate curve resolution-alternating least squares to model 

the evolving chemical system they found that achievable time resolution was within the 

sub-millilitre range,  but commented that the SNR achievable with the FPA hindered its 

application to more demanding systems 108. It was also emphasized that the time 

resolution interpretation must consider the mixing time/mechanism, and the laminar 

flow conditions of the micro-fluidic system. The ability to simultaneously monitor 



50 
 

multiple fluid elements within the stream, together with the mixer being incorporated 

onto the sampling cell allows for the minimization of sample consumption with a 

maximum amount of data retrieval 108. 

2.2.1.5. Other Micro-fluidic Detection Techniques 

Developments in micro-fluidic fabrication techniques in recent years have opened up 

a range of application possibilities, thus the demand for highly sensitive detection 

mechanisms to extract information from these systems has never been greater. It has 

been observed that the success of micro-fluidics is dependent on the abilities of 

researchers and engineers to develop detection processes various reviews cover a 

number of possibilities for detection of micro-fluidic systems 99, 113-115. Optical detection 

methods are by far the most commonly found in micro-fluidic analytical devices, while 

electrochemical methods are becoming increasingly important, and mass analyzers 

comprise the third most significant level of attention in research. Mass analyzers in 

particular are significant in that fast and highly parallel separations in tandem with mass 

analyzers enable a very high-throughput potential 99, 115. Optical methods are attractive 

due to their availability and the ease of coupling the micro-fluidic system with the 

detector type, while electrochemical methods are favoured for their good limits of 

detection for analytes of biological interest, and adaptability to integration within a 

microchip115. Other possibilities include: 

 Fluorescence detection; very sensitive, but requires labelling for non-fluorescent 

analytes 105. 

 Raman spectroscopy; label free, not as sensitive as fluorescence 105. 

 Surface Enhanced Raman Scattering Detection (SERS); real-time, label free, very 

sensitive 105. 

 Thermal lens spectrometry (TLS); extreme sensitivity, very sensitive alignment 99. 

 NMR planar micro-coils; readily coupled to microstructures, modest sensitivity 114. 

SERS and TLS are among the most popular ‘up and comers’ in micro-fluidic detection 

due to their universal response and no requirement for the chemical treatment of 

samples 114. 
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2.3. Conclusions 

FTIR spectroscopy is an information rich spectroscopic technique, often described as 

a multiplexing approach due to its ability to simultaneously obtain measurements of all 

resolution elements. When combined with chemometric calibration techniques this 

wealth of spectral information can be exploited to extract qualitative and quantitative 

information of a sample. The application of FTIR spectroscopy to process analysis in 

industry has found good levels of success, with numerous dedicated analyzers available 

on the market for high-throughput analysis purposes. Therefore there is a present 

market for high-throughput infrared spectroscopic techniques, and one might assume 

that this market is looking to grow further. 

The introduction of FPA-FTIRI has evolved FTIR spectroscopy into another level. The 

technique maintains all of the advantages present with conventional FTIR spectroscopy 

with the added benefit of spatially resolved chemical information of a sample. This level 

of information may exploited in a number of ways, 2D spatial characterizations of 

samples, using the high levels of data redundancy to ensure the selection of quality data 

from ‘homogenous’ samples, or using the spatial resolution abilities of the multiple 

detector elements composing the FPA to make parallel measurements. This last 

possibility, which has just begun to be realized, has exciting implications to the field of 

high-throughput vibrational spectroscopy.  

The problems with the early developments of FPA detectors have been improved 

upon with the advent of 2nd and 3rd generation models; however there still remains the 

question of detector element fidelity, which relates to the relative spectral 

quality/consistency of the IR picture elements. When looking to applications such as 

high-throughput micro-fluidic flow analysis and time resolved analysis, the relative 

response sensitivity of individual detector elements is put to the test. If individual pixels 

are biased in any way relative to one another, it will limit the ability to make inter-pixel 

measurements within an image. It is in the context of the high-throughput flow analysis 

system that the performance characteristics of the FPA-FTIR on hand with our group will 

be put to the test. Pixel element noise performance, consistency of response, linearity 

will be evaluated in the short and long term, and in order to justify the added expense of 

the FPA detector the efficiency of such a system will be compared to a simpler approach 

to illustrate the potential gains in throughput.  
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Chapter 3: FPA-FTIR Spectrometer Evaluation 

3.1. Introduction 

FPA-FTIRI involves the collection of spatially resolved chemical images of samples, 

allowing for full spectral measurements from each of the pixels of the resultant image. 

Typical formats of the FPA detectors used in FTIRI spectrometers are measured as row x 

column (r x c) range from 32x32 to 256x256, while much greater sizes are available for 

astronomic applications (e.g. 2056 x 2056). In the case of the 32 x 32 FPA, as has been 

utilized in this study, there are then 1024 individual spatial points of data within a single 

image. From each point, depending on the spectral resolution parameters of the 

collected image, there exists a full IR spectrum worth of data (e.g. 387.5 points for 8cm-1 

resolution). A number of studies have focused on the imaging of heterogeneous samples 

on the micron scale, ranging from the characterization of imitation cheeses 5, 

identification of trace materials on latent fingerprints 116, selection of homogenous 

regions of bacterial depositions 107, or the modelling of dispersions of pharmaceutical 

formulations  in aqueous solutions 117. This last application begins to bleed over into 

another type of important imaging application, TR-FTIRI spectroscopy 118, whereby the 

individual response and sensitivity of detector elements can become quite important for 

interpretation of dynamic chemical processes taking place in the field of view of the FPA 

detector. A limited number of papers are found tying TR spectroscopy with an imaging 

detector, while those that have found that the SNR capabilities of such detectors limited 

the success for interpretation of complex spectra 108.  

The question of the analytical performance characteristics of FPA detectors, while 

presumed to be poor relative compared to conventional IR detection techniques, have 

not been fully addressed. A number of papers throughout the 1990’s conducted 

performance characterization studies of FPA detectors, largely in the context of thermal 

imaging applications and the refurbishing of patterned noise features 23, 33, 35, 36. Of 

particular importance is the issue of FPA detector non-uniformity, where due to a 

variety of reasons (see section 2.1.3.2), there will appear a characteristic pattern of 

response. There are a number of approaches (NUC) for the minimization of these spatial 

features, however a trace of spatial noise is always observed to persist.  Snivelly et al 23 

were one of the few to make interpretations of an FPA-FTIR’s detector element 
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response to a chemically homogenous sample (benzonitrile – CN stretching peak at 2229 

cm-1) where it was observed that, depending on the level of scan co-addition, the CV for 

the peak across the FPA could range from approximately 13.75% - 17.5%, for a post NUC 

FPA reading. Recent work within the McGill IR group 19 has found that this level of 

variance is consistent for several FPA detectors (3), and the trend translates into the 

analytical performance for the detector elements as a whole. Despite the noise 

response patterns and the low SNR performance of these FPA detectors, they were still 

able to obtain linear calibrations with milli-absorbance accuracy, where the 

performance improved through averaging and the use of noise cut-offs to eliminate 

noisier pixels 19. 

The current study proposes an in depth investigation into the response 

characteristics of a continuous scan FPA-FTIRI system, in the context of making chemical 

measurements. Three basic model systems will be considered; 1) the open-beam 

response characteristics, 2) the repeated analysis of a stationary polystyrene calibration 

standard, and 3) the analysis of a set of aqueous calibration standards. From the open-

beam data a thorough description of the noise characteristics of the FPA as a whole and 

the individual detector elements will be provided, allowing for optimization of scanning 

conditions for further data collection. The polystyrene study will provide information on 

the stability of measurements in the case of back to back scans, as well as day to day 

analysis. Also, as previous work has demonstrated that certain peaks will tend to 

provide less variant measurement than others 19, an investigation into the stability of 

different peaks will performed as validation of this phenomenon. The third case of the 

aqueous standards of sodium azide will provide additional validation to the polystyrene 

work, and also allow for optimization of collection of samples from transmission flow 

cells. For each circumstance above, a full characterization will be provided as well as the 

establishment of appropriate ‘pixel filtration’ procedures to select for the most relevant 

data for quantitative analysis purposes. 
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3.2. Experimental 
 

3.2.1. Materials  

A freshly purchased polystyrene calibration film (ICL, PhEur 2.2.24) was used for the 

collection of polystyrene spectra. Sodium azide (NaN3) from Aldrich Chemical 

Company was used to gravimetrically prepare a set of 10 aqueous standards, 

ranging from approximately 0.0500 – 0.2000 M. Each standard was prepared with 

an analytical balance, directly weighing samples into a 100 mL volumetric flask, and 

were then diluted with 0.45 µm filtered and distilled water, sealed, and thoroughly 

mixed. Samples were stored at room temperature in dark amber glass wear, with 

Teflon screw caps, for no longer than 5 days.  

 

3.2.2. Instrumentation 

The spectrometer used throughout the work was a Varian FTS 3000MX Excalibur 

FTIR spectrometer, fitted with a Varian 600 UMA microscope and Lancer FPA 

camera (32 x 32) - an MCT photovoltaic hybrid array detector. The optics of the 

microscope include a 4X and 15X objective, the 15X being the only FPA operative 

objective collection. The achievable spatial resolution of an individual detector 

element after projection of the sample through the microscope optics equated to 

5.6 µm2; this measurement could be established through the inset microscope scale 

to ensure sample homogeneity in the FPA field of view. 

 

3.2.3. Sample Acquisition 

Data were acquired with various scanning conditions, the results of which are to be 

utilized for further analysis decisions. Ranges of spectral resolution were from 4-16 

cm-1, while scan co-additions ranged from a single scan to 1024 scan co-additions. 

The integration energy at the FPA detector was also adjusted for optimization 

purposes, although based on preliminary work it was often adjusted to an open 

beam integration energy value of ~9000 counts, see results for further validation of 

this value. The procedure for focusing the microscope optics was as follows: 1) 

place object firmly into position on stage and obtain optical focus using the visual 

objectives (as opposed to the in-microscope camera as there were almost always 

variations between the two focuses), 2) remove the sample from the stage and 

enter into the FPA non-uniformity correction Lancer window, 3) adjust the sub-

stage condenser so that the spread of data points viewed in the Lancer calibration 
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screen formed the highest ‘rested’ maxima with as even a possible distribution of 

the source energy over the FPA prior NUC, 4) establish the integration time so that 

integration energy sits at the decided value (again, typically 9000, unless otherwise 

specified), 5) perform NUC correction with open-stage, 6) replace sample and 

ensure that optical focus is still optimal, while also ensuring that no visible defects 

within the sample are present in the field of view. A slight alteration was made for 

the transmission cell/NaN3 data collection; the focus was obtained on a bubble 

within the sampling transmission cell which was subsequently flushed with 

background solvent (water) within the microscope field of view, whereby - contrary 

to the open-stage and polystyrene work - the sub-stage adjustment, integration 

energy adjustments, and NUC were performed directly through the solvent filled 

transmission cell – see results for validation of this procedure. The loading of the 

transmission cell was done by manual injection using sterile syringes and thin gauge 

tubing, with stop-cock valves on the input and output sides of the transmission cell 

to ensure that a stopped flow was quickly obtained for scanning. Temperature 

control was obtained using two cartridge heaters and thermocouple linked to an 

Omega (CSi32 Series) temperature controller, whereby stabilization to within +/- 

0.1 C was quickly and easily achieved for consistent fluid measurements. 

 

3.2.4. Data Processing & Analysis 

All FTIRI data was collected via Resolutions Pro 4.0 with the dat. files (image files) 

subsequently exported to the in house software package ImageProcessor for 

further processing and imaging purposes. The color mapping of the software was 

set to build images on a 16 bit scale (dark red = high; dark blue = low), allowing for 

quick visual interpretation of results. This software also enabled the manipulation 

and exportation of data from desired coordinates of the image(s), and facilitated 

the viewing of the spatial impacts of filtering, derivative spectra, baseline 

correction and other standard spectral transformations. Exported FPA response 

was categorized as pixel ID paired with a measurement (decided and processed in 

the ImageProcessor suite), which were then easily manipulated in spreadsheet 

formats. Raw and processed pixel responses were exported to either Excel 2007 or 

Origins 7.0 for further statistical analysis and/or the creation of complementary 

graphics. 
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3.3  Results & Discussion 

3.3.1. FPA-FTIR spectrometer noise performance characterization 

As a first step in describing the behaviour of the FPA camera, an open beam response 

characterization was conducted. Based on preliminary work it has been observed that 

the integration energy of the camera, that is to say the amount of charge built up at the 

charge capacitors of the detector element read-outs, should be set to a level of 

approximately 9000 counts. This energy level is always approximated because the 

Lancer calibration window only allows for course adjustment of this parameter through 

manipulation of the integration time at the FPA, which in turn is a parameter that may 

be controlled precisely. Additionally, it is known from that the level of co-additions of 

continuous scan FTIR spectrometers will generate a square root improvement in SNR 

performance, while preliminary work in our labs, as well as other groups 23 has shown 

the impact of this to be slightly diminished due to the complexities of the FPA detector. 

The adjustment of integration time/energy and the level of scan co-addition was 

investigated further in order to model correlations between the levels of FPA RMS noise 

on two levels: 1) as an overall FPA noise response value (figure 3.1, below), and 2) as a 

detector element distribution profile (figure 3.3, page 58). 

 

Figure 3.1. The average FPA RMS noise value from the region between 1800-1700 cm-1, 

8cm-1 resolution, against co-addition and integration energy. 
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Figure 3.2. Left graph, power function relationship between RMS noise and number of 

scan co-additions at constant integration energy (8500); right graph, power function 

relationship between RMS noise and integration energy for two levels of scan co-

addition. 

The usefulness of the data from figure 3.2 is limited in that these values represent 

only the average response of all detector elements within the FPA. Nonetheless this 

information does provide a sense of the achievable noise performance for the FPA as a 

whole. Looking at the left graph in figure 3.2 it is observed that there is the expected 

trend for a photovoltaic detector, with a roughly square root reduction in RMS noise as 

a function of increasing scan co-addition. In terms of integration energy the RMS noise 

again decreases as a power function (right graph of figure 3.2), although the gains of this 

are depreciated significantly at higher levels of scan co-addition.   It can be said that as a 

reasonable compromise between scanning time and noise level, the optimized noise 

performance of the FPA detector as a whole is RMS = 3.0 x 10-3  for the defined region 

(1700-1800 cm-1) which is characteristic of the spectral profile for this MCT-FPA detector 

(4000-950 cm-1). This relates to a detection limit of the detector array as a whole in the 

magnitude of milli-absorbance measurements, 1 and 2 orders of magnitude larger than 

that of DTGS and MCT single-point detectors, respectively. 

The information in figure 3.3 begins to provide more exhaustive insight into what 

really lies behind the average noise response reported above. The plot shows both the 

standard deviation (SD), and the coefficient of variance (CV) for all of the detector 

element noise responses within the FPA. This is an open beam response therefore only 

the source, instrument optics, and the detector array could contribute to these levels of 

variation. Assuming that any variations from the source are negligible, that the 

variations from the instrument optics are constant, and that an NUC has been 
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performed on the detector array prior to image collection, the magnitude and spatial 

profile of the RMS noise response distribution must be attributed to the detector 

elements comprising the FPA detector. 

 

Figure 3.3. Impact of scan co-additions and integration energy on pixel RMS SD (left 

graph) and RMS CV (right graph). RMS SD calculated from 1024 pixels of image, RMS CV 

= (RMS SD/RMS mean) x 100. Note the inversed integration energy scale between the 

two graphs (for clarity). 

Looking to the SD graph in figure 3.3 it is seen that increases in each parameter have 

a positive effect on the distribution of pixel RMS noise, although these improvements 

become less apparent at higher levels of integration energy and higher scan co-

additions. This then supports the utilization of higher integration energies (>7000 

counts), as with the RMS noise distribution there is essentially a plateau for scan co-

additions greater than 64. However the data in figure 3.1 still holds, i.e. the mean pixel 

RMS noise level continues to decrease with increasing levels of scan co-addition, and 

this is reflected in the CV graph in figure 3.3. The CV increases in the 512 co-addition 

category due to the SD remaining relatively constant, but the mean RMS value 

decreases. Therefore the scanning conditions in terms of distribution of noise response 

are optimized when greater than 64 co-additions and integration energy of ~7000 

counts are employed. Based on this, figure 3.4 illustrates this distribution as a 2D 

representation and histogram. 
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Figure 3.4. At left, 2D plot (pixel row x column of FPA) of RMS noise for the predefined 

region (1700-1800 cm-1); at right, histogram representation of RMS noise distribution 

over the FPA.  

Looking at the 2D plot of the pixel response found in figure 3.4, it is immediately 

apparent that a non random spatial noise pattern is persisting after the NUC performed 

on the FPA prior to scanning. This pattern of higher noise pixels is so regular that it can 

be attributed to every fourth row (4, 8, 12 ... 32) and less regularly within the even 

numbered columns – a pattern that matches previous observations with the same 

instrument under a wide range of scanning conditions 19. This pattern has been 

attributed to the fabrication process 19, and appears to be more pronounced in the later 

generation FPA’s compared to the older generation within our own lab. This patterned 

noise is evident as the long right tail of the histogram, and consistently amounts to 

roughly 20% of the total detector array, with some rows/columns appearing more 

affected than others (e.g. row 4, column 18). This can be measured in a variety of ways, 

but an adaptation of the 2D image in figure 3.4 allows for the visualization of the 

removal of pixels based on RMS noise cut-off (figure 3.5). 

 

Figure 3.5. 2D plot illustrating the impact of an RMS noise cut-off for the removal of high 

noise detector elements from the overall response.  
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Figure 3.5 demonstrates how a noise filter cut-off can easily be applied to an image 

for the removal of the detector elements based on the noise features. The filter here 

has been designed to remove the spatial noise – the darkened pixels (squares) have 

been removed from the overall image, related in the adjacent statistics and also in the 

unseen histogram where the long right skew has been completely eliminated. The 

remaining pixels (80% of the FPA) exhibit an improvement in their descriptive statistics: 

a slightly depressed average, a significantly depressed SD – relating to a significantly 

lower CV value. This technique may be easily employed as a pre-filter in order to 

improve the overall sensitivity of the FPA, and to enhance the overall uniformity of the 

selected pixel population. It is noted that the top 10% of pixels have a mean RMS noise 

value of 0.00028 +/- 0.00002 (1SD), yielding a CV of 8.4% (see table 3.1). Regardless if 

20% of pixels are removed, if looking to microfluidic applications a large number of 

detector points will still exist along the fluid path – with the ability to pick from the 

population of pixels to optimize the spectral information obtained. 

 

Figure 3.6. RMS SD per pixel, the result of 20 repeated scans, 64 co-additions, and 8 cm-1 

resolution. The value at each pixel is the SD for that pixel from 20 repetitions of the 

noise measurement. RMS noise measured from the region 2300-2200 cm-1. 

A comment on the consistency of noise response among the individual detector 

elements of the FPA, where there is a range of consistency when looking to individual 

pixels for a series of repeated measurements. It appears (see figure 3.6) that the same 

spatial pattern seen with ‘noisy’ pixels is seen with ‘inconsistent’ pixels, i.e. not only do 

these pixels posses higher noise response, they are also the most erratic of the FPA as 
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well. Therefore, a filter based on RMS noise cut-off could eliminate the inconsistent 

pixels (in terms of noise response) to the desired level – within limits. The average level 

of stability as measured from the data in figure 3.6 is found to be a mean SD in noise of 

2.24 x 10-4 with a CV of 50.6%. After filtering 20% (with highest SD removed), the mean 

SD is 1.80 x 10-4 with a CV of 20.4%. A similar pattern is observed as with the image 

filtering based on raw RMS noise. 

3.3.1.1. Pixel Selection and Co-addition Strategies 

A simple means of selecting/removing pixels from within the FPA image, based on 

their relative noise properties, has been demonstrated. Previous work in our own lab 

has demonstrated that gains in noise performance can be obtained by co-adding pixels 

within the array – similar to using scan co-additions for noise improvements. It was 

observed that the gains from the co-adding of pixels, which resulted in a power function 

improvement, were significantly diminished at levels of co-addition greater than 64 

pixels. In this scheme the pixels were selected at random from over the FPA until no 

pixels were left - a valid procedure when looking for the selection of best quality data 

from a heterogeneous image encompassing the entire FPA field of view.  However, it 

leaves the question of how co-adding specific areas of the FPA can improve 

performance, particularly when it has been observed that definite features of spatial 

noise exist within the FPA image. 

 

Table 3.1. FPA portion of table illustrates the gains in the pixel distributions noise 

performance with the elimination of high noise pixels; filter value indicates portion of 

the FPA which has been used to generate average/SD. Columns and rows portion of 

table illustrates how pixel co-addition of spatially adjacent pixels impacts the overall 

noise performance. The row/column data have had filter 2 run before the co-addition of 

remaining pixels, therefore not each column/row had equivalent pixel volume. 



62 
 

Using the same example of the optimized open-beam response image from the 

previous section (RMS noise from the spectral region 1800-1700 cm-1, 4cm-1 resolution, 

~9000 integration energy, and removal of the most severe spatial noise features), an 

analysis of continuously increased levels of pixel co-addition is investigated. The RMS 

noise data in table 3.1 illustrates the impact of further noise refinement, or noise 

filtering (FPA section), and also the impact of co-adding spatially adjacent pixels. The co-

adding of pixels has been carried out in the orientation of first columns of pixels, then 

rows – e.g. averaging a single row, then averaging two adjacent rows, etc. Whether the 

co-adding is conducted in the column or row sense, the end result is statistically 

equivalent. The standard deviations for the columns and rows differ from those in the 

FPA section of table 3.1, in that they represent the standard deviation between each of 

the columns – where the standard deviation for the FPA section represents the variation 

between individual pixels making up the average. This shows that an excellent degree of 

stability in noise terms can be afforded by careful co-addition of spatially adjacent pixels 

within the FPA. The downfall of the pixel co-addition approach is the loss of spatial 

resolution of the already diffraction limited IR microscope, thus the benefits are highly 

application specific – e.g. co-adding pixels from a highly heterogenous sample for noise 

improvement purposes would be inappropriate, and conversely laterally co-adding 

pixels with in a homogenous fluid stream can be highly beneficial. 

 

Figure 3.7. RMS noise (1800-1700 cm-1) average per FPA column. Data is averaged after 

the removal the highest noise pixels (filter 2 as in table 3.1), therefore each column does 

not have the equivalent number of pixels. 
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Figure 3.7 illustrates how each column of the FPA falls within a 95% confidence 

interval of the global average. This distribution may be further refined with higher 

degree of noise pre-filtering, or with increased levels of pixel co-addition. It is also 

interesting to notice the periodic pattern of noise moving across the FPA in column 

increments – almost consistently a low, then a steady rise over 1-2 columns, then a 

rapid drop and plateau minimum for 1-2 columns, and again back to a maximum. The 

distribution of the noise when regarded per column, has roughly the same mean value 

of noise compared to that of the entire (filtered) FPA, although the distribution over the 

FPA is greater – this distribution has a CV < 5% in most cases when comparing the noise 

between divisions of the FPA (see table 3.1), while it is again emphasized that the 

remaining spatial noise features will certainly bias these distributions. As a whole, with 

some minor selection, the behaviour of noise between detector elements is relatively 

stable, with a consistent distribution that may be enhanced to a small extent by pixel co-

addition. 

3.3.1.2. Atmospheric Interferences: FPA-FTIR Purge Issues 

As an extra measure to guarantee the quality of the spectra collected from the FPA-

FTIRI system, the dry air purge system was assessed. As mentioned in section 2.1.5.4, 

atmospheric contributions can present a significant source of interference, and can be 

thought of as noise. However, as opposed to detector limited noise features the 

atmospheric contributions of CO2 and water vapour can be controlled through 

instrument/experimental design, and shouldn’t form a significant disturbance to any 

imaging result. Figure 3.8 shows how the instrument picks up levels of atmospheric 

interference when the system is left unsealed – more specifically the microscope stage 

has been isolated as a major source of atmospheric interference. By isolating the stage 

and letting the purge take its course it was possible to reach detector limited 

performance in the atmospheric regions of the IR spectrum. The ability to do so will be 

essential when looking to perform sensitive analysis of biological samples, for example 

protein measurements based on the Amide I and Amide II peaks would be severely 

compromised if the stage is left unsealed with any amount of disturbance present 

during IR measurements. This procedure ensures that a stable system is achieved, 
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whereby biological or other samples with spectral features in the atmospheric windows 

are uninhibited, i.e. maximization of sensitivity for these measurements. 

 

Figure 3.8. Plot of purge conditions versus RMS noise measure from the water vapour 

region of the IR spectrum – more efficient purge equals lower ‘noise’ measure. OS = 

open microscope stage; P = purge; dist. /undist. = disturbed/undisturbed stage; 2day* = 

application of initial disturbance to sealed stage. 

3.3.2 Polystyrene Film Analysis 

The first step of the FPA-FTIR response characterization was to take a close look at 

the noise features of the FPA detector by sampling the open-beam under a variety of 

conditions. The next phase was to introduce a controlled standard to generate a 

chemical response – a polystyrene calibration film was selected for this purpose. The 

polymer film was fixed to the microscope stage in such a way that the same point of the 

film would be sampled per detector element for a series of scans.  

The polystyrene, when under magnification, is visually granular (see figure 3.9). This 

made the fixing of the sample to the stage all the more important – though when 

measuring the magnitude of these features under the microscope it is questionable 

whether the spatial resolution capabilities of the IR microscope would detect these 

differences, i.e. pixel crosstalk will smooth out most subtle features.  
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Figure 3.9. Optical and IR image of polystyrene. IR sample portion of optical image is 

highlighted. 

The IR image in figure 3.9 is modelled on a two point baseline correction (1977.0-

1919.2 cm-1) and a peak height measurement at 1942.3 cm-1, and was selected based on 

its relatively isolated position and an optimal absorbance range (~0.3). Looking in more 

detail at the image using this same peak response, the statistical distribution of the pixel 

response is presented in figure 3.10. 

 

Figure 3.10. Distribution of detector element response at 1942.3 cm-1 (after baseline 

correction). Image has been refined (darkened pixels) by removal of values outside +/- 

2SD, whereby the histogram represents the remaining pixel peak height distribution. 
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The refined image and histogram in figure 3.10 show that although the sampling area 

of the polystyrene is very small (180 x 180 µm) there is still an observable trend in the 

intensity of the peak height – which could be due to small differences in sample 

thickness, e.g. the right middle portion of the sample appears to be slightly thinner, 

while the middle top portion is slightly thicker compared to the bulk of the sampling 

area. Although these differences are rather minute, it is still important to utilize the 

pixels to the more homogenous portion of the sample, and after doing so the CV 

amounts to roughly 3.3% around the mean (0.2679 +/- 0.0088). Looking back to the 

noise analysis, it was observed that a milli-absorbance level of noise performance was 

achievable, thus it appears that an additional effect is taking place increasing the level of 

variation beyond what one might expect solely on the noise limiting behaviour of the 

pixels. A similar situation is observed for the analysis of peak area between 1975.1-

1915.3 cm-1 using the same baseline correction as peak height measurements, and the 

refined pixel information a CV value of 4.6% (7.0389 +/- 0.3222) is obtained. Likewise for 

the first derivative of the same peak features the CV value is 2.38%, and for the second 

derivative the CV is 3.57% over the refined area of the FPA. Thus it appears that 

performing a 1st derivative transformation of the detector element spectral data 

compensates for some of the variation not compensated for by a baseline correction, 

and provides the tightest distribution of response of the FPA as a post-treatment of the 

data (a gain of 1% in terms of CV value). Another aspect of figure 3.10 is that based on 

the peak height absorbance of the pattern of response is no longer as obvious; however 

when a ‘quiet’ region of the PS spectrum is modelled for RMS noise the same pattern (as 

in figure 3.5) persists. Additionally when looking to other PS peaks in a similar manner 

(figure 3.11), with a few exceptions (out of range peaks, CO2 stretch, increased trend in 

fingerprint region) the level of variance appears relatively consistent throughout the 

spectrum. 
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Figure 3.11. Variance spectrum from 1st derivative spectra for 1024 pixels of an 

image of PS. 

Another aspect of spectral response that was observed using the PS standard was to 

quantify the consistency of detector element response in terms of 1) back to back scan 

response, and 2) day to day scan response. For simplicity the peak at 1942.0 cm-1 is 

characterized using the same baseline correction and first derivative data processing 

protocols used above. The sampling for the back to back study consisted of a assessing 

each pixels response for a set of 20 scans using optimized scanning conditions (256 co-

additions, 9000 integration energy) and a spectral resolution of 4 cm-1. These statistics 

and the resulting 2D image of %CV per pixel, for these 20 measurements are presented 

in figure 3.12, both for baseline corrected measurements and 1st derivative 

measurements. 
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Figure 3.12. 2D and histogram depictions of individual pixel consistency of peak height 

response, for peak at 1942.3 cm-1 as base line corrected measurement, and a differential 

of the 1st derivative measurement (1936.5 – 1948.1 cm-1). Each pixels value is calculated 

as the CV from 20 measurements. 

Immediately it is very apparent that the noise features of the pixels seen in section 

3.1 have translated to the pixel consistency of response, which makes perfect sense as 

pixels with lower SNR should relate to less stable measurements. Between the two 

methods of spectral processing the same pattern of consistency exists, however it 

appears that base line correction results in more stable measurements on a pixel to 

pixel basis. This is contrary to the observation made earlier whereby the response 

distribution within a single image was minimized in the case of a 1st derivative 

transformation compared to the base line correction data. These two characteristics a) 

magnitude of absorbance response distribution within a single image, and b) magnitude 

of pixel consistency distribution from a series of images, will each be of importance 

when performing quantitative measurements – and because each post-treatment 

technique can easily be applied, the benefits of each can be exploited. 

The level of absorbance is important to the consistency of response, as has been 

suggested in figure 3.11 which describes the variance between pixels for each spectral 
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feature, with out-of-range absorbance resulting in very erratic response. This is of 

course a question of magnitude, and relates to the dynamic range - an important 

feature of any detector to quantify. As the dynamic range of MCT type detectors is 

notoriously limited (typically 0.2-1.0 absorbance units) there are no high expectations 

for the MCT detector elements of the FPA in this regard. Using the same technique 

applied in figure 3.12 to determine the distribution of pixel CV for a peak measurement 

an attempt to model the dynamic range using the PS standard was conducted, the result 

shown in figure 3.14. 

 

Figure 3.14. Baseline corrected peak measurements from peaks covering a wide range 

of absorbance. Peaks are selected from spectral regions of relative stability, and 

modelled for 20 repetitions; statistics at left describe the average absorbance 

distribution over the FPA for the various peaks. 

The trend of CV distribution among the pixels for the range of absorbance 

measurements presented in figure 3.14, illustrates well the dynamic range of the FPA 

detector elements. It is apparent from the table of statistics, which are generated as the 

average of the 20 measurements for the pixel distribution, that peak heights above 0.8 

absorbance and below 0.2 absorbance result in larger distributions of pixel response, 

while the tightest distribution is found around 0.5 absorbance. The graph at the right of 

figure 3.14 demonstrates that for a given absorbance value the proportion of pixels with 

a CV value below a certain level will vary greatly depending on the level of that 

absorbance, e.g. the proportion of pixels with a CV ≤ 2% at 0.5 absorbance is 95%, while 

at 2.0 and 0.04 absorbance only 5% of pixels perform this well. The assumption here, 
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which is backed by the data from figure 3.11, is that the level of variation between 

different regions of the PS spectra is consistent, and that the changes in the pixel 

stability are strictly due to the level of absorbance. If this is the case, then the dynamic 

range of the average pixel can be set to roughly 0.2-0.8, as expected of an MCT detector.  

However, there always exist a number of pixels that remain stable for a higher range of 

absorbance, thus depending on their spatial orientation and the number data points 

required filters could be established to select for a desired pixel population, e.g. number 

of pixels with %CV less than 1% (within 0.3-0.7 abs.) equates to roughly 80% of pixels. 

Perhaps not so coincidentally this amount of pixels (80%) is what remains after removal 

of the worst spatial noise features; while this fact together with the same spatial pattern 

observed in the CV plots (figure 3.12). It is a safe assumption that an RMS cut-off will 

achieve the same impact as a CV cut-off, seeing as these two are directly related. 

The back to back scans of polystyrene helped to establish the FPA detector element 

stability within a single session with the FPA-FTIR, but what of the day to day stability? 

To answer this, the back to back scan analysis procedure was conducted over several 

days and observations on the distributions for several peaks were made. It is noted that 

between individual runs it was necessary to reposition the PS standard in order for the 

FPA to be recalibrated and a new background collected before the beginning of the days 

run.  This data is graphed for a single peak height in figure 3.15. 

 

Figure 3.15 Series 1-4 represent 4 separate runs with 10 repeated scans per run. 

Measure was on 1942.3 cm-1, with a 2 point baseline correction. Right graph shows the 

FPA average absorbance for the peak, left graph shows the relative magnitude of the 

distribution of that absorbance value over the FPA camera. 

Day 
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The information in figure 3.15 presents an interesting problem. The only differences 

between the series in these tables are the re-adjustment of the polystyrene strip and 

the time of analysis. Regarding the repositioning of the PS standard, this may account 

for the differences in the absorbance intensity between run 4 (latest date of analysis) 

and runs 2 and 3 (middle runs performed on same day with separate calibrations), but it 

does not explain the behaviour of run 1. The level of absorbance intensity spans the 

whole range seen between the other runs, but from one scan to the next. The chart of 

absorbance CV value mimics that of the mean absorbance – where run 4 has the widest 

spread of data, run 2 and 3 are fairly consistent with one another, and run 1 is the most 

erratic. The increase of CV value for run 4 seems disproportionate when compared with 

the data in figure 3.14, i.e. the increase in absorbance value does not seem to account 

for the increase in pixel response distribution. What can be said about the run to run 

data is that each is different from the next, and that the recalibration of the FPA prior to 

data collection seems to have an impact on the spread of data over the detector 

elements. It is encouraging that the two series within the same day generate quite 

similar responses; however it is apparent that when running quantitative experiments 

from one day to the next the response of the FPA camera would need to be carefully 

observed and corrected for above and beyond the NUC treatment provided by the 

instrument software.  

An additional attempt to compensate for the non-uniformity among the pixels of the 

array involved the ratioing of peaks within the spectrum of the PS standard. Looking to 

the variability of individual peaks it has been demonstrated that the intensity of 

absorption is proportional to the magnitude of that response distribution over the FPA 

camera, and that a minimum distribution is found between approximately 0.2-0.7 

absorbance units. In figure 3.13 the peak heights at 1583.6 cm-1 and 1070.5 cm-1 (CV = 

2.75% for each peak, after +/-2SD refinement of pixel population, ~ 95% remaining) 

have been divided out for each pixel. The response for each peak is an average of 10 

scans, 256 co-additions and 4 cm-1 resolution, taken from series 2 in figure 3.15, as these 

readings are relatively stable. Based on the resultant distribution seen in figure 3.16 the 

spatial noise still persists, but the overall level of response distribution has been 

decreased nearly ¾ of a percent. Looking to other peak ratios a similar trend is 

observed, e.g. 1942.3/1155.4 cm-1 achieves a CV value of 3.15% vs. 3.3 and 3.9% 
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(respectively) for the single peak measure.  It is noted that taking a peak differential 

results in a widening of the pixel response distribution, e.g. when the difference per 

pixel is taken on 1155.4-1942.3 cm-1 the resultant CV is greater than 10%. 

 

Figure 3.16 2D image and histogram distributions of pixel peak height ratio 

1583.6/1070.5 cm-1, each peak having a two point baseline correction.  

3.3.3. Fluid Cell Measurements 

As the end goal of this project calls for a novel transmission flow cell that 

incorporates the micro-fluidic fabrication of multiple channels for the observation of 

fluid streams. It is an important step then to optimize the collection of data from a 

transmission cell. Many conventional transmission cells have the fluid inputs/outputs set 

perpendicular to the fluid flow, where this presents a problem when sampling with an IR 

microscope, i.e. the cell design does not fit underneath the optics when the system is 

properly focused. Therefore a custom made cell was fabricated with the input/output 

lines sitting parallel with the inset crystal, with the fluid stream then flowing down and 

then through the crystal path-length forming a total of four 90˚ turns upon flowing in 

and out of the cell. The cell was a demountable design, with four screws for securing the 

two plates upon the cell and two gaskets. Four cartridge heaters were inset into the cell 

manifold, two for the top plate, two for the bottom, opposite of one another in order to 

achieve rapid and stable temperature control. The system could then be placed 

underneath the microscope stage, and fluid lines could be set in such a way that the 

microscope stage could be properly sealed and a proper purge obtained. A complete 

overview of the system is provided in figure 3.17, and the parameters of the equipment 

may be found in the experimental section. 
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Figure 3.17.  Apparatus used for FPA-FTIR transmission cell measurements. A – 

Demountable manifold with transmission port; B- IR microscope objective; C – Fluid line 

in (line out at left); D- Thermocouple; E – Heat cartridges (x4). 

With the cell securely set onto the microscope stage, it was possible to obtain an 

optical focus of the cells path-length simply by passing a fluid stream (of the solvent to 

be used in the current experiment) and creating a series of bubbles within the path-

length. Subsequently the system may be flushed with the solvent to completely fill the 

path-length, and the FPA camera can be calibrated through the solvent filled 

transmission cell. Although the usual procedure for image collection involves calibrating 

the FPA with an unobstructed beam path (as in section 3.1 and 3.2) the practice of 

calibrating through the solvent filled cell allows for direct subtraction of the solvent 

media upon measurement. It is also convenient because the integration energy at the 

FPA can be more accurately established, i.e. calibrating the FPA with an unobstructed 

beam path to 9000 integration energy and then placing a liquid filled cell into the beam-

path will dramatically reduce the effective integration energy (e.g. ~6000-7000, 

dependant on pathlength and solvent/sample properties). The integration time at the 

FPA can be adjusted to compensate for the loss of integration energy, allowing for the 

recommended 9000 to be obtained at the cost of longer scan time. The resultant image 

of a fluid film of water is shown in figure 3.18, which includes the single beam spectrum, 

a 100% transmission line, and a peak absorbance measurement. The single beam 

spectrum is present simply to observe the visual homogeneity of the single beam over 

the FPA, and it appears that it is a tightly distributed feature according to the CV values 

(1.7% and 1.5% for the entire and top 10% of the FPA respectively). The 100% 

transmission line validates the spectral subtraction process for the FPA, as the noise 

features obtained match closely to those found in the open-beam noise analysis (see 

figure 3.1). For the absorbance measurement an aqueous solution of sodium azide 
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(NaN3) was used, as it is a well known internal standard 119, due to its good solubility in 

water and many organic solvents, and also due to its sharp absorbance between 2000-

2100 cm-1 where few other organic compounds absorb. It is noted that the liquid 

pathlength was calculated to be 33 µm using the fringe method on the empty cell, and 

that the scanning was performed on a stopped flow of the liquid standard. Preliminary 

work with other solvent media (mineral oils) has shown the FPA calibration through the 

solvent (blank) filled flow cell to be the simplest and most effective approach to making 

quantitative measurements of such a fixed apparatus. 

 
Figure 3.18 Distribution of FPA response through a liquid film. Top, image of single beam 

area; middle, image of noise response; bottom, image of NaN3 peak, two point base line 

correction (2102.4, 1967.3 cm-1).  

The absorbance value of the NaN3 NN double bond stretch at 2048.4 cm-1, for a 

0.3588 M aqueous solution resulted in a mean peak height absorbance value of 0.4543 

+/- 0.0270 (95% confidence). Due to the highly centered ‘normal’ distribution, it was 

assumed to be valid to refine the data set by +/- 2SD, and when this is done the 

remaining pixels have a CV value of roughly 4%, down 2% from the raw pixel data. When 

compared to the PS standard peak (1942.3 cm-1) with an average CV value for the raw 

pixel data of roughly 4%, and 3% when refined +/-2SD, the liquid film appears to be 
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generating a comparable magnitude of pixel absorbance distribution. Something 

noteworthy in the NaN3 scan that was not observed with the PS scans is that the spatial 

pattern appears prominently in the FPA peak height map. This could perhaps be due to 

the relative molar absorptivity and path-lengths the respective samples, i.e. the NaN3 

molar absorptivity and smaller path-length generates a more sensitive response – one 

that is highly influenced by the noise aspects of the FPA detector. Alternatively the PS 

film may have an underlying fringe as a result of its film thickness (50 µm). 

3.4 Conclusions 

The impact of scanning parameters on the magnitude of RMS noise, and more 

importantly the distribution of that RMS noise over the FPA, has been evaluated. In 

terms of overall performance the individual pixels comprising the FPA detector are still 

an order of magnitude away from DTGS performance, while it is also noted that a 

relatively greater amount of time is required to obtain the levels of co-addition used in 

these experiments. When the integration energy is set above 7000 counts and the level 

of co-addition of pixels is greater than 64 the impacts on the pixel RMS noise 

distribution are maximized (lowest SD). The same spatial noise pattern observed in past 

work was seen again here, and is easily eliminated using an RMS noise cut-off filter, 

reducing the pixels to a roughly normal distribution of response. The actual volume of 

pixels with extreme noise measures relative to the median is small, and a 20% removal 

of pixels based on their noise properties safely removes the spatial noise patterns. 

Based on the post filtered normal distribution of detector element noise response, the 

average pixel of the FPA is limited to milli-absorbance noise levels – giving an impression 

of the instrument detection limit for quantitative analysis by FTIRI. Through the co-

addition of spatially adjacent pixels (post removal of the spatial noise features) it was 

established that when looked at as a series of 32 parallel detectors there are negligible 

differences between rows/columns of the FPA as averages. When looking to repeated 

back to back analysis of pixels, it is observed that the average deviation in noise 

response per pixel is 10-4, thus the noise response of pixels is quite stable – not 

considering those which are removed with the RMS noise cut-off filter. Thus the pixel 

noise is a relatively unwavering measurement, resulting in very sharp non-random 

features within the FPA, which may be removed if necessary, leaving a pixel population 

with the ability to make measurements with milli-absorbance accuracy. 
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It was found that for making mid-range absorbance measurements (0.268 Au) that 

the CV for the pixel population rested around 3%, amounting to a range of absorbance 

values from 0.259 to 0.277, well outside the expected level of deviation due to the pixel 

noise characteristics. This establishes the level to which pixels generate different 

responsivity – an additional effect to the noise distributions. For the individual pixel the 

mean CV for a series of 20 measurements was found to be 0.73 +/- 0.57%, which rests at 

the level of milli-absorbance accuracy – thus it is just when comparing the pixel 

population with one another that larger variations in absorbance are introduced. 

Additionally, the level of absorbance plays a key role in the average pixels absorbance 

stability, e.g. for peaks greater than 1.0 absorbance the population of pixels with a CV 

value less than 2% is severely diminished (5%), while at an absorbance of 0.5 that value 

is greater than 95%. This establishes a dynamic range for the pixels comprising the FPA, 

as outside the range of 0.1 and 0.8 the distribution of absorbance measurements among 

the pixel population begins to spread, and the consistency of individual pixels for those 

measurements also rapidly degrades. This shows that it is possible to generate FPA 

detector elements with wider dynamic ranges, and these may be selected for by the 

same process of pixel CV determination in other experiments. 

A procedure was developed for the FPA-FTIR imaging of a flow through transmission 

cell, where the FPA calibration procedure was adjusted to perform the NUC step 

through the solvent (water) filled cell. The procedure was validated, and no negative 

effects were observed on the pixel response distributions relative to the open-beam and 

polystyrene results. The selected pathlength (33 μm) resulted in a peak height of the 

standard in the optimum absorbance range of the FPA, where the distribution of peak 

height over the pixels amounted to a CV comparable to the PS work (~4%). This work 

provides insight to just what is the single detector elements response like – what level of 

noise, and how stable are the measurements made. The apparent ineffectiveness of the 

NUC supplied with the instrument software is troublesome, as this may limit the 

available data points in further experiments looking to extract quantitative information 

from spatially limited regions of the FPA. It appears that overall, the long tailed 

distribution of the spatial noise accounts for roughly 20% of the pixels within the FPA, 

which translates to the removal of just over four columns of pixels from the total. 
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Chapter 4. Assessment of the Quantitative Performance 

of an FPA-FTIR Spectrometer 

4.1 Introduction 

 In the previous chapter the FPA detector elements basic response characteristics 

were quantified. The noise performance capabilities of the pixel population were 

assessed, as was the absorbance responsivity. Also a procedure was developed and 

assessed for the FPA-FTIR microscope sampling of a demountable transmission cell, 

allowing for the facile imaging of liquid samples. With a system designed for the rapid 

loading of liquid samples, with accurate temperature control, the next step is to begin 

building models of the individual detector elements quantitative analysis capabilities. If 

the level of quantitative performance for the individual detector elements of the array 

can be established then decisions can be made about the application of these detectors 

as quantitative tools in real world systems. Applications which have already exploited 

FPA-FTIR do not generally do so with accurate quantitative measurements in mind, 

however the quantitative accuracy of individual detector elements has implications to 

any chemical measurement being made. If the relative responses of adjacent detector 

elements are to be used in making crucial decisions, a certain level of confidence must 

be ascertained such that their response is not merely an artefact of non-uniformity 

between detector elements. Measuring in the context of a quantitative analysis study 

allows one to make many valuable observations which are entirely relevant to 

qualitative applications as well. For example, if a bacteria smear is being scanned for the 

purposes of building a database for an expert bacteria identification system, but a 

considerable percentage of the FPA detector elements are generating inconsistent 

and/or erratic spectral responses where that percentage is characteristic of that 

detector – what impact will that have on the transferability of that spectral information 

if another FPA-FTIR system is used? 

Previous work 19 with this FPA-FTIR spectrometer conducted a quantitative analysis 

on series of standards made up of methyl myristate in odourless mineral spirit. It was 

established that as a global average of detector elements, a good linear regression curve 

can be obtained, but when examined per pixel a significant spread in the CV with 

increasing standard concentration was observed. This observation is consistent with 
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those made in section 3.4.2, whereby the level of absorbance of a peak resulted in 

larger distribution magnitude over the detector elements of the FPA. This work 

continued by investigating the relationship between ‘noisy’ pixels and the overall 

regression SD (CSD), where it was observed that a minimum CSD was achieved by 

averaging the highest 20-40% pixels in terms of noise performance. Additionally steps 

were taken to develop software capable of calibrating individual pixels of the FPA so 

that the regression statistic spatial distributions could be analyzed, where it was found 

that 60% of pixels have a run-to-run SD of less than 20 milli-absorbance units, while at 

the other end, nearly 20% of pixels have a run-to-run SD of 35 milli-absorbance units or 

much higher. These 20% of pixels were attributed to the spatial noise pattern seen 

previously. It was also observed that the level deviation from linearity was well in excess 

of what might be caused by the observed noise features of the FPA, thus an additional 

effect to pixel responsivity is taking place. 

Using the techniques developed in this work with methyl myristate a further 

quantitative study of several aqueous model systems will be conducted. Starting with a 

model system of NaN3, least linear square (LLS) regressions will be built for the 

individual detector elements of the FPA camera. The day to day performance for the 

same calibration will be established. From this data a different approach to co-adding 

will be employed, contrary to the random selection of pixels from the FPA, spatially 

adjacent pixels will be combined and the benefits to analytical performance determined. 

Additionally a series of food relevant analytes will be modelled, and finally a milk 

analysis study will be conducted. Milk was selected based on two reasons, 1) established 

methodology for the quantitative analysis of milk and other dairy products, and 2) the 

current use of FTIR spectroscopy for the analysis of milk in industry where each 

spectrometer is capable of carrying out 300-600 samples/hr employing a single element 

DTGS detector. The high-throughput requirements placed on FTIR spectrometers for the 

commercial analysis of milk gives a context where the FPA-FTIR system would have a 

significant cost-benefit advantage. Essentially the development of a cell capable of 

carrying multiple fluid streams would make the FPA-FTIR system equal to m 

conventional IR spectrometers (where m equals the number of channels in the cell).  
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4.2 Experimental 

4.2.1 Chemicals and Materials 

Sodium Azide (NaN3) standards were prepared by weight with distilled, 0.45µm 

filtered water to give a range of ~0.060 M to 0.200 M. Solutions were stored in airtight 

amber glass containers, in the dark at room temperature, and used within 5 days. Milk 

standards were obtained from a laboratory specializing in milk analysis, and consisted of 

6 standards with reference analyzed levels of fat, protein and lactose content. Samples 

were sealed in plastic containers provided by supplier, and the bulk sample kept 

refrigerated at all times. All milk samples wer analysed for fat content by Röse-Gottlieb 

method with a Mojonnier extractor; protein by Kjeldhal; and lactose by HPLC. 

4.2.2 Instrumentation 

Same spectrometer set-up as in section 3.3.2. was employed. A parallel study using 

the FTIR spectrometer equipped with a DTGS detector was also performed. 

Modifications were made to the microscope stage for collection of spectra from D20 

samples, in that the purge apparatus optimized in section 3.4.1.2 was adapted in order 

to maximize sensitivity for Amide I spectral region. The custom made transmission cell 

illustrated in figure 3.16, was clamped into place on the microscope stage, linked to 

heaters and a thermocouple for accurate temperature control of the fluid. The cell 

materials used were CaF2 (ICL, IR grade), spaced with a combination of Teflon spacers to 

obtain a path-length between 30-40 µm, with lead gaskets between the manifold and 

the cells to ensure efficient heat transfer. 

4.2.3 Sample Acquisition 

Optical focus of the transmission cell was obtained by focusing upon the outlines of 

bubbles within the cell. The cell was then filled with the solvent (water unless otherwise 

specified) and an area of the transmission cell free of bubbles and/or debris was found 

and the transmission cell locked into place. The FPA NUC procedure was carried out 

through the solvent filled cell by setting an integration time that achieved integration 

energy between 7000-9000 counts. Prior to background and sample collection the 

transmission cell was temperature stabilized, temperatures were accurate to within +/- 
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0.2 ˚C (30 ˚C for NaN3 standards; 40 ˚C for milk standards). Injection of samples was 

done manually using sterile syringes connected to Teflon tubing, so that the 

transmission cell was left undisturbed under the microscope stage. Volumes of sample 

injection varied depending on sample media; the transmission cells volume itself was 

minute, however the lines leading to the cell required flushing of the previous sample to 

avoid cross contamination and/or dilution. The NaN3 standards were injected as 1 mL 

aliquots, milk standards as 2 mL aliquots. Collection using the DTGS involved setting up 

the transmission cell in the regular transmission compartment of the instrument, with 

all the connections, temperature control, and purge measures taken with the FPA-FTIR 

sampling, being easily transferred – thus ensuring that the only difference in sampling 

was the detector being employed. 

4.2.4 Data Processing 

Spectral processing employed the same procedure as described in section 3.3.4. 

Additional in house software (ImagePLS) was developed for the processing of LLS and 

PLS calibrations for groupings of pixels and for individual pixel calibrations. Many of the 

same features available in ImageProcessor were available in ImagePLS, thus it was 

possible to carry out pre-filtering procedures before building calibrations based on 

groupings of pixels within the FPA. Further statistical analysis of the data generated by 

ImagePLS was carried out in Excel 2007 and/or Origins 7.0.  
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4.3 Results and Discussion 

4.3.1 Aqueous NaN3 Calibrations: Linear Regression Modelling of FPA Pixel Population 

 

In order to appreciate the ‘linear’ performance characteristics of the FPA, a first step 

was to build linear regression calibrations using the FPA as a single point detector, and 

then to adapt what was learned in chapter 3 to refine that detector to the better 

performing elements and quantify the gains. The data in table 4.1 illustrates the impact 

on the linear regression statistics using the co-addition of pixels within the FPA, where 

pixels are grouped at random thus the co-adding of a single row or column will not likely 

occur. By taking the average of all pixels within the FPA to generate a data point, a 

regression curve very similar in quality to the DTGS curve is generated (see first row, 

table 4.2), with the exception of the differing slopes. The slope deviation is not 

unexpected when working with different detector types with different responsivity. 

When the FPA is randomly sub-divided through the pixel co-addition process, the overall 

linear regression CSD follows a power function trend with a root factor of 0.496, and an 

R2 = 0.9997 for the trend, matching observations made in previous FPA calibration work 

with methyl myristate standards 19. Note the increasing SD with increasing standard 

concentration in the plot at the right in figure 4.1, a trend which supports the 

observations in figure 3.14. 

 

Figure 4.1 Linear regression data for increasing levels of FPA pixel co-addition, where 

the subscript indicates the number of pixels averaged to generate the data at a point in 

the calibration. Thus FPA64 will generate 16 replicates per standard, each point 

consisting of the average of 64 random pixels. 
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Depending on the levels of pixel co-addition from within the FPA, some of the poorer 

linear regression characteristics can be negated. However, the sense in which the data in 

figure 4.1 was constructed is not useful for the end purpose of this project due to the 

nature of the co-addition process. When the FPA detection system is to be utilized for its 

spatial resolution capabilities with a series of adjacent fluid channels the data will need 

to be averaged in a spatial sense. It has already been demonstrated that a spatial noise 

pattern is evident on the FPA, which has serious implications to making quantitative 

measurements of multiple fluid channels within the FPA field of view. It is important to 

establish whether the spatial noise features relate to other pixel response 

characteristics.  

Data Set Slope, mean (CV) CSD, mean (CV) R
2
,
 
mean (CV) 

DTGS 3.9517 (0.3%) 0.00443 (51.2%) 0.9996 (0.04%) 

FPA1 (All Pixels) 4.1200 (9.3%) 0.03261 (>300%) 0.9703 (5.2%) 

FPA2 (80% of Pixels) 4.0899 (4.3%) 0.02079 (60.8%) 0.9825 (1.0%) 

FPA3 (50% of Pixels) 4.0901 (3.8%) 0.01877 (56.0%) 0.9887 (0.7%) 

FPA4 (10% of Pixels) 4.0940 (2.8%) 0.01688 (50.9%) 0.9912 (0.5%) 

Table 4.1 NaN3 linear regression data for DTGS and for FPA pixel population with 

increasing levels of RMS noise filtering (FPA2-FPA4). DTGS data averaged from 3 runs 

using the same calibration standards. 

The data in table 4.1 describes a) a DTGS calibration of the NaN3 as a benchmark 

comparison, b) the FPA average – that is to say all 1024 detector element responses 

collected and averaged, and c) the FPA averages after pixel filtration based on the noise 

features of the calibration set. To remove pixels of the FPA image based on noise, the 

RMS noise in a region adjacent to the peak of interest were collected from each 

standard and averaged (per pixel). As can be seen the removal of noisier pixels from the 

FPA does enhance the linear performance of the detector as a whole – logical, as each of 

these other features have been attributed to the spatial features upon the FPA, and the 

removal of noise heavy detector element response from the average would be expected 

to boost the sensitivity and lower the variability in a linear regression model. Figure 4.2 

elaborates table 4.1, showing the gains at 10% pixel removal intervals, and also shows 

the 2D representation of the regression feature being modelled. For each of the slope, 

CSD, and CC, the spatial noise features (see figure 3.5) are translated to poorer linear 

performance.   
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Figure 4.2. Trends for linear regression gains upon further refinement of pixel 

population according to an RMS noise filter. Each point in the plot represents the 

average of the remaining pixels (Mean series) and the magnitude of that features 

distribution (CV series). 2D representations of each feature (slope, CSD, and CC) with 

color scales illustrate their non-random spatial distribution over the FPA camera. 
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 The slope and CC values follow a roughly power function gain, while the CSD is less 

predictable in this sense. In each case it can be seen that removal of greater than 20% of 

the pixel population based on their noise performance does not result in appreciable 

gains to the mean and the distribution around that mean. A comment that the CSD CV 

values seem disproportionately large; this is due to the magnitude of the absolute CSD 

values being relatively close to zero; thus it is the change in CSD CV values which form 

the important observation. Based on the trends of the spatial features seen in figure 4.2 

it might be assumed that RMS noise would form a good basis for the reduction of the 

FPA pixel population to those with better linear performance. However, upon further 

inspection (figure 4.3), it appears that no strong correlation can be made between RMS 

noise features of pixels and their linear characteristics. Aside from the few outlying 

pixels which would be removed on the initial levels of RMS filtering, the pixel population 

is largely randomized, and further filtering will not have a drastic impact on the overall 

regression parameter. This then is what has been observed in figure 4.2, showing that 

the filtering of the pixel population based on noise is not the most effective approach, 

with many pixels showing lower CSD values being lost with lowest levels of noise 

filtration. 

 

Figure 4.3. Plots of pixel regression features (CSD and CC) against their respective RMS 

noise characteristics (mean RMS noise and RMS noise CV), from a NaN3 calibration set. 
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The selection of pixels based solely on their slope values is not an effective filtering 

option, as the slope values that are generated by the pixels say nothing about the fit of 

that slope to the data points, one only has to look at the CSD and CC 2D plots (figure 4.2) 

to see that there is a significant percentage of erratic pixel responses forming a spatial 

pattern over the FPA. It is these parameters (CSD and CC, or R2) that may shape an 

effective pixel selection procedure. The disadvantage of this approach is that a current 

calibration model must exist in order to apply the filter, where with an RMS noise filter 

the draw was that only a single image would be necessary to apply the filter. However, if 

the application at hand calls for the building of a calibration curve then this 

consideration is of little concern. Other possibilities of pixel selection filters were based 

on pixel CV value for repeated measurements, and a pixel relative error of prediction 

(%RE) based on an individual pixels ability to predict a validation standards 

concentration. To demonstrate the effectiveness of these various pixel filtering 

possibilities, table 4.2 is arranged to illustrate their impact on the predicative ability (RE) 

of the post-filtered pixel populations.  

 %RE Per FPA Pixel Selection Filter: 

% FPA 

Filtered 

%RE CSD CC %CV RMS 

Noise 

20% 2.38 (75%) 2.73 (81%) 2.73 (81%) 3.44 (265%) 4.42 (264%) 

50% 1.41 (73%) 1.96 (77%) 1.97 (77%) 3.09 (360%) 4.62 (310%) 

80% 0.72 (74%) 1.32 (79%) 1.31 (80%) 3.82 (458%) 5.54 (375%) 

Table 4.2. Filtering of FPA pixels based on various parameters and their respective 

ability to narrow a pixel population with a consistently accurate predictive ability, 

measured as %RE. Values = %RE (CV). 

Each of these filter approaches is an improvement over the unfiltered FPA pixel 

population, found to generate a mean %RE = 6.2% (CV = 620%). However, it is apparent 

that the RMS filter approach is among the least effective in retrieving the pixels with 

superior quantitative performance – if the relative error measure is to be trusted. The 

absolute value of the mean %RE and the magnitude of its distribution after the RMS 

noise filter and %CV filter show the worst selection ability. What’s more, further 

refinement of the FPA based on pixel RMS noise performance actually selects for pixels 
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with increasingly inferior predictive ability. The CSD and CC filter selection procedures 

approach the level of the direct %RE filter, with removal of 20% of pixels based on these 

values almost matching that of the direct %RE filter. Also, it doesn’t appear that there is 

any significant advantage to using one approach over the other (CC vs. CSD), as the 

statistics are virtually identical. For the refining of the pixel population, in terms of 

predictive performance, a direct CC or CSD filter appear to be the best approaches. 

For the current conditions (64 scan co-additions, 8cm-1 resolution, ~8000 integration 

energy, NaN3 linear regression model, and a 20% CSD pixel filter) the average pixels 

response characteristics are: 

 CC , 0.9973 +/- 0.0021 

 CSD ,  0.01247 +/- 0.00455 

 Slope, 4.1058 +/- 0.2853 

 RE, 2.73 +/- 2.33% (for the prediction of a mid-range standard). 

 RMS noise, 0.00083 +/- 0.00026 

A further question around these pixel characteristics which has not yet been 

addressed is that of their day to day stability. This was addressed simply by running the 

same NaN3 calibrations repeatedly, ensuring that the same experimental conditions 

were applied, so that the only difference between runs will be a new NUC for the FPA, a 

slightly different integration energy, and in some cases a new NaN3 calibration set. A 

total of 6 runs are presented, the first 4 are from the same calibration set over a period 

of four days, while the 5th and 6th are each from separately prepared calibration sets on 

separate days. 
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Figure 4.4. The day to day stability of various linear regression calibration features of 

NaN3. Each point is determined from the top 80% pixels of the calibration run based on 

pixel CSD values. 

With regards to the slope data in figure 4.4, the refined pixel population’s slope over 

six runs averages to 4.0127 +/- 0.1200, while the average distribution of pixels within a 

run generates a CV value of 5.19 +/- 1.25%. The CSD value over the six runs averages to 

0.0160 +/- 0.0044, while the average distribution of pixels within a run generates a CV 

value of 37.1 +/- 8.9%. The CC value over the six runs averages to 0.9966 +/- 0.0017, 

while the average pixel distribution generates a CV value of 0.24 +/- 0.12%, forming the 

most tightly distributed line feature both within a single calibrations pixel population, 

and between multiple calibrations. The opposite is true of the RE value, with an average 

from the six runs of 7.02 +/- 4.22%, and the widest distribution by far at 271 +/- 221%. 

No consistently observable pattern appears in trying to correlate one feature to another 

(e.g. for run 2, low CSD mean value vs. low RE mean and SD; for run 4, low CSD mean 

value vs. high RE mean and SD).  Thus by taking the mean values and measuring the 

magnitude of each features distribution, post CSD filtering of the population, it does not 

appear that any predictable trend in performance, and that these levels of variation 

must be attributed to the nature of each distribution. To investigate this further the 

distributions have been plotted as histograms (see figure 4.5, and appendix 1 for full 
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list), where based on the data in figure 4.4, comparisons of pixel CSD response are 

contrasted in fuller detail. 

 

Figure 4.5. Histogram representations of CSD distributions for the NaN3 aqueous 

calibration standards (0.010-0.200 M); left graph comparing run 1 to run 6, right graph 

comparing run 2 to run 3. Each run has had 20% of high CSD pixels removed prior to 

plotting. 

The CSD distributions in figure 4.5 were selected to illustrate two phenomena seen 

regularly with any feature of the pixel population (slope, CC, RE, noise). Runs 1 and 6 

give nearly identical distributions – one overlays the other, and their descriptive 

statistics confirm this similarity; keeping in mind that these two runs were run the 

farthest apart in time, with different calibration sets. Runs 2 and 3, each run out of the 

first trial calibration set (as with run1), are shifted quite significantly relative to one 

another, where run three appears to have a narrower distribution compared with the 

more positively skewed distribution of run 2. It appears that the CSD pixel filter has 

affected run 3 more than run 2, as the distribution appears unnaturally ‘cut’ on the high 

end – this does however create a more normal type distribution of the pixel CSD 

response, and the CSD CV is a more relevant measure of highly skewed distributions like 

the CSD and RE, but not of the ‘normally’ distributed pixel slope and CC values. 
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 %CVmedian %CV 

CSD 39.88 +/- 9.30 37.09 +/-8.29 

CC 0.24 +/- 0.12 0.24 +/- 0.12 

RE 474 +/- 483 271 +/- 220 

Table 4.3. CVmed vs. CV for distributions of pixel calibration features as an average of the 

six runs. 

It was hoped that the modelling of the pixels with multiple standards would lend 

stability to the predictive powers of the pixel population – i.e. the building of multiple 

points within the pixels response, then eliminating 20% of the pixel population based on 

CSD performance, and calculating the remaining population as the ‘average’ pixel. 

Contrary to expectation, a wide distribution of predictive accuracy is obtained from the 

pixel array (see %CVmed for RE, table 4.3). Also, it appears that significant shifts take 

place with all features of the pixel population going from one day’s analysis to the next. 

The only variables between runs that can be identified are a) the recalculation of the 

NUC, and b) the slight shift in the detector integration energy between runs. The latter is 

unlikely to be the main issue, as in section 3.4.1 dealing with noise characteristics of the 

FPA the impact of integration energy was found to have minimal impact on the 

distribution mean/magnitude above a value of 6000. On a positive note, the predictive 

accuracy, as shown in the RE plot of figure 4.4, highlights that runs 1, 2, and 5 have 

generated a significant pixel population with a RE below 5%, and further that these 

same runs generate an average of ~150 pixels with an RE less than 1%. No correlation 

was observed with any of the other linear regression parameters and the higher 

accuracy pixels, suggesting that they may simply be due to random response – i.e. 

perhaps any pixel will by chance generate this accurate response. 

Runs 3 and 4 had an expanded analysis of a single standard, i.e. one sample from 

within the curve was scanned repeatedly while building the calibration. Using this data, 

the stability of the pixel RE of prediction can be estimated, an also the data can be 

plugged into calibration sets from other days to see how cross prediction is handled. 

Rather than applying a CSD filter to the pixel data (which has varying levels of 

effectiveness in narrowing to the better RE pixel population), a direct RE filter was 

applied, by removing pixels based on their mean RE over the 12 replicates. The effects of 
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a CSD FPA filter vs. a direct RE FPA filter are shown for two series of 12 replicates (figure 

4.6, below), each performed on the same calibration set within one day of each other. 

 

Figure 4.6. Two calibration sets are plotted for 12 repetitions (x –axis), showing the 

mean of the pixel populations RE value, and the associated CV value for that population. 

A CSD filter was applied in the chart at left, an RE filter at right – each removing the 20% 

of pixels with the highest respective value. 

Going from the CSD filter to the RE filter does not show drastic changes in the mean 

RE values for the remaining pixel populations, however the CV values are significantly 

reduced with the RE filter approach. This illustrates the inefficiency of the CSD filter in 

obtaining those pixels with better predictive ability. The other observation is the 

magnitude of the variability in pixel response, i.e. looking to the RE filter data; the same 

sample may generate a relatively tight range of mean RE values, however the 

distribution of pixels from replicate measurements can have a standard deviation 

fluctuate from 65-85% relative to the mean – with no changes in operating conditions. 

Looking at a single pixel (5 x 21) in run 3 for the 12 repetitions it generates a mean RE of 

0.66 +/- 0.47%, while in run 4 it generates a mean of 1.83 +/- 1.21%. This pixel was 

selected as the best performing in terms of RE value from run 3, to show what level of 

variability might be expected from the best crop of pixels.  
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4.3.2 Milk Calibrations: MLR and PLS Modelling of FPA Pixel Population 

The linear regression modelling of NaN3 has demonstrated the Beers law limits for 

the pixel population. Linear regression is rarely directly used in the modern application 

of spectroscopy for quantitative measurements; however it does form the fundamental 

backbone for more intensive calibration methodologies. It is suspected, based on 

previous accounts and knowledge of the complexity of the sample matrix, that 

modelling one component off a single peak will not provide the best accuracy in 

analysis, i.e. other components of the milk will contribute to a peak selected as 

representative of a single component, attenuating the end result to an extent. Figure 4.7 

shows the optical image of the homogenized milk standards under the microscope, 

where droplets are visible in the stopped flow but in a size that does not impact the 

response of the FPA’s significantly. The milk scanning procedure was optimized at 40˚C 

as a stopped flow, with check valves on the input and outputs to ensure that a drift of 

the sample didn’t occur during sampling – so any features that might be detected as 

heterogeneous by the FPA would be static throughout the scanning procedure. 

 
Figure 4.7. At left, an optical image of the FPA field of view of a stopped flow of 

homogenized milk. Middle top, IR map of the C=O stretching frequency indicative of the 

fat distribution; middle bottom, IR map of the Amide II peak indicative of the protein 

distribution. Right, respective histograms of absorbance values per pixel for the C=O and 

Amide II measurements, where the peak heights are baseline corrected at 1780.0 and 

1490.0 cm-1 respectively.  
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Table 4.4.  LR-analysis of fat content and NaN3 internal standard from milk calibration 

standards. Under each category (fat and NaN3) a = 20% pixels removed based on CSD; b 

= 20% pixels removed based on RE. Values in brackets are the %CV for the remaining 

pixel population. 

As an initial comparison to the previous section a calibration set was run with the 

addition of a NaN3 spikes in increasing amounts, creating another component in the milk 

calibration set. This added standard established that 1) the milk matrix does not 

significantly impact the modelling of NaN3, and more importantly 2) the principle 

components of milk are not modelled as efficiently as the NaN3 case. Table 4.4 actually 

shows the superior linear regression for the NaN3 component where the CSD for NaN3 is 

nearly twice that of the respective fat values, while opposed to this the CC values are 

slightly improved over that of the fat. Between the two cut-off approaches (CSD and RE 

removal of pixels) the RE filter results in the best population of pixels in terms of RE and 

a similar selection in terms of CSD and CC, although they are in each case slightly 

degraded when compared with the CSD filter. In relation to the previous NaN3 

calibrations performance is improved, noting that the collection of the milk standards 

was done at 256 scan co-additions vs. the 64 scan co-additions used in the previous 

NaN3 work, illustrating the gains in predictive accuracy to be had with longer scan times. 

The best performing pixels, as selected with the RE filter in table 4.4, obtained an 

average prediction of fat content within 2.7% of the true value and a distribution 

magnitude among these pixels comparable to the NaN3 in the same standard. It is also 

noted that the minimum absorbance at 1747.5 cm-1 for the standard set was sub-

baseline with a CV of 90%, while the maximum absorbance was at 0.14 with a CV of 

5.6%. These low end measurements are problematic, as the transmission cell pathlength 

cannot be extended much further past the current 35 um without further saturation 

effects due to the water bands. However, this work demonstrates that it is possible to 

make reasonable calibrations (comparable to the optimum range NaN3 measurements 
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made earlier within 0.2 -0.8 absorbance) on the low end of the absorbance scale for the 

detector elements of the FPA camera.  

Due to the linear regression calibration approaches inability to model the 

contributions between separate components within the milk matrix to each peak (which 

with the LR model are being analyzed as an individual component) the MLR calibration 

technique is often used for making quantitative measurements of milk in industry. MLR 

attempts to model the relationship between two or more explanatory variables and a 

response variable by fitting a linear equation to the observed data. The application of 

MLR to the FPA milk calibration standards also allowed for the direct comparison of 

results to the requirements of the AOAC for milk measurements (table 4.5, bottom row). 

The selection of peaks was based on early research with the assessment of FTIR for milk 

analysis 50 (see experimental for details) and focused on the reference analyzed 

components of the milk standards (fat, protein, and lactose). The data in table 4.5 

relates to the MLR calibrations made on a) the averaged peak responses for all pixels, b) 

the averaged peak responses post removal of the 20% highest RMS noise pixels, and c) 

the averaged peak responses post removal of the highest CSD pixels based on previous 

LR analysis per pixel. 

 

Table 4.5. Trending of MLR fit statistics upon furthered refinement of pixel population 

contributing to the average values used for calculations. RMS (20%) indicates removal of 

the highest 20% RMS noise from 1950-1750 cm-1 based on image blanks; CSD (%) 

indicates the level of pixels removed based on individual pixels CSD from a pre-

calculated linear regression. 

The data in table 4.5 contrasts the fit statistics for the different approaches to pixel 

population refinement, and based on previous experience with the linear regression 

data, it would be expected that the CSD refinement approach would generate more 

significant improvements. For the fat this assumption holds true, with virtually no 

improvement to the fit statistics upon RMS refinement, and proportional improvement 
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with CSD refinement. The protein fit statistics see degradation upon RMS refinement, 

and a similar situation with the CSD refinement – until 80% removal of pixels which 

equates the average when using the average of all pixels. The lactose shows better 

improvement using the RMS approach compared with the CSD approach.  

The data in table 4.5 is based on a single calibration run, while it is noted that in 

general for repeated runs, there is an improvement in the fit statistics based on the CSD 

approach for the fat and lactose components, while the protein component generates 

more variable results. It is also noted that for each scenario it doesn’t appear that a 

terribly significant improvement or degradation is taking place with the fit statistics in 

the MLR model – however it needs to be demonstrated to what level are these pixel 

populations are performing compared with industry standards. To do this the MDa, 

SDDa, MDr, and SDDr were calculated based on the MLR curves predictions of the known 

standards values, and the results tabulated. As a first observation, it was found that the 

MDa and MDr in all cases were in the order of 10-6 – 10-7, well below the requirements of 

the AOAC for this parameter. However as indicated by the higher values of the SDDa and 

SDDr these extremely low MDa values can likely be attributed to the noise level of the 

data set which makes it appear as no bias exists; therefore the values are better 

described by the SDDa and SDDr in this case. The nature of the detector at hand (FPA 

camera) explains this observation of noise drowning out observable bias in the mean 

differences, as it’s noise levels are 1-2 orders of magnitude greater than conventional IR 

detectors.  

In figure 4.8 (following page) the trends in the SDDa and SDDr are plotted for the 

varying levels of pixel refinement (based on the CSD values of the pre-linear regression 

selection of pixels), and several things can be noted about these trends. In each case 

there is a reduction in the absolute value of the SDDa upon the initial levels of 

refinement – and in most cases this reduction is proportional throughout the successive 

levels of refinement, thus validating the procedure of pre-selection of pixels based on 

their LR CSD (or R2) values. For the SDDr – an overall reduction in the absolute value for 

the two calibration sets does take place. The exception here is the lactose SDDa, which 

appears to not generate any significant change with further removal of pixels (note the 

scale of the lactose SDDa in figure 4.8). It was hoped that the refinement of pixels might 

narrow the gap between respective calibration sets, but this doesn’t seem to be a 
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consistent effect of the procedure; the fat seems to narrow for each the statistics, but 

lactose is much less predictable, and the protein narrows with respect to the SDDa but 

not the SDDr. The trend of each the SDDa and SDDr seems roughly repeatable between 

runs with different calibrations in that similar patterns can be discerned for the pixel 

refinement procedures. Overall the changes in the statistics are not that great 

proportional to the level of pixel refinement, and are generally greater with respect to 

the fat and protein components than with the lactose – but as described below these 

small changes can have an important impact. 

 

Figure 4.8. Trending of SDDa and SDDr for two sets of milk calibration standards. The 

SDDa is for a set for individual calibration runs from two separate sets of standards. SDDr 

is representative between two calibration runs per set – i.e. the differences between the 

repetitions of the same standards. The successive levels of pixel refinement based on 

their pre-calibrated CSD values is represented on the x-axis, while the SDDa and SDDr are 

represented on the y-axis of the respective charts. 

With respect to the industry standards as defined by the AOAC, the lactose and 

protein components are predicted with enough accuracy and repeatability by the FPA to 
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be acceptable. The problem lies with the fat component, whereby both the SDDa and 

SDDr statistics have not met the standards (0.06 and 0.02 respectively); the SDDa is quite 

close and with refinement can meet the standard – but the SDDr is well off, and even 

with removal of 80% of the worst performance pixels. It is noted that an attempt to 

model the fat component using only the CH band (2924 cm-1), only the ester band 

(1747.5 cm-1), and a combination of both – where it was found that inclusion of 

generated the optimal result.  

As a final illustrative measure, the pixels of the FPA were calibrated for the milk 

components using a PLS approach. This feature was incorporated into the same 

software used to generate the linear regression calibrations, and allows for the 

generation of the same 2D image plots of the resultant response distribution (figure 

4.9). The RMSECV distribution gains for each parameter are demonstrated in figure 4.10, 

with increasing levels of latent variable fitting. 

 

Figure 4.9. RMSECV and CC distributions for the PLS calibration of fat, protein, and 

lactose. Inset table shows latent variables selected from respective PRESS plots, a the 

RMSECV for the FPA as a whole (per component),  b the RMSECV with CV in brackets for 

the pixel population, and the FPA average R2 value. 
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Figure 4.10 The level of RMSECV distribution versus the number of latent variables used 

in the PLS calibrations of fat, protein, and lactose.   

4.4. Conclusions 

The overall linear response of the FPA compares to that of the DTGS standard 

detector type used in many conventional FTIR spectrometers, however upon breakdown 

of the FPA into its constituent detector elements there is a rapid degradation in the 

linear regression performance. Taking the data in chapter 3 (about the RMS noise 

features) into account, it appears that the same spatial features are present for the 

slope, CSD, and R2 performance characteristics of the detector elements. A filter 

removing the 20% highest RMS noise pixels from the calibrated pixels supports this 

observation in that there is a significant tightening of the response distributions (slope, 

CSD, and R2) and an improvement in the absolute means of the average detector 

elements CSD/R2 values relative to the DTGS detector (CSD, 0.0169 vs. 0.0044; R2, 0.9912 

vs. 0.9996 – for the top 10% pixels vs. the DTGS detector). For each parameter it was 

found that for the initial 20% filtering the gains in further removal of pixels based on 

their noise features did not result in significant gains in global performance, and that 

looking at the pixel population as a whole no strong correlation actually exists between 

noise and linear regression parameters of the pixels.  
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Other more direct methods were thus experimented with, and it was demonstrated 

that in terms of selection of pixels with better predictive ability (in terms of %RE to the 

true value of the selected standard) the CSD and CC filters gave the best result aside 

from the direct %RE filter. In practice this would require that a pre-calibration be 

performed on the FPA prior to the analysis of a sample set, and from that information 

the pixels to be used in the analysis may be selected based on any of the pixel selection 

filters used here, with the recommendation of a direct %RE and a CC filter to remove at 

least the worst 20% performing pixels. It is interesting to note that the RMS noise filter 

approach is the least effective of the pixel filters employed, and actually results in an 

increased average %RE prediction value with a broader distribution over the FPA – 

suggesting strongly that the noise features of the pixels cannot be the only 

consideration in determining the best ‘quantitative’ pixels. The day to day calibrations 

using the above model, found that the stability of each measurement is hard to predict – 

the average CSD value can double from one day to the next, with the magnitude of the 

distribution changing just as drastically – the same can be said for other calibration 

features. Thus it appears that differences from one FPA NUC and other spectrometer 

conditions have an unpredictable effect on the overall FPA response, stressing the 

requirement for a pre-calibration before each day’s analysis. It is troubling that after 

modeling the pixels responses with multiple standards, and then making validation 

predictions based on that model, that such a wide range of predictions are still 

generated – and this again is likely due to the nature of the NUC performed on the 

detector elements giving unpredictable behavior for a good proportion of the pixel 

population. 

The analysis of the milk standards provided an important addition to the NaN3 

calibrations in that it allowed for comparison to industrial requirements of quantitative 

performance, and also allowed for the performance of the FPA detector to be pushed 

with the multi-component analysis of a more challenging sample matrix. The 

homogenized milk samples did not have any observable features under the microscope. 

The utilization of a pre-homogenizer is required for all milk sample analysis by IR 

spectroscopy, and while this is not a problem to link to conventional transmission IR 

cells, it is envisioned to be problematic in coupling to the proposed multi-channel cell 

discussed in chapter 5. Overall, the linear performance for each of the protein and 
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lactose components of the reference analyzed milk standards met the requirements of 

the AOAC, while the fat component was not able to pass. The direct comparison of the 

fat component to the NaN3 regression statistics shows that the performance of detector 

population is diminished – something that is improved when using the MLR calibration. 

The PLS calibration of the milk standards did not meet expectations – the RMSECV for 

the calibrations were a two orders of magnitude greater than the linear regression 

analysis, while contrary to the MLR results the fat component had the best relative 

performance with poor performance for the protein and lactose components. The same 

spatial features are observed within the 2D plots of each of these features, suggesting 

that the PLS approach does not compensated for this feature of the FPA. 

Overall, it has been demonstrated that the FPA pixel population is capable of making 

milli-molar accurate predictions of the NaN3 model system, and a percentile level of 

accuracy with the measurement of milk components. There is the continuation of the 

spatial features seen with the noise analysis, and pixels can be better selected by using 

the parameters obtained from a pre-calibration procedure. The spread of the pixel 

predictive ability seems to change from one day to the next and necessitates constant 

monitoring – i.e. transferability of a calibration model from one day to the next should 

be cross checked with calibration standards upon every analysis and the pixel 

population to be used based upon the result. The level of variability for an individual 

pixel performance needs to be contrasted to the level of variability between pixels, 

where it is a combination of these two factors that will decide how one might make 

predictions of a concentration gradient within a single image – rather than for a series of 

images as done in this chapter. 
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Chapter 5. FPA-FTIR Multichannel Sampling System. 

5.1. Introduction 

To define the concept of high-throughput analysis (HTA) is simple enough – where 

any process which enables the analysis of a high volume of samples in an efficient 

amount of time, obtaining the required level of analytical information can be called a 

high-throughput technique. These HTA techniques are of great significance in industry 

for the analysis and/or screening of products at different points of their production 

process for quality control and regulatory purposes. There has been a trend in recent 

years toward the development of these so called high-throughput chemical analysis 

techniques, where one of the main driving forces behind this trend is that of the 

pharmaceutical industry and combinatorial chemistry 96. The drive for new drugs 

discovery requires the analysis of countless thousands of formulations under a variety of 

experimental conditions, and carries with it a large monetary incentive. One technology 

which has revolutionized the field of high throughput drug discovery is micro and nano-

fluidics, where the massively parallel sample throughput of these arrays allows for 

unprecedented levels of high throughput screening (HTS). Both FPA-FTIR imaging and 

micro-fluidics are beneficial to a variety of other fields for the purposes of HTA and HTS, 

e.g. biological sciences 120, 121, medical sciences 122,  pharmaceutical sciences 106, forensics 

science 123, and food and agricultural sciences 8 all stand to benefit from these advances 

in one way or another. As discussed in the microfluidics section of chapter 2, there are 

many means of detecting processes on micro-fluidic platforms – LIF, SERS, thermal lens 

spectrometry, and a variety of other exotic sensor techniques – but what is proposed by 

some is that perhaps that old familiar FTIR is up to the task. With its multiplexing 

capabilities, where the rapid collection of a wealth of spectral information occurs quite 

rapidly, FTIR makes for a very powerful analytical tool. It is adaptable to micro-fluidic 

systems, in that many of the typical dimensions utilized (10`s of µm) are characteristic of 

conventional transmission FTIR measurements, while the ATR sampling accessory allows 

for measurements of even smaller fluid sample thickness (on the order of a micron). 

There are limitations to the applicability of FTIR to micro-fluidic systems, mainly: spatial 

resolution limitations due to the diffraction limit of IR radiation (~λ), and the beam size 
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of conventional FTIR systems is too large to make useful measurements of a micro-

fluidics system, making an IR microscope accessory essential. 

The approach to HTS-FTIR spectroscopy undertaken with this chapter incorporates 

the FPA-FTIR detector – in other words a multichannel detector, with a novel IR 

transmission sampling cell. FPA-FTIR for HTS analysis is not a new concept; however it is 

hardly the main application focus of the detection technology. Many studies have used 

the technique for the measurement of multiple deposits and a few have used the 

system for making measurements on micro-fluidic systems 96, 105, 124. The current 

multichannel cell has been micro-fabricated using photolithographic techniques to 

create a series of parallel channels, capable of passing several fluid streams within the 

field of view of the FPA detector. The streams are completely separated by polymer 

divisions, and each will encompass several rows/columns (dependant on orientation) of 

the FPA detector elements. This arrangement works around the two limitations of FTIR 

spectroscopy to the measurement of micro-fluidic systems in that the individual 

detector elements are capable of sampling in the range of a few micrometers with the 

help of the IR microscope optics. Additionally, the detector array allows for the sampling 

of multiple fluid streams simultaneously, and because it is an FTIR spectrometer, 

multiple components from each of the streams may be measured simultaneously as 

well. This system provides a very high throughput analysis tool, adaptable to many 

fields. The model systems used in the following experiments evaluates the feasibility of 

passing multiple fluid streams with the current cell design, and performs experiments to 

test the potential quantitative abilities of the system. As each of the systems has been 

designed as prototypes, recommendations will be made based on the results obtained 

for future developments.  
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5.2.  Experimental 

5.2.1. Materials and Equipment 

Micro-fluidic multichannel cell: The cell was constructed using photolithographic 

techniques, with an SU-8 negative resist upon a CaF2 substrate; see reference for details 

of the process. The end design of this multichannel cell was to be a demountable design 

that could be taken apart repeatedly in order to deal with an blockage issues that may 

occur during sampling, thus the CaF2 plate with the multichannel features was placed 

against another cell (same dimensions) that had been drilled to have a hole matching 

each of the inputs/outputs of the multi-channels. The drilled and undrilled CaF2 plates 

were then manually aligned and fastened together for sampling using a custom made 

manifold.  

Multichannel cell manifold: The multichannel cell required a new manifold design in 

order to utilize each of the channels as a flow through transmission sampling device. 

Decagon geometry was used, consisting of a fluid input plate and a fixing plate used to 

sandwich the micro-channel and drilled CaF2 crystal plates together. The fluid input 

plate had four of the sides used for inputs, then an empty side on each extremity of the 

inputs, and the other four sides used as outputs – the drilled CaF2 plate was aligned with 

the input/output ports on the bottom side of this plate. The transmission port of the cell 

was coned from a diameter of 1.2 cm down to 0.4 cm at the CaF2 plate side, in order to 

minimize the stray light passing through the sample, and to maximize the contact of the 

manifold with the multichannel cell. Each input/output had a male luer lock input 

inserted to attach the tubing assembly, which in turn was connected to a syringe pump 

(SyringePump NE-1800) capable of achieving the μL/min flow rates used in experiments. 

Each syringe was linked to a 0.45 μm milli-pore filter to ensure any remaining particulate 

in the standards/samples was removed prior to passing through the 30 μm bottleneck of 

the multi-channels. 

5.2.2. Samples 

Samples consisted of the NaN3 standards used in chapter 4, prepared by weight, and 

stored in Teflon capped amber glass ware at room temperature. Additional samples of 

ethanol/water solutions were prepared for testing the level of viscosity on the loading of 
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the system – however these were not prepared with quantitative measurements in 

mind (not calibration standards). The channels themselves provided a sample for 

spectroscopic interpretation, with the SU-8 polymer deposition thickness over the 

features of the channels. 

5.2.3. Data Acquisition and Processing 

The open beam FPA NUC was carried out, followed by an open-beam background 

collection, whereby the multichannel cell was then moved into position using the optical 

microscope for alignment. After placing the multichannel cell and locking it into place, 

the Lancer calibration window was again opened and the IR microscope sub-stage was 

used to adjust the response back to a maximum, while the integration time was used to 

approximate the open-beam NUC calibration energy. Alternative calibration scheme was 

followed, whereby the multichannel cell was fixed to the stage and the FPA NUC took 

place through the channel features, followed by a background collection enabling 

subtraction of the cell features from the subsequent fluid samples. Scans were collected 

at 16 cm-1 resolution, based on preliminary work demonstrating the gain in FPA pixel 

noise performance with decreased spectral resolution. The fixing of the multichannel 

manifold to the stage became of upmost importance during scanning in this mode – as 

the subtraction pixel per pixel could be impacted dramatically by minor shifts of the 

apparatus.   
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5.3. Results and Discussions 

5.3.1. Micro-fluidic Multichannel Transmission Cell For FPA-FTIR Quantitative Analysis 

The key components for the development of a micro-fluidic multichannel 

transmission cell are depicted in figure 5.1. The photolithographic fabrication of the 

multichannel cell was carried out so that one cell contained all of the micro-structured 

features (figure 5.1A), while the facing cell held the drilled inputs/outputs. This design 

allowed for the separation and cleaning of the unit if any serious clogging of the system 

occurred, which was a continual problem with previous work using a sealed cell 

approach. The two cells were fixed using the pressure supplied by the custom designed 

manifold (figure 5.1B). The port of the manifold for transmission of the FTIR beam line 

was optimized in order to maximize the surface area of the IR crystal contacted by the 

manifold while still letting a sufficient amount of energy to pass onto detection. With 

the tubing assembly fixed to the micro-channel manifold (figure 5.1C) and the pumping 

system connected to the tubing assembly (figure 5.1D), the system was ready for sample 

collection. 

 

Figure 5.1. Multichannel sampling apparatus. A. SU-8 micro-channel structures on a CaF2 

substrate; B. Custom transmission cell manifold for multichannel assembly and sample 

loading; C. Constructed multichannel mounted to tubing assembly D. Pumping assembly 

fixed to stage-locked multichannel cell. 
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The main issues with the development of demountable cell design lie with the 

manual construction of the cells within the manifold. A practical means of assembling 

the system would have to be developed if it hopes to be used for more routine analysis 

– any small misalignment of the drill holes with the micro-channel fluid inputs/outputs 

results in an inoperable cell, i.e. fluid cannot be passed using the current design. It is also 

noted that the reassembly of the cells carries with it a high degree of risk as far as 

polymer delamination is concerned – particularly if the cell manifold has been wetted. 

Thus the benefits of having a cell design that is demountable for cleaning/de-clogging 

purposes are countered to a certain extent by the extreme sensitivity of the system 

upon repeated handling. 

The loading of the cells using the syringe pump was the other main issue around the 

sampling of the multichannel system. It was found that flow rates greater than 100 

µL/min resulted in the stalling of the pump array, while at lower flow rates leakage from 

the manifold fittings was a constant issue. Generally the lower the flow rate the better 

the performance, but this has definite practical limitations – i.e. the high throughput 

sampling of such an assembly would call for the rapid loading of the cell. A flow rate of 

20 µL/min was settled on as a compromise, however regular leakage still occurred. 

Often the loading of only 2-3 channels would occur, followed by a backwash when the 

fluids were not able to pass through the output side of the cell. Most of these issues can 

be attributed to the high pressures involved combined with the small misalignments of 

the two cell plates with one another – again emphasizing the need for a more efficient 

means of assembling the cells. The successful loading of the cells was achieved for the 

collection of several spectra, however the repeatability of this was poor, and in the end 

more time spent on unsuccessful construction of the cells within the manifold than with 

obtaining useful spectral data of fluid samples. 

Due to the need to keep a micrometer level of precision within the field of view the 

fixing of the multichannel cell manifold to the microscope stage formed an important 

part of the analysis – and proved more challenging than was initially expected. Due to 

the level of vibration introduced by the syringe pump through the tubing assembly, a 

certain level of strain was put onto the manifold when it was clamped into place. By 

securing both the syringe pump and the micro-channel manifold it was possible to 

obtain the required level of stability, although the current arrangement shows that 
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there would be a need for a special container upon the microscope stage that would 

allow for the easy locking of the multichannel cell manifold into place for scanning – 

precise enough to guarantee micrometer level repeatability of placement, allowing for a 

higher level of confidence in the transferability of a background scan of the multichannel 

features (i.e. an FPA pixel always samples an identical position). 

 

Figure 5.2. FPA-FTIR image of the empty multichannel cell, showing the pattern of SU-8 

polymer within the cell. Left, 2D image for the intensity of 3420.0 cm-1 of the SU-8 

polymer. Right, blue spectra is from within a channel structure, red spectra from within 

channel wall (yellow blocks indicate selected pixels).  

The data shown in figure 5.2 shows a scan of the multi-channels obtained against an 

open-beam NUC FPA and an open-beam background, in order to illustrate the features 

of the channels. The modelled peak area is characteristic of the SU-8 polymer used to 

create the micro-channel structures, where it generates a strong response in the 

fingerprint regions up to approximately 1600.0 cm-1, and also from 2800.0-3700.0 cm-1. 

What is hoped is that the developing process during micro-fabrication will eliminate the 

majority of the polymer within the desired channel structures, however what is found is 

that a significant residue remains at all points of the channels (see the blue spectra in 

figure 5.2). It is actually noted that due to the curing process of the exposed polymer, 

slightly different spectral features exist within the residual, i.e. a stronger slope riding 

from 1600.0-1800.0 cm-1, and a weak broad response from 1900.0-2400.0 cm-1. It is also 

noted that there are no sharp edges observed within the 2D image, where a gradual 

decrease in the polymer signal intensity is observed when tracing from a channel wall 

into a channel that rides over a minimum 2 pixel width. The obvious consequence of this 

residual polymer is that it will likely compromise measurements made in the affected 
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spatial-spectral regions, depending on the ability to compensate by spectral subtraction 

(figure 5.3). Three background collection approaches have been attempted and their 

results illustrated in figure 5.3 using different combinations of FPA NUC and background 

ratios. It can be seen from figure 5.2 that channel regions exhibit different levels of SU-8 

residual – the lighter blue versus darker blue within the channels, thus the success of 

each approach in figure 5.3 is dependent upon the secure positioning of the cell within 

the FPA field of view. 

 

Figure 5.3. Scanning of empty micro-channels: A. Open-beam NUC and open-beam 

background scan of micro-channel structures, imaging peak height at 3420.0 cm-1; B. 

Open-beam NUC and micro-channel background scan of micro-channel structures; C. 

Micro-channel NUC and micro-channel background scan of micro-channel structures. B 

and C are imaging RMS noise of 1st derivative from 3800.0-3200.0 cm-1. 

The multichannel background images are modelled differently than the open-beam 

background image, in that rather than a peak intensity map an RMS noise map of the 1st 

derivative spectra is used. This was done due to the fact that there was no interpretable 

peak information in the resultant multichannel subtraction images. The RMS noise 

analysis of the same peak region allows one to see how well the background subtraction 

performed. It is interesting to see how the RMS noise analysis is reflected as the visual 

imprints of the channel structures in figure 5.4 (b & c), where in scheme B the edges of 

the channel walls appear to generate higher noise, and in scheme C all SU-8 regions 

appear to generate higher noise. 
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The advantage of scheme A is that the multichannel cell only need be steady for the 

duration of the scan collection, whereas with schemes B and C the multichannel must 

maintain exact positioning in order to ensure correct ratio on a pixel to pixel basis. It is 

apparent that where the SU-8 thickness is greater a higher level of noise will result upon 

subtraction. The subtraction differences in scheme B appear less drastic between 

channel and channel wall, not factoring in the micro-channel NUC creates a patterned 

trend on the left portion of the FPA altering the color scaling scheme, however it is still 

seen that the centers of the channels are slightly lower than the channel wall features. 

Scheme C gives the clearest picture of channel versus channel wall noise features, and 

also exposes the spatial noise features observed in chapter 3 are quite evident.  The 

overall noise distribution is lower for scheme C; however the majority of high noise in 

scheme B is seen to be isolated to the left side of the image. Depending on the 

requirements for analysis, it is recommended that scheme A be used when removal of 

the SU-8 residual is not necessary, and scheme C if removal is necessary. 

 

Figure 5.4. IR imaging of ethanol fluid flow through the multichannel structures. Top 

left, 2D IR representation of ethanol filling channels (modelling peak height at 3420.0 

cm-1); top right, profile of ethanol (+SU-8) response; bottom, spectral profile for selected 

pixels from 2D IR image. 
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Ethanol was selected as a first sample to test the multichannel cell in terms of 

loading/pressure/flow rate capabilities, due to its lower viscosity at high concentrations 

and its relevance to the IR analysis of alcoholic beverage products. Scheme A from figure 

5.3 is used in building this image, thus there are contributions from both the ethanol 

and SU-8 components for the overall response at the broad O-H band running from 

3100.0-3600.0 cm-1. Based on the images in figure 5.4 and 5.5 it can be safely assumed 

that a transition is taking place in the green regions of the 2D image in figure 5.6, where 

the SU-8 thickness is decreasing and the absorption is due to the presence of ethanol. 

This is supported in the profile image, where the bottom level of absorbance is 

equivalent to the maximum level of absorbance of SU-8 in the same cell when empty. 

There is therefore a profile of sample path-length present in each channel – i.e. they are 

not rectangular, and the sample absorbance will change depending on where the pixel is 

taken from within the fluid channel. 

Having the presence of a path-length differential within the same field of view for 

multiple samples (4 channels = potential 4 samples in the current scenario) offers a 

potential advantage to analysis in that if an sample contains an unknown concentration 

of analyte the path-length profile gives a wider range of sensitivity measurements much 

like in the case of the multi-cell accessory in section 5.4.1.When looking to figure 5.6’s 

spectral information for the peak at 3420.0 cm-1, within the fluid portion of the channel 

the absorbance measure ranges from  ~0.5 – 1.2, going from the optimum detector 

element dynamic range to off-scale in a 4 pixel range. The path-length profile presents a 

problem if simply looking to collect the response from within a fluid – and would 

necessitate the use of an internal standard when making quantitative measurements 

using groupings of pixels.  

With the idea of utilizing an internal standard and building some data comparable to 

the previous chapters work, NaN3 standards were again utilized to evaluate the pixel 

performance, this time from within a channel. The result in figure 5.7 shows the 

successful loading of three calibration standards plus on off screen water blank (the 

water blank was shifted to outer portion of the FPA field of view to maximize the 

exposure of the other three channels containing the standards). It is visually apparent 

based on the color scale that a concentration gradient is present going from one fluid 

channel to the next, illustrative of the increasing concentration standards injected into 



110 
 

each channel. The average response of the centermost pixel rows are shown in the 

linear regression analysis of the four data points – where they are actually zero 

corrected against a blank scan of the multichannel in the same position. It is seen that 

the averaged performance is actually inferior to that of the work conducted in chapter 

4, and this is likely due to the interference of the SU-8 residual from within the channels. 

It becomes difficult to build calibrations between individually selected pixels from each 

channel, due to the variability already observed in chapters 3 and 4, combined with the 

added interference of the SU-8 residual, e.g. a range of LR CSD and R2 values can be 

obtained depending on where the pixels are grabbed from within the channel. The 

distribution of pixel absorbance response is similar to that seen in figure 3.17 (4-6%) and 

actually looks relatively stable after some light filtering (2-4%). The slope of the ‘one 

scan calibration’ does not compare to the slopes built using multiple images of NaN3 

standards, 1.0 - 1.5 versus the 3.9 - 4.2 seen in figures 4.1 - 4.4. This is likely due to a 

combination of factors between the two methods of calibration curve building. The data 

for chapter 4’s NaN3 linear regression was built from repeated scans, while the data in 

figure 5.5 is constructed from smaller groups of pixels within the same FPA image. 

Where it was seen that the stability of individual pixels is reasonable, the differences 

between pixels was greater – this then will reflect to a more unpredictable regression 

when trying to construct a curve from pixels within a single image from the FPA.  

Another difference is that the level of integration energy passing through the 

multichannel transmission cell is about 3000 counts less than with the calibrations built 

using a conventional cell in chapter 4, thus there is less efficient energy throughput. 

Several possibilities exist to try and construct calibrations from this data; randomly 

selecting pixels from each channel, grouping pixels from similar regions of the channel 

for an average response.  
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Figure 5.5. One scan calibration model of aqueous NaN3 within the multichannel cell. 

Top left, IR 2D image of the three fluid streams numbered 1-3; top right, calibration 

statistics using the average of the highlighted rows in the 2D image; bottom table 

showing the distribution of pixel absorbance for the selected rows with their associated 

concentrations. 

5.4 Conclusion 

The utility a novel micro-fabricated (photolithography, SU-8 negative resist) 

multichannel transmission cell has been evaluated. The cell design was built to be 

demountable, within a custom designed manifold, capable of loading separate solutions 

into each of the four micro-channels, creating a high-throughput flow through 

demountable multi- (4) channel transmission cell. In principle the design is workable, as 

it was successfully loaded with aqueous dye solutions, ethanol solutions, and aqueous 

NaN3 solutions – however due to practical considerations around the loading of the cell, 

and the demountable design – more extensive experimentation was not possible. The 

main limitation of the design has to do with the fluid loading – the macro/micro 

interface, which is traditionally a problem with the design of micro-fluidic devices. In 

order to ensure that the fluid was loaded, the micro-fabricated cell had to be perfectly 

in line with the drilled top cell – where repeated separation of the cell for realignment 

led to degradation of the micro-fluidic channels. The idea of a demountable micro-fluidic 

system is attractive in the sense that it allows for cleaning of small debris from the 

micro-channels which would otherwise render a sealed cell system unusable – however 

it also exposes the system to potential damage. 
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Additionally, the design of the micro-channels themselves could be better for the 

purposes of maximizing the fluid channels in the field of view of the FPA. Roughly 50% of 

the pixels are lost due to the channel barriers, and even when the channels are aligned 

evenly it is not possible to fully fit each of the four under the field of view of the 32x32 

FPA. The upgrade to the 64x64 FPA does encompass the entire channel system, and also 

gives access to the branching points allowing for the extraction of much more data from 

each channel. A potential solution to this problem would be to utilize the laminar flow 

characteristics of micro-flows, and design a cell which would run multiple fluid streams 

together and directing the resultant grouping of fluid streams into an area equivalent of 

the FPA field of view. This would eliminate the presence of the polymer, and also the 

remaining residue problem seen within the micro-channel structures of the current 

design. The gradient of the polymer residual does appear to completely dissipate in 

some points, however this is the exception and in most sampling points there is always a 

presence of an SU-8 signal which is very strong in the finger print region. This had 

consequences on the sampling schemes used, whereby it was shown to be effective to 

collect a background of the empty multichannel cell for subtraction from the loaded 

channels; noise performance within the center of the channel structures was equivalent 

to the noise performance of a clean cell for the measured regions. The fingerprint region 

was significantly affected by the presence of the residual polymer and subtraction was 

less effective, a serious drawback for the sensitivity of the current design. 

Overall the high-throughput potential of the multichannel transmission cell 

combined with the FPA-FTIR detector has been demonstrated. The hardware will need 

improvement in order to conduct more thorough investigations of this approach for HTS 

analysis, and the cell design should be modified taking into consideration the 

observations made from the above experiments. Multiple fluid streams have been 

monitored, and a moderate quality calibration curve constructed off of a ‘single’ 

detector, something that has not been accomplished before with FPA detectors in the 

literature. The ability to monitor live streams of sample based on a color gradient could 

provide an efficient screening technique, while expanding the FPA (n = 64, 128, 256...) 

could increase the number of simultaneously monitored channels. With the increasing 

capabilities of FPA detectors, such a system could be very feasible for making sub milli-

absorbance FTIR measurements of multiple fluid streams.  
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Chapter 6. Research Summary and Conclusions 

The response distributions for the detector elements of an FPA camera within an 

FTIR imaging spectrometer have been characterized. The noise level of the MCT-FPA 

(~2x10-4 – RMS; 256 co-additions and 8cm-1 resolution, integration energy > 7000) as an 

average of 1024 pixels is inferior to that of the single point DTGS and MCT detectors by 1 

and 2 orders of magnitude respectively. Using the above scanning conditions, the SD of 

the noise within the FPA detector elements is ~10-4, with a CV for all detector elements 

of approximately 50%, where there is a strongly right skewed distribution of this noise. 

Looking closer at the distribution of noise and the 2D representations of that response, 

it is apparent that the NUC performed on the FPA prior to analysis (using instrument 

software) is not fully correcting the problem, i.e. the non-random spatial noise is quite 

noticeable (every 4th row & several even numbered columns) and is largely attributed to 

the right skew of the pixel noise distribution. Collecting a pre-scan 100% transmission 

line or using a region from within a samples spectrum allows for the easy removal of 

pixels from the total based on their noise features. The higher performance pixels of the 

FPA (in terms of RMS noise) are more tightly distributed; the best cases (top 10% of 

pixels) on average have a CV of 7 +/- 0.7 %. The effective instrument detection limit (in 

terms of absorbance) for the average pixel using the above prescribed conditions, post 

removal of the spatial noise features, sits at 0.003, while the top 10% of pixels within 

that population have an average of 0.0015. The ability to push the detection limit 

through careful selection from the pixel population is feasible, but this is limited in its 

repeatability as the average pixel has a RMS noise CV value of roughly 20%.  

The level of peak response distribution was evaluated using solid and liquid samples 

and it was found that the level of variation in detector element response was greater 

than that expected based solely on their noise characteristics. Within the decided 

dynamic range of the average detector element (0.2-0.8 absorbance) the CV value for 

repeated measurements saw the greatest proportion of stable pixels (95% of pixels with 

a repeatability CV of 2% or less, for 20 measurements), however outside of this range 

there was a rapid degradation in individual detector element consistency. It was noted 

that with the linear regression modeling in chapter 4, the SD of the pixel response for 

the standards peak increased with concentration even when built to keep within the 

decided dynamic range of the FPA. This is due to the fact that each detector element 
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generates a linear response unique of its neighbor, and thus will generate a different 

sensitivity, resulting in the widening of the pixel data within the calibration– i.e. the 

mean value might be 0.8, but a proportion of those pixels will be greater than even 1.0. 

The linear regression modeling of the detector elements acted as an extension of the 

work conducted in chapter 3, and it found that a significant proportion of pixels were 

able to construct reasonably linear calibration curves from the varying concentrations of 

NaN3 in aqueous solutions, and milk samples. The main measures of linear regression 

analyzed (CSD and R2) were more effective than the RMS noise filter approach yielding a 

better predictive accuracy, in terms of %RE from a true value determined with a 

validation standard,. The same non-random spatial features were present for each of 

the calibration features, although it was apparent that the correlation between noise 

and these calibration parameters is not as direct as one might think, based on the pixel 

selection procedures developed. Overall for the optimized scanning conditions, a pre-

calibration will allow for the selection of pixels with a CSD mean of 0.0125 +/- 0.0046 

(based on the ideal situation of the NaN3 calibrated data). 

A factor not mentioned up to this point is the time of analysis required to achieve the 

milli-absorbance SNR and the minimized level of response distribution; roughly 3 

minutes of scanning are required for the current conditions, which is certainly not 

appropriate for a high-throughput analysis tool. Improvements in the achievable SNR 

and the response time and data downloading from the FPA detector will need 

improvement to be truly applicable to accurate quantitative analysis in a high-

throughput application. As with the design of the multi-cell sampling accessory, speed is 

of the essence if such an accessory were ever to be taken seriously – although the level 

of scan speed for the FPA-FTIR is compensated for by the fact that the prototype system 

is capable of collecting from multiple channels of sample simultaneously. Thus, even if 

instrument designers are able to achieve FPA-FTIR performance which is still two times 

slower than the conventional DTGS detector, there will still be the potential to put 

through two times as many samples with the current multichannel design. Alternatively, 

if fabrication processes are improved to the point that the number of fluid streams in 

the FPA field of view are increased to 8, 16, 32 etc, this would easily compensate for the 

time of analysis limitation of current FPA-FTIR spectrometers.  
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The points discussed in chapter 5 about the limitations around the micro-fluidic 

multichannel demountable transmission cell are some of the biggest limitations to the 

current work. The fact that the loading of the cell with fluids was never satisfactorily 

solved reflects an ongoing difficulty within the field of micro-fluidics – connecting the 

macro to the micro. The design of the current prototype calls for the easy disassembly of 

the entire manifold/cell. If the demountable design is to work efficiently, the 

connections on the manifold must be redesigned in order to withstand the very high 

pressure build up put onto the system, they must minimize the dead volume in order to 

have more efficient flushing of the micro-channel system, and the alignment of the 

multichannel cell plates must be better controlled by some type of locking/placing 

mechanism. The multichannel fabrication technique used in this study was excellent in 

that it held up nicely to the fluid pressures, it was quite durable considering the amount 

of handling that it endured through the study, and it maintained efficient separation of 

the fluids within the channels when loaded. The problems which have been highlighted 

are to do mainly with the residual polymer post development in the micro-fabrication 

process, and the sensitivity of the polymer adhesion after repeated disassembly of the 

apparatus. The sensitivity of the system is hardly a surprise due to the nature of the 

delicately positioned channel barriers, but if the current design is ever to be used in a 

practical light, a degree of confidence must subsist with their structural integrity. 

The FPA-FTIR analysis of multiple fluid streams has been accomplished, and it has 

been demonstrated that it is possible to perform 4 times the work in a single scan. The 

extensive analysis of the FPA-FTIR in chapters 3 and 4 has illustrated the potential of the 

technique to monitor much more data streams than just 4 – that actually there is no 

appreciable benefit (in terms of predictive accuracy) to co-adding 256 pixels of data or 

32. This means that after careful inspection and removal of erratic and/or non-random 

‘bad’ pixels from the pixel population, it is quite safe to say that one column or one row 

equals that of the neighboring column or row. Where one has to exercise caution is 

when looking to use individual pixels of data from the FPA as a reliable response relative 

to its neighbor. Although a good proportion of pixels have been shown to have a 

relatively stable response, the level of stability is itself subject to a distribution – and 

there is the issue of the spatial noise pattern which affects a select group of pixels 

consistently. Comparing an individual pixels prediction to another is difficult even after a 
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linear regression modeling of the entire pixel population and this again is likely due to 

the nature of the pixels themselves and the inability to accurately correct for non-

uniformity using a two point correction.  
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