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Abstract/Résumé

Focal plane array (FPA) FTIR imaging spectroscopy provides unprecedented levels of
spatially resolvable chemical information for analysis of samples at the micrometer
scale. This study evaluates the quantitative performance characteristics of the individual
detector elements comprising the FPA camera, and applies them to making analytical
measurements of a custom designed microfluidic multichannel transmission cell.
Statistical descriptions are provided for the response distributions among the FPA’s
detector elements; RMS noise, peak response, and linear regression parameters. It was
found that individual detector elements of the FPA allowed for accurate milli-
absorbance measurements, however the variability was large when contrasting detector
elements due to FPA detector non-uniformity issues. When applied to the microfluidic
multichannel sampling system designed for the monitoring of four fluid streams, it was
found that the detector elements covering the fluid stream could be averaged to
generate a very repeatable response between streams — thus allowing for milli-

absorbance measurements of 4 samples simultaneously with the current design.

L'imagerie par spectroscopie IRTF dans la matrice plane focale (MPF) offre des
niveaux de résolution spatiale sans précédent des informations chimique dans le
domaine spatial pour une analyse des échantillons a I’échelle du micrométre. L’étude
actuelle examine I'ensemble des applications de la spectroscopie IRTF (MPF) avec
I'utilisation d’un systéme micro-fluidique multicanaux de transmission de cellules congut
sur mesure comme une approche potentielle d’'une analyse quantitative des
échantillons liquides a haut débit. Des descriptions statistiques sont fournies selon la
répartition des réponses parmi ces éléments individuels du détecteur. La réponse des
éléments individuels du détecteur dans la MPF a été démontrée comme étant
reproductible dans des unités de milli absorbance et ainsi, la plus importante variabilité
de réponse a travers I'ensemble est due aux problemes de non conformité associés a la
MPF. La moyenne des réponses des éléments du détecteur sur lesquels les résultats de
chaque canal est imagées dans de bonne reproductibilité inter-canal et ainsi compense
de maniére satisfaisante la non-uniformité des pixels. Les expériences qui prouvent ce
concept impliquant des mesures analytiques sur quatre échantillons visualisés

simultanément avec la conception actuel des cellules sont présentées.
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Chapter 1: Introduction

1.1 General Introduction
1.1.1 FTIR Spectroscopy As A Quantitative Analysis Tool In The Food Industry

Infrared spectroscopy is well established as a qualitative and quantitative analytical
tool. The energies associated with the infrared region of the electromagnetic spectrum
correspond to those required for transitions between vibrational energy levels of
molecules so that IR spectroscopy provides valuable compositional and molecular
structural information about a sample. In a properly conducted IR experiment there is
also adherence to Beers law which forms the basis of any calibration methodology; as
such the quantitative performance of IR spectroscopy has been well evaluated in a
variety of contexts. Over the past few decades engineering developments in FTIR and
FT-NIR spectroscopy, together with various ingenious sampling accessories, increasingly
robust calibration methodologies, and ever-increasing computational capacities, have
furthered the utility of this spectrographic technique, making it particularly effective in
providing process analysis solutions. Many, if not most, of the novel process applications
of FTIR and FT-NIR are proprietary, often making them difficult to precisely report *.
Examples of the successful application of IR spectroscopy as a process analysis tool
range from ambient air monitoring, detection of impurities in liquid chlorine, trans-fat
detection in edible oils, payment analysis for raw milk, rapid quality control of alcoholic
beverages — plus hundreds of other examples in the petrochemical, pharmaceutical,
materials, and biomedical sciences. In short, FTIR spectroscopy is a very robust and
information rich technique with high applicability to a diverse range of products.

The emphasis of this thesis will be on the application of FTIR spectroscopy for
guantitative measurements on (liquid) food systems — or on model systems relevant to
food analysis. Proximate analysis of raw, in-process, or finished food products is the
most common analytical requirement of the food industry, resulting in significant
labour, capital, and operating costs . Each of the major components of food systems
(fats, proteins, and carbohydrates) has well-defined bands in the IR spectrum, which
may be modelled in a variety of ways to obtain qualitative/quantitative information
from FTIR analysis of a given food system. As already mentioned, a successful

application of IR spectroscopy is the proximate analysis of raw milk for payment and



herd analysis purposes, whereby milk samples are analyzed for their fat, protein, and
lactose content >, the two former components being the most significant in terms of
payment calculations. These measurements are often performed at central laboratories
that may analyze hundreds of thousands of samples per annum, and thus the IR
instrumentation employed in these labs has been specifically designed to be up to the
task of accommodating these high sample throughputs, While IR milk analysis had its
origins (ca. 1960) prior to the advent of FTIR instrumentation 3, most of the filter-based
IR instruments that were employed for this purpose have been progressively replaced
by FTIR systems. It may be noted that IR milk analysis is considered a secondary
technique, i.e. it must be calibrated and periodically validated against reference
analyses. Given that the IR milk analyzers operated in centralized laboratories are
defining cash flow through a multimillion dollar industry, they must be monitored
closely for their quantitative accuracy and precision, and hence there is often a
reference laboratory operated in tandem with the FTIR lab at such facilities.

An offshoot of the success of IR milk analysis that illustrates the multifunctional
utility of FTIR spectroscopy as an analytical tool is seen in the wine industry, where
many larger wineries use FTIR spectroscopy to monitor from the commencement of
grape ripening to the finished bottled product *. Because FTIR spectroscopy allows for
the rapid qualitative/quantitative multi-component analysis of wines at different stages
of their production, it can be invaluable to oenologists and vintners alike. However,
despite all the advantages of the technique, a difficulty with the application of FTIR
spectroscopy to wine analysis arises from the complexity and diversity of the sample
matrix, such that calibration models must often be built locally or restricted to similar
product types. It then becomes difficult for a central laboratory that handles, for
instance, a variety of imported wines to reliably analyze this whole range of products.
Regardless of these difficulties, the market share for FTIR wine analyzers is anything but
insignificant, and further improvements in chemometric modelling are sure to come.

There are many other examples of the application of FTIR spectroscopy to the
analysis of food systems, both in industry and in academia (e.g. analysis of edible oils,
monitoring of beer processing, analysis of grains, etc). Thus, the speed, non-destructive
sampling, spectral resolution capabilities, amenability to automation, and overall cost-

effectiveness of FTIR spectroscopy all go towards making it an increasingly attractive



analytical tool to many sectors within the food industry. In addition, with ever-growing
pressures on the food industry in terms of production, quality control, and safety,
laboratories require analytical techniques capable of a very high sample throughput —
something that FTIR spectroscopy, through its application to milk analysis, has proven
quite capable. As discussed below, recently developed focal-plane-array (FPA) FTIR
imaging technology can potentially further enhance the sample throughput of FTIR
spectroscopy by orders of magnitude and thus could have a significant role in the food

industry and, in turn, in any other analytical sector with high sampling volume needs.

1.1.2 FPA-FTIR Imaging

Utilization of focal plane array (FPA) detectors in conjunction with FTIR micro-
spectroscopy for the collection of IR images has been of growing interest in the last 10-
15 years. The collected images consist of nxn pixels (typically, n = 32, 64, or 128), each
constituting a full mid-IR spectrum, and thus FPA-FTIR imaging is commonly referred to
as ‘hyperspectral imaging’. The spatially resolved chemical information provided by FPA-
FTIR imaging of heterogeneous samples can be visualized by extracting any feature of
the measured IR spectrum from the resultant image and mapping it in a two-
dimensional plot, hence the term ‘chemical staining’ sometimes used to describe FPA-
FTIR imaging. This is often how IR imaging results are presented, with artificially
coloured IR images illustrating a wealth of chemical/spatial information on a variety of

samples (see figure 1.1).

Figure 1.1. Examples of FTIR imaging of heterogeneous sample types: a) starch profile in
imitation cheese °; b) nucleic acid profile of prostate tissue®; c) forensic study of bi-
component fibres ’.



Many studies that utilize FPA-FTIR imaging technology do so in an effort to extract
information using the high spatial resolution capabilities of the technique, i.e. the
analysis is carried out on some type of heterogeneous sample to investigate the spatial-
chemical features of that sample (figure 1.1). To date, the majority of applications using
FPA-FTIR imaging have been within the biochemical and medical sciences, while it has
also found its way into a variety of other fields including: materials science, forensic
science, agricultural and food science &.

Another aspect of FPA-FTIR imaging that has been much less extensively considered
is its potential utility as a high-throughput analytical technique. The information-rich
nature of mid-IR spectra combined with the enormous number of spectra acquired
simultaneously by the FPA detector make this technique highly relevant in the era of
high-throughput analytical sciences. However, several questions regarding the
performance characteristics of FPA detectors need to be addressed in order to properly
exploit this potential. First, the performance of each of the individual detector elements
comprising the FPA becomes more significant in the context of high-throughput
quantitative chemical analysis than it is when FPA-FTIR spectroscopy is utilized to probe
progressive changes in chemical composition across heterogeneous samples such as
those presented in figure 1. Second, in studies that have been conducted to
characterize FPA detectors — mostly in relation to thermal imaging - a term that
commonly appears is ‘pixel non-uniformity’, used to describe observations that the
different detector elements of the array generate slightly different responses from one
another. While a number of protocols have been proposed to address this issue, it is
found that no single method can completely eradicate pixel non-uniformity. However,
the effects of pixel non-uniformity in the context of high-throughput quantitative

chemical analysis by FPA-FTIR spectroscopy have not yet been properly addressed.

1.2 Rationale & Research Objectives

1.2.1 General Overview of the Research Project

The overall objective of the research presented in this thesis is to investigate means
of enhancing the sample throughput of FTIR spectroscopic analysis of food systems by
exploiting the multichannel detection capabilities of FPA-FTIR imaging spectrometers.

The approach proposed involves the development of a micro-fluidic multichannel



sampling accessory, the use of which in combination with an FPA-FTIR imaging
spectrometer is envisioned to allow one instrument to perform the work of m
conventional spectrometers, where m is the number of channels in the micro-fluidic cell.
If one takes the example of milk analysis, where central laboratories run hundreds of
thousands of samples per year, the sample throughput of such a system would be quite
beneficial. The viability of this approach is contingent upon the capability of the
individual detector elements in the FPA that record/build the image of each channel to
provide satisfactory quantitative accuracy. Thus, the global aims of the research were (i)
to assess the analytical performance of a 32x32 FPA detector through the study of
several model systems, including milk calibration standards, and (ii) to fabricate a
multichannel micro-fluidic demountable transmission cell and evaluate its potential
utility in the context of high-throughput quantitative analysis by FPA-FTIR imaging

spectroscopy.

1.2.2 Specific Research Objectives

The specific objectives to be addressed by the research are as follows:

o Development of image collection protocol for quantitative analysis applications:
o Establishing stable environmental conditions within the instrument, including the
microscope stage.
o Optimization of image acquisition parameters.
o Assessment of FPA detector element response characteristics using multiple test

systems (open-beam response, calibration films, model liquid systems).

e Assessment of FPA-FTIR spectrometer quantitative performance using
gravimetrically prepared calibration standards and pre-analyzed milk calibration
standards together with a conventional transmission flow cell.

o Development of data extraction techniques.
o Assessment of individual detector elements, groupings of detector elements, FPA

as a single detector (averaging responses of ‘all’ detector elements).

e Development and testing of a micro-fluidic multi-channel transmission sampling

accessory.



Chapter 2: Literature Review

2.1.1 Concepts of Infrared Spectroscopy

Infrared (IR) spectroscopy involves the interaction of a controlled source of IR
radiation with a sample of interest, and the subsequent detection and interpretation of
resultant changes to the source radiation upon this interaction. The IR region of the
electromagnetic spectrum (EMS) is most often measured by convention with the inverse
of the wavelength (in centimetres) — termed the wavenumber (cm™), and spans from
roughly 10-14,000 cm™. This region is further subdivided into the near, middle, and far
IR regions (NIR, MIR, and FIR respectively) each exhibiting different energetic
interactions with molecular bonds.

The IR region constitutes the portion of the EMS associated with vibrational energy
transitions of molecules, and thus IR spectroscopy is often referred to as vibrational
spectroscopy (a term that also encompasses the complementary technique Raman
spectroscopy). The interaction of a molecule with IR radiation is often portrayed as a
physical vibration but is more accurately described as an excitation, within quantized
vibrational energy states, of a molecule upon absorption of incident radiation matching

one of its “fundamental” frequencies; some examples illustrated in figure 2.1.
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Modern IR spectrometers are said to have stemmed from the World War |l era,
where developments in electronic amplification methods, detector technologies, and
the advent of double- beam spectrometers greatly increased their utility > '°. The
essential components of any IR spectrometer include a source of radiation (ranging from
conventional Globar and Nernst glowers to the more modern free-electron laser and
synchrotron sources), some means of resolving the wavelengths contained within the
radiation from a broadband source (e.g., a monochromator or an interferometer), a
detector, optical components directing/focusing the source radiation onto the sample
and towards the detector, and a data collection/display system (e.g. PC, printout).
Because there are few convenient materials that transmit a sufficient range of IR
wavelengths, the optical components are nearly always reflective rather than
transmissive, and because of a lack of ‘bright sources’ (until recently) the apparatus
must enable a high throughput of the source energy *'. IR detectors are of particular
interest to this review and will be explored further in the following sections.

Dispersive IR spectrometers employ a monochromator to select a narrow bandwidth
for analysis and are quite useful in process analysis applications where only a few
selected wavelengths are needed for analysis, however collection of full spectra (e.g.
spanning the MIR range) with a scanning monochromator is time-consuming and has

been overshadowed by a superior approach, Fourier transform IR (FTIR) spectroscopy.
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FTIR spectroscopy is a form of IR technology that has been available to researchers
since the early 1970s. The advantages of FTIR over conventional dispersive IR
spectrometers are derived from the replacement of a monochromator by the two-beam
interferometer, the concept of which was originally developed by Michelson in 1891 °.
As depicted schematically in figure 2.2, the full bandwidth of the radiation from a
broadband IR source is passed through an optical component called a beam splitter,
which partially reflects and partially transmits the source radiation onto two mirrors,
one of which is stationary while the other is moved backward and forward, either at a
constant velocity (continuous-scan mode) or in fixed increments (step-scan mode).
Owing to the varying difference in the distances traveled by these two beams when they
are reflected back to the beam splitter, their recombination at the beam splitter results
in a pattern of constructive and destructive interference (an interferogram) as a function
of the optical retardation of the beam reflected back from the moving mirror.

The advent of FTIR spectroscopy is often said to have revitalized, if not
revolutionized, the field of vibrational spectroscopy. Apart from collateral advantages
accruing from the fact that FTIR spectroscopy necessitated that the spectrometer be
equipped with a dedicated computer, the following fundamental advantages of this

technique arise from its use of interferometry:

e All resolution elements are collected at all times (Fellgett’s advantage).

e  Efficient energy throughput at each resolution element (Jaquinot’s advantage).

e Internal laser establishes wavelength stability, providing a universal reference for
FTIR spectrometers enhancing reproducibility and repeatability of measurements.

e  Significant reduction in scan time; sample throughput potential revolutionized.

e Superior spectral resolution and wavelength accuracy.

e  Simpler/smaller instrumentation; portable devices are now commercially available.

A principal disadvantage of FTIR spectroscopy lies in the fact that it is a multiplexing
technique in the time domain, making it quite sensitive to fluctuations in the source
intensity — particularly periodic fluctuations, which will result in narrow spectral noise
features . Another disadvantage of FTIR spectroscopy and IR spectroscopy in general, is
that the achievable signal to noise ratio (SNR) is often limited by the detector used in

the system.



2.1.2. FTIR- Imaging Spectroscopy

FTIR imaging (FTIRI) is defined as a spectroscopic technique that employs FTIR
microscopy and multichannel detector (array) technology for the rapid and
simultaneous acquisition of a set of n spatially resolved IR spectra (where n = the
number of detector elements in the array) **. Strictly speaking, there are three methods
for the collection of FTIR images: 1) the original point-by-point “mapping” technique
using a single-element detector and an x-y stage, 2) the use of a linear array (LA)
detector, and 3) the use of an FPA detector. Each of these has its advantages and
disadvantages, and many examples employing some combination of the three can be
found in the literature.

A common thread between the three FTIR image building techniques is that each
usually employs an IR microscope, although FTIRI has also found application on a macro-
imaging scale. The IR microscope is analogous to an optical microscope, with the
exception of a few key difference: 1) IR radiation from the interferometer as its source;
2) reflecting optics; 3) an aperture at the primary image plane for sample definition; and
4) an IR-sensitive detector . A minor difference between conventional IR microscopes
and imaging IR microscopes is that the latter are designed for homogenous illumination
over the field of view, while the former are designed for maximum light throughput *°. A
regular feature of IR microscopes is that they incorporate a white light microscope in the
same optical path as the IR microscope. The limiting spatial resolution in IR microscopy
is roughly 2\ — also known as the diffraction limit. Thus, on going from high to low
wavenumber in a spectrum, the attainable spatial resolution is diminished. For a typical
mid-IR spectrum, the spatial resolution at the focus will range from 5 to 30 pm *.

The first image collection method mentioned above, point-by-point mapping, has an
obvious time disadvantage with respect to the other two (in that a spectrum
corresponding to one pixel in the image is collected, the sample moved, the spectrum
corresponding to the next pixel in the image is collected, and so on), countered by the
advantage of flexible pixel size through adjustments to the aperture. Typically, the

. Mapping techniques that employ a

spatial resolution is no better than 15 um
synchrotron IR beam-line and a technique called compressive imaging have recently
been reported to offer diffraction-limited spot sizes, a higher SNR, and no requirement

for mapping at every spatial point - hence increasing the speed of the process *’.
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The second image collection method, which employs an LA detector consisting of m
individual detector elements (most commonly 16), allows m spatially resolved spectra to
be collected simultaneously. The building of a full n x n image of a sample requires n’/m
‘sweeps’ and therefore this technique may be considered a hybrid of point-by-point
mapping and FPA imaging, and to some it is simply a stepping stone to the advent of
FPA-FTIRI. However, an advantage of the technique appears to be that the fabrication of
16 high-quality detector elements is easier to accomplish than that of the >1000
detector elements found in FPAs, effectively reducing non-uniformity issues. In their
study comparing confocal synchrotron single-point mapping with LA-FTIRI, Miller et al. *®
found that higher spatial resolution could be achieved with the synchrotron mapping
method; however, the LA detector was still able to provide faster data collection at a
reasonable resolution. Thus, the synchrotron mapping system lends the potential
advantage of better spatial resolution; however, the need for access to a synchrotron
source limits the technique’s availability, and it is still much slower than the LA and, in
turn, the FPA methods of image collection, each of which provides reasonable spatial
resolution.

The third method of image collection involves the simultaneous collection of all
pixels of the image using an FPA detector, lending an obvious speed advantage relative
to the other methods of image collection described above. For example, a typical FPA
format of 64 x 64 detector elements allows for the collection of 4096 high-quality IR
spectra within minutes, generating a ‘three-dimensional data cube’, often referred to as
a hypercube — but perhaps more correctly referred to as a hypercuboid *°. These
hypercuboids consist of both spatial and spectral information, generally configured with
spatial information in the x and y directions, and spectral information in the z-direction,
as represented in figure 2.3. The information within the data cube is typically displayed
as: 1) all of the z (spectral) data points at one x, y (spatial) location or 2) one of the z
data points at all of the x, y locations 2. The process of hyperspectral data cube building

is described in further detail elsewhere ™.
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Figure 2.3. Representation of a hyperspectral data-cuboid. Each point along the z-
axis represents a spectral feature plotted in the spatial (x, y) plane as a color intensity,
red=high and blue=low. Note that the depicted spectrum is fictitious, present purely for
illustrative purposes.

The multichannel detection capabilities of FPA detectors enable the monitoring of
dynamic chemical processes, spatially resolved characterization of large heterogeneous
samples, and the simultaneous characterization of many small samples. There are a
range of accessories available for FTIRI purposes, including a selection of Cassegrain
objectives with varying magnifications and numerical apertures, lending some flexibility
to the spatial resolution capabilities of the instrument ®. Additional developments in ATR
sampling accessories enable further improvements of the spatial resolution, due to the
high refractive index of an ATR crystal, which thus can serve as a solid immersion lens —
while there are also macro-ATR sampling accessories for the imaging of larger sample
areas °. Recently, there have also been developments in the combination of a
synchrotron radiation source with FPA-FTIRI systems, giving advantages of 1) better SNR
than with a Globar IR source, 2) higher spatial resolution, and 3) very short acquisition
times **. Again, the limited availability of a synchrotron light source does not make this a

realistic solution for the average laboratory.
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Two modes of data acquisition, each originating in conventional FTIR spectroscopy,
may be employed in FPA-FTIRI: 1) the step-scan mode and 2) the continuous-scan mode;
detailed descriptions of these image collection schemes may be obtained elsewhere ™.
In the first FTIRI systems, the step-scan mode was exclusively employed owing to the
slow frame rates of the first-generation FPAs, such that the detector read-out
electronics were not capable of sampling every point of an interferogram as in modern
continuous-scan systems '°. An advantage of the step-scan mode is that the retardation
in a step-scan modality is decoupled from the time domain; thus, each point of the
interferogram can be measured for any desired length of time. This capability has
allowed for substantial SNR enhancement in monitoring repeatable transient events *°.
Disadvantages of step-scan systems include additional controls and higher cost, plus a
time requirement for stabilization of the interferometer before data collection may
commence. As late as 2005 it was believed that step-scan interferometry was the most
practical way to conduct FTIRI experiments, though it was acknowledged that
advancements in detector technology were already making continuous-scan systems

viable *°.

The continuous-scan mode has become the standard method for image
collection, due largely to the development of second- and now third-generation FPAs,
which have frame rates of up to 3000 Hz ®. The continuous-scan mode is more time
efficient in the collection of signals from the FPA, as there is no time spent on the
stabilization of the interferometer at specific retardations. The SNR achievable with
continuous-scan systems is limited by the positional error (~¥10-25 nm) of the moving
mirror within the interferometer, making imaging in continuous-scan mode an
inherently lower SNR technique than imaging in step-scan mode. The SNR can be

improved by increasing the number of co-added scans, though this does diminish the

time advantage of the continuous acquisition scheme over the step scan.
2.1.3. IR Detectors

Modern FTIR spectrometers are often described as ‘detector noise limited’, meaning
that the fluctuations of the detector component represent the main source of noise in
the measured signal. Detector type will also define the wavenumber range of the
recorded IR spectrum, the speed of response, and the dynamic range of response — in

essence, the detector has a very significant impact on the end quality of spectral data. It
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is therefore constructive, when discussing detector technology, to define terms which

allow the properties of detectors to be properly assessed and compared. Conventionally

used descriptions of IR detector performance include **:

Signal to noise ratio (SNR): Ratio of the signal to the noise corrupting the signal (see
equation 4); the higher the SNR, the less obtrusive the noise.

Responsivity: Ratio of electrical output (volts or amps) to the incident IR power
(watts); defines ability of a detector to convert IR radiation into an electrical signal.
Noise equivalent power (NEP): Ratio of the noise power per unit bandwidth (noise

12). ysed

power density) at the detector output to the detector responsivity (W Hz
for describing a detector’s ability to measure small signals.

Specific detectivity, D* = Area™?/NEP: Ratio incorporating detector active area and
NEP, equivalent to the SNR of a detector of unit area in a unit bandwidth when one
watt of power is incident on the detector (cm HzY?> W™); dependent on
measurement conditions, which must therefore be defined.

Response time, t: Defines how quickly the output of a detector can follow a
dynamic incident signal.

Linearity: Condition achieved when a detector’s output is proportional to the IR
signal being measured. Detectors may be inherently linear; however, the entire
detection system can be made nonlinear if utilizing unsuitable read-out electronic
hardware.

Spatial uniformity of response (figure 3): Describes the largest deviation of the
detector response at different points on the active area, expressed as a percentage
of the maximum response. Nonuniform response may be a consequence of poor

fabrication techniques, impurities within the active area, and variable thickness of

detector elementy(s).

U(T)OAVE |,
SNR = e,
NEP

Equation 2.4. Expression of SNR for conventional wide beam single element detector in

an FTIR spectrometer using Michelson type interferometer. See reference for full

derivitization and meaning of each component of the equation .
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The D* is one of the more versatile measures of detector performance, and it is often
said that it should be the starting point in every detector selection process *%. The
advantage of knowing the D* is the ability to compare detectors of different active
areas; once a group of detectors has been selected with known active areas, the NEP
may be individually determined for further interpretation of detector performance.

The last point in the list above brings up the issue of the possible spatial non-
uniformity of detector response as a result of physical imperfections in the detector,
such that different regions of the detector exhibit slightly different responsivities. To
illustrate this point, the surface response profile of a pyroelectric LiTaO; detector is
depicted in figure 2.4, showing the extent to which the response may be distributed

over a single detector due to variations in crystal thickness 2.
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Figure 2.4. Surface response profile of an LiTaO; detector crystal element ».
2.1.3.1. Thermo-detectors and Photo-detectors

Figure 2.5 depicts the historical development of IR detection materials, and from this
list the generalization can be made that “all physical phenomena in the range of 0.1 to

1 . Pl epess
7 1 This encompasses a range of possibilities,

1.0 eV may be proposed for IR detection
but the most common found within the field of IR detection may be subdivided into two
main categories: thermal and photon detectors *°. The former category of detectors
monitors any physical process affected by a temperature change generated by an
incident radiation and includes thermocouples, thermistors and bolometers. The

fundamental limit to the sensitivity of thermal detectors is determined by the random

temperature fluctuations in the detector element *°. A further (general) limitation to
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thermal detectors is that their response times are rarely faster than 1 millisecond (ms).
Thus, the response times of the thermal detectors that were traditionally employed in IR
spectroscopy are too slow to allow their use in FTIR spectroscopy. This limitation has
been overcome through the use of pyroelectric. bolometers, particularly the deuterated
triglycine sulfate (DTGS) detector commonly supplied with FTIR spectrometers. Although
this detector has relatively low detectivity at higher frequencies and a slower response
than photon detectors, it does possess numerous advantages, such as the ability to
operate at room temperature, light-weight components, and relatively low cost. Overall,

the DTGS is a very rugged detector which serves its purpose quite well.
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Figure 2.5. Historical development of IR detectors into array detectors *°.

Photodetectors are founded on the photoelectric effect whereby a photon with
threshold energy, collides with a substance (e.g. the detector material) releasing an
electron and creating an electrical response that is interpreted as the signal. More
precisely, within a photodetector the incident radiation increases the mobility of a
charge carrier by increasing its energy substantially enough to move it from the valence
band of a semiconductor material to the conduction band where it is free to move
under the influence of an electric field *. It follows that photon detectors must be
constructed from some type of semiconductor material; the most commonly used
semiconductor material over the past four decades has been mercury-cadmium-
telluride (HgCd,,Te, or MCT by convention), which encompasses the MIR and FIR
spectral regions. Materials science has led to the growth/production of a wide variety of
semiconductor materials (see figure 4), but to date MCT remains predominant in the
fabrication of photodetectors for the 1-25 um range °. These photodetector materials
typically exhibit an increase in D* with increasing wavelength, with a sharp cut-off after

10

a certain point The more common MCT detectors are considered intrinsic
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photoconductive detectors, defined as possessing a relatively low energy band gap upon
irradiation compared with the energy of the IR radiation being detected. Extrinsic
photoconductive detectors, which are defined by their relatively large energy band gaps,
are also available. Existing extrinsic photodetectors generally require extreme cryogenic
conditions (~4 K) to achieve D* equivalent to that of an intrinsic MCT detector, while
due to their lower dielectric constants they possess inherently faster response times

than intrinsic photodetectors *.

Detector Type: D* (cmHz*W™) Comments:

Ge(Ga), Bolometer 3y 108 (<4K) Broad spectral responsg, liquid helium
temperatures of operation.

Spectral response, 6000-350 cm’; only
DTGS, pyroelectric 10%- 3.5 x 10°(rt) thermal detector operating at room
temperature

Spectral response, ~6800 cm™ to visible

13 _ 14
InGaAs, p.v. 10 107 (77 K) (@ 77 K); low spatial non-uniformity.

Spectral response, 10000~1500 cm™,
PbSe, p.c.(i) 10%-10" (193 K) active control of detector temperature is
required.

Spectral response, 10000 — 1800 em’;

~qnll
InSb p.v. 107 (77 K) good spatial uniformity and linearity.

Different Hg,Cd,.,Te mixes can modify the
spectral response; typical = 5000 — 850
cm™. Relatively poor spatial uniformity
and limited dynamic range.

Hg,Cd,Te p.c. (i) 10° - 10" (77 K)

Spectral response, ~5500 — 350 cm'l;

. 9 _1nl0
Ge: Cup.c. (e) 10°-107{4K) liquid helium temperatures of operation.

Table 2.2. Descriptions for various IR detector formats.
p.c. = photoconductive; p.v. = photovoltaic; i = intrinsic;
e = extrinsic; rt = room temperature.

Main advantages of photodetectors over thermal detectors include: a significantly
faster response time (1) (~10° seconds), and response over a narrower range of the
spectrum generating lower thermal background noise and a higher D* %, In order for
the intrinsic MCT to achieve these conditions however, it must be cooled to ~77 K (see
table 2.2). The fact that photodetectors generally require a bulky cooling unit combined
with the associated overhead costs of cryogenic cooling introduces a disadvantage to
the technology. As previously stated, extrinsic photo-detectors are further limited in this
sense due to their liquid helium operating temperatures (4 - 30 K). It was observed by

Theocharous that there was a drift in the spectral responsivity of cryogenically cooled
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MCT detectors at specific wavelengths (3.1, 11-13 um), a phenomena attributed to the
gradual development of an ice layer within the Dewar on the active area of the detector
* These effects were found to be temporarily treated by evacuating and baking the
Dewar at 50°C for 48 hours, and it was cautioned that liquid nitrogen cooled Dewar’s
containing rubber O-rings resulted in the largest ice build up with time. It has been
stated that current engineering advances have largely eliminated the issue with newer
instrumentation 2. Further disadvantages of the MCT detector specifically include:
variable reproducibility with crystal growth, requirement of hazardous chemicals for
production, high degrees of spatial non-uniformity, and a restricted dynamic range of
response. Despite its assortment of problems the MCT detector remains in high rotation

within IR instrumentation as a higher end detector technology.
2.1.3.2. Linear Array and Focal Plane Array Detectors

The terms linear array (LA) and focal plane array (FPA) refer to a collection of IR
detector elements in a linear or 2D arrangement, allowing for the collection of spectra
at all detector elements simultaneously 2. LAs and FPAs are sometimes referred to as
scanning arrays and staring arrays, respectively, both conventions arising because of
their respective mechanisms of image collection (see figure 2.6). The terms FPA and LA
are restricted to detectors which are IR sensitive, but these detectors are analogous to
detectors operating in the visible spectrum, e.g. charge-coupled devices (CCD) or
complementary metal-oxide semiconductor (CMOS) sensors. The utilization of an FPA or
LA detector within an FTIR apparatus has provided researchers with powerful
instrumental multiplexing capabilities *°. Within the past two decades the number of
relatively low-cost, high quality, and commercially available LAs and FPAs has been on

. 2
the rise %’

— refer to the latter portion of figure 4 to appreciate the trends in
development. The rate of FPA development is comparable to that of RAM technology
but lags behind in terms of chip size by about 10-15 years, indicative of the potential

growth in FPA technology *°.
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Figure 2.6. Depiction of (a) LA and (b) FPA detector format *°.

As with conventional IR detectors, the type of imaging detector selected for
measurements will critically impact the speed of data acquisition and the quality of the
recorded data, but a further consideration in the case of imaging detectors is the quality
of the individual detector elements %. In this regard, the different architectures of LAs
and FPAs must be considered. Essentially, any array design must be able to perform
three fundamental tasks: photon detection, charge storage, and multiplexed readout. In
this regard, LAs and FPAs are classified as monolithic and hybrid detectors, respectively
(see figure 2.7 for a depiction of hybrid architecture); the former performs the three
tasks upon the same chip, whereas the latter performs photon detection within a
narrow band-gap semiconductor and then transfers the signal to a silicon multiplexer
(one contact per detector) *. It is apparent in figure 2.7 that there are minor differences
in the surface areas of each of the detector elements, the consequences of which will be
elaborated on below. The greater complexity of the hybrid detector architecture is
compounded by the much larger number of individual detector elements in FPAs as
compared to LAs; the latter typically consist of 16 detector elements, whereas common
FPA formats range from 32x32 to 256 x 256, with the individual detector elements
typically measuring tens of microns to a side, and the complete array on the order of
square millimetres *°. In addition, it has been reported that LA detectors have better
SNR performance than FPA detectors *°, though the argument that this is offset by time
of analysis is often made ™.

FPA detector technology has undergone considerable development since the first
example of FPA-FTIRI was reported in 1994 °°, with current state-of-the-art FPA

detectors being classified as third-generation FPA technology. The first-generation FPA
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detectors had frame rates of less than 20 Hz, necessitating image acquisition in the step-
scan mode, while the second- generation FPAs, which became available ~6 years ago,
were much faster and could be utilized with a continuous-scan interferometer, although
they still had stability issues with respect to the response of the individual detector
elements 2. With the current third-generation FPAs, which became available ~3 years
ago, the stability issues have been addressed to an extent and the detector uniformity is

said to be significantly improved relative to the earlier generations ».
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Figure 2.7. Depiction of a typical FPA hybrid array architecture; a) Detector element
architecture, b) visual image of detector array segment *°.

As described in the previous section, various materials may be used for IR detection
— array detectors are no exception; examples of materials that have been incorporated
include InSb, MCT, silicon arsenide (Si:As), and barium strontium titanate (BST) . For
further reference, a summary of the key parameters of various representative FPA
formats from major manufacturers is presented in a review by Rogalski '°. Analogous to
conventional IR detectors, MCT has been the most utilized material, owing largely to its
availability and affordability while providing access to the fingerprint regions of the IR
spectrum (extending to 750 cm™ in the case of third-generation FPAs) ® %, As previously
stated, MCT detectors require cryogenic cooling - as do many of the other
semiconductor materials used in IR detector array fabrication - in order to control
thermal generation (thermal noise) and achieve higher performance . It has been
observed that the continuous temperature cycling of array detectors can result in de-
bonding and edge delamination, resulting in the gradual development of inoperative
pixels **. Owing to the disadvantages of cooled detector arrays, there have also been
considerable efforts by both the US Department of Defense and the commercial circle to
further develop thermal detector arrays due to their superior durability, facile

implementation, and higher pixel densities at significantly lower cost ». Developments
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in micro-bolometer and ferroelectric detector arrays (the former being more mature
than the latter) are expected to compete for detection purposes in the spectral region
below 12 pum (< 800 cm™) *'. The BST hybrid array illustrates a current uncooled
photodetector format; advantages include lower manufacturing costs, lower installation
and maintenance cost, possibility for larger formats, sensitivity to longer wavelengths
than second-generation MCT-FPAs (useful for investigation further into the fingerprint
region of the mid-IR spectrum), and of course no need for time-consuming/expensive
cryogenic cooling and the associated consequences of temperature cycling **. Another
recent study reports an uncooled 128x128 micro-bolometer FPA detector integrated
within an already well-developed CMOS format, demonstrating a simple, low-cost
fabrication process, capable of generating a detector array with respectable
performance *. However, the key disadvantage of thermal detector arrays is that their
sensitivities are currently inferior to those of photodetector arrays, a significant
drawback when looking to make quantitative measurements of chemical systems.

Aside from cooling issues, there exist more fundamental problems with IR FPA
technology in its current state. The issue of non-uniformity between detector elements
is a well-characterized problem of FPAs, as it is of some concern in that the purpose of
the technology is to obtain spatially resolved (thermal and chemical) images of
scenes/samples. There is a response pattern embedded within each FPA due to the
imperfections in the fabrication process (see figure 2.8), an effect initially so severe that
it impeded the development of FPA technology for several years *. This issue arises
because all of the detectors and much of the multiplexing electronics are fabricated
collectively, and there is little possibility for post-processing of individual detector
elements ». Non-uniformity problems are compounded by the driving forces behind FPA
technology, i.e. the desire for increasingly large detector array formats constructed from
novel semiconductor materials, resulting in less developed fabrication techniques and
more potential for irregularities among the detector elements within the array. As a
consequence of this embedded non-uniformity, individual detector elements in the
array exhibit differences in their respective spectral response, which has an impact on
interpretation of FPA-FTIR images **. In order to be assessed, detector non-uniformity
must be measured in the time domain to compensate for the effects of temporal (white)

noise — this can be accomplished through co-additions of scans in spectroscopic
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measurement or frames in thermal camera measurements. Once the pattern is
established, it may be compensated for through non-uniformity correction (NUC)
techniques. The most commonly applied FPA correction is referred to as a two-point
NUC. This standard technique involves measurements at two irradiance levels, and the
responses of each detector element are employed to calculate individual offset and gain
corrections for each element, thus forcing the detector output to be (ideally) uniform
across the FPA for these two irradiance levels (see figure 2.9) **. More elaborate
correction procedures range from simply extending the two-point NUC by
measurements at additional irradiance levels to fuller algorithmic treatments which
attempt to more thoroughly model the detector element non-uniformities (see figure
2.8) ¥ The downside of increasingly exhaustive NUC techniques is the corresponding
increase in the computational power required, compounded by the fact that these NUCs
must be conducted regularly due to the often variable nature of detector element non-
uniformity over time *. Through the application of NUCs, the performance of the
detector array can approach temporal noise-limited characteristics, though it is noted

% Thus, an

that patterned noise will often persist even after rigorous treatments
additional term to be defined for FPA response characterization is spatial noise, the non-
uniform noise patterns that persist after NUC procedures. Spatial noise exists primarily
due to the fact that non-uniformity is difficult to model, and there always exist random

variations in camera operating conditions and environmental conditions **.

25

w
S

Pixel Row #

Pixel Row #

25 50 75 100 125 25 50 75 100 125
Pixel Column # Pixel Column #

A B

Figure 2.8. A novel non-uniformity correction algorithm applied to an InSb 128 x 128 FPA 9,
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Figure 2.9. 3D plot of an MCT FPA (a) before, and (b) after linear non-uniformity
corrections (NUC). Pixel coordinates on the x, y axes, detector element response value
on the z-axis **.

Other issues with FPA detectors include 2*3¢:

e Limited spatial resolution capabilities compared with optical microscopy
techniques.

e Poor detector element SNR; charge transfer efficiency and crosstalk problems.

o Detector element saturation leading to requirement of DC suppression and sub-
frame integration strategies — leads to more complexity in electronic readout
systems.

e High investment costs due to these detectors being produced for high
priority/low volume applications; note that growing interest in FTIR imaging is

shifting this trend.

In assessing FPA performance, the most common measures of detector performance
(D* and NEP) have been reported to be inadequate **. The use of these parameters rests
on the implicit assumption that all detector elements in the array are exactly the same
and thus does not account for FPA detector element response variations. As a
consequence, expectations of FPA detector performance based on these figures of merit

® is the contrast

are often very optimistic. A parameter proposed by Mooney et al. >
signal-to-noise ratio (CSNR), a parameter similar to the NEP and D* in that it

incorporates signal- independent noise and shot noise, but goes further by including the
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spatial noise of the FPA. This same group describes two principal means of quantifying
FPA non-uniformity: 1) task-based and 2) reference-based techniques *°. Task-based
techniques involve the measurement of some controlled system — the detection of a 4-
bar pattern of adjacent hot and cold bars with the FPA detector is a classic example of a
task-based technique used with thermal imaging FPAs. The figure of merit used for this
task-based techniques is the minimum resolvable temperature (MRT), which is equal to
half the difference between the temperatures of adjacent hot and cold bars. The
reference-based techniques involve imaging of a uniform source with the FPA camera
and quantifying any deviations from uniformity among the detector elements. The
figures of merit used for reference-based techniques include the percent nonuniformity
(%U), the CSNR, and the nonuniformity D* (simply the mean/SD of the D* per detector
element); however, Mooney et al. stated that none of these parameters are fully
satisfactory, in that non-uniformity and spatial noise vary unpredictably with changes in
operating conditions, and that each parameter is specific to an individual detector —
hence, the versatility of D* as a basis for comparisons among detectors is lost *°.

An effort at approximating the impact of the unique characteristics of FPA detectors
on quantitative chemical measurements was made by Snively et al. >, Essentially a
reference-based technique, their measurements of a benzonitrile solution yielded a
coefficient of variation (CV) for the pixel absorbance values within the image of ~16% or
higher; increasing the number of co-added scans reduced the CV to ~12%, still a

significant variation 2. Other findings of this study include:

e Impact of diffuser on source intensity distribution of the FPA found to be minimal.

e Effect of increased scan co-additions on the overall SNR of the FPA was found not to
result in the expected square root increase.

e Linear relationship between SNR and decreased spectral resolution (R* = 0.968).

e LOD (for benzonitrile) of 9 mol% (5 um pathlength); linear range of 30 mol%.

e With further advancements in FPA technology, high quantitative fidelity would be

quite feasible ** .
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2.1.4. IR Spectroscopy for Quantitative Analysis
2.1.4.1. Condensed Phase Sampling

Many techniques exist for obtaining an IR spectrum from a wide variety of samples —
indeed, this is one of the strengths of IR spectroscopy. Two prominent techniques for
making such measurements on fluid samples are transmission and attenuated total
reflectance (ATR). The basic principles behind each technique are important to
understand when determining which will best suit a particular experimental design. It is
recognized that there are various other possibilities for IR analyses (e.g. diffuse
reflectance, photo-acoustic, emission) but these are generally not pertinent to the

handling of fluid samples and hence may be disregarded for the purposes of this review.
2.1.4.2. Transmission Measurements

Transmission measurements on fluid samples require the use of optical windows
made from an IR- transparent material. Lists of typically used window materials and
their associated ranges of IR transmission are available in the literature ** and from
suppliers (e.g. ICL, PerkinElmer). The simplest means of preparing a sample for a
transmission measurement is to place a drop of the liquid on one window and then
‘sandwich’ the sample by placing another window on top of the sample, thus creating a
film thickness of approximately 10-20 um, referred to as a ‘capillary film’. Other means
involve the use of sealed or demountable transmission cells, in which two optical
windows are separated by a spacer, ranging in thickness from 10 um to several
millimetres, which effectively determines the cell path- length; the latter may be
precisely measured by the interference fringe method or the Lambert law method, with
the former being the more accurate of the two “ In sealed cells, the two windows are
held together by a metal frame containing two filling ports, which are aligned with two
holes drilled into the upper window so that liquid sample may be ‘loaded’ into the cell
by means of a syringe. Demountable cells are similar in concept to sealed cells, the only
difference being that the former must be disassembled in order to “load’ the sample.
Given that the path-length of a demountable cell may thus change slightly from one

sample to the next, the use of a sealed cell is preferable for precise quantitative work.
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Generally, for pure liquids the more polar the liquid, the thinner the transmission-cell
path-length should be. Though it is preferable to work with pure liquids, many analytical
situations require that liquid samples be diluted with a solvent. This may be done in
order to provide a reproducible environment for the analyte, to increase the
transmittance of a strongly absorbing liquid component, or to decrease the viscosity of a
particular liquid (e.g. highly viscous oils) *2. In the case of solutions, concentrations of
solute are typically in the range of 5-10% (w/v), and as long as the solvent absorbance is
not too strong, the solvent spectrum may be subtracted from the spectrum of the
solution in the absorbance mode “*. Typical solvents include chloroform, carbon
tetrachloride, carbon disulfide, hexane, iso-octane, acetone, dioxane, tetrahydrofuran,
and water “2. A rather significant disadvantage of transmission measurements of liquid
solutions is that common solvents absorb very strongly in the mid-IR region. Water in
particular absorbs over broad ranges of the mid-IR spectrum (for a 10 um cell around
650-930 cm™, 1580 - 1750 cm™, and 2930 — 3650 cm™) and requires a very short path-
length to avoid signal saturation - thus compromising experimental sensitivity. Ideally,
the path-length should be as small as possible; however this introduces problems with
experimental reproducibility due to path length variation, practicality of filling the cells,
and interactions of solvent molecules with surface materials. Another consideration is
the possibility of solvent-solute interactions that may modify the resultant spectra of the
solute. Such associations will result in a frequency shift of the absorption bands of the

associated polar components of the solute molecule.
2.1.5.3. ATR Measurements

The ATR technique is based on the attenuation of a totally internally reflected IR
beam through its interaction with the sample. This technique is implemented by placing
the sample in contact with an “IR transparent’ internal reflectance element (IRE),
through which the IR beam from the source undergoes total internal reflection (TIR) by
impinging on the IRE at an angle from the normal that exceeds the critical angle, 6. =
arcsin(n,/n;), where n; and n, are the refractive indices of the IRE material and the
sample, respectively. The crystalline substance comprising the IRE must be of a higher
refractive index than the sample in order for TIR to occur. Various materials are used for

ATR IREs, including: ZnSe (nr=2.4 at 1000 cm™), Ge (nr=4.0 at 1000 cm™), Si (nr=3.4 at
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1000 cm™), GeAsSe (nr=2.5 at 1000 cm™, and diamond (nr=2.4 at 1000 cm™) ****. When
the incident IR beam passes through the IRE and contacts the sample medium at an
angle greater than the critical angle (thus satisfying the requirements for TIR), an
evanescent wave is produced at the surface of the IRE. Evanescent, meaning “tends to
vanish”, refers to the property of this near-field standing wave to decay exponentially
from its point of origin, with the distance at which the amplitude of the evanescent
wave has decayed to 1/e of its initial amplitude being termed the depth of penetration.
The latter is proportional to the wavelength and also depends on the refractive indices
of the IRE material and the sample but is generally on the order of 0.5-5 um. Within this
minute distance, IR absorption by the sample will result in attenuation of the
evanescent wave, and. the attenuated energy of the evanescent wave is then returned
to the totally reflected IR beam, which then exits the IRE onto the detector element. The
short penetration depth of the evanescent wave makes the ATR technique ideal for
highly absorbing materials (e.g. water solutions) as well as surface and thin film
measurements. When used with solid samples, the short penetration depth makes it
essential to ensure that the sample is in direct contact with the IRE of the apparatus,

which is often achieved with the use of a pressure device.
2.1.5.5. Calibration Methodologies & Analytical Figures of Merit

Agencies such as the Association of Official Analytical Chemists International (AOAC
International) impose strict guidelines for the performance of calibrations applied to
specific analytical problems, e.g. the proximate analysis of raw milk for fat, protein and
lactose contents. Because FTIR spectroscopy is a secondary method, its results must be
continually confirmed by a reference method, and there must be a defined level of
agreement. A way to establish the level of agreement is defined as the mean difference
for accuracy (MD,) and the standard deviation of the differences for accuracy (SDD,).
The MD, measures the differences between measurements made on calibration
standards using the reference method and the FTIR method and is reported with a sign
to indicate both the magnitude and the direction of the bias of the FTIR method relative
to the (presumed to be accurate) reference method. The SDD, measures the width of
the distribution of those differences, giving an indication of the precision of the FTIR

method relative to the reference method; it is noted that the SDD, is inherently limited
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by the precision of the reference method *. An additional set of measurements
describe the level of reproducibility of an FTIR method and are analogous to the MD,
and SDD, parameters, replacing the reference method measurements with a set of
repeated FTIR measurements. These parameters are reported as the mean difference
for reproducibility (MD,) and the standard deviation of the differences for

reproducibility (SDD,).
Linear Regression

According to IUPAC “a calibration in analytical chemistry is the operation that
determines the functional relationship between measured values and analytical
quantities characterizing types of analytes and their amounts” *. The simplest of
calibration models is a linear least-squares estimation (LLS); the relationship between
signal intensity (y;) and analyte concentration (x;) in an LS model is expressed in equation

2.5.
Equation 2.5. y;=B + M Xx; (B = Experimental Blank; M = Experimental Sensitivity)

In terms of spectroscopic analysis, the response (y;) is the absorption of
electromagnetic radiation at a specific wavelength by a quantity of analyte (x;). The
Beer-Lambert-Bouguer law (or simply Beer’s law) describes the relationship between
the attenuation of a monochromatic beam of electromagnetic radiation of fixed radiant
power on interaction with an absorbing medium *’. When a number of requirements are
satisfied ¥, a chemical system may be found to adhere to Beer’s law, whereby the
directly proportional relationship between analyte concentration and signal response is
described by equation 2.6. When a linear model is made relating concentration to
absorbance for prediction of concentration from absorbance, the calibration is referred

to as an inverse Beer’s law calibration *°.
Equation 2.6. A(\A) =a(A)bc

(A=absorbance; A = wavelength; a = absorptivity; b = path-length; c = analyte
concentration).

Looking from equation 2.5 to equation 2.6, it is observed that the term M ( in
equation 2.5) in spectroscopy is in fact a combination of the measured path-length and

molar absorptivity of the analyte — which will be different from one case to another.
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Building a calibration is usually conducted in such a way that there is the upmost
confidence in the true values of the calibration standards which should be prepared in
suitably graduated amounts *°. This creates a ‘controlled’ situation where the level of
error associated with the x; component becomes negligible when compared to the level
of error in the y; component (dependent variable) of the calibration, ensuring that the
error introduced to the calibration model is as minimized as possible. Some descriptors
of the quality of a particular calibration model include the correlation coefficient (CC),
the calibration standard deviation (CSD), linearity (a priori or a posteriori), comparison of
experimentally obtained calibration parameters (B & M) and the condition of
homoscedasticity (where the standard deviation of the points around the curve is
assumed to be equivalent along the length of the curve); see reference for elucidation

and/or further descriptions of each of these parameters *°.

Multiple Linear Regression

Multiple linear regressions (MLR) take into consideration that the correlation of vy;
may not be solely with x; but with x,, where n could equal any number of explanatory
variables. In other words, MLR attempts to model the relationship between 2 or more
explanatory variables and a response variable by fitting a linear equation to an observed
data set. In equation 2.7 an example of a two-predictor linear regression model is

provided *®.
Equation 2.7. y;=Bo+ BiX; + Bxy + €

This model is linear in each of the parameters B¢, B1, and B,, and describes a three-
dimensional plane with the axes y;, x;, and x,. The parameter B, is the intercept of the
plane, while the parameters B, and B, are called the partial regression coefficients.
Parameter B, represents the change in the response corresponding to a unit change in x;

when X, is held constant, and vice versa for parameter (3,.

Partial Least Squares Regression

Partial least squares regression (PLS) is a multiple linear regression technique that is

said by some to be the de facto standard calibration method in spectroscopy *. PLS is
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often referred to as a “whole spectrum” technique because the calibration model may
be built utilizing the complete vector which represents the spectrum, as opposed to LR
and MLR techniques which utilize single or relatively small portions of the overall
spectra (e.g. peak heights and/or peak areas of interest). It is also referred to as an
‘indirect method’ in that it only requires knowledge of the concentration of the
analyte(s) in question. In short, PLS involves the determination of a set of latent
variables through a data matrix rotation which determines the components within the
data matrix that are also relevant to the (in the case of chemical measurement)
concentration values *°. The latent variables which are calculated describe the variability
attributed to the data matrix and the concentration values; the first latent variable
describes the largest source of the variability, the second latent variable the second
largest source of variability, and so on. The selection of the number of latent variables to
define the PLS calibration model is an important consideration, where the simplest and
most commonly employed method is to utilize the latent variable associated with the
minimum predictive error sum of squares (PRESS) value *°. In this procedure the PRESS
values are plotted against an increasing number of latent variables and the minimum of
this plot is then selected as the optimum condition of calibration.

A significant advantage of using PLS calibration models is that they are often robust
enough to build calibrations for sample matrices that exhibit highly overlapped spectral
features — i.e. it can prove to be quite trivial to build multi-component calibration
models from complex sample matrices. Given the multiplexing advantage of FTIR
spectroscopy, it does in some circumstances seem suitable to make use of that wealth
of information, which is where PLS (among other multivariate matrix based techniques),

is quite well suited.

2.1.4.5. Quantitative Applications of FTIR Spectroscopy in Food Analysis

FTIR spectroscopy is reliable (inherently high wavelength accuracy and reproducible
measurements), fast (to various degrees, depending on
interferometer/detector/method), often non-destructive to the sample, and
simultaneously acquires a wealth of chemical information in a single measurement. It
has been demonstrated that there are a variety of potential calibration schemes (most

using matrix methods based on the additive nature of Beer’s law) that can access this
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chemical information to varying degrees, easily achieving multi-component calibrations
from complex sample matrices . All of these attributes make FTIR spectroscopy highly
adaptable to process analysis applications; a sector which has seen significant levels of
success in the application of FTIR spectroscopy is the food industry. The needs of the
food industry lie mainly in proximate analysis, be it raw materials, process products, or
finished products. The main constituents in foods are fats, proteins, carbohydrates, and
moisture — followed by a list of minor constituents such as vitamins, minerals,
phytosterols, organic acids etc. Of particular interest to this review are those
applications which require quite high levels of sample throughput, and to give an
impression of such requirements three applications will be highlighted: milk analysis,

wine analysis, and edible oil analysis.

Milk Analysis

The dairy industry is a notable example of the successful application of IR
spectroscopy for the regular proximate analysis of a food product. The modern
application of FTIR spectroscopy to milk analysis is preceded by a significant background
of IR utilization in the industry. The traditional chemical reference methods for
compositional analysis of milk include the Babcock and Mojonnier ether extraction
methods for fat, the Kjeldahl procedure for protein, and polarimetry or HPLC for lactose
> These methods carry a high degree of precision; however they are inefficient in terms
of time of analysis and require substantial amounts of chemicals, particularly when
performed on a large commercial/industrial scale. These issues motivated the search for
a rapid analysis technique, and in 1960 the first IR milk analyzers were created by
Goulden et al. % these were eventually commercialized as the IRMA by Grubb-Parsons.
This analysis technique was accepted by the AOAC as an official method, and later the
IRMA was purchased by FOSS — now a global leader in IR milk analyzer systems; see
table 2.3 for a list of companies marketing dedicated IR milk analyzers. The adoption by
industry of these IR milk analyzers resulted in their gradual evolution from diffraction
grating based systems to filter based,and eventually interferometer based systems. The
current utilization of FTIR spectrometers for the analysis of raw milk is illustrative of the
high-throughput potential of the infrared analysis technique. Some of these analyzers

(e.g. MilkoScan series from FOSS) utilize an automated flow system and are capable of
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scanning up to 600 samples/hour. Further, it is not uncommon for central laboratories
to operate several of these units simultaneously, amounting to a potential of several
thousand samples/hour. The incorporation of FTIR spectrometers into these instrument
designs enables the simultaneous selection of appropriate spectral bands for the
guantification of the main components of milk; carbonyl groups from the ester linkages
of fats (C=0 stretching vibration modes), peptide linkages (Amide Il) in proteins, and O-H
groups in lactose *°. Current instrumentation/calibration techniques are capable of
measuring the fat, protein, lactose, total solids, solids-non-fat, freezing point depression,
total acidity, free fatty acids, density, urea, and casein values from a milk sample.
Depending on the exact analyzer system being used, they are also adaptable to creams,
concentrated milks, infant formulas, and an increasingly wide variety of milk products.
Table 2.3 illustrates the potential versatility of FTIR analyzers in the dairy industry,
highlighting several studies of dairy products. A list of several publications regarding

FTIR analysis of dairy products is provided in table 2.4 (following page).

Company Product

FOSS MilkoScan™ FT+ (FTIR)
MilkoScan™FT2 (FTIR)

Delta Instruments LactoScope FTIR Automatic

LactoScope Filter C3+/C,+

Metron Instruments  Calais Milk Analyzer

York Dairy Analyzer
Bruker Optics MPA & Matrix FT-NIR
Unity Scientific SpectraStar™ 2400 (NIR, grating)

Table 2.3. List of some commercially available IR based milk analyzers (2009).
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Sample Set

Reference

Spectrometer/Calibration/Analytes/Other

Milk Standards
(12¢)

Van de Voort et al
50

FTIR with MLR, CLS, and PLS calibration

model, measures of fat/protein/lactose/TS.

Milk Standards

Ulberth et al **

FTIR, derived methyl ester + direct
measures of TFA content

Sweetened
Condensed Milk
Standards (20c,
30v)

Nathierdufour et
al 52

ATR-FTIR, PLS calibration model, measures
of fat and solids.

Milk Standards

Delong et al **

FTIR, 2" Derivative measurements,
measures of fat/protein/lactose.

Raw Milk ) )
. ss FTIR, PLS and PCR calibrations, measures of
Standards Hewavitharana .
casein content
(~300c, 20v)
Milk Standards Hansen % FTIR, Multivariate calibrations, various pre-
(~900c, xv) treatments, measures of urea content

Milk Standards
(180c)

Heuer et al *°

FTIR, PCA/PLS, truncation & 2™ derivative
pre—treatment, measures of acetone
content

Chocolate Milk

FTIR, PLS calibration, measures of fat,

Standards Cocciardi et al >’ i
(18 ) sucrose, lactose, and total solids.
C, XV
Milk Standards Sivak £ 2] FTIR, FT-NIR, PLS calibration, measures of
ivakesava et a
c, 15v tetracycline content
(45c, 15v) li

Milk Standards

ATR-FTIR, HCA selection, PLS-1 PLS-2

(11 - qualitative)

(33c, 48v) Inon et al >° calibration; measures of fat, protein,
c, 48v
' carbohydrates, calcium, caloric content.
Infant Powdered __
Milk Deng et al © FTIR, 2nd derivative; measures of fat,
i

protein, lactose, maltodextrin, sucrose.

Spoiled Milk
Samples (252)

Nicolaou et al ®

ATR-FTIR and HT-FTIR, PCA/ PLS
calibrations, metabolic fingerprint
measures.

Rumen Standards

(n/a)

Uden et al

FTIR, measures of acetate, propionate,
butyrate, 1mM accuracy.

Table 2.4. FTIR analysis of milk — examples from the past 20 years. c = calibration set; v
= validation set; CLS = Classical Least Squares; TFA = Trans-Fatty Acids; PCR/A = Principal
Component Regression/Analysis; HT-FTIR = High-Throughput — FTIR.
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Alcoholic Beverage Analysis

Alcoholic beverages can be defined as those beverages with an ethanol content of
60% (v/v) or less and can be divided into two main categories — distilled liquors (or
spirits) and fermented liquors % The first component that likely comes to mind when
making measurements of alcoholic beverages is that of the ethanol content, an
important measurement for both social and economical reasons, and something that is
performed in producer, government and customs laboratories. As with milk, there are
tedious time-consuming official methods for the analysis of the ethanol content of
liquors. It is possible to make measurements of ethanol using FTIR spectroscopy in both
the transmission and ATR modes, while measurements using NIR spectroscopy are also
quite common. Regarding transmission measurements, as with milk measurements, the
path-length must be kept smaller than 50 um in order to keep the water absorption
under control. A constant issue with direct measurements of ethanol is that there is
often strong interference from carbohydrate bands, resulting in a variety of innovative
calibration approaches (see table 2.5, following page).

The analysis of wines is another excellent example of the high-throughput potential
of FTIR spectroscopy, with commercially available dedicated wine analyzers receiving
considerable attention from industry and research communities alike * Using
multivariate calibration techniques, mainly PLS regression, it is possible to make
guantitative measurements on upwards of 10 components (with varying degrees of
accuracy) on a single sample of wine — a nice touch for an industry with such prestige.
The main challenges in FTIR analysis of wines are: 1) the chemically similar profiles of
wines, 2) interferences from dominating components (mainly ethanol and water), 3)
outliers due to the high variability of wine samples, and 4) the restricted LOD afforded
by FTIR spectroscopy *. Table 2.5 highlights several studies using FTIR spectroscopy for
the direct measurement of an alcoholic beverage, with some pre-treatment of the
sample in some cases. The wide ranges of products that open themselves to
multivariate analysis make alcoholic beverages an excellent candidate for FTIR

guantitative analysis.
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Other Food Products

The application of FTIR for food analysis is of course not limited to milk and wine;
there exist a wealth of products that the versatile range of FTIR techniques can handle.
Edible oils form another significant area of FTIR research (table 2.6, following page),
where the analysis of fat composition, moisture content, FFA’s, peroxide values, iodine
values, among other parameters, has been achieved with excellent accuracy ®*. Fruit
juices, cola drinks, energy drinks, and essentially any sugar solutions comprise another
successful example. FTIR has firmly established itself in the food industry, where the

number of applications continues to grow rapidly.

Sample Set Reference Description

Wine (726, xv) Schindler et al © FTIR (Sl); PLS calibration; measures of
i , XV i ) )
sugars, alcohols, organic acids.

|66 FTIR (SI); measures of carbohydrates, in

Beer Haberkorn et a ) o ] .
situ monitoring of enzymatic reaction.
Wine (72c, 77v) ATR-FTIR; PLS calibrations; measures of
Distilled Liquor (xc, Cocciardi et al ®’ alcohol (distilled liquors); measures of
12v) alcohol, TR sugars, TA, and pH (wines).
, o o ATR-FTIR, ANN & PLS calibrations;
Wine (150c, 45v) Dixit et al

measures of glycerol adulteration.

|62 FTIR, online LL EtOH extraction with

Alcoholic Beverages Gallignani et a . .
CHClI;, LR calibration, measures EtOH.

FTIR, PLS calibration; measures of TA,

Wine (897c, xv) Moreira et al * . ) ) C
tartaric, malic, lactic, acetic, citric acids.

|70 ATR-FTIR, PLS calibration; measures of

Cider (51-147c, 25-47v) Loboeta - )
TA,VA, EtOH, specific gravity, pH, fructose.

FTIR, SPE, PLS calibration, 2™

Wine phenolic extract 7 o .
Fernandez et al derivative; measures of tannins

64c, 22v
( ) (phenolic content).

Spirit drinks & Beer
(535c & 461c, v=1/3" Lachenmeier et al 2
of ¢)

FTIR, PLS calibration; 9 components for
beer, 7 components for spirits.

Table 2.5. IR spectroscopic analysis of alcoholic beverages. SI = Sequential Injection;
ANN = Artificial Neural Networks; TR = Total Reducing; TA = Total Acidity; VA = Volatile
Acids; SPE = Solid Phase Extraction.
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Application Reference Description

|73 ATR; SWMLR calibrations; TFA, total polar
compounds.

Reflectance; PLS calibration; FA
determination.

Virgin Olive Qil Tenaeta

Edible Qils (synthetic) Christy etal ™

Th llv St 40ils  Dubois et al PLS calibrations; aldehyde formation, and
erma ressed Oils ubois et a
Y determination of anisidine value.

76 Transmission and ATR; LR calibration; FFA

Fats and Qils Ismail et a o
determination.

Table 2.6. FTIR analysis of edible oils. SWMLR = Stepwise MLR; FA = Fatty acid.

2.2. Micro-fluidics

The field of micro-fluidics, which deals with fluid properties and applications at the
sub millimetre scale (<10 m), is a highly multidisciplinary science encompassing the
areas of engineering, physics, chemistry, micro-technology, and biotechnology to name
a few. According to Tabeling and Cheng (2005), “Micro-fluidics can be defined as the
study of flows that are simple or complex, mono- or multiphase, which are circulating in

artificial micro-systems” ”’

. Over the past two decades this field has been increasingly
explored, evolving from its earliest applications in basic flow analysis procedures
towards more involved applications like micro total analysis systems (UTAS) and the ‘lab
on a chip’.

It is alleged that micro-fluidics was born of four parent technologies: molecular

analysis, bio-defence, molecular biology, and microelectronics 78,79

. Molecular analysis
refers to the advancements in capillary analysis technologies such as high performance
liquid chromatography (HPLC) and capillary electrophoresis (CE) — both highly employed
analytical techniques whose successes encouraged the development of increasingly
compact designs "°. Secondly, fears of biological and/or chemical weapons technology
stimulated the Defence Advanced Research Projects Agency (DARPA) to develop highly
compact, field deployable micro-fluidic instrumentation for their detection . These
suspicions provided what some consider to be the main stimulus for academic
advancements in micro-fluidics during the 1990’s ’® ”°. The field of microbiology made

major contributions to the development of micro-fluidics during the search for more

efficient methods of DNA sequencing during the genomics boom of the 1980's;
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techniques with higher throughput, sensitivity and resolution were essential for

advancements in this research ® ”°

. Lastly, the field of microelectronics supplied a
precedent for the fabrication of micro-fluidic devices (e.g. photolithography, wet/dry
etching, deposition), which enabled the precise design of the channels and contours
required for different micro-fluidic devices. Micro-electromechanical (MEM) devices
provided the makings for various micro-components such as heaters, valves, and pumps
that have since been adapted into novel micro-fluidic systems.

It is noteworthy that nature provides exquisite examples of micro-fluidic systems that
make our current innovations seem crude at best. One example is the capillary systems
found within trees, which employ networks of countless capillaries ranging in size from a
hundred micrometers in the trunk to tens of nanometres within parts of the leaves.
Despite the complexity of the capillary system, it is able to provide a near homogenous
supply of sap throughout the organism — reminiscent of the circulatory and respiratory
systems in animals ”’. Another example is the ability of any common spider to spin a
thread 10’s of micrometers in diameter with remarkable mechanical characteristics. This
is accomplished through the synthesis of proteins having a specific combination of
crystalline and amorphous structures that give the silk its extraordinary properties,
which are then manipulated through a series of glands to be expelled as the final
product ”’. Looking to examples such as these, one might consider the field of micro-
fluidics to be open to biomimetics %,

The accomplishments of manmade micro-fluidic systems have yet to reach those
seen in nature; however it is currently recognized as a young science with plenty of
promise. The fact that micro-fluidic systems require minute sample/reagent volumes,
generate respectively small volumes of waste, possess short
reaction/separation/detection times with high sensitivity and resolution, offer the
possibility for integration and automation, have a high energy throughput, have reduced
dimensions compared to conventional analytical instrumentation, and are relatively

cheap — makes micro-fluidics quite an attractive technology ’® 7 8 &

. It is apparent, as
indicated by the above list of qualities, that micro-fluidic technology derives most of its
advantages from its relative size. The details of the behaviour of fluids at the micro scale

shall now be discussed in more detail.
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2.2.1. Micro-Fluid Theory

When thinking about micro-fluidics, it should be apparent that small fluid volume is
the cornerstone of the technology. Columns typically range from 5-500 um in diameter,
and fluid volumes range from micro- to femtoliters (10° — 10™ L) ®. Micro-fluidic
technologies take advantage of both the physical scale of a particular system, and the
properties of fluid behaviour at that scale . It may not be intuitive that liquids at the
micro scale should behave differently than those in the macro-world, after all the micro
scale is still several orders of magnitudes larger with respect to molecular and
intermolecular distances. Still, there are situations where physical descriptions that may
apply in the macro world prove unaccommodating at the micro-scale of fluids.

Some relevant works for introductory concepts to micro-fluidics include: Patrick

Tabelings “Introduction to Micro-fluidics” ”’; Henry Bruus’s “Theoretical Micro-fluidics”

8. Nguyen and Werely’s “Fundamentals and Applications of Micro-fluidics” ®; and an
assortment of journal articles and reviews °. In the following sections the characteristics
of fluids and fluid flow, and transport mechanisms within micro-fluidic systems are
considered in brief. It is suggested that if the reader would like a more in depth

treatment of these concepts they refer to the listed material.

2.2.1.1 Fluids and Fluid Flow

Fluid: “A material that deforms continually under shear stress or with the
application of an external force attempting to displace part or all of the fluid elements at

a surface boundary.””

The term fluid and liquid are often used synonymously, however this is not strictly
correct as gasses and liquids (separate phases) both exhibit fluid characteristics. That
said, there are fundamental differences between these two types of fluids as a

consequence of their vastly different densities®> ®*

. Three important parameters when
considering fluids are: density (p), pressure (P), and viscosity (n). Density is defined as
mass (m) per unit volume (V). Pressure is defined as the mechanical force per unit area
of a surface. Pressure within a fluid is a function of the depth of the point of interest in
the fluid, i.e. pressure will increase as you descend from the surface of a liquid. In terms

of micrometers, the change in pressure (AP) is minute, allowing for the safe
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approximation that pressure changes due to depth within microfluidic systems can be
ignored. As will be discussed in section 2.2.1.2, external pressures are often applied to
micro-systems containing inlets and outlets as a means of obtaining fluid flow. When a
fluid flows within a confined area there will be resistance, giving rise to fluid viscosity.
Viscosity can be defined by equation 2.8, which shows the viscosity coefficient equal to
a ratio of shear stress (Force (F)/Area (A)) to shear rate (displacement (dx)/liquid
thickness (dy)). Sheer stress refers to a stress force parallel to the face of a material,

while sheer rate refers to the displacement of the film relative to the films thickness.

Fid

" & sdy

Equation 2.8. Viscosity Coefficient (ratio of sheer stress: sheer strain).

There are three possible scenarios surrounding the relationship presented in
equation 2.8. The first is that the relationship between the viscosity coefficient and the
sheer stress is directly proportional. Any fluid that exhibits this behaviour is classified a
Newtonian fluid. The second and third possibilities involve situations where the two
parameters are not directly proportional (i.e. the viscosity changes with the magnitude
of sheer stress) and are called Non-Newtonian fluids. In the case of Non-Newtonian
fluids the viscosity can either increase (sheer thickening) or decrease (sheer thinning)
with the amount of sheer stress.

The main issue when going from macro to micro-fluidics has to do with the relative
importance of various physical effects, a problem that may be simplified by using
dimensionless parameters &_ A dimensionless parameter is used to define a unit such as
volume, length, or linear flow rate in such a way that it can be assumed to be constant
throughout an entire system, a scaling technique used by engineers when there are

% A commonly quoted

large number of variables involved with a particular system
dimensionless parameter in regards to fluid flow properties is the Reynolds number
(Re), defined in equation 2.9.

pdv

Re=?f

Equation 2.9. Reynolds number (d=diameter or channel depth; v= average velocity of
the moving liquid, and n = viscosity).
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This dimensionless parameter describes the flow properties of a fluid as a ratio of
inertial effects to viscous effects, i.e. in terms of turbulent or laminar flow " .
Turbulent flow is characterized by the presence of eddies, vortices and other flow
fluctuations, while laminar flow is characterized by a smooth, stable fluid motion 8,
Empirical observations estimate fluids with a Re of >2300 to be turbulent (inertial forces
are dominant). With a Re of approximately <2000 a fluid begins to be dominated by
laminar flow (viscous forces). In regards to equation 3.2 it is apparent that micro-scale
channels will generate a low Re at practical velocities — in fact a flow rate approximately
the speed of sound would be required to see inertial forces resurface ”°! This has
implications to how fluids will be able to mix within micro-fluidic channels, as without
some form of agitation, mixing will be entirely diffusion controlled. It is recognized that
due to the nature of fabrication techniques (section 2.2.1.3) micro-channel designs are
often semi-rectangular, and as such the hydraulic diameter (equation 2.10) may be used

in determining the Re. The wetted perimeter (P,.;) refers to the entire perimeter of the

channel that is exposed to the fluid.

Equation 2.10. Hydraulic Diameter (Dy), Area (A), P, (Wwetted perimeter).

There are various dimensionless parameters related to surface tension that may be

useful, depending on the particular micro-fluidic application #:

e Capillary number (Ca) compares viscous effects to surface tension effects -
useful when working with multiphase flow.

e Weber number (We) compares fluid inertia to surface tension - useful for
analysis of bubble/droplet formation.

e Bond number (Bo) compares gravitational effects to surface tension effects -

minor effect observed in gas-liquid systems.

Navier-Stokes equations are based on combinations of fundamental laws
(conservation of mass/energy/momentum) with fluid properties (viscosity, thermal
conductivity etc.), and are used for the theoretical treatment of fluid flow. These

equations require several boundary conditions or equations of state in order to obtain

39



meaningful solutions. A key boundary condition is that of the ‘no slip condition’, which
states that the velocities found at a phase boundary must be equal. In the case of phase
boundary between a fluid and solid capillary or channel, the velocity must then be equal
to zero. Another boundary condition is the ‘no temperature jump’ condition — used to

ensure that a gradual temperature gradient is in place for data treatment ®.

The Poiseuille flow equation (equation 2.11) presents a solution to the Navier-
Stokes equations that is useful for describing flow conditions in a system with a pressure

7983 Within equation 3.4 exists the reciprocal of the fluidic

gradient as the driving force
resistance, 8nL/mR"; its inverse dependence on the capillary radius demonstrates an
increased fluid resistance with decreased size. As a result of the increased resistance the
required pressure gradient (AP) needed to flow liquids through dimensions at the micro-
scale is quite large. Currently there is no known analytical solution to the Poiseuille flow
problem when presented with rectangular channel dimensions — it is instead

approximated as a Fourier sum with reasonable accuracy ®.

A gR?
Q = —= =
3 anl

Equation 2.11. Poiseuille Equation (Q): (R = capillary radius, L = capillary length, AP =
hydraulic pressure, AV = volume of liquid in system, t = time).

2.2.1.2. Transport Mechanisms

A key function of many micro-fluidic devices is that they have a fluid (or some
combination of fluids) flow through a simple or complex network of micro-channels for
some purpose. There are two different types of transport in micro-fluidic systems:
directed transport and statistical transport ’°. Directed transport is achieved through the
application of work to the system. Two common means of achieving directed transport
in micro-fluidic systems are pressure driven flow and electro-osmotic driven flow ¥ %,
Statistical transport is defined as entropy driven transport, whereby flow only occurs
when the fluid is moving in such a way that it is more disordered than its initial state
(e.g. diffusion controlled transport). Mixed transport (a combination of directed and

statistical transport) is also a possibility, an example is forced heat convection — the fluid

is pressure driven through the channel while a heat source causes the molecules in
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contact with the channel walls to diffuse to the center ”°. Due to the high ratio of surface
area to volume in micro-channels there are many interfacial phenomena that could be
explored as driving forces e.g. wetting properties, surface tension, capillary effects,
electrokinetics ®. For the purposes of this review only electro-osmotic and pressure

driven directed transport are discussed further.

Electrokinectic Drive (Electro-osmotic Flow): Electro-osmosis is the electrokinetic

%91 Note that the key

flow of fluids with respect to a fixed, charged solid surface
difference between electro-osmosis and electrophoresis lies in the size of the charged
particles in the ionic liquid; if comparable to the size of the fluid molecules you are
dealing with electro-osmosis, whereas if the particles are large (e.g. macromolecules,
proteins) you are dealing with electrophoresis *2. The flow phenomena observed in
these systems is dependent on the applied electric field, the physical characteristics of
the microchannels, and the physical properties of the fluid . The principles behind

electro-osmosis (and electrokinetics) can be explained with a model case "7 %

e Establish a uniform surface charge at a solid-liquid interface within a capillary or
channel, brought about by the functional groups of the surface material.

e Surface charge attracts counter ions from the contained electrolyte solution.

e An excess charge is developed near the solid-liquid interface, forming an electrical
double layer (EDL) with thickness equal to the Debye screening length.

e This EDL of counter-ions screens the electric field so that it decays over the Debye
length — the potential drop over this distance is referred to as the zeta potential
(typically less than 100 mV for electrolyte solutions).

e Application of an external electric field parallel to the capillary/channel produces an
electrical force within the EDL, driving the mobile ions within.

e Fluid surrounding the ions moves due to fluid viscosity, bulk fluid motion is produced.

Note: The EDL results in a screened electric field normal to the surface whose

strength depends on surface charge density, thickness ranges from ~ 10-100 nm

relative to electrolyte concentration (~10° - 10> M) ¥.

When an ion containing fluid (e.g. water) is placed into a micro-channel with a fixed
charge on its surface and the voltage is applied, the fluid will essentially move as a plug

78 There are several advantages to electro-osmotic driven flow as it relates to micro-
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fluidics, e.g. the simplicity of having the driving force embedded into the device, no
external moving parts, convenient power supplies (batteries), compact size,
minimization of fluid plug broadening, and the high resolution separation of ionic

components ’® 8

. However, depending on the specific application you are interested in
there are some drawbacks to electro-osmosis directed transport, especially related to
the strong dependence of electro-osmosis flow on the channel surface properties. For
instance electro-osmotic flow can result in varied amounts of analyte retention,
impacting the efficiency and reproducibility of chromatographic separations; the
coatings sometimes added to micro-channels used for cell analysis can lower the net
surface charge of the channel, thus suppressing the flow rate; limited flow rate for time
resolved applications; the presence of an electric field may be undesirable in some cases
— i.e. unwanted electorphoretic separation, alteration of biological cells ®. Another

limitation of electro-osmosis is that it is only applicable to polar fluids containing some

concentration of ions 2.

Pressure Drives (Hydrodynamic Flow): This is a conventional method of achieving flow
in fluid systems, something that has been well established by engineers. Flow in this
case is driven by the action of a pressure difference, which is applied between an
upstream and a downstream terminal in a device. Applied pressures spread right
through the fluid with finite speed, though changes do not occur everywhere
throughout the fluid instantaneously as they are limited by the speed of sound *2. The
actual transfer of pressure in a fluid is carried out at the molecular level through
intermolecular forces and momentum gain through increased molecular collisions (more
significant in the case of gasses). The usual means of obtaining a pressure differential in
microfluidic systems is by connecting an external macro syringe pump with the excess of
fluid to be injected into the micro-channel. This system gives good control over the
pressure differential; however it can prove problematic to obtain highly accurate control
of the fluid flow ¥’

The use of microfluidic pumps has been investigated, with over 200 journal articles
covering new micro-pumps or analyzing micro-pump operation since the early 1980’s ",
There exists a wide range of mechanical and non-mechanical pumps available to micro-
fluidics, e.g. check-valve, peristaltic, valveless rectification, rotary, ultrasonic, centrifugal,

magneto-hydrodynamic, electro-hydrodynamic, and as discussed previously electro-
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osmotic . The majority of micro-pumps reported are classified as reciprocating

displacement pumps, otherwise known as membrane or diaphragm pumps *.

An issue with micro-fluidics and pressure driven flow is found within the Poiseuille
flow equation (equation 3.4) — the fluidic resistance. The high surface to volume ratio
creates viscous effects that require a larger pressure gradient (typical operating
pressures in microfluidic systems are between 1 kPa and 100 kPa) in order to provide
the flow needed for the system — perhaps to the point of compromising the mechanical
integrity of the device °>. Another problem with micro-mechanical pumps is that their
fabrication and implementation into microfluidic devices can prove to be quite tedious —
as opposed those of electro-osmotic systems. These disadvantages aside, the use of
mechanical pumps continues to be a common means for pressure driven flow. The
availability and cost of equipment such as syringe pumps, combined with its ability to
move a broader range of materials, and its insensitivity to channel materials make

pressure driven flow a practical approach for many applications.

2.2.1.3. Fabrication Technologies

Fabrication technology for microfluidic devices has evolved largely out of techniques
developed in the field of micro-electromechanical (MEM) engineering where techniques
such as photolithography, etching, deposition, micro-wetting, and micro-impression all
permit the fabrication of miniaturized systems ’’. As a convention these technologies
can be categorized into hard and soft techniques; hard referring to technologies based
on etching/lithography/deposition of hard materials such as glass and silicon, soft
referring to technologies that manipulate elastomers or plastic materials.

An important consideration with respect to the current work is that the majority of
micro-fabrication techniques have been built up around MEM'’s technologies, where it is
most common to work with silicon and glass based media. When working with IR
detection these techniques must be extended to different IR transparent crystal media,
e.g. CaF, or ZnSe, where fabrication techniques are less developed. Besides being
considerably more expensive than the more common glass/silicon substrates typically
used, there are other differences in these IR transparent substrates that will have

consequences on the application of micro-fabrication techniques. Keeping this fact in
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mind a brief description of common micro-fabrication techniques is provided and,

where possible, applications of the technique to IR specific materials.
Hard Techniques - Etching

As previously mentioned, the use of silicon or glass as a substrate in micro-design is a
relatively mature technology. These hard materials are open to techniques such as
etching, lithography, and deposition, which are capable of obtaining micro-channel
dimensions in the range of 0.2 — 500 um ”’. Silicon as a micro-device substrate is suitable
for various reasons: wide availability, possibility for integration with electronic circuits
(semi-conductor), and its physical and chemical properties make it compatible with a
wide range of established micro-fabrication processes with sub-micrometric precision.
Glass, for the most part, can be thought of as analogous to silicon in respect to the
micro-fabrication techniques discussed here.

One of the principle methods is the wet etching of silicon/glass. This involves
protecting some portion of the substrate with a mask while it is exposed to a liquid
phase chemical attack — a technique that can be traced back to the 15" century for the
creation of designs in armour 7. Isotropic and anisotropic etchings are two classes of
etching with important differences. Isotropic etching creates spherical cavities, as the
chemical reaction takes place equally in the three spatial dimensions. Due to its ‘under-
etching effect’ isotropic etching is less useful in designing lateral structures .
Anisotropic etching can be carried out along one plane, making it possible to design flat
surfaces, and cavities. Isotropic etching is carried out using an acid called HNA (mix of
HF/HNO;/CH;COOH), while anisotropic etching uses a strongly basic solution. The
overall advantages of wet etching techniques can be summarized as: high selectivity,
availability of planar or curved surfaces, high repeatability, and controllable etching rate
with ‘etchant’ concentration ®*. With respect to IR transparent materials, it has been
demonstrated that CaF, can be etched using laser induced heating.

Dry etching is another ‘hard’ technique, whereby a solid-state surface is etched in
the gas phase, physically by ion bombardment, chemically through a reactive surface
species, or through some combination of physical and chemical mechanisms *.

Drawbacks of physical dry etching include slow etching rates, low selectivity (due to ions

attack on all materials), and a ‘trench effect’ caused by reflected ions [8]. The chemical
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dry etching technique is an isotropic technique that exhibits behaviour quite similar to

84, 95

its wet etching equivalents . An important physical-chemical dry etching technique

called reactive ion etching (RIE) combines low pressures, radio frequency heating, and

the bombardment of ions - ®*

. This technique is quite important to the micro-machining
industry, and variations of it are capable of achieving relatively high aspect ratios (e.g.
deep reactive ion etching, DRIE). Other physical-chemical techniques include anodic
plasma etching (APE), magnetically enhanced reactive ion etching (MERIE), triode
reactive ion etching (TRIE), and transmission coupled plasma etching (TCPE). In general
dry etching techniques yield finer patterns than wet etching, and provide the advantage

of greater safety - as there is no need for corrosive acids or bases *°.
Soft Techniques — Photolithography

Photolithography is an important micro-fabrication technique which involves the
projection of light (typically between 300-450 nm for optical lithography) through a
mask which is designed to protect specific parts of a photosensitive resist that has been
deposited onto a substrate ”’. The masks themselves are generally constructed from
quartz with deposits of chrome to form the protected pattern translated onto the
photosensitive resist. A polymer resin is deposited onto the substrate (e.g. glass, silicon,
CaF,) where it is then spin-coated (centrifugally spread and evaporated simultaneously).
The thickness of the polymer film is proportional to the initial concentration of the
polymer in solution and the viscosity of that solution, while it is inversely proportional to
the angular rotational velocity ”’. The polymer cannot be deposited on too thickly, due
to loss in precision of the patterns etched into it through the mask — thus thinner
deposits are often used. After spin-coating, the remaining film is heated to ensure the
removal of remaining solvent from the solution, which may otherwise lead to cracks
upon drying. The final step is referred to as exposure, where the substrate with polymer
are aligned and exposed to a luminous flux (e.g. mercury vapour lamp) which starts the
physic-chemical reactions that attenuate the solubility in certain solvents ”’. Positive
resists refer to polymers whose lighted zones become soluble in a certain solvent, while

the unexposed — or dark zones remain insoluble and vice versa for negative resists.
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2.2.1.4. FTIR for Detection in Micro-fluidic Systems

It has been put forward by some that FPA-FTIR spectroscopy is the most powerful
spatial/chemical analysis tool of its kind, and that the inherently high throughput nature
of the technique would make it tremendously adaptable to micro-fluidic systems *. The
coupling of FTIR for flow injection analysis (FIA) and liquid chromatography (LC)
applications has been described as an established yet relatively unexploited technique®”
%. the principles of FIA/LC-FTIR could be enhanced further with micro-fluidic sampling
accessories and FTIRI detection. It has also been observed that with more and more
fluidic functions becoming available in microchip format, the necessity for high
performance detection has never been more relevant *°. FTIRI is well suited to micro-
fluidic detection for a variety of reasons: 1) the ability to rapidly collect spatially resolved
chemical images, 2) the multiplexing capabilities of FTIR allow for rapid multi-
component qualitative/quantitative analysis, 3) the micro-fluidic platform can be
fabricated directly onto an IR transparent material, and 4) the scale of micro-fluidic
systems (path-length) are often well suited for mid-IR transmission measurements while
ATR accessories allow for a range of other possible arrangements. The combination of
the two technologies is also advantageous for sampling purposes in that there exists the
potential for enhanced repeatability and accuracy, there is containment of chemicals
within a closed system (important for toxic/volatile analytes), there is minimized reagent
consumption and waste generation, and the whole system is highly adaptable to
automated high-throughput analysis.

The number of papers using FTIR for high-throughput analysis is growing, as the
performance capabilities of FPA detectors improve — now in their third generation of
development (section 2.1.4.2). Snivelly et al developed a high-throughput parallel
analysis platform using a Nicolet Magna 860 FTIR spectrometer equipped with wide
band-pass filter, KBr diffuser, and a 64 x 64 MCT FPA, combined with a novel gas-phase
sampling accessory '®°. The accessory, which arranged a series of stainless steel channels
each with IR transparent windows (n=16) arranged in an array fashion, enabled the rapid
parallel identification of CO oxidation over a series of commercial catalysts, while also
allowing the quantification of reactivity and selectivity of these catalysts for the

substrate. Kazarian et al have produced a number of applications utilizing an ATR-FPA-

46



% 101195 "1y their paper on chemical imaging of micro-fluidic flows,

FTIR spectrometer
Chan et al '® used a Varian 7000 FTIR spectrometer with a 64 x 64 FPA and a single
bounce inverted ZnSe ATR sampling accessory to monitor the H/D exchange of H,0/D,0
mixtures. Their sampling accessory involved a PDMS micro-channel self adhered to the
ATR crystal, and fastened by screwing a plate of polymethyl methacrylate on to the top
side of the structure. This system allowed for the separate introduction of two fluids
which united at a 90° angle, then the 1000 um wide and 50 um deep channels snaked
over the field of view for detection. From this system it was concluded that the in situ
monitoring of chemical reactions and fluid mixing is possible.

Other work by Kazarian et al using the same instrumental system, explored different
micro-fluidic structures using the same adhesion technique °®: 1) a PDMS multi-well grid
to monitor up to 156 samples simultaneously (figure 2.10c), and 2) a 4 parallel multi-
channel system for monitoring the dissolution of different polymer formulations (figure

| 2% and also Kirkwood et al ' for

2.10d). Another approach by Kazarian et a
applications in pharmaceutical and bacteria identification purposes respectively, was to
employ a micro-drop deposition technique (figures 2.10a and 2.10c respectively). In this
approach the samples are uniformly ‘stamped’ onto an IR transparent substrate in an
array format enabling the simultaneous measurement of many micro-drops of sample.
Theoretically this technique would allow for the measurement of as many samples as

there are detector elements of the FPA, e.g. 1024 samples for a 32 x 32 FPA; although

practical considerations make this a purely boastful claim.
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Figure 2.10. Examples of HT-FPA-FTIRI studies: a) micro-droplets of poly(ethylene
glycol)/ibuprofen formulations '%; b) micro-depositions of bacteria culture'®’; c) PDMS
multi-well demountable grid *®; d) 4 micro-fluidic channels for monitoring of polymer
dissolution *°.
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The technique of time resolved (TR) spectroscopy has seen some success of applying
FTIR spectroscopic techniques to measuring micro-fluidic systems. TR-FTIR has proven to
be a useful tool for obtaining structural information on the course of dynamic chemical
processes — for example, enabling insight into reaction kinetics, ligand interactions,

%8 There are a number of papers

protein conformational changes, complex formation
utilizing FTIR microscopic detection of micro-channel systems designed to control
chemical interactions. Hinsman et al '® conducted work on a a fast diffusion based
mixer (SU-8 polymer on CaF,, ribbed mixer design) for the study of chemical reactions
(three models: acid-base neutralization, addition of sulphite to formaldehyde, basic
hydrolysis of methyl monochloroacetate). The apparatus proved to be very resistant to
mechanical forces and chemical solvents, while their stopped flow liquid handling
system was able to achieve highly reproducible. Kakuta et al *'° used a continuous flow
and stopped flow TR-FTIR apparatus to achieve a time resolution of 0.5 — 10s in the
observation of conformational changes in the protein ubiquitin, results of which were in
good agreement with NMR spectroscopic measurements of the same system. The
micro-machined mixer was off-chip in this study; solutions were first introduced into the
diffusion based mixer then travelled onto the transmission cell for detection. This same

"1 to perform measurements of aqueous

approach was used by Masuch and Moss
solutions of biological macromolecules (cytochrome c), where they provide a good
overview of the optimization of experimental parameters. The time resolution of

| "to 6-15 ms (characterized by the

Masuch et al work was improved by Tang et a
reduction rate of 2, 6-Dichlorophenolindophenol), using a tuneable single frequency
diode laser with MCT detector. This higher time resolution apparatus was also applied to
the analysis of cytochrome c.

Kuan et al developed one of the first continuous flow systems using FTIRI for
detection, using the addition of sodium sulphite to formaldehyde as a model system.
Using the technique of multivariate curve resolution-alternating least squares to model
the evolving chemical system they found that achievable time resolution was within the
sub-millilitre range, but commented that the SNR achievable with the FPA hindered its

% It was also emphasized that the time

application to more demanding systems
resolution interpretation must consider the mixing time/mechanism, and the laminar

flow conditions of the micro-fluidic system. The ability to simultaneously monitor
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multiple fluid elements within the stream, together with the mixer being incorporated
onto the sampling cell allows for the minimization of sample consumption with a

maximum amount of data retrieval *®.
2.2.1.5. Other Micro-fluidic Detection Techniques

Developments in micro-fluidic fabrication techniques in recent years have opened up
a range of application possibilities, thus the demand for highly sensitive detection
mechanisms to extract information from these systems has never been greater. It has
been observed that the success of micro-fluidics is dependent on the abilities of
researchers and engineers to develop detection processes various reviews cover a

number of possibilities for detection of micro-fluidic systems °* 1***%

. Optical detection
methods are by far the most commonly found in micro-fluidic analytical devices, while
electrochemical methods are becoming increasingly important, and mass analyzers
comprise the third most significant level of attention in research. Mass analyzers in
particular are significant in that fast and highly parallel separations in tandem with mass
analyzers enable a very high-throughput potential * *°. Optical methods are attractive
due to their availability and the ease of coupling the micro-fluidic system with the
detector type, while electrochemical methods are favoured for their good limits of
detection for analytes of biological interest, and adaptability to integration within a

13 Other possibilities include:

microchip
e Fluorescence detection; very sensitive, but requires labelling for non-fluorescent
analytes '®.
e Raman spectroscopy; label free, not as sensitive as fluorescence '®.
e Surface Enhanced Raman Scattering Detection (SERS); real-time, label free, very
sensitive ',

e Thermal lens spectrometry (TLS); extreme sensitivity, very sensitive alignment *.

e NMR planar micro-coils; readily coupled to microstructures, modest sensitivity ***.

SERS and TLS are among the most popular ‘up and comers’ in micro-fluidic detection
due to their universal response and no requirement for the chemical treatment of

11
samples .
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2.3. Conclusions

FTIR spectroscopy is an information rich spectroscopic technique, often described as
a multiplexing approach due to its ability to simultaneously obtain measurements of all
resolution elements. When combined with chemometric calibration techniques this
wealth of spectral information can be exploited to extract qualitative and quantitative
information of a sample. The application of FTIR spectroscopy to process analysis in
industry has found good levels of success, with numerous dedicated analyzers available
on the market for high-throughput analysis purposes. Therefore there is a present
market for high-throughput infrared spectroscopic techniques, and one might assume
that this market is looking to grow further.

The introduction of FPA-FTIRI has evolved FTIR spectroscopy into another level. The
technique maintains all of the advantages present with conventional FTIR spectroscopy
with the added benefit of spatially resolved chemical information of a sample. This level
of information may exploited in a number of ways, 2D spatial characterizations of
samples, using the high levels of data redundancy to ensure the selection of quality data
from ‘homogenous’ samples, or using the spatial resolution abilities of the multiple
detector elements composing the FPA to make parallel measurements. This last
possibility, which has just begun to be realized, has exciting implications to the field of
high-throughput vibrational spectroscopy.

The problems with the early developments of FPA detectors have been improved
upon with the advent of 2™ and 3™ generation models; however there still remains the
question of detector element fidelity, which relates to the relative spectral
quality/consistency of the IR picture elements. When looking to applications such as
high-throughput micro-fluidic flow analysis and time resolved analysis, the relative
response sensitivity of individual detector elements is put to the test. If individual pixels
are biased in any way relative to one another, it will limit the ability to make inter-pixel
measurements within an image. It is in the context of the high-throughput flow analysis
system that the performance characteristics of the FPA-FTIR on hand with our group will
be put to the test. Pixel element noise performance, consistency of response, linearity
will be evaluated in the short and long term, and in order to justify the added expense of
the FPA detector the efficiency of such a system will be compared to a simpler approach

to illustrate the potential gains in throughput.
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Chapter 3: FPA-FTIR Spectrometer Evaluation

3.1. Introduction

FPA-FTIRI involves the collection of spatially resolved chemical images of samples,
allowing for full spectral measurements from each of the pixels of the resultant image.
Typical formats of the FPA detectors used in FTIRI spectrometers are measured as row x
column (r x c) range from 32x32 to 256x256, while much greater sizes are available for
astronomic applications (e.g. 2056 x 2056). In the case of the 32 x 32 FPA, as has been
utilized in this study, there are then 1024 individual spatial points of data within a single
image. From each point, depending on the spectral resolution parameters of the
collected image, there exists a full IR spectrum worth of data (e.g. 387.5 points for 8cm™
resolution). A number of studies have focused on the imaging of heterogeneous samples

on the micron scale, ranging from the characterization of imitation cheeses >

116

identification of trace materials on latent fingerprints ~, selection of homogenous

regions of bacterial depositions ', or the modelling of dispersions of pharmaceutical

7 This last application begins to bleed over into

formulations in aqueous solutions
another type of important imaging application, TR-FTIRI spectroscopy !, whereby the
individual response and sensitivity of detector elements can become quite important for
interpretation of dynamic chemical processes taking place in the field of view of the FPA
detector. A limited number of papers are found tying TR spectroscopy with an imaging
detector, while those that have found that the SNR capabilities of such detectors limited
the success for interpretation of complex spectra '%.

The question of the analytical performance characteristics of FPA detectors, while
presumed to be poor relative compared to conventional IR detection techniques, have
not been fully addressed. A number of papers throughout the 1990’s conducted
performance characterization studies of FPA detectors, largely in the context of thermal
imaging applications and the refurbishing of patterned noise features % 33> ¥*_of
particular importance is the issue of FPA detector non-uniformity, where due to a
variety of reasons (see section 2.1.3.2), there will appear a characteristic pattern of
response. There are a number of approaches (NUC) for the minimization of these spatial

features, however a trace of spatial noise is always observed to persist. Snivelly et al

were one of the few to make interpretations of an FPA-FTIR’s detector element
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response to a chemically homogenous sample (benzonitrile — CN stretching peak at 2229
cm™) where it was observed that, depending on the level of scan co-addition, the CV for
the peak across the FPA could range from approximately 13.75% - 17.5%, for a post NUC
FPA reading. Recent work within the McGill IR group * has found that this level of
variance is consistent for several FPA detectors (3), and the trend translates into the
analytical performance for the detector elements as a whole. Despite the noise
response patterns and the low SNR performance of these FPA detectors, they were still
able to obtain linear calibrations with milli-absorbance accuracy, where the
performance improved through averaging and the use of noise cut-offs to eliminate
noisier pixels *°.

The current study proposes an in depth investigation into the response
characteristics of a continuous scan FPA-FTIRI system, in the context of making chemical
measurements. Three basic model systems will be considered; 1) the open-beam
response characteristics, 2) the repeated analysis of a stationary polystyrene calibration
standard, and 3) the analysis of a set of aqueous calibration standards. From the open-
beam data a thorough description of the noise characteristics of the FPA as a whole and
the individual detector elements will be provided, allowing for optimization of scanning
conditions for further data collection. The polystyrene study will provide information on
the stability of measurements in the case of back to back scans, as well as day to day
analysis. Also, as previous work has demonstrated that certain peaks will tend to
provide less variant measurement than others *°, an investigation into the stability of
different peaks will performed as validation of this phenomenon. The third case of the
aqueous standards of sodium azide will provide additional validation to the polystyrene
work, and also allow for optimization of collection of samples from transmission flow
cells. For each circumstance above, a full characterization will be provided as well as the
establishment of appropriate ‘pixel filtration’ procedures to select for the most relevant

data for quantitative analysis purposes.
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3.2. Experimental

3.2.1. Materials
A freshly purchased polystyrene calibration film (ICL, PhEur 2.2.24) was used for the

collection of polystyrene spectra. Sodium azide (NaN;) from Aldrich Chemical
Company was used to gravimetrically prepare a set of 10 aqueous standards,
ranging from approximately 0.0500 — 0.2000 M. Each standard was prepared with
an analytical balance, directly weighing samples into a 100 mL volumetric flask, and
were then diluted with 0.45 um filtered and distilled water, sealed, and thoroughly
mixed. Samples were stored at room temperature in dark amber glass wear, with

Teflon screw caps, for no longer than 5 days.

3.2.2.Instrumentation
The spectrometer used throughout the work was a Varian FTS 3000MX Excalibur

FTIR spectrometer, fitted with a Varian 600 UMA microscope and Lancer FPA
camera (32 x 32) - an MCT photovoltaic hybrid array detector. The optics of the
microscope include a 4X and 15X objective, the 15X being the only FPA operative
objective collection. The achievable spatial resolution of an individual detector
element after projection of the sample through the microscope optics equated to
5.6 um?; this measurement could be established through the inset microscope scale

to ensure sample homogeneity in the FPA field of view.

3.2.3.Sample Acquisition
Data were acquired with various scanning conditions, the results of which are to be

utilized for further analysis decisions. Ranges of spectral resolution were from 4-16
cm™, while scan co-additions ranged from a single scan to 1024 scan co-additions.
The integration energy at the FPA detector was also adjusted for optimization
purposes, although based on preliminary work it was often adjusted to an open
beam integration energy value of ~9000 counts, see results for further validation of
this value. The procedure for focusing the microscope optics was as follows: 1)
place object firmly into position on stage and obtain optical focus using the visual
objectives (as opposed to the in-microscope camera as there were almost always
variations between the two focuses), 2) remove the sample from the stage and
enter into the FPA non-uniformity correction Lancer window, 3) adjust the sub-

stage condenser so that the spread of data points viewed in the Lancer calibration
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screen formed the highest ‘rested’ maxima with as even a possible distribution of
the source energy over the FPA prior NUC, 4) establish the integration time so that
integration energy sits at the decided value (again, typically 9000, unless otherwise
specified), 5) perform NUC correction with open-stage, 6) replace sample and
ensure that optical focus is still optimal, while also ensuring that no visible defects
within the sample are present in the field of view. A slight alteration was made for
the transmission cell/NaN; data collection; the focus was obtained on a bubble
within the sampling transmission cell which was subsequently flushed with
background solvent (water) within the microscope field of view, whereby - contrary
to the open-stage and polystyrene work - the sub-stage adjustment, integration
energy adjustments, and NUC were performed directly through the solvent filled
transmission cell — see results for validation of this procedure. The loading of the
transmission cell was done by manual injection using sterile syringes and thin gauge
tubing, with stop-cock valves on the input and output sides of the transmission cell
to ensure that a stopped flow was quickly obtained for scanning. Temperature
control was obtained using two cartridge heaters and thermocouple linked to an
Omega (CSi32 Series) temperature controller, whereby stabilization to within +/-

0.1 C was quickly and easily achieved for consistent fluid measurements.

3.2.4.Data Processing & Analysis
All FTIRI data was collected via Resolutions Pro 4.0 with the dat. files (image files)

subsequently exported to the in house software package ImageProcessor for
further processing and imaging purposes. The color mapping of the software was
set to build images on a 16 bit scale (dark red = high; dark blue = low), allowing for
quick visual interpretation of results. This software also enabled the manipulation
and exportation of data from desired coordinates of the image(s), and facilitated
the viewing of the spatial impacts of filtering, derivative spectra, baseline
correction and other standard spectral transformations. Exported FPA response
was categorized as pixel ID paired with a measurement (decided and processed in
the ImageProcessor suite), which were then easily manipulated in spreadsheet
formats. Raw and processed pixel responses were exported to either Excel 2007 or
Origins 7.0 for further statistical analysis and/or the creation of complementary

graphics.
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3.3 Results & Discussion
3.3.1. FPA-FTIR spectrometer noise performance characterization

As a first step in describing the behaviour of the FPA camera, an open beam response
characterization was conducted. Based on preliminary work it has been observed that
the integration energy of the camera, that is to say the amount of charge built up at the
charge capacitors of the detector element read-outs, should be set to a level of
approximately 9000 counts. This energy level is always approximated because the
Lancer calibration window only allows for course adjustment of this parameter through
manipulation of the integration time at the FPA, which in turn is a parameter that may
be controlled precisely. Additionally, it is known from that the level of co-additions of
continuous scan FTIR spectrometers will generate a square root improvement in SNR
performance, while preliminary work in our labs, as well as other groups * has shown
the impact of this to be slightly diminished due to the complexities of the FPA detector.
The adjustment of integration time/energy and the level of scan co-addition was
investigated further in order to model correlations between the levels of FPA RMS noise

on two levels: 1) as an overall FPA noise response value (figure 3.1, below), and 2) as a

detector element distribution profile (figure 3.3, page 58).
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Figure 3.1. The average FPA RMS noise value from the region between 1800-1700 cm™,
8cm™ resolution, against co-addition and integration energy.
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Figure 3.2. Left graph, power function relationship between RMS noise and number of
scan co-additions at constant integration energy (8500); right graph, power function
relationship between RMS noise and integration energy for two levels of scan co-
addition.

The usefulness of the data from figure 3.2 is limited in that these values represent
only the average response of all detector elements within the FPA. Nonetheless this
information does provide a sense of the achievable noise performance for the FPA as a
whole. Looking at the left graph in figure 3.2 it is observed that there is the expected
trend for a photovoltaic detector, with a roughly square root reduction in RMS noise as
a function of increasing scan co-addition. In terms of integration energy the RMS noise
again decreases as a power function (right graph of figure 3.2), although the gains of this
are depreciated significantly at higher levels of scan co-addition. It can be said that as a
reasonable compromise between scanning time and noise level, the optimized noise
performance of the FPA detector as a whole is RMS = 3.0 x 10” for the defined region
(1700-1800 cm™) which is characteristic of the spectral profile for this MCT-FPA detector
(4000-950 cm™). This relates to a detection limit of the detector array as a whole in the
magnitude of milli-absorbance measurements, 1 and 2 orders of magnitude larger than

that of DTGS and MCT single-point detectors, respectively.

The information in figure 3.3 begins to provide more exhaustive insight into what
really lies behind the average noise response reported above. The plot shows both the
standard deviation (SD), and the coefficient of variance (CV) for all of the detector
element noise responses within the FPA. This is an open beam response therefore only
the source, instrument optics, and the detector array could contribute to these levels of
variation. Assuming that any variations from the source are negligible, that the

variations from the instrument optics are constant, and that an NUC has been
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performed on the detector array prior to image collection, the magnitude and spatial
profile of the RMS noise response distribution must be attributed to the detector

elements comprising the FPA detector.
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Figure 3.3. Impact of scan co-additions and integration energy on pixel RMS SD (left
graph) and RMS CV (right graph). RMS SD calculated from 1024 pixels of image, RMS CV
= (RMS SD/RMS mean) x 100. Note the inversed integration energy scale between the
two graphs (for clarity).

Looking to the SD graph in figure 3.3 it is seen that increases in each parameter have
a positive effect on the distribution of pixel RMS noise, although these improvements
become less apparent at higher levels of integration energy and higher scan co-
additions. This then supports the utilization of higher integration energies (>7000
counts), as with the RMS noise distribution there is essentially a plateau for scan co-
additions greater than 64. However the data in figure 3.1 still holds, i.e. the mean pixel
RMS noise level continues to decrease with increasing levels of scan co-addition, and
this is reflected in the CV graph in figure 3.3. The CV increases in the 512 co-addition
category due to the SD remaining relatively constant, but the mean RMS value
decreases. Therefore the scanning conditions in terms of distribution of noise response
are optimized when greater than 64 co-additions and integration energy of ~7000
counts are employed. Based on this, figure 3.4 illustrates this distribution as a 2D

representation and histogram.
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Figure 3.4. At left, 2D plot (pixel row x column of FPA) of RMS noise for the predefined
region (1700-1800 cm™); at right, histogram representation of RMS noise distribution
over the FPA.

Looking at the 2D plot of the pixel response found in figure 3.4, it is immediately
apparent that a non random spatial noise pattern is persisting after the NUC performed
on the FPA prior to scanning. This pattern of higher noise pixels is so regular that it can
be attributed to every fourth row (4, 8, 12 ... 32) and less regularly within the even
numbered columns — a pattern that matches previous observations with the same

¥ This pattern has been

instrument under a wide range of scanning conditions
attributed to the fabrication process *°, and appears to be more pronounced in the later
generation FPA’s compared to the older generation within our own lab. This patterned
noise is evident as the long right tail of the histogram, and consistently amounts to
roughly 20% of the total detector array, with some rows/columns appearing more
affected than others (e.g. row 4, column 18). This can be measured in a variety of ways,

but an adaptation of the 2D image in figure 3.4 allows for the visualization of the

removal of pixels based on RMS noise cut-off (figure 3.5).
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Figure 3.5. 2D plot illustrating the impact of an RMS noise cut-off for the removal of high
noise detector elements from the overall response.
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Figure 3.5 demonstrates how a noise filter cut-off can easily be applied to an image
for the removal of the detector elements based on the noise features. The filter here
has been designed to remove the spatial noise — the darkened pixels (squares) have
been removed from the overall image, related in the adjacent statistics and also in the
unseen histogram where the long right skew has been completely eliminated. The
remaining pixels (80% of the FPA) exhibit an improvement in their descriptive statistics:
a slightly depressed average, a significantly depressed SD — relating to a significantly
lower CV value. This technique may be easily employed as a pre-filter in order to
improve the overall sensitivity of the FPA, and to enhance the overall uniformity of the
selected pixel population. It is noted that the top 10% of pixels have a mean RMS noise
value of 0.00028 +/- 0.00002 (1SD), yielding a CV of 8.4% (see table 3.1). Regardless if
20% of pixels are removed, if looking to microfluidic applications a large number of
detector points will still exist along the fluid path — with the ability to pick from the

population of pixels to optimize the spectral information obtained.
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Figure 3.6. RMS SD per pixel, the result of 20 repeated scans, 64 co-additions, and 8 cm™

resolution. The value at each pixel is the SD for that pixel from 20 repetitions of the
noise measurement. RMS noise measured from the region 2300-2200 cm™.

A comment on the consistency of noise response among the individual detector
elements of the FPA, where there is a range of consistency when looking to individual
pixels for a series of repeated measurements. It appears (see figure 3.6) that the same
spatial pattern seen with ‘noisy’ pixels is seen with ‘inconsistent’ pixels, i.e. not only do

these pixels posses higher noise response, they are also the most erratic of the FPA as
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well. Therefore, a filter based on RMS noise cut-off could eliminate the inconsistent
pixels (in terms of noise response) to the desired level — within limits. The average level
of stability as measured from the data in figure 3.6 is found to be a mean SD in noise of
2.24 x 10™ with a CV of 50.6%. After filtering 20% (with highest SD removed), the mean
SD is 1.80 x 10™ with a CV of 20.4%. A similar pattern is observed as with the image

filtering based on raw RMS noise.

3.3.1.1. Pixel Selection and Co-addition Strategies

A simple means of selecting/removing pixels from within the FPA image, based on
their relative noise properties, has been demonstrated. Previous work in our own lab
has demonstrated that gains in noise performance can be obtained by co-adding pixels
within the array — similar to using scan co-additions for noise improvements. It was
observed that the gains from the co-adding of pixels, which resulted in a power function
improvement, were significantly diminished at levels of co-addition greater than 64
pixels. In this scheme the pixels were selected at random from over the FPA until no
pixels were left - a valid procedure when looking for the selection of best quality data
from a heterogeneous image encompassing the entire FPA field of view. However, it
leaves the question of how co-adding specific areas of the FPA can improve
performance, particularly when it has been observed that definite features of spatial

noise exist within the FPA image.

RMS Noise Average Per:
FPA Rawtotal Filterl [90%) Filter? {80%) Filter3{50%) Filterd {10%]}
Average 0.00051 0.00044 0.00041 0.00035 0.00028
Std. Deviation 0.00027 0.00013 0.00009 0.00005 0.00002
Columns Column 2 Columns 4 Columns 8 Columns 16 columns
Average 0.00042 0.00042 0.00041 0.00041 0.00041
Std. Deviation 0.00004 0.00003 0.00002 0.00002 0.00000
Rows Row 2 Rows 4 Rows 8 Rows 16 Rows
Average 0.00041 0.00041 0.00041 0.00041 0.00041

Std. Deviation 0.00003 0.00002 0.00002 0.00002 0.00001

Table 3.1. FPA portion of table illustrates the gains in the pixel distributions noise
performance with the elimination of high noise pixels; filter value indicates portion of
the FPA which has been used to generate average/SD. Columns and rows portion of
table illustrates how pixel co-addition of spatially adjacent pixels impacts the overall
noise performance. The row/column data have had filter 2 run before the co-addition of
remaining pixels, therefore not each column/row had equivalent pixel volume.
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Using the same example of the optimized open-beam response image from the
previous section (RMS noise from the spectral region 1800-1700 cm™, 4cm™ resolution,
~9000 integration energy, and removal of the most severe spatial noise features), an
analysis of continuously increased levels of pixel co-addition is investigated. The RMS
noise data in table 3.1 illustrates the impact of further noise refinement, or noise
filtering (FPA section), and also the impact of co-adding spatially adjacent pixels. The co-
adding of pixels has been carried out in the orientation of first columns of pixels, then
rows — e.g. averaging a single row, then averaging two adjacent rows, etc. Whether the
co-adding is conducted in the column or row sense, the end result is statistically
equivalent. The standard deviations for the columns and rows differ from those in the
FPA section of table 3.1, in that they represent the standard deviation between each of
the columns — where the standard deviation for the FPA section represents the variation
between individual pixels making up the average. This shows that an excellent degree of
stability in noise terms can be afforded by careful co-addition of spatially adjacent pixels
within the FPA. The downfall of the pixel co-addition approach is the loss of spatial
resolution of the already diffraction limited IR microscope, thus the benefits are highly
application specific — e.g. co-adding pixels from a highly heterogenous sample for noise
improvement purposes would be inappropriate, and conversely laterally co-adding

pixels with in a homogenous fluid stream can be highly beneficial.
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Figure 3.7. RMS noise (1800-1700 cm™) average per FPA column. Data is averaged after
the removal the highest noise pixels (filter 2 as in table 3.1), therefore each column does
not have the equivalent number of pixels.
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Figure 3.7 illustrates how each column of the FPA falls within a 95% confidence
interval of the global average. This distribution may be further refined with higher
degree of noise pre-filtering, or with increased levels of pixel co-addition. It is also
interesting to notice the periodic pattern of noise moving across the FPA in column
increments — almost consistently a low, then a steady rise over 1-2 columns, then a
rapid drop and plateau minimum for 1-2 columns, and again back to a maximum. The
distribution of the noise when regarded per column, has roughly the same mean value
of noise compared to that of the entire (filtered) FPA, although the distribution over the
FPA is greater — this distribution has a CV < 5% in most cases when comparing the noise
between divisions of the FPA (see table 3.1), while it is again emphasized that the
remaining spatial noise features will certainly bias these distributions. As a whole, with
some minor selection, the behaviour of noise between detector elements is relatively
stable, with a consistent distribution that may be enhanced to a small extent by pixel co-

addition.

3.3.1.2. Atmospheric Interferences: FPA-FTIR Purge Issues

As an extra measure to guarantee the quality of the spectra collected from the FPA-
FTIRI system, the dry air purge system was assessed. As mentioned in section 2.1.5.4,
atmospheric contributions can present a significant source of interference, and can be
thought of as noise. However, as opposed to detector limited noise features the
atmospheric contributions of CO, and water vapour can be controlled through
instrument/experimental design, and shouldn’t form a significant disturbance to any
imaging result. Figure 3.8 shows how the instrument picks up levels of atmospheric
interference when the system is left unsealed — more specifically the microscope stage
has been isolated as a major source of atmospheric interference. By isolating the stage
and letting the purge take its course it was possible to reach detector limited
performance in the atmospheric regions of the IR spectrum. The ability to do so will be
essential when looking to perform sensitive analysis of biological samples, for example
protein measurements based on the Amide | and Amide Il peaks would be severely
compromised if the stage is left unsealed with any amount of disturbance present

during IR measurements. This procedure ensures that a stable system is achieved,
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whereby biological or other samples with spectral features in the atmospheric windows

are uninhibited, i.e. maximization of sensitivity for these measurements.
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Figure 3.8. Plot of purge conditions versus RMS noise measure from the water vapour
region of the IR spectrum — more efficient purge equals lower ‘noise’ measure. OS =
open microscope stage; P = purge; dist. /undist. = disturbed/undisturbed stage; 2day* =
application of initial disturbance to sealed stage.

3.3.2 Polystyrene Film Analysis

The first step of the FPA-FTIR response characterization was to take a close look at
the noise features of the FPA detector by sampling the open-beam under a variety of
conditions. The next phase was to introduce a controlled standard to generate a
chemical response — a polystyrene calibration film was selected for this purpose. The
polymer film was fixed to the microscope stage in such a way that the same point of the
film would be sampled per detector element for a series of scans.

The polystyrene, when under magnification, is visually granular (see figure 3.9). This
made the fixing of the sample to the stage all the more important — though when
measuring the magnitude of these features under the microscope it is questionable
whether the spatial resolution capabilities of the IR microscope would detect these

differences, i.e. pixel crosstalk will smooth out most subtle features.
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Figure 3.9. Optical and IR image of polystyrene. IR sample portion of optical image is

highlighted.

The IR image in figure 3.9 is modelled on

a two point baseline correction (1977.0-

1919.2 cm™) and a peak height measurement at 1942.3 cm™, and was selected based on

its relatively isolated position and an optimal absorbance range (~0.3). Looking in more

detail at the image using this same peak response, the statistical distribution of the pixel

response is presented in figure 3.10.

Pixel Count
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Mean  0.2679

3.32

Figure 3.10. Distribution of detector element response at 1942.3 cm™ (after baseline
correction). Image has been refined (darkened pixels) by removal of values outside +/-
2SD, whereby the histogram represents the remaining pixel peak height distribution.
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The refined image and histogram in figure 3.10 show that although the sampling area
of the polystyrene is very small (180 x 180 um) there is still an observable trend in the
intensity of the peak height — which could be due to small differences in sample
thickness, e.g. the right middle portion of the sample appears to be slightly thinner,
while the middle top portion is slightly thicker compared to the bulk of the sampling
area. Although these differences are rather minute, it is still important to utilize the
pixels to the more homogenous portion of the sample, and after doing so the CV
amounts to roughly 3.3% around the mean (0.2679 +/- 0.0088). Looking back to the
noise analysis, it was observed that a milli-absorbance level of noise performance was
achievable, thus it appears that an additional effect is taking place increasing the level of
variation beyond what one might expect solely on the noise limiting behaviour of the
pixels. A similar situation is observed for the analysis of peak area between 1975.1-
1915.3 cm™ using the same baseline correction as peak height measurements, and the
refined pixel information a CV value of 4.6% (7.0389 +/- 0.3222) is obtained. Likewise for
the first derivative of the same peak features the CV value is 2.38%, and for the second
derivative the CV is 3.57% over the refined area of the FPA. Thus it appears that
performing a 1% derivative transformation of the detector element spectral data
compensates for some of the variation not compensated for by a baseline correction,
and provides the tightest distribution of response of the FPA as a post-treatment of the
data (a gain of 1% in terms of CV value). Another aspect of figure 3.10 is that based on
the peak height absorbance of the pattern of response is no longer as obvious; however
when a ‘quiet’ region of the PS spectrum is modelled for RMS noise the same pattern (as
in figure 3.5) persists. Additionally when looking to other PS peaks in a similar manner
(figure 3.11), with a few exceptions (out of range peaks, CO, stretch, increased trend in
fingerprint region) the level of variance appears relatively consistent throughout the

spectrum.
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Figure 3.11. Variance spectrum from 1st derivative spectra for 1024 pixels of an

image of PS.

Another aspect of spectral response that was observed using the PS standard was to
guantify the consistency of detector element response in terms of 1) back to back scan
response, and 2) day to day scan response. For simplicity the peak at 1942.0 cm™ is
characterized using the same baseline correction and first derivative data processing
protocols used above. The sampling for the back to back study consisted of a assessing
each pixels response for a set of 20 scans using optimized scanning conditions (256 co-
additions, 9000 integration energy) and a spectral resolution of 4 cm™. These statistics
and the resulting 2D image of %CV per pixel, for these 20 measurements are presented
in figure 3.12, both for baseline corrected measurements and 1% derivative

measurements.
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Figure 3.12. 2D and histogram depictions of individual pixel consistency of peak height
response, for peak at 1942.3 cm™ as base line corrected measurement, and a differential
of the 1% derivative measurement (1936.5 — 1948.1 cm™). Each pixels value is calculated
as the CV from 20 measurements.

Immediately it is very apparent that the noise features of the pixels seen in section
3.1 have translated to the pixel consistency of response, which makes perfect sense as
pixels with lower SNR should relate to less stable measurements. Between the two
methods of spectral processing the same pattern of consistency exists, however it
appears that base line correction results in more stable measurements on a pixel to
pixel basis. This is contrary to the observation made earlier whereby the response
distribution within a single image was minimized in the case of a 1% derivative
transformation compared to the base line correction data. These two characteristics a)
magnitude of absorbance response distribution within a single image, and b) magnitude
of pixel consistency distribution from a series of images, will each be of importance
when performing quantitative measurements — and because each post-treatment
technique can easily be applied, the benefits of each can be exploited.

The level of absorbance is important to the consistency of response, as has been

suggested in figure 3.11 which describes the variance between pixels for each spectral
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feature, with out-of-range absorbance resulting in very erratic response. This is of
course a question of magnitude, and relates to the dynamic range - an important
feature of any detector to quantify. As the dynamic range of MCT type detectors is
notoriously limited (typically 0.2-1.0 absorbance units) there are no high expectations
for the MCT detector elements of the FPA in this regard. Using the same technique
applied in figure 3.12 to determine the distribution of pixel CV for a peak measurement
an attempt to model the dynamic range using the PS standard was conducted, the result

shown in figure 3.14.
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Figure 3.14. Baseline corrected peak measurements from peaks covering a wide range
of absorbance. Peaks are selected from spectral regions of relative stability, and
modelled for 20 repetitions; statistics at left describe the average absorbance
distribution over the FPA for the various peaks.

The trend of CV distribution among the pixels for the range of absorbance
measurements presented in figure 3.14, illustrates well the dynamic range of the FPA
detector elements. It is apparent from the table of statistics, which are generated as the
average of the 20 measurements for the pixel distribution, that peak heights above 0.8
absorbance and below 0.2 absorbance result in larger distributions of pixel response,
while the tightest distribution is found around 0.5 absorbance. The graph at the right of
figure 3.14 demonstrates that for a given absorbance value the proportion of pixels with
a CV value below a certain level will vary greatly depending on the level of that
absorbance, e.g. the proportion of pixels with a CV < 2% at 0.5 absorbance is 95%, while

at 2.0 and 0.04 absorbance only 5% of pixels perform this well. The assumption here,
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which is backed by the data from figure 3.11, is that the level of variation between
different regions of the PS spectra is consistent, and that the changes in the pixel
stability are strictly due to the level of absorbance. If this is the case, then the dynamic
range of the average pixel can be set to roughly 0.2-0.8, as expected of an MCT detector.
However, there always exist a number of pixels that remain stable for a higher range of
absorbance, thus depending on their spatial orientation and the number data points
required filters could be established to select for a desired pixel population, e.g. number
of pixels with %CV less than 1% (within 0.3-0.7 abs.) equates to roughly 80% of pixels.
Perhaps not so coincidentally this amount of pixels (80%) is what remains after removal
of the worst spatial noise features; while this fact together with the same spatial pattern
observed in the CV plots (figure 3.12). It is a safe assumption that an RMS cut-off will
achieve the same impact as a CV cut-off, seeing as these two are directly related.

The back to back scans of polystyrene helped to establish the FPA detector element
stability within a single session with the FPA-FTIR, but what of the day to day stability?
To answer this, the back to back scan analysis procedure was conducted over several
days and observations on the distributions for several peaks were made. It is noted that
between individual runs it was necessary to reposition the PS standard in order for the
FPA to be recalibrated and a new background collected before the beginning of the days

run. This data is graphed for a single peak height in figure 3.15.
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Figure 3.15 Series 1-4 represent 4 separate runs with 10 repeated scans per run.
Measure was on 1942.3 cm™, with a 2 point baseline correction. Right graph shows the
FPA average absorbance for the peak, left graph shows the relative magnitude of the
distribution of that absorbance value over the FPA camera.
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The information in figure 3.15 presents an interesting problem. The only differences
between the series in these tables are the re-adjustment of the polystyrene strip and
the time of analysis. Regarding the repositioning of the PS standard, this may account
for the differences in the absorbance intensity between run 4 (latest date of analysis)
and runs 2 and 3 (middle runs performed on same day with separate calibrations), but it
does not explain the behaviour of run 1. The level of absorbance intensity spans the
whole range seen between the other runs, but from one scan to the next. The chart of
absorbance CV value mimics that of the mean absorbance — where run 4 has the widest
spread of data, run 2 and 3 are fairly consistent with one another, and run 1 is the most
erratic. The increase of CV value for run 4 seems disproportionate when compared with
the data in figure 3.14, i.e. the increase in absorbance value does not seem to account
for the increase in pixel response distribution. What can be said about the run to run
data is that each is different from the next, and that the recalibration of the FPA prior to
data collection seems to have an impact on the spread of data over the detector
elements. It is encouraging that the two series within the same day generate quite
similar responses; however it is apparent that when running quantitative experiments
from one day to the next the response of the FPA camera would need to be carefully
observed and corrected for above and beyond the NUC treatment provided by the

instrument software.

An additional attempt to compensate for the non-uniformity among the pixels of the
array involved the ratioing of peaks within the spectrum of the PS standard. Looking to
the variability of individual peaks it has been demonstrated that the intensity of
absorption is proportional to the magnitude of that response distribution over the FPA
camera, and that a minimum distribution is found between approximately 0.2-0.7
absorbance units. In figure 3.13 the peak heights at 1583.6 cm™ and 1070.5 cm™ (CV =
2.75% for each peak, after +/-2SD refinement of pixel population, ~ 95% remaining)
have been divided out for each pixel. The response for each peak is an average of 10
scans, 256 co-additions and 4 cm™ resolution, taken from series 2 in figure 3.15, as these
readings are relatively stable. Based on the resultant distribution seen in figure 3.16 the
spatial noise still persists, but the overall level of response distribution has been
decreased nearly % of a percent. Looking to other peak ratios a similar trend is

observed, e.g. 1942.3/1155.4 cm™ achieves a CV value of 3.15% vs. 3.3 and 3.9%
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(respectively) for the single peak measure. It is noted that taking a peak differential
results in a widening of the pixel response distribution, e.g. when the difference per

pixel is taken on 1155.4-1942.3 cm™ the resultant CV is greater than 10%.
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Figure 3.16 2D image and histogram distributions of pixel peak height ratio
1583.6/1070.5 cm™, each peak having a two point baseline correction.

3.3.3. Fluid Cell Measurements

As the end goal of this project calls for a novel transmission flow cell that
incorporates the micro-fluidic fabrication of multiple channels for the observation of
fluid streams. It is an important step then to optimize the collection of data from a
transmission cell. Many conventional transmission cells have the fluid inputs/outputs set
perpendicular to the fluid flow, where this presents a problem when sampling with an IR
microscope, i.e. the cell design does not fit underneath the optics when the system is
properly focused. Therefore a custom made cell was fabricated with the input/output
lines sitting parallel with the inset crystal, with the fluid stream then flowing down and
then through the crystal path-length forming a total of four 90° turns upon flowing in
and out of the cell. The cell was a demountable design, with four screws for securing the
two plates upon the cell and two gaskets. Four cartridge heaters were inset into the cell
manifold, two for the top plate, two for the bottom, opposite of one another in order to
achieve rapid and stable temperature control. The system could then be placed
underneath the microscope stage, and fluid lines could be set in such a way that the
microscope stage could be properly sealed and a proper purge obtained. A complete
overview of the system is provided in figure 3.17, and the parameters of the equipment

may be found in the experimental section.
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Figure 3.17. Apparatus used for FPA-FTIR transmission cell measurements. A —
Demountable manifold with transmission port; B- IR microscope objective; C — Fluid line
in (line out at left); D- Thermocouple; E — Heat cartridges (x4).

With the cell securely set onto the microscope stage, it was possible to obtain an
optical focus of the cells path-length simply by passing a fluid stream (of the solvent to
be used in the current experiment) and creating a series of bubbles within the path-
length. Subsequently the system may be flushed with the solvent to completely fill the
path-length, and the FPA camera can be calibrated through the solvent filled
transmission cell. Although the usual procedure for image collection involves calibrating
the FPA with an unobstructed beam path (as in section 3.1 and 3.2) the practice of
calibrating through the solvent filled cell allows for direct subtraction of the solvent
media upon measurement. It is also convenient because the integration energy at the
FPA can be more accurately established, i.e. calibrating the FPA with an unobstructed
beam path to 9000 integration energy and then placing a liquid filled cell into the beam-
path will dramatically reduce the effective integration energy (e.g. ~6000-7000,
dependant on pathlength and solvent/sample properties). The integration time at the
FPA can be adjusted to compensate for the loss of integration energy, allowing for the
recommended 9000 to be obtained at the cost of longer scan time. The resultant image
of a fluid film of water is shown in figure 3.18, which includes the single beam spectrum,
a 100% transmission line, and a peak absorbance measurement. The single beam
spectrum is present simply to observe the visual homogeneity of the single beam over
the FPA, and it appears that it is a tightly distributed feature according to the CV values
(1.7% and 1.5% for the entire and top 10% of the FPA respectively). The 100%
transmission line validates the spectral subtraction process for the FPA, as the noise
features obtained match closely to those found in the open-beam noise analysis (see

figure 3.1). For the absorbance measurement an aqueous solution of sodium azide
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(NaN3) was used, as it is a well known internal standard **°, due to its good solubility in
water and many organic solvents, and also due to its sharp absorbance between 2000-
2100 cm™ where few other organic compounds absorb. It is noted that the liquid
pathlength was calculated to be 33 um using the fringe method on the empty cell, and
that the scanning was performed on a stopped flow of the liquid standard. Preliminary
work with other solvent media (mineral oils) has shown the FPA calibration through the
solvent (blank) filled flow cell to be the simplest and most effective approach to making

guantitative measurements of such a fixed apparatus.
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Figure 3.18 Distribution of FPA response through a liquid film. Top, image of single beam
area; middle, image of noise response; bottom, image of NaN; peak, two point base line
correction (2102.4, 1967.3 cm™).

The absorbance value of the NaN; NN double bond stretch at 2048.4 cm?, for a
0.3588 M aqueous solution resulted in a mean peak height absorbance value of 0.4543
+/- 0.0270 (95% confidence). Due to the highly centered ‘normal’ distribution, it was
assumed to be valid to refine the data set by +/- 2SD, and when this is done the
remaining pixels have a CV value of roughly 4%, down 2% from the raw pixel data. When
compared to the PS standard peak (1942.3 cm™) with an average CV value for the raw

pixel data of roughly 4%, and 3% when refined +/-2SD, the liquid film appears to be

74



generating a comparable magnitude of pixel absorbance distribution. Something
noteworthy in the NaN; scan that was not observed with the PS scans is that the spatial
pattern appears prominently in the FPA peak height map. This could perhaps be due to
the relative molar absorptivity and path-lengths the respective samples, i.e. the NaN;
molar absorptivity and smaller path-length generates a more sensitive response — one
that is highly influenced by the noise aspects of the FPA detector. Alternatively the PS

film may have an underlying fringe as a result of its film thickness (50 um).

3.4 Conclusions

The impact of scanning parameters on the magnitude of RMS noise, and more
importantly the distribution of that RMS noise over the FPA, has been evaluated. In
terms of overall performance the individual pixels comprising the FPA detector are still
an order of magnitude away from DTGS performance, while it is also noted that a
relatively greater amount of time is required to obtain the levels of co-addition used in
these experiments. When the integration energy is set above 7000 counts and the level
of co-addition of pixels is greater than 64 the impacts on the pixel RMS noise
distribution are maximized (lowest SD). The same spatial noise pattern observed in past
work was seen again here, and is easily eliminated using an RMS noise cut-off filter,
reducing the pixels to a roughly normal distribution of response. The actual volume of
pixels with extreme noise measures relative to the median is small, and a 20% removal
of pixels based on their noise properties safely removes the spatial noise patterns.
Based on the post filtered normal distribution of detector element noise response, the
average pixel of the FPA is limited to milli-absorbance noise levels — giving an impression
of the instrument detection limit for quantitative analysis by FTIRI. Through the co-
addition of spatially adjacent pixels (post removal of the spatial noise features) it was
established that when looked at as a series of 32 parallel detectors there are negligible
differences between rows/columns of the FPA as averages. When looking to repeated
back to back analysis of pixels, it is observed that the average deviation in noise
response per pixel is 10, thus the noise response of pixels is quite stable — not
considering those which are removed with the RMS noise cut-off filter. Thus the pixel
noise is a relatively unwavering measurement, resulting in very sharp non-random
features within the FPA, which may be removed if necessary, leaving a pixel population

with the ability to make measurements with milli-absorbance accuracy.
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It was found that for making mid-range absorbance measurements (0.268 Au) that
the CV for the pixel population rested around 3%, amounting to a range of absorbance
values from 0.259 to 0.277, well outside the expected level of deviation due to the pixel
noise characteristics. This establishes the level to which pixels generate different
responsivity — an additional effect to the noise distributions. For the individual pixel the
mean CV for a series of 20 measurements was found to be 0.73 +/- 0.57%, which rests at
the level of milli-absorbance accuracy — thus it is just when comparing the pixel
population with one another that larger variations in absorbance are introduced.
Additionally, the level of absorbance plays a key role in the average pixels absorbance
stability, e.g. for peaks greater than 1.0 absorbance the population of pixels with a CV
value less than 2% is severely diminished (5%), while at an absorbance of 0.5 that value
is greater than 95%. This establishes a dynamic range for the pixels comprising the FPA,
as outside the range of 0.1 and 0.8 the distribution of absorbance measurements among
the pixel population begins to spread, and the consistency of individual pixels for those
measurements also rapidly degrades. This shows that it is possible to generate FPA
detector elements with wider dynamic ranges, and these may be selected for by the
same process of pixel CV determination in other experiments.

A procedure was developed for the FPA-FTIR imaging of a flow through transmission
cell, where the FPA calibration procedure was adjusted to perform the NUC step
through the solvent (water) filled cell. The procedure was validated, and no negative
effects were observed on the pixel response distributions relative to the open-beam and
polystyrene results. The selected pathlength (33 um) resulted in a peak height of the
standard in the optimum absorbance range of the FPA, where the distribution of peak
height over the pixels amounted to a CV comparable to the PS work (~4%). This work
provides insight to just what is the single detector elements response like — what level of
noise, and how stable are the measurements made. The apparent ineffectiveness of the
NUC supplied with the instrument software is troublesome, as this may limit the
available data points in further experiments looking to extract quantitative information
from spatially limited regions of the FPA. It appears that overall, the long tailed
distribution of the spatial noise accounts for roughly 20% of the pixels within the FPA,

which translates to the removal of just over four columns of pixels from the total.
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Chapter 4. Assessment of the Quantitative Performance
of an FPA-FTIR Spectrometer

4.1 Introduction

In the previous chapter the FPA detector elements basic response characteristics
were quantified. The noise performance capabilities of the pixel population were
assessed, as was the absorbance responsivity. Also a procedure was developed and
assessed for the FPA-FTIR microscope sampling of a demountable transmission cell,
allowing for the facile imaging of liquid samples. With a system designed for the rapid
loading of liquid samples, with accurate temperature control, the next step is to begin
building models of the individual detector elements quantitative analysis capabilities. If
the level of quantitative performance for the individual detector elements of the array
can be established then decisions can be made about the application of these detectors
as quantitative tools in real world systems. Applications which have already exploited
FPA-FTIR do not generally do so with accurate quantitative measurements in mind,
however the quantitative accuracy of individual detector elements has implications to
any chemical measurement being made. If the relative responses of adjacent detector
elements are to be used in making crucial decisions, a certain level of confidence must
be ascertained such that their response is not merely an artefact of non-uniformity
between detector elements. Measuring in the context of a quantitative analysis study
allows one to make many valuable observations which are entirely relevant to
qualitative applications as well. For example, if a bacteria smear is being scanned for the
purposes of building a database for an expert bacteria identification system, but a
considerable percentage of the FPA detector elements are generating inconsistent
and/or erratic spectral responses where that percentage is characteristic of that
detector — what impact will that have on the transferability of that spectral information
if another FPA-FTIR system is used?

Previous work ** with this FPA-FTIR spectrometer conducted a quantitative analysis
on series of standards made up of methyl myristate in odourless mineral spirit. It was
established that as a global average of detector elements, a good linear regression curve
can be obtained, but when examined per pixel a significant spread in the CV with

increasing standard concentration was observed. This observation is consistent with
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those made in section 3.4.2, whereby the level of absorbance of a peak resulted in
larger distribution magnitude over the detector elements of the FPA. This work
continued by investigating the relationship between ‘noisy’ pixels and the overall
regression SD (CSD), where it was observed that a minimum CSD was achieved by
averaging the highest 20-40% pixels in terms of noise performance. Additionally steps
were taken to develop software capable of calibrating individual pixels of the FPA so
that the regression statistic spatial distributions could be analyzed, where it was found
that 60% of pixels have a run-to-run SD of less than 20 milli-absorbance units, while at
the other end, nearly 20% of pixels have a run-to-run SD of 35 milli-absorbance units or
much higher. These 20% of pixels were attributed to the spatial noise pattern seen
previously. It was also observed that the level deviation from linearity was well in excess
of what might be caused by the observed noise features of the FPA, thus an additional
effect to pixel responsivity is taking place.

Using the techniques developed in this work with methyl myristate a further
guantitative study of several aqueous model systems will be conducted. Starting with a
model system of NaN,, least linear square (LLS) regressions will be built for the
individual detector elements of the FPA camera. The day to day performance for the
same calibration will be established. From this data a different approach to co-adding
will be employed, contrary to the random selection of pixels from the FPA, spatially
adjacent pixels will be combined and the benefits to analytical performance determined.
Additionally a series of food relevant analytes will be modelled, and finally a milk
analysis study will be conducted. Milk was selected based on two reasons, 1) established
methodology for the quantitative analysis of milk and other dairy products, and 2) the
current use of FTIR spectroscopy for the analysis of milk in industry where each
spectrometer is capable of carrying out 300-600 samples/hr employing a single element
DTGS detector. The high-throughput requirements placed on FTIR spectrometers for the
commercial analysis of milk gives a context where the FPA-FTIR system would have a
significant cost-benefit advantage. Essentially the development of a cell capable of
carrying multiple fluid streams would make the FPA-FTIR system equal to m

conventional IR spectrometers (where m equals the number of channels in the cell).
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4.2 Experimental
4.2.1 Chemicals and Materials

Sodium Azide (NaNs) standards were prepared by weight with distilled, 0.45um
filtered water to give a range of ~0.060 M to 0.200 M. Solutions were stored in airtight
amber glass containers, in the dark at room temperature, and used within 5 days. Milk
standards were obtained from a laboratory specializing in milk analysis, and consisted of
6 standards with reference analyzed levels of fat, protein and lactose content. Samples
were sealed in plastic containers provided by supplier, and the bulk sample kept
refrigerated at all times. All milk samples wer analysed for fat content by Rose-Gottlieb

method with a Mojonnier extractor; protein by Kjeldhal; and lactose by HPLC.
4.2.2 Instrumentation

Same spectrometer set-up as in section 3.3.2. was employed. A parallel study using
the FTIR spectrometer equipped with a DTGS detector was also performed.
Modifications were made to the microscope stage for collection of spectra from D,0
samples, in that the purge apparatus optimized in section 3.4.1.2 was adapted in order
to maximize sensitivity for Amide | spectral region. The custom made transmission cell
illustrated in figure 3.16, was clamped into place on the microscope stage, linked to
heaters and a thermocouple for accurate temperature control of the fluid. The cell
materials used were CaF, (ICL, IR grade), spaced with a combination of Teflon spacers to
obtain a path-length between 30-40 um, with lead gaskets between the manifold and

the cells to ensure efficient heat transfer.
4.2.3 Sample Acquisition

Optical focus of the transmission cell was obtained by focusing upon the outlines of
bubbles within the cell. The cell was then filled with the solvent (water unless otherwise
specified) and an area of the transmission cell free of bubbles and/or debris was found
and the transmission cell locked into place. The FPA NUC procedure was carried out
through the solvent filled cell by setting an integration time that achieved integration
energy between 7000-9000 counts. Prior to background and sample collection the

transmission cell was temperature stabilized, temperatures were accurate to within +/-
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0.2 °C (30 °C for NaNj; standards; 40 °C for milk standards). Injection of samples was
done manually using sterile syringes connected to Teflon tubing, so that the
transmission cell was left undisturbed under the microscope stage. Volumes of sample
injection varied depending on sample media; the transmission cells volume itself was
minute, however the lines leading to the cell required flushing of the previous sample to
avoid cross contamination and/or dilution. The NaNj; standards were injected as 1 mL
aliquots, milk standards as 2 mL aliquots. Collection using the DTGS involved setting up
the transmission cell in the regular transmission compartment of the instrument, with
all the connections, temperature control, and purge measures taken with the FPA-FTIR
sampling, being easily transferred — thus ensuring that the only difference in sampling

was the detector being employed.
4.2.4 Data Processing

Spectral processing employed the same procedure as described in section 3.3.4.
Additional in house software (ImagePLS) was developed for the processing of LLS and
PLS calibrations for groupings of pixels and for individual pixel calibrations. Many of the
same features available in ImageProcessor were available in ImagePLS, thus it was
possible to carry out pre-filtering procedures before building calibrations based on
groupings of pixels within the FPA. Further statistical analysis of the data generated by

ImagePLS was carried out in Excel 2007 and/or Origins 7.0.
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4.3 Results and Discussion
4.3.1 Aqueous NaN; Calibrations: Linear Regression Modelling of FPA Pixel Population

In order to appreciate the ‘linear’ performance characteristics of the FPA, a first step
was to build linear regression calibrations using the FPA as a single point detector, and
then to adapt what was learned in chapter 3 to refine that detector to the better
performing elements and quantify the gains. The data in table 4.1 illustrates the impact
on the linear regression statistics using the co-addition of pixels within the FPA, where
pixels are grouped at random thus the co-adding of a single row or column will not likely
occur. By taking the average of all pixels within the FPA to generate a data point, a
regression curve very similar in quality to the DTGS curve is generated (see first row,
table 4.2), with the exception of the differing slopes. The slope deviation is not
unexpected when working with different detector types with different responsivity.
When the FPA is randomly sub-divided through the pixel co-addition process, the overall
linear regression CSD follows a power function trend with a root factor of 0.496, and an
R® = 0.9997 for the trend, matching observations made in previous FPA calibration work

¥ Note the increasing SD with increasing standard

with methyl myristate standards
concentration in the plot at the right in figure 4.1, a trend which supports the

observations in figure 3.14.
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FPAyg, | FPAg, | FPAy, | FPA,, | FPA, | FPA,
Slope | 4.1235 | 4.1233 | 4.1231 | 4.1228 | 4.1219 | 4.1200
CSD | 0.00446 | 0.01673 | 0.02377 | 0.03460 | 0.06872 | 0.13719
R? | 0.9994 | 0.9926 | 0.9853 | 0.9693 | 0.8888 | 0.6669

Figure 4.1 Linear regression data for increasing levels of FPA pixel co-addition, where
the subscript indicates the number of pixels averaged to generate the data at a point in
the calibration. Thus FPAg will generate 16 replicates per standard, each point
consisting of the average of 64 random pixels.
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Depending on the levels of pixel co-addition from within the FPA, some of the poorer
linear regression characteristics can be negated. However, the sense in which the data in
figure 4.1 was constructed is not useful for the end purpose of this project due to the
nature of the co-addition process. When the FPA detection system is to be utilized for its
spatial resolution capabilities with a series of adjacent fluid channels the data will need
to be averaged in a spatial sense. It has already been demonstrated that a spatial noise
pattern is evident on the FPA, which has serious implications to making quantitative
measurements of multiple fluid channels within the FPA field of view. It is important to
establish whether the spatial noise features relate to other pixel response

characteristics.

Data Set Slope, mean (CV) CSD, mean (CV) R’, mean (cv)
DTGS 3.9517 (0.3%) 0.00443 (51.2%) 0.9996 (0.04%)
FPA; (All Pixels) 4.1200 (9.3%) 0.03261 (>300%) 0.9703 (5.2%)
FPA, (80% of Pixels) 4.0899 (4.3%) 0.02079 (60.8%) 0.9825 (1.0%)
FPA; (50% of Pixels) 4.0901 (3.8%) 0.01877 (56.0%) 0.9887 (0.7%)
FPA, (10% of Pixels) 4.0940 (2.8%) 0.01688 (50.9%) 0.9912 (0.5%)

Table 4.1 NaNj; linear regression data for DTGS and for FPA pixel population with
increasing levels of RMS noise filtering (FPA,-FPA,). DTGS data averaged from 3 runs
using the same calibration standards.

The data in table 4.1 describes a) a DTGS calibration of the NaN; as a benchmark
comparison, b) the FPA average — that is to say all 1024 detector element responses
collected and averaged, and c) the FPA averages after pixel filtration based on the noise
features of the calibration set. To remove pixels of the FPA image based on noise, the
RMS noise in a region adjacent to the peak of interest were collected from each
standard and averaged (per pixel). As can be seen the removal of noisier pixels from the
FPA does enhance the linear performance of the detector as a whole — logical, as each of
these other features have been attributed to the spatial features upon the FPA, and the
removal of noise heavy detector element response from the average would be expected
to boost the sensitivity and lower the variability in a linear regression model. Figure 4.2
elaborates table 4.1, showing the gains at 10% pixel removal intervals, and also shows
the 2D representation of the regression feature being modelled. For each of the slope,
CSD, and CC, the spatial noise features (see figure 3.5) are translated to poorer linear

performance.
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Figure 4.2. Trends for linear regression gains upon further refinement of pixel
population according to an RMS noise filter. Each point in the plot represents the
average of the remaining pixels (Mean series) and the magnitude of that features
distribution (CV series). 2D representations of each feature (slope, CSD, and CC) with
color scales illustrate their non-random spatial distribution over the FPA camera.
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The slope and CC values follow a roughly power function gain, while the CSD is less
predictable in this sense. In each case it can be seen that removal of greater than 20% of
the pixel population based on their noise performance does not result in appreciable
gains to the mean and the distribution around that mean. A comment that the CSD CV
values seem disproportionately large; this is due to the magnitude of the absolute CSD
values being relatively close to zero; thus it is the change in CSD CV values which form
the important observation. Based on the trends of the spatial features seen in figure 4.2
it might be assumed that RMS noise would form a good basis for the reduction of the
FPA pixel population to those with better linear performance. However, upon further
inspection (figure 4.3), it appears that no strong correlation can be made between RMS
noise features of pixels and their linear characteristics. Aside from the few outlying
pixels which would be removed on the initial levels of RMS filtering, the pixel population
is largely randomized, and further filtering will not have a drastic impact on the overall
regression parameter. This then is what has been observed in figure 4.2, showing that
the filtering of the pixel population based on noise is not the most effective approach,
with many pixels showing lower CSD values being lost with lowest levels of noise

filtration.
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Figure 4.3. Plots of pixel regression features (CSD and CC) against their respective RMS
noise characteristics (mean RMS noise and RMS noise CV), from a NaN; calibration set.
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The selection of pixels based solely on their slope values is not an effective filtering
option, as the slope values that are generated by the pixels say nothing about the fit of
that slope to the data points, one only has to look at the CSD and CC 2D plots (figure 4.2)
to see that there is a significant percentage of erratic pixel responses forming a spatial
pattern over the FPA. It is these parameters (CSD and CC, or R?) that may shape an
effective pixel selection procedure. The disadvantage of this approach is that a current
calibration model must exist in order to apply the filter, where with an RMS noise filter
the draw was that only a single image would be necessary to apply the filter. However, if
the application at hand calls for the building of a calibration curve then this
consideration is of little concern. Other possibilities of pixel selection filters were based
on pixel CV value for repeated measurements, and a pixel relative error of prediction
(%RE) based on an individual pixels ability to predict a validation standards
concentration. To demonstrate the effectiveness of these various pixel filtering
possibilities, table 4.2 is arranged to illustrate their impact on the predicative ability (RE)

of the post-filtered pixel populations.

%RE Per FPA Pixel Selection Filter:

% FPA %RE CsD cC %CV RMS

Filtered Noise
20% 2.38 (75%) 2.73 (81%) 2.73(81%)  3.44(265%)  4.42 (264%)
50% 1.41 (73%) 1.96 (77%) 1.97 (77%) 3.09 (360%) 4.62 (310%)
80% 0.72 (74%) 1.32 (79%) 1.31 (80%) 3.82 (458%) 5.54 (375%)

Table 4.2. Filtering of FPA pixels based on various parameters and their respective
ability to narrow a pixel population with a consistently accurate predictive ability,
measured as %RE. Values = %RE (CV).

Each of these filter approaches is an improvement over the unfiltered FPA pixel
population, found to generate a mean %RE = 6.2% (CV = 620%). However, it is apparent
that the RMS filter approach is among the least effective in retrieving the pixels with
superior quantitative performance — if the relative error measure is to be trusted. The
absolute value of the mean %RE and the magnitude of its distribution after the RMS
noise filter and %CV filter show the worst selection ability. What’s more, further

refinement of the FPA based on pixel RMS noise performance actually selects for pixels
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with increasingly inferior predictive ability. The CSD and CC filter selection procedures
approach the level of the direct %RE filter, with removal of 20% of pixels based on these
values almost matching that of the direct %RE filter. Also, it doesn’t appear that there is
any significant advantage to using one approach over the other (CC vs. CSD), as the
statistics are virtually identical. For the refining of the pixel population, in terms of
predictive performance, a direct CC or CSD filter appear to be the best approaches.

For the current conditions (64 scan co-additions, 8cm™ resolution, ~8000 integration
energy, NaN; linear regression model, and a 20% CSD pixel filter) the average pixels

response characteristics are:

e (C,0.9973 +/-0.0021

e (SD, 0.01247 +/- 0.00455

e Slope, 4.1058 +/- 0.2853

e RE, 2.73 +/- 2.33% (for the prediction of a mid-range standard).
e RMS noise, 0.00083 +/- 0.00026

A further question around these pixel characteristics which has not yet been
addressed is that of their day to day stability. This was addressed simply by running the
same NaNj; calibrations repeatedly, ensuring that the same experimental conditions
were applied, so that the only difference between runs will be a new NUC for the FPA, a
slightly different integration energy, and in some cases a new NaN; calibration set. A
total of 6 runs are presented, the first 4 are from the same calibration set over a period
of four days, while the 5" and 6™ are each from separately prepared calibration sets on

separate days.
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Figure 4.4. The day to day stability of various linear regression calibration features of
NaNs. Each point is determined from the top 80% pixels of the calibration run based on
pixel CSD values.

With regards to the slope data in figure 4.4, the refined pixel population’s slope over
six runs averages to 4.0127 +/- 0.1200, while the average distribution of pixels within a
run generates a CV value of 5.19 +/- 1.25%. The CSD value over the six runs averages to
0.0160 +/- 0.0044, while the average distribution of pixels within a run generates a CV
value of 37.1 +/- 8.9%. The CC value over the six runs averages to 0.9966 +/- 0.0017,
while the average pixel distribution generates a CV value of 0.24 +/- 0.12%, forming the
most tightly distributed line feature both within a single calibrations pixel population,
and between multiple calibrations. The opposite is true of the RE value, with an average
from the six runs of 7.02 +/- 4.22%, and the widest distribution by far at 271 +/- 221%.
No consistently observable pattern appears in trying to correlate one feature to another
(e.g. for run 2, low CSD mean value vs. low RE mean and SD; for run 4, low CSD mean
value vs. high RE mean and SD). Thus by taking the mean values and measuring the
magnitude of each features distribution, post CSD filtering of the population, it does not
appear that any predictable trend in performance, and that these levels of variation
must be attributed to the nature of each distribution. To investigate this further the

distributions have been plotted as histograms (see figure 4.5, and appendix 1 for full

87



list), where based on the data in figure 4.4, comparisons of pixel CSD response are

contrasted in fuller detail.

CSD Value

Figure 4.5. Histogram representations of CSD distributions for the NaN; aqueous
calibration standards (0.010-0.200 M); left graph comparing run 1 to run 6, right graph
comparing run 2 to run 3. Each run has had 20% of high CSD pixels removed prior to
plotting.

The CSD distributions in figure 4.5 were selected to illustrate two phenomena seen
regularly with any feature of the pixel population (slope, CC, RE, noise). Runs 1 and 6
give nearly identical distributions — one overlays the other, and their descriptive
statistics confirm this similarity; keeping in mind that these two runs were run the
farthest apart in time, with different calibration sets. Runs 2 and 3, each run out of the
first trial calibration set (as with runl), are shifted quite significantly relative to one
another, where run three appears to have a narrower distribution compared with the
more positively skewed distribution of run 2. It appears that the CSD pixel filter has
affected run 3 more than run 2, as the distribution appears unnaturally ‘cut’ on the high
end — this does however create a more normal type distribution of the pixel CSD
response, and the CSD CV is a more relevant measure of highly skewed distributions like

the CSD and RE, but not of the ‘normally’ distributed pixel slope and CC values.
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%Cvmedian %CV

CsD 39.88+/-9.30 37.09 +/-8.29
cC 0.24 +/-0.12 0.24+/-0.12
RE 474 +/- 483 271 +/- 220

Table 4.3. CV,q Vs. CV for distributions of pixel calibration features as an average of the

six runs.

It was hoped that the modelling of the pixels with multiple standards would lend
stability to the predictive powers of the pixel population — i.e. the building of multiple
points within the pixels response, then eliminating 20% of the pixel population based on
CSD performance, and calculating the remaining population as the ‘average’ pixel.
Contrary to expectation, a wide distribution of predictive accuracy is obtained from the
pixel array (see %CV,,.q for RE, table 4.3). Also, it appears that significant shifts take
place with all features of the pixel population going from one day’s analysis to the next.
The only variables between runs that can be identified are a) the recalculation of the
NUC, and b) the slight shift in the detector integration energy between runs. The latter is
unlikely to be the main issue, as in section 3.4.1 dealing with noise characteristics of the
FPA the impact of integration energy was found to have minimal impact on the
distribution mean/magnitude above a value of 6000. On a positive note, the predictive
accuracy, as shown in the RE plot of figure 4.4, highlights that runs 1, 2, and 5 have
generated a significant pixel population with a RE below 5%, and further that these
same runs generate an average of ~150 pixels with an RE less than 1%. No correlation
was observed with any of the other linear regression parameters and the higher
accuracy pixels, suggesting that they may simply be due to random response — i.e.
perhaps any pixel will by chance generate this accurate response.

Runs 3 and 4 had an expanded analysis of a single standard, i.e. one sample from
within the curve was scanned repeatedly while building the calibration. Using this data,
the stability of the pixel RE of prediction can be estimated, an also the data can be
plugged into calibration sets from other days to see how cross prediction is handled.
Rather than applying a CSD filter to the pixel data (which has varying levels of
effectiveness in narrowing to the better RE pixel population), a direct RE filter was

applied, by removing pixels based on their mean RE over the 12 replicates. The effects of
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a CSD FPA filter vs. a direct RE FPA filter are shown for two series of 12 replicates (figure

4.6, below), each performed on the same calibration set within one day of each other.
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Figure 4.6. Two calibration sets are plotted for 12 repetitions (x —axis), showing the
mean of the pixel populations RE value, and the associated CV value for that population.
A CSD filter was applied in the chart at left, an RE filter at right — each removing the 20%
of pixels with the highest respective value.

Going from the CSD filter to the RE filter does not show drastic changes in the mean
RE values for the remaining pixel populations, however the CV values are significantly
reduced with the RE filter approach. This illustrates the inefficiency of the CSD filter in
obtaining those pixels with better predictive ability. The other observation is the
magnitude of the variability in pixel response, i.e. looking to the RE filter data; the same
sample may generate a relatively tight range of mean RE values, however the
distribution of pixels from replicate measurements can have a standard deviation
fluctuate from 65-85% relative to the mean — with no changes in operating conditions.
Looking at a single pixel (5 x 21) in run 3 for the 12 repetitions it generates a mean RE of
0.66 +/- 0.47%, while in run 4 it generates a mean of 1.83 +/- 1.21%. This pixel was
selected as the best performing in terms of RE value from run 3, to show what level of

variability might be expected from the best crop of pixels.
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4.3.2 Milk Calibrations: MLR and PLS Modelling of FPA Pixel Population

The linear regression modelling of NaN; has demonstrated the Beers law limits for
the pixel population. Linear regression is rarely directly used in the modern application
of spectroscopy for quantitative measurements; however it does form the fundamental
backbone for more intensive calibration methodologies. It is suspected, based on
previous accounts and knowledge of the complexity of the sample matrix, that
modelling one component off a single peak will not provide the best accuracy in
analysis, i.e. other components of the milk will contribute to a peak selected as
representative of a single component, attenuating the end result to an extent. Figure 4.7
shows the optical image of the homogenized milk standards under the microscope,
where droplets are visible in the stopped flow but in a size that does not impact the
response of the FPA’s significantly. The milk scanning procedure was optimized at 40°C
as a stopped flow, with check valves on the input and outputs to ensure that a drift of
the sample didn’t occur during sampling — so any features that might be detected as

heterogeneous by the FPA would be static throughout the scanning procedure.
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Figure 4.7. At left, an optical image of the FPA field of view of a stopped flow of
homogenized milk. Middle top, IR map of the C=0 stretching frequency indicative of the
fat distribution; middle bottom, IR map of the Amide Il peak indicative of the protein
distribution. Right, respective histograms of absorbance values per pixel for the C=0 and
Amide Il measurements, where the peak heights are baseline corrected at 1780.0 and
1490.0 cm™ respectively.
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Fat(1747.5cm™) NaN3 (2048.4cm™)

Statistic: a b a b

RE 4.01({101) 2.68 (68.6) 1.01(80.1) 0.83 (67.6)
csD 0.0049 (11.6) 0.0053 (21.3) 0.0099 (38.0) 0.0112 (61.1)
cCc 0.9967 (0.07) 0.9961 (0.19) 0.9990(0.08}) 0.9985 (0.28)

Table 4.4. LR-analysis of fat content and NaNj internal standard from milk calibration
standards. Under each category (fat and NaN3) a = 20% pixels removed based on CSD; b
= 20% pixels removed based on RE. Values in brackets are the %CV for the remaining
pixel population.

As an initial comparison to the previous section a calibration set was run with the
addition of a NaN; spikes in increasing amounts, creating another component in the milk
calibration set. This added standard established that 1) the milk matrix does not
significantly impact the modelling of NaN3;, and more importantly 2) the principle
components of milk are not modelled as efficiently as the NaN; case. Table 4.4 actually
shows the superior linear regression for the NaN; component where the CSD for NaNj3 is
nearly twice that of the respective fat values, while opposed to this the CC values are
slightly improved over that of the fat. Between the two cut-off approaches (CSD and RE
removal of pixels) the RE filter results in the best population of pixels in terms of RE and
a similar selection in terms of CSD and CC, although they are in each case slightly
degraded when compared with the CSD filter. In relation to the previous NaN;
calibrations performance is improved, noting that the collection of the milk standards
was done at 256 scan co-additions vs. the 64 scan co-additions used in the previous
NaN; work, illustrating the gains in predictive accuracy to be had with longer scan times.
The best performing pixels, as selected with the RE filter in table 4.4, obtained an
average prediction of fat content within 2.7% of the true value and a distribution
magnitude among these pixels comparable to the NaN; in the same standard. It is also
noted that the minimum absorbance at 1747.5 cm™ for the standard set was sub-
baseline with a CV of 90%, while the maximum absorbance was at 0.14 with a CV of
5.6%. These low end measurements are problematic, as the transmission cell pathlength
cannot be extended much further past the current 35 um without further saturation
effects due to the water bands. However, this work demonstrates that it is possible to

make reasonable calibrations (comparable to the optimum range NaN; measurements
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made earlier within 0.2 -0.8 absorbance) on the low end of the absorbance scale for the
detector elements of the FPA camera.

Due to the linear regression calibration approaches inability to model the
contributions between separate components within the milk matrix to each peak (which
with the LR model are being analyzed as an individual component) the MLR calibration
technique is often used for making quantitative measurements of milk in industry. MLR
attempts to model the relationship between two or more explanatory variables and a
response variable by fitting a linear equation to the observed data. The application of
MLR to the FPA milk calibration standards also allowed for the direct comparison of
results to the requirements of the AOAC for milk measurements (table 4.5, bottom row).
The selection of peaks was based on early research with the assessment of FTIR for milk
analysis *° (see experimental for details) and focused on the reference analyzed
components of the milk standards (fat, protein, and lactose). The data in table 4.5
relates to the MLR calibrations made on a) the averaged peak responses for all pixels, b)
the averaged peak responses post removal of the 20% highest RMS noise pixels, and c)
the averaged peak responses post removal of the highest CSD pixels based on previous

LR analysis per pixel.

Protein Lactose

1% CSD 1% CSD

All 0.9945 0.1008 0.9961 0.0058 0.9940 0.0086
RMS (20%)| 0.9944 0.1015 0.9928 0.0079 0.9974 0.0057
CSD(20%)| 0.9960 0.0855 0.9929 0.0078 0.9946 0.0031
CSD(50%)( 0.9976 0.0670 0.9954 0.0063 0.9955 0.0074
CSD(80%)| 0.9980 0.0604 0.9962 0.0058 0.9945 0.0082

Table 4.5. Trending of MLR fit statistics upon furthered refinement of pixel population
contributing to the average values used for calculations. RMS (20%) indicates removal of
the highest 20% RMS noise from 1950-1750 cm™ based on image blanks; CSD (%)
indicates the level of pixels removed based on individual pixels CSD from a pre-
calculated linear regression.

The data in table 4.5 contrasts the fit statistics for the different approaches to pixel
population refinement, and based on previous experience with the linear regression
data, it would be expected that the CSD refinement approach would generate more

significant improvements. For the fat this assumption holds true, with virtually no

improvement to the fit statistics upon RMS refinement, and proportional improvement
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with CSD refinement. The protein fit statistics see degradation upon RMS refinement,
and a similar situation with the CSD refinement — until 80% removal of pixels which
equates the average when using the average of all pixels. The lactose shows better
improvement using the RMS approach compared with the CSD approach.

The data in table 4.5 is based on a single calibration run, while it is noted that in
general for repeated runs, there is an improvement in the fit statistics based on the CSD
approach for the fat and lactose components, while the protein component generates
more variable results. It is also noted that for each scenario it doesn’t appear that a
terribly significant improvement or degradation is taking place with the fit statistics in
the MLR model — however it needs to be demonstrated to what level are these pixel
populations are performing compared with industry standards. To do this the MD,,
SDD,, MD,, and SDD, were calculated based on the MLR curves predictions of the known
standards values, and the results tabulated. As a first observation, it was found that the
MD,and MD; in all cases were in the order of 10° — 107, well below the requirements of
the AOAC for this parameter. However as indicated by the higher values of the SDD, and
SDD, these extremely low MD, values can likely be attributed to the noise level of the
data set which makes it appear as no bias exists; therefore the values are better
described by the SDD, and SDD; in this case. The nature of the detector at hand (FPA
camera) explains this observation of noise drowning out observable bias in the mean
differences, as it’s noise levels are 1-2 orders of magnitude greater than conventional IR
detectors.

In figure 4.8 (following page) the trends in the SDD, and SDD, are plotted for the
varying levels of pixel refinement (based on the CSD values of the pre-linear regression
selection of pixels), and several things can be noted about these trends. In each case
there is a reduction in the absolute value of the SDD, upon the initial levels of
refinement — and in most cases this reduction is proportional throughout the successive
levels of refinement, thus validating the procedure of pre-selection of pixels based on
their LR CSD (or R?) values. For the SDD, — an overall reduction in the absolute value for
the two calibration sets does take place. The exception here is the lactose SDD,, which
appears to not generate any significant change with further removal of pixels (note the
scale of the lactose SDD, in figure 4.8). It was hoped that the refinement of pixels might

narrow the gap between respective calibration sets, but this doesn’t seem to be a
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consistent effect of the procedure; the fat seems to narrow for each the statistics, but
lactose is much less predictable, and the protein narrows with respect to the SDD, but
not the SDD,. The trend of each the SDD, and SDD, seems roughly repeatable between
runs with different calibrations in that similar patterns can be discerned for the pixel
refinement procedures. Overall the changes in the statistics are not that great
proportional to the level of pixel refinement, and are generally greater with respect to
the fat and protein components than with the lactose — but as described below these

small changes can have an important impact.
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Figure 4.8. Trending of SDD, and SDD, for two sets of milk calibration standards. The
SDD, is for a set for individual calibration runs from two separate sets of standards. SDD,
is representative between two calibration runs per set —i.e. the differences between the
repetitions of the same standards. The successive levels of pixel refinement based on
their pre-calibrated CSD values is represented on the x-axis, while the SDD, and SDD, are
represented on the y-axis of the respective charts.

With respect to the industry standards as defined by the AOAC, the lactose and

protein components are predicted with enough accuracy and repeatability by the FPA to
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be acceptable. The problem lies with the fat component, whereby both the SDD, and
SDD, statistics have not met the standards (0.06 and 0.02 respectively); the SDD, is quite
close and with refinement can meet the standard — but the SDD, is well off, and even
with removal of 80% of the worst performance pixels. It is noted that an attempt to
model the fat component using only the CH band (2924 cm™), only the ester band
(1747.5 cm™), and a combination of both — where it was found that inclusion of
generated the optimal result.

As a final illustrative measure, the pixels of the FPA were calibrated for the milk
components using a PLS approach. This feature was incorporated into the same
software used to generate the linear regression calibrations, and allows for the
generation of the same 2D image plots of the resultant response distribution (figure
4.9). The RMSECV distribution gains for each parameter are demonstrated in figure 4.10,

with increasing levels of latent variable fitting.

Lactose Protein

RMSECV
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Component | | . | RMSECV a RMSECV P
Fat 9 0.0242 0.15301 (178) 0.9997
Protein 6 0.0203 0.11681 (159) 0.9382
Lactose 8 0.0341 0.16445 (141) 0.8984

Figure 4.9. RMSECV and CC distributions for the PLS calibration of fat, protein, and
lactose. Inset table shows latent variables selected from respective PRESS plots, ° the
RMSECV for the FPA as a whole (per component), ° the RMSECV with CV in brackets for
the pixel population, and the FPA average R’ value.
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Figure 4.10 The level of RMSECV distribution versus the number of latent variables used
in the PLS calibrations of fat, protein, and lactose.

4.4. Conclusions

The overall linear response of the FPA compares to that of the DTGS standard
detector type used in many conventional FTIR spectrometers, however upon breakdown
of the FPA into its constituent detector elements there is a rapid degradation in the
linear regression performance. Taking the data in chapter 3 (about the RMS noise
features) into account, it appears that the same spatial features are present for the
slope, CSD, and R” performance characteristics of the detector elements. A filter
removing the 20% highest RMS noise pixels from the calibrated pixels supports this
observation in that there is a significant tightening of the response distributions (slope,
CSD, and R?) and an improvement in the absolute means of the average detector
elements CSD/R*values relative to the DTGS detector (CSD, 0.0169 vs. 0.0044; R?, 0.9912
vs. 0.9996 — for the top 10% pixels vs. the DTGS detector). For each parameter it was
found that for the initial 20% filtering the gains in further removal of pixels based on
their noise features did not result in significant gains in global performance, and that
looking at the pixel population as a whole no strong correlation actually exists between

noise and linear regression parameters of the pixels.
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Other more direct methods were thus experimented with, and it was demonstrated
that in terms of selection of pixels with better predictive ability (in terms of %RE to the
true value of the selected standard) the CSD and CC filters gave the best result aside
from the direct %RE filter. In practice this would require that a pre-calibration be
performed on the FPA prior to the analysis of a sample set, and from that information
the pixels to be used in the analysis may be selected based on any of the pixel selection
filters used here, with the recommendation of a direct %RE and a CC filter to remove at
least the worst 20% performing pixels. It is interesting to note that the RMS noise filter
approach is the least effective of the pixel filters employed, and actually results in an
increased average %RE prediction value with a broader distribution over the FPA —
suggesting strongly that the noise features of the pixels cannot be the only
consideration in determining the best ‘quantitative’ pixels. The day to day calibrations
using the above model, found that the stability of each measurement is hard to predict —
the average CSD value can double from one day to the next, with the magnitude of the
distribution changing just as drastically — the same can be said for other calibration
features. Thus it appears that differences from one FPA NUC and other spectrometer
conditions have an unpredictable effect on the overall FPA response, stressing the
requirement for a pre-calibration before each day’s analysis. It is troubling that after
modeling the pixels responses with multiple standards, and then making validation
predictions based on that model, that such a wide range of predictions are still
generated — and this again is likely due to the nature of the NUC performed on the
detector elements giving unpredictable behavior for a good proportion of the pixel
population.

The analysis of the milk standards provided an important addition to the NaN;
calibrations in that it allowed for comparison to industrial requirements of quantitative
performance, and also allowed for the performance of the FPA detector to be pushed
with the multi-component analysis of a more challenging sample matrix. The
homogenized milk samples did not have any observable features under the microscope.
The utilization of a pre-homogenizer is required for all milk sample analysis by IR
spectroscopy, and while this is not a problem to link to conventional transmission IR
cells, it is envisioned to be problematic in coupling to the proposed multi-channel cell

discussed in chapter 5. Overall, the linear performance for each of the protein and
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lactose components of the reference analyzed milk standards met the requirements of
the AOAC, while the fat component was not able to pass. The direct comparison of the
fat component to the NaN; regression statistics shows that the performance of detector
population is diminished — something that is improved when using the MLR calibration.
The PLS calibration of the milk standards did not meet expectations — the RMSECV for
the calibrations were a two orders of magnitude greater than the linear regression
analysis, while contrary to the MLR results the fat component had the best relative
performance with poor performance for the protein and lactose components. The same
spatial features are observed within the 2D plots of each of these features, suggesting
that the PLS approach does not compensated for this feature of the FPA.

Overall, it has been demonstrated that the FPA pixel population is capable of making
milli-molar accurate predictions of the NaN; model system, and a percentile level of
accuracy with the measurement of milk components. There is the continuation of the
spatial features seen with the noise analysis, and pixels can be better selected by using
the parameters obtained from a pre-calibration procedure. The spread of the pixel
predictive ability seems to change from one day to the next and necessitates constant
monitoring — i.e. transferability of a calibration model from one day to the next should
be cross checked with calibration standards upon every analysis and the pixel
population to be used based upon the result. The level of variability for an individual
pixel performance needs to be contrasted to the level of variability between pixels,
where it is a combination of these two factors that will decide how one might make
predictions of a concentration gradient within a single image — rather than for a series of

images as done in this chapter.
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Chapter 5. FPA-FTIR Multichannel Sampling System.

5.1. Introduction

To define the concept of high-throughput analysis (HTA) is simple enough — where
any process which enables the analysis of a high volume of samples in an efficient
amount of time, obtaining the required level of analytical information can be called a
high-throughput technique. These HTA techniques are of great significance in industry
for the analysis and/or screening of products at different points of their production
process for quality control and regulatory purposes. There has been a trend in recent
years toward the development of these so called high-throughput chemical analysis
techniques, where one of the main driving forces behind this trend is that of the
pharmaceutical industry and combinatorial chemistry °°. The drive for new drugs
discovery requires the analysis of countless thousands of formulations under a variety of
experimental conditions, and carries with it a large monetary incentive. One technology
which has revolutionized the field of high throughput drug discovery is micro and nano-
fluidics, where the massively parallel sample throughput of these arrays allows for
unprecedented levels of high throughput screening (HTS). Both FPA-FTIR imaging and
micro-fluidics are beneficial to a variety of other fields for the purposes of HTA and HTS,

120121 'medical sciences %, pharmaceutical sciences '*, forensics

e.g. biological sciences
science %, and food and agricultural sciences  all stand to benefit from these advances
in one way or another. As discussed in the microfluidics section of chapter 2, there are
many means of detecting processes on micro-fluidic platforms — LIF, SERS, thermal lens
spectrometry, and a variety of other exotic sensor techniques — but what is proposed by
some is that perhaps that old familiar FTIR is up to the task. With its multiplexing
capabilities, where the rapid collection of a wealth of spectral information occurs quite
rapidly, FTIR makes for a very powerful analytical tool. It is adaptable to micro-fluidic
systems, in that many of the typical dimensions utilized (10's of um) are characteristic of
conventional transmission FTIR measurements, while the ATR sampling accessory allows
for measurements of even smaller fluid sample thickness (on the order of a micron).

There are limitations to the applicability of FTIR to micro-fluidic systems, mainly: spatial

resolution limitations due to the diffraction limit of IR radiation (~A), and the beam size
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of conventional FTIR systems is too large to make useful measurements of a micro-
fluidics system, making an IR microscope accessory essential.

The approach to HTS-FTIR spectroscopy undertaken with this chapter incorporates
the FPA-FTIR detector — in other words a multichannel detector, with a novel IR
transmission sampling cell. FPA-FTIR for HTS analysis is not a new concept; however it is
hardly the main application focus of the detection technology. Many studies have used
the technique for the measurement of multiple deposits and a few have used the

%. 105 124 The current

system for making measurements on micro-fluidic systems
multichannel cell has been micro-fabricated using photolithographic techniques to
create a series of parallel channels, capable of passing several fluid streams within the
field of view of the FPA detector. The streams are completely separated by polymer
divisions, and each will encompass several rows/columns (dependant on orientation) of
the FPA detector elements. This arrangement works around the two limitations of FTIR
spectroscopy to the measurement of micro-fluidic systems in that the individual
detector elements are capable of sampling in the range of a few micrometers with the
help of the IR microscope optics. Additionally, the detector array allows for the sampling
of multiple fluid streams simultaneously, and because it is an FTIR spectrometer,
multiple components from each of the streams may be measured simultaneously as
well. This system provides a very high throughput analysis tool, adaptable to many
fields. The model systems used in the following experiments evaluates the feasibility of
passing multiple fluid streams with the current cell design, and performs experiments to
test the potential quantitative abilities of the system. As each of the systems has been

designed as prototypes, recommendations will be made based on the results obtained

for future developments.
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5.2. Experimental
5.2.1. Materials and Equipment

Micro-fluidic multichannel cell: The cell was constructed using photolithographic
techniques, with an SU-8 negative resist upon a CaF, substrate; see reference for details
of the process. The end design of this multichannel cell was to be a demountable design
that could be taken apart repeatedly in order to deal with an blockage issues that may
occur during sampling, thus the CaF, plate with the multichannel features was placed
against another cell (same dimensions) that had been drilled to have a hole matching
each of the inputs/outputs of the multi-channels. The drilled and undrilled CaF, plates
were then manually aligned and fastened together for sampling using a custom made

manifold.

Multichannel cell manifold: The multichannel cell required a new manifold design in
order to utilize each of the channels as a flow through transmission sampling device.
Decagon geometry was used, consisting of a fluid input plate and a fixing plate used to
sandwich the micro-channel and drilled CaF, crystal plates together. The fluid input
plate had four of the sides used for inputs, then an empty side on each extremity of the
inputs, and the other four sides used as outputs — the drilled CaF, plate was aligned with
the input/output ports on the bottom side of this plate. The transmission port of the cell
was coned from a diameter of 1.2 cm down to 0.4 cm at the CaF, plate side, in order to
minimize the stray light passing through the sample, and to maximize the contact of the
manifold with the multichannel cell. Each input/output had a male luer lock input
inserted to attach the tubing assembly, which in turn was connected to a syringe pump
(SyringePump NE-1800) capable of achieving the pL/min flow rates used in experiments.
Each syringe was linked to a 0.45 um milli-pore filter to ensure any remaining particulate
in the standards/samples was removed prior to passing through the 30 um bottleneck of

the multi-channels.
5.2.2. Samples

Samples consisted of the NaN; standards used in chapter 4, prepared by weight, and
stored in Teflon capped amber glass ware at room temperature. Additional samples of

ethanol/water solutions were prepared for testing the level of viscosity on the loading of
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the system — however these were not prepared with quantitative measurements in
mind (not calibration standards). The channels themselves provided a sample for
spectroscopic interpretation, with the SU-8 polymer deposition thickness over the

features of the channels.
5.2.3. Data Acquisition and Processing

The open beam FPA NUC was carried out, followed by an open-beam background
collection, whereby the multichannel cell was then moved into position using the optical
microscope for alignment. After placing the multichannel cell and locking it into place,
the Lancer calibration window was again opened and the IR microscope sub-stage was
used to adjust the response back to a maximum, while the integration time was used to
approximate the open-beam NUC calibration energy. Alternative calibration scheme was
followed, whereby the multichannel cell was fixed to the stage and the FPA NUC took
place through the channel features, followed by a background collection enabling
subtraction of the cell features from the subsequent fluid samples. Scans were collected
at 16 cm™ resolution, based on preliminary work demonstrating the gain in FPA pixel
noise performance with decreased spectral resolution. The fixing of the multichannel
manifold to the stage became of upmost importance during scanning in this mode — as
the subtraction pixel per pixel could be impacted dramatically by minor shifts of the

apparatus.
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5.3. Results and Discussions

5.3.1. Micro-fluidic Multichannel Transmission Cell For FPA-FTIR Quantitative Analysis

The key components for the development of a micro-fluidic multichannel
transmission cell are depicted in figure 5.1. The photolithographic fabrication of the
multichannel cell was carried out so that one cell contained all of the micro-structured
features (figure 5.1A), while the facing cell held the drilled inputs/outputs. This design
allowed for the separation and cleaning of the unit if any serious clogging of the system
occurred, which was a continual problem with previous work using a sealed cell
approach. The two cells were fixed using the pressure supplied by the custom designed
manifold (figure 5.1B). The port of the manifold for transmission of the FTIR beam line
was optimized in order to maximize the surface area of the IR crystal contacted by the
manifold while still letting a sufficient amount of energy to pass onto detection. With
the tubing assembly fixed to the micro-channel manifold (figure 5.1C) and the pumping
system connected to the tubing assembly (figure 5.1D), the system was ready for sample

collection.

Figure 5.1. Multichannel sampling apparatus. A. SU-8 micro-channel structures on a CaF,
substrate; B. Custom transmission cell manifold for multichannel assembly and sample
loading; C. Constructed multichannel mounted to tubing assembly D. Pumping assembly
fixed to stage-locked multichannel cell.
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The main issues with the development of demountable cell design lie with the
manual construction of the cells within the manifold. A practical means of assembling
the system would have to be developed if it hopes to be used for more routine analysis
— any small misalignment of the drill holes with the micro-channel fluid inputs/outputs
results in an inoperable cell, i.e. fluid cannot be passed using the current design. It is also
noted that the reassembly of the cells carries with it a high degree of risk as far as
polymer delamination is concerned — particularly if the cell manifold has been wetted.
Thus the benefits of having a cell design that is demountable for cleaning/de-clogging
purposes are countered to a certain extent by the extreme sensitivity of the system
upon repeated handling.

The loading of the cells using the syringe pump was the other main issue around the
sampling of the multichannel system. It was found that flow rates greater than 100
pL/min resulted in the stalling of the pump array, while at lower flow rates leakage from
the manifold fittings was a constant issue. Generally the lower the flow rate the better
the performance, but this has definite practical limitations — i.e. the high throughput
sampling of such an assembly would call for the rapid loading of the cell. A flow rate of
20 pL/min was settled on as a compromise, however regular leakage still occurred.
Often the loading of only 2-3 channels would occur, followed by a backwash when the
fluids were not able to pass through the output side of the cell. Most of these issues can
be attributed to the high pressures involved combined with the small misalignments of
the two cell plates with one another — again emphasizing the need for a more efficient
means of assembling the cells. The successful loading of the cells was achieved for the
collection of several spectra, however the repeatability of this was poor, and in the end
more time spent on unsuccessful construction of the cells within the manifold than with
obtaining useful spectral data of fluid samples.

Due to the need to keep a micrometer level of precision within the field of view the
fixing of the multichannel cell manifold to the microscope stage formed an important
part of the analysis — and proved more challenging than was initially expected. Due to
the level of vibration introduced by the syringe pump through the tubing assembly, a
certain level of strain was put onto the manifold when it was clamped into place. By
securing both the syringe pump and the micro-channel manifold it was possible to

obtain the required level of stability, although the current arrangement shows that
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there would be a need for a special container upon the microscope stage that would
allow for the easy locking of the multichannel cell manifold into place for scanning —
precise enough to guarantee micrometer level repeatability of placement, allowing for a
higher level of confidence in the transferability of a background scan of the multichannel

features (i.e. an FPA pixel always samples an identical position).
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Figure 5.2. FPA-FTIR image of the empty multichannel cell, showing the pattern of SU-8
polymer within the cell. Left, 2D image for the intensity of 3420.0 cm™ of the SU-8
polymer. Right, blue spectra is from within a channel structure, red spectra from within
channel wall (yellow blocks indicate selected pixels).

The data shown in figure 5.2 shows a scan of the multi-channels obtained against an
open-beam NUC FPA and an open-beam background, in order to illustrate the features
of the channels. The modelled peak area is characteristic of the SU-8 polymer used to
create the micro-channel structures, where it generates a strong response in the
fingerprint regions up to approximately 1600.0 cm™, and also from 2800.0-3700.0 cm™.
What is hoped is that the developing process during micro-fabrication will eliminate the
majority of the polymer within the desired channel structures, however what is found is
that a significant residue remains at all points of the channels (see the blue spectra in
figure 5.2). It is actually noted that due to the curing process of the exposed polymer,
slightly different spectral features exist within the residual, i.e. a stronger slope riding
from 1600.0-1800.0 cm™, and a weak broad response from 1900.0-2400.0 cm™. It is also
noted that there are no sharp edges observed within the 2D image, where a gradual
decrease in the polymer signal intensity is observed when tracing from a channel wall
into a channel that rides over a minimum 2 pixel width. The obvious consequence of this

residual polymer is that it will likely compromise measurements made in the affected
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spatial-spectral regions, depending on the ability to compensate by spectral subtraction
(figure 5.3). Three background collection approaches have been attempted and their
results illustrated in figure 5.3 using different combinations of FPA NUC and background
ratios. It can be seen from figure 5.2 that channel regions exhibit different levels of SU-8
residual — the lighter blue versus darker blue within the channels, thus the success of
each approach in figure 5.3 is dependent upon the secure positioning of the cell within

the FPA field of view.

Figure 5.3. Scanning of empty micro-channels: A. Open-beam NUC and open-beam
background scan of micro-channel structures, imaging peak height at 3420.0 cm™; B.
Open-beam NUC and micro-channel background scan of micro-channel structures; C.
Micro-channel NUC and micro-channel background scan of micro-channel structures. B
and C are imaging RMS noise of 1% derivative from 3800.0-3200.0 cm™.

The multichannel background images are modelled differently than the open-beam
background image, in that rather than a peak intensity map an RMS noise map of the 1*
derivative spectra is used. This was done due to the fact that there was no interpretable
peak information in the resultant multichannel subtraction images. The RMS noise
analysis of the same peak region allows one to see how well the background subtraction
performed. It is interesting to see how the RMS noise analysis is reflected as the visual
imprints of the channel structures in figure 5.4 (b & c), where in scheme B the edges of

the channel walls appear to generate higher noise, and in scheme C all SU-8 regions

appear to generate higher noise.
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The advantage of scheme A is that the multichannel cell only need be steady for the
duration of the scan collection, whereas with schemes B and C the multichannel must
maintain exact positioning in order to ensure correct ratio on a pixel to pixel basis. It is
apparent that where the SU-8 thickness is greater a higher level of noise will result upon
subtraction. The subtraction differences in scheme B appear less drastic between
channel and channel wall, not factoring in the micro-channel NUC creates a patterned
trend on the left portion of the FPA altering the color scaling scheme, however it is still
seen that the centers of the channels are slightly lower than the channel wall features.
Scheme C gives the clearest picture of channel versus channel wall noise features, and
also exposes the spatial noise features observed in chapter 3 are quite evident. The
overall noise distribution is lower for scheme C; however the majority of high noise in
scheme B is seen to be isolated to the left side of the image. Depending on the
requirements for analysis, it is recommended that scheme A be used when removal of

the SU-8 residual is not necessary, and scheme C if removal is necessary.
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Figure 5.4. IR imaging of ethanol fluid flow through the multichannel structures. Top
left, 2D IR representation of ethanol filling channels (modelling peak height at 3420.0
cm™); top right, profile of ethanol (+SU-8) response; bottom, spectral profile for selected
pixels from 2D IR image.
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Ethanol was selected as a first sample to test the multichannel cell in terms of
loading/pressure/flow rate capabilities, due to its lower viscosity at high concentrations
and its relevance to the IR analysis of alcoholic beverage products. Scheme A from figure
5.3 is used in building this image, thus there are contributions from both the ethanol
and SU-8 components for the overall response at the broad O-H band running from
3100.0-3600.0 cm™. Based on the images in figure 5.4 and 5.5 it can be safely assumed
that a transition is taking place in the green regions of the 2D image in figure 5.6, where
the SU-8 thickness is decreasing and the absorption is due to the presence of ethanol.
This is supported in the profile image, where the bottom level of absorbance is
equivalent to the maximum level of absorbance of SU-8 in the same cell when empty.
There is therefore a profile of sample path-length present in each channel —i.e. they are
not rectangular, and the sample absorbance will change depending on where the pixel is
taken from within the fluid channel.

Having the presence of a path-length differential within the same field of view for
multiple samples (4 channels = potential 4 samples in the current scenario) offers a
potential advantage to analysis in that if an sample contains an unknown concentration
of analyte the path-length profile gives a wider range of sensitivity measurements much
like in the case of the multi-cell accessory in section 5.4.1.When looking to figure 5.6’s
spectral information for the peak at 3420.0 cm™, within the fluid portion of the channel
the absorbance measure ranges from ~0.5 — 1.2, going from the optimum detector
element dynamic range to off-scale in a 4 pixel range. The path-length profile presents a
problem if simply looking to collect the response from within a fluid — and would
necessitate the use of an internal standard when making quantitative measurements
using groupings of pixels.

With the idea of utilizing an internal standard and building some data comparable to
the previous chapters work, NaN; standards were again utilized to evaluate the pixel
performance, this time from within a channel. The result in figure 5.7 shows the
successful loading of three calibration standards plus on off screen water blank (the
water blank was shifted to outer portion of the FPA field of view to maximize the
exposure of the other three channels containing the standards). It is visually apparent
based on the color scale that a concentration gradient is present going from one fluid

channel to the next, illustrative of the increasing concentration standards injected into
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each channel. The average response of the centermost pixel rows are shown in the
linear regression analysis of the four data points — where they are actually zero
corrected against a blank scan of the multichannel in the same position. It is seen that
the averaged performance is actually inferior to that of the work conducted in chapter
4, and this is likely due to the interference of the SU-8 residual from within the channels.
It becomes difficult to build calibrations between individually selected pixels from each
channel, due to the variability already observed in chapters 3 and 4, combined with the
added interference of the SU-8 residual, e.g. a range of LR CSD and R’ values can be
obtained depending on where the pixels are grabbed from within the channel. The
distribution of pixel absorbance response is similar to that seen in figure 3.17 (4-6%) and
actually looks relatively stable after some light filtering (2-4%). The slope of the ‘one
scan calibration’ does not compare to the slopes built using multiple images of NaN;
standards, 1.0 - 1.5 versus the 3.9 - 4.2 seen in figures 4.1 - 4.4. This is likely due to a
combination of factors between the two methods of calibration curve building. The data
for chapter 4’s NaNj; linear regression was built from repeated scans, while the data in
figure 5.5 is constructed from smaller groups of pixels within the same FPA image.
Where it was seen that the stability of individual pixels is reasonable, the differences
between pixels was greater — this then will reflect to a more unpredictable regression
when trying to construct a curve from pixels within a single image from the FPA.
Another difference is that the level of integration energy passing through the
multichannel transmission cell is about 3000 counts less than with the calibrations built
using a conventional cell in chapter 4, thus there is less efficient energy throughput.
Several possibilities exist to try and construct calibrations from this data; randomly
selecting pixels from each channel, grouping pixels from similar regions of the channel

for an average response.
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Figure 5.5. One scan calibration model of aqueous NaN; within the multichannel cell.
Top left, IR 2D image of the three fluid streams numbered 1-3; top right, calibration
statistics using the average of the highlighted rows in the 2D image; bottom table
showing the distribution of pixel absorbance for the selected rows with their associated
concentrations.

5.4 Conclusion

The utility a novel micro-fabricated (photolithography, SU-8 negative resist)
multichannel transmission cell has been evaluated. The cell design was built to be
demountable, within a custom designed manifold, capable of loading separate solutions
into each of the four micro-channels, creating a high-throughput flow through
demountable multi- (4) channel transmission cell. In principle the design is workable, as
it was successfully loaded with aqueous dye solutions, ethanol solutions, and aqueous
NaNj3 solutions — however due to practical considerations around the loading of the cell,
and the demountable design — more extensive experimentation was not possible. The
main limitation of the design has to do with the fluid loading — the macro/micro
interface, which is traditionally a problem with the design of micro-fluidic devices. In
order to ensure that the fluid was loaded, the micro-fabricated cell had to be perfectly
in line with the drilled top cell — where repeated separation of the cell for realignment
led to degradation of the micro-fluidic channels. The idea of a demountable micro-fluidic
system is attractive in the sense that it allows for cleaning of small debris from the
micro-channels which would otherwise render a sealed cell system unusable — however

it also exposes the system to potential damage.
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Additionally, the design of the micro-channels themselves could be better for the
purposes of maximizing the fluid channels in the field of view of the FPA. Roughly 50% of
the pixels are lost due to the channel barriers, and even when the channels are aligned
evenly it is not possible to fully fit each of the four under the field of view of the 32x32
FPA. The upgrade to the 64x64 FPA does encompass the entire channel system, and also
gives access to the branching points allowing for the extraction of much more data from
each channel. A potential solution to this problem would be to utilize the laminar flow
characteristics of micro-flows, and design a cell which would run multiple fluid streams
together and directing the resultant grouping of fluid streams into an area equivalent of
the FPA field of view. This would eliminate the presence of the polymer, and also the
remaining residue problem seen within the micro-channel structures of the current
design. The gradient of the polymer residual does appear to completely dissipate in
some points, however this is the exception and in most sampling points there is always a
presence of an SU-8 signal which is very strong in the finger print region. This had
consequences on the sampling schemes used, whereby it was shown to be effective to
collect a background of the empty multichannel cell for subtraction from the loaded
channels; noise performance within the center of the channel structures was equivalent
to the noise performance of a clean cell for the measured regions. The fingerprint region
was significantly affected by the presence of the residual polymer and subtraction was
less effective, a serious drawback for the sensitivity of the current design.

Overall the high-throughput potential of the multichannel transmission cell
combined with the FPA-FTIR detector has been demonstrated. The hardware will need
improvement in order to conduct more thorough investigations of this approach for HTS
analysis, and the cell design should be modified taking into consideration the
observations made from the above experiments. Multiple fluid streams have been
monitored, and a moderate quality calibration curve constructed off of a ‘single’
detector, something that has not been accomplished before with FPA detectors in the
literature. The ability to monitor live streams of sample based on a color gradient could
provide an efficient screening technique, while expanding the FPA (n = 64, 128, 256...)
could increase the number of simultaneously monitored channels. With the increasing
capabilities of FPA detectors, such a system could be very feasible for making sub milli-

absorbance FTIR measurements of multiple fluid streams.
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Chapter 6. Research Summary and Conclusions

The response distributions for the detector elements of an FPA camera within an
FTIR imaging spectrometer have been characterized. The noise level of the MCT-FPA
(~2x10™ — RMS; 256 co-additions and 8cm™ resolution, integration energy > 7000) as an
average of 1024 pixels is inferior to that of the single point DTGS and MCT detectors by 1
and 2 orders of magnitude respectively. Using the above scanning conditions, the SD of
the noise within the FPA detector elements is ~10™, with a CV for all detector elements
of approximately 50%, where there is a strongly right skewed distribution of this noise.
Looking closer at the distribution of noise and the 2D representations of that response,
it is apparent that the NUC performed on the FPA prior to analysis (using instrument
software) is not fully correcting the problem, i.e. the non-random spatial noise is quite
noticeable (every 4™ row & several even numbered columns) and is largely attributed to
the right skew of the pixel noise distribution. Collecting a pre-scan 100% transmission
line or using a region from within a samples spectrum allows for the easy removal of
pixels from the total based on their noise features. The higher performance pixels of the
FPA (in terms of RMS noise) are more tightly distributed; the best cases (top 10% of
pixels) on average have a CV of 7 +/- 0.7 %. The effective instrument detection limit (in
terms of absorbance) for the average pixel using the above prescribed conditions, post
removal of the spatial noise features, sits at 0.003, while the top 10% of pixels within
that population have an average of 0.0015. The ability to push the detection limit
through careful selection from the pixel population is feasible, but this is limited in its
repeatability as the average pixel has a RMS noise CV value of roughly 20%.

The level of peak response distribution was evaluated using solid and liquid samples
and it was found that the level of variation in detector element response was greater
than that expected based solely on their noise characteristics. Within the decided
dynamic range of the average detector element (0.2-0.8 absorbance) the CV value for
repeated measurements saw the greatest proportion of stable pixels (95% of pixels with
a repeatability CV of 2% or less, for 20 measurements), however outside of this range
there was a rapid degradation in individual detector element consistency. It was noted
that with the linear regression modeling in chapter 4, the SD of the pixel response for
the standards peak increased with concentration even when built to keep within the

decided dynamic range of the FPA. This is due to the fact that each detector element

113



generates a linear response unique of its neighbor, and thus will generate a different
sensitivity, resulting in the widening of the pixel data within the calibration— i.e. the
mean value might be 0.8, but a proportion of those pixels will be greater than even 1.0.

The linear regression modeling of the detector elements acted as an extension of the
work conducted in chapter 3, and it found that a significant proportion of pixels were
able to construct reasonably linear calibration curves from the varying concentrations of
NaN; in aqueous solutions, and milk samples. The main measures of linear regression
analyzed (CSD and RZ) were more effective than the RMS noise filter approach yielding a
better predictive accuracy, in terms of %RE from a true value determined with a
validation standard,. The same non-random spatial features were present for each of
the calibration features, although it was apparent that the correlation between noise
and these calibration parameters is not as direct as one might think, based on the pixel
selection procedures developed. Overall for the optimized scanning conditions, a pre-
calibration will allow for the selection of pixels with a CSD mean of 0.0125 +/- 0.0046
(based on the ideal situation of the NaNj; calibrated data).

A factor not mentioned up to this point is the time of analysis required to achieve the
milli-absorbance SNR and the minimized level of response distribution; roughly 3
minutes of scanning are required for the current conditions, which is certainly not
appropriate for a high-throughput analysis tool. Improvements in the achievable SNR
and the response time and data downloading from the FPA detector will need
improvement to be truly applicable to accurate quantitative analysis in a high-
throughput application. As with the design of the multi-cell sampling accessory, speed is
of the essence if such an accessory were ever to be taken seriously — although the level
of scan speed for the FPA-FTIR is compensated for by the fact that the prototype system
is capable of collecting from multiple channels of sample simultaneously. Thus, even if
instrument designers are able to achieve FPA-FTIR performance which is still two times
slower than the conventional DTGS detector, there will still be the potential to put
through two times as many samples with the current multichannel design. Alternatively,
if fabrication processes are improved to the point that the number of fluid streams in
the FPA field of view are increased to 8, 16, 32 etc, this would easily compensate for the

time of analysis limitation of current FPA-FTIR spectrometers.
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The points discussed in chapter 5 about the limitations around the micro-fluidic
multichannel demountable transmission cell are some of the biggest limitations to the
current work. The fact that the loading of the cell with fluids was never satisfactorily
solved reflects an ongoing difficulty within the field of micro-fluidics — connecting the
macro to the micro. The design of the current prototype calls for the easy disassembly of
the entire manifold/cell. If the demountable design is to work efficiently, the
connections on the manifold must be redesigned in order to withstand the very high
pressure build up put onto the system, they must minimize the dead volume in order to
have more efficient flushing of the micro-channel system, and the alignment of the
multichannel cell plates must be better controlled by some type of locking/placing
mechanism. The multichannel fabrication technique used in this study was excellent in
that it held up nicely to the fluid pressures, it was quite durable considering the amount
of handling that it endured through the study, and it maintained efficient separation of
the fluids within the channels when loaded. The problems which have been highlighted
are to do mainly with the residual polymer post development in the micro-fabrication
process, and the sensitivity of the polymer adhesion after repeated disassembly of the
apparatus. The sensitivity of the system is hardly a surprise due to the nature of the
delicately positioned channel barriers, but if the current design is ever to be used in a
practical light, a degree of confidence must subsist with their structural integrity.

The FPA-FTIR analysis of multiple fluid streams has been accomplished, and it has
been demonstrated that it is possible to perform 4 times the work in a single scan. The
extensive analysis of the FPA-FTIR in chapters 3 and 4 has illustrated the potential of the
technique to monitor much more data streams than just 4 — that actually there is no
appreciable benefit (in terms of predictive accuracy) to co-adding 256 pixels of data or
32. This means that after careful inspection and removal of erratic and/or non-random
‘bad’ pixels from the pixel population, it is quite safe to say that one column or one row
equals that of the neighboring column or row. Where one has to exercise caution is
when looking to use individual pixels of data from the FPA as a reliable response relative
to its neighbor. Although a good proportion of pixels have been shown to have a
relatively stable response, the level of stability is itself subject to a distribution — and
there is the issue of the spatial noise pattern which affects a select group of pixels

consistently. Comparing an individual pixels prediction to another is difficult even after a
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linear regression modeling of the entire pixel population and this again is likely due to
the nature of the pixels themselves and the inability to accurately correct for non-

uniformity using a two point correction.
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